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Preface

It is our great pleasure to welcome you to ECIR 2021, the 43rd edition of the annual
BCS-IRSG European Conference on Information Retrieval.

ECIR 2021 was to be held in Lucca, Italy, but due to the COVID-19 pandemic
emergence and the travel restrictions enforced worldwide, the conference was held
entirely online. ECIR 2021 started on March 28 with a day of (full-day and half-day)
tutorials, plus the Doctoral Consortium. The main conference took place in the three
days that followed (March 28 – April 1). The technical program of the main conference
included three exciting keynote talks, one per day: the first was presented by Francesca
Rossi (IBM), the second by Ahmed Hassan Awadallah (Microsoft AI Research), as the
winner of the BCS/Microsoft/BCS IRSG Karen Spärck Jones Award 2020, and the
third by Ophir Frieder (Georgetown University). The technical program also consisted
of research papers by contributors from Europe and the rest of the world. In total, 488
papers were submitted across all tracks, from 53 different countries. The program
committees for the various tracks decided to accept 145 papers in total; the final
scientific program thus included 50 full papers (a 24% acceptance rate), 39 short papers
(25% acceptance rate), 15 demonstration papers (48% acceptance rate), and 11
reproducibility papers (52% acceptance rate). As in the previous edition, the technical
program also included 12 “lab” (i.e., shared task) boosters from the CLEF 2021
conference, and the presentation of selected papers published in the 2020 issues of the
Information Retrieval Journal. Symmetrically, the authors of a selection of ECIR 2021
papers will be invited to submit an extended version for publication in a special issue
of the journal.

The last day of the conference (April 1) was devoted to 5 workshops and an exciting
Industry Day. The workshops dealt with important topics such as algorithmic bias in
search and recommendation (BIAS workshop), bibliometric-enhanced information
retrieval (BIR workshop), conversational systems (MICROS workshop), online mis-
information (ROMCIR workshop), and narrative extraction from texts (Text2Story
workshop). This year the Industry Day was focused on the experience of Ph.D. interns
in industrial contexts, and showcased success stories and positive experiences of former
Ph.D. interns and former Ph.D. mentors. All submissions were peer reviewed by at
least three international Program Committee members to ensure that only submissions
of the highest quality were included in the final program. The acceptance decisions
were further informed by discussions among the reviewers for each submitted paper,
led by a senior Program Committee member or one of the track chairs. The accepted
contributions covered the state of the art in IR: deep-learning–based information
retrieval techniques, use of entities and knowledge graphs, recommender systems,
retrieval methods, information extraction, question answering, topic and prediction
models, multimedia retrieval, etc. In keeping with tradition, the ECIR 2021 program
saw a high proportion of papers with students as first authors, and a balanced mix of
papers from universities, public research institutes, and companies.



Putting everything together was hard teamwork. We want to thank everybody
involved in making ECIR 2021 an exciting event. First and foremost, we want to thank
our Program Chairs Djoerd Hiemstra and Marie-Francine (Sien) Moens for chairing the
selection of the full papers. Many thanks also to the Short Papers Chairs Josiane Mothe
and Martin Potthast, who managed not only the short paper submissions but also the
CLEF papers submissions; to the Tutorials Chairs Richard McCreadie and Alejandro
Moreo; to the Workshops Chairs Lorraine Goeuriot and Nicola Tonellotto; to the
Reproducibility Track Chairs Maria Maistro and Gianmaria Silvello; to the Demo
Chairs Nattiya Kanhabua and Franco Maria Nardini; to the Doctoral Consortium Chairs
Claudio Lucchese and Guido Zuccon; to the Industry Day Chairs Roi Blanco and
Fabrizio Silvestri; to the Sponsorship Chair Nicola Ferro; and to the Test-of-Time
Award Chair Gabriella Pasi. Special thanks go also to our Publicity Chair Andrea Esuli
and to our Proceedings Chair Ida Mele. All of them went to great lengths to ensure the
high quality of this conference. Quite aside from the people who held chairing roles,
lots of other people contributed to the scientific success of ECIR 2021: many thanks to
the members of the Senior Program Committee, to the members of the Program
Committees of the various tracks, to the mentors of the Doctoral Consortium Com-
mittee, and to all those who reviewed, in any capacity, full papers, short papers,
reproducibility papers, tutorial and workshop proposals, and demo papers. Last but not
least, we would like to thank all the members of the local organizing team at the
National Research Council of Italy; in order to keep the registration fees as low as
possible, no professional conference organization company was called in to help, which
meant that this team took 100% of the organization upon them. We would thus like to
thank our three Local Organization Chairs Cristina Muntean, Marinella Petrocchi and
Beatrice Rapisarda. Thanks also to (in alphabetic order) Silvia Corbara, Andrea Esuli,
Ida Mele, Alessio Molinari, Alejandro Moreo, Vinicius Monteiro de Lira, Franco Maria
Nardini, Andrea Pedrotti, Nicola Tonellotto, Roberto Trani, and Salvatore Trani, for
helping in various phases of the organization. They all invested tremendous efforts into
making ECIR 2021 an exciting event by helping to create an enjoyable online and
offline experience for authors and attendees. It is thanks to them that the organization
of the conference was not just hard work, but also a pleasure. Finally, we would like to
give heartfelt thanks to our sponsors and supporters: Bloomberg (platinum and best
paper awards sponsor), Amazon, eBay, Google (gold sponsors), Textkernel (silver
sponsor), Springer (test-of-time paper award sponsor), and Signal (industry impact
award sponsor). We also gratefully acknowledge the generous support of the ACM
Special Interest Group on Information Retrieval (ACM SIGIR) and of the ECIR 2020
organizers. We thank them all for their support and contributions to the conference,
which allowed us to ask a low fee to paper authors only and to keep the registration free
for all other attendees. Thanks also to the National Research Council of Italy, to the
IMT School for Advanced Studies Lucca, to the British Computer Society’s Infor-
mation Retrieval Specialist Group (BCS-IRSG), and to the AI4Media project, for
supporting our organizational work.

We hope you enjoy these proceedings of ECIR 2021!

March 28 to April 1, 2021 Raffaele Perego
Fabrizio Sebastiani
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Platinum and Best Paper Awards Sponsor

Bloomberg is building the world’s most trusted information network for financial
professionals. Our 6,000+ engineers, developers, and data scientists are dedicated to
advancing and building new solutions and systems for the Bloomberg Terminal and
other products in order to solve complex, real-world problems. Improving search and
discovery of relevant content, functionality, and insights are critical focus areas for
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Abstract. Social scientists have shown that up to 50% of the com-
ments posted to a news article have no relation to its journalistic con-
tent. In this study we propose a classification algorithm to categorize
user comments posted to a news article based on their alignment to its
content. The alignment seeks to match user comments to an article based
on similarity of content, entities in discussion, and topics. We propose
a BERTAC, BERT-based approach that learns jointly article-comment
embeddings and infers the relevance class of comments. We introduce an
ordinal classification loss that penalizes the difference between the pre-
dicted and true labels. We conduct a thorough study to show influence
of the proposed loss on the learning process. The results on five repre-
sentative news outlets show that our approach can learn the comment
class with up to 36% average accuracy improvement comparing to the
baselines, and up to 25% comparing to the BA-BC. BA-BC is our app-
roach that consists of two models aimed to capture dis-jointly the formal
language of news articles and the informal language of comments. We
also conduct a user study to evaluate human labeling performance to
understand the difficulty of the classification task. The user agreement
on comment-article alignment is “moderate” per Krippendorff’s alpha
score, which suggests that the classification task is difficult.

Keywords: Text mining · Text classification · Online news · News
comments · Relevancy · Understanding user-generated text

1 Introduction

The study of user comments is essential for social scientists, policymakers, and
journalists since virtual discussions offer an insight into the public opinion.
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In 2020, people shifted more toward online discussions due to COVID-19. Many
survey-based studies tried to understand the users’ behavior by characterizing
and categorizing comments in online news [23,28,33,38]. A salient outcome of
these studies is that 20% to 50% of users’ comments are irrelevant to the content
or topic of those articles since users drift from the original topic to irrelevant sub-
discussions [14,30]. Our goal in this work is to understand commenting behavior,
more precisely, to automatically identify the subset of comments, from the set of
comments an article receives, that are pertinent to the content of the article. The
challenge is multi-fold: e.g., comments tend to be terse, colloquial, often non-
literary, containing grammatical errors, misspellings, and punctuation misuse.
Our premise is that users are inclined to write comments that diverge from the
article topic to different extents, especially in lengthier discussions. This noise
in the data affects downstream applications such as opinion mining.

Previous studies tried to remove the noise among comments by studying toxic
comments [10,16], topic drifting [12,27], and understanding the quality of online
news comments [7,11,25]. From NLP perspective, this problem is a supervised
classification task to separate relevant from irrelevant comments.

In this paper, we introduce the Article-Comment Alignment Problem
(ACAP). We aim to define a set of article-comment relevance classes and pro-
pose a methodology to classify article-comments pairs automatically. ACAP is
a challenging task, for example, consider the article “This is going to happen in
the United States: Donald Trump calls for surveillance of Muslims and advocates
waterboarding terror suspects after Brussels attack”1 from Daily Mail and the
comment “It’s not Europe anymore. It’s Eurabia.” Two human annotators rate
the comment as Irrelevant, while the third annotator rates it as Same Category.
The third annotator’s label is the most appropriate, but choosing that cate-
gory requires background knowledge on the political circumstances in Europe in
2016. In solving ACAP, we hypothesize the following: 1) It is possible to capture
the extent of a connection and semantics between an article and its comments
using globally pre-trained models, fine-tuned with local data. 2) Considering the
natural order of labels during training will boost the algorithm learning process.

We test our hypotheses in the following practical scenarios: (1) limiting
amount of labeled article-comment pairs (1K per dataset), (2) bounding the
number of tokens from each document (article or comment), and (3) concomi-
tantly working with formal text, in the form of news articles, and informal text,
in the form of comments. The pairs are extracted from five online news out-
lets [20]: Wall Street Journal (WSJ), Fox News (FN), Daily Mail (DM), The
Guardian (TG), and Market Watch (MW). This work makes the following con-
tributions: 1) We introduce the Article-Comment Alignment Problem (ACAP)
and analyze the hardness of ACAP using an agreement study on the classification
of human annotators. 2) We propose BERTAC, which jointly learns embedding
representations for articles and their comments, to solve ACAP. We also propose
BA-BC, which consists of two models on trained on articles and the other on com-
ments, which attempts to capture the difference in language style between them,

1 Full article: https://dailym.ai/2Qz7RG9.

https://dailym.ai/2Qz7RG9
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formal versus informal. We compare it to several approaches, including BA-BC,
and show its superior performance. 3) We develop a novel ordinal classification
loss for BERTAC that penalizes the difference between the predicted and true
labels. The proposed loss exhibits similar performance to the original loss in
terms of accuracy, however, it boosts the model performance when trained on
high agreement examples. 4) We conduct extensive empirical studies on articles
and comments from 5 representative news outlets.

2 Related Work

User comments are a powerful means to understand public opinion and reac-
tion to emerging events. Many organizations invest in mining user comments
to improve their decision making. News outlets and social platforms are recom-
mending most relevant user posts to keep the attention of busy readers [33].
Many studies focus on mining the user opinion from social media [2,3,32] and
online news comments [1,15,35,37]. Other works look into bias in the news,
and its influence on user-generated content [31,36]. The main challenge in those
studies is the unpredictable quality of user-generated content.

To solve this problem, a line of research focuses on comment drifting [12,27]
by utilizing the temporal nature of comments. The older an article is, the more
commentators it has, and the probability of exposure to topic drift is higher [25].
This phenomenon influences the quality of comments and their relevance.

Another line of work [5,17,29] investigates which part of an article a comment
aligns with using statistical models, while other [11] use hand-crafted structural,
lexical, syntactic, discourse, and relevance features as an input to the logistic
regression. Even though their F1 score is in the range of 70–80% and their anal-
ysis measures correlation of the attributes with the label, hand-crafting features
for each problem is difficult and time-consuming.

The work most related to ours attempts to automatically classify paragraph-
comment agreement [25]. They labeled the data based on Likert scale categories
[19], which is criticized for introducing bias. For instance, a number of works
show that user responses are significantly affected by the order and direction of
the rating scale [9,34].

Instead, we propose to use transformer pre-trained language approach [6,26].
We also create a new ordinal classification loss. As shown in the experimental
study, our approach performs significantly better than the baselines on ACAP.
We work with three annotators. Their labels give us support data to study
the difficulty of the problem. We show that the annotators exhibit only fair
agreement, indicating that ACAP is a difficult problem even for human beings.

3 Datasets

We collected news articles and their comments between 2015 and 2017 [13] from
multiple news outlets. The dataset has over 19K articles with 9M comments. For
this study, we chose five news outlets that are representative of the problem at
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hand. The dataset contains articles and comments with a broad range of lengths
and different number of comments. This data allows us to test the behavior of
the proposed models under varied settings. Table 1(A) shows the statistics of
datasets.

Table 1. (A) Statistics by outlet. We randomly selected 1K article-comments pairs
from each outlet and labeled them. ALA is the articles’ average length and ALC is
average comments’ length, measured by number of words. (B) Classes proportions for
each dataset. Outlets are sorted based on total number of available articles per outlet.

Outlet (A) Dataset statistics

#Art. #Comm. ALA ALC

FN 0.3K 72K 250 22

TG 1.6K 428K 797 54

MW 1.7K 65K 512 42

WSJ 3.6K 309K 164 57

DM 10K 1, 012K 487 28

(B) Classes proportion

Relevant Same Ent. Same Cat. Irrelevant

3% 21% 29% 47%

5% 39% 32% 24%

7% 51% 20% 22%

8% 25% 34% 33%

15% 17% 20% 48%

3.1 Labeling

We discard all articles without comments. We randomly select 1K article-
comment pairs from each outlet. Then, annotators manually and independently
label the pairs in four classes: Relevant, Same Entities, Same Category, and Irrel-
evant. Relevant class - the content of the comment discusses the same matter as
the article. Same Entities class - the comment is not directly relevant, however,
it mentions the same main entities within the same scope (category) of the arti-
cle. For example, the article talks about a Real Madrid - F.C. Barcelona game,
mentioning Ronaldo’s performance in the game, and the comment talks about
Ronaldo’s best goal in the Portuguese team. Same Category class - comment in
this class is not discussing the article, but it falls into the same category as the
article. For example, both comment and article are discussing politics. Irrelevant
class - a comment is in this class if it does not belong to any other class.

Figure 1 shows labeled examples of each class from WSJ. First column is
part of the article; second column has four comment examples, each example
represent a different class. The article in the table discusses Hillary Clinton’s
email story that came out before the 2016 U.S. election. The first comment
is Relevant, the second comment does not discuss the main issue, however, it
mentions some of the entities discussed in the article within the category of the
article (politics). Hence, its class is Same Entities. The third comment does not
refer to any named entity from the article, but it discussed another political
issue. Thus, its class is Same Category. In the last comment, the user believes
that he looks like Joe Friday. This has no connection with the article, therefore,
the comment is deemed Irrelevant.

To obtain labeled instances, we asked three native English speakers, who
were not involved in this work, to annotate the article-comments pairs.
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Fig. 1. Labeling example, entities are colored. The article category is politics.

We provide them with the following: 1) an article-comment pair without the
surrounding context (i.e., the parent and child comments), and 2) the four label
categories with an explanation and an example for each of them. We assign
the final label using an averaging aggregation scheme. We map Irrelevant, Same
Category, Same Entity, and Relevant to 0, 1, 2, and 3, respectively. We average
the (users) scores per pair and round to the nearest integer, which becomes the
label of the pair. For example, a pair x-y receives the score 1, 1, and 2 will have
a label 1, which corresponds to “Same Category”. Table 1(B) shows the propor-
tion of each class per outlet. We also binarize labels, by assigning 0 to Irrelevant
comments, and 1 to rest of the labels.

3.2 User Agreement Study

ACAP is not an easy task, using Fleiss Kappa statistic and Krippendorff’s
alpha coefficient we compare the agreement between annotators. Fleiss Kappa
statistic [8] calculates agreement between multiple scorers as in Eq. 1. The inter-
pretation of Kappa value is, <0 = poor agreement, [0.01, 0.20] = slight agree-
ment, [0.21, 0.40] = fair agreement, [0.41, 0.60] = Moderate agreement, [0.61,
0.80] = substantial agreement, and [0.81, 1.00] = perfect agreement.

FK =

∑N
i=1

∑k
j=1 v2

ij − Nm

Nm(m − 1)
(1)

To account for the error magnitude that a scorer makes, we use Krippendorff’s
alpha coefficient [18], this statistic consider the distance between labels given by
multiple scorers as in Eq. 2. α ∈ [0, 1], where 0 = random scoring, and 1 = perfect
scoring.

α = 1 − (n − 1)
∑

i

∑
j oij × δ2ij

∑
i

∑
j vi × vj × δ2ij

(2)
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Table 2 gives the agreement scores between annotators per dataset. We
noticed that labeling WSJ is the hardest. The raters’ agreement is “Fair” for
WSJ, TG, DM, and MW and “Moderate” for FN, based on Fleiss Kappa. The
Krippendorff’s score2 is between 42% and 66% across outlets. Results indicate
the difficulty of assigning a category for comments in general.

Table 2. Agreement analysis for annotators labels.

Dataset WSJ TG DM MW FN

Fleiss Kappa 0.22 0.36 0.37 0.40 0.45

Krippendorff’s α 0.42 0.60 0.61 0.64 0.66

4 Methods

4.1 BERTAC Model - Joint Modeling of Article and Comments

BERTAC leverages BERTbase architecture, which allows us to learn more expres-
sive embeddings for articles and comments. To solve ACAP we combine an article
and its comment into a pair of segments and separate them with the special token
[SEP]. Our goal is to make use of BERT’s self-attention mechanism and bidirec-
tional cross attention in an end-to-end fashion to encode the relevance between
an article and its comments. One challenge in this setting is that of determining
the length (in words) of the input segments that allow the network architecture
to encode useful article-comment relations. We explore multiple lengths for each
dataset based on the average length of the articles.

4.2 BA-BC Model - Disjoint Modeling of Article and Comments

Our problem consists of two main parts. The first part is the article, where the
language is formal and usually formed of long sequences. The second part is
the comment, where comments are often written in informal language and con-
sist of short sequences. We explore if a mixture of different pre-trained models
can better solve ACAP, we call it BA-BC shown in Fig. 2. The model con-
sists of two stages. The first stage Fine-tune on News has two sides: (BA) is a
BERTbase architecture trained and fine-tuned on articles; the second side (BC)
is a BERTweet architecture trained and fine-tuned on comments. BERTweet is a
pre-trained model proposed by [26] and trained on English Tweets, the underlie
architecture is RoBERTa [21]. Their results show that BERTweet outperform
RoBERTabase and XLM-Rbase [4] in many tasks.

In the second stage, Classification stage, the output from the first stage is
fed into a fully-connected layer with a ReLU non-linearity. To get full advantage
2 Calculated by http://dfreelon.org/utils/recalfront/recal-oir/ software using ordinal

setting.

http://dfreelon.org/utils/recalfront/recal-oir/
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Fig. 2. BA-BC model for ACAP

of pre-trained models, we designed two versions of BA-BC. The first is called
BC-BA-Emb, where the output from the Fine-tune on News stage contains the
Embeddings created by both sides without seeing any training examples from
our datasets. The second model, called BC-BA-Fine-tune, is additionally fine-
tuned in the Fine-tune on News stage. Left-side (BA) is fine-tuned on articles
and labels and right-side (BC) is fine-tuned on comments and labels. Then, last
hidden state of fine-tuned parts is sent to the second, Classification stage.

4.3 Ordinal Classification Loss

We introduce the ordinal classification loss, that accounts for the distance
between the predicted and the actual class. Here, we multiply the loss for each
example with a weight that is calculated according to Eq. 3, where k = 4 (number
of classes), yi is the ith actual label and ȳi is the ith predicted label.

weight = 1 +
|ȳi − yi|
k − 1

(3)

If the algorithm chooses the right class, the weight is 1, which is equal to
original loss. If the model predicts a wrong category, the classification loss is
multiplied by 2, 3, or 4 based on the distance between the real class and predicted
class. This loss depends on the difference between the predicted and the correct
class, and the softmax error during predicting the actual class. We incorporated
the proposed loss to BERTAC and compare it to original loss in Sect. 6.4.

5 Experimental Setup

5.1 Environment

We run all deep models on four large nodes with 512 GB of DDR4 2400 MHz
RAM. Each has two sockets with Intel Xeon E5-2667 v4 3.2 GHz processors, and
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every node contains two NVIDIA Tesla P100 PCIe 12 GB GPUs and SSDs as
local hard drives. We ran doc2vec on a 64-bit processor, Intel Core i7-6700 CPU
@ 2.60 GHz with four cores and 16.0 GB RAM.

5.2 Model Evaluation

To evaluate the models performance, we use both simple and weighted accuracy
since our labels are ordinal. With simple accuracy metric, which is calculated
as the percent of correct predictions, predicting 0 or 2 for label 3 are counted
as equal mistakes. Instead, we use weighted accuracy to calculate error by sum-
ming the absolute difference between predicted class s̃i and ground truth s̄i.
Model’s error on a dataset is calculated by dividing that error by the number
of examples and max difference D between predicted classes. This constant is 3
in the given multi-class settings. The following formula computes the weighted
accuracy, where m is the number of examples:

WACC = 1 −
∑m

i=1 |s̃i − s̄i|
mD

(4)

For all supervised models, experiments are repeated five times on different ran-
domized split. The dataset is split into 70:20:10 ratio for training, testing, and
cross-validation, respectively. We report the mean and standard deviation.

5.3 Comparison Models

A key challenge in solving ACAP is to establish a similarity of article-comment
pair that is indicative of the relevance of the comment to the message of the
article. We seek models that can learn long text representations using context
and capitalize on the sequential nature of words in a comment. Besides, a model
has to be able to embed two types of sequences: articles, which follow formal
language, and comments, which may follow colloquial language.

First, Doc2vec. Since it is unsupervised we use all data, comments, and arti-
cles available in each outlet to learn the documents embedding. We learn separate
embeddings per outlet to account for the linguistic style accommodations and
other biases across outlets [22]. Then, we calculate the cosine similarity for all
labeled pairs and assign a class for each pair based on the rules written below. A
represents articles, and C represents comments. We experiment with thresholds
in increments of 0.1. The ones used below give the best performance:

f(Ai, Ci) =

⎧

⎨

⎩

0, if cos(Ai, Ci) ≤ 0.4

1, otherwise, if cos(Ai, Ci) ≤ 0.6

2, otherwise, if cos(Ai, Ci) ≤ 0.8

3, otherwise.

The second baseline is Siamese LSTM, which consists of two LSTM that
learn representations of articles and comments in separate modules. On top of
these modules, there is a joint loss computation module, which computes the
similarity between vectors and uses a dense layer to predict the label. Following
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[24], we use the Manhattan distance to calculate the similarity. We utilize a
sparse categorical cross-entropy with a softmax activation function.

BA-BC: To produce the vector representation of articles and comments two
main steps are required, embeddings and classifications. In BA-BC-Emb model
each side learns the embeddings by fine-tuning on articles and comments, respec-
tively, in an unsupervised manner (without using labels). However, for BA-BC-
Fine-tune, each side is fine-tuned on articles and comments in a supervised way
(using their associated labels). Later on, the vector representation of the last hid-
den layer is injected into the classification stage. The Fine-tune on News stage
is repeated for 3 epochs and the final representation is fed into the Classification
stage, in which cross-entropy with a softmax activation function is applied as a
loss. The classification stage is repeated for 300 epochs.

BERTAC: We leverage BERTbase where it consists of 12 layers, hidden layer
size is 768, number of self-attention heads is 12, and the total number of parame-
ters is 110M. BERTAC is trained in two modes, cased and uncased, where letter
casing is considered in the first while all letters are converted to small letters in
the later. We trained the model for 6 epochs.

6 Results and Discussion

We study the complexity of this problem. In addition, we thoroughly study the
multi-class datasets by employing and analyzing multiple models and evaluation
measures to understand their behavior and identify the ones that better capture
the semantic between an article and its comments. We also analyze the effect of
the proposed Ordinal Classification Loss.

6.1 Binary Versus Multiclass ACAP

To characterize the complexity of our problem we compare a binary dataset and
multiclass dataset using BERTAC. In Table 3, we can see that the model maximal
performance is around 92% when the problem is binary. The accuracy drops
between 13%–23% when we have 4 classes. Even though having multiple classes
helps people understand the relationship between an article and its comments
better, it becomes harder for a model to capture the semantics and knowledge
that is needed to distinguish some labels.

Table 3. Test accuracy (in %) for BERTAC. The B row represents binary dataset and
M row represents multiclass dataset. The average test accuracy of 5 experiments is
reported with standard deviation.

Model Dataset FN TG MW WSJ DM

BERTAC B 88.30(1.42) 92.45(1.45) 88.64(2.50) 85.07(0.97) 90.46(1.75)

M 75.60(1.81) 74.58(6.49) 75.26(4.52) 63.17(2.44) 67.36(3.46)
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6.2 Models Comparisons on Multiclass ACAP

As shown in Fig. 3, Doc2Vec performance is the worst, despite training on much
larger corpus of unsupervised data. Siamese LSTM accuracy exceeds Doc2Vec
with a boost between 1%–27%. BA-BC-Emb and BA-BC-Finetune outperform
Siamese LSTM, the current SOTA for this problem. Both have an increase of
4%–17% in accuracy and 2%–4% in weighted accuracy over Siamese LSTM.
Compering BA-BC-Emb and BA-BC-Finetune we observe that they have similar
performance. BERTAC however outperforms all other models in both metrics
when trained with the original loss function. In addition, we experiment with
increasing the number of training points by merging the datasets. We note that
increasing training examples does not improve any of the proposed models over
BERTAC, which aligns with our hypothesis that BERTAC can outperform other
models using only a small number of training examples.

Our experimental design is such that the number of articles varies between
300 and 10, 000 across outlets as shown in Table 1. However, we label a fixed
number of random pairs. Therefore, the chance of selecting multiple comments
for a single article is much larger at FN, TG and MW compared to WSJ and
DM. A higher average accuracy is obtained on FN, TG and MW than on WSJ
and DM. This suggests that when the model is trained on the same article with
different comments it can learn the pattern and make better predictions.

Fig. 3. The average test accuracy of 5 experiments (in %) for all models. (a) shows the
accuracy results and (b) shows the weighted accuracy given by Eq. 4.

6.3 Weighted Versus Un-Weighted Accuracy

Comparing the algorithms outcomes on the weighted and unweighted accuracy,
we note that their relative performance is unchanged: the model that has the
lowest unweighted accuracy has the smallest weighted accuracy performance as
well. The same relation stands for the highest results. There are a couple of
explanations, first, most of the wrongly classified instances are mixed with its
neighboring classes. Second, a proportional number of stronger misclassifications
(where the distance between the actual and predicted category is larger than 1)
is present across news outlets.

The analysis of weighted accuracy helps to gain additional insight into the
models and the problem hardness. For instance, by comparing the weighted and
unweighted accuracy scores, we get a better idea of how well a model learns,
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since it accounts for the strength of the error, penalizing more the mistakes
on harder examples. We observe a large gap between accuracy and weighted
accuracy results, where the error is between 2 or 3 times smaller in most cases.
This indicates that when a model misclassifies an example, often, the model pre-
dicts one of the neighboring classes to the correct class. For example, in WSJ,
Doc2Vec’s accuracy = 44.41% which is higher than of Siamese LSTM ’s accu-
racy = 34.81%. However, the weighted accuracy shows the opposite: Doc2Vec’s
accuracy = 76.88% and Siamese LSTM ’s accuracy = 77.60%. This indicates
that Siamese LSTM is able to understand the problem better and address the
natural order of the classes during training.

6.4 Ordinal Classification Loss

We designed this experiment to investigate the effect of the ordinal loss on
BERTAC. We hypothesize that BERTAC trained with the proposed ordinal loss
will outperform the original loss.

We find that proposed ordinal loss has no significant advantage compared to
original loss, where both losses have similar performance. To better understand
this problem we investigate those instances where the annotators highly agree
with each other in the labeling task: σ between the annotators’s labels is either
0, which means that they all agree, or 0.5, which means that only one annotator
disagree, with difference of 1 and this does not affect the final label after aggregat-
ing the annotators labels. We call this the high agreement experiment indicated
by BERTAChigh in Fig. 4. On the other hand, the low agreement experiment
indicated by BERTAClow, which contains only examples where σ between the
annotators’ labels, is higher than 0.5. We find that for some datasets BERTAClow

accuracy is slightly higher than BERTACall and BERTAChigh. However, look-
ing into the high σ we can see that the model is not consistent compared to
BERTAChigh, and the number of examples are much fewer that BERTACall.
Analyzing the both losses for BERTAChigh, where annotators highly agree with
each other, we find that the ordinal loss is higher but not significantly. The
improvement in accuracy is between 1%–5% and 1%–3% in the weighted accu-
racy. However, if we study the behavior across the models, we can see that ordinal
loss behaves somehow differently across experiments. For examples in Fig. 4, we
can see that both BERTAChigh and BERTAClow agree that ordinal loss is equal
or better than original, where BERTACall disagree. This brings the following
question: if the model were capable to vote for the best possible prediction from
different model would this improve results?

To answer the previous question, we calculate the average vote prediction
from different models in order to obtain the best prediction. We consider the
predictions from BERTAC uncased trained with ordinal loss and original loss,
and BERTAC cased trained ordinal loss. Table 4 shows that the voting system
improves the results with respect to accuracy and standard division.



14 J. Alshehri et al.

Fig. 4. The Guardian average test accuracy of 5 experiments (a) show the accuracy
results and (b) weighted accuracy. The subscript beside BERTAC indicates the experi-
ment type: all = trained on all labeled examples were used, high = trained on examples
with high agreement score, and low = trained on examples with low agreement score.

Table 4. Accuracy results in % for BERTAC trained with ordinal loss (BERTACord)
and BERTAC trained with different settings and losses (BERTACvote).

Model FN TG MW WSJ DM

BERTACord 75.08 (4.19) 74.78 (5.15) 71.08 (3.47) 64.45 (3.36) 68.42 (1.49)

BERTACvote 76.73 (2.15) 76.00 (6.16) 74.00 (3.40) 64.00 (2.77) 69.02 (1.87)

7 Conclusion

In this work, we define the article-comment alignment problem (ACAP) and
propose an effective approach to predict the level of relatedness between a
comment and an article. We compare Doc2Vec, Siamese LSTM, BA-BC, and
BERTAC models and study the performance improvement across them. The
results reported in this work show that a joint modeling of article-comments,
i.e., BERTAC, is able to capture a deeper level of semantic relatedness between
comments and news articles, and help predict better the relevance level of a
comment to the content of an article than the current state-of-the-art and other
proposed methods.

Even though accuracy values are close, detailed analysis shows that BERTAC
trained with proposed ordinal loss perform better than BERTAC on the orig-
inal BERT loss. With the proposed loss, we can identify common mistakes by
annotators and potentially use them to improve the performance of downstream
applications, which we will explore in the future.
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Abstract. A multi-modal dataset of ninety nine thousand product list-
ings are made available from the production catalog of Rakuten France,
a major e-commerce platform. Each product in the catalog data con-
tains a textual title, a (possibly empty) textual description and an asso-
ciated image. The dataset has been released as part of a data chal-
lenge hosted by the SIGIR ECom’20 Workshop. Two tasks are pro-
posed, namely a principal large-scale multi-modal classification task and
a subsidiary cross-modal retrieval task. This real world dataset contains
around 85K products and their corresponding product type categories
that are released as training data and around 9.5K and 4.5K products
are released as held-out test sets for the multi-modal classification and
cross-modal retrieval tasks respectively. The evaluation is run in two
phases to measure system performance, first on 10% of the test data, and
then on the rest 90% of the test data. The different systems are evaluated
using macro-F1 score for the multi-modal classification task and recall@1
for the cross-modal retrieval task. Additionally, a robust baseline system
for the multi-modal classification task is proposed. The top performance
obtained at the end of the second phase is 91.44% macro-F1 and 34.28%
recall@1 for the two tasks respectively.

Keywords: E-commerce dataset · Multimodal classification ·
Cross-modal retrieval

1 Introduction

Rakuten Multi-modal Product Data Classification and Retrieval chal-
lenge is organized by Rakuten Institute of Technology, the research and devel-
opment department of Rakuten Group. This challenge focuses on the topic of
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large-scale multi-modal (text and image) classification, where the goal is to pre-
dict each product’s type code as defined in the catalog of Rakuten France, and
cross-modal retrieval, aiming to retrieve the most relevant image of a product
given the textual title and description. The cataloging of product listings through
some type of text or image categorization is a fundamental problem for any e-
commerce marketplace, with applications ranging from personalized search and
recommendations to query understanding. Manual and rule-based approaches to
categorization are not scalable since commercial products are organized in many
and sometimes thousands of classes. When actual users categorize product data,
it has often been seen that not only the text of the title and description of the
product is useful but also the associated images.

Advances in this area of research have been limited due to the lack of real
world large-scale multi-modal product data from actual commercial catalogs.
This data challenge presents several interesting research aspects due to the intrin-
sic noisy nature of the product labels and images, the size of modern e-commerce
catalogs, and a highly skewed data distribution.

The dataset is made publicly available through Rakuten Data Release Plat-
form1. We hope that by making the data publicly available, our proposed tasks
will attract more research institutions and industry practitioners, who do not
have the opportunity to contribute their ideas due to the lack of actual commer-
cial e-commerce catalog data.

Principle contributions of this article:

– We release a real-world e-commerce multimodal product dataset.
– Two tasks are proposed on this dataset, namely cross-modal retrieval and

classification, as well as a baseline.
– We report methods and results provided by the data challenge participants

who outperformed the baseline using both textual and visual modalities.

2 Related Work

In recent years, multi-modal learning for various tasks has attracted significant
attention of researchers. The most common task in this domain, which corre-
sponds to the second task of this challenge, is multi-modal retrieval. The semi-
nal work of [16] and [9] for joint embedding learning brought insights from how
text and image encoders could be trained together using modified triplet losses.
More recently transformers have been employed to this use-case [22,23] which
achieved state-of-the-art performances on retrieval. Another study in [3] men-
tions attribute extraction for fashion items, in a supervised way. Multi-modal
classification for social media data is explored by [7], whereas [4] tackles the prob-
lem of noisy labels in their weakly supervised approach on realistic datasets. Still
on weakly supervised multi-modal approaches, the work of [10] explores how
using attention from visual features improves clustering of textual attributes.
Recently, AutoKnow from [6] purposes a way to build a broad knowledge graph
1 Rakuten France Multimodal Dataset in https://rit.rakuten.co.jp/data_release/.

https://rit.rakuten.co.jp/data_release/
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for a thousand types of products. It includes a set of machine learning methods
to automate knowledge enrichment and ontology construction for a large number
of products.

Retail product datasets are typically split between product price datasets,
product search relevancy and product reviews datasets. Many such datasets are
publicly available. However, some otherwise significant contributions on image
search such as [27] unfortunately cannot share their proprietary dataset. For this
data challenge, our dataset is product-oriented. Most publicly available prod-
uct datasets are either uniquely image-based (e.g. [1]) or uniquely non-visual
(e.g. [2]). One can find small excerpts of product datasets from different compa-
nies in the competitive machine learning website Kaggle.com (some example uses
are listed in [25]). Notably Amazon [21] provides both image features extracted
by a CNN and metadata for recommendation. Rakuten has also organized an
item classification data challenge [19] based on textual title and description of
the items. However our data challenge further extends the scope by introducing
multiple modalities. To the best of our knowledge, the dataset to be released
publicly as part of our hosted data challenge, is the only existing large-scale
multi-modal retail product dataset available in French containing product titles,
top level categories, descriptions and images.

3 Challenge Description

In the taxonomy of Rakuten France, products sharing the same product type
code share the same exact array of attributes fields and possible values. Product
type codes are numbers that match a generic product name, such as 1500 -
Watches, 120 - Laptops, and so on. In that sense, the type code of a product is
its category label.

For example, in the product catalog of Rakuten France, a product with a
French title Klarstein Présentoir 2 Montres Optique Fibre is associated with
an image and sometimes with an additional description. This product is cate-
gorized with a product type code of 1500, signifying watches. There are other
products with different titles, images and with possible descriptions, which are
under the same product type code. Given these information on the products, like
the example above, this challenge proposes that participating teams build and
submit systems that classify previously unseen products into their corresponding
product type codes.

The main tasks for this challenge are as follows:

Task 1 - The primary Multi-modal classification task: Given a training set
of products and their product type codes, the aim is to predict the corre-
sponding product type codes for an unseen held out test set of products.
The systems are free to use the available textual titles and/or descriptions
whenever available and additionally the images to allow for true multi-modal
learning.

https://www.kaggle.com/
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Task 2 - The secondary Cross-modal retrieval task: Here the systems have to
predict the correct image for a product given its textual content. Doubtlessly
this task is more challenging than the classification task.

The difficulty in solving the tasks stems from the following observations:

– Highly imbalanced number of samples within the classes.
– Length of titles in terms of words can vary considerably, from two or three

words to about fifty words.
– Descriptions, when present, may be a verbose representation of the prod-

uct rather than a very specific one with precisely defined attributes for the
product.

– Images may not be “clean”. Some images could be of low quality, while some
images may have text in them as often found in a banner or book/media
covers.

4 Data Description

Rakuten France has released approximately 99K product listings in tsv for-
mat, including a training (84,916) and two test sets (9,372 samples for the clas-
sification and 4,440 samples for the retrieval task). The training and test splits
have been obtained using random sampling stratified by product type codes, i.e.
the product categories. Each product in the dataset consists of product title,
product description, product image and its corresponding product type code.
The dataset is distributed over 27 unique product type categories.

The complete catalog of products of Rakuten France is much larger than 99
thousand listings and contains much more than 27 product type codes. Among
all the available product type codes, initially 27 are manually identified based on
how often the products belonging to these type codes need to be categorized and
how much GMV2 they generate. This choice makes the dataset more grounded in
reality, as high classification performance is easily correlated with strong business
impact. We do stratified sampling so that the dataset represents as accurately
as possible the original distribution of items. For each of these identified type
codes, a 10% sample of the entire product catalog is randomly selected to create
the dataset for our data challenge.

The training data file is in a tab-separated values (tsv) format where each
line contains a product title, (possibly empty) description, product id, id of the
associated image and its corresponding product type code. Additionally an image
folder is supplied containing all the training images. One can use the image id
and product id to obtain the associated image file from the image folder. The
test data file for the primary task of multi-modal classification contains all the
fields as training data file except the product type code, and similarly image id
and product id can be used to obtain the corresponding image files from the

2 Gross Merchandise Volume (GMV) is the total monetary value for merchandise sold
through a particular marketplace over a certain period of time.
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test image folder. The test data file for the cross-modal retrieval task contains
only product title, (possibly empty) description and the product id. Image files
for the products for this test set are also provided, but the link between the
products and their corresponding image files are not provided in this case.

Table 1. Three samples from the training dataset for multi-modal classification.

Integer_id Title Description Image_id Product_id

2 Grand Stylet
Ergonomique Bleu
Gamepad . . .

PILOT STYLE Touch
Pen . . .

938777978 201115110

40001 Drapeau Américain
Vintage Oreiller . . .

Vintage American
Flag Pillow Cases . . .

1273112704 3992402448

84915 Gomme De Collection
2 Gommes Pinguin
. . .

NaN 684671297 57203227

Fig. 1. Images of the three example products shown in Table 1.

Table 1 displays three different lines of the training file, and Fig. 1 shows the
corresponding images for these three products. The examples are selected from
the head, torso, and tail of the distribution. Two of which have descriptions, one
has not. The images in Fig. 1 show the hardness of the task, especially the cross-
modal retrieval task. The hardness stems from the fact that the most prominent
part of the images may not be representative of the product, but the totality of
the object silhouette needs to be considered.

Also, a tab-separated file containing the mapping between each product type
code (abbreviated Prdtypecode) and its top level category in English is provided.
For example:

It should be noted that the product titles and descriptions are for the vast
majority written in French (99%), although, one can find some outlying sam-
ples in other languages like English, German, and Spanish. Almost 35% of the
products contain an empty description. The images are all squares of dimensions
500× 500 px2, which can have white or black borders included.
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Prdtypecode Top level category

2280 Books

1280 Child

4.1 Data Characteristics

The product listing distribution in this dataset over the 27 product type code
classes is highly imbalanced, although not following a typical long tail distribu-
tion. Figure 2 shows the distribution of the product counts in the training and
test dataset across all the product type codes. The largest class contains 12%
of the products in the entire training dataset, whereas the smallest one contains
only 0.9%.

Fig. 2. Product type code frequency distribution in the training and test set

Fig. 3. Mean pixel values for the Red channel of images in the train set (in blue) and
the test set (in red), per product type code. The standard deviation is shown as an
error bar in the respective colors. The training and test distributions are very similar
with regards to these values. (Color figure online)

Figure 3 shows the mean pixel value of the Red channel of images. The sim-
ilarity of the heights of the bars corresponding to the training and the test sets
for each product type code shows that the splits do not suffer from distributional
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misalignment and hence image models developed using a development set from
the training data should generalize to the test set. Similar plots are obtained for
the Green and Blue channels as well. Measuring possible discrepancies between
image datasets is a hard problem and only proxies exist as images are loaded
with intrinsic semantic information that usually need a human to decode. How-
ever, in this particular case, the training and test sets do come from the same
source of data. Hence, the image data do not exhibit domain shift between these
two distributions and a high performance on the test set released in phase 1 (see
Sect. 5.2), is a good indication of final system performance in the data challenge.

Fig. 4. The average number of tokens per category in the titles. This distribution
doesn’t show any distinct tail phenomenon.

Fig. 5. The average number of tokens per category in the descriptions. This distribution
does show a distinct head-torso-tail phenomenon with a substantial probability mass
on the torso.

Figures 4 and 5 show the distribution of average token frequency in the train-
ing and test datasets across all the product type codes. In this case, too, the
respective histograms from the test set closely follow those from the training
set. The average product title length in the training set is twelve tokens with
the maximum title length of forty tokens. The maximum length of concatenated
title and description is 512.
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Fig. 6. Mean Description Coverage: Mean of the number of tokens in the titles covered
by descriptions in each category and normalized by title lengths.

Another interesting statistics that we mined from the dataset is shown in
Fig. 6. In this figure, we summarize the plots in Figs. 2, 4 and 5. For the same
ordering of categories in Fig. 2 and across all products in a category, we compute
the token-wise coverage of the title words with those in the corresponding prod-
uct description and then compute the coverage mean with each coverage being
normalized by title length. This mean description coverage tracks the relevance
of the information content in the titles to the verbosity of the corresponding
descriptions or a lack thereof.

Figure 6 shows two things – one is that the test distribution of the mean
coverage follows the training distribution for the different product types. Second
and most importantly, the correlation of the coverage means with the item counts
is weak. For instance, product type code 2905 has the highest mean number
of tokens in description but ranks only fourth from last in Fig. 4. This is an
interesting scenario in e-commerce catalogs and novel research is needed to model
the generation of relevant descriptions from titles and images so that a consistent
catalog can be generated for all products without manual curation. Note that
the x-axes in Figs. 2, 4, 5 and 6 are all sorted in descending order of the variables
that correspond to the y-axes that are to the left of the plots.

5 Evaluation

5.1 Evaluation Metric

Since in this challenge, we are dealing with many classes with highly asymmetric
number of samples, an item weighted metric to evaluate the systems is incapable
of revealing the deficiencies of the classification algorithms.

Task 1. The macro-F1 score is adopted to evaluate product type code classi-
fication on held out test samples. This score is understood as the arithmetic
average of per-product type code F1 score. The reason for choosing Macro-
F1 is that it is a more unbiased estimate of classification performance for
highly imbalanced data, unlike Micro-F1.
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Task 2. For the cross-modal retrieval task, the systems are evaluated on recall
at 1 (R@1) on held out test samples. This is indeed a very strict measure
for the task. This score can be defined as the average of the per-sample
scoring of 1 if the image returned matches the corresponding title and 0
otherwise.

5.2 Evaluation Phases and Timeline

This data challenge has been held in two phases which includes model building
and model evaluation. In each phase, there is a separate test set for each task.

Phase 1 - Model Building. Participants built and tested models on the
training data. The models are evaluated on a 10% subset of the test set.
This phase was open for a little under three months.

Phase 2 - Model Evaluation. The final models are evaluated on the remain-
ing 90% of the test set. This phase was open for eight days.

6 Baseline Models

Our baseline models for both tasks are dubbed RIT-Paris Baseline. The base-
line model for product classification is based on Multi-modal BiTransformers
[15]. This model combines two pre-trained networks. For the image network, it
utilizes ResNet-152 [11]. Input images are normalized, center-cropped, resized at
224× 224, and each embedding vector has 2048 dimensions. The lingual model
uses a bidirectional transformer architecture with pre-trained BERT [5] embed-
dings.

For the implementation of this model, we use the MMBT library from Pytorch
Transformers3 [26]. Multilingual DistilBert4 [24] is used for the lingual modality
and ResNet-152 for the image modality. All components in the baseline model

Fig. 7. F1 scores from the proposed baseline model on the test sets from phase 1 (left)
and 2 (right) for the classification task.

3 https://huggingface.co/transformers/summary.html.
4 https://huggingface.co/distilbert-base-multilingual-cased.

https://huggingface.co/transformers/summary.html
https://huggingface.co/distilbert-base-multilingual-cased
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are used with default parameter settings that are recommended by the authors
and no tuning has been performed for the multi-modal classification task.

The macro-F1 scores obtained using the proposed baseline model for the test
set released during the first and the second phases of our data challenge on the
multi-modal classification task is shown in the table next.

Phase 1 Phase 2

Score 0.8705 0.8536

Figure 7 shows that the baseline model can achieve high scores for most of the
categories. However, not all categories are easy to classify. Specifically, products
related to Child (1280, 1281) and Entertainment (1180) top-level categories, have
the worst scores (0.73, 0.59, and 0.66 respectively).

The baseline method for the secondary task of cross-modal retrieval is chosen
to be a very simple one – given text about the product, we choose an image
from the test set randomly at uniform. We next briefly describe the documented
systems that perform superior to our baselines.

7 Short Descriptions of Top Performing Systems

Team Synerise AI: For the classification task, a 2-stage scheme (separate
pre-training for each modality using an efficiently trainable density estima-
tor model [8] with multi-modal fusion) is used yielding a 89.78 macro F1
score. For the cross-modal retrieval task also, the team employs a 2-stage
scheme (Optical Character Recognition with the efficiently trainable density
estimator model). This methodology is able to yield a 34.28 recall@1 score
and place the team at the first position for the secondary retrieval task.

Team Beantown: They first fine-tune feature extractors from French text
using CamemBERT [20] and image modalities using BiT [17] respectively,
then applies Highway Network based fusion to obtain multi-modal features.
These features are then used to train a classifier for the classification task.
For the retrieval task, a similarity search method using the FAISS library [14]
has been used to retrieve product images from their text titles. This system
resulted in 90.22 macro F1 score for the first task and 23.3 recall@1 score for
the second task. They clearly show that the performance for classification is
worse when individual modalities are considered separately.

Team pa_curis: They also use pre-trained CamemBERT for text and pre-
trained ResNet152 [12] for image modality to learn uni-modal features and
then deploys late decision level fusion to combine the modalities. Using dif-
ferent versions of text and image classifiers and fusion techniques 12 classi-
fiers are obtained and with majority vote based classification decision. Their
system won the multi-modal classification task with 91.44 macro F1 score.
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Team Alto: They use ResNet to extract image embeddings, a combination
of BERT-based transformer and bi-LSTM to encode text and finally a co-
attention block is used to correspond between words and images. The learnt
image and text embeddings are then concatenated. Furthermore an ensemble
is created by stacking multi-modal models with different base architectures
and then using another learning strategy that leverages individual model’s
strengths. This yields a macro F1 of 90.87 for the classification task.

Team Transformers: They extract text features using two different trans-
former models, namely CamemBERT and FlauBERT [18]. Images are
extracted using SE-ResNeXt [13]. These features are then combined using
addition, concatenation, and attention maps. Finally boosted late-fusion is
used to combine predictions from the models.

7.1 System Performances

Altogether around hundred teams participated in this data challenge. Among
them fifteen teams submitted final system results at the end of phase 2. The
submitted systems are scored against the gold standard using the metrics defined
in Sect. 5.1. Section 5.2 describes the evaluation phases.

Table 2. Top 10 system scores from phase 1 of the evaluation stage.

Task 1: Multimodal classification Task 2: Cross-modal retrieval

Rank Team Macro-F1 Rank Team Recall@1
1 Transformers 91.94 1 Synerise AI 50.23
2 zenit84 91.63 2 changer 46.85
3 Alto 91.63 3 pa_curis 41.89
4 Beantown 90.89 4 Beantown 38.96
5 Synerise AI 89.72 5 Alto 38.29
6 pa_curis 89.65 6 MMG_AI_TEAM 27.25
7 RIT-Paris Baseline 87.05 7 RIT-Paris Baseline ≈1.50
8 tester 86.94 8 Team 11 1.35
9 testers 85.87
10 MMG_AI_TEAM 84.81

The results of the final submissions by the various teams are shown in Tables 2
and 3. Table 2 shows the scores of the systems when a 10% random sample of
the test set has been released previously with the training set i.e. phase 1 of the
evaluation. Tables 3 shows the scores of the systems when the rest 90% of the
test set is released i.e. phase 2 of the evaluation. Not all teams submitted their
system results for the final and much larger test set released in phase 2. The
ranks for the primary multi-modal classification task (task 1) does not change
much between phases 1 and 2, showing generalization to typically hold.
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Table 3. System scores from the main part (phase 2) of the evaluation stage.

Task 1: Multimodal classification Task 2: Cross-modal retrieval

Rank Team Macro-F1 Rank Team Recall@1
1 pa_curis 91.44 1 Synerise AI 34.28
2 Alto 90.87 2 changer 31.93
3 Transformers 90.53 3 Beantown 23.30
4 zenit84 90.39 4 Alto 19.99
5 Beantown 90.22 5 pa_curis 19.74
6 Synerise AI 89.78 6 MMG_AI_TEAM 15.77
7 MMG_AI_TEAM 86.94 7 RIT-Paris Baseline ≈2.00
8 RIT-Paris Baseline 85.36
9 Team MLG 64.48

A bootstrap sampling procedure, similar to the one in [19], is used to evaluate
statistical significance of the submitted systems. The bar plots in the Fig. 8 show
the medians of the macro-F1 and Recall@1 scores, for tasks 1 and 2 respectively,
for each of the submitted systems. The median scores are calculated after sam-
pling the predictions with replacement. The bars in the plot corresponding to
the various system submissions are arranged in descending order of the median
scores. We assign the same color to bars that overlap in confidence intervals, how-
ever, Fig. 8 reveals that all bars are color coded uniquely. Using this statistical
test, with 95% confidence, all submitted systems are different.

Fig. 8. Results of bootstrap sampling performed on the final phase 2 submissions of
the participating teams: median F1 scores for task 1 (left) and median recall@1 for
task 2 (right) for each team. Best viewed in color. (Color figure online)
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8 Conclusion

The two tasks in our data challenge have been designed to have gradation in
difficulty. The classification task is a much easier task and the result from our
baseline shows a macro-F1 score of 82% (in the second phase) by just using
Multilingual DistilBert on the textual modality. It also shows that using both
modalities is helpful to improve the final classification score (85.3%).

The majority of submissions have used pre-trained models that serve as better
priors for initialization of embedding vectors. CamemBERT [20] and FlauBERT
[18] have been on the forefront of such model choices due to the underlying
French corpora on which these models have been trained. Similarly the majority
of model choices for image modeling has been using ResNet and its variants
[12] in addition to some very recent models such as Google’s Big Transfer (BiT)
model [17] for pre-trained initialization. Finally the top scoring systems have
shown some novelty in fusing the outputs from the uni-modal models using co-
attention, highway networks and gradient boosted trees.

In conclusion, we hope that this new dataset can be a de-facto resource for
multi-modal classification and cross-modal retrieval on real world e-commerce
data, which alleviates some of the scarcity issues. The dataset is publicly avail-
able through Rakuten Data Release Platform (https://rit.rakuten.co.jp/data_
release/) under the name “Rakuten France Multi-modal Product Dataset”.

References

1. Fashion-MNIST. https://github.com/zalandoresearch/fashion-mnist
2. Innerwear data from victoria’s secret and others. https://www.kaggle.com/

PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
3. Cardoso, Â., Daolio, F., Vargas, S.: Product characterisation towards personalisa-

tion: learning attributes from unstructured data to recommend fashion products.
In: Proceedings of the 24th ACM International Conference on Knowledge Discov-
ery & Data Mining (SIGKDD), pp. 80–89 (2018)

4. Corbiere, C., Ben-Younes, H., Rame, A., Ollion, C.: Leveraging weakly annotated
data for fashion image retrieval and label prediction. In: 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW) (October 2017). https://
doi.org/10.1109/iccvw.2017.266

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2018)

6. Dong, X., et al. AutoKnow: self-driving knowledge collection for products of thou-
sands of types. arXiv arXiv:2006.13473 (2020)

7. Duong, C.T., Lebret, R., Aberer, K.: Multimodal classification for analysing social
media, CoRR abs/1708.02099 (2017)

8. Dąbrowski, J., et al.: An efficient manifold density estimator for all recommenda-
tion systems (2020)

9. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improved visual-semantic
embeddings, CoRR abs/1707.05612 (2017)

10. Han, X., et al.: Automatic spatially-aware fashion concept discovery (2017)
11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition

(2015)

https://rit.rakuten.co.jp/data_release/
https://rit.rakuten.co.jp/data_release/
https://github.com/zalandoresearch/fashion-mnist
https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://doi.org/10.1109/iccvw.2017.266
https://doi.org/10.1109/iccvw.2017.266
http://arxiv.org/abs/2006.13473


Multi-modal Product Categorization and Retrieval Dataset for E-Commerce 31

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2018)

14. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734 (2017)

15. Kiela, D., Bhooshan, S., Firooz, H., Testuggine, D.: Supervised multimodal bitrans-
formers for classifying images and text (2019)

16. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings
with multimodal neural language models, CoRR abs/1411.2539 (2014)

17. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning
(2019)

18. Le, H., et al.: FlauBERT: unsupervised language model pre-training for French. In:
Proceedings of the 12th Language Resources and Evaluation Conference, LREC
2020, Marseille, France, 11–16 May 2020, pp. 2479–2490. European Language
Resources Association (2020)

19. Lin, Y.C., Das, P., Trotman, A., Kallumadi, S.: A dataset and baselines for e-
commerce product categorization. In: Proceedings of the 2019 ACM SIGIR Inter-
national Conference on Theory of Information Retrieval, ICTIR 2019, pp. 213–216.
Association for Computing Machinery, New York (2019)

20. Martin, L., et al.: CamemBERT: a tasty French language model. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. pp.
7203–7219. Association for Computational Linguistics (July 2020). https://www.
aclweb.org/anthology/2020.acl-main.645

21. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommenda-
tions on styles and substitutes (2015)

22. Park, G., Han, C., Yoon, W., Kim, D.: MHSAN: multi-head self-attention network
for visual semantic embedding, CoRR abs/2001.03712 (2020)

23. Qi, D., Su, L., Song, J., Cui, E., Bharti, T., Sacheti, A.: ImageBERT: cross-
modal pre-training with large-scale weak-supervised image-text data, CoRR
abs/2001.07966 (2020)

24. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter (2019)

25. Sidorov, M.: Attribute extraction from ecommerce product descriptions. CS229
(2018)

26. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv arXiv:1910.03771 (2019)

27. Yang, F., et al.: Visual search at eBay. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (August 2017).
https://doi.org/10.1145/3097983.3098162

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1702.08734
https://www.aclweb.org/anthology/2020.acl-main.645
https://www.aclweb.org/anthology/2020.acl-main.645
http://arxiv.org/abs/1910.03771
https://doi.org/10.1145/3097983.3098162


FedeRank: User Controlled Feedback
with Federated Recommender Systems

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara(B),
and Fedelucio Narducci

Politecnico di Bari, Bari, Italy
{vitowalter.anelli,yashar.deldjoo,tommaso.dinoia,antonio.ferrara,

fedelucio.narducci}@poliba.it

Abstract. Recommender systems have shown to be a successful repre-
sentative of how data availability can ease our everyday digital life. How-
ever, data privacy is one of the most prominent concerns in the digital
era. After several data breaches and privacy scandals, the users are now
worried about sharing their data. In the last decade, Federated Learning
has emerged as a new privacy-preserving distributed machine learning
paradigm. It works by processing data on the user device without col-
lecting data in a central repository. We present FedeRank (https://split.
to/federank), a federated recommendation algorithm. The system learns
a personal factorization model onto every device. The training of the
model is a synchronous process between the central server and the fed-
erated clients. FedeRank takes care of computing recommendations in a
distributed fashion and allows users to control the portion of data they
want to share. By comparing with state-of-the-art algorithms, extensive
experiments show the effectiveness of FedeRank in terms of recommen-
dation accuracy, even with a small portion of shared user data. Further
analysis of the recommendation lists’ diversity and novelty guarantees
the suitability of the algorithm in real production environments.

Keywords: Recommender systems · Collaborative filtering ·
Federated learning · Learning to rank

1 Introduction

Recommender Systems (RSs) are well-known information-filtering systems
widely adopted for mitigating the information-overload problem. Indeed, the
broad amount of items and services has caused a cognitive impairment that takes
the name of over-choice, or choice overload. RSs have proved to be very useful in
making possible personalized access to these catalogs of items. These systems are
generally hosted on centralized servers and train their models by exploiting mas-
sive proprietary and sensitive data. However, public awareness related to data
collection was spurred and increased. In recent years, an increasing number of
countries have introduced regulations to protect user privacy and data security.
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Representative examples are the GDPR in the European Union [15], the CCPA
in California [8], and the Cybersecurity Law in China [42]. Such policies prohibit
free data circulation and force personal data to remain isolated and fragmented.

In this context, Google has recently proposed Federated Learning (FL) as a
privacy-by-design technique which tackles data isolation while meeting the need
for big data [23,33]. FL trains a global machine-learning model by leveraging
both users’ data and personal devices’ computing capabilities. Unlike previous
approaches, it keeps data on the devices (e.g., smartphones, tablets, etc.) without
sharing it with a central server. Today, FL is considered the best candidate to face
the data privacy, control and property challenges posed by the data regulations.

Among the recommendation paradigms proposed in the literature, Collabo-
rative Filtering (CF) demonstrated a very high accuracy [32,47]. The strength
of CF recommendation algorithms is that users who expressed similar tastes in
the past tend to agree in the future as well. One of the most prominent CF
approaches is the Latent Factor Model (LFM) [26]. LFMs uncover users and
items latent representation, whose linear interaction can explain observed feed-
back.

In this paper, we introduce FedeRank, a novel factorization model that
embraces the FL paradigm. A disruptive effect of employing FedeRank is that
users participating in the federation process can decide if and how they are will-
ing to disclose their private sensitive preferences. Indeed, FedeRank mainly lever-
ages non-sensitive information (e.g., items the user has not experienced). Here,
we show that even only a small amount of sensitive information (i.e., items the
user has experienced) lets FedeRank reach a competitive accuracy. How incom-
plete data impacts the performance of the system is an entirely unexplored field.
Analogously, it is still to establish the minimum amount of data necessary to
build an accurate recommendation system [46]. At the same time, preserving
privacy at the cost of a worse tailored recommendation may frustrate users and
reduce the “acceptance of the recommender system” [35]. In this work, instead
of focusing on how to protect personal information from privacy breaches (that
is explored in other active research fields), we investigate how to guarantee the
users the control and property of their data as determined by regulations. The
work’s contributions are manifold due to the number of open challenges that
still exist with the FL paradigm. To summarize, our contributions in this paper
include:

– the development of the first, to the best of our knowledge, federated pair-wise
recommendation system;

– an analysis of the impact of client-side computation amount;
– an investigation on the existing relation between incomplete data and rec-

ommendation accuracy, and an analysis of the algorithmic bias on the final
recommendation lists, based on the data deprivation amount.

To this extent, we have carried out extensive experiments on three real-world
datasets (Amazon Digital Music, LibraryThing , and MovieLens 1M ) by consid-
ering two evaluation criteria: (a) the accuracy of recommendations measured by
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exploiting precision and recall, (b) beyond-accuracy measures to evaluate the
novelty, and the diversity of recommendation lists. The experimental evaluation
shows that FedeRank provides high-quality recommendations, even though it
leaves users in control of their data.

2 Related Work

In the last decades, academia and industry have proposed several competi-
tive recommendation algorithms. Among the Collaborative Filtering algorithms,
the most representative examples are undoubtedly Nearest Neighbors systems,
Latent Factor Models, and Neural Network-based recommendation systems. The
Nearest Neighbors scheme has shown its competitiveness for decades. After them,
factorization-based recommendation emerged thanks to the disruptive idea of
Matrix Factorization (MF). Nevertheless, several generalized/specialized vari-
ants have been proposed, such as FM [37], SVD++ [24], PITF [40], FPMC [39].
Unfortunately, rating-prediction-oriented optimization, like SVD, has shown its
limits in the recommendation research [34]. Consequently, a new class of Learn-
ing to Rank algorithms has been developed in the last decade, mainly ranging
from point-wise [28] to pair-wise [38], through list-wise [41] approaches. Among
pair-wise methods, BPR [38] is one of the most adopted, thanks to its outstand-
ing capabilities to correctly rank with an acceptable computational complexity.
Finally, in the last years, methods exploiting the architectures of deep neural
networks have established themselves in search and recommendation research.

To make RSs work properly (easing the user decision-making process and
boosting the business), they need to collect user information related to attributes,
demands, and preferences [20], jeopardizing the user’s privacy. In this scenario—
and, more generally, in any scenario with a system learning from sensitive data—
FL was introduced for meeting privacy shortcomings by horizontally distributing
the model’s training over user devices [33]. Beyond privacy, FL has posed several
other challenges and opened new research directions [21]. In the last years, it
has extended to a more comprehensive idea of privacy-preserving decentralized
collaborative ML approaches [45], ranging from horizontal federations, where
different devices (and local datasets) share the same feature space, to vertical
federations, where devices share training samples that differ in feature space.

Some researchers focused the attention on the decentralized and distributed
matrix-factorization approaches [12,16]. However, in this work, we focus on
federated learning principles theoretically and practically different from clas-
sical distributed approaches. Indeed, FL assumes the presence of a coordinating
server and the use of private and self-produced data on each node. In gen-
eral, distributed approaches do not guarantee these assumptions. Ammad-ud-
din et al. [3] propose a federated implementation of collaborative filtering, whose
security limits are analyzed in [11], which uses the SVD-MF method for implicit
feedback [19]. Here, the training is a mixture of Alternating Least Squares (ALS)
and Stochastic Gradient Descent (SGD) for preserving users’ privacy. Neverthe-
less, incomprehensibly, almost no work addressed top-N recommendation exploit-
ing the “Learning to rank” paradigm. In this sense, one rare example is the work
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by Kharitonov et al. [22], who recently proposed to combine evolution strat-
egy optimization with a privatization procedure based on differential privacy.
The previous work focuses neither on search or recommendation. Perhaps, like
ours, it can be classified as a federated learning-to-rank algorithm. Finally, Yang
et al. [46] identified some recent FL challenges and open research directions.

3 Approach

In this section, we introduce the fundamental concepts regarding the Collabora-
tive Filtering recommendation using a Federated Learning scheme. Along with
the problem definition, the notation we adopt is presented.

The recommendation problem over a set of users U and a set of items I
is defined as the activity of finding for each user u ∈ U an item i ∈ I that
maximizes a utility function g : U × I → R [36]. Let X ∈ R

|U|×|I| be the user-
item matrix containing for each element xui an implicit feedback (e.g., purchases,
visits, clicks, views, check-ins) of user u ∈ U for item i ∈ I. Therefore, X
only contains binary values, xui = 1 and xui = 0 denoting whether user u has
consumed or not item i, respectively.

The recommendation model is based on Factorization approach, originally
introduced by Matrix Factorization [27], that became popular in the last decade
thanks to its state-of-the-art recommendation accuracy [29]. This technique aims
to build a model Θ in which each user u and each item i is represented by the
embedding vectors pu and qi, respectively, in the shared latent space R

F . Let
assume X can be factorized such that the dot product between pu and qi can
explain any observed user-item interaction xui, and any non-observed interaction
can be estimated as x̂ui(Θ) = bi(Θ) +pT

u (Θ) ·qi(Θ) where bi is a term denoting
the bias of the item i.

Among pair-wise approaches for learning-to-rank the items of a catalog,
Bayesian Personalized Ranking [38] is the most broadly adopted, thanks to its
capabilities to correctly rank with acceptable computational complexity. Given
a training set defined by K = {(u, i, j) | xui = 1 ∧ xuj = 0}, BPR min-
imizes the ranking loss by exploiting the criterion max

Θ
G(Θ), with G(Θ) =

∑
(u,i,j)∈K ln σ(x̂uij(Θ)) − λ‖Θ‖2, where x̂uij(Θ) = x̂ui(Θ) − x̂uj(Θ) is a real

value modeling the relation between user u, item i and item j, σ(·) is the sig-
moid function, and λ is a model-specific regularization parameter to prevent
overfitting. Pair-wise optimization applies to a wide range of recommendation
models, including factorization. Hereafter, we denote the model Θ = 〈P,Q,b〉,
where P ∈ R

|U|×F is a matrix whose u-th row corresponds to the vector pu,
and Q ∈ R

|I|×F is a matrix in which the i-th row corresponds to the vector qi.
Finally, b ∈ R

|I| is a vector whose i-th element corresponds to the value bi.

3.1 FedeRank

FedeRank redesigns the original factorization approach for a federated setting.
Indeed, the initial factorization model and its variants use a single, centralized
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model, which does not guarantee users to control their data. FedeRank splits the
pair-wise learning model Θ among a central server S and a federation of users
U . Federated learning aims to optimize a global loss function by using data
distributed among a federation of users’ devices. The rationale is that the server
no longer collects private users’ data. Rather, it aggregates the results of some
steps of local optimizations performed by clients, preserving privacy, ownership,
and locality of users’ data [6]. Formally, let Θ be the machine learning model
parameters, and G(Θ) be a loss function to minimize. In Federated learning,
the users U of a federation collaborate to minimize G (under the coordination
of a central server S) without sharing or exchanging their raw data. From an
algorithmic point of view, S shares Θ with the federation of devices. Then,
the optimization problem of minimizing G is locally solved. Since each user
participates to the federation with her personal data and with her personal client
device, we will interchangeably use the terms “client”, “user”, and “device”.

To set up the framework, we consider the central server S holding a model
ΘS = 〈Q,b〉, where Q ∈ R

|I|×F is a matrix in which i-th row represents the
embedding qi for item i in the catalog, while the element bi of b ∈ R

|I| is the
bias of item i. That is, the information on S only characterizes the items of the
catalog. On the other hand, each user u ∈ U holds a local model Θu = 〈pu〉,
where pu ∈ R

F corresponds to the representation of user u in the latent space
of dimensionality F . Each user holds a private interaction dataset xu ∈ R

|I|,
which—compared to a centralized recommender system—corresponds to the X’s
u-th row. The user u leverages her private dataset xu to build the local training
set Ku = {(u, i, j) | xui = 1∧xuj = 0}. Finally, the overall number of interactions
in the system can be obtained by exploiting the local datasets. Let us define it
as X+ =

∑
u∈U |{xui|xui = 1}|.

The training procedure iterates for E epochs, in each of which rpe rounds
of communication between the server and the devices are performed. A round
of communication envisages a Distribution to Devices → Federated Opti-
mization → Transmission to Server → Global Aggregation sequence. The
notation {·}t

S denotes an object computed by the server S at round t, while {·}t
u

indicates an object computed by a specific client u at round t.

(1) Distribution to Devices. Let {U−}t
S be a subset of U with cardinality

m, containing m clients u ∈ U . The set {U−}t
S can be either defined by S, or

the result of a request for availability sent by S to clients in U . Each client
u ∈ {U−}t

S receives from S the latest snapshot of {ΘS}t−1
S .

(2) Federated Optimization. Each user u ∈ {U−}t
S generates the set {K−

u }t
u

containing T random triples (u, i, j) from Ku. It is worth underlining that Ren-
dle [38] suggests, for a centralized scenario, to train the recommendation model
by randomly choosing the training triples from K, to avoid data is traversed
item-wise or user-wise, since this may lead to slow convergence. Conversely, in a
federated approach, we require to train the model user-wise. Indeed, the learn-
ing is separately performed on each device (u), that only knows the data in
Ku. Thanks to the user-wise traversing, FedeRank can decide who controls (the
designer or the user) the number of triples T in the training set {K−

u }t
u, to tune
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the degree of local computation. With the local training set, the user u can
compute her contribution to the overall optimization of ΘS with the following
update:

{ΔΘS}t
u = {Δ〈Q,b〉}t

u :=
∑

(u,i,j)∈{K−
u }t

u

∂

∂ΘS
ln σ(x̂uij({ΘS}t−1

S ; {Θu}t−1
u )),

(1)
plus a regularization term. At the same time, the client u updates its local model
Θu, and incorporates it in the current model by using:

{ΔΘu}t
u = {Δ〈pu〉}t

u :=
∑

(u,i,j)∈{K−
u }t

u

∂

∂Θu
ln σ(x̂uij({ΘS}t−1

S ; {Θu}t−1
u )), (2)

plus a regularization term. The partial derivatives in Eq. 1 and 2 are straightfor-
ward, and can be easily computed by following the scheme proposed by Rendle
et al. [38]. At the end of the federated computation, given a shared learning rate
α, each client can update its local model Θu—containing the user profile—by
aggregating the computed update:

{Θu}t
u := {Θu}t−1

u + α{ΔΘu}t
u. (3)

(3) Transmission to Server. In a purely distributed architecture, each user
in U− returns to S the computed update. Here, instead of sending {ΔΘS}t

u,
each user transmits a modified version {ΔΘΦ

S}t
u. To introduce this aspect of

FedeRank, let us define F = {i, ∀(u, i, j) ∈ {K−
u }t

u}, and a randomized object
Φ = 〈QΦ,bΦ〉, with QΦ ∈ R

|I|×F , and bΦ ∈ R
|I|. Each row qΦ

i of QΦ and each
element bΦ

i of bΦ assume their value according to the probabilities:

P (qΦ
i = 1, bΦ

i = 1 | i ∈ F) = π, P (qΦ
i = 0, bΦ

i = 0 | i ∈ F) = 1 − π,

P (qΦ
i = 1, bΦ

i = 1 | i /∈ F) = 1
(4)

Based on {QΦ}t
u and {bΦ}t

u, ΔΘΦ
S can be computed as it follows:

{ΔΘΦ
S}t

u = {ΔΘS}t
u 	 {Φ}t

u := 〈{ΔQ}t
u 	 {QΦ}t

u, {Δb}t
u 	 {bΦ}t

u〉, (5)

where the operator 	 denotes the Hadamard product. This transformation is
motivated by a possible privacy issue. The update ΔQ computed in Eq. 1 by
user u is a matrix whose rows are non-zero in correspondence of the items
i and j of all the triples (u, i, j) ∈ K−

u [38]. An analogous behavior can be
observed for the elements of Δb. Focusing on the non-zero elements, we observe
that, for each triple (u, i, j) ∈ K−

u , the updates {Δqi}t
u and {Δqj}t

u, as well
as {Δbi}t

u and {Δbj}t
u, show the same absolute value with opposite sign [38].

In fact, this makes completely distinguishable for the server the consumed and
the non-consumed items of user u, allowing S to reconstruct K−

u , thus raising a
privacy issue. Since our primary goal is to put users in control of their data, we
leave users the possibility to choose a fraction π of positive item updates to send.
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The remaining positive item updates (a fraction 1 − π) are masked by setting
them to zero, by means of the transformation in Eq. 5. Conversely, the nega-
tive updates are always sent to S, since their corresponding rows are always
multiplied by a 1 vector. Indeed, these updates are related to non-consumed
items, which are indistinguishably negative or missing values, assumed to be
non-sensitive data.

(4) Global Aggregation. Once S has received {ΔΘΦ
S}t

u from all clients u ∈ U−,
it aggregates the received updates in Q and b to build the new global model,
with α being the learning rate:

{ΘS}t
S := {ΘS}t−1

S + α
∑

u∈U−
{ΔΘΦ

S}t
u. (6)

Although Federated Learning was conceived as a privacy-by-design paradigm
for distributed machine learning, it still does not provide formal privacy guar-
antees. Malicious actors might acquire different information. They may be able
to analyze remote devices or communication flows in the network or infer users’
private data by inspecting updates received on the server [21]. Possible solutions
include the encryption of data on local devices, the network traffic, or the adop-
tion of secure multi-party computation [7]. Moreover, local differential privacy
can guarantee that even if an adversary can inspect the communication between
a user and the central server, she can learn only limited information [13,14,43].
To date, FedeRank explicitly provides the needed APIs to work, out of the box,
with encryption communication libraries, thus providing state-of-the-art privacy
guarantees. We have chosen this solution since discussing privacy and security
implications in FL is beyond our scope. In this way, the system designer can
choose the privacy solution while disregarding the underlying machine learning
model. Moreover, FedeRank can also be easily adapted to guarantee local differ-
ential privacy. Indeed, it is not due to chance the choice of putting the user in
control of Φ. Suppose the Φ object also considers sending fake information. In
that case, FedeRank becomes utterly compliant with the randomized response
technique, which guarantees differential privacy [44].

4 Experiments

Datasets. We have investigated the performance of FedeRank considering three
well-known datasets: Amazon Digital Music [31], LibraryThing [48], and Movie-
Lens 1M [18]. The former includes the users’ satisfaction feedback for a catalog
of music tracks available with Amazon Digital Music service. It contains 1,835
users and 41,488 tracks, with 75,932 ratings ranging from 1 to 5. LibraryThing
collects the users’ ratings on a book catalog. It captures the interactions of 7,279
users on 37,232 books. It provides more than two million ratings with 749,401
unique ratings in a range from 1 to 10. The latter is MovieLens 1M dataset,
which collects users’ ratings in the movie domain: it contains 1,000,209 ratings
ranging from 1 to 5, 6,040 users, and 3,706 items. We have filtered out users
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Table 1. Characteristics of the datasets used in the offline experiments: |U| is the
number of users, |I| the number of items, X+ the amount of positive feedback.

Dataset |U| |I| X+ X+

|U|
X+

|I|
X+

|I|·|U|%

Amazon DM 1,835 41,488 75,932 41.38 1.83 0.000997%

LibraryThing 7,279 37,232 749,401 102.95 20.13 0.002765%

MovieLens 1M 6,040 3,706 1,000,209 165.60 269.89 0.044684%

with less than 20 ratings (considering them as cold-users). Table 1 shows the
characteristics of the resulting datasets adopted in the experiments.

Baseline Algorithms. We compared FedeRank with representative centralized
algorithms to position its performance with respect to the state-of-the-art tech-
niques: VAE [30], a non-linear probabilistic model taking advantage of Bayesian
inference to estimate the model parameters; User-kNN and Item-kNN [25],
two neighbor-based CF algorithms, that exploit cosine similarity to compute sim-
ilarity between users or items; BPR-MF [38], the centralized vanilla BPR-MF
implementation; and FCF [3], the only federated recommendation approach, to
date, based on MF1. We have evaluated FedeRank considering |U−| = 1. That
is, in each round of communication we involve only a single client to avoid noisy
results. We thereby guarantee the sequential training, needed to compare against
centralized pir-wise techniques. We have investigated with two different FedeR-
ank settings. In the first setting, we have set T = 1, i.e., each client extracts
solely one triple (u, i, j) from its dataset when asked for training the model;
with this special condition, we test whether FedeRank is effectively comparable
to BPR. Moreover, to make the comparison completely fair, we extract triples
as proposed by Rendle et al. [38]. The second setting follows a real Feder-
ated scenario where the client local computation is not limited to a single triple.
Specifically, the number T of triples extracted by each client is set to X+

|U| .

Reproducibility and Evaluation Metrics. To train FedeRank, we have
adopted a realistic temporal hold-out 80–20 splitting for training set and test set
[17]. We have further split the training set adopting a temporal hold-out strategy
on a user basis to pick the last 20% of interactions as a validation set. Hence, we
have explored a grid in the range {0.005, . . . , 0.5}. Then, to ensure a fair com-
parison, we have used the same learning rate to train FedeRank. We have set up
the remaining parameters as follows: the user- and positive item-regularization
parameter is set to 1/20 of the learning rate; conversely, the negative item-
regularization parameter is set to 1/200 of the learning rate as suggested by
Anelli et al. [4]. Moreover, for each setting, we have selected the best model in
the first 20 epochs. Finally, the number of latent factors is equal to 20. This value
reflects a trade-off between latent factors’ expressiveness and memory space lim-
its (given by a realistic Federated Learning environment). We have measured

1 Since no source code is available, we reimplemented it in the reader’s interest.
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the recommendation accuracy by exploiting: Precision (P@N) (the proportion
of relevant items in the recommendation list), and Recall (R@N), that measures
the relevant suggested items. Regarding diversity, we have adopted Item Cover-
age (IC) and Gini Index (G). The former provides the overall number of diverse
recommended items, and it highlights the degree of personalization expressed
by the model [1]. The latter measures how unequally an RS provides users with
different items [10], being higher values corresponding to more tailored lists.

4.1 Performance of Federated Learning to Rank

We begin our experimental evaluation by investigating the efficacy of FedeRank,
and we assess whether its performance is comparable to baseline algorithms.
Table 2 depicts the results in terms of accuracy and diversity. The Table is visu-
ally split into two parts. The algorithms in the bottom part (BPR-MF, FCF, and
the two settings of FedeRank) are the factorization-based models. The upper part
provides the positioning of FedeRank to the other state-of-the-art approaches.
Focusing on the factorization-based methods, we can note that BPR-MF out-
performs FedeRank for T = 1, but it remains at about 67% and 88% of the
centralized algorithm for Amazon Digital Music and LibraryThing, respectively.
However, the realistic Federated setting is with T = X+/|U|. Here, FedeRank
consistently improves the recommendation performance with respect to BPR-
MF and FCF, over the three datasets. Actually, for Amazon Digital Music and
LibraryThing FedeRank improves accuracy metrics of about 50% and 25% with
respect to BPR-MF. The achievement can be explained as an advantage brought
by the increased local computation. It is worth noticing that these results par-
tially contradict Rendle et al. [38] since they hypothesize that traversing user-
wise the training triples would worsen the recommendation performance. The
same accuracy improvements are not visible in MovieLens 1M, where we wit-
ness results comparable or worse than BPR-MF, probably due to the overfit-
ting caused by the very high ratio between ratings and items. FedeRank with
increased computation still results robust with respect to the IC metric, since,
in general, it outperforms or remains comparable to FCF and BPR-MF.

Table 2. Recommendation performance for baselines and FedeRank on the three
datasets. For each value of T , the experiment with the best π is shown.

Amazon Digital Music LibraryThing MovieLens 1M

P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10

Random 0.00005 0.00005 14186 0.28069 0.00054 0.00028 31918 0.60964 0.00871 0.00283 3666 0.85426

Most popular 0.00469 0.00603 24 0.00023 0.05013 0.03044 36 0.00031 0.10224 0.03924 118 0.00569

User-kNN 0.01940 0.02757 4809 0.04115 0.14193 0.10115 3833 0.01485 0.12613 0.06701 737 0.04636

Item-kNN 0.02147 0.03171 4516 0.03801 0.20214 0.14778 12737 0.09979 0.08873 0.05475 2134 0.19292

VAE 0.01580 0.02289 3919 0.04179 0.10834 0.07711 7800 0.04638 0.11735 0.06192 1476 0.09259

BPR-MF 0.00921 0.01298 739 0.00415 0.07009 0.04303 3082 0.01359 0.11911 0.05817 1444 0.08508

FCF 0.00839 0.01222 2655 0.01861 0.10760 0.04392 829 0.01305 0.10760 0.04392 829 0.01305

FedeRank

T = 1 0.00610 0.00889 349 0.00136 0.06309 0.03738 1650 0.00512 0.11805 0.05902 1041 0.06608

T = X+/|U| 0.01422 0.02060 2586 0.02153 0.08512 0.05627 5404 0.02784 0.11599 0.05571 1326 0.02513
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4.2 Analysis of Positive Feedback Transmission Ratio

We have extensively analyzed the behavior of FedeRank when tuning π for send-
ing progressive fractions of positive feedback in [0.0, . . . , 1.0] with step 0.1. We
believe that the most important dimensions for this analysis are accuracy (Pre-
cision), and aggregate diversity (Item Coverage). Figure 1 reports the results for
the two experimented settings. Even here, Amazon Digital Music and Library-
Thing show similar trends. The accuracy of the recommendation progressively
increases reaching the maximum with fractions 0.8 and 0.5, respectively, for
T = 1, and with fractions 0.9 and 1.0 for T = X+/|U|. First, this suggests that,
at the beginning of the training, some positive feedback is needed for establishing
the value of an item. Notwithstanding, even with π = 0.1 (i.e., sharing just 10%
of private information), we witness a jump in recommendation accuracy (one
order of magnitude), reaching up to 92% of the best accuracy. We should also
observe another significant behavior. With a fraction of 0.0, we observe a high
value of IC, with poor recommendation accuracy. It suggests that the system
could not capture population preferences, and it behaves similarly to Random.
However, even with a small fraction of positive feedback like 0.1, we observe a
significant decrease in diversity metrics. The system learns which items are pop-
ular and starts suggesting them. Moreover, if we observe large fractions, we may
notice that diversity increases as we feed the system with more information. For
MovieLens 1M , it is worth noticing that FedeRank shows accuracy performance
extremely close to the best value by sharing only 10% of positive interactions.
This behavior may be due to several reasons. Firstly, MovieLens 1M is a rela-
tively dense dataset in the recommendation scenario (it has a sparsity of 0.955).
Secondly, it shows a very high user-item ratio [2] (i.e., 1.63) compared to Amazon
Digital Music (0.04), and LibraryThing (0.20), and it shows high values for the
average number of ratings per user (132.87), and ratings per item (216, 56). All
these clues suggest that the system learns how to rank items even without the
need for the totality of ratings. If we focus on diversity metrics, IC and Gini,
we may notice that diversity is progressively increasing from fraction 0.1 to 1.0.

0 0.5 1
0.000
0.005
0.010
0.015

π

P
@
10

0 0.5 1
0.000
0.020
0.040
0.060
0.080

π

P
@
10

0 0.5 1

0.100

0.110

0.120

π

P
@
10

0 0.5 1
0

2,000

4,000

π

IC
@
10

(a) Amazon Digital Music

0 0.5 1

2,000
4,000
6,000

π

IC
@
10

(b) LibraryThing

0 0.5 1
500

1,000

π

IC
@
10

(c) MovieLens 1M

Fig. 1. F1 performance at different values of π in the range [0.1, 1]. Dark blue is T = 1,
light blue is T = X+/|U|. (Color figure online)
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It suggests that the system recommends a small number of popular items with
a fraction of 0.1, while it provides more diversified recommendation lists consid-
ering larger portions of positive user feedback. At this stage of the analysis, we
can draw an interesting consideration: in general, the highest accuracy values do
not correspond to the fraction of 1.0. Specifically, the experiments show that,
initially, the recommender struggles to suggest relevant items without positive
feedback (fraction 0.0). However, with a small injection of feedback, the system
starts to work well. Nonetheless, in Amazon Digital Music and LibraryThing , if
we increase the fraction, we witness an increase concerning accuracy only until a
certain value of π. Although this consideration, we observe an increase in diver-
sity metrics when we continue to increase the value of π. Since it has a small
or even detrimental impact on accuracy, those items might be unpopular items
erroneously suggested to users.
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Fig. 2. Normalized number of item updates during the training: the 1,000 most updated
items for different values of π (from π = 0.0 in red to π = 1.0 in blue). (Color figure
online)
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Fig. 3. Normalized number of recommendations for each item (colored curves from
π = 0.0 in red to π = 1.0 in blue) vs. normalized amount of positive feedback per item
(black dashed curve). The 250 most popular items are shown. (Color figure online)
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4.3 Study on FedeRank Algorithmic Bias

In this section, we study how incomplete transmission of user feedback affects
the item popularity in the recommendations and during the learning process.
It is essential to discover whether the exploitation of a FL approach influences
the algorithmic bias, determining popular items to be over-represented [5,9]. We
have re-trained FedeRank with all the previously considered π. For each experi-
ment, we analyzed the data flow between the clients and the server. Afterward,
we have extracted the number of updates for each item. Figure 2 illustrates the
occurrences for the 1, 000 most updated items. In the Figure, the curve colors
denote the different π, while the values represent the update frequency during the
training process for each item on the horizontal axis. Analogously, we considered
the final top-10 recommendation list of each user. Following the same strategy, we
analyzed the occurrences of the items in the recommendation. Then, we ordered
items from the most to the least recommended, and we plotted the occurrences
of the first 250 in Fig. 3. To compare the different datasets, we have normal-
ized the values considering the overall dataset occurrences. Figure 2 shows that
data disclosure, i.e., the value of π, highly influences the information exchanged
during the training process. Additionally, the update frequency curve exhibits a
constant behavior for all the datasets, when π = 0.0. This trend suggests that
items are randomly updated without taking into account any information about
item popularity. This behavior explains the high IC entirely observed in Fig. 1
for π = 0.0. The curve for π = 0.1 shows that the exchanged data is enough to
provide the system with information about item popularity. The curves suggest
that the information on item popularity is being injected into the system. By
increasing the value of π, the trend becomes more evident. Due to the original
rating distribution, the system initially exchanges more information about the
very popular items. To analyze the algorithmic bias, we can observe Fig. 3, where
the colored curves represent the frequency of item recommendation on the hori-
zontal axis, and the black dashed curve the amount of positive feedback for that
item in the dataset. Remarkably, item popularity in recommendation lists does
not vary as we may expect based on the previous analysis. The setting π = 0.0
is an exception, as extensively explained before. Since in Amazon Digital Music
and LibraryThing the updates sent by the clients are randomly selected among
the negative items, FedeRank acts like a Random recommender. The system
cannot catch popularity information and it struggles to make the right items
popular. Finally, we can focus on the curves for π > 0. It is noteworthy that
the π curves behave similarly, and they propose the same proportion of popular
items. The curves show the model absorbs the initial variation in exchanged item
distribution, unveiling an unknown aspect of factorization models.

5 Conclusion and Future Work

In this paper, we have tackled the problem of putting users in control of their
private data for a recommendation scenario. Witnessing the growing concern
about privacy, users might want to exploit their sensitive data and share only a
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small fraction of it. In such a context, classic CF approaches are no more feasible.
To overcome these problems, we have proposed FedeRank, a novel recommen-
dation framework that respects the FL paradigm. With FedeRank, private user
feedback remains on user devices unless they decide to share it. Nevertheless,
FedeRank ensures high-quality recommendations despite the constrained setting.
We have extensively studied the performance of FedeRank by comparing it with
other state-of-the-art methods. We have then analyzed the impact of progressive
reduction of user feedback and studied the effects on the diversity of the recom-
mendation results. Finally, we have investigated whether the federated algorithm
imposes an algorithmic bias to the recommended lists. The study paves the way
for further research directions. On the one hand, the results’ analysis suggests
that centralized recommender systems are not performing at their best. Feeding
recommender systems with all the available feedback, without any filtering, may
lead to a performance worsening. On the other hand, the competitive results of
FedeRank suggest that the FL-based algorithms show a recommendation quality
that makes them suitable to be adopted on a massive scale.
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Abstract. In this work, we propose a novel framework for labeling
entity alignments in knowledge graph datasets. Different strategies to
select informative instances for the human labeler build the core of
our framework. We illustrate how the labeling of entity alignments is
different from assigning class labels to single instances and how these
differences affect the labeling efficiency. Based on these considerations,
we propose and evaluate different active and passive learning strate-
gies. One of our main findings is that passive learning approaches, which
can be efficiently precomputed, and deployed more easily, achieve per-
formance comparable to the active learning strategies. In the spirit of
reproducible research, we make our code available at https://github.
com/mberr/ea active learning.

Keywords: Entity alignment · Active learning · Knowledge graphs

1 Introduction

A knowledge graph (KG) is a way to store information (semi-)structurally to
enable automatic data processing and data interpretation. KGs are utilized in
various Information Retrieval related applications requiring semantic search of
information [1,11]. While there exist various large open-source KGs, such as
YAGO-3 [25], Wikidata [38], or ConceptNet [33], they often contain orthogonal
information, and have their respective strength and weaknesses. Hence, being
able to combine information from different knowledge graphs is required in many
applications. An important subtask is identifying matching entities across sev-
eral graphs, called entity alignment (EA). Recent years witnessed substantial
advances regarding the methodology, in particular involving graph neural net-
works (GNNs) [6,7,19,28,34–37,40,42,44,46]. Common among these approaches
is that they use a set of given seed alignments and infer the remaining ones. While
several benchmark datasets are equipped with alignments, acquiring them in
practice is cumbersome and expensive, often requiring human annotators. To
address this problem, we propose to use active learning for entity alignment. In
summary, our contributions are as follows:
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– To the best of our knowledge, we are the first to propose using active learning
for entity alignment in knowledge graphs. We investigate and formalize the
problem, identify critical aspects, and highlight differences to the classical
active learning setting for classification.

– A specialty of entity alignment is that learning is focused on information
about aligned nodes. We show how to additionally utilize information about
exclusive nodes in an active learning setting, which leads to significant
improvements.

– We propose several different heuristics, based upon node centrality, graph and
embedding coverage, Bayesian model uncertainty, and certainty matching.

– We thoroughly evaluate and discuss the heuristics’ empirical performance
on a well-established benchmark dataset using a recent GNN-based model.
Thereby, we show that state-of-the-art heuristics for classification tasks
perform poorly compared to surprisingly simple node centrality based
approaches.

2 Problem Setting

We study the problem of entity alignment for knowledge graphs (EA). A knowl-
edge graph can be represented by the triple G = (E ,R, T ), where E is a set of
entities, R a set of relations, and T ⊆ E × R × E a set of triples. The alignment
problem now considers two such graphs GL,GR and seeks to identify entities
common to both, together with their mapping. The mapping can be defined by
the set of matching entity pairs A = {(e, e′) | e ∈ EL, e′ ∈ ER, e ≡ e′}, where ≡
denotes the matching relation. While some works are using additional informa-
tion such as attributes or entity labels, we solely consider the graph structure’s
relational information. Thus, a subset of alignments Atrain ⊆ A is provided,
and the task is to infer the remaining alignments Atest := A \ Atrain. With
AL := {e ∈ EL | ∃e′ ∈ ER : (e, e′) ∈ A} we denote the set of entities from
GL which do have a match in A, and AR analogously. With XL = EL \ AL we
denote the set of exclusive entities in the graph GL which occur neither in train
nor test alignment, and XR analogously.

In practice, obtaining high-quality training alignments means employing a
human annotator. As knowledge graphs can become large, annotating a sufficient
number of alignment pairs may require significant labeling efforts and might be
costly. Thus, we study strategies to select the most informative alignment labels
to achieve higher performance with fewer labels, commonly referred to as active
learning. The following section surveys existing literature about active learning
with a particular focus on graphs and reveals differences in our setting.

3 Related Work

Classical active learning approaches [31] often do not perform well in batch
settings with neural network architectures. Therefore, developing active learning
heuristics for neural networks is an active research area. New approaches were
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proposed for image [2,16,18,30,39,43], text [32,45] and relational [5,17,23,27,41]
data. Active learning algorithms aim to select the most informative training
instances. For instance, the intuition behind uncertainty sampling [22] is that
instances about which the model is unconfident comprise new or not yet explored
information. However, the estimation of neural networks’ uncertainty is not a
trivial task since neural networks are often overconfident about their predictions
[15]. One approach to tackle this problem is to use Monte-Carlo dropout to
estimate the uncertainty for active learning heuristics [16,27,32]. Alternatively,
[2] demonstrated that ensembles of different models lead to better uncertainty
estimation and consequently better instance selection. The method described in
[23] adopts a different approach and queries labels for instances for which it is the
most certain that they are unlabeled. For this assessment, the authors propose
an adversarial framework, where the discriminator differentiates between labeled
and unlabeled data.

Geometric or density-based approaches [5,17,18,30,41,43], on the other
hand, aim to select the most representative instances. Therefore, unlabeled
instances are selected for labeling, such that labeled instances cover unlabeled
data in the embedding space. Other approaches to estimate the informativeness
of unlabeled samples use, e.g., the expected length of gradient [45].

Active learning approaches with neural networks on relational data were so
far applied to the classification of nodes in homogeneous graphs [5,17,23,41] and
link prediction in knowledge graphs [27]. In [8,9,26] authors propose active learn-
ing approaches for the graph matching problem, where the matching costs are
known in advance, and the goal is to minimize assignment costs. Note that this
is different from our task, where the goal is to learn meaningful representations
of the entities.

4 Methodology

In this section, we introduce our proposed labeling setting and describe data
post-processing to leverage exclusive nodes. Moreover, we propose numerous
new labeling strategies: Some strategies take inspiration from existing state-of-
the-art heuristics for classification. Others are developed entirely new based on
our intuitions. Finally, we present our evaluation framework for the evaluation
of different heuristics.

4.1 Labeling Setting

Since we are dealing with matching KGs, where entities have meaningful labels,
we assume that human annotators use these entity names for matching. There-
fore, we see two different possibilities to formulate the labeling task:

1. The system presents annotators with possible matching pairs, and they label
it as True or False

2. The system presents annotators a node from one of the two KGs, and the
task is to find all matching nodes in the other KG.
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It is easier to label a single instance in the first scenario, as it is a yes/no question.
However, since each node can have more than one matching node in the other
KG, |EL| × |ER| queries are necessary to label the whole dataset. In contrast, in
the second scenario, human annotators need a similar qualification but the time
spent per labeled instance increases because they have to search for possible
matchings. However, there are the following advantages of the second scenario:

First, there are only |EL| + |ER| possible queries. Second, in both scenarios,
the learning algorithm needs positive matchings to start training. Assuming
|AL| ≈ |AR| ≈ |A| and |ER| ≈ |EL| ≈ |E|, the probability to select a match with
a random query is in the first scenario |A|/|E|2, whereas for the second scenario
it is |A|/|E|. Additionally, in the second scenario, it is possible to start with some
simple graph-based heuristics, e.g., based on a graph centrality score like degree
or betweenness. For many KGs, it is a valid assumption that the probability of
having a match is higher for more central nodes. Cold-start labeling performance
is especially relevant when the labeling budget is restricted. Third, in the classical
active learning scenario, there is the assumption that each query returns a valid
label. However, for EA, the information that two nodes do not match is limited
since negative examples can also be obtained by negative sampling. In contrast,
in the second scenario, we can use information about missing matchings to adapt
the dataset, see Sect. 4.2.

In this paper, we focus on the second scenario. However, heuristics relying on
information from the matching model described in Sect. 4.3 can also be applied
in the first scenario.

4.2 Dataset Adjustment

The EA task’s main motivation is either the fusion of knowledge into a sin-
gle database or exchanging information between different databases. In both
cases, the primary assumption is that there is information in one KG, which is
not available in the other. This information comes in relations between aligned
entities, relations with exclusive entities, or relations between exclusive entities.
While larger differences between the KGs increase their fusion value, they also
increase the difficulty of matching processes. One possibility to partially miti-
gate this problem is to enrich both KGs independently using link prediction and
transfer links between aligned entities in the training set [6,23]. As this method-
ology does only deal with missing relations between shared entities, in this work,
we go a step further: Since we control the labeling process, we naturally learn
about exclusive nodes from the annotators. Therefore, we propose to remove
the exclusive nodes from the KGs for the matching step. After the matching is
finished, the exclusive nodes can be re-introduced. In the classical EA setting,
where the KGs and partial alignments are already given, and there is no control
over dataset creation, the analogous removal of exclusive nodes is not possible:
To determine whether a node is exclusive or just not contained in the training
alignment requires access to the test alignments, hence representing a form of
test leakage.
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4.3 Active Learning Heuristics

The main goal of active learning approaches is to select the most informative
set of examples. In our setting, each query either results in matches or verified
exclusiveness, both providing new information. Nodes with an aligned node in
the other KG contribute to the signal for the supervised training. State-of-the-art
GNN models for EA learn by aggregating the k-hop neighborhood of a node. Two
matching nodes in training become similar when their aggregated neighborhood
is similar. Therefore, the centrality of identified alignments or their coverage is
vital for the performance. On the other hand, exclusive nodes improve training
by making both KGs more similar. Since it is not clear from the outset, what
affects the final performance most, we analyze heuristics with different inductive
biases.

Node Centrality – Selecting nodes with high centrality in the graph has the
following effects: (a) a higher probability of a match in the opposite graph, and
(b) updates for a larger number of neighbors if a match or significant graph
changes when being exclusive. Although there is a large variety of different cen-
trality measures in graphs [10], we observed in initial experiments that they
perform similarly. Therefore, in this work, we evaluate two heuristics based on
the nodes’ role in the graph. The first, degree heuristic (denoted as deg), orders
nodes by their degree, and the nodes with a higher degree are selected first. The
second, betweenness heuristic (betw), works similarly and relies on the between-
ness centrality measure.

Graph Coverage – Real-World graphs tend to have densely connected com-
ponents [12]. In this case, if nodes for labeling are selected according to some
centrality measure, there may be a significant overlap of neighborhoods. At the
same time, large portions of the graph do receive no or infrequent updates.
Therefore, we propose a heuristic, seeking to distribute labels across the graph.
We adopt an approximate vertex cover algorithm [29] to define an active learn-
ing heuristic for entity alignment. Each node is initialized with a weight equal to
its degree. Subsequently, we select the node from both graphs with the largest
weight, remove it from the candidate list, and decrease all its neighbors’ weight
by one. We denote this heuristic as avc.

Embedding Space Coverage – The goal of embedding space coverage
approaches is to cover the parts of the embedding space containing data as well
as possible. Here we adapt the state-of-the art method coreset [30] (denoted as
cs) for the EA task. Thereby, we aim to represent each graph’s embedding space
by nodes with positive matchings. We adopt a greedy approach from [30], which
in each step selects the object with the largest distance to the nearest neighbor
among already chosen items. Its performance was similar to the mixed-integer
program algorithm while being significantly faster. In the process of node selec-
tion, it is not known whether nodes in the same batch have matchings or are
exclusive. Thereby, in each step, each candidate node is associated with a score
according to its distance to the nearest positive matching or the nodes already
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selected as potential positives in the same batch. The node with the largest
distance to the closest positive point is added to the batch.

Embedding Space Coverage by Central Nodes – The possible disadvan-
tage of coreset heuristic in the context of entity alignment is that selected nodes
may have low centrality and therefore affect only a small portion of the graph.
Intuitively, it is possible because each next candidate is maximally distant from
all nodes with positive matchings, which are expected to be more or less cen-
tral. In this heuristic, we try to remedy this effect and sample nodes with high
centrality in different parts of embedding space. Therefore, in each step, we per-
form clustering of node representations from both graphs in the joint space, c.f.
Fig. 1. We count already labeled nodes in each cluster and determine the num-
ber of candidates selected from this specific cluster. This number is inversely
proportional to the number of already labeled nodes in the cluster. We then use
a node centrality based heuristic to select the chosen number of candidates per
cluster. We denote this heuristic by esccn.

Fig. 1. Schematic visualization of the esccn heuristic. The labeled nodes per cluster
are counted and used to derive how many samples to draw from this cluster. Another
heuristic is then used to select the specific number from the given clusters, e.g., a
graph-based degree heuristic.

Uncertainty Matching – Uncertainty-based approaches are motivated by the
idea that the most informative nodes are those for which the model is most
uncertain about the final prediction. We reformulate EA as a classification prob-
lem: The number of classes corresponds to the number of matching candidates,
and we normalize the vector of similarities to the matching candidates with the
softmax operation. A typical uncertainty metric for classification is Shannon
entropy computed over the class probability distribution, where large entropy
corresponds to high uncertainty. We can employ Monte-Carlo Dropout to com-
pute a Bayesian approximation of the softmax for the entropy similarly to [17].
However, the repeatable high entropy across multiple dropout masks indicates
the prediction uncertainty, where the model is certain that a right prediction is
impossible. In the context of entity alignment, we expect high prediction uncer-
tainty for the exclusive nodes since a model may be certain about lacking good
matchings. Therefore we opt for model uncertainty for the entity alignment.
The model uncertainty is high if the model makes different (certain) decisions



54 M. Berrendorf et al.

for the same instances in multiple runs [14]. We employ BALD [21] with Monte-
Carlo Dropout [17]. The heuristic computes the expected difference between the
entropy of single model prediction and expected entropy. Note that numerous
classes may lead to similar entropy and BALD values for the whole dataset. To
mitigate this effect, we employ softmax temperature [20].

Fig. 2. Visualization of scoring method of the prexp heuristic. We fit two normal dis-
tributions for matching and exclusive nodes. Each distribution models the maximum
similarity these nodes have to any node in the other graph (smax(q)). To assess the
quality of a query q, we get its maximum similarity, and evaluate Pmatch(smax(e) ≤
smax(q)) − Pexcl(smax(e) ≥ smax(q)), i.e. the black area minus the red one. (Color
figure online)

Certainty Matching – A distinctive property of EA is that the supervised
learning signal is provided only by the part of the labeled nodes that have a
matching partner in the other graph. Therefore, we propose a heuristic that
prefers nodes having matches in the opposite graph, named previous-experience-
based (prexp). As the model is trained to have high similarities between matching
nodes, the node with maximum similarity is the most likely matching partner
for a given node. Moreover, we expect that higher similarity values indicate a
better match, such that we can utilise this maximum similarity as a matching
score: smax(e) = maxe′∈ER similarity(e, e′) for e ∈ EL. Thus, we hypothesize
that the distribution of maximum similarity values between exclusive nodes and
those having a matching partner differ and can be used to distinguish those
categories. However, we note that the similarity distribution for already labeled
nodes may differ from those that are not labeled, as the labeled nodes directly
receive updates by a supervised loss signal. Hence, we use historical similarity
values acquired when we selected unlabeled nodes for labeling, and the ground
truth information about them having a match received after the labeling. Based
on these, we fit two normal distributions for maximum similarities: The first
distribution with the probability function Pmatch describes the distribution of
maximal similarity score of nodes with matchings. Similarly, the function Pexcl

computes the probability that the maximal similarity score belongs to an exclu-
sive node. For each entity in question e, we take its maximal similarity score to
the candidate in other graph and compute a difference between two probabili-
ties Pmatch(smax(e) ≤ x)−Pexcl(smax(e) ≥ x) as heuristic score, c.f. Fig. 2. This
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score is large if the maximal similarity of exclusive nodes is smaller than that of
nodes with matchings. We keep only entities with the score greater than thresh-
old t, where t is a hyperparameter. This way, we make sure that the score is used
only if matching and exclusive nodes are distinguishable. If there are not enough
entities that fulfill this requirement, we use some simple fallback heuristic, e.g.,
degree, for the remaining nodes.

5 Evaluation Framework

A

B

C

D

E

F

Fig. 3. Visualization of node categorisation for EL = {A,B,C}, and ER = {D,E, F}.
Solid lines represent training alignments, whereas dashed ones denote test alignments.
Node B is the only exclusive node. All blue nodes are in the initial pool P0. The red
dashed nodes D and F may not be requested for labeling as they neither are exclusive
nor participate in a training alignment. When node A is requested, only the alignment
(A,E) is returned, and A, as well as E, become unavailable. The second training
alignment (C,E) can still be obtained by requesting C. (Color figure online)

To evaluate active learning heuristics in-vitro, an alignment dataset compris-
ing two graphs and labeled alignments is used. These alignments are split into
training alignments Atrain and test alignments Atest. We employ an incremental
batch-wise pool-based framework. At step i, there is a pool of potential queries
Pi ⊆

(
EL ∪ ER

)
, from which a heuristic selects a fixed number of elements

Qi ⊆ Pi, where b = |Qi| is often called the budget. These queries are then
passed to an alignment oracle O simulating the labeling process and return-
ing O(Qi) = (Ai,XL

i ,XR
i ), where the first component comprises the discovered

alignments Ai = {(a, a′) ∈ Atrain | {a, a′} ∩ Qi �= ∅}, and the last components
the exclusive nodes XL

i = XL ∩Qi, and XR
i analogously. Afterward, the labeled

nodes are removed from the pool, i.e. Pi+1 = Pi \
(
AL

i ∪ AR
i ∪ XL

i ∪ XR
i

)
. Note

that when dealing with 1:n matchings, we remove all matches from the set of
available nodes, despite some of them having additional alignment partners. As
each alignment edge can be retrieved using any of its endpoints, this does not
pose a problem. Now, the model is trained with all already found alignments,
denoted by A≤i, and without all exclusive nodes discovered so far, denoted by
XL

≤i,XR
≤i, given as

A≤i =
⋃

j≤i

Aj , XL
≤i =

⋃

j≤i

XL
j , XR

≤i =
⋃

j≤i

XR
j .
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Following [27,32], we do not reset the parameters but warm-start the model
with the previous iteration’s parameters. The pool is initialized with P0 :=
AL

train∪AR
train∪XL∪XR. We exclude nodes that are not contained in the training

alignment, but in the test alignments, as in this case, either a test alignment
has to be revealed, or a node has to be unfaithfully classified as exclusive. An
illustration of the pool construction and an example query of size one is given
in Fig. 3.

6 Experiments

6.1 Setup

For evaluation, we use both subsets of the WK3l-15k dataset [7]1. Similarly to
[28] we extract additional entity alignments from the triple alignments. Besides
using the official train-test split, we perform an additional 80-20 train-validation
split shared across all runs. We additionally evaluate the transferability of the
hyperparameter settings. One of the challenges in active learning is that hyper-
parameter search for a new dataset is not possible because of the lack of labeled
data at the beginning. Therefore, for the evaluation of the second subset en-fr,
we use the best hyperparameter settings which we obtained using en-de and
compare how consistent are results for both subsets.

We employ a GNN-based model, GCN-Align [40]. We use the best settings
as found in [3]. To allow for Monte-Carlo Dropout estimation for the Bayesian
heuristics, we additionally add a dropout layer between the embeddings and
the GCN and vary the dropout rate. We employ a margin-based matching loss,
and we exclude so far identified exclusive nodes from the pool of negative sam-
ples. Following [2], we use 25 runs with different dropout masks for Bayesian
approaches. As evaluation protocol, we always retrieve 200 queries from the
heuristic, update the exclusives and alignments using the oracle, and train the
model for up to 4k epochs with early stopping on validation mean reciprocal
rank (MRR) evaluated every 20 epochs, with a patience value of 200 epochs.
There are different scores for the evaluation of entity alignment, which evalu-
ate different performance aspects [4]. In this work, we report Hits@1 (H@1) on
the test alignments since this metric is most relevant for the applications. We
selected the heuristics’ hyperparameters according to the AUC of the step vs.
validation H@1 score. Using the best hyperparameter configuration, we re-ran
the experiments five times and report the mean and the standard deviation of
the results on the test set.

6.2 Results

Removal of Exclusives – Figure 4 shows the test performance of the ran-
dom selection baseline heuristic compared to the number of queries, with the
1 Note that the frequently used DBP15k dataset is not suitable for our experiments

due to its construction. Exclusive nodes in DBP15K are exactly those having a
degree of one and are therefore trivial to identify.
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Fig. 4. Performance vs number of queries for random baseline with different levels of
dropout, and when removing exclusive nodes from message passing. Removing exclu-
sives significantly improves the final performance.

standard deviation across five runs shown as shaded areas. As can be seen by
comparing the two solid lines, removing exclusives is advantageous, in particular,
when many queries are performed, i.e., many exclusives are removed. Therefore,
we focus the subsequent analysis only on the case, when found exclusives are
removed from the graph. Moreover, we can see that using a high dropout value
of 0.5 is disadvantageous on both datasets. While a dropout value of 0.2 also
hurts performance for the en-de subset, it does not have a negative influence on
en-fr.

Fig. 5. Performance on test alignments vs. number of queries for different heuristics.

Comparison of Different Heuristics – Figure 5 compares the performance
of different heuristics through all steps. Since there is a large overlap across dif-
ferent heuristics, we additionally compute AUC for each heuristic and report it
in Table 1. From the results, we observe that our expectations about the per-
formance of different heuristics are mostly confirmed. Most of the heuristics
perform significantly better than random sampling. Our intuitions about pos-
sible problems with coreset in the context of entity alignment are also verified:
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Table 1. Mean and standard deviation of AUC number of queries vs. test hits @ 1
aggregated from five different runs for each heuristic and subset. The * symbol indicates
significant results compared to the rnd baseline according to unequal variances t-test
(Welch’s t-test) with p < 0.01.

Subset en-de en-fr

avc 0.2020 ± 0.0005* 0.1748 ± 0.0005*

bald 0.1222 ± 0.0039* 0.1514 ± 0.0013

betw 0.2134 ± 0.0005* 0.1773 ± 0.0004*

cs 0.1117 ± 0.0011* 0.1185 ± 0.0016*

deg 0.2105 ± 0.0005* 0.1741 ± 0.0005*

esccn 0.2114 ± 0.0006* 0.1828 ± 0.0021*

prexp 0.2103 ± 0.0009* 0.1733 ± 0.0009*

rnd 0.1605 ± 0.0040 0.1510 ± 0.0019

The heuristic performs consistently worse than the random sampling baseline.
On the other hand, our new esccn heuristic, which also tries to cover embedding
space, but uses most central nodes instead, is one of the best performing heuris-
tics. We also observe an inferior performance of the uncertainty-based heuristic,
which performance is comparable with the random heuristic. Note, that we also
evaluated softmax entropy and maximal variation ratio heuristics from [17] and
their performance was similar. Overall, we see similar patterns for both sub-
sets: There is a set of good performing heuristics and their performance is very
similar.

Performance in Earlier Stages – In many real-life applications, the labeling
budget is limited; therefore, the model performance in the first steps is of higher
relevance. Therefore, in Fig. 6, we analyze the model performance in the first

Fig. 6. Performance on test alignments vs. number of queries for different heuristics.
This figure shows only queries up to 2,000, i.e., the region where not many alignments
have been found so far.
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2,000 iterations. We observe that the escnn and betw heuristics compete for first
prize and that towards the end, they are superseded by other heuristics.

Fig. 7. Number of found training alignments vs. number of queries for different heuris-
tics. This figure shows only queries up to 2,000, i.e., the region where not many align-
ments have been found so far.

Influence of Positive Matchings – In Fig. 7, we show the number of alignment
pairs identified by each heuristic in the first 2,000 steps. For most heuristics, the
plots look very similar to the plots in Fig. 6 above with the performance on the
y axis. In Fig. 4, we also saw that the removal of exclusive nodes affects the
performance only at later iterations. Therefore, we can conclude that finding
nodes with matches is especially important in the early training stages.

On the whole, we can conclude that node centrality based heuristics like betw
are the right choice for active learning for entity alignment. It achieves perfor-
mance comparable with model-based approaches and does not require access
to model predictions during the labeling process. The labeling ordering can be
precomputed and does not change, also facilitating to parallelize the labeling
process for a fixed budget to multiple annotators, e.g., using systems such as
Amazon Mechanical Turk.

7 Conclusion

In this paper, we introduced the novel task of active learning for entity alignment
and discussed its differences to the classical active learning setting. Moreover,
we proposed several different heuristics, both, adaptions of existing heuristics
used for classification, as well as heuristics specifically designed for this partic-
ular task. In a thorough empirical analysis, we showed strong performance of
simple centrality and graph cover heuristics, while adaptations of state-of-the-
art heuristics for classification showed inferior performance. For future work, we
envision transferring our approaches to other graph matching problems, such as
matching road networks [13] or approximating graph edit distance [24]. More-
over, we aim to study the generalization of our findings to other datasets and
models.



60 M. Berrendorf et al.

Acknowledgement. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.

References

1. Bast, H., Björn, B., Haussmann, E.: Semantic search on text and knowledge bases.
Found. Trends Inf. Retrieval 10(2–3), 119–271 (2016)

2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensem-
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Abstract. We study the utility of the lexical translation model (IBM
Model 1) for English text retrieval, in particular, its neural variants that
are trained end-to-end. We use the neural Model1 as an aggregator layer
applied to context-free or contextualized query/document embeddings.
This new approach to design a neural ranking system has benefits for
effectiveness, efficiency, and interpretability. Specifically, we show that
adding an interpretable neural Model 1 layer on top of BERT-based con-
textualized embeddings (1) does not decrease accuracy and/or efficiency;
and (2) may overcome the limitation on the maximum sequence length of
existing BERT models. The context-free neural Model 1 is less effective
than a BERT-based ranking model, but it can run efficiently on a CPU
(without expensive index-time precomputation or query-time operations
on large tensors). Using Model 1 we produced best neural and non-neural
runs on the MS MARCO document ranking leaderboard in late 2020.

1 Introduction

A typical text retrieval system relies on simple term-matching techniques to
generate an initial list of candidates, which can be further re-ranked using a
learned model [10,13]. Thus, retrieval performance is adversely affected by a
mismatch between query and document terms, which is known as a vocabulary
gap problem [18,74]. Two decades ago Berger and Lafferty [4] proposed to reduce
the vocabulary gap and, thus, to improve retrieval effectiveness with a help of
a lexical translation model called IBM Model 1 (henceforth, simply Model 1).
Model 1 has strong performance when applied to finding answers in English
question-answer (QA) archives using questions as queries [35,57,65,71] as well
as to cross-lingual retrieval [38,73]. Yet, little is known about its effectiveness on
realistic monolingual English queries, partly, because training Model 1 requires
large query sets, which previously were not publicly available.

Research Question 1. In the past, Model 1 was trained on question-document
pairs of similar lengths which simplifies the task of finding useful associations
c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 63–78, 2021.
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between query terms and terms in relevant documents. It is not clear if Model 1
can be successfully trained if queries are substantially, e.g., two orders of mag-
nitude, shorter than corresponding relevant documents.

Research Question 2. Furthermore, Model 1 was trained in a translation task
using an expectation-maximization (EM) algorithm [9,16] that produces a sparse
matrix of conditional translation probabilities, i.e., a non-parametric model. Can
we do better by parameterizing conditional translation probabilities with a neu-
ral network and learning the model end-to-end in a ranking—rather than a
translation—task?

To answer these research questions we experiment with lexical translation
models on two recent MS MARCO collections, which have hundreds of thousands
of real user queries [12,49]. Specifically, we consider a novel class of ranking
models where an interpretable neural Model 1 layer aggregates an output of a
token-embedding neural network. The resulting composite network (including
token embeddings) is learned end-to-end using a ranking objective. We consider
two scenarios: context-independent token embeddings [11,22] and contextualized
token embeddings generated by BERT [17]. Note that our approach is generic
and can be applied to other embedding networks as well.

The neural Model 1 layer produces all pairwise similarities T (q|d) for all query
and documents BERT word pieces, which are combined via a straightforward
product-of-sum formula without any learned weights:

P (Q|D) =
∏

q∈Q

∑

d∈D

T (q|d)P (d|D), (1)

where P (d|D) is a maximum-likelihood estimate of the occurrence of d in D.
Indeed, a query-document score is a product of scores for individual query word
pieces, which makes it easy to pinpoint word pieces with largest contributions.
Likewise, for every query word piece we can easily identify document word pieces
with highest contributions to its score. This makes our model more interpretable
compared to prior work.

Our contributions can be summarized as follows:

1. Adding an interpretable neural Model 1 layer on top of BERT entails virtually
no loss in accuracy and efficiency compared to the vanilla BERT ranker, which
is not readily interpretable.

2. In fact, for long documents the BERT-based Model 1 may outperform baseline
models applied to truncated documents, thus, overcoming the limitation on
the maximum sequence length of existing pretrained Transformer [67] models.
However, evidence was somewhat inconclusive and we found it was also not
conclusive for previously proposed CEDR [44] models that too incorporate
an aggregator layer (though a non-interpretable one);

3. A fusion of the non-parametric Model 1 with BM25 scores can outperform the
baseline models, though the gain is modest (≈3%). In contrast, the fusion with
the context-free neural Model 1 can be substantially (≈10%) more effective
than the fusion with its non-parametric variant. We show that the neural
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Model 1 can be sparsified and executed on a CPU more than 103 times faster
than a BERT-based ranker on a GPU. We can, thus, improve the first retrieval
stage without expensive index-time precomputation approaches.

2 Related Work

Translation Models for Text Retrieval. This line of work begins with an influ-
ential paper by Berger and Lafferty [4] who first applied Model 1 to text
retrieval [4]. It was later proved to be useful for finding answers in monolin-
gual QA archives [35,57,65,71] as well as for cross-lingual document retrieval
[38,73]. Model 1 is a non-parametric and lexical translation model that learns
context-independent translation probabilities of lexemes (or tokens) from a set
of paired documents called a parallel corpus or bitext. The learning method is a
variant of the expectation-maximization (EM) algorithm [9,16].

A generic approach to improve performance of non-parametric statistical
learning models consists in parameterizing respective probabilities using neural
networks. An early successful implementation of this idea in language processing
were the hybrid HMM-DNN/RNN systems for speech recognition [5,26]. More
concretely, our proposal to use the neural Model 1 as a last network layer was
inspired by the LSTM-CRF [32] and CEDR [44] architectures.

There is prior history of applying the neural Model 1 to retrieval, however,
without training the model on a ranking task. Zuccon et al. [75] computed trans-
lation probabilities using the cosine similarity between word embeddings (nor-
malized over the sum of similarities for top-k closest words). They achieved
modest 3–7% gains on four small-scale TREC collections. Ganguly et al. [19]
used a nearly identical approach (on similar TREC collections) and reported
slightly better (6–12%) gains. Neither Zuccon et al. [75] nor Ganguly et al. [19]
attempted to learn translation probabilities from a large set of real user queries.

Zbib et al. [73] employed a context-dependent lexical neural translation model
for cross-lingual retrieval. They first learn context-dependent translation prob-
abilities from a bilingual parallel corpus in a lexical translation task. Given
a document, highest translation probabilities together with respective tokens
are precomputed in advance and stored in the index. Zbib et al. [73] trained
their model on aligned sentences of similar lengths. In the case of monolingual
retrieval, however, we do not have such fine-grained training data as queries are
paired only with much longer relevant documents. To our knowledge, there is no
reliable way to obtain sentence-level relevance labels from this data.

Neural Ranking models have been a popular topic in recent years [24], but
the success of early approaches—which predate BERT—was controversial [40].
This changed with adoption of large pretrained models [55], especially after the
introduction of the Transformer models [17] and release of BERT [17]. Nogueira
and Cho were first to apply BERT to ranking of text documents [50]. In the
TREC 2019 deep learning track [12] as well as on the MS MARCO leaderboard
[1], BERT-based models outperformed all other approaches by a large margin.

The Transformer model [67] uses an attention mechanism [3] where each
sequence position can attend to all the positions in the previous layer.
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Because self-attention complexity is quadratic with respect to a sequence length,
Transformer models (BERT including) support only limited-length inputs. A
number of proposals—see Tay et al. [66] for a survey—aim to mitigate this con-
straint, which is complementary to our work.

To process longer documents with existing pretrained models, one has to split
documents into several chunks, process each chunk separately, and aggregate
results, e.g., by computing a maximum or a weighted prediction score [15,72].
Such models cannot be trained end-to-end on full documents. Furthermore, a
training procedure has to assume that each chunk in a relevant document is
relevant as well, which is not quite accurate. To improve upon simple aggrega-
tion approaches, MacAvaney et al. [44] combined output of several document
chunks using three simpler models: KNRM [70], PACRR [33], and DRMM [23].
A more recent PARADE architectures use even simpler aggregation approaches
[39]. However, none of the mentioned aggregator models is interpretable and we
propose to replace them with our neural Model 1 layer.

Interpretability and Explainability of statistical models has become a busy
area of research. However, a vast majority of approaches rely on training a sep-
arate explanation model or exploiting saliency/attention maps [41,59]. This is
problematic, because explanations provided by extraneous models cannot be ver-
ified and, thus, trusted [59]. Moreover, saliency/attention maps reveal which data
parts are being processed by a model, but not how the model processes them
[34,59,62]. Instead of producing unreliable post hoc explanations, Rudin [59]
advocates for networks whose computation is transparent by design. If full trans-
parency is not feasible, there is still a benefit of last-layer interpretability.

In text retrieval we know only two implementations of this idea. Hofstätter
et al. [29] use a kernel-based formula by Xiong et al. [70] to compute soft-match
counts over contextualized embeddings. Because each pair of query-document
tokens produces several soft-match values corresponding to different thresholds,
it is problematic to aggregate these values in an explainable way. Though this
approach does offer insights into model decisions, the aggregation formula is a
relatively complicated two-layer neural network with a non-linear (logarithm)
activation function after the first layer [29]. ColBERT in the re-ranking mode
can be seen as an interpretable interaction layer, however, unlike the neural
Model 1 its use entails a 3% degradation in accuracy [37].

Efficiency. It is possible to speed-up ranking by deferring some computation
to index time. They can be divided into two groups. First, it is possible to
precompute separate query and document representations, which can be quickly
combined at query-time in a non-linear fashion [20,37]. This method entails little
to no performance degradation. Second, one can generate (or enhance) indepen-
dent query and document representations to compare them via the inner-product
computation. Representations—either dense or sparse—were shown to improve
the first-stage retrieval albeit at the cost of expensive indexing processing and
some loss in effectiveness. In particular, Khattab et al. [36] show that dense
representations are inferior to the vanilla BERT ranker [52] in a QA task.
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In the case of sparse representations, one can rely on Transformer [67] models
to generate importance weights for document or query terms [14], augment doc-
uments with most likely query terms [51,52], or use a combination of these meth-
ods [43]. Due to sparsity of data generated by term expansion and re-weighting
models, it can be stored in a traditional inverted file to improve performance of
the first retrieval stage. However, these models are less effective than the vanilla
BERT ranker [52] and they require costly index-time processing.

3 Methods

Token Embeddings and Transformers. We assume that an input text is split into
small chunks of texts called tokens. A token can be a complete English word, a
word piece, or a lexeme (a lemma). The length of a document d—denoted as |d|—
is measured in the number of tokens. Because neural networks cannot operate
directly on text, a sequence of tokens t1t2 . . . tn is first converted to a sequences
of d-dimensional embedding vectors w1w2 . . . wn by an embedding network. Ini-
tially, embedding networks were context independent, i.e., each token was always
mapped to the same vector [11,22,46]. Peters et al. [55] demonstrated superior-
ity of contextualized, i.e., context-dependent, embeddings produced a multi-layer
bi-directional LSTM [21,27,61] pretrained on a large corpus in a self-supervised
manner. These were later outstripped by large pretrained Transformers [17,56].

In our work we use two types of embeddings: vanilla context-free embeddings
(see [22] for an excellent introduction) and BERT-based contextualized embed-
dings [17]. Due to space constraints, we do not discuss BERT architecture in
detail (see [17,60] instead). It is crucial, however, to know the following:

– Contextualized token embeddings are vectors of the last-layer hidden state;
– BERT operates on word pieces [69] rather than complete words;
– The vocabulary has close to 30K tokens and includes two special tokens:
[CLS] (an aggregator) and [SEP](a separator);

– [CLS] is always prepended to every token sequence and its embedding is used
as a sequence representation for classification and ranking tasks.

The “vanilla” BERT ranker uses a single fully-connected layer as a predic-
tion head, which converts the [CLS] vector into a scalar. It makes a prediction
based on the following sequence of tokens: [CLS] q [SEP] d [SEP], where q is
a query and d = t1t2 . . . tn is a document. Long documents and queries need
to be truncated so that the overall number of tokens does not exceed 512. To
overcome this limitation, MacAvaney et al. [44] proposed an approach that:

– splits longer documents d into m chunks: d = d1d2 . . . dm;
– generates m token sequences [CLS] q [SEP] di [SEP];
– processes each sequence with BERT to generate contextualized embeddings

for regular tokens as well as for [CLS].

The outcome of this procedure is m [CLS]-vectors clsi and n contex-
tualized vectors w1w2 . . . wn: one for each document token ti. MacAvaney
et al. [44] explore several approaches to combine these contextualized vectors.
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First, they extend the vanilla BERT ranker by making prediction on the aver-
age [CLS] token: 1

m

∑m
i=1 clsi. Second, they use contextualized embeddings as

a direct replacement of context-free embeddings in the following neural archi-
tectures: KNRM [70], PACRR [33], and DRMM [23]. Third, they introduced
a CEDR architecture where the [CLS] embedding is additionally incorporated
into KNRM, PACCR, and DRMM in a model-specific way, which further boosts
performance.

Non-parametric Model 1. Let P (D|Q) denote a probability that a document D is
relevant to the query Q. Using the Bayes rule, P (D|Q) is convenient to re-write as
P (D|Q) ∝ P (Q|D)P (D). Assuming a uniform prior for the document occurrence
probability p(D), one concludes that the relevance probability is proportional to
P (Q|D). Berger and Lafferty proposed to estimate this probability with a term-
independent and context-free model known as Model 1 [4].

Let T (q|d) be a probability that a query token q is a translation of a document
token d and P (d|D) is a probability that a token d is “generated” by a document
D. Then, a probability that query Q is a translation of document D can be
computed as a product of individual query term likelihoods as follows:

P (Q|D) =
∏
q∈Q

P (q|D)

P (q|D) =
∑
d∈D

T (q|d)P (d|D)
(2)

The summation in Eq. 3 is over unique document tokens. The in-document
term probability P (d|D) is a maximum-likelihood estimate. Making the non-
parametric Model 1 effective requires quite a few tricks. First, P (q|D)—a like-
lihood of a query term q—is linearly combined with the collection probability
P (q|C) using a parameter λ [65,71].1

P (q|D) = (1 − λ)

[
∑

d∈D

T (q|d)P (d|D)

]
+ λP (q|C). (3)

We take several additional measures to improve Model 1 effectiveness:

– We propose to create a parallel corpus by splitting documents and passages
into small contiguous chunks whose length is comparable to query lengths;

– T (q|d) are learned from a symmetrized corpus as proposed by Jeon et al. [35];
– We discard all translation probabilities T (q|d) below an empirically found

threshold of about 10−3 and keep at most 106 most frequent tokens;
– We make self-translation probabilities T (t|t) to be equal to an empirically

found positive value and rescale T (t′|t) so that
∑

t′ T (t′|t) = 1 as in [35,65];

Our Neural Model 1. Let us rewrite Eq. 2 so that the inner summation is carried
out over all document tokens rather than over the set of unique ones. This is par-
ticularly relevant for contextualized embeddings where embeddings of identical
1 P (q|C) is a maximum-likelihood estimate. For an out-of-vocabulary term q, P (q|C)

is set to a small number (e.g., 10−9).
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tokens are not guaranteed to be the same (and typically they are not):

P (Q|D) =
∏

q∈Q

|D|∑

i=1

T (q|di)
|D| . (4)

We further propose to compute T (q|d) in Eq. 4 by a simple and efficient neu-
ral network. Networks “consumes” context-free or contextualized embeddings
of tokens q and d and produces a value in the range [0, 1]. To incorporate a
self translation probability—crucial for good convergence of the context-free
model—we set T (t|t) = pself and multiply all other probabilities by 1 − pself .
However, it was not practical to scale conditional probabilities to ensure that
∀t2

∑
t1

T (t1|t2) = 1. Thus, T (t1|t2) is a similarity function, but not a true prob-
ability distribution. Note that—unlike CEDR [43]—we do not use the embedding
of the [CLS] token.

We explored several approaches to neural parametrization of T (t1|t2). Let
embedq(t1) and embedd(t2) denote embeddings of query and document tokens,
respectively. One of the simplest approaches is to learn separate embedding
networks for queries and documents and use the scaled cosine similarity:

T (t1|t2) = 0.5{cos(embedq(t1), embedd(t2)) + 1}.

However, this neural network is not sufficiently expressive and the resulting
context-free Model 1 is inferior to the non-parametric Model 1 learned via EM.
We then found that a key performance ingredient was a concatenation of embed-
dings with their Hadamard product, which we think helps the following layers
discover better interaction features. We pass this combination through one or
more fully-connected linear layer with RELUs [25] followed by a sigmoid:

T (q|d) = σ(F3(relu(F2(relu(F1([xq, xd, xq ◦ xd]))))))
xq = Pq(tanh(layer-norm(embedq(q))))
xd = Pd(tanh(layer-norm(embedd(d)))),

where Pq, Pd, and Fi are fully-connected linear layers; [x, y] is vector concatena-
tion; layer-norm is layer normalization [2]; x ◦ y is the Hadamard product.

Neural Model 1 Sparsification/Export to Non-Parametric Format. We can pre-
compute T (t1|t2) for all pairs of vocabulary tokens, discard small values (below
a threshold), and store the result as a sparse matrix. This format permits an
extremely efficient execution on CPU (see results in Sect. 4.2).

4 Experiments

4.1 Setup

Data Sets. We experiment with MS MARCO collections, which include data for
passage and document retrieval tasks [12,49]. Each MS MARCO collection has
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a large number of real user queries (see Table 1). To our knowledge, there are
no other collections comparable to MS MARCO in this respect. The large set
of queries is sampled from the log file of the search engine Bing. In that, data
set creators ensured that all queries can be answered using a short text snippet.
These queries are only sparsely judged (about one relevant passage per query).
Sparse judgments are binary: Relevant documents have grade one and all other
documents have grade zero.

Table 1. MS MARCO data set details

Documents Passages

# of documents 3.2M 8.8M
Avg. # of doc. lemmas 476.7 30.6
Avg. # of query lemmas 3.2 3.5

# of queries
Train/fusion 10K 20K
Train/modeling 357K 788.7K
Development 2500 20K
Test 2693 3000
TREC 2019 100 100
TREC 2020 100 100

In addition to large query sets
with sparse judgments, we use two
evaluation sets from TREC 2019/2020
deep learning tracks [12]. These query
sets are quite small, but they have
been thoroughly judged by NIST
assessors separately for a document
and a passage retrieval task. TREC
NIST judgements range from zero
(not-relevant) to three (perfectly rel-
evant).

We randomly split publicly available training and validation sets into
the following subsets: a small training set to train a linear fusion model
(train/fusion), a large set to train neural models and non-parametric Model 1
(train/modeling), a development set (development), and a test set (MS MARCO
test) containing at most 3K queries. Detailed data set statistics is summarized
in Table 1. Note that the training subsets were obtained from the original training
set, whereas the new development and test sets were obtained from the original
development set. The leaderboard validation set is not publicly available.

We processed collections using Spacy 2.2.3 [30] to extract tokens (text words)
and lemmas (lexemes) from text. The frequently occurring words and lemmas
were filtered out using Indri’s list of stopwords [64], which was expanded to
include a few contractions such as “n’t” and “’ll”. Lemmas were indexed using
Lucene 7.6. We also generated sub-word tokens, namely BERT word pieces [17,
69], using a HuggingFace Transformers library (version 0.6.2) [68]. We did not
apply the stopword list to BERT word pieces.

Basic Setup. We experimented on a Linux server equipped with a six-core (12
threads) i7-6800K 3.4 Ghz CPU, 125 GB of memory, and four GeForce GTX 1080
TI GPUs. We used the text retrieval framework FlexNeuART [8], which is imple-
mented in Java. It employs Lucene 7.6 with a BM25 scorer [58] to generate an
initial list of candidates, which can be further re-ranked using either traditional
or neural re-rankers. The traditional re-rankers, including the non-parametric
Model 1, are implemented in Java as well. They run in a multi-threaded mode
(12 threads) and fully utilize the CPU. The neural rankers are implemented using
PyTorch 1.4 [54] and Apache Thrift.2 A neural ranker operates as a standalone
single-threaded server. Our software is available online [8].3

2 https://thrift.apache.org/.
3 https://github.com/oaqa/FlexNeuART.

https://thrift.apache.org/
https://github.com/oaqa/FlexNeuART
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Ranking speed is measured as the overall CPU/GPU throughput—rather
than latency—per one thousand of documents/passages. Ranking accuracy is
measured using the standard utility trec eval provided by TREC organizers.4.
Statistical significance is computed using a two-sided t-test with threshold 0.05.

All ranking models are applied to the candidate list generated by a tuned
BM25 scorer [58]. BERT-based models re-rank 100 entries with highest BM25
scores: using a larger pool of candidates hurts both efficiency and accuracy. All
other models, including the neural context-free Model 1 re-rank 1000 entries:
Further increasing the number of candidates does not improve accuracy.

Training Models. Neural models are trained using a pairwise margin loss.5 Train-
ing pairs are obtained by combining known relevant documents with 20 nega-
tive examples selected from a set of top-500 candidates returned by Lucene. In
each epoch, we randomly sample one positive and one negative example per
query. BERT-based models first undergo a target-corpus pretraining [31] using
a masked language modeling and next-sentence prediction objective [17]. Then,
we train them for one epoch in a ranking task. We use batch size 16 simulated
via gradient accumulation. Context-free Model 1 is trained from scratch for 32
epochs using batch size 32. The non-parametric Model 1 is trained for five epochs
with MGIZA [53].6 Further increasing the number of epochs does not substan-
tially improve results. MGIZA computes probabilities of spurious insertions (i.e.,
a translation from an empty word), but we discard them as in prior work [65].

We use a small weight decay (10−7) and a warm-up schedule where the learn-
ing rate grows linearly from zero for 10–20% of the steps until it reaches the base
learning rate [48,63]. The optimizer is AdamW [42]. For BERT-based models we
use different base rates for the fully-connected prediction head (2 · 10−4) and for
the main Transformer layers (2 · 10−5). For the context-free Model 1 the base
rate is 3 · 10−3, which is decayed by 0.9 after each epoch. The learning rate is
the same for all parameters.

The trained neural Model 1 is “exported” to a non-parametric format by
precomputing all pairwise translation probabilities and discarding probabilities
smaller than 10−4. This sparsification/export procedure takes three minutes and
the exported model is executed using the same Java code as the non-parametric
Model 1. Each neural model and the sparsified Model 1 is trained and evaluated
for five seeds. To this end, we compute the value for each query and seed and
average query-specific values (over five seeds). All hyper-parameters are tuned
on a development set.

Because context-free Model 1 rankers are not strong on their own, we evaluate
them in a fusion mode. First, Model 1 is trained on train/modeling. Then we
linearly combine a model score with the BM25 score [58]. Optimal weights are
computed on a train/fusion subset using the coordinate ascent algorithm [45]
from RankLib.7 To improve effectiveness of this linear fusion, we use Model 1

4 https://github.com/usnistgov/trec eval.
5 We use the loss reduction type sum.
6 https://github.com/moses-smt/mgiza/.
7 https://sourceforge.net/p/lemur/wiki/RankLib/.

https://github.com/usnistgov/trec_eval
https://github.com/moses-smt/mgiza/
https://sourceforge.net/p/lemur/wiki/RankLib/
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Table 2. Evaluation results: bwps denotes BERT word pieces, lemm denotes text lem-
mas, and word denotes original words. NN-Model1 and NN-Model1-exp are the context-
free neural Model 1 models: They use only bwps. NN-Model1 runs on GPU whereas
NN-Model1-exp runs on CPU. Ranking speed is throughput and not latency! Statis-
tical significance is denoted by � and #. Hypotheses are explained in the main text.

Documents Passages

MS MARCO test TREC 2019 TREC 2020 Rank. speed MS MARCO test TREC 2019 TREC 2020 Rank. speed

MRR NDCG@10 per 1K MRR NDCG@10 per 1K

Baselines

BM25 (lemm) 0.270 0.544 0.524 0.8ms 0.256 0.522 0.516 0.5ms

BM25 (lemm)+BM25 (word) 0.274 0.544 0.523 2.5ms 0.265 0.517 0.521 0.7ms

BM25 (lemm)+BM25 (bwps) 0.283 0.528 0.537 2.2ms 0.270 0.518 0.525 0.9ms

BERT-vanilla (short) 0.387 0.655 0.623 39 s 0.426 0.686 0.684 15 s

BERT-vanilla (full) 0.376# 0.667 0.631 82 s

BERT-CEDR-KRNM 0.387 0.665 0.649� 88 s 0.421� 0.682 0.675 16ms

BERT-CEDR-DRMM 0.377� 0.667 0.636 120 s 0.425 0.688 0.685 30 s

BERT-CEDR-PACRR 0.392 0.670 0.652� 81 s 0.425 0.690 0.684 16 s

Our methods

BM25 (lemm)+Model1 (word) 0.283� 0.548 0.535 13ms 0.274� 0.522 0.567� 1.2ms

BM25 (lemm)+Model1 (bwps) 0.284 0.557 0.525 33ms 0.271 0.517 0.509 2.7ms

BM25 (lemm)+NN-Model1-exp 0.307� 0.568 0.545 16ms 0.298� 0.541� 0.581� 2.4ms

BM25 (lemm)+NN-Model1 0.311� 0.566 0.541 3 s 0.300� 0.549� 0.587� 0.32 s

BERT-Model1 (short) 0.384 0.657 0.631 36 s 0.426 0.685 0.682 16 s

BERT-Model1 (full) 0.391# 0.666 0.637� 80 s

log-scores normalized by the number of query words. In turn, BM25 scores are
normalized by the sum of query-term IDF values (see [58] for the description of
BM25 and IDF). As one of the baselines, we use a fusion of BM25 scores for
different tokenization approaches (basically a multi-field BM25). Fusion weights
are obtained via RankLib on train/fusion.

4.2 Results

Model Overview. We compare several models (see Table 2). First, we use BM25
scores [58] computed for the lemmatized text, henceforth, BM25 (lemm). Second,
we evaluate several variants of the context-free Model 1. The non-parametric
Model 1 was trained for both original words and BERT word pieces: Respective
models are denoted as Model1 (word) and Model1 (bwps). The neural context-
free Model 1—denoted as NN-Model1—was used only with BERT word pieces.
This model was sparsified and exported to a non-parametric format (see Sect. 3),
which runs efficiently on a CPU. We denote it as NN-Model1-exp. Note that
context-free Model 1 rankers are not strong on their own, thus, we evaluate
them in a fusion mode by combining their scores with BM25 (lemm).

Crucially, all context-free models incorporate exact term-matching signal via
either the self-translation probability or via explicit smoothing with a word col-
lection probability (see Eq. 3). Thus, these models should be compared not only
with BM25, but also with the fusion model incorporating BM25 scores for orig-
inal words or BERT word pieces. We denote these baselines as BM25 (lemm)+
BM25 (word) and BM25 (lemm)+ BM25 (bwps), respectively.

As we describe in Sect. 3, our contextualized Model 1 applies the neural
Model 1 layer to the contextualized embeddings produced by BERT. We denote
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this model as BERT-Model1. Due to the limitation of existing pretrained Trans-
former models, long documents need to be split into chunks each of which is
processed, i.e., contextualized, separately. This is done in BERT-Model1 (full),
BERT-vanilla (full), and BERT-CEDR [44] models. These models operate on
(mostly) complete documents: For efficiency reasons we nevertheless use only the
first 1431 tokens (three BERT chunks). Another approach is to make predictions
on much shorter (one BERT chunk) fragments [15]. This is done in BERT-Model1
(short) and BERT-vanilla (short). In the passage retrieval task, all passages
are short and no truncation or chunking is needed. Note that we use a base,
i.e., a 12-layer Transformer [67] model, since it is more practical then a 24-layer
BERT-large and performs at par with BERT-large on MS MARCO data [29].

We tested several hypotheses using a two-sided t-test:

– BM25 (lemm)+ Model1 (word) is the same as BM25 (lemm)+ BM25 (word);
– BM25 (lemm)+ Model1 (bwps) is the same as BM25 (lemm)+ BM25 (bwps);
– BERT-Model1 (full) is the same as BERT-vanilla (short);
– For each BERT-CEDR model, we test if it is the same as BERT-vanilla
(short);

– BERT-vanilla (full) is the same as BERT-vanilla (short);
– BERT-Model1 (full) is the same as BERT-Model1 (short);

The main purpose of these tests is to assess if special aggregation layers (includ-
ing the neural Model 1) can be more accurate compared to models that run on
truncated documents. In Table 2 statistical significance is indicated by a special
symbol: the last two hypotheses use #; all other hypotheses use �.

Discussion of Results. The results are summarized in Table 2. First note that
there is less consistency in results on TREC 2019/2020 sets compared to MS
MARCO test sets. In that, some statistically significant differences (on MS MARCO
test) “disappear” on TREC 2019/2020. TREC 2019/2020 query sets are quite
small and its more likely (compared to MS MARCO test) to obtain spurious
results. Furthermore, the fusion model BM25 (lemm)+ Model1 (bwps) is either
worse than the baseline model BM25 (lemm)+ BM25 (bwps) or the difference is
not significant. BM25 (lemm)+ Model1 (word) is mostly better than the respec-
tive baseline, but the gain is quite small. In contrast, the fusion of the neural
Model 1 with BM25 scores for BERT word pieces is more accurate on all the
query sets. On the MS MARCO test sets it is 15–17% better than BM25 (lemm).
These differences are significant on both MS MARCO test sets as well as on TREC
2019/2020 tests sets for the passage retrieval task. Sparsification of the neural
Model 1 leads only to a small (0.6–1.3%) loss in accuracy. In that, the sparsified
model—executed on a CPU—is more than 103 times faster than BERT-based
rankers, which run on a GPU. It is 5×103× faster in the case of passage retrieval.
In contrast, on a GPU, the fastest neural model KNRM is only 500 times faster
than vanilla BERT [28] (also for passage retrieval). For large candidate sets com-
putation of Model 1 scores can be further sped up (Sect. 3.1.2.1 [6]). Thus, BM25
(lemm)+NN-Model1-exp can be useful at the candidate generation stage.

We also compared BERT-based neural Model 1 with BERT-CEDR and
BERT-vanilla models on the MS MARCO test set for the document retrieval
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task. By comparing BERT-vanilla (short), BERT-Model1 (short), and
BERT-Model1 (full) we can see that the neural Model 1 layer entails virtu-
ally no efficiency or accuracy loss. In fact, BERT-Model1 (full) is 1.8% and 1%
better than BERT-Model1 (short) and BERT-vanilla (short), respectively.
Yet, only the former difference is statistically significant.

Furthermore, the same holds for BERT-CEDR-PACRR, which was shown to out-
perform BERT-vanilla by MacAvaney et al. [44]. In our experiments it is 1% bet-
ter than BERT-vanilla (short), but the difference is neither substantial nor sta-
tistical significant. This does not invalidate results of MacAvaney et al. [44]: They
compared BERT-CEDR-PACRR only with BERT-vanilla (full), which makes pre-
dictions on the averaged [CLS] embeddings. However, in our experiments, this
model is noticeably worse (by 4.2%) than BERT-vanilla (short) and the differ-
ence is statistically significant. We think that obtaining more conclusive evidence
about the effectiveness of aggregation layers requires a different data set where
relevance is harder to predict from a truncated document.

Leaderboard Submissions. We combined BERT-Model1 with the strong first-stage
pipeline, which uses Lucene to index documents expanded with doc2query [51,
52] and re-ranks them using a mix of traditional and NN-Model1-exp scores (our
exported neural Model 1). This first-stage pipeline is about as effective as the
Conformer-Kernel model [47]. The combination model achieved the top place on
a well-known leaderboard in November and December 2020. Furthermore, using
the non-parametric Model 1, we produced the best traditional run in December
2020, which outperformed several neural baselines [7].

5 Conclusion

We study a neural Model 1 combined with a context-free or contextualized
embedding network and show that such a combination has benefits to effi-
ciency, effectiveness, and interpretability. To our knowledge, the context-free
neural Model 1 is the only neural model that can be sparsified to run efficiently
on a CPU (up to 5 × 103× faster than BERT on a GPU) without expensive
index-time precomputation or query-time operations on large tensors. We hope
that effectiveness of this approach can be further improved, e.g., by designing a
better parametrization of conditional translation probabilities.
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Abstract. Coreference resolution is essential for automatic text under-
standing to facilitate high-level information retrieval tasks such as text
summarisation or question answering. Previous work indicates that the
performance of state-of-the-art approaches (e.g. based on BERT) notice-
ably declines when applied to scientific papers. In this paper, we inves-
tigate the task of coreference resolution in research papers and subse-
quent knowledge graph population. We present the following contribu-
tions: (1) We annotate a corpus for coreference resolution that comprises
10 different scientific disciplines from Science, Technology, and Medicine
(STM); (2) We propose transfer learning for automatic coreference reso-
lution in research papers; (3) We analyse the impact of coreference resolu-
tion on knowledge graph (KG) population; (4) We release a research KG
that is automatically populated from 55,485 papers in 10 STM domains.
Comprehensive experiments show the usefulness of the proposed app-
roach. Our transfer learning approach considerably outperforms state-of-
the-art baselines on our corpus with an F1 score of 61.4 (+11.0), while
the evaluation against a gold standard KG shows that coreference res-
olution improves the quality of the populated KG significantly with an
F1 score of 63.5 (+21.8).

Keywords: Coreference resolution · Information extraction ·
Knowledge graph population · Scholarly communication

1 Introduction

Current research papers are generally published in form of PDF files. This makes
them hard to handle for retrieval systems, since their content is hidden in human-
but not machine-interpretable text. In consequence, current academic search
engines are not able to adequately support researchers in their day-to-day tasks.
This is further aggravated by the exploding number of published articles [5].

Approaches to automatically structure research papers are thus an active area
of research. Coreference resolution is the task of identifying mentions in a text
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which refer to the same entity or concept. It is an essential step for automatic text
understanding and facilitates down-stream tasks such as text summarisation or
question answering. For instance, the text ‘Coreference resolution is... It is used
for question answering...’, has two coreferent mentions ‘Coreference resolution’
and ‘It’. This allows us to extract the fact <coreference resolution, used for,
question answering>.

Current methods for coreference resolution based on deep learning achieve
quite impressive results (e.g. an F1 score of 79.6 for the OntoNotes 5.0
dataset [21]) in the general domain, that is data from phone conversations, news,
magazines, etc. But results of previous work indicate [11,23,34,44] that general
coreference resolution systems perform poorly on scientific text. This is pre-
sumably caused by the specific terminology and phrasing used in a scientific
domain. Some other studies state that annotating scientific text is costly since
it demands certain expertise in the article’s domain [2,6,20]. Most corpora for
research papers cover only a single domain (e.g. biomedicine [11], artificial intel-
ligence [27]) and are thus limited to these domains. As a result, the annotated
corpora are relatively small and overall only a few domains are covered. Datasets
for the general domain are usually much larger, but they have not been exploited
yet by approaches for coreference resolution in research papers.

Coreference resolution is also one of the main steps in the KG population
pipeline [28,39]. However, to date it is not clear, to which extent (a) coreference
resolution can help to reduce the number of scientific concepts in the populated
KG, and (b) how coreference resolution influences the quality of the populated
KG. Besides, a KG comprising multiple scientific domains has not been popu-
lated yet.

In this paper, we address the task of coreference resolution in research papers
and subsequent knowledge graph population. Our contributions can be sum-
marised as follows: (1) First, we annotate a corpus for coreference resolution
that consists of 110 abstracts from 10 domains from Science, Technology, and
Medicine. The systematic annotation resulted in a substantial inter-coder agree-
ment (0.68 κ). We provide and compare baseline results for this dataset by eval-
uating five different state-of-the-art approaches. Our experimental results con-
firm that state-of-the-art coreference approaches do not perform well on research
papers. (2) Consequently, we propose sequential transfer learning for coreference
resolution in research papers. This approach utilises our corpus by fine-tuning a
model that is pre-trained on a large corpus from the general domain [37]. Exper-
imental results show that our approach significantly outperforms the best state-
of-the-art baseline (F1 score of 61.4, i.e. +11.0). (3) We investigate the impact of
coreference resolution on automatic KG population. To evaluate the quality of
various KG population strategies, we (i) compile a gold standard KG from our
annotated corpus that contains scientific concepts referenced by mentions from
text, and (ii) present a procedure to evaluate the clustering results of mentions.
(4) We release (i) an automatically populated KG from 55,485 abstracts of the
10 STM domains and (ii) a gold KG (Test-STM-KG) from the annotated STM-
corpus. Experimental results show that coreference resolution has only a small
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impact on the number of concepts in a populated KG, but it helps to improve the
quality of the KG significantly: the population with coreference resolution yields
an F1 score of 63.5 evaluated against the gold KG (+21.8 F1). We release the
data corpora and the source code to facilitate further research: https://github.
com/arthurbra/stm-coref.

The remainder of the paper is organised as follows: Sect. 2 summarises related
work on coreference resolution. Section 3 describes the annotation procedure and
the characteristics of the corpus, and our proposed approaches for coreference
resolution, KG population, and KG evaluation. The experimental setup and
results are reported in Sect. 4 and 5, while Sect. 6 concludes the paper and out-
lines areas of future work.

2 Related Work

2.1 Approaches for Coreference Resolution

For a given document, the task of coreference resolution is (a) to extract men-
tions of scientific concepts, and (b) to cluster those mentions that refer to the
same concept. Recent approaches mostly rely on supervised learning and can be
categorised into three groups [32]: (1) Mention-pair models [33,45] are binary
classifiers that determine whether two mentions are coreferent or not. (2) Entity-
mention models [9,41] determine whether a mention is coreferent to a preced-
ing cluster. A cluster has more expressive features compared to a mention in
mention-pair models. (3) Ranking-based models [12,25,31] simultaneously rank
all candidate antecedents (i.e. preceding mention candidates). This enables the
model to identify the most probable antecedent.

Lee et al. [25,26] propose an end-to-end neural coreference resolution model.
It is a ranking-based model that jointly recognises mentions and clusters. There-
fore, the model considers all spans in the text as possible mentions and learns
distributions over possible antecedents for each mention. For computational effi-
ciency, candidate spans and antecedents are pruned during training and infer-
ence. Joshi et al. [22] enhance Lee et al.’s model with BERT-based word embed-
dings [14], while Ma et al. [30] improve the model with better attention mecha-
nisms and loss functions.

Furthermore, several approaches propose multi-task learning, such that
related tasks may benefit from knowledge in other tasks to achieve better pre-
diction accuracy: Luan et al. [27,49] train a model on three tasks (coreference
resolution, entity and relation extraction) using one dataset of research papers.
Sanh et al. [43] introduce a multi-task model that is trained on four tasks (men-
tion detection, coreference resolution, entity and relation extraction) using two
different datasets in the general domain.

Results of some previous studies [11,23,34,44] revealed that general corefer-
ence systems do not work well in the biomedical domain due to the lack of domain
knowledge. For instance, on Colorado Richly Annotated Full Text (CRAFT) cor-
pus [11] a coreference resolution system for the news domain achieves only 14.0
F1 (−32.0).
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To the best of our knowledge, a transfer learning approach from the general
to the scientific domain has not been proposed for coreference resolution yet.

2.2 Corpora for Coreference Resolution in Research Papers

For the general domain, multiple datasets exist for coreference resolution, e.g.
Message Understanding Conference (MUC-7) [1], Automatic Content Extraction
(ACE05) [15], or OntoNotes 5.0 [37]. The OntoNotes 5.0 dataset [37] is the
largest one and is used in many benchmark experiments for coreference resolution
systems [22,25,30].

Various annotated datasets for coreference resolution exist also for research
papers: CRAFT corpus [11] covers 97 papers from biomedicine. The corpus of
Schäfer et al. [44] contains 266 papers from computational linguistics and lan-
guage technology. Chaimongkol et al. [7] annotated a corpus of 284 papers from
four subdisciplines in computer science. The SciERC corpus [27] comprises 500
abstracts from the artificial intelligence domain and features annotations for sci-
entific concepts and relations. It was used to generate an artificial intelligence
(AI) knowledge graph [13]. Furthermore, several datasets exist for scientific con-
cept extraction [2,6,27,40] and relation extraction [2,20,27] that cover various
scientific domains.

To the best of our knowledge, a corpus for coreference resolution that com-
prises a broad range of scientific domains is not available yet.

3 Coreference Resolution in Research Papers

As the discussion of related work reveals, existing corpora for coreference reso-
lution in scientific papers normally cover only a single domain, and coreference
resolution approaches do not perform well on scholarly texts. To address these
issues, we systematically annotate a corpus with coreferences in abstracts from
10 different science domains. Current approaches for coreference resolution in
research papers do not exploit existing annotated datasets from the general
domain, which are usually much larger than in the scientific domain. We pro-
pose a sequential transfer learning approach that takes advantage from large,
annotated datasets. Finally, to the best of our knowledge, the impact of (a)
coreference resolution and (b) cross-domain collapsing of mentions to scientific
concepts on KG population with multiple science domains has not been investi-
gated yet. Consequently, we present an evaluation procedure for the clustering
aspect in the KG population pipeline.

In the sequel, we describe our annotated corpus, our transfer learning app-
roach for coreference resolution, and an evaluation procedure for clustering in
KG population.

3.1 Corpus for Coreference Resolution in 10 STM Domains

In this section, we describe the STM corpus [6], which we used as the basis for
the annotation, our annotation process, and the characteristics of the resulting
corpus.
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STM Corpus: The STM corpus [6] comprises 110 articles from 10 domains in
Science, Technology and Medicine, namely Agriculture (Agr), Astronomy (Ast),
Biology (Bio), Chemistry (Che), Computer Science (CS), Earth Science (ES),
Engineering (Eng), Materials Science (MS), Mathematics (Mat), and Medicine
(Med). It contains annotated mentions of scientific concepts in abstracts with
four domain-independent concept types, namely Process, Method, Material, and
Data. These concept mentions were later linked to entities in Wikipedia and
Wikidata [16]. The 110 articles (11 per domain) were taken from the OA-STM
corpus [17] of Elsevier Labs.

We build upon related work and extend the STM corpus with coreference
annotations. In particular, we (1) annotate coreference links between existing
scientific concept mentions in abstracts using the BRAT annotation tool [46],
and (2) annotate further mentions, i.e. pronouns and noun phrases consisting of
multiple consecutive mentions.

Annotation Process: Other studies have shown that non-expert annotations are
viable for the scientific domain [6,8,19,44,47], and they are less costly than
domain-expert annotations. Therefore, we also annotate the corpus with non-
domain experts, i.e. by two students in computer science. Furthermore, we follow
mostly the annotation procedure of the STM corpus [6], which consists of the
following three phases:

Table 1. Per-domain and overall inter-annotator agreement (Cohen’s κ and MUC) for
coreference resolution annotation in our STM corpus.

Mat Med Ast CS Bio Agr ES Eng Che MS Overall

κ 0.84 0.80 0.78 0.72 0.70 0.66 0.61 0.58 0.56 0.52 0.68

MUC 0.83 0.69 0.78 0.73 0.70 0.72 0.61 0.66 0.56 0.63 0.69

Table 2. Characteristics of the annotated STM corpus with 110 abstracts per concept
type in terms of number of scientific concept mentions, number of coreferent mentions,
number of coreference clusters and singleton clusters, and the number of overall clusters.
MIXED denotes clusters consisting of mentions with different concept types, NONE
denotes coreference mentions and clusters without a scientific concept mention.

Data Material Method Process MIXED NONE Total

# mentions 1,658 2,099 258 2,112 0 0 6,127

# coreferent mentions 351 910 101 510 0 705 2,577

# coreference clusters 153 339 30 198 50 138 908

# singleton clusters 1,307 1,189 157 1,602 0 0 4,255

# overall clusters 1,460 1,528 187 1,800 50 138 5,163
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Table 3. Characteristics of the STM corpus per domain (11 abstracts per domain).

Agr Ast Bio Che CS ES Eng MS Mat Med Total

# mentions 741 791 649 553 483 698 741 574 297 600 6,127

# coreferent mentions 276 365 275 282 181 241 318 256 124 259 2,577

# coreference clusters 106 120 98 90 67 93 117 87 48 82 908

# singleton clusters 520 549 443 384 339 525 503 371 210 411 4,255

# clusters 626 669 541 474 406 618 620 458 258 493 5,163

1. Pre-annotation: This phase aims at developing annotation guidelines through
trial annotations. We adapted the comprehensive annotation guidelines of the
OntoNotes 5.0 dataset [38], which were developed for the general domain, to
research papers. In particular, we provide briefer and simpler descriptions
with examples from the scientific domain. Within three iterations both anno-
tators labelled independently 10, 9 and 7 abstracts (i.e. 26 abstracts), respec-
tively. After each iteration the annotators discussed the outcome and refined
the annotation guidelines.

2. Independent Annotation: After the annotation guidelines were finalised, both
annotators independently re-annotated the previously annotated abstracts
and 24 additional abstracts. The final inter-coder agreement was measured
on the 50 abstracts (5 per domain) using Cohen’s κ [10,24] and MUC [48].
As shown in Table 1, we achieve a substantial agreement with 0.68 κ and 0.69
MUC.

3. Consolidation: Finally, the remaining 60 abstracts were annotated by one
annotator and the annotation results of this author were used as the gold
standard corpus.

Corpus Characterstics: Table 2 shows the characteristics of the resulting cor-
pus broken down per concept type, while they are listed per domain in Table 3.
The original corpus has in total 6,127 mentions. 2,577 mentions were annotated
as coreferent resulting in 908 coreference clusters. Thus, each coreference clus-
ter contains on average 2.84 mentions, while Method clusters contain the most
(3.4 mentions) and Data clusters the least (2.3 mentions). Furthermore, 705
mentions were annotated additionally (referred to as NONE) since they repre-
sent pronouns (422 mentions) or noun phrases consisting of multiple consecutive
original mentions (283 mentions) such as ‘... [[A], [B], and [C] [treatments]]...
[These treatments]...’. Fifty clusters (5%) contain mentions with different con-
cept types (referred to as MIXED) due to disagreements between the annota-
tors of the original concept mentions, and the annotators of coreferences. For
instance, non-coreferent mentions were annotated as coreferent, or coreferent
mentions have different concept types. Finally, 138 clusters (15%) do not have
a concept type (NONE) since they form clusters which are not coreferent with
the original concept mentions.
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3.2 Transfer Learning for Coreference Resolution

We suggest sequential transfer learning [42] for coreference resolution in research
papers. Therefore, we fine-tune a model pre-trained on a large (source) dataset
to our (target) dataset. As the source dataset, we use the English portion of
the OntoNotes 5.0 dataset [37], since it is a broad corpus that consists of 3,493
documents with telephone conversations, magazine and news articles, web data,
broadcast conversations, and the New Testament. Besides, our annotation guide-
lines were adapted from OntoNotes 5.0.

For the model, we utilise BERT for Coreference Resolution (BFCR) [22] with
SpanBERT [21] word embeddings. This model achieves state-of-the-art results
on the OntoNotes dataset [21]. Another advantage is the availability of the pre-
trained model and the source code. The BFCR model improves Lee et al.’s
approach [26] by replacing the LSTM encoder with the SpanBERT transformer-
encoder. SpanBERT [21] has different training objectives than BERT [14] to
better represent spans of text.

3.3 Cross-Domain Research Knowledge Graph Population

Let d ∈ D be an abstract, M(d) = {m1, ...,mh} the mentions of scientific con-
cepts in d, and cd(mi) ⊆ M(d) the corresponding coreference cluster for men-
tion mi in d. If mention ms is not coreferent with other mentions in d, then
cd(ms) = {ms} is a singleton cluster. The set of all clusters is denoted by C. An
equivalence relation collapsable ⊆ C ×C defines if two clusters can be collapsed,
i.e. if the clusters refer to the same scientific concept. To create the set of all
concepts E, we build the quotient set for the set of clusters C with respect to
the relation collapsable:

C := {cd(m)|d ∈ D,m ∈ M(d)} (1)
[c] := {x ∈ C|collapsable(c, x)} (2)

E := {[c]|c ∈ C} (3)

Now, we can construct the KG: for each paper d ∈ D and for each scientific
concept e ∈ E we create a node in the KG. The scientific concept type of e
is the most frequent concept type of all mentions in e. Then, for each mention
m ∈ M(d) we create a ‘mentions’ link between the paper and the corresponding
scientific concept [m] ∈ E.

Cross-Domain vs. In-Domain Collapsing: One commonly used approach to
define the collapsable relation is to treat two clusters as equivalent, if and only
if the ‘label’ of the clusters is the same. The label of a cluster is the longest
mention in the cluster normalised by (a) lower-casing, (b) removing articles,
possessives and demonstratives, (c) resolving acronyms, and (d) lemmatisation
using WordNet [18] to transform plural forms to singular. Other studies [13,27]
used a similar label function for KG population.
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However, a research KG that comprises multiple scientific disciplines has not
been populated yet. Thus, it is not clear whether it is feasible to collapse clus-
ters across domains. Usually, terms within a scientific domain are unambiguous,
but some terms can have different meanings across scientific disciplines (e.g.
“neural network” in CS and Med). Thus, we investigate both cross-domain and
in-domain collapsing strategies.

Knowledge Graph Population Approach: We populate a research KG with
research papers from multiple scientific domains, i.e. 55,485 abstracts of Else-
vier with CC-BY licence from the 10 investigated domains. First, we extract (a)
concept mentions from the abstracts using the scientific concept extractor of the
STM-corpus [6], and (b) clusters within the abstracts with our transfer learning
coreference model. Then, those mention clusters, which contain solely mentions
recognised by the coreference resolution model and not by the scientific concept
extraction model, are dropped, since the coreference resolution model does not
recognise the concept type of the mentions. Finally, the remaining clusters serve
for the population of the KG as described above.

3.4 Evaluation Procedure of Clustering in KG Population

One common approach to evaluate the quality of a populated KG is to annotate
a (random) subset of statements by humans as true or false and to calculate
precision and recall [13,50]. To evaluate recall, small collections of ground-truth
capturing all knowledge is necessary, that are usually difficult to obtain [50].
To the best of our knowledge, a common approach to evaluate the clustering
aspect of the KG population pipeline does not exist yet. Thus, in the following,
we present (1) an annotated test KG, and (2) metrics to evaluate clustering of
mentions to concepts in KG population.

Test KG: To enable evaluation of KG population strategies, we compile a test
KG, referred to as Test-STM-KG. For this purpose, we reuse the STEM-ECR
corpus [16], in which 1,221 mentions of the STM corpus are linked to Wikipedia
entities. First, we extract all annotated clusters of the STM corpus in which
all mentions of the cluster uniquely refer to the same Wikipedia entity. Then,
we collapse all clusters which refer to the same Wikipedia entity to concepts.
Formally, the Test-STM-KG is a partition of mentions, where each part denotes
a concept, i.e. a disjoint set of mentions. A mention is uniquely represented by
the tuple (start offset, end offset, concept type, doc id).

Table 4 shows the characteristics of the compiled Test-STM-KG. It consists
of 920 clusters, of which 711 are singleton clusters. These clusters were collapsed
to 762 concepts, of which 31 concepts are used across multiple domains (referred
to as MIX).

Evaluation Procedure: To evaluate the clustering result of a KG population
strategy, we use the metrics of coreference resolution. The three popular metrics
for coreference resolution are MUC [48], B3 [3] and CEAFeφ4 [29]. Each of them
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Table 4. Characteristics of the Test-STM-KG: number of concepts per concept type
and per domain. MIX denotes the number of cross-domain concepts.

Agr Ast Bio CS Che ES Eng MS Mat Med MIX Total

Data 5 18 3 20 4 9 28 13 37 8 9 154

Material 27 35 30 20 26 52 32 30 9 40 7 308

Method 1 1 1 21 6 2 4 10 3 8 7 64

Process 17 12 21 34 13 33 20 25 15 38 8 236

Total 50 66 55 95 49 96 84 78 64 94 31 762

represents different evaluation aspects (see [36] for more details). To calculate
these metrics, we treat the gold concepts (i.e. a partition of mentions) of the
Test-STM-KG as the ‘key’ and the predicted concepts as the ‘response’. We
report also the CoNLL P/R/F1 scores, that is the averages of MUC’s, B3’s
and CEAFeφ4’s respective precision (P), recall (R) and F1 scores. The CoNLL
metrics were proposed for the conference on Computational Natural Language
Learning (CoNLL) shared tasks on coreference resolution [36].

4 Experimental Setup

Here we describe our experimental setup for coreference resolution and KG pop-
ulation.

4.1 Automatic Coreference Resolution

We evaluate three different state-of-the-art architectures on the STM dataset:
(I) BERT for Coreference Resolution (BFCR) [22] with SpanBERT [21] word
embeddings (referred to as BFCR Span), (II) BFCR with SciBERT [4] word
embeddings (referred to as BFCR Sci), and (III) Scientific Information Extrac-
tor (SCIIE) [27] with ELMo [35] word embeddings (referred to as SCIIE ). The
three architectures are evaluated in the following six approaches (#1–#6):

– Pre-Trained Models: We evaluate already pre-trained models on the test sets
of the STM corpus, i.e. #1 BFCR Span trained on the English portion of the
OntoNotes dataset [38], and #2 SCIIE trained on SciERC [27] from the AI
domain.

– Supervised Learning: We train a model from scratch with the three architec-
tures using the training data of the STM corpus and evaluate their perfor-
mance with the test sets of STM: #3 BFCR Span, #4 BFCR Sci, and #5
SCIIE.

– Transfer Learning: This is our proposed approach #6. We fine-tune all
parameters of a pre-trained model on the English portion of the OntoNotes
dataset [21] with the training data of our STM corpus. For that, we use the
BFCR Span architecture.
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Table 5. Performance of the baseline approaches #1–#5 and our proposed transfer
learning approach #6 on the test sets of the STM corpus across five-fold cross valida-
tion.

MUC B3 CEAFeφ4 CoNLL

Training data P R F1 P R F1 P R F1 P R F1

#1 BFCR Span OntoNotes 57.1 31.1 40.2 55.9 25.7 35.2 50.2 28.1 36.0 54.4 28.3 37.1

#2 SCIIE SciERC 13.4 4.5 6.8 13.1 4.3 6.5 18.1 6.0 9.0 14.9 4.9 7.4

#3 BFCR Span STM 61.6 45.6 52.3 59.8 41.5 48.8 57.9 44.4 50.0 59.8 43.8 50.4

#4 BFCR Sci STM 61.9 40.2 48.6 59.7 36.1 44.9 61.7 36.9 46.0 61.1 37.7 46.5

#5 SCIIE STM 60.3 45.2 51.6 57.6 41.7 48.3 56.6 43.6 49.1 58.1 43.5 49.7

#6 BFCR Span Onto→STM 64.5 63.5 63.9 61.0 60.0 60.4 60.5 59.6 60.0 62.0 61.0 61.4

Table 6. Per domain and overall CoNLL F1 results of the best baseline #3 and our
transfer learning approach #6 on the STM corpus across five-fold cross validation.

Training data Agr Ast Bio Che CS ES Eng MS Mat Med Overall

#3 BFCR Span STM 48.0 50.5 52.2 49.0 59.1 39.6 52.8 47.6 42.5 51.0 50.4

#6 BFCR Span Onto→STM 62.8 61.1 57.5 56.3 74.9 57.5 59.8 52.1 55.7 62.1 61.4

Evaluation: We use the metrics MUC [48], B3 [3], CEAFeφ4 [29] and CoNLL
[36] in compliance with other studies on coreference resolution [22,25,30]. To
obtain robust results, we apply five-fold cross-validation, according to the data
splits given by Brack et al. [6], and report averaged results. For each fold, the
dataset is split into train/validation/test sets with 8/1/2 abstracts per domain,
respectively, i.e. 80/10/20 abstracts. We reuse the original implementations and
default hyperparameters of the above architectures. Hyperparameter-tuning of
the best baseline approach #3 according to [22] confirmed that the default hyper-
parameters of BFCR Span perform best on our corpus.

4.2 Evaluation of KG Population Strategies

We compare four KG population strategies: (1) cross-domain and (2) in-domain
collapsing, as well as (3) cross-domain and (4) in-domain collapsing without
coreference resolution. To evaluate cross-domain and in-domain collapsing, we
take the gold clusters (i.e. mention clusters within the abstracts) of the Test-
STM-KG and collapse them to concepts according to the respective strategy.
When leaving out the coreference resolution step, we treat all mentions in the
Test-STM-KG as singleton clusters and collapse them to concepts according to
the respective strategy. Finally, we calculate the metrics as described in Sect. 3.4.

5 Results and Discussion

In this section, we discuss the experimental results for automatic coreference
resolution and KG population.
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5.1 Automatic Coreference Resolution

Table 5 shows the overall results of the six evaluated approaches and Table 6 the
results per domain of the best baseline #3 and our approach #6. Our transfer
learning approach #6 BFCR Span from OntoNotes (Onto) [37] to STM signifi-
cantly outperforms the best baseline approach #3 with an overall CoNLL F1 of
61.4 (+10.0) and a low standard deviation ±1.5 across the five folds.

Table 7. CoNLL scores on the tests sets of the SciERC corpus [27] across 3 random
restarts of the approaches: current state of the art of Luan et al., the best baseline
approach (#3), and our transfer learning approach (#6). We report results using the
whole and using only 1

5
th of the training data of SciERC (referred to as 1

5
SciERC).

Training data P R F1

Luan et al. [27] SciERC 52.0 44.9 48.2

#3 BFCR Span SciERC 63.3 55.7 59.3

#6 BFCR Span OntoNotes→SciERC 63.9 57.1 60.1

#3 BFCR Span 1
5
SciERC 63.1 39.1 47.1

#6 BFCR Span OntoNotes→ 1
5
SciERC 52.8 56.7 54.2

The approaches #1 BFCR Span pre-trained on OntoNotes [37], and #2
SCIIE pre-trained on SciERC [27] achieve a CoNLL F1 score of 37.1 and 7.4,
respectively. These scores are quite low compared to the approaches #3–#6 that
use training data of the STM corpus. This indicates that models pre-trained on
existing datasets do not generalise sufficiently well for coreference resolution in
research papers. Models trained only on the STM corpus (i.e. #3–#5) achieve
better results. However, they have quite low recall scores indicating that the size
of the training data might not be sufficient to enable the model to generalise
well. SciBERT #4, although pre-trained on scientific texts, performs worse than
SpanBERT #3. Presumably the reason is that SpanBERT has approximately
3 times more parameters than SciBERT. Our transfer learning approach #6
achieves the best results with quite balanced precision and recall scores.

Furthermore, to evaluate the effectiveness of our transfer learning approach,
we compare the best baseline #3 and our transfer learning approach #6 also
with the SciERC corpus [27]. The SciERC corpus comprises 500 abstracts from
the AI domain. Since SciERC has around 5 times more training data than STM,
we compare the approaches #3 and #6 also using only 1

5 th of the training data
in SciERC while keeping the original validation and test sets. It can be seen in
Table 7 that our transfer learning approach #6 improves slightly the baseline
result using the whole training data with 60.1 F1 (+0.8). When using only 1

5 th
of the training data, our transfer learning approach noticeably outperforms the
baseline with 54.2 F1 (+7.1). Thus, our transfer learning approach can help
significantly to improve the performance of coreference resolution in research
papers with few labelled data.
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5.2 Cross-Domain Research KG

In this subsection, we describe the characteristics of our populated KG and
discuss the evaluation results of various KG population strategies.

Characteristics of the Research KG: Table 8 shows the characteristics of the
populated KGs per domain. The resulting KGs with cross-domain and in-domain
collapsing have more than 994,000 and 1.1 Mio. scientific concepts, respectively,
obtained from 55,485 abstracts with more than 2,1 Mio. concept mentions and
726,000 coreferent mentions. Ast and Bio are the most represented domains,
while CS and Mat are the most underrepresented.

Table 8. Characteristics of the populated research KGs per domain: (1) number of
abstracts, number of extracted scientific concept mentions and coreferent mentions,
(2) the number of scientific concepts for the KG with cross-domain collapsing, (3)
in-domain collapsing, (4) cross-domain collapsing but without coreference resolution,
and (5) in-domain collapsing but without coreference resolution. Reduction denotes
the percentual reduction of mentions to scientific concepts and MIX the cross-domain
concepts.

Agr Ast Bio CS Che ES Eng MS Mat Med MIX Total

# abstracts 7,731 15,053 11,109 1,216 1,234 2,352 3,049 2,258 665 10,818 − 55,485

# mentions 332,983 370,311 423,315 45,388 46,203 129,288 127,985 86,490 20,466 586,019 − 2,168,448

# coref. men. 108,579 120,942 143,292 17,674 14,059 40,974 42,654 25,820 8,510 203,884 − 726,388

Cross-domain collapsing

KG concepts 138,342 173,027 177,043 20,474 21,298 62,674 55,494 39,211 9,275 227,690 70,044 994,572

- Data 27,132 64,537 32,946 5,380 5,124 19,542 17,053 10,629 2,982 66,473 19,715 271,513

- Material 69,534 45,296 83,627 6,242 10,154 24,322 19,689 17,276 2,406 68,141 20,812 367,499

- Method 2,992 8,819 6,135 2,001 1,055 1,776 2,953 1,605 685 9,363 1,627 39,011

- Process 38,684 54,375 54,335 6,851 4,965 17,034 15,799 9,701 3,202 83,713 27,890 316,549

Reduction 58% 53% 58% 55% 54% 52% 57% 55% 55% 61% − 54%

In-domain collapsing

KG concepts 180,135 197,605 229,201 30,736 32,191 81,584 78,417 55,358 14,567 278,686 − 1,178,480

Reduction 46% 47% 46% 32% 30% 37% 39% 36% 29% 52% − 46%

Cross-domain collapsing without coreference resolution

KG concepts 146,894 182,479 187,557 21,950 22,555 66,600 59,689 41,776 9,939 242,797 77,493 1,059,729

Reduction 56% 51% 56% 52% 51% 48% 53% 52% 51% 59% − 51%

In-domain collapsing without coreference resolution

KG concepts 184,218 199,894 234,399 31,525 32,937 83,445 80,476 56,690 14,911 284,547 − 1,203,042

Reduction 45% 46% 45% 31% 29% 35% 37% 34% 27% 51% − 45%

Evaluation of KG Population Strategies: Next, we discuss the different KG
population strategies. For each strategy, Table 8 reports the number of concepts
in the populated KG and the percentage reduction of mentions to concepts, and
in Table 9 the evaluation results of KGs against the Test-STM-KG.

Cross-Domain vs. In-Domain Collapsing: Cross-domain collapsing achieves a
higher CoNLL F1 score of 64.8 than in-domain collapsing with a score of 63.5
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(see Table 9). However, in-domain collapsing yields (as expected) a higher preci-
sion (CoNLL P 85.5), since some terms have different meanings across domains
(e.g. Measure (mathematics) vs. Measurement in https://en.wikipedia.org). Fur-
thermore, the Test-STM-KG has only 31 cross-domain concepts due to its small
size. Thus, we expect that cross-domain collapsing would yield worse results on
a larger test set.

Furthermore, as shown in Table 8, cross-domain collapsing yields less con-
cepts than in-domain collapsing (more than 994,000 versus 1.1 Mio. concepts).
We can also observe that only 70,044 (7%) of the concepts are used across mul-
tiple domains. This indicates that every scientific domain mostly uses its own
terminology. However, the concepts used across domains can have different mean-
ings. Thus, when precision is more important than recall in downstream tasks,
in-domain collapsing should be the preferred choice.

Effect of Coreference Resolution: Coreference resolution has only a small impact
on the number of resulting concepts in a populated KG (see Table 8). However,
as shown in Table 9, leaving out the coreference resolution step during KG pop-
ulation yields only low CoNLL F1 scores, i.e. 41.7 (−21.8) F1 and 43.5 (−21.3)
F1. Thus, coreference resolution significantly improves the quality of a populated
KG .

Table 9. Performance of the collapsing strategies evaluated against the Test-STM-KG :
in-domain and cross-domain collapsing with and without coreference resolution.

#concepts MUC B3 CEAFeφ4 CoNLL

in KG P R F1 P R F P R F1 P R F1

In-domain collapsing 859 86.3 70.6 77.7 86.0 69.0 76.6 84.1 23.1 36.2 85.5 54.2 63.5

- Without coreferences 900 75.5 38.8 51.2 75.2 37.9 50.4 71.1 14.0 23.4 73.9 30.2 41.7

Cross-domain collapsing 837 85.0 73.0 78.5 84.5 72.1 77.8 84.7 24.6 38.1 84.7 56.6 64.8

- Without coreferences 876 73.5 41.0 52.6 72.2 15.5 25.5 72.2 15.5 25.5 73.0 32.4 43.5

Qualitative Analysis: We also inspected the top-five frequent domain-specific
concepts in the populated KG (a list of these concepts can be found in our pub-
lic repository). As far as we can judge with our computer science background,
we consider the extracted top frequent concepts to be reasonable and useful for
the domains. For instance, in Ast, the method ‘standard model’ is frequently
mentioned, while in CS the process ‘cyber attack’ appears most often. The fre-
quency of the top concepts differs significantly between the domains: In Med,
Ast, Eng, ES and Agr, a top frequent concept is referenced 10.8, 10.2, 4.9, 3.8,
and 3.1 times per 1000 abstracts, respectively. In Che, MS, Mat, Bio, and CS, a
top frequent concept is referenced only by few abstracts (0.3, 0.4, 1.0, 1.4, and
2.3, respectively, per 1000 abstracts).

6 Conclusions

In this paper, we have investigated the task of coreference resolution in research
papers across 10 different scientific disciplines. We have annotated a corpus that

https://en.wikipedia.org
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comprises 110 abstracts with coreferences with a substantial inter-coder agree-
ment. Our baseline results with current state-of-the-art approaches for corefer-
ence resolution demonstrate that current approaches perform poorly on our cor-
pus. The proposed approach, which uses sequential transfer learning and exploits
annotated datasets from the general domain, outperforms noticeably the state-
of-the-art baselines. Thus, our transfer learning approach can help to reduce
annotation costs for scientific papers, while obtaining high-quality results at the
same time.

Furthermore, we have investigated the impact of coreference resolution on KG
population. For this purpose, we have compiled a gold KG from our annotated
corpus and propose an evaluation procedure for KG population strategies. We
have demonstrated that coreference resolution has a small impact on the number
of resulting concepts in the KG, but improved significantly its quality. Finally,
we have generated a research KG from 55,485 abstracts of the 10 investigated
domains. We show that every domain mostly uses its own terminology and that
the populated KG contains useful concepts.

In future work, we plan to evaluate multi-task learning approaches, and to
populate and evaluate a much larger research KG to get more insights in scientific
language use.
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Abstract. Practitioners often resort to off-the-shelf feature extractors
such as language models (e.g., BERT or Glove) for text or pre-trained
CNNs for images. These features are often used without further super-
vision in tasks such as text or image retrieval and semantic similarity
with cosine-based semantic match. Although cosine similarity is sensitive
to centering and other feature transforms, their impact on task perfor-
mance has not been systematically studied. Prior studies are limited to a
single domain (e.g., bilingual embeddings) and one data modality (text).
Here, we systematically study the effect of simple feature transforms (e.g.,
standardizing) in 25 datasets with 6 tasks covering semantic similarity
and text and image retrieval. We further back up our claims in ad-hoc
laboratory experiments. We include 15 (8 image + 7 text) embeddings,
covering the state-of-the-art models. Our second goal is to determine
whether the common practice of defaulting to the cosine similarity is
empirically supported. Our findings reveal that: (i) some feature trans-
forms provide solid improvements, suggesting their default adoption; (ii)
cosine similarity fares better than Euclidean similarity, thus backing up
standard practices. Ultimately, our takeaways provide actionable advice
for practitioners.

Keywords: Feature transform · Cosine similarity · Image retrieval ·
Text retrieval · Semantic similarity · Text embeddings · Image
embeddings

1 Introduction

Extraction of image and text features with pre-trained off-the-shelf models enjoys
widespread adoption among practitioners (e.g., BERT-as-a-service [58]). These
features are often used in tasks such as multimedia retrieval [50,55], semantic
similarity [12,13,26,40,52], word analogies [37,40] or zero-shot image recogni-
tion [46,61], to name a few. Not infrequently, features are used directly without
further supervised training, typically via cosine-based semantic match. As noted
[1,24], the cosine similarity is sensitive to centering, cross-dimension correlations
and scale variations (Fig. 1). However, the extent to which this impacts task per-
formance has not yet been systematically studied. Studies assessing the effect
c© Springer Nature Switzerland AG 2021
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of feature transforms (e.g., normalizing or PCA) typically restrict to a single
domain and task (e.g., bilingual word embeddings [1,59]) and a single modality
(text). This prompts our first research question (RQ1): Can we improve the
features with simple transforms in a variety of text and image tasks? In particu-
lar, quantifying the (hypothesized) negative impact of vector uncenteredness on
cosine-based performance (Fig. 1) is among our foremost hypothesis to test.

α < β
α β α > β

βαcenter

Fig. 1. Illustration of uncentered vectors hin-
dering cosine similarity performance. Since
cosine similarity computes the angle (α, β)
from the origin �0, in this example where
all vectors are dimension-wise positive, the
cosine judges two points from different
classes as more similar than two points of the
same class. Centering helps obtaining more
meaningful similarity estimates.

The cosine is generally cho-
sen as default similarity measure
in retrieval [15,50] and semantic
similarity tasks [12,26,27,31,40,52,
53]. This choice may eventually be
informed in a (labelled) validation
set or even the metric itself can be
learned [14,56] if a labelled training
set exists. However, because often
none of these are available [12,26,
31,40,46,52], our study assumes a
scenario without either set. This
motivates our second research ques-
tion (RQ2): Is the default choice of
cosine similarity (versus Euclidean)
empirically supported?

To answer RQ1 and RQ2,
we perform an extensive empirical

study in real-world tasks with both image and text data. We provide further
insight and back up our claims in laboratory experiments. Our tests include 25
datasets with 6 different tasks covering text and image retrieval, word-, sentence-
and visual-similarity, and paraphrase detection. We include 15 types of image
(8) and text (7) embeddings, covering state-of-the-art models. Simple feature
transforms are also compared with manifold learning methods.

Our findings reveal that: (i) Centering and standardizing are remarkably
effective across real-world tasks (RQ1); (ii) the cosine significantly outperforms
the Euclidean similarity across 74 conditions (embedding × task), hence support-
ing the default choice (RQ2). Ultimately, our findings provide actionable advice
to practitioners and warning about the negative impact of using cosine similarity
along with uncentered features.

This paper is organized as follows. In Sect. 2, we discuss related work. We
present our methods in Sect. 3 and our tasks in Sect. 4. In Sect. 5, we describe
our embeddings and setup. In Sect. 6, we discuss our empirical results. Section 7
concludes the paper.

2 Related Work

Feature transforms: [25] study the optimality of five different whitening trans-
formations from the viewpoint of the properties of their covariance matrices.
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In contrast to this study, [25] do not include empirical evaluations in text or image
problems.

Additionally, [11] studied the effect of transforming features with an untrained
neural network (i.e., random projections), finding that the performance of trans-
formed vectors does not drop in word-similarity tasks. The impact on performance
of different feature transforms on classification problems such as of biomedical
data is also studied [4].

The closest works to ours are [32], [59] and [1], all of whom study the effect of
feature transforms in the context of text problems. [32] study the effect of hyper-
parameters and normalization of word embeddings, revealing that the impact of
design decisions and hyperparameters on performance is more important than
the choice of the embedding algorithms themselves. [59] finds that constrain-
ing word embeddings to the unit hyper-sphere (i.e., normalizing them) improves
performance in mono-lingual word similarity and bi-lingual word translation. [1]
investigate several transformations including PCA, mean centering, normaliza-
tion and whitening in the context of multi-lingual word embeddings. In contrast
with ours, these studies restrict to a single domain and to text data (no images),
and do not discuss standardizing – which we find to be a top performer.

Similarity measures: [24] analytically study the behavior and properties of
similarity measures such as cosine similarity and the inner product from a geo-
metric viewpoint, focusing on iso-similarity contours. Also analytically, [41] stud-
ies similarity measures in the retrieval context. In contrast to them, we carry out
extensive empirical tests.

Metric learning: algorithms such as the ITML [14] or LMNN [56] learn a metric
distance which can be seen as a form of learning a suitable transformation to the
input vectors. However, this metric is learned in a supervised fashion, typically
to be used in conjunction with a nearest-neighbor classifier, which falls out of
the unsupervised scope of our study. It is worth mentioning that unsupervised
metric learning algorithms also exist [9,23], yet they do not witness widespread
adoption among data practitioners.

Manifold learning: methods, such as Isomap [49], Locally Linear Embedding
(LLE) [42], diffusion maps [10], multi dimensional scaling (MDS) [29] or t-SNE
[34], try to discover the underlying data manifold, which enables disentangling
the vectors in a lower-dimensional space. Such methods are widely used for data
visualization, yet they are not popular as feature transforms for predictive models
– perhaps due to their limited success for such purpose. Although the inclusion
of manifold learning methods in our study obeys mainly completeness reasons –
given that our focus are simple feature transforms – an empirical comparison of
simple transforms and manifold learning methods across multiple tasks has not
been performed yet and we believe that is of practical interest.

3 Method

Let us first lay down our general framework. Let S ={si}N
i=1 be a set of N data

points (sentences, words or images). One extracts corresponding feature vectors
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V = {vi}N
i=1 with a text or image encoder E() (e.g., BERT or a CNN model),

where vi = E(si) and vi ∈ R
d. The parameters θ of a feature transform Tθ are

learned using the vectors V (e.g., in centering, θ are the dimension-wise means).
A new vector v can then be transformed with Tθ(v) (Sect. 3.1), where v may
belong or not to the set V used for learning Tθ.

3.1 Feature Transforms

In the following, we describe the feature transforms included in our experiments.

• Original (orig): denotes the original vectors V = {vi}N
i=1 without any trans-

formation.
• Centering (ctr): ctr(v)=v−V ; subtracts the centroid vector V = 1

N

∑N
i=1 vi=

1
N

∑N
i=1(v

1
i , · · · , vd

i ) to a vector v.
• Standardizing (stz): stz(v)=(v−V )/sd(V); where sd(V) are the component-

wise standard deviations sd(V)= (sd(V 1), · · · , sd(V d)) with V k
={vk

i }N
i=1; and

sd() is the standard deviation. Stz zero-means the data V and sets variances
equal to 1.

• Whitening (wht): We use the Zero Components Analysis (ZCA) whitening
as described in [28]. ZCA de-correlates the data dimensions and makes the
variances equal to 1.

• Normalizing (Nrm): nrm(v)=v/||v||; moves any vector v to the unit hyper-
sphere. Unlike the rest, this transform depends only on the same vector v,
and not on the whole set V = {vi}N

i=1. Normalizing has no effect when the
cosine similarity is used.

• Isomap (Iso): [49] and Locally Linear Embedding (LLE) [42] are used
analogously by first learning the parameters θ in the training set of vectors
V , and applying the learned transformation Tθ to a new vector v ∈ Rd, with
Tθ(v) ∈ Rm with m ≤ d1.

• Principal Component Analysis (PCA): is a classical dimensionality
reduction method that finds orthogonal directions that best fit the data in
the least-squares sense. We keep a number of components (dimensions) such
that 80% of the variance is explained.2 Our implementation of PCA [39] cen-
ters but does not scale the data (for each feature) before applying the SVD
decomposition.

Unlike simple transforms (e.g., center) the more complex PCA, Isomap and
LLE have hyperparameters (e.g., output dimensionality) that impact their per-
formance. Thus a validation set is often necessary, which is a shortcoming in our
unsupervised setting.

1 For both Isomap and LLE we set m = 100 in the real-world, and m = 2 for synthetic
tasks. The number of nearest neighbors is set to 10 in all tasks (as default in sklearn
[39]).

2 The choice of 80% of the variance is discussed and compared to other values in the
Supplement.
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3.2 Complementary Experiments

• Additive bias: As a complement to centering, we study the effect of
“uncenteredness” on the cosine similarity (as the Euclidean is shift invari-
ant) by uncentering V = {vi}N

i=1 with a dimension-wise bias b > 0, namely
(v1

i + b, · · · , vd
i + b) ∀ i = 1, · · · , N . This equates shifting all vectors to the pos-

itive quadrant (i.e., vk
i > 0 ∀ k = 1, · · · , d), if b large enough, or moving them

further up in case they already are (see Sect. 6 for a discussion).
• Multiplicative bias: to study the effect of non-homogeneity of scale and
variances across dimensions, we multiply each dimension with a bias b>0 ran-
domly drawn from a uniform b ∼ U [0.001, 10]d, i.e., vi = (b1v1

i , · · · , bdv
d
i ) ∀ i =

1, · · · , N . This study complements the standardizing method.

4 Tasks and Data

In this section, we first describe the procedure of two grand groups of tasks
(Sect. 4.1), and then we introduce the datasets used in each individual task
(Sect. 4.2). Our dataset selection criteria included: (i) Feasibility of implementing
an unsupervised prediction approach (i.e., simply cosine-based); (ii) medium-
sized datasets; (iii) rather popular and already clean data (thus little pre-
processing required); (iv) diversity.

4.1 Task Descriptions

Grouping tasks: It is convenient to group our tasks in two functionally dif-
ferent categories, as they exhibit identical prediction-evaluation pipelines: (1)
Retrieval tasks: (i) text retrieval and (ii) image retrieval ; (2) Similarity
tasks: (iii) word similarity, (iv) sentence similarity, (v) visual similarity and
(vi) synthetic data. Furthermore, we refer throughout to real-world tasks being
all tasks except the synthetic ones.

In all tasks, we consider two similarity measures to compute the predicted
similarity sim(s1, s2) between any two inputs s1, s2 (words, sentences or images)
encoded with their respective features vi, vj ∈ R

d:

• Cosine similarity: cos(vi, vj) =
vivj

‖vi‖‖vj‖ .
• Euclidean similarity Eucl(vi, vj) = 1

1+‖vi−vj‖ .

In the interest of the practitioner, we focus on simple and widely adopted
transforms, cosine and Euclidean similarity, rather than aiming for an exhaus-
tive comparison of all existing similarity measures and feature transforms. After
having obtained the vectors V ={vi}N

i=1 and learned Tθ(v) as described in Sect. 3,
we consider the task-specific procedures below.

� Similarity tasks: All word-, sentence- and image-similarity datasets consist of
a list of word, sentence or image pairs (si, sj), e.g., (‘car’, ‘truck’) along with a
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human (ground-truth) rating of their similarity or relatedness yi,j ∈ [1, 10]. The
system needs to predict a similarity score ŷi,j ∈ [1, 10] for each pair (si, sj). Model
predictions are computed via cos(vi, vj) or Eucl(vi, vj), where (vi, vj) =E(si, sj).

– Evaluation: Following [12,26,40], we use the Spearman correlation ρ(ŷ, y)
between the predicted ŷ ∈ RN

+

and the ground-truth similarity scores y ∈ RN
+

as the standard measure to evaluate the quality of semantic similarity predic-
tions.

� Retrieval tasks: We split the given test set V ts into two disjoint sets: a query set
Q and a test collection T . Given a query si ∈Q, the goal of the task is to rank the
relevant items from T higher than the non-relevant ones. The similarity between
each item si ∈Q in the query set Q is computed against every item sj ∈ T in the
test collection T via cos(vi, vj) or Eucl(vi, vj) similarity, where (vi, vj)=E(si, sj).

– Evaluation: Performance is evaluated with the TREC standard mean aver-
age precision (mAP), as described in [35]. Following [50,54,55], a test-
collection item si ∈ T is considered relevant to a query sj ∈ Q if they both
belong to the same class.

4.2 Datasets

� Text retrieval: AG-news3 is text classification and retrieval benchmark [60]
consisting in (120,000 train; 7,600 test) sentences, each belonging to exactly one
of the 4 classes (sports, world, business, sci/tech). E.g.,“Economic growth in
Japan slows down as the country experiences a drop in domestic and corporate
spending” (class = business).
� Image retrieval:

– Caltech-256 [20] is a benchmark widely used in image retrieval [15] and
classification. The data consists of 30,607 images, each of which belongs to
exactly one of the 256 categories (e.g., sushi, swan, tripod, etc.).

– CorelDB database [51]: consists of 10,800 images, each of which belongs to
exactly one of the 80 classes (ship, waterfall, lion, etc.).

� Word similarity tasks are typically used to evaluate the quality of word embed-
ding models [2,26,31,40,52]. Following [12,52,53], we use five word similarity
benchmarks, which include three types of similarity ratings: (i) Semantic simi-
larity : SemSim [44], Simlex999 [22] and SimVerb-3500 [19]; (ii) Relatedness:
MEN [3] and WordSim-353 [18]; (iii) Visual similarity: VisSim [44] which
contains the same data as SemSim, yet word pairs are rated for visual similarity
instead of semantic similarity.

3 https://www.kaggle.com/amananandrai/ag-news-classification-dataset.

https://www.kaggle.com/amananandrai/ag-news-classification-dataset
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Fig. 2. Synthetic datasets of our laboratory experiment. Color indicates the semantic
value of each data point (either a class label or a continues value) – best seen in color.
The first five datasets are 3D while the rest are in 2D. In the first seven datasets, the
semantic value assigned to data points is continuous, while for the last five datasets
the class labels are discrete. (Color figure online)

� Sentence similarity: Our datasets are from the GLUE4 and SentEval5 collec-
tions.

– STS (Semantic Textual Similarity) [5] is a semantic relatedness benchmark
consisting of sentence pairs with a crowd-annotated similarity score. E.g., (“A
woman is eating something”, “A woman is eating meat”) has a score of 3 (out
of 5). There are 5,749 train, 1,500 val and 1,379 test pairs.

– SICK (Sentences Involving Compositional Knowledge) [36] evaluates com-
positional distributional semantics. SICK contains sentence pairs along with
their semantic relatedness score. E.g., (“Two men are boxing”, “Two men
are fighting”) have a score of 4 (out of 5). SICK has 4,501 train, 501 val and
4,928 test sentence pairs.

– MSRP (Microsoft Research Paraphrase Corpus) [17] does not strictly eval-
uate sentence similarity but paraphrase detection, yet due to functional par-
allels with the former, we include MSRP in this group. It contains (4,077
train; 1,726 test) sentence pairs along with a label {1 = paraphrase or 0 =not
paraphrase}. MSRP is always used with supervision, thus it may not be the
most adequate test-bed for our setting.

� Visual similarity: Visual-STS (vis-STS) [30] is a subset of STS where each
textual caption is associated to an image. Here, we only use the images since (a
larger super-set of) the sentences are already evaluated in STS. Vis-STS consists
of 1,089 images and a single set of 829 image-image pairs along with their ground-
truth similarity rating.

4 https://gluebenchmark.com/tasks.
5 In contrast to most papers using SICK, MSRP and STS [13,27] we do not use labels.

E.g., while [27] learn a logistic regression model to predict the similarity between
embedding pairs vi, vj , we output the similarity directly (Sect. 4.1).

https://gluebenchmark.com/tasks
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� Synthetic data: In contrast to real-world tasks, laboratory tasks offer a unique
window to study the behavior of feature transforms by having full control of: (i)
the (distribution of) feature vectors, (ii) the task itself, i.e., the assignation of
semantic value to each data point. The majority of our synthetic (laboratory)
datasets are from sklearn [39], except sphere-z, unif-rad, unif-angle and spiral
(Fig. 2), which are built by ourselves.

We randomly generate 2,000 train and 200 test data points. Then, we build
our similarity task by presenting all pairwise combinations of test points to the
system, i.e., 40,0000 pairs (= 200 × 200). In the discrete-labelled datasets (e.g.,
circles, Fig. 2) where each data point si has a class label li ∈ {t1, · · · , tC} (where
C = # classes) the ground-truth similarity yi,j ∈ {0, 1} between two points si, sj

is 1 if they belong to the same class, or 0 otherwise. In the continuous-labelled
datasets (e.g., sphere), where the assignation of semantic value to each data
point is a continuous value li ∈R+

, the ground truth similarity yi,j between si, sj

is the absolute difference: yi,j = |li − lj | ∈ R+
.

5 Experimental Setup

5.1 Feature Vectors (Embeddings)

We group below our embeddings by the unit that they represent (a word, a
sentence or an image). An overview of which embeddings apply to what task
can be seen in Table 1.
� Word-level features:

– GloVe6 [40]: We use 300-d vectors pre-trained on the Common Crawl corpus
with 840B tokens and a 2.2M-word vocabulary.

– word2vec (w2v) [37]: We use the skip-gram 300-d embeddings trained on
Wikipedia.

– In word-similarity, we adopt the publicly available7 VGG-128 [6] and
ResNet [21] visual features from [12]. Notice that unlike the image retrieval
and visual-STS tasks, word-similarity datasets do not have any images and
hence one needs to find a way to visually represent each word (e.g., ‘cat’ or
‘table’) by using external visual data. To this end, [12] used ImageNet [43],
and for each image they extracted 128-d VGG-128 and 2,048-d ResNet fea-
tures from the last layer (before the softmax) by using the forward pass of
the CNN. The final representation for any given word is the average feature
vector (centroid) of all available images for this word in ImageNet.

� Sentence-level features:

– BERT [16]: The large uncased version of BERT8 (24 layers, 1,024 units) is
used as a sentence feature extractor. We obtain a 1,024-d vector from the last

6 http://nlp.stanford.edu/projects/glove.
7 http://liir.cs.kuleuven.be/software.html.
8 Although we are aware that BERT is not meant to represent a single word as it

is designed to account for context words, we include BERT in the word-similarity
tasks for completeness.

http://nlp.stanford.edu/projects/glove
http://liir.cs.kuleuven.be/software.html
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layer (24th), before the model top, by average-pooling the output sequence
of hidden state vectors, similar to BERT-as-a-service [58]. The model is pre-
trained on masked language modeling and next sentence prediction in the
Toronto Book Corpus and Wiki.

– RoBERTa [33]: We obtain 1,024-d features in an identical manner as in
BERT above with the large-version of a case-sensitive RoBERTa model.

– Skipthoughts vectors [27] is a popular neural-based universal sentence
encoder that learns sentence representations by predicting the surrounding
sentences. We use the best-performing 4,800-d vectors (combine-skip) as rec-
ommended by the authors.

– Vector averaging (bag of words): In the sentence-level tasks (SICK,
MSRP, STS and AG-news), we include the baseline sentence representation
v = 1

m

∑m
i=1 vi of averaging word vectors in a sentence s = (s1, · · · , sm), where

vi = E(si) and m is the number of words. We add a subscript avg to the
averaged vectors (e.g., GloVeavg).

� Image-level features. Vector dimensionality is in parenthesis: NASNet [62]
(d = 4,032), ResNet-50 [21] (d = 2,048), ResNet-inception-v2 [47] (d = 1,536),
Inception-v3 [48] (d = 2,048), VGG19 [45] (d = 512), Xception [8] (d = 2,048).
In all these CNN networks, the feature vector vi = E(si) for a given image si is
obtained as the forward pass average-pooled activations from the last layer before
the output layer.

5.2 Training Setup and Implementation

• Given training data: In all datasets except word-similarity (Sect. 4.2),
we obtain the training data V tr

= E(Str) given in the dataset (yet without
using class labels). In the case of AG-news, STS, SICK and MSRP we use
the provided train-test split (Sect. 4.2). Although CorelDB, Visual-STS and
Caltech-256 do not have publicly available train-test set splits, we create the
train-test splits ourselves via 3-fold cross-validation. I.e., we split the full data
S = {vi}N

i=1 into 3 disjoint parts and we employ 2 parts for training (Str) and
1 part for testing (Sts), repeating this 3 times and reporting the average.
However, our setting does not require having an available training set. There
are two main alternatives to using the given train split: (1) learning Tθ() in
the test set; (2) generating Str ourselves. Although (1) is a legit option (as
one does not use labels), it falls within a transductive learning setup and
assumes a test set of a certain size to enable learning Tθ(). Hence, this is not
an option in the case of a singe-instance test set. We also evaluated learning
Tθ() in the test set, and results are discussed in Sect. 6.1.

• Built training data: For word-similarity, where no training data are avail-
able, we use external data to generate V tr (option (2) above). Following [12],
we build V tr in word-similarity by using features obtained from all words
in ImageNet, i.e., visual features for CNNs (ResNet & VGG128) and word
embeddings for text (GloVe & word2vec).
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Implementation: We use diverse Python libraries, including: Keras [7] for
the CNNs, Theano for skipthoughts, sklearn [39], Pytorch and Huggingface [57]
for BERT & RoBERTa. We make our code publicly available9 as well as a Sup-
plement with further specific implementation and hyperparameter details and
additional results.

6 Results

Unless otherwise specified, results below are discussed for the cosine similarity
(Table 1). Performance measures in the tables are according to Sect. 4.1, and
scaled × 100, for readability. Table 2 reports statistical significance of com-
paring a given method with the original vectors under cosine (i.e., the top left
corner entry). Each comparison is a two-sided Wilcoxon signed-rank test across
the 74 combinations of a real-world dataset with an embedding type (i.e., rows
in Table 1). We report significance at p < 0.01 after a Bonferroni correction for
10 comparisons (7 methods in the first row + Eucl + add. bias + mult. bias)10.
Win-tie-loss results (W, T, L) indicate the number of wins (W), ties (T) and
losses (L) of the first method against the second one, across the 74 combinations.

6.1 Real-World Tasks
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Fig. 3. Averaged results across datasets
and features for different values of biases
(Sect. 3.2) on original vectors. The b=0
point means no bias.

Centeredness: Performance of origi-
nal with an additive bias (Sect. 3.2)
drastically drops (Fig. 3 and Table 2).
This confirms the inadequacy of using
uncentered vectors along with the
cosine similarity. Results of PCA, ctr
and stz are unaffected.
• Centering: Consistently with the
results above, centering significantly
improved (p < 10−4) the original fea-
tures by an absolute 2.5% on aver-
age (Table 2), with a win-tie-loss of
(W = 52, T = 1, L = 21) (Table 1),
hence proving the effectiveness of this
method (RQ 1).

• Centeredness of original vectors: All our CNN vectors (ResNet, etc.) are
positive (thus uncentered), and simple statistical inspection reveals that our text
vectors are also uncentered. This implies that centering has an effect on all our
features.
(Non-)homogeneity of variances and scale: In contrast with the large
hindering effect of the additive bias, performance with the multiplicative bias
9 https://github.com/gcollell/transforms-cosine.

10 We did not test all pair-wise conditions as our interest is on a specific set of hypothe-
ses.

https://github.com/gcollell/transforms-cosine
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(Sect. 3.2) barely drops (Fig. 3 and Table 2). This suggests that centeredness may
have a larger impact on the cosine similarity than scale and variance differences
across dimensions.
• Standardizing is the overall winner in real-world tasks (RQ 1). It improved
significantly (p<10−6) the orig features by an absolute 3.3% on average (Table 2)
and their win-tie-loss is (W = 60, T = 0, L = 14) (Table 1). Notice that stz also
centers the vectors.

Cosine versus Euclidean: Cosine similarity significantly outperformed (p <
10−6) the Euclidean similarity (RQ 2) by an average absolute 5.1% (Table 2)
and (W = 54, T = 7, L = 13), for the original vectors – yet the trend is similar
for all transforms. This supports the common practice of defaulting to cosine
similarity, yet we strongly recommend considering the remarks about centering
above, to avoid sub-optimal performance. Further, if a labeled validation set is
available (e.g., in SICK, STS, or AG-news), one may use it in order to make a
more educated choice between cosine and Euclidean similarity.

Learning times: Remarkably, manifold learning methods are over ×1,000 times
slower than standardizing (Table 2), and perform markedly worse.

Learning in test set: Notably, center and standardize can be further improved
by learning them in test data (Table 2) – provided the test set is large enough.

Manifold learning methods generally underperform the simple transforms
in real-world tasks. We emphasize that we do not claim that we fairly portray
the full potential of manifold learning methods (and PCA), as we did not tune
their hyperparameters (e.g., dimensionality) with a validation set for the sake
of comparability with the simple transforms – as our setting does not assume a
validation set.

PCA improved orig features by 1.8% on average (Table 2) and (W = 53,
T = 0, L = 21).

Failure cases: Notably, VGG19 was not improved by any method in any dataset
(Table 1), and all methods fared poorly in MSRP. However, the performance loss
by standardizing or centering is small in MSRP, which suggests that, in the
absence of a validation set for making more informed decisions, the large upside
of defaulting to standardizing may offset its eventual and rather small potential
performance downside.

Consistency: Some methods that perform poorly on average such as Iso or wht
(Table 2) eventually hit the most spectacular gains (and losses) (Table 2). This
contrasts with stz and ctr which tend to have less “volatility” and exhibit more
consistent gains.
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Table 1. Results with cosine similarity on real-world tasks. Since performance trends
are similar, the word-similarity table (left) includes only the visual subsets, i.e., word-
pairs for which images are available for both words – number of instances is in paren-
thesis. Results in all sets are in the Supplement. Best-performing method per row is
boldfaced.

orig ctr stz wth iso LLE PCA

w
o
rd

si
m

(6
3
)

GloVe 63.2 61.3 67.6 69.6 43.9 50.1 59.4

w2v 66.9 64.9 65.5 62 58.8 25.3 63

BERT 20.8 30.1 28 47.4 16.7 26.3 29.9

RoBERTa 23.9 23.5 26.7 44.9 23.1 11.2 22.4

ResNet 42.3 48.9 48.1 28.7 51.7 43.7 48.6

VGG128 44.8 49.2 49.1 50 55.4 54 46.7

m
e
n

(7
9
5
)

GloVe 80.1 80 82.7 79.9 76.6 67 80.2

w2v 78.7 81 81.1 74.3 70.8 53.5 80.9

BERT 32.7 31.9 35.9 49.5 25.3 24.1 31.3

RoBERTa 20.9 29.5 32.2 48 25.1 20.7 27.6

ResNet 56.7 59 60.7 36.8 60.9 42.3 59.2

VGG128 59.3 58.9 59.8 54 60 42.9 58.8

se
m

S
im

(5
,2
3
8
) GloVe 76.8 74.6 78 62 77.3 61.2 75.1

w2v 74.2 77.3 77.3 54.1 71.2 50 77.6

BERT 23.4 22.6 25.2 28.3 17.3 22.7 22.8

RoBERTa 20 28.5 30.3 26.1 26.2 22.8 28.2

ResNet 53.4 67.6 67.6 11.7 70.3 39.1 67.8

VGG128 53.4 65.8 65.1 37.9 69 36 66.1

v
is
S
im

(5
,2
3
8
)

GloVe 60.6 60.6 62.9 53.7 61.5 47.7 61

w2v 57.6 60.8 60.8 47.7 54.8 37.9 61

BERT 16.2 16.7 18.4 23.7 12 14.8 16.7

RoBERTa 15.7 21.1 22.4 22.2 18.6 15.4 20.7

ResNet 54.3 60.6 61.7 14.5 57.9 37 60.8

VGG128 56 60.7 61.2 42.9 60 35.2 60.7

si
m

le
x

(2
6
1
)

GloVe 37.1 36.1 42 45.1 35.6 45.3 35.7

w2v 43.5 44.3 44.9 41.7 41.9 35.2 43.8

BERT 24.3 21.6 23.7 36.6 18.5 16 20.9

RoBERTa −7.6 −6.6 −4.5 19.3 −11 −3.8 −7.7

ResNet 40.9 45 45.6 36 47.3 38.8 45.5

VGG128 40.6 42.6 42.2 40.3 43 34 43.3

S
im

V
e
rb

(4
1
)

GloVe 32 29.8 34.3 22.8 10.5 −6.6 34.1

w2v 30.8 19.7 21.3 31.3 −4.9 −3.1 12.7

BERT −7.2 −8.2 −6.6 13.6 −11.6 21.5 −7.1

RoBERTa 4.7 1.5 2 −6.1 −9.8 1.5 5.7

ResNet 21.1 21.2 27.7 22 23.7 4.5 19.1

VGG128 23.5 23.4 20.6 52 20.8 14.6 22

orig ctr stz wht iso LLE PCA

S
T
S

GloVeavg 50 57.6 58.9 68.1 37.7 42.5 51.2

w2vavg 55.1 59.6 60.1 66 38.2 42.8 56.6

skipthoug 34.5 38.8 44.9 59.3 17.2 30.9 35.3

BERT 47.7 53.5 55.1 64.5 34.4 42.3 51.1

RoBERTa 44.9 58.6 62.7 69.1 38.6 42.8 55.1

S
IC

K

GloVeavg 56 58.5 59.3 58 51.9 45.6 55.2

w2vavg 58.5 60 60.3 56.3 51.6 46.1 57.9

skipthoug 56.5 58.5 56.1 43.3 48.4 44 57.1

BERT 53.8 57.8 58.2 58.4 50.7 44.5 55.8

RoBERTa 58.1 61.9 63.8 61.5 54.4 46.4 59.9

M
S
R
P

GloVeavg 39.9 37.2 38 39.5 16.3 16.1 34.4

w2vavg 38.8 35.6 36.2 37.8 14 21.6 33.7

skipthoug 15.3 19.6 21.1 32.9 7.6 8.8 16.4

BERT 31.5 30 30.8 38.2 11.6 15.3 26.3

RoBERTa 43.7 39.5 39.5 42.3 10.9 15.8 36.6

A
G
-n

e
w
s

GloVeavg 48.5 55.6 52.6 30.6 62.9 59.4 55.7

w2vavg 54.9 60.9 60 31.3 66.5 56.7 61.2

skipthoug 36.6 39.3 38.5 27.1 39.3 37.8 39.3

BERT 49.9 57.6 56.9 29.6 66.2 50.5 57.6

RoBERTa 47.3 55 54.8 29.6 67.8 54.1 55.1

v
is
-S

T
S

Incptn-v3 44.9 55.3 54.6 10.3 53.4 37.8 54.2

ResNet-in 45.2 56.1 55.5 9.5 57.9 37.2 54.7

ResNet 61.7 64.6 60.9 10.8 59.2 43.2 63.5

xception 56.2 59.2 59.1 14.3 47.9 38 58.2

VGG19 63.4 56.5 53.2 5.8 53.2 32.4 54.2

NASNet 49.9 58.7 57.4 15.5 53.7 34.7 57.2

C
a
lt
e
c
h

Incptn-v3 45.8 47.9 48.5 27.4 42 45.5 48.3

ResNet-in 54.9 55 55 38.7 55.2 52.8 55.4

ResNet 40.6 41.1 42.7 22.5 36.2 38.9 41.3

xception 46.8 50 49.9 27.8 41.7 46.5 51

VGG19 35.1 34.3 35.2 25.8 26.6 26.7 33.8

NASNet 60.4 60.6 60.2 29.9 58.3 57.2 61.6

C
o
re

lD
B

Incptn-v3 43.8 46.9 47.3 11.6 42.6 50.2 47.9

ResNet-in 52.3 53.5 53.2 18.6 55.4 54.5 55.1

ResNet 45.7 47.2 46.1 12 48.5 52.4 48.1

xception 47.4 50.4 49.7 13.6 47 52.8 51.9

VGG19 36.9 38.2 37.7 18 34.8 38.8 38.5

NASNet 57.9 59.2 57.4 2.2 56.6 57.7 60.9

6.2 Synthetic Data

Unlike real-world data (Sect. 6.1) where vectors and semantic value assignment
(i.e., the task) cannot be visualized, synthetic data enable intuitively grasping
and visualizing the effect that transforming vectors (RQ 1) have on the similarity
measures (RQ 2).
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Table 2. Averaged results across real-world datasets and features. Rows include (in
order) results of: (i) cosine similarity (i.e., averaged results of Tab. 1); (ii) Euclidean
similarity; (iii) additive and (iv) multiplicative bias (Sect. 3.2) (b = 10); (v) learning Tθ

in the test set, and (vi) training times (in seconds). Despite omitting datasets, this table
portrays a representative summary of the performance landscape. SDs are omitted for
being uninformative, as they reflect inter-dataset variance. For individual results, see
Table 1, the Supplement and win-tie-loss mentions in the text. Asterisks (∗) indicate
statistically different performance (p < 0.01) from orig × cos (two-sided).

orig ctr stz wht nrm iso LLE PCA

cos 43.9 46.4∗ 47.2∗ 36.2∗ 43.9 40.9 35.7∗ 45.7∗

Eucl 38.8∗ 38.8 38.1 21.6 43.9 35.7 23.1 39.8

add. bias 38.7∗ 46.4 47.2 35.1 38.7 40.9 35.5 45.7

mult. bias 43.5 45.8 47.2 36.1 43.5 40.6 35.8 44.9

learn in test 43.9 47.3 47.9 35.8 43.9 44.5 38.1 46.8

train time 0 0.01 0.3 7.9 2.1e-05 1174.5 965.7 2.4

Centeredness: Crucially, original vectors in synthetic tasks are generally cen-
tered while in real-world tasks features are uncentered (Sect. 6.1). It is reason-
able to not expect that features will be natively centered at �0, unless explicitly
imposed. Thus, using uncentered vectors orig (add) as a reference point in Table 3
may be more “realistic” than orig.

• Applying an additive bias (orig (add)) generally hinders the original vectors
(with cosine) (Table 3), yet one can find a pathological case in circles, where
having centered vectors (e.g., orig or ctr) is detrimental. The reason being
that, with centered vectors, the �0 point falls inside the circles (Fig. 2), hence
the angle (or cosine similarity) which stems from �0, is utterly unhelpful to tell
apart the inner from the outer circle. Although it is important to gain insight
on these cases with synthetic data, real-world feature vectors (and tasks)
are unlikely to exhibit this onion-like structure unless explicitly imposed [38,
59]. Thus, there is no substitute for a systematic study in real world tasks
(Table 1).

Task versus vectors: A key question that this paper answers is whether it
suffices to look at (the statistics of) the vectors alone in order to tell when
a transform will perform well. Unif-radius and unif-angle illustrate a negative
answer. All methods fail at unif-radius (radius matters) while they all do rea-
sonably well in unif-angle (angle matters). The only difference is the assignment
of a semantic value to data points, i.e., the task itself. Thus, vectors alone do
not suffice to determine effectiveness of a transform but they must be considered
along with the task. Many real-world instances support this conclusion, e.g., stz
improving NASNet in vis-STS, yet not in Caltech nor in CorelDB.

Failure cases: Circles illustrates a task where cosine similarity is entirely
unhelpful to tell both classes apart (and the Euclidean only barely useful) for the
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Table 3. Results on synthetic datasets. The (add) and (mult) indicate that an addi-
tive or multiplicative bias, respectively, is added to the method (Sect. 3.2). SDs are left
to the Supplement.

orig orig (add) orig (mult) ctr stz wth nrm iso LLE PCA

Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl Cos Eucl

sphere 65.1 65.1 44 65.1 58.5 54.9 62.1 65.1 62.5 65.8 65.4 65.3 65.1 65.1 59.7 76.7 58.2 71.3 50.7 50.2

sphere-z 53.1 53.1 40.6 53.1 46.5 45.4 53.5 53.1 51.6 49.7 51.4 50.1 53.1 53.1 52.7 49.7 51.1 44 59.6 64.2

s 82.7 88.3 74.2 88.3 70.3 72.8 76.3 88.3 53.3 58.9 66.2 74.3 82.7 82.7 76.3 98.7 70.5 77.5 75.3 91.3

roll 20.2 23.9 19.6 23.9 17.9 21.7 22.1 23.9 21.2 22.1 24.5 28.9 20.2 20.2 75.3 96 60.8 71.1 23.8 31.8

spiral 40.3 100 89.4 100 36.9 94.3 83.2 100 41.5 55.5 13.7 21.4 40.3 40.3 82.8 97.2 71.5 76.1 79.1 100

unif-ang 62.1 50.8 28.2 50.8 55.7 44.2 62 50.8 62 50.8 62.1 50.8 62.1 62.1 62 50.9 61.8 49.8 62 50.8

unif-rad 0 5.2 3.5 5.2 −0.1 7.7 0 5.2 0 5.2 0 5.2 0 0 0 5.1 0 6 0 5.2

moons 43 41.2 49.7 41.2 43.3 42.6 38.4 41.2 47.6 52.4 47 51.6 43 43 0 16.9 32.4 53.7 38.4 41.2

Aniso 54.3 62.1 54.3 62.1 52.8 61.1 62.1 62.1 61.5 61.1 58.2 62 54.3 54.3 39.9 40.3 53.7 63.1 62.1 62.1

blobs 57.9 66.3 53.4 66.3 56 64.3 64.2 66.3 64.8 66.4 58.2 62 57.9 57.9 39 42.6 55.8 66.1 64.2 66.3

blobs-un 54.8 61.2 48.1 61.2 52.4 59.1 63.8 61.2 64 60.4 55 55.1 54.8 54.8 58.9 42.3 55.9 60.2 63.8 61.2

circles −0.1 13.4 11.8 13.4 0 13.1 −0.1 13.4 −0.1 13.4 −0.1 13.4 −0.1 −0.1 40.4 28.4 35.2 53.6 −0.1 13.4

regular methods, yet manifold learning methods fare better (Table 3). Further
notice the detrimental effect of normalizing with the Euclidean similarity in the
same dataset, as normalizing collapses both circles into one. We also highlight
the general failure of all methods in our own “stress test” task, unif-rad. Likely,
polar coordinates would have done a better job.

7 Conclusions and Future Work

Limitations. The answer to whether any of our top-performing transforms is a
universal recipe to improve (text or image) features, is a negative one. As usual,
there is no free lunch. However, this study strives to include a representative and
reasonable number of datasets and varied tasks to gain insight on the success
rate and effect size of each transform. Performance trends showcase promising
potential on defaulting to center, PCA or standardize the features in applications,
as well as using cosine-based (instead of Euclidean) semantic match. That said,
our task selection is not exhaustive and hence we encourage researchers to report
results on new tasks and datasets.

A word of caution. In line with [33] and [32], an important contribution of
this work is rising awareness about the potential source of improvements in
some word and sentence embedding models, which are often tested in semantic-
similarity tasks and default to cosine similarity. As shown, feature re-scaling
can have a much greater impact on the overall performance than the embedding
model itself. Hence, it is crucial to control for any possible feature re-scalings
occurring in any step of the pipeline.

Acknowledgment. This research was supported by the ERC Advanced Grant CAL-
CULUS (H2020-ERC-2017-ADG 788506).
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Abstract. Query Performance Prediction (QPP) has been studied
extensively in the IR community over the last two decades. A by-product
of this research is a methodology to evaluate the effectiveness of QPP
techniques. In this paper, we re-examine the existing evaluation method-
ology commonly used for QPP, and propose a new approach. Our key
idea is to model QPP performance as a distribution instead of relying
on point estimates. Our work demonstrates important statistical impli-
cations, and overcomes key limitations imposed by the currently used
correlation-based point-estimate evaluation approaches. We also explore
the potential benefits of using multiple query formulations and ANal-
ysis Of VAriance (ANOVA) modeling in order to measure interactions
between multiple factors. The resulting statistical analysis combined with
a novel evaluation framework demonstrates the merits of modeling QPP
performance as distributions, and enables detailed statistical ANOVA
models for comparative analyses to be created.

1 Introduction

The Information Retrieval (IR) community has long recognized the importance
of applying statistical tests to evaluation results. Although best practices con-
tinue to evolve, conference/journal guidelines and discussion papers [20,34] have
led the community to appreciate the importance of a more theoretically grounded
evaluation, and practitioners in IR have been urged over the years to include
sound analyses using statistical tests of significance or confidence intervals in
submitted manuscripts. While this has led to higher quality analytical com-
parisons in many IR-related fields, not all areas have adopted the practice. An
example of a common IR problem that might benefit from alternative evaluation
techniques is Query Performance Prediction (QPP).

The goal of QPP is to estimate the effectiveness of a retrieval system in
response to a query when no relevance judgments are available [8]. The most
widely-used method for evaluating QPP approaches is based on the strength of a
relationship between per-topic prediction scores, and the actual per-topic system

c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 115–129, 2021.
https://doi.org/10.1007/978-3-030-72113-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72113-8_8&domain=pdf
http://orcid.org/0000-0002-5070-2049
http://orcid.org/0000-0003-1535-0989
http://orcid.org/0000-0002-1902-9087
http://orcid.org/0000-0001-9219-6239
http://orcid.org/0000-0001-9094-0810
https://doi.org/10.1007/978-3-030-72113-8_8


116 G. Faggioli et al.

effectiveness as measured using a standard IR effectiveness metric, usually Aver-
age Precision (AP). The association is measured using a correlation coefficient,
with different papers reporting the Pearson (linear) correlation, Spearman’s rank
correlation, or Kendall’s τ . A QPP approach that achieves a higher correlation
value than another is taken to be the superior approach. This evaluation method
compares QPP effectiveness at a very high level, with the performance of a QPP
approach over a whole set of topics being summarized just by a correlation coef-
ficient as a point value.

In order to statistically validate the results two alternatives are available.
First, we can test whether or not the correlation between a predictor and the
retrieval results is significantly different from zero [9,11,12,14,16,23,24,27,37,
48–50]. However, this validation approach just tells us how reliable the con-
clusions are for a single QPP method, and does not allow two or more QPP
approaches to be directly compared. Second, by relying on repeated randomized
topic sampling, we can test whether or not the correlation coefficients for two
different QPP methods are significantly different from each other. A statistically
appropriate method to test the latter would rely on Fisher’s z transformation of
sample correlation coefficients. In fact, this approach was previously suggested
by Hauff et al. [22] and again more recently by Roitman [32] to more reliably test
significant differences in QPP model performance. However, this practice has not
been adopted in published QPP work to date. Instead, a Student’s t-test for the
difference of means of the correlated correlation coefficients is currently the pre-
ferred approach [30,46,47]. However, it is important to note that both of these
approaches are fundamentally different from the pair-wise significance test used
for system retrieval effectiveness, which is now common practice in IR evaluation
exercises.

Motivated by these observations, we re-examine how QPP efficacy can be
analyzed using a more fine-grained approach – by modeling the performance of
QPP techniques as distributions. This approach has also previously been applied
successfully in system evaluation exercises. A distribution-based model can be
constructed as follows. First, an estimate of the performance for each system-
topic combination is computed using a traditional performance measure, such
as AP. Then, all of the topics for a collection are used to model the performance
distribution. Note that this is fundamentally different from a classical QPP eval-
uation approach. Indeed, even when various sampling techniques (e.g., random-
ization/bootstrap) are currently used in QPP, this is a re-sampling of topics, and
leads to a new (aggregated) point estimate, e.g., Kendall’s τ , for that sample.
The different re-samples are then used to compute an expectation and a confi-
dence interval for the point estimate. In contrast, when randomization/bootstrap
techniques are used for the evaluation of retrieval effectiveness [40], it is topics
that are re-sampled; for each topic a performance score such as AP is computed,
and a distribution of performance for that sample is obtained. An aggregate of
this distribution, e.g., a mean or a confidence interval, is then computed, and
finally, the different re-samples are used to compute a further expectation and
confidence interval for the aggregate.
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In this work, we propose a methodology similar to the latter approach. Our
evaluation approach has several appealing properties: it allows formal inferential
statistics to be applied, which generalizes the results to the entire population of
topics; it allows the behavior of a QPP approach to be more clearly isolated,
for example through confidence intervals; and, it enables factor decomposition,
which in turn allows us to measure the relative contributions to observed effec-
tiveness systematically. We also incorporate recent work in retrieval effectiveness
on query variation and reformulation of each topic [3,4,7,43,47] into our frame-
work, which allows a more fine-grained sampling of retrieval performance, and
to estimate interaction between systems, topics and query formulations, which
is not possible using only a single point estimate.

Our work focuses on two closely related research questions:

– RQ1: How can detailed statistical analysis and testing be applied to QPP
evaluation exercises?

– RQ2: What factors contribute to improving or reducing the performance of
a QPP model?

The overall contribution of this paper is a new evaluation framework for QPP
which models the performance of QPP methods as distributions of topics. Beside
providing a statistically grounded evaluation procedure, our approach provides
practitioners with new tools to carry out comprehensive analyses of QPP models.

2 Related Work

Retrieval performance can vary widely across different systems, even for a single
query [8]. This has resulted in a large body of work on QPP, which is divided
into two common approaches. Pre-retrieval predictors analyze query and corpus
statistics prior to retrieval [12,23,24,27,36,48] and post-retrieval predictors that
also analyze the retrieval results [1,2,9,14,16,31,38,46,49]. Predictors are typi-
cally evaluated by measuring the correlation coefficient between the AP values
attained with relevance judgments and the values assigned by the predictor. Such
evaluation methodologies are based on a point estimate and have been shown to
be unreliable when comparing multiple systems, corpora and predictors [22,35].
Hauff et al. [22] demonstrate that higher correlation does not necessarily attest
to better prediction, and used Root Mean Square Error (RMSE) in their eval-
uation. Hauff et al. applied methods from Meng et al. [26] to compare 2 or
more correlation coefficients, and argued that to test the significance of differ-
ences in correlation between the predictors, Fisher’s z transformation should be
used and the Confidence Interval (CI) should be reported. When computing the
CI for Pearson’s linear correlation in the evaluation using multiple previously
reported pre-retrieval predictors, they found that many of the predictors had
overlapping CIs, and concluded that they were not significantly different from
the best performing predictor. Hauff et al. focused on prediction of normalized
scores that can be compared to AP using linear correlation as measured with
a parametric statistic. In this work, we focus on ranking the queries based on
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the retrieval effectiveness, which is analogous to a rank-based correlation given
by Kendall’s τ as our reference for the existing evaluation framework, but many
other alternatives are possible. We chose to use a rank-based correlation as it
is a non-parametric statistical method, and hence makes no assumptions about
the underlying distributions of the data.

Also of interest, recent work using query variations for QPP [43,47] has
demonstrated that the relative prediction quality of predictors can vary with
respect to the effectiveness of the queries used to represent the topics, and
we explore such observation further using advanced statistical instrumentation.
One principled approach that can be used in IR evaluation is ANOVA [25,33].
ANOVA is commonly used to assess the presence of statistically significant
differences in mean performance observed when using different experimental
conditions. This technique can be operationalized as a General Linear Mixed
Model (GLMM), where a response variable, called Data, is linearly mod-
eled into two parts: the experimental conditions (the Model) and the Error:
Data = Model + Error. The Error represents that part of the variance in the
Data that the Model cannot account for. The ANOVA approach is particularly
useful in our work as it allows us to break down the variance observed in the
data, assigning it to the factors that caused it [5,10,17,19,29,41,45]. The Model
often includes a subject component (which in IR evaluation often corresponds to
the topic), one or more factors, which are the different experimental conditions
(either the entire system, or its components - e.g., the stemmer, the stoplist and
the QPP model), and possibly their interactions. If all the possible combinations
of factors are applied to all subjects, this is a Factorial/Crossed Design, and its
factors are called Crossed Factors. Specific factors might be nested inside others:
in the following analyses, query formulations are a nested factor of the topic,
since each formulation represents a single topic and cannot be used to represent
others. To compare the effect size of different factors, which cannot be done by
looking only at the F-statistic or p-value, the Strength of Association (SOA) is
reported, measured as ω2, and is the factor significance, bounded between [0,
1]. The larger ω2 is, the greater the impact is for factor levels to the response
variable.

3 Experimental Analysis

3.1 Experimental Setup

In our analyses, we use the TREC Robust 2004 (Robust04) Ad Hoc [44] collec-
tion. The Robust04 ad hoc track consists of approximately 528K documents
from TREC disks 4 & 5, minus the Congressional Record from the TIPSTER
corpus, and contains 249 topics with at least one relevant document in the QREL
file. We enrich the set of queries for the corpus using publicly available human-
curated query variants for each topic [6].1 Our experiments use a Grid of Points
(GoP) of runs as described by Ferro and Harman [18], using 4 different stoplists

1 http://culpepper.io/publications/robust-uqv.txt.gz.

http://culpepper.io/publications/robust-uqv.txt.gz
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Table 1. A summary of QPP models used in this work.

QPP model Description

Pre-retrieval

SCQ [48] Measures similarity based on cf.idf to the corpus, summed over the

query terms

AvgSCQ [48] SCQ normalized by the query length

MaxSCQ [48] The query term with maximal SCQ score

SumVAR [48] Measures the cf.idf variability of the query terms in the corpus

AvgVAR [48] Variability normalized with the query length

MaxVAR [48] The query term with maximal variability

AvgIDF [13] The mean idf value of the query terms

MaxIDF [36] The query term with maximal idf value

Post-retrieval

Clarity [12] Measures the divergence between the Language Model (LM) con-

structed over top documents in the result list to the LM of the entire

corpus

NQC [39] Measures the standard deviation of the top documents scores in the

retrieval list

WIG [50] Measures the difference between the mean retrieval score of the top

retrieved documents and the score of the entire corpus

SMV [42] Scores the queries based on a combination of the scores standard

deviation and magnitude

UEF [37] Prediction framework that is based on the similarity of the initial

result list with the list re-ranked using a Relevance Model (RM),

scaled by an estimator of the RM quality. In this work we scale

the RM with the existing post-retrieval predictors: UEF(Clarity),

UEF(NQC), UEF(WIG) and UEF(SMV)

(atire, zettair, indri, lingpipe), plus the no stop approach and 2 different
stemmers, (lovins, porter) plus a nostem approach. All the runs were pro-
duced using the query-likelihood model [28], and repeated 15 times. We test 16
QPP models (12 + 4 UEF-based methods) for our analyses, which are summa-
rized in Table 1. Our goal was to choose representative and well known system
configurations and QPP models, and the evaluation framework is not limited
to any specific configuration. So it can easily be extended by others for fur-
ther experiments in the future. In total, 240 different predictor-system combina-
tions were generated for the Robust04 collection. The pre-retrieval approaches
are parameter-free and do not require tuning. For the parameters of the post-
retrieval predictors we used fixed settings that have been demonstrated to be
effective for the Robust04 collection previously [37,39,42]. We apply Average
Precision (AP) to measure the effectiveness of the different retrieval pipelines,
as our primary goal is to be consistent with previous evaluation exercises, as
Average Precision (AP) was the most common effectiveness metric used in prior
QPP work.
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Fig. 1. Prediction quality of the selected QPP models on Robust04 (Confidence Inter-
vals computed with Kendall’s τ), using either title queries or all available formulations.
(Color figure online)

3.2 Traditional QPP Evaluation Using Correlations

Prior work on QPP has relied primarily on a single evaluation paradigm. Given
a set of topics (information needs), where each topic is represented by a single
query, a single retrieval method, and a single document corpus, the prediction
quality of the predictors is evaluated as follows:

1. Retrieval effectiveness of the queries is measured with a common IR metric,
usually AP or possibly Normalized Discounted Cumulated Gain (nDCG) to
induce a ranking of the queries. This ordering serves as the ground truth in
the evaluation process.

2. The QPP method is applied to the queries, which generates a candidate list
where the queries are ranked by their prediction values.

3. A correlation coefficient is computed between the ground truth list and the
candidate list produced by the predictor.

4. The correlation coefficients of different predictors are then compared, with an
underlying assumption that a higher correlation value attests to the superior
quality of a predictor.

The correlation coefficient is often measured as Pearson’s r for linear correlation,
Kendall’s τ , and/or Spearman’s ρ for the monotonic rank correlation.

Figure 1 shows the performance of 16 different QPP models when using this
common evaluation approach – Kendall’s τ correlation in this case – with 95%
confidence intervals shown as well. In this example, the results are generated for
a specific retrieval pipeline, using the indri stoplist and porter stemmer. To
compute the confidence intervals (at significance level α = 0.05), we used a bias-
corrected and accelerated bootstrap procedure with 10,000 samples. Observe
that when using title queries only (orange bars), there is a large degree of over-
lap between the different QPP approaches. Similar results were observed when
using all of the other pipelines described in this work. The pairwise comparison
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Fig. 2. Comparison between the AP score distributions of title-only queries and multi-
query topic formulations. (Color figure online)

using the data from Fig. 1 (title queries only, p-values omitted due to space
constraints), shows that 57 pairs of predictors are found to be statistically sig-
nificantly different, out of 120 total pairs of QPP models (47.5%). In particular,
among the best performing predictors, UEF(Clarity) is not statistically differ-
ent from UEF(WIG), UEF(NQC), UEF(SMV), Clarity and NQC. This suggests
that using confidence intervals does indeed make it difficult to decide which QPP
system is the best performing one, as suggested by Hauff et al. [22].

In addition to using the traditional title queries, we also explore the sce-
nario of using multiple formulations, which allows us to produce replicas for the
same experimental conditions (i.e., the retrieval system or the QPP model used)
on the same subject (i.e., the topic). While the performance is generally lower
when using multiple topic formulations (the blue bars shown in Fig. 1), there is
a high degree of similarity between the ordering of the QPP models for multi-
ple query formulations to the ordering for title-only (Kendall’s tau correlation
between using title-only versus multiple queries per topic is 0.98, p < 0.0001).
Overall, the statistically induced bootstrap intervals are substantially larger if
a traditional title-only evaluation approach is used, which makes it less suit-
able for determining if any single system is a clear winner, while using multiple
queries does induce smaller intervals and better discriminative power between
the QPP approaches. Even if, as shown, using query variants does not dramati-
cally impact the ranking of QPP models, it is nevertheless important to consider
whether adding variants has an impact on the distribution of the raw AP scores.
The Mean Average Precision (MAP) values are 0.211 and 0.254 for the set of
all query formulations and title queries only, respectively, and thus are quite
consistent. Figure 2 shows the Probability Density Function (PDF) for the AP
scores for the two scenarios – title-only (red line) and multiple queries per topic
(blue line). The Kullback-Leibler Divergence (KLD), a measure of the similarity
between the two distributions, is 0.039. In summary, the distributions are similar
and thus the introduction of the multiple formulations for each topic does not
appear to skew the overall AP score distribution.
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3.3 ANOVA Modeling and Analysis of QPP

To support a more detailed analysis of QPP methods and associated factors, we
now explore the use of ANOVA, which can be achieved by modifying steps 3 and
4 of the traditional QPP evaluation process shown above. Instead of computing
the correlations between the complete lists, we measure the difference, for each
query, in the rank position assigned by a QPP method and the ground truth
rank position assigned by AP. Ties in ranks are broken using the average of
tie rank spans, as is the default in many statistical applications [21]. Other tie
breaking rules were also considered but initial investigation led to consistent
final results, so are not reported here. Observe that this transitions us from
point estimates of a single correlation value for the two lists over a whole set
of topics to a distribution of the rank differences between the two lists for each
query in the set. In order to scale the scores to the range [0, 1] we divide them by
the number of samples. The error, labeled as AP induced scaled Absolute Rank
Error (sAREAP ), for each query is:

sAREAP (qi) :=
|rpi − rei |

|Q| , (1)

where rpi and rei are the ranks assigned by the predictor and the evaluation metric
respectively for query i; Q is the set of queries. If we still require the single point
estimate of the prediction quality for each predictor P, we can calculate the AP
induced scaled Mean Absolute Rank Error (sMAREAP ) as follows:

sMAREAP (P) :=
1

|Q|
∑

qi∈Q

sAREAP (qi). (2)

Note that sMAREAP can be seen as a derivation of Spearman’s Footrule dis-
tance, making it a metric for the full rankings instead of a correlation. Among
the properties of Spearman’s Footrule distance, Diaconis and Graham [15] list
that it is bounded between [0, �0.5n2�], where n is the length of the ranking.
Since both sAREAP and sMAREAP are normalized by the number of queries,
sMAREAP is bounded between [0, 0.5]. To demonstrate the agreement between
the proposed evaluation method with existing evaluation practices from a high-
level (point estimate) perspective, we use the QPP methods over the Robust04
title queries. Figure 3 plots the ranking of the predictors based on the median
of the point estimates for each predictor for all 15 system configurations which
is simply the median of the Kendall’s τ correlation for the traditional evalua-
tion approach and the median of sMAREAP for our evaluation approach. Each
predictor consists of 15 values that represent the prediction quality. Though the
directionality of the two approaches is inverted, the ranking of the predictors
clearly agrees on the overall rank ordering. The corresponding box-plots also
demonstrate the similarity of the variance estimate. In order to validate the
agreement we computed the Pearson’s correlation coefficient over the point esti-
mates for the predictors for each of the 15 system configurations. The resulting
correlations coefficients were all −0.99 or higher (p < 0.0001 for each).
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Fig. 3. Prediction quality when measuring correlation with Kendall’s τ and sMAREAP

for Robust04 title-only queries and 15 different system configurations. The line inside
the interquartile range (IQR) is the median, and the white square is the mean.

Table 2. MD0micro ANOVA on the Robust04 collection. Topics are represented with
the title queries. SS: Sum of Squares; DF: Degrees of Freedom; MS: Mean Square; F:
F statistics.

Source SS DF MS F p-value ω̂2
〈fact〉

Topic 876.524 248 3.534 168.136 <0.001 0.410

Stoplist 1.185 4 0.296 14.095 <0.001 0.001

Stemmer 5.218 2 2.609 124.108 <0.001 0.004

QPP model 46.569 15 3.105 147.691 <0.001 0.036

Error 1250.538 59490 0.021

Total 2180.034 59759

We are in a position to introduce our first ANOVA model which will enable
a more comprehensive experimental analysis of the results.

yiqrs = μ + τi + γq + δr + ζs + εiqrs (MD0micro)

where: yi... is the performance (sAREAP ) on the i-th topic (using the specified
QPP pipeline); μ is the grand mean; τi is the effect of the i-th topic (represented
with the title query formulation); γq, δr, and ζs are the effect of the q-th stoplist,
the r-th stemmer, and the s-th QPP model; εiqrs is the error component. Table 2
summarizes the ANOVA results of our first experiment. It can be seen that
the stoplist, the stemmer, and the QPP model have a small size effect, while
the topic effect is large (indicating that most of the performance of the QPP
depends on the chosen topic). Based on the results of this analysis, we also ran
a Tukey’s Honestly Significant Difference (HSD) post-hoc analysis to test for
pairwise differences. Figure 4 shows the Tukey’s HSD confidence intervals for
sMAREAP over the different QPP models.

When comparing Fig. 1 (orange bars) and Fig. 4, we can observe that there
is less overlap between the CIs, in particular, we observe that, by computing the
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Fig. 4. Confidence Intervals of sMAREAP from MD0micro on the Robust04 title
queries.

p-values for the pairwise comparisons, out of 120 pairs of predictors, 96 of them
are significantly different (80.0%). Thus, compared to the results observed for
the bootstrap-based approach, we are able to differentiate between 68.4% more
pairs of predictors. In this case, the top performing cluster includes UEF(WIG),
UEF(SMV), UEF(NQC), and UEF(Clarity).

The “Topic” factor, as Table 2 suggests, is responsible for the largest part of
the variance; this is in line with results from IR effectiveness evaluation (see for
example Tague-Sutcliffe and Blustein [41]). Thus, the estimation of the perfor-
mance for a specific QPP model can vary significantly as it is dependent on prop-
erties of the underlying collection (performance differences in topics/queries).
By removing the contribution of the topics from the global variance, ANOVA
removes any volatility in the underlying experimental data allowing the relative
performance of predictors to be compared more precisely. When using only cor-
relations aggregated across all topics, such information is lost, while an ANOVA
analysis facilitates more discriminative performance comparisons between sys-
tems by systematically accounting for each factor separately.

3.4 ANOVA Modeling of Multiple Queries and Interactions

One of the most interesting aspects of our framework is the capability to compute
the effect sizes of interactions between factors. This is achieved using MD1micro

yijqrs = μ + τi + νj(i) + γq + δr + ζs + (τγ)iq + (τδ)ir + (τζ)is
+ (νγ)j(i)q + (νδ)j(i)r + (νζ)j(i)s + (γδ)qr + (γζ)qs + (δζ)rs + εijqrs

(MD1micro)

which extends MD0micro to include νj(i) to represent the effect of the j-th query
formulation for the i-th topic. Moreover, this model considers all of the possible
two-way interactions which are now computable using the replicates provided by
the multi-query topic formulations.
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Table 3. MD1micro ANOVA applied on Robust04 collection. ω2 for non-significant
factors is ill-defined and thus not reported.

Source SS DF MS F p-value ω̂2
〈fact〉

Topic 1840.082 248 7.420 1293.936 <0.001 0.518

Formulation (Topic) 1746.213 996 1.753 305.749 <0.001 0.504

Stoplist 1.179 4 0.295 51.402 <0.001 0.001

Stemmer 10.622 2 5.311 926.188 <0.001 0.006

QPP model 305.796 15 20.386 3555.233 <0.001 0.151

Topic*Stoplist 40.224 992 0.041 7.071 <0.001 0.020

Topic*Stemmer 154.200 496 0.311 54.216 <0.001 0.081

Topic*QPP model 2051.688 3720 0.552 96.182 <0.001 0.542

Frm.*Stoplist 87.110 3984 0.022 3.813 <0.001 0.036

Frm.*Stemmer 312.955 1992 0.157 27.398 <0.001 0.150

Frm.*QPP model 3348.894 14940 0.224 39.091 <0.001 0.656

Stoplist*Stemmer 0.059 8 0.007 1.288 0.2444 –

Stoplist*QPP model 0.901 60 0.015 2.618 <0.001 <0.001

Stemmer*QPP model 4.850 30 0.162 28.195 <0.001 0.003

Error 1555.757 271312 0.006

Total 11460.530 298799

Table 3 presents the ANOVA summary statistics for Ex. MD1micro. In this
analysis we add the query formulations as a nested factor for each topic, in this
case we randomly chose 5 for each topic.2 The table empirically shows that the
largest differences in QPP performance are due to the topics, and their formu-
lations. While this is a well-known phenomenon, our model is able to explicitly
quantify the magnitude of this effect. The effect for the QPP factor is medium-
sized. It is important to note that the dimension of the effect is due to the wide
variety of QPP models (and their performance) taken into account. For example,
a practitioner wishing to evaluate new QPP models may observe a smaller ω2

for the QPP model factor if the relative performance differences between the
models being compared is less substantial.

We have also ran similar experiments using alternative models with fewer
factors, but found that including all of the possible interactions is the most
informative. For example, the effect size of stoplists and stemmers are both
small but still significant. This suggests that stemmers and stoplists may affect
overall prediction quality, and practitioners should consider all possible factors
when comparing and contrasting QPP performance for a corpus.

We are now in a position to observe the interaction between topics (and their
query formulations) and the predictors, which is large, indicating that important
differences between QPP model performance exists within reformulations of a

2 The topic with the minimal number of query formulations had 5 formulations.
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single topic. Finding the QPP model where interactions are smallest is valuable in
practice as this corresponds to be choosing a model that is most robust to query
reformulation. Additionally, this enables a series of additional analyses, such as a
failure analysis for topics with the largest interaction with a QPP model. There
are many additional factors that could influence the performance of various QPP
approaches, beyond the ones included in our model. For example, alternative
ranking functions or evaluation metrics can also be used with sMARE, and
may provide additional experimental evidence and insights into performance
differences between various QPP models in the future.

4 Conclusion

We have presented a novel evaluation framework for QPP. The framework esti-
mates the performance of QPP on every topic as the distance between its pre-
dicted rank - computed using the QPP – and the expected one – measured
through AP (or any other traditional IR measure). This allows us to obtain a dis-
tribution of performance for the QPP over the different topics. Furthermore, our
framework makes use of multiple query formulations for each topic to enhance
the power of our analyses. Together, the use of multiple query formulations and
the distributional representation of the performance enables carrying out more
accurate studies. In particular, we showed that it is possible to rely on the sta-
tistical properties of ANOVA and corresponding post hoc procedures to better
identify pairs of QPP approaches that are statistically significantly different.
The newly proposed framework also enables the analysis of interaction effects
for QPP models and topics, allowing failure analyses and a deeper understanding
into how a QPP model works. Our framework can be extended and adapted to
different investigation needs. For example, in an academic setting, you may add
further factors to the model such as tokenizers, query expansion components,
or ranking functions to deepen the investigation into the factors that influence
QPP performance. In industrial deployment settings, comparisons between com-
peting QPP techniques may require an ANOVA model consisting of only two
factors: topics and QPP approaches. This simple two-way ANOVA is sufficient
to determine if QPP models are significantly different, and has the added benefit
of relying on a statistically-sound and easy to deploy framework. In future work,
we plan to study additional components of the evaluation framework, such as
the impact of the ranking methods which are used to establish “ground truth”
performance; new factors that influence QPP systems such as the ranking app-
roach used in the post-retrieval QPP; and the effects of using multiple corpora,
in order to more comprehensively model and understand corpus and QPP inter-
actions. In order to aid reproducibility of our results, the code for our proposed
evaluation framework is publicly available.3

3 https://github.com/Zendelo/QPP-EnhancedEval.

https://github.com/Zendelo/QPP-EnhancedEval
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Abstract. Open-domain conversational search assistants aim at
answering user questions about open topics in a conversational manner.
In this paper we show how the Transformer architecture [30] achieves
state-of-the-art results in key IR tasks, leveraging the creation of con-
versational assistants that engage in open-domain conversational search
with single, yet informative, answers. In particular, we propose an open-
domain abstractive conversational search agent pipeline to address two
major challenges: first, conversation context-aware search and second,
abstractive search-answers generation. To address the first challenge,
the conversation context is modeled with a query rewriting method that
unfolds the context of the conversation up to a specific moment to search
for the correct answers. These answers are then passed to a Transformer-
based re-ranker to further improve retrieval performance. The second
challenge, is tackled with recent Abstractive Transformer architectures
to generate a digest of the top most relevant passages. Experiments show
that Transformers deliver a solid performance across all tasks in conver-
sational search, outperforming the best TREC CAsT 2019 baseline.

Keywords: Conversational search · Transformers · Query rewriting ·
Re-ranking · Answer generation

1 Introduction

Conversational search systems are an emerging research topic, and the natural
evolution of the traditional search paradigm, allowing for a more natural inter-
action between users and search systems. Building intelligent systems able to
establish and develop meaningful conversations is one of the key goals of AI and
the ultimate goal of natural language research [9]. The interactions between a
user and conversational systems have been studied in [32], which showed that
users are willing to utilise conversational assistants as long as their needs are met
with success. However, conversational search assistants still put a considerable
burden on users that have to go through a list of documents, or passages, to find
the information they need.
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We depart from this document-based approach to conversational search, and
propose an open-domain abstractive conversational assistant that is aware of the
context of the conversation to generate a single and informative search-answer.
We argue that by doing so, we can capture in one single and short answer the
information contained on several relevant documents. Moreover, we show that
Transformer architectures [30] outperform the state-of-the-art results across all
the steps of the conversational system pipeline. Hence, the core contributions
of this paper are twofold: first, we show that one can tightly integrate different
Transformers to deliver an end-to-end conversational search pipeline with state-
of-the-art results; second, abstractive answer generation can effectively compress
the information of several retrieved passages into a short answer. These contribu-
tions are rooted in the groundbreaking architecture of the Transformer [30] that
leverages attention mechanisms to model complex interactions between sequence
data. In particular, we explore Transformer’s advantages to: (a) capture com-
plex relations between conversation turns to rewrite a query in the middle of a
conversation; (b) to look into the interactions between words in a conversation
query and a candidate passage; and (c) to compress multiple retrieved passages
into one single, yet informative, search-answer. The final result, is a complete
conversational search assistant leveraged by the Transformer architecture.

In the following section, we discuss the related work. In Sect. 3 we detail
the Transformer-based conversational search pipeline: the conversational query
rewriting, the re-ranker, and abstractive answer generation. Evaluation is per-
formed in Sect. 4 and Sect. 5 presents the key takeaway messages.

2 Related Work

Open-domain conversational search systems must account for the dialog con-
text to provide a relevant passage. While research on interactive search systems
has started long ago [1,4,23], the recent interest in having intelligent conversa-
tion assistants (e.g. Alexa, SIRI), has re-ignited this research field. Recent mod-
els [9,17,25,31] leverage large open-domain collections (e.g. Wikipedia) to learn
rich language-models using self-supervised neural networks. The applicability of
these models in conversational search is twofold: grasping the dialog context
and passage re-ranking. Recently, the TREC CAsT (Conversational Assistant
Track) [6] task introduced a multi-turn passage retrieval dataset, enabling the
development and evaluation of such models.

Conversational context-aware search models need to (a) keep track of the
dialog context, and (b) select the most relevant passage. To address (a), one app-
roach is to perform query rewriting to obtain context-independent queries. [10]
observed that manually rewritten queries from QuAC [2] had enough context
to be independently understandable. To automate the process, a sequence-to-
sequence (seq2seq) model with attention and a copy mechanism was proposed.
The model is given as input a sequence with the full conversation history and the
query to be rewritten. In [31], a BERT model [7] is given as input a sequence of
all terms of the current and previous queries, and is then fine-tuned on a binary
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term classification task. Also using both the query and conversation history,
in [17], a pre-trained T5 model [26] is fine-tuned on CANARD [10] to construct
the context-independent query, and achieved state-of-the-art performance on
the query-rewriting task. Task (b) is commonly addressed through re-ranking.
Large pre-trained Transformer models, such as BERT [7], RoBERTa [18], and
XLNet [36], have been widely adopted for re-ranking due to their generalisation
capabilities. Examples of this are present in [12,21,22], where a Transformer-
based model is fine-tuned on the question-answering relevance classification task.

Given the dialogue context, the agent must generate a natural language
response. In chit-chat dialogue generation, most approaches use an encoder-
decoder neural architecture that first encodes utterances and then the decoder
generates a response [15,16,28,29,39]. In [15] and [16], reinforcement learning
is used to overcome uninformative and general responses of standard seq2seq
models. Another alternative is retrieval-based dialogue generation, in which the
generator takes as input retrieved candidate documents to improve the compre-
hensiveness of the generated answer [28,39]. These approaches require a large
dataset with annotated dialogues, which is not feasible in our scenario. Alterna-
tively, Transformer models have shown to be highly effective generative language
models [14,26,38]. While both T5 [26] and BART [14] are general language mod-
els, PEGAGUS [38] focuses on abstractive summarisation, and obtained state-
of-the-art results on 12 summarisation tasks.

3 Transformers-Based Conversational Search Assistant

In this section we formulate the open-domain conversational search task and
describe the conversational assistant retrieval and answer generation compo-
nents. The conversational search task is formally defined by a sequence of natural
language conversational turns for a topic T , with queries q. For each conversa-
tion turn T = {q1, ...qi, ...qn}, the conversational search task is to find relevant
passages pk for each query qi, satisfying the user’s information need for that
turn according to the conversational context. The proposed approach uses a
four-stage architecture: (a) context tracking, (b) retrieval, (c) re-ranking, and
(d) answer generation. An overview of the system’s architecture can be seen in
Fig. 1 which we will detail in the following sections.

3.1 Conversational Query Rewriting Transformer

Due to the evolving nature of a conversational session, the current query may not
include all the information needed to retrieve the answer that the user is looking
for. This challenge is illustrated in the conversation presented in Table 1: in con-
versation turn 2, the system needs to understand that “its” refers to “Lucca’s”
(explicit coreference) and in turn 3, where the important monuments should be
focused in Lucca, although there is no direct evidence (implicit coreference),
which makes the task even more challenging. We tackle this challenge by rewrit-
ing queries, using previous turns, making the current query context-independent.
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Fig. 1. The proposed Transformer-based conversational search assistant.

Table 1. Conversation example about a specific topic, in this case the city of Lucca.

Turn Conversational query Context-independent query

1 How is the climate in Lucca? How is the climate in Lucca?

2 Tell me about its origins Tell me about Lucca’s origins

3 What monuments should I visit? What monuments should I visit in Lucca?

To perform the query rewriting task, we need a model capable of performing
coreference resolution and include context from previous turns. The Text-to-text
Transfer Transformer (T5) [26] can be fine-tuned to reformulate conversational
queries [17] by providing as input the sequence of conversational queries and
passages, and as target, the rewritten query. The training input sequence is
constructed as:

“qi [CTX] q1 p1 [TURN ] q2 p2 [TURN ] . . . [TURN ] qi−1 pi−1”, (1)

where i is the current turn, q is a query, pk is a passage retrieved from the index
by the retrieval model, and [CTX] and [TURN ] are special tokens. [CTX] is used
to separate the current query from the context (previous queries and passages)
and [TURN ] is used to separate the historical turns (query-passage pair).

3.2 Passage Re-Ranking Transformer

With the new pre-trained neural language models, such as BERT [7] and oth-
ers [18,36], it is possible to generate contextual embeddings for a sentence and
each of its tokens. These embeddings can be used as input to a model to per-
form passage re-ranking [21,22]. This re-ranking step allows going beyond term
matching, as the model has some understanding of both individual terms seman-
tics as well as their interactions between queries and passages. As such, it is able
to judge more thoroughly if a passage is relevant to a query.

Following this rationale, we tackle the passage re-ranking task with a BERT
model [7], fine-tuned on the passage ranking task [21], through a binary relevance
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classification task, where positive examples are relevant passages, and negative
examples are non-relevant passages. To obtain the embedding of the query q,
and passage p, a sequence with N tokens is given as input to BERT:

emb = BERT (“[CLS] q [SEP ] p”), (2)

where emb ∈ R
N×H (H is BERT embedding’s size) is the embeddings matrix

of all tokens, and [CLS] and [SEP] are special tokens in BERT’s vocabulary,
representing the classification and separation tokens, respectively. From emb we
extract the embedding of the first token, which corresponds to the embedding
of the [CLS] token, emb[CLS] ∈ R

H . This embedding is then used as input to
a single layer feed-forward neural network (FFNN), followed by a softmax, to
obtain the probability of the passage being relevant to the query:

P (p|q) = softmax(FFNN(emb[CLS])). (3)

With P (p|q) calculated for each passage p given a query q, the final rank is
obtained by re-ranking according to the probability of being relevant.

3.3 Abstractive Search-Answer Generation Transformer

Having identified a set of candidate passages according to the scores given by
the re-ranker model (Eq. 3), the goal is to generate a natural language response
that combines the information comprised in each of the passages. To address
this, we follow an abstractive summarisation approach, which unlike extractive
summarisation that just selects existing sentences, it can portray both reading
comprehension and writing abilities, thus allowing the generation of a concise
and comprehensive digest of multiple input passages.

The Transformer [30] architecture has proved to be highly effective at mod-
elling large dependency windows of textual sequences. Text-to-text approaches
[14,26,38], trained over large and comprehensive collections, become effective at
understanding different topics and retaining language regularities useful for sev-
eral language tasks. Thus, to generate the agent’s response using a transformer
model, we give as input the following sequence:

“p1 p2 . . . pN”, (4)

where each pk corresponds to one of the top-N candidate passages. With this
strategy, we implicitly bias the answer generation by asking the model to sum-
marise the passages that are deemed as more relevant according to the retrieval
component.

The implicit bias of the top passages is crucial to steer the Transformer
response generation. The sequence of passages of Eq. 4 is given as input to the
Transformer, which will then attend to the different passages. As the multi-
head attention layers look across the different passages, redundant parts will be
merged, while the remaining information will be summarised, leading to a concise
but comprehensive answer. The following Transformer models were considered
for the task of abstractive summarisation:
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– Text-to-Text Transfer Transformer (T5) [26] is a text-to-text model
based on the encoder-decoder Transformer architecture, pre-trained on the
large C4 corpus, which was derived from Common Crawl1. A masked language
modelling objective is used, where the model is trained to predict corrupted
randomly sampled tokens, of varying sizes.

– BART [14] is a denoising autoencoder, that combines Bidirectional and
Auto-Regressive Transformers. Pre-training consists of corrupting text with
an arbitrary noising function and learning an autoencoder to reconstruct the
original text. The best performing noise functions were text infilling (using
single mask tokens to mask random sampled spans of text), and sentence
shuffling (changing the order of sentences in passages).

– PEGASUS [38] specialises on the abstractive summarisation task. Multiple
important sentences are masked and used as targets, i.e., the model is trained
to generated each omitted sentence as output. As in T5, this model is not
trained to reconstruct sequences.

4 Evaluation

4.1 Datasets and Protocol

CANARD Dataset [10]. This dataset was used to train and evaluate the query
rewriting method. It was created by manually rewriting the queries in QuAC [2]
to form non-conversational queries. The training, development, and test sets
have 31.538, 3.418, and 5.571, query-rewrites respectively.

TREC CAsT Dataset [5]. This dataset was used to evaluate both the con-
versational search and answer generation components. There are 50 evaluation
topics, each with about 10 turns. Of those in total, 20 conversational topics were
labelled on average until turn depth 8 using a graded relevance that ranges from
0 (not relevant) to 4 (highly relevant). The passage collection is composed by
MS MARCO [19], TREC CAR [8], and WaPo [20] datasets, which creates a
complete pool of close to 47 million passages.

Experimental Protocols. To analyse query rewriting performance, we used
the BLEU-4 score [24] between the model’s output and the queries rewritten by
humans, on the CANARD dataset.

In the passage retrieval experiment, we used the TREC CAsT setup and the
official metrics, nDCG@3 (normalised Discounted Cumulative Gain at 3), MAP
(Mean Average Precision), and MRR (Mean Reciprocal Rank), along with Recall
and P@3 (Precision at 3).

In the answer generation experiment, we used METEOR and the ROUGE
variant ROUGE-L. For each query in TREC CAsT, we use as reference passages,
all the passages with a relevance judgement of 3 and 4. Hence, the goal is to
generate answers that cover, as much as possible, the information contained in
all relevant passages, in one concise and summarised answer.
1 https://commoncrawl.org/.

https://commoncrawl.org/
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4.2 Implementation

Query Rewriting. We fine-tuned the T5 [26] model according to [17] and
used the CANARD’s training set [10], providing as input the concatenation of
the conversational queries and passages, and as target the rewritten query. In
particular, we used the T5-BASE model and trained for 4000 steps, using a
maximum input sequence length of 512 tokens, a maximum output sequence
length of 64 tokens, a learning rate of 0.0001, and batches of 256 sequences.

First-Stage Retrieval. To index and search, we used the well tuned Anserini
framework [35], in particular, the Python implementation Pyserini2. We applied
stop word removal, using Lucene’s default list, and stemming using Kstem3.
We experimented with: BM25 [27], language models with Dirichlet (LMD) and
Jelinek-Mercer (LMJM) smoothing [37] and from our initial analysis, LMD
showed better results. This confirms previous knowledge [37] and matches the
shorter queries that we observe in a conversational search scenario. Hence, LMD
was the model used in all experiments.

BERT Passage Re-Ranker. To perform re-ranking, we used the BERT model
implementation from Huggingface [33]. Following the state-of-the-art [21,22], we
used the LARGE version of BERT with a classification layer (feed-forward neu-
ral network) on top, that takes as input the query-passage CLS token embed-
dings vector generated by BERT, and classifies the passage as relevant or non-
relevant to that query. This model was trained following [21] on the MS MARCO
dataset [19]. In testing, we truncate the concatenation of the query, passage, and
separator tokens to a maximum of 512 tokens (the maximum number of tokens
for the BERT model).

Transformer Based Answer Generation. To generate the summarised
answers, we employed the T5-BASE, BART-LARGE and PEGASUS mod-
els [33]. The T5-BASE has about 220 million parameters with 12 layers, 768
hidden-state size, 3072 feed-forward hidden-states and 12 heads. BART-LARGE
holds about 406 million parameters, with a 12-layer, 1024 hidden state size and
16-head architecture. The PEGASUS model has the biggest number of parame-
ters, 568 million, with 16 layers, 1024 hidden state size and 16-heads.

All models were fine-tuned on the summarising task with the CNN/Daily
Mail dataset [13]. To generate the summary, we use 4 beams, restrict the n-grams
of size 3 to only occur once, and allow for beam search early stopping when at
least 4 sentences are generated. Additionally, we fix the maximum length of
the summary to be of the same length of the input given to the models (which
corresponds to 3 passages) and vary the minimum length from 20 to 120 words.

2 https://github.com/castorini/pyserini.
3 http://lexicalresearch.com/kstem-doc.txt.

https://github.com/castorini/pyserini
http://lexicalresearch.com/kstem-doc.txt
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4.3 Results and Discussion

Conversation-Aware Query Rewriting. In Table 2, we show the BLEU-4
scores obtained in CANARD’s test set and in TREC CAsT’s 2019 manually
rewritten queries. The rows “Human” and “Raw” are from [10], the row “T5-
BASE” is from [17]. The last row corresponds to our implementation. Our results
are on par with [17], being lower in the CANARD dataset but higher in TREC
CAsT. We believe the minor differences in performance between our T5-Base
model and the T5-BASE from [17] are due to the use of different input sequences,
as the exact method of constructing the input is not specified in [17].

Table 2. BLEU-4 scores for the CANARD test set and for TREC CAsT using the
manually rewritten queries of the evaluation set.

CANARD TREC CAsT

Human [10] 59.92 -

Raw [10] 47.44 -

T5-BASE [17] 58.08 75.07

Our T5-BASE 56.84 79.67

From the analysis of the BLEU-4 scores and outputs, we can conclude that
the model is performing both coreference and context resolution, approximating
the queries in a conversational format to context-independent queries. Examples
of the inputs, targets, and predicted queries, are presented in Table 3. In TREC
CAsT, the historical utterances do not depend on the responses of the system,
so the answer is not provided as input. As we can see, T5 is capable of resolving
ambiguous queries by co-reference resolution, as in example 1, but sometimes
mistakes similar co-references when multiple are involved, as evidenced in exam-
ple 2 and in [17], where the model predicts “throat cancer” instead of “lung
cancer”. We can also note that this model is more robust than just corefer-
ence resolution, as seen in example 3, where it includes the words “Bronze Age
Collapse”, even though there is no explicit mention (implicit coreference).

Transformer-Based Passage Search. Table 4 shows the results of retrieval on
the TREC CAsT dataset. Original are the conversational queries (lower-bound),
Manual is a baseline where the queries were manually rewritten (upper-bound),
T5 is using our query rewriting method, and the other two lines are the results
of baselines retrieved from [6]. clacBase [3] is a method that uses AllenNLP
coreference resolution [11] and a fine-tuned BM25 model with pseudo-relevance
feedback, and HistoricalQE [34] is a method that uses a query expansion algo-
rithm based on session and query words together with a BERT LARGE model
for re-ranking. The latter was the best performing method in terms of nDCG@3
in TREC CAsT 2019 [6].
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Table 3. Example of query rewriting inputs, targets and predictions.

CANARD

Original query What was his agreement with McMahon?

T5 Input query What was his agreement with McMahon? [CTX] Superstar
Billy Graham. Return to WWWF (1977–1981) [TURN] Why
did he return to the WWWF? An agreement with promoter
Vincent J. McMahon Senior

T5 predicted query What was Superstar Billy Graham’s agreement with
McMahon?

Target query What was Billy Graham’s agreement with McMahon?

TREC CAsT 2019

Original query What are its symptoms?

T5 Input query What are its symptoms? [CTX] What is throat cancer?
[TURN] Is throat cancer treatable? [TURN] Tell me about
lung cancer

T5 predicted query What are throat cancer’s symptoms?

Target query What are lung cancer’s symptoms?

Original query What are some of the possible causes?

T5 Input query What are some of the possible causes? [CTX] Tell me about
the Bronze Age collapse? [TURN] What is the evidence for
the Bronze Age collapse?

T5 predicted query What are some of the possible causes for the Bronze Age
collapse?

Target query What are some of the possible causes
of the Bronze Age collapse?

The first observation that emerges from Table 4 is the clear need for a query
rewriting method to maintain the conversational context, evidenced by the low
scores on all metrics using the original conversational queries. Rewriting queries
(with the T5 model) outperforms the original conversational queries by a 5−20%
margin (nDCG@3), thus showing the effectiveness of this approach. The second
clear observation is again the considerable improvement when Transformers are
used for re-ranking. In this case, the improvement is in the 10–15% range over
standard retrieval metrics. This is due to the better understanding that the
fine-tuned BERT model has of the interactions between the query and passage
terms.

Finally, the largest gains emerge when we combine the two Transformers to
deliver state-of-the-art results. With the proposed Transformers we outperform
the best TREC CAsT 2019 baseline by 3.9% in terms of nDCG@3. We con-
sider that this improvement is mainly due to the use of a better query-rewriting
method that allows the retrieval model to retrieve passages given the conversa-
tional context, providing the re-ranker with more relevant passages.
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Table 4. Results of retrieval on the TREC CAsT evaluation set. The HistoricalQE [34]
was the best performing model in TREC CAsT 2019.

Queries Re-ranker Recall P@3 MAP MRR nDCG@3

Original – 0.454 0.262 0.141 0.336 0.167

Original BERT 0.454 0.385 0.181 0.456 0.272

T5 – 0.697 0.474 0.251 0.597 0.322

T5 BERT 0.697 0.632 0.310 0.739 0.475

TREC CAsT baselines

clacBase [3] – – – 0.246 0.640 0.360

HistoricalQE [34] BERT – – 0.267 0.715 0.436

Manual baselines

Manual - 0.820 0.590 0.327 0.694 0.406

Manual BERT 0.820 0.757 0.389 0.857 0.577

Fig. 2. Performance of the answer generation results under different metrics.

Conversational Answer Generation. Figure 2 shows the result of the answer
generation step according to the ROUGE-L and METEOR metrics. The base-
line is composed by the concatenation of the top 3 passages, cropped to the
maximum length of the passage according to the “Summary Minimum Length”
value, respecting sentence endings. In Fig. 2 all answer generation models were
better than the retrieval baseline method. According to ROUGE-L the top per-
formance is achieved around 60–90 word length answers. Since the goal is to
generate short and informative answers, we were not interested in answers longer
than 100 words. Actually, we believe that answers with fewer than 50 words are
more natural for conversational scenarios. According to these results we observe
that BART was the best answer generation method.



140 R. Ferreira et al.

In Fig. 3 we analyse the retrieval and the answer generation performance
over conversation turns. We see that peak performance is achieved on the first
turn, which was expected given that the first turn that establishes the topic. As
the conversation progresses, retrieval performance decreases, but surprisingly,
answer generation performance is stable until the 6th turn. We also observed
that the decreases in performance are linked to sub-topic shifts within the same
conversation topic.

An interesting observation from Fig. 3 is that PEGASUS is the method that
exhibits a stronger correlation with retrieval performance. We believe this is
related to its generation process that has a behaviour closer to extractive sum-
marisation, while BART and T5 demonstrate a more abstractive behaviour.

Finally, in Table 5 we illustrate the answer generation with all three Trans-
formers. This table further confirms the abstractive versus extractive summarisa-
tion behaviours of the different Transformer-based architectures. In this example
we see that T5 tries to generate new sentences by combining different sentences.

Fig. 3. Answer generation versus retrieval performance per conversation turn. The
minimum length is 80 and 20 in the top and bottom graphs respectively.
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Table 5. Answer generation example for the turn “What was the first artificial satel-
lite?”. Summary minimum length is set to 90. Blue sentences illustrate abstractive,
green sentences illustrate extractive, and red sentences illustrate wrong summaries.

Method Answer

Retrieval passage 1 The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957, and initiating the Soviet
Sputnik program, with Sergei Korolev as chief designer
(there is a crater on the lunar far side which bears his
name). This in turn triggered the Space Race between the
Soviet Union and the United States

Retrieval passage 2 The first artificial Earth satellite was Sputnik 1. Put into
orbit by the Soviet Union on October 4, 1957, it was
equipped with an on-board radio-transmitter that worked
on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was
launched as a step in the exploration of space and rocket
development. While incredibly important it was not placed
in orbit for the purpose of sending data from one point on
earth to another. And it was the first artificial satellite in
the steps leading to today’s satellite communications

Retrieval passage 3 The first artificial satellite was Sputnik 1. It was the size of
a basketball and was made by the USSR (Union of Soviet
Socialist Republics) or Russia. It was launched on October
4, 1957.

T5 the first artificial satellite was Sputnik 1, launched by the
u.s. or Russia. it was the size of a basketball and launched
on October 4, 1957. the satellite was equipped with a
radio-transmitter that worked on two frequencies.
incredibly important it was not placed in orbit for sending
data from one point on earth to another. in turn, it
triggered the space race between the united states and the
soviet union.

BART The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957. It was equipped with an
on-board radio-transmitter that worked on two frequencies:
20.005 and 40.002 MHz. This in turn triggered the Space
Race between the Soviet Union and the United States. The
size of a basketball, it was not placed in orbit for the
purpose of sending data from one point on earth to
another. And it was the first Artificial satellite in the steps
leading to today’s satellite communications.

PEGASUS The first artificial satellite was Sputnik 1, launched by the
Soviet Union on October 4, 1957. Sputnik 1 was launched
as a step in the exploration of space and rocket
development. It was not placed in orbit for the purpose of
sending data from one point on earth to another. This in
turn triggered the Space Race between the USSR and the
U.S. There is a crater on the lunar far side which bears his
name.
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5 Conclusions

In this paper we investigated how Transformer architectures can address different
tasks in open-domain conversational search, with particular emphasis on the
search-answer generation task. The key findings are:

– Transformers-based Conversational Search. Transformers can solve a
number of tasks in conversational search, leading to new state-of-the-art
results by outperforming the best TREC-CAsT 2019 baseline by 3.9% in
terms of nDCG@3. This result is rooted on a fine-tuned bi-directional Trans-
former model [26] for conversational query re-writing, which attained an
improvement of 5–20% (nDCG@3) over raw conversational queries. Similarly,
the re-ranking task using a fine-tuned BERT LARGE model [21] improved
results by 10–15% (nDCG@3) over an LMD model.

– Search-Answer Generation. Experiments showed that search systems can
be improved with agents that abstract the information contained in multiple
documents to provide a single and informative search answer. In terms of
ROUGE-L we concluded that all answer generation models [14,26,38] per-
formed better than the retrieval baseline.

– Abstractive vs Extractive Answer Generation. The examined answer
generation Transformers revealed different behaviours. BART was the most
effective in generating answers that were rewritten with information from
different passages. This approach turned out to be better than extractive
methods that copy and paste sentences from different passages.

As future research, we plan to improve conversational query rewriting meth-
ods, re-rankers with a notion of the context of the conversation, and mine pos-
sible conversation paths to steer the answer generation process towards further
helping the user in exploring alternative aspects of the searched topic.
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Abstract. This paper presents clear, a retrieval model that seeks
to complement classical lexical exact-match models such as BM25
with semantic matching signals from a neural embedding matching
model. clear explicitly trains the neural embedding to encode language
structures and semantics that lexical retrieval fails to capture with a
novel residual-based embedding learning method. Empirical evaluations
demonstrate the advantages of clear over state-of-the-art retrieval mod-
els, and that it can substantially improve the end-to-end accuracy and
efficiency of reranking pipelines.

1 Introduction

State-of-the-art search engines adopt a multi-stage retrieval pipeline system: an
efficient first-stage retriever uses a query to fetch a set of documents from the
entire document collection, and subsequently one or more rerankers refine the
ranking [28]. The retriever needs to run fast with high efficiency in order to scan
through the entire corpus with low latency. As a result, retrievers have remained
simple and give only mediocre performance. With recent deep neural models
like BERT [10] rerankers pushing reranking accuracy to new levels, first-stage
retrievers are gradually becoming the bottleneck in modern search engines.

Typical first-stage retrievers adopt a bag-of-words retrieval model that com-
putes the relevance score based on heuristics defined over the exact word overlap
between queries and documents. Models such as BM25 [32] remained state-of-
the-art for decades and are still widely used today. Though successful, lexical
retrieval struggles when matching goes beyond surface forms and fails when
query and document mention the same concept using different words (vocabu-
lary mismatch), or share only high-level similarities in topics or language styles.

An alternative approach for first-stage retrieval is a neural-based, dense
embedding retrieval: query words are mapped into a single vector query represen-
tation to search against document vectors. Such methods learn an inner product
space where retrieval can be done efficiently leveraging recent advances in max-
imum inner product search (MIPS) [12,15,34]. Instead of heuristics, embedding
c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 146–160, 2021.
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retrieval learns an encoder to understand and encode queries and documents, and
the encoded vectors can softly match beyond text surface form. However, single
vector representations have limited capacity [1], and are unable to produce gran-
ular token-level matching signals that are critical to accurate retrieval [11,33].

We desire a model that can capture both token-level and semantic-level
information for matching. We propose a novel first-stage retrieval model, Com-
plementary Retrieval Model (clear ), that uses dense embedding retrieval to
complement exact lexical retrieval. clear adopts a single-stage-multi-retriever
design consisting of a lexical retrieval model based on BM25 and an embed-
ding retrieval model based on a Siamese framework that uses BERT [10] to
generate query/document embedding representations. Importantly, unlike exist-
ing techniques that train embeddings directly for ranking independently [4,40],
clear explicitly trains the embedding retrieval model with a residual method:
the embedding model is trained to build upon the lexical model’s exact match-
ing signals and to fix the mistakes made by the lexical model by supplementing
semantic level information, effectively learning semantic matching not captured
by the lexical model, which we term the un-captured residual.

Our experiments on large-scale retrieval data sets show the substantial and
consistent advantages of clear over state-of-the-art lexical retrieval models, a
strong BERT-based embedding-only retrieval model, and a fusion of the two.
Furthermore, clear’s initial retrieval provides additive gains to downstream
rerankers, improving end-to-end accuracy and efficiency. Our qualitative analysis
reveals promising improvements as well as new challenges brought by clear.

2 Related Work

Traditionally, first-stage retrieval has relied on bag-of-words models such as
BM25 [32] or query likelihood [19], and has augmented text representations
with n-grams [25], controlled vocabularies [30], and query expansion [20]. Bag-
of-words representations can be improved with machine learning techniques, e.g.,
by employing machine-learned query expansion on bag-of-sparse-features [5,39],
adjusting terms’ weights [8] with BERT [10], or adding terms to the document
with sequence-to-sequence models [29]. However, these approaches still use the
lexical retrieval framework and may fail to match at a higher semantic level.

Neural models excel at semantic matching with the use of dense text represen-
tations. Neural models for IR can be classified into two groups [11]: interaction-
based and representation-based models. Interaction-based models model interac-
tions between word pairs in queries and documents. Such approaches are effective
for reranking, but are cost-prohibitive for first-stage retrieval as the expensive
document-query interactions must be computed online for all ranked documents.

Representation-based models learn a single vector representation for the
query or the document and use a simple scoring function (e.g., cosine or dot
product) to measure their relevance. Representation-based neural retrieval mod-
els can be traced back to efforts such as LSI [9], Siamese networks [2], and Match-
Plus [3]. Recent research investigated using modern deep learning techniques to
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build vector representations: [21] and [13] used BERT-based retrieval to find
passages for QA; [4] proposes a set of pre-training tasks for sentence retrieval.
Representation-based models enable low-latency, full-collection retrieval with a
dense index. By representing queries and documents with dense vectors, retrieval
is reduced to a maximum inner product search (MIPS) [34] problem. In recent
years, there has been increasing effort on accelerating maximum inner prod-
uct and nearest neighbor search, which led to high-quality implementations
of libraries for nearest neighbor search such as hnsw [24], FAISS [15], and
SCaNN [12]. Notably, with these technologies, nearest neighbor search can now
scale to millions of candidates with millisecond latency [12,15], and has been suc-
cessfully used in large-scale retrieval tasks [13,21]. They provide the technical
foundation for fast embedding retrieval of our proposed clear model.

The effectiveness of representation-based neural retrieval models for stan-
dard ad-hoc search is mixed [11,40]. All of the representation-based neural
retrieval models share the same limitation – they use a fixed number of dimen-
sions, which incurs the specificity vs. exhaustiveness trade-off as in all controlled
vocabularies [33]. Most prior research on hybrid models has focused on the
reranking stage [26]. Some very recent research begins to explore hybrid lex-
ical/embedding models. Its focus is mainly on improving the embedding part
with weak-supervision [18] for low-resource setups, or new neural architectures
that use multiple embedding vectors to raise model capacity [23]. In these works,
embedding models are all trained independently from the lexical models and rely
on simple post-training fusion to form a hybrid score. To the best of our knowl-
edge, ours is the first work that investigates jointly training latent embeddings
and lexical retrieval for first-stage ad hoc retrieval.

3 Proposed Method

clear consists of a lexical retrieval model and an embedding retrieval model.
Between these two models, one’s weakness is the other’s strength: lexical retrieval
performs exact token matching but cannot handle vocabulary mismatch; mean-
while, the embedding retrieval supports semantic matching but loses granular
(lexical level) information. To ensure that the two types of models work together
and fix each other’s weakness, we propose a residual -based learning framework
that teaches the neural embeddings to be complementary to the lexical retrieval.

3.1 Lexical Retrieval Model

Lexical retrievers are designed to capture token level matching information. They
heuristically combine token overlap information, from which they compute a
matching score for query document pairs. Decades of research have produced
many lexical algorithms such as vector space models, Okapi BM25 [32], and
query likelihood [19]. We use BM25 [32] given its popularity in existing systems.
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Given a query q and document d, BM25 generates a score based on the
overlapping words statistics between the pair.

slex(q, d) = BM25(q, d) =
∑

t∈q∩d

rsjt · tft,d

tft,d + k1

{
(1 − b) + b |d|

l

} . (1)

t is a term, tft,d is t’s frequency in document d, rsjt is t’s Robertson-Spärck
Jones weight, and l is the average document length. k1 and b are parameters.

3.2 Embedding Retrieval Model

The embedding retrieval model encodes either the query or document text
sequence into a dense embedding vector, and matches queries and documents
softly by comparing their vector similarity. Generally, the embedding retrieval
model can take various neural architectures that encode natural language
sequences such as CNN [16], or LSTM [14], as long as the model outputs can
be pooled effectively into a single fixed-length vector for any input. A model
capable of deeper text understanding is usually desired to produce high-quality
embedding.

This work uses a Transformer [35] encoder. We start with pretrained BERT
[10] weights and fine-tune the model to encode both queries and documents into
vectors in a d-dimension embedding space, i.e., vq,vd ∈ R

d. The model has a
Siamese structure, where the query and document BERT models share param-
eters θ in order to reduce training time, memory footprint, and storthe special
token 〈qry〉 to queries and 〈doc〉 to documents. For a given query or document,
the embedding model computes the corresponding query vector vq or document
vector vd, following SentenceBERT [31], by average pooling representations from
the encoder’s last layers.

vq = AvgPool[BERTθ(〈qry〉 ; query)] (2)

vd = AvgPool[BERTθ(〈doc〉 ; document)] (3)

The embedding matching score semb(q, d) is the dot product of the two vectors.
We use dot product as the similarity metric as it allows us to use MIPS [12,15]
for efficient first-stage retrieval.

semb(q, d) = vT
q vd . (4)

3.3 Residual-Based Learning

We propose a novel residual-based learning framework to ensure that the lexi-
cal retrieval model and the embedding retrieval model work well together. While
BM25 has just two trainable parameters, the embedding model has more flexibil-
ity. To make the best use of the embedding model, we must avoid the embedding
model “relearning” signals already captured by the lexical model. Instead, we
focus its capacity on semantic level matching missing in the lexical model.
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In general, the neural embedding model training uses hinge loss [36] defined
over a triplet: a query q, a relevant document d+, and an irrelevant document
d− serving as a negative example:

L = [m − semb(q, d+) + semb(q, d−)]+ (5)

where [x]+ = max{0, x}, and m is a static loss margin. In order to train embed-
dings that complement lexical retrieval, we propose two techniques: sampling
negative examples d− from lexical retrieval errors, and replacing static margin
m with a variable margin that conditions on the lexical retrieval’s residuals.

Error-Based Negative Sampling. We sample negative examples (d− in Eq. 5)
from those documents mistakenly retrieved by lexical retrieval. Given a positive
query-document pair, we uniformly sample irrelevant examples from the top N
documents returned by lexical retrieval with probability p. With such negative
samples, the embedding model learns to differentiate relevant documents from
confusing ones that are lexically similar to the query but semantically irrelevant.

Residual-Based Margin. Intuitively, different query-document pairs require
different levels of extra semantic information for matching on top of exact match-
ing signals. Only when lexical matching fails will the semantic matching signal
be necessary. Our negative sampling strategy does not tell the neural model the
degree of error made by the lexical retrieval that it needs to fix. To address this
challenge, we propose a new residual margin. In particular, in the hinge loss, the
conventional static constant margin m is replaced by a linear residual margin
function mr, defined over slex(q, d+) and slex(q, d−), the lexical retrieval scores:

mr(slex(q, d+), slex(q, d−)) = ξ − λtrain(slex(q, d+) − slex(q, d−)), (6)

where ξ is a constant non-negative bias term. The difference slex(q, d+) −
slex(q, d−) corresponds to a residual of the lexical retrieval. We use a scaling
factor λtrain to adjust the contribution of residual. Consequently, the full loss
becomes a function of both lexical and embedding scores computed on the triplet,

L = [mr(slex(q, d+), slex(q, d−)) − semb(q, d+) + semb(q, d−)]+ (7)

For pairs where the lexical retrieval model already gives an effective document
ranking, the residual margin mr (Eq. 6) becomes small or even becomes negative.
In such situations, the neural embedding model makes little gradient update, and
it does not need to, as the lexical retrieval model already produces satisfying
results. On the other hand, if there is a vocabulary mismatch or topic difference,
the lexical model may fail, causing the residual margin to be high and thereby
driving the embedding model to accommodate in gradient update. Through the
course of training, the neural model learns to encode the semantic patterns that
are not captured by text surface forms. When training finishes, the two models
will work together, as clear.
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3.4 Retrieval with CLEAR

clear retrieves from the lexical and embedding index respectively, taking the
union of the resulting candidates, and sorts using a final retrieval score: a
weighted average of lexical matching and neural embedding scores:

sclear(q, d) = λtestslex(q, d) + semb(q, d) (8)

We give clear the flexibility to take different λtrain and λtest values. Though
both are used for interpolating scores from different retrieval models, they have
different interpretations. Training λtrain serves as a global control over the resid-
ual based margin. On the other hand, testing λtest controls the contribution from
the two retrieval components.

clear achieves low retrieval latency by having each of the two retrieval
models adopt optimized search algorithms and data structures. For the lexi-
cal retrieval model, clear index the entire collection with a typical inverted
index. For the embedding retrieval model, clear pre-computes all document
embeddings and indexes them with fast MIPS indexes such as FAISS [15] or
SCANN [12], which can scale to millions of candidates with millisecond latency.
As a result, clear can serve as a first-stage, full-collection retriever.

4 Experimental Methodology

Dataset and Metrics. We use the MS MARCO passage ranking dataset [27], a
widely-used ad-hoc retrieval benchmark with 8.8 millions passages. The training
set contains 0.5 million pairs of queries and relevant passages, where each query
on average has one relevant passage1. We used two evaluation query sets with
different characteristics:

– MS MARCO Dev Queries is the MS MARCO dataset’s official dev set,
which has been widely used in prior research [8,28]. It has 6,980 queries. Most
of the queries have only 1 document judged relevant; the labels are binary.
MRR@10 is used to evaluate the performance on this query set following [27].
We also report the Recall of the top 1,000 retrieved (R@1k), an important
metric for first-stage retrieval.

– TREC2019 DL Queries is the official evaluation query set used in the
TREC 2019 Deep Learning Track shared task [6]. It contains 43 queries that
are manually judged by NIST assessors with 4-level relevance labels, allowing
us to understand the models’ behavior on queries with multiple, graded rele-
vance judgments (on average 94 relevant documents per query). NDCG@10,
MAP@1k and R@1k are used to evaluate this query set’s accuracy, following
the shared task.

Compared Systems. We compare clear retrieval with several first-stage lex-
ical retrieval systems that adopt different techniques such as traditional BM25,
deep learning augmented index and/or pseudo relevance feedback.
1 Dataset is available at https://microsoft.github.io/msmarco/.

https://microsoft.github.io/msmarco/
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– BM25 [32]: A widely-used off-the-shelf lexical-based retrieval baseline.
– DeepCT [8]: A state-of-the-art first-stage neural retrieval model. It uses

BERT to estimate term importance based on context; in turn these context-
aware term weights are used by BM25 to replace tf in Eq. 1.

– BM25+RM3: RM3 [20] is a popular query expansion technique. It adds
related terms to the query to compensate for the vocabulary gap between
queries and documents. BM25+RM3 has been proven to be strong [22].

– DeepCT+RM3: [7] shows that using DeepCT term weights with RM3 can
further improve upon BM25+RM3.

In addition, we also compare with an embedding only model, BERT-Siamese:
This is a BERT-based embedding retrieval model without any explicit lexi-
cal matching signals, as described in Subsect. 3.2. Note that although BERT
embedding retrieval models have been tested on several question-answering tasks
[4,13,21], their effectiveness for ad hoc retrieval remains to be studied.

Pipeline Systems. To investigate how the introduction of clear will affect
the final ranking in state-of-the-art pipeline systems, we introduce two pipeline
setups.

– BM25+BERT reranker: this is a state-of-the-art pipelined retrieval sys-
tem. It uses BM25 for first-stage retrieval, and reranks the top candidates
using a BERT reranker [28]. Both the bert-base and the bert-large
reranker provided by [28] are explored. Note that BERT rerankers use a very
deep self-attentive architecture whose computation cost limits its usage to
only the reranking stage.

– clear+BERT reranker: a similar pipelined retrieval system that uses clear
as the first-stage retreiever, followed by a BERT reranker (bert-base or
bert-large reranker from [28]).

Setup. Lexical retrieval systems, including BM25, BM25+RM3, and deep lex-
ical systems DeepCT and DeepCT+RM3, build upon Anserini [38]. We set
k1 and b in BM25 and DeepCT using values recommended by [8], which has
stronger performance than the default values. The hyper-parameters in RM3
are found through a simple parameter sweep using 2-fold cross-validation in
terms of MRR@10 and NDCG@10; the hyper-parameters include the number
of feedback documents and the number of feedback terms (both searched over
{5, 10, · · · , 50}), and the feedback coefficient (searched over {0.1, 0.2, · · · , 0.9}).

Our neural models were built on top of the HuggingFace [37] implementation
of BERT. We initialized our models with bert-base-uncased, as our hardware
did not allow fine-tuning bert-large models. For training, we use the 0.5M
pairs of queries and relevant documents. At each training step, we randomly
sample one negative document from the top 1,000 documents retrieved by BM25.
We train our neural models for 8 epochs on one RTX 2080 Ti GPU; training more
steps did not improve performance. We set ξ = 1 in Eq. 6. We fixed λtrain = 0.1
in the experiments. For λtest, we searched over {0, 1, 0.2, · · · , 0.9} on 500 training
queries, finding 0.5 to be the most robust. Models are trained using the Adam



Complement Lexical Retrieval Model with Semantic Residual Embeddings 153

optimizer [17] with learning rate 2×10−5, and batch size 28. In pipelined systems,
we use BERT rerankers released by Nogueira et al. [28]. Statistical significance
was tested using the permutation test with p < 0.05.

5 Results and Discussion

We study clear’s retrieval effectiveness on a large-scale, supervised retrieval
task, its impact on downstream reranking, and its winning/losing cases.

Table 1. First-stage retrieval effectiveness of clear on the MS MARCO dataset, eval-
uated using two query evaluation sets, with ablation studies. Superscripts 1–6 indicate
statistically significant improvements over methods indexed on the left. ↓ indicates
a number being statistically significantly lower than clear. ∗: clear w/ Constant
Margin is equivalent to a post-training fusion of BM25 and BERT-Siamese.

Type Model MS MARCO Dev TREC2019 DL

MRR @10 R@1k NDCG @10 MAP @1k R@1k

Lexical 1 BM25 0.1912 0.864 0.506 0.3775 0.7385

2 BM25+RM3 0.166 0.861 0.5551 0.452135 0.78913

3 DeepCT 0.243124 0.91312 0.5511 0.4221 0.7561

4 DeepCT+RM3 0.23212 0.91412 0.601123 0.481123 0.79413

Embedding 5 BERT-Siamese 0.3081−4 0.928123 0.594123 0.307 0.584

Lexical+ Embedding 6 clear 0.3381−5 0.9691−5 0.6991−5 0.5111−5 0.8121−5

− w/ Random Sampling 0.241↓ 0.926↓ 0.553↓ 0.409↓ 0.779↓

− w/ Constant Margin∗ 0.314↓ 0.955↓ 0.664↓ 0.455↓ 0.794

5.1 Retrieval Accuracy of CLEAR

In this experiment, we compare clear’s retrieval performance with first stage
retrieval models described in Sect. 4 and record their performance in Table 1.

Clear vs. Lexical Retrieval. clear outperforms BM25 and BM25+RM3 sys-
tems by large margins in both recall-oriented metrics (R@1k and MAP@1k) as
well as precision-oriented ones (MRR@10 and NDCG@10). clear also signifi-
cantly outperforms DeepCT and DeepCT+RM3, two BERT-augmented lexical
retrieval models. DeepCT improves over BM25 by incorporating BERT-based
contextualized term weighting, but still use exact term matching. The results
show that lexical retrieval is limited by the strict term matching scheme, show-
ing clear’s advantages of using embeddings for semantic-level soft matching.

Clear vs. BERT-Siamese Retrieval. BERT-Siamese performs retrieval solely
relying on dense vector matching. As shown in Table 1, clear outperforms
BERT-Siamese with large margins, indicating that an embedding-only retrieval
is not sufficient. Interestingly, though outperforming BM25 by a large margin on
MSMARCO Dev queries, BERT-Siamese performs worse than BM25 in terms of
MAP@1k and recall on TREC DL queries. The main difference between the two
query sets is that TREC DL query has multiple relevant documents with graded
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relevance levels. It therefore requires a better-structured embedding space to cap-
ture this, which proves to be harder to learn here. clear circumvents this full
embedding space learning problem by grounding in the lexical retrieval model
while using embedding as complement.

Table 2. Comparing clear and the state-of-the-art BM25+BERT Reranker pipeline
on the MS MARCO passage ranking dataset with two evaluation sets (Dev: MS
MARCO Dev queries; TREC: TREC2019 DL queries). We record the most optimal
reranking depth for each initial retriever. Superscripts 1–6 indicate statistically signif-
icant improvements over the corresponding methods.

Retriever Reranker MSMARCO Dev TREC DL Rerank Depth

MRR@10 NDCG@10 K

1 BM25 – 0.191 0.506 –

2 clear – 0.3381 0.6991 –

3 BM25 bert-base 0.3451 0.7071 1k

4 clear bert-base 0.360123 0.71912 20

5 BM25 bert-large 0.370123 0.737123 1k

6 clear bert-large 0.3801−5 0.7521−5 100

Ablation Studies. We hypothesize that clear’s residual-based learning app-
roach can optimize the embedding retrieval to complement the lexical retrieval,
so that the two parts can generate additive gains when combined. To verify this
hypothesis, we run ablation studies by (1) replacing the error-based negative
samples with random negative samples, and (2) replacing the residual margin
in the loss function with a constant margin, which is equivalent to a fusion of
BM25 and BERT-Siamese rankings. Using random negative samples leads to
a substantial drop in clear’s retrieval accuracy, showing that it is important
to train the embeddings on the mistakenly-retrieved documents from lexical
retrieval to make the two retrieval models additive. Using constant margins
instead of residual margins also lowers the performance of the original clear
model. By enforcing a residual margin explicitly, the embedding model is forced
to learn to compensate for the lexical retrieval, leading to improved performance.
The results confirm that clear is more effective than a post-training fusion app-
roach where the retrieval models are unaware of each other.

5.2 Impacts of CLEAR on Reranking

Similar to other fist-stage retrievers, clear can be incorporated into the state-
of-the-art pipelined retrieval system, where its candidate list can be reranked by
a deep neural reranker. To quantitatively evaluate the benefit of clear, in the
next experiment, we test reranking clear results with BERT rerankers.

Results are listed in Table 2. Here, we compare clear against the widely-
used BM25 in a two-stage retrieval pipeline, using current state-of-the-art BERT
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rerankers [28] as the second stage reranking model. The rerankers use the con-
catenated query-document text as input to BERT to classify the relevance. We
experimented with both bert-base and bert-large reranker variants provided
by [28]. We also investigate the reranking depth for each initial retriever and
record the most optimal here.

(a) Retrieval Recall (b) Reranking Accuracy

Fig. 1. Comparison between clear and BM25 pipeline systems on MS MARCO Dev
queries. The system uses the bert-base reranker to rerank against various depth K.

The performance of clear without reranking is already close to that of the
two-stage BM25+bert-base reranker. When adding a reranker, clear pipelines
significantly outperforms the BM25 pipelines. We also discover that reranking a
truncated top list for clear is sufficient, while top 1000 is required for BM25.
Concretely, the required re-ranking depth decreased from K=1,000 to K=20
for bert-base reranker and K=100 for bert-large reranker, reducing the
computational cost by 10×–50×. In other words, clear generates strong initial
rankings that systematically raise the position of relevant documents across all
queries and help state-of-the-art rerankers to achieve higher accuracy with lower
computational costs, improving end-to-end accuracy, efficiency, and scalability.

Figure 1 further plots the recall and reranking accuracy at various reranking
depth. Figure 1a shows that clear had higher recall values than BM25 at all
depths, meaning that clear can provide more relevant passages to the reranker.
Figure 1b shows the performance of a BERT reranker [28] applied to the top
K documents retrieved from either BM25 or clear. When applied to BM25,
the accuracy of the BERT reranker improved as reranking depth K increases.
Interestingly for clear, the reranking accuracy was already high with small K.
While increasing K improves global recall, the reranking accuracy shows satura-
tion with larger K, indicating that BERT rerankers do not fully exploit the lower
portion of clear candidate lists. We investigate this further in Subsect. 5.3.
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5.3 Case Study: The Goods and the New Challenges

In this section, we take a more in-depth look into clear through case studies.
We first examine how BM25 ranking changes after being complemented by the
dense embedding retrieval in clear, then turn to investigate why the lower part
of clear’s candidates are challenging for BERT rerankers.

Table 3. Example documents retrieved by clear. We show ranking improvements
from pure BM25 to clear’s complementary setup .

Query Document retrieved by clear BM25 → clear

Weather in
danville, ca

Thursday:The Danville forecast for Aug
18 is 85 degrees and Sunny . There is
24% chance of rain and 10 mph winds
from the West. Friday:...

989 → 10

brief
government
definition

Legal Definition of brief. 1 1 : a concise
statement of a client’s case written for
the instruction of an attorney usually
by a law clerk ...

996 → 7

population of
jabodatek

The population of Jabodetabek, with
an area of 6,392 km2, was over 28.0
million according to the Indonesian
Census 2010 ....

Not retrieved → 1

Table 4. Challenging non-relevant documents retrieved only by CRM, not by BM25,
through semantic matching. We show in clear initial candidate list ranking as well as
after BERT reranking.

Query Document retrieved by clear clear → Rerank

Who is robert
gray

Grey started ... dropping his Robert
Gotobed alias and using his birthname
Robert Grey .

Rank 496 → rank 7

What is
theraderm
used for

A thermogram is a device which
measures heat through use of picture ....

Rank 970 → rank 8

What is the
daily life of
thai people

Activities of daily living include are the
tasks that are required to get going in
the morning ... 1 walking. 2 bathing. 3
dressing.

Rank 515 → rank 7

In Table 3, we show three example queries to which the clear brings huge
retrieval performance improvement. We see that in all three queries, critical
query terms, weather, government and jabodatek, have no exact match in the
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relevant document, leading to failures in exact match only BM25 system. clear
solves this problem, complementing exact matching with high-level semantic
matching. As a result, “weather” can match with document content “sunny, rain,
wind” and “government” with document content “attorny, law clerk”. In the
third query, spelling mismatch between query term “jabodatek” and document
term “Jabodetabek” is also handled.

While clear improves relevant documents’ rankings in the candidate list,
it also brings in new forms of non-relevant documents that are not retrieved by
lexical retrievers like BM25, and affects downstream rerankers. In Table 4, we
show three queries and three corresponding false positive documents retrieved by
clear, which are not retrieved by BM25. Unlike in BM25, where false positives
mostly share surface text similarity with the query, in the case of clear, the
false positives can be documents that are topically related but not relevant. In
the first two queries, clear mistakenly performs soft spell matches, while in the
third one critical concept “thai people” is ignored.

Such retrieval mistakes further affect the performance of downstream BERT
reranker. As BERT also performs semantic level matching without explicit exact
token matching to ground, the rerankers can amplify such semantically related
only mistakes. As can be seen in Table 4, those false positive documents reside
in the middle or at the bottom of the full candidate list of clear. With BERT
reranker, however, their rankings go to the top. In general, clear goes beyond
exact lexical matching to rely on semantic level matching. While improving ini-
tial retrieval, it also inevitably brings in semantically related false positives.
Such false positives are inherently more challenging for state-of-the-art neural
reranker and require more robust and discriminative rerankers. We believe this
also creates new challenges for future research to improve neural rerankers.

6 Conclusion

Classic lexical retrieval models struggle to understand the underlying meanings
of queries and documents. Neural embedding based retrieval models can soft
match queries and documents, but they lose specific word-level matching infor-
mation. This paper present clear, a retrieval model that complements lexical
retrieval with embedding retrieval. Importantly, instead of a linear interpolation
of two models, the embedding retrieval in clear is exactly trained to fix the
errors of lexical retrieval.

Experiments show that clear achieves the new state-of-the-art first-stage
retrieval effectiveness on two distinct evaluation sets, outperforming classic bag-
of-words, recent deep lexical retrieval models, and a BERT-based pure neural
retrieval model. The superior performance of clear indicates that it is beneficial
to use the lexical retrieval model to capture simple relevant patterns using exact
lexical clues, and complement it with the more complex semantic soft matching
patterns learned in the embeddings.

Our ablation study demonstrates the effectiveness of clear’s residual-based
learning. The error-based negative sampling allows the embedding model to be
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aware of the mistakes of the lexical retrieval, and the residual margin further let
the embeddings focus on the harder errors. Consequently, clear outperforms
post-training fusion models that directly interpolate independent lexical and
embedding retrieval models’ results.

A single-stage retrieval with clear achieves an accuracy that is close to
popular two-stage pipelines that uses a deep Transformer BERT reranker. We
view this as an encouraging step towards building deep and efficient retrieval
systems. When combined with BERT rerankers in the retrieval pipeline, clear’s
strong retrieval performance leads to better end-to-end ranking accuracy and
efficiency. However, we observe that state-of-the-art BERT neural rerankers do
not fully exploit the retrieval results of clear, pointing out future research
directions to build more discriminative and robust neural rerankers.
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Abstract. We investigate the self-attention mechanism of BERT in a
fine-tuning scenario for the classification of scientific articles over a tax-
onomy of research disciplines. We observe how self-attention focuses on
words that are highly related to the domain of the article. Particularly, a
small subset of vocabulary words tends to receive most of the attention.
We compare and evaluate the subset of the most attended words with
feature selection methods normally used for text classification in order to
characterize self-attention as a possible feature selection approach. Using
ConceptNet as ground truth, we also find that attended words are more
related to the research fields of the articles. However, conventional fea-
ture selection methods are still a better option to learn classifiers from
scratch. This result suggests that, while self-attention identifies domain-
relevant terms, the discriminatory information in BERT is encoded in
the contextualized outputs and the classification layer. It also raises the
question whether injecting feature selection methods in the self-attention
mechanism could further optimize single sequence classification using
transformers.

Keywords: Neural language models · Text classification · Scholarly
communications

1 Introduction

The annotation and classification of scientific literature is a crucial task to make
scientific knowledge easily discoverable, accessible, and reusable, accelerating
scientific breakthroughs by helping scholars locate and understand the right
research, making connections, and overcoming information overload. Some exam-
ples of efforts to structure scientific literature include scientific search engines
like Semantic Scholar [1] and Microsoft Academic [23]. Both rely on knowl-
edge graphs to enable a structured representation of scientific knowledge that
supports applications like topic-driven search and recommendation. Similarly,
scientific publishers have released knowledge graphs such as SN SciGraph [7] in
order to more effectively organize their publications and increase automation.
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Other efforts like ORKG [8] rely on knowledge graphs to structure the actual
contributions described in the publications, making research results on a specific
topic comparable across the literature.

Publications are therefore being annotated with information about their con-
tent, which includes topics [1], fields of study [23], concepts [7], and research fields
[8]. Such metadata is generally based on controlled vocabularies and arranged
according to a taxonomy [7,8], thesaurus [1,23] or ontology [21]. In some cases,
the annotation process can be fully automatic [1,23]. However, authors are often
asked to manually classify their contribution in the right categories, which is
tedious and error-prone. In other occasions, this task falls under the responsibil-
ity of a reduced number of senior expert editors, making the process expensive
and slow [21].

In this paper, we focus on the task of classifying scientific publications against
a taxonomy of scientific disciplines. A wide variety of approaches are suitable
for this task, including machine learning classifiers that rely on high-dimensional
sparse representations [10], deep learning classifiers using dense representations
[11], and rule-based or heuristic methods [21]. Encouraged by the success of
recent developments in natural language processing and understanding, where
pre-trained transformer language models dominate the state of the art [27],
herein we focus on BERT [5] and its different flavors specialized in the scientific
domain: BioBERT [16] and SciBERT [2].

Our experiments confirm that using transformers to train scientific classifiers
generally results in greater accuracies compared to linear classifiers that were
until now regarded as strong baselines [11]. We also observe that fine-tuning
pre-trained transformers on domain-specific corpora contributes to this goal.
However, despite previous research focused on interpreting and understanding
how transformers encode information [4,9,15,20,25], the actual mechanism by
which fine-tuning impacts on our classification task is still unclear. In an effort
to shed light on this matter, we focus on analyzing the self-attention mechanism
inherent of the transformer architecture [26]. Our findings show that the last layer
of BERT attends to words that are semantically relevant for the scientific fields
associated with each publication. This observation suggests that self-attention
actually performs some type of feature selection for the fine-tuned model.

We investigate the possible relation between self-attention and feature selec-
tion methods from different perspectives, including vocabulary overlap, ranking
similarity, domain relevance, feature stability, and classification performance.
Our results open a future research path to determine whether injecting fea-
ture selection methods in the self-attention mechanism could derive even better
results for single sequence classification using transformer architectures.

Our main contributions in this paper are the following:

– We leverage the vertical pattern present in the transformer self-attention
mechanism of BERT, SciBERT and BioBERT, where some words receive
more attention on average than the rest of the words, and compare it against
conventional feature selection methods used in text classification.
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– We find that self-attention has interesting properties as a feature selection
method. The most attended words are in general more relevant to the pub-
lication domain than those found using conventional approaches to feature
selection. The stability of the features resulting from self-attention is in line
with the results obtained through conventional approaches. However, when
used to learn classifiers from scratch, methods like chi-square and information
gain contribute to train better classifiers.

– We analyze from a semantic point of view the self-attention mechanism and
quantify the amount of domain knowledge it encodes in the hidden states of
the last layer. To this purpose, we rely on ConceptNet [24], a commonsense
knowledge graph where attended words are mapped to concepts from which
we derive their corresponding domains.

The remainder of the paper is structured as follows. Section 2 describes
related work in the annotation of scientific publications, classification, trans-
former language models, and other work focused on the analysis of transformer
self-attention. In Sect. 3, we present experimental results classifying research
papers into a scientific taxonomy. In Sect. 4, we motivate the analysis of self-
attention as feature selection with examples of attended words and scientific
categories. In Sect. 5, we quantify the relation between self-attention and feature
selection methods. Finally, Sect. 6 concludes the paper1.

2 Related Work

Annotating research articles with entities such as research fields or topics is
addressed in the literature using entity recognition and similarity measures
between entity labels and their mentions [3]. In Microsoft Academic Graph
[23] the candidate entities (field of study) are identified using string matching
between the entity keywords and their paper mentions, then rules are applied to
gather more candidates and to filter out the less relevant entities. Similarly, the
CSO classifier [21], which assigns articles to concepts in the Computer Science
Ontology2, first identifies concepts explicitly mentioned in the text and then,
in an effort to find entities not explicitly mentioned, it uses a similarity mea-
sure based on word embeddings. In the Semantic Scholar literature graph [1],
an ensemble of tools is used to annotate entities: statistical models for entity
span prediction and disambiguation, rules for string-based entity spotting, and
off-the-shelf tools3.

In addition, different models can be used for this task, including SVM [10] or
softmax classifiers [14]. Mai et al. [17] proposed classifiers based on convolutional
[13] and recurrent neural networks [30] to annotate research articles. However,

1 Tables, datasets and notebooks to reproduce our experiments are avail-
able in https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-
method.

2 See http://cso.kmi.open.ac.uk/.
3 https://sobigdata.d4science.org/web/tagme/tagme-help.

https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-method
https://github.com/expertailab/Is-BERT-self-attention-a-feature-selection-method
http://cso.kmi.open.ac.uk/
https://sobigdata.d4science.org/web/tagme/tagme-help
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such deep learning classifiers need to be trained from scratch and depend on the
network architecture. On the contrary, neural language models and particularly
transformers like GPT-2 [19] or BERT [5] are pre-trained on a large corpus and
then fine-tuned for classification by just adding a linear classifier to the model
output. This approach has proven to successfully tackle several NLP tasks [27],
including text classification. In the scientific domain, SciBERT [2] and BioBERT
[16] have also reported state of the art results. Researchers are investigating the
mechanics underlying BERT [20], analyzing its hidden states and outputs [9,25],
as well as the self-attention mechanism [4,15]. Unlike previous approaches [4,15],
we semantically analyze the words that are attended above average in the last
hidden state, leveraging the commonsense knowledge represented in ConceptNet,
and quantify the relation between attention and feature selection methods often
used in text classification.

3 Fine-Tuning Language Models for Text Classification

We evaluate the use of language models on a text classification task where
research articles are labeled with one or more knowledge fields. To this pur-
pose, we choose: i) BERT and GPT-2, pre-trained on a general-purpose corpus,
ii) SciBERT, pre-trained solely on scientific documents, and iii) BioBERT, pre-
trained on a combination of general and scientific text. Table 1, provides rele-
vant information about each language model, its pre-training and vocabulary.
BioBERT uses the same tokenization method and vocabulary as BERT, while
SciBERT adopts SentencePiece, based on WordPiece tokenization. The overlap
between the vocabularies of BERT and SciBERT is 42%, which shows a sub-
stantial difference in the most frequently used words in the scientific domain
and general-purpose documents. We choose the base version of BERT models

Table 1. Language models pre-training information.

Model Tokenizer Vocabulary Corpus Domains steps/epochs

BERT WordPIece 30K BookCorpus (2.5B

tokens) + Wikipedia

(0.8B tokens)

General 1M steps

BioBERT 1.1 WordPiece BERT BERT corpus +

PubMed abstracts

(4.5B tokens)

General +

Biomedic

1M steps

BioBERT 1.0 WordPiece BERT BERT Corpus +

PubMed abstracts

(4.5B tokens) + PMC

full-text articles

(13.5M tokens)

General +

Biomedic

470K steps

SciBERT SentencePiece 30K Semantic Scholar

(3.17B tokens) (1.14M

full text papers)

18% Computer

Science and 82%

Biomedical

Not reported

GPT-2 Byte Pair

Encoding

(BPE)

50k 8 million web pages,

except Wikipedia

(40GB of text)

General Not reported
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(12 layers, 768 hidden size, 12 attention heads per layer) and a comparable model
for GPT-2.

To fine-tune BERT, BioBERT and SciBERT on our multilabel classification
task, we follow the guidelines provided by Devlin et al. [5] for single-sentence
classification. We take the last layer encoding of the classification token <CLS>
and add an N-dimensional linear layer, with N the number of classification labels.
We use a binary cross-entropy loss function to allow the model to assign inde-
pendent probabilities to each label. For GPT-2 we also add a linear layer on top
of the last hidden state for the classification token. We train the models for 4
epochs, with batch size 8 and 2e–5 learning rate.

As a baseline, we use an SVM with a linear kernel [6]. We follow a one-vs-all
strategy to train a binary SVM classifier per category, with grid search for the
regularization parameter. We use WordNet to lemmatize the words, whenever
they exist in the WordNet lexicon, and remove stop words. In addition, we use
fastText [11] to learn a hierarchical softmax classifier using n-gram embeddings.
We learn binary classifiers for each category, with automatic hyperparameter
optimization to fix learning rate, number of epochs, and n-gram length.

We gather our dataset of scientific articles from a broad range of knowledge
fields in SciGraph [7], where articles are labelled following the ANZSRC4 taxon-
omy. This taxonomy comprises 22 first level categories, such as Economics, Law,
and Computer Science, each of them with their own subcategory tree. From Sci-
Graph, we extract the titles and abstracts of articles published in 2011 and 2012,
as well as their categories. In total, we gather 405K papers, 187K from 2011 and
the rest from 2012. In average, each first level category has 20,164 articles with
a standard deviation of 31,791, which shows how unevenly the different cate-
gories are covered. Some of them are well represented, like Medical And Health
Sciences, with 138,728 articles, while others, like Studies In Creative Arts And
Writing, have little over a hundred articles.

We fine-tune the language models to learn to classify papers on any of the
22 first level categories. We train on papers only from 2011 and evaluate using
5-fold cross validation. Table 2 shows that the transformers pre-trained on a
scientific corpus generally achieve greater f-measure in this task. The exception
is BioBERT-1.0, which scores under BERT. BioBERT-1.0 was pre-trained on
a lower number of steps than the other transformers, which could be affecting
its performance. GPT-2 is the model producing the lowest f-measure, which
shows evidence of a potential mismatch between the vocabulary and quality of
the scientific corpus and the Web corpus where it was pre-trained, which may
be undermining its performance. Overall, transformers produce more accurate
classifiers than the linear methods used as baselines.

To further explore the relation between the pre-training and fine-tuning cor-
pora, we learn classifiers to label articles with second level categories in ANZSRC
for some of the first level categories. For this experiment, we enlarge our dataset
with articles published in 2012 and evaluate only the best language models, dis-
carding BioBERT 1.0 and GPT-2. The results in Table 2 show that, in general,

4 Australian and New Zealand Standard Research Classification.
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Table 2. Evaluation results of the multilabel classifiers (f-measure) on first level cat-
egories (a), and on second level categories (b).

First level categories Second level categories

Model f-measure Categories Articles Subcat. Bert BioBERT-1.1 SciBERT SVM fastText

SciBERT 0.838 Biological 65340 9 0.883 0.884 0.887 0.880 0.871

BioBERT-1.1 0.825 Medical and Health 58068 18 0.838 0.843 0.854 0.836 0.819

BERT 0.819 Chemical 40837 8 0.858 0.862 0.865 0.854 0.847

BioBERT-1.0 0.818 Mathematical 28723 5 0.886 0.883 0.891 0.884 0.878

GPT-2 0.808 Computer Sciences 20777 6 0.861 0.862 0.864 0.861 0.849

SVM 0.807 Language 2233 6 0.911 0.900 0.903 0.900 0.906

fastText 0.790 Hist. And Archelogy 2076 4 0.955 0.950 0.941 0.946 0.946

Built Environment 140 4 0.495 0.700 0.697 0.808 0.804

Creative Arts 132 4 0.639 0.788 0.781 0.925 0.828

scientific categories are dominated by SciBERT and BioBERT-1.1. However, for
categories in humanities, e.g. Language, and History and Archaeology, BERT
produces better classifiers, providing evidence that the general-purpose knowl-
edge encoded in BERT is more relevant in those cases. Interestingly, when there
are few examples, e.g., in categories Built Environment and Creative Arts, the
general knowledge encoded in BERT is of little use for the classifiers, while the
scientific knowledge in BioBERT-1.1 and SciBERT contributes to achieve higher
f-measure. Linear classifiers outperform transformer-based models in such under-
represented categories.

4 Exploring Self-attention Heads

Above we show that BERT-based models are able to produce high performance
multilabel classifiers. However, we know little about what makes them good at
this task. In this section, we inspect the self-attention mechanism underpinning
such models as a key element to understanding this behavior.

According to Clark et al. [4], attention weights indicate how relevant a par-
ticular word is when computing the next representation for the current word.
To illustrate this statement, Fig. 1, depicts the mean weights of the 12 self-
attention heads in the last hidden state of the fine-tuned models for two papers
titled “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”, and “A universal long-term flu vaccine may not prevent severe
epidemics”. The plots clearly show the so-called vertical pattern [15], where a
few tokens receive most of the attention, such as training, deep, transformer,
language, and understanding in the first sentence, and flu, vaccine, prevent,
severe and epidemic in the second. Note how while the vocabulary captured by
SciBERT includes the word bidirectional, BERT uses subwords to represent it.

We do not include special tokens <SEP> and <CLS> since the amount of
attention received by these tokens makes the attention received by the other
tokens barely noticeable. Clark et al. [4] speculate that the attention on <SEP>
in one head could indicate that the attention heads function is not applicable,
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while Rogers et al. [20] interpret the attention on <CLS> as the attention on a
pooled sentence-level representation.

From these two examples, we observe that the most attended words in the last
hidden state are highly related to the research fields of the articles: Computer
science and Medical and Health Sciences. So, we look into this relation and
identify the words that receive most vertical attention in the last hidden state
for a subset of our dataset where each first level category is represented with at
most 500 papers. First, for each input sequence we calculate the mean weights
for the 12 attention heads in the last hidden state. Next, we generate a new
weight matrix grouping subwords into words by averaging the subword weights.
Finally, we gather the words with a vertical mean attention above the mean
attention in the weight matrix. This results in 8,840 attended words for BERT,
17,773 for BioBERT, and 12,265 for SciBERT, corresponding to 16%, 32%, and
22% of the vocabulary managed by each language model.

(a) BERT (b) SciBERT

(c) BioBERT-1.1 (d) SciBERT

Fig. 1. Average weights in the self-attention heads of the last hidden state.

Table 3 shows the top 20 most frequent attended words in three research
fields: Biology, Computer Science and History and Archaeology. As can be noted,
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most of such words are highly related to the specific research field, appearing
along a few punctuation marks and some stop words. While frequent attention
to periods and commas was already reported in [4,15], the reason why this
happens is not clear yet. Rogers et al. [20] suggest that it must be related to
model overparameterization while Clark et al. [4] point at the high frequency of
these tokens in the corpus. Stop words are also highly frequent words and the
models could be learning to attend to them as in the case of punctuation marks.

Table 3. Most attended words above average attention in the fine-tuned models.

06 - Biological sciences 08 - Computer science 21 - History and archaeology

BERT BioBERT SciBERT BERT BioBERT SciBERT BERT BioBERT SciBERT

, of . , the . , the .

Species The , . of , . of ,

Gene In Gene Data Data Data History In History

Cell . Species ) - Information ) History Century

Cells To Cell Image Time Algorithm Historical - Historical

Protein Species The network Information Network Archaeological To Modern

. And Protein Information Model Image Cultural Century The

Genetic For Expression Networks System Algorithms The . Archaeological

Plants - Genes Control Algorithm As Social and Social

Plant Gene Genetic Images In Networks Archaeology A Cultural

Expression A Cells Algorithms Systems Systems Political Historical American

Growth Cell Growth Software Based Model Culture Period Human

Genes Protein Plants Neural A Analysis Women Early Literature

) Genes Plant Optimization Network Software Literary Modern Data

Molecular Cells Dna Simulation To Time Heritage Archaeological State

Dna On Proteins Learning Algorithms Images Precipitation World Women

Stress With Molecular Search Analysis Control Education Social Life

Populations Expression Populations Web Image Simulation Identity On Period

Population Genetic Population A Models Problems Literature Years Political

Genome Plants Water Classification User Such Past American Development

5 Feature Selection

In the previous section we show that fine-tuned BERT models concentrate their
attention on a subset of the overall vocabulary that ranges between 16% to 32%
of the words. Following this observation, we hypothesize that such attention on
a selected fragment of the vocabulary is the transformer version of feature selec-
tion. However, rather than picking the most interesting features for a classifier,
self-attention selects words that heavily influence the representation of the rest
of the words in the same sequence. We investigate whether there is a relation
between feature selection algorithms commonly used for text classification and
the most attended words in the fine-tuned language models.

We center our analysis on four feature selection methods used for text classifi-
cation [14,18,22]: Chi-square (chi), Information Gain (ig), Document Frequency
(df), and Categorical Proportional Difference (pd). Chi-square measures the lack
of independence between a word and a class; its value is zero if the word and
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the class are independent. Information Gain measures the entropy reduction of
the dataset when it is split by a feature value. Thus, words with larger informa-
tion gain discriminate the data ensuring a lower entropy. Document Frequency
counts the number of documents where a term appears. Categorical Proportional
Difference measures the degree to which a word contributes to differentiating a
particular category from others.

We compare the most attended words with those selected by the above-
mentioned feature selection methods, and measure how similar the rankings
of words sorted by their average attention are to the rankings produced by
each feature selection method. In Table 4, we report the vocabulary overlap
of the most attended words and feature selection methods after filtering out
the stop words. The number of features selected was limited to the top k words,
where k is the number of words attended above average by each language model.
Indeed, the results indicate a large overlap. Fine-tuned language models for text
classification attend up to 64% of the common terms returned by dc, the most
simple of our feature selection baselines, which itself performs similarly to ig and
chi [29]. For all three models, their most attended words have the largest overlap
with document frequency, followed by information gain, chi-square and, finally,
proportional difference.

Table 4. Word overlap:
most attended vs. feature
selection.

LM FS %

BERT dc 60%

ig 54%

chi 43%

pd 12%

BioBERT-1.1 dc 64%

ig 55%

chi 44%

pd 25%

SciBERT dc 58%

ig 49%

chi 42%

pd 20%

Fig. 2. Rank-biased overlap at different p values
between most attended words and feature selection
algorithms.

To measure the similarity between rankings we apply the Rank-Biased Over-
lap (RBO) [28] metric. RBO ranges between 0 to 1, from less to more similar,
and was designed for non-conjoint rankings, i.e. both lists may have different
items, may be incomplete and with different length. Through the p parameter,
RBO models the probability to continue considering the overlap at the next rank,
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having examined the overlap at the previous rank. Figure 2 shows the RBO for
the attention and feature selection rankings. We set p to 0.9, 0.99, 0.999, and
0.9999, indicating the model to assign the first 10, 100, 1,000, and 10,000 ranks
respectively, approximately 85% to 86% of the weight of the evaluation.

While the BERT and SciBERT attended words rankings are more similar
to the ranking of discriminative words (ig) for p values of 0.9 to 0.999, they
finally converge with the ranking of common terms (dc), too. On the other hand,
the BioBERT-1.1 ranking is clearly most similar to the common term rankings
(dc). We think that the difference between the three models could be related
to the subword vocabulary and pre-training corpus. Subword vocabularies are
tightly related to the training corpus since they are generated to represent the
whole corpus with the minimum number of word pieces. BERT trains its own
subword vocabulary on a general corpus and during fine-tuning learns to attend
more to discriminative words in the scientific domain. SciBERT also uses its
own vocabulary trained on a limited scientific corpus, enabling the model to
attend to discriminative words (like BERT) but also to common words due to
the domain knowledge it encodes. BioBERT on the other hand reuses the BERT
subword vocabulary and therefore many scientific terms are split in a suboptimal
number of pieces. This has a negative impact on the ability of the self-attention
mechanism to focus on discriminative words, and subsequently on the attention
to common terms.

5.1 Domain Knowledge

We investigate the domain relevance of the words that are most attended by
the language models and compare it with words produced by the feature selec-
tion methods. To this end, we search the words in ConceptNet and leverage the
relation HasContext to identify the domains where they are commonly used.
We manually map the 22 first level categories in ANZSRC to the correspond-
ing concepts in ConceptNet. To deal with morphological variations like plurals
and conjugations we use the FormOf relation, and to increase the coverage we
traverse the isA type hierarchy one level up looking for the corresponding con-
cept. For example, the word networking is a FormOf of the root word network,
which in turn HasContext Computer Science and Electronics, and the concept
Electronics isA type of Physics.

For each first level category, we gather the top 100 most attended words, as
well as those with the highest scores according to each feature selection method.
Then, for each word, we look for the corresponding context according to Concept-
Net. Table 5 reports the domain relevance obtained for each category. In BERT
and SciBERT, self-attention identifies more domain-relevant words than feature
selection methods. However, this is not the case for BioBERT. Recall that in our
sample dataset, the set of most attended words produced by BioBERT is the
largest (32%) with respect to the vocabulary, which is a clear indication that the
model spreads its attention more widely. Weighing the words by their term fre-
quency (TF), attended words remain more domain-relevant than those obtained
through feature selection. In fact, the domain relevance of the frequent attended
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Table 5. Words per category matching the corresponding ConceptNet context.

Mean Self-Att. Feat. Sel. Self-Att. (TF) TF TF/IDF

Category BERT BioB. SciB. dc ig chi pd BERT BioB. SciB. dc ig chi pd dc ig chi pd

Mathematics 36 18 28 29 18 16 25 60 54 53 51 52 53 33 53 53 55 35

Physics 21 4 22 18 11 13 20 41 42 38 33 33 38 18 41 41 42 18

Chemistry 20 7 18 7 15 16 20 29 30 27 24 24 25 36 27 27 29 37

Biology 18 6 18 11 15 14 11 44 43 38 25 24 28 14 34 33 35 16

Agriculture 1 1 0 0 0 0 1 4 4 4 1 1 1 0 3 3 3 0

Comp. Science 6 4 7 11 5 5 4 20 17 18 14 14 16 11 15 15 16 12

Technology 5 0 3 1 1 1 0 3 2 2 1 1 1 1 1 1 2 0

Medicine 16 13 22 11 12 15 11 30 28 32 19 19 20 17 21 21 22 20

Education 2 1 1 1 1 1 3 4 8 6 4 4 4 1 5 5 5 4

Economics 2 4 1 1 2 2 0 8 10 9 8 8 7 0 9 9 9 0

Commerce 7 4 2 0 1 1 0 6 6 7 3 3 4 2 6 6 6 2

Psychology 2 2 0 4 1 0 2 8 7 5 6 6 7 7 9 9 9 7

Law 5 6 2 6 3 4 7 9 7 8 9 9 8 7 8 8 9 8

Literature 1 0 0 1 1 0 2 0 0 1 1 1 1 1 0 0 0 1

Language 1 0 0 0 2 2 0 2 1 1 2 2 2 0 1 1 1 0

History 10 9 12 23 11 9 11 11 21 21 26 25 26 16 26 25 26 15

Philosophy 16 0 7 15 6 6 10 17 15 18 19 19 18 10 20 20 22 10

Total 169 79 143 139 105 105 127 296 295 288 246 245 259 174 279 277 291 185

words is greater or on pair with those selected when TF/IDF is used to weigh
the output of feature selection methods: self-attention takes into account not
only the importance of words in the document (TF) but also their importance
in the document collection (IDF).

5.2 Feature Evaluation

To evaluate the quality of the resulting features we measure their stability and
their classification performance. Stability is the robustness of a feature subset
generated from different training sets from the same distribution [12]. To measure
stability we compute the mean Jaccard coefficient between the different subsets
of words generated by each method. We apply 5-fold cross-validation and process
each fold with the fine-tuned language models and the feature selection methods.
Stability is reported on Table 6, where we can see that language models attend
to the same words with stability values in line with those reported by document
count. Attended words are more stable than the rest of the feature selection
methods, including chi-square and information gain, which seems to be more
volatile across folds.

Table 6. Stability of the features measured using Jackard similarity coefficient

SciBERT BioBERT BERT dc pd ig chi

0.87 0.84 0.83 0.86 0.77 0.65 0.58
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In addition, we use the set of features to learn classifiers for the 22 first
level categories using Logistic Regression (LR), Naive Bayes (NB), Random For-
est (RF), Neural Networks (NN), and SVM. The neural network comprises an
embedding matrix of 100 dimensions and a fully connected layer using sigmoid
as activation function. For the SVM the regularization parameter is tuned and
for the remaining algorithms we use the recommended settings. We evaluate the
classifiers using 5-fold cross validation on the subset of documents where each
category was represented with up to 500 papers. The f-measure of the classifiers
is shown in Fig. 3. In general, we observe that traditional feature selection meth-
ods like chi-square and information gain mainly help to learn more accurate
classifiers than the set of most attended words by the language models. This
observation clearly indicates that the success of BERT models in this task is
not only driven by the self-attention mechanism but also by the contextualized
outputs of the transformer, which are the input of the added classification layer.

Fig. 3. Classifiers performance using distinct feature sets and number of features.

6 Conclusions

In this paper, we investigate the self-attention mechanism of BERT in a fine-
tuning scenario for the classification of scientific articles over a taxonomy of
research fields. We observe that attention in the fine-tuned model is focused on
words that are highly relevant to the research field of each article. Furthermore,
we notice that the most attended words represent just a fraction of the whole
vocabulary: a hint that self-attention performs a sort of feature selection.

We systematically compare the most attended words against those resulting
from feature selection methods normally used in text classification. We show
that language models and feature selection methods like information gain and
chi-square share between 42% to 55% of the selected words. We also observe
that the attention-based word rankings produced by the transformers are more
similar to those obtained using document frequency and information gain.
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From our experiments we conclude that self-attention focuses more on words
that are relevant to each research domain than the words produced through
conventional feature selection. However, self-attention is not as good to learn
classifiers from scratch, especially compared to chi-square and information gain.
While self-attention identifies domain-relevant terms the discriminatory informa-
tion in the fine-tuned model is encoded on the output representations and the
additional classification layer. As future work, we plan to investigate the impact
of integrating, perhaps as part of the loss function, optimal feature selection
methods during fine-tuning of transformer for single sequence classification.
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Abstract. We address the problem of startup valuation from a machine
learning perspective with a focus on European startups. More precisely,
we aim to infer the valuation of startups corresponding to the funding
rounds for which only the raised amount was announced. To this end, we
mine Crunchbase, a well-established source of information on companies.
We study the discrepancy between the properties of the funding rounds
with and without the startup’s valuation announcement and show that
the Domain Adaptation framework is suitable for this task. Finally, we
propose a method that outperforms, by a large margin, the approaches
proposed previously in the literature.

Keywords: Predictive models · Domain adaptation · Startup
valuation

1 Introduction

In recent years, startups have radically changed the situation in many different
economic ecosystems and have become the pioneers of world-class innovations.
The volume of Venture Capital (VC) invested in startups is astonishing - $294.8
billion in 2019, according to Crunchbase1. Furthermore, successful startups sig-
nificantly impact their targeted market and return a considerable profit to their
investors. This fact highlights the importance of estimating the worth of startups.
However, this issue is a complex, multi-factor problem. Indeed, even though there
are dozens of empirical methods proposed by different VC professionals such as
Berkus Method2 and Risk Factor [15], quite often, these methods rely on factors
that are hard to measure on their own (such as legal risk, for example).

In this work, we propose a Machine Learning (ML) based approach to predict
the valuation assigned to a startup by its investors. However, before going into
more details, we provide the following definitions that will be frequently used
throughout the paper:
1 https://news.crunchbase.com/news/the-q4-eoy-2019-global-vc-report-a-strong-

end-to-a-good-but-not-fantastic-year/.
2 https://berkonomics.com/?p=2752.
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– Startup valuation method: the process of determining how much a startup is
valuated economically.

– Equity: percentage of ownership in a company.
– Funding round: a discrete fundraising event for a company, during which the

company raises financing at a certain valuation.
– Funding amount: the amount of money invested in a funding round.

Sometimes, funding round announcements include not only the amount of
money received by the startup, but also the valuation of the startup. Reading
such news, one might be wondering how exactly the entrepreneurs and the VCs
come to an agreement about the startup valuation, i.e., how much equity the
VC firms get for a certain funding amount. In the literature, only few stud-
ies have addressed the startup valuation problem on large-scale datasets and
have proposed a data-driven approach to solve it. For instance, [10] performs an
empirical study on startup valuation, establishing factors that seem to affect VC
and entrepreneur negotiation outcomes.

In this work, we approach startup valuation from a machine learning per-
spective focusing on European startups. More precisely, our goal is to infer the
the undisclosed valuation of a startup corresponding to a funding round with an
announced funding amount. To do that, we leverage both a large-scale Crunch-
base dataset and a novel data source from the Great Britain government regis-
trar, namely Companies House. Our choice to study only European startups is
based on the data availability and the possibility of knowledge transfer between
countries, which will be discussed in detail in Sects. 3 and 4. We then solve our
problem in a Domain Adaptation setting by building a machine learning model
which takes into account the discrepancy between the dataset on which the train-
ing is performed and the dataset for which we aim to make predictions. Overall,
our approach outperforms previously proposed methods by a large margin.

Contribution: Our contribution is thus three-fold: (i) we study a novel problem
of great practical importance, namely the prediction of startup valuation, (ii) we
mine heterogeneous data sources including new sources not previously exploited
in the literature, and (iii) we show that the labeled and unlabeled objects are
not aligned and, accordingly, propose to employ a Domain Adaptation setting
to train different predictive models.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
the existing studies in the field of startup analysis from the ML point of view.
The detailed description of data collection and problem formulation are given
in Sect. 3. Section 4 details the approach used to solve the problem under con-
sideration. The experimental results are then reported in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Related Work

Over the last few years, various tasks related to startups have been studied with
ML methods. [20] is perhaps one of the first attempts to dive into the field of
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using predictive models for assessing the “success” of companies. In that work,
the authors explore the prediction of Merger & Acquisition (M&A) as a proxy for
startup success. They consider news pertaining to companies and individuals on
TechCrunch. The feature set they used includes company-specific features, such
as managerial and financial features, combined with topic-dependent features
that have been extracted via Latent Dirichlet Allocation (LDA) from the text of
news. In a more recent study, Sharchilev et al. [18] proposed a method, named
Web-Based Startup Success Prediction (WBSSP), for startup success prediction.
The goal of [18] is to predict whether a startup will secure a funding round
within a year or not. In a relatively similar work, Hunter et al. [6] proposed to
construct a portfolio of startups in which at least one startup achieves an exit,
i.e. either gets Initial Public Offering (IPO) or is acquired by another company.
Starting from a Brownian motion model, the authors of [6] propose to use a
greedy approach to solve the “picking winners” problem.

In [2], the authors study the startup success prediction task in the context
of a worldwide startup network. The authors build a startup graph, in which an
edge between two startups signifies that a person worked in both startups, and
show that the centrality of a startup in such a graph correlate with its success.
In that study, success is defined as an exit or the taking over of another firm
within seven years. Another study in this context is [5], where the authors show
that different stages of fundraising events lead to different success factors. The
authors then define venture success as raising another round, getting acquired,
or going public in the following two years.

Startup Valuation Problem: As to the empirical analysis of startup valua-
tion, [10] performed a study of the different factors that are generally considered
to be important in the valuation process. The authors use regression analysis to
identify the most critical factors. In contrast, in our work, we aim to use an ML
pipeline to predict the hidden valuation with the best possible accuracy. More
recently, [14] analyzed the relation between the funding amount and the startup
valuation at different stages. They propose a linear (in log-log space) model for
this task. Their proposed method takes into account only the funding amount
and the funding round series. Our work, however, is quite different in several
aspects: first, we extract a rich feature set for each startup, which includes the
information about the previously secured funding rounds, the founders, the team
of a startup, etc. The second difference is that we study the distributions of the
funding rounds’ characteristics with announced and unannounced valuations.

3 Data Analysis and Problem Formulation

While stocks of public companies are traded daily, and the value of a company
can be calculated at any moment, the shares of a startup are rarely sold, and
the valuation of a startup is documented only when particular events occur.
These events include funding rounds, Merger and Acquisition deals (M&A), and
Initial Public Offerings (IPO). In this study, we focus on the valuations obtained



Valuation of Startups: A Machine Learning Perspective 179

$10k $100k $1m $10m $100m $1b
Funding Amount (log-scale)

0.00

0.25

0.50

D
en
sit
y Source

Target

Fig. 1. Comparison of funding amounts between Source and Target.

during the funding rounds since they are much more frequent than IPO and
M&A. Besides, the information about the raised funding amount gives a vital
clue about the startup valuation. In the rest of this section, we describe our main
repositories for data collection and then illustrate the compatibility between the
information taken from different sources.

3.1 Source and Target Data: Crunchbase

Crunchbase is a well-established data source in startup modeling literature where
a wide range of information on startups can be found. The vast majority of stud-
ies investigating the field of startups via ML methods leveraged this database
[2,5,6,14,18,20]. In our study, the data from Crunchbase plays a critical role as
well. We adopt the following strategy to collect data from Crunchbase: First, we
extract information about the funding rounds present in the Crunchbase snap-
shot on July 1, 2020, and then collect the corresponding startups’ information.
Since we are mostly interested in the traditional venture capital deals for the
startups that have not yet gone public, we only collect the following funding
rounds: Angel, Pre-Seed, Seed, Series {A, B, C, D, E, G, F, H, I}, Venture,
Corporate Round, Private Equity, Undisclosed and Convertible note. Additional
information on the startup funding types can be found in [19]. Such procedure
leaves us with:

– 11994 funding rounds with known corresponding startup valuation, which will
be referred to as Source and

– 185943 funding rounds for which the corresponding startup valuation is not
disclosed, which will be referred to as Target and for which we aim at pre-
dicting the valuation.

Distribution Shift. Initial comparison of the funding amount distributions of the
Source and the Target can be seen in Fig. 1. In the case of announced valuations,
i.e. Source, the distribution is bimodal with the first mode corresponding roughly
to $600K raised and the second mode at $250M. Simultaneously, the funding
round sizes with undisclosed valuation, i.e. Target, have a single mode at $10M.
Our goal is to predict the startup valuation on the Target, which is for now
entirely unlabeled, i.e. the valuations are unknown for this set. Given the shift
shown in Fig. 1, one needs at least a small portion of Target to be annotated.
This annotated data then can be used for evaluating the trained models, or
even partially for the training purposes, as we will see in Sect. 4. Nevertheless,
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annotating this kind of data is very difficult. As explained in Sect. 1, determining
the valuation of startups requires a wide range of domain expertise. What is even
more important is that different investors use different processes to perform the
valuation, leading to different valuation numbers for the same startup.

To alleviate this issue, we exploit another data source, namely Companies
House3, the United Kingdom (UK) registrar of companies which, to the best
of our knowledge, has not previously been exploited in the startup research
literature. In the following section, we briefly describe how the data is collected
from Companies House and then illustrate that this data can indeed be used as
an additional source of data for the current study.

3.2 TargetLAB Data: Companies House

In the UK, companies must file specific documents to Companies House when
they participate in an equity fundraising process. What is of great interest to our
task is that every time a startup seeks equity funds, it issues shares. Furthermore,
whenever a company issues shares, it is obliged to file a form, called SH01,
which contains the following information: the number of shares allotted, the
amount paid on each share, and the total number of shares of the company. Given
this information, one can easily calculate the funding amount and the startup’s
valuation. The funding amount is the number of shares allotted multiplied by
the amount paid on each share. The startup’s valuation is then calculated as
the total number of shares times the amount paid on each share. Finally, the
investor’s equity is equal to the number of shares allotted divided by the total
number of shares.

Thus, for startups in the Targetwhich are present in Companies House, one
can readily obtain annotations. In the remainder, the annotated part of the
Target set will be denoted as TargetLAB (LAB stands for labeled). To do the
cross-referencing between Companies House and Crunchbase, we align company
name and either legal name, company’s address or a name of a person working
in a startup. The code for the Companies House data collection is available. 4.

To make sure that TargetLAB can be used safely in our study (be it in the
training or testing part of the model), one needs to check if TargetLAB has
the same characteristics as Target and, as a result, can be used as a proper
evaluation (or further training) data. This point is investigated below.

Geographical Transfer. Although our preliminary studies show that the UK fund-
ing rounds and valuations differ from those of China or the USA (as illustrated
by the D statistics of a Kolmogorov-Smirnov test, used to assess whether two
distributions are similar or not, which amounts to 0.27 for China and to 0.73 for
the USA), a reasonable suggestion might be that the investment context in the
UK and other countries of the region, namely Europe5, might be similar.
3 https://beta.companieshouse.gov.uk/.
4 https://github.com/garkavem/Company-House-SH01-Parsing.
5 The list of European countries, referred to as Europe and abbreviated as EU here-

after, is detailed in [1] for space reasons.

https://beta.companieshouse.gov.uk/
https://github.com/garkavem/Company-House-SH01-Parsing
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Fig. 2. EU vs. the UK data: (a) funding amounts, (b) valuations, and (c) investors’
equities in the funding rounds with announced valuation. The D statistics of the
Kolmogorov-Smirnov test is provided in each case.
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Fig. 3. Comparison of European funding rounds with announced valuation
(SourceEU ), unannounced valuation (TargetEU ) and the set of funding rounds for
which the valuation was extracted from Companies House (TargetLAB). (a) funding
amounts (b) startups’ valuations (c) obtained investors’ equities. The D statistics of
the Kolmogorov-Smirnov test is provided in each case.

To illustrate this point, we compared three different axes: We first investi-
gated the funding amount distribution difference between the UK startups of
Target, denoted as TargetUK , and all other European startups of Target,
denoted as TargetEU−UK . This comparison can be seen in Fig. 2(a). We
also compared, in Fig. 2(b), the valuation of UK startups from the Source,
denoted as SourceUK , with those of all other European countries, denoted as
SourceEU−UK . Finally, Fig. 2(c) illustrates the investor’s equity for the same
data. As one can note, on the three (sub-)figures, the distributions are very
similar. This is confirmed by the D statistics of the Kolmogorov-Smirnov test
which amounts to at most 0.07. In contrast, it amounts to 0.2 when comparing
Source with SourceUK . These findings lead us to consider that one can treat
UK based startups and European startups as similar in terms of funding and val-
uation. In other words, TargetLAB shares the same characteristics as TargetEU

and, accordingly, can be used in the European startup valuation prediction task.
The fact that these two sets are similar in terms of funding amount is crucial to
design a valuation model, as we will see in Sect. 5.4.

We compare in Fig. 3(a) the properties of funding amounts of SourceEU ,
TargetEU and TargetLAB . This plot shows that TargetEU and TargetLAB are
quite similar to each other (D = 0.08), and both are different from SourceEU

(D = 0.32). Such similarity supports our hypothesis that TargetLAB is much
closer to TargetEU than SourceEU and, thus, a machine learning model’s
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Table 1. Summary of the data. CB: Crunchbase, CH: Companies House.

Zone Valuation
announced in CB

Valuation
undisclosed in CB

Valuation undisclosed in
CB Computed from CH

World 11994 (Source) 185943 (Target)

Europe 3177 (SourceEU ) 34622 (TargetEU )

UK 1438 12047 969 (TargetLAB)

performance on TargetEU is better approximated by the model’s performance
on TargetLAB than on hold-out SourceEU .

Additionally, in Fig. 3(b) and (c) we illustrate the comparison of SourceEU

and TargetLAB in terms of valuation and investor’s equity. The properties of
TargetLAB in terms of startup valuation and investor’s equity allow us to get
some insight into the differences between the funding rounds with announced
and unannounced valuations. An interesting observation is that the differences
in funding amounts and investor’s equity distributions partially compensate each
other, and thus the difference in startup valuation distribution is slightly less
prominent. This is not really surprising as startups want to be seen as successful
and valuable. Thus, when they raise a relatively small amount of money for an
unusually small investor’s equity, they are more motivated to report its valuation
in addition to the funding amount.

3.3 Summary of Dataset

Table 1 summarizes the different sets used in our analysis. It is worth noticing
that, according to what has been shown previously, there is no particular reason
to restrict the training set to SourceEU∈ Source.

4 Approach

As explained in Sect. 3.1 and illustrated in Fig. 1, there is a significant shift
between the Source and the Target distributions. The described problem typi-
cally corresponds to a Domain Adaptation (DA) setting. The core of the DA
field is to deal with such scenarios where the source and target data come
from different distributions. In the literature, there are mainly three types of
DA approaches: unsupervised, semi-supervised, and supervised. Unsupervised
Domain Adaptation (UDA) refers to a setting in which the model is trained on
the labeled data from source domain and unlabeled data from target domain.
For a comprehensive overview of UDA methods, we refer the reader to [9]. The
setting in which a portion of the target data is annotated and the learning
is performed using labeled source data and both labeled and unlabeled target
data [17] is known as Semi-Supervised Domain Adaptation (SSDA). Finally, the
Supervised Domain Adaptation (SDA) corresponds to the scenario in which both
source and target data are labeled and they are both used in the training phase
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[11]. Note that, once only a portion of the target domain data is labeled, one can
either employ SDA, by ignoring the unlabeled part of the target, or use SSDA by
taking into account both the unlabeled and labeled parts of the target. It is also
possible to solve the problem in UDA setting using only the unlabeled target
data. In order to adapt our data to all these variants, we divide TargetLAB into
three sets (25%–25%–50% partitions respectively):

– TargetLAB(train), with 242 examples, which will be used for the training in
SSDA and SDA,

– TargetLAB(dev), with 242 examples, which will be used for hyperparameters
tuning in SSDA and SDA,

– TargetLAB(test), with 485 examples, which will be used to evaluate the models
and to report the results on all methods.

4.1 Unsupervised Domain Adaptation

In the UDA setting, we use the Source and Target sets described in Sect. 3 in
order to train our model. The technique we use to do that is the one presented in
[4] as it has shown outstanding results on different datasets. This model, named
Domain-Adversarial training of Neural Networks (DANN), learns a representa-
tion that is informative for the main learning task on the source domain and is
invariant with respect to the shift between the domains. To this end, the domain
classifier is trained to discriminate between the domains. However, a Gradient
Reversal Layer incorporated into it passes the signal without a change on the
forward pass but reverses the gradients on the backward pass. Thus, the feature
extractor parameters are updated in the direction opposite to the one desirable
for the domain discrimination task.

4.2 Supervised Domain Adaptation

Supervised Domain Adaptation is a setting in which the labeled examples from
the source domain are used along with only the labeled examples from the target
domain. Usually, the number of labeled examples from source is much larger than
the number of labeled examples from target. That is true in our case as well since
|Source| � |TargetLAB(train)| (11994 vs. 242 examples).

The most straightforward approach for this task is to train a supervised
machine learning model on the concatenation of source data and the labeled
part of target domain data. The advantage of such an approach is that it can
be applied to any base learning model. It has also been shown that even in
the presence of abundant unlabeled target domain data and a tiny amount of
labeled target data, UDA methods sometimes cannot outperform this simple
approach [17]. For this reason, we rely on several supervised machine learning
models which will be described in Sect. 5.1.
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4.3 Semi-supervised Domain Adaptation

Semi-supervised Domain Adaptation remains a topic slightly less covered in
the literature than UDA. Among the recent methods, one could highlight the
minmax entropy method proposed by [17] or the domain adaptive adversarial
perturbation scheme from [8]. Despite these methods’ impressive performance
on various benchmarks, adapting them to the regression problem is not straight-
forward as they rely on class prototypes. Overall, our literature study did not
lead to any SSDA method easily adaptable for our task, and we have directly
adapted the DANN algorithm for this setting. This adaptation considers, at
every iteration, two mini-batches, one consisting of unlabeled target examples
and the other of labeled examples, half of which randomly selected from Source
and the other half from TargetLAB(train). Such an adaptation is quite standard,
as described in [17], and allows one to bias the model learned towards the target
domain.

4.4 Features

Our choice for the features used for the task of startup valuation prediction was
based on previous studies [10,18,21] as well as on the available data. Table 2
provides an overview of the features we finally retained, categorised into four
main groups: General, Funding Round, Financial History and Social Networks.

The General group presents generic features such as age of startup, country
of origin, number of founders and employees. The Funding Round group merely
includes the series and the amount raised during the funding round for which we
aim at predicting the valuation. The Financial History group includes statistics
about the previous funding rounds. The Social network features, extracted from
Twitter, represent the “importance” of startups on social media. Since many
entrepreneurs dedicate a considerable amount of time on online networks in
order to reach potential customers, partners or investors, we hypothesise that
some characteristics of the startup’s activity on social media might be correlated
to its maturity and possibly valuation. Although it would be interesting to use
other information from other social networks, in this study, we narrow down our
monitoring to startups’ activities on Twitter since its API is readily available to
researchers, contrary to other platforms such as Linkedin or Facebook.

5 Experiments

In this section, we present our experimental results performed on the approaches
explained in the previous section as well as some other baselines. We then provide
some insight into the contributions of the different features.

5.1 Baselines

The following is the list of baselines that we use in order to illustrate the adapt-
ability of the DA setting to the problem under consideration. Note that to train
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Table 2. Startup features used in this study.

Group

name

Features Source

General Country, age of the startup, number of founders, number of current

team members, number of past team members, number of founders

with previous experience as founder or top-manager at other

companies, number of news talking about the startup

Crunchbase

Funding

round

The amount raised in the funding round corresponding to the target

valuation, series of the funding round corresponding to the target

valuation

Crunchbase

Financial

history

Number of previously secured funding rounds, previous funding

amount, time since the previous funding round, mean of funding

amount raised during the previous funding rounds, max of funding

amount raised during the previous funding rounds, funding amount

at each series: Seed, Series A, etc.

Crunchbase

Social

networks

Number of tweets, mean/max number of likes of tweet, mean/max

number of retweets of tweet, number of different users to which

startup replied, number of different hashtags used by the startup

Twitter API

these baselines, we only use the Source data, i.e., we consider the problem as a
classical regression problem.

– EPoSV (An Empirical Perspective on Startup Valuations [14]): to the best
of our knowledge, it is the only data-driven approach for startup valuation
prediction. It consists in finding the best coefficient binding logarithm of the
funding amount and the logarithm of startup valuation for each fundraising
series.

– CatBoost: CatBoost [13] is a popular gradient boosting library. We choose
gradient boosting for two reasons: (i) it achieves state-of-the-art results on
many practical tasks [3,16,22], and (ii) this particular implementation has
been shown to work well in the startup fundraising prediction task [18].
Although in [18] the authors use CatBoost as the principal component of
a task-specific framework that combines several different models, applying a
stand-alone CatBoost model to our data also seems appropriate.

– MLP: we also use a classical multilayer perceptron with three fully connected
hidden layers of 1000, 500 and 250 neurons, ReLU [12] nonlinearities followed
by a batch normalization layer [7].

5.2 Experimental Setup and Metrics

We apply log10 transformation to target values so as to have them in a reasonable
range. For evaluation, we make use of the coefficient of determination R2 and
the root mean squared error (RMSE).

For baseline methods trained on Source as well as for DANN in the unsu-
pervised setting, we do not use TargetLAB(train) or TargetLAB(dev) for training
and parameter tuning, since our goal is to find out what is the best performance
that one could achieve using only the Source (case of baselines) and unlabeled
Target (case of unsupervised DANN) readily available in Crunchbase.
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Table 3. Experimental results. Bold numbers are used for models statistically sig-
nificantly better than the other models (Wilcoxon signed-rank test with p < 0.001).
Baselines are separated with a vertical line.

EPoSV CatBoost MLP DANN CatBoost MLP DANN

(Source) (Source) (Source) (UDA) (SDA) (SDA) (SSDA)

R2 ⇑ 0.617 0.738 0.769 0.788 0.817 0.807 0.807

RMSE⇓ 0.347 0.293 0.275 0.263 0.245 0.251 0.250

The essential CatBoost parameters, such as learning rate and the number of
estimators, were chosen on cross-validation (CV) on Source. In the SDA setting,
we use the same learning rate; the number of estimators is chosen based on the
TargetLAB(dev) metrics. The weights of the TargetLAB(train) samples are set to
10 to partially compensate for the differences in Source and TargetLAB(train)

sizes.
The MLP architecture, as well as the training parameters, including the

optimizer, learning rate scheduler, batch size, and the number of epochs, were
chosen using CV on Source. The same parameters were used for DANN method.
To reduce the hyperparameters influence, all these parameters (except for the
number of epochs) are used in SDA and SSDA settings as well. The number of
epochs in SDA and SSDA settings is defined by performance on TargetLAB(dev).

To robustly estimate the performance of different methods, we repeat this
procedure for 20 random splits of the TargetLAB set into test and training/dev
parts. For MLP and DANN, we repeat the experiment with five different random
seeds used for the initialization of weights for each split.

5.3 Results

The results of our experiments are shown in Table 3. In each column, we spec-
ify if the method uses only Source data (the first three columns), or if it is
supervised, semi-supervised, or unsupervised domain adaptation (SDA, SSDA,
and UDA, respectively). As one can observe, among all approaches, EPoSV per-
forms significantly worse. This observation mainly suggests that using a rich
set of features and a more powerful model is required for solving the startup
valuation task, which is not the case for EPoSV.

The second observation is that all DA based approaches outperform the base-
lines, which are trained only on Source. This point illustrates that DA setting
is indeed a more appropriate approach for solving such a problem. Among all
baselines, one can notice that MLP performs the best. The next observation is
that in the absence of target domain information, MLP can generalize better
to the target domain data. However, once target domain information is intro-
duced, CatBoost achieves better results than MLP. Such improvement is due to
the ability of boosting based methods in dealing with complex input data. The
SDA version of CatBoost also achieves the best results even among all other DA
based approaches.
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Table 4. Contribution of different feature groups. Bold numbers are used for models
statistically significantly better than the other models (Wilcoxon signed-rank test with
p < 0.05).

Full data �General �Funding �Financial �Social net.

R2 ⇑ 0.817 0.789 0.499 0.793 0.811

RMSE⇓ 0.245 0.263 0.405 0.261 0.250

Another finding is that even in the absence of labeled data in the target
domain, i.e. TargetLAB , a UDA approach is a better match than the methods
not benefiting from DA. Indeed, DANN in the UDA setting performs better
than all baselines, which use only Source. The last observation is that DANN
in SSDA setting does not improve the results over MLP(SDA). This result is
surprising given the significant performance gain that DANN achieves over MLP
in the absence of labeled data from target domain. However, a similar outcome,
i.e. DANN failure in SSDA setting, has been reported previously on different
benchmarks [17].

5.4 Feature Group Contributions

In this section, we aim to get some insight into the contributions of the feature
groups described in Table 2. To this end, we train our best performing model, i.e.
CatBoost(SDA), on different versions of the dataset, each of which containing all
the feature groups except for one. The results of this experiment are illustrated
in Table 4. The first column of the table (Full data) shows the performance of
CatBoost(SDA) on the complete set of features.

As one can expect, the most significant impact comes from the Funding
group, which makes sense since the valuation prediction that we considered in
this study relies mainly on fundraising events. Nevertheless, even in the absence
of information about the funding round, ca. 50% of the variability of the depen-
dent variable is accounted for. Another observation is that the second most
important group of features is the General group, comprising features such as
the startup’s age and its country of origin. Without this group, the model loses
around 3% and 6.5% in terms of R2 and RMSE respectively. This group is closely
followed by the Financial group. As to the Social network group, its impact is
relatively modest, though still statistically significant.

6 Conclusion

In this study, we investigated a real-world task of great importance: finding
the undisclosed valuation of startups. To do that, we first collected data from
Crunchbase and showed that there is a significant distributional shift between
the labeled and the unlabeled data. We then used Companies House to par-
tially annotate the unlabeled data and illustrated that these annotations are
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compatible with the Crunchbase data distributions. We then proposed to solve
this problem in a Domain Adaptation (DA) setting and illustrated that DA
based methods perform much better than other baselines. We also provided
some insight into the impact of the different feature groups on the model’s per-
formance, which shows that, if the funding features are of primary importance
to solve the valuation problem, the other groups work hand in hand to provide
better valuation predictions.
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Elizabeth Gómez1 , Ludovico Boratto2(B) , and Maria Salamó1
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Abstract. Recommender systems are key tools to push items’ consump-
tion. Imbalances in the data distribution can affect the exposure given to
providers, thus affecting their experience in online platforms. To study
this phenomenon, we enrich two datasets and characterize data imbal-
ance w.r.t. the country of production of an item (geographic imbalance).
We focus on movie and book recommendation, and divide items into two
classes based on their country of production, in a majority-versus-rest
setting. To assess if recommender systems generate a disparate impact
and (dis)advantage a group, we introduce metrics to characterize the
visibility and exposure a group receives in the recommendations. Then,
we run state-of-the-art recommender systems and measure the visibil-
ity and exposure given to each group. Results show the presence of a
disparate impact that mostly favors the majority; however, factorization
approaches are still capable of capturing the preferences for the minority
items, thus creating a positive impact for the group. To mitigate dispar-
ities, we propose an approach to reach the target visibility and exposure
for the disadvantaged group, with a negligible loss in effectiveness.

Keywords: Recommender systems · Bias · Disparate impact

1 Introduction

Recommender systems learn patterns from users’ behavior, to understand what
might be of interest to them [37]. Natural imbalances in the data (e.g., in the
amount of observations for popular items) might be embedded in the patterns.
The produced recommendations can amplify these imbalances and create biases
[9]. When a bias is associated to sensitive attributes of the users (e.g., gender or
race), negative societal consequences can emerge, such as unfairness [22,23,30,
33]. Unfairness can affect all the stakeholders of a system [1,5].

Data imbalances might be inherently connected to the way an industry is
composed, e.g., with certain items mainly produced in certain parts of the world,
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and with consumption patterns that differ based on the country of the users [4].
In this paper, we focus on geographic imbalance and study the problem of how
the country of production of an item can create a disparate impact to providers
in the recommendations. We assess disparate impact by considering both the
visibility received by the providers of a group (i.e., the percentage of recommen-
dations having them as providers) and their exposure, which accounts for the
position in which items are recommended [41]. Hence, with these two metrics
we measure respectively, (i) the share of recommendations of a group and (ii)
the relevance that is given to that group. Both metrics are important to assess
disparate impact in this context. Visibility alone might lead a group of providers
not being reached by users in case they appear only at the bottom of the list,
and exposure alone might not guarantee providers enough sales (a single item
at the top of the list would mean these providers are recommended only once).

We assess disparate impact by comparing the visibility and exposure given to
a group of providers with the representation of the group in the data. We study
two forms of representation, based on (i) the amount of items a group offers, or
(ii) the amount of ratings given to the items of a group.

We consider two of the main domains in which recommender systems operate,
namely movies and books. We show, by extending two real-world datasets with
the country of production of the items, that both movie and book data is imbal-
anced towards the United States. To understand the impact of this imbalance,
we divide items into two groups, in a majority-versus-rest setting, and study
how this imbalance is reflected in the visibility and exposure given to providers
of the two groups when producing recommendations.

We consider state-of-the-art recommender systems, covering both model- and
memory-based approaches, and point- and pair-wise algorithms. While com-
monly studied sensitive attributes, such as gender, show a disparate impact effect
at the expense of the minority group, our use-case presents several peculiarities.
Indeed, user preferences do not reflect these imbalances and users equally like
items coming from the majority (the United States) and the minority (the rest
of the countries) groups. This leads to disparity scenarios that affect either the
majority or the minority group, according to patterns we present in this study.

To mitigate disparities, we propose a re-ranking that optimizes both the visi-
bility and exposure given to providers, based on their representation in the data.
Hence, we consider a distributive norm based on equity [43]. Our approach intro-
duces in the recommendations items that increase the visibility and exposure of
a group, causing the minimum possible loss in user relevance.

Our contributions can be summarized as follows:

– We study, for the first time, the impact of geographic imbalance in the data
on the visibility and exposure given to different provider groups;

– We extend two real-world datasets with the country of production of each
item and characterize the link between geographic imbalance and disparate
impact, uncovering the factors that lead a group to be under-/over-exposed;

– We propose a re-ranking mitigation strategy that can lead to the target visi-
bility and exposure with the minimum possible losses in effectiveness;
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– We evaluate our approach, showing we can mitigate disparities with a negli-
gible loss in effectiveness.

The rest of the paper details in Sect. 2 related work, while in Sect. 3 the sce-
nario, metrics, recommenders, and datasets. Section 4 assesses disparate impact
phenomena. Section 5 contains our mitigation algorithm and results. Section 6
concludes the paper.

2 Related Work

This section covers related studies, starting from the concepts of visibility and
exposure in ranking, and continuing with the impact of recommendation for
providers. We conclude by contextualizing our work with the existing studies.

Visibility and Exposure in Rankings. Given a ranking, visibility and expo-
sure metrics respectively assess the amount of times an item is present in the
rankings [21,45] and where an item is ranked [8,46]. They were introduced in the
context of non-personalized rankings, where the objects being ranked are individ-
ual users (e.g., job candidates). These metrics can operate at the individual level,
thus guaranteeing that similar individuals are treated similarly [8,19], or at group
level, by making sure that users belonging to different groups are given adequate
visibility or exposure [19,45,46]. Under the group setting, the visibility/exposure
of a group is proportional to its representation in the data [32,35,38,44].

Impact of Recommendations for Providers. The impact of the generated
recommendations on the item providers is a concept known as provider fairness
(P-fairness). It guarantees that the providers of the recommended objects that
belong to different groups or are similar at the individual level, will get recom-
mended according to their representation in the data. In this domain, Ekstrand
et al. [20] assessed that collaborative filtering methods recommend books of
authors of a given gender with a distribution that differs from that of the original
user profiles. Liu and Burke [29] propose a re-ranking function, which balances
recommendation accuracy and fairness, by dynamically adding a bonus to the
items of the uncovered providers. Sonboli and Burke [42] define the concept of
local fairness, to equalize access to capital across all types of businesses. Mehro-
tra et al. [31] assess unfairness based on the popularity of the providers. Several
policies are defined to study the trade-offs between user-relevance and fairness.
Kamishima et al. [26] introduce recommendation independence, which leads to
recommendations that are statistically independent of sensitive features.

Contextualizing Our Work. While our study draws from metrics derived
from fairness, this work does not directly mitigate fairness for the individual
providers. We study a broader phenomenon, i.e., if an industry of a country is
affected by how recommendations are produced in presence of data imbalance.
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Considering our use-cases, both cinema and literature are powerful vehicles for
culture, education, leisure, and propaganda, as highlighted by the UNESCO1.
Moreover, both domains have an impact on the economy of a country, with
(sometimes public) investments for the production of movies/books that are
expected to generate a return. Hence, considering how recommender systems can
push the consumption of items of a country is a related but different problem
w.r.t. provider fairness.

3 Preliminaries

Here, we present the preliminaries, to provide foundations to our work.

3.1 Recommendation Scenario

Let U = {u1, u2, ..., un} be a set of users, I = {i1, i2, ..., ij} be a set of items, and
V be a totally ordered set of values that can be used to express a preference. The
set of ratings is a ternary relation R ⊆ U × I × V ; each rating is denoted by rui.
These ratings can directly feed an algorithm in the form of triplets (point-wise
approaches) or shape user-item observations (pair-wise approaches).

To assess the real impact of the recommendations, we consider a temporal
split of the data, where a fixed percentage of the ratings of the users (ordered
by timestamp) goes to the training and the rest goes to the test set [6].

The recommendation goal is to learn a function f that estimates the relevance
(r̂ui) of the user-item pairs that do not appear in the training data. We denote
as R̂ the set of recommendations, and as R̂G those involving items of a group G.

Let Ci be the set of production countries of an item i. We use it to shape two
groups, a majority M = {i ∈ I : 1 ∈ Ci}, and a minority m = {i ∈ I : 1 �∈ Ci}.
Note that 1 identifies the country associated to the majority group.

3.2 Metrics

Representation. The representation of a group is the amount of times that
group appears in the data. We consider two forms of representation, based on (i)
the amount of items offered by a group and (ii) the amount of ratings collected for
that group. We define with R the representation of a group G (G ∈ {M,m}) (RI

denotes an item-based representation, while RR a rating-based representation):

RI(G) = |G|/|I| (1)

RR(G) = |{rui : i ∈ G}|/|R| (2)

Equation (1) accounts for the proportion of items of a group, while Eq. (2)
for the proportion of ratings associated to a group. Both metrics are between 0
and 1.
1 https://publications.parliament.uk/pa/cm200203/cmselect/cmcumeds/667/667.

pdf.

https://publications.parliament.uk/pa/cm200203/cmselect/cmcumeds/667/667.pdf
https://publications.parliament.uk/pa/cm200203/cmselect/cmcumeds/667/667.pdf
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The representation of a group is measured by considering only the training
set. It is trivial to notice that, given a group G, the representation of the other,
G, can be computed as R∗(G) = 1 − R∗(G) (where ‘*’ refers to I or R).

Disparate Impact. We assess disparate impact with two metrics.

Definition 1 (Disparate visibility). The disparate visibility of a group is
computed as the difference between the share of recommendations for items of
that group and the representation of that group:

ΔV(G) =
1

|U |
∑

u∈U

|{r̂ui : i ∈ R̂G}|
|R̂| − R∗(G) (3)

Its range is in [−R∗(G), 1 − R∗(G)]; it is 0 when there is no disparate visi-
bility, while negative/positive values indicate that the group received a share of
recommendations lower/higher than its representation. This metric is based on
that considered by Fabbri et al. [21].

Definition 2 (Disparate exposure). The disparate exposure of a group is
the difference between the exposure obtained by the group in the recommendation
lists [41] and the representation of that group:

ΔE(G) =
1

|U |
∑

u∈U

∑k
pos=1

1
log2(pos+1) ,∀i ∈ R̂G

∑k
pos=1

1
log2(pos+1)

− R∗(G) (4)

where pos is the position of an item in the top-k recommendations.
This metric also ranges in [−R∗(G), 1 − R∗(G)]; it is 0 when there is no dis-

parate exposure, while negative/positive values indicate that the exposure given
to the group in the recommendations is lower/higher than its representation.

Notice that the disparate visibility/exposure of one group can be computed
as the opposite of the value obtained for the other group.

Remark. We do not define a unique “disparate impact” metric, to con-
trol both visibility and exposure, so that providers are recommended
enough times and with enough exposure. A unique metric would not
allow us to balance both, by compressing everything in a unique number.

3.3 Recommendation Algorithms

We consider five state-of-the-art Collaborative Filtering algorithms. As memory-
based approaches, we consider the UserKNN [24] and ItemKNN [39] algorithms.
For the class of matrix factorization based approaches, we consider the BPR [36],
BiasedMF [28], and SVD++ [27] algorithms. To contextualize our results, we also
consider two non-personalized algorithms (MostPopular and RandomGuess).
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3.4 Datasets

MovieLens-1M (Movies). The dataset provides 1M ratings (range 1–5), pro-
vided by 6,040 users, to 3,600 movies. It contains the IMDb ID of each movie,
which allowed us to associate it to its country of production thanks to the OMDB
APIs2 (note that each movie may have more than one country of production).

Book Crossing (Books). The dataset contains 356k ratings (in the range 1–
10), given by 10,409 users, to 14,137 books. The dataset contained the ISBN
code of each book, which was used to add information about its countries of
production thanks to the APIs offered by the Global Register of Publishers3.

For both datasets, we encoded the country of production with an integer,
with the United States (which represents the majority group in both datasets)
having ID 1, and the rest of the countries having subsequent IDs.

4 Disparate Impact Assessment

In this section, we run the algorithms presented in Sect. 3.3 to assess their
effectiveness and the disparate impact they generate.

4.1 Experimental Setting

For both datasets presented in Sect. 3.4, the test set was composed by the most
recent 20% of the ratings of each user. To run the recommendation algorithms
presented in Sect. 3.3, we considered the LibRec library (version 2). For each
user, we generate 150 recommendations (denoted in the paper as the top-n) so
that we can mitigate disparate impact through a re-ranking algorithm. The final
recommendation list for each user is composed by 20 items (denoted as top-k).

Each algorithm was run with the following hyper-parameters:

– UserKNN. similarity: Pearson; neighbors: 50; similarity shrinkage: 10;
– ItemKNN. similarity: Cosine for Movies and Pearson for Books; neighbors:

200 (Movies), 50 (Books); similarity shrinkage: 10;
– BPR. iterator learnrate: 0.1; iterator learnrate maximum: 0.01; iterator max-

imum: 150; user regularization: 0.01; item regularization: 0.01; factor number:
10; learnrate bolddriver: false; learnrate decay = 1.0;

– BiasedMF. iterator learnrate: 0.01; iterator learnrate maximum: 0.01; iter-
ator maximum: 20 (Movies), 1 (Books); user regularization: 0.01; item reg-
ularization: 0.01; bias regularization: 0.01; number of factors: 10; learnrate
bolddriver: false; learnrate decay: 1.0;

– SVD++. iterator learnrate: 0.01; iterator learnrate maximum: 0.01; iterator
maximum: 10 (Movies), 1 (Books); user regularization: 0.01; item regular-
ization: 0.01; impItem regularization: 0.001; number of factors: 10; learnrate
bolddriver: false; learnrate decay: 1.0.

2 http://www.omdbapi.com/.
3 https://grp.isbn-international.org/search/piid cineca solr.

http://www.omdbapi.com/
https://grp.isbn-international.org/search/piid_cineca_solr
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To evaluate recommendation effectiveness, we measure the ranking qual-
ity of the lists by measuring the Normalized Discounted Cumulative Gain
(NDCG) [25].

DCG@k =
∑

u∈U

r̂posui +
k∑

pos=2

r̂posui

log2(pos)
NDCG@k =

DCG@k

IDCG@k
(5)

where r̂posui is relevance of item i recommended to user u at position pos. The
ideal DCG is calculated by sorting items based on decreasing true relevance (true
relevance is 1 if the user interacted with the item in the test set, 0 otherwise).

4.2 Characterizing User Behavior

This section characterizes the group representation and users’ rating behavior.

Group Representation. In the Movies dataset, RI(m) = 0.3 and RR(m) =
0.23. In the Books dataset, instead, RI(m) = 0.12 and RR(m) = 0.08. Both
datasets show a strong geographic imbalance, with the majority group covering
70% of the items in the first dataset and 88% in the second. This imbalance
is worsened when we consider the ratings, since in the movie context the rat-
ings associated to the majority are 77%, while in the book content the rating
representation for the majority is 92%. It becomes natural to ask ourselves if
the majority group also attracts better ratings, to assess if this exacerbated
imbalance is because majority items are perceived as of higher quality.

Table 1. Results of state-of-the-art recommender systems. Normalized Dis-
counted Cumulative Gain (NDCG); Disparate Visibility for the minority group when
considering the item representation as a reference (ΔVI); Disparate Exposure for the
minority group when considering the item representation as a reference (ΔEI); Dis-
parate Visibility for the minority group when considering the rating- representation as
a reference (ΔVR); Disparate Exposure for the minority group when considering the
rating representation as a reference (ΔER). The values in bold indicate the best result.

Movies Books

Algorithm NDCG ΔVI ΔEI ΔVR ΔER NDCG ΔVI ΔEI ΔVR ΔER

MostPop 0.1109 −0.1802 −0.2016 −0.1089 −0.1302 0.0089 −0.1239 −0.1239 −0.0839 −0.0840

RandomG 0.0105 0.0020 0.0027 0.0733 0.0740 8.91E+11 0.0013 0.0015 0.0412 0.0415

UserKNN 0.1247 −0.1544 −0.1668 −0.0831 −0.0955 0.0053 −0.0438 −0.0360 −0.0039 0.0039

ItemKNN 0.1199 −0.1744 −0.1926 −0.1031 −0.1212 0.0075 −0.0799 −0.0790 −0.0400 −0.0390

BPR 0.1395 −0.1054 −0.1087 −0.0340 −0.0373 0.0054 −0.0257 −0.0259 0.0142 0.0141

BiasedMF 0.0588 0.0901 0.0954 0.1614 0.1668 0.0103 −0.1239 −0.1239 −0.0840 −0.0840

SVD++ 0.0684 0.0742 0.0762 0.1455 0.1475 0.0103 −0.1239 −0.1239 −0.0840 −0.0840
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Rating Behavior. We considered the average rating associated to the items of
each group. In the Movies dataset, the average rating for the majority group is
3.56, while that of the minority group is 3.61. In the Books dataset, we observed
an average rating of 4.38 for the majority, and of 4.43 for the minority. This
shows that the preference of the users for the two groups does not differ.

Observation 1. Both datasets expose a big geographic imbalance in the
representation of each group, in terms of offered items. The majority
group usually attracts more ratings, thus increasing the existing imbal-
ance. However, the minority items are not considered as of lower quality
for the users, since the average rating for both groups is the same in both
datasets.

4.3 Assessing Effectiveness and Disparate Impact

We assess disparate impact in terms of visibility and exposure. Table 1 presents
the results obtained when generating a top-20 ranking for each user, considering
as a reference the minority group. The first phenomenon that emerges is that
both groups can be affected by disparate impact and that, when one group
receives more visibility, it also receives more exposure; hence, when a group is
favored in the amount of recommendations, it is also ranked higher.

Considering the Movies dataset, MostPop, UserKNN, ItemKNN, and BPR
present a disparate visibility and exposure that disadvantage the minority, for
both forms of representation. The point-wise Matrix Factorization algorithms
(BiasedMF and SVD++) and RandomGuess, instead, advantage the minority.
This goes in contrast with the literature on algorithmic bias and fairness, where
the minority is usually disadvantaged. We conjecture that, since recommender
systems do not receive any information about the geographic groups and since
users equally prefer the items of the two groups, the point-wise Matrix Factor-
ization approaches create factors that capture user preferences as a whole. Our
results align with those of Cremonesi et al. [14], who showed the capability of
factorization approaches to recommend long-tail items. Interestingly, when con-
sidering disparate visibility and exposure, the best results for the item-based
representation are those of RandomGuess; nevertheless, the algorithm is also
the least effective in terms of NDCG. No algorithm can offer both effectiveness
and adapt to the offer of a country. When considering the rating-based rep-
resentation, BPR is the most effective and has the lowest disparate visibility
and exposure. Hence, the combination between factorization approaches and a
pair-wise training can connect effectiveness and equity of visibility and exposure.

In the Books dataset, besides MostPop, all the approaches advantage the
majority. This opposite trend in terms of disparate impact of the point-wise
Matrix Factorization algorithms (BiasedMF and SVD++) w.r.t. the Movies
dataset, can be explained by considering that the items having more ratings
will lead to factors that have more weight at prediction stage; here, the major-
ity is much larger than in the Movies dataset, so this leads to the group being
advantaged in terms of visibility and exposure. This dataset is much also more
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sparse, so effectiveness is strongly reduced, and the point-wise Matrix Factoriza-
tion approaches are the most effective. There is no connection between effective-
ness and equity of exposure and visibility. Indeed, RandomGuess and UserKNN
are, respectively, the best algorithms when considering the item-/rating-based
representation of the groups. This good visibility and exposure provided by
UserKNN in the rating-based setting can be connected to phenomena observed
by Cañamares and Castells [11] since, under sparsity, the algorithm adapts to
item popularity.

Observation 2. Geographic imbalance almost always affects the minor-
ity group, since we feed algorithms with much more instances than their
counterpart. Matrix Factorization based approaches can help the minor-
ity receive more visibility and exposure, with latent factors that capture
preferences also of the minority. However, if the imbalance is too severe,
the minority is always affected by disparate impact.

5 Mitigating Disparate Impact

The previous section allowed us to observe a new phenomenon that departs from
the existing algorithmic fairness studies, since the minority group is not always
the disadvantaged one when considering geographic imbalance. Still, our results
show that we can always observe a group receiving a disproportional visibility
and exposure with respect to its representation in the data.

In this section, we mitigate these phenomena by presenting a re-ranking algo-
rithm that introduces items of the disadvantaged group in the recommendation
list, to reach a visibility and an exposure proportional to its representation.

A re-ranking algorithm is the only option when optimizing ranking-based
metrics, like visibility and exposure. An in-processing regularization, such as
those presented in [7,26], would not be possible, since at prediction stage
the algorithm does not predict if and where an item will be ranked in a
list. Re-rankings have been introduced to reduce disparities, both for non-
personalized rankings [8,13,32,41,45,46] and for recommender systems [10,31],
with approaches such as Maximal Marginal Relevance [12]. These algorithms
optimize only one property (visibility or exposure), so no direct comparison is
possible.

5.1 Algorithm

The foundation behind our mitigation algorithm is to move up in the recom-
mendation list the item that causes the minimum loss in prediction for all the
users. We start by targeting the desired visibility, to make sure the items of the
disadvantaged group are recommended enough times. Then we move items up
inside the recommendation list to reach the target exposure.

The mitigation is described in Algorithm 1. The inputs are the recommen-
dations (top-n items), the current visibility and exposure of the disadvantaged
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Input: recList: ranked list (records contain user, item, prediction, exposure,
group, position), vis: visibility of disadvantaged group, exp: exposure of
disadvantaged group, rep: representation of disadvantaged group, advG:
ID of advantaged group, disadvG: ID of disadvantaged group

Output: reRankedList: ranked list adjusted by visibility and exposure
1 define optimizeVisibilityExposure (recList, vis, exp, rep)
2 begin
3 reRankedList ← mitigation(recList, vis, rep, advG, disadvG,

”visibility”)
4 reRankedList ← mitigation(reRankedList, exp, rep, advG, disadvG,

”exposure”)
5 return reRankedList

6 end

7 define mitigation (list, V E, rep, advG, disadvG, rankingType)
8 begin
9 for user ∈ list.users do

10 losses.add(calculateLoss(list, user, rankingType, advG, disadvG)
11 end
12 while V E < rep do
13 minLoss ← losses.sortByLoss(0)
14 list ← swap(list, minlLoss.itemAdvG, minLoss.itemDisadvG)
15 if reRankingType == “visibility” then
16 V E ← V E + 1
17 else
18 V E ← (V E − minLoss.itemDisadvG.exposure) +

minLoss.itemAdvG.exposure
19 end
20 losses.add(calculateLoss(list, user, rankingType, advG, disadvG))

21 end
22 return list

23 end

24 define calculateLoss (list, user, rankingType, advG, disadvG)
25 begin
26 itemAdvGroup ← getlastItem(list, user,top-k,advGroup)
27 if reRankingType == “visibility” then
28 itemDisadvGroup ← getfirstItem(list, user,last-n,disadvGroup)
29 else
30 while itemAdvGroup.position > itemDisadvGroup.position do
31 itemDisadvGroup ← getnextItem(list, user,top-k,disadvGroup)
32 end

33 end
34 loss ← itemAdvGroup.prediction - itemDisadvGroup.prediction
35 lossUser ← [user, itemAdvGroup, itemDisadvGroup, loss]
36 return lossUser

37 end
Algorithm 1: Visibility and exposure mitigation algorithm
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group and its representation in the data (our target), and the IDs of the advan-
taged and disadvantaged groups. The output is the re-ranked list of items.

The optimizeV isibilityExposure method (lines 1–6), executes the mitiga-
tion, firstly to regulate the visibility of the disadvantaged group (by adding
their items to the top-k) and secondly to regulate the exposure (by moving their
items up in the top-k). The mitigation method (lines 7–23) regulates the visibil-
ity and exposure of the recommendation list. First, we loop over the users (lines
9–11) and call the calculateLoss method, to calculate the loss (in terms of items’
predicted relevance) we would have in each user’s list when swapping the items
of the two groups. The while loop (lines 12–21) swaps the items until the target
visibility/exposure is reached; line 13 returns the user that causes the minimum
loss and line 14 swaps their items. If the goal is to reach a target visibility, lines
15–16 increase the visibility of the group by 1; if the swap is done to reach a
target exposure, lines 17–19 subtract the exposure of the old item and add that
of the new one. Finally, the calculateLoss method recalculates the loss for the
user object of the swap and returns the re-ranked list.

The calculateLoss method (lines 24–37) identifies the user causing the mini-
mal loss of predicted relevance. We select two items in the list of each user. The
first is the last item of the advantaged group in the top-k (line 26). If we are

Table 2. Impact of mitigation on recommended lists with item-based rep-
resentation. Normalized Discounted Cumulative Gain (NDCG); Disparate Visibility
(ΔVI) for the minority; Disparate Exposure (ΔEI) for the minority. We report below
gain/loss of each setting w.r.t. the original one (left side of Table 1).

Mitigation visibility & exposure

Movies Books

Algorithm NDCG ΔVI ΔEI NDCG ΔVI ΔEI

MostPop 0.1052 −0.0017 −0.0017 0.0087 −0.0039 −0.0039

(gain/loss) −0.0057 0.1785 0.1999 −0.0002 0.1200 0.1200

RandomG 0.0106 −0.0017 −0.0017 8.91E+11 −0.0039 −0.0039

(gain/loss) 0.0001 −0.0036 −0.0043 3.24E+09 −0.0052 −0.0055

UserKNN 0.1205 −0.0017 −0.0017 0.0050 −0.0039 −0.0039

(gain/loss) −0.0042 0.1528 0.1652 −0.0003 0.0399 0.0321

ItemKNN 0.1173 −0.0017 −0.0017 0.0075 −0.0039 −0.0039

(gain/loss) −0.0027 0.1727 0.1909 0.0000 0.0760 0.0751

BPR 0.1372 −0.0017 −0.0017 0.0055 −0.0039 −0.0039

(gain/loss) −0.0023 0.1037 0.1070 0.0001 0.0218 0.0220

BiasedMF 0.0623 −0.0017 −0.0017 0.0119 −0.0039 −0.0039

(gain/loss) 0.0035 −0.0918 −0.0971 0.0016 0.1200 0.1200

SVD++ 0.0712 −0.0017 −0.0017 0.0113 −0.0039 −0.0039

(gain/loss) 0.0028 −0.0759 −0.0779 0.0011 0.1200 0.1200
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regulating visibility, lines 27–28 select the first item of the disadvantaged group
out of the top-k (denoted as last-n). Lines 29–33 mitigate for exposure; the while
selects an item of the disadvantaged group that in the top-k is currently ranked
lower than that of its counterpart. Once we obtain the pair of items for the user,
we calculate the loss by considering the prediction attribute (line 34). Finally,
line 35 collects the loss of the user, which is returned in line 36.

5.2 Impact of Mitigation

In this section, we assess the impact of our mitigation. Since we split data tem-
porally, we cannot run statistical tests to assess the difference in the results, so
we highlight the gain/loss obtained for each measure.

Results are reported in Tables 2 and 3 separating them between item- and
rating-based representation of the groups. Trivially, given a target representation
and a dataset, all algorithms achieve the same disparate visibility/exposure. Let
us consider the trade-off between disparate visibility/exposure and effectiveness.
Considering the Movies dataset, in both representations of the groups, BPR is
the algorithm with the best trade-off between effectiveness and equity of vis-
ibility and exposure. It was already the most accurate algorithm, and thanks
to our mitigation based on the minimum-loss principle, the loss in NDCG was

Table 3. Impact of mitigation on recommended lists with rating-based rep-
resentation. Normalized Discounted Cumulative Gain (NDCG); Disparate Visibility
(ΔVR) for the minority; Disparate Exposure (ΔER) for the minority. We report below
gain/loss of each setting w.r.t. the original one (left side of Table 1).

Mitigation visibility & exposure

Movies Books

Algorithm NDCG ΔVR ΔER NDCG ΔVR ΔER

MostPop 0.1076 −0.0003 −0.0003 0.0089 −0.0040 −0.0040

(gain/loss) −0.0032 0.1085 0.1299 −0.0006 0.0800 0.0800

RandomG 0.0112 −0.0003 −0.0003 8.54E+11 −0.0040 −0.0040

(gain/loss) 0.0006 −0.0736 −0.0743 −2.37E+10 −0.0452 −0.0455

UserKNN 0.1239 −0.0003 −0.0003 0.0050 −0.0040 −0.0040

(gain/loss) −0.0008 0.0828 0.0952 −0.0003 −0.0001 −0.0079

ItemKNN 0.1185 −0.0003 −0.0003 0.0075 −0.0040 −0.0040

(gain/loss) −0.0015 0.1027 0.1209 0.0001 0.0360 0.0351

BPR 0.1390 −0.0003 −0.0003 0.0053 −0.0040 −0.0040

(gain/loss) −0.0005 0.0337 0.0370 −0.0001 −0.0182 −0.0180

BiasedMF 0.0648 −0.0003 −0.0003 0.0122 −0.0040 −0.0040

(gain/loss) 0.0060 −0.1618 −0.1671 0.0016 0.0800 0.0800

SVD++ 0.0735 −0.0003 −0.0003 0.0113 −0.0040 −0.0040

(gain/loss) 0.0051 −0.1459 −0.1479 0.0011 0.0800 0.0800
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negligible. In the Books dataset, BiasedMF confirms to be the best approach,
in both effectiveness and equity of visibility and exposure. It is interesting to
observe that, in both scenarios, MostPop is the second most effective algorithm
and now provides the same visibility and exposure as the other algorithms; this
is due to popularity bias phenomena [2], and their analysis is left as future work.

Observation 3. When providing a re-ranking based on minimal pre-
dicted loss, the effectiveness remains stable, but disparate visibility and
disparate exposure are mitigated.

6 Conclusions and Future Work

In this paper, we considered data imbalance in the items’ country of produc-
tion of items (geographic imbalance). We considered a group setting based on a
majority-versus-rest split of the items and defined measures to assess disparate
visibility and disparate exposure for groups. The results of five collaborative
filtering approaches show that the minority group is not always disadvantaged.

We proposed a mitigation algorithm that produces a re-ranking, by adding
to the recommendation lists items that cause the minimum loss in predicted
relevance. Results show that thanks to our approach, any recommendation algo-
rithm can bring equity of visibility and exposure to providers, without impacting
the end-users in terms of effectiveness.

Future work will study geographic imbalance in education, to explore
country-based disparities for teachers [3,16–18]. Moreover, we will evaluate
divergence-based disparity metrics [15]) and consider multi-class group settings.
Other issues emerging from imbalanced groups, such as bribing [34,40], will be
considered.
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11. Cañamares, R., Castells, P.: A probabilistic reformulation of memory-based col-
laborative filtering: implications on popularity biases. In: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 215–224. ACM (2017). https://doi.org/10.1145/3077136.
3080836

12. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In: SIGIR 1998: Proceedings of
the 21st Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 335–336. ACM (1998). https://doi.org/10.
1145/290941.291025

13. Celis, L.E., Straszak, D., Vishnoi, N.K.: Ranking with fairness constraints. In: 45th
International Colloquium on Automata, Languages, and Programming, ICALP
2018. LIPIcs, vol. 107, pp. 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.28

14. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms
on top-n recommendation tasks. In: Proceedings of the 2010 ACM Conference on
Recommender Systems, RecSys 2010, pp. 39–46. ACM (2010). https://doi.org/10.
1145/1864708.1864721

15. Deldjoo, Y., Anelli, V.W., Zamani, H., Kouki, A.B., Noia, T.D.: Recommender
systems fairness evaluation via generalized cross entropy. In: Burke, R., Abdollah-
pouri, H., Malthouse, E.C., Thai, K.P., Zhang, Y. (eds.) Proceedings of the Work-
shop on Recommendation in Multi-stakeholder Environments Co-located with the
13th ACM Conference on Recommender Systems (RecSys 2019), Copenhagen,
Denmark, 20 September 2019, CEUR Workshop Proceedings, vol. 2440. CEUR-
WS.org (2019)

https://doi.org/10.1371/journal.pone.0217389
https://doi.org/10.1371/journal.pone.0217389
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1145/3292500.3330745
https://doi.org/10.1145/3209978.3210063
https://doi.org/10.1007/978-3-030-15712-8_30
https://doi.org/10.1145/3077136.3080836
https://doi.org/10.1145/3077136.3080836
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.4230/LIPIcs.ICALP.2018.28
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/1864708.1864721
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40. Saúde, J., Ramos, G., Caleiro, C., Kar, S.: Reputation-based ranking systems and
their resistance to bribery. In: Raghavan, V., Aluru, S., Karypis, G., Miele, L., Wu,
X. (eds.) 2017 IEEE International Conference on Data Mining, ICDM 2017, New
Orleans, LA, USA, 18–21 November 2017, pp. 1063–1068. IEEE Computer Society
(2017). https://doi.org/10.1109/ICDM.2017.139

41. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, pp. 2219–2228. ACM (2018). https://doi.org/10.1145/3219819.
3220088

https://doi.org/10.21437/Interspeech.2019-2430
https://doi.org/10.21437/Interspeech.2019-2430
https://doi.org/10.1145/3269206.3272027
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3397271.3401278
https://doi.org/10.1016/j.ipm.2019.102058
https://doi.org/10.1007/978-3-030-52485-2_10
https://doi.org/10.1007/978-3-030-52485-2_10
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1145/3308560.3317595
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1109/ICDM.2017.139
https://doi.org/10.1145/3219819.3220088
https://doi.org/10.1145/3219819.3220088
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Abstract. Prior work on personalized recommendations has focused on
exploiting explicit signals from user-specific queries, clicks, likes and rat-
ings. This paper investigates tapping into a different source of implicit
signals of interests and tastes: online chats between users. The paper
develops an expressive model and effective methods for personalizing
search-based entity recommendations. User models derived from chats
augment different methods for re-ranking entity answers for medium-
grained queries. The paper presents specific techniques to enhance the
user models by capturing domain-specific vocabularies and by entity-
based expansion. Experiments are based on a collection of online chats
from a controlled user study covering three domains: books, travel, food.
We evaluate different configurations and compare chat-based user mod-
els against concise user profiles from questionnaires. Overall, these two
variants perform on par in terms of NCDG@20, but each has advantages
on certain domains.

Keywords: Search-based recommendation · User modeling ·
Personalization

1 Introduction

Motivation: Recommender systems are at the heart of personalized shopping
and online services for music and video streaming, hotels and restaurants, or food
recipes [6,18,32]. Search-based recommendation is a setting where the user starts
with a query and the recommendation model determines the result ranking based
on the user’s interests and preferences. This paper considers medium-grained
queries about product entities (books, food recipes, and travel destinations) such
as paranormal romance or wine lover destinations – in contrast to coarse-grained
queries such as love novels or Europe and fine-grained queries such as similar to
Stephenie Meyer’s Twilight or vineyards of the Bourgogne. Results are assumed
to come from a search engine (restricted to suitable domains for the respective
vertical). Therefore, the personalization amounts to re-ranking the top results
with regard to a model of the user’s individual tastes.
c© Springer Nature Switzerland AG 2021
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For this setting, the user model or profile can be represented explicitly in a
personal knowledge base [5] or implicitly in a latent model [22,51]. These models
can be constructed from various kinds of observations on user behavior:

A: Explicit signals like clicks, likes, ratings and purchases.
B: User profiles such as adssettings.google.com where users can see and check

or un-check topics (even if the profile itself is learned from other signals).
C: Implicit signals from other online behavior, like social media posts or con-

versations with other users.

Option A is most widely used in practice (e.g., [19,25,52]) and includes standard
recommenders based on collaborative filtering [35]. However, this rich kind of
data is available only to major service providers, such as music streaming where
playlists and other I-like-the-song signals are abundant. Option B operates on
concise digests of user interests and item properties, for example, a list of topics
and tags (e.g., [45]). This is less informative than A, but has the advantage
that the user can easily interpret her profile and adjust it at her discretion (e.g.,
dropping a topic that is unwanted). Option C has been studied for recommending
news and discussions, but the best signals are still the user histories of clicks,
dwell times and likes (e.g., [28,44]). For search-based recommendation of product
entities, C has not been explored at all, except for the specific case of leveraging
product reviews (e.g., [7,14,34]).

This paper focuses on option C. It investigates how online chats between
users can be leveraged for personalization in the outlined setting. To the best of
our knowledge, it is the first work that studies chats as a source for search-based
recommendation.

Research Questions: We investigate the following research questions:

• RQ0: How can we leverage signals from user-user chats to personalize search-
based recommendations across a variety of domains: books, food recipes, and
travel destinations?

• RQ1: How do methods that tap into individual conversations compare to
methods that merely access concise user profiles?

• RQ2: How important is it to customize the per-user models to the specific
domain at hand, for example, books vs. travel?

• RQ3: How much added value can we get from entity awareness: detecting
named entities in user chats, mapping them to a background knowledge base,
and using that information for expansion of user models and re-ranking tech-
niques?

Contributions: We devise techniques for constructing language models and
using them for re-ranking, with various components derived from chats: i) com-
puting domain-specific vocabularies and ii) entity detection and entity-based
expansions. The chats are recorded real-time conversations, gathered in a sub-
stantial user study with 14 students and 83 pair-wise chats (with 9,797 utterances

http://www.adssettings.google.com
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and 59k tokens in total and a total duration of 93 h). We contrast chat-based per-
sonalization against techniques that merely build on concise user profiles derived
from short questionnaires [43]. The paper makes the following contributions:

• It is the first approach to consider user chats as a source for search-based
recommendation across a variety of vertical domains. Chats are a rich source
of information about individual interests and tastes. In contrast to latent
models learned from clicks, likes, ratings, etc., a user can more easily interpret
and edit/censor this information to selectively restrict its usage for privacy
reasons.

• We systematically compare chat-based personalization against a more restric-
tive approach that merely uses concise user profiles based on short question-
naires. In our experiments, both show advantages in certain domains, and
perform on par overall.

• We devise techniques for per-domain customization by controlling the vocab-
ulary and appropriate weighting of terms, and report on their experimental
effectiveness.

• We devise techniques to harness entities and background knowledge in the
construction of user models, and report on their experimental effectiveness.

• We release a dataset consisting of filled questionnaires, pair-wise user chats,
document URLs, and search result assessments by users for three domains
(books, travel, food). The data is available at http://personalization.mpi-inf.
mpg.de/.

2 Computational Model and Re-ranking

We approach the personalization of entity-search answers by re-ranking a pool
of initial non-personalized results using three different methods for scoring and
ranking: the BM25 family, statistical language models, and neural ranking.
Beginning with these ranking methods, we incorporate a user model to person-
alize results and domain-specific term weights to identify terms that are infor-
mative with a domain. We additionally apply expansion techniques to expand
entities found in the user model. Rerankers thus consider a user model in addition
to queries and documents. In our setting,

• Queries are short, medium-grained bags of words (or phrases), such as
“scandinavian suspense” (for the books domain) or “wine lover destinations”
(travel).

• Documents are entity-level answers obtained from specific websites that pro-
vide comprehensive contents about three domains: goodreads.com for books,
wikivo-yage.org for travel, and allrecipes.com for food. Each answer has a
key entity that can be easily identified (e.g., from the URL string or page
title) and comprises an informative description of the entity. Two of the sites
include also extensive reviews and discussion by their communities.

http://personalization.mpi-inf.mpg.de/
http://personalization.mpi-inf.mpg.de/
http://www.goodreads.com
http://www.wikivo-yage.org
http://www.allrecipes.com
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• User models represent a user’s interests and tastes as a bag of words (or n-
grams) taken from either a short questionnaire/profile filled in by the user or
a collection of online chats with other users. Both of these options are further
refined by instructing users to focus on specific scopes: general, books, travel,
and food. This yields 8 basic options for the user model, which we further
augment with techniques for domain-specific vocabularies and entities.

For illustration, Fig. 1 shows excerpts from the questionnaire and the chat
collection for an example user. For the query “temples and culture”, this user-
specific information led to high ranks of travel destinations like Borobudur, Del-
phi and Ellora – all confirmed as very good recommendations by that user.

2.1 Re-ranking Methods

Given a query q, a user model u, and a document d from a pool of non-
personalized results, we personalize the results by re-ranking them according
to the user model. We explore three re-ranking methods for doing this.

Language Models: The first variant for re-ranking is based on language mod-
els (LMs) [50], which provide a natural way to incorporate the user model. We
compute the Kullback-Leibler divergence between a query model and a document
model with Dirichlet smoothing over unigrams or n-grams. In pilot experiments,
unigrams outperformed bigrams and trigrams; hence we focus on the unigram
case. To personalize for a specific user, we compute the Kullback-Leibler diver-
gence i) between the query q and the document d and ii) between the user model
u and the document d. These two components are combined into a linear mix-
ture with hyper-parameter λ. Additionally, we incorporate a background model
C for smoothing, based on ClueWeb’09. That is,

Fig. 1. Excerpts from user questionnaire and chat on travel domain (with recognized
named entities and concepts in boldface)
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score(q, d, u) ∝ −(λdiv(θq‖θd) + (1 − λ)div(θu‖θd)) ∝

−λ
∑

w∈Vq

spy(w) · p(w|θq) log
p(w|θq)

(p(w|θd) + μp(w|θC)) / (|d| + μ)

−(1 − λ)
∑

w∈Vu

spy(w) · p(w|θu) log
p(w|θu)

(p(w|θd) + μp(w|θC)) / (|d| + μ)

(1)

where Vu and Vq are the vocabularies of the user and query models, and θq, θu, θd
and θC denote the multinomial parameters of query, user, document and back-
ground models, with Dirichlet smoothing parameter μ set to the average docu-
ment length. We introduce additional weights spy(t) which reflect the specificity
of a term t for a given domain (books, food or travel), as described in Sect. 3.
This can be viewed as conditioning the query and user models with a domain
model.

Optionally, we integrate word embeddings by using the cosine distance
between precomputed word2vec embeddings [31] as a term-term similarity score
sim(w, t). This is plugged into the document model by means of a translation
model largely following [24], with per-term contributions p(w|θd) replaced by
summing over all similar terms (above a threshold):

∑
t:w∼t

sim(w, t) · p(t|θd).

BM25: The second variant for re-ranking is the Okapi BM25 model [33]. We
incorporate the user model by query expansion. In principle, all terms from the
entire chat collection of a user are added to the query. We will discuss ways of
reducing noise and focusing the query in Sects. 3 and 4. That is,

score(q ∪ u, d) ∝
∑

w∈Vq∪u

spy(w) · idf(w) · tf(w, d) · (k1 + 1)

tf(w, d) + k1 ·
(
1 − b + b · |d|

avgdl

) (2)

with domain-specificity weight spy(w), document length |d|, average document
length avgdl, and BM25 parameters b and k1.

Neural Ranking with KNRM: The third variant for re-ranking is the KNRM
neural method [46] which takes a bag-of-words query as input. KNRM produces
a query-document relevance score by comparing embedding similarities between
query and document terms. During training, KNRM learns how to weigh differ-
ent embedding similarity levels. As with BM25, we incorporate the user model
by query expansion.

3 Domain-Specific Vocabulary Weighting

As described in the previous section, the ranking models are further augmented
by awareness of domain-specific vocabularies, customizing the user models and
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document models to books, travel or food, respectively. The intuition is that
terms in a user chat are informative if they refer to a certain meaning within
a particular domain. For example, terms like “history” or “museum” are good
cues about a user’s travel interests, whereas terms like “price” or “bargain” are
uninformative – although all these terms have comparable idf values in large
corpora.

We incorporate this idea of domain specificity by computing per-domain
weights for terms, and weighing term contributions by the various ranking models
accordingly (or even eliminating low-weight terms). To this end, we estimate
the conditional probability of a term occurring in a domain-specific context
(document or chat) given that it occurs in a general corpus:

spy(w) = P (w ∈ Dom|w ∈ All) ∝ tf(w ∈ Dom)/|Dom|
tf(w ∈ All)/|All| (3)

As underlying text collections for this estimator, we use the pool of all
retrieved documents per domain (e.g., all answers for book search, including
book descriptions and user reviews) against the pool of documents for all three
domains together. We also experimented with term weighting for user-specific
vocabularies, contrasting all chats by the same user against a universal corpus.
This did not lead to significant changes in the empirical results, though, and is
disregarded in the following.

4 Entity Expansion

Named Entity Recognition and Disambiguation (NER/NED): Among
all terms and phrases in the user’s chats and questionnaires, entities and con-
cepts deserve specific treatment. We ran standard NER (stanfordnlp.github.io)
and NED (github.com/ambiverse-nlu) tools to link text spans to uniquely iden-
tified entities in the YAGO knowledge base, which in turns links most of these to
Wikipedia. However, the NER stage produced both many false positives and false
negatives. This is largely caused by the very colloquial nature of user chats, with
short-hands, misspellings, ungrammatical utterances and ad-hoc choice between
upper-case and lower-case. To mitigate this effect, we hired crowdsourcing work-
ers to mark up text spans for entities and also general concepts that exist in
YAGO and Wikipedia (e.g., “history“ or “Buddhist art”). This way we elimi-
nated nearly all NER errors. As a result, the NED stage performed well, with
precision reaching approximately 0.83 (estimated by sampling). We obtained
this perfect mark-up only for NER as this is much easier for crowd workers than
NED.

User Model Expansion: Rather than adding the names of these detected
and linked entities to the user model directly, which is likely to overfit given
that we deal with many long-tail entities (e.g., lesser-known books or special
travel destinations), we experimented with expanding entities using embeddings

https://stanfordnlp.github.io/CoreNLP/
https://github.com/ambiverse-nlu
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and Wikipedia descriptions. We first conducted pilot experiments with entity
embeddings using Wikipedia2vec [47,48] to achieve proper generalization, but
this did not perform well: many terms that are highly related by Wikipedia2vec
are quite uninformative if not misleading (e.g., history being most related to
literature; modern, natural, and wine being most related to coffee, beer, food).
Ultimately, to avoid this noise and topical drift, we expanded the entities using
their descriptions from (the first paragraph of) their Wikipedia articles. This
captures, for example, content sketches of books, highlights of travel destinations,
etc. The resulting terms were added to general as well as domain-specific user
models. For the latter, we computed the domain specificity of an entity and its
descriptive terms, using the weighting model of Sect. 3.

Selective Expansion by Domain-Specificity: Some of the extracted entities
may be poor cues for a certain target domain (e.g. a user chatting about “Italian
cuisine” is not helpful for books and could even be misleading for travel). To
counter this potential dilution, we use the domain-specificity of entities to filter
the candidate entities before expanding the user model.

To this end, we construct a domain model for each of the three domains
using Wikipedia2vec embeddings which capture both entity-level linkage and
textual descriptions [47,48]. Candidate entities are mapped into the same latent
space, and the cosine similarity between entity and domain is used to select
entities above a threshold. Specifically, the domain vectors are computed by a
weighted average of the m = 50 words and entities that are most related to the
Wikipedia articles on “book”, “travel” and “food”, respectively, with weights
proportional to cosine between vectors. For selective entity expansion of per-
domain user models, we pick entities whose similarity to the respective domain
model is above a specified threshold.

This approach introduces several thresholds and hyper-parameters: per-
domain numbers of related terms for the domain model and similarity thresh-
olds for pruning entities. We tuned these via grid search with the objective of
maximizing the area under the precision-recall curves for entity detection and
disambiguation. We used the manually annotated entities in the domain-specific
questionnaires as ground-truth for domain relatedness.

5 Data Collection

We gathered personal data in a 4-week user study with 14 students who were
paid ca. 10 Euros per hour. We randomly paired two users for 3 chats per week.
For the first week, users were instructed to chat generally, like mutual introduc-
tions. During the remaining weeks users were asked to chat about specific topical
domains: users’ interests and tastes in books and their experience and interests
in traveling and food. On average, each user had 2.8 sessions for each domain,
totaling to ca. 11 sessions overall, with an average of 653 utterances and 3934
tokens per user. In addition, each user filled in several questionnaires upfront:
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a general one with 18 questions about demographics, general interests and per-
sonality, and one for each of the themes books, travel and food with 2, 5 and
10 questions, respectively (see left side of Fig. 1 for an example excerpt). The
general questionnaire included personality-oriented questions such as “What are
your hobbies?”, “What makes you happy?”, and “Your golden rule?”.

6 Experimental Studies

6.1 Setup

The 14 users from whom we collected questionnaire and chat data also partic-
ipated in an assessment study of personalized search results. To this end, we
compiled 75 medium-grained keyword queries (25 per domain). Example queries
are shown in Table 1.

All queries were issued to a commercial search engine with site restrictions
as described in document models (Sect. 2). The top-100 answers were retrieved,
keeping only those that were about specific entities and discarding general list
pages – this left us with 90 or more answers for each query.

The users were asked to identify around 5 queries for each domain on top-
ics that looked potentially appealing to them. This way we avoided personal-
ized judgements on topics that the user does not care about. For each query,
a user assessed 20 results that were sampled uniformly at random (to avoid
ranking bias) and, additionally, the top-10 results from the original ranking
(with the risk of bias). We asked for subjective, graded assessments with labels:
2 = strongly interested, 1 = mildly interested, 0 = uninterested, and discarded all
“I don’t know” assessments. We required the users to enter justification sentences
along with their judgements. In total, we obtained 2673 individual assessments
for 113 user-query pairs with 73 distinct queries.

Evaluation Metrics: The primary metric is NDCG@20, which we use to
refer to methods’ effectiveness when re-ranking the 20 randomly sampled query
results. In addition, we report on precision@1 where we compare the highest-
ranked results from the 20 random samples against a user judgement of 1
or 2 (= strongly or mildly interested). For completeness, we also consider
NDCG@top10 for the top-10 results of the original, potentially biased, rank-
ings from a commercial search engine.

Table 1. Example queries by domain

Books Scandinavian suspense Novels made into movies Personal development

Travel Weekend trip for festival Best wine lover destination Epic road trip

Food Perfect breakfast Iron rich vegetarian recipes 15-minute meal recipes
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Methods Under Comparison: We cover the following methods and configu-
rations.

• LM denotes the language model approach. To isolate the effect of the user
model in the re-ranking, and as our initial pool of entities are to some extent
relevant to the query, we either set the λ to 0 or 1. When λ = 1 the input
to the re-ranker is the query model and when λ = 0 only the user model is
given as input.

• LM-embed is the language-model method with word embeddings using
word2vec. The term-term similarity threshold is set to 0.5.

• BM25 is the BM25 method with parameters set to the following values widely
used in the literature: b = 0.75, k1 = 1.5.

• KNRM is the neural ranker, with the maximum query and document lengths
set to 50 and 5000, respectively. The terms for the query/user model are
obtained by tf order, selecting the top 50 distinct terms. Document terms are
the top-5000 terms. Models are trained on data per domain with 504, 772
and 806 assessments for book, food and travel, respectively.
As this training is fairly low-end, we also study a variant KNRM-all where
we combine all domains into a single training set with 2082 labeled samples.
We report on ten-fold cross-validation with 8, 1 and 1 folds for training,
validation and test, respectively.

• SE is the initial ranking from a commercial search engine.

6.2 User Models: None vs. Chats vs. Questionnaires (RQ0 and
RQ1)

Table 2 shows the NDCG@20 results for the influence of different user models.
The top part of Table 2 gives the overall results across all domains (averaged over
the 113 user-query pairs). The other parts show per-domain results. The user
models under comparison here are query-only vs. questionnaires-based vs. chats-
based. For the latter two, we varied the specific setting by deriving models from
all available inputs regardless of the domains (All), using only general question-
naires or chats (Gen, see Sect. 5), using only domain-specific inputs (Dom), or
using both general and per-domain inputs (Dom+Gen). In this comparison, all
methods were configured without entity expansion and without domain-specific
vocabularies (which will be discussed in the next subsections).

Overall Results (Top Part of Table 2): The overriding observation is that
almost all rankers with different degrees of personalization improve over the SE
baseline and that both questionnaire-based and chat-based user models achieve
notable gains over the query-only rankers: in the order of 2 to 4% points in
NDCG@20. While the effect size of personalization is only moderate, the rel-
ative gains are statistically significant and come at little cost for the ranker
efficiency. For significance, two-tailed paired t-tests in comparison to the Query-
Only baselines mostly had p-values < 0.05. These results are marked with an
asterisk in Table 2.
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Table 2. NDCG@20 for different rankers and user models. Best results per row are
in boldface. Statistically significant improvements over the Query-Only baselines are
marked with an asterisk.

Ranker User model

Query only Questionnaires Chats

All Gen Dom Dom+Gen All Gen Dom Dom+Gen

LM 0.796 0.816 0.804 0.823∗ 0.824∗ 0.811 0.806 0.822∗ 0.817∗

LM-embed 0.794 0.791 0.787 0.811 0.798 0.782 0.777 0.795 0.784

BM25 0.785 0.823∗ 0.815∗ 0.827∗ 0.833∗ 0.819∗ 0.816∗ 0.827∗ 0.821∗

KNRM 0.807 0.791 0.805 0.798 0.794 0.780 0.786 0.784 0.785

KNRM-all 0.810 0.807 0.796 – – 0.788 0.791 – –

SE 0.786 – – – – – – –

Books

LM 0.825 0.829 0.823 0.822 0.834 0.846 0.854 0.844 0.847

LM-embed 0.818 0.795 0.803 0.801 0.799 0.811 0.799 0.813 0.806

BM25 0.814 0.843 0.846 0.834 0.847 0.846 0.849 0.851 0.850

KNRM 0.826 0.827 0.832 0.817 0.816 0.790 0.810 0.790 0.809

SE 0.777 – – – – – – –

Travel

LM 0.818 0.821 0.815 0.854∗ 0.838 0.826 0.813 0.841 0.835

LM-embed 0.813 0.799 0.787 0.849∗ 0.814 0.785 0.782∗ 0.803 0.796

BM25 0.794 0.837∗ 0.833∗ 0.857∗ 0.849∗ 0.836∗ 0.837∗ 0.844∗ 0.838∗

KNRM 0.838 0.806 0.833 0.827 0.801 0.800 0.800 0.805 0.800

SE 0.794 – – – – – – –

Food

LM 0.753 0.802∗ 0.779 0.790 0.803∗ 0.772 0.766 0.785 0.777

LM-embed 0.757 0.778 0.775 0.777 0.780 0.758 0.755 0.773 0.757

BM25 0.756 0.793 0.775 0.791 0.806∗ 0.783 0.770 0.793∗ 0.782

KNRM 0.761 0.751 0.756 0.755 0.771 0.752 0.753 0.757 0.753

SE 0.785 – – – – – – –

Interestingly, LM-embed did not improve over LM. The term-term related-
ness by word2vec seems to be too crude for our task and dilutes the query focus.
KNRM and KNRM-all were inferior to the Query-Only case. The combination of
small training data and limited input size is the likely cause for this disappointing
result.

When comparing questionnaire-based vs. chat-based personalization, the for-
mer performs slightly better than the latter, but the differences are minor. For
both, the best variants were the ones with user models Dom or Dom+Gen, indi-
cating awareness of the domain is beneficial. Dom is almost always preferable to
Dom+Gen in the case of chats, but there is no clear trend when using question-
naires. This is likely due to the fact that the general questionnaires were designed
to reveal user personalities, whereas the general chats were mostly introductory
and less informative. These gains are not always statistically significant, but the
best cases are: for example, the improvement for LM from 0.811 with chats-All
to 0.822 with chats-Dom had a p-value of 0.0018.
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Per-Domain Results: The results vary among the different domains in an
interesting way. We base the discussion on LM and BM25 as they achieved the
best results. For books and travel, the gains from user models are most pro-
nounced. For books, the chat-based models achieved a small but notable and
significant improvement over the questionnaire-based ones. We observe that for
questionnaire-based models Dom + Gen outperforms Dom. This is due to the
low coverage of the book domain with only two questions on the user’s favorite
books and genres, whereas the general questionnaire includes demographics and
personal traits. On the other hand, for the travel domain with 5 specific ques-
tions, Dom performs better than Dom + Gen in both questionnaire-based and
chat-based models, with the former giving the best results.

For food, personalization led to gains, but the absolute NDCG scores were
substantially lower than for the other two domains. Here, the SE performed
better than the re-rankers with the query-only model. However, using Dom+Gen
questionnaire-based profiles, we achieved up to 2% improvement over the SE
results. It seems that the food domain is inherently difficult to understand, as
its vocabulary mixes specific and very common words with a strong influence of
the latter on tastes and sentiments (e.g., “hot”, “terrific” etc.).

As for precision@1, the overall gains by personalization were nearly 10%:
considering the best-performing rankers on overall results, the LM improved from
70% with query-only models to 81% with questionnaire-based models, and BM25
went up from 66% to 83%. Again, the gains were most substantial for books and
travel, but here food as well showed notably improved precision@1. We further
evaluated NDCG@top10: not surprisingly, the SE baseline was stronger for this
metric, but was still outperformed by re-ranking with personalization. The best
values for our method were comparable to those for NDCG@20, around 83%
across all domains and up to 87% for travel.

6.3 Domain Vocabularies (RQ2)

Recall from Sect. 3 that we optionally incorporate domain-specific term weight-
ing to reduce the influence of irrelevant wording from the user chats. Table 3
shows NDCG@20 results with this awareness of domain vocabularies, for the
four chat-based configurations All, Gen, Dom and Dom + Gen. We show only
overall results across all domains, but for each domain, all user-model terms
were weighted by the respective spy(w) domain model. For brevity, we restrict
ourselves to the LM-based ranker; the findings were similar for the other two
rankers.

Table 3 indicates that there are small gains from this domain-specific weight-
ing, but the effect size is marginal and not statistically significant (p-value > 0.1).
It seems that chats are not sufficiently focused on domain-specific topics. Humans
do jump between topics, so chats naturally have a high level of thematic diversity.
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Table 3. NDCG@20 for LM-based ranker with domain-specific vocabularies

Domain specificity Chats

All Gen Dom Dom+Gen

Disabled 0.811 0.806 0.822 0.817

Enabled 0.821 0.813 0.83 0.826

Table 4. NDCG@20 for LM-based ranker across all domains with entity expansion.
Best results per column are in boldface. Statistically significant improvements over no
entity awareness None baselines are marked with an asterisk.

Entity expansion User models

Questionnaires Chats

All Gen Dom Dom+Gen All Gen Dom Dom+Gen

None 0.816 0.804 0.823 0.824 0.811 0.806 0.822 0.817

All 0.817 0.816 0.826 0.822 0.821 0.814 0.828 0.824

Domain 0.823 0.812 0.827 0.824 0.821∗ 0.814∗ 0.829 0.824

NE-all 0.823 0.81 0.826 0.829 0.818∗ 0.813 0.829 0.825∗

NE-dom 0.829∗ 0.809 0.825 0.833 0.819∗ 0.815∗ 0.83 0.824∗

6.4 Entity Expansion (RQ3)

To study the influence of entity expansion for the user models, we compared
different settings against the previously reported configurations without entity
awareness: all expands all entities including concepts (in Wikipedia, such as
“history” or “Buddhist art”); domain restricts the entities to those that are
related to the respective domain (see Sect. 4); NE-all uses only named entities
(i.e., discarding general concepts); NE-dom uses only named entities with domain
relatedness above a threshold.

Table 4 shows the overall NDCG@20 for these settings with the different con-
figurations for the user-model construction. We observe that almost none of the
expansion methods significantly improve the models derived from questionnaires.
The reason is that these models are already very concise given their high-quality
inputs. For chat-based user models, on the other hand, entity expansion led to
small, but notable and statistically significant (p-values < 0.05), improvements
of ca. 1%.

7 Related Work

Recommender systems are ubiquitous in search, e-commerce and social con-
tent sharing. Most state-of-the-art systems learn from massive amounts of user-
behavior signals: queries, clicks, likes, ratings, etc. (e.g., [19,25,52]). To a lesser
extent, product reviews are considered as well (see, e.g., [7,14]), but recent stud-
ies [34,40] indicate that there is considerable noise in user reviews and lim-
ited benefit from such additional input. In the opposite direction, [6] made the
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point that user models for personalized recommendations should be scrutable
and, therefore, use as little information as possible and make the derived mod-
els transparent and user-interpretable. The work [43] pursued this rationale by
building on explicit user profiles from short questionnaires. The current paper’s
experiments include comparisons to that approach. None of the prior works has
considered user-user chats as a source for capturing user interests and tastes.
Note that interactive and conversational recommenders [26,36] are a very dif-
ferent approach, as they build on dialogs between user and system, not among
users.

Specialized recommenders that tap textual contents have been inves-
tigated for domains like e-learning, literature exploration or tourism (e.g.,
[3,20,27,30]). These are based on rich context models of user history and inter-
ests. However, they are not query-based, disregarding the additional component
of search results on behalf of the user.

Personalized ranking of search results has been addressed from two
angles (see [17] for a survey): i) building user models from user queries and brows-
ing histories (e.g., [1,15,23,37,41]), and ii) exploiting such models for ranking,
query expansion or auto-completion (e.g., [12,29,38]). For the first task, the sem-
inal work of [41] analyzed user activities reflected in queries, clicks and emails,
all the way to news and other contents read by a user. For personalized ranking,
language models were enhanced with user-specific priors [39]. The interplay of
long-term behavior and short-term sessions of a user was studied by [8,10]. Other
work [9,42] investigated the issue of when to personalize and when to disregard
user profiles. None of these prior works is specifically geared for entity search,
and none considers user models derived from chats.

Entity search (e.g., [4,16]) has been studied for personalization only in
limited settings. The CLEF competition on book recommendations [21] relied
on extensive data (posts, tags, reviews, ratings) by large user communities at
LibraryThing and Amazon. Most related to our work is [2] on personalized prod-
uct search, based on embeddings for users and products in a joint latent space.
That method exploited user reviews on product pages. In contrast, our approach
is based on user-user chats, an unintrusively observable asset disregarded in prior
works.

Query expansion is a well established methodology in IR (see, e.g., [13]
for a survey). Personalization has been studied in this context along various
routes. Notable examples are [11,53] based on user-provided tags, and [23] based
on email histories and utilizing word embeddings learned from email contents.
Recently, [49] has pursued the theme of personalized word embeddings further,
based on query histories.

8 Conclusion

To the best of our knowledge, this is the first work that explores leveraging
user-to-user conversations as a source for personalization of search-based recom-
mendations. We compared chat-based user models against models derived from
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concise questionnaires. Both achieved substantial improvements over both the
original search-engine ranking and non-personalized query-only re-rankings.

Between chat-based and questionnaire-based re-rankings, there is no clear
winner. The two paradigms of user models each have specific benefits:

• Questionnaries are transparent and scrutable for users. However, they require
an explicit effort. Most users seem fine with a one-time questionnaire, but few
seem ready for periodic updating as their interests and tastes evolve.

• Chats, on the other hand, require no effort at all from the user side, and could
be easily updated without user intervention. However, the derived models are
less transparent to humans and not easily adjustable by users themselves.
Also, chat data comes with higher privacy risks.

The additional enhancements devised in this paper – domain awareness and
entity expansion – further improved the NDCG scores, but only to a small extent.
On the other hand, focusing on entities in conversations and casting them into an
explicit user model is a step towards making chat-based profiles more transparent
and scrutable for users.
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Abstract. Social network research has focused on hyperlink graphs,
bibliographic citations, friend/follow patterns, influence spread, etc.
Large software repositories also form a highly valuable networked arti-
fact, usually in the form of a collection of packages, their developers,
dependencies among them, and bug reports. This “social network of
code” is rarely studied by social network researchers. We introduce two
new problems in this setting. These problems are well-motivated in the
software engineering community but not closely studied by social net-
work scientists. The first is to identify packages that are most likely to
be troubled by bugs in the immediate future, thereby demanding the
greatest attention. The second is to recommend developers to packages
for the next development cycle. Simple autoregression can be applied
to historical data for both problems, but we propose a novel method
to integrate network-derived features and demonstrate that our method
brings additional benefits. Apart from formalizing these problems and
proposing new baseline approaches, we prepare and contribute a sub-
stantial dataset connecting multiple attributes built from the long-term
history of 20 releases of Ubuntu, growing to over 25,000 packages with
their dependency links, maintained by over 3,800 developers, with over
280k bug reports.

Keywords: Ubuntu packages · Software dependency network · Bug
urgency prediction · Developer recommendation

1 Introduction

A rapidly growing, rich, complex and immensely valuable social network has
garnered surprisingly little attention compared to the WWW hyperlink graph,
follower-followee and retweet/repost/reply networks in social media platforms
etc. This network is formed by software packages, the dependency graph that
links them, their developers, and bug reports and discussions concerning them.
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As a case in point, Linux, with its many flavors and adaptations, is a huge
public software repository. It has tens of thousands of packages, connected by
dependency and other links. Thousands of developers contribute to these pack-
ages, forming another aspect of the network. In fact, the developer ecosystem
evolves organically, rather than via central command-and-control chains. The
network is highly dynamic, with accurately-maintained trace of evolution along
with detailed logs of bug reports pertaining to different packages. Business real-
ities have made open-source software development viable even for commercial
organizations, with notable examples like Tensorflow, ZFS, Ubuntu, Java, Post-
gres, etc. A comparatively nascent and chaotic version of such self-organization
of software networks can be found on github, gitlab and bitbucket.

In this work we focus on the Ubuntu code repository. Ubuntu, a Linux based
distribution is a collection of many open source software/packages. The project
encourages the community to contribute to the development and maintenance
of one or more packages. For every package, there is a set of developers (often
one) who are responsible for the maintenance of the package and keep track of
all the changes to the package in a changelog1, recording the sequence of bug
fixes or other updates related to the package.

Unlike traditional social network tasks of centrality/prestige computation,
influence or cascade prediction, the social network of software comes with novel
tasks having strong motivation and relevance in the software management com-
munity.

Bug Urgency Ranking: The task is to rank packages that are likely to be most
afflicted by bugs in the immediate future. Since there is no central command,
the developer community has to autonomously discover the trouble spots.

Developer Recommendation: For each package, the task is to propose the
developers best suited to contribute in the immediate future. Compared to soft-
ware corporations with top-down management, the developer community shows
high levels of churn, making such prediction difficult. We know of no widely used
public domain tools for predicting bug urgency or recommending developers for
a given package. While there are several articles on developer/commenter recom-
mendation [11] in various community question answering sites, to our knowledge,
none of them attempt to build a model to recommend the developers in software
development platforms like Ubuntu.

Our Contributions and Results

A New Dataset: We contribute a substantial new dataset2 connecting multiple
software and developer artifacts built from the long-term history of 20 releases of
Ubuntu, growing to over 25k packages with their dependency links, maintained
by over 3800 developers, with over 280k bug reports. There are 25k unique nodes
(packages) and 120k dependency links among these packages across the Ubuntu
releases.
1 http://changelogs.ubuntu.com/changelogs/.
2 http://doi.org/10.5281/zenodo.4092623.

http://changelogs.ubuntu.com/changelogs/
http://doi.org/10.5281/zenodo.4092623
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Algorithms for Bug Urgency Ranking: We propose autoregressive baselines
that predict future bug urgency as a regression based on recent history, then
augment them with novel ways to incorporate inter-package dependency graph
signals, which result in enhanced ranking accuracy. We are able to achieve high
rank correlation between gold and system rankings, for both the autoregressive
and autoregressive+dependency models. For the most recent distribution (i.e.,
Zesty) in our data set, Spearman’s rank correlation ρ@25 and Kendall’s τ@25
values are respectively 0.582 and 0.451 using only the autoregressive features.
Inclusion of dependency features further improves both the correlation values
(ρ@25 = 0.60 and τ@25 = 0.466). If one considers the full rank list then we
obtain ρ = 0.35, τ = 0.33 for the autoregressive case and ρ = 0.38, τ = 0.35
in case of autoregressive+dependency. For the full rank list the differences in
the results between the autoregressive and autoregressive+dependency schemes
are statistically significant (p < 0.01 for both ρ and τ as per Mann-Whitney U
test [6]).

Algorithms for Developer Recommendation: In its most basic form, rec-
ommending developers for a package may be modeled as predicting a set given a
sequence of past sets [2]. However, our data set has richer signals in both space
(i.e., graph structure) and time, as well as features from bug reports, bug fix
changelogs, etc. Even a simple autoregressive approach is able to take advantage
of these features and outperform baselines. For the most recent distribution,
the Mean Reciprocal Rank (MRR) for the autoregressive approach is ∼0.788
as compared to 0.772 for the best performing baseline. Additional benefits are
also obtained from the dependency relations (MRR ∼0.793). Subject to some
reasonable assumptions, we also compute upper bounds for autorgressive and
autoregressive+dependency schemes as 0.8096 and 0.8445 respectively, which
gives ample scope of improvement in future.

2 Related Work

Recommendation systems are nowadays becoming available to assist developers
in various activities—from reusing code [4] to writing effective bug reports [1,8].

Developer Recommendation Approaches: We witness a growing volume of
literature on developer recommendation for crowdsourced tasks. Mao et al. [7]
employed content-based recommendation techniques to automatically match
tasks and developers for the TopCoder platform. Related work [12] recorded a
task-quitting rate of 82.9% among TopCoder developers. Ye et al. [13] proposed
four problems that limit the effectiveness of existing methods at recommending
suitable developers. Tunio et al. [10] studied the impact of personality on task
selection in crowdsourcing software development.

Package Dependency Networks: De Sausa et al. [9] presented an analysis
of the package dependency on Debian GNU/Linux. Kikas et al. [5] studied the
structure and evolution of package dependency networks of JavaScript, Ruby,
and Rust ecosystems. Decan et al. [3] showed that experimental results related
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to software packages belonging to a single software ecosystem fail to generalise
to other ecosystems because of the diversity of their structure.

We know of no widely used approach that uses package dependency networks
for developer recommendation. Also, we find limited research on Dirichlet based
sampling approach in recommendation and ranking. In this paper, we combine
the two paradigms for the two tasks that we solve—bug urgency prediction and
developer recommendation.

3 Dataset

Ubuntu is a free and open-source Linux distribution based on Debian, released for
Desktop, Server and IoT deployment3. It is released every six months, with long-
term support (LTS) releases every two years. Our data consists of three parts:
(i) Ubuntu packages and the dependencies among these packages, (ii) developers
of Ubuntu packages responsible for bug fixes and other updates and the main-
tenance of change logs, and (iii) bug(s) associated with each package. For our
experiments we only use 20 non-LTS versions (binary-amd64) published between
April 2004 and April 2017. Dataset details follow in this section.

Ubuntu Packages and Their Dependencies: Each Ubuntu distribution con-
tains a collection of binary packages. Binary packages are made for different
types of architectures like AMD64, i386 etc. For each distribution, we collected
binary packages and their dependencies. The most prevalent form of dependency
between a pair of binary packages is referred to as depends4. A binary package
Pi depends on another binary package Pj if Pj is required to build and install
Pi. “Dependee” denotes a binary package (Pj) on which another binary package
(Pi) depends. In the rest of this paper the dependency network that we refer to
is built from this depends relation.

A source package, on building, may generate a set of binary packages5. E.g.,
the source package “0ad”6 contains the binary packages, “0ad” and “0ad-dbg”.
We consider source packages and their dependencies in our experiments. We
chose source packages instead of binaries since the source packages have a unique
identify with source codes unlike binary packages which may correspond to com-
piled codes from different architectures. We present all our results for the three
most recent distributions – ‘Wily’, ‘Yakkety’ and ‘Zesty’ which have 22799, 24609
and 25648 source packages respectively. An example dependency graph is shown
in Fig. 1. The package ‘systemd’ and its dependees ‘libseccomp’, ‘glibc’ and
‘iptables’ are shown in gray in the figure.

The number of “depends” package dependencies across the Ubuntu distribu-
tions are reported in Fig. 2(a) (increases as time progresses).
3 https://www.ubuntu.com/#download.
4 There are other types of relations also in the dataset like recommends, suggests and
conflicts which are very infrequent.

5 https://askubuntu.com/questions/357295/what-is-difference-between-binary-and-
source-file.

6 https://packages.ubuntu.com/source/xenial/0ad.

https://www.ubuntu.com/#download
https://askubuntu.com/questions/357295/what-is-difference-between-binary-and-source-file
https://askubuntu.com/questions/357295/what-is-difference-between-binary-and-source-file
https://packages.ubuntu.com/source/xenial/0ad
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systemd

glibclibseccomp iptables

Martin PittDimitri John Ledkov

Adam Conrad

Fig. 1. Dependees and developers of
the ‘systemd’ package. Gray nodes:
software packages, Red nodes: devel-
opers. Solid and dotted lines represent
‘source dependency’ and ‘contributed
by’ relationships, respectively. ‘Dimitri
John Ledkov’ is a developer associated
with both ‘systemd’ and its dependee
‘libseccomp’.

Fig. 2. (a) The no. of “depends”
dependencies in each Ubuntu distri-
bution. (b) The average no. of source
packages the developers worked on
across the distributions. (c) The aver-
age no. of bugs per source package
(with non-zero bugs).

Developers of Ubuntu Packages: The ‘changelog’7 of a source package con-
tains add/remove/update information about the codebase and bugs (resolved
bugs) associated with the package. It also contains the urgency level, name of
the developer and timestamp of that change. Packages evolve at diverse paces,
and distributions take snapshots at discrete points in time. We have collected
changelogs of source packages and mapped them to Ubuntu distributions. These
change logs allow us to associate every developer with one or more packages for
each distribution. An example of the developer-package relation is illustrated
in Fig. 1. In our dataset, we observed that a particular source typically (but
not always) has a single developer in each distribution. Over time the average
number of packages a developer contributes to is reported in Fig. 2(b) (shows
an increasing trend).

Bugs Associated with Ubuntu Packages: Ubuntu releases do not provide
a straightforward way to recover the bugs (along with their meta data) that are
associated with a particular distribution. We therefore collected 280k bugs along
with all available information from Launchpad.8 We next associated a bug with
a particular distribution if that bug had been created within six months from
the release of that distribution. Next we mapped these bugs associated with

7 E.g., http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad 0.0.20-
1/changelog.

8 https://launchpad.net/.

http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad_0.0.20-1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad_0.0.20-1/changelog
https://launchpad.net/
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a distribution to the corresponding source packages. The number of bugs per
package, averaged over all packages and all distributions, is ∼ 3.4 (considering
all packages that have non-zero reported bugs). The average number of bugs per
package over time is reported in Fig. 2(c). The plot shows that in early versions of
Ubuntu, fewer bugs were reported, followed by a sharp increase and then a final
decline. This possibly indicates that as the software became more complex and
popular, the number of bugs reported grew quickly. However, it settled down at
later time point due to the consolidated rectification efforts made by developers.

4 Notation and Preliminaries

We have a set of T distributions of a large software system (such as Ubuntu)
indexed as t ∈ [T ] = {1, . . . , T}, where t represents discrete, ordinally compa-
rable time and equivalently, distributions. An example is vivid < wily where
vivid and wily are the Ubuntu distributions. There is a universe of S packages
indexed by s ∈ [S] = {1, . . . , S}. An example is s = glibc. (By ‘packages’, we will
mean “source packages” in the context of Ubuntu. A source package may build
to multiple binary packages, but developers are naturally assigned to source, not
binary packages.) Not all packages s may be present in all distributions t. Pack-
ages can be removed and later restored. For each package s, there is a package
size ps(s, t) which is the sum of the sizes of its binaries at distribution t. There
is a universe of D developers, indexed as d ∈ [D] = {1, . . . , D}. An example is
d = torvalds@linux.org. A developer may contribute to many packages at vari-
ous time steps (distributions). Let devs(s, t) ⊂ [D] denote the set of developers
associated with package s at time t. There is a universe of B bug records, indexed
as b ∈ [B] = {1, . . . , B}. One bug record attaches to a single package at a single
distribution. Let bugs(s, t) ⊂ [B] denote the set of bugs associated with package
s at time t. We denote the heterogeneous graph constructed at each time step
t as Gt. Gt comprises two types of nodes—source packages s and developers
d. Edges s → s′ represent ‘source dependency’ relationships. The term “depen-
dent” corresponds to the source package (s) that depends on another source
package. “Dependee” represents the source package (s′) on which the dependent
depends. Edges s → d represent ‘contributed by’ relationships. Figure 1 shows
an illustrative graph fragment at t = zesty for a source package ‘systemd’. Note
that a developer can work on multiple packages at the same time. For example,
‘Dimitri John Ledkov’ is developer of both ‘systemd’ and its dependee package
‘libseccomp’. Let the set of in-neighbors and out-neighbors of the target source
package s at time point t be SIN,t and SOUT,t respectively.

5 Bug Urgency Ranking

Suppose we observe the evolution of the software ecosystem from time step 1
through t − 1. In other words, we observe Gτ for τ ∈ [1, t − 1] along with
developer and bug sets associated with each package and time step. Now, for
time step t, our goal is to predict |bugs(s, t)| for all packages s. More practically,
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we want to sort packages s in decreasing order of |bugs(s, t)| and report the top
ranks to attract the attention of central members of the developer community,
so that they can solicit and allocate more programmer resources. With that
motive in mind, we are generally interested in predicting only the relative bug
density among packages in the next release. While evaluating, we naturally have
access to the gold bugs(s, t), and we can therefore compare the system and gold
rankings using various rank correlation measures.

Pure Autoregressive Approach: In this approach, we attempt to estimate the
rank of source packages based on the bugs reported at earlier time points. From
the bugs information, we computed the number of bugs (|bugs(s, t)|) of each
source package (s) for each time point t. Specifically, we extract autoregressive
features from earlier time points and predict the |bugs(s, t)| for the current time
point. For each source package, we consider two autoregressive features from the
previous two time points, i.e., |bugs(s, t − 1)|, |bugs(s, t − 2)|, ps(s, t − 1) and
ps(s, t).

We also tried to use the same features from even earlier time points. However,
their contribution to the overall prediction performance is negligible compared
to the last two time points and hence they are ignored. We observe that the bug
history of two previous time points always contributes more than the package
sizes in the prediction. Our intuition behind utilizing package size is that, if the
package size changes from the last time point to the current time point, then
the package should contain some new updates. For example, for the package
“systemd” in the “Zesty” distribution, the package size and the number of bugs
are 6.12 MB and 21 respectively. In the previous distribution “Yakkety”, the
package size and number of bugs were 4.43 MB and 15 respectively. This and
other similar observations made us hypothesize that the package size at time
point t might have potential correlation with the number of bugs at t.

Inclusion of Network Features: We hypothesize that the bugs in a partic-
ular source package could potentially induce bugs in its dependees as well as
dependents. For instance, in distribution “Zesty”, the “systemd” package has 21
bugs whereas in the immediate previous distribution (“yakkety”) this number is
15. The observed rise may be attributed to the very large number of bugs (60)
associated with one of the in-neighbours (“linux”) of “systemd” in the previous
distribution “Yakkety”. Overall, across our full dataset, the Pearson’s correla-
tion between the bugs of a source package at time point t and the bugs of its
in-neighbors/out-neighbors at the previous time point t−1 lies between approx-
imately 0.18 and 0.28. This makes us further confident that positive benefits
could be obtained by considering the previous time point bugs of in-neighbours
and out-neighbours as additional features.

Therefore, along with the autoregressive features, we also use the dependency
features, i.e., the number of bugs of the in-neighbors and the out-neighbors. We
deduce four such features detailed below.

In-Neighbor Bugs: We use the bugs of the in-neighbor source packages of s from
the previous time point as features. In particular, we consider the following two



Joint Autoregressive and Graph Models for Software and Developer 231

features: maxs′∈SIN,t
(|bugs(s′, t − 1)|) and medians′∈SIN,t

(|bugs(s′, t − 1)|) which
are respectively the maximum and the median bug counts of the in-neighbours
of the package s from the previous time point (t − 1).

Out-Neighbor Bugs: Similarly, as above, we use the bugs of the out-neighbor
source packages of s from the previous time point as features. Here we consider
maxs′∈SOUT,t

(|bugs(s′, t − 1)|) and medians′∈SOUT,t
(|bugs(s′, t − 1)|) which are

respectively the maximum and the median bug counts of the out-neighbours of
the package s from the previous time point (t − 1).

Note that in this case we predict |bugs(s, t)| using both sets of features above
as well as the autoregressive features, and, thereby, rank the source packages.

6 Developer Recommendation

Suppose we observe the evolution of the software ecosystem from time step 1
through t−1. In other words, we observe Gτ for τ ∈ [1, t−1] along with developer
and bug sets associated with each package and time step. Now, for time step t,
our goal is to predict Ds,t. This time, we are interested in ranking developers by
decreasing suitability for (s, t). Suppose the system returns a ranked order Rs,t

over a suitable subset of developers. From the gold developer set Ds,t, we know
the ‘relevant’ or ‘good’ positions, and can use any ranking evaluation measure
such as MRR.

For this experiment, we consider two polices for creating candidate set of
developers for (s, t). (1) main list: This list contains the developers who worked
on the same source package s in the previous distributions. (2) also use the
dependency list, which contains developers who worked on the neighbors (in-
neighbors, out-neighbors) of the source package s in the previous distributions.
While the first policy goes well with the autoregressive features, the second policy
is used while making use of dependency graph.

Model Architecture and Inference: Our objective is to rank a set of candi-
date developers for each source package and assign the top ranked developer in
the test distro for that source package. Let us fix a source package s. Ds,≤t is
developer set for package s up to time t. The developers could be collected from
s’s history only or accessed via network. “≤ t” may mean [t − K, t] depending
on sliding window width K. Next we train a globally shared model θ for each
such horizon h (see Algorithm 1) We observe Ds,<h for each package s. Next, we
predict Ds,h, incur any loss and update θ. Model θ induces a score on every devel-
oper d ∈ Ds,<h. For simplicity call this score θ(d). For all d+ ∈ Ds,h, d− �∈ Ds,h,
we want θ(d+) � θ(d−). In our evaluation protocol, all gold developer assign-
ment at time T are used as instances. For evaluating a system at time T alone,
apply model θ on candidate set Ds,<T (note, not T ) and predict ranking Rs,T

(meaning, sort by decreasing θ(d)) which is evaluated wrt Ds,T . We categorize
the developers present in candidate set in two clusters (i) positive developers,
(ii) negative developers. Positive developers are the developers who are present
in Ds,<h as well as in Ds,h. Negative developers are the developers who are
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present in Ds,<h but may leave for other reasons in Ds,h. Let xs,d+ denote fea-
ture vectors representing developers in the positive developer set. Similarly let
xs,d− denote feature vectors representing developers in the negative developer
set. We outline a top level overview of the model architecture in Algorithm 1.

Algorithm 1. Top-level model architecture for developer recommendation.
initialize θ
prepare batch loss expression (see below)
for horizon h = T − K, . . . , T − 1 do

for each package s do
collect Ds,<h

two policies: either same package or via network;
positive devs D+

s,h are Ds,<h ∩ Ds,h

negative devs D−
s,h are Ds,<h \ Ds,h

if D+
s,h �= ∅ and D−

s,h �= ∅ then

represent each developer d wrt package s as xs,d,

“an instance”
〈
(s, h); {xs,d : d ∈ D+

s,h}, {xs,d : d ∈ D−
s,h}〉

batch loss has been drawn depending on the model chosen (LR/MLP)
call SGD optimizer for one batch to update θ

end if
end for

end for
trained model θ available at this point
for each package s do

collect Ds,<T

prepare feature vectors xs,d for each d ∈ Ds,<T and apply θ(xs,d)
sort candidate ds by decreasing score
evaluate ranking Rs,T wrt gold Ds,T

end for

We employ two different models – (i) Logistic Regression (LR) and (ii) Mul-
tilayer Perceptron (MLP) to estimate θ.

LR Model: Our optimisation function is θ(xs,d) = σ(matmul(xs,d,W ) + b) and
the loss expression is loss = max(0, (θ(xs,d−)−θ(xs,d+)+1)). Here W and b are
the learnable parameters that we fit using stochastic gradient descent.

MLP Model: We use a feedforward neural network with one hidden layer. The
model equations are layer1(xs,d) = tanh(matmul(xs,d,W1) + b1) and θ(xs,d) =
matmul(layer1(xs,d),W2) + b2 respectively. The loss function is loss = cost +
L2 penalty, where the cost = σ(multiply(a, (θ(xs,d−) − θ(xs,d+) − b))) and a =
log(1 + exp(α)), b = log(1 + exp(β)). Thus we maintain a, b > 0 while α and β
are unconstrainted. W1, b1, W2, b2, α and β are the learnable parameters. The
L2 penalty is calculated over all the learnable parameters. We use stochastic
gradient descent.

Feature Construction: Next we discuss how to compute the features xs,d.

Pure Autoregressive Features: In this approach, each developer d for a source
package s at time t is scored based on autoregressive features. From the
changelog, we compute four features—number of high, medium and low urgency
level of packages on which the developer has worked, and the number of bugs
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closed by the developer. In addition, we introduce a feature which captures the
recency—that is, whether the candidate developer worked on this package at
time t − 1.

Inclusion of Network Features: Once again, like bug urgency prediction, we lever-
age dependency links to improve developer recommendation. Our hypothesis is
that developers who have recently contributed to one or more of the in(out)-
neighbour packages of a source package should have a greater chance of con-
tributing to the source package itself. This is because, the developers naturally
acquire parts of the necessary skill set to contribute to the source package by hav-
ing already contributed to its closely related packages (in- and out-neighbours)
in the recent past. Thus, in addition to the autoregressive features, we add a set
of dependency features from previous K distributions – (t−1), (t−2), (t−3) and
so on up to (s, t−K). The features are (i) K −1 binary features telling whether
the candidate developer was present in main developer list of (s, t − i) where
i ∈ [2,K], (ii) K binary features telling whether the candidate developer was
present in the neighbor list of (s, t − i) candidate distribution where i ∈ [1,K],
(iii) if the candidate developer is present in the main list of (s, t−1) as well as in
at least one of the neighbor list of (s, t− 2), (s, t− 3), and so on up to (s, t−K),
(iv) if the candidate developer is present in the neighbor list of (s, t − 1) as well
as in at least one of the main list of (s, t−2), (s, t−3), and so on up to (s, t−K),
and (v) if the candidate developer is present in the neighbor list of (s, t − 1) as
well as in at least one of the neighbor list of (s, t − 2), (s, t − 3), and so on up to
(s, t − K).

7 Experiments and Results

7.1 Bug Urgency Ranking

Experimental Setup: For this experiment, we consider only those source pack-
ages whose bug count in any of previous 10 distributions is non zero. We use
a train-test split of 5:1 to train and evaluate our model. Let us say we have
to predict the bug urgency of all the source packages at time point t. In order
to train the model we use the data for all the source packages that appear
in the K previous time points. For each time point (t − 1) to (t − K) and
for every source package s we calculate the autoregressive and dependency fea-
tures as discussed above; accordingly, the training label for each time point is
|bugs(s, ·)| where the · ranges from (t − 1) to (t − K). To train the model, we
use the random forest regressor9. We choose hyperparameters from the following
intervals – n estimators: [100, 900], max depth: [4, 7], min samples split: [4, 28],
min samples leaf: [20, 80], random state: [0, 8]. We used grid search to find the
best parameter combination for both the autoregressive and the dependency
approaches.
9 One may argue that more complex models like point processes could be a possible

choice. However note that we only have 20 time points and therefore such complex
models cannot be trained sufficiently.
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Evaluation: For a given time point t, we rank the source packages based on
ground truth |bugs(s, t)| and the predicted |bugs(s, t)|. We use average ranking
method to rank both the score lists. We use Spearman’s rank correlation ρ and
Kendall’s τ for evaluation. We report ρ@25, τ@25 and the ρ, τ for the (quite
large) full rank list10 (see Table 1). We observe that for the most recent time
point (i.e., Zesty) the the correlation values are pretty decent (ρ@25 = 0.582,
τ@25 = 0.451). Use of dependency features bring further benefits (ρ@25 =
0.60, τ@25 = 0.466). In fact, for the full rank list also the results using the
autoregressive+dependency features are quite good and are significantly different
(p < 0.01, Mann-Whitney U test) from those using only autoregressive features.

7.2 Developer Recommendation

Upper Bound: We first compute an achievable upper bound using the two
policies for creating candidate set as discussed earlier i.e., (i) main list and
(ii) main list + dependency network. If the developer of a source package at test
distro is present in the candidate developer set then the rank of the developer is
set to 1.

Table 1. Spearman’s ρ and Kendall’s τ for bug urgency ranking—autoregressive only
(auto), autoregressive + dependency (+depn). Green cells indicate cases where depen-
dency features bring in additional benefits. ** indicates that the values of ρ and τ for
(auto) and (auto, +depn) are significantly different (p < 0.01 as per Mann-Whitney U
test).

Distribution ρ@25 τ@25 ρ τ

(auto, +depn) (auto, +depn) (auto, +depn) (auto, +depn)

Wily Werewolf (0.546, 0.546) (0.407, 0.407) (0.447, 0.454)** (0.367, 0.371)**

Yakkety Yak (0.488, 0.498) (0.331, 0.331) (0.260, 0.276)** (0.218, 0.240)**

Zesty Zapus (0.582, 0.603) (0.451, 0.466) (0.354, 0.380)** (0.328, 0.351)**

Table 2. Developer recommendation: MRR values comparing our method with differ-
ent baselines. **: Our results are significantly different from both baselines (p < 0.001
for sequence of sets, p < 0.05 for majority, Mann-Whitney U test). ++: Our results are
significantly different from majority baseline (p < 0.01, Mann-Whitney U test).

Distribution Autoregressive Autoregressive + dependency

(auto) (auto+depn)

Our

model

Majority SeqOfSets Upper Bound Our model Majority Upper Bound

Wily Werewolf 0.748** 0.736 0.703 0.768 0.763++ 0.753 0.844

Yakkety Yak 0.628** 0.607 0.592 0.660 0.642++ 0.631 0.740

Zesty Zapus 0.788** 0.773 0.725 0.810 0.794 0.785 0.844

10 The full rank list has 4K packages on average.
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Baselines
Sequence of Sets: In [2], the authors proposed a stochastic model to capture
the sequential behaviour of different tasks (such as sending emails, academic
collaboration etc.). They proposed two parameters—(i) a correlation parameter
(ii) a vector of recency parameters. The correlation parameter measures the
chance of repeating the earlier set in future. The recency parameters measure
the similarity of a set with the recent one or the oldest one. We directly use their
implementation to generate baseline results. Let us choose the test distribution
at time point t. We use all the previous time points (1, t − 1) for training. For
each source package, we fix a correlation probability [2] and perform Monte-Carlo
simulation runs to predict a developer in each run. We perform 20 such runs and
prepare a ranked list based on the number of occurrences of a developer across
these runs (the larger the number of occurrences of a developer across these runs
the better is her rank). We perform this experiment for correlation probabilities
in the range [0.1, 0.9] in steps of 0.1. We report the results for that correlation
probability where the MRR obtained is maximum.

Majority: For each source package, we rank the developers based on the num-
ber of times they feature in the last K (K = 1, 5, all) distributions (the results
are reported for K = 1 which turned out to be the best among all choices). In
the autoregressive case, for each source package, a developer present the high-
est number of times in last K distributions receives better rank and so on. In
case of the autoregressive + dependency approach, for each source package, we
extend our candidate developer set with the developers of its in(out)-neighbors
in previous K distributions. Further, we rank the developers of this set based
on the number of times they worked on the target source package in last K
distributions. Once again, we use the MRR metric to evaluate this approach.

Experimental Setup for Our Method: We use Algorithm 1 to rank the
candidate developers using autoregressive and autoregressive + network depen-
dency features. For both the models (i.e., LR and MLP), we try different values
of parameters. Through grid search we set the number of epochs to 10 and the
learning rate to 0.005. The batch size in our experiment is set to 1. The initial
values of α and β are 1 and 0 respectively11. We present the results12 for K = 5.
For paucity of space we only report the results for the best combination of fea-
tures and models; in specific, the LR model with autoregressive features and the
MLP model with autoregressive + dependency features.

Evaluation: The main results are noted in Table 2. We observe that our meth-
ods outperform both the majority and the sequence of sets baseline and are clos-
est to the upper bound. Further, the inclusion of network features always brings
additional benefits. For all the three distributions, the results from our model
(autoregressive) are better from (a) the sequence of sets baseline (p < 0.001,
Mann-Whitney U test) and (b) the majority baseline (p < 0.05, Mann-Whitney

11 We also tried other values of α and β but they did not affect the results.
12 Changes in the value of K does not affect the final results.
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U test). Further, for ‘Wily’ and ‘Yakkety’, the results from our model (autore-
gressive + dependency) are better than the majority (+ dependency) baseline
(p < 0.01, Mann-Whitney U test).

8 Discussion and Conclusion

In this paper we introduced a novel dataset of Ubuntu distributions, motivated
by two important software engineering problems: (a) predicting the urgency of
a bug and (b) recommending a suitable developer for a package. For both the
problems we identify a set of simple autoregressive features which themselves are
found to be performing very well. Augmenting these features with the depen-
dency network features brings additional benefits. In future, we would like to
investigate further into the dataset to identify if patterns of special relationships
exist between developers and bugs and how do these change over time. Discov-
ery of such patterns might allow us to solve the two problems jointly and study
other comparable data sets.
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Abstract. Supervised machine learning models and their evaluation
strongly depends on the quality of the underlying dataset. When we
search for a relevant piece of information it may appear anywhere in a
given passage. However, we observe a bias in the position of the cor-
rect answer in the text in two popular Question Answering datasets
used for passage re-ranking. The excessive favoring of earlier positions
inside passages is an unwanted artefact. This leads to three common
Transformer-based re-ranking models to ignore relevant parts in unseen
passages. More concerningly, as the evaluation set is taken from the same
biased distribution, the models overfitting to that bias overestimate their
true effectiveness. In this work we analyze position bias on datasets, the
contextualized representations, and their effect on retrieval results. We
propose a debiasing method for retrieval datasets. Our results show that a
model trained on a position-biased dataset exhibits a significant decrease
in re-ranking effectiveness when evaluated on a debiased dataset. We
demonstrate that by mitigating the position bias, Transformer-based re-
ranking models are equally effective on a biased and debiased dataset,
as well as more effective in a transfer-learning setting between two dif-
ferently biased datasets.

1 Introduction

Datasets used to train neural network models are subject to a range of biases,
which might constitute unwanted artefacts that should not be incorporated in
the trained model [20]. Multiple studies showed that in the ad-hoc retrieval of
full documents the text location is of relevant importance, such as the beginning
in news articles [7,50] or general web search [23]. In contrast, in this study we
specifically probe positional bias in passage collections that are not linked to
the previously studied full document relevance distributions. We operate on the
assumption, based on the findings of the annotation study of TREC’19 Deep
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Learning data [10] by Hofstätter et al. [23], that inside a passage (made up of
a few sentences) no word position is supposed to be explicitly favored when
matching query and passage sequences.

Transformer-based neural re-ranking models, especially models based on the
large-scale pre-trained BERT model [11], have shown a significant improvement
in ad-hoc retrieval, where a natural language question is asked by the user and a
set of passages is retrieved [35,38]. In this study we evaluate three state-of-the-
art Transformer ranking models with varying characteristics: 1)BERTCAT [38]
using BERT with query and passage concatenation, 2)BERTDOT [52] using
a dot-product between query and passage BERT classification (CLS) vectors
and 3) TK [22], a lightweight Transformer-Kernel model that does not require
pre-training. Each of the three architectures exhibits different strengths and
weaknesses, which we describe in Sect. 2.

In the Transformer-architecture, positional information is induced through
absolute position information provided by a positional encoding [48]. This posi-
tional encoding is added to each non-contextualized representation in a sequence
before applying the self-attention. If a bias favoring certain positions in a text
exists the Transformer may implicitly incorporate this bias in its word rep-
resentation as Transformers tend to learn positional information [53]. To our
knowledge, the connection between the explicit positional information of the
Transformer and positional artefacts in common retrieval collections has not
been studied before.

Traditional IR datasets contain relevance judgements for query-document
pairs, where a single judgement covers the full document. In contrast to that,
QA datasets contain exact location spans of the answer or an answer text that
can be partly matched to a position in the document. In our work, we utilize two
widely used QA datasets: MS MARCO [3] and SQuAD 2.0 [42]. Both datasets
are converted to retrieval collections, by setting paragraphs that were selected to
contain the answer as a relevant paragraph for a question. We observe that for the
MS MARCO dataset the positions of the mapped answers strongly favor earlier
positions in the paragraphs, while the SQuAD 2.0 dataset is more balanced
although not completely bias free. The evaluation set is taken from the same
distribution, therefore the evaluation is also biased and models overfitting to that
bias overestimate their true effectiveness. In the case of MS MARCO this bias
is especially concerning as it – because of its size – became the defacto standard
collection in the neural re-ranking community, including as base retrieval training
for transfer learning [27,55].

We propose to create unbiased versions of the datasets by switching the
first and second parts of a passage around a randomly selected position. This
approach does not affect the relevance judgements, since they are on a passage
level, and allows us to train unbiased re-ranking models as well as to measure
the true effectiveness of re-ranking approaches, since relevant matches might now
occur in every part of the passage.

We analyze passage term representations to study the position bias induced in
Transformer based contextualization and answer RQ1 How can we measure the
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degree of position bias in the passage representations? We propose a new metric
to measure the mean average term similarity (MATS) per positional delta of
all terms in the collection to investigate whether the term representations are
independent of the positional encoding or not.

To understand the effects of our debias augmentation in conjunction with
Transformer models we further study the following questions:
RQ2 What effect has the debiasing on the evaluation of Transformers?

We evaluate the effectiveness of our modifications on the original, as well
as the debiased collections. We find that all three models perform better on
the original (biased) evaluation, but their effectiveness drops substantially on a
debiased evaluation set.
RQ3 Does a debiased training result in better generalization?

Training on an unbiased collection shows much more robust results across the
evaluated collections and models, which we view as a more accurate indicator
for their actual effectiveness.
RQ4 Do we observe differences in transfer-learning, based on debiased pre-
training?

We demonstrate the usefulness of mitigating bias in the learned representa-
tions in the scenario of transfer learning between differently biased collections.
We use the larger MS MARCO to pre-train our model variants, before fine-
tuning the models on SQuAD 2.0. The bias-mitigated pre-training shows more
effective results in the fine-tuning, than starting with a biased pre-training.

The contributions of this work are as follows:

– We measure the positional bias of judgments in two popular Open-QA passage
retrieval collections and propose a method to debias the collections;

– We show how three different Transformer-based re-ranking models learn to
incorporate the position bias;

– We demonstrate the importance of mitigating the position bias with debi-
ased evaluation sets and the benefit of debiasing in transfer learning between
collections.

– We publish the source code of our work at:
github.com/sebastian-hofstaetter/transformer-kernel-ranking

2 Background

In this section we first describe the Transformer architecture, followed by the
three Transformer-based passage re-ranking models we employ in this study.

2.1 Transformer

The Transformer-layer [48] is a versatile building block for different architec-
tures. In our work we use an encoder structure to encode a sequence and output
contextualized representations of this sequence. The Transformer architecture
incorporates a natural algorithmic bias on the position of a term in a sequence,

http://www.github.com/sebastian-hofstaetter/transformer-kernel-ranking
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because it adds a positional encoding to its input sequence. Vaswani et al. [48]
use overlapping sinusoidal-waves per dimension, forming an equidistant relation-
ship among neighbouring terms, whereas Devlin et al. [11] employ a trainable
positional embedding for BERT. This positional encoding is important since the
Transformer otherwise would be entirely invariant to sequence ordering. How-
ever, adding the positional encoding directly to the input means that abso-
lute positional information is retained in the output sequence. Each encoding
is unique to a position of the input sequence. Based on the provided training
examples, the Transformer may tend to learn position-biased representations.

In this paper we define the Transformer as the sequential use of n
Transformer-layers (TLs) as:

s
(1)
1:m = TL(s1:m)

s
(n)
1:m = TL(s(n−1)

1:m )

TF(s1:m + e1:m) = s
(n)
1:m

(1)

where s1:m is the sequence of input embeddings, e1:m is the positional encoding.
We call this sequence of recursive applications TF.

2.2 BERTCAT Ranking Model

First proposed by Nogueira et al. [38] the BERTCAT approach has become a com-
mon way of utilizing the BERT pre-trained Transformer model in a re-ranking
scenario [35,55]. It uses the capability of the BERT pre-training approach to
compute the relationship of two concatenated sequences, separated by a spe-
cial SEP token and depending on the BERT version a sequence embedding.
The BERT architecture is a simple Transformer model (TF), the effectiveness
comes from the masked language and next sentence prediction pre-training. In
the BERTCAT ranking model the query (q1:m) and passage (p1:n) sequences as
well as BERT’s special tokens are concatenated (where ; is the concatenation
operator) and after the TF computation we select only the first vector of the
output sequence (which has been initialized with the special CLS token) and
score this pooled representation with a single linear layer (Ws):

BERTCAT(q1:m, p1:n) = TF([CLS; q1:m; SEP; p1:n])1 ∗ Ws (2)

BERTCAT is the current state-of-the art in terms of effectiveness, however it
requires substantial compute at query time and increases the query latency by
seconds [21]. Therefore, we also feature additional models that provide a more
balanced efficiency-effectiveness tradeoff.

2.3 BERTDOT Ranking Model

In contrast to the full-interaction BERTCAT model, that requires a full online
computation of all selected passages, the BERTDOT model only matches a single
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CLS vector of the query with a single CLS vector of a passage [34,52]. This makes
it possible to pre-compute contextualized representations for all passages in our
index, as well as to employ a vector-based nearest neighbour retrieval approach.

The BERTDOT model, with · as the dot product operator, is formalized by
two independent TF computations (and their pooled representations by selecting
the first vector output) as follows:

BERTDOT(q1:m, p1:n) = TF([CLS; q1:m])1 · TF([CLS; p1:n])1 (3)

BERTDOT brings strong query time improvements (a few milliseconds
latency per query) over BERTCAT, however it still requires the full BERT pre-
computation of all indexed passages, which can be very costly depending on the
collection size.

2.4 TK Ranking Model

The TK model [22], while also utilizing Transformers, is not based on BERT
pre-training, rather it uses shallow Transformers atop word embeddings followed
by an explicit term-by-term interaction matrix and scoring with kernel-pooling
[51]. In contrast to the BERT approaches TK offers us great control to probe
the individual term representations, as it splits the representation learning and
their interactions in two distinct parts.

The first part of TK is learning contextualized representations. TK inde-
pendently contextualizes query (q1:m) and passage (p1:n) sequences based on
pre-trained word embeddings, where the intensity of the contextualization (with
TF) is regulated by a gate (α):

q̂i = qi ∗ α + TF(q1:m)i ∗ (1 − α)
p̂i = pi ∗ α + TF(p1:n)i ∗ (1 − α)

(4)

The two resulting sequences q̂1:m and p̂1:n interact in a match-matrix with a
cosine similarity per term pair and each similarity is then activated by a set of
RBF-kernels [51]:

Kk
i,j = exp

(
− (cos(q̂i, p̂j) − μk)2

2σ2

)
(5)

Kernel-pooling is conceptually a soft-histogram, which counts the number of
occurrences of certain similarities. Each kernel focuses on a fixed similarity range
with center μk and width of σ. Each kernel results in a matrix K ∈ R

|q|×|p|.
These kernel activations are then summed, first by the passage term dimen-

sion j, log-activated, and then the query dimension is summed resulting in a
single score per kernel. The final score is calculated by a weighted sum using the
linear layer Ws:

s =
( |q|∑

i=1

log

⎛
⎝ |p|∑

j=1

Kk
i,j

⎞
⎠ )

Ws (6)
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The kernel-pooling technique is position-independent, as every activation for
position j is summed without a weighting them, which allows us to isolate the
positional analysis in the Transformer in Sect. 5.

3 Experiment Design

For the first stage indexing and retrieval we use the Anserini toolkit [54] to
compute the initial ranking lists with BM25, which we use to generate training
and evaluation inputs for the neural models. For our neural re-ranking training
and inference we use PyTorch [39] and AllenNLP [15]. We tokenize the text
with the fast BlingFire library1. As proposed for the MS MARCO dataset [3]
we evaluate our neural re-ranking systems using mean reciprocal rank (MRR),
normalized discounted cumulative gain (nDCG), and recall (Recall).

For the BERT-based models we use the 6-layer DistilBERT [45] pre-trained
weights and the Adam [26] optimizer with a learning rate of 7∗10−6. For TK we
use pre-trained GloVe [40] word embeddings with 300 dimensions2 and Adam
with a learning rate of 10−4 for word embeddings and contextualization layers,
10−3 for the kernel-pooling weights.

For the Transformer layers in TK we evaluate 2 layers each with 16 attention
heads with size 32 and a feed-forward dimension of 100. For kernel-pooling we
set the number of kernels to 11 with the mean values of the Gaussian kernels
varying from −1 to +1, and standard deviation of 0.1 for all kernels. We use the
same sinusoidal positional encodings as Vaswani et al. [48], for the document
encodings we shift the start position by 500 to distinguish them from the query
encodings.

Table 1. Collection statistics

Collection # Docs. # Queries

Train Val. Test

MS MARCO 8,841,823 502,939 6,980 48,598

SQuAD 2.0 20,239 86,821 5,000 5,928

We train all neural models with a pairwise hinge loss and a batch size of
32. The re-ranking depth for each model instance is tuned on the best mean
nDCG@10 of the validation set, as part of an early stopping strategy. For MS
MARCO we evaluate a re-ranking depth until 1000 and for SQuAD up to 100.

4 Dataset Analysis and Debiasing

To better understand the neural models, we first need to look at the source of
the position bias of the training and evaluation data, specifically the distribution
of answer positions in our QA-datasets.
1 github.com/microsoft/BlingFire.
2 42B CommonCrawl: nlp.stanford.edu/projects/glove/.

http://www.github.com/microsoft/BlingFire
http://www.nlp.stanford.edu/projects/glove/
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4.1 Dataset Analysis

The question answering task is strongly linked to ad-hoc information retrieval, as
IR provides the first stage of selecting potential candidate passages that contain
the natural language answer, that should be presented to a user. In addition
to traditional relevance judgements, that cover full documents, the QA datasets
also contain short answer strings or exact spans pointing to the answer in a
passage.

Using QA datasets to evaluate the retrieval portion of the QA pipeline offers
us the unique opportunity of inspecting the answer position, which gives us an
insight into the positional importance inside the relevant passages. For SQuAD
2.0 we follow the approach done for MS MARCO [3] and set a passage as relevant
to a query if the passage is connected to the answer. We provide an overview of
the size of our collections in Table 1, where we observe that MS MARCO is a
much larger collection than SQuAD.
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Fig. 1. QA collection in-passage relative answer positions

In Fig. 1 we show the distribution of the QA-answer start positions in their
respective relevant passages for the training sets of MS MARCO and SQuAD.
To determine the answer positions, we matched the available answer tokens to
the passage tokens of the selected passages for both collections and counted
all matches. For MS MARCO we omitted answers that could not directly be
matched in the passage. In this figure, it is evident that the answer positions
in the MS MARCO dataset strongly favor earlier positions in the paragraphs.
MS MARCO was created in a retrieval setting, where annotators were given a
question and a list of 10 possible paragraphs to judge, which may have favoured
passages with answers appearing early in the text. On the other hand SQuAD
2.0, for which annotators were asked to create questions based on a given passage,
is relatively unbiased, as the distribution of answer spans in the paragraphs is
more uniform.
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4.2 Debiasing the Passage Datasets

We have established that MS MARCO answers excessively favor the beginning
of a passage, while SQuAD does not. To explicitly study this phenomenon,
Hofstätter et al. [23] conducted a fine-grained relevance position study. They
found, that if annotators are shown only one query passage pair at a time, anno-
tators select answers uniformly across passages. As we simply cannot re-annotate
a collection of the size of MSMARCO with hundreds of thousands of queries, we
apply an automatic debiasing method to the existing collections.

For each passage p1:n in the collection we create a debiased instance p̃1:n, for
which we generate a random number r ∈ {1, . . . , n}, slice the word sequence at
the rth index, switch and concatenate the two sub-sequences again:

p̃1:n = [pr:n ; p1:r−1] (7)

As shown in Fig. 1 this approach produces near uniformly distributed relative
answer positions for both collections. This approach is minimally invasive as
it only breaks the contextualization at a single point per passage, without the
need for additional annotations. In a pilot study we also experimented with
sentence splitting based rotation, however we found that in the MSMARCO
web-page collection too many passages do not contain punctuation and therefore
the sentence split approach does not produce uniform answer positions.

Table 2. MATS statistics for TK’s contextualized passage vectors. Lower MATS means
less position bias.

Training MS MARCO SQuAD

MATS Std. dev. MATS Std. dev.

Original 0.176 0.046 0.056 0.014

Debiased 0.021 0.006 0.007 0.002

5 Transformer Bias Analysis

In this section we probe term-wise Transformer representations to determine
their bias across positions. Both BERT model variants incorporate their scoring
decision mechanism inside the Transformer layers and only use the CLS vector
representation, hiding individual term interactions inside the model. The TK
model on the other hand utilizes every passage term representation in the cosine
match matrix, which allows us to decouple the Transformer layers from the rel-
evance scoring and analyze the passage term representations of a trained model
on their own.

We now discuss RQ1 How can we measure the degree of position bias in the
passage representations? by analyzing the implicit bias of the absolute position
of a term in a sequence. If a contextualized vector contains enough information
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about the original position, then a bias is measurable when we compare different
vectors of the same term. We propose to compare the cosine similarity of the
contextualized representations r between occurrences of the same term t across
different passages computing the average term similarity (ATS) at distance Δa
for all terms in the collection t ∈ T . This is formalized as follows:

ATS(Δa) =
1

|T |
∑
t∈T

1
|Ct,Δa|

∑
(rt

a1
,rt

a2
)∈Ct,Δa

cos(rt
a1

, rt
a2

)

Ct,Δa =
{
(rt

a1
, rt

a2
)
∣∣Δa = |a1 − a2|, (ta1 , ta2) ∈ C

} (8)

where rt
a1

is the representation of term t at absolute position a1. The set
Ct,Δa is a set of all couples of representations of term t, which occur in the
passages with a distance between their absolute positions of Δa = |a1 − a2| in
the collection C. The mean ATS difference to the first point (MATS) is computed
as:

MATS =
1

max(Δa) − 1

max(Δa)∑
i=1

ATS(0) − ATS(i) (9)

MATS aggregates ATS across all available positions in the passages and
allows us to formally compare the different distributions. In Table 2 we show
TK’s MATS for both collections.

In Fig. 2 we show the ATS for different (Δa) along the x-axis using TK
passage term representations on the MS MARCO collection. The shaded area
corresponds to the standard deviation. In this plot, an unbiased contextualization
would result in a horizontal line, with a uniformly distributed standard deviation
of the vectors. A set of contextualized vectors naturally has a standard deviation,
as each vector, even for the same term is influenced by different context terms.

Fig. 2. ATS and standard deviation (y-axis) of same-term occurrences in different
passages along positional Δa of each term pair (x-axis) trained and evaluated on the
MS MARCO collection with TK passage term representations.
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It is evident from observing Fig. 2 and Table 2, that the TK model incurs
a strong positional bias, especially for deltas smaller than 20. This shows the
influence of the bias in the training data, which conditions the contextualized
vectors on their absolute position. Using a debiased training set improves the
representations and makes them much less dependent on their position. The
SQuAD collection, not pictured in Fig. 2, exhibits a similar pattern, although
dampened as the collection is less biased.

6 Retrieval Results

In this section we discuss our effectiveness related research questions with an
emphasis on the differences in using the original vs. debiased training and eval-
uation, including the conclusion we can draw from them:

RQ2 What effect has the debiasing on the evaluation of Transformers?
We look at the two collections separately to answer this RQ. In Table 3 we
have the results for the heavily-biased MS MARCO collection. We compare
each measure by all possible training and evaluation approaches for all three
Transformer models. The delta shows the relative difference between the original
and debiased evaluation per training type. We can see that across all Transformer
models we have a substantial drop in effectiveness when trained on the original
training set and evaluated on the debiased set. This shows how the models learn
to prioritize the beginning of the passages, and cannot generalize well to the
scenario where answers are located in evenly distributed across the passage. The
SQuAD results in Table 4 on the other hand offer a different picture with only
minor differences between original and debiased evaluation sets. This is to be
expected, as we showed in Sect. 4 that the SQuAD collection is almost unbiased
in its original form.

RQ3 Does a debiased training result in better generalization?
In contrast to the poor original training to debiased test set results on
MSMARCO in Table 3, using the debiased training set we observe similar results
on the two test sets with little delta across all three models. These debiased
training results are better than those using original training to debiased test
sets, leading us to the conclusion that these results represent the true general-
ized effectiveness of the models. For the SQuAD results in Table 4 we make an
interesting observation, that some of the debiased trained models outperform
those trained on the original training sets when applied to the original test sets.

RQ4 Do we observe differences in transfer-learning, based on debiased pre-
training?
Finally, we look at a common transfer learning scenario: We utilize the large-
scale MSMARCO as first retrieval pre-training and then transfer the trained
model to a smaller collection (SQuAD) and train it again. This is especially
helpful in production scenarios that require efficient models and do not provide
ample training data.
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Table 3. MSMARCO re-ranking results of original and debiased training sets (rows)
on the original and debiased test sets (columns). Each measure uses a cutoff of 10 and
the smallest absolute margin per block is marked in bold.

Model MSMARCO - test

nDCG MRR Recall

Training Orig. Deb. Δ Orig. Deb. Δ Orig. Deb. Δ

BERTCAT Original 0.432 0.395 −9.4% 0.372 0.336 −10.7% 0.630 0.594 −6.1%

Debiased 0.416 0.415 −0.2% 0.357 0.355 −0.6% 0.617 0.617 0.0%

BERTDOT Original 0.373 0.329 −13.4% 0.316 0.276 −14.5% 0.567 0.509 −11.4%

Debiased 0.362 0.364 +0.6% 0.305 0.307 +0.7% 0.555 0.554 −0.2%

TK Original 0.371 0.307 −20.8% 0.312 0.254 −22.8% 0.567 0.484 −17.1%

Debiased 0.356 0.355 −0.3% 0.298 0.296 −0.7% 0.551 0.552 +0.2%

Table 4. Retrieval effectiveness results of original and debiased SQuAD training sets
(rows) on the original and debiased SQuAD test sets (columns). Each measure uses a
cutoff of 10 and the smallest absolute margin per block is marked in bold.

Model SQuAD - Test

nDCG MRR Recall

Training Orig. Deb. Δ Orig. Deb. Δ Orig. Deb. Δ

BERTCAT Original 0.908 0.902 −0.7% 0.892 0.884 −0.9% 0.957 0.956 −0.1%

Debiased 0.910 0.905 −0.6% 0.894 0.885 −1.0% 0.959 0.956 −0.3%

BERTDOT Original 0.780 0.783 +0.4% 0.734 0.738 +0.5% 0.924 0.919 −0.5%

Debiased 0.784 0.783 −0.1% 0.740 0.739 −0.1% 0.919 0.919 0.0%

TK Original 0.846 0.840 −0.7% 0.818 0.811 −0.9% 0.933 0.930 −0.3%

Debiased 0.848 0.844 −0.5% 0.820 0.816 −0.5% 0.932 0.931 −0.1%

In Table 5 we show our transfer learning results. We recall that the original
MS MARCO is heavily biased and SQuAD is not. The debiased MS MARCO
is closer to the SQuAD answer distribution. In general, using the MS MARCO

Table 5. MS MARCO to SQuAD transfer learning results. Each measure uses a cutoff
of 10. Significance is tested between training variants per model with Wilcoxon (p <
0.05).

Model SQuAD original test

Train Sig nDCG MRR Recall

BERTCAT SQuAD (Original) a 0.908 0.892 0.957

MS (Original) → SQuAD (Original) b 0.913 0.898 0.957

MS (Debiased) → SQuAD (Original) c 0.911 0.896 0.958

BERTDOT SQuAD (Original) a 0.780 0.734 0.924

MS (Original) → SQuAD (Original) b 0.788a 0.744a 0.922

MS (Debiased) → SQuAD (Original) c 0.792ab 0.748ab 0.927b

TK SQuAD (Original) a 0.846 0.818 0.933

MS (Original) → SQuAD (Original) b 0.854a 0.827a 0.936

MS (Debiased) → SQuAD (Original) c 0.857ab 0.832ab 0.937
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pre-training improves the SQuAD results. For the production scenario models,
that enable query independent passage representation caching – BERTDOT and
TK – we observe another significant increase in effectiveness on SQuAD using
the debiased MS MARCO training. Only BERTCAT does not benefit from the
debiased pre-training.

7 Related Work

Biases in Datasets. Recent studies have observed a variety of artefacts (biases)
in datasets of several NLP tasks. Gururangan et al. [20] demonstrate that for
Natural Language Inference (NLI) datasets it is possible to identify the correct
label by only looking at the hypothesis, without observing the premise based on
superficial patterns generated while constructing the dataset. This is also con-
firmed by Poliak et al. [41] and Tsuchiya et al. [47]. McCoy et al. [36] shows that
state-of-the-art models follow simple heuristics to identify the correct answer.
Glockner et al. [18] show the deficiency of state-of-the-art NLI architecture by
testing them in an unbiased dataset. Also QA and Visual QA (VQA) suffer from
dataset artefacts. In fact, Jia and Liang [24] show that human-level performance
on SQuAD can be achieved by only relying on superficial cues, and Chen et al.
[8] show that in NewsQA, 73% of the answers can be predicted by simply iden-
tifying the single most relevant sentence. Formal et al. [14] studied the reliance
of the ColBERT [25] model on exact term matches in IR.

Another form of bias affecting IR test collections is the pool bias [30,32]. This
bias is a side effect of the sampling method used to build these test collections
called, the pooling method [29]. This is caused by the presence of non-annotated
relevant documents in the collection which makes the evaluation of newly devel-
oped retrieval systems less reliable [31,33].

Social biases are another form of bias manifesting in NLP and IR datasets
[12,17,44]. In this case these biases are not generated by the way the datasets
were constructed but by historical and cultural discriminations manifesting as a
prejudice or unfair characterization of the members of a particular group.

Bias Mitigation Methods. The research on the mitigation of these biases has
branched out into two directions. One defining methods to mitigate biases when
constructing the datasets. The other devising mechanism to make models robust
against the presence of bias in datasets. Agrawal et al. [1], Anand et al. [2], and
Min et al. [37] develop methods to build unbiased datasets without a variety of
biases. Other forms of bias removal consist in learning unbiased representations.
Bolukbasi et al. [6] learned unbiased word embeddings to mitigate gender bias.
Belinkov et al. [5] propose two probabilistic methods to build models that are
more robust to biases and better transfer across datasets. Other methods to
develop more robust NLP methods have been developed using adversarial meth-
ods [4,9,13,19,28,43]. In the IR setting Gerritse et al. [16] studied and proposed
methods to mitigate echo-chamber biases in personalised search.
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Modeling Relative Position in Transformers. To overcome this limitation in
machine translation tasks, Shaw et al. [46] developed a Transformer with a
relation-aware self-attention, which induces the model to learn a relative posi-
tional encoding in a translation task. However, we have tested this Transformer-
version and observed no improvement over the original version used in this paper.
Also in translation tasks, Wang et al. [49] extend the transformer developed by
Shaw et al. [46] to model hierarchies based on a dependency tree. We believe
that these transformer-versions would benefit from our work, however we leave
this to future work.

8 Conclusion

We observed a judgment bias towards the beginning of passages of selected
answers in two popular QA datasets used for retrieval. Furthermore, the biased
evaluation data hides the existence of this bias in the data. To overcome this
problem, we proposed a dataset debiasing method, by switching two parts of a
passage split at a random point, as the relevance of word matches in passage
retrieval should be position independent.

We showed how the excessive focus on earlier positions in the data prop-
agates through Transformer-based contextualization to form position-biased
representations. Our results show that three different Transformer ranking
models (BERTDOT, BERTCAT, and TK) trained on the original (biased) MS
MARCO collection, substantially lose effectiveness on the debiased version. On
the SQuAD collection, acting as an unbiased control dataset, the models do not
show this behavior.

We demonstrate that by using a debiased training data transformation,
the Transformer models achieve the same performance on biased and debiased
datasets, showing the increased generalizability of the models. Finally, we also
show that for production-scenario transfer-learning, the debiased pre-training is
the most effective strategy. This leads us to the conclusion that going forward,
the community should adopt the simple data-transformation for debiasing the
MSMARCO pre-training in these transfer-learning scenarios.
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Abstract. Many archival collections have been recently digitized and
made available to a wide public. The contained documents however
tend to have limited attractiveness for ordinary users, since content may
appear obsolete and uninteresting. Archival document collections can
become more attractive for users if suitable content can be recommended
to them. The purpose of this research is to propose a new research direc-
tion of Archival Content Suggestion to discover interesting content from
long-term document archives that preserve information on society his-
tory and heritage. To realize this objective, we propose two unsupervised
approaches for automatically discovering interesting sentences from news
article archives. Our methods detect interesting content by comparing
the information written in the past with one created in the present to
make use of a surprise effect. Experiments on New York Times corpus
show that our approaches effectively retrieve interesting content.

Keywords: Archival document search · Interestingness · News articles

1 Introduction

Document archives, such as news articles published over past decades, are accu-
mulations of historical records and are important for the humanities and social
studies, among others [27]. Accordingly, in recent years, massive digitization
efforts of archival documents have been carried out by libraries, national archives,
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and numerous other memory institutions. The available data is already consider-
ably large and is continuously growing. For instance, the Chronicling America1

project has over 5.2 million individual newspaper pages available for viewing and
downloading that were published in the USA in the last three centuries. Likewise,
Google Books project2 scanned over 6% of books that were ever published by
humanity, many of which are from quite a distant past. In the Web domain, web
archives like the Internet Archive3 are also often used by the general public. Mul-
tiple national initiatives [12] have also emerged over the years to crawl national
contents. This continuous development of digital document archives allows to
learn about historical events and situations directly from primary sources. Yet
accessing document archives is different from using a regular search engine, and
may lead ordinary users to quickly lose interest or become disappointed. It may
be because of the view of history held by some as boring and irrelevant [3,25,33].
This situation calls for research in novel access approaches and retrieval methods
that would be adapted to the particular characteristics of archival document col-
lections and could engage user’s attention. Such systems should increase archival
collections’ utility by making them more attractive and interesting to modern
users. In this research, we assume in particular that interesting information from
the past should contain an element of surprise. Retrieving such content from doc-
ument archives could surprise and amuse readers as well as evoke their interest,
as the contained information would be against the presumed expectations. Note
that such information is not easy to be found using a traditional search engine as
it requires considerable effort and search skills. Also, although there are websites4

listing surprising history facts or trivia, they are always manually created.
Although a few studies on identifying content about the unexpected relation-

ships exist, they focus on non-archival data such as Wikipedia [5,36] or current
news [20]. Contents in archives have however, particular characteristics due to
their age as well as different and often unknown context. In this paper, we focus
on extracting sentences from news article archives based on the attributes of con-
tent interestingness such as unexpectedness/surprise and importance. We then
introduce two unsupervised approaches for discovering interesting content based
on these aspects. In particular, the two-layer Mutually Reinforced Random Walk
(MRRW) [7] is adapted to capture the novelty and importance in a temporal
document collection. The key idea is to rank highly content from the past which
was important at that time, yet which is novel or surprising currently. Content
importance is modeled by measuring its popularity in the past according to the
assumption that popular concepts in the past have more educational value than
obscure ones. The second approach involves a topic co-occurrence model used to
find surprising and unexpected topic combinations that co-occurred in the past.

1 https://chroniclingamerica.loc.gov/.
2 https://books.google.com/.
3 https://archive.org/.
4 For example: https://allthatsinteresting.com/interesting-history-facts https://

www.thefactsite.com/100-history-facts/ https://parade.com/1099930/marynliles/
history-facts/.

https://chroniclingamerica.loc.gov/
https://books.google.com/
https://archive.org/
https://allthatsinteresting.com/interesting-history-facts
https://www.thefactsite.com/100-history-facts/
https://www.thefactsite.com/100-history-facts/
https://parade.com/1099930/marynliles/history-facts/
https://parade.com/1099930/marynliles/history-facts/
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Our experiments are performed on the New York Times news corpus [26], which
contains documents from 1987 to 2007.

In general, interestingness is a complex concept with little consensus about
its definition and scope. It is definitely a challenge to retrieve and recommend
attractive content with an objective methodology. Still, this kind of content sug-
gestion should help increase the perceived attractiveness of heritage collections
and raise their utility for average users. Successful methods developed for this
purpose could be either incorporated as integral components of retrieval mech-
anisms in archival search engines or could be harnessed to encourage users to
start using archives5.

2 Related Works

Representing Interestingness By Unexpectedness. One of the main prob-
lems in finding interesting patterns or data is defining interestingness properly.
A longtime subject of psychology and cognitive science, the feeling of interest-
ingness was even considered an emotion in the past. Silvia et al. [30] and Berlyne
et al. [4] analyzed interestingness from the viewpoint of cognitive appraisal, which
is a personal interpretation of a situation and possible reactions. Within com-
puter science related studies, interestingness was studied in the task of pattern
finding in knowledge discovery systems and general databases [13,19,21,31], rec-
ommender systems [1] and computational creativity [38]. The Bayesian theory
of surprise assumes measuring the difference between posterior and prior beliefs
of the observer [2,15]. Based on it, Itti and Baldi [14] developed model that com-
putes expected low-level surprise in video streams which significantly correlates
with eye movements of humans watching complex videos.

Geng et al. [11] treated interestingness as a broad concept that possibly con-
tains features like reliability, diversity, surprise, and more. Silberschatz et al. [28]
focused on subjective measures of interestingness, suggesting interesting informa-
tion should be unexpected and actionable. Unexpectedness was also considered
crucial by Padmanabhan et al. [23] and Adamopoulos et al. [1]. Moreover, the
latter introduced serendipity as one of the evaluation measures. Yannakakis et al.
[40] believed that surprise-focused search maximizes unexpectedness and accord-
ingly proposed a surprise-oriented search algorithm. Tsurel [37] et al. assumed
that trivia and surprise facts arouse user interest. In line with some of these
previous approaches we also model interestingness with the help of the surprise
and unexpectedness aspects of information, albeit in our specific case, they arise
due to time passage.

Unexpected Relationship Detection. Several studies focused on finding
unexpected relationships between data, for example, relationships between enti-
ties, which are unexpected. Boldi et al. [5] and Tsukuda et al. [36] used the
5 One could imagine a service that automatically detects interesting sentences or head-

lines for broad topics and publishes them daily on web portals of underlying docu-
ment archives.
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Wikipedia6 as their underlying knowledge-base to uncover unexpected relations.
Tsukuda et al. [36] evaluated the unexpectedness of related terms extracted
from Wikipedia pages on the basis of relationships of their coordinate terms.
Boldi et al. [5] focused on finding unexpected links within hyperlinked Wikipedia
articles.

Novelty Detection. Interestingess is to some degree related to novelty which
should be mentioned here, too. For example, TREC challenge7, which consists
of a set of tracks and tasks, such as TREC Temporal Summarization (Temp-
Sum), TREC Knowledge Base Acceleration (KBA), and TREC Novelty Track,
has brought about the improvement in the novelty detection for years. Features
like sentence lengths, named entities, and opinion patterns were used in Li et al.
[20] to analyze and improve the novelty detection on the 2002–2004 TREC nov-
elty tracks. Farber et al. [10] proposed a new semantic approach to resolve the
ambiguities in the languages and extract novel and relevant information from
unstructured text documents. For more information, interested readers may refer
to the survey on novelty, diversity and serendipity aspects in IR [16] and in rec-
ommender systems’ evaluation [29].

In general, many of the prior studies developed their methods based on hyper-
linked datasets like Wikipedia, which include explicit relationships. Only few
tried discovering interesting information from unstructured text. Our research
focus is on documents published at different times and subject to change which
is inherent in long-term document archives. To the best of our knowledge, the
concept of interestingness in archival contents remains largely unexplored.

3 Proposed Approaches

In this section, we describe two novel approaches: Topic-based Mutually Rein-
forced Random Walk and Topic Pair-based Mutually Reinforced Random Walk.
Before doing that, we first discuss the input data.

3.1 Input Data

In our setting, we assume a sentence to be a retrieval unit. We focus on sen-
tences rather than entire documents for a few reasons. First, we believe that a
short but attractive content would have more chance to be read by users than
longer text. One of the envisioned applications assumes embedding the auto-
matically extracted content in online archival portals. Doing this based on the
entire document may be cumbersome and less flexible. Still, the users could visit
the underlying documents from where the interesting sentences were extracted
by following added links, especially when headlines are used as is often done in
timeline summarization research [24,34], or when snippets are used by regular

6 https://www.wikipedia.org/.
7 http://trec.nist.gov/.

https://www.wikipedia.org/
http://trec.nist.gov/
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search engines. Nevertheless, extending the proposed approaches to returning
the entire documents should be relatively easy.

We will make use of two document collections constructed for each input
query, Dpast which represents the set of sentences from a certain time period
in the past Tpast and Dnow which represents the sentences from the “present”
denoted as Tnow and understood as some recent time span such as the last
6 months or 1 year. Sentences from Dnow are to be solely used as a reference to
support result generation from Dpast. Our objective is to rank sentences from
Dpast and produce interesting output with the aid of the present collection Dnow.

3.2 Topic-Based Mutually Reinforced Random Walk

We introduce here our first approach. We generate a two-layered graph G using
content from Dpast and from Dnow for constructing the layers of the graph.
Each node in the graph represents a topic inferred from the respective document
collection, while the edge weights represent either similarity or dissimilarity of
topics (to be described later). In particular, we run Latent Dirichlet Allocation
(LDA) to build topic models from the sentences of Dpast and sentences of Dnow.

Let us denote the layer in Tpast as LPP = {z1, z2, ..., zi}, and the layer in
Tnow as LNN = {y1, y2, ..., yj}, where zi and yj indicate topics from LDA models.
Note that the topics in both layers are trained separately on the corresponding
datasets, so that the similarities within the two layers will be computed on differ-
ent topic spaces. We do not mix the datasets when performing the topic modeling
in order to determine topics specific to either time period without affecting them
by the data from the other time period. termzi and termyj represent the top-
scored terms in topic zi and topic yj , respectively, according to the determined
topic models. We then compute the overlap of the top l terms of topics in order
to calculate edge weights. The edge weights within each layer (P(ast) and N(ow))
are computed as follows:

SimP (zi, zj) =
termzi ∩ termzj

l
(1)

SimN (yk, yl) =
termyk ∩ termyl

l
(2)

while the edge weights between the two layers are calculated as follows:

DisSim(za, yb) = 1 − Sim(za, yb) (3)

where Sim(za, yb) is calculated similarly to Eqs. 1 and 2, i.e., by measuring term
overlap.

We construct such a two-layered graph to find topics that were dominating
in the past, yet that are not popular in the present, hence the use of similarity
for edge weights within each layer and dissimilarity for edge weights between the
layers. Based on this intuition the two-layer Mutually Reinforced Random Walk
(MRRW) [7] is executed on the graph to assign scores to each topic. MRRW is an
algorithm for computing the converged scores of nodes in layered graphs. Given
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within-layer and between-layer edge weights, the score for each node refers to its
importance within the graph computed based on external mutual reinforcement
between different layers through the between-layer edges.

The scores of node sets in both layers are reinforced by the following equa-
tion: {

S
(t+1)
P = (1 − α)S(0)

P + α · EPPEPNS
(t)
N

S
(t+1)
N = (1 − α)S(0)

N + α · ENNENPS
(t)
P .

(4)

Here S
(t)
P and S

(t)
N denote the scores of the node set in the past and present layers,

respectively, at the t-th iteration. ENN , EPP , ENP and EPN are matrices with
the inter- and intra-layers’ edge weights. After we apply Eq. 4 to the graph, the
score of a node in layer LPP will become higher if the node is more similar to
other nodes in this layer and more dissimilar to the nodes in the layer LNN .
In this equation, α, which controls the interpolation weight for the propagation
part, is set to 0.9 following [7]. The algorithm runs until convergence or until
the change of scores becomes very small.

Fig. 1. The overview of the topic pair-based MRRW.

Afterwards, we rank the topics in LPP by their computed scores. As men-
tioned above, the score of a past topic should be high when this topic is similar
to other topics in the past while dissimilar to the topics in the present layer.
For each top-ranked topic, we then retrieve the top-n sentences after computing
their probability of belonging to that topic.

3.3 Topic Pair-Based Mutually Reinforced Random Walk

Studies in psychology and cognitive science suggest that feeling of unexpected-
ness and surprise are emotional reactions when people encounter information not
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conforming to their stereotypical expectations [22]. We hypothesize that a sen-
tence with a rare and uncommon combination of topics would likely be deemed
unexpected or surprising. Derezinski et al. [9] also view topic diversity as an
important element for discovering surprising documents. In this work, instead
of measuring the diversity of topic distributions, we propose an approach con-
sidering uncommon topic co-occurrences to discover surprising sentences. The
underlying intuition is that even if topics are not surprising, their combination
could be.

For computation, we again use the two-layered graph, but now the nodes
represent topic pairs (a combination of two different topics) based on the
set of topics derived from each dataset. Let us denote the layer in Tpast as
LPP = {n1, n2, ..., ni}, and layer in Tnow as LNN = {m1,m2, ...,mj}, where n is
a past topic pair p(zi, zj) and m denotes a present topic pair p(yk, yl) as derived
from LDA models. Again, topic models for either time period are trained on
its corresponding data, so pair-to-pair similarities within either layer are com-
puted over the topic set corresponding to that layer. We connect any two nodes
belonging to the same layer and assign edge weights depending on the similarity
and co-occurrence for each topic pair (to be described later). On the other hand,
a node pair consisting of nodes from different layers is connected by an edge
whose weight represents the nodes’ dissimilarity. The concept of Topic Pair-
based MRRW is visualized in Fig. 1.

When computing the similarity between two nodes (i.e., two topic pairs), we
calculate the pair-wise similarity for each possible combination of topics in the
two pairs, and use the maximum similarity value as the final edge value. Same as
in the above-described Topic-based MRRW, we compute the overlap of the top
l topic terms to calculate the similarity and dissimilarity of two topics (Eqs. 2
and 3). We then compute the similarity between two nodes, i.e., two topic pairs
in the past p(za, zb) and p(zc, zd) as follows:

SimP (p(za, zb), p(zc, zd)) = max{SimP (za, zc) · SimP (zb, zd), (5)
SimP (za, zd) · SimP (zb, zc)}

while the similarity between any two nodes in the present, p(ya, yb) and
p(yc, yd), is calculated by:

SimN (p(ya, yb), p(yc, yd)) = max{SimN (ya, yc) · SimN (yb, yd), (6)
SimN (ya, yd) · SimN (yb, yc)}

Based on the above equations, the edge weights e within each layer are as follows:

eP (ni, nj) = Avg coocP (ni) · Avg coocP (nj) · SimP (ni, nj) (7)

eN (mi,mj) = Avg coocN (mi) · Avg coocN (mj) · SimN (mi,mj) (8)

Avg coocP (ni) and Avg coocN (mi) are the average co-occurrences of the topics
in a given pair in the past and present periods, respectively. They are used here
as weights which quantify the importance of topic pairs. The calculation of co-
occurrence is done as follows. Sentences in both Dpast and Dnow are mapped to
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a probability distribution over topics to create a sentence-topic matrix, where
each row gives a topic distribution for a sentence. The average co-occurrence of
the learned topics in each time period is then computed as:

Avg coocP (zi, zj) =
1

|Dpast|
∑

dk∈Dpast

P (zi | dk)P (zj | dk) (9)

Avg coocN (yi, yj) =
1

|Dnow|
∑

dk∈Dnow

P (yi | dk)P (yj | dk) (10)

where P (zi|dk) or P (yj |dk) denote the probability of zi or yj in dk, respectively.
Finally, edge weights between the different layers are computed in a similar way
to Eqs. 6 and 7 as:

DisSim(na,mb) = 1 − Sim(na,mb) (11)

The final scores are computed by the same equation (Eq. 4) as for MRRW algo-
rithm. After computing final scores of nodes (topic pairs), we rank the topic pairs
in Tpast by their scores, which should be higher if the topic pair is similar to the
other topic pairs in the past layer while being dissimilar to the topic pairs in the
present layer. For each top ranked topic pair, we then extract top-n sentences
after sorting them by their probability of belonging to the corresponding topics.

4 Experimental Settings

4.1 Temporal Document Collection

We use the New York Times (NYT) News collection, which has been frequently
utilized in researches of Temporal Information Retrieval [6,17] and alike. The
corpus includes news articles published from 1987 to 2007. The documents con-
tain metadata labels such as date, title, category, leading paragraph, full-text,
and more. In the experiments, we divide this news archive into two parts: one
from Jan. 1987 to Dec. 1989, representing past documents, and the other one
containing documents published from Jan. 2005 to Dec. 2007 to represent infor-
mation of the present. Naturally, the latter part is not exactly representing the
“present”, and is rather a compromise resulting from the lack of free datasets
that would be long enough (e.g., a span of at least three different decades or
more) and that, at the same time, would contain also most recent documents.
When it comes to the length of time periods our choice results from the need
for striking a balance between having the size of data in both the parts of the
collection sufficiently large for generating topics and between maintaining a suffi-
ciently long time gap that separates these two dataset parts. We will then process
content that is roughly 30 years old as seen from now and that was published
during 3 years’ long time frame.

In the experiments, we consider five broad categories of concepts inspired
by news categories of NYT: Economy, Places, Politics, Sports, and Technology
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as broad concepts tend to be often used by ordinary users accessing document
archives [8,18,35]. Each category includes 4 general concepts resulting, in total,
in 20 different concepts. Table 1 gives the list of categories and their concepts.

Table 1. List of categories and their concepts.

Category Concept

Economy Currency, economy, trade, market

Places Japan, Florida, Los Angeles, New York

Politics Election, president, nomination, poll

Sports Basketball, team, olympics, sport

Technology Machine, computer, plane, technology

4.2 Preprocessing

We first find all sentences that mention the concepts using the Solr8 search
engine. We use only sentences being either the leading paragraph or the title of
a document as these are most interpretable and self-contained. To ensure better
understandability, we remove sentences shorter than 10 words as well as overly
long sentences (longer than 50 words).

Next, we trim sentence contents by removing stopwords and punctuations
using NLTK library9. Lemmatization is performed to handle inflections and to
obtain correct base forms of words. We then use TF-IDF vectors for sentence
representation10. The number of topics in LDA models has been empirically set
to 100 for all the approaches and the number l of top terms was also set to 100.

4.3 Baselines

Besides the two proposed approaches, we also test the following ones:

Random: We return randomly ordered sentences from the pool of candidate
sentences from the past documents.

Centroid: This method ranks sentences in Dpast by their dissimilarity to the
centroid vector, which is the average TF-IDF vector of all sentences in Dnow. It
is expected to extract sentences which are less known to current users.

MRRW: This method ranks sentences by simply applying MRRW [7] on the
two layers (past and present) composed of sentences treated as nodes.
8 https://lucene.apache.org/solr/.
9 https://www.nltk.org/.

10 We have also experimented with embedding models but they did not perform better.

https://lucene.apache.org/solr/
https://www.nltk.org/
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Topic Co-occurrence: Similarly to the proposed Topic Pair-based MRRW
method, we use the concept of surprising topic pairs. However, the calculation
is done without building a two-layered graph and running the random walk.
To find the co-occurring topics, we use Latent Dirichlet Allocation to build a
topic model over the combined sentences from Dpast and Dnow. Sentences in
both Dpast and Dnow are then mapped to a probability distribution over topics
ti ∈ T. As a result, we obtain a sentence-topic matrix, where each row gives a
topic distribution for a sentence. We then calculate the average co-occurrence of
the learned topics in each time period using similar way as in Eqs. 9 and 10.

Topic pairs that frequently co-occur in Dpast yet rarely in Dnow will be ranked
high by the following equation:

S(ti, tj) =
Avg coocP (ti, tj) − Avg coocN (ti, tj)
Avg coocN (ti, tj) + Avg coocP (ti, tj)

(12)

The score of a sentence is computed by aggregating the scores of the probabil-
ity of different topic pairs in the sentence. The top n sentences are then retrieved
for each top-ranked topic pair same as in Topic Pair-based MRRW method.

4.4 Data Annotation

We use Figure Eight11, a popular crowdsourcing platform to evaluate the results.
We first pooled the top 15 results for the 20 queried concepts for each of the
6 tested methods12. This resulted in an evaluation dataset consisting of 1,800
sentences from the New York Times collection that were published between
1987 and 1989. Judges were then asked to assess the sentences based on their
interestingness and surprise, and give scores ranging from 1 to 4. Each sentence
in the dataset was scored by five evaluators. The final decision for a sentence to
be considered as positive was made based on the average value of judgments. We
used the conservative threshold according to which a sentence is deemed positive
if its average judgement value is over 2.5.

Table 2. Main results.

P@1 P@5 P@10 P@15 MRR MAP

Random 5.00 21.00 18.5 18.33 28.81 28.75

Centroid 10.00 18.00 15.00 16.67 28.94 27.10

Topic co-occurrence 15.00 19.00 19.00 20.33 29.58 26.55

MRRW [7] 25.00 28.00 28.00 30.33 46.42 36.94

Topic-based MRRW 35.00 27.00 27.00 27.66 51.54 39.87

Topic Pair-based MRRW 15.00 29.00 32.00 31.33 50.04 39.98

11 https://www.figure-eight.com/.
12 We set n=5 as the number of top sentences returned for every top-ranked topic in

Topic-based MRRW, and for each top-ranked topic pair in Topic Pair-based MRRW
method and Topic co-occurrence methods.

https://www.figure-eight.com/
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5 Experimental Results

5.1 Main Results

Table 2 shows the overall results according to the Precision@1, 5, 10, 15, Mean
Reciprocal Rank (MRR) and Mean Average Precision (MAP).

We found that both of the proposed approaches perform the best on MRR
and MAP when compared to the baselines. For the precision, either Topic-based
MRRW or Topic Pair-based MRRW produces the best results depending on
the cut-off level. Out of the two proposed approaches, Topic Pair-based MRRW
appears to be superior, except for P@1 for which Topic-based MRRW produces
higher quality output. The third best performing method is MRRW, which indi-
cates that graph-based approaches are effective for our task. The satisfactory
performance of both proposed approaches, yet with certain differences, suggests
also that it may be worthy to experiment with their combination in the future.

Looking at the performance in terms of MRR and MAP over particular
categories as shown in Tables 3 and 4, we can observe that although different
methods perform best for different category types, the proposed approaches,
especially, Topic-based MRRW tend to be most stable. The results of the Topic-
based MRRW have consistently high interestingness rates across all the concept
categories. The results for MRRW indicate that it has about 8% to 11% drop
when compared to the best performing approach, yet it still outperforms the
other baselines by a good margin. On the other hand, Centroid method, as the
most intuitive and simple one, performed quite similar to the Random baseline.
Similarly, Topic co-occurrence – a direct approach that uses a single shared topic
space – is not enough to produce effective results.

The Technology category seems to be easiest for the interesting content find-
ing task. Most of the tested methods are able to return many interesting contents
in this category. This is likely because technology has changed quite much over
the last thirty years, and thus facts and opinions from the past on technology-
related news are quite different from the present. Technology is ubiquitous these
days and perhaps also more appealing to users.

5.2 Case Studies

We discuss now a few examples of sentences recommended by our approaches.
The first sentence that we want to highlight is the following:

“Of the 715 apartment fires in Moscow last month, 90 were blamed on
exploding television sets, a statistic the Soviet press has viewed as an
alarming commentary on soviet technology.” (Dec 1987)

The notion of exploding TV sets in USSR is obviously quite different from
our common sense; yet these kinds of unfortunate events were reported several
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Table 3. Performance according to different categories by MRR.

Economy Places Politics Sports Tech Average

Random 47.50 10.49 35.00 23.96 27.08 28.81

Centroid 41.67 43.75 10.83 22.62 25.83 28.94

Topic co-occurrence 5.20 18.94 8.33 44.58 70.83 29.58

MRRW [7] 19.58 47.92 25.00 64.58 75.00 46.42

Topic-based MRRW 40.63 42.36 51.79 58.33 64.58 51.54

Topic Pair-based MRRW 43.94 39.40 52.27 14.58 100.00 50.04

Table 4. Performance according to different categories by MAP.

Economy Places Politics Sports Tech Average

Random 38.22 16.04 38.57 23.69 27.25 28.75

Centroid 34.38 39.99 11.94 17.67 31.50 27.10

Topic co-occurrence 6.14 26.67 10.20 31.02 58.71 26.55

MRRW [7] 21.93 34.74 19.67 45.37 62.99 36.94

Topic-based MRRW 31.07 29.33 32.18 53.29 53.47 39.87

Topic Pair-based MRRW 34.27 28.40 37.35 15.00 84.86 39.98

times in 198713. Another example extracted is also rather opposite from what
one would claim nowadays:

“Laptop computers are great in theory but disappointing in real life.” (Oct
1988)

One could try to explain this example by potentially high expectations put on
personal computing tools in the past, coupled with rather low specs of machines
at hand and the lack of infrastructure (e.g., wifi spots). Whatever the reasons
were, this kind of content might stimulate deliberating about technology evolu-
tion and all the “bumps in its evolutionary path” over time. It might serve as an
“invitation” for closer reading of the original document or related ones in search
for explanation.

Some of the examples from the politics category show certain resemblance to
the present day’s trade tensions yet the actors are now quite different:

13 Anecdotally, this particular example triggered recollections of childhood memories of
one author. His grandparents owned a USSR-produced TV set and often warned him
not to sit close to it when he visited their home. Only now, he could understand that
the fears of his relatives were actually not without a substance. On a more general
note, exploring news archives offers chances for learning about history, and might
sometimes even lead to serendipitous discoveries and recollections as this example
demonstrates.
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“President Reagan is likely to soon lift some of the trade sanctions imposed
on Japan seven months ago during a dispute over Japanese dumping of
computer chips, the Administration said today.” (Nov 1987)

“Prime Minister Yasuhiro Nakasone today accused the Toshiba Machine
Company of betraying Japan by selling militarily sensitive technology to
the Soviet Union.” (Jul 1987)

We also found opportunities for improvement of our approaches. Take the
following two sentences as examples:

“Zenith said the new SX laptop could operate for more than three hours
on the battery before it needed recharging.” (Oct 1989)

“The Houston-based Company Show edits new battery-operated SLT/286
lap-top system, a computer that it said matches the function of desktop
computers but comes in a lunch box-sized, 14-pound package.” (Nov 1988)

The news on developments in battery-operated laptops and on battery life-
times seemed to be frequently reported in the past. However, they do not appear
often in the present-day news about laptops. The reason is that battery improve-
ments became rather commonsense nowadays along with the proliferation of
producers and, in general, along with the rapid technology progress. Thus they
tend not to be special enough to be reported in news articles. Nevertheless,
such sentences are returned by our approach (topics popular in the past but not
popular now) as our methods do not capture implicit knowledge. Incorporating
approaches that use common sense reasoning and analysis as well as extract
implicit knowledge could then become advantageous in future research. Another
observation based on these examples is that numerical values, such as product
specifications (e.g., “14-pound” (or over 6 kg) as in the last example), could be
extracted and compared to the currently typical ones for finding striking dif-
ferences. Also, aspects that are obvious at present but were overly emphasized
in the past (e.g., “a lunch box-sized” or “battery-operated” as in the above
examples) could be considered. Overall, studying elements of surprise and inter-
estingess in archival news could be opening the door for new ideas that lead
to automatic approaches for generating/recommending the content of museums
and exhibitions.

6 Conclusions

Making document archives more attractive and popular among ordinary users
remains a key and perennial goal of the archival community [32,39]. The attrac-
tiveness and, related to it, the level of use of document archives among ordinary
users is still moderate and can be improved by applying suitable techniques. To
this end, we proposed a novel research problem of finding interesting content
from news article archives and we approach this challenging task in a fully unsu-
pervised manner. Our key idea is based on data comparisons across time for
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capturing information surprising to current users. We note that interestingness
may have several aspects according to users’ age, culture and other backgrounds.
The particular, objective measure of interestingness we used in our methods (i.e.,
surprise arising due to time passage) naturally cannot exhaustively capture the
entire spectrum of interestingness.

In the future, we plan to focus on improving the quality of results. As also
discussed in [1], it is important to avoid returning trivial and obvious content
(in our case, some returned sentences are novel but unsurprising), or one poorly
understandable by users, e.g., due to the lack of necessary context.
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Abstract. Charge prediction, determining charges for cases by ana-
lyzing the textual fact descriptions, is a fundamental technology in
legal information retrieval systems. In practice, the fact descriptions
could exhibit a significant intra-class variation due to factors like non-
normative use of language by different users, which makes the prediction
task very challenging, especially for charge classes with too few samples
to cover the expression variation. In this work, we explore to use the
charge (label) definitions to alleviate this issue. The key idea is that the
expressions in a fact description should have corresponding formal terms
in label definitions, and those terms are shared across classes and could
account for the diversity in the fact descriptions. Thus, we propose to
create auxiliary fact representations from charge definitions to augment
fact descriptions representation. Specifically, we design label definitions
augmented interaction model, where fact description interacts with the
relevant charge definitions and terms in those definitions by a sentence-
and word-level attention scheme, to generated auxiliary representations.
Experimental results on two datasets show that our model achieves
significant improvement than baselines, especially for dataset with few
samples.

Keywords: Legal charge prediction · Label definitions · Interaction
model · Auxiliary representation · Augmented fact representation

1 Introduction

The task of charge prediction is to determine appropriate charges, such as theft
or robbery, for given cases by analyzing the textual fact descriptions. Automating
charge prediction technology could be practically useful for online legal assistant
systems, which provide legal consulting for users in a cost-effective way.

In practice, users have different writing habits while inputting the fact of
cases. Fact descriptions comprise a substantial amount of diverse non-normative
use of language. For example, the cases of robbery in Fig. 1 all involve “theft”,
c© Springer Nature Switzerland AG 2021
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Fact Description of Case 1: 
The defendant Wei stole an electric vehicle that the victim 
put at xx, and he took out a knife to pock the victim when 
blocked... Auxiliary representations
Fact Description of Case 2: 
The defendant Qiu came forward to ride away Ke's white 
Merida bicycle. He used fist wounding Ke's head when 
blocked ...

Charge (Label)  Definitions   

…

Fact original representation

charge-token-related
fact representation

charge-related
fact representation

Fact representation

Crime of Seizing
Crime of Theft

Robbery

Crime of Robbery
Commited the crime of theft, to conceal 
stolen goods or resist arrest uses violence.

Robbery

Fig. 1. Illustration of our method. Green boxes are two robbery case descriptions
and the blue box contains label definitions–charge definitions. The related charges
are identified (indicated by the blue double arrow) via sentence-level attention and
aggregated to create the auxiliary representation I, charge-related fact representation.
Then key words in cases align to terms in identified charge definitions via word-level
attention (aligned words are labeled by the same color), which are then formed as the
auxiliary representation II, charge-token-related fact representation. The two auxiliary
representations combine with original fact representation to predict the label–robbery.
(Color figure online)

but the legal term “theft” may be implicitly expressed like “stole an electric vehi-
cle” or “came forward to ride away Ke’s white Merida bicycle”. Consequently,
the representation of fact descriptions may exhibit considerable intra-class vari-
ation which may lead to prediction failure at the test stage. This could be more
pronounced for charge classes with only a few examples since the samples are
not sufficient for learning a predictive model robust to expression variation.

To address this issue, we introduce label definitions, the charge definition,
to create more robust fact representations for charge prediction. We propose to
create auxiliary fact representations from the charge definitions to augment the
fact representation. Those auxiliary representations are essentially projections of
the fact description in the semantic space of charge definitions. Our motivation
is that the expressions in a fact description should have corresponding formal
terms in label definitions, and those formal terms can provide an alternative view
of the expressions in fact description. Note that many of those formal terms are
shared across charge classes and are less diverse. Thus, using elements in charge
definitions to re-interpret fact description and generate auxiliary representations
could have the potential to account for the diversity in the fact description.

Specifically, we design a label definitions augmented interaction model inte-
grating sentence- and word-level attention to generate two auxiliary fact rep-
resentations. We identify the related charge definitions through sentence-level
attention between fact description and charge definitions, and then aggregate the
holistic features of relevant charge definitions to create the first auxiliary rep-
resentation, named as charge-related fact representation. The relevant charge
definitions identified in the course of producing the first auxiliary representa-
tion will also serve for creating the second auxiliary representation. To create
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the second representation, we further consider finer-grained word-level atten-
tion between the fact description and related charge definitions. Relevant words
from relevant charge definitions are attended and aggregated through a recur-
rent neural network to generate the second auxiliary representation, named as
charge-token-related fact representation. We illustrate our model by an example
in Fig. 1. Case 1 and case 2 in Fig. 1 belong to the same class, robbery, but with
different expressions. With the proposed method, they will be firstly related
to the charge definition of robbery. Then the statements of “stole an electric
vehicle” and “took out a knife to poke the victim” in case 1, “came forward to
ride away Ke’s white Merida bicycle” and “used fist wounding Ke’s head” in
case 2 will be softly aligned to the terms “theft” and “use violence” in robbery
definition through interaction. By reinterpreting the fact descriptions through
aligned terms, those two cases become more similar. The final charge prediction
is based on the original and auxiliary fact representations, and one can expect
the prediction made on this fact representation will be more robust.

To investigate the advantage of our method on charge prediction, we conduct
experiments on real-world datasets. Experimental results show that our model
outperforms baselines, especially on dataset with few samples. We also conduct
ablation studies to analyze the effectiveness of each component in our model,
and visualize the impact of introducing charge definitions.

2 Related Works

Charge prediction focuses on learning representation of fact descriptions and feed-
ing them into classifiers to make the judgment. At the early stage, [13–15,18]
attempt to extract shallow text features from fact descriptions or create hand-
crafted features to represent fact descriptions, which are hard to generalize to large
datasets due to the diverse expression of fact descriptions. Inspired by the success
of deep learning, [8,16,26,27] employ neural models with external information to
capture the high-level semantic information. [16] use a separate two-stage scheme
to extract the related articles and then attend them attentively to fact represen-
tation. [8] design 10 legal attributes to help the few-shot charges prediction. They
both need a large amount of feature engineering, either design features or rela-
tions between subtasks. LJP [27] and MPBFN [25] model multiple legal subtasks
by multi-task learning framework to assist prediction. LegalAtt [2] uses law arti-
cle to perfect fact representation. However, one article may include more than
one charges, which could obscures the fact representation. Instead, we augment
fact representation to assist charge prediction by creating auxiliary representa-
tion from charge definitions by an interaction model.

Our model is also related to attention and memory in deep learning [1,6,17,
19,20,22]. Although researchers propose various neural architectures with mem-
ory and attention for NLP problems [7,12,21], they either only consider sentence-
level or onlyword-level alignment between sentences. In contrast, we combine them
jointly to form auxiliary representation, where sentence-level interaction identifies
relevant charges, and a finer-grained word-level interaction on the top of identified
charge definitions makes the generated fact representation more robust.
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Fig. 2. The architecture of our model. Fact description encoder embeds the fact descrip-
tion into the original fact representation Ho. Sentence-level attention creates auxiliary
representation I: attentive charges aggregator is iteratively to identify related charges
that are then aggregated to generate Hs. On top of identified charges, word-level atten-
tion creates auxiliary representation II: each word in a fact description is represented
by the combination of the terms in related charge definitions. The combined interme-
diate representations are aggregated through a GRU to generate Hw. At last, Ho, Hs

and Hw are concatenated to form final fact representation H for prediction.

3 The Proposed Model

3.1 Problem Formulation

Charge prediction is to predict the corresponding charges l for a given
fact description d, where fact description d consists of a sequence of words
{wd

1 , w
d
2 , · · · , wd

m}, and its label is a C dimensional multi-hot vector – a fact
description may correspond to one or multiple labels in C classes. The charge
definition for the i-th label li is a sequence of words {wli

1 , wli
2 , · · · , wli

ni
}.

3.2 Framework

To generate a robust fact representation for prediction, we propose a label defi-
nitions augmented interaction model integrating sentence- and word-level atten-
tion. The architecture is shown in Fig. 2. The final fact representation H is the
concatenation of three representations: 1) the original fact representation (Ho),
2) the auxiliary representation I, charge-related fact representation (Hs), 3) the
auxiliary representation II, charge-token-related fact representation (Hw).
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3.3 Fact Description Encoder

Giving a fact description with a sequence of word embeddings, we use Gated
Recurrent Unite [3] to encode contextual information of each word.

hi = GRU(wd
i , hi−1), (1)

where hi is the hidden state of the GRU at time step i.
For a fact description, the words and consequently those hidden variables do

not contribute equally to convey the semantic meaning of a text, and long fact
description will involve many less informative words. To suppress the negative
impact of the non-informative words, we use attention mechanism to assign each
hidden state an importance weight αi.

αi = softmax(W2tanh(W1hi
T )), (2)

where αi ∈ [0, 1] is the weight of hi and
∑

i αi = 1. W1 and W2 are train-
able parameters. The holistic representation of original fact description Ho is
computed as a weighted sum of those hidden variables:

Ho =
m∑

i=1

αihi. (3)

3.4 Charge Definitions Encoder

Each class label li is associated with a charge definition. For each charge defini-
tion, we use the same CNN [9] to encode the sequence of n words into a sequence
of vectors. Since we will deal with a large number of labels, using CNN gives us
better training efficiency than using GRUs.

elij = CNN(wli
j− s−1

2
, · · · , wli

j+ s−1
2

), (4)

where the window size of CNN is s. Then we sum up these vectors to create the
holistic representation of each charge definition.

Li =
ni∑

j=1

elij . (5)

3.5 Two Auxiliary Fact Representations from Charge Definitions

The first auxiliary fact representation is created through the sentence-level atten-
tion between the fact description and charge definitions. Its creation process iter-
ates between two steps: identifying related charges and attentively aggregating
the holistic representation of related charge definitions. After those iterations,
relatedness weights of each charge will be obtained and they will also be used
as the basis for creating the second auxiliary fact representation. The second
auxiliary fact representation is generated from word-level attention, which aligns
terms in charge definitions with the expressions in the fact description and aggre-
gates those terms through a recurrent neural network. We elaborate the creation
of those two auxiliary representations as follows.
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Auxiliary Representation I: Charge-Related Fact Representation Cre-
ated via Sentence-Level Attention Related Charges Identification.
Identifying related charges is realized by calculating an attention weight for
each charge to indicate the relatedness. Specifically, we exploit episodic memory
attention mechanism [24] to iteratively calculate the attention weight from the
correlation between the charge definitions and fact description and memory mt,
where mt can be seen as the summary of already identified charges up to the
t-th iteration and will be updated at each iteration. With more iterations, the
unrelated charges can be filtered out. The memory mt is initialized with original
holistic representation of fact description, that is, m0 = Ho.

Formally, we use following formulas to calculate the attention weight g of
each charge definition at the t-th iteration.

zi = [Li ◦ Ho;Li ◦ mt; |Li − Ho|; |Li − mt|], (6)
gi(t) = softmax(W a

2 tanh(W a
1 zi)), (7)

where ◦ is the element-wise product, |.| is the element-wise absolute value, and;
represents concatenation of the vectors. W a

1 and W a
2 are trainable parameters.

Attentive Charge Aggregator. Once the attention weight of each charge
is calculated, we update the memory by performing weighted summation over
charge definition representations.

mt+1 =
C∑

i=1

gi(t)Li. (8)

Finally, we concatenate original fact representation with the last memory
and the previous memory, and feed them into a fully-connected layer to create
charge-related fact representation by using the following equation:

Hs = fc([Ho;mT ;mT−1]), (9)

where fc denotes the fully connected layer.

Auxiliary Representation II: Charge-Token-Related Fact Representa-
tion Created via Word-Level Attention
In the course of creating the above representation, both fact description and
charge definitions are represented by holistic feature vectors. In other words,
the interaction between fact and charge definitions is only at the sentence level.
The second auxiliary representation steps further introducing interaction at the
word level. Specifically, for each hidden variable hk in the fact description, we
first compute its matching score towards each word elij in each charge defini-
tion li by inner-product. Then elij is attentively aggregated to an intermediate
representation hli

k :
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βj = softmax(hk · elij
T
), (10)

hli
k =

ni∑

j=1

βje
li
j . (11)

The above intermediate representation is defined w.r.t. each charge definition
li. In our method, we further perform a weighted summation over hli

k for different
charge definition li. The weight is the attention weight gi(T ) calculated at the
last iteration T in Eq. (7). Using this weight fits our intuition that the terms in
the related charges are more relevant to the expressions in the fact description.

hL
k =

C∑

i=1

gi(T )hli
k . (12)

Note that hL
k can be viewed as a projection of hk in the space spanned by elij .

After obtaining hL
k for each word in the fact description, we process the

sequence by a new GRU and obtain the last hidden state h̄l:

h̄t = GRU(hL
t , h̄t−1). (13)

We concatenate original and the projected fact representation, and feed them
into a fully-connected layer to generate charge-token-related fact representation.

Hw = fc([Ho; h̄l]). (14)

3.6 The Output

Finally, we concatenate all the generated representations and feed them into a
fully-connected layer to generate the final fact representation H.

H = fc([Ho;Hs;Hw]). (15)

Since the evaluated tasks are multi-label problem, we input H into a linear
classifier layer with sigmoid activation function to predict the probability, pil, of
each labels. The loss function for training is as follows:

Loss = − 1
N

N∑

i=1

C∑

l=1

[yillog(pil) + (1 − yil)log(1 − pil)], (16)

where N is the number of training data, C is the number of labels. yil ∈ {0, 1} is
the original output of l-th class for i-th training sample and pil is the estimated
likelihood of the l-th label being true.
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Table 1. Statistics of datasets.

Datasets Training samples Validation samples Test samples Charge classes

CAIL150k 154592 17131 32500 202

CAIL30k 32506 17131 32500 168

4 Experiments

4.1 Datasets

Table 1 shows the statistics of our used datasets. We use publicly available
datasets of the Chinese AI and Law challenge (CAIL2018)1[23]: CAIL150k
dataset and CAIL30k dataset. CAIL150k and CAIL30k are different scales with
150,000 and 30,000 training samples respectively2. It is worth noting that in
these two datasets the distribution of charges is quite imbalanced. In CAIL150k,
the 31% charges in the training set have less than 100 cases, taking up only
1.88% of the total number of cases. In CAIL30k, 42% charges have less than 10
cases, taking up only 0.89% of the total number of cases.

As for charge definitions, they are extracted from articles in the Criminal
Law of the People’s Republic of China. Specifically, in criminal law, except for
articles irrelevant to specific charges, each article may include more than one
charges, their corresponding charge definitions, and punishment. We merge the
charge definitions scattered in multiple articles. A snippet of cases and charge
definitions is illustrated in Fig. 1.

Evaluation Metrics. We employ accuracy (Acc.), macro-precision (MP),
macro-recall (MR) and macro-F1 (MF1) as evaluation metrics. Macro-
precision/recall/F1 are calculated by averaging the precision, recall, and F1 of
each class, which are metrics commonly used for multi-label classification tasks.
The experimental results on test set use the parameters providing the best vali-
dation performance.

4.2 Training Setup

As all the sentences in charge definitions and fact descriptions are written in
Chinese without word segmenting, we apply jieba3 for word cut. We set the
maximum length of fact description to 500, charge definitions to 110. We use pre-
trained GloVe [5] vectors as our initial word embeddings. In practice, we choose
the 64 dimensional embedding vectors trained on baidubaike. The iteration time

1 http://cail.cipsc.org.cn/index.html.
2 In CAIL2018 dataset, CAIL150k is ./exercise contest/data train.json. CAIL30k

is ./final test.json. They share the same validation and test set (./exer-
cise contest/data valid.json and data test.json).

3 https://github.com/fxsjy/jieba.

http://cail.cipsc.org.cn/index.html
https://github.com/fxsjy/jieba
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T in Eq. (12) is set as 3. Adam [10] is used as the optimizer and the learning
rate is initialized as 0.005 and halved in every other epoch. The epoch size is 20.

4.3 Baselines

We compare our model against several text classification models and existing
charge prediction methods, where we only consider the methods with no feature
engineering. They can be categorized into four categories:

– Not using charge definitions for classification. We implement deep
learning models, such as multi-layers Convolution Neural Network
(CNN classify) [9], Gated Recurrent Unite (GRU classify) [3] and
BERT [4] for fact representation learning and classification.

– Matching the fact representation with charge definitions for clas-
sification. We train a Siamese CNN [11] to match the representations of
fact description and charge definitions to find the best matched labels.

– Augmenting fact description with charge definitions for classifica-
tion. We implement Fact-Law AN [16] that uses relevant law articles,
selected by SVMs, to serve as a legal basis for encoding the fact descrip-
tion. To demonstrate the advantage of our model in considering sentence-
and word-level interaction jointly, we implement improved memory network
(MemNet) [12] and GA Reader [21], which employ multi-iterative inter-
action between query and document at sentence- and word-level respectively
for question-answer task.

– Using multi-task learning for classification. We re-implement existing
charge prediction models TopJudge [27] and LegalAtt [2], which introduce
related legal tasks to train a better fact representation in multi-task mode.

4.4 Results

Experimental results on two scale datasets are shown in Table 2. The observa-
tions are as followings:

– Generally speaking, models without incorporating charge definitions
(CNN classify, GRU classify) perform inferior to their charge-definition-
incorporated counterparts. BERT works better due to its strong pre-trained
model. This observation clearly demonstrates the benefit of introducing label
definitions.

– Incorporating charge definitions through matching based approaches
(Siamese CNN) works to some extent, although their performance is
still worse than methods using more sophisticated interaction between fact
description and charge definitions, such as MemNet and GA Reader.

– Methods that augment fact representation with charge definitions through
end-to-end schema (GA Reader, MemNet and Ours) attain better results
than Fact-Law AN. In addition, compared with GA Reader and Mem-
Net, which perform either sentence- or word-level interaction, our approach
achieves better performance through considering sentence- and word-level
interaction jointly.



Label Definitions Augmented Interaction Model for Legal Charge Prediction 279

Table 2. The experimental results [%] of baselines and our model on two datasets.
Four different types of models are separated by lines and the best scores are highlight
in bold font. The results are averaged over 5 runs.

Datasets CAIL150k CAIL30k

Model Acc. MP MR MF1 Acc. MP MR MF1

i CNN classify 79.23 70.80 62.27 64.97 52.75 23.64 21.95 20.59

GRU classify 77.33 72.45 57.42 61.54 56.14 23.99 22.81 21.51

BERT 77.83 75.43 65.29 67.45 57.92 32.29 30.11 30.25

ii Siamese CNN 72.98 74.52 64.64 66.55 50.66 32.74 33.74 29.28

iv TopJudge [27] 78.56 78.92 58.46 65.32 25.26 25.78 24.32 25.55

LegalAtt [2] 70.30 76.43 59.48 65.08 51.55 39.81 24.34 26.92

iii Fact-Law AN [16] 75.61 58.89 52.30 53.62 60.73 28.15 25.16 24.79

GA Reader 73.78 74.68 66.59 68.21 54.95 39.29 34.05 33.03

MemNet 80.18 80.09 67.13 70.78 62.40 32.62 27.54 27.64

Ours 81.05 82.06 68.33 72.43 67.99 46.13 36.00 37.62

– Our proposed model outperforms other baselines on two datasets. The
improvement is especially significant on the CAIL30k dataset: our method
surpasses the second best about 4.5% in MF1. Since the CAIL30k contains
more classes with few training samples, the excellent performance of our app-
roach suggests that our auxiliary representations may help to improve the
generalization performance for classes with few samples.

– Existing legal models TopJudge and LegalAtt introduce multiple related
tasks and articles for representation training. Although they can improve the
performance of charge prediction, Ours using charge definitions to relieve the
intra-class variance achieves superior performance.

4.5 Ablation Test

We consider several variations of our approach by removing some components
of our model to verify the effectiveness of various components in our method.
The result is shown in Table 3. As seen, only using fact descriptions without any
level auxiliary fact representations (w/o Hs,Hw) yields the worst performance,
which proves the importance of the use of charge definitions. After adding either
the sentence-level (w/o Hw) or the word-level auxiliary fact representation (w/o
Hs), the performance can be significantly improved. We also created a variant
of our method without using attention weight gi of each charge in Eq. (12) in
the process of generating charge-token-related fact representation (w/o Hs,gi),
which is implemented by setting the attention weight gi to 1

C instead of generated
from charge identification part. It can be observed that the performance of w/o
Hs,gi declines. This suggests that the two-level interaction is necessary and using
them jointly can get the best performance. The little difference between Ours and
the auxiliary representation only w/o Ho shows the importance of original fact
representation since it contains original information about the fact description.
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Table 3. The experimental results of ablation test of our model on CAIL150k dataset.

Models Acc. MP MR MF1

Ours 81.05 82.06 68.33 72.43

w/o Hs,Hw 77.33 72.45 57.42 61.54

w/o Hw 79.50 78.86 66.18 69.86

w/o Hs 80.62 80.54 66.97 71.28

w/o Hs,gi 80.54 76.90 64.34 67.98

w/o Ho 80.31 79.12 66.88 70.55

0

0.015

0.03
Fc Fs F

Theft
Intentional injury Robbery

Defraud

Smuggle, trafficking, trans-

port and manufacture drugs

Variance Hs HHo

Fig. 3. Intra-class variance of different fact representations of the top-5 frequent classes
in CAIL150k dataset. Ho is fact representation only learned from fact description, Hs is
the Ho augmented with charge-related fact representation, and H is the Ho augmented
with all auxiliary fact representations.

4.6 Intra-class Variance of Different Fact Representations

To investigate whether the fact representation of our method is more stable, we
conduct the following experiment: we calculate the variance along each dimen-
sion of fact representations from five classes with the most amount of samples,
and then use the average variance along all dimensions as an indicator of the
intra-class variance of different fact representations. As shown in Fig. 3, fact rep-
resentation (Ho) only learned from fact description yields the largest intra-class
variance. After augmenting fact representation from charge definitions through
sentence-level attention (Hs), the intra-class variance declines greatly. Specially,
the final fact representation (H) with two auxiliary representations incorporated
attains an even lower intra-class variance.

4.7 Case Study

Finally, we select a representative robbery case to give an intuitive illustration
of the attention results on the sentence- and word-level interaction. As shown
in Fig. 4(a), the case describes that the defendant is convicted of robbery due
to stealing property and poking the victim to resist arrest. On the sentence-
level interaction, with the increasing of iteration in Eq. (7), our model narrows
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Fig. 4. Attention results of our method for a robbery charge prediction in CAIL150K
(in Chinese). The left figure (a) is attention map of sentence-level interaction between
fact and charge definitions. t1, t2, and t3 represent the iteration times in Eq. (7).
The color darker means the charges are more related to the fact. The right figure (b)
is attention map of word-level interaction between fact description and the robbery
charge definition. The dark color means a large value.

down the candidate charges and finally identifies the correct related charges.
We choose the iteration times as 3 since the performance cannot improve with
more iterations. On the word-level interaction, the attention mechanism makes
the words in fact description align with the formal terms in charge definitions.
Figure 4(b) shows for the words in fact description, which terms are focused on
in the charge definition of robbery. The identified keywords in fact description
are “electric vehicle”, “resisting arrest” and “a knife”, which correspond to key
terms in robbery definition–“stolen goods”, “resist arrest” and “use violence”.

5 Conclusion

In this work, we focus on the task of multi-label charge prediction for given
fact descriptions of cases. To address the problem of having a large expression
variance in fact descriptions due to informal language use, we introduce charge
definitions to create auxiliary representations of the fact descriptions by proposed
label definitions augmented interaction model. The experimental results on two
datasets show the effectiveness of our model on charge prediction. The significant
improvement on the dataset with few training data validate that our method
can benefit the small sample training scenario and the two-level auxiliary fact
representations can help the model to generalize to the unseen description.
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Abstract. Figures of research articles are entities that can be directly
used in many application systems to assist researchers, making the rep-
resentation of figures a problem worth studying. In this paper, we study
the effectiveness of distributed representations, learned using deep neu-
ral networks, for figures. We learn representations using both text and
image data and compare different model architectures and loss func-
tions for the task. Furthermore, to overcome the lack of training data
for the task, we propose and study a novel weak supervision approach
for learning embedding vectors and show that it is more effective than
using some of the pre-trained neural models as suggested by recent works.
Experimental results using figures from the ACL Anthology show that
distributed representations for research figures can be more effective than
the previously studied bag-of-words representations. Yet, combining the
two approaches can further improve performance. Finally, the results
also show that these representations, while effective in general, can be
sensitive to the learning approach used and that using both image data
and text and a simple model architecture is the most effective approach.

1 Introduction

Figures are entities in research articles that play an essential role in scientific
communications. To accelerate research, it is important to develop tools to assist
researchers in accessing and digesting figures. Figure representation is a fun-
damental problem in all applications involving figures. Different from general
images, figures are complex research entities that are associated with various
sources of data of various modalities, posing unique novel challenges for repre-
sentation learning. Thus, the study of how to optimize representation specifically
for research figures is crucial. Despite that, this problem has not been well stud-
ied in previous works. The dominant approach explored in the existing studies
is to represent a figure by its companion text data in an article using the bag-of-
words approach [15]. Using this representation of figures has some limitations.
First, it does not consider any other types of non-textual features, such as image
features. Second, it has limited capability in accommodating the inexact match-
ing of semantically related words.

To address the limitations of the previous work, we study a new view of
representation for figures, namely deep neural network-based distributed repre-
sentations. Learning distributed representations for many real-world entities has
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been shown to be very successful in recent years [19,25]. The main idea behind
the different approaches in this scope is to learn embeddings of those entities
using large data sets where the goal of learning is to capture the complex rela-
tions between the entities. For example, learning an embedding representation
of words [6,19] has proven to be useful for many text applications. Specifically,
word embeddings can effectively address some of the limitations of bag-of-words
representations, such as measuring the semantic similarity between words.

In this paper, our goal is to study the effectiveness of distributed represen-
tations for figures, exploring the learning of such a representation from multiple
views. Specifically, we focus on using both image data and text for learning rep-
resentations with different model architectures and loss functions to understand
how sensitive the embeddings are to the learning approach and the features used.

One technical challenge in learning deep neural network-based representa-
tions is that it requires massive amounts of data that is not available for this
domain. While word embeddings can be easily learned by leveraging the co-
occurrences of words in large amounts of text data, the amount of figure data
is quite limited. To overcome this problem, we propose and study two strate-
gies. The first is to leverage massively pre-trained models on general data (e.g.,
BERT [6]). The second is a novel weak supervision approach that can gener-
ate a large amount of training data by leveraging the already existing citation
relations between research articles.

We used a collection of figures from the ACL Anthology to empirically
study the effectiveness of different representations by their ability to measure
the semantic similarity between research figures. We also study the effective-
ness of embeddings in the downstream application of recommending figures of
interest based on an input (query) figure. The results show that embeddings
are generally more effective than bag-of-words, yet combining them is the best
performing approach. Another finding is that the pre-trained image/text embed-
dings have limited effectiveness compared to the weak supervision approach and
even the bag-of-words approach. Finally, the results show that the effectiveness
of embeddings for figures can be somewhat sensitive to the learning technique.
Specifically, the relatively simple model architectures are the most effective ones,
text features are more effective than image features, and combining image and
text features is the most successful approach.

2 Related Work

There has been growing interest recently in learning vector representations of
real-world entities using deep neural networks. This led to the development and
study of various embedding models for representing different entities such as
words [6,19], sentences [17], and images [22]. Our work can be regarded as the
first one to study the effectiveness of embedding-based representations for figures.

Learning embeddings using neural networks often requires massive amounts
of data. To address this, there has been an active research direction exploring the
use of weak supervision for learning [3,5]. Our work adds to the existing work a
new line of application of weak supervision for learning figure embeddings.
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There have been several previous works that studied various figure retrieval
and mining tasks [2,10,13,16,18]. These previous works mostly relied on the
bag-of-words representation of figures. In this work, we explore distributed rep-
resentations of figures that can benefit a variety of tasks that involve figures.

Previous works have studied the joint embedding of images and text, focus-
ing mostly on images that contain different objects and text that identifies
the objects and the interactions between them (e.g., “An apple on a table”)
[7,8,14,21,23,25]. The main idea in many of these works was to embed image
and text to the same space. Learning joint embeddings for image and text aims to
find a common representation that can explain both and is thus less appropriate
for research figures in which image and text are often two types of complemen-
tary information. Thus, in this paper, we learn text- and image-based features
separately and combine them using a third model. Using this strategy is suffi-
cient for studying the different aspects of the problem that we are interested in,
such as the effectiveness of various architectures for image/text modeling, the
effectiveness of image and text feature combination, and the effectiveness of pre-
training vs. weak supervision. We thus leave the study on finding the optimal
integration of image and text features for figures for future work.

3 Figure Embeddings

Problem Definition: A collection of figures FD can be generated using a col-
lection of research articles D by extracting the figures from all articles. Each
figure can be associated with different types of data of different modalities. For
example, a figure can be associated with a caption, the abstract section of its
article, an image, and a set of numbers. In this study, as a first step, we focus on
learning figure embeddings using only text and image data. Given two figures
in the collection, fi and fj , the goal is to learn corresponding vectors in a con-
tinuous space, fi and fj , such that the distance between them in that space is
inversely proportional to their semantic similarity. In this paper, we use neural
networks to learn these representations of figures.

Textual Representation of Figures: While the image data of a figure is well
defined, the textual data for a figure is not readily available. In the general case,
the article that contains the figure can be used to extract text that directly
describes it (e.g., the figure caption) and text that does not directly describe
it, but is related to its topic (e.g., parts of the abstract section). One previous
work [15] has explored the effectiveness of using different types of textual data for
figure representation to be used for the figure retrieval task. Based on the findings
of that work, we generate a textual representation for a figure as follows. We use
the caption of the figure, concatenated together with the text in the article that
directly describes the figure, for the figure representation. To extract this text,
first, the locations in the article where the figure is mentioned are identified.
Then, the sentence that directly mentions the figure, one sentence before it, and
one sentence after it, are extracted. (In the case of several mentions for the figure,
all the text which was extracted is merged.) We use this text as a single textual
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input which resulted in a good enough performance. In future work, we plan to
take into account the sources of those different texts in the learning approach.

Model Architecture: To learn figure embeddings using neural networks, we use
the Siamese architecture [4]. According to this architecture, given two figures,
the same model is used to generate embeddings for both of them. Then, the
dot product between the figure vectors is used as a semantic similarity score.
The Siamese model is appropriate for our scenario since the two figures are
entities of the same type and we also assume the relationship between them is
symmetric. We note that the symmetry assumption may not always hold but is
still useful to learn meaningful representations; we thus leave the treatment of
asymmetric relationships for future work. The model for our figure embedding
approach is composed of three sub-models: (1) An image model that generates
visual features. (2) A text model that generates textual features. (3) A fusion
model that combines the image and text features. While the image and the
text model are both Siamese models, the fusion model is a feed-forward neural
network model.

Text Models: To generate textual features, we experimented with three models
to explore varying levels of complexity, compare auto-regressive to non-auto-
regressive models, and compare pre-training to weak supervision-based training.
The first model we used is LSTM [11] that generates features for a text using a
recurrent neural network. Specifically, our LSTM-based model contains a word
embedding layer (learned from scratch) which is followed by a single LSTM layer,
where the weights of the last hidden state of the LSTM layer are used as the
textual features. The second model we use is Bi-LSTM [9]. This model is similar
to LSTM but has a higher level of complexity since it models dependencies
using both directions of the text. As in the case of the LSTM model, we use
a word embedding layer which is followed by the Bi-LSTM layer. Additionally,
the Bi-LSTM layer generates two sets of features (backward and forward). The
two sets of features are concatenated, a dropout layer is added on top of this
concatenation, and a final dense layer is added to obtain the textual features.
The last model we use is BERT [6] which uses transformers and self-attention
mechanisms to learn dependencies in text. This model was shown to achieve
state-of-the-art performance in many NLP tasks, where the main approach that
was taken is to pre-train the model using a very large amount of text data and
then fine-tune the output of the model for the specific task. We experiment with
three versions of this model. In the first one, we use a pre-trained model and
treat the pooled output as the textual features. In the second version, we add a
dropout layer, a dense layer with a Relu activation, and a final dense layer on
top of the pooled output. Then, we learn the weights of those dense layers using
the Siamese architecture; the output of the final dense layer serves as the textual
features. In the third version, we use the same model as in the second one but
also fine-tune the last layer of BERT.

Image Models: Previous works on using neural networks for computer vision
leveraged massive amounts of data which enabled the learning of complex models
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with remarkable performance. Another technique that is highly effective for com-
puter vision is transfer learning in which a model is trained using large amounts
of data and then is fine-tuned for a specific task. In this work, our goal is to
generate effective image features for figures. This is challenging, however, since
we do not have available massive amounts of image training data. Furthermore,
since images of figures are quite different than images in the massive training
data sets (e.g., ImageNet), it is not clear how pre-training will be useful for our
scenario. To better understand these issues, we experiment with two models as
follows. The first model that we use is a simple Convolutional Neural Network
Model (CNN) which is fully trained using the figure image data. The model is
composed of two convolutional layers, a max-pooling layer, a dropout layer, a
dense layer with Relu activation, and a final dense layer. The second model we
use is DenseNet [12] which uses densely connected convolutional networks. This
model has higher complexity than the simple CNN and we use it since it was
previously shown to be very effective for image representation. We use three ver-
sions of this model. In the first one, we use a pre-trained model with ImageNet
to generate image features (no fine-tuning). In the second version, we add layers
on top of the DenseNet model including a dropout layer, a dense layer with Relu
activation, and a final dense layer. We then learn the parameters of the dense
layers using the Siamese model. In the third one, we use the same architecture
as in the second version but additionally fine-tune the last dense block of the
DenseNet model.

Fusion Model: To combine the image and text features, we concatenate them
and use a batch normalization layer on top of that. Finally, we use a single
dense layer to generate the figure embedding. We take this approach since we
are interested in obtaining a single embedding vector for a figure using different
types of features.

Loss Function: We assume that each pair of figures, fi and fj , is associated with
a numeric semantic similarity score Ri,j ∈ R (larger values of Ri,j correspond
to greater similarity). A semantic similarity label Li,j ∈ {0, 1} can be generated
using Ri,j by setting Li,j to 1 when Ri,j > 0 and setting Li,j to 0 otherwise.
We experiment with three loss functions. The first one is the Cross-Entropy loss,
computed using the Sigmoid of the dot product between the two vectors and the
semantic similarity label, CE(fi · fj , Li,j). Secondly, we use the Mean Squared
Error loss, computed using the dot product between the two vectors and the
semantic similarity score, MSE(fi · fj , Ri,j). Finally, we use the triplet hinge
loss [22]. The triplet hinge loss is defined for a triplet of figures, comprised of a
query figure fq, a positive figure f+ (i.e., a related figure), and a negative figure
(f−). This loss is defined as: max(0, 1 + fq · f− − fq · f+). The main idea is that
we want a figure to be closer to a related figure compared to an unrelated figure.
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4 Weak Supervision for Figure Embeddings

Since we are dealing with a novel problem in this paper, an important issue
that needs to be addressed is how to collect training data. Furthermore, since
we are interested in using deep neural networks, there is a need for a large set
of training examples. To address this challenge, since log data was not available
to us, we propose a novel approach for collecting data for the task using weak
supervision.1 This approach allows us to leverage large amounts of training data
that already exist. Specifically, to generate training data, we leverage existing
relations between research articles. First, since we know that two articles are
related if one is cited by the other, we assume that two figures are semantically
similar if they appear in two articles with a citation relation. Secondly, we assume
that any two figures that are in the same article are also semantically similar.
Although both kinds of relations may be noisy, we expect that most relations
are meaningful semantic associations and the learned embedding vectors to be
meaningful as in the case of word embeddings where there are also noisy word
associations, but they do not significantly affect the results. Comparing the two
types of relations, it is reasonable to assume that two figures that appear in the
same article are more likely to be more semantically similar than two figures that
appear in citing articles and that the latter should be more similar than a random
pair of figures. Based on this intuition, we set the semantic similarity score of
two figures in citing articles to be lower than the score of two figures in the
same paper. Finally, to generate negative examples, we randomly sample pairs
of figures from the collection. Formally, given two figures fi and fj , extracted
form the articles d(fi) and d(fj), respectively, and given that C(d(fi)) is the set
of articles that cite d(fi) or are cited by it, the semantic similarity score Ri,j is
set to 1 if d(fi) = d(fj), 0.6 if d(fj) ∈ C(d(fi)), and 0 otherwise.

When using this data for training the image model, some modifications need
to be made. This is the case since semantically similar figures, as defined by
our approach, may have images that are not visually similar. Our goal for the
image model is to be able to generate features that can help measure the visual
similarity between figures. For this reason, we filter out pairs of figures which are
not visually similar enough (we use the Structural Similarity Index (SSIM) [24]
with a threshold of 0.5 for filtering out pairs, and a threshold of 0.3 for sampling
negative pairs). Finally, we do not make a differentiation between figures in the
same paper and figures in citing papers since these relationships may not be
indicative of different levels of visual similarity. Taking this approach, a pair of
figures will be assigned only with a binary relevance label in the case of the
image model (and consequently we do not use the MSE loss).

1 While there are publicly available large collections of figures [20], they do not provide
any relations between figures for the purpose of representation learning.



290 S. Kuzi and C. Zhai

5 Empirical Study

5.1 Experimental Setup

Collection of Figures: A collection of figures was built using the ACL Anthol-
ogy (aclweb.org/anthology). 40,367 articles whose copyright belongs to ACL and
were published until October 2018 were crawled. Using those articles, a collection
of 84,340 figures was created. The PdfFigures toolkit (pdffigures2.allenai.org)
was used to extract the figure images. The Grobid toolkit was used to extract
the full text from the PDF files of the articles (github.com/kermitt2/grobid).

Data Pre-processing: Text data was Porter stemmed and stopwords were
removed (using the INQUERY list). Figures with an associated text, after pre-
processing, of less than 5 words were removed. Images of figures were resized to
fit a 224 × 224 × 3 matrix and were normalized by a factor of 255.

Training Data: 947,335 pairs of figures in citing articles and 202,944 pairs of
figures in the same article were used as related figures. After adding random
pairs as negative examples, we ended up having about 2M pairs of figures for
training the text network. For the image network, after filtering out images that
were not visually similar enough, we ended up with about 300K figure pairs for
training. For training the fusion network, since we are interested in figures with
both text and image data, we used about 1M pairs after filtering out figures with
no image data. In this work, we train all three components of the model (i.e., the
image model, text model, and fusion model) separately, due to our limited data.
For the evaluation of the different approaches, we only use figures for which both
image and text data is available to make it as realistic as possible (57K figures).

Neural Network Implementation: The neural network was implemented
using the TensorFlow library. We set the values of the different parameters based
on findings in recent works in the text and image domain. All models were trained
for 3 epochs using the Adam optimizer with a batch size of 64 and a learning
rate of 0.01. The vocabulary size was set to the 1000 most frequent words in the
training data. We used only the first 100 words in the text data of a figure (the
figure caption was concatenated first) due to BERT’s limitation on the input
size and the limited effectiveness of LSTM for long sequences. The embedding
size was set to 50 for all models which means that the number of hidden layers
in LSTM/Bi-LSTM was set to 50 as well as the size of the final dense layer
in the other models (our preliminary experiments showed that a larger size of
100 is less effective). The size of the dense layer on top of BERT, DenseNet, and
CNN was set to 100. The dropout rate was set to 0.5. The word embedding layer
dimension for the LSTM/Bi-LSTM model was set to 100. For BERT, we used a
model with 12 layers, 768 hidden units, and 12 attention heads. For DenseNet,
we used a 121-layer model. For the CNN model, we used convolutional layers
with 32 filters and a kernel size of 3 × 3.

Baselines: Since one of the main research questions that we study is whether
embeddings can improve over the currently used bag-of-words representations,
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we compare our model with two representative baseline methods: tf.idf and LDA.
For the LDA baseline [1], we learn a model with 50 topics and use the figure dis-
tribution over topics as its representation. The vocabulary used for both models
was also restricted to 1000 frequent words.

5.2 Experimental Results

Semantic Similarity Prediction: To evaluate the effectiveness of the different
representations in measuring the semantic similarity between figures, a binary
classification task was performed. Given two figure vectors, the cosine function
was used to get a similarity score which was then transformed into a binary label
using a threshold. Since the threshold value can vary depending on the represen-
tation type, a validation set was used to set it (selected from {0.1, 0.2, ..., 0.9}).
Three test sets were created for the evaluation. In the first one, denoted “Same”,
we used 500 pairs of figures that appear in the same article (related figures) and
500 randomly sampled (unrelated) pairs. In the second one, denoted “Citing”,
we used 500 pairs of figures that appear in citing articles (related figures) and
500 unrelated pairs. Finally, in the third set, denoted “Accuracy”, the first two
sets were combined. (All selected pairs were removed from the training set.)
The sets were balanced such that the accuracy of a random baseline is 0.5. The
results are presented in Table 1 for using text and image features separately and
in Table 3 for the fusion model. For pre-trained models that were fine-tuned (i.e.,
BERT and DenseNet), we added the term “(tuned)” when only the dense layers
on top of the model were fine-tuned and “(tuned+)” when the dense layers and
also part of the model were fine-tuned.

According to the results in Table 1, most text-based and image-based repre-
sentations perform better than a random baseline. Focusing on the embedding
models which use text features only, we can see that for the LSTM/Bi-LSTM
model the best performance is achieved for the MSE loss, while for the tuned
BERT models there are no large differences between the different loss functions.
Overall, based on the results, the best text-based embedding model is LSTM.
A possible reason for this might be its relatively small number of parameters
and the size of the training data set. Also, it is interesting to see that it out-
performs the pre-trained BERT model which might be attributed to the unique
vocabulary used in ACL research articles. Comparing the embedding models to
the baselines, we can see that LSTM/Bi-LSTM largely outperforms all baselines
including tf.idf, LDA, and the pre-trained BERT model. We can also see from
the results that tf.idf is the strongest baseline. For this reason, we focus on com-
paring our embedding approaches mostly to this baseline in the remainder of the
evaluation section. Focusing on BERT, we can see that fine-tuning can improve
its performance, but resulting in overall effectiveness that is still low. Another
finding from the table is that the improvements of the embedding methods over
the bag-of-words baselines for the case of citing figures are much larger than
the case of figures in the same article. This might be due to the soft matching
nature of distributed (dense) representations and their ability to identify more
loosely related figures. Moving on to the image features, we can see that most



292 S. Kuzi and C. Zhai

Table 1. Semantic similarity prediction: text vs. image.

Accuracy Same Citing

Text features tf.idf .720 .818 .622

LDA .688 .766 .609

BERT .525 .522 .527

CE LSTM .740 .776 .704

Bi-LSTM .732 .743 .720

BERT(tuned) .533 .535 .530

BERT(tuned+) .534 .534 .533

MSE LSTM .802 .831 .772

Bi-LSTM .791 .811 .770

BERT(tuned) .527 .527 .527

BERT(tuned+) .527 .528 .525

Hinge LSTM .505 .508 .501

Bi-LSTM .500 .500 .500

BERT(tuned) .522 .525 .518

BERT(tuned+) .534 .537 .530

Image features DenseNet .620 .623 .616

CE CNN .500 .500 .500

DenseNet(tuned) .635 .641 .629

DenseNet(tuned+) .518 .510 .526

Hinge CNN .662 .663 .661

DenseNet(tuned) .630 .655 .605

DenseNet(tuned+) .500 .500 .499

of them perform better than a random approach and that the best performing
model is CNN. Finally, we can see that using fine-tuning for the DenseNet model
can improve its performance. Yet, the performance of the fine-tuned DenseNet
model is still not as good as that of CNN. Comparing the image to text features
we can see that the text features are more effective.

Table 2. Combining tf.idf with text-based embeddings using an “Oracle”.

Accuracy Same Citing

tf.idf .720 .818 .622

LSTM .802 .831 .772

BERT(tuned+) .534 .534 .533

LSTM& tf.idf .914 .941 .886

BERT(tuned+)& tf.idf .864 .913 .815
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In light of the results in Table 1, an important question that comes up is
whether embeddings can replace tf.idf for the textual representation of figures.
To answer this, we examine the effectiveness of combining the predictions of
tf.idf and embeddings using an oracle in Table 2 which serves as an upper-
bound for the performance of such combination. We focus on effective models
according to Table 1: LSTM trained with MSE and BERT(tuned+) trained with
CE. The results show that this combination is of merit, always outperforming
the individual models. Even in the case of BERT, which is not very effective
according to Table 1, the combination can improve tf.idf substantially. In this
paper, we are mainly interested in studying distributed representations and thus
leave the study of how to combine the two approaches for future work.

Table 3. Semantic similarity prediction: fusion model.

Accuracy Same Citing

tf.idf .720 .818 .622

LSTM .802 .831 .772

BERT(tuned+) .534 .534 .533

CNN .662 .663 .661

DenseNet(tuned) .635 .641 .629

CE LSTM& CNN .805 .834 .775

BERT(tuned+)& CNN .684 .689 .678

LSTM& DenseNet(tuned) .643 .681 .604

BERT(tuned+)& DenseNet(tuned) .678 .680 .675

MSE LSTM& CNN .838 .866 .809

BERT(tuned+)& CNN .699 .704 .693

LSTM& DenseNet(tuned) .726 .760 .691

BERT(tuned+)& DenseNet(tuned) .693 .698 .687

Next, we analyze the performance of representations that combine both image
and text data in Table 3. We focus on studying the combination of the most
effective image and text features, based on the results in Table 1. Specifically,
we use LSTM trained with MSE, BERT(tuned+) with CE, CNN with Hinge
loss, and DenseNet(tuned) with CE. We also focus only on MSE and CE due
to the very poor performance of the Hinge loss for the textual features. The
results show that for the majority of model combinations, using both features
largely outperforms the individual components. This finding supports the idea
that image and text features are complementary and represent different aspects
of the figure. Finally, we can see that the MSE loss is the best performing for all
models and that the best performing model is the LSTM&CNN model.

Figure Recommendation: The goal of this task is to recommend figures to
the user that are related to a target figure. To address this problem, a standard
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two-phase approach was used. First, using the target figure, an initial retrieval
is performed to get an initial figure set. Then, a re-ranking model is used to
obtain the recommended figures. To build a test set of target figures for testing,
we first collected all figures that have at least 5 more figures in the same article
and also 5 figures in citing articles (to result in p@5 = 1 at the best scenario).
From this set, 500 figures were selected randomly (400 for testing and 100 for
validation); all pairs of figures that contained at least one of the target figures
were removed from the training set. The performance of the different models is
measured using p@3 and p@5. Since there are no human relevance judgments
available for the task, we assume that a figure is relevant if it appears in the
same article as the target figure (“Same”), a citing article (“Citing”), or in
either (the main performance measure). We note that while this evaluation is
not fully realistic, it can still help us make meaningful comparisons between
the different approaches. Statistically significant differences between approaches
were measured using the two-tailed paired t-test at a 95% confidence level.

Table 4. Retrieval performance of the recommendation task. All differences with tf.idf
are statistically significant.

Same Citing

p@3 p@5 p@3 p@5 p@3 p@5

tf.idf .298 .228 .354 .276 .057 .048

LSTM .044 .032 .058 .047 .014 .016

CNN .000 .001 .001 .003 .001 .002

LSTM& CNN .051 .039 .066 .054 .015 .014

Table 5. Figure recommendation performance. Statistically significant differences with
tf.idf are marked with an asterisk.

Same Citing

p@3 p@5 p@3 p@5 p@3 p@5

tf.idf .298 .228 .354 .276 .057 .048

Cross Entropy (CE)

LSTM& CNN .308 .241∗ .368 .296∗ .060 .056∗

BERT(tuned+)& CNN .296 .227 .352 .277 .056 .050

LSTM& DenseNet(tuned) .303 .233 .355 .289∗ .053 .056∗

BERT(tuned+)& DenseNet(tuned) .303 .229 .357 .279 .054 .050

Mean Squared Error (MSE)

LSTM& CNN .320∗ .240∗ .380∗ .299∗ .060 .059∗

BERT(tuned+)& CNN .296 .226 .353 .277 .057 .052

LSTM& DenseNet(tuned) .313∗ .235∗ .371∗ .287∗ .058 .053

BERT(tuned+)& DenseNet(tuned) .300 .229 .356 .278 .056 .049
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First, we study the effectiveness of the retrieval step in Table 4. The per-
formance of three embedding methods (which use text data, image data, and
both), trained using the MSE loss, is compared with that of tf.idf. We can see
that the tf.idf approach is the most successful. This result is expected since tf.idf
relies mostly on exact keyword matching while embedding-based methods rely
more on soft matching. Since we are searching over the entire collection, the
embedding model may not be discriminative enough.

The performance of the recommendation task is reported in Table 5. To
obtain these results, we first perform retrieval using tf.idf and then re-rank the
first 100 figures using the cosine similarity between the figure embeddings. The
final score for a figure is defined as a linear interpolation between the tf.idf
score and the embedding score. The weight for the tf.idf component and the
embedding component in the interpolation is determined using a validation set
(selected from {0.1, 0.2, ..., 0.9}; the weights are set to sum up to 1). We exper-
iment with embedding approaches that use both text and image data with the
same setting as in Table 3. According to the results in Table 5, we can see
that using embeddings on top of the initial retrieval results (tf.idf based) can
largely improve the recommendation performance. Specifically, the embedding
approaches outperform the baseline in terms of the overall p@3 and p@5 for the
majority of relevant comparisons. Comparing the LSTM model to BERT, we
can see that the former is better in the majority of cases. The best embedding
model, according to the results, is the LSTM&CNN model with the MSE loss.

Table 6. Figure recommendation example.

LDA graphical representation

tf.idf Embeddings

1. The graphical representation of LDA 1. The graphical representation of LDA

2. Graphical models of LDA and DMM 2. Topic model

3. Topic model 3. Graphical representation of strTM

4. Plate notation of our model: MATM 4. Plate notation of our model: MATM

5. LDA plate diagram 5. Graphical representation of (a) BTM,
(b) Twitter-BTM

An example target figure with its recommendation list is presented in Table 6.
In the table, the caption of the target figure is presented together with the
captions of five recommended figures when using either tf.idf or embeddings
(LSTM&CNN with MSE); in both cases, tf.idf was used for the initial retrieval.
The subject of the figure is the graphical representation of the LDA topic model.
Using the tf.idf approach, we get figures that are either equivalent (e.g., “LDA
plate diagram”), or diagrams of related models (e.g., “MATM” and “DMM”).
When using the embedding approach, we can see that we get more diverse rec-
ommendations. This difference can be because using embeddings results in softer
matching compared to tf.idf.
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6 Conclusions

In this work, we studied the effectiveness of neural network-based figure embed-
dings. The experimental results showed that figure embeddings outperform the
bag-of-words approach in the tasks of semantic similarity prediction and figure
recommendation. We also observed that embeddings cannot replace the bag-of-
words approach and that combining the two is the best practice. Finally, the
results also showed that some learning approaches can be more effective than
others. Specifically, using a simple model architecture and combining both image
and text features performs the best.

In future work, different methods for combining the different figure features
can be studied. Collecting user data to learn more effective representations and
improve the evaluation is another possible future direction.
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Abstract. An essential task for the design of Question Answering sys-
tems is the selection of the sentence containing (or constituting) the
answer from documents relevant to the asked question. Previous neural
models have experimented with using additional text together with the
target sentence to learn a selection function but these methods were not
powerful enough to effectively encode contextual information. In this
paper, we analyze the role of contextual information for the sentence
selection task in Transformer based architectures, leveraging two types
of context, local and global. The former describes the paragraph contain-
ing the sentence, aiming at solving implicit references, whereas the latter
describes the entire document containing the candidate sentence, provid-
ing content-based information. The results on three different benchmarks
show that the combination of the local and global context in a Trans-
former model significantly improves the accuracy in Answer Sentence
Selection.

Keywords: Question Answering · Answer Sentence Selection ·
Pre-trained Transformer · Deep learning

1 Introduction

Recent research in Question Answering (QA) mainly addresses two tasks: (i)
Answer Sentence Selection (AS2), which, given a question and a set of answer
sentence candidates (e.g., retrieved by a search engine), consists in selecting the
sentence that correctly answers the question with the highest probability; and
(ii) Machine Reading (MR) comprehension [2], which, given a question and a
reference text, involves finding an exact text span answering it. AS2 research
originated from the TREC competitions [23], which target large databases of
unstructured text. It has the advantage of high efficiency, which enables its use
in real-world applications, e.g., see the study in [5].

Neural models have significantly contributed to both directions with new
techniques [11,13,24]. In particular, recent approaches to neural language mod-
els, e.g., ELMO [12], GPT [15], BERT [4], RoBERTa [9], XLNet [3] have led to
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Table 1. An example of correct answer sentence requiring larger context to be selected.

Question When was Lady Gaga born?

Prev. Lady Gaga is an American singer, songwriter, and actress

Target She was born in 1986

Next Both of her parents have Italian ancestry, and . . .

Table 2. Each of the three sentences can be a correct answer. Only the global document
information, e.g., the title and the link between document concepts, allows us to select
the correct sentence.

Question Which role did Bradley Cooper play with Lady Gaga?

Doc. title Avengers: endgame - Movie plot

Sentence Rocket Raccoon was voiced by Bradley Cooper

Doc. title A star is born - Movie plot

Sentence Jackson “Jack” Maine (Bradley Cooper), a famous country rock
singer . . .

Doc. title American sniper - Movie plot

Sentence Chris Kyle, the leading actor, was played by Bradley Cooper

major advancements in several NLP subfields. These methods capture depen-
dencies between words and their compounds by pre-training neural networks on
large amounts of data. Interestingly, the resulting models can be easily applied
to different tasks by fine-tuning them on the target training data. The impact of
such methods on AS2, also thanks to transfer learning, is impressive. For exam-
ple, [5] exceeded the state of the art by 50% (relative error reduction) on WikiQA
[27] and TREC-QA [23] datasets. Although this result seems hard to improve, we
note that most previous work does not exploit contextual information in addition
to the candidate sentence with a few exceptions, e.g., [21]. This aspect produces
a suboptimal solution as there can be many cases that contain ambiguities, and
they cannot be solved without other references or context. Formally, the term
context refers to additional linguistic information coming from the source of a
candidate answer sentence, which can be, for instance, the document containing
the sentence, the paragraph, the domain, and so on.

For example, Table 1 shows a simple question asking for the birthdate of
Lady Gaga. The answer is the middle sentence contained in a paragraph of three
sentences. Clearly, an AS2 classifier cannot select the middle sentence with high
reliability since the sentence does not reveal that she refers to Lady Gaga. On
the other hand, AS2 is effective as it targets just one sentence at a time: selecting
an entire paragraph to be sent to the users, often provides them with too much
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irrelevant information1. A further example is described in Table 2, where the
question asks for the role of Bradley Cooper in a specific movie. In the same
example, we retrieved three sentences belonging to three different documents
containing movie plots. Each of the three sentences may reasonably be a correct
answer. Also, the title of the movie is not enough to select the right answer and it
can be too far from the “local” context window showed in the previous example.
However, “A star is born - Movie plot” is the only document that contains
references to Lady Gaga. This related information allows us to recognize the
correct answer. The two examples describe two different problems in common
QA scenarios. In the first case, the sentence requires a local context to solve
the pronoun she. Conversely, the candidate requires global information from the
whole document to recognize the correct movie in the second example.

It should be noted that (i) previous neural network work, e.g., by [21], used
context for AS2 in a hierarchical gated recurrent network but their accuracy is
10–12 points below the state of the art by [5] (as measured on the same exact
dataset). Thus, it is not clear if their context is really useful for improving AS2
models. (ii) MR models clearly use a larger context but (a) they are not efficient
enough to analyze hundreds of documents for each question, and (b) they target
the selection of any subset of the document. This prevents them to be fast and
accurate for AS2.

In this paper, we propose to model local and global contexts for AS2 by using
multiple sentences and Bag-of-Word (BOW) features in Transformer networks
[22]. More specifically, we consider candidates as a triplet (si−1, si, si+1), where
si is the target answer sentence and si−1 and si+1 are the preceding and the
next sentence of si, respectively. We integrate this triplet in Transformer archi-
tectures by using one single RoBERTa [9] model encoding the three sentences
in three embeddings. Then, we add document-level BOW representation in the
classification layer. We tested our models on three different datasets, Google
NQ and SQuAD adapted for the AS2 task, as well as the well-known WikiQA,
comparing with the very recent state of the art in AS2 [5]. The results clearly
show that local and global contexts can improve AS2 models.

2 Related Work

We consider retrieval-based QA systems, which are mainly constituted by (i)
a search engine, retrieving top-k documents related to the questions; and (ii)
an Answer Sentence Selection (AS2) model, which reranks passages/sentences
extracted from the documents. The task of reranking answer sentence candi-
dates provided by a retrieval engine can be modeled with a classifier scoring the
candidates.

Recent work has proposed neural networks that apply a series of non-
linear transformations to the input question and answer text, represented as
1 Of course, a solution based on a summarization approach would be optimal but

poses complicated challenges, which have prevented to obtain better solutions than
AS2 (to our knowledge).
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compositions of word or character embeddings; and (ii) then measure the sim-
ilarity between the obtained representations. Question-to-question and answer-
to-answer patterns are typically important to derive if an answer is correct for a
question. For example, the CNN by [17] has two separate embedding layers for
the question and answer, and a relational embedding, which aims at connecting
them. More recent work uses attention mechanism, e.g., Compare-Aggregate [28],
inter-weighted alignment networks [19], and pre-trained Transformer models [5].

In particular, the latter has shown to largely outperform any previous app-
roach in AS2: a simply binary classifier is built by adding a linear layer on top
of the Transformer architecture, and is fine-tuned with positive and negative
answers. The training of such model can be carried out by using a cross-entropy
binary loss function. Additionally, the approach was highly boosted using out of
domain data, as a first fine-tuning step, followed by a second fine-tuning on the
target data. This procedure was referred to as the TANDA model, i.e., transfer
the pre-trained models on the task, then adapt it to the target domain.

However, the proposed Transformer methods only focus on the similarity
between the question and the candidate sentence pairs, without taking any addi-
tional information into account. Contextual information was already introduced
in neural networks for solving AS2, e.g., [21], by combining question/answer pairs
with context information, selected by applying a similarity between question and
document sentences.

MR research has produced state-of-the-art models, e.g., [1,14,25]. By defi-
nition, MR is supposed to exploit a larger context than standard AS2 models,
as their input is an entire abstract. Transformer models limit the input to 512
tokens, which prevent to encode large documents, e.g., webpages. Thus, we can-
not consider them as global models. In contrast, they surely fit the definition of
local context. However, as pointed out in the introduction, they are not enough
efficient to analyze hundreds of documents for each question, which is a require-
ment of real-world applications [10,20]. Also, they optimize the selection text
sub-sequences, which, is a stronger requirement that does not lead to a better
sentence selection model. Indeed, in our experiments, we show that state-of-the-
art MR systems used for selecting answers are outperformed by AS2 models.

Differently from previous solutions, our model is built with state-of-the-art
Transformer models for AS2. Moreover, our approach is more modular and can be
easily extended with additional context definitions. We also improve the results
from [21] by a huge margin (+12% on WikiQA and +5% on SQuAD).

3 Transformer Models for Answer Sentence Selecting

AS2 is the task of identifying sentences that contain the answer to a given
question. The task can be modeled with a scoring function that outputs a prob-
ability of correctness for each question/sentence pair, (q, si). Such function can
be implemented with a Transformer model as shown in [5]. In the remainder of
this section, we formalize the task and describe a state-of-the-art model based
on the Transformer.
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3.1 AS2 Definition

Let Q and S be the sets of questions and sentences, respectively, the AS2 task
can be defined as a ranking function r : Q × S → R, which assigns a score to
each possible question/answer pair, where the higher the score is, the higher the
probability of selecting a correct answer candidate is. In other words, we want
to learn r, such that for each q ∈ Q, we select

a = arg max
si∈S(q)

r(q, si)

as the final answer, where S(q) ⊆ S is the set of answer sentence candidates for
the input question q. For example, S(q) can be built by retrieving sentences from
text repositories such as the web [5,27]. In this work, we define and develop the
ranking function r with Transformer models.

3.2 Selecting Sentences with a Transformer Model

Fig. 1. The q/a pair is codifies as
a whole sequence with special delim-
iters.

The Transformer is a popular neural net-
work designed to learn language models,
e.g., dependencies between words, in a
context. Transformer models have recently
been shown to produce a remarkable
impact on AS2, when used as ranker [5,
7,18]. Besides architectural definitions, an
important advantage of Transformer mod-
els is their ability to be pre-trained on
large-scale corpora, using masked language
and next sentence prediction tasks [4].

More specifically, Fig. 1 shows the app-
roach of using a pre-trained Transformer
for AS2. The question and answer candi-
date pairs are codified as a joint sequence of
tokens with specialized delimiters and sep-

arators, i.e., [CLS] q1 . . . qn [SEP] s1 . . . sm [EOS], where xj defines the j-th
token of the sequence x. [CLS], [SEP], and [EOS] are special tokens used to
mark the beginning of the sequence, the separation between question and can-
didate answer tokens, and the end of the text, respectively. Several Transformer
blocks are applied, and then the representation associated with [CLS] is used
in a linear fully-connected layer to compute the final score associated with the
question/answer pair. The same concepts can be applied to RoBERTa or other
pre-trained Transformer models.

4 Contextual Transformer for AS2

To our knowledge, no Transformer model for AS2 uses context, except for the
information on the sentences. This is critical as a sentence may contain references
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to other parts of the text and to external entities (see the example in Table 1).
We enhance the standard Transformer model for AS2 with two types of context:
local and global. The former aims at resolving the coreferences between the
constituents in the candidate answer sentence and its neighborhood sentences
(typically part of the paragraph containing the answer). In contrast, the global
context introduces information concerning the topics and concepts of the entire
document containing the answer sentence.

4.1 Local Context

Given the target answer sentence candidate, si, we extend the standard AS2
model using the preceding, si−1, and the following, si+i, sentences. The (local)
contextual ranker rl takes four elements as input and provides the following
answer:

al = arg max
si∈S(q)

rl(q, si−1, si, si+1),

where S(q) is the set of relevant sentences for the question q and rl is our ranking
function. To implement rl in the RoBERTa model, the input sequence becomes
[CLS] q [SEP] si−1 [SEP] si [SEP] si+1 [EOS]. Additionally, RoBERTa encodes
each input word by using three pieces of information: the token, the sentence,
and the positional embeddings.

Fig. 2. BERT/RoBERTa input sequences.

The first is a standard word-
embedding. The positional embed-
ding describes a token as a function of
its position in the sequence. Finally,
the sentence embedding defines a
token as a function of the sentence
that contains it. The sentence embed-
ding helps the model to distinguish
between different input sentences: it
can be seen as a particular word
embedding of size four, one entry for each element of the input tuple,
(q, si−1, si, si+1). This embedding plays a crucial role in our model to learn that
the instance label is exclusively associated with the middle sentence. According
to the canonical procedure, the three embeddings are then summed to produce
the final representation of the sentences to be fed as input to the Transformer.
This process is described in Fig. 2 (see dashed squares). When the preceding sen-
tence si−1 is not available, we consider an empty sequence in our input encoding,
that is, [CLS] q [SEP] [SEP] si [SEP] si+1 [EOS]. In this case, the model is
still able to recognize the different parts of the input thanks to the sentence
embedding and the two consecutive separators. The same strategy holds when
the following sentence si+1 is missing. Note that the local context is not lim-
ited in co-ref resolution as it also encodes semantic information from the whole
sentences.
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4.2 Global Context

The local context models the information related to the paragraph containing the
candidate answer, and it is helpful to solve coreference problems. However, the
local context is small and does not include other important information. Global
document-based features can provide additional information to the local context,
e.g., the main document topic, which can be used to select the correct sentence.
Our global context describes the document content rather than the structure of
the paragraph containing the answer. The global ranker rg is defined as

ag = arg max
si∈S(q)

rg(q, si, d(si)),

where d(si) is the document containing si. There are several ways to take global
information into account. We concatenate a bag-of-words (BOW) based feature
vector to the CLS representation developed in the last Transformer layer. Specif-
ically, given a candidate answer si, we firstly compute the representation associ-
ated with the CLS token at the last layer, vCLS . Then, we extract BOW features
from d(si). The BOW vector vBOW contains the frequency of each input word
from the document. It should be noted that the BOW vector contains 50265
components as we considered the same vocabulary used by RoBERTa model.
Hence, the direct concatenation of vCLS and vBOW is not adequate: it may suf-
fer from scaling issues as vCLS consists of only 768 components. To solve this
problem, we apply a random projection over vBOW , that is, ṽBOW = v�

BOWW.
W ∈ R

50265×768 is the random projection matrix. Finally, we normalize the two
vectors and concatenate them. The classification is then performed using the
RoBERTa’s classification head.

4.3 Combined Context

Fig. 3. Model combining global
and local contexts.

Local and global contexts contain different
information, thus their combination can pro-
vide a better model. The complete architec-
ture using global and local contexts, here
named Dual-CTX, is depicted in Fig. 3. A
RoBERTa model receives the question and the
candidate sentence with local context encoded
as described in Sect. 4.1. The output of the
Transformer is then combined with the global
representation by using the strategy intro-
duced in Sect. 4.2. The architecture is mod-
ular and extensible, local and global feature
extraction modules can be easily exchanged.
This flexibility can lead to the definition of several models. However, our main
objective is to show the benefits of global and local contexts in the AS2 task.
The exhaustive evaluation of all different context combinations and strategies is
beyond our scope.
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5 Empirical Assessment

We carried out comparative experiments to evaluate the local and global contexts
and their combination.

5.1 Corpora

We used two AS2 corpora, ASNQ, and WikiQA, to empirically assess the pro-
posed contextual architecture. Additionally, to better collocate our research in
a broader QA work, we tested our model on SQuAD, which is a standard MR
dataset, adapted for AS2.

Table 3. Questions (Q) and
question/answer (QA) pairs
available for training.

Corpus Q QA pairs

ASNQ 59914 21,307,630
WikiQA 2,117 20,374
SQuAD 87,355 448,108

ASNQ, Answer Sentence Natural Question [5]
is a large-scale open-domain corpus for AS2. The
corpus is built by transforming the recently pro-
posed Natural Question (NQ) dataset [8] corpus
from MR into AS2. In short, the corpus consists of
57,242 distinct natural questions for training and
2,672 for development. For each question, candi-
date answers have been extracted from a single
Wikipedia page. The original NQ defines a long
answer (typically a paragraph) and a short answer inside the associated page,
whereas the ASNQ splits the document into sentences, whose binary label is
1 if the sentence contains the short answer, 0 otherwise. The corpus contains
21,307,630 question/answer pairs, with an average of 356 answer candidates per
question.

WikiQA [27] is an open-domain corpus containing queries sampled from
Bing logs. Based on the user clicks, the questions have been associated with
a Wikipedia page (only the summaries were used). We used the clean setting
for which only questions having at least one good and one wrong answer are
considered. The resulting corpus consists of 2,118 training, 126 development, and
243 test questions, with about 10 candidate answers per question on average.
We merged the dev. and test sets as they are too small to derive reliable results
from each of them individually. Overall, we have 2,117 questions and 20,374
question/answer pairs.

SQuAD 1.1, Stanford Question Answering Dataset [16], is a large-scale cor-
pus consisting of questions crowdsourced on a set of 20,000 Wikipedia articles.
The dataset was designed for MR. We transformed it into a corpus for AS2 task,
by applying the same procedure described by [5]. In short, we split each input
paragraph into sentences and labeled those containing the annotated answers as
correct candidates, and all the others as negative candidates. After this prepro-
cessing, our corpus contains 87,355 questions and 448,108 question/answer pairs.
Please note that the results presented in this paper are not directly comparable
to the SQuAD leaderboard2.

The main characteristics of the datasets are briefly described in Table 3.

2 https://rajpurkar.github.io/SQuAD-explorer/.

https://rajpurkar.github.io/SQuAD-explorer/
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5.2 Models

We implemented our methods with RoBERTa pre-trained models, using the
shared checkpoint [26]. We fine-tuned the checkpoint on our data by using (i)
the Adam optimizer set with the warmup linear scheduler and a learning rate
peak of 1e−6; (ii) the binary cross-entropy loss; (iii) a batch size of 64 examples
on a single GPU to train on WikiQA and SQuAD; and (iii) a batch size of 512
examples distributed on 8 GPUs to train on the ASNQ corpus (which is much
larger). We used the official dev. set to derive the results, thus we set the hyper-
parameters, i.e., learning rate, scheduler, and batch size, on a small portion of
the training set (as our dev. set). We train and test our models on SQuAD and
WikiQA four times and take the average results to account for their variability.

Fig. 4. Our three approaches to encode local context: a simple Transformer with ques-
tion/answer pairs (left), the contextual multi-sentence architecture (center), and the
ensemble of Transformers (right).

Finally, we also used the models generated with TANDA (transfer and adapt)
approach [5] for WikiQA. The authors apply a first fine-tuning on ASNQ and
then a second fine-tuning on the target data. TANDA is the current state of the
art, 7–10 points better than any other approach on WikiQA. Our models based
on local context are depicted in Fig. 4, and described below:

• Transformer: the Transformer model for AS2 introduced in Sect. 3.2. It
receives the question/answer pair as input without any context.

• Local Triplet (Loc t): the proposed Transformer-based method described
in Sect. 4.1, which relies on three different sentences, i.e., the previous, the
target, and the next;

• Local Ensemble (Loc e): an ensemble of three Transformer models encoding
the three pairs, q/si−1, q/si, and q/si+1 and a final linear layer fed with the
concatenation of the [CLS] embeddings of the three models. The latter do
not share their weights except those from [CLS]. The ensemble is the most
expensive approach.

The baseline models for encoding global context are:

• Global BOW (Glob b): the global context described in Sect. 4.2 consisting
of a simple Transformer model with a (compressed) BOW feature set on the
top;
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• Global Embedding (Glob e): a document embedding constituted by the
average of the embeddings derived from all document sentences. We extract
the sentence embedding using RoBERTa fine-tuned on ASNQ. We concate-
nate the average with the [CLS] representation output by the AS2 Trans-
former model.

We set the max sequence length of the input text to 128 tokens for Loc t,
Glob b/e, and each branch of Loc e, whereas the contextual architecture
Loc t uses sequences up to 256 tokens, which cover a larger input.
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Fig. 5. Local context results (including standard deviation) computed on the dev. sets.

5.3 Results

We tested different context models on three different datasets using the state-of-
the-art model in AS2 as our baseline, i.e., the transformer model made available
in [5]. The latter improves all previous AS2 models 7–10 points, on WikiQA and
TREC-QA datasets.

Local Context. Figure 5 shows the Mean Average Precision (MAP) and the
Precision at 1 (P@1) for each epoch for the Transformer, Loc t, and Loc e
models. The plots show two main results: first, the superior accuracy of Loc t
is evident on all corpora, demonstrating that the local context has a positive
impact on the AS2 model accuracy. Additionally, the performance of Loc e
method shows that the mere use of more information is not sufficient: its arrange-
ment into the model is fundamental. Indeed, the simple aggregation of the three
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summarized context vectors seems not able to capture sentence dependencies:
disarranged information produces noise, with a consequent drop in performance.

Next, we used an MR Transformer [26] to implement a sentence selector
model. Our MR approach achieves 0.881 of F1 score on MR task (showing com-
petitive results on the SQuAD leaderboard with respect to single models). Then,
we simply select the sentence from which the MR extracts the answer span to
solve the AS2 task on SQuAD: the model achieves a P@1 of 0.952. Figure 5 shows
that such model (straight line) is comparable to our baseline (single Transformer
models), whereas Loc t achieves better performance, 0.96. Although this is
a loose comparison, it suggests that our approach may be applied to develop
new MR methods. Table 4 illustrates interesting examples of answers correctly
selected by Loc t but misclassified by the baseline (which does not exploit
any context). For example, the baseline could not reliably link the show to The
Glades: this prevented to select the correct si as the top answer. In contrast,
Loc t contains such name in si−1.

Table 4. Input examples from WikiQA and SQuAD.

q What happened to “The Glades” tv series?

si−1 The Glades was renewed by A& E for a third season on October 18,
2011, which aired from June 3 to August 12, 2012.

si The show has been renewed for a fourth season.

q What field of computer science is primarily concerned with
determining the likelihood of whether or not a problem can
ultimately be solved using algorithms?

si Closely related fields in theoretical computer science are analysis of
algorithms and computability theory.

si+1 A key distinction between analysis of algorithms and computational
complexity theory is that the former. . . , Whereas the latter asks a
more general question about all possible algorithms that could be used
to solve the same problem

Global Context. Figure 6 shows the MAP and the P@1 achieved by the sim-
ple Transformer and the two global models, i.e., Glob b and Glob e. We also
report the results of the combined model, which includes local and global con-
texts. Finally, we evaluated the models when applied to WikiQA without the
TANDA approach, showing their behavior in a scenario, where there is no large
and general data for the first fine-tuning step of TANDA.

The figure shows that both global methods, i.e., BOW and document embed-
ding, improve the standard model both on WikiQA and SQuAD. We did not
apply Glob B and Glob E to ASNQ as the training has a very large compu-
tational cost. This means that we cannot apply TANDA to WikiQA with such
context. In any case, the global context produces an increase of accuracy on
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Fig. 6. Global context - empirical results computed on the development sets. The
standard deviation is not always exposed to improve the readability.

WikiQA and SQuAD (w/o TANDA). Concerning the combined model, Dual-
CTX improves the overall performance on WikiQA (w/o TANDA) and SQuAD.
It does not improve the MAP of Loc t on WikiQA when TANDA is used, but
P@1 receives a significant boost. This result provides evidence that global and
local features describe different (and potentially orthogonal) information.

It should be noted that we used BOW in the Dual-CTX rather than the
document embedding for computational reasons. The BOW representation can
be efficiently computed, and it does not require dedicated hardware. Conversely,
the document embedding requires the application of a RoBERTa model to each
sentence composing the document. Moreover, the BOW representation can be
highly improved, for instance, by learning the projection matrix. This is an
interesting research line we would like to explore in the future.

6 Conclusion

AS2 is an important IR task, which provides an effective and efficient solution
for the design of automated QA systems. Previous state-of-the-art models for
AS2 only considered the question and the answer sentence candidate, without
taking the context into account, and, to our knowledge, previous work did not
use a context beyond the target sentence with Transformer models.

In this paper, we define two types of context, local and global. The former
tries to solve implicit references in a candidate sentence, and it consists of the
previous and successive sentences of a candidate answer. Conversely, the global



310 I. Lauriola and A. Moschitti

context injects document related information, such as the main content and
topics. We proposed Transformer-based architectures that leverage the different
contexts for AS2. Our empirical assessment shows that our proposed approach
remarkably improves over the TANDA model, which is the state of the art for
AS2, on three different AS2 datasets, i.e., ASNQ, WikiQA, and SQuAD 1.1
adapted for AS2. It should be stressed that we used the model made available
by the TANDA’s authors, thus our results are perfectly comparable with their
model. We also release our contextualized checkpoints and the SQuAD adaption
for AS23. In addition to some follow up in [6], interesting future extensions of
our work regard the extraction of features from the entire rank of documents
retrieved for a question. Clearly, learning to rank features can also improve the
selection of answer sentences.
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Abstract. In this paper, we present a feature fusion decoder for argu-
ment extraction in Open Information Extraction (Open IE), where we
challenge argument extraction as a predicate-dependent task. Therefore,
we create a predicate-specific embedding layer to allow the argument
extraction module fully shares the predicate information and the con-
textualized information of the given sentence, after using a pre-trained
BERT model to achieve the predicates. After that, we propose a decoder
in argument extraction that leverages both token features and span fea-
tures to extract arguments with two steps as argument boundary
identification by token features and argument role labeling by span
features. Experimental results show that the proposed decoder signifi-
cantly enhances the extraction performance. Our approach establishes
a new state-of-the-art result on two benchmarks as OIE2016 and Re-
OIE2016.

Keywords: Open Information Extraction · Argument extraction ·
Span extraction · Decoder

1 Introduction

Open Information Extraction (Open IE) has been widely used in many down-
stream tasks [12] such as word embedding learning [16], document summariza-
tion [8] and question answering [7], which aims to generate structured tuples
consisting of predicate and their arguments that represents assertions in a given
sentence. An example of Open IE is shown in Table 1.

Previous neural Open IE systems usually treat Open IE as a pipeline task,
including the following two independent sub-tasks as: (1) extracting predi-
cates first, and (2) extracting corresponding arguments later [18,20]. However,
researchers observe that the extraction of predicate and arguments are tightly
interwoven [2,9], which means these two sub-tasks are not independent in real-
istic. This motivates us to consider them to be dependent/joint rather than
independently sequential. Our work focuses on argument extraction and regard
it as a predicate-dependent task.
c© Springer Nature Switzerland AG 2021
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Moreover, the existing Open IE approaches leverage different level features
in argument extraction. For example, Stanovsky et al. [18] uses token features
to extract arguments by the sequence tagging method with customized BIO
tags. Zhan et al. [20] adopts a span-based approach that enumerates all possible
candidate spans and scores them with labels via span features. However, Ouchi
et al. [13] presents that sequence tagging approaches generate span boundary
more accurately than span-based method, yet span-based methods produce label
prediction more precisely than sequence tagging models. This motivates us to
jointly utilize token features and span features in argument extraction, which is
our proposed decoder.

Table 1. An example sentence and respective Open IE extractions. The extractions
consists of a predicate phrase (underlined) and a list of arguments. The proposed
decoder is applied in argument extraction, which extracts argument in two steps: iden-
tifying argument boundary and labeling the argument role.

Example sentence

Costco has missed the trend this summer

Predicate extraction

(CostcoO hasB-pred missedI-pred theO trendO thisO summerO.O)

Argument extraction

Argument boundary (CostcoB hasO missedO theB trendI thisB summerI.O)

Argument role labeling (Costco, A0), (the trend, A1), (this summer, A2)

Output

(A0: Costco; has missed; A1: the trend; A2: this summer)

In this paper, we propose a decoder of multi-level feature fusion for argument
extraction in an Open IE framework. The framework is introduced in Fig. 1.
First, we train a BERT-based model for predicate extraction and then create a
predicate-specific embedding layer as the input for the argument extraction mod-
ule. Unlike the pipeline approaches, the predicate-specific embedding layer allows
argument extraction to share useful features from predicate extraction. Second,
we offer a decoder for argument extraction as our unique contribution, which
jointly leverages both token features and span features. Our decoder extract
arguments in two steps: identifying the boundary of arguments with token fea-
tures and labeling the role of arguments with span features, where the features
are fused in the overall decoding.

In order to better understand our Open IE framework and the proposed
decoder shown in Fig. 1, we show the extraction process of our approach in
Table 1. Note that the ultimate goal is to extract structured tuples consisting of
a predicate and a list of arguments. We have an example sentence as “Costco
has missed the trend this summer.” in Table 1. At first, we feed this sentence to
the pre-trained BERT model in Fig. 1 to extract its predicates as “hasB-pred”,
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“missedI-pred”. After that, the argument extraction model extracts the argument
boundary for the sentence with the BIO tags, followed by the role labels of “A0”
for “Costco”, “A1” for “the trend” and “A2” for “this summer”.

We conduct experiments on two Open IE benchmarks. The experimental
results on OIE2016 show that our method outperforms the state-of-the-art
(SpanOIE [20]) by about 4.7 F1 points.

2 The Open IE Framework with Our Proposed Decoder

The framework in Fig. 1 mainly consists of three parts: (1) predicate extraction;
(2) predicate-specific embedding for LSTM; and (3) argument extraction with a
decoder.

Fig. 1. The architecture of our Open IE framework, including a predicate extraction
module, a predicate-specific embedding layer for argument generation purpose, and a
argument extraction module where a decoder is proposed as our major contribution.

2.1 Predicate Extractions

As shown in Fig. 1, we add a linear softmax layer on top of the BERT encoder
to extract predicate. Specifically, the linear softmax layer works on the final
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produced contextualized word representations. Therefore, given a sentence S =
(w1, w2, · · · , wn), the BERT model [5] produced a list of contextualized word
embeddings (h1, · · · , hi, · · · , hn) where each hi represents the i-th input token
wi. Then, the predicate extraction process predicts a list of BIO labels to identify
the predicate. The label distribution of the i-th token for predicate extraction is
computed as follows:

PPE
i = softmax(W1hi + b1)

where W1 and b1 is the trainable weight matrix and the bias for predicate extrac-
tion, hi is the contextualized token embedding of the i-th token.

2.2 The Predicate-Specific Embedding Layer

First of all, this predicate-specific embedding layer works for the argument
extraction layer. In particular, the layer is the input of the LSTM encoder.

The motivation of this embedding layer lies in: (1) we extract arguments
based on the generated predicate to make predicate extraction and argument
extraction be dependent; (2) the representation of predicate is applied on the
contextualized word embedding using the attention mechanism theory; and (3)
the predicate-specific embedding allows LSTM to directly access predicate infor-
mation, since we concatenate the representation of predicate on it.

Fig. 2. The predicate-specific embedding layer as the input of the LSTM encoder.

Figure 2 presents the flowchart of the predicate-specific embedding layer, in
which the output is the input of the LSTM encoder. Formally, we define the
input of the LSTM network as:

h′
i = hp ⊕ (αi · hi)
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where h′
i is the the i-th input vector of LSTM, hp represents the contextualized

embedding of the predicate, the ⊕ is the concatenation operator, and αi is the
weight assigned to the token embedding hi.

We utilize selective attention [11] to weight each token embedding based
on the predicate representation, in order to extract arguments based on the
extracted predicates. Selective attention learns to identify the tokens that are
highly related to the extracted predicate rather than treating each token repre-
sentation equally. The weight αi is obtained for each token as follows:

αi =
exp(hp · hi)∑n
i=1 exp(hp · hi)

The hidden states produced by LSTM are formulated as follow:

li = LSTM(h′
i, li−1)

where li is the i-th output hidden states and h′
i is the i-th input vector.

2.3 Argument Extraction with the Proposed Decoder

As shown in Fig. 1, the argument extraction module consists of an LSTM encoder
and our proposed decoder. The proposed decoder fuses multi-level features to
extract arguments.

Our decoding process divides the argument extraction into two steps in Fig. 3:
(1) identifying the argument boundary with BIO tagging; and (2) labeling the
role of arguments with span classification.

Fig. 3. The decoder of multi-level features fusion extracts argument in two steps.

Identifying the Argument Boundary. To identify the argument boundary,
we adopt BIO tags that indicate the start and the end of the argument phrase.
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Comparing with previous work [18] that uses customized BIO tagging (i.e.,
B-A0, I-A0, B-A1, B-A1, B-A2, . . .) to extract argument directly, the BIO tags
in our method as ‘B’, ‘I’ and ‘O’, are only to identify the boundary. Specifically,
we apply a linear layer plus a softmax function on top of the LSTM network
that produces labels for each word. Formally, the output distribution of the i-th
token for the argument boundary labeling is as follows:

PAB
i = softmax(W2li + b2)

where li is the hidden state of the i-th token produced by the LSTM network,
W2 and b2 are the trainable parameter matrix and the bias.

Labeling the Role of Argument. We take the span-level features to predict
the role of argument. Formally, the span features are constructed as follows:

fspan(si:j) = li ⊕ lj ⊕ (li + lj) ⊕ (li − lj)

where si:j is the argument span identified by the BIO tags, which starts at i
and ends at j, li and lj are representations of the start token and the end token
produced by the LSTM network, ⊕ indicates the concatenation operation.

The span features are then fed into a linear layer to obtain the scores of
different labels for each span.

Score(y|si:j) = softmax(W3fspan(si:j) + b3)

where W3 and b3 is the trainable parameter matrix and the bias, y is the role
label. For each span si:j , we select the label with the highest score as its final
results:

arg min
y

Score(y|si:j), y ∈ [A0, A1, A2, A3]

2.4 Training

To train our Open IE framework, we jointly minimize three loss functions. For
each training sample S, the loss function are formulated as follows:

L = −
[
∑

S

logPPE
i (Ypred) +

∑

S

logPAB
i (Yargu bound) +

∑

S

log(Score(ŷ|si:j))
]

where Ypred is the gold label of predicated extraction, Yargu bound is the gold
label of argument boundary identification, and ŷ is the gold argument role of
span Si:j .

Note that we use teacher forcing in the training process of the argument
boundary identification and the argument role labeling. For detail information
about teacher forcing, we refer readers to [19].
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3 Experiments

3.1 Data

We use the training dataset processed by [20], which uses all the sentences that
are fewer than 40 words in Wikipedia dump 20180101 and extract correspond-
ing n-ary information tuples by an exited Open IE system OpenIE 4 [12]. The
extraction of OpenIE 4 is used as training data in many neural Open IE systems
[3,10,20] due to its reasonable computational cost and generation quality. Dif-
ferent from [20], to reduce the noise, we only keep the tuples with a confidence
score higher than 0.9. Finally, there are a total of 2,175,294 (sentence, tuple)
pairs in our training dataset.

For the test data, we test our model on two Open IE benchmark datasets,
OIE2016 [15] and Re-OIE2016 [20]. OIE2016 is a widely used test dataset for
Open IE that automatically transferred from QA-SRL. We use a subset of
OIE2016 that contains 600 sentences with 1,730 extractions1. We also leverage
the Re-OIE2016 benchmark proposed in [20]. Re-OIE2016 was relabeled on the
basic of OIE2016 manually to reduce incorrect tuples in OIE2016 that contains
595 sentences with 1,506 extractions.

3.2 Settings

We take the pre-trained BERT model [5] as our base sentence encoder. The
BERT model we use is bert-base-cased pre-trained on BooksCorpus, which
consists of 12 transformer layers, 12 attention heads, and 768 dimensional states.
We employ a one-layer LSTM network with the hidden state size of 1536 as our
second encoder.

For hyper-parameters, we use a similar setting reported in BERT. We set
the learning rate to 5e−5 and use a linear learning rate decay schedule with
warm-up over 2e−3 of the training updates for our optimizer. We also set the
dropout rate to 0.1 for the Transformer blocks and 0.2 for the classifier. We split
the training dataset into eight partitions and random sample instances to train
our model. This reduces the size of epochs, resulting in less training time. We
set the batch size to 64 and trained our model for four epochs.

3.3 Baselines

We compare our method with the rule-based Open IE systems, including Clau-
seIE [4] and OpenIE 4 [12]. We also compare our approach with the state-of-the-
art neural Open IE systems, including RNN OIE [18], SpanOIE [20], Seq2Seq
OIE [3], and IMoJIE [10]. The RNN OIE is a sequence labeling Open IE system
and SpanOIE is a span-prediction Open IE system. Both of them are pipeline
methods. The seq2seq OIE and IMoJIE model are sequence-generation based
Open IE system, which can only produce binary extraction (subject-verb-object

1 This subset is also used as test data in [18,20].
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tuples) instead of n-ary extractions. The IMoJIE model adopts BERT as a basic
encoder. Note that all neural Open IE models, except RNN OIE, are trained on
the same training set as our method2. RNN OIE is trained on a dataset trans-
ferred from QAMR [18]. We test baselines by directly evaluating their extractions
of the test set of OIE2016, which is published in [15] or in the related published
papers.

3.4 Metrics

We evaluate all approaches based on three popular metrics. First, precision-recall
(PR) curve is widely used in evaluating the Open IE systems’ performance at
different extraction confidence thresholds. Second, we compute the area under
the PR curve (PR-AUC) to get an overall measurement of the overall system
performance. Finally, for each system, we report a single F1-score using a con-
fidence threshold optimized on the development set. Note that, since we do not
implement the confidence scoring function in our work, we set the confidence
score of all extracted results to 1. Therefore, our PR curve will be a straight
line. We also treat all extractions as confident results in the evaluation of F1
(i.e., confidence threshold for our approach is set to 1). Additionally, to verify
the robustness of our method, the results used in Sect. 4 is the average perfor-
mance of 5 runs of our model.

4 Discussion and Analysis

4.1 Overall Analysis

We use the scripts published in [15,20] to evaluate the precision and recall of
the baseline models over the OIE2016 and Re-OIE2016 datasets3. The results
are shown in Table 2.

We find that our approach outperforms all baselines significantly. Our app-
roach achieves the best AUC score of 0.551 over OIE2016, which exceeds Span
OIE by 6.2%, and it gains the best AUC score of 0.703 over Re-OIE2016, which
exceeds IMoJIE by 1.1%. Compared with RNN OIE (the sequence labeling
model) and SpanOIE (the span prediction model), our approach shows progress
on precision and recall, which demonstrates the effectiveness of joint learning
and feature fusion. What’s more, although the performance of IMoJIE on Re-
OIE2016 is remarkably strong, we find that our method achieves a better recall
score. More important, our approach tends to find more complete predicates,
which leads to a higher recall for argument extraction. When compared with the

2 The only difference is the confidence score for training data chosen by different
baselines, please check Sect. 3.1 for details.

3 Note that results reported in [15] contradicts our results. That is because the author
changed the matching function of evaluation scripts. While this changes the abso-
lute performance numbers of the different systems, it does not change the relative
performance of any of the tested systems.
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Table 2. The Area under P-R Curve (AUC) and f1-score of Open IE systems over the
OIE2016 and Re-OIE2016 datasets.

Systems OIE2016 Re-OIE2016

AUC F1 AUC F1

ClausIE 0.364 58.01 0.464 64.17

OpenIE 4 0.408 58.83 0.509 68.32

IMoJIE 0.409 58.40 0.692 79.90

RNN OIE 0.462 68.55 − −
Seq2Seq OIE 0.473 − − −
SpanOIE 0.489 68.65 0.659 78.50

Our approach 0.554 73.93 0.708 79.23

rule-based methods, our approach obtains better performance than Open IE 4
on both AUC and F-1 score, which shows that our model is capable of learning
from good extractions.

Fig. 4. The precision-recall curve on the OIE2016 test dataset. Since the extraction
results of seq2seq OIE and SpanOIE are not published, we do not draw pr curve for
these models.

The results of the PR curve on OIE 2016 are shown in Fig. 4. The results
show that the PR curve of our method is consistently above other baselines.
We find that the improvement of our method over other baselines comes from
the following two aspects: (1) our method can find more predicates than other
methods, which lead to a higher recall; and (2) our method is more accurate in
finding argument owing to the precise argument role labeling.
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4.2 Analysis of the Joint Modeling

To further investigate the joint learning of the two-sub tasks of Open IE and our
predicate-specific embedding layer, we compare our method (Joint) with the
pipeline approach (Pipeline), which employs two independent labeling models
for predicate extraction and argument extraction. The experimental results are
shown in Table 3.

Table 3. Comparison of pipeline method and our multi-task learning method. Tested
on OIE2016.

Pipeline Joint (our method)

Precision Recall F1 Precision Recall F1

Predicate extraction 0.840 0.928 0.882 0.816 0.920 0.864

Argument extraction 0.710 0.677 0.693 0.748 0.681 0.713

Overall 0.726 0.701 0.713 0.774 0.708 0.739

In Table 3, we find that the pipeline model achieves the best F1 score as
0.882 in term of predicate extraction. Our joint model achieves a comparable F1
score as 0.859 in predicate extraction. We draw this conclusion that predicate
extraction gains little benefits from the argument extraction process. The reason
we analyze is because predicate extraction is relatively straightforward to learn.

As for argument extraction, we see the joint model outperforms the pipeline
method. We say that argument extraction is highly related to the predicate
extraction process, and the argument extraction process can be better pre-
dicted by sharing useful features with the predicate extraction procedure via
our predicate-specific embedding layer. The other point is that the increase of
performance mainly comes from the rise of precision. The recall is relatively
consistent.

4.3 Analysis of Feature Fusion

We evaluate the decoder of multi-level features fusion here. We compare our
method with the customized BIO tagging approach [18] that leverage token
features only (w/o span features). We test the proposed decoder in two factors:
the argument boundary identification and the argument role labeling. We regard
the argument boundary as correct if it matched the gold annotation regardless
of its role label, and we evaluate argument role labeling for whose boundaries
match the gold annotation. The results are shown in Table 4.

As shown in Table 4, our approach outperforms baselines in both argument
boundary identification and argument role labeling. Since we apply the simplified
BIO tags to identify the boundaries of arguments, our model has a smaller output
space than the customized BIO tags. This may be the reason for our better
boundary identifying performance. Moreover, the span features contribute a lot
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Table 4. Comparison of custom BIO method (without span features) and our method.
Tested on OIE2016.

W/o span features Our method

Precision Recall F1 Precision Recall F1

Argument boundary 0.737 0.690 0.712 0.748 0.698 0.722

Argument role labeling 0.788 0.802 0.795 0.809 0.796 0.802

Overall 0.758 0.701 0.728 0.774 0.709 0.739

in argument role labeling. That shows the span-level features are more suitable
than token-level features to make role labeling prediction.

We also present extraction examples in Table 5 to show the benefits of using
multi-level features. According to the results, RNN OIE can deal with inputs with
normal word order. However, it is confused by the input with inverted word order
that regards the object as the subject. That may be because the token feature
is dominated by the position information, which makes it difficult to predict the
correct argument role when the inputs’ word order is inverted. With the usage of
span features, our approach shows the potential to reveal the semantic dependen-
cies among subjects and predicates that lead to correct extractions.

Table 5. Example sentences and respective extractions of RNN OIE and our method.
The first sentence has a normal word order (i.e., Subject-Verb-Object (SVO) order).
The second sentence has an inverted word order (i.e., OVS order).

Original sentence Elon Musk said “SpaceX will send human to the Mars in
recent 10 years”

RNN OIE (A0: Elon Musk; said; A1: “SpaceX will send human to the
Mars in recent 10 years”)

Our method (A0: Elon Musk; said; A1: “SpaceX will send human to the
Mars in recent 10 years”)

Original sentence “SpaceX will send human to the Mars in recent 10 years”,
said Elon Musk

RNN OIE (A0: “SpaceX will send human to the Mars in recent
10 years”; said; A1: Elon Musk)

Our method (A0: Elon Musk; said; A1: “SpaceX will send human to the
Mars in recent 10 years”)

4.4 Error Analysis

We randomly sample 50 sentences from OIE2016 test set and analyze errors in
extractions produced by our approach. We find several common problems that
take the main part of errors.
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– Redundant extraction: Although our method rarely generates repetitive
tuples (comparing with generation-based Open IE systems like IMoJIE), it
still suffers from the redundant problem. Nearly 52% of all errors result from
the irrelevant words in the extracted tuples.

– Incomplete extractions: Incomplete extractions (i.e., missing subject or
object) contribute nearly 58% of the recall error. We find that it is mainly
owing to the error from the argument boundary identification procedure.

– Extractions with nominalized predicates: extractions with a noun or nominal
predicates are hard to extract, and it makes up 34% of all recall errors. We
speculate that enhancing training instances with noun predicates can reduce
this problem.

5 Related Work

Open IE was first introduced to extend traditional information extraction, such
that all of the propositions asserted by a given sentence are extracted. Most
Open IE systems aim to extract binary propositions (i.e., subject-verb-object
tuples) or n-ary relations (i.e., arguments and predicate). Some systems also
made efforts to extract in other formats, such as nested propositions.

Traditional Open IE methods use hand-crafted patterns to extract predicate-
argument structures through syntactic constraints. ReVerb [6] extracts Open IE
propositions from part of speech tags, OLLIE [14], ClauseIE [4], and PropS
[17] post-process dependency trees. Open IE4 [12] extracts tuples from seman-
tic role labeling structures. Recently, neural Open IE approaches have gained
great success. [18] developed RNN OIE based on a BiLSTM labeler and BIO
tagging scheme, which was the first supervised model for Open IE. There were
also attempts to perform Open IE in a generation setting. [3] built Seq2seq OIE
that adopted a neural sequence to sequence framework with copy mechanism
to generate binary extractions. To solve the stuttering problem of Seq2seq OIE,
IMoJIE [10] used sequential decoding of tuples conditioned on previous tuples
by adding generated extraction to the encoder. [20] introduced a span predic-
tion model for Open IE, which exploits span-level features to extract argument
phrases.

Previous studies over Open IE suffered from the lack of labeled Open IE
datasets for training and evaluation. Recently, [18] created a large Open IE train-
ing corpus, which is derived from Question-Answer Meaning Representation. [3]
constructed a large but noisy annotated corpus by using Open IE4 to perform
extractions on Wikipedia. [20] also created a large annotated corpus similar to [3]
but replaced binary extractions with n-ary extractions. To enhance the quality
of training dataset, [10] proposed a novel technique to combine multiple Open IE
dataset to a comprehensive dataset in a completely unsupervised manner. For
the evaluation benchmark, [15] created the first large Open IE corpus OIE2016,
which is widely used as a test set for evaluation, by automatically translating
from QA-SRL. [1] made public a crowd-sourced dataset, CaRB, with novel evalu-
ation rules that penalize overlong extractions. [20] relabeled the dataset OIE2016
manually to reduce the noise and published a new benchmark Re-OIE2016.
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6 Conclusions and Future Work

In this paper, we present a feature fusion decoder for argument extraction in
Open IE, which extracts arguments in two steps and leverages multi-level fea-
tures. Our system achieves state-of-the-art results on two Open IE benchmarks as
OIE2016 and Re-OIE2016. Additionally, we perform extensive analysis and find
that argument extraction depending on predicates enhances the overall Open
IE performance and span features help our model to label argument role more
accurately.

For future research, we will further enhance the performance of Open IE and
investigate more complex extraction results, such as nested tuples.
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Abstract. Evidence retrieval is a key component of explainable question
answering (QA). We argue that, despite recent progress, transformer
network-based approaches such as universal sentence encoder (USE-QA)
do not always outperform traditional information retrieval (IR) methods
such as BM25 for evidence retrieval for QA. We introduce a lexical prob-
ing task that validates this observation: we demonstrate that neural IR
methods have the capacity to capture lexical differences between ques-
tions and answers, but miss obvious lexical overlap signal. Learning from
this probing analysis, we introduce a hybrid approach for representation-
based evidence retrieval that combines the advantages of both IR direc-
tions. Our approach uses a routing classifier that learns when to direct
incoming questions to BM25 vs. USE-QA for evidence retrieval using
very simple statistics, which can be efficiently extracted from the top
candidate evidence sentences produced by a BM25 model. We demon-
strate that this hybrid evidence retrieval generally performs better than
either individual retrieval strategy on three QA datasets: OpenBookQA,
ReQA SQuAD, and ReQA NQ. Furthermore, we show that the proposed
routing strategy is considerably faster than neural methods, with a run-
time that is up to 5 times faster than USE-QA.

Keywords: Neural information retrieval · Representation-based ·
BM25

1 Introduction

Open-domain question answering (QA) systems traditionally have three
components: evidence retrieval, evidence reranking, and answer classifica-
tion/extraction. In evidence retrieval, the model retrieves a smaller set of possibly
useful evidence texts from a large knowledge base (KB), which are then reranked
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by the following component to push the most useful information to the top. Tra-
ditional directions use word-overlap based models for evidence retrieval such as
tf-idf and BM25. However, this can potentially cause the missing of useful infor-
mation due to the “lexical chasm” [2] between the question and the answer. A
potential remedy for this is to use neural networks for evidence retrieval, such
as transformer network-based contextualized embedding methods [7,28,29].

Focusing on this evidence retrieval stage of a QA system, we argue that,
for this component, transformer networks should not always be preferred over
standard information retrieval (IR) methods. First, due to their reliance on con-
tinuous representations, transformer methods do not take direct advantage of
obvious lexical evidence. This is a drawback in long-text retrieval, which tends
to be affected less by the lexical chasm problem than short-text retrieval. Second,
transformer-based methods are expensive to run, which makes them a less than
ideal choice for end-user NLP applications with temporal constraints.

In this paper we introduce a hybrid approach for evidence retrieval for ques-
tion answering.1 Our approach uses a routing classifier that routes an incoming
question to either an IR method or a supervised transformer method for evi-
dence retrieval, using solely shallow statistics sampled from the knowledge base
of explanatory texts for each question. This strategy has two benefits: first, evi-
dence retrieval performance improves overall because each question is handled
by the appropriate retrieval method. Second, this method reduces computational
overhead because for a considerable number of questions it does not use the more
expensive neural component. In particular, our contributions are:

(1) We design and conduct a series of supervised lexical probing tasks on two
QA datasets, which are trained to predict the terms in the query and the
gold evidence text from the entire vocabulary, using as input either the tf-
idf vector of the query, or the neural embedding of the same query. The
comparison of the two probes indicates that the probe trained from the tf-
idf vector of the query tends to predict terms that exist in the original query
(thus emphasizing lexical overlap), whereas the probe trained on top of the
query’s neural embedding predicts more terms in the evidence text that
do not exist in the query (thus bridging the lexical chasm). This validates
our hypothesis that different retrieval strategies should be used in different
scenarios.

(2) Learning from this observation, we propose a hybrid retrieval method, which
routes queries to either an information retrieval method (BM25 [24]) or a
transformer-based one (USE-QA [28]). We show that this routing decision
is learnable from simple statistics that can be efficiently extracted from the
top documents retrieved by an IR method.

(3) We show that using this hybrid strategy generally improves evidence
retrieval performance in three QA datasets: OpenBookQA [16], ReQA
SQUAD, and ReQA Natural Questions (NQ) [1]. The hybrid approach per-
forms significantly better than either individual model on ReQA SQUAD

1 (Code is available at: https://github.com/clulab/releases/tree/master/ecir2021-hyrbid
-retrieval).

https://github.com/clulab/releases/tree/master/ecir2021-hyrbid-retrieval
https://github.com/clulab/releases/tree/master/ecir2021-hyrbid-retrieval
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and NQ, with improvements in the mean reciprocal rank (MRR) of the
correct evidence sentence ranging from 1% to 7.4% (depending on the
dataset). On OpenBookQA the difference between the hybrid method and
USE-QA is not statistically significant.

(4) Our analysis indicates that the hybrid method is significantly faster than
neural IR methods. For example, the hybrid method is 2.2 times faster than
USE-QA in OpenBookQA, and 5.2 times faster in ReQA SQUAD.

2 Related Work

Neural IR methods provide an exciting potential direction to mitigate the lexical
chasm in QA [6]. Neural IR approaches can be broadly divided into two cate-
gories: representation-based and interaction-based [8]. Representation-based neu-
ral IR directions pre-encode the query and the document into a continuous rep-
resentation learned using a subsample of the data, and use a shallow method to
compute relevance scores at runtime (e.g., dot product) [12,15]. Representation-
based neural IR methods have low runtime overhead because all documents can
be pre-computed as vectors, so that at test time the embeddings of the docu-
ments do not have to be recomputed for each query (i.e., the neural model is
run for Nq times at test time, where Nq is the number of queries).

Interaction-based methods learn a query-specific representation of the doc-
uments at runtime [11,19,22]. Usually the query and the candidate document
are concatenated and processed by a neural model jointly, so that complex inter-
actions of the terms in the query and the document can be better captured.
However, this requires running the neural model for Nq · Nd times at test time
(where Nq is the number queries and Nd is the number of docs). Therefore
interaction-based methods are not suitable for large-scale first stage retrieval
and are usually used for second-stage retrieval (reranking). In this paper we
focus on the representation-based method in the first stage retrieval.

Empirical evidence has shown that neural IR methods perform better in short-
text retrieval, where the word-overlap-based IR methods are more likely to suffer
from the lexical chasm problem. However, not much work has been done to show
why neural IR methods are able to reduce the lexical chasm problem [8], partly
because it is hard to explain the meaning of neural embeddings. Recently, probing
tasks have been widely used to help understand the properties of neural networks
[5,9,10]. In probing tasks, a shallow model is placed on top of the large neural
model, and the shallow model is trained to show some properties of the large
model. For example, in [10], the authors show that some syntactic information is
encoded in the embeddings of the intermediate layers of BERT. Inspired by this,
we design and conduct a series of lexical probing tasks to compare the abilities
of traditional IR methods and neural IR methods to predict the terms that are
indicative of lexical chasm, i.e., they exist in the evidence sentences but not in
the original query.

Although they do not rely on explicit word overlaps, neural IR methods do
not always outperform traditional IR. For instance, it has been shown that neural
IR models usually work better on short text retrieval [4], and when training data
is abundant [8], but not in other situations [13].
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Table 1. Statistics of the three datasets used throughout this paper, including the
number of queries in the train/dev/test set, the number of candidate documents, and
the average number of tokens per query/document.

Dataset N train N dev N test N doc Avg. Q len. Avg. D len.

OBQA 4,957 500 500 1,326 13.71 9.49

ReSQ 87,599 11,426 N/A 101,957 10.38 160.62

ReNQ N/A N/A 74,097 239,013 9.09 146.16

Table 2. Examples of queries, answer sentences, and contexts in the three datasets.

Dataset Query Answer sentence Context

ReSQ To whom did the
Virgin Mary allegedly
appear in 1858 in
Lourdes France?

It is a replica of the
grotto at Lourdes,
France where the
Virgin Mary reputedly
appeared to Saint
Bernadette Soubirous
in 1858

... a Marian place of
prayer and reflection. It
is a replica of the
grotto at Lourdes,
France where the
Virgin Mary reputedly
appeared to Saint
Bernadette Soubirous
in 1858. At the end of
the main drive ...

ReNQ Who sings the song i
don’t care i love it

In its chorus, Icona
Pop and Charli XCX
shout in unison “I
don’t care / I love it”

... breaking up with an
older boyfriend. In its
chorus, Icona Pop and
Charli XCX shout in
unison “I don’t care/I
love it”. Critics
compared the song’s
breakup ...

OBQA Tadpoles start their
lives as Water animals

Tadpole changes into a
frog

N/A

Efforts have been made to use traditional IR for evidence retrieval and neural
IR for evidence reranking [3,18,21,27]. However, always relying on traditional IR
for evidence retrieval may miss useful evidence that does not have large lexical
overlap with the query.

Motivated by these works, in this paper we propose a hybrid evidence
retrieval direction for first-stage retrieval, in which we learn when to use tradi-
tional IR vs. neural IR. As our results show, this yields a more accurate retrieval
component that also has a lower runtime overhead than neural methods.
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3 Datasets and Evaluation Measures

We conduct our probing analyses and retrieval experiments on three QA-related
retrieval datasets. One of these datasets comes from the science domain; the
other two are open domain. More statistics and examples of these datasets are
shown in Table 1 and 2, and we describe them below.

OpenBookQA: The OpenBookQA dataset [16] (abbreviated to OBQA from
now on) addresses a multiple-choice QA task in the science domain. Each correct
answer is jointly annotated with one key evidence sentence (or justification)
that supports its correctness. The justification comes from a knowledge base of
1326 sentences. In this paper, we construct a corpus of 1326 documents from
these sentences. Further, for each question, we concatenate the question and the
correct answer choice to form the query, and retrieve the gold justification (or
target document) for that query from the corpus of 1326 documents.

ReQA SQuAD: The ReQA SQuAD dataset [1] (abbreviated to ReSQ) is a
sentence-level retrieval dataset converted from the SQuAD reading comprehen-
sion dataset [23]. In the original SQuAD reading comprehension task, the answers
to questions must be extracted from sentences in a set of provided paragraphs.
The ReQA SQuAD dataset uses the questions in SQuAD as the queries, and
converts all paragraphs to single sentences. The goal of this retrieval task is to
retrieve the sentence that contains the correct answer from all the sentences
generated from all the paragraphs. Since some answer sentences are meaningless
without the surrounding context, each candidate sentence is accompanied by its
original paragraph as the context.

ReQA NQ: The ReQA NQ dataset [1] (abbreviated to ReNQ) is similarly
converted from another reading comprehension task – Natural Questions [14] –
following the same process as ReQA SQuAD. Similarly, each query is a question
and each target document is a sentence/context pair, where the context is the
paragraph that contains the gold justification.

Table 3. Results of the probing tasks on two datasets. We report mean average pre-
cision (MAP) (higher is better) and perplexity (PPL) (lower is better) scores for the
gold terms to be predicted. We report separate scores for terms in the query, and terms
that occur only in the justification fact (mean and stdev across 5 random seeds).

Dataset Task Query MAP Query PPL Fact MAP Fact PPL

OBQA USE-QA embd, gold label 0.306 ±0.01 1.709 ±0.02 0.154 ±0.01 1.188 ±0.01

tf-idf embd, gold label 0.458 ±0.01 1.558 ±0.01 0.098 ±0.00 1.334 ±0.01

Random embd, gold label 0.053 ±0.02 3.640 ±0.10 0.031 ±0.01 3.294 ±1.63

USE-QA embd, rand label 0.085 ±0.00 1.974 ±0.02 0.043 ±0.00 1.557 ±0.02

ReSQ USE-QA embd, gold label 0.139 ±0.01 1.944 ±0.01 0.147 ±0.00 2.134 ±0.00

tf-idf embd, gold label 0.142 ±0.04 1.828 ±0.00 0.127 ±0.01 2.043 ±0.00

Random embd, gold label 0.091 ±0.00 7.419 ±3.50 0.093 ±0.00 3.478 ±0.15

USE-QA embd, rand label 0.122 ±0.02 1.909 ±0.00 0.124 ±0.00 2.013 ±0.00
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4 Understanding the Behavior of Neural IR Through
Lexical Probing

Our key hypothesis is that neural IR methods are better at modeling the lexi-
cal chasm between queries and evidence sentences than traditional IR, whereas
traditional IR captures explicit lexical overlap better. We design a lexical probe
and control tasks to investigate this.

4.1 Task Overview

Figure 1 summarizes our lexical probe, with an example from OBQA.

Probe Input: The probe starts by generating a representation of the input
query. This representation is either: (a) the tf-idf vector of the query, generated
using scikit-learn [20], or (b) the query embedding generated by USE-QA [28].

Linear Layer: This vector is fed to a linear layer, with input size Nd and output
size Nv, to predict the terms (i.e., unique words) in the query and in the gold fact.
Nv is the size of vocabulary V, where V is the set of all terms in the dataset. Each
number in the output is the predicted probability of that particular term being
in the query/gold fact. Note that the input embedding/vector is not changed
during the training of the probe task. Thus, if the neural embedding contains
meaningful information about the gold fact, it should perform better than tf-idf
on predicting the terms that are only in the gold fact.

Fig. 1. Probe task overview: the linear probe is trained to predict the terms in the query
and in the gold fact from the entire vocabulary, given either the input embedding
or the tf-idf vector of the query. This probe investigates the capability of the query
representation to predict both lexical overlap (i.e., terms from the query), as well as its
ability to bridge the lexical chasm between queries and supporting facts (i.e., predict
terms that exist in the fact and not in the query). A loss mask is used to make sure
the loss is only computed on certain terms during training.
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Training Label and Loss: For each query qi, we use Pi to indicate the set
of all terms in {qi, gold fact(qi)}. The training label is a one-hot vector of size
Nv, where the values for the terms in Pi are 1, and the rest of the entries are 0.
However, since the terms in Pi are considerably fewer than the whole vocabulary,
there will be many more 0s than 1s in this label vector, causing label imbalance.
Therefore, we construct a set of negative terms Ni, which contains terms that
are randomly sampled from the vocabulary V but not in Pi. The size of Ni also
equals to the size of Pi. The loss is only computed on the terms in Pi ∪ Ni

instead of the whole vocabulary V. The total loss of each query qi is summarized
by: L = −∑

j∈Pi∪Ni
[yj log ŷj + (1 − yj) log(1 − ŷj)], where yj ∈ {0, 1} is the

label, and ŷj ∈ (0, 1) is the predicted probability of the corresponding term.

4.2 Control Tasks

We designed two control tasks to check whether the information necessary for
prediction is contained in the query representation and not in the linear layer
[9]:

Random Embedding (rand embd): This probe replaces the neural embed-
ding with a randomly-generated embedding. If the query representation encodes
useful information, this probe should perform much worse than the one using
the neural representation.

Rand Label (rand label): In this experiment we randomly replace the tar-
get terms in both training and testing. For example, we replace the terms
to be predicted for query i with terms from a randomly-selected query j:
{qj , gold fact(qj)}. This is to examine whether it is possible for the linear probe
to learn non-sensical associations between random (embedding, target terms)
pairs.

4.3 Probe Results

Table 3 lists the results of these probing tasks. We draw several observations:

(1) With minor exceptions, the two actual probes perform better than the two
control tasks. This confirms that there is indeed signal that is encoded in the
query representations, and this is what the linear probe classifier exploits.

(2) The probe that relies on the neural query representation obtains higher fact
MAP (and lower fact PPL) than the probe that uses the tf-idf represen-
tation. This indicates that the neural representation does indeed contain
information that helps bridge queries, answers, and supporting facts. On
the other hand, the tf-idf probe has higher query MAP (and lower query
PPL) than the neural probe. This confirms that the traditional IR repre-
sentation is better at capturing explicit lexical overlap with the query than
the neural one. All in all, these observations suggest that these two retrieval
directions are better at different things.
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5 Hybrid Retrieval Approach

5.1 Individual IR Models

The hybrid approach proposed builds from (and is compared against) the follow-
ing individual retrieval models. Note that these approaches were chosen because
they had the best performance on these datasets. For example, USE-QA consis-
tently performed better than BERT.

BM25: We use the Lucene 6.4.02 Java implementation of BM25 [24] as the “tra-
ditional” IR method. For OBQA, each document is one sentence in the knowl-
edge base corpus (1326 sentences in total). In ReSQ and ReNQ, each document
is constructed by concatenating the candidate answer sentence and its context
(so that each candidate answer sentence appears twice in the document).

BERT: For this method we fine-tune a pretrained BERT-base model [7,26]. We
use the BERT retriever in the representation-based manner: the query qi and
the document dj are encoded using the [CLS] embedding of BERT as hq

i and hd
j .

Then the relevance score of qi and dj are obtained by Rel(qi, fj) = hq
i · hd

j . For
ReSQ and ReNQ, each document is composed of the candidate answer sentence
and its context. We concatenate them and separate them with the [SEP] token.
Therefore, the input of each document is “[CLS] candidate answer sentence [SEP]
context sentences [SEP]”.

USE-QA: The USE-QA retriever [28] has separate encoders for the query
and document. The query encoder is a transformer-based model, producing a
512-dimension embedding as the query representation. The document encoder
has a transformer-based model to encode the answer sentence and a Convo-
lutional Neural Network (CNN)-based model to encode the context. A single
512-dimension embedding is produced as the document representation. Finally,
the relevance score is computed as the dot product of the query embedding and
the document embedding. USE-QA is pre-trained on large scale retrieval tasks
and, as used in [1], we do not fine-tune it in the retrieval tasks.

5.2 Are Neural IR Methods Generally Better Than Traditional IR?

The probe introduced in Sect. 4 indicates that neural and traditional IR meth-
ods have different behaviors. But what impact does that have in practice, with
respect to overall performance? To answer this question, we performed a compar-
ison that aims to understand if transformer-based retrieval methods are better
overall than traditional IR. Due to space limitations, we discuss here results from
the best individual models in each class: BM25 for traditional IR, and USE-QA
for neural IR (We observed similar behavior from tf-idf and BERT.). We use two
datasets: one domain-specific (OBQA) and one open-domain (ReSQ).

2 https://lucene.apache.org.

https://lucene.apache.org
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Figure 2 summarizes this comparison between BM25 and USE-QA on the dev
partitions of OBQA and on a 10,000-query subset of ReSQ training partition.
Here, we consider a model better than the other when it yields a better ranking
for the correct justification. We draw two observations from this analysis:

(1) No approach is consistently better than the other. Overall, BM25 is at least
as good as USE-QA in 293 queries out of 500 queries in OBQA dev set, and
7603 queries out of 10000 randomly sampled queries in ReSQ train set. This
is further motivation for a hybrid approach.

(2) Importantly, there is immediate signal to differentiate between the two situ-
ations. When BM25 performs better than or similarly to USE-QA, the top
BM25 score (after the softmax normalization) tends to be in the 0.8 to 1
range. In contrast, when there is little lexical overlap between question and
justification indicated by low BM25 scores, e.g., below 0.2, USE-QA per-
forms considerably better. This supports the intuition that USE-QA can
capture lexical differences between question and justification when present.

5.3 Hybrid Retrieval Model

Motivated by the previous observations, we propose a hybrid evidence retrieval
method that uses a routing classifier to direct an incoming question to either
the BM25 retriever or the USE-QA retriever based on simple statistics that can
be extracted efficiently. The key intuition behind our hybrid strategy is that we
can estimate the optimal retrieval method based on the top answers retrieved
by traditional IR. In particular, if these answers receive a high score from the
traditional IR method, it indicates that the current scenario is driven by lexical
overlap, and traditional IR is likely to do better; the opposite is true otherwise.

Fig. 2. Histograms of queries in OBQA dev (left) and a randomly sampled subset of
ReSQ train (right) where BM25 is no worse than USE-QA (blue) or where USE-QA
is better (orange). The x axis is the top BM25 score after a softmax is applied to the
BM25 scores of the top 64 sentences. (Color figure online)
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We propose two variants for the routing classifier:

Hybrid (1-param): This classifier uses a single parameter: a threshold on the
normalized BM25 score of top document retrieved by the BM25 method.3 If
the top 1 score is higher than this threshold, the classifier routes the question
to BM25; otherwise it sends it to USE-QA. This is a simple implementation of
the intuition above – if the top normalized BM25 score is high, then it is likely
that there is a candidate document that has a large lexical overlap with the
query, and which is probably a correct justification. On the other hand, if the
top normalized BM25 score is low, it is either because: (a) there is no document
that has a large lexical overlap with the query, or (b) because there are multiple
candidate documents that have high BM25 scores (and they are squished during
normalization). In either of these scenarios BM25 is unlikely to identify the
gold document, and, therefore, USE-QA should be selected. The value of this
threshold is determined by performing a grid search on the dev partition, with
the threshold ranging from 0 to 1 with an interval of 0.1.

Hybrid (BM25): This classifier is a generalization of the above. That is, instead
of relying solely on the top retrieved document, this classifier extracts features
from the top k. In particular, for each query, we construct a feature vector f
and use a logistic regression (LR) classifier that takes f to predict whether to
use BM25 or USE-QA. The ith feature of f is computed as fi = mean(S[0 : 2i]),
where S are the top BM25 scores ranked in the descending order (after softmax
normalization). In this paper we use i up to 6 (i.e., use up to top 64 BM25
scores). For example, feature 2 averages the BM25 scores of the top 4 documents
retrieved by the traditional IR method. This strategy allows the classifier to take
advantage of more documents when needed, but also focus on the top result(s)
when they are sufficiently predictive.

Note that all Hybrid approaches choose either one of the individual models.
USE-QA is not used as a reranking method on top of BM25, because USE-QA
is applied to all documents instead of the top documents retrieved by BM25.

6 Results

In this section, we empirically evaluate the proposed evidence retrieval meth-
ods. We use the mean reciprocal rank (MRR) score [25] of the correct evidence
sentence (or target document) in the test dataset as the evaluation measure.

Since ReSQ only provides training and developments partitions, we randomly
sample 10,000 queries from the training data and use them for development, and
use the original development set of ReSQ as test. ReNQ does not provide train-
ing/development/test partitions; for this dataset we use 5-fold cross-validation,
sampling 10,000 queries from one fold as the development data in each split, and
using the remaining folds as test.

3 We normalize this score by applying a softmax layer to the BM25 scores of the top
k (k = 64 in this paper) documents.
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For all datasets, USE-QA is used without fine-tuning as proposed in [1].
For the BERT retriever, we fine-tune it on the training data of OBQA and
ReSQ. For all hybrid retrievers, we tune their routing classifiers on the respective
development partitions. For ReSQ, we further divide the development set into
5 splits (2,000 queries in each split) and tune 5 routing classifiers and evaluate
them separately on the full test set to make sure the results are robust to different
development sets.

6.1 Individual Vs Hybrid Retrievers

Table 4 shows the MRR scores of the individual retrieval methods compared to
the hybrid ones, on the three datasets. We draw several observations from this:

(1) Most hybrid strategies outperform the individual retrieval methods, as well
as the naive strategy that simply sums up the scores of two individual mod-
els, and uses the sum for ranking. Hybrid (1-param) and Hybrid (BM25)
are statistically significantly better than BM25 and USE-QA on ReSQ and
ReNQ under a bootstrap resampling significance analysis (10,000 samples,
p-value < 10−5). On OBQA, Hybrid (1-param) and Hybrid (BM25) are sta-
tistically significantly better than BM25 under the same bootstrap resam-
pling significance analysis, but there is no significant difference between the
hybrid methods and USE-QA. This demonstrates that transformer-based
and IR-based methods capture complementary information, and the dis-
tinction of when to use one vs. another is learnable. Table 5 lists several
runtime statistics of our best classifier, Hybrid (BM25), which support this
observation. The first two rows indicate that the routing classifier uses both
individual retrievers, with around 60% (OBQA) or 86% (ReSQ) of questions
being routed to BM25. The next four rows indicate that, on average, the
hybrid approach improves over both individual methods especially on ReSQ
and ReNQ.

Table 4. Mean reciprocal rank (MRR) scores of the retrieval methods investigated on
the three QA datasets. The BM25 + USE-QA method sums up the scores produced by
BM25 and USE-QA, and uses that score for ranking. ∗ indicates that Hybrid (BM25) is
statistically significantly better than both USE-QA and BM25 (bootstrap resampling
with 10,000 iterations; p-value < 10−5). Hybrid-NN (BM25) uses approximate Nearest
Neighbor for USE-QA in the hybrid method with 20 search trees. The Ceiling method
always selects the best individual model (USE-QA or BM25) for each query by their
ranking of the gold justification.

BM25 BERT USE-QA BM25 + Hybrid Hybrid Hybrid-NN Ceiling

USE-QA (1-param) (BM25) (BM25)

OBQA 0.522 0.557 0.610 0.550 0.611 0.596 N/A 0.69

ReSQ 0.645 0.260 0.520 0.647 0.656 0.657∗ 0.656∗ 0.71

ReNQ 0.293 N/A 0.223 0.290 0.301 0.303∗ 0.298∗ 0.39
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Table 5. Routing statistics for the routing classifier that trains a logistic regression
model using features extracted from the top 64 BM25 documents.

OBQA ReSQ ReNQ

n samples routed to BM25 306 49, 270 260, 640

n samples routed to useQA 194 7, 860 59, 845

Samples w/improved rankings vs. BM25 129 4, 095 33, 078

Samples w/worse rankings vs. BM25 47 3, 257 25, 562

Samples w/improved rankings vs. useQA 61 21, 488 146, 020

Samples w/worse rankings vs. useQA 93 8, 640 84, 839

(2) While Hybrid (BM25) outperforms the simpler Hybrid (1-param), the dif-
ference is not statistically significant.4 This further suggests that simpler
approaches work in this case. The routing decision can be approximated
with a single parameter (a threshold on the BM25 score), applied to a sin-
gle justification that is efficiently extracted by IR.

6.2 Runtime Analysis

A further advantage of our hybrid approach is improved runtime over neural
methods, because a considerable number of queries are routed to a traditional,
fast IR engine. To investigate this, we measure the processing time per query
using BM25, USE-QA and various hybrid retrievers and calculate the total time
usage of these retrieval methods. The processing time per query is measured as:

(1) For BM25, we measure the time of parsing the query, searching the top k
(k = 1400 for OBQA, and 2000 for ReSQ and ReNQ) documents, and sorting
the retrieved documents by the BM25 scores.

(2) For USE-QA, we measure the query processing time (including query tok-
enization and the embedding generation of USE-QA5), searching the top k

Table 6. Runtime comparison of BM25, USE-QA and hybrid retrievers on the corre-
sponding test partitions. All times are the total times in seconds on all test queries.

BM25 USE-QA BM25 + Hybrid Hybrid Hybrid-NN

USE-QA (1-param) (BM25) (BM25)

OBQA 1.38 19.74 21.23 20.85 8.95 N/A

ReSQ 179.56 3241.73 3476.99 922.28 625.74 593.82

ReNQ 1547.56 26722.63 28929.47 9513.97 6565.21 3696.11

4 Bootstrap resampling with 10,000 samples, p-value < 0.13.
5 The batch size is set to 1 when generating the embedding, for a fair comparison with

BM25, and because in a real use case the queries may not arrive in batch.



A Hybrid Method for Representation-Based Evidence Retrieval 339

(1326 for OBQA and 2000 for ReSQ and ReNQ) documents, and sorting
them by the scores. We run this experiment using Tensorflow on Google
Colab with GPU.

(3) For hybrid models, the processing time of each query is the sum of: (1) the
BM25 processing time (2) the runtime of the routing classifier and (3) the
processing time of USE-QA if USE-QA is selected for that query.

Table 6 shows the total processing time of all queries using different retrieval
methods. The table indicates that USE-QA is more than 15 times slower than
BM25 on all datasets. Further, the hybrid approach reduces that gap while still
allowing for the benefits of the neural IR when needed: Hybrid (BM25) is 2.2
times faster than USE-QA in OBQA, and 5.2 times faster in ReSQ. Our hybrid
method is also significantly faster than BM25 + USE-QA, which uses both BM25
and the neural retriever on every query [17].

7 Conclusion

We argue that transformer network-based approaches do not always outperform
IR methods for evidence retrieval for QA. We validate this observation with an
empirical analysis, and with a lexical probing task where two probes were trained
to predict words in the gold evidence texts. The first probe, trained on the tf-idf
vector of the query, tends to predict words that exist in the original query (thus
emphasizing lexical overlap), whereas the second probe, trained on top of the
query’s neural embedding, predicts more words in the evidence text that do not
exist in the query (bridging the lexical differences between these texts).

Learning from this analysis, we introduced a routing classifier that learns
when to direct incoming questions to traditional or neural IR methods for evi-
dence retrieval. The routing classifier is trained using very simple statistics, which
can be extracted from the top candidate evidence sentences produced by tra-
ditional IR. We showed that this hybrid evidence retrieval generally performs
better than either individual retrieval strategy on three QA datasets. Further,
we showed that this routing classifier can be approximated with nearly the same
performance with a 1-parameter model (a threshold over the IR score of the top
evidence sentence retrieved by BM25), which simplifies real-world applications
of our approach. Lastly, we show that our routing classifier is considerably faster
than USE-QA, with runtime improvements of up to 5 times.
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Abstract. Pretrained multilingual text encoders based on neural Trans-
former architectures, such as multilingual BERT (mBERT) and XLM,
have achieved strong performance on a myriad of language understanding
tasks. Consequently, they have been adopted as a go-to paradigm for mul-
tilingual and cross-lingual representation learning and transfer, rendering
cross-lingual word embeddings (CLWEs) effectively obsolete. However,
questions remain to which extent this finding generalizes 1) to unsuper-
vised settings and 2) for ad-hoc cross-lingual IR (CLIR) tasks. There-
fore, in this work we present a systematic empirical study focused on the
suitability of the state-of-the-art multilingual encoders for cross-lingual
document and sentence retrieval tasks across a large number of language
pairs. In contrast to supervised language understanding, our results indi-
cate that for unsupervised document-level CLIR – a setup with no rel-
evance judgments for IR-specific fine-tuning – pretrained encoders fail
to significantly outperform models based on CLWEs. For sentence-level
CLIR, we demonstrate that state-of-the-art performance can be achieved.
However, the peak performance is not met using the general-purpose mul-
tilingual text encoders ‘off-the-shelf’, but rather relying on their variants
that have been further specialized for sentence understanding tasks.

Keywords: Cross-lingual IR · Multilingual text encoders ·
Unsupervised IR

1 Introduction

Cross-lingual information retrieval (CLIR) systems respond to queries in a source
language by retrieving relevant documents in another, target language. Their
success is typically hindered by data scarcity: they operate in challenging low-
resource settings without sufficient labeled training data, i.e., human relevance
judgments, to build supervised models (e.g., neural matching models for pair-
wise retrieval [22,53]). This motivates the need for robust, resource-lean and
unsupervised CLIR approaches.

c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 342–358, 2021.
https://doi.org/10.1007/978-3-030-72113-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72113-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-72113-8_23


Evaluating Multilingual Text Encoders for Unsupervised IR 343

In previous work, Litschko et al. [27] have shown that language transfer
through cross-lingual embedding spaces (CLWEs) can be used to yield state-
of-the-art performance in a range of unsupervised ad-hoc CLIR setups. This
approach uses very weak supervision (i.e., only a bilingual dictionary spanning
1K-5K word translation pairs), or even no supervision at all, in order to learn a
mapping that aligns two monolingual word embedding spaces [19,45]. Put sim-
ply, this enables casting CLIR tasks as ‘monolingual tasks in the shared (CLWE)
space’: at retrieval time both queries and documents are represented as simple
aggregates of their constituent CLWEs. However, this approach, by limitations of
static CLWEs, cannot capture and handle polysemy in the underlying text rep-
resentations. Contextual text representation models alleviate this issue [28]. They
encode occurrences of the same word differently depending on its surrounding
context.

Such contextual representations are obtained via large models pretrained on
large text collections through general objectives such as (masked) language mod-
eling [16,30]. Multilingual text encoders pretrained on 100+ languages, such as
mBERT [16] or XLM [14], have become a de facto standard for multilingual
representation learning and cross-lingual transfer in natural language processing
(NLP). These models demonstrate state-of-the-art performance in a wide range
of supervised language understanding and language generation tasks [26,36],
especially in zero-shot settings: a typical modus operandi is fine-tuning a pre-
trained multilingual encoder with task-specific data of a source language (typi-
cally English) and then using it directly in a target language.

It is unclear, however, whether these general-purpose multilingual text
encoders can be used directly for ad-hoc CLIR without any additional super-
vision (i.e., relevance judgments). Further, can they outperform unsupervised
CLIR approaches based on static CLWEs [27]? How do they perform depending
on the (properties of the) language pair at hand? How can we encode useful
semantic information using these models, and do different “encoding variants”
(see later Sect. 3) yield different retrieval results? Are there performance differ-
ences in unsupervised sentence-level versus document-level CLIR tasks? Finally,
can we boost performance by relying on sentence encoders that are special-
ized towards dealing with sentence-level understanding in particular? In order
to address these questions, we present a systematic empirical study and pro-
file the suitability of state-of-the-art pretrained multilingual encoders for dif-
ferent CLIR tasks and diverse language pairs. We evaluate two state-of-the-art
general-purpose pretrained multilingual encoders, mBERT [16] and XLM [14]
with a range of encoding variants, and also compare them to CLIR approaches
based on static CLWEs, and specialized multilingual sentence encoders. Our key
contributions can be summarized as follows:

(1) We empirically validate that, without any task-specific fine-tuning, multilin-
gual encoders such as mBERT and XLM fail to outperform CLIR approaches
based on static CLWEs. Their performance also crucially depends on how
one encodes semantic information with the models (e.g., treating them
as sentence/document encoders directly versus averaging over constituent
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words and/or subwords). We also show that there is no “one-size-fits-all”
approach, and the results are task- and language-pair-dependent.

(2) We provide a first large-scale comparative evaluation of state-of-the art pre-
trained multilingual encoders on unsupervised document-level CLIR. We
also empirically show that encoder models specialized for sentence-level
understanding substantially outperform general-purpose models (mBERT
and XLM) on sentence-level CLIR tasks.

2 Related Work

Self-supervised Pretraining and Transfer Learning. Recently, research on
universal sentence representations and transfer learning has gained much trac-
tion. InferSent [13] transfers the encoder of a model trained on natural language
inference to other tasks, while USE [8] extends this idea to a multi-task learn-
ing setting. More recent work explores self-supervised neural Transformer-based
[44] models based on (causal or masked) language modeling (LM) objectives
such as BERT [16], RoBERTa [30], GPT [5,37], and XLM [14].1 Results on
benchmarks such as GLUE [47] and SentEval [12] indicate that these models
can yield impressive (sometimes human-level) performance in supervised Natu-
ral Language Understanding (NLU) and Generation (NLG) tasks. These models
have become de facto standard and omnipresent text representation models in
NLP. In supervised monolingual IR, self-supervised LMs have been employed
as contextualized word encoders [32], or fine-tuned as pointwise and pairwise
rankers [33].

Multilingual Text Encoders based on the (masked) LM objectives have also
been massively adopted in multilingual and cross-lingual NLP and IR appli-
cations. A multilingual extension of BERT (mBERT) is trained with a shared
subword vocabulary on a single multilingual corpus obtained as concatenation
of large monolingual data in 104 languages. The XLM model [14] extends this
idea and proposes natively cross-lingual LM pretraining, combining causal lan-
guage modeling (CLM) and translation language modeling (TLM).2 Strong per-
formance of these models in supervised settings is confirmed across a range of
tasks on multilingual benchmarks such as XGLUE [26] and XNLI [15]. However,
recent work [6,39] has indicated that these general-purpose models do not yield
strong results when used as out-of-the-box text encoders in an unsupervised
transfer learning setup. We further investigate these preliminaries, and confirm
this finding also for unsupervised ad-hoc CLIR tasks.

1 Note that self-supervised learning can come in different flavors depending on the
training objective [10], but language modeling objectives still seem to be the most
popular choice.

2 In CLM, the model is trained to predict the probability of a word given the previous
words in a sentence. TLM is a cross-lingual variant of standard masked LM (MLM),
with the core difference that the model is given pairs of parallel sentences and allowed
to attend to the aligned sentence when reconstructing a word in the current sentence.



Evaluating Multilingual Text Encoders for Unsupervised IR 345

Multilingual text encoders have already found applications in document-level
CLIR. Jiang et al. [22] use mBERT as a matching model by feeding pairs of
English queries and foreign language documents. MacAvaney et al. [31] use
mBERT in a zero-shot setting, where they train a retrieval model on top of
mBERT on English relevance data and apply it on a different language. How-
ever, prior work has not investigated unsupervised CLIR setups, and a systematic
comparative study focused on the suitability of the multilingual text encoders
for diverse ad-hoc CLIR tasks and language pairs is still lacking.

Specialized Multilingual Sentence Encoders. An extensive body of work
focuses on inducing multilingual encoders that capture sentence meaning. In [2],
the multilingual encoder of a sequence-to-sequence model is shared across lan-
guages and optimized to be language-agnostic, whereas Guo et al. [20] rely on a
dual Transformer-based encoder architectures instead (with tied/shared param-
eters) to represent parallel sentences. Rather than optimizing for translation per-
formance directly, their approach minimizes the cosine distance between parallel
sentences. A ranking softmax loss is used to classify the correct (i.e., aligned) sen-
tence in the other language from negative samples (i.e., non-aligned sentences).
In [50], this approach is extended by using a bidirectional dual encoder and
adding an additive margin softmax function, which serves to push away non-
translation-pairs in the shared embedding space. The dual-encoder approach
is now widely adopted [18,20,39,51,56], and yields state-of-the-art multilingual
sentence encoders which excel in sentence-level NLU tasks.

Other recent approaches propose input space normalization, and re-aligning
mBERT and XLM with parallel data [6,56], or using a teacher-student frame-
work where a student model is trained to imitate the output of the teacher net-
work while preserving high similarity of translation pairs [39]. In [51], authors
combine multi-task learning with a translation bridging task to train a universal
sentence encoder. We benchmark a series of representative sentence encoders;
their brief descriptions are provided in Sect. 3.3.

CLIR Evaluation and Application. The cross-lingual ability of mBERT and
XLM has been investigated by probing and analyzing their internals [23], as well
as in terms of downstream performance [34,49]. In CLIR, these models as well as
dedicated multilingual sentence encoders have been evaluated on tasks such as
cross-lingual question-answer retrieval [51], bitext mining [58,59], and semantic
textual similarity (STS) [21,25]. Yet, the models have been primarily evalu-
ated on sentence-level retrieval, while classic ad-hoc (unsupervised) document-
level CLIR has not been in focus. Further, previous work has not provided a
large-scale comparative study across diverse language pairs and with different
model variants, nor has tried to understand and analyze the differences between
sentence-level and document-level tasks. In this work, we aim to fill these gaps.

3 Multilingual Text Encoders

We provide an overview of all multilingual models in our evaluation. We discuss
general-purpose multilingual text encoders (Sect. 3.2), as well as specialized



346 R. Litschko et al.

multilingual sentence encoders in Sect. 3.3. For completeness, we first briefly
describe static CLWEs (Sect. 3.1).

3.1 CLIR with (Static) Cross-Lingual Word Embeddings

We assume a query QL1 issued in a source language L1, and a document
collection of N documents Di,L2 , i = 1, . . . , N in a target language L2. Let
d = {t1, t2, . . . , t|D|} ∈ D be a document with |D| terms ti. CLIR with
static CLWEs represents queries and documents as vectors

−→
Q,

−→
D ∈ R

d in a d-
dimensional shared embedding space [27,46]. Each term is represented indepen-
dently with a pre-computed static embedding vector

−→
ti = emb (ti). There exist

a range of methods for inducing shared embedding spaces with different levels of
supervision, such as parallel sentences, comparable documents, small bilingual
dictionaries, or even methods without any supervision [41]. Given the shared
CLWE space, both query and document representations are obtained as aggre-
gations of their term embeddings. We follow Litschko et al. [27] and represent
documents as the weighted sum of their terms’ vectors, where each term’s weight
corresponds to its inverse document frequency (idf) :

−→
d =

∑Nd

i=1 idf (t
d
i ) · −→

tdi .
During retrieval documents are ranked according to the cosine similarity to the
query.

3.2 Multilingual (Transformer-Based) Language Models: mBERT
and XLM

Massively multilingual pretrained neural language models such as mBERT and
XLM can be used as a dynamic embedding layer to produce contextualized word
representations, since they share a common input space on the subword level
(e.g. word-pieces, byte-pair-encodings) across all languages. Let us assume that
a term (i.e., a word-level token) is tokenized into a sequence of K subword tokens
(K ≥ 1; for simplicity, we assume that the subwords are word-pieces (wp)):
ti =

{
wpi,k

}K

k=1
. The multilingual encoder then produces contextualized sub-

word embeddings for the term’s K constituent subwords −−−→wpi,k, k = 1, . . . ,K, and
we can aggregate these subword embeddings to obtain the representation of the
term ti:

−→
ti = ψ

({−−−→wpi,k}Kk=1

)
, where the function ψ() is the aggregation function

over the K constituent subword embeddings. Once these term embeddings
−→
ti are

obtained, we follow the same CLIR setup as with CLWEs in Sect. 3.1.

Static Word Embeddings from Multilingual Transformers. We first use
multilingual transformers (mBERT and XLM) in two different ways to induce
static word embedding spaces for all languages. In a simpler variant, we feed terms
into the encoders in isolation (ISO), that is, without providing any surrounding
context for the terms. This effectively constructs a static word embedding table
similar to what is done in Sect. 3.1, and allows the CLIR model (Sect. 3.1) to oper-
ate at a non-contextual word level. An empirical CLIR comparison between ISO
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and CLIR operating on CLWEs [27] then effectively quantifies how well multilin-
gual encoders (mBERT and XLM) encode word-level representations.

In a more elaborate variant we do leverage the contexts in which the terms
appear, constructing average-over-contexts embeddings (AOC). For each term
t we collect a set of sentences si ∈ St in which it occurs. We use the full set
of Wikipedia sentences S to sample sets of contexts St for vocabulary terms.
For a given sentence si let j denote the position of t’s first occurrence. We then
transform si with mBERT or XLM as the encoder, enc(si), and extract the con-
textualized embedding of t via mean-pooling, i.e., by averaging embeddings of
its constituent subwords, ψ

({−−−→wpj,k}Kk=1

)
= 1/K · ∑K

k=1
−−−→wpj,k. For each vocabu-

lary term, we obtain Nt = min(|St|, τ) contextualized vectors, with |St| as the
number of Wikipedia sentences containing t and τ as the maximal number of
sentence samples for a term. The final static embedding of t is then simply the
average over the Nt contextualized vectors.

The obtained static AOC and ISO embeddings, despite being induced with
multilingual encoders, however, did not appear to be well-aligned across lan-
guages [6,29]. We evaluated the static ISO and AOC embeddings induced for
different languages with multilingual encoders (mBERT and XLM), on the bilin-
gual lexicon induction (BLI) task [19]. We observed poor BLI performance, sug-
gesting that further projection-based alignment of respective monolingual ISO
and AOC spaces is required. To this end, we use the standard Procrustes method
[1,43] to align the embedding spaces of two languages, with bilingual dictionaries
from [19] as the supervision guiding the alignment. Concretely, for each language
pair in our experiments we project the AOC (ISO) embeddings of the source lan-
guage to the AOC (ISO) space of the target language.

Direct Text Embedding with Multilingual Transformers. In both AOC
and ISO, we use the multilingual (contextual) encoders to obtain the static
embeddings for word types (i.e., terms): we can then leverage in exactly the same
ad-hoc retrieval setup (Sect. 3.1) in which CLWEs had previously been evalu-
ated [27]. In an arguably more straightforward approach, we also use pretrained
multilingual Transformers (i.e., mBERT or XLM) to directly encode the whole
input text (SEMB). We encode the input text by averaging the contextualized
representations of all terms in the text (we again compute the weighted average,
where the terms’ IDF scores are used as weights, see Sect. 3.1). For SEMB, we
take the contextualized representation of each term ti to be the contextualized
representation of its first subword token, i.e.,

−→
ti = ψ

({−−−→wpi,k}Kk=1

)
= −−−→wpi,1.

3

3.3 Specialized Multilingual Sentence Encoders

Off-the-shelf multilingual Transformers (mBERT and XLM) have been shown
to yield sub-par performance in unsupervised text similarity tasks; therefore, in
order to be successful in semantic text (sentences or paragraph) comparisons,

3 In our initial experiments taking the vector of the first term’s subword consistently
outperformed averaging vectors of all its subwords.



348 R. Litschko et al.

they first need to be fine-tuned on text matching (typically sentence match-
ing) datasets [6,39,57]. Such encoders specialized for semantic similarity are
supposed to encode sentence meaning more accurately, supporting tasks that
require unsupervised (ad-hoc) semantic text matching. In contrast to mBERT
and XLM, which contextualize (sub)word representations, these models directly
produce a semantic embedding of the input text. We provide a brief overview of
the models included in our comparative evaluation.

Language Agnostic SEntence Representations (LASER) [2] adopts a
standard sequence-to-sequence architecture typical for neural machine transla-
tion (MT). It is trained on 223M parallel sentences covering 93 languages. The
encoder is a multi-layered bidirectional LSTM and the decoder is a single-layer
unidirectional LSTM. The 1024-dimensional sentence embedding is produced by
max-pooling over the outputs of encoder’s last layer. The decoder then takes the
sentence embedding as additional input as each decoding step. The decoder-to-
encoder attention and language identifiers on the encoder side are deliberately
omitted, so that all relevant information gets ‘crammed’ into the fixed-sized sen-
tence embedding produced by the encoder. In our experiments, we directly use
the output of the encoder to represent both queries and documents.

Multilingual Universal Sentence Encoder (m-USE) is a general purpose
sentence embedding model for transfer learning and semantic text retrieval tasks
[51]. It relies on a standard dual-encoder neural framework [9,52] with shared
weights, trained in a multi-task setting with an additional translation bridg-
ing task. For more details, we refer the reader to the original work. There are
two pretrained m-USE instances available – we opt for the 3-layer Transformer
encoder with average-pooling.

Language-Agnostic BERT Sentence Embeddings (LaBSE) [18] is
another neural dual-encoder framework, also trained with parallel data. Unlike
in LASER and m-USE, where the encoders are trained from scratch on paral-
lel data, LaBSE training starts from a pretrained mBERT instance (i.e., a 12-
layer Transformer network pretrained on the concatenated corpora of 100+ lan-
guages). In addition to the multi-task training objective of m-USE, LaBSE addi-
tionally uses standard self-supervised objectives used in pretraining of mBERT
and XLM: masked and translation language modelling (MLM and TLM, see
Sect. 2). For further model details, we refer the reader to the original work.
DISTIL [39] is a teacher-student framework for injecting the knowledge
obtained through specialization for semantic similarity from a specialized mono-
lingual transformer (e.g., BERT) into a non-specialized multilingual transformer
(e.g., mBERT). It first specializes for semantic similarity a monolingual (English)
teacher encoder M using the available semantic sentence-matching datasets for
supervision. In the second, knowledge distillation step a pretrained multilingual
student encoder M̂ is trained to mimic the output of the teacher model. For
a given batch of sentence-translation pairs B = {(sj , tj)}, the teacher-student
distillation training minimizes the following loss:
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J (B) =
1

|B|
∑

j∈B

[(
M(sj) − M̂(sj)

)2

+
(
M(sj) − M̂(tj)

)2
]
.

The teacher model M is Sentence-BERT [38], BERT specialized for embedding
sentence meaning on semantic text similarity [7] and natural language infer-
ence [48] datasets. The teacher network only encodes English sentences si. The
student model M̂ is then trained to produce for both sj and tj the same rep-
resentation that M produces for sj . We benchmark different DISTIL models in
our CLIR experiments, with the student M̂ initialized with different multilingual
transformers.

4 Experimental Setup

Evaluation Data. We follow the experimental setup of Litschko et al. [27],
and compare the models from Sect. 3 on language pairs comprising five lan-
guages: English (EN), German (DE), Italian (IT), Finnish (FI) and Russian
(RU). For document-level retrieval we run experiments for the following nine
language pairs: EN-{FI, DE, IT, RU}, DE-{FI, IT, RU}, FI-{IT, RU}. We use
the 2003 portion of the CLEF benchmark [4],4 with 60 queries per language pair.
The document collection sizes are 17K (RU), 55K (FI), 158K (IT), and 295K
(DE). For sentence-level retrieval, also following [27], for each language pair we
sample from Europarl [24] 1K source language sentences as queries and 100K
target language sentences as the “document collection”.5

Baseline Models. In order to establish whether multilingual encoders outper-
form CLWEs in a fair comparison, we compare their performance against the
strongest CLWE-based CLIR model from the recent comparative study [27],
dubbed Proc-B. Proc-B induces a bilingual CLWE space from pretrained mono-
lingual fastText embeddings6 using the linear projection computed as the solu-
tion of the Procrustes problem given the dictionary of word-translation pairs.
Compared to simple Procrustes mapping, Proc-B iteratively (1) augments the
word translation dictionary by finding mutual nearest neighbours and (2) induces
a new projection matrix using the augmented dictionary. The final bilingual
CLWE space is then plugged into the CLIR model from Sect. 3.1.

Our document-level retrieval SEMB models do not get to see the whole doc-
ument but only the first 128 word-piece tokens. For a more direct comparison,
we therefore additionally evaluate the Proc-B baseline (Proc-BLEN ) which is
exposed to exactly the same amount of document text as the multilingual XLM
encoder (i.e., the leading document text corresponding to first 128 word-piece
tokens) Finally, we compare CLIR models based on multilingual Transformers
4 http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/.
5 Russian is not included in Europarl and we therefore exclude it from sentence-level

experiments. Further, since some multilingual encoders have not seen Finnish data
in pretraining, we additionally report the results over a subset of language pairs that
do not involve Finnish.

6 https://fasttext.cc/docs/en/pretrained-vectors.html.

http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
https://fasttext.cc/docs/en/pretrained-vectors.html
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to a baseline relying on machine translation baseline (MT-IR). In MT-IR, 1) we
translate the query to the document language using Google Translate and then
2) perform monolingual retrieval using a standard Query Likelihood Model [35]
with Dirichlet smoothing [55].

Model Details. For all multilingual encoders we experiment with different
input sequence lengths: 64, 128, 256 subword tokens. For AOC we collect (at
most) τ = 60 contexts for each vocabulary term: for a term not present at all
in Wikipedia, we fall back to the ISO embedding of that term. We also investi-
gate the impact of τ in Sect. 5.3. For purely self-supervised models (SEMB, ISO,
AOC) we independently evaluate representations from different Transformer lay-
ers (cf. Sect. 5.3). For comparability, for ISO and AOC – methods that effectively
induce static word embeddings using multilingual contextual encoders – we opt
for exactly the same term vocabularies used by the Proc-B baseline, namely
the top 100K most frequent terms from respective monolingual fastText vocab-
ularies. We additionally experiment with three different instances of the DIS-
TIL model: (i) DISTILXLM-R initializes the student model with the pretrained
XLM-R transformer [11]; DISTILUSE instantiates the student as the pretrained
m-USE instance [51]; whereas DISTILDistilmBERT distils the knowledge from the
Sentence-BERT teacher into a multilingual version of DistilBERT [42], a 6-layer
transformer pre-distilled from mBERT.7 For SEMB models we scale embed-
dings of special tokens (sequence start and end tokens, e.g., [CLS] and [SEP]
for mBERT) with the mean IDF value of input terms.

5 Results and Discussion

5.1 Document-Level Cross-Lingual Retrieval

We show the performance (MAP) of multilingual encoders on document-level
CLIR tasks in Table 1. The first main finding is that none of the self-supervised
models (mBERT and XLM in ISO, AOC, and SEMB variants) outperforms the
CLWE baseline Proc-B. However, the full Proc-B baseline has, unlike mBERT
and XLM variants, been exposed to the full content of the documents. A fairer
comparison, against Proc-BLEN , which has also been exposed only to the first
128 tokens, reveals that SEMB and AOC variants come reasonably close, albeit
still do not outperform Proc-BLEN . This suggests that the document-level
retrieval could benefit from encoders able to encode longer portions of text,
e.g., [3,54]. For document-level CLIR, however, these models would first have
to be ported to multilingual setups. Scaling embeddings by their idf (Proc-B)
effectively filters out high-frequent terms such as stopwords. We therefore exper-
iment with explicit a priori stopword filtering in DISTILDistilmBERT, dubbed
DISTILFILTER. Results show that performance deteriorates which indicates that
stopwords provide important contextualization information. While SEMB and
AOC variants exhibit similar performance, ISO variants perform much worse.
7 Working with mBERT directly instead of its distilled version led to similar scores,

while increasing running times.
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Table 1. Document-level CLIR results (Mean Average Precision, MAP). Bold: best
model for each language-pair. *: difference in performance w.r.t. Proc-B significant at
p = 0.05, computed via paired two-tailed t-test with Bonferroni correction.

EN-FI EN-IT EN-RU EN-DE DE-FI DE-IT DE-RU FI-IT FI-RU AVG w/o FI

Baselines

MT-IR .276 .428 .383 .263 .332 .431 .238 .406 .261 .335 .349

Proc-B .258 .265 .166 .288 .294 .230 .155 .151 .136 .216 .227

Proc-BLEN .165 .232 .176 .194 .207 .186 .192 .126 .154 .181 .196

Models based on multilingual Transformers

SEMBXLM .199* .187* .183 .126* .156* .166* .228 .186* .139 .174 .178

SEMBmBERT .145* .146* .167 .107* .151* .116* .149* .117 .128* .136 .137

AOCXLM .168 .261 .208 .206* .183 .190 .162 .123 .099 .178 .206

AOCmBERT .172* .209* .167 .193* .131* .143* .143 .104 .132 .155 .171

ISOXLM .058* .159* .050* .096* .026* .077* .035* .050* .055* .067 .083

ISOmBERT .075* .209 .096* .157* .061* .107* .025* .051* .014* .088 .119

Similarity-specialized sentence encoders (with parallel data supervision)

DISTILFILTER .291 .261 .278 .255 .272 .217 .237 .221 .270 .256 .250

DISTILXLM-R .216 .190* .179 .114* .237 .181 .173 .166 .138 .177 .167

DISTILUSE .141* .346* .182 .258 .139* .324* .179 .104 .111 .198 .258

DISTILDistilmBERT .294 .290* .313 .247* .300 .267* .284 .221* .302* .280 .280

LaBSE .180* .175* .128 .059* .178* .160* .113* .126 .149 .141 .127

LASER .142 .134* .076 .046* .163* .140* .065* .144 .107 .113 .094

m-USE .109* .328* .214 .230* .107* .294* .204 .073 .090 .183 .254

The direct comparison between ISO and AOC demonstrates the importance of
contextual information and seemingly limited usability of multilingual encoders
as word encoders, if no context is available.

Similarity-specialized multilingual encoders, which rely on pretraining with
parallel data, yield mixed results. Three models, DISTILDistilmBERT, DISTILUSE

and m-USE, generally outperform the Proc-B baseline8 LASER is the only
encoder trained on parallel data that does not beat the Proc-B baseline. We
believe this is because (a) LASER’s recurrent encoder provides text embeddings
of lower quality than Transformer-based encoders of m-USE and DISTIL vari-
ants and (b) it has not been subdued to any self-supervised pretraining like
DISTIL models. Even the best-performing CLIR model based on a multilingual
encoder (DISTILDistilmBERT) overall falls behind the MT-based baseline (MT-
IR). However, the performance of MT-IR crucially depends on the quality of
MT for the concrete language pair: for language pairs with weaker MT (e.g., FI-
RU, EN-FI, FI-RU, DE-RU), DISTILDistilmBERT can substantially outperform
MT-IR (e.g., 9 MAP points for FI-RU and DE-RU); the gap in favor of MT-IR
is, as expected, largest for most similar language pairs, for which also the most
reliable MT systems exist (EN-IT, EN-DE). In other words, the feasibility and
robustness of a strong MT-IR CLIR model seems to diminish with more distant

8 As expected, m-USE and DISTILUSE perform poorly on language pairs involving
Finnish, as they have not been trained on any Finnish data.
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Table 2. Sentence-level CLIR results (MAP). Bold: best model for each language-pair.
*: difference in performance with respect to Proc-B, significant at p = 0.05, computed
via paired two-tailed t-test with Bonferroni correction.

EN-FI EN-IT EN-DE DE-FI DE-IT FI-IT AVG w/o FI

Baselines

MT-IR .659 .803 .725 .541 .694 .698 .687 .740

Proc-B .143 .523 .415 .162 .342 .137 .287 .427

Models based on multilingual Transformers

SEMBXLM .309* .677* .465 .391* .495* .346* .447 .545

SEMBmBERT .199* .570 .355 .231* .481* .353* .365 .469

AOCXLM .099 .527 .274* .102* .282 .070* .226 .361

AOCmBERT .095* .433* .274* .088* .230* .059* .197 .312

ISOXLM .016* .178* .053* .006* .017* .002* .045 .082

ISOmBERT .010* .141* .087* .005* .017* .000* .043 .082

Similarity-specialized sentence encoders (with parallel data supervision)

DISTILXLM-R .935* .944* .943* .911* .919* .914* .928 .935

DISTILUSE .084* .960* .952* .137 .920* .072* .521 .944

DISTILDistilmBERT .847* .901* .901* .811* .842* .793* .849 .882

LaBSE .971* .972* .964* .948* .954* .951* .960 .963

LASER .974* .976* .969* .967* .965* .961* .969 .970

m-USE .079* .951* .929* .086* .886* .039* .495 .922

language pairs and lower-resource language pairs. We plan to investigate this
conjecture in more detail in future work.

The variation in results with similarity-specialized sentence encoders indi-
cates that: (a) despite their seemingly similar high-level architectures typically
based on dual-encoder networks [8], it is important to carefully choose a sen-
tence encoder in document-level retrieval, and (b) there is an inherent mismatch
between the granularity of information encoded by the current state-of-the-art
text representation models and the document-level CLIR task.

5.2 Sentence-Level Cross-Lingual Retrieval

We show the sentence-level CLIR performance in Table 2. Unlike in the
document-level CLIR task, self-supervised SEMB variants here manage to out-
perform Proc-B. The better relative SEMB performance than in document-level
retrieval is somewhat expected: sentences are much shorter than documents (i.e.,
typically shorter than the maximal sequence length of 128 word pieces). All
purely self-supervised mBERT and XLM variants, however, perform worse than
the translation-based baseline.

Multilingual encoders specialized with parallel data excel in sentence-level
CLIR, all of them substantially outperforming the competitive MT-IR baseline.
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This however, does not come as much of a surprise, since these models (a) have
been trained using parallel data, and (b) have been optimized exactly on the sen-
tence similarity task. In other words, in the context of the cross-lingual sentence-
level task, these models are effectively supervised models. The effect of supervision
is most strongly pronounced for LASER, which was, by being also trained on par-
allel data from Europarl, effectively subdued to in-domain training. We note that
at the same time LASER was the weakest model from this group on average in
the document-level CLIR task.

5.3 Further Analysis

We further investigate three aspects that may impact CLIR performance of
multilingual encoders: (1) layer(s) from which we take vector representations, (2)
number of contexts used in AOC variants, and (3) sequence length in document-
level CLIR.

Fig. 1. CLIR performance of mBERT and XLM as a function of the Transformer layer
from which we obtain the representations. Results (averaged over all language pairs)
shown for all three encoding strategies (SEMB, AOC, ISO).

Layer Selection. All multilingual encoders have multiple layers and one may
select (sub)word representations for CLIR at the output of any of them. Figure 1
shows the impact of taking subword representations after each layer for self-
supervised mBERT and XLM variants. We find that the optimal layer differs
across the encoding strategies (AOC, ISO, and SEMB) and tasks (document-level
vs. sentence-level CLIR). ISO, where we feed the terms into encoders without any
context, seems to do best if we take the representations from lowest layers. This
makes intuitive sense, as the parameters of higher Transformer layers encode
compositional rather than lexical semantics [17,40]. For AOC and SEMB, where
both models obtain representations by contextualizing (sub)words in a sentence,
we get the best performance for higher layers – the optimal layers for document-
level retrieval (L9/L12 for mBERT, and L15 for XLM) seem to be higher than
for sentence-level retrieval (L9 for mBERT and L12/L11 for XLM).
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Number of Contexts in AOC. We construct AOC term embeddings by aver-
aging contextualized representations of the same term obtained from different
Wikipedia contexts. This raises an obvious question of a sufficient number of
contexts needed for a reliable (static) term embedding. Figure 2 shows the AOC
results depending on the number of contexts used to induce the term vectors
(cf. τ in Sect. 3). The AOC performance seems to plateau rather early – at
around 30 and 40 contexts for mBERT and XLM, respectively. Encoding more
than 60 contexts (as we do in our main experiments) would therefore bring only
negligible performance gains.

Input Sequence Length. Multilingual encoders have a limited input length
and they, unlike CLIR models operating on static embeddings (Proc-B, as well
as our AOC and ISO variants), effectively truncate long documents. In our main
experiments we truncated the documents to first 128 word pieces. Now we quan-
tify (Table 3) if and to which extent this has a detrimental effect on document-
level CLIR performance. Somewhat counterintuitively, encoding a longer chunk
of documents (256 word pieces) yields a minor performance deterioration (com-
pared to the length of 128) for all multilingual encoders. We suspect that this
is a combination of two effects: (1) it is more difficult to semantically accurately
encode a longer portion of text, leading to semantically less precise embeddings of
256-token sequences; and (2) for documents in which the query-relevant content
is not within the first 128 tokens, that content might often also appear beyond
the first 256 tokens, rendering the increase in input length inconsequential to
the recognition of such documents as relevant.

Fig. 2. CLIR performance of AOC variants (mBERT and XLM) w.r.t. the number of
contexts used to obtain the term embeddings.

Table 3. Document CLIR results w.r.t. the input text length. Scores averaged over all
language pairs not involving Finnish.

Length SEMBmBERT SEMBXLM DISTuse DISTXLM-R DISTDmBERT mUSE LaBSE LASER

64 .104 .128 .235 .167 .237 .254 .127 .089

128 .137 .178 .258 .162 .280 .247 .125 .068

256 .117 .158 .230 .146 .250 .197 .096 .027
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6 Conclusion

Pretrained multilingual encoders have been shown to be widely useful in natural
language understanding (NLU) tasks, when fine-tuned in supervised settings on
some task-specific data; their utility as general-purpose text encoders in unsu-
pervised settings, such as the ad-hoc cross-lingual IR, has been less investigated.
In this work, we systematically validated the suitability of a wide spectrum of
cutting-edge multilingual encoders for document- and sentence-level CLIR across
several language pairs. Our study invluded self-supervised multilingual encoders,
mBERT and XLM, as well as the those that have been specialized for seman-
tic text matching on semantic similarity datasets and parallel data. Opposing
the findings from supervised NLU, we demonstrated that self-supervised mul-
tilingual encoders (mBERT and XLM), without exposure to task supervision,
typically fail to outperform CLIR models based on cross-lingual word embed-
dings (CLWEs). Semantically-specialized multilingual sentence encoders, on the
other hand, do outperform CLWEs, but the gains are pronounced only in the
sentence retrieval task. While state-of-the-art multilingual text encoders excel in
so many seemingly more complex language understanding tasks, our work ren-
ders ad-hoc CLIR in general and document-level CLIR in particular a serious
challenge for these models. We make our code and resources available at https://
github.com/rlitschk/EncoderCLIR.

Acknowledgments. The work of Ivan Vulić is supported by the ERC Consolidator
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Abstract. The automatic diagnosis of a medical condition provided the
symptoms exhibited by a patient is at the basis of systems for clinical
decision support, as well as for applications such as symptom check-
ers. Existing methods have not fully exploited medical knowledge: this
likely hinders their effectiveness. In this work, we propose a knowledge-
aware diagnosis ranking framework based on medical knowledge graph
(KG) and graph convolutional neural network (GCN). The medical KG
is used to model hierarchy and causality relationships between diseases
and symptoms. We have evaluated our proposed method using realis-
tic patient cases. The empirical results show that our knowledge-aware
diagnosis ranking framework can improve the effectiveness of medical
diagnosis.

Keywords: Knowledge graph · Graph Convolutional Networks ·
Diagnosis ranking

1 Introduction

A common task in medical practice is to identify a diagnosis for a patient pre-
senting with one or more symptoms. To do so, clinicians rely on their extensive
medical knowledge about the relationships between symptoms and the possible
diagnoses, and weight up symptoms (and laboratory findings) to determine the
most likely diagnosis, often through a process called differential diagnosis [25].
Computer assisted or automated methods for medical diagnosis have emerged
where computer algorithms are used to mine a large amount of medical data
(from medical literature or electronic health records) to provide clinicians with
recommendations regarding a patient case [15]. Current methods are limited
in that they do not sufficiently exploit medical knowledge [5,6]. In addition,
most methods formulate the problem as a classification task and assume diagno-
sis classes are independent: this is a problem as medical conditions are instead
related (e.g., hierarchy of conditions, causality between conditions – see Sect. 2
for details).

We posit that the exploitation of medical knowledge, in particular as encoded
in medical KGs, within an end-to-end deep learning architecture for diagno-
sis identification may improve the effectiveness of current automated medical
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Fig. 1. Exemplified medical KG. Concepts (nodes) belong to different types (e.g., symp-
toms (orange), diseases (green)) and are linked by various relationships, e.g., ISA,
HAS SYMPTOM . (Color figure online)

diagnosis systems. To this end, we propose a Knowledge Graph Convolutional
Network (KGCN) method for ranking diagnosis (Sect. 3), that exploits med-
ical KGs to enable capturing insightful diagnosis patterns. In our method, a
patient’s symptoms are identified within the KG and used to derive likely diag-
noses (diseases) for the patient based on the representations of medical concepts
and their relationships encoded in the KGs. We use the concept of message diffu-
sion in Graph Convolutional Networks (GCN) [9,17] to model the relationships
between symptoms and diseases encoded in the KG. Specifically, we inject a
special node - patient node - to the medical KG and connect its symptoms to
it (see Fig. 1). We refer to the formed graph as diagnosis graph and each node
in this graph has an initial representation. We then employ stacked GCN layers
to the diagnosis graph to learn, for each node, a comprehensive representation.
Through the message-passing mechanism of GCN, nodes share their information
with their neighbours and meanwhile aggregate the received information from
their neighbours. By stacking l GCN layers, the nodes can receive messages from
their l-hop neighbours. This allows to use different types of relations and multi-
hop contexts of nodes. We experiment with different fusion functions to study
the most effective way of aggregating context information within a node. After
obtaining comprehensive representations of disease concepts and patients, we
predict the likelihood of a disease node to be connected to the patient node (link
prediction) with a match model. Finally, we use this inferred probability to rank
diagnoses for a given patient case.

We have evaluated the proposed method on a dataset of realistic patient
vignettes redacted by medical experts (Sects. 4 and 5). Results show that our
KGCN provides better diagnosis predictions than existing methods. We further
tease out the impact of data sparsity, different medical relations, fusion functions,
number of GCN layers, on the effectiveness of KGCN.
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2 Related Work

Automatic medical diagnosis aims to assist clinicians with diagnosing patients by
using computer algorithms to identify the most probable diagnoses for a patient,
given their case description (disease history, symptoms, signs) [15].

Many Machine Learning algorithms have been explored to learn diagno-
sis patterns automatically from existing medical records to support this task
[1,16,24,27], but often the learned models achieved limited effectiveness. This
has been because of insufficient data being available and the fact that rela-
tionships between medical concepts not being modelled and exploited by these
methods.

To improve effectiveness, recent methods have attempted to learn distributed
representations of medical concepts, e.g., from ontologies or electronic health
records [5,6], and use them to enhance predictive models. Other work has intro-
duced prior medical knowledge in the form of knowledge graph [28] or rules [18]
into models to improve the effectiveness of disease prediction. Though promising,
also this line of work has limitations.

A first limitation is that existing work formulates medical diagnosis as a
(multi-class) classification problem. The underlying assumption in doing so is
that the classes (diseases) are assumed independent: this assumption is not true
as often diseases are related e.g., due to presenting the same symptoms, being a
more specific instance of a general condition, or being common co-morbidities.
Adequately modelling this relatedness, instead, may likely allow for better dis-
crimination among diagnoses and thus better diagnosis effectiveness. In this
work we take a different stand by formulating medical diagnosis as a matching
problem, where patient’s descriptions (symptoms) and diagnoses are represented
within a knowledge graph using rich features and are matched to produce a rank-
ing of possible diagnoses, starting from the most likely.

Another limitation of previous work is that medical knowledge has often
not been fully exploited. Medical knowledge has been extensively modelled by
manually curated domain-specific resources such as medical ontologies and ter-
minology, e.g., SNOMED CT [23], MedRA1, UMLS [3], and automatically mined
medical Knowledge Graphs (KGs), e.g., KnowLife [7], Rotmensch et al.’s [19],
HighLife [8], etc. In Fig. 1 we provide a schematic example of a Knowledge Graph
in this context. While previous work has used such medical knowledge for diagno-
sis identification, this came with limitations. Some works [5,6] mainly focused on
hierarchy information (i.e., ISA) and ignored other important relationships, such
as HAS SYMPTOM between disease and symptom, HAS COMPLICATION
between diseases, etc. Some other works only considered to add direct contexts
in KGs to the model but neglected multi-hop contexts. However, multi-hop con-
texts are common in medicine, often being used for modelling properties such as
the transitivity of hierarchy or chains of relationships for causality. Fully relying
on the extensive medical knowledge captured in these domain-specific resources,
instead, may likely lead to better diagnosis effectiveness.

1 https://www.meddra.org/.

https://www.meddra.org/
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As mentioned above, our solution relies on a medical KG to estimate the
match between a set of symptoms and the likely diagnosis. Three main avenues
have been explored in the literature when relying on KGs for matching:

1. use knowledge graph embedding (KGE) algorithms to learn the vector rep-
resentations of entities and relationships in a KG, and then use these within
the downstream applications related to matching [10]. In this way, KGs are
used independently of the end-task and thus their use is rather flexible. How-
ever, there is a mismatch between the goal of the KGE construction process,
which is to encode the semantic relatedness among entities in the KG, and
the end-task goal for which the learned embeddings are used, i.e. matching

2. identify various connection patterns among entities in a KG to exploit as
additional matching signals. This provides intuitive methods that heavily rely
on manually designed meta-graphs: these however are often hard to tune in
practice.

3. integrate matching models and KGs in a hybrid graph and inject the structure
information of KGs into the matching problem to form an end-to-end task.
This solution can avoid the shortcomings of the first two alternatives described
above.

The proposed KGCN follows the third solution, integrating the matching model
and the KG in a hybrid graph to be used within an end-to-end pipeline.

Our proposed method relies on Graph Convolution Networks (GCN) [4,14,20],
which generalized convolutional neural networks to non-Euclidean spaces such as
a graph. The key idea of GCNs is to generate node embeddings through message
passing or information diffusion processes executed on the graph [9].

Fig. 2. Overview of our method. The framework consists of several stages: 1) construct
the diagnosis graph by linking the patient to the medical KG, 2) fuse medical knowledge
using stacked GCN layers to obtain a comprehensive representation of each node, 3)
transform the new representations of patient and disease nodes into the same latent
space using MLP layers and obtain similarity scores using the inner product.
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3 Knowledge Graph Convolution Networks for Diagnosis
Ranking

Figure 2 provides an overview of our model. In particular, we add a special node
to an existing medical KG to form a diagnosis graph, in which the patient node is
linked to nodes representing the symptoms exhibited by the patient (as described
in the patient case vignette). GCN is then adopted to learn comprehensive repre-
sentations of the patient and medical concepts. Finally, we predict the likelihood
that a disease node may be linked to the patient node and rank diagnoses based
on the probability distribution with respect to the patient case. We elaborate on
each component of the proposed model in the following.

3.1 Problem Formulation

Medical diagnosis is the process that attempts to determine the disease d ∈ D

(D being the set of possible diseases) affecting a patient p who exhibits a set of
symptoms p = {s1, s2, ..., sn}, si ∈ S (S being the set of possible symptoms). We
refer to the pair (p, d) as a case. To assist the diagnosis process, we exploit a
medical KG K = {(h, r, t)|h, t ∈ D ∪ S, r ∈ R}, where R is the set of relations
between medical concepts. The KG is essentially a directed heterogeneous graph.

In the learning process, some cases Y = {(pi, di)}, 0 ≤ i ≤ |Y | are provided
for training the model, with the goal to derive a prediction function yp,d =
F (p, d | Θ,K ,Y). Here, yp,d represents the probability that the disorder d is
the true diagnosis for patient p, and Θ denotes the parameters of the prediction
function F . In the diagnosis process, given a patient with symptoms, the model
uses F to obtain his matching score with each disease d ∈ D and outputs a
ranked disease list.

3.2 Construction of the Diagnosis Graph

We construct the diagnosis graph G by injecting the patient node p to an existing
medical KG K . In this paper, we use a subset of SemmedDB [13] as the KG.
SemmedDB contains a large amount of predications extracted from biomedical
texts (scientific articles); our subset only contains the triples whose head and
tail entities are symptom or disease concepts and the relation is of type isa
or causes2. To construct the diagnosis graph, we create a special patient node,
identify the symptoms of the patient in the KG, and link these symptom nodes
to the patient node with edges of type present in 3. The obtained diagnosis graph
is denoted as G = {(u, euv, v)|u, v ∈ D∪ S∪ {p}, euv ∈ {present in, causes, isa}}.
2 Note that the relation causes in SemmedDB is rather coarse and encompasses rela-

tions that would normally be treated as separate in other medical KGs, including
relations such as has complication, has symptom.

3 We link a patient with the KG through the symptoms’ Concept Unique Identifiers
(CUIs). Medical concept recognition tools like QuickUMLS [22] and MetaMap [2]
can recognize and map terms in patients’ records to CUIs; each entity in the medical
KG is represented by a CUI.
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3.3 Embedding Layer

The embedding layer is used to assign an initial vector representation to each
node in the diagnosis graph with a look-up table operation. Every concept node
c ∈ D ∪ S is assigned a corresponding embedding hc ∈ RN0

while different
patients share a single initial representation hp ∈ RN0

. The embedding matrix
is:

E(1+|D|+|S|)×N0 = [ hp
︸︷︷︸

patient

,hd1 , ...,hd|D|
︸ ︷︷ ︸

disease

,hs1 , ...,hs|S|
︸ ︷︷ ︸

symptom

]. (1)

These embeddings are initialized randomly and optimized in an end-to-end
fashion.

3.4 Medical Knowledge Fusion Layer

The medical knowledge fusion layer is designed based on GCN, which employs
message-passing architecture to capture the relatedness between medical concept
nodes. In this process, the patient node also obtains its representation by fusing
the symptoms and the potential causes of those symptoms. In the following, we
first illustrate the first-order knowledge fusion and then generalize to high-order
knowledge fusion.

First-Order Medical Knowledge Fusion. Within a single GCN layer, the
message-passing process has two stages: (1) each node constructs messages and
sends them to its neighbours through the outbound edges. The content of each
message depends on the information contained in the source node, the type of
edge, the information contained in the destination node. (2) each node aggre-
gates the received messages from all inbound edges and fuses them with the
information it contains.

Message Construction. The message sent from node u to v is represented by
mu→v = fconc(hu, ruv, αuv), where ruv is the type of edge euv, αuv is the decay
factor of passing a message on edge euv, and fconc(·) is the message construction
function which takes the representation of node u, the edge type ruv and the
decay factor αuv as input. In this work, we implement fconc(·) as:

mu→v = αuv(Wruv
hu + bruv

), (2)

where Wruv
∈ RN0×N1

and bruv
∈ RN1

are trainable parameters to distill useful
information for propagation.

Message Aggregation. We aggregate the received messages at node v by summing
them as av =

∑

u′∈Nv
mu′→v, where Nv is the set of neighbours. Then, we fuse

the aggregated context av with the node hv itself as h
(1)
v = ffuse(hv,av),

where ffuse(·) is the fusion function. In this work, we exploit GRU as the fusion
function as done by Li et al. [17]:

h(1)
v = GRU(hv,av). (3)
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Comparison of Context Fusion Methods. The fusion function is a key component
of our method since it determines if the context information can be effectively
introduced. Intuitively, a node eagerly seeks to incorporate context when its
representation is not informative enough, and its context can provide beneficial
information. The way in which the context is to be fused with the node should
depend on the representation of the node itself, the messages received from the
context, and their interaction. In our method, we use GRU as the fusion function
because its model structure can support this intuition. As comparison methods,
we also implemented two alternative fusion functions, which are comparatively
simple even though widely used in other tasks – these are described next.

SumFus takes the summation of two context vectors, followed by a non-
linear transformation: h(1)

v = σ(W sg(av + hv) + bsg), where W sg and bsg are
the parameters, σ is the activation function.

ConcatFus concatenates two context vectors first before non-linear activation
h
(1)
v = σ(W cg(av ⊕ hv) + bcg), where ⊕ is the concatenation operation, W cg

and bcg are the parameters, σ is the activation function.

High-Order Medical Knowledge Fusion. First-order context aggregation
is primary for our medical diagnosis model since only symptom concepts are
connected to the patients. To make the patient aware of the potential causes
of the symptoms he shows, we need to do high-order context aggregation. By
stacking l context aggregation layers, one node in the graph can receive messages
propagated from l-hop neighbours. Formally, we repeat the context aggregation
process by applying graph convolution operation on the graph and use the con-
text vectors obtained from (l − 1)-th GCN layer as the node representations, as
in equation

m(l)
u→v = αuv(W (l)

ruv
h(l−1)
u + b(l)ruv

) . (4)

Then, the new context representation of node v is obtained by aggregating the
received messages from its neighbours u′ ∈ Nv and fusing it with h

(l−1)
v :

a(l)
v =

∑

u′∈Nv

m
(l)
u′→v , h(l)

v = GRU(hl−1
v ,a(l)

v ) . (5)

Here, W l ∈ RN l−1×N l

, bl ∈ RN l

are trainable parameters in the l-th GCN
layer.

3.5 Feature Transformation and Matching

After aggregating the medical knowledge with L GCN layers, each node obtained
a comprehensive representation, which entails its original representation as well
as the aggregated context information at each GCN layer. At the matching stage,
we transform the patient node and disease nodes using MLP layers separately
to get their final representation in the same latent space as ho

p = MLP p(h(L)
p ),

ho
d = MLP d(h(L)

d ). Both of the MLPs have hyper-parameters: the number of
hidden layers and the unit number of each hidden layer. After getting the final
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representations of the patient and each disease concept, we conduct inner product
to calculate their similarity score as ydi,p = ho

p
�ho

d. We can further apply the
softmax to these similarity scores to get the probability Pr(di|p) that a certain
disease di is the true diagnosis of the patient p.

3.6 Ranking Diagnosis

We can rank the diseases d ∈ D according to their matching scores with a certain
patient and then return a ranked list of diseases. It should be noticed that the
patient nodes only have inbound edges and thus have no effect on the contextual
representations of medical concepts. Therefore, the contextual representations
h
(l)
c , c ∈ D ∪ S, 0 ≤ l ≤ L of medical concepts only have to be calculated once

and then put in cache for subsequent usage.

3.7 Training Model

To learn the model parameters, we choose Ranking Cross-Entropy, which has
been widely used in matching models, as the loss function. Specifically, for a
given patient pi = {sj} and his ground truth diagnosis dTi , we sample N diseases
{dFi,k}1≤k≤N randomly from the disease set D\{di} as negative diagnoses. Then,
we calculate their matching scores ypidT

i
and {ypidF

i,k
}0≤k≤N . Afterwards, we

apply softmax function on those scores and get their normalized probabilities

[Pr(dTi |pi),Pr(dFi,1|pi), ...,Pr(dFi,N |pi)]
= softmax(ypi,dT

i
, ypi,dF

i,1
, ..., ypi,dF

i,N
).

(6)

The cross entropy loss of training instance (pi, dTi ) is formulated as losspi
=

− log Pr(dTi |pi). For a batch of training instances {(pi, dTi )}, the batch loss is

Loss = −
∑

i

log Pr(dTi |pi) + λ ‖ Θ ‖2 , (7)

where the L2 norm of parameters are added with factor λ. Besides, we adopt
min-batch Adam to optimize the model and update the parameters.

4 Experimental Setup

4.1 Dataset and Evaluation Measures

Training Data. Although ML is now widely used to assist with numerous
medical tasks, publicly available datasets are limited. To train the proposed
method we require datasets containing patient cases, consisting of reports of
symptoms and associated diagnoses. The MIMIC-III [12] and the TREC Medi-
cal Records [26] datasets both contain patient records and associated diagnoses.
However, MIMIC III data contains little information about symptoms, and the
diagnosis codes (in ICD) do change over time during the patient encounter (no
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discharge diagnosis is recorded). MIMIC III also presents a strong bias in that
the records relate to intensive care unit hospitalizations only. The TREC Medi-
cal Records dataset contains descriptions of complaints and symptoms for each
patient encounter along with diagnoses (also at discharge); however it is not any
more publicly available.

Previous work by Xia et al. [27] has shown that the abstracts from biomedical
literature articles contain descriptions of diseases and associated key symptoms
can be used for disease diagnosis. Motivated by this observation, we then con-
structed training instances from medical literature abstracts, following a similar
procedure to that used by Xia et al. [27]. Specifically, we acquired biomedical
abstracts annotated with UMLS concepts, made available from Medline 20194.
Then, we only selected articles associated with diseases and symptoms. Finally,
we generated several cases from each abstract using the occurring symptoms as
the description of patients and each occurring diseases as the possible diagnoses.

Test Collection. To test the effectiveness of automated diagnosis methods, we
constructed a test collection using the free-text vignettes from a previous work
that evaluated the correctness of symptom checkers [21]. These vignettes were
sourced from clinical notes and text-book cases; each vignette contains a brief
free-text description of the patient, a diagnosis made by a clinician, and a triage
urgency (three levels: emergent care is required, non-emergent care is reasonable,
and self care is sufficient).

In our collection, a test instance was constructed using a vignette by extract-
ing symptom concepts from the patient’s free-text description and mapping the
free-text of the correct diagnosis provided for the patient case to a disease con-
cept, using QuickUMLS [22], a tool that performs unsupervised biomedical con-
cept extraction from free-text. When assembling our collection, we had to exclude
two of the vignettes from the original dataset by Semigran et al. [21] as the free-
text associated with the correct diagnosis could not be mapped to any disease
concept by QuickUMLS. In total, 43 test instances were obtained for evaluation.

Limitation of Experiments. Our experimental findings are limited by the
following factors: 1) the used test collection is small – this aspect makes it less
likely experiments will detect statistical significant differences between methods
2) clinical notes are not available as training data and thus there may be a
mismatch between training and test data, 3) the public medical KG we are
using is noisy.

Evaluation Metrics. For each vignette, the ground truth contains only one
correct diagnosis. In addition, when considering the medical diagnosis task, it is
likely that end-users may be wanted only to consider a handful of diagnoses: the
cognitive load of considering a large array of diagnoses would render a clinical
decision support application for diagnosis recommendation not worth it. These
characteristics are akin to the problem of known-item retrieval, with a strong
preference on early rank retrieval, if not even a dismissal of results above a
4 https://mbr.nlm.nih.gov/Download/MetaMapped Medline/2019/MMO/.

https://mbr.nlm.nih.gov/Download/MetaMapped_Medline/2019/MMO/
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certain rank cut-off. With this in mind, we select hit@k (with k = 1, . . . , 5) as
evaluation metrics for our experiments – hit@k = 1 if the correct diagnosis is
ranked among the top k results, 0 otherwise. We also include nDCG@k in our
evaluation. While we do not have graded relevance in our task at the moment,
this may be introduced in the future if approximate matching of ground truth
diagnosis was added. For example, a diagnosis may be considered as partially
correct if it is a specification or generalisation of the ground truth diagnosis
(e.g., tension headache vs. headache). Nevertheless, nDCG@k, unlike hit@k,
does assign a discount to the rank position at which the correct diagnosis is
retrieved, and thus it rewords methods that retrieve the correct diagnosis early
in the ranking.

4.2 Baselines
To contextualise the effectiveness of the proposed method, we implemented a
number of baseline systems for the disease diagnosis task. Näıve Bayes Classifier
(NB) [27] and Multiple Layer Perceptron (MLP) [24] are two simple baselines
commonly used for the disease prediction task. NB assumes all medical concepts
are independent of each other, while MLP, as a multi-class classification model,
assumes the disease concepts are independent. Deep Structured Semantic Mod-
els (DSSM) [11] is a representative neural matching model, which represents
medical concepts as vectors, and then, similar to our method, matches a group
of symptoms (associated to a patient) with disease concepts to obtain an overall
similarity score, which is then used to rank diagnoses. ContextCare treats diag-
nosis ranking as a link prediction problem, similarly to what we do, but models
the diagnosis pattern with an energy function, a popular method for link pre-
diction task. The Graph-based Attention Model (GRAM) [5] and LSTM-KGAtt
[28] address the task of risk prediction, e.g., mortality risk prediction, using time
series data regarding the progression of the patient picture. We adapt these meth-
ods to the diagnosis prediction (ranking) task considered in this paper. GRAM
obtains representations of medical concepts by combining their hierarchy infor-
mation (ancestors) within their representations. LSTM-KGAtt incorporates the
direct context of medical concepts in KG into the diagnosis process using the
attention mechanism.

4.3 Parameter Settings
The GCN was implemented using Python 3.7, PyTorch 1.3.1 and DGL 0.4.3
(https://docs.dgl.ai/). The hyper-parameters were selected using the following
strategies. The dimension of concept embeddings and node features in the graph
share a single value. The number of hidden layers and the unit numbers of hidden
layers in the two MLP modules are set to the same value. The hyper-parameters
were optimised using grid-search and 5-fold cross-validation. The number of
GCN layers was chosen from {1, 2, 3, 4, 5}, the dimension of features was selected
from {100, 200, 400}, the number of MLP hidden layers was tuned in {0, 1, 2},
the unit number of MLP hidden layers was tuned amongst {100, 200, 400}, the
dropout rate was chosen from {0.0, 0.1, 0.3, 0.5}. The learning rate was set as
1e−3 and reduces when the validation loss stops decreasing. The number of

https://docs.dgl.ai/
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negative samples for matching was set to 1000 and the kaiming initializer was
used to initialize the model parameters.

5 Results and Analysis

With our empirical experiments, we aimed to answer the following research ques-
tions related to the proposed KGCN method:

RQ1: Does our KGCN method outperform the baselines?
RQ2: How does our KGCN method perform with respect to the level of urgency

of the patient case (triaging)?
RQ3: How does relationship type affect the effectiveness of our KGCN method?
RQ4: How does the fusion function affect the effectiveness of our KGCN

method?
RQ5: How does the number of GCN layers affect the effectiveness of our KGCN

method?

5.1 RQ1: Overall Effectiveness

Table 1 reports the overall effectiveness of each method. Note that none of the
differences are statistically significant (paired t-test, alpha = 0.05); this is likely

Table 1. Overall effectiveness of methods for diagnosis ranking. The proposed KGCN
achieved the best effectiveness across all metrics.

Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

NB 0.1473 0.2093 0.2171 0.2171 0.2171 0.1473 0.1864 0.1903 0.1903 0.1903

MLP 0.1550 0.1860 0.2171 0.2248 0.2481 0.1550 0.1746 0.1901 0.1934 0.2024

DSSM 0.1550 0.1860 0.2171 0.2326 0.2326 0.1550 0.1746 0.1901 0.1968 0.1968

CtxCare 0.0775 0.1163 0.1318 0.1473 0.1628 0.0775 0.1020 0.1097 0.1164 0.1224

LSTM-KGAtt 0.0775 0.1473 0.1705 0.2093 0.2326 0.0775 0.1215 0.1332 0.1499 0.1589

GRAM 0.1550 0.2016 0.2326 0.2481 0.2636 0.1550 0.1844 0.1999 0.2066 0.2126

KGCN 0.1783 0.2248 0.2403 0.2558 0.2636 0.1783 0.2076 0.2154 0.2221 0.2251

(a) Emergent care is required. (b) Non-emergent care is reasonable. (c) Self care is sufficient.

Fig. 3. Effectiveness with respect to level of urgency. Note that all methods cannot
find a correct diagnosis among the top 5 ranks for any of the self-care scenarios, apart
from our KGCN, which does retrieve the correct diagnosis for a handful of self-care
vignettes.
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due to the limited number of vignettes and to all methods not identifying a
correct diagnosis for a subset of cases (self-care vignettes, see Sect. 5.2) and thus
obtaining the same evaluation scores in these cases.

NB and MLP, which are representative traditional methods for disease diag-
nosis, provided quite good effectiveness, especially when compared with more
complex methods.

DSSM obtained similar performance to MLP, suggesting that formulating dis-
ease diagnosis as a matching problem does not effect effectiveness, while though
offering greater flexibility in the way external knowledge can be incorporated.

ContextCare obtained the worst result: this highlights the limitation of the
energy function in the diagnosis ranking task.

LSTM-KGAtt also performed poorly, although this method relied on the
medical KG and thus exploits medical knowledge. This may be because the
underlying LSTM architecture is not suitable for this task, even though it is
widely adopted for tasks such as disease progression task.

GRAM provided improvements over NB, MLP and DSSM. This is done by
exploiting the hierarchy information associated with medical concepts; a charac-
teristic that simpler deep learning methods like MLP and DSSM do not model.

Finally, our model achieved the highest effectiveness across all metrics. Com-
pared with MLP, our method is more flexible in that it exploits relationships
between medical concepts. When compared with DSSM, we observe that our
model does make effective use of the KG. Unlike GRAM, which only models
hierarchy relationships, our method can model different types of knowledge in
the medical KG: the empirical comparison with GRAM shows this is an impor-
tant factor.

Fig. 4. Effect of
medical knowledge.

Fig. 5. Effect of fusion
functions.

Fig. 6. Effect of the
number of GCN
layers.

Fig. 7. Correlation
between effective-
ness and training
data size.

5.2 RQ2: Effectiveness with Respect to the Level of Urgency
(Triaging)

We further analyse the empirical results by considering the level of urgency
(triaging) of each patient case. The results of our analysis are shown in Fig. 3
and suggest that KGCN outperforms other methods across all urgency levels.
It also highlights how the effectiveness of the diagnosis ranking methods largely



Diagnosis Ranking with Knowledge Graph Convolutional Networks 371

varies across the different levels of urgency, regardless of the actual method used.
In particular, we find that all methods performed poorly for patient cases that
required self-care, while they did perform well for the emergent and non-emergent
care cases (vignettes).

We further analysed the results to understand why this may have been the
case. In particular, we considered the number of occurrences of the target disease
concepts used by the ground truth diagnoses in the vignettes. Specifically, we
studied whether the effectiveness of KGCN was correlated with the number of
such disease concepts in the data used for training (the analysis provided similar
results for the other methods). Results are reported in Fig. 7 and suggest that
the more a target disease concepts occurred in the training data, the better the
KGCN performed on the associated patient case (vignette). We further analysed
these results with respect to the level of urgency associated with each vignette.
Diseases that require self-care were typically rare in the training data and indeed
KGCN performed poorly on this type of patient cases. Conversely, diseases that
require emergent and non-emergent care occurred more frequently in the training
data, and our KGCN obtained higher effectiveness on these types of cases.

5.3 RQ3: Effect of Relationship Type

To explore the effect of the type of relationships (edges) present in a medical
KG, we execute the proposed KGCN method on medical KGs populated with
different combinations of relationship types. Our experiments considered three
relationship types: isa, present in and causes. The results of this comparison are
reported in Fig. 4. When only present in was used, our method performed worst.
When adding to this relationships either isa or causes, effectiveness increased.
This suggests that both hierarchy information and causality are helpful rela-
tionships for medical diagnosis. The best effectiveness is however achieved when
all relationships are considered (present in+isa+causes): this is likely because
hierarchy and causality provide complementary information.

5.4 RQ4: Effect of Fusion Function

A key component of the proposed KGCN is the fusion of knowledge of different
orders. To do so, our method relies on GRU as the fusion function, although
we have indicated how other two widely used fusion functions, SumFus and
ConcatFus, can also be used. In the next set of experiments, we compared the
effectiveness of GRU compared to the two alternatives.

Empirical results related to this comparison are shown in Fig. 5. According
to the results, the GRU substantially outperformed SunFus and ConcatFus,
with the latter being the worst-performing fusion function amongst the three
considered. performs the worst.

These results may be due to the fact that the architecture design of the GRU
allows the parameters in low layers to be optimized better than when using the
two alternative fusion functions. This caters to the fact that, for medical diag-
nosis, low-order information is more preferable than high-order knowledge. For
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example, if a clinician could have diagnosed a case simply by the symptoms, with-
out considering the relationships between symptoms and conditions, they would
not require the complex reasoning that underpins medical diagnosis. Another
explanation for these results may be that the GRU fuses the representation of
the input node and the aggregated context using their content interaction, while
SunFus and ConcatFus can only combine them linearly. This advantage renders
the model able to fuse these variables according to their contents. For instance, if
the medical concepts do not have good representations, more medical knowledge
would be needed.

5.5 RQ5: Effect of Number of GCN Layers

Finally, we analyzed the effect of the number of GCN layers in KGCN, while
keeping the other hyper-parameters fixed. Overall, the KGCN method performs
best when using two GCN layers, as shown in Fig. 6, while more GCN layers led
to a decrease in diagnosis effectiveness. These results can be explained by that it
is beneficial to aggregate more broad context to the representations of medical
concepts and the patient in the disease diagnosis process. When the number of
GCN layers is 3 or more, however, more noise is introduced; in addition, a model
with more layers makes optimization more challenging.

6 Conclusions

In this paper we proposed a Knowledge Graph Convolutional Networks model,
named KGCN, for ranking diagnosis. This method exploits medical KGs, which
contain rich relations between medical concepts, in a more effective and general
way compared with existing approaches. We formulated the disease diagnosis
as a matching problem instead of a classification problem (as done in most of
the previous work). To aggregate the medical knowledge for each concept in the
KG and surface it with respect to the patient case at hand (patient node in the
diagnosis graph), we exploited the message-passing mechanism of GCN to learn
comprehensive concept representations. By stacking GCN layers, our model can
propagate multi-hop contexts to each node.

Experiments were executed to assess the effectiveness of KGCN and tease out
the aspects that influence its effectiveness. Our method outperformed existing
approaches and we showed that both hierarchy and causality relationships pro-
vide complementary, valuable information for the diagnosis ranking task. We also
compared different fusion functions in the context of KGCN, showing that the
GRU fusion function outperformed the alternatives, and investigated the effect
of the number of GCN layers and the availability of training data regarding the
target ground-truth diagnosis had on effectiveness.

Our future work will consider two directions: (1) acquire more patient
vignettes for evaluation, also including partial matches between diagnoses; (2)
design special message-passing mechanisms within the GCN architecture for dis-
ease diagnosis. For example, we will explore a message-passing model with multi-
ple channels to maintain the transitivity of hierarchy and causality relationships.
Along this line, we will also consider exploiting a wider array of relationships.
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Abstract. Several deep neural ranking models have been proposed in
the recent IR literature. While their transferability to one target domain
held by a dataset has been widely addressed using traditional domain
adaptation strategies, the question of their cross-domain transferability is
still under-studied. We study here in what extent neural ranking models
catastrophically forget old knowledge acquired from previously observed
domains after acquiring new knowledge, leading to performance decrease
on those domains. Our experiments show that the effectiveness of neural
IR ranking models is achieved at the cost of catastrophic forgetting and
that a lifelong learning strategy using a cross-domain regularizer success-
fully mitigates the problem. Using an explanatory approach built on a
regression model, we also show the effect of domain characteristics on
the rise of catastrophic forgetting. We believe that the obtained results
can be useful for both theoretical and practical future work in neural IR.

Keywords: Neural ranking · Catastrophic forgetting · Lifelong
learning

1 Introduction

Neural ranking models have been increasingly adopted in the information
retrieval (IR) and natural language processing (NLP) communities for a wide
range of data and tasks [35,39]. One common underlying issue is that they learn
relationships that may hold only in the domain from which the training data
is sampled, and generalize poorly in unobserved domains1 [6,39]. To enhance
the transferability of neural ranking models from a source domain to a tar-
get domain, transfer learning strategies such as fine-tuning [52], multi-tasking
[29], domain adaptation [40], and more recently adversarial learning [7], have

1 According to Jialin and Qiang [40], a domain consists of at most two components: a
feature space over a dataset and a marginal probability distribution within a task.
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been widely used2. However, these strategies have by essence two critical limi-
tations reported in the machine learning literature [6,22]. The first one, as can
be acknowledged in the NLP and IR communities [7,29], is that they require
all the domains to be available simultaneously at the learning stage (except the
fine-tuning). The second limitation, under-studied in both communities, is that
the model leans to catastrophically forget existing knowledge (source domain)
when the learning is transferred to new knowledge (target domain) leading to
a significant drop of performance on the source domain. These limitations are
particularly thorny when considering open-domain IR tasks including, but not
limited to, conversational search. In the underlying settings (e.g., QA systems
and chatbots [15,25,33,42]), neural ranking models are expected to continually
learn features from online information streams, sampled from either observed or
unobserved domains, and to scale across different domains but without forgetting
previously learned knowledge.

Catastrophic forgetting is a long-standing problem addressed in machine
learning using lifelong learning approaches [6,41]. It has been particularly stud-
ied in neural-network based classification tasks in computer vision [22,26] and
more recently in NLP [32,37,45,48]. However, while previous work showed that
the level of catastrophic forgetting is significantly impacted by dataset features
and network architectures, we are not aware of any existing research in IR pro-
viding clear lessons about the transferability of neural ranking models across
domains, nor basically showing if state-of-the-art neural ranking models are
actually faced with the catastrophic forgetting problem and how to overcome
it if any. Understanding the conditions under which these models forget accu-
mulated knowledge and whether a lifelong learning strategy is a feasible way for
improving their effectiveness, would bring important lessons for both practical
and theoretical work in IR. This work contributes to fill this gap identified in the
neural IR literature, by studying the transferability of ranking models. We put
the focus on catastrophic forgetting which is the bottleneck of lifelong learning.

The main contributions of this paper are as follows. 1) We show the occur-
rence of catastrophic forgetting in neural ranking models. We investigate the
transfer learning of five representative neural ranking models (DRMM [14],
PACRR [17], KNRM [49], V-BERT [31] and CEDR [31]) over streams of datasets
from different domains3 (MS MARCO [3], TREC Microblog [44] and TREC
COVID19 [46]); 2) We identify domain characteristics such as relevance density
as signals of catastrophic forgetting; 3) We show the effectiveness of constrain-
ing the objective function of the neural IR models with a forget cost term, to
mitigate the catastrophic forgetting.

2 We consider the definition of transfer learning in [40]. Please note that several other
definitions exist [13].

3 In our work, different domains refer to different datasets characterized by different
data distributions w.r.t. to their source and content as defined in [40].
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2 Background and Related Work

From Domain Adaptation to Lifelong Learning of Neural Networks.
Neural networks are learning systems that must commonly, on the one hand,
exhibit the ability to acquire new knowledge and, on the other hand, exhibit
robustness by refining knowledge while maintaining stable performance on exist-
ing knowledge. While the acquisition of new knowledge gives rise to the well-
known domain shift problem [18], maintaining model performance on existing
knowledge is faced with the catastrophic forgetting problem. Those problems
have been respectively tackled using domain adaptation [40] and lifelong learn-
ing strategies [6,41]. Domain adaptation, commonly known as a specific setting
of transfer learning [40], includes machine learning methods (e.g., fine-tuning
[48] and multi-tasking [29]) that assume that the source and the target domains
from which are sampled respectively the training and testing data might have
different distributions. By applying a transfer learning method, a neural model
should acquire new specialized knowledge from the target domain leading to
optimal performance on it.

One of the main issues behind common transfer learning approaches is catas-
trophic forgetting [11,12]: the newly acquired knowledge interfers with, at the
worst case, overwrites, the existing knowledge leading to performance decrease
on information sampled from the latter. Lifelong learning [6,41] tackles this
issue by enhancing the models with the ability to continuously learn over time
and accumulate knowledge from streams of information sampled across domains,
either previously observed or not. The three common lifelong learning approaches
are [41]: 1) regularization that constrains the objective function with a forget
cost term [22,26,48]; 2) network expansion that adapts the network architecture
to new tasks by adding neurons and layers [5,43]; and 3) memory models that
retrain the network using instances selected from a memory drawn from different
data distributions [2,32].

On the Transferability of Neural Networks in NLP and IR. Transfer-
ability of neural networks has been particularly studied in classification tasks,
first in computer vision [4,53] and then only recently in NLP [19,37,38]. For
instance, Mou et al. [38] investigated the transferability of neural networks in
sentence classification and sentence-pair classification tasks. One of their main
findings is that transferability across domains depends on the level of similar-
ity between the considered tasks. Unlikely, previous work in IR which mainly
involves ranking tasks, have only casually applied transfer learning methods (e.g.,
fine-tuning [52], multi-tasking [29] and adversarial learning [7]) without bring-
ing generalizable lessons about the transferability of neural ranking models. One
consensual result reported across previous research in the area, is that tradi-
tional retrieval models (e.g., learning-to-rank models [28]) that make fewer dis-
tributional assumptions, exhibit more robust cross-domain performances [7,39].
Besides, it has been shown that the ability of neural ranking models to learn
new features may be achieved at the cost of poor performances on domains
not observed during training [35]. Another consensual result is that although
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embeddings are trained using large scale corpora, they are generally sub-optimal
for domain-specific ranking tasks [39].
Beyond domain adaptation, there is a recent research trend in NLP toward life-
long learning of neural networks, particularly in machine translation [45], and
language understanding tasks [37,48,50]. For instance, Xu et al. [50] recently
revisited the domain transferability of traditional word embeddings [34] and
proposed lifelong domain embeddings using a meta-learning approach. The pro-
posed meta-learner is fine-tuned to identify similar contexts of the same word in
both past domains and the new observed domain. Thus, its inference model is
able to compute the similarity scores on pairs of feature vectors representing the
same word across domains. These embeddings have been successfully applied to
a topic-classification task. Unlikely, catastrophic forgetting and lifelong learning
are still under-studied in IR. We believe that a thorough analysis of the trans-
ferability of neural ranking models from a lifelong learning perspective would be
desirable for a wide range of emerging open-domain IR applications including
but not limited to conversational search [15,25,33,42].

3 Study Design

Our study mainly addresses the following research questions:

RQ1: Does catastrophic forgetting occur in neural ranking models?
RQ2: What are the dataset characteristics that predict catastrophic forget-
ting?
RQ3: Is a regularization-based lifelong learning method effective to mitigate
catastrophic forgetting in neural ranking models?

3.1 Experimental Set up

Given a neural model M designed for an ad-hoc ranking task, the primary objec-
tives of our experiments are twofold: O1) measuring the catastrophic forgetting
of model M while applying a domain adaptation method D, in line of RQ1 and
RQ2; and O2) evaluating the effect of a lifelong learning method L to mitigate
catastrophic forgetting in model M , in line of RQ3. We assume that model M
learns a ranking task across a stream of n domain datasets {D1, . . . , Dn} coming
in a sequential manner one by one. At a high level, our experimental set up is:
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1. Set up an ordered dataset stream setting D1 → . . . Dn−1 → Dn

2. Learn oracle models M∗
i , i = 1 . . . n, with parameters θ̂i∗ by training the

neural ranking model M on training instances of dataset Di, i = 1 . . . n.
3. Measure the retrieval performance R∗

i,i of each oracle model M∗
i on testing

instances of the same dataset Di.
4. Launch a domain adaptation method D w.r.t. to objective O1 (resp. a

lifelong learning method L w.r.t. to objective O2) along the considered
setting as follows:

– Initialize (k = 1) model Mk, with θ̂1∗, parameters of model M∗
1 (trained

on the dataset base D1).
– Repeat

• Apply to model Mk a method D w.r.t to objective O1 (resp. method
L w.r.t. to objective O2) to transfer knowledge to the right dataset
Dk+1 (forward transfer). The resulting model is noted Mk+1 with
parameters θ̂k+1. Its performance on dataset Dk+1 is noted Rk+1,k+1.

• Measure the retrieval performance Rk+1,k of model Mk+1 obtained on
the testing instances of left dataset Dk (backward transfer)

• Move to the next right dataset : k = k + 1
– Until the end of the dataset stream setting (k = n).

5. Measure catastrophic forgetting in model M .

This experimental pipeline, illustrated in Fig. 1, follows general guidelines
adopted in previous work [2,20,26]. We detail below the main underlying com-
ponents highlighted in bold.

Fig. 1. Experimental pipeline using a 3-dataset stream setting for a given model M

Neural Ranking Models. We evaluate catastrophic forgetting in five (5) state-
of-the-art models selected from a list of models critically evaluated in Yang et
al. [51]: 1) interaction-based models: DRMM [14] and PACRR [17] and KNRM
[49]; 2) BERT-based models: Vanilla BERT [31] and CEDR-KNRM [31]. We use
the OpenNIR framework [30] that provides a complete neural ad-hoc document
ranking pipeline. Note that in this framework, the neural models are trained by
linearly combining their own score (SNN ) with a BM25 score (SBM25).
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Datasets and Settings. We use the three following datasets: 1) MS MARCO
(ms) [3] a passage ranking dataset which includes more than 864 K question-
alike queries sampled from the Bing search log and a large-scale web document
set including 8841823 documents; 2) TREC Microblog (mb) [27], a real-time
ad-hoc search dataset from TREC Microblog 2013 and 2014, which contains a
public Twitter sample stream between February 1 and March 31, 2013 includ-
ing 124969835 tweets and 115 queries submitted at a specific point in time; 3)
TREC CORD19 (c19 ) [46] an ad-hoc document search dataset which contains
50 question-alike queries and a corpora of 191175 published research articles
dealing with SARS-CoV-2 or COVID-19 topics. It is worth mentioning that
these datasets fit with the requirement of cross-domain adaptation [40] since
they have significant differences in both their content and sources. Besides, we
consider four settings (See Table 1, column “Setting”) among which three 2-
dataset (n = 2) and one 3-dataset (n = 3) settings. As done in previous work
[2,26], these settings follow the patterns (D1 → D2) or (D1 → D2 → D3) where
dataset orders are based on the decreasing sizes of the training sets assuming
that larger datasets allow starting with well-trained networks.

Domain Adaptation and Lifelong Learning Methods. We adopt fine-
tuning (training on one domain and fine-tuning on the other) as the representa-
tive domain adaptation task D since it suffers from the catastrophic forgetting
problem [2,22]. Additionally, we adopt the Elastic Weight Consolidation (EWC)
[22] as the lifelong learning method L. The EWC constrains the loss function
with an additional forget cost term that we add to the objective function of
each of the five neural models studied in this work. Basically speaking, EWC
constrains the neural network-based model to remember knowledge acquired on
left datasets by reducing the overwriting of its most important parameters as:

L(θ̂k) = L(θ̂k) + Σ1≤i<k
λ

2
Fi(θ̂k − θ̂i)2 (1)

where L(θ̂k) is the loss of the neural ranking model with parameters θk obtained
right after learning on (Dk), λ is the importance weight of the models parameters
trained on left datasets (Di, i < k) with the current one (Dk), F is the Fisher
information matrix.

Measures. Given the setting (D1 → · · · → Dn), we use the remembering
measure (REM) derived from the backward transfer measure (BWT) proposed
by Rodriguez et al. [10] as follows:

• BWT: measures the intrinsic effect (either positive or negative) that learn-
ing a model M on a new dataset (right in the setting) has on the model perfor-
mance obtained on an old dataset (left in the setting), referred as backward trans-
fer. Practically, in line with a lifelong learning perspective, this measure averages
along the setting the differences between the performances of the model obtained
right after learning on the left dataset and the performances of the oracle model
trained and tested on the same left dataset. Thus, while positive values han-
dle positive backward transfer, negative values handle catastrophic forgetting.
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Formally, the BWT measure is computed as:

BWT =

∑n
i=2

∑i−1
j=1(Ri,j − R∗

j,j)
n(n−1)

2

(2)

Ri,j is the performance measure of model Mi obtained right after learning on
dataset Dj . R∗

j,j is the performance of the oracle model M∗
j trained on dataset Dj

and tested on the same dataset. To make fair comparisons between the different
studied neural models, we normalize the differences in performance (Ri,j −R∗

j,j)
on model agnostic performances obtained using BM25 model on each left dataset
Dj . In our work, we use the standard IR performance measures MAP, NDCG@20
and P@20 to measure Ri,j but we only report the REM values computed using
the MAP measure, as they all follow the same general trends.

• REM: because the BWT measure assumes either positive values for posi-
tive backward transfer and negative values for catastrophic forgetting, it allows
to map with a positive remembering value in the range [0, 1] as follows:

REM = 1 − |min(BWT, 0)| (3)

A REM value equals to 1 means that the model does not catastrophically forget.
To better measure the intrinsic ability of the neural ranking models to

remember previously acquired knowledge, we deploy in the OpenNIR frame-
work two runs for each neural model based on the score combination (scoreG =
α×SNN +(1−α)×SBM25). The first one by considering the neural model after
a re-ranking setup (0 < α < 1) leading to compute an overall REM measure
on the ranking model. The second one by only considering the neural rank-
ing based on the SNN score by totally disregarding the BM25 scores (α = 1).
REMN denotes the remembering measure computed in this second run.

3.2 Implementation Details

We use the OpenNIR framework with default parameters and the pairwise hinge
loss function [8]. To feed the neural ranking models, we use the GloVe pre-trained
embeddings (42b tokens and 300d vectors). The datasets are split into training
and testing instance sets. For MS MARCO, we use the default splits provided
in the dataset. For TREC CORD19 and TREC Microblog, where no training
instances are provided, we adopt the splits by proportions leading to 27/18 and
92/23 training/testing queries respectively. In practice, we pre-rank documents
using the BM25 model. For each relevant document-query pair (positive pair),
we randomly sample a document for the same query with a lower relevance
score to build the negative pair. We re-rank the top-100 BM25 results and use
P@20 to select the best-performing model. For each dataset, we use the optimal
BM25 hyperparameters selected using grid-search. In the training phase, we
consider a maximum of 100 epochs or early-stopping if no further improvement
is found. Each epoch consists of 32 batches of 16 training pairs. All the models
are optimized using Adam [21] with a learning rate of 0.001. BERT layers are
trained at a rate of 2e−5 following previous work [31]. For the EWC, we fixed
λ = 0.5. The code is available at https://github.com/jeslev/OpenNIR-Lifelong.

https://github.com/jeslev/OpenNIR-Lifelong
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4 Results

4.1 Empirical Analysis of Catastrophic Forgetting in Neural
Ranking Models

Within- and Across-Model Analysis (RQ1). Our objective here is to inves-
tigate whether each of the studied neural models suffer from catastrophic forget-
ting while it is fine-tuned over a setting (D1 → D2 or D1 → D2 → D3). To carry
out a thorough analysis of each model-setting pair, we compute the following
measures in addition to the REM/REMN measures: 1) the MAP@100 perfor-
mance ratio (PR = 1

(n−1)

∑n
i=2

Ri,i

R∗
i,i

) of the model learned on the right dataset
and normalized on the oracle model performance; 2) the relative improvement
in MAP@100 ΔMAP (resp. ΔMAPN ) achieved with the ranking based on the
global relevance score ScoreG (resp. ScoreNN ) trained and tested on the left
dataset over the performance of the BM25 ranking obtained on the same testing
dataset. Table 1 reports all the metric values for each model/setting pairwise. In
line with this experiment’s objective, we focus on the “Fine-tuning” columns.

Looking first at the PR measure reported in Table 1, we notice that it is
greater than 0.96 in 100% of the settings, showing that the fine-tuned mod-
els are successful on the right dataset, and thus allow a reliable investigation
of catastrophic forgetting as outlined in previous work [37]. It is worth recall-
ing that the general evaluation framework is based on a pre-ranking (using the
BM25 model) which is expected to provide positive training instances from the
left dataset to the neural ranking model being fine-tuned on the right dataset.

Table 1. Per model-setting results in our fine-tuning and EWC-based lifelong learning
experiments. All the measures are based on the MAP@100 metric. The improvements
ΔMAP (MAPN) and ΔREM(REMN) are reported in percent (%).

Model Setting Fine-tuning EWC-based lifelong learning

REM(REMN) ΔMAP (MAPN) ΔMAP (MAPN) PR REM(REMN) ΔREM(REMN) PR

DRMM ms → c19 1.000(1.000) 0.023(−0.715) +2.2(−73.6) 1.008 1.000(1.000) 0(0) 1.005

ms → mb 0.962(0.943) −0.017(−0.793) +2.2(−73.6) 1.021 0.971(0.974) +0.9(+3.3) 1.011

mb → c19 1.000(0.965) −0.017(−0.112) −1.7(−7.7) 0.993 1.000(0.662) 0(−31.4) 0.995

ms → mb → c19 0.976(0.938) −0.008(−0.726) +2(−73.6) 1.011 0.979(1.000) +0.3(+6.6) 1.004

PACRR ms → c19 1.000(0.760) 0.026(-0.54) +2.5(−30.1) 1.000 1.000(0.756) 0(−0.5) 1.000

ms → mb 1.000(1.000) 0.026(−0.243) +2.5(−30.1) 0.999 1.000(1.000) 0(0) 1.014

mb → c19 1.000(0.523) −0(−37.6) 0(+10) 1.000 1.000(0.940) 0(+79.7) 1.002

ms → mb → c19 1.000(0.759) 0.026(-0.636) +2.5(−30) 1.000 1.000(0.874) 0(+15.2) 1.015

KNRM ms → c19 1.000(1.000) −0.032(−0.862) −12.1(−89) 1.069 1.000(1.000) 0(0) 1.058

ms → mb 1.000(1.000) −0.088(−0.784) −12.1(−89) 0.991 1.000(1.000) 0(0) 0.991

mb → c19 1.000(0.810) 0.011 (−0.328) −2(−13.8) 1.135 1.000(0.902) 0(+11.4) 1.141

ms → mb → c19 1.000(1.000) −0.045(−0.802) −12.1(−89) 1.086 1.000(0.963) 0(−3.7) 1.087

VBERT ms → c19 0.930(1.000) −0.175(0.006) −10.6(0) 1.028 1.000(1.000) +7.5(0) 0.990

ms → mb 1.000(0.883) −0.003(−0.111) −10.6(0) 1.030 1.000(1.000) 0(+13.3) 0.992

mb → c19 0.913(1.000) 0.086(0.258) +17.4(+25.8) 0.963 1.000(1.000) +9.5(0) 1.010

ms → mb → c19 0.989(0.922) −0.145(−0.111) −10.6(0) 1.011 1.000(1.000) +1.1(+8.5) 0.987

CEDR ms → c19 0.826(1.000) −0.148(0.142) +2.6(+14.2) 1.013 1.000(1.000) +21.1(0) 1.008

ms → mb 0.510(0.920) −0.463(0.062) +2.6(+14.2) 1.003 1.000(1.000) +96.1(+8.7) 0.976

mb → c19 0.940(1.000) 0.136( 0.292) +19.6(+29.2) 1.011 1.000(1.000) +6.4(0) 0.984

ms → mb → c19 0.771(0.946) −0.194(0.062) +2.6(+14.2) 0.996 0.891(1.000) +15.6(+5.7) 0.961
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The joint comparison of the REM (resp. REMN) and ΔMAP (resp.ΔMAPN )
measures lead us to highlight the following statements:

• We observe that only CEDR and VBERT models achieve positive improve-
ments w.r.t to both the global ranking (ΔMAP : +19.6%, +17.4% resp.) and
the neural ranking (ΔMAP : +29.2%, +25.8% resp.), particularly under the set-
ting where mb is the left dataset (mb → c19). Both models are able to bring
effectiveness gains additively to those brought by the exact-based matching sig-
nals in BM25. These effectiveness gains can be viewed as new knowledge in
the form of semantic matching signals which are successfully transferred to the
left dataset (c19) while maintaining stable performances on the left dataset (mb)
(REMN=0.940 and 0.913 for resp. CEDR and VBERT). This result is consistent
with previous work suggesting that the regularization used in transformer-based
models has an effect of alleviating catastrophic forgetting [23].

• We notice that the CEDR model achieves positive improvements w.r.t to
the neural ranking score (ΔMAPN : +14.2%) in all the settings (3/4) where ms
is the left dataset while very low improvements are achieved w.r.t. to the global
score (ΔMAP : +2.6%). We make the same observation for the PACRR model
but only for 1/4 model-setting pair (ΔMAPN : +10% vs. ΔMAPN : 0%) with
mb as the left dataset. Under these settings, we can see that even the exact-
matching signals brought by the BM25 model are very moderate (leading to
a very few positive training instances), the CEDR and, to a lower extent, the
PACRR models, are able to inherently bring significant new knowledge in terms
of semantic matching signals at however the cost of significant forget on the
global ranking for CEDR (REM is the range [0.510; 0.826]) and on the neural
ranking for PACRR (REM=0.523).

• All the models (DRMM, PACRR, KNRM and VBERT (for 3/4 settings)
that do not significantly beat the BM25 baseline either by using the global score
(ΔMAP in the range [−12.1%;+2.2%]) nor by using the neural score (ΔMAPN

in the range [−89%;+0%]), achieve near upper bound of remembering (both
REM and REMN are in the range [0.94; 1]). Paradoxically, this result does not
allow us to argue about the ability of these models to retain old knowledge.
Indeed, the lack or even the low improvements over both the exact matching
(using the BM25 model) and the semantic-matching (using the neural model)
indicate that a moderate amount of new knowledge or even no knowledge about
effective relevance ranking has been acquired from the left dataset. Thus, the
ranking performance of the fine-tuned model on the left dataset only depends
on the level of mismatch between the data available in the right dataset for
training and the test data in the left dataset. We can interestingly see that
upper bound remembering performance (REM = 1) is particularly achieved
when ms is the left dataset (settings ms → c19, ms → mb, ms → mb → c19).
This could be explained by the fact that the relevance matching signals learned
by the neural model in in-domain knowledge do not degrade its performances
on general-domain knowledge.

Assuming a well-established practice in neural IR which consists in linearly
interpolating the neural scores with the exact-based matching scores (e.g., BM25



384 J. Lovón-Melgarejo et al.

scores), these observations give rise to three main findings: 1) the more a neural
ranking model is inherently effective in learning additional semantic matching
signals, the more likely it catastrophically forgets. In other terms, intrinsic effec-
tiveness of neural ranking models comes at the cost of forget; 2) transformer-
based language models such as CEDR and VBERT exhibit a good balance
between effectiveness and forget as reported in previous work in NLP [37]; 3)
given the variation observed in REM and REMN, there is no clear trend about
which ranking (BM25-based ranking vs. neural ranking) impacts more impor-
tantly the level of overall catastrophic forgetting of the neural models

Across Dataset Analysis (RQ2). Our objective here is to identify catas-
trophic forgetting signals from the perspective of the left dataset. As argued
in [1], understanding the relationships between data characteristics and catas-
trophic forgetting allows to anticipating the choice of datasets in lifelong learning
settings regardless of the neural ranking models. We perform a regression model
to explain the REM metric (dependent variable) using nine datasets character-
istics (independent variables). The latter are presented in Table 2 and include
dataset-based measures inspired from [1,9] and effectiveness-based measures
using the BM25 model.

Table 2. Linear regression explaining catastrophic forgetting (REM metric) at the left
dataset level. Significance: ∗ ∗ ∗ : p ≤ 0.001; ∗∗ : 0.001 < p ≤ 0.01; ∗ : 0.01 < p ≤ 0.5

Characteristic Description Coeff

R2 0.544

Independent variables Dataset Constant 0.7014∗ ∗ ∗
RS Retrieval space size: log10(D × Q) −0.1883

RD Relevance density: log10
Qrels
D×Q

−0.3997∗
SD Score relevance divergence: KL(RSVD+, RSVD−) 0.0009

Vocab Size of the vocabulary −0.0932 ∗
DL Average length of documents −0.0349

QL Average length of queries 0.1803∗
QD Average query difficulty: avgq( 1

|q|
∑

w∈q idfw) 0.0044

Eff. MAP Effectiveness of the BM25: MAP -0.0220∗
std-AP Variation of BM25 effectiveness (AP metric): σq(APq) 0.0543∗

Residual Variables Dataseti MSmarco 0.18038

Microblog 0.5211∗∗
Mj DRMM 0.1798∗ ∗ ∗

PACRR 0.1965∗ ∗ ∗
KNRM 0.1924∗ ∗ ∗
VBERT 0.1313∗ ∗ ∗
CEDR 0.0014

To artificially-generate datasets with varying data characteristics, we follow
the procedure detailed in [1]: we sample queries within each left dataset in the
settings presented in Table 1 (15 for mb and 50 for ms) to create sub-datasets
composed of those selected queries and the 100 top corresponding documents
retrieved by the BM25 model.

Then, we replace in each setting the left dataset by the corresponding sub-
dataset. We estimate for each model-setting pair the REM value as well as
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the characteristic values of the left sub-dataset. We repeat this procedure 300
times to obtain 300 new settings per model, based on the 300 sampled sub-
datasets. This leads to 300 (sub-setting-model) pairs with a variation for both
the dependent and the independent variables. Finally, we build the following
explanatory regression model, referring to the “across dataset analysis” in [1]:

REMij =
∑

k

Ckfik + Dataseti + Mj + εi (4)

where i denotes the ith sub-setting and j refers to the neural ranking model Mj .
Ck and fik denote respectively the weight and the value of the kth characteristic
of the left dataset in the ith sub-setting. Please note, that dataset feature values
are independent of the model Mj . Dataseti and Mj are the residual variables of
resp. the left dataset and the model. The characteristic values fik are centered
before the regression as suggested in Adomavicius and Zhang [1].

Table 2 presents the result of the regression model. From R2 and Constant,
we can see that our regression model can explain 54.4% of the variation of the
REM metric, highlighting an overall good performance in explaining the remem-
bering metric with a good level of prediction (0.7014). From the independent
variables, we can infer that the difficulty of the dataset positively impacts the
remembering (namely, decreasing the catastrophic forgetting). More precisely,
lower the relevance density (RD), the BM25 effectiveness (MAP) and higher the
variation in terms of BM25 performances over queries (std-AP) are, the higher
the REM metric is. This suggests that relevance-matching difficulty provides
positive feedback signals to the neural model to face diverse learning instances,
and therefore to better generalize over different application domains. This is
however true to the constraint that the vocabulary of the dataset (V ocab) is
not too large so as to boost neural ranking performance as outlined in [16,36].
Looking at the residual variables (Datasetj and Mj), we can corroborate the
observations made at a first glance in RQ1 regarding the model families clearly
opposing (DRMM-PACRR-KNRM-VBERT) and CEDR since the former statis-
tically exhibit higher REM metrics values than CEDR.

4.2 Mitigating Catastrophic Forgetting (RQ3)

From RQ1, we observed that some models are more prone to the catastrophic
forgetting problem than others. Our objective here is to examine whether an
EWC-based lifelong strategy can mitigate the problem. It is worth mentioning
that this objective has been targeted in previous research in computer vision
but without establishing a consensus [24,45,47]. While some studies reveal that
EWC outperforms domain adaptation strategies in their settings [24,45], oth-
ers found that it is less effective [47]. To achieve the experiment’s objective,
we particularly report the following measures in addition to the REM/REMN
measures: 1) ΔREM(REMN) that reveals the improvement (positive or negative)
of the REM/REMN measures achieved using an EWC-based lifelong learning
strategy over the REM/REMN measure achieved using a fine-tuning strategy;
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2) the PR measure introduced in Sect. 4.1. Unlikely, our aim through this mea-
sure here, is to highlight the performance stability of the learned model on the
right dataset while avoiding catastrophic forgetting on the left dataset.

We turn now our attention to the “EWC-based lifelong learning”
columns in Table 1. Our experiment results show that among the 9 (resp. 11)
settings that exhibit catastrophic forgetting in the combined model (resp. neural
model), EWC strategy allows to improve 9/9 i.e., 100% (resp. 9/11 i.e., 88%) of
them in the range [+0.3%,+96.1%] (resp.[+3.3%,+79.7%]). Interestingly, this
improvement in performance on the left dataset does not come at the cost of a
significant decrease in performance on the right dataset since 100% of the models
achieve a PR ratio greater than 0.96. Given, in the one hand, the high variability
of the settings derived from the samples, and in the other hand, the very low
number of settings (10% i.e., 2/20) where a performance decrease is observed
in the left dataset, we could argue that the EWC-based lifelong learning is not
inherently impacted by dataset order leading to a general effectiveness trend
over the models. We emphasize this general trend by particularly looking at the
CEDR model which we recall (See Sect. 4.1, RQ1), clearly exhibits the catas-
trophic forgetting problem. As can be seen from Table 1, model performances
on the left datasets are significantly improved (+6.4% ≤ ΔREM ≤ +96.1%;
0% ≤ ΔREMN ≤ +8.7% ) while keeping model performances on the right
dataset stable (0.961 ≤ PR ≤ 1.008). This property is referred to as the stability-
plasticity dilemma [41].

To get a better overview of the effect of the EWC strategy, we compare in
Fig. 2 the behavior of the CEDR and KNRM models which exhibit respectively
low level (REM = 0.510) and high level of remembering (REM = 1) particu-
larly in the setting ms → mb. The loss curves in Fig. 2(a) highlight a peak after
the 20th epoch for both CEDR and KNRM. This peak denotes the beginning of
the fine-tuning on the mb dataset. After this peak, we can observe that the curve
representing the EWC-based CEDR loss (in purple) is slightly above the CEDR

(a) Loss function (b) Performance on the mb dataset

Fig. 2. Impact of the EWC strategy on loss and performance for the ms → mb setting.
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loss (in orange), while both curves for the KNRM model (green and blue resp. for
with and without EWC) are overlayed. Combined with the statements outlined
in RQ1 concerning the ability of the CEDR model to accumulate knowledge, this
suggests that EWC is able to discriminate models prone to catastrophic forget-
ting and, when necessary, to relax the constraint of good ranking prediction on
the dataset used for the fine-tuning to avoid over-fitting. This small degradation
of knowledge acquisition during the fine-tuning on the ms dataset is carried out
at the benefit of the previous knowledge retention to maintain retrieval perfor-
mance on the mb dataset (Fig. 2(b)). Thus, we can infer that the EWC strategy
applied on neural ranking models plays fully its role to mitigate the trade-off
between stability and plasticity.

5 Conclusion

We investigated the problem of catastrophic forgetting in neural-network based
ranking models. We carried out experiments using 5 SOTA models and 3
datasets showing that neural ranking effectiveness comes at the cost of forget
and that transformer-based models allow a good balance between effectiveness
and remembering. We also show that the EWC-based strategy mitigates the
catastrophic forgetting problem while ensuring a good trade-off between trans-
ferability and plasticity. Besides, datasets providing weak and varying relevance
signals are likely to be remembered. While previous work in the IR community
mainly criticized neural models regarding effectiveness [35,39,51], we provide
complementary insights on the relationship between effectiveness and transfer-
ability in a lifelong learning setting that involves cross-domain adaptation. We
believe that our study, even under limited setups, provides fair and generalizable
results that could serve future research and system-design in neural IR.
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Abstract. Users fulfill their information needs by expressing them using
search queries and running the queries in available search engines. The
mining of query logs from search engines enables the automatic extrac-
tion of search tasks by clustering related queries into groups represent-
ing search tasks. The extraction of search tasks is crucial for multiple
user supporting applications like query recommendation, query term pre-
diction, and results ranking depending on search tasks. Most existing
search task extraction methods use graph-based or nonparametric mod-
els, which grow as the query log size increases. Deep clustering methods
offer a parametric alternative, but most deep clustering architectures fail
to exploit recurrent neural networks for learning text data representa-
tions. We propose a recurrent deep clustering model for extracting search
tasks from query logs. The proposed architecture leverages self-training
and dual recurrent encoders for learning suitable latent representations of
user queries, outperforming previous deep clustering methods. It is also
a parametric approach that offers the possibility of having a fixed-sized
architecture for analyzing increasingly large search query logs.

Keywords: Search task extraction · Deep clustering · Recurrent
neural networks

1 Introduction

Users carry out their search tasks running groups of related queries in available
search engines, fulfilling a wide range of information needs and desires [15].
Query logs record the queries that users submit to search engines. Therefore,
proper extraction of search tasks from query logs helps to support users while
they fulfill their information needs, facilitating multiple goals like query term
prediction, query recommendation, advertisement, results ranking depending on
the search task, query-task mapping, and prediction of user satisfaction based
on search tasks [9,23,30,32].

Along with the search queries that users submit, query logs also contain
timestamps and other user-related information. Initially, query logs were seg-
mented using the time between query timestamps to establish a session bound-
ary and delimiting search tasks. If the time between a pair of subsequent queries
c© Springer Nature Switzerland AG 2021
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was above a certain threshold in minutes, a boundary was established, signaling
the end of a search task [18]. However, according to multiple analyses of search
query logs, users tend to interleave search tasks in a single time session. Also,
some tasks are performed during multiple time sessions [18,23,30]. Hence, clus-
tering models have been utilized to extract search tasks by grouping semantically
related queries.

Recent models for search task extraction rely on graph-based methods or
nonparametric approaches [9,18,19,22,23,30], which grow as search query logs
increase in size, making them more computationally expensive as the number of
queries increases. By contrast, deep clustering methods [1,24] offer a parametric
alternative to learn latent representations of query log entries and simultaneously
cluster them into interrelated groups of search queries.

Most existing deep clustering approaches do not exploit the modeling power
of recurrent neural networks (RNNs), which are widely used for natural language
processing (NLP) and sequential data processing [12,17,25]. Therefore, we pro-
pose a recurrent deep clustering (RDC) model to extract search tasks from query
logs. RDC leverages the modeling power of recurrent neural networks in a dual
encoder configuration, along with self-training, to learn a suitable latent space
of user queries and simultaneously cluster them in groups of search tasks.

2 Related Work

The need for large query log datasets that are cleaned and labeled by humans
represents a challenge for supervised task extraction models [9,25,33]. As unsu-
pervised learning approaches do not rely on labels [27], they could represent
a better alternative for search task extraction. Clustering is an unsupervised
learning approach that groups related items using abstract similarities or learns
new categories by analogy to existing ones [25]. Clustering methods are essential
in multiple data-driven applications. They are primarily based on partitioning,
density, and hierarchies [1,24].

Several clustering methods based on graphs were proposed to extract search
tasks from query logs, including QC-WCC and a faster variation named QC-
HTC [18]. QC-WCC is a query clustering method based on weighted connected
components. It relies on the construction of a graph where nodes correspond
to queries, and weights in the edges depend on similarities between the queries.
The similarities come from two features: a content-based feature using both
Jaccard indexes on tri-grams and Levenshtein distances, and a semantic-based
feature that exploits Wikipedia to infer query semantics. The graph is pruned by
removing weak edges; then, the query clusters are obtained from the remaining
subgraphs. QC-HTC is a variation of QC-WCC based on head-tail components,
a faster clustering method because it avoids computing the full similarity graph.

QRY-VEC [30] is another graph-based method utilized for search task extrac-
tion from query logs. However, instead of relying on lexical similarities and doc-
uments retrieved from the Wikipedia collection [18], it uses a tempo lexical word
vector representation and documents retrieved from the ClueWeb12B collection
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[4,5]. MGBC [19] improves foregoing search task extraction methods by combin-
ing graph-based clustering with a latent multilingual space for query representa-
tion, using the angular distance to group related queries. Another nonparametric
approach represents queries as a linear combination of vectors for its terms [22].
Weights in the linear combinations represent the maximum likelihood for each
term according to the query task relationships. Based on that representation, the
hierarchies of tasks are extracted from the query logs. The Chinese Restaurant
Process provides the algorithm to compute task relatedness from the hierarchies.
An improved variant of this method [23] relies on Bayesian Rose Trees (BRTs)
[3] to model query logs as a hierarchical structure of search tasks. This improved
variant uses a Bayesian nonparametric approach to compute the model that best
represents the search task hierarchies in search logs.

Nonetheless, graph-based and nonparametric models grow as the size of
datasets increases [27], becoming more computationally expensive. For example,
the number of leaves in BRTs [23] is directly related to the number of queries in
the search query log; for graph-based methods, every entry in the search query
log ends up being a node in the underlying graph. Likewise, the representation
of the data is crucial for the subsequent results of clustering methods. High
dimensional data tends to affect clustering methods because distances in high
dimensional spaces are less effective. Dimensionality reduction methods have
been widely used, including linear methods, non-linear methods, and spectral
methods. Nevertheless, the latent representation obtained from dimensionality
reduction can affect clustering performance; thus, deep neural networks are a
viable alternative to compute latent representations [1,24,27] for input data,
without performing dimensionality reduction as a preprocessing step.

Deep neural networks can be used to simultaneously learn latent repre-
sentations and cluster data, using a method commonly known as deep clus-
tering [1,24]. Also, in contrast with graph-based methods and nonparametric
approaches, deep clustering models do not grow with the size of the search query
log [27]. Deep clustering appeared initially in acoustic separation and then spread
to other areas of research [24]. Before deep clustering appeared, research focused
on data representation and clustering methods independently. However, learning
latent representations is at the heart of deep clustering.

Models in deep clustering rely on several neural network architectures,
including autoencoders, variational autoencoders (VAEs), feedforward neural
networks, convolutional neural networks, deep belief networks, and generative
adversarial networks (GANs) [1,24]. All architectural variations are trained
to learn cluster-friendly representations, combining representation learning and
clustering. Deep neural networks are trained to minimize the clustering loss,
optimizing the network weights for improving the predicted labels of input sam-
ples. Both GAN and VAE based architectures are generative. They do not only
learn to cluster inputs; they are also able to generate samples from the clustering
categories [1,24].

Existing deep clustering models fail to exploit RNNs for learning latent repre-
sentations of text data samples. Text data naturally fits the sequential modeling
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power of recurrent neural networks [12]. Because of this, RNNs have been widely
used for processing text data in NLP, generating state-of-the-art results in multi-
ple applications [12,20,25,40]. Our proposed architecture differs from prior deep
clustering methods [1,24] by using RNNs in a dual encoder configuration [38] to
simultaneously learn latent representations of user queries and cluster them in
groups of search tasks. Also, in contrast with other approaches [9,18,19,23,30],
it provides a parametric model, which preserves its size despite the query log
length.

3 Search Task Extraction

The proposed RDC model has an RNN encoder as the central component of its
architecture. The architecture uses a dual encoder setup [38], a widely used con-
figuration in representation learning, neural machine translation, and other NLP
applications [7,38,39]. The recurrent encoder comprises a bidirectional recurrent
layer, an attention mechanism, and a projection head [7,20]. Input queries com-
prise a list of word embeddings qi = [w1, w2, w3, ...]. To form the input query’s
latent representation, we concatenate the output of the attention mechanism
and the hidden state of the bidirectional recurrent layer, passing the concate-
nated tensor through a projection head (Fig. 1). Regarding recurrent unit types
for the encoder, we consider both Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) [8].
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Fig. 1. Recurrent neural network encoder for learning latent representations of queries.
The encoder comprises a bidirectional recurrent layer, an attention mechanism, and a
projection head.
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Two phases optimize RDC in tandem: a pretraining phase and a clustering
phase [13,24,36]. Each phase has its loss; thus, we adapt the architecture of the
model depending on the loss that we are optimizing (Fig. 2).

Encoder 0 Encoder 1
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Concatenate

Crossentropy

Clustering layer

KL Divergence

Pretraining phase

Clustering phase

Encoder 0 Encoder 1

Cosine

MSE

Segmentation & sequence Intent
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Self-training lossClustering loss

Fig. 2. Pretraining and clustering phases for search task extraction using a dual encoder
configuration.

3.1 Pretraining Phase

Deep clustering methods tend to pretrain neural network layers before the clus-
tering phase, which allows the initialization of the latent representation for input
samples [1,24]. During the pretraining phase, we optimize the encoder with a
supervised objective. We use the dual encoder configuration [38] to pretrain the
recurrent encoders according to the following objectives:

– Segmentation. In this supervised pretraining objective, the recurrent encoders
are trained using the search task segmentation approach [20]. This pretrain-
ing objective determines if two adjacent queries in a chronologically ordered
query log are part of the same search task or not. The expected output of
this objective is binary, and we use cross-entropy to compute the pretraining
loss LP .

– Sequence. The sequence pretraining objective determines if a pair of queries
appear adjacent in a chronologically ordered query log or not. Similar to the
segmentation objective, the expected output of this objective is also binary,
and we use cross-entropy to calculate the pretraining loss LP .
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– Intent. For the intent pretraining objective, queries representing the user’s
intent for the same search task are close in the latent representation space [40].
Therefore, we compute the cosine proximity between encoder outputs and use
the Mean Squared Error (MSE) [31] between predicted cosine proximity and
expected cosine proximity to calculate the pretraining loss LP . The expected
cosine proximity is set to one for pairs of queries pertaining to the same search
task, zero otherwise.

3.2 Clustering Phase

Once the foregoing objectives have been used to pretrain the recurrent encoders,
we discard the cross-entropy layer used during segmentation and sequence pre-
training. The objective loss for the clustering phase LO comprises two losses: the
clustering loss LC and the self-training loss LS [13,21].

For the clustering loss, following previous work [1,24,36], we connect the pre-
trained encoder output to a clustering layer, where the Student’s t-distribution
provides a mean to compute the soft assignments for the queries. The soft assign-
ment should match an auxiliary target distribution by using the Kullback–Leibler
(KL) divergence to compute the clustering loss. Formally, given a query qi and
initial cluster centroids μj , the clustering loss LC is calculated as follows [13,36]:

zi = encoder0(qi) (1)

sij =
(1 + ‖zi − μj‖2)−1

∑

j′
(1 + ‖zi − μ′

j‖2)−1
(2)

fj =
∑

i

sij (3)

pij =
s2ij/fj

∑

j′
s2ij′/fj′

(4)

LC =
∑

i

∑

j

pij log
pij
sij

(5)

K-means generates the initial cluster centroids μj from the pretrained encoder
representation. The Student’s t-distribution in Eq. 2 has one degree of freedom.
Also, the auxiliary target distribution pij emphasizes high confidence data point
assignments, strengthens predictions, and normalizes the loss contribution from
each cluster by using the soft cluster frequencies fj [36].

For the self-training loss, we use the dual encoder configuration along with
back translation [10], a self-training technique for unsupervised data augmen-
tation [37] that preserves the semantics of the query encodings. Adding noise
to query encodings can be ineffective for creating augmented samples because
the resulting samples hardly match variations from real case scenarios. Hence,
to create realistic augmented samples, strong data augmentation methods focus
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on creating modifications that march real variations. For instance, in computer
vision, it is common to use cropping, rotation, or scaling to create augmented
samples for images [7,41]. As queries are short texts, we use back translation
to create realistic augmented samples for entries in the search query log. Back
translation creates paraphrases for a search query while preserving the semantics
of the original query [10]. Formally, given a query qi, with augmented sampled bi,
and because the semantics from back translation remains the same, target cosine
proximity ti = 1.0, the self-training loss LS is calculated as follows [13,24,37]:

ui = encoder0(qi) (6)

vi = encoder1(bi) (7)

pi =
uivi

|ui| |vi| (8)

LS =
∑

i

(pi − ti)2 (9)

During the clustering phase, both the cluster centroids and the dual encoder
weights are updated by optimizing the objective loss LO [1,13,24]:

LO = LS + γLC (10)

where γ is a constant. The range of γ is 0.0 < γ < 1.0 to help the model
preserve the semantic space of the query encodings with the optimization of LS ,
while simultaneously optimizing LC to improve the clustering performance.

4 Experimental Setup

Metrics to evaluate the performance of the models include the unsupervised
accuracy (ACC), the Normalized Mutual Information (NMI), and the Adjusted
Rand Index (ARI) [31]. The Student’s paired t-test provides the test for sta-
tistical significance. To evaluate the effectiveness of the proposed approach, we
compare RDC performance with the following methods:

– Deep Embedded Clustering (DEC) combines feature extraction with autoen-
coders and clustering. It learns clustering centers by first pretraining the
autoencoder on the input dataset to learn a latent representation. Then, DEC
discards the decoder part of the autoencoder and uses the encoder to calcu-
late input representations. DEC uses K-means to initialize cluster centroids,
then, it minimizes the clustering loss by minimizing the KL divergence (Eq. 5)
[6,36].

– Improved Deep Embedded Clustering (IDEC) extends DEC by including the
decoder part of the autoencoder during the clustering. Doing so aims to pre-
serve the original structure of the input data in the latent representation
space. To include the encoder, IDEC uses a loss to simultaneously optimize
the clustering on the encoder output and the representational accuracy of the
decoder output [13].
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– Point Symmetry-based Deep Clustering (SymDEC) replaces the Euclidean
distance that DEC uses for computing the clustering loss with the point
symmetry-based distance, improving the results when clustering datasets with
symmetrical input samples [26].

– Deep adaptive clustering (DAC) joins feature extraction and clustering into a
single neural method. To extract features, DAC relies on a deep convolutional
neural network and adds a constraint, so that resulting labels converge to a
one-hot encoding. The constraint assumes that a pair of input samples either
pertain to the same cluster or pertain to a different cluster. Input sample
similarities are unknown beforehand; thus, an adaptive approach inspired by
curriculum learning [2] is proposed. First, only pairs of input samples with
similarities above or under a threshold are considered. With those pairs of
images, the weights of the convolutional network are updated using back-
propagation. As the training advances and the model improves, more pairs
meet the threshold criteria. When the model converges, all pairs of input
samples are part of the loss computation, and the loss stabilizes. Once the
loss stabilizes, it selects the label with the highest value inside the one-hot
vector to determine the cluster of the input sample [6].

– Chimera network [21,34] uses stacked layers of bidirectional LSTMs for audio
separation models. This stacked recurrent model can handle problems like
speaker-independent multi-speaker speech separation and music source sepa-
ration. The Chimera architecture comprises four bidirectional layers, a dense
layer to compute the vectors in the latent space, and two heads for multi-task
learning: one head for unsupervised source separation and the other head for
supervised time-frequency mask inference. We replace the multi-task learning
heads with the clustering layer in Sect. 3.2 to adapt the architecture for search
task extraction from query logs.

For reference, we also include results for k-means [31], Density-based spatial
clustering of applications with noise (DBSCAN) [11], and Hierarchical Agglom-
erative Clustering (HAC) [28,35]. Scikit-learn1 with default parameters provides
the implementation for k-means, DBSCAN, and HAC. We also use publicly avail-
able implementations for DEC2, IDEC2, SymDEC2, DAC3, and Chimera4 with
the best performing hyperparameters reported for each method.

Two datasets are considered for evaluating RDC performance: the Cross-
Session Task Extraction (CSTE) dataset [30], with 1424 user queries, and
the Query-Task-Mapping based on TREC (QTMT) dataset, with 7771 user
queries [32]. For pretraining, two datasets are considered as well: Sequence
and Segmentation pretraining objectives use the Webis Search Mission Cor-
pus 2012 (WSMC12) dataset [14], which has 8840 entries with 2881 search
task labels. The WSMC12 dataset has timestamps so that we can guarantee
a chronologically ordered query log. The Intent pretraining objective uses the
1 https://scikit-learn.org/.
2 https://github.com/XifengGuo/DEC-DA.
3 https://github.com/HongtaoYang/DAC-tensorflow.
4 https://github.com/leichtrhino/ChimeraNet.

https://scikit-learn.org/
https://github.com/XifengGuo/DEC-DA
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Query-Task-Mapping based on WikiHow (QTMWH) dataset [32], which has
119292 queries with labels for 7202 search tasks.

The GloVe publicly available pre-trained word vectors5 provide the represen-
tation for the search queries [29]. We use the same query representation for all
the methods under testing. To train the RDC model, we use the Adam optimizer
[16]. The learning rate is set to 10−4, batch size to 256, and dropout to 0.3. The
bidirectional layer contains 32 recurrent units, and the projection head has two
feedforward layers, one with 512 units and the other with 256 units. Using the
Google Cloud Translation API6, we perform the back translation augmentation
for the self-training loss (Eq. 9). Back translation is realized offline for practical
purposes, using English (en) - French (fr) [37] to create the augmented samples.

5 Results and Discussion

Results for RDC with several pretraining configurations appear in Table 1. RDC
outperforms all the other deep clustering methods used for comparison, for both
the CSTE and the QTMT datasets. RDC also outperforms reference methods
like k-means and DBSCAN. When comparing clustering performance against
HAC, we find that RDC outperforms HAC when extracting short-lived search
tasks, while in long search tasks, it improves over HAC in two out of three met-
rics (p ≤ 0.05). The CSTE dataset has mostly short-lived search tasks because
the average number of user queries per task is 3.2, while the QTMT dataset
has an average of 28.2 user queries per task, reflecting behaviors like explo-
ration, specification, or paraphrasing that users undertake in long search tasks
[40]. These results are essential because short-lived search tasks, including fact-
finding, browsing, or transactions, can account for up to 85% of all the entries
in a search query log [15].

When comparing RDC with autoencoder-based models, such as DEC, IDEC,
and SymDEC, the results are higher in all the metrics used for assessing cluster-
ing performance; we observe the same behavior when considering DAC, which
uses convolutional neural networks. This outperformance reflects the advantage
of using the modeling power of recurrent neural networks for learning represen-
tations of search queries. Chimera, a stacked recurrent architecture, also outper-
forms deep clustering models based on autoencoders and convolutional neural
networks. However, RDC has a better clustering performance than Chimera in
the three metrics used for comparison. Similarly, RDC has a more straight-
forward configuration than Chimera because RDC only uses two bidirectional
recurrent layers for the dual encoder setup, while Chimera uses a stack of four
bidirectional recurrent layers.

Self-training with back translation for queries renders pretraining effects neg-
ligible. Indeed, back translation using English (en) - French (fr) is a strong data
augmentation technique. It augments data samples while preserving the seman-
tics of the original queries. For instance, “effects of tide on columbia river”gets
5 http://nlp.stanford.edu/data/glove.42B.300d.zip.
6 https://cloud.google.com/translate.

http://nlp.stanford.edu/data/glove.42B.300d.zip
https://cloud.google.com/translate
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Table 1. Clustering performance for CSTE and QTMT datasets, including RDC and
other methods used for comparison. Differences in RDC results against all baseline
methods have p ≤ 0.05 for the Student’s t-test.

Dataset Method Pretraining ACC NMI ARI

CSTE k-means None 0.395 0.670 0.231

DBSCAN None 0.199 0.343 0.027

HAC None 0.407 0.719 0.310

DEC Autoencoder 0.362 0.684 0.345

IDEC Autoencoder 0.347 0.681 0.348

SymDEC Autoencoder 0.337 0.652 0.325

DAC None 0.318 0.644 0.344

Chimera None 0.387 0.707 0.339

RDC Sequence 0.420 0.735 0.355

RDC Segmentation 0.408 0.730 0.354

RDC Intent 0.331 0.641 0.334

RDC None 0.415 0.734 0.355

QTMT k-means None 0.219 0.535 0.050

DBSCAN None 0.026 0.105 0.001

HAC None 0.276 0.613 0.086

DEC Autoencoder 0.097 0.419 0.019

IDEC Autoencoder 0.097 0.418 0.018

SymDEC Autoencoder 0.104 0.396 0.022

DAC None 0.095 0.368 0.025

Chimera None 0.214 0.523 0.061

RDC Sequence 0.285 0.594 0.094

RDC Segmentation 0.246 0.566 0.080

RDC Intent 0.187 0.508 0.055

RDC None 0.284 0.590 0.095

translated to “effects de la marée sur la rivière Columbia”, and then back trans-
lated to “tidal effects on the columbia river”; “farm houses for rent in broom
county”gets translated to “Maisons de ferme à louer dans le comté de broome”,
and then back translated to “farms for lease in broom county”. Sometimes back
translation corrects spelling, for instance “the cost of haveing a horse in new
york”gets translated to “le coût d’avoir un cheval à new york”, and then back
translated to “the cost of having a horse in new york”, but in general, the
semantics remain the same, so the query encoding space is preserved during the
clustering phase by minimizing the self-training loss.

Consequently, although the best pretraining scheme for the RDC models
is the Sequence objective, surpassing the results of both Segmentation and
Intent objectives, it represents no change when compared against RDC with no
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pretraining. For the CSTE dataset, accuracy is only 0.5% higher, and NMI is only
0.1% higher (p = 0.8); ARI has no change at all. We observe a similar behavior
with the QTMT dataset. In some cases, pretraining can even end up hurting per-
formance, as we can see with the Intent pretraining objective. Preceding results
are in agreement with previous work about the effect of pretraining neural archi-
tectures [41], where self-training with strong data augmentation diminishes the
effect of pretraining, making it negligible. Therefore, it is possible to discard
neural network pretraining, an essential result because pretraining needs labeled
datasets, which can be challenging to create [33], while self-training with back
translation is unsupervised.

Regarding recurrent units, the decision of which to choose depends on the
task and the dataset [8]; therefore, we analyze the RDC model with both GRU
and LSTM cells (Table 2). Replacing the LSTM cells with GRUs generates
a slight decrease in model performance for CSTE and QTMT datasets. The
biggest difference happens with the QTMT dataset, using intent pretraining,
where changing GRUs to LSTMs makes accuracy decrease 2.7%, NMI 2.5%,
and ARI 1.1% (p ≤ 0.05). These changes imply that less computationally expen-
sive GRUs are a better choice for the RDC architecture than LSTMs, although
changes observed for the metrics are low, especially with the sequence or no
pretraining configurations, which are the best performing setups for the RDC
model.

Table 2. Comparison between LSTM and GRU cells in RDC. Results include all
the pretraining alternatives for the CSTE and QTMT datasets. Differences between
recurrent cell results have p ≤ 0.05 for the Student’s t-test.

Dataset Cell Pretraining ACC NMI ARI

CSTE LSTM Sequence 0.410 0.730 0.354

Segmentation 0.399 0.718 0.352

Intent 0.320 0.632 0.334

None 0.409 0.729 0.354

GRU Sequence 0.420 0.735 0.355

Segmentation 0.408 0.730 0.354

Intent 0.331 0.641 0.334

None 0.415 0.734 0.355

QTMT LSTM Sequence 0.278 0.592 0.096

Segmentation 0.217 0.544 0.070

Intent 0.160 0.483 0.044

None 0.268 0.586 0.092

GRU Sequence 0.285 0.594 0.094

Segmentation 0.246 0.566 0.080

Intent 0.187 0.508 0.055

None 0.284 0.590 0.095
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6 Conclusion

This paper presented RDC, a recurrent deep clustering method for extracting
search tasks from query logs. The proposed method leverages self-training and
dual recurrent encoders to find latent representations for user queries, clustering
them into search task groups. Experimental results show the proposed clustering
method outperforms prior deep embedding clustering architectures in all the
metrics used for testing. Also, RDC offers a parametric architecture for search
task extraction, which preserves its size despite changes in the query log size. This
size preservation represents an advantage compared to nonparametric methods
and graph-based models that grow with the query log size, making them more
computationally expensive as the number of queries in the search log grows. In
future work, we will compare the RDC model to generative architectures for deep
clustering, including models based on GANs and VAEs. We also plan to replace
query representations based on GloVe with transformer-based query encodings.

Acknowledgements. This work was supported by the Agence National de la
Recherche (ANR), through project CoST, code ANR-18-CE23-0016.
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Abstract. Conversational information seeking is a major emerging
research area because of the increasing popularity of conversational AI
systems users utilize to perform their search tasks. Search systems and
multiple other user supporting applications benefit from modeling the
search tasks users carry out to satisfy their information needs. Most
existing search task modeling methods are monolingual, and few meth-
ods leverage user clicks even though clicked URLs are crucial for modeling
user intent. We propose a language-agnostic, user intent aware approach
to model search tasks from user interactions with search systems. The
proposed approach leverages user intent modeling from clicked query-
document pairs, latent representations of queries in a language-agnostic
space, and graph-based clusteringto model search tasks in an unsuper-
vised approach. Experimental results demonstrate the proposed app-
roach outperforms recent work in search task modeling, supporting user
queries in multiple languages. It can also produce search task modeling
results in the order of milliseconds, an essential aspect for conversational
systems and user support applications requiring realtime results.

Keywords: Conversational search · User intent modeling ·
Language-agnostic query representation

1 Introduction

Conversational AI systems are becoming increasingly popular because of
advances in speech recognition, natural language understanding, text-to-speech
synthesis, and the availability of digital personal assistants [15,24,26]. Personal
assistants like Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cor-
tana are now available in smartphones, tablets, desktops, and dedicated smart
speakers [15,30]. Consequently, the increasing popularity and availability of con-
versational systems make conversational information seeking a major emerging
area of research [1,30].

In conversational information seeking and other search systems, modeling
the search tasks that users perform to satisfy their information needs is a cru-
cial step [18,22]. Search task modeling is a step in the process to make search
c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 405–418, 2021.
https://doi.org/10.1007/978-3-030-72113-8_27
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systems more coherent, natural, engaging, and conversational [15,21,26]. Mul-
tiple user supporting applications benefit from search task modeling, including
conversational question suggestion, personalization in e-commerce, product rec-
ommendations, query term prediction, query suggestions, query reformulation,
and results ranking [13,20,21,23,27]. Even informative conversations with digital
assistants can benefit from correctly modeling the search tasks, as the subjective
perception of the quality in the conversation is strongly related to the accurate
tracking of the topic [26].

Users around the world access search systems in multiple languages, making
it essential to process users’ requests with language-agnostic models. Also, search
systems and user supporting applications require realtime responses when pro-
cessing user information needs. For instance, multimodal search in conversational
systems runs multiple processes in parallel, post-processing their outputs to gen-
erate a message answering the user request; hence, modeling can not exceed the
timeout periods set on the search system [30]. Similarly, user clicks are strongly
related to the user intent [31]. Different queries with similar clicked URLs can
pertain to the same information need [20], and analyzing clicked URLs can help
disambiguate queries [5].

Our contributions are threefold. First, we propose a language-agnostic search
task modeling (LASTM) approach to model search tasks from user interactions
with search systems. Second, given the relationship between clicked URLs and
user intent, we propose a user intent modeling technique leveraging a large scale
query - clicked document collection in the query latent space. Third, to enable
the utilization of LASTM in conversational search systems and user supporting
applications requiring responses on the fly, we propose a realtime method for
mapping incoming queries to the modeled user search tasks directly on the query
latent space.

2 Related Work

Mining user interactions with search systems enable modeling the search tasks
that users perform to satisfy their information needs [13]. In particular, search
query logs can be mined for search task modeling using methods such as
heuristics-based models, semi-supervised clustering, Bayesian approaches, and
graph-based clustering. A model based on a cascade of heuristics [12] first seg-
ments the search query log in logical sessions; then, it performs a post-processing
step to detect search tasks based on the queries pertaining to the logical sessions.
However, several manually set thresholds in the heuristics make it challenging
to adapt heuristics-based models to other datasets without manually adjusting
them.

Semi-supervised clustering approaches combine a supervised component and
an unsupervised method to model search tasks. Bestlink SVM [28] first trains
a support vector machine to detect if a pair of adjacent queries from a user
pertains to the same search tasks or not. Then, it clusters the related queries
in the search log using the SVM output to establish links between queries.
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Bestlink SVM uses a backward context from users’ queries to improve the task
clustering results. The two most important features from the query representa-
tion in Bestlink SVM includes the cosine similarity between query embeddings
and the similarity between clicked URLs. Context Attention based LSTM (CA-
LSTM) [9] relies on recurrent neural networks instead of SVMs, using both back-
ward and forward queries to provide context while training the neural network
to detect if a pair of adjacent queries pertain to the same task or not. CA-LSTM
then uses graphs to cluster related queries.

Bayesian approaches include Latent Dirichlet Allocation with Hawkes pro-
cesses (LDA-Hawkes) [16], Distance Dependent Chinese Restaurant Process
(DD-CRP) [19], and Bayesian Rose Trees (BRTs) [20]. LDA-Hawkes combines
LDA with Hawkes processes to identify and label search tasks from query logs.
LDA performs topic modeling, identifying semantically related queries from dif-
ferent users, while Hawkes processes take into account time lapses between query
timestamps in individual query sequences, assigning temporally close queries
to the same search task. DD-CRP extracts a single-level hierarchy of tasks
from query logs, linking related queries by word embedding distances. DD-CRP
assumes a restaurant with an infinite number of tables. Customers enter the
restaurant in tandem; they are assigned to a nonempty table based on the num-
ber of existing customers in the table, or an empty table depending on a hyper-
parameter. Entries in the query log are customers, while search tasks are tables.
BRTs extend the single level hierarchy of DD-CRP to multiple levels, modeling
search tasks by clustering related nodes in the hierarchical structure.

Graph-based clustering is used in several approaches for search task model-
ing [17,18,22]. QC-WCC [17] builds a graph where nodes correspond to queries,
and edges are weighted according to the similarities between queries. Similar-
ities are based on two features: one content-based from Jaccard similarity on
tri-grams, and the other semantic-based exploiting Wikipedia and Wiktionary
to infer the semantics. QC-HTC [17] is a computationally simpler algorithm
based on QC-WCC, although less accurate. It exploits the sequential nature of
queries to decrease the computational complexity of the graph based method.
QC-HTC first builds sequences of queries according to the distance between
them, creating the first set of clusters, then takes the first and last queries of the
sequence to represent a cluster and group it with other clusters depending on
query distances. Using only the first and last queries in each cluster avoids the
computation of the full similarity graph required for QC-WCC, making QC-HTC
less computationally expensive.

QRY-VEC [22] improves over the QC-WCC algorithm using word embedding
similarities instead of lexically based similarities. Queries for the same task clus-
ters tend to be semantically similar rather than lexically similar, as queries in
the same tasks contain more synonym words than exact words [17,27]. Because
of this, instead of relying on lexically based similarities and retrieved docu-
ments from the Wikipedia collection, QRY-VEC uses the cosine similarity on
tempo-lexical word embeddings and documents retrieved from the ClueWeb12B
collection [3]. Multilingual Graph-Based Clustering (MGBC) [18] outperforms



408 L. Lugo et al.

previous models by combining a multilingual query encoding with graph-based
clustering, supporting queries in several languages through the use of the Mul-
tilingual Universal Sentence Encoder (MUSE) [29]

However, most search task modeling methods [9,12,16,17,19,20,22,28] are
monolingual. Although MGBC supports several languages through MUSE, it can
only process queries in sixteen languages. Additionally, when using ClueWeb12B
for calculating query similarities, MGBC can only support user queries in
English. By the same token, most search task modeling methods [9,16–19,22]
fail to take into account clicked URLs when processing search query logs, even
though clicked URLs have a critical correlation to the user intent [31]. Also,
conversational information seeking systems and multiple applications support-
ing users search efforts require results on the fly. Building models from scratch
when a user submits a query could create large processing times, forcing search
systems to trigger timeout intervals [30]. Similarly, waiting for forward queries to
provide context [9] can render models unfeasible in realtime setups. Also, some
models requiring user identifiers [9,12,16,20] can not be used in user-independent
[5,18,22] modeling scenarios.

3 User Search Task Modeling

LASTM is an unsupervised method that leverages latent representations of
queries in a language-agnostic space, user intent modeling from clicked query-
document pairs, and graph-based clustering to model user search tasks. It can
also produce a realtime mapping of queries to modeled search tasks. In contrast
with previous work [9,12,16,17,19,20,22,28], our proposed approach supports
multiple languages through a language-agnostic latent space. The proposed app-
roach is also independent of user identifiers, enabling the modeling of search tasks
in both user-independent and personalized scenarios. It also differs from some
prior methods [9,16–19,22] by leveraging clicked URLs to model user intent [31]
in the query latent space.

3.1 Language-Agnostic Query Representation

Users worldwide submit queries in different languages to satisfy their information
needs. Language-agnostic BERT Sentence Embedding (LABSE) [10] provides
the sentence embeddings to represent user queries in a language-agnostic latent
space. Using a 12-layer transformer architecture [7,25] in a dual configuration,
LABSE takes the transformer’s hidden state for the last token in the sentence
to generate the query representation.

The query representation using LABSE has the ability to perform zero-shot
cross-lingual transfer, supporting queries in languages that are not part of the
training dataset. When performing tests with the TAOEBA dataset [2], LABSE
obtains an 83.7% accuracy, while the baseline Language-agnostic Sentence Rep-
resentations [2] gets 65.5%, even though more than 30 languages in the TAOEBA
dataset were not part of the LABSE training data [10].
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We use the cosine proximity [10,22] to compute the similarity between query
representations in the language-agnostic latent space. Formally, given a pair of
queries qi, qj with latent representations ui, uj , the similarity between query
representations Slat is calculated as follows [10,22]:

Slat(ui, uj) =
uiuj

|ui| |uj | (1)

3.2 User Intent Modeling

User clicks play a critical role in modeling user intent – the information need
the user wants to satisfy by performing the search task [31]. Query term match
between queries for the same information need can be very low; even lexically
different queries pertaining to the same search task can have similar clicked URLs
[20,31]. Also, analysis of clicked URLs can help disambiguate queries, revealing
which documents users clicked when performing their search tasks [5].

To model user intent, we use the Open Resource for Click Analysis in Search
(ORCAS) [5], a collection containing 18.8 million clicked document - query pairs
for 10.4 million unique queries. Clicked documents are represented using the
TREC document identifier in the TREC Deep Learning document collection
[6]. We encode queries in ORCAS in the language-agnostic latent space [10],
creating a user intent database DM with clicked document - query pairs. To
retrieve the most relevant documents for a given user query in the database, we
use Scalable Nearest Neighbor (ScaNN) [11], a state-of-the-art method for large-
scale retrieval tasks. ScaNN performs maximum inner product search (MIPS)
using an anisotropic vector quantization, which allows a fast rate of document
scoring.

Even though ORCAS has queries exclusively in English, doing MIPS directly
on the language-agnostic latent space enables user intent modeling in any lan-
guage LABSE can support. Hence, we can leverage the existing relationship
between clicked URLs and user intent [31] by searching the DM database.

Formally, given a database DM = {mi}i=1,2,...,n formed from a clicked query-
document dataset DQ with n data points, where each data point mi ∈ R

p is the
latent representation of the query q ∈ DQ in the p-dimensional language-agnostic
latent space, we want to find the most relevant documents {dj}j=1,2,...,k ∈ DM

for the user query u ∈ R
p. Therefore, we search for the k points with the maxi-

mum inner product with the user query u as follows [11]:

MIPS(DM , u) = {dj}j=1,2,...,k = arg max
mi∈DM

〈u,mi〉 (2)

Given a user query pair qi, qj with latent representations ui, uj , the similarity
based on user intent Sint is calculated using the Jaccard coefficient for the top
thousand relevant documents in the database DM [18,22]:

Di = MIPS(DM , ui) (3)

Dj = MIPS(DM , uj) (4)
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Sint(ui, uj) =
|Di ∩ Dj |
|Di ∪ Dj | (5)

3.3 Unsupervised Search Task Modeling

We now integrate user intent modeling and language-agnostic query represen-
tations with graph-based clustering [4] to model search tasks (Algorithm 1).
First, we encode queries in the latent space (Section 3.1); every query embed-
ding becomes a node in the weighted graph. Then, we compute the similarities
between pairs of queries to create the edges of the weighted graph. The similarity
between queries Sqry is a convex combination of the similarity in the latent space
Slat and the similarity based on user intent Sint. Given a pair of queries qi, qj

with latent representations ui, uj , query similarity Sqry is calculated as follows
[18]:

Sqry(ui, uj) = α ∗ Slat(ui, uj) + (1 − α) ∗ Sint(ui, uj) (6)

After finishing edge weight calculations, we prune the weighted graph, delet-
ing edges with Sqry < η. The resulting connected components C in the graph
constitute the search tasks, so we assign a unique task label taski to every
connected component. All the queries pertaining to a connected component
receive the same task label. A grid search optimizes parameters η and α, using
η = k/10, α = k/10, 0 < k ≤ 10, k ∈ N [4,17,18,22].

3.4 Realtime Mapping of New Queries

Most search systems and user supporting applications require results in realtime.
Applications like contextual topic modeling in conversational search [15], query
suggestion, or query reformulation can not afford to wait for large processing
times. It is essential to return an answer in a few milliseconds. Hence, once the
user performs a search request, we map the new incoming query to the labels
extracted with Algorithm 1 so that we can model the search task in realtime.
To do the mapping, we use the same MIPS method with anisotropic vector
quantization [11] that we used in Section 3.2.

The search task database maps the latent representation of the queries in
the search log QL to the extracted task labels LT . Formally, given a database
QT = {mi}i=1,2,...,n formed from the search query log QL with search task
labels LT returned from Algorithm 1, where each datapoint mi ∈ R

p is the
latent representation of the query q ∈ QL in the p-dimensional language-agnostic
space. For an incoming query qi, we compute the latent representation ui; then,
we retrieve the search task labels T of the k closest queries in the language-
agnostic latent space using MIPS:

T = MIPS(QT , ui) (7)

Once we have the search task labels T of the k closest queries, we return the
task label with the highest number of occurrences in T .
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Algorithm 1. LASTM

Inputs: Search query log QL, Clicked query-document collection DQ

Output: Task labels LT

// Build database for user intent
DM ← {}
for all qi, di ∈ DQ do

xi ← language agnostic space(qi)
DM ← DM ∪ {xi, di}

end for

// Model search tasks
V ← {} , E ← {} , G(V, E) ← (V, E)
for all qi ∈ QL do

ui ← language agnostic space(qi)
V ← V ∪ {ui}

end for

for all vi, vj ∈ V do
Slat(vi, vj) = cos(vi, vj)
Di, Dj ← document IDs for vi, vj from DM

Sint(vi, vj) = Jaccard(Di, Dj)
ek ← α ∗ Slat(vi, vj) + (1 − α) ∗ Sint(vi, vj)
E ← E ∪ {ek}

end for

for all ek ∈ E do
if ek < η then

E ← E \ {ek}
end if

end for

for all Ci ∈ G(V, E) do
taski ← i
for all vk ∈ Ci do

LT [vk] ← taski

end for
end for

return LT

4 Results and Discussion

In this section, we analyze LASTM in user independent search task modeling
and realtime mapping of incoming queries. Following previous work [9,18], we
calculate model performance with the Fβ score:
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Fβ =
(1 + β2) ∗ p ∗ r

β2 ∗ p + r
(8)

where p is precision and r is recall. We consider both β = 1.0 and β = 0.6
[9], which gives more weight to the precision of the model. The Student’s paired
t-test provides statistical significance calculations [31].

We use open source implementations for ScaNN1, NetworkX2 in graph-based
clustering, and the publicly available pretrained model for LABSE.3

Table 1. Search task modeling results for the CSTE dataset in all the languages
supported by the MGBC method. Differences between MGBC and LASTM results
have p ≤ 0.05 for the Student’s t-test.

Language ISO 639-1 F1 F0.6

MGBC LASTM MGBC LASTM

Arabic ar 0.447 0.521 0.395 0.490

Chinese PRC zh 0.480 0.539 0.473 0.513

Chinese Taiwan zh-tw 0.482 0.540 0.476 0.515

Dutch nl 0.449 0.534 0.431 0.511

English en 0.456 0.538 0.437 0.512

German de 0.450 0.533 0.432 0.511

French fr 0.484 0.539 0.547 0.512

Italian it 0.452 0.540 0.434 0.517

Portuguese pt 0.458 0.537 0.438 0.514

Spanish es 0.450 0.541 0.432 0.516

Japanese ja 0.453 0.522 0.436 0.495

Korean ko 0.451 0.523 0.396 0.501

Russian ru 0.449 0.533 0.429 0.508

Polish pl 0.460 0.536 0.524 0.512

Thai th 0.444 0.522 0.427 0.489

Turkish tr 0.429 0.538 0.401 0.513

4.1 Search Task Modeling

The Cross-Session Task Extraction (CSTE) dataset [22] and the Complex User
Search Task Analysis (CUSTA) dataset [8] are used for experiments. CSTE has
1424 entries with 224 ground truth labels corresponding to cross-session search
tasks. CUSTA has 2390 entries with 15 ground truth search task labels. As a
1 https://github.com/google-research/google-research/tree/master/scann.
2 https://networkx.github.io/.
3 https://tfhub.dev/google/LaBSE/1.

https://github.com/google-research/google-research/tree/master/scann
https://networkx.github.io/
https://tfhub.dev/google/LaBSE/1
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baseline, we use MGBC, a state-of-the-art method for search task modeling, cal-
culating metrics for all the languages supported by the baseline. Queries in the
CSTE dataset are in English, while queries in the CUSTA dataset are mostly
in French, with very few English entries. Hence, we perform machine transla-
tion with the Google Cloud Translation API4 for evaluating LASTM in all the
languages supported by MGBC.

Table 2. Search task modeling results for the CUSTA dataset in all the languages
supported by the MGBC method. Differences between MGBC and LASTM results
have p ≤ 0.05 for the Student’s t-test.

Language ISO 639-1 F1 F0.6

MGBC LASTM MGBC LASTM

Arabic ar 0.595 0.608 0.648 0.665

Chinese PRC zh 0.658 0.667 0.667 0.688

Chinese Taiwan zh-tw 0.632 0.672 0.604 0.694

Dutch nl 0.594 0.648 0.577 0.761

English en 0.597 0.657 0.544 0.705

German de 0.550 0.642 0.542 0.715

French fr 0.656 0.732 0.748 0.750

Italian it 0.559 0.604 0.492 0.602

Portuguese pt 0.616 0.622 0.610 0.636

Spanish es 0.641 0.643 0.593 0.712

Japanese ja 0.697 0.619 0.737 0.571

Korean ko 0.573 0.563 0.639 0.561

Russian ru 0.633 0.641 0.742 0.754

Polish pl 0.541 0.598 0.578 0.605

Thai th 0.541 0.603 0.533 0.636

Turkish tr 0.618 0.653 0.640 0.711

The proposed approach improves the search task modeling performance of
the baseline method in the two datasets used for testing. Using the CSTE dataset
(Table 1), LASTM surpasses MGBC in all the languages supported by the base-
line, obtaining up to 10.9% (p ≤ 0.05) improvement in the F1 score for the
Turkish language; similarly, LASTM obtains better F0.6 scores in fourteen out
of sixteen languages, getting an improvement of up to 11.2% (p ≤ 0.05) in
the Turkish language. Furthermore, the monolingual QRY-VEC method, which
supports queries in English, obtains an F1 score of 0.538 and an F0.6 score of
0.488 [22]. Consequently, there is no loss in modeling performance when com-
paring LASTM to the QRY-VEC method. For the CUSTA dataset (Table 2),

4 https://cloud.google.com/translate.

https://cloud.google.com/translate


414 L. Lugo et al.

we observe improvements in fourteen out of the sixteen languages supported by
MGBC; LASTM generates up to 9.2% (p ≤ 0.05) improvement in the F1 score
for the German language and up to 18.4% (p ≤ 0.05) improvement in the F0.6

score for the Dutch language.
Both the similarity between query representations Slat and the similarity

based on user intent Sint contribute to the search task modeling results. In the
grid search for the CSTE dataset, α values averaged 0.238 ± 0.099. For the
CUSTA dataset, α values in the grid search averaged 0.731 ± 0.157. These α
values indicate that the convex combination (Eq. 6) effectively relies on the two
similarities to compute the edges for the weighted graph.

From a language coverage perspective, the query representation for LASTM
is trained with 109 languages and can perform zero-shot cross-lingual transfer
to multiple more languages [10]. In contrast, the baseline only supports sixteen
languages, making LASTM coverage at least seven times larger when considering
training languages only. The improvements in modeling results and language
coverage highlight the importance of considering user intent along with language-
agnostic query representation for modeling search tasks.

(a) (b)

Fig. 1. Search task mapping results in the language-agnostic latent space for
AOLQTM, TRECQTM, and WHQTM datasets. Results include several values of top
k from the ScaNN index, considering (a) Accuracy (b) F1.

4.2 Mapping of Incoming Queries

To analyze the performance of LASTM for mapping new incoming queries, we
run the mapping method using three benchmark datasets previously proposed
for query-task mapping [27]:

– AOL-based Query-Task-Mapping (AOLQTM) dataset, which has 41780
queries and labels for 1423 search tasks.

– TREC-based Query-Task-Mapping (TRECQTM) dataset, which has 47514
queries with labels for 276 search tasks.
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– WikiHow-based Query-Task-Mapping (WHQTM) dataset, which has 119292
queries with labels for 7202 search tasks.

We use a leave-one-out evaluation, independently selecting one hundred ran-
dom queries from the dataset and repeating the evaluation for fifty runs. Exper-
iments run on a virtual machine instance with 8 CPUs of 3 GHz and 60 GB
of RAM. Metrics include accuracy, F1, F0.6, and query time. To measure query
time, we take the average time for mapping a single query, using 104 mappings to
compute the average [18,27]. As a baseline, we use the MGBC approach for query
task mapping. MGBC combines the Neighborhood Graph and Tree approximate
nearest neighbor method [14] with the MUSE latent space for query encoding.
For reference, we also include results using the Trie5 data structure and the
BM256 retrieval model [18,27,29].

Figure 1 depicts the optimization experiments for the number of top k results
from ScaNN to consider. After running tests for k = [1, 3, 5, 7, 9, 11, 13], we found
that top k = 7 results from ScANN generates the optimal configuration, provid-
ing the best results for task mapping while keeping the time per query under
a millisecond (Table 3). Low response time is an essential aspect for applica-
tions supporting users in realtime setups. Long answer times could affect the
interaction of the search system with the users, especially in conversational and
multimodal search systems, where a post-processing step is required to generate
a response to the user request [15,30]. Similarly, long answer times could trig-
ger internal timeout intervals [30], forcing search systems to ignore search task
mapping results while doing internal post-processing.

Table 3. Realtime mapping of queries to search tasks. Differences against baseline
MGBC results have p ≤ 0.05 for the Student’s t-test.

Dataset Method Accuracy F1 F0.6 Query time

AOLQTM Trie 0.693 0.543 0.543 0.029 ms

BM25 0.809 0.689 0.689 0.947 s

MGBC 0.751 0.608 0.607 0.308 ms

LASTM 0.802 0.678 0.677 0.490 ms

TRECQTM Trie 0.650 0.519 0.518 0.030 ms

BM25 0.791 0.688 0.688 2.532 s

MGBC 0.804 0.705 0.704 0.299 ms

LASTM 0.822 0.729 0.728 0.481 ms

WHQTM Trie 0.471 0.310 0.311 0.032 ms

BM25 0.621 0.453 0.454 6.572 m

MGBC 0.648 0.481 0.481 0.368 ms

LASTM 0.558 0.389 0.389 0.982 ms

5 https://github.com/google/pygtrie.
6 https://github.com/nhirakawa/BM25.

https://github.com/google/pygtrie
https://github.com/nhirakawa/BM25
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LASTM surpasses the baseline and reference methods in the TREC-based
dataset, improving the F1 score by 2.4% (p ≤ 0.05), while keeping processing
times under a millisecond. For the AOL-based dataset, LASTM surpasses the
baseline method, obtaining a 7.0% improvement in the F1 score (p ≤ 0.05);
likewise, LASTM obtains similar results to BM25, but it is faster when compar-
ing to the BM25 implementation used for experiments. For the WikiHow-based
dataset, LASTM underperforms MGBC and BM25 (Table 3). Regarding the
number of user queries per task, we find that the TREC-based dataset has an
average of 28 user queries per search task, while the WikiHow-based dataset
has an average of 2 user queries per task. Hence, the WikiHow-based dataset
contains mostly simple tasks, which users can solve with a few queries [13]. Task
mapping results suggest that LASTM is better than the baseline and reference
methods when mapping search tasks containing multiple queries, while MGBC
is better when mapping simple search tasks in realtime.

5 Conclusion

In this paper, we proposed LASTM, an unsupervised method for modeling search
tasks from user interactions with search systems. The proposed model outper-
forms the baseline both in modeling performance as well as the number of lan-
guages it can support, highlighting the importance of language-agnostic latent
spaces for query representation and the importance of considering clicked URLs
to model user intent. Also, it is independent of user identifiers, enabling modeling
search tasks in user-independent or personalized applications. The modeling per-
formance of LASTM, its language-agnostic capacity, and its ability to support
realtime modeling can benefit search systems and user supporting applications,
constituting an essential step in the effort to make search more coherent, conver-
sational, engaging, and natural. For future work, we plan to explore unsupervised
alternatives for graph-based clustering to further improve search task modeling.
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Abstract. The task of named entitiy recognition(NER) is normally
regarded as a sequence labeling problem. However, this kind of NER
framework does not utilize any prior knowledge. In this paper, we propose
a novel framework called DSMER, which stands for Deep Semantic
Matching based Framework for Named Entity Recognition. DSMER
is a two-phase framework: 1) detect the boundary and extract candi-
date span, 2) calculate the distance between candidates and entity type.
Meanwhile, the representation of each entity type is encoded from its
corresponding annotation rules and example set. Since the combination
of various textual data, DSMER has the ability to integrate informative
prior knowledge. Additionally, we introduce the Word Mover’s Distance
to measure the similarity between sequences of different lengths. We con-
duct experiments on CoNLL 2003 and OntoNotes 5.0 dataset. Experi-
mental result shows our approach achieve state of the art performance,
and demonstrates the effectiveness of the proposed framework.

Keywords: Named entity recognition · Semantic matching · Entity
boundary detection

1 Introduction

Named entity recognition(NER) is a subtask of information extraction, which
refers to a task of detecting spans from text and classifying their types. Among
mainstream research methods, the NER task is commonly considered as a
sequence labeling problem [1,3,6,12,24]: for each token of the input sequence,
predict a class label assigned to it. The sequence labeling framework solves NER
with an end-to-end way, and has achieved effective results on various datasets.

However, this formalization of NER is quite different from the recognition
process of humans. Figure 1 shows human conventions when annotating entity
labels. The annotation rules should first be summarized according to human
experience and background knowledge. Then the annotator would try to anno-
tate a few examples according to the rules and adjust the rules based on example
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Locations: roads, trajectories, regions, structures, natural locations, ……

Miscellaneous: words of which one part is a location, organization, ……

Organizations: companies, subdivisions of companies, brands, ……

Persons: first, middle and last names of people, animals, ……

Asia, Florida, White House, ……

Americans, European Cup, ……

BBC Radio, Microsoft, ……

Hamilton, C. Ambrose, ……

Annotation Rules Example Set

EU rejects German call to boycott British lamb.

ORG O      MISC O  O   O        MISC O     O

Fig. 1. Human annotation process of named entity extraction and recognition. The
annotation rules and example set are chosen from CoNLL 2003 dataset.

set. Finally, the annotation rule and the example set are combined together as
prior knowledge to carry out the complete data annotation process.

Inspired by human convention, we propose a new framework that is capa-
ble of integrating knowledge from annotation rules and example set. Instead of
treating NER as a sequence labeling problem, we formulate it as a deep seman-
tic matching task [5,14,22]. Following the principle of two-phase framework [10],
we design three sub-modules: 1) Prior Knowledge Encoding: encode the repre-
sentation of entity types from annotation rules and example set, 2) Boundary
Detection: predict the start and end index of candidate entities and extract the
representation of them, 3) Semantic Matching: calculate the similarity between
candidate span and different types. The input sentence is first sent to the bound-
ary detection module to extract a set of candidates.

At the same time, we combine the annotation rules and example set corre-
sponding to each entity type, and encode them to obtain the representation vec-
tor of the entity type. In the second phase, we input the representation vector of
each candidate span and entity types into the semantic matching module. The
label of candidate span is determined by the similarity of semantic representation
between them. In order to measure the similarities between spans and entity types
with different lengths, we introduce Word Mover’s Distance(WMD) [7], which is
a novel distance function based on Earth Mover’s Distance(EMD) [20].

We conduct experiments on public NER datasets to show the effectiveness of
our approach. Experimental results show that our deep semantic matching based
framework outperforms both sequence labeling and machine reading comprehen-
sion based frameworks. In addition, we also conducted ablation experiments to
verify the influence of different prior knowledge on our method. Our main con-
tributions are summarized as follows:

– We propose a novel deep semantic matching based NER framework which
exploits prior knowledge and is closer to human annotation behavior.



DSMER 421

– Our boundary detection module overcomes the problem of excessive sample
size and imbalance between positive and negative samples in previous entity
classification methods.

– We first introduce the Word Mover’s Distance into semantic modeling to
directly measure the similarity of unequal length sequences.

2 Related Work

Named Entity Recognition(NER). Traditional entity recognition methods
treat NER task as a sequence labeling problem and use CRFs as the backbone
[8,25]. More recently, neural models was introduced for NER under the sequence
labeling framework. Collobert et al. [2] presented a CNN-CRF structure, Huang
et al. [6] first applied BiLSTM-CRF model to NER, Lample et al. [9] proposed a
BiLSTM-CRF model with character-based word representations, Ma and Hovy
[12] and Chiu and Nchols [1] extend the BiLSTM-CRF structure with a character
CNN to extract features, Sturbell et al. [24] proposed a iterated dilated convo-
lutions NER model to accelerate the parallel computing on GPU. With the rise
of large-scale pre-trained language models [3,16,18,19], sequence labeling style
NER models achieved state of the art performance.

In addition to the recognition of flat entities, there are also some studies
on nested entities. Previous work was mainly based on the two-phase frame-
work, which first enumerated all possible spans, and then predicted entity type.
According to this idea, Sohrab et al. [23] proposed a deep exhaustive model
which limited all the regions within a specified maximum length. Zheng et al.
[28] leveraged the entity boundaries to improve the performance of identifying
entities.

Moreover, Li et al. [11] migrate the NER task to machine reading compre-
hension framework and make the model compatible with recognizing both flat
and nested entities.

Semantic Textual Matching. Huang et al. [5] first proposed the deep struc-
tured semantic model(DSSM) in web search area to map a query to its relevant
documents at semantic level. The principle is that the query and documents
are embedded to semantic vectors, and the distance between them is calculated
by cosine distance, and finally the semantic matching model is trained. Aiming
at the shortcoming of the bag-of-words model used by DSSM, Shen et al. [22]
replaced the DNN with CNN, so that the model can make up for the loss of
context. Since the CNN based model can not capture the feature from long term
context, Palang et al. [14] introduced the LSTM to overcome the problem.

Word Mover’s Distance. Kusner et al. [7] proposed the document distance
matrix called Word Mover’s Distance(WMD), which can be cast as an instance
of the Earth Mover’s Distance(EMD). In statistics, the EMD is a measure of
the distance between two probability distributions over a region D. If the dis-
tributions are interpreted as two different ways of piling up a certain amount
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of dirt over the region D, the EMD is the minimum cost of turning one pile
into the other, where the cost is assumed to be the amount of dirt moved times
the distance by which it is moved. The concept of EMD was first introduced
by Gaspard Monge [13] in the context of transportation theory. The use of the
EMD as a distance measure for monochromatic images was described by Peleg
et al. [15]. Stolfi et al. [20] first proposed the name “Earth Mover’s Distance”.
Rubner et al. [20] first used it on image retrieval task to measure the distance
between images.
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Fig. 2. Overview of deep semantic matching entity recognition framework(DSMER).

3 NER as Semantic Matching

Figure 2 shows the architecture of DSMER. Given an input sequence X =
{x1, x2, ..., xl}, where l denotes the length of the sequence, we need to extract
every candidate entity span from X, and then assign a label t ∈ T to it through
semantic matching model, where T is the set of all entity types. The framework
is a two-phase model composed of three modules. In the first phase, the represen-
tations of candidate spans are extracted, and entity types are encoded through
prior knowledge like annotation rules, example set, etc. In the second phase, we
separately measure the similarity of each candidate span and all entity types
through the semantic matching module. BERT [3] is used as the encoder in each
module of the first phase. The following subsections will describe the detail of
different modules in DSMER.

3.1 Prior Knowledge Encoding

The prior knowledge encoding procedure is important for DSMER since the
external text like annotation rules contains informative semantics and has a
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significant impact on the final result. Seyler et al. [21] discussed the importance
of different categories of external knowledge for performing NER task, including
Name-based, Knowledge-Base-based and Entity-based. Besides, Li et al. [11]
encoded annotation guideline notes as reference queries and achieved a vast
amount of performance boost over current SOTA models. In this paper, we take
both annotation rules and example set of entity mentions as prior knowledge.
Annotation rules are not only the guidelines provided to the annotators of the
dataset but the Wikipedia definition and synonyms of entity type.

Assuming Et is the representation of entity type t. Given a list of annotation
rules R = [r1, r2, ..., rn] and a set of example mentions S = s1, s2, ..., sm, where
n and m denote the number of rules and mentions. We first encode the anno-
tation rules and the example set separately, and then concatenate the hidden
representations of them as Et:

Et = tanh(Wt[ER, ES ] + bt) (1)

where ER and ES are both encoded by BERT, Wt and bt is the trainable weight
and bias:

ER =
1
n

n∑

i=1

BERT (ri)

ES =
1
m

m∑

j=1

BERT (sj)

(2)

In particular, we only take the output context representation of [CLS] posi-
tion to calculate the average representation of rules and mentions with different
lengths.

3.2 Boundary Detection

The boundary detection module is designed to recognize all possible candidate
span in the input sentence X. Previous work [23,28] simply set a maximum
length of entity, and enumerated all possible spans as a candidate set, which
caused the imbalance of positive and negative samples and the problem that the
number of samples increased exponentially with the length of the input sequence.
To tackle this problem, we use two binary classifiers: one to predict whether each
token is the start index or not, the other to predict the end index. Figure 3 shows
the architecture of boundary detection module.

Given the representation matrix EX output from BERT,

EX = BERT (X), E ∈ Rn×d (3)

where d is the dimension size of the output layer of BERT. The module adopts
two fully-connected layers to detect the start and end position indexed respec-
tively by assigning each token a binary tag (0/1).

P i
start = σ(WstartExi

+ bstart) (4)
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Fig. 3. The workflow of boundary detection module.

P i
end = σ(WendExi

+ bend) (5)

where P start
i and P end

i represent the probability of identifying the i-th token in
the input sequence X as the start and end position of a candidate span.

After predicting the start and end positions, we combine start index and each
end index greater than it as a candidate span c, and extract the representation
Ec = {Exstart

, Exend
} for semantic matching in next phase.

3.3 Semantic Matching

The semantic matching module is a deep neural network following DSSM [5]
and CLSM [22]. Figure 4 shows the structure of this module. Considering the
ground truth type t+ ∈ T , which is closer to candidate span than other types
in semantic space. We can simply use the deep semantic model to calculate the
relevance of each pair of (c, t).

To directly measure the difference between two sequences of different lengths,
we introduce the Word Mover’s Distance. Considering the embedding of entity
span Ec and the embedding of entity type Et, the cost of WMD can be calculated
by:

min
di,j≥0

∑

i,j

di,j
∥∥ei − e′

j

∥∥

s.t.
∑

i

di,j =
1
lc

,
∑

j

di,j =
1
lt

(6)

where lc and lt are the length of candidate span and entity type vector, ei and e
′
j

are i-th and j-th embedding vector in Ec and Et. The semantic relevance score
between a candidate c and a entity type t is then measured as:

M(c, t) = WMD(Ec, Et) (7)
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Fig. 4. The structure of deep semantic matching module. Let t1 be the matched entity
type of candidate span ci, and all others are negative examples. Send their represen-
tations into the model, calculate the similarity of each pair, and finally output the
posterior probability through softmax layer.

After obtaining the semantic relevance score, we compute the posterior prob-
ability through a softmax function:

P (t|c) =
exp(M(c, t))∑

t′∈T exp(M(c, t′))
(8)

In particularly, we adopt shortcut connections every other layer parallel to
linear transformation before the activation function, as in ResNet [4]. This helps
the training of a deep neural network.

3.4 Loss Function

At the training time, X is paired with two label sequences Ystart and Yend that
represent the ground-truth label of each token xi. We use the binary cross-
entropy loss for the prediction of start and end index:

Lstart = BCE(Pstart, Ystart) (9)

Lend = BCE(Pend, Yend) (10)

The parameters of semantic matching module are estimated to maximize the
likelihood of t+. Equivalently, we need to minimize the following loss function:

Lmatch = −log
∏

(c,t+)

P (t+|c) (11)
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The overall training objective to be minimized is as follows:

L = αLstart + βLend + γLmatch (12)

where α, β, γ ∈ [0, 1] are the hyper-parameters to control the contributions of
different modules. The three losses from two phrase of DSMER are jointly trained
with parameters shared at BERT.

At the test time, candidate spans are first extracted based on boundary
detection module. Then the semantic matching model is used to measure the
similarity of candidate span and entity types, leading to the final answers.

4 Experiments and Discussions

In this section, we conduct experiments on several public datasets and compare
DSMER with models of different NER framework. The following subsections will
describe the implementation details and ablation analysis in detail.

4.1 Datasets and Preprocessing

Datasets. We use corpora provided by CoNLL 2003 Shared Task [26] and
OntoNotes 5.0 [17] to evaluate the model presented in this paper. CoNLL2003
is an English dataset with four types of named entities: Location, Organization,
Person and Miscellaneous. And Ontonotes 5.0 includes 18 types of named entity,
consisting of 11 types (Person, Organization, etc.) and 7 values (Date, Percent,
etc.).

Data Reconstruction. Most NER corpora provide the labeled data for
sequence labeling framework. Different from other NER frameworks, the DSMER
needs to extract the rules from annotation document and random sampling part
of entities for each type from raw dataset.

For each train set, we random choose 10% annotated entities as example
set, and remain 90% as train set as usual. The statistical details are listed in
Table 1. To further experiment, we also test the ratio of 5%, 15%, 20% and 40%
in following experiments.

Table 1. The entity statistics of preprocessed datasets.

Corpus Example set Train set Dev set Test set

CoNLL 2003 [26] 2,350 21,149 5,942 5,648

OntoNotes 5.0 [17] 8,183 73,645 11,066 11,257

As for the boundary detection module, training data requires binary label
for start and end indexes. The ground truth label of entities is converted into
two lists for start and end, which are set to 1 only when the token belongs to
the boundary of the entity.
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4.2 Implementation Details

We use fastNLP1 to implement the model and evaluate all experiments on
datasets. The DSMER model uses BERT as the skeleton. In order to ensure
the effectiveness of the semantic matching method, we only use BERT-base as
a semantic encoder in all the comparison experiments below. All experiments
are run on Nvidia Tesla V100 GPU, which has 32 GB memory to accommodate
larger batch size.

Table 2. Hyper-parameter settings.

Parameters Values

Optimizer AdamW

Initial learning rate 2e–5

Gradient clipping value 1.0

Global dropout rate 0.5

Warmup rate 0.1

Batch size 64

Training epoch 20

Layer of DSM 5

Hidden dim of DSM input 300

We train the model using AdamW optimizer with an initial learning rate of
2e–5, and use warm-up mechanism with linear schedule to adjust the learning
rate. To avoid gradient explosion problem, the gradient clip method is used
as a callback in training. The semantic matching module of DSM follows the
deep structured nerual network in [5], We use 5 fully connected layers, and the
input dimension of candidate span and entity types is 300. All other details of
hyperparameters are listed in Table 2.

4.3 Experimental Results

In order to verify the effectiveness of DSMER, we choose the classic and SOTA
models under different NER frameworks for comparison. For sequence label-
ing framework, we change the encoder module connected to CRF in range
of Bi-LSTM, IDCNN and Transformer. And BERT is also introduced for
the pretrain+finetune framwork. Finally we use the MRC-BERT model to
stand the machine reading comprehension framework. All comparison results
on CoNLL2003 and Ontonotes 5.0 are listed in Table 3 and 4.

Because we use BERT-base as the model skeleton, we respectively give the
experimental results without using the annotation rule and example set to verify
the effectiveness of the semantic matching framework.
1 https://github.com/fastnlp/fastNLP.

https://github.com/fastnlp/fastNLP
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Table 3. Comparison with other NER models on Conll2003.

Framework Model Precision Recall F1

Sequence labeling BiLSTM + CRF [6] – – 90.43

IDCNN + CRF [24] – — 90.54

TENER w/CNN-char [27] – — 91.45

BERT-Tagger [3] – – 92.80

Reading comprehension MRC-BERT [11] 92.33 94.61 93.04

Semantic matching Ours w/o example set 91.75 90.13 90.93

Ours w/o annotation rule 92.75 94.81 93.76

Ours 92.74 95.07 93.89

Experimental results on CoNLL 2003 show a slight improvement by DSMER
without example sets. However, significant improvement has been achieved under
the conditions of only using the example set. At the same time, we observe that
using example set and annotation rule can not improve all factors. This is because
the example set can better represent the scope of the entity type in the semantic
space, but the description text of the annotation rule may cause a certain offset,
which makes the calculation of the semantic similarity also be affected.

Table 4. Comparison with other NER models on OntoNotes 5.0.

Model Precision Recall F1

Sequence labeling LSTM + CRF [6] – – 86.99

IDCNN + CRF [24] – – 86.84

TENER w/CNN-char [27] – – 88.43

BERT-Tagger [3] – – 89.16

Reading comprehension MRC-BERT [11] 92.98 89.95 91.11

Semantic matching Ours w/o example set 90.56 88.79 89.67

Ours w/o annotation rule 92.90 90.27 91.57

Ours 92.95 90.47 91.69

Similar results are also observed in the experiment on the OnteNotes 5.0
dataset. However, the use of annotation rule can still improve F1 score, so
we think it is effective prior knowledge. Comparative experiments show that
DSMER can handle NER problems. We continue to conduct more ablation
experiments in Subsect. 4.4 to analyze the impact of different model designs
on performance.
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4.4 Ablation Studies

The Impact of Example Set. As shown in Table 3 and 4, whether to use
example set has a great influence on model performance. In order to observe the
impact of the size of the example set on the model, we split the data set according
to the split ratio of Subsect. 4.1, and test it on the CoNLL 2003 dataset. The
results are shown in Table 5:

Table 5. The impact of the percentage of example set, experiments on CoNLL 2003.

Percentage Precision Recall F1

5% 91.67 94.23 92.93

10% 92.75 94.81 93.76

15% 92.60 94.95 93.76

20% 91.83 93.79 92.80

40% 91.43 91.88 91.65

It can be seen that the 10% and 15% split ratios have the best effect. And as
the proportion of the example set increases, the overall effect decreases since the
lack of training data. Since all entities in the example set are phrases that can
express their entity type, a large number of entity examples can better express
the position of the entity type in the high-dimensional semantic space. In this
way, the calculation of the distance between candidate span and entity type is
more accurate. But with the increase of the example set, the decrease of training
data makes the model easy overfitting on the training data. This is a trade-off
process for dataset segmentation. Comparing with other models, we choose 10%
as the segmentation ratio.

The Impact of Annotation Rules. How to construct the annotation rule
sentence also has a significant influence on the final results. In this subsection,
we explore difference sources to construct annotation rules and their influence,
including:

– Annotation guideline: the annotation rule from documents, like “find orga-
nizations including companies, agencies and institutions”.

– Wikipedia: the wikipedia definition of entity type, like “an organization is
an entity comprising multiple people, such as an institution or an associa-
tion.”

– Synonyms: word or phrases that mean nearly the same as the entity type
word from Dictionary, like “association”

– All above: encode above three concepts and use the average representation.

Table 6 shows the experimental results on CoNLL 2003. DSMER outper-
forms BERT-tagger by using different types of annotation rules. Among them,
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Table 6. Results of different types of annotation rules on CoNLL 2003.

Model F1

BERT-Tagger 89.16

Annotation guideline 90.21(+1.05)

Wikipedia 89.65(+0.49)

Synonyms 89.90(+0.74)

All above 90.93(+1.77)

the effect of using annotation guideline is the best among the three categories,
because it is the closest text description to the entity annotation. At the same
time, it can be seen that the combined usage of three different kind of rules can
achieve better performance improvement.

5 Conclusion

In this paper, we introduce a novel framework for named entity recognition task
which reflect the natural entity annotation process of human being. The proposed
model obtain state of the art results on public datasets, which indicates the
effectiveness of DSMER. The deep semantic matching based framework shows a
possible new paradigm to tackle such problem. We would like to explore more
variant of the framework in the future.
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Abstract. Evaluation of intelligent assistants in large-scale and online
settings remains an open challenge. User behavior based online evalua-
tion metrics have demonstrated great effectiveness for monitoring large-
scale web search and recommender systems. Therefore, we consider pre-
dicting user engagement status as the very first and critical step to online
evaluation for intelligent assistants. In this work, we first propose a novel
framework for classifying user engagement status into four categories
– fulfillment, continuation, reformulation and abandonment. We then
demonstrate how to design simple but indicative metrics based on the
framework to quantify user engagement. We also aim for automating
user engagement prediction with machine learning methods. We compare
various models and features for predicting engagement status using four
real-world datasets. We conduct detailed analyses on features and failure
cases to discuss the performance of current models as well as potential
challenges.(1Resources used in this study can be found at https://github.
com/memray/dialog-engagement-prediction.)

Keywords: Intelligent assistant · User engagement · Online evaluation

1 Introduction

The increasing popularity of intelligent assistants such as Alexa, Siri and Google
Home has attracted broad attention to human-machine dialogue systems, but
also brought challenges for evaluating the performance of dialogue systems in
online environments. Previous research demonstrated that the most effective
way to improve any online system is to optimize it for end-user engagement [6].
For example, recommender systems can be optimized for user click and dwell
time [43] and web search systems can be optimized for click-through rate [9]
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and reformulation rate [14]. Nevertheless, designing proper metrics to optimize
online intelligent assistant systems remains a big challenge.

Previous studies seeking to evaluate dialogues systems mainly focus on the
performance of individual system component rather than overall user engage-
ment. The common practice in system-oriented evaluation is breaking down the
dialogue system into parts, such as dialogue act classification and state tracking,
and evaluating the performance of each component respectively. However, we
cannot assess the performance of the whole system by simply aggregating the
performance of each component. There were several methods developed to eval-
uate the overall system performance. For example, one can evaluate the quality
of system responses by measuring their similarities to ground-truth responses
with metrics like BLEU [39,40]. However, users’ requests in online environment
are very diverse and it is very expensive to build ground-truth datasets, which
make the evaluation hard to scale up for online scenarios.

Research in web search has a long history of conducting large-scale online
evaluation utilizing user engagement and behavior signals [8,13–15]. The idea
was to regard possible user interaction outcomes as different engagement types,
such as long-dwell click, query reformulation and abandonment. These engage-
ment types can then be used to gauge search success and cost, thus making these
measurements scalable for online evaluation. We think that the same idea can
be adopted to the evaluation of intelligent assistants as well. For example, we
can classify each user utterance in a dialogue system into success and failure
requests. Previous research proposed a conceptual framework PARADISE [41]
for evaluating dialogue systems. It pointed out that a successful dialogue system
should maximize task success and minimize cost. Same for the online evaluation
of intelligent assistant, we should not only focus on whether or not users’ requests
have been fulfilled but also measure how much effort it takes. We cannot simply
use the conversation length as measurement for cost, since it might take multi-
ple necessary turns to finish a complex user request. Instead, we should focus on
whether or not the interaction is necessary for the intelligent assistant to fulfill
the request. In order to solve the problem, we proposed a novel scheme cate-
gorizing users’ utterances into different types of engagement status, with which
we can design metrics to measure task success and cost for online evaluation of
intelligent assistant.

Furthermore, we aim for a more challenging task, delivering an automatic
method for predicting the user engagement status. In recommendation and
search, researchers utilize behavior signals such as dwell time and query con-
tent features to predict user engagement. Similarly, we utilize interaction signals
between users and intelligent assistants to predict users’ engagement status.
Comparing to the short queries in web search, the interaction between users
and intelligent assistants contains rich contents, which can be used for creat-
ing sophisticated automatic methods. We investigate various machine learning
models and feature settings for the engagement prediction task with four newly
annotated datasets.
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2 Related Work

2.1 Evaluation of Intelligent Assistants

There are several major methods being widely used for evaluating intelligent
assistants: (1) Evaluation on specific components [10,22,33]. People have estab-
lished several tasks to examine certain aspects of the systems, such as dialog
state tracking and dialogue act classification, and evaluate them by metrics
like precision and recall. While these evaluations are useful to identify prob-
lems in each component, the outcomes cannot reflect the overall performance
of the dialogue system. (2) Evaluation by comparing system responses with
ground-truth responses [28,36,39]. This type of approaches is broadly adopted
for response generation. The basic idea is to measure the similarity between
generated responses and ground-truth responses with metrics like BLEU [34].
However, a high degree of token matching may imply its readability, but does
not mean it is a logical response, and such methods have been proved correlated
poorly with the human judgment [29]. (3) There are a few tasks aiming to detect
problematic system responses which share a similar motivation to our study,
such as error detection [26,31] and breakdown detection [18]. But in these tasks,
the cost of communication is not considered and task boundaries are presum-
ably given. In the real world, both task success and cost affect users’ experience
considerably and users can move to a new task anytime, therefore our specially
designed framework, detecting both system failures and user request boundaries,
are more suitable for evaluating real-world systems.

2.2 User Engagement Prediction

User satisfaction rating in dialogue systems has been discussed for a long
time [21,35,38]. A wide variety of techniques and features have been stud-
ied [4,11,42], as well as some recent efforts on the basis of deep neural net-
works [30]. Most of these studies output a holistic satisfaction rating for the
entire dialogue, but it cannot offer any further information about how the sys-
tem fails to satisfy users. Therefore it is not a reliable optimization target that
can be used for improving the dialogue system.

PARADISE [41] framework tackles this problem by breaking down the mea-
surement of user satisfaction into two parts: task success and dialogue cost.
However, PARADISE was proposed more than twenty years ago and is more a
conceptual framework than a practical solution: the two factors are too general
to implement and they did not provide any automatic method practicable in a
nowadays large-scale setting. For example, to measure task success it requires
conversations to be represented as task-specific attribute-value pairs which are
not flexible nor transferable. The measurements of dialogue cost using utterance
length and number of dialogue turns are also arguable, because for many user
requests, say the restaurant inquiry in DSTC2 (see Table 1), it can take several
necessary turns to finish. Our work is also similar to [1,12,20,25] in the sense of
using user behavior signals to predict short-term user engagement/satisfaction.
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3 Classifying and Measuring User Engagement

3.1 Framework for Classifying User Engagement

Before introducing the classification framework, we would like to clarify several
concepts that play important roles in it. We consider a continuous interaction
between user and system within a small range of time as a session. And a session
is comprised of a number of utterances, each of which is issued by either the user
or the system. We can further group utterances into tasks basing upon user’s
potential information needs. For example, Table 1 shows a session sampled from
the dataset DSTC2, in which a user (User) consults a dialogue system (Bot)
about restaurants and the system asks the user to provide necessary information
to narrow down the scope. It consists of 7 effective pairs of user utterance and
system utterance, and 4 basic tasks (or user requests): requesting a restaurant
(#1-#3), requesting its address (#4), and requesting its phone number (#5)
and requesting its postcode (#6-#7).

With the goal of measuring both success and cost of user interaction with
intelligent assistant, we propose a four-class utterance classification scheme. Each
class represents the engagement status of a user after issuing an utterance:

Table 1. An annotated session from DSTC2 .

# Turn Utterance Label Task

Bot: Hello, welcome to the Cambridge restaurant system?
You can ask for restaurants by area, price range or food type.
How may I help you?

1 User: Moderately priced R

Success

Bot: What part of town do you have in mind?

2 User: North C

Bot: Would you like something in the cheap, moderate, or
expensive price range?

3 User: Moderate F

Bot: Golden wok is a nice restaurant in the north of town in
the moderate price range

4 User: Address F
Success

Bot: Sure , golden wok is on 191 Histon Road Chesterton

5 User: Phone number F
Success

Bot: The phone number of golden wok is 01223 350688

6 User: Postcode R

Failure

Bot: Golden wok is a nice restaurant in the north of town in
the moderate price range

7 User: Postcode A

Bot: Golden wok is a nice restaurant in the north of town in
the moderate price range

8 User: Thank you good bye
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– Fulfillment (F): current user request is understood and fulfilled by the system.
– Continuation (C): current user request is understood by the system but more

interactions are needed.
– Reformulation (R): current user request is wrongly or incompletely understood

by the system, and user repeats/rephrases this request in the next turn.
– Abandonment (A): current user request is not understood or fulfilled by the

system, so the user abandons this request by closing the conversation or starting
a new request.

In Table 1, user utterances are annotated with the proposed classification
scheme, as shown in the rightmost column. Specifically, the user told the system
her desired price range and location (Turn #1 and #2 ), but the system failed to
catch the first price information. After the user repeated it (Turn #3 ), the sys-
tem returned a restaurant that the user might be interested in. It is worth noting
that the annotation of an utterance utti has to be one-turn delayed, determined
after knowing the future responses (utti+) from both the system and the user side.
Therefore the Turn #1 utterance is annotated as ‘R’. The system replied cor-
rectly in both Turn #4 and #5. The user requested the postcode in Turn #6 and
repeated it in the Turn #7, and in the end she terminated the conversation after
an incorrect response. Thus #6 is labeled as ‘R’ and #7 is ‘A’.

Table 2. Two dimensions along which the proposed classification scheme can be bina-
rized.

Ongoing Ending

Correctly responded Continuation Fulfillment

Wrongly responded Reformulation Abandonment

From the definition of each type and the examples, we can see that the
proposed classification scheme is clearly defined and highly explainable, because
the four classes of user utterance are mutually exclusive and each depicts an
explicit user behavior. As shown in Table 2, our scheme can be thought as
two orthogonal binary classifications by checking (1) if the user continues or
terminates the current task/request and (2) if the system gives a correct or
wrong response. Based on the two conditions, one can assign labels much easier
than giving a subjective score [30,42] or a sentiment class [4]. For example, we
can split the session in Table 1 into four tasks and classify them in into Success
or Failure using F or A as task boundary and satisfaction indicator.

3.2 Online Evaluation Metrics Based on User Engagement Status

In the context of industrial web services, ahead of optimizing any system to
improve its performance for end users, it is common to first determine how to
measure the user engagement with a system, i.e. creating engagement metrics
that accurately reflect the user-end performance of a product. With the proposed
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classification scheme, not only are we able to understand the engagement status
of a user after each request immediately, it also enables us to define a series of
evaluation metrics to monitor the system performance in an online manner. Sim-
ilar to PARADISE [41], we define two metrics to measure the user engagement,
from the aspect of success and cost respectively.

Since Fulfillment or Abandonment indicates the boundary of a task as well
as a good/bad user experience, we can split a session to several tasks, and
then group them into successful/unsuccessful tasks. We define the Success
Rate of a session S as the percentage of success tasks as in Eq. (1), where
#(TASKsuccess∈S)/#(TASK∈S) denotes the number of successful/all tasks in
the session S:

SuccessRate =
#(TASKsuccess∈S)

#(TASK∈S)
(1)

Similarly, we would like a metric to represent how efficiently a system can
respond to requests. Firstly, we can use a statistic of Reformation to represent
the degree to which a user repeats in a task. We define Reformulation Rate of
a session as the average percentage of reformulated utterances in each task as in
Eq. (2), where #(UTTreform∈T )/#(UTT∈T ) denotes the number of Reformu-
lation/all user utterances in the task T. Furthermore, we hope the final metric
can also reflect the degree of user fatigue in the interaction. Though Continua-
tion utterances are considered necessary in most cases, we think long dialogues
should be avoided and better interaction models can be designed to shorten the
length. To this end, we define Fatigue Value as the average thresholded length
of a task as in Eq. (3) – if a task is longer than α turns (α is a preset parameter),
we count its fatigue value as #(UTT∈T )−α otherwise as 1. Then we define Effi-
ciency Rate as in Eq. (4), which means the less reformulation or the shorter
dialogue in each task, the more efficient we consider a session is.

ReformRate =
∑

T∈S

#(UTTreform∈T )

#(UTT∈T )
(2)

FatigueV alue =

∑
T∈S

max(1, #(UTT∈T ) − α)

#(TASK∈S)
(3)

EfficiencyRate =
1 − ReformRate

FatigueV alue
(4)

Lastly, we can define a unified User Engagement Score representing the
overall user experience of a session. Here we define it as a plain arithmetic mean
of both Success Rate and Efficiency Rate (Eq. (5)), but it can be extended to
more sophisticated forms to fit specific cases and applications.

UESCORE =
SuccessRate + EfficiencyRate

2
(5)

Overall, this classification scheme and metrics are conducted at the utterance
level, which is easy-to-run for real-time systems. Furthermore, as the proposed
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user engagement status can indicate a positive/negative experience explicitly,
the corresponding metrics are explainable and instructive for troubleshooting
potential system problems.

3.3 Datasets

Since there does not exist dataset available for our study, we collect data from
four intelligent assistants – DSTC2, DSTC3, Yahoo Captain (YCap),
Google Home (GHome) – and annotate them. All dialogues take place
between a human and a real system , which fit our goal of evaluating real intel-
ligent assistants. DSTC2 [16] and DSTC3 [17] are task-specific datasets, in
which users call the system to inquire restaurant or tourist information. YCap
is an SMS-based family assistant developed by Yahoo!. It supports functions like
setting a reminder for family members, maintaining and sharing shopping list
etc. GHome is collected from real users of Google Home, an intelligent home
device powered by Google Assistant and responding to voice control with mul-
tiple functions. The GHome dataset is the most complicated among the four
datasets. It not only covers a broad range of tasks including reminder, timer,
search, in-house device control etc., but also supports open-domain chitchat.
For YCap and GHome, as all the conversations are concatenated in a log file,
we split dialogues by checking if the interval between two utterances is more
than 10 min. Then we randomly select 1,000 anonymized dialogues from each
dataset for annotation. We ask professional annotators to judge the engagement
status of each user utterance. The first pass of annotation is done by two anno-
tators independently and the conflicts are resolved by the third annotator. The
inter-annotator agreement achieves a kappa of 0.790, indicating the proposed
scheme is understandable and easy-to-annotate. Table 3 shows the statistics of
each dataset. #(user utt) indicates the number of data examples used in the
following study. Here we highlight several observations:

Table 3. Statistics of four annotated dialogue datasets

Dataset #(task) #(utt)

per task

#(word)

per utt

#(user

utt)

C%/R%/F%/A% Suc%/Effic%/Ref%/Fatigue UE

DSTC2 2,825 4.36 3.87 5,700 28.6%/21.9%/47.1%/2.5% 93.8%/41.9%/17.0%/3.33 0.679

DSTC3 3,020 4.64 4.00 5,856 28.1%/20.4%/48.0%/3.6% 90.1%/45.1%/14.6%/4.01 0.676

YCap 2,733 2.37 4.49 3,530 7.6%/14.9%/70.8%/6.6% 91.8%/78.7%/12.4%/1.35 0.853

GHome 4,561 2.98 4.17 5,241 2.3%/10.6%/75.7%/11.4% 87.4%/73.3%/8.3%/1.80 0.804

1. By checking the average number of user utterances (#(utt) per task), dia-
logues of the text-based system (YCap) are averagely shorter than the ones
of spoken systems. Also, since YCap takes the user typed input directly,
though the data is intact from the error-prone ASR, it suffers from the typo
errors of user inputs.

2. Continuation accounts for a large part in DSTC2/3. This is because, in order
to inquire restaurants of interest, users have to interact with the system for
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many turns. But in YCap and GHome, most user requests can be solved in
one turn, such as “set up a reminder at 8pm” or “turn on the light”.

3. Utterances of Fulfillment and Continuation take the major part across all
four datasets. By summing up these two types, we can see a basic success
rate of each system at the utterance level (75.6%:75.9%:78.4%:78.0%).

4. Abandonment on task-specific systems is notably fewer than on more com-
plicated systems such as GHome, which can be attributed to the fact that
tasks in GHome are more diverse and difficult.

5. Overall, the class distribution is very skewed, and models may severely suffer
from the data scarcity on minor classes.

3.4 Case Study of User Engagement Metrics

We compute the user engagement scores of each dataset as shown in Table 3. We
also visualize the distribution of session scores in a 2-D scatter plot in Fig. 1. Here
we set α to 2 for all datasets to discount tasks longer than 3 turns. From the table
we can see that YCap and GHome perform overall better than the other two.
All four assistants are able to achieve a satisfactory success rate, but DSTC2 and
DSTC3 perform badly on efficiency. Specifically, among all the successful sessions
(SuccessRate = 1.0), the ratio of tasks whose efficiency is less than 0.5 is more
than 50% , but in YCap and GHome the percentage is less 20%. Since the system
used in DSTC datasets is considerably dated, we think the high Reformulation
Rate can be attributed to the poor ASR quality. What’s more, we can also use the
metric to quickly identify problematic dialogues, i.e. the ones have low engagement
scores. There are 35/63/9/13 sessions whose overall score is less than 0.2. After
manually examining those sessions, we find the most prominent issues affecting
DSTC2 and DSTC3 are poor ASR and language understanding ability. A user
may repeat 5 times to make the system understand what the request is about.
YCap only takes user commands matching particular templates and oftentimes
users reform their request several times to make it accepted. In GHome, problems
are more diverse since it supports various functions and users can ask open-domain
questions to which the system cannot handle well yet.

The goal here is to demonstrate how metrics based on the proposed user
engagement status could be used to evaluate system performance and trou-
bleshoot failures, and these metrics can be easily adopted for online A/B testing.

Fig. 1. 2-D scatter plot of user engagement metrics. A jitter is applied to show the size
of clusters.
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4 Automatic Prediction of User Engagement Status

Now we have defined a series of user engagement metrics for intelligent assistants,
the next step is to automate the prediction of user engagement status so that the
proposed metrics can be used in large-scale and online applications. We formalize
this task as a four-class classification problem at the utterance-level.

4.1 Model Setting

We mainly examine two groups of models. The first group is classic classifiers,
working together with hand-crafted features. We consider three models which are
broadly used for text classification: Logistic Regression (LR), Support Vector
Machine (SVM) and Random Forest (RF). The second group is convolutional
neural networks (CNN), which learn continuous representations without manual
feature engineering and allow us to leverage word vectors pretrained on a large
corpus, with which a significant performance boost has been observed in various
NLP studies. We use two variants of CNNs proposed by [23]: CNN.Rand and
CNN.MultiCh (multi-channel). We have also tested a group of models based
on recurrent neural networks, however they cannot converge well (may be due
to the size of datasets). Thus their scores are not discussed.

4.2 Feature Setting

We think the status of user engagement is system-independent and identifiable
by analyzing the dialogue contents. Therefore we only use features that can
be extracted from transcriptions and ignore the other types of system-specific
outputs (e.g., dialogue state, ASR output). From each utterance, we define six
groups of features and use them to predict user engagement status. Besides, we
notice that Reformulation implies a high semantic similarity between two user
requests, thus we also define a set of similarity features for each feature group.
We use ‘#feature x‘to denote the count of the feature.

– Basic Features Three subgroups of features indicating basic information of
each utterance: (1) Utterance length: utt length; (2) Time: if dialogue start,
if dialogue end, #utt from end, #utt to end, time percent; (3) Three fea-
tures based on common user commands (e.g. “remind”, “alarm”, “add item”):
command word (one-hot vectors), #command word, jaccard sim (jaccard
similarity between two adjacent user utterances).

– Phrasal Features We apply Stanford CoreNLP to extract 1) noun phrases
(noun phrase) and 2) entities (entity) from each utterance and represent them
as one-hot vectors. We define three similarity features: 3) repetition: if any noun
phrase/entity is repeated in two adjacent user utterances; 4) #repetition: number
of repeated noun phrases/entities; 5) jaccard sim.

– Syntactic Features The syntactic dependencies can help us understand the core
components of utterances. From the dependency tree of each utterance, we can
extract three types of syntactic features and represent them as one-hot vectors:
1) root word (root word), 2) topmost subject word (subject word) and 3) top-
most object word (object word). For similarity we only check if there is any
repetition of these words between two user utterances: 4) repeat root word, 5)
repeat subject word and 6) repeat object word.
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– N-grams Features The n-grams is considered one of the most robust features
for text classification. We extract 1-/2-/3-grams and represent them as one-hot
vectors weighted by TfIdf. Two similarity features: 1) edit distance (Levenshtein
edit distance) and 2) jaccard sim.

– Topic Features We apply the Latent Dirichlet Allocation (LDA) to capture the
topical information in utterances (lda feature). We train separate LDA model
for each dataset and set its dimension to 50. We use the cosine similarity of LDA
vectors between two user utterances (lda cosine) as its similarity feature.

– Distributed Representations Previous studies [5,19,24,27] have demonstrated
the efficacy of transferring language knowledge learned from rich resources to new
tasks. Since we have only a limited amount of dialogues for training, we would
like to know if we could utilize large text representation models to alleviate data
shortage. Here we present three models to represent utterances: Word2Vec [32]
(averaging word vectors in the utterance, dimension = 300), Doc2Vec [27] (treat-
ing each utterance as a document, dimension = 300) and Skip-thought [24] (using
bi-skip model, dimension=2400).

4.3 Context Setting

The user engagement status greatly depends on the response from the system as
well as the corresponding feedback of user. Previous studies have demonstrated
the effects of contextual information in facilitating identification [3,22]. By com-
paring different settings of context, we are able to know which utterances are
most effective for predicting user engagement. We denote five utterances in time
order and define five settings of context as follows, covering different range of
utterances in the dialogue:

– user utt−1: previous user
utterance,

– sys utt−1: previous system
utterance,

– user utt0: current user utter-
ance,

– user utt+1: next user utter-
ance,

– sys utt+1: next system utter-
ance.

– CUR UTT={user utt0},
– CUR={user utt0, sys utt+1},
– NEXT={user utt0, sys utt+1,

user utt+1},

– PREV={user utt−1, sys utt−1,
user utt0},

– ALL={user utt−1, sys utt−1,
user utt0, sys utt+1, user utt+1}.

5 Results of Automatic Prediction

We conduct comprehensive experiments on four datasets to study the effects
of different machine learning models, context ranges and feature settings.
Specifically, we train and evaluate all models on each dataset using 10-fold cross-
validation: 80%/10%/10% for training/validation/testing respectively. In order
to perform significance tests on the relatively small datasets, we repeat the cross-
validation five times, yielding 50 random splits and corresponding results. Unless
otherwise stated, we report unweighted macro-average scores of 50 experiments
on the testset. We apply two-sided paired T-test to examine the significance of
changes. Besides, we also utilize the Bonferroni correction for T-test [2,37] to
counteract the risk of using overlapping data partitions
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5.1 Comparison of Models

We compare the performance of different models to get a general idea. We run
experiments with the context range of ALL to include as many features as
we can. All three classic classifiers are trained with N-grams features as well
as similarity features. We report accuracy and F1-score, common metrics for
classification tasks, of each model with optimal hyperparameters after a simple
grid search, in Table 4.

Two simple baseline models are compared here, outputting the major class in
the training set (Majority) or a random class uniformly (Random). Both simple
baselines work poorly, and the F1-score of Majority is even lower due to the very
skewed class distribution. The primary models perform fairly well. The two CNN
models, without any human-designed feature, outperform all the other models
in the current setting. The benefit of adopting pre-trained word vector is slight
but significant (pvalue< 0.01).

It shows comparative performance among three classic models. The SVM
performs the best, but its advantage over LR is marginal (pvalue > 0.05). Thus
for the rest of this study, we only discuss the results of Logistic Regression, due
to its advantage on interpretability of feature importance. Specifically, we use
the LR with the L1 regularization (λ = 1.0), which performs robustly across
different features and datasets.

Table 4. The averaged perfor-
mance of user engagement classi-
fication with different models on
four datasets (context=All, with
similarity features). The under-
line indicates the maximum value
in each column.

Model Accuracy F1-score

Majority 0.6020 0.1858

Random 0.2503 0.2029

SVM 0.8410 0.6440

LR 0.8398 0.6413

RF 0.8415 0.6192

CNN.Rand 0.8287 0.6549

CNN.MultiCh 0.8367 0.6674

Table 5. The comparison of user engagement
classification without and with similarity fea-
tures (context=NEXT). †/‡ indicates a signif-
icant change at p<0.05/p<0.01 between results
with and without similarity features. The bold
font/underline indicates the maximum value in
the respective row/column.

Model w\o Similarity w\Similarity

Basic 0.3836 0.4105 (+2.69%)

Phrasal 0.5913 0.6316 (+4.03%)†‡
Syntactic 0.6078 0.6280 (+2.02%)†‡
N-grams 0.6113 0.6573 (+4.60%)†‡
Topic Model 0.5803 0.6346 (+5.43%)†‡
Word2Vec 0.6162 0.6521 (+3.59%)†‡
Doc2Vec 0.5858 0.5968 (+1.10%)

Skip-thought 0.6063 0.6216 (+1.53%)
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Table 6. The performance (F1-score) comparison of user engagement classification
with different context settings (without similarity features). †/‡ indicates a statistical
significant difference at p<0.05/p<0.01 between CUR UTT and PREV or between
NEXT and ALL.

Model CUR UTT CUR NEXT PREV ALL

Basic 0.3425 0.3503 0.3836 0.3501†‡ 0.3963†‡
Phrasal 0.3679 0.5521 0.5913 0.3709 0.5661†‡
Syntactic 0.3485 0.5530 0.6078 0.3671†‡ 0.5867†‡
N-grams 0.3839 0.5694 0.6113 0.3788 0.5984†‡
Topic model 0.2982 0.5255 0.5803 0.3464†‡ 0.5829

Word2Vec 0.3704 0.5723 0.6162 0.3827†‡ 0.6032†‡
Doc2Vec 0.3427 0.5379 0.5858 0.3722†‡ 0.5740†‡
Skip-thought 0.3648 0.5545 0.6063 0.3692 0.6008†
CNN.Rand 0.4252 0.5862 0.6647 0.4153 0.6549†
CNN.MultiCh 0.4207 0.5829 0.6685 0.4288 0.6674

5.2 Comparison of Context Settings

In this subsection, we investigate what context are most important for detecting
user engagement status. We list the performance comparison with five context
settings in Table 6. Note that, since there is no similarity feature for CUR UTT
and CUR, we exclude all similarity features for these experiments for a fair
comparison.

Firstly, we see that, the score difference is consistent across different context
settings, indicating that the context is a significant factor in engagement sta-
tus prediction. CUR UTT performs the worst among the five settings, since
it includes only the content of the current user utterance and it provides very
limited information. As for CUR, with one system utterance, the performance
is remarkably better than the CUR UTT. Furthermore, with the evident feed-
back from user (user utt+1), NEXT performs generally the best among all con-
text settings. This result conveys a clear message that, the following utterances
from both system and user are critical in determining whether the next system
response is relevant or not and whether the user is satisfied or not. As for PREV
and ALL, which include the historical information of user requests, the perfor-
mances are generally no better than the CUR UTT and NEXT respectively.
But this gap is smaller on distributed representations and models, especially for
CNN. We speculate this is because most user requests can be satisfied within a
few turns and do not require much historical information, thus the features from
previous utterances rarely have an effect and even become detrimental.

5.3 Effects of Similarity Features

Based on the comparison of context settings, here we focus on analyzing the mod-
els with NEXT setting. We show the performances of Logistic Regression with
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and without similarity features in Table 5. By adding similarity features, which
are just one or two additional features, the scores on different feature groups
increase significantly. The similarity features are devised to facilitate detecting
the reformulated utterances, and we observe that the average improvement on
the Reformulation (8.06%) is much more salient than other three classes (2.99%,
1.74% and 0.51%). Feature importance analysis based on one-way ANOVA shows
that similarities on N-gram, LDA and Phrasal features are most significant,
which is consistent with the improvement in Table 5.

5.4 Analysis on Feature Groups

Furthermore, we apply another two techniques to explore better model perfor-
mance: feature combination and feature selection. On one hand, the first four
feature groups are discrete and capture various local linguistic information, while
the rest four groups give continuous representations with regard to the whole
utterance. Thus we consider combining these two sets of features and expect
further improvement with the advantages of both. On the other hand, feature
selection has been proved helpful in reducing noisy features. Here we apply Chi-
square statistic to discrete feature groups and Principal Component Analysis
(PCA) to continuous feature groups. We report the best performance of each
setting in Table 7, after a simple grid search of hyperparameters.

Table 7. Scores of user engagement prediction with different features (con-
text=NEXT, with similarity features). The right part presents F1-score of best models
on each dataset. The underline indicates the best score in each column. The bold indi-
cates the better score between models with and without feature selection. †/‡ indicates
a statistical significant difference at p < 0.05/p < 0.01.

Model w\oFeatSelect w\FeatSelect DSTC2 DSTC3 YCap GHome

w\Sim w\o Sim w\Sim
(a) Basic 0.4105 – 0.4105 0.5411 0.5044 0.3079 0.2886

(b) Phrasal 0.6316 – 0.6318 0.6470 0.6703 0.6593 0.5508

(c) Syntactic 0.6280 – 0.6402†‡ 0.6567 0.6469 0.7005 0.5566

(d) N-grams 0.6573 – 0.6770†‡ 0.7078 0.6905 0.6851 0.6248

(e) Topic model 0.6346 – 0.6358 0.6774 0.6384 0.6397 0.5877

(f) Word2Vec 0.6521 – 0.6523 0.6919 0.6919 0.6209 0.6043

(g) Doc2Vec 0.5968 — 0.5969 0.6325 0.6335 0.5730 0.5486

(h) Skip-thought 0.6216 – 0.6216 0.6654 0.6414 0.6020 0.5775

(i) (a) + (b) + (c) + (d) 0.6694 0.6511 0.7085†‡ 0.7360 0.7151 0.7218 0.6613

(j) + Topic Model 0.6720 0.6617 0.7152†‡ 0.7438 0.7161 0.7314 0.6699

(k) + Word2Vec 0.6790 0.6617 0.7135†‡ 0.7514 0.7194 0.7180 0.6651

(l) + Doc2Vec 0.6713 0.6631 0.7100†‡ 0.7390 0.7149 0.7269 0.6592

(m) + Skip-thought 0.6747 0.6666 0.7124†‡ 0.7412 0.7181 0.7209 0.6696

(n) All 0.6825 0.6589 0.7140†‡ 0.7490 0.7213 0.7202 0.6655

(o) CNN.Rand 0.6647 – – 0.6798 0.6669 0.6943 0.6176

(p) CNN.MultiCh 0.6685 – – 0.6880 0.6612 0.7054 0.6196
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Overall, we observe that most models with feature selection outperform the
original ones significantly. The feature selection works more significantly on
groups having a large number of features such as N-grams, Syntactic and com-
bined feature groups, indicating that only a small proportion of discrete features
is actually in effect. Also the performances on combined feature groups (row i
to n) are much better than on any of individual groups. But we observe that
the continuous representations (j-n) contribute marginally on the top of the
combined discrete features (i).

With the help of feature combination and selection, the Logistic Regression
outpaces the previous best model CNN by a large margin. But if we exclude the
similarity features (3rd column), we find that CNN still works on a par with the
best LR models. Since the CNN models do not take any explicit input about
similarity, the best LR models with similarity features beat CNN soundly. In
order to let the CNN be aware of the user reformulation, we think it might be
helpful to leverage a submodule for similarity calculation: train the submodule
separately in a way like paraphrase identification [44], and take the similarity
vector as additional input for classification.

Table 7 also presents detailed scores on each dataset after feature selection.
One trend emerging among most LR results is that, the scores decrease gradually
from DSTC2 to GHome, implying the difficulty of each dataset. LR+Basic
works well on DSTC2 and DSTC3 but poorly on the other two datasets. As we
know, the command word in Basic covers the most common user commands, and
therefore it performs adequately in simple dialogues. But in more complicated
cases, general words or linguistic components from both user and system sides
become necessary, such as confirmations (ok, sure, yeah, etc.), success and failure
signals ( discard, sorry, don’t understand, etc.), function-related words, and they
are captured in different feature groups.

5.5 Analysis on Failure Cases

To understand better what shortcomings our models suffer from, we manually
examine 50 random wrongly-predicted examples from GHome dataset and try
to understand the reasons behind: Reformulation - 22 (examples), Abandon-
ment - 21, Fulfillment - 4, Continuation - 3. The highly skewed class distribution
might be one major reason. The model is trained with very few examples of
Reformulation and Abandonment, therefore it is more prone to make more
mistakes on them. We also notice some issues that are general to all dia-
logue related tasks, which might be difficult to overcome with NLP tech-
niques used in this study: (1) A common error (16 times) is that the model
cannot distinguish whether a system response is relevant to a user’s request or
not. Our models can only determine the relevance by feature matching instead of
understanding the actual semantics, particularly when the user request is long or
task-general. (2) 15 examples that require considering contextual and historical
information. For example, a user asks Google Home to “Turn the Christmas tree
off” and “Turn it on”, our model does not recognize “it” refers to the previous
“Christmas tree”. Another long-dependency case is, the system confirms a sim-
ilar question after a few turns, which should be treated as Reformulation, but
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this can be hardly addressed by current models. (3) The third common mistake
is specific to Reformulation, which occurs 9 times. On one hand, a user may
paraphrase an utterance in a different way to help the system understand, such
as from “I want the stair lights” to “turn on the stair lights”. On the other
hand, a user can also issue two apparently similar but different requests, say
“how skinny is my husband” and “how old is my husband”. A more powerful
semantic encoder [7] might be helpful in this case.

6 Conclusion and Future Work

In a preliminary effort to solve the challenging problem of online evaluation for
large-scale intelligent assistants, we provide a practicable solution, by converting
the problem into a more tractable classification task and automating it with
various machine learning methods. We admit there is still a long way to improve
our model to work well in real environments. Also, more research is in urgent need
to bridge the gap between utterance-level user engagement status and task-level
user experience. Thus, for future research, we will first apply online A/B testing
to validate whether any of proposed utterance-level user engagement status and
metrics correlates well with the real long-term success. We believe with insights
from these studies, we can understand user experience with intelligent assistants
better and design better evaluation methods.
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Abstract. Concept normalization in free-form texts is a crucial step in
every text-mining pipeline. Neural architectures based on Bidirectional
Encoder Representations from Transformers (BERT) have achieved
state-of-the-art results in the biomedical domain. In the context of drug
discovery and development, clinical trials are necessary to establish the
efficacy and safety of drugs. We investigate the effectiveness of transfer-
ring concept normalization from the general biomedical domain to the
clinical trials domain in a zero-shot setting with an absence of labeled
data. We propose a simple and effective two-stage neural approach based
on fine-tuned BERT architectures. In the first stage, we train a metric
learning model that optimizes relative similarity of mentions and con-
cepts via triplet loss. The model is trained on available labeled corpora
of scientific abstracts to obtain vector embeddings of concept names and
entity mentions from texts. In the second stage, we find the closest con-
cept name representation in an embedding space to a given clinical men-
tion. We evaluated several models, including state-of-the-art architec-
tures, on a dataset of abstracts and a real-world dataset of trial records
with interventions and conditions mapped to drug and disease terminolo-
gies. Extensive experiments validate the effectiveness of our approach in
knowledge transfer from the scientific literature to clinical trials.

Keywords: Clinical trials · Natural language processing · Neural
networks · Entity linking · Medical concept normalization · Metric
learning · Negative sampling · Bert

1 Introduction

The emerging use of neural network architectures in the early-stage of drug
discovery has recently resulted in several breakthroughs [20,50]. Later stages of
drug development are much more conservative due to the complicated process of
clinical trials. The use of state-of-the-art neural network approaches in clinical
trials could dramatically speed up the overall drug development process and
increase its success rate, thus saving lives.
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Clinical trial registers (e.g., ClinicalTrials.gov) contain vast amounts of struc-
tured information on how standardized interventions work in a clinical setting.
Despite the existing structure, these registers remain very difficult to harmo-
nize with drug and disease databases using current techniques. This very often
results in substantial information losses. The primary cause for this inaccurate
harmonization is that in a clinical trial record diseases and interventions are not
described with a centralized standardized taxonomy but with a free text. The
automatic natural language processing (NLP) methods are promising approaches
for the semantic annotation of large volumes of clinical records and for the inte-
gration and standardization of biomedical entity mentions to formal concepts. In
biomedical research and healthcare, the entity linking problem is known as med-
ical concept normalization (MCN). A source as a knowledge base (KB) contains
further information about the concept, such as its preferred name and synonyms,
pharmacological profile, and its relationships with other concepts.

Neural architectures have been widely used in recent state-of-the-art models
for MCN from user reviews and social media texts [22,25,31,44,49,51]. These
studies mostly share limitations regarding a supervised classification framework:
binary or multiclass classifiers are trained on a dataset with a narrow subsample
of concepts from a specific terminology. In particular, recent models [22,49,51]
learn a scoring function measuring the similarity between an entity mention and
a concept. The difficulty with these methods is that it is not possible to extract
representations describing mentions and concepts separately. In this setup, to
retrieve concepts from a particular terminology for a given entity mention, we
have to compute all the similarities through the ranking function and sort these
scores in descending order. This is impractical if we need to process large corpora
of free-form clinical trials, scientific literature, patents in days.

Inspired by metric learning [16,18,38], its usage for multimodal and sen-
tence representation learning [28,37], negative sampling [32], and Bidirectional
Encoder Representations from Transformers (BERT) [10], we present a BERT-
based neural model for medical concept normalization that directly optimizes the
BioBERT representations [23] of entity mentions and concept names itself, rather
than classification or ranking layer. We use triplets of free-form entity mention,
positive concept names, and randomly sampled concept names as negative exam-
ples to train our model. In this work, we consider the zero-shot scenario because
it is often the case in the biomedical domain, where there are dozens of concept
categories and terminologies. We trained models on annotated pairs of disease
or chemical mentions with the corresponding concepts and evaluated on a novel
dataset of condition and intervention concepts from clinical trials.

The contributions of this paper can be summarized as follows:

1. We develop a simple and effective model that uses metric learning and
negative sampling to obtain entity and concept embeddings. These embed-
dings were utilized for knowledge transfer between different terminologies. We
explore several strategies to select positive and negative samples.

https://clinicaltrials.gov/
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2. We perform extensive experiments of several BERT-based models on a newly
annotated dataset of clinical trials in two setups, where each mention is asso-
ciated with one or more concepts (in-KB) or zero (out-of-KB).

2 Related Work

Our work most closely relates to research in information extraction and semantic
textual similarity by directly linking a set of entity mentions and a large set of
medical concept names using triplet structures to derive embeddings of entity
mentions and concept names that can be compared using semantic similarity.
Entity linking of mentions to entries in a knowledge base (KB) is a well-studied
area; see a good survey [40]. Research studies in this area assume that there is
one knowledge base, such as Wikipedia or Freebase. The KB contains rich text
descriptions (from an entity page, for example), hyperlink statistics, and meta-
data. This assumption holds for the general domain, but not for the biomedical
domain, where diverse terminologies exist for numerous purposes.

2.1 Medical Concept Normalization

Medical concept normalization is usually formulated as a classification or rank-
ing problem with a wide variety of features – syntactic and morphological pars-
ing, dictionaries of medical concepts and their synonyms, distances between raw
entity mentions and formal concept names in terms of TF-IDF or word2vec rep-
resentations [1,9,12,22,45]. MetaMap is one of the most well-known knowledge-
based systems for mapping texts to concepts from Unified Medical Language Sys-
tem (UMLS) [3] developed by the US National Library of Medicine (NLM) [1].
This system is based on a linguistic approach using lexical lookup and variants
by associating a score with phrases in a sentence. The NLM provides automatic
indexing of clinical trials to Medical Subject Headings (MeSH) [6] via the Med-
ical Text Indexer (MTI) [33] based on MetaMap. MTI achieves an F1 measure
around 0.55 on the indexing of PubMed abstracts. The most popular open-source
supervised system maintained by the NLM is TaggerOne [22]. TaggerOne uti-
lizes semi-Markov models with features and dictionaries to jointly perform entity
extraction and normalization tasks.

The works that are the closest to ours and consider synonyms during entity
and concept representation learning is Biomedical Named Encoder (BNE) [35]
and BioSyn [41]. Sung et al. proposed a BioBERT-based model named BioSyn
that maximizes the probability of all synonym representations in the top 20 can-
didates [41]. BioSyn uses a combination of two scores, sparse and dense, as a
similarity function. Sparse scores are calculated on character-level TF-IDF rep-
resentations to encode morphological information of given strings. Dense scores
are defined by the similarity between CLS tokens of a single vector of input
in BioBERT. This model achieves state-of-the-art results in disease and chem-
ical mapping over previous works [22,35,47]. Phan et al. presented an encod-
ing framework with new context, concept, and synonym-based objectives [35].
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Synonym-based objective enforces similar representations between synonymous
names, while concept-based objective pulls the name’s representations closer to
its concept’s centroid. However, ranking on these embeddings shows worse results
on three sets than TaggerOne.

Our work differs from the studies discussed above in the following important
aspects. First, none of these methods have been applied to free-form descriptions
of conditions and interventions from clinical trials. Second, evaluation strategies
in the mentioned papers are based on train/test splits provided by datasets’
authors. We follow the recent refined evaluation strategy from [43] on the cre-
ation of test sets without duplicates or exact overlaps between the train and test
sets. Finally, our dataset includes entity mentions for both in-KB and out-of-KB
linking.

2.2 NLP in Clinical Trials Research

While the majority of biomedical research on information extraction primarily
focused on scientific literature [17], much less work had been used NLP methods
to conduct curation of clinical trial records’ fields to advance downstream tasks
[2,4,5,11,15,39]. Gayvert et al. [11] proposed an approach for the prediction of
the likelihood of toxicity in clinical trials. They selected 108 clinical trials of any
phase that were annotated as having failed for toxicity reasons. Then intervention
names of each trial were manually mapped to DrugBank [46] concepts to collect
molecular weight, polar surface area, and other compounds’ properties. In [2],
Atal et al. developed a knowledge-based approach to classify entity mentions to
disease categories from a Global Burden of Diseases (GBD) cause list. The pro-
posed method uses MetaMap to extract UMLS concepts from trial fields (health
condition, public title, and scientific title), link UMLS concepts with ICD10
codes, and classify ICD10 codes to candidate GBD categories. The developed
classifier identified GBD categories for 78% of the trials. Li and Lu [26] identified
clinical pharmacogenomics (PGx) information from clinical trial records based
on dictionaries from a pharmacogenomics knowledge base PharmGKB. Previous
studies on clinical trial records, however, have not analyzed the performance of
linking of clinical trials to disease and drug concepts, but rather across eligibility
criteria (e.g., patient’s demographic, disease category) [2,4,15,24,39].

3 Dataset of Clinical Trials

NLM maintains a clinical trial registry data bank ClinicalTrials.gov1 that con-
tains over 340,000 trials from 214 countries. This database includes comprehen-
sive scientific and clinical investigations in biomedicine [13]. Each trial record
provides information about a trial’s title, purpose, description, condition, inter-
vention, eligibility, sponsors, etc. Most information from records is described in

1 https://clinicaltrials.gov/.

https://clinicaltrials.gov/
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natural language. In our study, we use publicly available American Association
of Clinical Trials (AACT) Database2, v. 20200201.

Since there is no off-the-shelf manually annotated dataset for biomedical
concept normalization of clinical trials, we built one by selecting 500 trials using
the following criteria:

1. A type of clinical study is an interventional study. Participants of interven-
tional studies receive intervention/treatment so that researchers can evaluate
the effects of the interventions on biomedical or health-related outcomes [29].

2. Phase of clinical study is defined by U.S. Food and Drug Administration
(FDA). There are five phases: Early Phase 1, Phase 1, Phase 2, Phase 3, and
Phase 4.

3. Clinical study is associated with one or more interventions of the following
types: Biological, Combination Product, Drug.

As a drug terminology source, we use an internal knowledge base that contains
15,532 concept unique identifiers (CUIs), including small molecule drugs, biolog-
ics, nutraceuticals, and experimental drugs. As a condition terminology source,
we use MeSH v. 20200101. 500 selected trials contain 1075 and 819 entries in the
‘Intervention’ and ‘Condition’ fields respectively. Two annotators with a back-
ground in bioinformatics manually annotated each entry. The calculated inter-
annotator agreement (IAA) using Kappa was 92.32% for the entire dataset. The
disagreement was resolved through mutual consent.

Statistics of annotated texts are summarized in Table 1. 794 out of 1075 non-
unique mentions (73.9%) were mapped to one or more drug concepts. 838 (80%)
of lower-cased interventions are unique. 804 out of 819 non-unique mentions
(98.2%) were mapped to one or more concepts, while there are 638 (78%) lower-
cased unique mentions. Interestingly, MeSH concepts linked to conditions belong
to several MeSH categories including Diseases [C], Psychiatry and Psychology
[F], and Analytical, Diagnostic and Therapeutic Techniques, and Equipment
[E]. We note that NLM provided automatically assigned MeSH terms to trials’
interventions. 716 out of 1075 entries (66.6%) were mapped to MeSH terms. Our
analysis revealed that mapping from NLM does not include investigational drugs,
which are essential for developing new pharmaceutical drugs. Table 2 contains a
sample of annotated texts.

4 Model

In this section, we present a neural model for Drug and disease Interpretation
Learning with Biomedical Entity Representation Transformer (DILBERT). We
address MCN as a retrieval task by fine-tuning the BERT-based network using
metric learning [16,18,38], negative sampling [32], specifically, triplet constraints.
This idea was successfully applied to learn multimodal embeddings [28,48] and
recent sentence embeddings via a sentence-BERT model [37]. Compared to a pair

2 https://www.ctti-clinicaltrials.org/aact-database.

https://www.ctti-clinicaltrials.org/aact-database
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Table 1. Statistics of annotated texts.

Mention #texts #texts with CUIs #unique texts #unique texts with CUIs

Intervention types

Drug 850 693 671 585

Biological 118 90 102 79

Other 57 4 27 4

Procedure 19 1 16 1

Radiation 11 0 9 0

Device 11 1 11 1

Combination product 5 3 5 3

Dietary supplement 2 2 2 2

Diagnostic test 1 0 1 0

Behavioral 1 0 1 0

Total

Intervention 1075 794 838 671

Condition 819 804 638 638

of independent sentences or images, two concept names can have relationships
as synonyms, hypernyms, hyponyms, etc., that we consider during the training
phase to facilitate the concept ranking task at the retrieval phase.

Let us first recall two terms: concept and concept name. Following the UMLS
Glossary [34], the concept is the fundamental unit of meaning in terminology.
It represents a single meaning in any way, whether formal or casual, verbose
or abbreviated. Every concept is assigned a unique identifier (CUI). A concept
consists of atoms, which are the smallest units of naming. All of the atoms within
a concept are synonymous. The concept name is a string chosen to represent
the concept as a whole. It is linked to atoms. Formally, the medical concept
normalization task aims to assign each entity mention m a CUI (or predicts that
there is no corresponding concept).

Architecture Following denotations proposed by [19], we encode both entity men-
tion m and candidate concept name c into vectors:

ym = red(T (m)); yc = red(T (c)) (1)

where T is the transformer that is allowed to update during fine-tuning. red(·) is
a function that reduces that sequence of vectors into one vector. There are two
main ways of reducing the output into one representation via red(·): choose the
first output of T (corresponding to the token CLS) or compute the elementwise
average over all output vectors to obtain a fixed-size vector. As a pretrained
transformer model, we use BioBERT base v1.1. [23]

Scoring The score of a candidate ci for an entity mention m is given by a distance
metric, e.g. Euclidean distance:

s(m, ci) = ||ym − yci || (2)
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A noteworthy aspect of the proposed model is its scope: by design, it aims
at the cross-terminology mapping of entity mentions to a given lexicon without
additional re-training. This approach allows for fast, real-time inference, as all
concept names from a terminology can be cached. This is a necessary requirement
for processing biomedical documents of different subdomains such as clinical
trials, scientific literature and drug labels.

Table 2. Sample of manually annotated trials’ texts.

NCT/Type Text Concept

Intervention (with DrugBank CUIs)

NCT00559975/Biological Adjuvanted influenza

vaccine combine with

CpG7909

Agatolimod sodium (DB15018)

NCT01575756/Biological Haemocomplettan R©
P or RiaSTAPTM

Fibrinogen human (DB09222)

NCT00081484/Drug epoetin alfa or beta Erythropoietin (DB00016)

NCT03375593/Drug Ibuprofen 600mg tab Ibuprofen (DB01050)

NCT01170442/Drug vitamin D3 5000 IU Calcitriol (DB00136)

NCT02493335/Drug Placebo orodispersible

tablet twice daily

nil (no concept)

Condition (with MeSH CUIs)

NCT02009605 Squamous Cell

Carcinoma of Lung

Carcinoma, Non-Small-Cell Lung (D002289)

NCT04169763 Stage IIIC Vulvar

Cancer AJCC v8

Vulvar Neoplasms (D014846)

Optimization The network is trained using a triplet objective function. Given
a user-generated entity mention m, a positive concept name cg and a negative
concept name cn, triplet loss tunes the network such that the distance between
m and cg is smaller than the distance between m and cn. Mathematically, we
minimize the following loss function:

max(s(m, cg) − s(m, cn) + ε, 0) (3)

where ε is margin that ensures that cg is at least ε closer to m than cn. As a
scoring metric, we use Euclidean distance or cosine similarity and we set ε = 1
in our experiments.

Positive and Negative Sampling Suppose that a pair of the entity mention with
the corresponding CUI is given as well as the vocabulary. For positive examples,
vocabulary is restricted to the concepts that have the same CUI as a mention.
Multiple positive concept names could be explained by the presence of synonyms
in the vocabulary. Negative sampling [32] uses the rest part of the vocabulary. We
explore several strategies to select positive and negative samples for a training
pair (entity mention, CUI):
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1. random sampling: we sample several concept names with the same CUI as
positive examples and random negatives from the rest of the vocabulary;

2. random + parents: we sample k concept names from the concept’s par-
ents in addition to positive and negative names gathered with the random
sampling strategy;

3. re-sampling: using a model trained with random sampling, we identify pos-
itives and hard negatives via the following steps: (i) encode all mentions and
concept names found in training pairs using the current model (ii) select
positives with the same CUI, which are closest to a mention, (iii) for each
mention, retrieve the most similar k concept names (i.e., its nearest neighbors)
and select all names that are ranked above the correct one for the mention
as negative examples. We follow this strategy from [14];

4. re-sampling + siblings: we modify the re-sampling strategy by using k
concept names from the concept’s siblings as negatives.

Inference At inference time, the representation for all concept names can be
precomputed and cached. The inference task is then reduced to finding the clos-
est concept name representation to entity mention representation in a common
embedding space.

5 Experiments

We evaluate our model DILBERT and compare it to the state-of-the-art methods
using (i) a publicly available benchmark BioCreative V CDR Disease & Chemical
[27], (ii) our dataset of clinical trials named CT Condition & Intervention. The
statistics of the two datasets are summarized in Table 3.

5.1 Datasets

BioCreative V CDR [27] introduces a challenging task for the extraction of
chemical-disease relations (CDR) from PubMed abstracts. Disease and chemical
mentions are linked to the MEDIC [8] and CTD [7] dictionaries, respectively. We
utilize the CTD chemical dictionary (v. November 4, 2019) that consists of pf
171,203 CUIs and 407,247 synonyms, and the MEDIC lexicon (v. July 6, 2012)
that contains 11,915 CUIs and 71,923 synonyms.

According to the BioCreative V CDR annotation guidelines, the annota-
tors used two MeSH branches to annotate entities: (i) “Diseases” [C], includ-
ing signs and symptoms, (ii) “Drugs and Chemicals” [D]. The terms “drugs”
and “chemicals” are often used interchangeably. Annotators annotated chemical
nouns convertible to single atoms, ions, isotopes, pure elements and molecules
(e.g., calcium, lithium), class names (e.g., steroids, fatty acids), small biochemi-
cals, synthetic polymers.

As shown in [43], the CDR dataset contains a high amount of mention dupli-
cates and overlaps between official sets. In order to obtain more realistic results,
we evaluate models on preprocessed official and refined CDR test sets from [43].
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For the preprocessing of the clinical trial data, we use heuristic rules to split
the composite mentions into separate mentions (e.g., combination of ribociclib
+ capecitabine into ribociclib and capecitabine) by considering each mention
containing “combination”, “combine”, “combined”, “plus”, “vs” or “+” as com-
posite. We process all characters to lowercase forms and remove the punctuation
for both mentions and synonyms.

Table 3. Statistics of the datasets used in the experiments. Two sets of annotated
clinical trials’ fields are marked with ‘CT’.

CDR Disease CDR Chem CT Condition CT Intervention

Domain Abstracts Abstracts Clinical trials Clinical trials

Entity type Disease Chemicals Conditions Drugs

Terminology MEDIC CTD Chemicals MeSH In-house dict.

entity level statistics

% numerals 0.11% 7.32% 7.69% 25.3%

% punctuation 1.21% 0.07% 14.28% 24.83%

avg. len 14.88 11.27 17.92 21.68

number of pre-processed entity mentions

Train set 4,182 5,203 — –

Dev set 4,244 5,347 100 100

test set 4,424 5,385 719 975

number of pre-processed entity mentions after removal of duplicates from test set

refined test 657 (14.9%) 425 (7.9%) 638 (77.89%) 838 (77.95%)

It is assumed that each entity mention in the CDR corpus has a valid concept
in the terminology, which is referred as in-KB evaluation in the entity linking
task. In contrast with the CDR sets, 26% and 1.8% of intervention and condition
mentions in the CT dataset are not appeared in terminologies, respectively. In
Sect. 5.4, we investigate different strategies for the out-of-KB prediction (i.e. nil
prediction) on clinical trials’ texts.

5.2 Baseline Methods

We compare our proposed method with the following methods.

BioBERT ranking This is a baseline model that used the BioBERT model for
encoding mention and concept representations. Each entity mention or concept
name is firstly passed through BioBERT (we use the average over all outputs of
BERT) and then through a mean pooling layer to yield a fixed-sized vector. The
inference task is then reduced to finding the closest concept name representation
to entity mention representation in a common embedding space. We use the
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Euclidean distance as the distance metric. The nearest concept names are chosen
as top-k concepts for entities. We use the publicly available code provided by [43]
at https://github.com/insilicomedicine/Fair-Evaluation-BERT.

BioSyn BioSyn [41] is a recent state-of-the-art model that utilizes the synonym
marginalization technique and the iterative candidate retrieval. The model uses
two similarity functions based on sparse and dense representations, respectively.
The sparse representation encodes the morphological information of given strings
via TF-IDF, the dense representation encodes the semantic information gathered
from BioBERT. For reproducibility, we use the publicly available code provided
by the authors at https://github.com/dmis-lab/BioSyn. We follow the default
parameters of BioSyn as in [41]: the number of top candidates k is 20, the mini-
batch size is 16, the learning rate is 1e–5, the dense ratio for the candidate
retrieval is 0.5, 20 epochs for training.

5.3 Experimental Setup

We experiment with BioBERTbase v1.1 with 12 heads, 12 layers, 768 hidden
units per layer, and a total of 110M parameters. Epsilon, the number of positive
and negative examples, and distance metric were chosen optimally on dev sets.
We choose red(·) to be the average over all outputs of BERT. We have evaluated
different epsilons starting from 0.5 up to 4.0 with 0.5 step for Euclidean distance
metric, for cosine distance from 0.05 up to 0.3 with 0.05 step. These experiments
have quite similar results. We have evaluated a number of positive and negative
examples. For positives, we iterated over values from 15 to 35, for negatives
from 5 to 15. We found that the optimal is to sample 30 positive examples and 5
negative examples per mention. For the random + parents strategy, we evaluated
the number of names of concept’s parents from 1 to 5. Similarly, we evaluated the
number of names of concept’s siblings from 1 to 5. We found that hard negative
sampling (with siblings) achieves the same optima as random negative sampling.
The highest metrics are achieved at 5 concept names of the concept’s parents
on the CT Condition and CDR Chemical sets. The highest accuracy is achieved
at 2 names of the concept’s parents on other sets. As a result, we trained the
DILBERT model with Euclidean distance and the following parameters: batch
size is equal to 48, learning rate was set to 1e–5, epsilon to 1.0.

We evaluate this solution in information retrieval (IR) scenario, where the
goal is to find within a dictionary of concept names and their identifiers the
top-k concepts for every entity mention in texts. In particular, we use the top-k
accuracy as an evaluation metric, following the previous works [35,36,41–43,47].
Let Acc@k be 1 if a right CUI is retrieved at rank k, otherwise 0. All models
are evaluated with Acc@1. For composite entities, we define Acc@k as 1 if each
prediction for a single mention is correct.

5.4 Out-of-KB Cases in Clinical Trials

To deal with nil predictions in clinical trials, we apply three different strate-
gies for the selection of a threshold value. Namely, the intervention or condition

https://github.com/insilicomedicine/Fair-Evaluation-BERT
https://github.com/dmis-lab/BioSyn
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mention is considered out of KB if the nearest candidate has a larger distance
than a threshold value. Our first strategy is to set the threshold equal to the min-
imum distance of false-positive (FP) cases. In this case, we consider a mention
mapped to a concept by our model but having no appearance in the terminology.
Our second strategy set the threshold to the maximum distance of true-positive
(TP) cases. The third strategy uses a weighted average of the first two thresh-
old values. The proportion of FP cases used as a weight for the first strategy’s
threshold, the proportion of TP cases used as a weight for the second strat-
egy’s threshold. We tested three strategies on the dev set which containing 100
randomly selected mentions and evaluated the selected threshold values on the
test set. This procedure was repeated 20 times. For intervention normalization,
the first strategy showed an average accuracy of 79.41 with std of 3.5; second –
accuracy of 71.77 and std of 3.5; third – accuracy of 85.73, std of 1.3.

Table 4. Out-of-domain performance of the proposed DILBERT model and baselines
in terms of Acc@1 on the refined test set of clinical trials (CT).

Model CT Condition CT Intervention

Single concept Full set Single concept Full set

BioBERT ranking 72.60 71.74 78.67 74.57

BioSyn 86.36 – 86.29 –

DILBERT, random sampling 85.73 84.85 90.23 88.37

DILBERT, random + 2 parents 86.74 86.36 90.53 87.94

DILBERT, random + 5 parents 87.12 86.74 89.54 87.15

DILBERT, resampling 85.22 84.63 89.83 87.28

DILBERT, resampling + 5 siblings 84.84 84.26 89.26 86.23

Table 5. In-domain performance of the proposed DILBERT model in terms of Acc@1
on the refined test set of the Biocreative V CDR corpus.

Model CDR Disease CDR Chemical

BioBERT ranking 66.4 80.7

BioSyn 74.1 83.8

DILBERT, random sampling 75.5 81.4

DILBERT, random + 2 parents 75.0 81.2

DILBERT, random + 5 parents 73.5 81.4

DILBERT, resampling 75.8 83.3

DILBERT, resampling + 5 siblings 75.3 82.1
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5.5 Results and Discussion

We investigate the effectiveness of transferring concept normalization from the
general biomedical domain to the clinical trial domain. We trained DILBERT
and BioSyn models on the CDR Disease and CDR Chemical train sets, respec-
tively, for linking clinical conditions and interventions.

Table 4 presents the performance of the DILBERT models compared to
BioSyn and BioBERT ranking on the datasets of clinical trials. We test the
DILBERT model’s transferability on two sets of interventions and conditions
where each mention is associated with one concept only (see ‘single concept’
columns). We evaluate the model on test sets with all mentions, including single
concepts, composite mentions, and out-of-KB cases (see ‘full set’ columns). In
Table 5, we present in-domain results of models evaluated on the CDR data.
In all our experiments when comparing DILBERT and BioSyn models, we use
paired McNemar’s test [30] with a confidence level at 0.05 to measure statistical
significance.

Several observations can be made based on Tables 4 and 5. First, DILBERT
outperformed BioSyn and BioBERT ranking on three sets staying on par with
BioSyn on the CDR Chemical test set. Adding randomly sampled positive exam-
ples from parent-child relationships gives a statistically significant improvement
in 1–2% on the CT Condition set while staying on par with random sampling on
interventions. To our surprise, hard negative mining produces performance gains
on one of four sets only, which includes chemicals. Second, we compare results
on refined test sets with results on the CDR corpus’s official test set. We observe
the significant decrease of Acc@1 from 93.6% to 75.8% and from 95.8% to 83.8%
for DILBERT on disease and chemical mentions, respectively. Third, DILBERT
models obtained higher results on test sets with single concepts. Models achieve
much higher performance for the normalization of interventions rather than con-
ditions. The DILBERT model achieves a statistically significant improvement
compared to the BioSyn model on the interventions dataset. The error analysis
on the CDR Disease set showed that models with random negative sampling
incorrectly maps 39 out of 147 mentions to the correct concept’s parent. We
observe that some mentions are mapped to the gold concept’ child for the mod-
els trained by re-sampling+siblings sampling.

Inference Time Efficiency and Deployment Our model uses the FAISS
library [21] with GPU support for fast nearest neighbor search by comparing
vectors with Euclidean distance. Embeddings of all terminologies’ concepts are
indexed. We profiled retrieval speed on a server with Intel Xeon CPU E5-2660
2.00 GHz and 256 GB memory. First, we precomputed all embeddings for all
concepts (500 thousand). On a single Nvidia TITAN X GPU, it takes about
7 min to compute all embeddings. Given that all embeddings are indexed on
Nvidia TITAN X GPU using IndexFlatL2 index type. To obtain top candidates
for 10 million queries, it requires approximately 3 h.
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6 Conclusion

We studied the task of drug and disease normalization for clinical trials, using
a newly created dataset of 500 interventional studies with 1075 intervention
mentions and 819 condition mentions. We designed a triplet-based metric learn-
ing model named DILBERT that optimizes to pull pairs of mention and concept
BioBERT representations closer than negative samples. We investigated strate-
gies to obtain random and hard positive and negative examples using parent-
child (i.e., broader-narrower) relationships between biomedical concepts. We per-
formed experiments on in-KB and out-of-KB (nil) linking of mentions from the
scientific domain to the clinical domain in a zero-shot setting. DILBERT shows
better transfer capabilities for disease- and drug-related mentions compared to
other state-of-the-art models. In future work, we plan to investigate taxonomy
induction evaluation metrics and the normalization of protein/gene mentions.
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Abstract. In this work we leverage recent advances in context-sensitive
language models to improve the task of query expansion. Contextual-
ized word representation models, such as ELMo and BERT, are rapidly
replacing static embedding models. We propose a new model, Contextu-
alized Embeddings for Query Expansion (CEQE), that utilizes query-
focused contextualized embedding vectors. We study the behavior of
contextual representations generated for query expansion in ad-hoc doc-
ument retrieval. We conduct our experiments on probabilistic retrieval
models as well as in combination with neural ranking models. We evalu-
ate CEQE on two standard TREC collections: Robust and Deep Learn-
ing. We find that CEQE outperforms static embedding-based expan-
sion methods on multiple collections (by up to 18% on Robust and
31% on Deep Learning on average precision) and also improves over
proven probabilistic pseudo-relevance feedback (PRF) models. We fur-
ther find that multiple passes of expansion and reranking result in con-
tinued gains in effectiveness with CEQE-based approaches outperform-
ing other approaches. The final model incorporating neural and CEQE-
based expansion score achieves gains of up to 5% in P@20 and 2% in AP
on Robust over the state-of-the-art transformer-based re-ranking model,
Birch.

1 Introduction

Recently there is a significant shift in text processing from high-dimensional
word-based representations to ones based on continuous low-dimensional vectors.
However, fundamentally both are static – each word has a context-independent
or static representation. The fundamental challenge of polysemy remains. Recent
approaches aim to address this, namely ELMo [27] and BERT [6], by creating
context-dependent representations that depend on the surrounding context in
which they occur. The power of contextualized models comes from this ability
to disambiguate and generate distinctive representations for terms with the same
lexical form. Contextualized representation models provide significant improve-
ments across a range of diverse tasks. To our knowledge this is the first work to
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develop an unsupervised contextualized query expansion model based on pseudo-
relevance feedback. This represents an advancement over previous context-free
expansion models based on lexical matching. Our proposed approach leverages
contextual word similarity with an unsupervised expansion model.

Contextualized representations from BERT and similar models are rapidly
being adopted for retrieval and NLP, because they transfer well to new domains
with limited training data. Supervised ranking models derived from them, such
as CEDR [18] and T5 [22], are the top-ranked learning-to-rank methods for a
wide range of retrieval and QA benchmarks. In this work we leverage these
contextualized word representations not for supervised re-ranking, but instead
to improve core document matching. We address the fundamental problem that
for many queries the core matching algorithms fails to identify many (or even all)
relevant results in the candidate pool. Advancements in retrieval require more
effective core matching algorithms to improve recall for neural ranking methods.
No amount of reranking irrelevant results will provide relevance gains.

We propose a new contextualized expansion method to address the task of
core matching building on proven pseudo-relevance feedback (PRF) techniques
from probabilistic Language Modeling and extending them to effectively leverage
contextual word representations. Further, we investigate the effect of applying
CEQE in combination with state-of-the-art neural re-ranking models. Our work
addresses core research questions (RQ) in contextualized query expansion:

– RQ1 How can contextualized representations be effectively leveraged to
improve state-of-the-art unsupervised query expansion methods?

– RQ2 How effective are neural reranking methods when performed after query
expansion?

– RQ3 How effective are query expansion methods after a first pass of high-
precision neural re-ranking?

We study these questions with empirical experiments on standard TREC test
collections: Robust and Deep Learning 2019. The results on these test collec-
tions demonstrate that variations of CEQE significantly outperform previous
static embedding models (based on GLoVe) in extrinsic retrieval effectiveness
by approximately 18% MAP on Robust04 and 31% on TREC Deep Learning
2019 and 6–9% for recall@1000 across all datasets.

This work makes several new contributions to methods and understanding
of contextualized representations for query expansion and relevance feedback:

– We develop a new contextualized query expansion method, CEQE, that shifts
from word-count approaches to contextualized query similarity.

– We demonstrate through experimental evaluation that the proposed approach
outperforms static embedding methods and performs at least as well as state-
of-the-art word-based feedback models on multiple collections.

– We demonstrate that neural reranking combined with CEQE results in state-
of-the-art effectiveness that outperforms previous approaches.
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2 Background and Related Work

Query Expansion. A widely used approach to improve recall uses query expan-
sion from relevance feedback that takes a user judgment of a result’s relevance
and uses it to build an updated query model [30]. Pseudo-relevance feedback
(PRF) [13,16,38] approaches perform this task automatically, assuming the top
documents are relevant. We build on these proven approaches based on static
representations and extend them to contextualized representations. Padaki et al.
[24] investigate BERT’s performance when using expanded queries and find that
expansion that preserves some linguistic structure is preferrable to expanding
with keywords.

Embedding-based Expansion. Another approach for query expansion incor-
porates static embeddings [19,26] to find the relevant terms to the query,
because embeddings promise to capture the semantic similarity between terms
and are used in different ways to expand queries [5,7,12,20,31,36,37]. These
word embeddings, such as Word2Vec, GloVe, and others, learn a static word
embedding for each term regardless of the context. Most basic models fail to
address polysemy and the contextual characteristics of terms. All of the pre-
vious approaches use static representations that have fundamental limitations
addressed by the use of contextualized representations.

Supervised Expansion. There is a vein of work using supervised learning
to perform pseudo-relevance feedback. Cao et al. [2] and Imani et al. [10] use
feature-based models to try to predict what terms should be used for expan-
sion. A common practice is to classify terms as positive, negative, or neutral
and use classification methods to maximize the number of predicted positive
terms. We use this labeling method to intrinsically evaluate the utility of our
unsupervised approach. An end-to-end neural PRF model (NPRF) proposed by
Li et al. [14] uses a combination of models to compare document summaries and
compute document relevance scores for feedback and achieves limited improve-
ment while only using bag-of-words neural models. Later work combining BERT
with a NPRF framework [41] illustrated the importance of an effective first-stage
ranking method. A complementary vein of work [23] uses generative approaches
to perform document expansion by predicting questions to add to document. In
contrast, we focus on query expansion approaches.

Neural Ranking. Contextualized Transformer-based models are now widely
used for ranking tasks [1,4,15,18,21,22,25,29,40]. MacAvaney et al. [18] pro-
pose incorporating contextualized language models into existing neural ranking
architectures by considering each layer of contextualized language models as
one channel and integrating the similarity matrices of each layer in the neural
ranking architecture. Recent research [8,11,17,33,39] uses Transformer models
to produce query and document representations that can be used for (relatively)
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efficient first-stage retrieval. In this context, Gao et al. [8] find that combining a
representation-based model with a lexical matching component improves effec-
tiveness. In contrast, we focus on representations solely as a contextualized word
representation model for the task of unsupervised query expansion.

3 Methodology

In this section we introduce our proposed Contextualized Embedding for Query
Expansion (CEQE) method that utilizes contextualized representations for the
task of query expansion. The method below applies to many widely used con-
textualized embedding representation models, including BERT and its variants.

3.1 Word and WordPiece Representations

In contextualized models, to address the problem of out-of-the-vocabulary terms,
subword representation such as WordPieces [32] are used. For backwards com-
patibility with existing word-based retrieval systems (as well as comparison with
previous methods) we use words as the matching unit. We first aggregate Word-
Piece tokens into a contextualized vector for words. We compute the average
embedding vector of word w by −→w � 1

|w|
∑

pi∈w
−→pi , where pi is a WordPiece of

word w and |w| is the number of WordPieces in the word w.

3.2 Contextualized Embeddings for Query Expansion (CEQE)

In this section we describe the core of the CEQE model. It follows in the
vein of principled probabilistic language modeling approaches, such as the Rele-
vance Model formulation of pseudo-relevance feedback [13]. In contrast to these
approaches that are based on static lexical matching, we formulate relevance
based on contextualized vector representations. We build the contextualized feed-
back model based upon the core Relevance Model (RM) formulation:

p(w|θR) ∝
∑

D∈R

p(w,Q,D) (1)

where θR and R respectively denote the feedback language model and the set
of pseudo-relevant documents, i.e., the top retrieved documents. In the original
RM formulation, the joint probability of p(Q,w,D) is broken down as follows:

∑

D∈R

p(w,Q,D) =
∑

D∈R

p(w,Q|D)p(D) (2)

=
∑

D∈R

p(w|D)p(Q|D)p(D) (3)

where Eq. 3 is derived from the simplifying independence assumption between
the query Q and term w. This assumption results in a static representation
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based on simple word counts and ignores the query explicitly. It only incor-
porates evidence indirectly through P (Q|D). In contrast, the proposed CEQE
parameterization doesn’t assume term w is independent of query Q and explic-
itly incorporates the query focus based on similarity with contextualized vector
representations. More formally:

∑

D∈R

p(w,Q,D) =
∑

D∈R

p(w|Q,D)p(Q|D)p(D) (4)

With a contextualized model it is no longer possible to simply count doc-
ument terms – they must be grouped, simplified, or compared against a query
representation. We explicitly incorporate contextualized query similarity for each
word occurrence. We now break down each of the elements in Eq. 4 in more detail.
Following common practice we assume a uniform probability for p(D). p(Q|D)
is the posterior probability of the query given a document from the retrieval
model. We propose several methods to calculate p(w|Q,D) below.

Centroid Representation. In this approach we create a model of the whole
query and then compare it to the contextualized representation of each word
mention (occurrence), mw. In the centroid representation we define σ(Q), the
aggregation of all WordPieces of the query. Note that a representation of a query
also includes special delimiter tokens. For example, in BERT this would include
[CLS] and [SEP] tokens that we find carry contextual importance. We include
the [CLS] token in particular because it is often used as a representation of the
input with respect to the target task. For the query centroid representation we
define σ as the mean of its individual component contextual vectors: we represent
query σ(Q) by

−→
Q � 1

|Q|
∑

qi∈Q
−→q , where qi is a WordPiece token and |Q| is the

length of the query in WordPiece tokens.
We then define p(w|Q,D) by comparing the similarity of individual word

mentions to the query centroid representation based on a similarity function δ
(e.g., cosine). If mD

w is a mention of word w in a document D and MD
w is the

complete set of mentions of w:

p(w|Q,D) �
∑

mD
w∈MD

w
δ(

−→
Q,

−−→
mD

w )
∑

mD∈MD∗
δ(

−→
Q,

−−→
mD)

(5)

The denominator is a normalization constant that considers all word mentions
across the entire document to form a probability. This approach is novel because
the contextualized vector mD

w will be different for every occurrence in D because
the context surrounding each mention of word w varies.

Term-based Representation. In this section we propose an alternative
parameterization for p(w|Q,D). Instead of using the centroid of the query to
compute a term’s similarity to the entire query, we compute the similarity for
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each query term separately. If q is a query term and −→q is its corresponding
contextualized embedding vector, this can be formulated as:

p(w|q,D) �
∑

mD
w∈MD

w
δ(−→q ,

−−→
mD

w )
∑

mD∈MD∗
δ(−→q ,

−−→
mD)

(6)

To select a term for expansion for the query overall we perform an extra
step of pooling across the similarities of individual words. This step combines
the contextualized word vectors. Function f calculate the semantic similar-
ity of word w with the whole query by combining the semantic similarity of
it with each query term q. We define fmax(w,Q,D) = maxq∈Q p(w|q,D) and
fprod(w,Q,D) =

∏
q∈Q p(w|q,D) as MaxPool and MulPool, respectively. If Z ′ is

a normalization factor that is the sum over the terms in document D, which is
less computationally expensive than summing over all vocabulary terms, these
can be defined as:

p(w|Q,D) �
fmax/prod(w,Q,D)

Z ′ (7)

The final result of all of these methods is a relevance distribution over terms
derived from the contextualized representations in top retrieved documents. The
result is an updated query language model that can be used on its own or
combined with other representations.

4 Experimental Setup

4.1 Datasets

We evaluate our model on two standard TREC datasets: Robust and Deep Learn-
ing.

Robust. The corpus consists of Tipster disks 4 and 5 containing approximately
528 K newswire articles. The evaluation topics are the 250 Robust topics (301–
450, 601–700). We use the titles as queries.

TREC Deep Learning. The 2019 TREC Deep Learning (DL) Track created
large labeled datasets for ad-hoc search. We perform the full document ranking
task with the goal of testing new expansion methods to improve effectiveness.
The evaluation has 43 test queries from Bing, and the corpus consists of 3.2
million web documents. Documents are rated on a four point graded relevance
scale. The primary measure is NDCG@10.
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Evaluation Metrics. Since we focus on introducing relevant documents to a
candidate pool for downstream ranking, we consider both recall-focused metrics
(Recall@100, Recall@1000, MAP) as well as precision-based measures (P@10/20,
NDCG@10/20). For Robust, in order to compare with previous works we report
precision and NDCG at cut-off 20. We report the official primary measure for
DL, NDCG@10. For significance testing, we use a paired t-test with significance
at the 95% confidence interval.

4.2 Baselines

We study the behavior of the CEQE model in comparison with standard models
from probabilistic language modeling. For the baseline retrieval we use BM25
because it is the most widely used first-pass unsupervised ranker used to generate
candidate pools. We compare to two static expansion models [12] and a proven
pseudo-relevance feedback model, the Relevance Model [13]. We use the standard
relevance model (RM3 variant) that performs linear interpolation of the RM
expansion terms with the original query using the Query Likelihood score.

Static Embeddings. For static word embeddings we use GloVe [26] embed-
dings. The pre-trained 300 dimensional Glove word embeddings are extracted
from a 6 billion token collection (Wikipedia dump 2014 plus Gigawords 5).
These embeddings are the most effective static embeddings for a variety of tasks,
including previous work [7] on query expansion. We use the static embeddings
with two variations. The Static-Embed model [12] is a global expansion model
using GloVe expansion on the target collection vocabulary. For a fair comparison
with CEQE, we additionally consider a Static-Embed-PRF variant that has its
vocabulary limited to terms appearing in the PRF documents.

4.3 Intrinsic Expansion Judgments

Beyond direct retrieval, we also assess term selection quality intrinsically. We
directly measure the utility of individual expansion terms. Following previous
work from Imani et al., we generate this term utility by performing expansion
one word at a time [10]. Retrieval effectiveness assesses whether a term is good
(helps retrieval), bad (hurts retrieval), or neutral (has no effect). We pool the
top thousand candidate expansion terms from all candidate expansion methods.
These are issued to the retrieval system with the original query (each with a
default weight of 0.5, the default relevance model expansion weight). This app-
roach follows standard relevance model interpolation practice and removes the
dependence on the original query length (instead of simply appending a word).
We measure improvement based on recall@1000 with a threshold of 0.001. For
Robust this results in approximately 500k candidate terms. For the intrinsic
evaluation only queries with at least one positive expansion term are used. This
is 181 queries for Robust with 10,068 positive terms.
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4.4 System Details

All collections are indexed with the Galago1 open-source retrieval system for
research. The query models and feedback expansion models are all implemented
using the Galago query language. We perform stopword removal and stemming
using Galago’s stopword list and Krovetz stemmer, respectively.

Contextualized Embedding Model. We use BERT because it is the most
widely used contextual representation model. We use the pre-trained BERT
(BERT-Base, Uncased) model with maximum sequence length of 128 for cal-
culating the contextualized embedding vectors. Since the documents in Robust
are longer than 128 tokens we split the documents into chunks with maximum
size of 128 tokens. For the primary CEQE results in this section we use a sin-
gle layer of the contextualized representation, the second to last layer (11) of
BERT. This layer was shown to be the most effective single layer on NER [6]
and it was shown that later layers (before the last) were the most effective word
representations for multiple language tasks [28] that use contextual embeddings
as features. Initial preliminary experiments confirmed this finding.

Neural Ranking Models. For our neural models we adopt CEDR [18]. In
particular, to align with the use of the contextualized models we use the BERT
variant. For Robust, we use the CEDR-KNRM model trained by the authors [18].
Throughout the paper we refer to the CEDR-KNRM as CEDR. For DL we use
a CEDR variant trained on a random sample of 1000 MS MARCO train queries
with early stopping to terminate when there is no validation improvement for
20 iterations.

Parameter Settings. The unsupervised retrieval and feedback hyperparame-
ters are tuned using grid search. The b and k1 are tuned for BM25 as well as
mu for the QL model in the RM3 score. For all PRF query expansion methods
we tune the number of documents ({5, 10, ..., 100} by 5), terms ({10, 20, ..., 100}
by 10) , and interpolation coefficient ({0.1, 0.2, ..., 0.9} by 0.05). For Robust, we
use five-fold cross-validation with the splits introduced by Huston and Croft [9].
For DL the original 2019 track only used MS MARCO for training. We set
hyper-parameters using five cross-validation with random splits on the topics.

5 Experimental Results

First, in Sect. 5.1 we study how to incorporate contextualized embeddings for
the task of unsupervised query expansion (RQ1). Then, in Sect. 5.2 we explore
the effect of CEQE variants in combination with neural ranking methods (RQ2).
Finally, in Sect. 5.3 section we study how a reranked neural result can be used
as a basis for further expansion and reranking (RQ3).
1 http://www.lemurproject.org/galago.php.

http://www.lemurproject.org/galago.php
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5.1 Unsupervised Expansion Comparison

We first evaluate our expansion model on retrieval effectiveness in extrinsic eval-
uation. We study this setup because these are the most widely used algorithms
for first pass retrieval. In this pass it is critical to focus on recall at a cutoff, par-
ticularly with a low cutoff due to the computational requirements of second pass
reranking (e.g., the top 100 documents as in [18] and the Deep Learning Track
[3]). We present the results of the methods as well as baselines for Robust04 in
Table 1 and 2019 Deep Learning Track in Table 2.

Robust (Table 1). The results on Robust show that all expansion methods
outperform the baseline BM25 retrieval method across all measures. The static
embedding models outperform BM25, but do not perform as well as the Relevance
Model (RM3). The effectiveness of the Static-Embed-PRF method that only uses
terms in the PRF documents’ vocabulary is more effective across all measures over
the Static-Embed approach with a global vocabulary. We hypothesize that this
may be due to the fact that the query results provide a topically focused vocab-
ulary and filters out generally similar noise. RM3 significantly outperforms the
Static-Embed method for MAP, but not other measures. To give an indicator of
the BM25 + RM3 parameters, the average parameter settings across the folds is:
22 feedback docs, 71 expansion terms, and interpolation weight of 0.3. We observe
that the contextualized expansion methods outperform the static embedding mod-
els. The results show the best method is CEQE-MaxPool. The Centroid method
is slightly lower than MaxPool, and both outperform multiplicative pooling. The
CEQE-MaxPool result outperforms the BM25+RM3 across all measures and in
Recall@1000 is significant over both static embedding methods and BM25+RM3,
which demonstrates the utility of context-dependent embeddings.

Table 1. Ranking effectiveness on the Robust collection. The superscript † and ‡
denotes statistical significance over BM25 + RM3 and Static-Embed-PRF, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 0.3657 0.4193 0.2574 0.4165 0.6933

BM25 + RM3 0.3998 0.4517 0.3069 0.4610‡ 0.7588‡

Static-Embed 0.3675 0.4285 0.2615 0.4217 0.7125

Static-Embed-PRF 0.3781 0.4400 0.2703 0.4324 0.7231

CEQE-Centroid 0.3922 0.4462 0.3019‡ 0.4593‡ 0.7653†‡

CEQE-MulPool 0.3847 0.4360 0.2845‡ 0.4517‡ 0.7435‡

CEQE-MaxPool 0.4040‡ 0.4587 0.3086‡ 0.4651‡ 0.7689†‡

CEQE-MaxPool(fine-tuned) 0.3986‡ 0.4528 0.3071‡ 0.4647‡ 0.7626‡

The last line of the table shows the result of using MaxPool with ‘fine-tuned’
contextual embeddings from a BERT model trained for ranking on Robust. The
results show small and insignificant differences across all measures. It is almost
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identical to vanilla embedding effectiveness after being combined with RM3.
This indicates that, when used for CEQE-based expansion, pre-trained models
are comparable in effectiveness to ones fine-tuned for ranking. To our knowledge
these are the best unsupervised query expansion results for Robust that do not
use external collections.

Deep Learning 19 (Table 2). We report the official evaluation measures for
the TREC 2019 Deep Learning Track [3] as well as Recall@1000. For NDCG@10,
the baseline BM25 retrieval is more effective than all expansion methods. To give
an indicator of the BM25 + RM3 parameters, the average parameter settings
across the folds is: 15 feedback docs, 85 expansion terms, and interpolation
weight of 0.4. Similar to Robust, we observe that a tuned RM3 outperforms
the static embedding methods across all measures. CEQE-MulPool and CEQE-
MaxPool also outperform the static embedding model across all measures. The
best performing expansion method is CEQE-MaxPool, outperforming RM3. We
note that given the small sample size (43 topics), none of the unsupervised
methods show statistically significant differences between them. As shown later,
that requires performing expansion on top of neural rankings.

Although our experimental setup is based on cross-fold validation (rather
than tuning on MARCO), we include the reported values from the Deep Learn-
ing track overview [3] for reference. Importantly, we observe that the CEQE-
MaxPool outperforms all submitted TREC systems on recall@1000 and is in
the top five for recall@100. It’s noteworthy that the unsupervised CEQE-
MaxPool ‘traditional’ model is only slightly lower than the median for P@10
and NDCG@10 with runs that include many state-of-the-art neural models.

Intrinsic Evaluation. In this section we examine the effectiveness of the expan-
sion approaches to rank positive expansion terms that improve Mean Aver-
age Precision (at 1000) when added to the query. This experiment evaluates

Table 2. Ranking effectiveness of CEQE on unsupervised baseline retrieval for Deep
Learning 2019 Track for the task of full document ranking. The superscript † and ‡
denotes statistical significance over BM25 + RM3 and Static-Embed, respectively.

Model P@10 nDCG@10 mAP@1000 Recall@100 Recall@1000

BM25 0.6535 0.5730 0.3513 0.4053 0.6950

BM25 + RM3 0.6256 0.5343 0.3975‡ 0.4434‡ 0.7750‡

Static-Embed 0.6186 0.5427 0.3373 0.3973 0.7179

Static-Embed-PRF 0.5605 0.4925 0.3166 0.3715 0.6737

CEQE-Centroid 0.5580 0.5580 0.4144‡ 0.4464‡ 0.7804‡

CEQE-MulPool 0.6442 0.5563 0.3724‡ 0.4295‡ 0.7560‡

CEQE-MaxPool 0.6581 0.5614 0.4161†‡ 0.4506‡ 0.7832‡

TREC 2019 Median 0.6597 0.5834 0.2984 0.3748 0.5484

TREC 2019 Best 0.8093 0.7260 0.4280 0.4670 0.7553
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Table 3. Intrinsic ranking evaluation of expansion terms on Robust. Significance over
Relevance Model is indicated by † and Static-Embed-PRF by ‡.

Model P@10 P@20 P@100

Relevance model 0.1693‡ 0.1419‡ 0.0871‡

Static-Embed 0.1008 0.0780 0.0511

Static-Embed-PRF 0.1357 0.1083 0.0655

CEQE-MulPool 0.1349 0.1174 0.0737

CEQE-Centroid 0.1751‡ 0.1481‡ 0.0826‡

CEQE-MaxPool 0.1830†‡ 0.1500†‡ 0.0841‡

a method’s ability to identify good expansion terms in isolation. The results are
shown in Table 3 for the key expansion models to compare for Robust collec-
tion. Because a fixed top-k expansion terms are usually selected for expansion we
evaluate the intrinsic evaluation with set-based precision numbers at common
thresholds for the number of expansion terms. The results show that a well-
tuned Relevance Model outperforms query expansion models based on static
embeddings. In contrast, we find that our proposed contextualized embedding
model, CEQE, provide improvements in early ranks for P@10 and P@20. All
the CEQE models significantly improve over static embedding models across all
metrics. And further, we find that CEQE-MaxPool significantly outperforms the
Relevance Model expansion effectiveness for P@10 and P@20. It is insignificantly
different from the Relevance Model at rank 100. This indicates that strength of
CEQE is selecting a higher number of “good” terms earlier, allowing improved
effectiveness with fewer expansion terms.

We explore the intrinsic results in more depth with an example for one topic
on Robust in Table 4. The first column has the terms (unstemmed) with the
greatest improvement for the query. The ranking of expansion terms for the Rel-
evance Model and CEQE-MaxPool are shown for comparison. We observe that
CEQE model identifies all of the terms from RM as well as three additional
relevant terms. More generally, we see that the CEQE terms appear to have

Table 4. Example top expansion terms for Topic 685, [oscar winner selection]. This
includes a sample of the most important intrinsic positive labels, Relevance Model
terms, and CEQE Expansion terms. Terms with positive intrinsic labels are highlighted.

Positive terms: academy, academys, nominations, nomination, critics, members,

branch, ignored, true, films, film, directors, director, filmmaker

RM: best, film, picture, million, academy, years, award, home,

edition, films, man, four, 1, 5

CEQE-Maxpool: film, academy, picture, winners, award, films, million, oscars,

box, presented, awards, director, years, nominations
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Table 5. Ranking effectiveness of neural ranking on top of query expansion methods
for Robust. The superscript † and ‡ indicates significance over BM25 + CEDR and
(BM25 + RM3) + CEDR with re-ranking top 1000, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 + RM3 0.3998 0.4517 0.3069 0.4610 0.7588

BM25 + CEDR [18] 0.4713 0.5458 0.3312 0.4983 0.6933

(BM25 + RM3) + CEDR 0.4719 0.5435 0.3500† 0.5192† 0.7570†

(BM25 + CEQE-MaxPool) + CEDR 0.4735 0.5462 0.3532† 0.5258†‡ 0.7719†‡

a stronger semantic relationship with the query terms. The RM terms appear
most loosely related and have additional noise terms, including single digit num-
bers. This is because RM focuses on terms that co-occur across multiple PRF
documents, but it does not explicitly model the relationship to the query. In
contrast our proposed model explicitly focuses on the query. As a result, the
CEQE model produces fewer terms that co-occur by chance.

5.2 PRF Effect on Neural Reranking

We now study how PRF methods impact the effectiveness of neural reranking
models (RQ2). It is important to have effective expansion in the first pass to
retrieve sufficient numbers of documents to rerank. The results of our experi-
ments on Robust are shown in Table 5. Applying neural reranked models base-
lines designed for document ranking, CEDR [18], on expanded query runs results
in significant gains to average precision, recall@100, and recall@1000 for both
RM3 and CEQE. Replacing RM3 with CEQE for expansion results in signifi-
cant improvement over Recall@100 and Recall@1000. The PRF parameters are
20 documents, 90 terms, and interpolation weight of 0.3.

5.3 Expansion After Reranking

In this section we study how a reranked neural result can be used as a basis
for further expansion and reranking (RQ3). This is a critical step because there
must be a sufficient number of relevant documents in the top ranks for PRF to
be effective. We evaluate multi-round supervised reranking based on expansion
runs for Robust in Table 6. The top of the table shows results from the leading
neural ranking and PRF approaches, including Neural PRF [14], CEDR, and
Birch [35]. The results in this section all perform re-ranking on 1000 results
from the baseline. We experimented with reranking 100 results and found it
consistently performed worse. The baseline model run is BM25+CEDR followed
by RM3 expansion with CEDR reranking, which we denote as (BM25 + CEDR)
+ RM3 + CEDR. The results show it outperforms Birch in NDCG@20 and
P@20, as well as its own previous result for P@20 on just BM25. Replacing RM3
with CEQE for the expansion consistently outperforms the previous best CEDR
results across all measures and significantly over Recall@1000. The runs compare
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Table 6. Ranking effectiveness of multi-round neural re-ranking and expansion for
Robust. The superscript † and ‡ indicates significance over BM25 + CEDR and (BM25
+ CEDR) + RM3 baselines, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

Neural PRF-DRMM [14] 0.4064 0.4576 0.2904 – –

BM25 + CEDR [18] 0.4713 0.5458 0.3312 0.4983 0.6933

Birch [35] 0.4657 0.5325 0.3697 – –

(BM25 + CEDR) + RM3 0.4458 0.5211 0.3321 0.4881 0.7751†

(BM25 + CEDR) + RM3 + CEDR 0.4783 0.5499 0.3574† 0.5291† 0.7751†

(BM25 + CEDR) + RM3 + CEDR Interp 0.4837† 0.5565 0.3739† 0.5440† 0.7751†

(BM25 + CEDR) + CEQE-MaxPool 0.4504 0.5250 0.3366 0.4931 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool +

CEDR

0.4799 0.5516 0.3601† 0.5332† 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool +

CEDR Interp

0.4904† 0.5621† 0.3773† 0.5486† 0.7874†‡

performing RM3 and CEQE-MaxPool on the CEDR baseline (which reranks an
initial BM25 first run). The second pass results are then reranked again using
CEDR. The result is further improve over previous approaches. The same trend
continues, with the CEQE-MaxPool outperforming the reranked RM3 run.

A common approach when applying BERT-based neural ranking is to per-
form learning-to-rank to combine the BERT and retrieval score. A simple proven
approach is the linear interpolation of the underlying retrieval score with neural
ranking model [34,35]. We apply this to the two best runs, learning the interpo-
lation using the previously described cross-validation setup. The results demon-
strate that linear interpolation with these expansion runs continues to show
gains. The interpolation with CEQE-MaxPool is the best performing, and com-
pared with the previous Birch shows over 5% relative gain P@20 and nDCG@20
as well as improving MAP. These results show that multiple rounds of expansion
and reranking can continue to result in significant improvements.

6 Conclusion

We introduce a new method, CEQE, for query expansion that extends rele-
vance feedback approaches to recent advances in contextualized language mod-
els. CEQE address fundamental challenges using context-dependent term repre-
sentations for unsupervised pseudo-relevance feedback. We study its empirical
effectiveness on multiple standard test collections and the results demonstrate
that they are superior to previous static embedding approaches.
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Abstract. Knowledge Graph Embeddings (KGE) have become an
important area of Information Retrieval (IR), in particular as they pro-
vide one of the state-of-the-art methods for Link Prediction. Recent work
in the area of KGEs has shown the importance of relational patterns, i.e.,
logical formulas, to improve the learning process of KGE models signifi-
cantly. In separate work, the role of noise in many knowledge discovery
and IR settings has been studied, including the KGE setting. So far, very
few papers have investigated the KGE setting considering both relational
patterns and noise. Not considering both together can lead to problems in
the performance of KGE models. We investigate the effect of noise in the
presence of patterns. We show that by introducing a new loss function
that is both pattern-aware and noise-resilient, significant performance
issues can be solved. The proposed loss function is model-independent
which could be applied in combination with different models. We provide
an experimental evaluation both on synthetic and real-world cases.

Keywords: Knowledge graph · Embedding · Noise · Relational
pattern

1 Introduction

Knowledge Graph Embeddings (KGE) have become an important area of infor-
mation retrieval, in particular as they provide one of the state-of-the-art methods
for Link Prediction. Embedding models typically receive Knowledge Graphs as
a set of correct edges, i.e., triples in the form of (subject , relation, object) repre-
senting a fact such as (Student1 , isPhDin,Group1 ). The role of KG embedding
models is to take the symbolic representation (i.e., edges) and embed it into a
c© Springer Nature Switzerland AG 2021
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vector space. For learning such embeddings, a typical scenario is to use exist-
ing edges as positive samples. Also, negative samples are generated by applying
random corruptions to positive samples. As described so far, we see the ideal
scenario, yet once knowledge graph embeddings are applied in real word set-
tings, we see two factors: the appearance of patterns between relations, and the
existence of noise. Let us first consider the former. Recent work in the KGE area
has shown the importance of relational patterns, i.e., logical formulas, to improve
the learning process of KGE models significantly [9]. Relations between entities
of a KG often form particular patterns which can, e.g., be represented as logical
rules. Such patterns can be either stated directly based on domain knowledge
or inferred statistically based on the data. For example, if we know the follow-
ing statistical pattern from the data, namely that (Student , isPhDin,Group) and
(Group, ledBy ,Leader) in most cases implies (Student , supervisedBy ,Leader), we
may expect our KGE model to infer such a fact as well. Such relational patterns
can be injected into the learning process, or be statistically inferred during the
learning process of a KGE model [5,7,8,21]. The other factor when we hit the
real world, apart from patterns, is the existence of noise. The role of noise has
been studied in many knowledge-based settings [10], including the KGE setting
[24]. It is very hard in reality to distinguish noise (i.e., incorrect edges) from
correct edges [12,20,25]. Noise in the presence of patterns in many off-the-shelf
KGE models actually propagates along relational patterns. One of the reasons
for this can be that the original edges are actually not correct, but noise. Another
reason is that noise may, via relational patterns, lead to the creation of edges
creating further contradictions. We frequently encounter situations where we
have a number of such contradictions coming from incorrect triples, i.e., noise,
as well as contradictions coming from edges learned via patterns. So far, very few
papers have investigated the KGE setting considering both relational patterns
and noise, which, allows one to overcome significant problems in the perfor-
mance of KGEs. We investigate the effect of noise in the presence of patterns
and, specifically, show that, noise on a particular edge (triple) will, via patterns,
affect the score of other edges. We introduce a new loss function UNITE that is
both noise-resilient and pattern-aware, i.e., allows to provide good performance
even in the presence of noise and relational patterns. This new loss function is
model independent and can be employed across KGE models. We provide an
experimental evaluation, both on synthetic KGs where noise is explicitly intro-
duced based on known patterns, and a large-scale real-world evaluation, where
noise is randomly introduced on mostly unknown patterns.

2 Motivating Example

To directly illustrate the destructive effect of noise in combination with rela-
tional patterns, let us consider an example. In the lower part of Fig. 1, we see
a Knowledge Graph describing academic research groups (shown in yellow and
marked as “group” in the diagram), students (shown in orange) and group lead-
ers (shown in blue). We have three relations shown as directed edges, namely
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that a group can be led by a group leader, a student can be supervised by a
group leader, and a student can work in, or be doing a PhD in a group. We here
zoom-in into one portion of the graph to highlight typical relationships – other
areas are shown in gray color in the background (for 22 triples in our example).
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Fig. 1. Comparison of scoring triple correctness between RotatE and the UNITE – with
three relational patterns in a KG in presence of noise.

Noise Noise Noise

Fig. 2. Loss functions and noise with repeated patterns of Fig. 1.

The key aspects of the problem are relational patterns on the one hand, and
noise on the other hand. One simple example of noise is shown through the
red edge in Fig. 1, which does not hold in the model world, but is present in
our data set. On the upper side of Fig. 1, we see the relational patterns of our
model world where (a) and (b) are composition, and (c) antisymmetry. Figure
2 shows ranks (Hit@1) of the triples from TransE model for this scenario with
three loss functions including ours. The second and third columns are the setting
without and with noise, respectively. In Fig. 2, we see the three edges marked
as noise, i.e., incorrect edges. We record the resulting classification as correct
(blue) and incorrect (red). While there are differences between the scores for our
three noise tuples with the three loss functions, one could still consider them
adequate, as the classification is in all cases negative. That is, for edges that
represent noise, the scores are not truly problematic. The reason for the lower
evaluation metrics becomes apparent on those edges shown in Fig. 2 such as
T3 or T16 which do not represent noise, but are related to noise via relational



486 M. Nayyeri et al.

patterns. We see in these cases that the scores under margin ranking loss are in
most cases the worst, followed by adversarial loss, while UNITE loss is clearly
the least affected. Intuitively, UNITE dampens the effect of noise propagating
along relational patterns. This is in particular highlighted when looking at the
lower left part of Fig. 1 (where scores under the adversarial loss are annotated
above edges) comparing it to the lower right part of Fig. 1 (where scores under
the UNITE loss are annotated above edges).

3 Related Work

Here, we review highlights of related contributions considering both the score
and loss functions of models which fall in the same category as ours, namely
distance models, i.e., translation-based, or rotation-based models.

Score Functions. The score function of a KGE model (fr(s, o)) takes the
embeddings of a triple, i.e., (s, r,o) and returns a value – often denoted as
fr

s,o – indicating the extent to which a triple is plausible in the embedding space.
We consider one baseline (TrasnE) from translation-based embedding model and
one state-of-the-art (RotatE) rotation-based KGE model.

TransE [1] model takes a vector representation of a triple (s, r,o) and models
its relation (r) as a translation from subject (s) to object (o), i.e., s + r ≈ o.
The score function of TransE is formulated as ‖s + r − o‖.

RotatE [21] forces sjrj ≈ oj to hold for all j ∈ {0, . . . , d} per each given
triple (s, r,o). The model performs a rotation of the j-th element sj of the
subject vector s by the j-th element rj = eiθrj of a relation vector r to get the
j-th element oj of the object vector t, where θrj

is the phase of the relation r.

Loss Functions. The loss function of a KGE (L) is an optimization to adjust
the embedding vectors. The losses of TransE and RotatE models have been
reported strongly outperforming the other possible KGEs [19,21].

Margin Ranking Loss (MRL) has been primarily designed for training TransE
and its variants. The loss optimization aims to put a margin (inspired by
SVM [2]) between each positive sample (s, r, o) and its corresponding nega-
tive sample (s′, r, o′), obtained by corruption in s, or o [1]. Let γ is a margin
and [x]+ = max(0, x). MRL is defined as L =

∑
(s,r,o)∈S+

∑
(s′,r,o′)∈S−

(s,r,o)
[γ +

fr(s, o) − fr(s′, o′)]+. Despite the major use of MRL, it suffers from the mar-
gin sliding problem [15]. Therefore, there are many solutions which do not fulfil
the translation, i.e., s + r �= o [26]. The loss of the RotatE model is called
Adversarial Loss which is defined as L = −∑

(s,r,o)∈S+

(
log σ(γ − fr(s, o)) +

∑
(s′,r,o′)∈S− p(s′, r, o′) log σ(fr(s′, o′) − γ)

)
, where σ(.) is the Sigmoid function,

p(s′, r, o′) = exp(αfr(s
′,o′))∑

exp(αfr(s′,o′)) is the probability of the triple (s′, r, o′) to be true
negative, and α is the temperature of sampling. Other loss functions are also
designed for particular usages [14,15].
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Noise and KGE Models. The sensitivity of KG embeddings to sparse and
unreliable data is discussed in [16] without considering noise and relational pat-
terns. GTransE [11] deals with uncertainty (meaning triple incorrectness) on
KGs using dynamic and static weighting. In a different work, puTransE [22]
proposes an approach to make KGEs semantically and structurally aware of
noise, but it did not consider loss functions in particular. Node similarity Pre-
serving (NSP) [17] proposes a loss function without considering multi-relational
KGs. Graph Denoising Policy Network (GDPNet) [23] focuses on an inductive
approach from reinforcement learning on noise in scholarly KGs. Most of the
other works have been focused on negative sampling, or feature selection for
noise detection [12,20,25]. We focus on the role of loss functions in the existence
of incorrect triples as noisy data and considers relational patterns.

Fig. 3. Learning steps of UNITE. Initial state (left), intermediate state (middle)
and final state (right).

Relational Patterns and KGE Models. Early literature conjectured KGE
models are evaluated in rules encoding [3,4,9,18]. Only some rule injection
frameworks such as Ruge [8], KALE [7] and few embedding models such as
RotatE [21] and its special case TorusE [5] have considered the issue of rela-
tional patterns. Specially, a recent work has theoretically and empirically proven
that the score function of the RotatE model is capable of inferring various
relational patterns including symmetric/antisymmetric, inverse and composi-
tion patterns. This inference ability is when for any pattern in the form of
premise → conclusion, the model approves correctness of conclusion when the
correctness of premise is confirmed. Overall, the existence of noise in KGs in the
context of relational patterns has not been addressed.

4 Method

Given a KGE model, a typical optimization framework for link prediction con-
sists of the following steps: (1) initialization of embedding vectors, (2) setting
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criteria (e.g., margin, square error), and (3) optimizing a loss function in an
iterative way to enforce that embedding vectors satisfy the criteria. In order to
unify the power of implicit patterns shaped inside the underlying KG and miti-
gate the negative effect of noise, we adapt these steps in a proposed optimization
framework named UNITE model.

In step (2), i.e., setting criteria, we consider a point γ ∈ [0, 1] as discrim-
inator for separation of positive and negative samples. Relative to γ, the cor-
rectness/incorrectness of a triple (s, r, o) is measured by its distance (τ r

s,o) to
the discriminator. Note that τ r

s,o is initialized to zero originally, and during the
learning process will, in general, increase. UNITE aims at adjusting the distance
as well as embedding vectors in an iterative process to reduce the degree of cor-
rectness of implicit noisy triples while the model learns from patterns that the
triple is wrongly labeled as positive or negative.

To illustrate the process of step (3), i.e., optimization, we introduce Fig. 3
which guides us through this method section, and the components of which we
will introduce step by step in this section. Overall, we see three states of the
learning process: On the left side of Fig. 3 the initial state, on the right side the
final state and an intermediate state in the middle. The boundary γ, illustrated
in each state in the figure, separates positive and negative samples. The distance
to γ is given by τ r

s,o, and illustrated in Fig. 3. In the rest of this section, We
first design a loss function and explain the process to perform optimization for
positive samples. This will allow us to understand the areas to the left of γ
in Fig. 3. The same procedure is explained for negative samples, providing an
intuition for the areas to the right of γ. Finally, the two designed parts are united
by proposing the optimization framework UNITE, which allows us to understand
Fig. 3.

4.1 UNITE Loss for Positive Samples

As briefly introduced in the previous section, apart from the embedding itself,
the primary values to be optimized during the optimization phase is the distance
τ r
s,o. We will now describe, bottom-up, how the loss function and the optimization

problem is defined for positive samples. Let us first define domain and range of
τ r
s,o : S+ −→ [0,∞]. More specifically, by constraints of the optimization problem

introduced later, the effective range of τ r
s,o will actually be constrained to be

[0, γ]. Within our framework, we will apply a probability function P to τ r
s,o, and

use the notation P r
s,o = P (τ r

s,o). The specific choice of such a probability function
is up to the user of the framework. In our evaluation, we use a Gaussian function
with the variance optimized as a hyper-parameter. Precise definitions will be
given in the evaluation section, where experiments for particular configurations
of the framework are performed. Intuitively, values P r

s,o for positive samples have
the following meaning: 1) a triple with P r

s,o = 0, has the highest probability of
being correct (“positive”); 2) a triple with P r

s,o = 1, has the lowest probability of
being correct (“unknown”); 3) a triple with P r

s,o between 0 and 1 describes the
extent to which a triple is considered as positive or unknown. In the beginning of
the learning process, τ r

s,os are randomly assigned to a very small value (τ r
s,os ≈ 0).
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Therefore, P r
s,os are very high in the beginning of the learning process (P r

s,o ≈ 1).
The ultimate objective is to minimize the loss function. The embedding vectors
and τ r

s,os are optimized in an iterative process. We define the loss function as:

L+ =
∏

(s,r,o)∈S+

P r
s,o (1)

where S+ is the set of all triples in the KG. We define the objective function of
the optimization problem as follows:

min
{(s,r,o)}∈S+,τr

s,o

L+ (2)

where S+ is the embedding of all entities and relations. We apply a second prob-
ability function Q for the purpose of defining constraints for our optimization
problem. The specific choice of such a probability function is again up to the user
of the framework. In our evaluation, we use a Sigmoid function. As before, pre-
cise definitions will be given in the evaluation section. We now give the constraint
of our optimization problem

Q(γ − fr
s,o) ≥ Q(τ r

s,o). (3)

Observe that this constraint effectively limits τ r
s,o to be no larger than γ, and it

forces the score fr
s,o to be in the range [0, γ] as well. This yields the following

optimization problem using the objective function from Eq. 2 and the constraint
from Eq. 3: {

min{(s,r,o)}∈S+,τr
s,o

∏
(s,r,o)∈S+ P r

s,o ,

s.t. Q(γ − fr
s,o) ≥ Q(τ r

s,o).
(4)

Considering the fact that min L is equivalent to min log(L), the following opti-
mization problem is solved instead of Eq. 4:

{
min{(s,r,o)}∈S+,τr

s,o

∑
(s,r,o)∈S+ log P r

s,o ,

s.t. Q(γ − fr
s,o) ≥ Q(τ r

s,o).
(5)

This essentially makes the mathematical operations applied simpler, while still
solving the same optimization problem.

4.2 UNITE Loss for Negative Samples

Existing KGE models mostly generate negative samples by corruption of positive
samples. In this paper, we consider one of the simplest corruption techniques
namely uniform negative sampling used in [1]. To this end, either subject (s) or
object (o) of a given positive triple (s, r, o) is replaced by an entity (s′ or o′). A
candidate entity (s′ or o′) is selected randomly using uniform distribution. Let
the set S−

(s,r,o) denotes all such corruptions of the triple (s, r, o), and let S− denote
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the overall set of all the negative samples. Due to randomness of negative sample
generation, there is always uncertainty in the negative samples. The definition
of the optimization problem for negative samples follows similar principles as
the one described before for positive samples: 1) a triple with P r

s′,o′ = 0, has the
highest probability of being incorrect (“negative”); 2) a triple with P r

s′,o′ = 1,
has the lowest probability of being incorrect (“unknown”); 3) a triple with P r

s′,o′

between 0 and 1 describes the extent to which a triple is considered as negative
or unknown. The constraint for negative samples is Q(fr

s′,o′ − γ) ≥ Q(τ r
s′,o′)

where S− is the set of all negative samples and S− is the set of all embeddings
of entities and relations participating in the negative sample set S−.

4.3 United Optimization

We now merge the two optimization problems previously formulated for positive
and negative samples, completing the overall situation illustrated in Fig. 3. There
are two possible assumptions for uniting the formulations of positive and negative
samples, namely: independent uncertainty and dependent uncertainty.

Independent Uncertainty: this assumption indicates that although a negative
sample (s′, r, o′) is generated by corruption of either subject or object of the
positive sample (s, r, o), the degrees of uncertainty for positive and negative
samples are independent (UNITE-I). Therefore, we set two different parameters
for the positive and its negative sample i.e., τ r

s,o for positive and τ r
s′,o′ for neg-

ative samples. This can be achieved by simply combining the two optimization
problems we introduced so far without any further modification, yielding the
following optimization problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{(s,r,o)}∈S+,{(s′ ,r,o′ )}∈S−,τr
s,o,τr

s′,o′
∑

(s′,r,o′)∈S− log P r
s′,o′ +

∑
(s,r,o)∈S+ log P r

s,o

s.t. Q(fr
s′,o′ − γ) ≥ Q(τ r

s′,o′) , {(s′, r, o′)} ∈ S−,

Q(γ − fr
s,o) ≥ Q(τ r

s,o), {(s, r, o)} ∈ S+.

(6)

Dependent uncertainty: we set the same parameters for the positive and its neg-
ative sample to measure the degree of uncertainty dependently. Therefore, τ r

s,o is
used for both of the positive and its corresponding negative samples (UNITE-D).
The formulation of this optimization is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{(s,r,o)}∈S+,τr
s,o

∑
(s,r,o)∈S+ log P r

s,o ,

s.t. Q(fr
s′,o′ − γ) ≥ Q(τ r

s,o) ,

{(s′, r, o′)} ∈ S−
(s,r,o), {(s, r, o)} ∈ S+,

Q(γ − fr
s,o) ≥ Q(τ r

s,o), {(s, r, o)} ∈ S+

(7)

For both positive and negative samples, τ r
s,o of the positive samples is used.

Finally, in order to solve the optimization problems given by Eqs. 6 and 7, we
bring the constraints to the objectives, as is usually done, and solve the uncon-
strained optimization problems using stochastic gradient descent.
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The Role of τ . Let us focus on the negative samples in Fig. 3 which are dis-
tributed in the right side of γ. This is effectively enforced by the constraint intro-
duced in negative constraint. which consequently enforce the eventual scores of
negative samples to be bigger than γ. To understand the role of τ in deter-
mining the plausibility of triples in presence of noise, for example let r be
a symmetric rule in the form of premise ⇐⇒ conclusion, where premise, (a
triple) and conclusion (a triple) have a common relation with different enti-
ties in head and tail positions i.e. (s, r, o) ⇐⇒ (o, r, s). If we exemplify this
on colleagueOf relation, then (S, colleagueOf,O) ⇐⇒ (O, colleagueOf, S) In
case (S, colleagueOf,O) is a correct triple in a KG, then the plausibility of
(O, colleagueOf, S) can be defined with different conditions: (a) it is a correct
triple in positive samples, or (b) it is not in positive samples nor in negative
samples, or (c) it is in negative samples (false negative) which creates a con-
flict with what the model is enforced to learn. Here we focus on case (c) when
(O, colleagueOf, S) is a false negative sample (noise) in the training set. If we use
RotatE for this case (as one of the best reported distance-based model) with the
score function fr

s,o = ‖s◦eθr −o‖ which is proven to be capable of inferring sym-
metric relations when θr = 0 or π [21], therefore the triple (O, colleagueOf, S)
will be learned (inferred) as a positive triple. This poses a conflict between
what the model infers about the plausibility of this triple from the patterns
(positive), and what the model sees about the plausibility of this triple in the
training set (negative). Here τ comes into play with an important role to resolve
this conflict by giving the high uncertainty value to the false negative sample
(O, colleagueOf, S). For simplicity of explanation, let Q be a linear function (in
negative constraint) and γ = 0, so we have fcolleagueOf

(O,S) ≥ τ colleagueOf
(O,S) . Since

θr = 0 or π and (S, colleagueOf,O) is positive, fcolleagueOf
(O,S) ≈ 0 (is positive) ,

therefore, τ colleagueOf
(O,S) is constrained to be close to zero (is positive). Therefore,

the main optimization problem of Eq. 6 considers τ ≈ 0 as an optimal solution.
Therefore, the triple gets high uncertainty value based on τ i.e. P colleagueOf

O,S ≈ 1.
Giving such high uncertainty to (O, colleagueOf, S) enables the model to keep
θr still close to 0 or π which preserves the ability of inferring a symmetric pat-
tern. The opposite of this scenario is the case where (S, colleagueOf,O) gets the
score to be negative by the model because (O, colleagueOf, S) is in the negative
set and r is a symmetric relation (θr = 0, π). However, this scenario is less likely
to happen because there are other patterns and triples that by using them the
model recognizes (S, colleagueOf,O) as positive during learning process.

5 Evaluation

In this section, we evaluate the UNITE framework in the context of two other loss
functions: margin ranking loss (baseline) and adversarial loss (state-of-the-art).

Evaluation Metrics. Three statistic measurement metrics are considered:
Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hits@K. In order to
calculate MR, a corrupted version of the test set is created: (1) replacing the
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subject of triples by possible other entities, and (2) replacing the object of triples
by all possible entities. For each triple (s, r, o) in the test set S, a sample set Si for
the ith test triple is generated such that Ss

i = (?, r, o), ? ∈ KG. The same holds
for the second round. Scores of all the generated triples (including the test triple
(s, r, o)) are computed and sorted in Ss

i and So
i . Let Ranki = (Ranks

i +Ranko
i )/2

denote the general rank of the i-th triples, the Mean Rank (MR) is computed
as MR =

∑
Ranki

nt
where nt is the number of test triples. Hits@K is the rate of

correct triples appearing in top K position. The filtered setting [1] is used for
evaluation of our model.

Datasets. We used four standard benchmarks (statistics in Table 1) with the
assumption that they contain implicit noise. AMIE [6] was used for rule mining.
We contaminate FB15K by more than 100,000 random corrupted triples (about
20% noise) to evaluate the ability of UNITE to recognize and be resilient to noise.
We keep the ratio relatively high (20%) however for other datasets, we stayed
with lower ratio because it was compatible with the statistics of patterns in the
whole dataset. The same ratio of noise is considered for WN18. For FB15K-237,
we generate 5% random noise.

Table 1. Dataset statistics. Number of triples and patterns.

Dataset Inv. Imp. Eql. Sym. #train #valid. #test

FB15K 67,757 3,259 8,771 7,740 483,142 50,000 59,071

FB15K-237 4,645 578 861 – 272,115 17,535 20,466

WN18 116,464 – – – 141,442 5,000 5,000

WN18RR – – – – 6,084 3,034 3,134

Training Setting. We train TransE and RotatE using optimization frame-
work Eq. 6 (UNITE-I) and Eq. 7 (UNITE-D). In our experiments, we use
P r

s,o = exp−στ r
s,o

2 (Gaussian) and Q(x) = 1
1+exp−x (Sigmoid). The Sigmoid

function is strictly monotone, therefore we use a linear function (Q) instead to
enforce the constraints. The embedding dimension d is set to be 200 and 10
negative sample are generated (n = 10). The hyper-parameter of the Gaussian
function (σ) is fixed to 1000. The batch size is set to 1024 for training on FB15k
and FB15k-237, and 512 for WN18 and WN18RR. The corresponding values for
γ is from the set {0, 5, 10, 15, 20, 25, 30}.

5.1 Experimental Results

The results of our experiments have been divided into multiple parts. First,
we evaluate UNITE with and without artificially generated noise. We addition-
ally report the results of different models/losses with/without pattern injection.
We also inject patterns (only for inverse) by adding a regularization term to
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Table 2. Evaluation Results. Comparisons of results for Adversarial Loss, Margin
Ranking Loss and UNITE are depicted for FB15k and FB15k-237, and WN18.

Dataset FB15K FB15K-237 WN18

MRR Hits@10 MRR Hits@10 MRR Hits@10

Adv. Loss w/o noise w/

inject

RotatE 73.3 87.9 32.1 50.8 - -

TransE 66.7 86.3 30.8 50.3 - -

w/o

inject

RotatE 72.3 87.8 32.3 51.2 94.9 96.3

TransE 68 86 31.3 51.3 70.7 95.2

w/- noise w/

inject

RotatE 63.3 82.8 31.2 51.1 - -

TransE 32.3 75.7 30.7 50.2 - -

w/o

inject

RotatE 61.2 81.9 32.3 51.2 94.8 96.2

TransE 32.2 74.8 31.3 49.8 69.8 94.7

MR Loss w/o noise w

inject

RotatE 62.3 81.1 - - - -

TransE 45.8 74.3 - - - -

w/o

inject

RotatE 60.8 80.7 27.9 47.3 94.2 94.3

TransE 46.9 74.3 27.7 47.3 50.1 94.8

w/- noise w/

inject

RotatE 52.3 72.8 - - 91.9 93.8

TransE 33.3 61.2 - - 50.4 94.8

w/o

inject

RotatE 50.3 72.7 27.9 46.8 92.3 94.2

TransE 32.2 60.1 26.7 47.9 45.2 95.2

UNITE Loss w/o noise w/

inject

RotatE 74.3 88.8 33.3 51.9 - -

TransE 67.9 86.8 31.1 51.2 - -

w/o

inject

RotatE 73.3 88.8 21.2 50.8 95.3 96.2

TransE 69.3 86.3 31.3 51.1 75.9 95.8

w/- noise w/

inject

RotatE 64.2 83.8 33.3 51.8 - -

TransE 33.3 76.2 30.9 50.8 - -

w/o

inject

RotatE 61.1 83.3 32.2 51.8 94.9 95.8

TransE 32.2 76.2 30.9 51.2 74.8 95.8

the objective as in [13]. As shown in Table 2, UNITE achieves improvements in
FB15K and FB15K-237 in terms of MRR and Hits@10 with and without noise.
UNITE achieves an MRR of 74 for FB15K whereas MRL and adversarial loss
achieve 62 and 73, respectively. The relatively good results of adversarial loss
is due to its noise resiliency ability, however our model is particularly designed
for being pattern-aware in presence of noise. In our evaluation setup with ran-
domly generated noise, UNITE significantly outperforms margin ranking loss by
more than 10%. As visible, the results of the RotatE model when trained with
adversarial loss stay very close to UNITE. Our assessment for these results can
be summarized as three points: 1) lack of diversity in types of rules: despite
the existence of patterns in FB15K, it lacks diversity of patterns; 2) relatively
small ratio of other pattern types to inverse: the majority of the patterns
are inverse relations and the rest belong to symmetric, implication and equiva-
lence patterns Table 1; 3) test set leakage: not only the diversity but also the
ratio of overall grounding of patterns has dropped dramatically in the case of
FB15K-237. Considering the above points, of particular interest for future work
will be in-depth studies on the existence of complex patterns, and advances in
the area of pattern extraction, especially focusing on complex patterns. Both of
the optimizations, UNITE-I and UNITE-D, perform closely – in all the previous
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evaluations, we only reported UNITE-I. UNITE-D gets a lower MR in both
datasets of WN18 and FB15k with same result in Hits@1 on WN18. In FB15k
for Hits@1, UNITE-I gets 82.2% while UNITE-D is performing with 81.7%. In
Table 2 we reported the relevant results for WN18. TransE trained by UNITE
obtains 76% on MRR, which significantly outperforms TransE with adversarial
loss with MRR of 71%. In the case of WN18RR, as discussed before, the rule
mining system that we used, AMIE, did not extract any patterns. Despite the
pattern-free characteristic of WN18RR, RotatE trained with UNITE was able to
achieve 57% in hits@10 whereas MRL could only reach 37%.
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Fig. 4. Distribution of scores in FB15K.

Correctness Prediction. In Fig. 4,
we illustrate the distribution of scores
predicted by UNITE for FB15K. The
X axis shows the index of triples and
the Y axis presents normalized scores.
Predicted correct triples (in blue) by
UNITE are separated on 0.4 from pre-
dicted noisy triples (in red). Out of
483,142 triples in the train set of
FB15k, 101,123 triples have been made

noisy through a random procedure (21%). As shown, our model is able to assign
a low score to most of the 21% generated noise triples. The triples in the upper
right (in blue) are assumed to fall in this category. The lower left part of the
plot shows the existence of noise (in red) in the positive samples. We manually
validated several triples in Table 3.

Table 3. Validation test shows correct (C) and noise (N) triples identified by UNITE.

Triple/Wikipedia Prediction

Harvey Weinstein(/m/05hjk) isSiblingOf
Bob Weinstein(/m/06q8hf)

1.0 (Originally Positive - Identified Positive

- (/m/07s9rl0) hasSameGenre
(/m/06fvc)

0.169 (Originally Positive - Identified Noise)

6 Conclusion

In this paper, we investigated KGE models in the presence of both relational
patterns and noise. We introduced the new loss function UNITE and its varia-
tions UNITE-I and UNITE-D. We evaluated UNITE both within translation-based
models (TransE) and rotation-based models (RotatE), and in synthetic and real-
world scenarios. As future work, we plan to further investigate the effect of non-
uniformly distributed random noise. This will need some advances in the area of
detecting and extracting more complex relational patterns than current methods
can do, but would be able to shed more light on the situation in which noise is
specifically affecting patterns in large real-world scenarios.
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Abstract. The rise of social media and the explosion of digital news in the web
sphere have created new challenges to extract knowledge and make sense of pub-
lished information. Automated timeline generation appears in this context as a
promising answer to help users dealing with this information overload problem.
Formally, Timeline Summarization (TLS) can be defined as a subtask of Multi-
Document Summarization (MDS) conceived to highlight themost important infor-
mation during the development of a story over time by summarizing long-lasting
events in a timely ordered fashion. As opposed to traditional MDS, TLS has a lim-
ited number of publicly available datasets. In this paper, we propose TLS-Covid19
dataset, a novel corpus for the Portuguese and English languages. Our aim is to
provide a new, larger and multi-lingual TLS annotated dataset that could foster
timeline summarization evaluation research and, at the same time, enable the study
of news coverage about the COVID-19 pandemic. TLS-Covid19 consists of 178
curated topics related to the COVID-19 outbreak, with associated news articles
covering almost the entire year of 2020 and their respective reference timelines as
gold-standard. As a final outcome, we conduct an experimental study on the pro-
posed dataset over two extreme baseline methods. All the resources are publicly
available at https://github.com/LIAAD/tls-covid19.

Keywords: Timeline summarization · Datasets · Evaluation

1 Introduction

Followingmedia coverage of long-lasting events likewars, epidemics or economic crises
is demanding for readers, journalists, specialists and scholars. How did the S.A.R.S. epi-
demic crisis evolve in the early 2000s? What are the similarities with modern events?
One common solution to this problem that can offer answers to the above-mentioned
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example questions is the adoption of timelines to support storytelling as a method to
organize the different phases of complex events. For instance, media outlets frequently
use timelines to illustrate stories. However, manually building such timelines can be very
laborious and time-consuming even with the support of modern search engines. Under-
standing the evolution and implications of these events often requires a combination of
tools and search queries. Timeline summarization systems (TLS) emerge in this context
as an alternative to manually digesting huge volumes of data in a short period of time
by offering the possibility of creating summaries of multiple documents over time.

The recent surge of theCOVID-19 outbreak is a very up-to-date example of this infor-
mation overload problem exerting tremendous effort and pressure on users who want to
keep up with the news. By January 20th 2021, the novel COVID-19 has been reported
in 219 countries; resulting in approximately 100M confirmed cases and more than 2M
deaths1 Fighting this pandemic situation requires isolation, social distance measures,
research in health and medicine care, but also contributions from the research commu-
nity. The Johns Hopkins University Center for Systems Science and Engineering (JHU
CSSE) was one of the firsts to make available a data repository2 and a visual dashboard
that gathers information from multiple sources. Multiple other similar initiatives have
also been established worldwide. The Coronavirus Corpus3, first released in May 2020
and currently 814M of words has also been created to shed light on what people are
saying in online newspapers and magazines. Perhaps, the most widely known initiative
to date was the release of the COVID-19 Open Research Dataset (CORD-19)4. Created
by the Allen Institute for AI in partnership with five other institutes, CORD-19 [32]
consists of over 158,000 scholarly articles, including over 75,000 with full text, about
COVID-19, SARS-CoV-2, and related coronaviruses and has fostered the emergence of
multiple solutions. This is the case of the TREC-COVID challenge [30], which uses the
CORD-19 dataset to build a set of Information Retrieval (IR) test collections. Aiming
to support the fight against this pandemic Alam et al. [1] has also manually annotated
a dataset of COVID-19 related tweets to tackle the problem of disinformation. These
datasets were already applied to a variety of NLP tasks such as question answering and
abstractive summarization [15]. Similarly, Yang et al. [34] developed a dialog dataset
containing conversations between patients and doctors about COVID-19 to support chat-
bots research. Timelines can also be understood in this context as an essential resource
for readers of major news outlets to quickly have access to a concise view of a given
topic over time. A good temporal summary of the “World Health Organization” topic
over the recent months should refer, for instance, to the chronological evolution of the
COVID-19 outbreak, possible vaccine solutions, or the Donald Trump’s ultimatum to
WHO on May 2020, among many other summaries.

While several methods have been proposed to generate condensed news timelines,
the problem of timeline generation is yet to be solved. One of the reasons for this is
that traditional TLS datasets are restricted to just a limited number of topics [29]. How-
ever, deeply understanding long-lasting events, as is the case of COVID-19, requires a

1 https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/.
2 https://github.com/CSSEGISandData/COVID-19.
3 https://www.english-corpora.org/corona/.
4 https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.

https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/
https://github.com/CSSEGISandData/COVID-19
https://www.english-corpora.org/corona/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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significantly larger number of topics, news articles, different sources, annotated time-
lines, and longer time spans. Previous work on TLS also does not make it clear on how
proposed methods behave across different languages. This makes it hard to assess how
the methods behave under different scenarios, since almost all the datasets, with few
exceptions, are for the English language, and none is multi-lingual. Sorting out these
questions is crucial for researchers who lack diversified datasets to evaluate their pro-
posed algorithms. Addressing the issues mentioned above, requires significant efforts
in terms of: (1) collecting manually edited timelines from credible news sources; (2)
collecting timelines and news articles, relevant to Covid-19 both in temporal and textual
dimensions; and (3) selecting a representative and diversified number of topics.

TLS-Covid19 corpus emerges in this context to promote the development and the
evaluation of new algorithms and applications in the context of the timeline summa-
rization task, and at the same time, to enable the study of news coverage about the
COVID-19 pandemic, from the evolution of a topic over time, to the comparison of
what is being said about a certain topic by different news outlets. One can also look at
keywords, part-of-speech tags, entities or events to see how things have changed over
time. It also opens room to look at collocates. A few examples might be: keywords that
were common in the same time-period, words that appear near covid-19 in different
time-periods, entities, events, nouns or verbs that were more common at the beginning
of the pandemics but no longer on December 2020. Finally, as it is common in most of
the datasets of this kind, researchers are also offered the chance to create a sub-set of
the dataset based on the publication date, the source, the country, etc., and to apply it
for different purposes than the one it was initially designed for. Our corpus consists of
178 topics (35 in English and 143 in Portuguese), their associated 100,399 news articles
(32,210 in English and 68,508 in Portuguese), and 178 timelines (one for each of the 178
topics). Note, however, that we have considered two news sources per language, each
with its timeline, which accounts for 356 timelines. This opens room for researchers two
evaluate their systems under two different scenarios. One that considers an evaluation
over the news sources, based on the fact that each one has its ground-truth timeline. The
other one which considers an evaluation solely over the languages, which could be made
possible by a slight modification that involves merging, for each topic, the timelines of
the two different news outlets. Our main contributions are as follows:

1. We develop a new TLS corpus - TLS-Covid19 - covering two languages (English
and Portuguese) from two different trustworthy news sources per language (CNN
and The Guardian for English, and Público and Observador for Portuguese).

2. Weopen roomfor researchers to explore language-independent summarizationmeth-
ods as 30 English topics (out of 35) can also be found as topics in the Portuguese
variant;

3. TLS-Covid19 is made available to the research community through a Python script
that enables to reconstruct the dataset and to keep collecting further news articles
and ground-truth timelines;

4. Based on this dataset, we conduct an evaluation process and present experimen-
tal results by comparing two different baselines (random; oracle upper bounds) to
understand the effectiveness of TLS methods under the proposed dataset.
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The remainder of this paper is organized as follows. Section 2 offers an overview
of the related work in timeline summarization. Section 3 presents the current available
TLS datasets. Section 4 describes the construction of the TLS-Covid19 corpus. Section 5
introduces the experimental setup. Section 6 discusses the results obtained from our
comparative experiments. Finally, Sect. 7 concludes this paper by summing up the most
important contributions of our research and by pointing out possible future research
directions.

2 Related Work on Timeline Summarization Systems (TLS)

Summarization is an active topic that has been discussed since the’50s [21]. According
to McCreadie et al. [25] it can be framed within four categories: (1) Multi-Document
Summarization; (2) TimelineGeneration (aka timeline summarization); (3)Update Sum-
marization; and (4) Temporal Summarization. Most researchers [9, 10, 17] focused on
single and multi-document summarization (MDS) where extractive methodologies are
usually employed by selecting the most relevant sentences to produce a new single docu-
ment. More recently, timeline summarization (TLS) appears as a particular case of MDS
aiming to summarize events across time and to put them in an automatically generated
timeline. The general idea is to extract textual units from related batch documents over
time through a retrospective perspective [2–5, 14, 23, 27–29]. In this case, the temporal
dimension plays an important role, and documents are assumed to be time-tagged or to
have at least some inherent (possibly ambiguous) temporal information in away that texts
can be anchored in a timeline. While automatically generated summaries have proved to
be a valuable instrument to digest large volumes of textual data, they are hard to evaluate.
The most popular, among the available evaluation methods, focus on comparative tex-
tual evaluation, where a summary produced by an automatic system is compared against
one or more gold-standard summaries manually constructed by humans. Unlike MDS,
which only needs to consider the compression rate between the input documents and the
reference summaries, in TLS, one is required to find not only relevant information but
also relevant dates to be placed in a timeline. Catizone et al. [12] formalizes this process
as follows: 1) relevant documents should be included in the appropriate timeframe; 2)
each timeline unit should contain accurate text labels, and 3) the timeline should include
the most significant events of the document collection. Manually generating annotated
summaries, however, is a laborious and time-consuming task. In the following section,
we provide a discussion about the currently available datasets. Despite a few releases
over the last few years, none, to the best of our knowledge, has considered making
available a multi-lingual dataset across a number of topics, likely slowing down the
emergence of novel methods in the context of timeline summarization. TLS-Covid19
dataset allows to fill this gap. Its description will be given in Sect. 4.

3 Shared Tasks and TLS Datasets

With the growingmaturity andunderstandingofTLS task, the attention of researchers has
progressively shifted to include formal and standard ways of evaluating their algorithms.
In this section, we begin by describing two related shared tasks, before presenting five
state-of-the-art TLS datasets.
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3.1 Shared Tasks

The problem of evaluating timeline summarization systems is long-standing.Within this
research area, there are two shared tasks, TREC-TS and SemEval 2015 Task 4, which are
worth mentioning as an alternative to datasets dedicated to TLS.

TREC-TS: From 2013 to 2015 the Text Retrieval Conference (TREC) promoted the
Temporal Summarization track (TREC-TS) to formalize the process of real-time tempo-
ral summarization [6–8]. This task is similar to update summarization, where a stream
of documents is processed, and each sentence is evaluated in terms of its novelty and
information gain. Relevant sentences are then selected to illustrate the event in summary.
Although relevant, the task definition and assumptions at TREC-TS are not explicitly
designed for TLS due to its streaming nature. The robustness of these datasets has also
been discussed by McCreadie et al. [24].

SemEval 2015 Task 4: Another example of a related shared task is the SemEval
2015 Task 4 [26] which focusses on cross-document event coreference resolution and
cross-document temporal relation extraction to identify temporal expressions. The chal-
lenge is to use a set of full-text documents as input to extract temporal relations related
to a given target entity and to present a timeline with ordered events. Although related,
this shared task differs from the usual timeline summarization as its purpose is to order
events instead of sentences.

3.2 TLS Tasks

While several approaches have been proposed over the years, including the above-cited
shared tasks, the lack of specifically annotated corpora has limited the evaluation of the
initial attempts, thus demanding researchers to create their own evaluation datasets. In
this section, we describe five state-of-the-art datasets (the Timeline17, the crisis dataset,
the social timeline, theChen2019 dataset, and the entities dataset) which have been used
in the process of evaluating TLS algorithms.

Timeline17: Tran et al. [28] proposed a method that links news articles with already
existing timelines edited by journalists as reference summaries. The authors selected
17 of such timelines from 9 different topics published by six different news agencies,
including CNN and BBC. Considering these topics as queries, they used Google search
engine to retrieve the top 400 articles published in the same timespan as the original
timeline. Their final dataset consists of 4,650 articles and was made publicly available5

to the community.

Crisis Dataset: Tran et al. [29] followsTimeline17with a similarmethodology.Authors
built a newand larger dataset focusedon long-timespan stories on armed conflicts, such as
the Egypt Revolution, Syria War, Yemen Crisis, and Libya War. The dataset comprises
15,534 news articles and 25 manually constructed timelines extracted from 24 news
agencies, obtained from January 2011 to July 2013.

5 https://l3s.de/~gtran/timeline/.

https://l3s.de/~gtran/timeline/
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Social Timeline: Wang et al. [31] proposed the TIMELINE20146, which includes news
articles and their respective user comments. Similar to other works, the authors crawled
articles fromnewsproviders. The timeline dataset comprises 5,788 articles and1,436,332
comments collected from the CNN, BBC, and the NYTimes on four topics, the missing
Malaysia Airlines Flight MH370, the political crisis in Ukraine, the Israel-Gaza conflict
and the NSA surveillance leaks. Authors provide six timelines as ground-truth based on
respective Wikipedia entries for each topic.

Chen2019: Chen et al. [13] built a Chinese language dataset based on a Chinese ency-
clopedia7 specially designed for abstractive timeline summarization. The dataset consists
of timelines about celebrities from different countries. Each celebrity’s entry in the ency-
clopedia contains a biographical timeline summary and a larger section detailing their
experiences. In the experiences section, each event is a paragraph with an explanation
and details, which is selected as an input article.

Entities: More recently, Ghalandari and Ifrim [16] have developed a dataset with 47
timelines extracted from CNN Fast8, a CNN directory containing a large list of curated
timeline articles. Authors selectedmainly timeline articles about personalities as ground-
truth. For each timeline, the authors defined a set of keyphrases as queries. They collected
the input articles using The Guardian’s API.

A summary of the datasets’ statistics (including the proposed TLS-Covid19) is given
in Table 1. Next, we describe the construction of our dataset.

Table 1. Available datasets for TLS.

Dataset Language Domain Timespan #Topics #Docs #Timelines

Timeline17 English News 3 years 9 4, 650 17

Crisis English News 4 years 4 15,534 25

Social
Timeline

English News,
Comments

1 year 4 5,788 6

Chen2019 Chinese Biographies Decades NA 179,423 NA

Entities English News Decades 47 ~ = 45,075 47

TLS-Covid19 English,
Portuguese

News 11 months 178 100,399 356

4 TLS-Covid19 Dataset

While several COVID-19 related datasets have been made available over the last few
months [1], none to the best of our knowledge, is related to the timeline summarization

6 https://web.eecs.umich.edu/~wangluxy/data.html.
7 https://baike.baidu.com/.
8 https://edition.cnn.com/specials/world/fast-facts.

https://web.eecs.umich.edu/~wangluxy/data.html
https://baike.baidu.com/
https://edition.cnn.com/specials/world/fast-facts
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task. In addition to this, existing datasets, as shown in the previous section, are mostly
limited to a single language, thus hampering the evaluation of the proposed solutions
across different scenarios. In this paper, we propose a dataset on a timely subject and
relevant task that does not only address English, but also low resource languages such
as Portuguese. Our future plans involve keeping collecting news articles and possibly
expanding it for other languages as a means to improve its multi-lingual aspects. We
invite the interested researchers on this task to join us in this effort. The current version of
TLS-Covid19, consists of 178 topics (35 in English and 143 in Portuguese), their asso-
ciated 100,399 news articles (31,891 in English and 68,508 in Portuguese) and timelines
corresponding to the topics that cover the time period of January 2020 until December
2020. For each topic there is a number of related news articles and the corresponding
ground-truth timeline. Both the news articles, as well as the timelines, are provided in
two different formats (json and txt) and structured to be easily read by the tilse9 time-
line evaluation framework proposed by Martschat and Markert [23]. Figure 1 shows the
format, the structure and the organization of the dataset. Details about its construction
and corresponding statistics will be given in the next sections.

Fig. 1. Organization and structure of the dataset.

4.1 Data Collection (Input Documents and Ground-Truth)

To build this dataset, we considered two credible news sources for each language, CNN
andTheGuardian as theEnglish news sources, Público andObservador as the Portuguese
ones. All of them provide an everyday live coverage of the COVID-19 outbreak. The
referred live coverage is provided by what is commonly known as liveblogs (CNN10,

9 https://github.com/smartschat/tilse.
10 https://edition.cnn.com/world/live-news/coronavirus-pandemic-vaccine-updates-12-31-20/

index.html.

https://github.com/smartschat/tilse
https://edition.cnn.com/world/live-news/coronavirus-pandemic-vaccine-updates-12-31-20/index.html
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The Guardian11, Público12 and Observador13), a webpage (which usually has a different
URL everyday) where media outlets provide news about an ongoing event, typically in
the form of frequent short updates and links to news articles. In addition to the published
news articles, liveblogs contain a section that highlights in a sentence-based manner
the most important events during the day. These highlights are defined by journalists,
thus guaranteeing their quality and credibility, and form our ground-truth timeline for
that particular date. Figure 2 depicts an example of the CNN liveblog. In the figure one
can observe the highlights in the left box named “What we need to know”. Articles are
shown on the right-hand side.

Fig. 2. Liveblog of CNN (snapshot taken at 15/10/2020).

As a rule-of-thumb, we consider the beginning of the liveblog coverage as the start
time period of collecting the articles, and December 31st, 2020 as the end time period.
For instance, CNN is tracked since January 22nd, 2020; The Guardian since January
24th, 2020; Público since March 16th, 2020; and Observador since January 30th, 2020.
The acquisition of the data is entirely automatic. Instructions on how to collect this
data are available on a public repository14 under which a Python script that enables the
reconstruction of the dataset is provided along with all the statistics and documentation
about the dataset. Our aim is to continue expanding the dataset with further articles
and possibly new topics until the end of the outbreak and/or the end of the liveblogs’
coverage. We anticipate that as the pandemic evolves, the amount of data collected will
grow significantly.

4.2 Selecting Candidate Topics

Next step in this process is to select a list of relevant topics. Instead of conducting a topic
analysis which does not fit the purposes of our study, we consider selecting topics as

11 https://www.theguardian.com/world/live/2020/dec/30/coronavirus-live-news-uk-approves-oxf
ord-astrazeneca-vaccine-updates.

12 https://www.publico.pt/2020/12/31/sociedade/noticia/covid19-portugal-1944703.
13 https://observador.pt/liveblogs/passagem-de-ano-com-restricoes-arranca-com-proibicao-de-cir

culacao-entre-concelhos.
14 https://github.com/LIAAD/tls-covid19.

https://www.theguardian.com/world/live/2020/dec/30/coronavirus-live-news-uk-approves-oxford-astrazeneca-vaccine-updates
https://www.publico.pt/2020/12/31/sociedade/noticia/covid19-portugal-1944703
https://observador.pt/liveblogs/passagem-de-ano-com-restricoes-arranca-com-proibicao-de-circulacao-entre-concelhos
https://github.com/LIAAD/tls-covid19
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named entities (persons, organizations and locations), as broad concepts tend to be often
used by ordinary users accessing timeline summarization systems [27]. To accomplish
this objective, we apply the well-known spaCy’s NLP framework [19]. Further to this,
we consider selecting relevant keyphrases from our collection of highlighted texts and
news articles as popular keywords are often issued by users when interacting with search
engines. To this regard, we applyYAKE! [11] keyphrase extraction tool which has shown
to be effective in capturing relevant keywords (e.g., “vaccine”, “easter”, “coronavirus”,
etc.).

As the first preliminary step, we begin by selecting candidate topics within the
highlighted data. Our assumption is that topics appearing within text editorially defined
by journalists as daily representative are likely to be relevant topics. Next, we conduct
a search and match process to find the occurrences of each candidate topic in the news
articles, thus collecting the corresponding input documents. Afterwards, we remove all
topics from the dataset that have low temporal coverage or that appear too often. To this
regard, we set the following criteria:

1. To remove candidate topics with low temporal coverage, a candidate topic must be
present, similarly to Ghalandari and Ifrim [16], in at least 5 highlighted events, in
both news sources;

2. To ignore candidates that appear too often (thus moving away from the summariza-
tion task), the number of occurrences for a candidate topic in the highlights should
not exceed 50% of its number of occurrences in the news articles, in both news
sources.

Finally, we manually curated the list of topics to consider, merging overlapping
topics (e.g., “donald trump” with “trump”), and removing noise data and typos. Figure 3
shows the word cloud of the topics for both languages. The larger the font size of the
text, the higher the topic frequency. As can be observed, most of the topics, regardless
the language, are related to the pandemic situation in countries/locations (“France”,
“China”, “Italy”), but other entities such as persons (“Boris Johnson”) and organizations
(“Johns Hopkins University”) can also be found. Overall, we have 143 PT topics (PER:

Fig. 3. English liveblog topics (left-hand side) and Portuguese liveblog topics (right-hand side).



506 A. Pasquali et al.

Ta
bl
e
2.

O
ve
ra
ll
st
at
is
tic
s
of

th
e
co
rp
us

w
ith

av
er
ag
es

by
la
ng
ua
ge
.

In
pu
tD

oc
s

G
ro
un

d-
T
ru
th

C
om

pr
es
si
on

L
an
g

#T
op
ic
s

#d
oc
s

A
vg

#s
en
ts

A
vg

#d
at
es

A
vg

se
nt
s/
da
te
s

A
vg

#s
en
ts

A
vg

#d
at
es

A
vg

se
nt
s/
da
te
s

Se
nt

D
at
e

E
N

35
31
,8
91

36
48

.7
0

13
5.
20

26
.9
9

27
.6
9

21
.4
7

1.
29

0.
76

15
.8
9

PT
14
3

68
,5
08

13
72

.6
9

11
0.
23

12
.4
5

88
.8
6

48
.9
1

1.
82

6.
47

44
.3
7



TLS-Covid19: A New Annotated Corpus for Timeline Summarization 507

17; ORG: 33; LOC: 82; Keyphrases: 11) and 35 EN topics (PER: 3; ORG: 6; LOC:
25; Keyphrases: 1) thus representing a number of diverse topics related to the COVID-
19 situation. It is also important to note that, the majority of the topics (30 out of 35)
in the English dataset are represented in the Portuguese one too, thus opening room for
multi-language timeline summarization research.

4.3 Dataset Statistics

Table 2 displays themain statistics of the corpus. In the table, we can observe information
related to the input documents (collected news articles), ground-truth (timelines) and the
compression rate, that is, the ratio between the number of sentences (or dates) in the input
documents and the sentences (or dates) in the ground-truth. One can also observe that the
compression rate for sentences in the English dataset is just 0.76%. Such compression
rate indicates how difficult it may be to achieve high effectiveness. The lower the value,
the higher the difficulty (Table. 3).

Table 3. Overall statistics by news source.

Input Docs Ground-Truth

Source #Topics #docs Avg
#sents

Avg
#dates

Avg
sents/dates

Avg #sents Avg
#dates

Avg
sents/dates

CNN 35 26,043 6178.54 189.71 32.57 30.11 20.97 1.44

The
Guardian

35 5,848 1118.86 80.69 13.87 25.26 21.97 1.15

Público 143 28,327 1092.15 99.93 10.93 62.82 40.05 1.57

Observador 143 40,181 1653.22 120.52 13.72 114.90 57.77 1.99

5 Experimental Setup

To provide a demonstration of the validity of the proposed dataset, we conduct a set of
experiments on available methods for the TLS task. The experiments conducted here
serve as a guiding example. It is out of the scope of this work to make comparative
experiments on top of different datasets. Although the immediate use of the dataset is
tuned for unsupervised approaches, its future use is not limited to this particular setting
as researchers may easily adapt it to their own needs.

5.1 Evaluation Metrics

To conduct the evaluation, we apply the tilse framework [23], a reference evaluation
framework specifically designed to evaluate timeline summarization methods. In this
research, we make use of the ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) extension metric provided by Martschat and Markert [22] to evaluate the effective-
ness of the different state-of-the-art methods. Rouge extension is particularly suited to
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evaluate n-grams overlaps by also taking into account the temporal information embed-
ded in the timelines. In this work, we report the F1 scores of ROUGE-1 and ROUGE2
for the concatenation, agreement, date alignment, and date selection metrics that can be
found in the tilse evaluation framework. ROUGE-1 stands for the overlap of unigrams
between the automatically generated timeline and the ground-truth reference timeline,
and ROUGE-2 refers to the overlap of bi-grams between the generated timeline and the
ground-truth timeline summary. Naturally, dates in both the generated timeline and the
ground-truth timeline may consist of one or more sentences depending solely on the
number of topic references found throughout the day. Overlaps of n-grams are naturally
measured within the available summary, be it a single sentence or multiple sentences.
In the following, we briefly introduce each of the evaluation metrics considered in our
experiments.

Concatenation: In this metric, temporal information is not considered, that is, we only
look at the overlap (unigram or bigram) between the generated timeline textual summary
and the corresponding ground-truth.

Agreement: In this metric, both textual, as well as temporal overlap, are taken into
account. This means that, while the textual overlap between the generated timeline and
the ground-truth is important, it only matters if their dates match. Otherwise, a score of
0 is assigned.

Date Selection: Finally, we consider date selection to assess how well the model
behaves in exactly selecting the same dates (regardless of the textual content) between
the generated timeline and the reference timelines.

5.2 Methods

In this section, we present the experimental results for the baselines random and Oracle
Upper Bounds. All baselines are available in the evaluation framework tilse framework
[23]. A succinct description of each one of them is presented below.

Random: is a naive baseline model that selects sentences randomly. Its results
represent the worst-case scenario for a TLS constraints model.

Oracle Upper Bound (TLS Oracle): aims to calculate the best possible ROUGE
scores under the input documents and the available ground-truth [18]. Such a baseline
aims to estimate the best-case scenario and the level which extractive summarization
algorithms can reach.

6 Results and Discussion

The results obtained from our comparative experiments are displayed in Tables 4 and 5
averaged over all generated timelines for all topics from each language in the corpus.
Table 4 begins by showcasing the scores for date selection. The random baseline shows
the lower bound scores that are acceptable for this task while the TLS Oracle shows
the best possible results considering an extractive summarization approach. One can
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observe that selecting dates that match exactly with the ground-truth is easier for the
Portuguese dataset because it contains a higher date coverage in the ground-truth. It
is also visible how difficult it is to select the right content for the right date once we
compare the ROUGE scores for the simple concatenation metric against the ROUGE in
the date agreement. The difference between these two baselines represents the room for
improvement that researchers can focus on. The reported results also show that scores
decrease to a great extent when applying Rouge-2, thus indicating the difficulty of this
task. One can conclude that, regardless of the case, there is still a long way to reach
the upper bounds established by the Oracle baseline, thus opening room for further
improvements within the research community. More extensive results with additional
baselines are available at https://github.com/LIAAD/tls-covid19.

Table 4. Date selection scores.

English dataset Portuguese dataset

Methods Precision Recall F1 Precision Recall F1

Random 0.252 0.252 0.252 0.484 0.484 0.484

TLS Oracle 0.968 0.968 0.968 0.999 0.999 0.999

Table 5. Content selection scores using ROUGE.

Rouge 1 Rouge 2

Lang Method Metric Prec Recall F1 Prec Recall F1

English Random Concat 0.183 0.190 0.187 0.022 0.023 0.023

Agreement 0.018 0.020 0.019 0.003 0.004 0.004

TLS Oracle Concat 0.423 0.531 0.471 0.185 0.216 0.199

Agreement 0.347 0.438 0.388 0.177 0.211 0.192

Portuguese Random Concat 0.281 0.466 0.351 0.065 0.106 0.080

Agreement 0.059 0.097 0.073 0.013 0.023 0.017

TLS Oracle Concat 0.373 0.675 0.480 0.168 0.304 0.216

Agreement 0.280 0.517 0.363 0.139 0.265 0.183

7 Conclusions

In this paper, we present the TLS-Covid19 dataset, an important resource for the TLS
task. Compared to existing datasets, we provide a larger number of topics and multi-
lingual resources on a timely subject. TLS-Covid19 consists of 178 COVID-19 related
topics, 100,399 news articles and 356 reference timelines extracted from 4 news sources.

https://github.com/LIAAD/tls-covid19
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Our plan is to keep expanding this dataset until COVID-19 pandemics is over. To foster
reproducibility, we provide scripts for that. To test the validity of our dataset, we per-
formed baseline evaluations using tilse framework, a specially designed framework for
TLS evaluation. The experimental results show that there is still room for improvements
in this area.We believe that by providing a new dataset in this domain, we will contribute
to promote the “development” of new algorithms.

Acknowledgements. The first five authors of this paper were financed by the ERDF – Euro-
pean Regional Development Fund through the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia within project PTDC/CCI-
COM/31857/2017 (NORTE-01–0145-FEDER-03185). This funding fits under the research line
of the Text2Story project. The first author of this paper was employed by Signal Media Ltda.
When part of this work was developed. The last author was employed by Kyoto University when
the first version of this paper was completed.

References

1. Alam, F., et al.: Fighting the COVID-19 infodemic: modeling the perspective of journalists,
fact-checkers, social media platforms, policy makers, and the society. arXiv preprint arXiv:
2005.00033 (2020)

2. Allan, J., Gupta, R., Khandelwal, V.: Temporal Summaries of New topics. SIGIR 2001:
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. New Orleans, Louisiana, USA. September 9 – 13,
pp. 1018. ACM (2001)

3. Alonso, O., Baeza-Yates, R., Gertz, M.: Exploratory search using timelines. In: ESCHI 2007:
Proceedings of the Workshop on Exploratory Search and Computer Human Interaction asso-
ciated to CHI2007: SIGCHI Conference on Human Factors in Computing Systems. San Jose,
CA, USA. April 29, pp. 2326. ACM (2007)

4. Alonso, O., Berberich, K., Bedathur, S., Weikum, G.: Time-based exploration of News
archives. In: Proceedings of the fourth Workshop on Human-Computer Interaction and
Information Retrieval (HCIR), New Brunswick, USA, pp. 12–15 (2010)

5. Ansah, J., Liu, L., Kang, W., Kwashie, S., Li, J., Li, J.: A Graph is worth a thousand words:
telling event stories using timeline summarization graphs. In: Proceedings of the World Wide
Web Conference (WWW 2019). San Francisco, USA. May 13 – 17, pp. 25652571. ACM
(2019)

6. Aslam, J., Diaz, F., Ekstrand-Abueg, M., McCreadie, R., Pavlu, V., Sakai, T.: TREC 2014
Temporal SummarizationTrackOverview. In: Proceedings of theTwenty-ThirdTextRetrieval
Conference (TREC 2014). Gaithersburg, USA, MIT Press (2015)

7. Aslam, J.,Diaz, F., Ekstrand-Abueg,M.,McCreadie, R., Pavlu,V., Sakai, T.: TREC2015Tem-
poral Summarization TrackOverview. In: Proceedings of the Twenty-fourth Text REtrieval
Conference (TREC 2014). Gaithersburg, USA. November 17 - 20: MIT Press (2016)

8. Aslam, J., Diaz, F., Ekstrand-Abueg, M., Pavlu, V., Sakai, T.: TREC 2013 Temporal Sum-
marization. In: Proceedings of the Twenty-Second Text REtrieval Conference (TREC 2013).
Gaithersburg, USA. November 19 - 22: MIT Press (2014)

9. Barzilay, R., Elhadad, N., McKeown, K.R.: Inferring strategies for sentence ordering in
multidocument News summarization. J. Artif. Intell. Res. 17(1), 35–55 (2002)

http://arxiv.org/abs/2005.00033


TLS-Covid19: A New Annotated Corpus for Timeline Summarization 511

10. Berger, A., Mittal, V.O.: Query-relevant Summarization using FAQs. In: Proceedings of the
38th annual meeting on association for computational linguistics (ACL 2000), Hong Kong,
China. October 03 – 06, pp. 294–301 (2000)

11. Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C.: YAKE! keyword
extraction from single documents using multiple local features. Inf. Sci. J. 509, 257–289
(2020)

12. Catizone, R., Dalli, A., Wilks, Y.: Evaluating automatically generated timelines from the web.
In: LREC 2006: Proceedings of the 5th International Conference on Language Resources and
Evaluation. Genoa, Italy. May 24 - 26: ELDA, pp. 885888 (2006)

13. Chen, X., Chan, Z., Gao, S., Yu, M.-H., Zhao, D., Yan, R.: Learning towards Abstractive
Timeline Summarization. Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence (IJCAI-19), pp. 4939–4945 (2019)

14. Chieu, H.L., Lee, Y.K.: Query based event extraction along a timeline. In: Proceedings of the
27thAnnual International Conference onResearch andDevelopment in Information Retrieval
(SIGIR2004), Sheffield, UK. July 25–29, pp. 425–432. ACM (2004)

15. Esteva, A., et al.: Co-search: Covid-19 information retrieval with semantic search, question
answering, and abstractive summarization. arXiv preprint arXiv:2006.09595 (2020)

16. Ghalandari, D.G., Ifrim, G.: Examining the state-of-the-art in News timeline summarization.
arXiv preprint arXiv:2005.10107 (2020)

17. Goldstein, J., Mittal, V., Carbonell, J., Kantrowitz, M.: Multi-document Summarization
by Sentence Extraction. In: Proceedings of the Workshop on Automatic summarization
(ANLP@NAACL2000), Seattle, Washington. April 30, pp. 40–48 (2000)

18. Hirao, T., Nishino, M., Suziki, J., Nagata, M.: Enumeration of extractive oracle summaries.
arXiv preprint arXiv:1701.01614 (2017)

19. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with bloom embeddings.
Convolutional Neural Netw. Incremental Parsing 7(1) (2017)

20. Lin, H., Bilmes, J.: Multi-document summarization via budget maximization of submodu-
lar functions. In: Proceedings of Human Language Technologies 2010: The Conference of
the North American Chapter of the Association for Computational Linguistc, Los Angeles,
pp. 912–920 (2010)

21. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165
(1958)

22. Martschat, S., Markert, K.: Improving {ROUGE} for timeline summarization. In: Proceed-
ings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, Valencia, Spain. April 3–7, pp. 285–290 (2017)

23. Martschat, S., Markert, K.: A temporally sensitive submodularity framework for timeline
summarization. In: Proceedings of the 22nd Conference on Computational Natural Language
Learning (CoNLL 2018). Brussels, Belgium. October 31 - November 1: Association for
Computational Linguistic, p. 230 (2018)

24. McCreadie, R., Rajput, S., Soboroff, I.,Macdonald, C., Ounis, I.: On enhancing the robustness
of time-line summarization test collections. Inf. Process. Manage. 56(5), 18151836 (2019)

25. McCreadie, R., Santos, R.L.T., Macdonald, C., Ounis, I.: Explicit diversification of event
aspects for temporal summarization. ACM Trans. Inf. Syst. 36(3), 1–31 (2018). https://doi.
org/10.1145/3158671

26. Minard,A.-L., et al.: SemEval-2015Task 4: Timeline: cross-document event ordering. In: Pro-
ceedings of the 9th International Workshop on Semantic Evaluation (SemEval2015). Denver,
USA, June 4–5: Association for Computational Linguistic, pp. 778–786 (2015)

27. Pasquali, A., Mangaravite, V., Campos, R., Jorge, A.M., Jatowt, A.: Interactive system for
automatically generating temporal narratives. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P.,
Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11438, pp. 251–255. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-15719-7_34

http://arxiv.org/abs/2006.09595
http://arxiv.org/abs/2005.10107
http://arxiv.org/abs/1701.01614
https://doi.org/10.1145/3158671
https://doi.org/10.1007/978-3-030-15719-7_34


512 A. Pasquali et al.

28. Tran, G.B., Alrifai, M., Nguyen, D.Q.: Predicting relevant news events for timeline sum-
maries. In: WWW2013 Proceedings of the Companion Publication of the 22nd International
Conference on World Wide Web Companion, Rio de Janeiro, Brazil. May 13 – 17, pp. 91–92
(2013)

29. Tran, G., Alrifai, M., Herder, E.: Timeline summarization from relevant headlines. In: Han-
bury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 245–256.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_26

30. Voorhees, E., et al.: TREC-COVID: constructing a pandemic information retrieval test
collection. ArXiv abs/2005.04474 (2020)

31. Wang, L., Cardie, C., Marchetti, G.: Socially-informed timeline generation for complex
events. In: Proceedings of the Human Language Technologies: The 2015 Annual Conference
of the North American Chapter of the ACL. Denver, Colorado. May 31-June 5: Association
for Computational Linguistic, p. 1055 (2015)

32. Wang, L., et al.: CORD-19: The Covid-19 open research dataset. arXiv:2004.10706v4 (2020)
33. Yan, R., Wan, X., Otterbacher, J., Kong, L., Li, X., Zhang, Y.: Evolutionary timeline sum-

marization: a balanced optimization framework via iterative substitution. In: Proceedings of
the 34th International Conference on Research and Development in Information Retrieval
(SIGIR 2011). Beijing, China. July 24–28, pp. 745–754. ACM (2011)

34. Yang, W., et al.: On the generation of medical dialogues for COVID19. arXiv:2005.05442v2
(2020)

https://doi.org/10.1007/978-3-319-16354-3_26
http://arxiv.org/abs/2004.10706v4
http://arxiv.org/abs/2005.05442v2


A Multi-task Approach to Neural
Multi-label Hierarchical Patent

Classification Using Transformers

Subhash Chandra Pujari1,2(B), Annemarie Friedrich1, and Jannik Strötgen1

1 Bosch Center for Artificial Intelligence, Renningen, Germany
{subhashchandra.pujari,annemarie.friedrich,jannik.stroetgen}@de.bosch.com

2 Institute of Computer Science, Heidelberg University, Heidelberg, Germany

Abstract. With the aim of facilitating internal processes as well as
search applications, patent offices categorize documents into taxonomies
such as the Cooperative Patent Categorization. This task corresponds to
a multi-label hierarchical text classification problem. Recent approaches
based on pre-trained neural language models have shown promising per-
formance by focusing on leaf-level label prediction. Prior works using
intrinsically hierarchical algorithms, which learn a separate classifier for
each node in the hierarchy, have also demonstrated their effectiveness
despite being based on symbolic feature inventories. However, training
one transformer-based classifier per node is computationally infeasible
due to memory constraints. In this work, we propose a Transformer-based
Multi-task Model (TMM) overcoming this limitation. Using a multi-task
setup and sharing a single underlying language model, we train one clas-
sifier per node. To the best of our knowledge, our work constitutes the
first approach to patent classification combining transformers and hier-
archical algorithms. We outperform several non-neural and neural base-
lines on the WIPO-alpha dataset as well as on a new dataset of 70k
patents, which we publish along with this work. Our analysis reveals that
our approach achieves much higher recall while keeping precision high.
Strong increases on macro-average scores demonstrate that our model
also performs much better for infrequent labels. An extended version
of the model with additional connections reflecting the label taxonomy
results in a further increase of recall especially at the lower levels of the
hierarchy.

Keywords: Patent classification · Hierarchical classification ·
Multi-label classification · Neural modeling · Multi-task learning

1 Introduction

A patent is a legal text document describing an invention and granting its owner
exclusive rights for monetary exploitation thereof. Upon submission of a patent
application, patent offices assign one or several labels categorizing the described
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Fig. 1. Excerpt of the hierarchical Cooperative Patent Classification (CPC)
scheme.

invention according to a taxonomy such as the Cooperative Patent Classifica-
tion (CPC). This scheme, developed jointly by the US Patent and Trademark
Office (USPTO) and the European Patent Office, organizes types of inventions
in a hierarchical tree structure as illustrated in Fig. 1. CPC information is used
internally by the patent offices, e.g., for routing the application to the respec-
tive experts. It is also released publicly with each patent in order to facilitate
search-related tasks including the retrieval and filtering of patents.

From a machine learning (ML) point of view, assigning CPC codes to patents
constitutes a hierarchical multi-label text classification problem and has high
relevance to a variety of information-retrieval (IR) related real-life tasks. First,
with currently almost 2,000 patent applications being submitted per day to
USPTO alone, the automatic prediction of CPC codes helps to speed up manual
work considerably. Second, patent language often intentionally conceals the type
of invention by avoiding terminology commonly used in technical reports [28].
Detecting the underlying CPC codes present in patents, scientific reports or
other types of text-based queries will lead to more meaningful rankings of patents
during retrieval. Finally, the CPC taxonomy itself is under constant development
with new categories being added or parts being restructured. Accurate automatic
classification methods will help to keep patent databases up-to-date with the
taxonomy, a prerequisite for the above mentioned search applications.

At its top level, the CPC scheme has nine sections. Subclasses are further
divided into main groups and subgroups, amounting to a total of 250,000 cate-
gories. Patent classification has been addressed by the IR and ML communities
in the context of several shared tasks organized by ALTA and CLEF-IP [27,30],
operating at various granularities of the taxonomy. In this paper, following pre-
vious work [21,22], we address the first three levels of the taxonomy, resulting in
hierarchical multi-label classification tasks with huge label inventories of around
600 classes in our datasets (Sect. 4).

We address this large-scale classification task using a novel combination of
a pre-trained language model [3,8] and a local hierarchical learning algorithm.
Such algorithms train one “local” classifier per node of the taxonomy predicting
whether an instance belongs to the respective category or not, and have been
shown to be highly effective for hierarchical patent classification in previous work
using symbolic features such as n-grams and part-of-speech tags [4,5]. Similarly,
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approaches based on contextual word embeddings and transformers have shown
promising performance [12,21,22]. They apply a flat strategy, i.e., they train a
single classifier that simply predicts leaf-level classes and infer ancestor classes
from them. In this paper, we combine the advantages of using powerful document
embeddings generated by a pre-trained language model with the gains that can
be achieved by localizing decisions. It is arguably computationally infeasible in
most infrastructures to instantiate hundreds of transformer-based language mod-
els in parallel. Therefore, we propose a new multi-task based neural architecture
for hierarchical multi-label classification in which the individual classifiers cor-
responding to the nodes of the taxonomy constitute the classification heads in a
neural network, sharing the same underlying transformer-based language model.
In addition, we create a variant adding connections between the classification
heads that are related in the label taxonomy.

We benchmark our approach with a variety of non-neural and neural hier-
archical text classification algorithms using the WIPO-alpha dataset and a new
patent dataset spanning the years 2006–2019. We publish the latter along with
our paper. On both datasets, our models strongly outperform prior work both
in terms of macro- and micro-averages. Our detailed analysis of performance at
the different levels of the taxonomy reveals that our models are much better (a)
at predicting less frequent categories and (b) at predicting finer-grained labels.
Adding taxonomy-based connections to our model results in further increases in
recall especially for leaf-level labels.

Our contributions are as follows. (i) We propose a novel Transformer-based
Multi-task Model neural-network architecture and a variant adding hierarchical
connections (Sect. 3). We open-source our implementation in order to foster
future research. (ii) We sample a new dataset of 70k recent USPTO patents that
we make publicly available for benchmarking (Sect. 4).1 (iii) We perform an in-
depth analysis demonstrating that our models strongly outperform prior work,
achieving much better accuracy on the lower levels of the hierarchy as well as
for less frequent CPC classes (Sect. 5).

2 Related Work

Despite having been studied in the data mining, ML, and IR communities for
many years [2], text classification remains a very active research field addressing
a variety of domains [15,23,37]. Since the seminal works using Convolutional
Neural Networks (CNNs) for sentence classification [16,18], neural modeling has
become the predominant approach. In this work, we focus on hierarchical text
classification [34], in which the label set constitutes a hierarchy. While some
architectures or algorithms directly reflect these taxonomies [4,5], others apply
flat or global approaches either predicting only leaf-level labels or simply treating
all labels independently [14,21,22].

We here address the task of patent classification, which while consti-
tuting a hierarchical multi-label text classification problem, is often addressed
1 https://github.com/boschresearch/hierarchical patent classification ecir2021.

https://github.com/boschresearch/hierarchical_patent_classification_ecir2021
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using flat classifiers [11], though with several notable exceptions [4,5,36]. Patent
documents are usually represented by transforming the text of their title and
abstract into a feature vector for classification. Recent work uses the CPC scheme
explained above, while some older datasets use the International Patent Cate-
gorization (IPC), which is roughly speaking a predecessor of CPC. In a recent
shared task on patent classification [27], an approach training separate SVM clas-
sifiers per node using simple n-gram and POS-tag based features [5] performed
comparably to a flat neural approach [12] based on the ULMFiT contextual lan-
guage model [13]. The work of Li et al. [22], based on [18] and optimized by [1],
proposes a convolutional neural network based on non-contextual word2vec [26]
embeddings predicting IPC codes on subclass level. In this work, we compare
to the state-of-the-art HARNN system [14] (see Sect. 5.3). HARNN generates
document embeddings with a BiLSTM initialized using word2vec, feeds these
through a hierarchical attention-based memory unit that learns different atten-
tion weights per category, and finally predicts categories by combining hidden
local and global information. The former relates to level-wise predictions and
the latter consists of predictions for the entire taxonomy. Further, neural work
on patent classification [35] employs graph-convolutional networks using word
embeddings inferred from a word-document co-occurrence graph. Hierarchical
patent classification has also been addressed as a sequence generation problem
using an attention-based neural network model [32].

Outside the context of patent classification, [40] uses a very similar app-
roach to [20,35] and [38] address neural hierarchical text classification by
training level-wise classifiers and chaining predictions top-down. Similar to our
work, [29] propose a CNN model in which the hierarchy of labels is leveraged by
regularizing the deep architecture with dependencies among labels. A weakly-
supervised hierarchical classification approach is suggested in [24]. Given a few
user-provided seeds, the system generates pseudo-documents that are used for
bootstrapping a neural hierarchical classifier including an LSTM-based language
model.

Recently, transformer-based neural language models such as BERT [8]
have been shown to be highly effective for a variety of natural language pro-
cessing tasks [33], following a “pre-train and fine-tune” approach. In the context
of patent classification, PatentBERT [21] adds a single hidden layer on top of
BERT, mapping the CLS embedding to a sigmoid output in order to predict
CPC labels on subclass level. [17] employs the same idea, predicting relevance
with regard to a pre-specified topic.

Our work differs from previous work in the area of hierarchical patent clas-
sification in the following aspects. First, instead of predicting labels at a single
hierarchical level [1,5,21,22], we model predictions across the label taxonomy.
Second, unlike the flat classification [21,22] model architectures, we make use of
the taxonomy by transferring information from the parent label to child labels.
Finally, to the best of our knowledge, our approach is the first to combine pow-
erful transformer-based language models with an intrinsically hierarchical algo-
rithm for patent classification.
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3 Model Architecture

3.1 Overview

We propose a neural hierarchical classification architecture as illustrated in
Fig. 2. We assume the label set L = {l1, l2, l3, ..., ln} in which labels are arranged
hierarchically. The task consists in assigning a subset of L to each input docu-
ment. For each predicted label, the respective ancestors should also be contained
in the output set.

We create distributed representations of the textual input using a pre-trained
trans-former-based neural language model. For each label in the label set, we
train a binary classifier that decides whether an instance belongs to the respec-
tive category or not. The ensemble of classifiers is trained in a multi-task setup
and makes use of a single underlying SciBERT neural language model [3] for
creating document representations. SciBERT has been trained on a corpus of
scientific publications and is hence closer to the patent domain than the stan-
dard BERT model [8]. In the terminology of multi-task learning, each of these
classification heads addresses one task. Hence, each label-specific binary classifier
constitutes a classification head in our multi-task based neural network architec-
ture. In other words, our Transformer-based Multi-task Model (TMM)
consists of a single transformer model with n heads where n corresponds to the
number of labels in the hierarchy. Parameters of the transformer model (and of
optional CNN layers) are shared in a hard way. In addition, each classification
head has its own set of parameters. Further, to analyze the impact of shar-
ing information between hierarchically related tasks, we propose an extended
architecture which adds links between the network components corresponding
to nodes that are linked in the hierarchy. We call this latter model Transformer-
based Hierarchical Multi-task Model (THMM).

3.2 Transformer-Based Language Model Based Document
Representation

Similar to prior work on neural patent classification [14,21,22], we use the
patent’s title and abstract as input to our model. We concatenate them, word-
piece tokenize the text and prepend the special CLS token. We leverage the
transformer’s output embeddings for the two variants of our model in the fol-
lowing ways: (i) We use the embedding generated for the CLS token (left-hand
side path in Fig. 2), which can be regarded as capturing the semantics of the
entire input text sequence [8]. However, the CLS token has been designed for
next sentence prediction and it is unclear how effective its embedding is for rep-
resenting long sequences as in our case. Hence, we also test a second option that
explicitly considers the entire sequence: (ii) We compute a document embedding
from the embeddings generated for each word-piece token by feeding them into
a CNN (right/dotted path in Fig. 2). For details on the latter, see Sect. 5.2.
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Fig. 2. Architecture of our THMM model for our running example from Fig. 1. The
TMM version is the same but without the dashed connections between classification
heads. Each classification head consists of three dense layers and predicts whether an
instance belongs to the respective category or not.

3.3 Classification Heads

We next detail the architecture of the classification heads. For the Transformer-
based Multi-task Model (TMM), we create an independent head for each
label. The input for each head is the document embedding x corresponding to
the embedding of the CLS token or the CNN’s output. Each head consists of two
dense layers, both with ReLU activation, followed by a two-dimensional dense
output layer producing logits. Finally, we perform classification by means of a
softmax operation.

In the Transformer-based Hierarchical Multi-task Model (THMM),
we add connections between the classification heads as specified by the label
taxonomy. As in the TMM, each classification head computes the logits for the
binary decision using two fully connected dense layers. However, in this case (see
Eq. (1)), the first hidden layer of the classification head for li additionally takes
into account h2

lj
, an output from the second (intermediate) dense layer of the

head corresponding to li’s parent lj . It computes a hidden representation h1
li

by performing a linear transformation on the concatenation (⊕) of the sequence
embedding x and h2

lj
. If li does not have a parent in the taxonomy, the input to

its classification head is simply x. The parent(li, lj) relation evaluates to true if
lj is the parent of li, and to false otherwise. φ is the ReLU activation function.

h1
li =

{
φ(W 1

li
(h2

lj
⊕ x) + b1li) if there is a lj with parent(li, lj) = true

φ(W 1
li
x + b1li) if parent(li, ROOT )

(1)

h2
li = φ(W 2

li(h
1
li) + b2li) h3

li = φ(W 3
li(h

2
li) + b3li) (2)
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As in TMM, the hidden representation h1
li

is passed through two further
dense layers (Eq. (2)) and mapped to a two-dimensional logit vector h3

li
. This

serves as input to a softmax layer that performs the prediction whether label
li applies to the instance. For training our models, we use binary cross entropy
loss and weight all “tasks” equally.

4 Patent Classification Datasets

In this section, we give details on the two datasets we use for our experiments. To
ensure comparability with prior work, we use WIPO-alpha, which contains 75k
patents from 1998–2001 annotated with the IPC scheme. As domains, writing
style and terminology of patents evolve over time, we also experiment with more
recent data. We create a new dataset of 70k USPTO patents spanning the years
2006–2019, using the more recent CPC scheme. We release this dataset to ensure
reproducibility of our study.

4.1 USPTO Dataset

We sample a dataset of 70k patents from the USPTO patents data dump2 as
follows. With the aim of creating a realistic setup in which models predict labels
for newer patents based on older data, similarly to [9], we split the dataset
temporally, assigning the documents from years 2006–2017 to the training set,
2018 to dev and 2019 to test. Our training sample contains 50k patents, and the
dev and test sets 10k each.

Fig. 3. Corpus statistics of USPTO and WIPO-alpha datasets. (a) Label counts
by level. (b) Label count distribution for USPTO. (c) Instance length distribution for
USPTO.

We address label sparsity by up-sampling the least frequent labels by adding
patents carrying the infrequent label such that each label occurs at least 10

2 https://www.patentsview.org/download.

https://www.patentsview.org/download
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times in the training set. Dev and test distributions are not changed. Figure 3b
shows that for some labels, there are many instances, but the distribution has
a long tail. As shown in Fig. 3a, the total number of labels at leaf node, i.e.,
subclass, level is 630 for train, 575 in dev, and 573 for test. There is one label
occurring in dev that does not have any associated training instances. In the test
split, there are 7 such labels. The average number of labels per patent is around
1.5 on the first level of the hierarchy and up to 2.32 on the leaf level, with the
latter increasing from 1.8 in 2014 to 2.3 in 2019. This reflects a tendency towards
more interdisciplinary inventions and further demonstrates the need to take the
temporal dimension into account when training and evaluating models.

4.2 WIPO-alpha

The WIPO-alpha dataset3 contains about 46k training instances and 29k test
instances. The patent documents were published between 1998 and 2002, with
test instances sampled randomly.4 There are 602 labels in train and 576 test
labels at subclass level. As there is no pre-existing split, we sample a validation
(dev) set from train by selecting 20% of the data points at random. There are
22 labels with instances in test but without examples in the training data at
subclass level. The IPC code in the dataset is defined using the seventh edition
of IPC which labels each patent with a main IPC code and a set of secondary
IPC codes. Unlike prior work [1], which considers only the main IPC code and
benchmarks the models in a single-label flat classification setting, we consider
all IPC codes in a hierarchical multi-label classification setting.

5 Experiments

In this section, we first describe our experimental setup including evaluation
metrics, baselines and implementation details. We then discuss our experimental
results in detail.

5.1 Evaluation Metrics

For evaluating our models, we use hierarchical precision, recall and F1-score as
proposed by [19] and defined as hP =

∑ |Pi∩Ti|∑
Pi

and hR =
∑ |Pi∩Ti|∑

Ti
. For each

test instance i, the set Pi consists of all predicted labels and their respective
ancestors. Ti contains all true labels including ancestors. For all results and
analyses reported in this section, we modify the set of predicted labels to include
relevant ancestors.

Prior work [14] has focused on evaluating per-instance (micro) scores. As
the distribution of instances per label is highly skewed (see Fig. 3b), we addi-
tionally report macro-scores that average across scores obtained per label.

3 https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/.
4 See WIPO-alpha readme and personal correspondence with authors.

https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/
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We compute macro-F1 as the average over the macro-F1 scores per label. Unless
otherwise stated, we consider a model to predict a label if the softmax score
for the dimension “label applies” is at least 0.5. In addition, in line with previ-
ous work [14,38], we evaluate the predictions as a ranking task, which does not
require defining a threshold. We compute the Area Under the Precision-Recall
Curve (AUPRC) [7] as implemented in scikit-learn.5 In the case of models out-
putting only leaf-level scores, we here use the maximum of the leaf-level scores
for each intermediate-level label.

5.2 Implementation and Hyperparameter Settings

We implement our models in Python using TensorFlow 2.06 and Keras [6]. We
use the HuggingFace Transformers library [39] for integrating SciBERT [3]. For
efficiency reasons, we truncate the word-piece tokenized input sequences to a
maximum length of 256. As illustrated in Fig. 3c, this covers the complete input
text for almost all instances in USPTO (and also for WIPO-alpha, not shown).

We found the following hyperparameters to work best across our two bench-
mark datasets for our proposed TMM/THMM models. All dense layers have a
hidden size of 256 and use ReLU activations. For training, we apply a learning
rate of 10−5, a dropout of 0.25 across layers, and a batch size of 64. In the case
of the CNN model variant, we compute a single-vector document representa-
tion using a CNN whose architecture largely follows [22]. For each word-piece
token, we compute an embedding by summing up the corresponding weights
of the last four SciBERT layers. Then, we concatenate the embeddings of all
word-piece tokens and apply convolution operations with kernel sizes {2, 3, 4,
5}. In contrast to [22], we add an extra kernel of size 2 to capture bigrams and
we use a filter size of 256 instead of 512. The training of a single model takes
approximately 300 h on a Nvidia Tesla V100 GPU with 80 GB VRAM.

5.3 Baselines

We compare our models to a wide range of non-neural and neural models. First,
the TwistBytes system [4] constitutes a competitive non-neural baseline. We
run a recently updated version7 leveraging a TF-IDF vector of uni-gram features.
The system is implemented using scikit-learn8 and learns one support vector
classifier [31] per node. During prediction, the model only tests for presence of
labels if the respective parent’s score is positive. Finally, the set of predicted
labels is filtered using a threshold of −0.25.

HARNN. In order to compare to a recent state-of-the-art neural model for
hierarchical patent classification, we run the Hierarchical Attention-based Recur-
rent Neural Network [14] on our datasets. We keep hyperparameter settings as
5 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

average precision score.html.
6 https://www.tensorflow.org.
7 https://dublin.zhaw.ch/∼benf/HPC.
8 https://github.com/globality-corp/sklearn-hierarchical-classification.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://www.tensorflow.org
https://dublin.zhaw.ch/~benf/HPC
https://github.com/globality-corp/sklearn-hierarchical-classification
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proposed, representing each document using a 100-dimensional Word2Vec [25]
model trained on train and dev, using 256 and 512 as the hidden sizes in the
BiLSTM and for each fully connected layer, respectively. Local and global infor-
mation are combined with a regulation parameter α with a value of 0.5. For
a fair comparison with the other models, we tune the prediction threshold for
macro-performance, resulting in 0.15 for both datasets. HARNN-orig [14] uses
a prediction threshold of 0.5.

flat-*. In addition, we provide results for simplified versions of our own model,
predicting only labels for the leaf level and inferring ancestors during post-
processing. First, flat-CNN corresponds to DeepPatent [22], which uses a CNN
with kernels of sizes {3, 4, 5} and 512 filters on top of SciBERT. The outputs of
all CNN layers are flattened and concatenated, resulting in a 1,536-dimensional
document embedding. Second, flat-CLS is based on PatentBERT [21], using
SciBERT’s 786-dimensional CLS embedding directly as document embedding.
The feature vectors of flat-CNN and flat-CLS are subsequently fed into a
multi-layer perceptron with two dense layers, applying sigmoid activation to
each logit. For both models, dense layers have size 512, the learning rate is set
to 10−5, dropout rate is 0.25 and batch size is 64.

5.4 Experimental Results

We now analyze the performance of our models and compare them to prior
work. We find similar tendencies on the two datasets and show that our models
perform better especially at deeper levels of the hierarchy and for less frequent
labels.

Classification Performance. Table 1 and Table 2 show results obtained for
the USPTO and WIPO-alpha datasets, respectively. Based on these, we can draw

Table 1. Hierarchical classification results on USPTO test set.

Model macro-avg. micro-avg. AUPRC

hP hR hF1 hP hR hF1

TwistBytes [4] 0.423 0.203 0.257 0.651 0.534 0.587 0.407

HARNN-orig [14] 0.355 0.126 0.170 0.781 0.481 0.595 0.661

HARNN [14] 0.292 0.281 0.267 0.519 0.679 0.588 0.661

flat-CNN [22] 0.486 0.272 0.330 0.718 0.552 0.624 0.645

TMM-CNN 0.412 0.360 0.366 0.639 0.636 0.637 0.667

THMM-CNN 0.412 0.364 0.369 0.649 0.634 0.641 0.669

flat-CLS [21] 0.481 0.256 0.316 0.740 0.546 0.628 0.644

TMM-CLS 0.485 0.313 0.362 0.709 0.611 0.656 0.678

THMM-CLS 0.426 0.367 0.377 0.666 0.633 0.649 0.670
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Table 2. Hierarchical classification results on WIPO-alpha test set.

Model macro-avg. micro-avg. AUPRC

hP hR hF1 hP hR hF1

TwistBytes [4] 0.456 0.264 0.308 0.626 0.570 0.597 0.412

HARNN-orig [14] 0.089 0.021 0.027 0.757 0.248 0.373 0.505

HARNN [14] 0.206 0.269 0.206 0.373 0.652 0.474 0.505

flat-CNN [22] 0.466 0.348 0.382 0.707 0.578 0.636 0.641

TMM-CNN 0.408 0.400 0.389 0.636 0.684 0.659 0.681

THMM-CNN 0.377 0.413 0.380 0.620 0.686 0.651 0.674

flat-CLS [21] 0.503 0.328 0.377 0.737 0.598 0.660 0.674

TMM-CLS 0.462 0.376 0.399 0.682 0.679 0.680 0.697

THMM-CLS 0.409 0.424 0.405 0.651 0.698 0.674 0.690

the following conclusions. First, neural models generally perform better than
the non-neural TwistBytes system, with SciBERT-based models outperforming
HARNN. Our models achieve much higher recall while keeping precision high.
When tuning HARNN for hF1 as in the original work, a high micro-hP can be
achieved but at the cost of lower recall especially in the macro evaluation.9 This
implies that the original model focuses on the easy cases of highly frequent labels.
Tuning HARNN for macro-scores changes the precision-recall tradeoff in the
micro-setting and improves macro-F1, but still not approaching the performance
of transformer-based models.

With the exception of macro-hP of flat-CNN on USPTO, the CLS-based
models all outperform their CNN-based counterparts. However, the CLS-based
models achieve the best results in terms of micro- and macro-F1 on both datasets.
We conclude that there is no extra need for aggregating information across the
sequence using a CNN layer. In most cases, adding hierarchical links between
classification heads in TMM increases recall at the expense of precision. When
comparing THMM-CLS with TMM-CLS on both datasets, the former does bet-
ter in terms of macro-F1, while the latter has slightly higher micro-F1, i.e.,
adding the links helps especially for less frequent labels.

Finally, the flat strategy leads to good precision but is not competitive in
terms of recall, illustrating that such models struggle with activating all relevant
classifications to the required extent. The AUPRC scores also indicate that the
TMM-CLS model performs best overall in terms of producing correct rankings
of all labels for each patent, closely followed by THMM-CLS. Hence, our exper-
iments confirm that when optimizing for a good trade-off between micro- and
macro-average performance, hierarchical multi-label classification for patents is
best approached using a fully hierarchical model.

9 We double-checked the surprisingly low macro-scores of HARNN-orig and decided
to present results of HARNN tuned for macro-performance as well.
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Table 3. Analysis of coverage for USPTO dataset. No Prediction: number of
test instances with no predicted labels at a given level. False Positives (error analysis):
average # hops between false positives and nearest true labels at third level.

Level Avg. labels predicted No prediction False positives

1 2 3 1 2 3 # inst. hops

Gold 1.56 1.89 2.32 0 0 0 0.0 0.0

TwistBytes [4] 1.65 1.51 1.56 147 891 1,575 3,788 4.17±1.77

HARNN-orig [14] 1.36 1.17 1.02 116 1,134 2,466 2,341 4.08±1.79

HARNN [14] 2.29 2.62 2.82 0 12 148 6,380 4.12±1.79

flat-CNN [22] 1.31 1.45 1.67 512 512 512 4,198 4.38±1.69

TMM-CNN 1.75 1.98 2.01 1 42 228 5,236 4.22±1.69

THMM-CNN 1.68 1.92 2.04 5 55 232 5,282 4.17±1.69

flat-CLS [21] 1.26 1.39 1.61 570 570 570 3,916 4.28±1.72

TMM-CLS 1.59 1.68 1.71 13 125 476 4,114 4.19±1.72

THMM-CLS 1.61 1.84 2.03 8 66 204 5,046 4.22±1.68

Performance Across Levels. Figure 4 shows an increase in macro-F1 for
TMM and THMM compared to the baselines, resulting primarily from higher
recall (not shown). Adding hierarchical links (THMM vs. TMM) results in better
predictions mainly at level 3. Hence, the overall increase in F1 is a result of
improved classification at the lower levels, and finer-grained labels benefit from
passing on hierarchical information.

Coverage. The number of labels at the subclass (leaf) level varies strongly
across instances from a single category to 20 or more, with a tendency of more
recent patents having more labels. Hence, one difficulty of the task consists in
outputting the right number of categories per instance [10]. Table 3 breaks down
the average number of labels predicted by level of the hierarchy for USPTO
(WIPO-alpha shows similar tendencies). At the top level of the hierarchy, all
other models predict a roughly fitting number of labels. However, at levels 2 and
3, TwistBytes and the flat models predict markedly fewer labels. This effect is
alleviated by the TMM and THMM models. While HARNN-orig strongly under-
predicts the number of labels, our version of HARNN optimized for macro-F1
over-predicts, indicating that tuning the model either way is problematic. Next,
we report the number of test instances for which a model did not make any
prediction at a particular level (“No Prediction” in Table 3). This count is much
lower for the TMM and THMM models, showing that the hierarchical models
often can make predictions at intermediate levels even if the fine-grained class
is unclear.

Error Analysis. Finally, we capture the models’ mis-classification behavior by
computing the number of hops in the label taxonomy to the nearest gold label
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Fig. 4. Classification performance: macro-avg. F1 by level of hierarchy.

on the same level. For example, if a model incorrectly predicts B41F and A43C
with the true label being A43B, the wrong predictions are 6 hops and 2 hops
away from the true label, respectively. Table 3 shows the average number of hops
between false positives and gold labels on level 3. The column titled # inst.
denotes the number of test instances having at least one false positive label. In
general, the wrong predictions of all models seem to be similarly far from the
nearest gold label, usually within the correct section of the taxonomy. Again,
the flat approach more often activates completely wrong labels.

Summary. Our experiments on two patent datasets have shown that our models
based on pre-trained transformers strongly outperform both neural and non-
neural prior work in terms of micro- and macro-scores. Recall increased consid-
erably while keeping precision high. The coverage of our models is much better
than the one of prior work; wrongly activated predictions usually are within the
correct section of the taxonomy.

6 Conclusion and Outlook

In this work, we have proposed a novel Transformer-based Multi-task Model
(TMM) for hierarchical patent classification. The strength of our architecture
stems from integrating the highly effective local-classifier-per-node idea from
traditional hierarchical classification algorithms with a large-scale pre-trained
neural transformer language model, which is made computationally feasible by
our novel multi-task based architecture. We have shown that this model archi-
tecture strongly outperforms previous work on hierarchical text classification,
with a higher coverage of instances and addressing the long tail of less frequent
labels more successfully.

Future Work. Further improvements for patent classification can be expected
from integrating additional textual information, e.g., the description or claims
sections, for computing the document embedding. In this work, we have focused
on patents. Yet, our model should be easily adaptable to other genres and
domains, e.g., by substituting the pre-trained language model with in-domain
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data. Improving the confidence estimation for classification decisions further may
lead to more precise label activation while keeping recall high. Finally, as our
model has the very practical application of patent categorization, improving the
model in an active learning set-up may be a very promising direction.
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Abstract. Recent studies on Question Answering (QA) and Conver-
sational QA (ConvQA) emphasize the role of retrieval: a system first
retrieves evidence from a large collection and then extracts answers.
This open-retrieval ConvQA setting typically assumes that each ques-
tion is answerable by a single span of text within a particular passage
(a span answer). The supervision signal is thus derived from whether or
not the system can recover an exact match of this ground-truth answer
span from the retrieved passages. This method is referred to as span-
match weak supervision. However, information-seeking conversations are
challenging for this span-match method since long answers, especially
freeform answers, are not necessarily strict spans of any passage. There-
fore, we introduce a learned weak supervision approach that can identify
a paraphrased span of the known answer in a passage. Our experiments
on QuAC and CoQA datasets show that the span-match weak supervisor
can only handle conversations with span answers, and has less satisfac-
tory results for freeform answers generated by people. Our method is
more flexible as it can handle both span answers and freeform answers.
Moreover, our method can be more powerful when combined with the
span-match method which shows it is complementary to the span-match
method. We also conduct in-depth analyses to show more insights on
open-retrieval ConvQA under a weak supervision setting.

Keywords: Weak supervision · Open-retrieval · Conversational
question answering

1 Introduction

Conversational search and Conversational Question Answering (ConvQA) have
become one of the focuses of information retrieval research. Previous studies [5,
36] set up the ConvQA problem as to extract an answer for the conversation so
far from a given gold passage. Recent work [30] has emphasized the fundamental
role of retrieval by presenting an Open-Retrieval ConvQA (ORConvQA) setting.
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This setting requires the system to learn to retrieve top relevant passages from
a large collection and then extract answers from the passages.

The open-retrieval setting presents challenges to training the QA/ConvQA
system. Qu et al. [30] adopts a fully-supervised setting, which encourages the
model to find the gold passage and extract an answer from it by manually includ-
ing the gold passage in the retrieval results during training. This full supervision
setting can be impractical since gold passages may not always be available. In
contrast, other studies [2,8,23] assume no access to gold passages and identify
weak answers in the retrieval results by finding a span that is an exact match
to the known answer. We argue that the effectiveness of this span-match weak
supervision approach is contingent on having only span answers that are short,
or extractive spans of a retrieved passage. In information-seeking conversations,
however, answers can be relatively long and are not necessarily strict spans of any
passage. These freeform answers can be challenging to handle for span-match
weak supervision.

In this work, we introduce a learned weak supervision approach that can
identify a paraphrased span of the known answer in a retrieved passage as the
weak answer. Our method is more flexible than span-match weak supervision
since that it can handle both span answers and freeform answers. Moreover, our
method is less demanding on the retriever since it can discover weak answers
even when the retriever fails to retrieve any passage that contains an exact
match of the known answer. By using a weakly-supervised training approach,
our ConvQA system can discover answers in passages beyond the gold ones and
thus can potentially leverage various knowledge sources. In other words, our
learned weak supervision approach makes it possible for an ORConvQA system
to be trained on natural conversations that can have long and freeform answers.
The choice of the passage collection is no longer a part of the task definition.
We can potentially combine different knowledge sources with these conversations
since the weak answers can be discovered automatically.

Our learned weak supervisor is based on Transformers [41]. Due to the lack
of training data to learn this module, we propose a novel training method for
the learned weak supervisor by leveraging a diverse paraphraser [19] to generate
the training data. Once the learned weak supervisor is trained, it is frozen and
used to facilitate the training of the ORConvQA model.

We conduct experiments with the QuAC [5] and CoQA [36] datasets in an
open-retrieval setting. We show that although a span-match weak supervisor can
handle conversations with span answers, it is not sufficient for those with freeform
answers. For more natural conversations with freeform answers, we demonstrate
that our learned weak supervisor can outperform the span-match one, proving
the capability of our method in dealing with freeform answers. Moreover, by
combining the span-match supervisor and our method, the system has a signifi-
cant improvement over using any one of the methods alone, indicating these two
methods complement each other. Finally, we perform in-depth quantitative and
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qualitative analyses to provide more insight into weakly-supervised ORConvQA.
Our data and model implementations will be available for research purposes.1

The rest of our paper is organized as follows. In Sect. 2, we present related
work regarding question answering and conversational question answering. In
Sect. 3, we formulate the research question of ORConvQA following previous
work and present our weakly-supervised solution. In Sect. 4, we present our
evaluation results on both span answers and freeform answers. Finally, Sect. 5
presents the conclusion and future work.

2 Related Work

Our work is closely related to question answering, conversational question
answering, session search [26,27,56], and weak supervision and data augmen-
tation [3,24]. We highlight the related works on QA and ConvQA as follows.

Question Answering. Most of the previous work formulates question answer-
ing either as an answer selection task [13,43,54] or a machine comprehen-
sion (MC) task [20,34,35,39]. These settings overlook the fundamental role
of retrieval as articulated in the QA task of the TREC-8 Question Answer-
ing Track [42]. Another line of research on open-domain question answering
addresses this issue by leveraging multiple documents or even the entire col-
lection to answer a question [7,10,11,16,28]. When a large collection is given
as a knowledge source, previous work [2,53] typically uses TF-IDF or BM25 to
retrieve a small set of candidate documents before applying a neural reader to
extract answers. More recently, neural models are being leveraged to construct
learnable rerankers [14,18,22,44] or learnable retrievers [8,17,23] to enhance the
retrieval performance. Compared to this work on single-turn QA, we focus on a
conversational setting as a further step towards conversational search.

Conversational Question Answering. As an extension of the answer selec-
tion and MC tasks in single-turn QA, most research on conversational QA
focuses on conversational response ranking [25,38,47–52] and conversational
MC [4,5,15,29,31,32,36,55,57]. A recent paper [30] extends conversational QA
to an open-retrieval setting, where the system is required to learn to retrieve top
relevant passages from a large collection before extracting answers from the pas-
sages. Although this research features a learnable retriever to emphasize the role
of retrieval in ConvQA, it adopts a fully-supervised setting. This setting requires
the model to have access to gold passages during training, and thus is less prac-
tical in real-world scenarios. Instead, we propose a learned weakly-supervised
training approach that can identify good answers in any retrieved documents.
In contrast to the span-match weak supervision [2,8,23] used in single-turn QA,
our approach is more flexible since it can handle freeform answers that are not
necessarily a part of any passage.

1 https://github.com/prdwb/ws-orconvqa.

https://github.com/prdwb/ws-orconvqa
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3 Weakly-Supervised ORConvQA

In this section, we first formally define the task of open-retrieval ConvQA under
a weak supervision setting. We then describe an existing ORConvQA model [30]
and explain how we train it with our learned weak supervision approach.

Question & History
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Fig. 1. Architecture of our full model. Given a question and its conversation history,
the retriever first retrieves top-K relevant passages from the collection. The reader
then reads the top passages and produces an answer. We adopt a weakly-supervised
training approach. Given the known answer and one of the retrieved passages, the
weak supervisor predicts a span in this passage as the weak answer to provide weak
supervision signals for training the reader.

3.1 Task Definition

We define the ORConvQA task following Qu et al. [30]. Given the k-th question
qk in a conversation, and all history questions {qi}k−1

i=1 preceding qk, the task is
to predict an answer ak for qk using a passage collection C. Different from Qu
et al. [30], we assume no access to gold passages when training the reader. The
gold passage for qk is the passage in C that is known to contain or support ak.

3.2 An End-to-End ORConvQA System

We follow the same architecture of the ORConvQA model in Qu et al. [30].2 Our
approach differs from theirs in how we train the model. They use full supervision
while we adopt weak supervision. We briefly describe the architecture of this
ORConvQA model before introducing our weakly-supervised training approach.

As illustrated in Fig. 1, the ORConvQA model is composed of a passage
retriever and a passage reader that are both learnable and based on Trans-
formers [41]. Given a question and its history, the retriever first retrieves top-K
relevant passages from the collection. The reader then reads the top passages
and produces an answer. History modeling is enabled in both components by
2 We disable the reranker in Qu et al. [30] since our preliminary experiments indicated

the weak supervision signals seem to lead to degradation for reranker and retriever.
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concatenating history questions. Since we do not have access to ground-truth
history answers and gold passages, advanced history modeling approaches pro-
posed in previous research [31,32] does not apply here. The training contains two
phases, a pretraining phase for the retriever, and a concurrent learning phase
for the reader and fine-tuning the question encoder in the retriever. Our weakly-
supervised training approach is applied to the concurrent learning phase.

Retriever. The learnable retriever follows a dual-encoder architecture [1,8,23]
that has a passage encoder and a question encoder. Both encoders are based
on ALBERT [21] and can encode a question/passage into a 128-dimensional
dense vector. The question is enhanced with history by prepending the initial
question and other history questions within a history window. The retriever
score is defined as the dot product of the representations of the question and the
passage. The retriever pretraining process ensures the retriever has a reasonable
initial performance during concurrent learning. A pretraining example contains
a question and its gold passage. Other passages in the batch serve as sampled
negatives. Using the passage encoder in the pretrained retriever, we encode the
collection of passages to a collection of vectors. We then use Faiss3 to create
an index of these vectors for maximum inner product search [37] on GPU. The
question encoder will be fine-tuned during concurrent learning using the retrieved
passages. We refer our readers to Qu et al. [30] for further details.

Reader. The reader adapts a standard BERT-based extractive machine
comprehension model [9] to a multi-document setting by using the shared-
normalization mechanism [6] during training. First, the retrieved passages are
encoded independently. Then, the reader maximizes the probabilities of the true
start and end tokens among tokens from all the top passages. This step enables
the reader to produce comparable token scores across all the retrieved passages
for a question. The reader score is defined as the sum of the scores of the start
token and the end token. The answer score is then the sum of its retriever score
and reader score.

3.3 Weakly-Supervised Training

The reader component in Qu et al. [30] is trained with access to gold passages
while our model is supervised by the conversation only. Our weakly-supervised
training approach is more practical in real-world scenarios. Figure 1 illustrates
the role the weak supervisor plays in the system. Given a known answer ak
and one of the retrieved passages pj , the weak supervisor predicts a span in
pj as the weak answer aweak

k . This weak answer is the weak supervision signal
for training the reader. The weak supervisor can also indicate there is no weak
answer contained in pj . A question is skipped if there are no weak answers in
any of the retrieved passages.

3 https://github.com/facebookresearch/faiss.

https://github.com/facebookresearch/faiss
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Fig. 2. Learned weak supervisor. During the concurrent learning phase of ORConvQA,
the weak supervisor conducts inference on a retrieved passage pj (the left figure) to
predict a passage span that is a paraphrase of the known answer ak. When training of
the weak supervisor (the right figure), the model is trained to predict the known answer
ak in the passage given a paraphrase of the known answer apara

k and the passage.

Inspirations. Our learned weak supervision method is inspired by the clas-
sic span-match weak supervision. This method has been the default and only
weak supervision method in previous open-domain QA research [2,8,23]. These
works mainly focus on factoid QA, where answers are short. A span-match weak
supervisor can provide accurate supervision signals since the weak answers are
exactly the same as the known answers. In addition, the short answers can find
matches easily in passages other than the gold ones. In information-seeking con-
versations, however, the answers can be long and freeform, and thus are more
difficult to get an exact match in retrieved passages. Although the span-match
weak supervisor can still provide accurate supervision signals in this scenario, it
renders many training examples useless due to the failure to find exact matches.
A straightforward solution is to find a span in a retrieved passage that has the
maximum overlap with the known answer. Such overlap can be measured by
word-level F1. This overlap method, however, can be intractable and inefficient
since it has to enumerate all spans in the passage. This method also requires
careful tuning for the threshold to output “no answer”. Therefore, we introduce
a learned weak supervisor based on Transformers [41] to predict a weak answer
span directly in a retrieved passage given the known answer. This supervisor
also has the ability to indicate that the retrieved passage does not have a good
weak answer.

Learned Weak Supervisor. Given the known answer ak and one of the
retrieved passages pj , the weak supervisor predicts a span in pj as the weak
answer aweak

k . Intuitively, aweak
k is a paraphrase of ak. We use a standard BERT-

based extractive MC model [9] here as shown in Fig. 2, except that we use ak
for the question segment. The best weak answer for all top passages is the one
with the largest sum of start and end token scores.
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Although theoretically simple, this model presents challenges in training
because position labels of aweak

k are not available. Therefore, we consider the
known answer ak as the weak answer we are seeking since we know the exact
position of ak in its gold passage pgoldj . We then use a diverse paraphrase genera-
tion model (described in Sect. 3.3) to generate a paraphrase aparak for the known
answer ak. The paraphrase aparak simulates the known answer during the train-
ing of the weak supervisor, as shown in Fig. 2. The weak supervisor is trained
before concurrent learning and kept frozen during concurrent learning. We train
the weak supervisor to tell if the passage does not contain a weak answer by
pairing a randomly sampled negative passage with the known answer.

We are aware of a dataset, CoQA [36], that provides both span answer and
freeform answer for a given question qk. In this case, we can take the freeform
answer as a natural paraphrase aparak for the span answer (known answer) ak
when training the weak supervisor. For datasets that do not offer both answer
types, our diverse paraphraser assumes the role of the oracle to generate the
paraphrase answer. In other words, the use of the diverse paraphraser ensures
that our weak supervision approach can be applied to a wide variety of conver-
sation data that are beyond datasets like CoQA.

Diverse Paraphrase Model. We now briefly describe the diverse para-
phraser [19] used in the training process of the learned weak supervisor. This
model is built by fine-tuning GPT2-large [33] using encoder-free seq2seq model-
ing [46]. As training data we use paraNMT-50M [45], a massive corpus of back
translated data [45]. The training corpus is aggressively filtered to leave sentence
pairs with high lexical and syntactic diversity so that the model can generate
diverse paraphrases. We refer our readers to Krishna et al. [19] for further details.

4 Experiments

We now describe the experimental setup and report the results of our evaluations.

4.1 Experimental Setup

Dataset. We select two ConvQA datasets, QuAC [5] and CoQA [36], with
different answer types (span/freeform) to conduct a comprehensive evaluation
of our weak supervision approach and to provide insights for weakly-supervised
ORConvQA. We present the data statistics of both datasets in Table 1. We
remove unanswerable questions in both datasets since there is no basis to find
weak answers.4

OR-QuAC (span answers) We use the OR-QuAC dataset introduced in Qu
et al. [30]. This dataset adapts QuAC to an open-retrieval setting. It contains
information-seeking conversations from QuAC, and a collection of 11 million
Wikipedia passages (document chunks).
4 This difference in the data accounts for the discrepancies of the full-supervision

results presented in Table 2.



536 C. Qu et al.

OR-CoQA (freeform answers) We process the CoQA dataset [36] in the
Wikipedia domain for the open-retrieval setting following Qu et al. [30], result-
ing in the OR-CoQA dataset. CoQA offers freeform answers generated by people
in addition to span answers, resulting in more natural conversations. OR-CoQA
and OR-QuAC share the same passage collection. Similar to QuAC, many ini-
tial questions in CoQA are also ambiguous and hard to interpret without the
given gold passage (e.g., “When was the University established?”). OR-QuAC
deals with this by replacing the first question of a conversation with its context-
independent rewrite offered by the CANARD dataset [12] (e.g., “When was
the University of Chicago established?”). This makes the conversations self-
contained. Since we are not aware of any CANARD-like resources for CoQA,
we prepend the document title to the first question for the same purpose (e.g.,
“University of Chicago When was the University established?”). Since the CoQA
test set is not publicly available, we take the original development set as our test
set and 100 dialogs from the original training set as our development set.

Table 1. Data statistics.

Items OR-CoQA OR-QuAC

Train Dev Test Train Dev Test

# Dialogs 1,521 100 100 4,383 490 771

# Questions 23,027 1,494 1,611 25,824 2,808 4,406

# Avg. question tokens 5.8 5.7 5.8 6.8 6.6 6.8

# Avg. answer tokens 2.8 2.6 2.6 15.0 15.0 14.7

# Avg. dialog questions 15.1 14.9 16.1 5.9 5.7 5.7

# Avg./Max History turns per question 7.9/22 7.6/21 7.9/19 2.8/11 2.8/11 2.8/11

Competing Methods. Since this work focuses on weak supervision, we use
the same ORConvQA model and vary the supervision methods. To be specific,
the competing methods are:

– Full supervision (Full S): Manually add the gold passage to the retrieval
results and use the ground-truth answer span [30]. This only applies to QuAC
since we have no passage relevance for CoQA. This method serves as the
upper bound of model performance and it is not comparable with other weak
supervision methods that do not have access to the groundtruth answers in
concurrent learning.

– Span-match weak supervision (Span-match WS): This method finds a
weak answer span that is identical to the known answer in the retrieved
passages. When there are multiple matched spans, we take the first one.

– Learned weak supervision (Learned WS): This is our method in Sect. 3.3
that finds a paraphrased span of the known answer as the weak answer.

– Combined weak supervision (Combined WS): This is the combination of
the above two methods. We first use the span-match weak supervisor to try to
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find a weak answer. If it fails, we take the weak answer found by the learned
weak supervisor.

Evaluation Metrics. We use the word-level F1 and human equivalence score
(HEQ) [5] to evaluate the performance of ConvQA. F1 evaluates the overlap
between the prediction and the ground-truth answer. HEQ is the percentage
of examples for which system F1 ≥ human F1. This is computed on a question
level (HEQ-Q) and a dialog level (HEQ-D).

In addition to the performance metrics described above, we define another set
of metrics to reveal the impact of the weak supervisor in the training process as
follows. % Has answer is the percentage of training examples that have a weak
answer (in the last epoch). % Hit Gold is the percentage of training examples
that have a weak answer identified in gold passages (in the last epoch). Recall
is the percentage of training examples that have the gold passage retrieved (in
the last epoch). % From Gold is the percentage of predicted answers that are
extracted from the gold passages.

Implementation Details. Our models are based on the open-source imple-
mentation of ORConvQA5, Diverse Paraphrase Model6, and the HuggingFace
Transformers repository.7 We use the same pretrained retriever in Qu et al. [30]
for both datasets. For concurrent learning of ORConvQA, we set the number of
training epochs to 5 (larger than [30]) to account for the skipped steps where no
weak answers are found. We set the number of passages to update the retriever
to 100, and the history window size to 6 since these are the best settings reported
in [30]. The max answer length is set to 40 for QuAC and 8 for CoQA. The rest
of the hyper-parameters and implementation details for the ORConvQA model
are the same as in [30].

For the weak supervisor, we use BERT-Mini [40] for better efficiency. We set
the number of training epochs to 4, the learning rate to 1e–4, and the batch size
to 16. As discussed in Sect. 3.3, the diverse paraphraser is used for OR-QuAC
only. For OR-CoQA, we use the freeform answer provided by the dataset as a
natural paraphrase to the span answer.

4.2 Evaluation Results on Span Answers

Given the different properties of span answers and freeform answers, we study the
performance of our weak supervision approach on these answers separately. We
report the evaluation results on the span answers in Table 2. Our observations
can be summarized as follows.

The full supervision setting yields the best performance, as expected. This
verifies the supervision signals provided by the gold passages and the ground-
truth answer spans are more accurate than the weak ones. Besides, all supervision
5 https://github.com/prdwb/orconvqa-release.
6 https://github.com/martiansideofthemoon/style-transfer-paraphrase.
7 https://github.com/huggingface/transformers.

https://github.com/prdwb/orconvqa-release
https://github.com/martiansideofthemoon/style-transfer-paraphrase
https://github.com/huggingface/transformers
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Table 2. Evaluation results on OR-QuAC (span answers). The learned weak supervisor
causes no statistical significant performance decrease compared span match.

Methods Full S Span-match WS Learned WS Combined WS

Train % Has answer 100.00% 72.96% 75.98% 75.52%

Dev F1 22.8 20.8 20.2 20.1

HEQ-Q 8.1 6.8 6.0 6.4

HEQ-D 0.6 0.6 0.2 0.6

Test F1 23.9 23.6 23.1 23.2

HEQ-Q 14.0 12.3 11.8 12.5

HEQ-D 2.2 1.7 1.9 1.9

approaches have similar performance on span answers. This suggests that span-
match weak supervision is sufficient to handle conversations with span answers.
Ideally, if the known answer is part of the given passage, the learned weak super-
visor should be able to predict the weak answer as exactly the same with the
known answer. In other words, the learned weak supervisor should fall back to
the span-match weak supervisor when handling span answers. In practice, this
is not guaranteed due to the variance of neural models. However, our learned
weak supervisor causes no statistical significant performance decrease compared
with the span-match supervisor. This demonstrates that the learned weak super-
vision approach can cover span answers as well. Although we observe that the
learned supervisor can identify more weak answers than span match, these weak
answers could be false positives that do not contribute to the model performance.
Finally, for the combined weak supervisor, our analysis shows that 96% of the
weak answers are identified by span match, further explaining the fact that all
weak supervision approaches have almost identical performance.

4.3 Evaluation Results on Freeform Answers

We then look at the evaluation results on freeform answers in Table 3. These
are the cases where a span-match weak supervisor could fail. We observe that
combining the learned weak supervisor with span match brings a statistically
significant improvement over the span-match baseline on the test set, indicating
these two methods complement each other. The test set has multiple reference
answers per question, making the evaluation more practical. In addition, the
learned supervisors can identify more weak answers than span match, these
weak answers contribute to the better performance of our model. Further, for the
combined weak supervisor, our analysis shows that 77% of the weak answers are
identified by span match. This means that nearly a quarter of the weak answers
are provided by the learned supervisor and used to improve the performance
upon span match. This further validates the source of effectiveness of our model.
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Table 3. Evaluation results on OR-CoQA (freeform answers). ‡ means statistically
significant improvement over the span-match baseline with p < 0.05.

Methods Span-match WS Learned WS Combined WS

Train % Has answer 51.81% 65.75% 70.35%

Dev F1 18.3 18.9 19.7

HEQ-Q 11.6 9.0 12.7

HEQ-D 0.0 0.0 0.0

Test F1 24.3 26.0 28.8‡

HEQ-Q 19.9 15.9 22.5

HEQ-D 0.0 0.0 0.0

Table 4. A closer look at the training process for OR-QuAC.

Methods Train Dev Test

% Has Ans % Hit Gold Recall % From Gold % From Gold

Full S 100.00% 100.00% 1.0000 45.23% 27.46%

Span-match WS 72.96% 68.97% 0.7190 40.88% 28.80%

Learned WS 75.98% 67.24% 0.7187 39.89% 28.73%

Combined WS 75.52% 68.37% 0.7129 40.28% 28.39%

4.4 A Closer Look at the Training Process

We take a closer look at the training process, as shown in Table 4. We conduct
this analysis on OR-QuAC only since we do not have the ground-truth passage
relevance for CoQA. We observe that, “% Has Ans” are higher than “% Hit
Gold” for all weak supervision methods, indicating all of them can identify weak
answers in passages beyond the gold passages. In particular, our method can
identify more weak answers than span match. We also notice that “% Hit Gold”
is only slightly lower than “Recall”, suggesting that most of the retrieved gold
passages can yield a weak answer. This verifies the capability of weak supervi-
sors. Finally, “% From Gold” are relatively low for all methods, indicating great
potential for improvements.

4.5 Case Study and Error Analysis

We then conduct a qualitative analysis by presenting weak answers identified by
the learned weak supervisor in Table 5 to better understand the weak supervision
process. Example 1 and 2 show that our learned weak supervisor can find weak
answers that are exactly the same or almost identical to the known answers
when an exact match of the known answer exits, further validating our method
can potentially cover span-match weak supervision. Example 3 shows that if an
exact match does not exist, our method can find a weak answer that expresses
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Table 5. Case study. Weak answers are found by the learned weak supervisor. Boldface
denotes discrepancies and italic denotes paraphrasing.

# Questions and Answers

Good 1 Question Where was the album released?

Known answer On online forums and music sites

Weak answer On online forums and music sites

2 Question ... mention anything else he starred in?

Known answer After starring ... the film adaptation of The Music Man

Weak answer After starring ... film adaptation of The Music Man (1962)

3 Question Where did he distribute the Cocaine?

Known answer Flying out planes several times, mainly between Colombia
and Panama, along smuggling routes into the United States

Weak answer He flew a plane himself several times, mainly between
Colombia and Panama, in order to smuggle a load into the
United States.

Bad 4 Question How long have people had clothes?

Known answer As long ago as 650 thousand years ago

Weak answer Around 170,000 years ago

5 Question What is data compression called?

Known answer Reducing the size of a data file

Weak answer By using wavelets, a compression ratio

the same meaning with the known answer. This is a case that a span-match weak
supervisor would fail.

Example 4 shows that our method tends to focus on the lexical similarity
only but get the fact wrong. Example 5 indicates our method sometimes finds a
weak answer that is relevant to the known answer but cannot be considered as
a good answer. These are the limitations of our method.

5 Conclusions and Future Work

In this work, we propose a learned weak supervision approach for open-retrieval
conversational question answering. Extensive experiments on two datasets show
that, although span-match weak supervision can handle span answers, it is not
sufficient for freeform answers. Our learned weak supervisor is more flexible since
it can handle both span answers and freeform answers. It is more powerful when
combined with the span-match supervisor. For future work, we would like to
enhance the performance of ORConvQA by studying more advanced history
modeling methods and more effective weak supervision approaches.
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Abstract. Professional search queries are often formulated in a struc-
tured manner, where multiple aspects are combined in a logical form. The
information need is often fulfilled by an initial retrieval stage followed by a
complex reranking algorithm. In this paper, we analyze a simple, explain-
able reranking model that follows the structured search criterion. Differ-
ent aspects of the criterion are predicted by machine learning classifiers,
which are then combined through the logical form to predict document
relevance. On three years of data from the TREC Precision Medicine lit-
erature search track (2017–2019), we show that the simple model consis-
tently performs as well as LambdaMART rerankers. Furthermore, many
black-box rerankers developed by top-ranked TREC teams can be replaced
by this simple model without statistically significant performance change.
Finally, we find that the model can achieve remarkably high performance
even when manually labeled documents are very limited. Together, these
findings suggest that leveraging the structure in professional search queries
is a promising direction towards building explainable, label-efficient, and
high-performance retrieval models for professional search tasks.

Keywords: Professional search ⋅ Precision medicine ⋅ Explainable IR

1 Introduction

Professional searchers often formulate complex information needs as a func-
tion of various concepts, or aspects. For example, in systematic reviews for
evidence-based medicine, relevance criteria usually involve four elements, namely
population, intervention, comparison, and outcome, collectively known as the
PICO elements [33]. In the TREC Precision Medicine track, a relevant research
article should discuss cancer treatment and focus on subjects who had the same
cancer, the same genetic variation, and the same demographic as the patient
at hand [29]. In legal search, an inquiry often include multiple aspects such as
entity, event, time, and location [18].

Professional searchers often use big, structured Boolean queries to express
their relevance criteria. Each relevance aspect is encoded as a disjunctive clause
of synonymous terms, which are then combined in a conjunctive clause to encode
c© Springer Nature Switzerland AG 2021
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the inclusion/exclusion criteria [31]. Boolean queries are popular among profes-
sional searchers because they provide an expressive and intuitive way of specify-
ing complex logic. However, composing the “right” Boolean query takes experi-
ence and patience. Finding the right terms to include and exclude often requires
extensive domain knowledge and many iterations of trial-and-error. As a result,
searchers often use Boolean queries to retrieve an initial expansive set of results
with high recall but low precision, and then manually sift through these results
to identify relevant ones [25].

To refine Boolean search results and reduce a searcher’s manual effort,
machine learning and text mining approaches are proposed to rerank the initial
search results. These include various learning-to-rank [8,20] and active learn-
ing [36,37] techniques. In these techniques, a ranking function is trained to
distinguish relevant results from non-relevant ones, which helps prioritize rel-
evant results for manual review [16]. However, building such a ranking function
often requires a substantial amount of training data, which may not be available
upfront. To create such training data, a searcher needs to manually assess the
relevance of many initial search results. Once trained, the ranking function is
often complex (e.g. gradient boosted decision trees or neural networks) and dif-
ficult to interpret, as it may not follow the searcher’s decision logic expressed in
the Boolean query. This lack of transparency is undesirable as many professional
searchers value transparency more than pure ranking performance [31].

Our research is motivated by one overarching question: How can we support
professional searchers with retrieval systems that leverage machine learning while
preserving the transparency and interpretability of Boolean search? In a recent
short paper, we explored an explainable retrieval model towards this goal [26].
The task setting is the TREC Precision Medicine (PM) track, where the rel-
evance criteria involve multiple aspects combined in a decision logic [29]. The
retrieval model learns separate machine learning classifiers to predict aspect-level
relevance, and combines them through the decision logic to produce document-
level relevance. Such a model can be easily explained as it closely resembles the
searcher’s relevance decision process. Preliminary results showed that the model
performed as well as complex learning-to-rank models on 2018 PM track topics.

In this paper, we further investigate three research questions in order to
gain deeper understanding of the proposed model beyond the preliminary work.
Below we state these research questions and summarize the main findings.

1) Is the proposed model generalizable to a broader range of PM topics? By cross-
validating on three years of data from the TREC PM track (2017–2019), we
find that the model consistently performs as well as complex learning-to-rank
models, confirming its generalizability beyond a specific year of data.

2) How does the proposed model compare with those developed by teams in the
PM track? We find that the proposed model can replace competitive black-
box models submitted to the TREC PM track without significantly compro-
mising retrieval performance, and sometimes even give performance gains.

3) Does the proposedmodel requiremany labeled documents to learnwell? Through
a learning curve analysis, we show that the model is substantially more
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label-efficient than a conventional learning-to-rank model. It achieved remark-
able retrieval performance even when trained on very few labeled documents.

2 Related Work

Professional Search Strategies. In professional search tasks, especially sys-
tematic literature reviews, searchers formulate structured information needs
through complex Boolean queries, where concepts are encoded as disjunctive
clauses of synonymous terms, and inclusion/exclusion criteria are built on top
of these concepts [2,31]. Our approach aims to automate and assist in these
tasks by replacing manually constructed query components with machine learn-
ing classifiers, and by logically explaining predictions using relevance aspects.

Explainable Information Retrieval. Recent works on explainable search and
recommendation systems primarily focus on post-hoc explanation of highly com-
plex ranking algorithms [12,34,39], where explanations are usually feature-based
(e.g. highlighting query terms in search snippets [12]) and example-based (e.g.
showing similar items that the user liked [39]). Our approach differs from these
works in two ways. First, instead of explaining black-box models, we design inher-
ently interpretable models. Second, the proposed approach can not only identify
important high-level features, but also show intermediate decision steps.

Precision Medicine Literature Search. This work is inspired by the TREC
PM track, where the task is to retrieve articles for cancer treatment planning.
Most participating teams in this track employ a machine learning model to
rerank documents retrieved by a simpler baseline. Some teams use the official
relevance judgement criteria to fine-tune search results, e.g., filtering out docu-
ments that are not related to cancer treatment [9] or does not match the demo-
graphic information in the query [1]. High-performance reranking methods are
often black-box models such as boosted decision trees [7,32], and deep neural
networks [11,21,40], which means the decision logic is not interpretable. Here the
proposed reranking model emulates the structured relevance judgment process
in the TREC PM track, which is interpretable by design.

3 Structured Relevance in TREC PM Track

Since 2017, the TREC Precision Medicine (PM) track has been focusing on a
specific type of professional search task in which relevance is structured, i.e.,
defined as a function of different aspects [28]. PM track organizers provided
structured relevance judgements, where each document is assigned a relevance
level (not relevant, partially relevant, definitely relevant) based on intermediate
judgements on multiple aspects, as illustrated in Fig. 1. Each aspect takes a
categorical outcome. For example, regarding the Disease aspect, a document may
take one of four categories: (1) Exact (i.e., mentions the disease in the query),
(2) More general (i.e., mentions a more general disease), (3) More specific (i.e.,
mentions a more specific disease), or (4) No disease (i.e., does not mention a
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Fig. 1. Structured relevance judgment in the TREC Precision Medicine track.

Table 1. Relevance aspects and classifier features

Aspects Outcomes Classifier features

Relevance to cancer treatment Human PM # “Human PM” keywords (n)

Animal PM # “Animal PM” keywords (n)

Not PM # “Not PM” keywords (n)

Disease Exact # Query disease match (n)

More general # Disease super-category match (n)

More specific # Disease sub-category match (n)

No disease

Gene Exact # Query gene and aliases match (n)

Missing gene Is variant in query (b)

Missing variant # Query variant match (n)

Different variant # Other gene variants match (n)

Is gene modification in query (b)

# Gene modification match (n)

Demographic Match Is gender mentioned in article (b)

Exclude Is gender different in article (b)

Not discussed Is age mentioned in article (b)

Difference in age (n)

# Age group keywords match (n)

b: binary-valued, #: count of, n: real-valued, PM: precision medicine
keywords: terms with highest TF-IDF weights from each outcome

related disease). All aspects and corresponding outcomes are shown in the first
two columns Table 1. Given a query, a document’s gold-standard relevance level
is determined by evaluating these intermediate judgements against a pre-defined
cascade of rules (i.e., a decision tree). We refer the reader to Roberts et al. [29]
for details about the judgment criteria and decision rules in the PM track.

The PM track released 30 queries with 22,642 judged documents in 2017,
50 queries with 22,429 judged documents in 2018, and 40 queries with 18,317
judged documents in 2019 for the subtask of PubMed abstract search. Aspect-
level judgments were manually made by oncologists at the University of Texas
MD Anderson Cancer Center. Then relevance levels were computed by passing
intermediate aspect-level judgments through a pre-defined decision tree. We use
these data in this work.
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4 An Explainable Retrieval Model

The relevance judgment structure in Fig. 1 naturally inspires a new retrieval algo-
rithm. The main idea is as follows. For each aspect, we train a multi-class clas-
sifier that predicts the categorical outcome (i.e., the second column in Table 1).
Then we feed the predictions to the decision logic to compute document rele-
vance. This approach has the potential to deliver good retrieval performance as
it closely resembles the true relevance decision process. It is also highly explain-
able as its decision steps emulate those of human experts by design. Below we
describe our implementation of the proposed retrieval algorithm. Its components
– aspect classifiers and a decision tree – are learned from data.

4.1 Aspect Classifiers

Each classifier takes aspect-specific features extracted from a query-document
pair. The model employs a small set of simple features per aspect (the third
column in Table 1). All classifiers are one-versus-rest logistic regression models
with regularization weight C = 0.5. SMOTE algorithm [6] is used to rebalance
the severely skewed label distribution in each aspect (e.g., the majority of judged
documents are non-relevant to cancer treatment, or Not PM ).

4.2 Decision Tree

Building the Decision Tree. Instead of hand-coding the relevance decision
logic into a decision tree, we learn the tree from structured relevance judgment
data. The manually-assessed aspect outcomes are input features and the rele-
vance level is the target category. We represent all outcomes as binary variables,
so that each non-leaf node makes a binary decision on whether an outcome is
true or false. Using information gain as the splitting criterion, we can learn a
decision tree that achieves nearly 100% accuracy. This is not surprising, since
aspect outcomes and relevance levels are known to be related through a simple
decision logic. The learned tree structure is illustrated in Fig. 2.

Handling Predicted Outcomes. Such a decision tree assumes manually-
assessed binary outcomes as inputs. To work as a retrieval component, the same
tree should be able to handle classifier-predicted outcomes as inputs. In our
context, these are confidence values predicted by our logistic regression models.
The original decision process of the tree can be viewed as a ‘walk’ from the root
to a leaf, making a binary decision at each non-leaf node. Now given confidence
values predicted at each non-leaf node, we propose two ways of ‘taking the walk’:

• Deterministic walk : at each node, the walk follows the branch with confidence
value of 50% or greater. In the end, the walk will reach a single leaf node,
which determines a relevance level.

• Probabilistic walk : at each node, the walk will follow either branch with prob-
ability equal to the confidence value towards that branch. This (random) walk
will reach every leaf node with non-zero probability, i.e. the product of all
confidence values from the root to the leaf.
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Fig. 2. The learned decision tree structure.

In terms of output, the decision tree predicts a probability distribution
p(r∣q, d) over relevance levels r ∈ {not relevant, partially relevant, definitely
relevant} for a given query-document pair (q, d). The deterministic walk makes
a hard prediction: p(r

∗
∣q, d) = 1 for some r

∗ and 0 otherwise. We call this app-
roach Tree-hard. The probabilistic walk makes a soft prediction: it predicts
p(r∣q, d) as the probability of reaching any leaf associated with relevance level
r. We call this approach Tree-soft.

Tree-hard and Tree-soft differ in their sensitivity to inaccurate predictions
from our aspect classifiers. For Tree-hard, a single prediction error at any node
will likely ‘sway’ the deterministic walk down a wrong path. For Tree-soft, when
prediction errors occur, the probabilistic walk will still follow the right path
with non-zero probability. In this regard, Tree-soft may have higher tolerance
for inaccurate predictions.

These tree-based models offer natural ways of interpreting their decisions.
To explain Tree-hard, one can show the single decision path it takes to predict
relevance. To explain Tree-soft, one can show k most probable decision paths,
each providing an alternative explanation. Upon close inspection, we found that
the top-3 most probable paths down the tree account for an average of 80% of
the total probability across all paths. In other words, while Tree-soft assigns a
non-zero probability to each path, these probabilities tend to be highly skewed
towards only a few.

Generating a Ranking Score. To rank documents, we need to generate a
score for each (q, d). We use a variant of the approach in Li et al. [19]: s(q, d) =
[∑r∈{0,1,2} wr ⋅ p(r∣q, d)] + b(q, d), where the weight wr should increase with
relevance level r. We define r = 0, 1, 2 as not relevant, partially relevant, and
definitely relevant, respectively, and set w0 = 0, w1 = 0.5 and w2 = 1. The first
term [∑r∈{0,1,2} wr ⋅ p(r∣q, d)] is large if p(r = 2∣p, d) is large, i.e. the decision
path unambiguously leads to a definitely relevant leaf. b(q, d) ∈ [0, 1] is the min-
max scaled score generated from the initial retrieval stage (e.g. BM25). Overall,
a large s(q, d) indicates that d is relevant to q in a clearly interpretable manner.
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5 Leave-One-Year-Out Cross-validation

In this section, we evaluate the proposed retrieval model on three years of PM
track data (2017–2019). We perform leave-one-year-out cross validation, e.g.,
training on 2017 and 2018 data combined and testing on 2019 data, and so on.
Note that although all queries in three years share the same structure as shown
in Fig. 1, no two queries are identical in all four aspects.

5.1 Initial Retrieval Stage

We first implement a simple initial retrieval stage by concatenating disease and
gene terms to generate a search query, and then use the BM25 scoring function
implemented in Apache Lucene to retrieve the top 500 documents from a Lucene
index of the PubMed corpus. Then, we use tree-based and learning-to-rank mod-
els as rerankers after the initial retrieval stage.

5.2 Learning-to-Rank Baselines

To evaluate the reranking performances of the proposed models, we include
classical learning-to-rank (LTR) approaches for comparison. LTR models are
often highly complex (e.g. neural networks or ensemble models [4]) and make
less explainable relevance predictions than the proposed approach.

LTR-High. The first baseline uses the prediction confidence values from our
aspect classifiers as features. Again, each aspect has a fixed set of possible out-
comes (2nd column in Table 1). Our aspect classifiers output a confidence value
per outcome. The LTR-high approach uses a concatenation of these confidence
values (14 total) as its input feature vector. We call this approach LTR-high
because it uses high-level features that directly model the outcome of each aspect.

LTR-Low. The second baseline uses the raw features used by our four aspect
classifiers (3rd column in Table 1). We call this approach LTR-low because it
uses low -level features that indirectly model the outcome of each aspect.

We implement both LTR models with LambdaMART [4] in Lemur RankLib.
To obtain the strongest baselines, we perform grid search for hyperparameters of
each LTR model to maximize its precision@10 on 5-fold cross validation. These
hyperparameters include the number of trees, the number of leaves in each tree,
learning rate, and minimum leaf support.

5.3 Results

Three metrics were used to evaluate ranking performance: precision@10 (P@10),
which focuses on precision at top ranks; R-precision (R-prec) and mean aver-
age precision (MAP), which emphasize both recall and precision. Table 2 shows
evaluation results for the above algorithms when training on data from two
out of three years and testing on the held-out year. We also included Lucene’s
BM25 baseline for comparison. When comparing approaches, we tested for sta-
tistical significance using Fisher’s Randomization Test [35] (α = .05).
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Table 2. Evaluation Results in terms of P@10, MAP and R-prec in three years. A
▲(▼), △(▽), and ∧(∨) denotes significantly better(worse) performance when com-
paring Tree-soft vs. Tree-hard, LTR-low vs. LTR-high, and Tree-soft vs. LTR-low,
respectively.

Method 2017 2018 2019

P@10 MAP R-prec P@10 MAP R-prec P@10 MAP R-prec

BM25 0.4100 0.1437 0.2374 0.5360 0.2273 0.3122 0.4550 0.1704 0.2394

LTR-high 0.4567 0.1433 0.2156 0.5080 0.2070 0.2864 0.4850 0.1533 0.2215

LTR-low 0.5330
△

0.1780
△

0.2616
△

0.6240
△

0.2530
△

0.3281
△

0.5200 0.1888
△

0.2667
△

Tree-hard 0.4200 0.1437 0.2321 0.5520 0.2284 0.3098 0.4400 0.1707 0.2422

Tree-soft 0.4333
∨

0.1661
▲

0.2551
▲

0.6220
▲

0.2622
▲∧

0.3496
▲∧

0.5100
▲

0.1986
▲

0.2736
▲

Tree-Soft vs. Tree-Hard ▲(▼). First, we compare between two tree-based
approaches (Sect. 4.2). Except for P@10 in 2017 (p = .555), Tree-soft outper-
formed Tree-hard across all years and metrics by a significant margin (p < .001).
This result suggests an important trend—when traversing the “relevance deci-
sion tree” using predicted (vs. gold-standard) relevance aspects, it is better to
traverse the tree probabilistically (i.e., using prediction confidence values) than
to follow the single most confident path to a leaf node.

LTR-Low vs. LTR-High △(▽). Next, we compare between two LTR-based
approaches (Sect. 5.2). Except for P@10 in 2019 (p = .248), LTR-low outper-
formed LTR-high across all years and metrics by a significant margin (p < .001).
Interestingly, an LTR-based approach performed better with low-level features
than high-level relevance aspects predicted by our aspect classifiers (Sect. 4.1).

Tree-Soft vs. LTR-Low ∧(∨). Finally, we compare between the better tree-
based approach (Tree-soft) and the better LTR-based approach (LTR-low). In
terms of P@10, Tree-soft performed significantly worse than LTR-low when test-
ing on 2017 (p < .005). However, Tree-soft performed at the same level as LTR-
low (i.e., no significant differences) when testing on 2018 and 2019. Note that
LTR-low was expected to deliver a high P@10 because it was trained to optimize
that metric, while Tree-soft was not. In terms of MAP and R-prec, Tree-soft per-
formed at the same level as LTR-low across all years, and significantly better
when testing on 2018 (MAP: p < .005; R-prec: p < .005).

Overall, the Tree-soft approach is consistently better than the Tree-hard
approach, and its performance is comparable to LTR-low. This is no small feat
considering that the Tree-soft approach is a much simpler (more interpretable)
approach than the LTR-low approach which is a ensemble model using 500 deci-
sion trees in 2017 and 2018, and 1000 decision trees in 2019.

6 Replacing Black-Box Rerankers in TREC PM Track

A common approach in the TREC PM track has been to employ LTR models to
rerank the top results produced by a simpler baseline [5,7,11,21,27,32,40]. While
such an approach can effectively improve performance, the reranking model is
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often complex and not easily interpretable. Our goal in this section is to explore
if these complex rerankers can be replaced with the proposed interpretable model
without sacrificing performance.

6.1 Selecting Runs from Top-Ranked Teams

We compare the Tree-soft reranker (the better one in Sect. 5) against competitive
TREC PM teams in 2019 (teams on the left side of Table 6 in [29]) that used
a complex LTR model to rerank the retrieved results from a simpler baseline
and submitted a “run” (i.e., result list) using that baseline. The initial retrieval
baselines are denoted as Original Baseline and the corresponding reranking
results are denoted as Original Reranking.

We identified six such teams. Table 3 shows the identified runs and reranking
techniques. Teams that only submitted reranking results (e.g. BITEM PM [5])
or did not use LTR reranking (e.g., imi mug [22], CincyMedIR [38], ims unipd
[23]) were not selected. We also did not select runs from the julie-mug team
as their baseline query has been extensively fine-tuned on previous relevance
judgment data [10], and further reranking does not help [9].

For each selected team, we use the Tree-soft model (denoted as Tree-soft
Reranking) to rerank the same initial results produced by the team’s baseline.
Components in Tree-soft are trained on 2017 and 2018 data combined, as all
participants in 2019 had access to these data. This allows us to make head-to-
head comparisons between Tree-soft and the rerankers used by these teams. In
these comparisons, we vary the reranker but hold all other factors constant.

Table 3. Selected runs from PM 2019 submissions.

Team Baseline run Reranking run Reranking technique

POZNAN [7] SAsimpleLGD SA LGD letor LambdaMART in Terrier [24]

CSIROmed [32] bm25 6801 Et 8435 Extremely randomized trees [13]

ECNU [40] sa base sa base rr Doc2Vec + cosine similarity [17]

CCNL [21] ccnl sa5 ccnl sa4 SciBERT [3]

DUTIR [11] DutirRun1 DutirRun3 Deep semantic matching [14,15]

UNC SILS [27] sils run1 sils run3 Logistic regression pointwise LTR

6.2 Results

Table 4 summarizes our results in terms of P@10, MAP, and R-precision. We
compare the Tree-soft model against each team’s original baseline and each
team’s reranker. When comparing approaches, we used Fisher’s Randomization
Test [35] (α = .05) to test for statistical significance.

Tree-Soft Reranking vs. Original Baseline▲(▼). In terms P@10, the Tree-
soft model performed at the same level as all baselines. In terms MAP and R-
prec, Tree-soft performed significantly better in six cases and significantly worse
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Table 4. Reranking 2019 PM track submissions with Tree-soft. A ▲(▼), and △(▽)
denotes significantly better (worse) performance when comparing Tree-soft vs. Original
Baseline and Tree-soft vs. Original Reranking, respectively.

Team Original baseline Original reranking Tree-soft reranking

P@10 MAP R-prec P@10 MAP R-prec P@10 MAP R-prec

POZNAN 0.5400 0.2603 0.3092 0.5050 0.2117 0.2714 0.5700
△

0.2542
△

0.3240
▲△

CSIROmed 0.5250 0.2499 0.3029 0.5725 0.1279 0.1856 0.5375 0.2470
△

0.3153
▲△

ECNU 0.5600 0.1767 0.2608 0.5600 0.1769 0.2610 0.5625 0.1848
▲△

0.2690
▲△

CCNL 0.5025 0.2197 0.2770 0.5775 0.2279 0.2886 0.5275 0.2154 0.2944
▲

DUTIR 0.5800 0.2774 0.3266 0.5825 0.2775 0.3227 0.5775 0.2647
▼▽

0.3261

UNC SILS 0.5225 0.2216 0.2858 0.5925 0.2216 0.2757 0.5625 0.2278 0.3124
▲△

in one case (DUTIR in terms of MAP). It should be noted that the difference
in MAP compared to the DUTIR baseline is significant but small.

Tree-Soft Reranking vs. Original Reranking △(▽). In terms of P@10, the
Tree-soft model performed significantly better than one reranker (i.e., POZNAN)
and at the same level as the other rerankers. In terms of MAP and R-prec, the
tree soft models performs significant better than seven cases and significantly
worse in one case (DUTIR in terms of MAP). Again, it should be noted that the
difference in MAP compared to the DUTIR reranker is significant but small.

The results in Table 4 show more significant differences in MAP and R-prec
than P@10. One possible explanation is that P@10 is a coarser metric (i.e., only
11 possible values). Another explanation is that P@10 considers only the top-10
results while MAP and R-prec consider additional results at lower ranks.

These results and those in Sect. 5.3 suggest that many black-box LTR models
in this domain could be replaced by a simple and interpretable model without
significant loss of performance, and in some cases even with performance gain.
This finding is encouraging as medical literature search is a high-stake applica-
tion that warrants an inherently interpretable retrieval model [30].

7 Learning Curve Analysis

The above experiments show that Tree-soft is an effective, explainable, and
reusable reranker that performs as well as many black-box rerankers. However,
such a model may seem more “data-hungry” than learning-to-rank approaches
as it requires human experts to provide aspect-level judgments, which are more
elaborate than relevance judgments. To label a document, an expert must first
read it carefully to produce aspect-level labels, and then give the final relevance
level. This is a time- and effort-consuming task. Therefore it would be ideal if
the Tree-soft approach can achieve high performance without requiring a medi-
cal expert to label many documents. In this section, we investigate this problem
through a learning curve analysis. Here, a learning curve shows the performance
of a model when the amount of training data varies from small to large.
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We sampled training documents from the 80 topics in 2017 and 2018 datasets
combined, and tested on the 40 topics in 2019 dataset. For Tree-soft, we held the
tree structure fixed as the decision logic is a piece of prior knowledge. We only
re-trained our four aspect-level classifiers with newly sampled data. We include
LTR-low for comparison as it is the stronger LTR model in Sect. 5. Note that
Tree-soft and LTR-low may sample different documents for the same training
data size. The training data for aspect-level classifiers in Tree-soft were sam-
pled from the official relevance judgments, while those for LTR-low are sampled
from initial retrieval results. Every time a new training dataset was sampled, we
performed grid search of optimal hyperparameters for LTR-low with the same
steps described in Sect. 5.2. At each data size, We took the mean and standard
deviation of performance metrics over 8 random samples. To simulate settings
where labeled documents are extremely scarce, we sampled two documents per
query (one relevant and one non-relevant).

Fig. 3. Learning curves of Tree-soft and LTR-low in terms of P@10, MAP, and R-prec.
Color regions correspond to ±1 standard deviation around the mean.

Figure 3 shows the average P@10, MAP, and R-precision of Tree-soft and
LTR-low when they are trained on increasing amounts of data. BM25 is included
for comparison. Although Tree-soft and LTR-low learns from two kinds of labels
(aspect-level labels for Tree-soft and document-level labels for LTR-low), both
were generated through the same structured relevance judgment process (shown
in Fig. 1) for every document. Therefore the number of labeled documents per
query can be used as a unified measure of learning cost.

We observe that despite small training data sizes (# labeled documents per
query = 2, 5, 10), Tree-soft performs surprisingly well and enjoys a large margin
in all metrics compared to BM25 and LTR-low. In contrast, LTR-low does not
perform well when the training data is small, due to severe overfitting of the
LamdaMART reranker. In recall-oriented metrics (R-precision and MAP), Tree-
soft performed on par with (if not better than) LTR-low across all training data
sizes. In terms of P@10 (for which LTR-low was optimized), LTR-low outper-
formed Tree-soft only when more than 25 documents/query (2,000 documents
for 80 queries) are labeled, which is a huge burden for manual annotation.
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Fig. 4. Learning curves of aspect classifiers in terms of macro-averaged precision and
recall. Color regions correspond to ±1 standard deviation around the mean.

We provide two explanations for this phenomenon. First, our aspect classi-
fiers are simple linear models using a small set of features and therefore can be
efficiently trained. The learning curves in Fig. 4 show that the classifiers reach
stable performance after receiving only 10 labeled documents per query. The
large performance variance in the early stage is due to small training data. In
particular, the Disease classifier suffered a performance drop because its outcome
label distribution is severely imbalanced, and increasing the data size exacer-
bates label imbalance. A second possible explanation for the Tree-soft model
being robust with less training data stems from its pre-specified decision tree
structure. Importantly, the structure encodes a piece of prior knowledge that
LTR-low is completely unaware of: the correct decision-making procedure to
combine (possibly noisy) aspect-level relevance into document-level relevance.

Overall, these results highlight the promise of leveraging the structure of
professional search queries in a retrieval model – it makes the model not only
more interpretable, but also more robust in handling noisy inputs and less hungry
for training data.

8 Conclusion

In this paper, we analyzed a recently proposed explainable retrieval model that
closely resembles a structured relevance judgment process, where the search
query involves multiple aspects and document relevance is decided by a logical
function of these aspects. Extensive experiments on TREC precision medicine
track data show that the simple, explainable model can perform as well as many
complex, black-box learning-to-rank models, and achieve high performance with
much fewer labeled documents. These results point to a promising direction
towards building effective, explainable, label-efficient retrieval algorithms for
professional search tasks. In future work, we will evaluate the interpretability
of the proposed retrieval model in prototype systems and user studies.
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Abstract. Customer reviews play a major role in online shopping, but
there is hardly any support for aggregating the opinions of multiple
reviewers, especially when the user is interested in certain aspects only.
Current retrieval methods cannot handle the issues of limited credibil-
ity, contradictions and information omission when dealing with this type
of documents. For addressing these problems, we investigate two multi-
valued logic retrieval models. Subjective logic was specifically developed
for considering uncertainty and subjective opinions. As an alternative, we
regard a probabilistic version of a 4-valued logic addressing missing and
inconsistent information. For an aspect-product pair, we get a probabil-
ity distribution over the truth values and use them for ranking the search
results. Our experimental results on a data set from the hotel domain
show that our proposed approaches outperform the traditional keyword-
based methods for the task of ranking items based on reviews. Moreover,
the logic-based methods are more transparent than other approaches.

Keywords: User reviews · IR · Four-valued logic · Subjective logic

1 Introduction

Online shopping has become a usual scenario of internet users. Most of the
online shops offering products or services have been converted to user-driven
platforms [2] where users are able to not only buy online, but also to contribute
and add their reviews to the items listed by the shops. These reviews are valuable
because they express real user experiences and thus provide valuable information
for others to make decisions [11]. However, when there are more than a few
reviews, users would need an aggregated view of the set of reviews of a product
– especially when they want to compare different products. Besides showing the
distribution of star ratings, current systems provide no appropriate functionality.
Moreover, users might be interested only in some of the aspects addressed in
reviews, while the star rating summarizes all aspects a review talks about.

In this paper, we present a framework which starts with a set of predefined
aspects for a product (or service) category, like e.g. performance, connectivity,
battery etc. for laptops, or cleanliness, staff, comfort etc. for hotels. The system
c© Springer Nature Switzerland AG 2021
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then computes a score for each aspect-product pair, based on the product’s
reviews. In product search, these scores can be shown for each item in the result
list, giving the user a quick survey over the strengths and weaknesses of each
product according to its reviews. As with overall scores, the user can select
aspects for being considered in the ranking or filtering of items, or s/he can
navigate to reviews giving positive or negative comments on specific aspects.
Moreover, review passages referring to the selected aspect(s) can be highlighted
(see Table 1).

Aggregating the opinions of a set of reviews regarding specific aspects brings
several challenges that need to be addressed: 1) The set of reviews of a product
is likely to contain contradictions. 2) Some reviews have questionable credibility
(e.g. from paid-for reviewers). 3) Most product reviews do not cover all aspects
of a product, and thus we have to deal with missing information.

For addressing these problems, we investigate two approaches based on multi-
valued logics, which explicitly address the issues of contradiction, credibility and
missing information. More specifically, we regard a) probabilistic 4-valued logic
with additional truth values for inconsistent and unknown, and b) subjective
logic, which defines the subjectivity of opinions as probabilities.

We compute a truth value for each aspect-review pair and then aggregate
these values over all reviews of a product, in order to compute probabilistic
truth values for each aspect-product pair. This model is tested on a dataset
from a hotel booking site, and the results are compared to that of traditional
keyword-based methods.

The remainder of this paper is structured as follows: After giving a survey
over related work, Sect. 3 presents our basic approach by first briefly introducing
the two logics used and then describing our methods for deriving the probabilistic
truth values from reviews. The experimental setting is presented in Sect. 4,
followed by the discussion of results in Sect. 5. The paper concludes with a
summary of the findings and an outlook on follow-up work.

2 Related Work

User reviews are one of the most popular ways for consumers to exchange their
experiences on products [5,6], but they represent mostly subjective opinions of
strangers [4]. Moreover, some reviews might be erroneous, or intentionally mis-
leading, e.g. for commercial reasons. [24] gives a good survey over this issue and
describes methods for estimating credibility. For example, [10] presents a credi-
bility assessment method for recommender systems based on the user profile or
user expertise. Other works like e.g. [17] demonstrate powerful linguistic features
for assessing credibility.

Positive and well-reasoned reviews have a positive influence on the likelihood
of customer purchase decision [19]. However, negative reviews are not always of
negative influence. For instance, [21] found that not just positive reviews have
a positive impact on sales, but also negative ones. [22] showed that negative
reviews are more powerful in reducing sales than positive ones in increasing
them.
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Four-valued logic was proposed in [8] to deal with contradictions that appear
when aggregating the information from different documents [20]. Subjective
logic [12–14] has been widely discussed and used for fusing information of differ-
ent sources. Trust assessment and network security are common domains where
subjective logic is used. However, it is rarely discussed in the domains of infor-
mation retrieval or recommender systems [9].

Ranking products based on an analysis of reviews has gained attractiveness
as a research topic as the online products and its related reviews are increas-
ing enormously. In [25], researchers introduced feature-based approaches to rank
products by analyzing the sentiments of reviews and considering the helpfulness
of votes, review date and other features. [16] followed a user-based approach
to build weighted and directed graphs in order to rank the products. Similarly,
in [26] product features were manually identified within categories in order to
construct directed and weighted graphs. [18] proposed a method based on senti-
ment analysis and intuitionistic fuzzy set theory to rank products based on their
reviews. These approaches are mainly based on feature extraction and machine
learning, but provide only a single overall ranking, while lacking transparency.
In contrast, our logic-based models distinguish between different aspects of a
product category and implement an explicit and transparent treatment of con-
tradiction, missing information and credibility.

3 Logic-Based Approaches for Review Indexing

In this section, we first introduce the theories that we use as bases for our retrieval
approaches, namely four-valued logic (4vL) and subjective logic (SL), and then
describe the estimation of their probabilistic parameters based on reviews.

Four-Valued Logic. Belnap’s relevance logic [3] is a 4vL designed to aggregate
information from multiple information sources, like the different reviews for a
product in our case. Belnap complemented the two standard truth values true
and false by inconsistent and unknown. Inconsistent means that we have both
true and false values from different sources (e.g. reviews on one aspect), while
unknown refers to the fact that we are missing information.

For applying 4vL, we assign truth values to each pair of an aspect a and
a review r: true if the review talks positively about the aspect, and false in
the contrary case; unknown is assigned if the aspect is not mentioned in the
review. Below, we denote these three truth values by t, f , and u, respectively. In
addition, we compute probabilities for the truth values assigned, which reflect
the strength of the sentiment of the reviewer’s comment on the specific aspect.
P (t|a, r) reflects the positivity of r wrt. a and P (f |a, r) the negativity, respec-
tively. Normally, only one of these values will be different from 0, expressing a
clearly positive or negative opinion. If both of these values are 0, the aspect is
not mentioned at all in the review, and if both are greater than 0, we would have
mixed feelings in a single review (e.g. ‘brilliant display, but low resolution’).
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Furthermore, we always have P (u|r, a) = 1 − P (t|a, r) − P (f |a, r). This way,
our method clearly distinguishes between the case when an aspect is not men-
tioned in a review, and the case when there are negative comments. This is in
stark contrast to standard IR methods which ignore negation, and only distin-
guish between absence and presence of a term. In 4vL, absence of an aspect in
a review leads to P (u|r, a) = 1 and P (t|a, r) = P (f |a, r) = 0.

Given the probabilities for the three truth values (true, false and unknown)
for each review, we need a method to aggregate these values for a set of reviews.
Here we also have to consider the credibility cr(r) of a review, the probability
that the claims in r are actually true.

For aggregating the reviews for an aspect, we regard two possibilities

– The reviews actually refer to different instances of an item, e.g. some buyers of
a hard disk might complain that they experienced a disk crash after a short
time. In case other users have no such problems, there is no contradiction
between the reviews – there is just a certain percentage of bad devices. In
probabilistic terms, the different reviews can be modelled as disjoint events.

– The reviews are regarded as independent comments on the same instance
(e.g. the content of a book), and there may be contradictory views. In this
case, we regard the reviews as independent events which may overlap in event
space, and in case they have different truth values, this contradiction leads
to the truth value inconsistent.

Figure 1 illustrates the aggregation of probabilities from two reviews for both
cases, for which we now give the precise definitions.

Fig. 1. Disjoint (left) and independent (right) 4vL credibility spaces

Disjoint Case. Here we have to transform the original credibility values so that
their sum does not exceed 1. (If the sum is less than 1, we do not completely
trust in reviews, e.g. when there are only a few of them.) Let R denote the set of
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reviews for a specific item, and β the overall trust in reviews, then we compute

crd(r) = β · cr(r)/
∑

r′∈R
cr(r′).

Assuming disjointness of reviews, we can now compute the truth values for an
aspect of an item by aggregating over the set of reviews R in the following way:

P (t|a,R) =
∑

r∈R
P (t|a, r) · crd(r)

P (f |a,R) =
∑

r∈R
P (f |a, r) · crd(r)

P (u|a,R) = 1 − P (t|a,R) − P (f |a,R)

Independent Case. Here we have to consider all possible combinations of the
truth values of the reviews. For two reviews, we get overall true for the com-
binations (t, t), (t, u) or (u, t); overall false results from (f, f), (f, u) or (u, f);
furthermore, inconsistent results from (t, f) or (f, t) and unknown from (u, u).
As a simple example, assume that for some aspect, we have a positive review
r1 with P (t|a, r1) = 0.6 and a negative one r2 with P (f |a, r2) = 0.7. Assuming
that the reviews are independent events, we would get P (t|a,R) = 0.6 · (1−0.3),
P (f |a,R) = (1−0.6) ·0.7, P (i|a,R) = 0.6 ·0.7 and P (u|a,R) = (1−0.6) ·(1−0.7)
(assuming that both reviews have credibility 1).

For the general case, we have to regard all paths through all reviews, distin-
guish between true, false, unknown and inconsistent paths1, and then sum up
the probabilities of all paths for a specific truth value.

The paths for the four truth values are defined according to the following
rules:

– True: At least one true review, no false reviews, and zero or more unknowns.
– False: At least one false review, no true reviews, and zero or more unknowns.
– Unknown: All unknown reviews.
– Inconsistent : At least one true and one false review, in addition to zero or

more unknowns.

As a final step, the probabilities of the truth values are adjusted by removing the
accumulated unknown knowledge from the accumulated true and false reviews.
The following formulas summarise the process of creating probabilities of the
truth values in the independent case:

1 A path here is the combination of one truth value from each review.
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P (u|a,R) =
∏

r∈R

1 − (P (t|a, r) · cr(r) + P (f |a, r) · cr(r)) (1)

P (t|a,R) =

(
∏

r∈R

1 − (P (f |a, r) · cr(r))

)
− P (u|a,R) (2)

P (f |a,R) =

(
∏

r∈R

1 − (P (t|a, r) · cr(r))

)
− P (u|a,R) (3)

P (i|a,R) = 1 − P (t|a,R) − P (f |a,R) − P (u|a,R) (4)

Subjective Logic. SL [12–14] is a probabilistic logic that considers uncertainty
and subjective opinions. It provides definitions for binomial and multinomial
cases. For information retrieval tasks, query matching is regarded as a binomial
case (positive and negative).

In SL, the truth of a binomial opinion about proposition x is defined as a
tuple ωx = (b, d, u, a), with b, d, u, a ∈ [0, 1] and b + d + u = 1.

– b represents the belief mass in support of x being true.
– d is the disbelief mass in support of x being false.
– u is the uncertainty mass about the probability of x.
– a is the prior probability of x.

The probability projection a.k.a. expected probability of a binomial proposition
x is defined as P (x) = b + a · u. This value represents the degree of certainty
wrt. the truth of proposition x.

To combine opinions from various sources, SL provides many fusion operators
for binomial opinions. Here we make use of two common operators: cumulative
and averaging fusion which are comparable to the independent and disjoint
cases in 4vL, respectively. If the observations i.e. opinions are about the same
state of an object, cumulative fusion is used. Averaging fusion should be applied
if the observations are about different states of an object (like e.g. reviewing
different instances of a device, as mentioned above). Let x be a proposition and
ωA
x = (bA, dA, uA, aA) and ωB

x = (bB , dB , uB , aB) be source A and B’s respective
opinions over the same proposition x. Furthermore, let us assume that there is
some uncertainty, i.e. uA �= 0 or uB �= 0. The following table shows the definitions
of the cumulative opinion ωA⊕B

x and the average opinion ωA∅B
x :

ω
(A⊕B)
x ω

(A∅B)
x

b bAuB+bBuA

uA+uB−uAuB
bAuB+bBuA

uA+uB

d dAuB+dBuA

uA+uB−uAuB
dAuB+dBuA

uA+uB

u uAuB

uA+uB−uAuB
2uAuB

uA+uB

a aAuB+aBuA−(aA+aB)uAuB

uA+uB−2uAuB
aA+aB

2
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In the absence of uncertainty (uA = 0 and uB = 0), different formulas are
used to handle dogmatic opinions. As IR is hardly ever about certain information,
we do not regard this case here and refer the interested reader to the original
papers [12,14,23].

As a concrete example for these fusion operators, let us assume a user is
searching for a high-performance laptop. One of the offered laptops has two
reviews. Review X reports the high-performance of the laptop with 0.9 confi-
dence, while review Y reports the low-performance with 0.7 confidence. Assum-
ing the prior knowledge about this aspect to be 0.5, cumulative fusion yields
ωX⊕Y
high−performance = (0.73, 0.19, 0.08, 0.5); on the other hand, averaging fusion

would lead to ωX∅Y
high−performance = (0.67, 0.17, 0.15, 0.5).

For considering the trustworthiness (credibility) of information, SL has pro-
posed trust networks [15]. Here we only regard the so-called referral trust, for
modelling a user’s trust in a review. In SL terminology, an agent A’s referral
trust about agent B (i.e. B’s credibility in the eyes of A) is represented as a sub-
jective opinion and denoted by ωA

B . The projected probability of ωA
B is defined

as: PA
B = bAB + uA

B · aA
B . The opinion ωB

x is B’s opinion on the proposition x
(functional trust) as x is recommended by B to A. The function that yields
the trust-discounted opinion ω

[A;B]
x = ωA

B ⊗ ωB
x is defined with the following

components:

b[A;B]
x = PA

B bBx d[A;B]
x = PA

B dBx

u[A;B]
x = 1 − b

[A;B]
x − d

[A;B]
x a[A;B]

x = aB
x

As a follow-up of the high-performance laptop example, let us assume that
user A searching for a laptop trusts the opinion of reviewer X by 70% as a
“belief” and the remaining 30% as “unsure”. Here, the user’s overall trust of
the information of review X is ωA

X ⊗ ωX
high−performance = (0.7, 0, 0.3, 0.5) ⊗

(0.9, 0, 0.1, 0.5) = (0.765, 0, 0.235, 0.5).

Computing Aspect-Item Scores. After having presented the logical founda-
tions of our approach, we now describe the actual application of these concepts
for the purpose of aspect-wise aggregation of reviews. Figure 2 gives an example
of the whole indexing process for the two logics.

Each aspect a is represented by a set of keywords Ka terms, which can be
derived e.g. by application of current NLP methods (see below)

For a specific review r, let r+ denote the set of terms occurring with positive
sentiment, and r− those with negative sentiment. Furthermore, w(k|r) is the
term weight of keyword k in r. Then we can compute the positive and negative
sentiment of r wrt. aspect a as follows:

sl+(a, r) = α
∑

k∈Ka∩r+

w(k|r), sl−(a, r) = α
∑

k∈Ka∩r−
w(k|r) (5)
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Fig. 2. An example of information extraction from reviews to evaluate a user query
through 4-valued and subjective logic approaches.

Here α is a normalization constant depending on the actual term weighting
method used, which ensures that both sl+ and sl− can be interpreted as prob-
abilities such that 0 ≤ sl+(a, r) + sl−(a, r) ≤ 1.

In the 4vL case, we can directly assign these two values to the corresponding
probabilities: P (t|a, r) = sl+(a, r) and P (f |a, r) = sl−(a, r), respectively; we
also set P (u|r, a) = 1 − P (t|a, r) − P (f |a, r), and P (i|r, a) = 0 (a review cannot
contradict itself).

For SL, we extract a positive-supportive opinion ωP = (sl+(a, r), 0, 1 −
sl+(a, r), 0.5) and a negative-supportive opinion ωN = (sl−(a, r), 0, 1 −
sl−(a, r), 0.5).

For credibility estimation, one of the methods cited in Sect. 2 can be used.

4 Experiments

In order to evaluate the aspect-specific weighting of items based on reviews, we
need a dataset that includes aspect scores for products. Fortunately, there is
a hotel booking site (Booking.com) containing these values, and we used the
subset from [7] for our evaluation. This dataset contains 839K reviews of 11.5K
hotels in Berlin, Brussels, Barcelona, London and Rome. Each review consists of
a title/summary, a section of positive and a section of negative points. For our
experiments described in the following, we only considered the latter two parts.
This allows us to do a proper evaluation of the logic-based weighting formulas,
which are the focus of this paper; otherwise, if we had to apply sentiment anal-
ysis, the intrinsic difficulties of this method (e.g., ‘low price’ vs. ‘low comfort’)
could have had an unknown effect on the experimental results.
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The review form in Booking.com asks the users to rate the following seven
aspects of the hotel they stayed in: cleanliness, comfort, staff, value for money,
location, wifi, and facilities. Users rate each of these aspects on a 4-point Likert
scale, but these individual judgments are not available in the dataset; for each
aspect, we only have the overall score aggregated over all reviews of a hotel.
In our experiments, we use these aspect ratings as ground truth for the aspect
scores to be estimated by the methods regarded here.

Table 1. Sample reviews(b) mapped to aspects based on an aspects dictionary(a).

Aspect Keywords(including misspelled terms)

cleanliness clean, unclean, smelly, cleaning, neat, clen, dirty, ...

location lokation, locatio, locstion, centrality, situated, ...

staff reciption, fiendly, staff, owner, managers, crew, ...

...

facilities gym, bathroom, cooking, shower, garden, entrance, ...

(a)

Review Mapped aspects

Positives(+) Negatives(-) score Positives(+) Negatives(-)

Man on
reception was
smiley and very
helpful.
Breakfast was
ok.

Bathroom
smelt like
sewers had to
keep the door
closed. Ants in
the room.

5 staff facilities,
cleanliness

Staff were
great.

Could do with a
small gym on
site.

9.6 staff facilities

(b)

For mapping the texts from the positive and negative sections onto aspects,
a word2vec model was trained using the text from the reviews. This method
generated a set of related terms for each aspect label (see Table 1). These are
the aspect-specific keywords Ka of our approach.

For term weighting, we used three methods: 1) raw term frequencies (tf), 2)
tfidf, and 3) Okapi’s BM25.

The logic-based models regarded here all consider review-specific credibility
values. However, Booking.com allows only confirmed customers to write reviews.
It also verifies the authenticity of reviews before publishing them2. Thus, we
assume the credibility values being equal for all reviews: For 4vL, we choose a

2 https://partner.booking.com/en-us/help/guest-reviews/what-are-guest-reviews-
and-who-can-write-one, last accessed on Sep. 10th 2020.

https://partner.booking.com/en-us/help/guest-reviews/what-are-guest-reviews-and-who-can-write-one
https://partner.booking.com/en-us/help/guest-reviews/what-are-guest-reviews-and-who-can-write-one
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credibility of 1.0 in the independent case, and distribute a value of 1.0 equally
over all reviews in the disjoint case. For SL, we use a fixed value 1.0 for trust
of each proposition, which is represented by a subjective logic opinion trust =
(1.0, 0, 0, 0.5). In this case, no trust discounting operation is necessary, as the
trust is neutralised.

Both logic methods yield a vector of probabilities for the different truth values
of a hotel-aspect pair. As we want to relate these estimates to the corresponding
aspect scores in the dataset, we have to map the probability vectors onto a single
value, i.e. we want to predict the corresponding aspect ratings. For this purpose,
we tested linear regression, kNN, SVR and random forest, and found that simple
linear regression gave the best results; so we used this method for all experiments
described in the following, and applied it in the same 10-fold cross validation
setup for all methods tested.

Baselines and Evaluation Metric. We compare our logic-based method to
different baselines where in each case, we index the positive and the negative
sections of each review separately. Then, we make use of the term weights of
traditional approaches (tf, tfidf and BM25) to compute positive and negative
scores for each hotel. These scores are computed as follows:

Sc+(h, a) =

∑
r∈R

∑
k∈Ka∩r+ w(k+|r)

N+
a

, Sc−(h, a) =

∑
r∈R

∑
k∈Ka∩r− w(k−|r)

N−
a

Here Sc+(h, a) and Sc−(h, a) are the positive and negative scores of a hotel
h for an aspect a. R is the set of reviews of hotel h, and N+

a and N−
a are the

numbers of reviews with positive/negative comments on aspect a, respectively.
Ka, r+, r− as well as the term weighting function w(.) are defined as in Eq. 5.

We used these scores and the number of positive and negative reviews in a
feature vector and then applied linear regression for predicting the aspect ratings
of hotels, in the same setting as with the logic-based methods.

For measuring the quality of the prediction, we adopt the well-known Coef-
ficient of Determination (R2):

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(6)

Here ŷi is the predicted value of a (hotel,aspect) pair i, and yi is the corre-
sponding ground truth value. ȳ is the mean of all ground truth values.
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Table 2. R2 scores of logic-based approaches compared with baselines

4-valued logic Subjective logic

Baselines Independent Disjoint Cumulative fusion Averaging fusion

Aspect tf tfidf bm25 tf tfidf bm25 tf tfidf bm25 tf tfidf bm25 tf tfidf bm25

Cleanliness 0.312 0.349 0.278 0.369 0.298 0.333 0.141 0.136 0.127 0.369 0.336 0.329 0.09 0.11 0.076

Comfort 0.111 0.108 0.078 0.173 0.113 0.132 0.092 0.091 0.072 0.145 0.123 0.109 0.047 0.051 0.021

Staff 0.313 0.342 0.257 0.368 0.306 0.335 0.111 0.111 0.116 0.36 0.349 0.352 0.145 0.154 0.109

v. f. money 0.076 0.085 0.07 0.09 0.114 0.073 0.038 0.037 0.034 0.089 0.113 0.074 0.044 0.046 0.041

Location 0.274 0.272 0.193 0.305 0.174 0.279 0.172 0.164 0.124 0.286 0.22 0.247 0.151 0.158 0.067

Wifi 0.155 0.157 0.128 0.169 0.156 0.133 0.057 0.058 0.05 0.175 0.168 0.147 0.074 0.073 0.06

Facilities 0.197 0.221 0.145 0.279 0.239 0.22 0.088 0.091 0.077 0.259 0.244 0.216 0.031 0.036 0.02

Avg. score 0.206 0.219 0.164 0.25 0.2 0.215 0.1 0.098 0.086 0.241 0.222 0.211 0.083 0.09 0.056

5 Results and Discussion

Table 2 presents the R2 scores of the linear models in each tested aspect. The
results show that 4vL in the independent case is outperforming the baseline
approaches in all aspects. Subjective logic in the cumulative fusion case also
achieves close results. As we can see, the most appropriate term weighting
method to be used for this task is the term frequency alone. This might be
due to the aspect-oriented word embedding method used for determining the
meaningful terms, which cannot be improved any further by idf weighting.

Table 3. Regression factors of the two logics for independent / cumulative fusion with
tf weights.

Aspect 4vL SL(b+ua)

True False Unkn. Pos. Neg.

Cleanliness 2.15 −3.91 1.08 4.21 −7.86

Comfort 2.17 −7.57 1.51 2.62 −7.97

Staff 1.97 −4.78 0.83 4.39 −7.49

V. f. money 0.54 −0.89 0.63 0.35 −2.68

Location 1.81 −6.37 0.88 3.85 −6.89

Wifi 1.75 −3.99 −0.64 7.90 −8.02

Facilities 1.73 −4.54 0.17 5.87 −8.06

The figures for the disjoint and averaging fusion cases show that their perfor-
mance is below that of the baselines. The performance difference between inde-
pendent and disjoint 4vL as well as between cumulative and averaging fusion in
SL suggests that in each case, the former method is more appropriate here. This
can be explained by noticing that all users are more or less reviewing the same
item – possible differences between rooms or the staff behavior on different days
seem to be minor and have no effect.
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Looking at the regression factors of the logical models shown in Table 3,
we see that with the exception of the aspect ‘value for money’ (overall rating
is the best predictor for this aspect), the weighting factors are very similar for
all aspects: the false/negative values have higher weights than the true/positive
ones. The weight for unknown is mostly positive, indicating that the default
for reviews is on the positive side. Overall, negative reviews have the biggest
influence on the score of an item, thus confirming the findings from [22]. (There
are no coefficients for inconsistent, since its probability is linearly dependent on
the other three probabilities.)

A powerful characteristic of our models is that they consider creating both-
polarity interpretations of the unknown information. As we have seen in the
model construction, 4-valued logic constructs the true or false knowledge by
the assumption that at least one of the reviews is classified either as true or
false and the other reviews are classified as unknown. The unknown probability
reduces the values of true and false; however, this gives the model an opportunity
for different interpretations of the reviews classified as unknown. On the other
hand, subjective logic also distinguishes between positive and negative evidence,
and it also assumes that the uncertainty about an event can be interpreted as
belief probability regarding the aspect under consideration. The major difference
between the two approaches is the handling of missing information: in 4vL, this
is modelled via an explicit truth value for the aggregated reviews, which also
could be made transparent to the end user, especially for differentiating between
missing and positive information. In contrast, SL handles missing information
via the prior beliefs for positive and negative opinions; thus, especially for items
with belief values in the medium range, we do not know if these scores are
supported by actual comments in the reviews, or if they are mainly the result of
the prior beliefs.

6 Conclusion and Future Work

Product reviews influence the decision of customers who utilize them in choosing
the best product or service among the different available alternatives. A simple
ranking by overall ratings might often not be helpful, as there are usually several
aspects, which are not all of equal importance for a specific user. Current sys-
tems offer ranking, filtering and navigation to reviews with specific scores, but
only for the overall scores, whereas our approach allows to implement the same
functionality per aspect.

The logic-based models presented in this paper demonstrate superior per-
formance in comparison to traditional keyword-based methods. While it might
be possible to achieve slightly better one-dimensional rankings via tuning deep
learning methods (in case there is enough training data available), the advan-
tage of the logic-based approaches is that they handle contradictions, omission
and credibility in a transparent way, which also can be made visible for the
end-user. For researchers, this transparency allows for a better understanding
of the problems, identifying the major influencing factors and spotting possible
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improvements (e.g. base rate probability of observations for different weighting
methods and its possible effect on uncertainty interpretation). As IR research
is paying more attention to the transparency of the methods employed [1], our
work is a contribution along these lines.

This experimental study has been applied to a single specific collection, where
we have pre-defined aspects and aspect-specific ratings for each item. For new
applications, first, the aspects have to be defined manually, and then associ-
ated keywords are classified (either manually or automatically) into positive and
negative ones. We are currently working on the application of our approach for
such new applications (e.g. for specific product categories in online shops). The
aspect-specific ratings in the Booking.com case are mainly needed for evaluation;
here we also used them for tuning the mapping of the probability vectors onto
a linear scale.

This paper has focused on the general suitability of logic-based approaches
for handling credibility, contradictions and omissions in product reviews. Further
work will address the improvement of the indexing and weighting methods, as
well as the estimation and integration of credibility values. Extending our aspect-
based methods for answering arbitrary queries referring to multiple aspects and
containing additional conditions is straightforward, given the logic foundation.
We will also perform user studies with real user queries, and explore multi-
dimensional ranking.
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Abstract. The diminishing return property of ERR (Expected Recipro-
cal Rank) is highly intuitive and attractive: its user model says, for exam-
ple, that after the users have found a highly relevant document at rank r,
few of them will continue to examine rank (r +1) and beyond. Recently,
another IR evaluation measure based on diminishing return called iRBU
(intentwise Rank-Biased Utility) was proposed, and it was reported that
nDCG (normalised Discounted Cumulative Gain) and iRBU align sur-
prisingly well with users’ SERP (Search Engine Result Page) preferences.
The present study conducts offline evaluations of diminishing return mea-
sures including ERR and iRBU along with other popular measures such
as nDCG, using four test collections and the associated runs from recent
TREC tracks and NTCIR tasks. Our results show that the diminishing
return measures generally underperform other graded relevance measures
in terms of system ranking consistency across two disjoint topic sets as
well as discriminative power. The results generalise a previous finding
on ERR regarding its limited discriminative power, showing that the
diminishing return user model hurts the stability of evaluation measures
regardless of the utility function part of the measure. Hence, while we
do recommend iRBU along with nDCG for evaluating adhoc IR sys-
tems from multiple user-oriented angles, iRBU should be used under the
awareness that it can be much less statistically stable than nDCG.

Keywords: Diminishing return · Discriminative power · Evaluation
measures · Statistical significance · System ranking consistency

1 Introduction

IR researchers use IR evaluation measures in their offline (i.e., test collection-
based) experiments in the hope of improving their systems for real users. The
measures should therefore (a) serve as surrogates of users’ perspectives so that
IR systems evolve towards the right direction; and (b) be statistically stable
so that reliable offline experiments can be conducted. Regarding (a), Sakai and
Zeng [36–38] recently reported that nDCG (normalised Discounted Cumulative
Gain) [18] and their new measure called iRBU (intentwise Rank-Biased Utility)
were the two best measures among the ones they examined from the viewpoint
of how they align with users’ SERP (Search Engine Result Page) preferences.
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iRBU is a component of a recently-proposed diversity evaluation measure called
RBU (Rank-Biased Utility) [3], and inherits a highly intuitive and unique fea-
ture of ERR (Expected Reciprocal Rank) [9], namely, the diminishing return
property [9,29].

As discussed in Chapelle et al. [9], ERR can be regarded as an instance of
the NCU (Normalised Cumulative Utility) family of measures [33].1 NCU defines
each evaluation measure instance by specifying the user’s abandoning probability
distribution over the ranked documents and the utility function for each group
of users who abandon the ranked list at a given rank. NCU thus represents
the expected utility over all users. ERR and iRBU use the diminishing return
probability distribution, while other instances of NCU such as AP (Average
Precision) [7] and RBP (Rank-Biased Precision) [25] use distributions that do
not consider diminishing return (See Sect. 3).

We examine the diminishing return measures along with non-diminishing-
return measures primarily from the viewpoint of (b) mentioned above. More
specifically, we compare the measures in terms of system ranking consistency
when two disjoint topic sets are used for computing the mean scores, as well as
discriminative power [28,29]. In addition, we compare the system rankings for
every pair of measures. As IR researchers are primarily interested in evaluating
and advancing the state-of-the-art, we use four recently-constructed test collec-
tions and their associated runs from TREC and NTCIR in our experiments.

2 Related Work

As we have discussed in Sect. 1, we want IR evaluation measures to (a) align well
with user perception or performance; and (b) behave reliably in offline experi-
ments. Concerning (a), prior art includes the studies by Turpin and Scholer [43],
Al-Maskari et al. [1], Sanderson et al. [39], and Sakai and Zeng [36–38]. Among
them, the most recent work of Sakai and Zeng [36–38] reported that nDCG and
iRBU were the top two measures in terms of how often they align with users’
SERP preferences, and this is what motivated the present study: how do iRBU
(and other diminishing return measures) perform from Viewpoint (b)? While
Sakai and Zeng [37] reported that nDCG and iRBU have similar discriminative
power, we view that particular result as preliminary, as it relied on one relatively
small data set, namely, the NTCIR-9 INTENT data from 2011 [34], with 43 top-
ics and only 15 runs. Moreover, as the INTENT test collection was originally
constructed for diversified search, it was not clear how these measures perform
with modern adhoc IR test collections.

Among the methods for evaluating the reliability of IR evaluation measures
in offline experiments, discriminative power [29] is probably the most widely-
used today (e.g., Anelli et al. [4], Ashkan and Metzler [5], Chuklin et al. [10],
Clarke et al. [11,12], Dou et al. [15], Golbus et al. [17], Kanoulas and Aslam [19],
Leelanupab et al. [20], Lu et al. [21], Luo et al. [22], Robertson et al. [26], Smucker
and Clarke [42], Valcarce et al. [45], Wang et al. [49], Zhou et al. [52]). Given a set
1 Section 2 discusses an alternative framework for defining a family of measures [24].
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S of runs (|S| = K), this method obtains a p-value for every system pair. Sakai’s
original method [28] repeated K(K − 1)/2 bootstrap tests without correction
(since correction is applied uniformly to all evaluation measures and therefore it
would not affect the relative comparison of measures), and others have repeated
t-tests in a similar manner. However, a multiple comparison procedure such as
Tukey’s HSD test is generally recommended for significance testing of multiple
systems [30]. In the present study, we employ a distribution-free, randomised
version of Tukey’s HSD test [8,30] to discuss discriminative power.

Using TREC 2003–2004 robust track data and NTCIR-7 crosslingual task
data from 2008, Sakai and Kando [32] showed that RBP substantially under-
performs “deep” measures such as nDCG, Q, and AP when the measurement
depth is 1,000. This was the de facto standard document cutoff for adhoc IR in
early TRECs. However, recent IR tasks have shifted the focus towards smaller
document cutoffs, as many researchers are interested in the search engine quality
“above the fold.” In this context where recall is not a central question, RBP is
expected to perform better, as it is a purely precision-oriented measure. The
present study re-examines IR evaluation measures including RBP, using four
modern test collections and runs with small cutoffs, namely, 10 and 20.2

Before discriminative power was popularised, the swap method was often used
for similar purposes. Zobel [53] split the original topic set in half and examined
whether a conclusion regarding the comparison of two systems using the first
subset can be confirmed on the other subset. However, his primary concern was
the reliability of different significance tests. Voorhees and Buckley [48] considered
repeated trials for breaking the topic set in half for the purpose of empirically
determining reliable topic set sizes, but did not consider statistical significance
testing.3 Follow up studies on this swap method include Sanderson and Zobel [40]
and Voorhees [47]; they considered statistical significance along with repeated
topic set splits. On the other hand, Voorhees [46] used Kendall’s τ to compare
system rankings produced by two different versions of qrels (i.e., relevance assess-
ments) to discuss test collection reliability. Since τ is a measure of system swaps
across the entire ranking, this approach can naturally be combined with the
aforementioned idea of repeatedly and randomly splitting the topic set in half.
We thus examine system ranking consistency : if an evaluation measure produces
a system ranking based on topic set A and another based on topic set B, how
similar are the two rankings? While this is not a new idea,4 the present study
describes a simple procedure to systematically address system ranking consis-
tency with multiple topic set splits, complete with distribution-free statistical
significance testing for the difference in mean τ ’s (See Sect. 6).

2 For example, the TREC 2014 Web Track used 20 as the document cutoff [13]; the
NTCIR We Want Web tasks haved used 10 [23].

3 Topic set sizes can also be theoretically determined based on statistical power, given
some pilot data for variance estimation [30].

4 For example, Amigó et al. [2] refer to the correlation of system rankings across data
sets as robustness.
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Another potentially useful approach to evaluating evaluation measures is to
examine what mathematical axioms the measures satisfy [3,24]. This is beyond
the scope of the present study. Evaluating evaluation measures is also closely
related to evaluating test collection reliability [16,44].

ERR and iRBU are not the only measures that features the diminishing
return property. Sakai [29] points out that Time-Biased Gain [42] and U-
measure [31] also embody diminishing return. A few adaptive measures defined in
the C/W/L framework [24], namely, INST (INSQ with T ) [24], IFT (Information
Foraging Theory measure) [6], BPM (Bejeweled Player Model measure) [50,51]
can also accommodate diminishing return.5 These measures generally require
tuning of multiple parameters using document statistics, user behaviour data,
and/or user satisfaction ratings, and are outside the scope of the present study.

3 Measures

Table 1. Seven ranked-retrieval measures considered in this study.

Measure PA(r) U(r) Parameters

AP (Average Precision) [7] Puniform(r) prec(r) –

Q (Q-measure) [27] Puniform(r) BR(r) –

RBP (Rank-Biased Precision) [25] (1 − p)pr−1 g(r)/2xmax p = 0.85

ERR (Expected Reciprocal Rank) [9] PERR(r) 1/r –

EBR (Expected Blended Ratio) [36] PERR(r) BR(r) –

iRBU (intentwise Rank-Biased Utility) [36] PERR(r) pr p = 0.99

nDCG (normalised Discounted – – –

Cumulative Gain) [18]

Table 1 provides a summary of the seven ranked retrieval measures examined in
the present study. We selected these measures because (a) how they align with
users’ SERP preferences have been clarified by Sakai and Zeng [36–38]; (b) we
wanted to compare diminishing return measures (indicated in the table and
hereafter in bold) with non-diminishing-return measures in offline experiments;
and (c) all of these measures are available in a single publicly-available evaluation
toolkit, namely, NTCIREVAL.6

With the exception of nDCG, the measures shown in Table 1 are instances
of NCU [33], given by NCU =

∑L
r=1 PA(r)U(r). Here, PA(r) is the probability

that a user group abandons the SERP at rank r, and U(r) is the utility of the

5 Not all adaptive measures are diminishing return measures. Moffat et al. [24] clas-
sify Reciprocal Rank (RR) as adaptive, but RR does not accommodate diminishing
return: once a relevant document is found, there is no further return.

6 http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html (version 200626).

http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html
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top r documents of the SERP for that user group. L is the document cutoff: we
consider L = 10, 20 in the present study as we have mentioned earlier.7 Let x be
a relevance level, and let xmax be the highest relevance level for an entire test
collection. AP and Q use a uniform user distribution over all relevant documents,
PA(r) = Puniform(r) = I(r)/min(L,R), where I(r) is 0 if the document at
rank r is nonrelevant (i.e., x = 0) and 1 otherwise (i.e., 0 < x ≤ xmax ). The
min operator ensures that the maximum attainable value of AP (Q) is 1 even
for small document cutoffs [29].

Let g(r) denote the gain value of the document at rank r. Following popular
practice, we let g(r) = 2x − 1 if the document at r is x-relevant for all graded
relevance measures. ERR, EBR, and iRBU use the same diminishing return
distribution [9]:

PERR(r) = Psat(r)
r−1∏

k=1

(1 − Psat(k)) , (1)

where Psat(r) = g(r)/2xmax . It is clear from Eq. 1 that diminishing return mea-
sures would be “shallow” if there is a highly relevant document near the top of
the SERP: it is assumed that very few users will go beyond that rank. In such
a case, diminishing return measures will pay little attention to lower ranks, and
may produce statistically unstable scores. As for RBP, its distribution assumes
that the probability of the users transitioning from rank r to (r+1) is a constant,
namely, p. We consider p = 0.85 in the present study, as this setting aligned well
with users’ SERP preferences in the experiment of Sakai and Zeng [36–38]. This
particular choice of p originates from the work of Moffat et al. [24].

Regarding the utility functions U(r) shown in Table 1, AP uses precision,
while Q and EBR use the blended ratio [29], which combines precision with the
idea of normalised cumulative gain [18]. RBP uses U(r) = g(r)/2xmax (= Psat(r)
in Eq. 1). Note that ERR uses U(r) = 1/r, which is equivalent to “precision
at r when only the document at r is considered relevant.” Finally, iRBU uses
U(r) = pr, where p = 0.99 throughout our experiments based on the user-based
results of Sakai and Zeng [36–38]. Note that this utility function completely
disregards the relevance of the top r documents: it only reflects the user effort
spent so far in viewing the documents.

4 Data

Table 2 presents an overview of the data that we used in our experiments, with a
short name we gave to each data set for brevity. These four data sets were chosen
based on the following criteria: (I) they should be recent, since IR researchers
are often interested in evaluating and advancing the state-of-the-art; (II) neither
the number of topics nor the number of submitted runs should be small, since
we want to obtain reliable experimental results; (III) they have graded relevance
7 The relevance assessments of the four test collections we use in our experiments are

expected to be incomplete: see the “rel. per topic” column in Table 2. Hence, using
a large cutoff L probably would not give us reliable results.
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Table 2. Overview of the data sets used in our experiments.

Our short name Track/Task #Topics rel.
levels

#rel.
per
topic

#runs used
(all runs)

TR19DL TREC 2019 Deep Learning Track
document retrieval task

43 4 153.4 37 (38)

TR18Core TREC 2018 Common Core Track 50 3 79.0 63 (72)

STC2 NTCIR-13 (2017) Short Text
Conversation 2 Chinese subtask

100 7 256.7 99 (120)

WWW3 NTCIR-15 (2020) We Want Web
with CENTRE, English subtask

160 4 159.0 36 (37)

assessments, since modern evaluation measures accommodate graded relevance;
and (IV) they should be diverse, representing different information access tasks
and evaluation venues, since we want our results to generalise. The target corpus
for TR19DL is an MS MARCO corpus (3.2 million documents) [14]; that for
TR18Core is the TREC Washington Post Corpus (608,180 documents).8 STC2
is not based on a traditional adhoc IR task: the task was to either retrieve or
generate appropriate responses for a given Weibo post (i.e., a Chinese “tweet”).
However, the returned responses were judged through the traditional pooling
approach, and the systems were evaluated by ranked retrieval measures [41].
WWW3 is from the NTCIR-15 WWW-3 English subtask whose target corpus
is clueweb12-B13 (about 50 million web pages) [35].9

The rightmost column of Table 2 shows the number of runs used in our
experiments. From TR19DL, we excluded the worst performing run as this was
a clear outlier: its mean AP (at L = 10) was below 0.1 whereas the second worst
performer achieved over 0.4. Similarly, for TR18Core and STC2, we excluded 9
runs and 21 runs, respectively, whose mean AP (at L = 10) scores were below
0.1. As for WWW3, although all the runs achieved relatively high scores, we
excluded one run as this was found to have a problem: two different systems
were used to produce this single run.10

5 System Ranking Similarity

Table 3 shows how the system rankings according to different evaluation mea-
sures resemble one another in terms of Kendall’ τ . Correlation strengths are
visualised in colour (τ ≥ 0.8, 0.7 ≤ τ < 0.8, τ < 0.7). 95%CIs are omitted in the
table due to lack of space, but are shown in brackets with the τ values mentioned
below. The general trends are consistent across the four data sets, and they are
8 https://trec-core.github.io/2018/.
9 https://lemurproject.org/clueweb12/.

10 The search results for the first 80 topics (i.e., the reused WWW-2 topics) were copied
from a run from the NTCIR-14 WWW-2 task [23] and the other 80 topics (i.e., the
new WWW-3 test topics) were processed by a new system.

https://trec-core.github.io/2018/
https://lemurproject.org/clueweb12/
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Table 3. System ranking similarity (τ) for every pair of measures.

(I) cutoff L = 10 (II) cutoff L = 20

(a) TR19DL (37 runs)

Q nDCG RBP ERR EBR iRBU Q nDCG RBP ERR EBR iRBU

AP 0.877 0.754 0.736 0.613 0.628 0.631 AP 0.928 0.790 0.742 0.495 0.529 0.538

Q – 0.763 0.751 0.640 0.649 0.598 Q – 0.826 0.772 0.538 0.571 0.550

nDCG – – 0.892 0.823 0.844 0.763 nDCG – – 0.874 0.658 0.685 0.700

RBP – – – 0.817 0.826 0.727 RBP – – – 0.718 0.745 0.652

ERR – – – – 0.937 0.748 ERR – – – – 0.943 0.628

EBR – – – – – 0.775 EBR – – – – – 0.661

(b) TR18Core (63 runs)

Q nDCG RBP ERR EBR iRBU Q nDCG RBP ERR EBR iRBU

AP 0.953 0.888 0.906 0.749 0.751 0.611 AP 0.963 0.900 0.917 0.735 0.758 0.635

Q – 0.899 0.920 0.751 0.757 0.611 Q – 0.908 0.925 0.739 0.764 0.631

nDCG – – 0.944 0.836 0.842 0.698 nDCG – – 0.931 0.794 0.818 0.703

RBP – – – 0.806 0.802 0.666 RBP – – – 0.783 0.804 0.665

ERR – – – – 0.951 0.780 ERR – – – – 0.950 0.757

EBR – – – – – 0.790 EBR – – – – – 0.762

(c) STC2 (99 runs)

Q nDCG RBP ERR EBR iRBU Q nDCG RBP ERR EBR iRBU

AP 0.831 0.802 0.803 0.739 0.721 0.746 AP 0.833 0.795 0.804 0.739 0.722 0.746

Q – 0.941 0.931 0.870 0.857 0.777 Q – 0.936 0.931 0.871 0.857 0.778

nDCG – – 0.975 0.890 0.885 0.821 nDCG – – 0.965 0.894 0.885 0.820

RBP – – – 0.877 0.877 0.825 RBP – – – 0.877 0.877 0.825

ERR – – – – 0.947 0.788 ERR – – – – 0.947 0.788

EBR – – – – – 0.786 EBR – – – – – 0.786

(d) WWW3 (36 runs)

Q nDCG RBP ERR EBR iRBU Q nDCG RBP ERR EBR iRBU

AP 0.895 0.879 0.883 0.841 0.854 0.873 AP 0.908 0.860 0.810 0.746 0.765 0.806

Q – 0.965 0.975 0.927 0.940 0.914 Q – 0.946 0.902 0.838 0.857 0.867

nDCG – – 0.978 0.949 0.962 0.937 nDCG – – 0.943 0.879 0.898 0.895

RBP – – – 0.933 0.952 0.927 RBP – – – 0.917 0.937 0.857

ERR – – – – 0.981 0.905 ERR – – – – 0.975 0.832

EBR – – – – – 0.917 EBR – – – – – 0.844

particularly clear with the TREC data (Parts (a) and (b)). More specifically,
the following can be observed in terms of system ranking similarity.

– AP, Q, nDCG, and RBP are similar to each other (e.g., τ = 0.742 [0.623,
0.828], . . . , 0.928 [0.889, 0.954] in Part (II)(a)), and they are less similar to
the three diminishing return measures (e.g., τ = 0.495 [0.307. 0.646], . . . , 0.745
[0.627, 0.830] in Part (II)(a)).

– Within the diminishing return measures, while ERR and EBR are extremely
similar to each other (e.g., τ = 0.943 [0.912, 0.963] in Part (II)(a)), iRBU
behaves a little differently from these two (e.g., τ = 0.628 [0.472, 0.746], 0.661
[0.515, 0.770] in Part (II)(a)). In fact, in several cases (Parts (II)(a) (I)(d), and
(II)(d)), iRBU behaves more similarly to nDCG than to any other measure.

The above observations on system ranking similarities are generally in line with
the user-based results of Sakai and Zeng [36–38]: they reported that nDCG,
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iRBU, RBP (with p = 0.85), and Q were the best measures in terms of agree-
ment with users’ SERP preferences on the NTCIR-9 INTENT data, in this exact
order.

6 System Ranking Consistency Across Two Topic Sets

This section compares the seven ranked retrieval measures in terms of system
ranking consistency across two disjoint topic sets. To be more specific, given a
test collection whose topic set is T and a set of K runs associated with it, we
compare a set {M} of candidate evaluation measures as follows.

1. For each measure M , evaluate the K runs with T , and thereby obtain a
|T | × K topic-by-run score matrix SM .

2. From each SM , obtain a τ score B times using the algorithm shown in Fig. 1
(or alternatively Fig. 2 for considering a smaller topic subset size n < |T |/2),
where each τ quantifies the system ranking consistency when the K runs are
ranked according to two disjoint subsets of T . We thus obtain a B × |{M}|
matrix C containing the consistency τ scores.

3. To see if any of the differences in mean consistency τ scores are statistically
significant, apply a paired, randomised Tukey HSD test [8,30] to C.

n1 = truncate(|T |/2); n2 = |T | − n1;
for b = 1 to B; do

T b
1 = a random subset of the original topic set T s.t. |T1| = n1;

T b
2 = T − T1; /* |T2| = n2 */

rb1 = run ranking according to mean M over T b
1 ;

rb2 = run ranking according to mean M over T b
2 ;

τ b = Kendall’s τ score for run rankings rb1 and rb2;
done

Fig. 1. Pseudocode for sampling a consistency τ score B times for an evaluation mea-
sure M , given a set of runs for Topic Set T . The function truncate returns the integer
part of an argument.

for b = 1 to B; do
T b
1 = a random subset of the original topic set T s.t. |T1| = n;

T b
2= a random subset of T − T1 s.t. |T2| = n;

rb1 = run ranking according to mean M over T b
1 ;

rb2 = run ranking according to mean M over T b
2 ;

τ b = Kendall’s τ score for run rankings rb1 and rb2;
done

Fig. 2. A variant of Fig. 1 that uses a specified sample size n (< |T |/2) for both topic
subsets.
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Our method enables us to argue, for example, “measure M1 statistically sig-
nificantly outperforms M2 (p ≈ 0.000) in terms of mean system ranking consis-
tency,” and to discuss effect sizes (standardised mean differences) [30]. Note that
the randomised Tukey HSD test is distribution-free: it can be applied regard-
less of what distribution the τ scores obey. Moreover, as this test is a multiple
comparison procedure, we can ensure that the familywise Type I error rate is no
more than α, which we set to 5% throughout our study. We use the Random-test
script of the Discpower tool11 for the randomised Tukey HSD test with 5,000
trials [30].

Table 4 summarises the results of our system ranking consistency experiments
with B = 1, 000 topic subset pairs in each case. “Full split” means, for example,
43 topics are split into 21 and 22 topics to measure the consistency (Fig. 1), while
“10 vs. 10” means only 10 topics were used in both topic subsets (Fig. 2). As
indicated in the table caption, randomised Tukey HSD test results are indicated
with symbols, and effect sizes can be computed from the numbers presented
here. For example, in Table 4(a)(I), RBP statistically significantly outperforms
all other measures; the effect size for the difference between RBP and nDCG
is (0.635 − 0.598)/

√
0.00245 = 0.748. That is, the two measures are about 0.75

common standard deviations apart.
It can be observed that, with a few exceptions, the three diminishing return

measures (indicated in bold) underperform the other measures. The results
demonstrate that the diminishing return property hurts the statistical stability
of the measures, regardless of the utility function U(r) employed (See Table 1).
On the other hand, the rankings within the diminishing return measures and
those within the non-diminishing-return measures are not consistent across the
data sets and cutoffs, suggesting that the differences are data-dependent, not
inherent.

7 Discriminative Power

Finally, we evaluate our seven measures based on the widely-used discriminative
power method [28,29], For significance testing, again we used the randomised
version of the paired Tukey HSD test, using the Discpower tool with 5,000 trials
(See Sect. 6). Figure 3 shows the results with cutoff L = 20; similar results with
L = 10 are omitted due to lack of space. We can observe the following.

– The trends for the two TREC data sets are quite clear (Fig. 3(a) and (b)):
the three diminishing return measures are substantially less discriminative
than the other measures. The differences are more pronounced for TR19DL.

– The results with STC2 (Fig. 3(c)), which is not an adhoc IR data set, are
different from the above in two aspects: first, iRBU does exceptionally well;
second, the binary AP does equally well, which means that graded relevance
is not essential for discriminating between the STC2 runs even though this
particular data set has 7-point relevance levels (See Table 2).

11 http://research.nii.ac.jp/ntcir/tools/discpower-en.html (version 160507).

http://research.nii.ac.jp/ntcir/tools/discpower-en.html
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Table 4. System ranking consistency in terms of mean τ over B = 1, 000 trials.
For each section, a paired randomised Tukey HSD test at the 5% significance level
was conducted: ♠/♣/♥/♦/ ‡/† means statistically significantly outperforms the worst
6/5/4/3/2/1 measure(s), respectively. VE2 is the residual variance computed from each
1000 × 7 matrix of τ scores, which can be used for computing effect sizes [30].

Cutoff L = 10 Cutoff L = 20

(a) TREC19DL (43 topics)

(I) full split (II) 10 vs. 10 (III) full split (IV) 10 vs. 10

VE2 = 0.00245 VE2 = 0.00579 VE2 = 0.00268 VE2 = 0.00681

RBP 0.635 ♠ RBP 0.530 ♠ nDCG 0.693 ♠ nDCG 0.559 ♥
nDCG 0.598 ♥ nDCG 0.513 ♣ Q 0.679 ♣ Q 0.553 ♥
iRBU 0.597 ♥ Q 0.486 ♥ AP 0.653 ♦ RBP 0.547 ♥
ERR 0.567 ‡ AP 0.452 ♦ RBP 0.652 ♦ AP 0.531 ♦
Q 0.561 † iRBU 0.424 ‡ iRBU 0.639 ‡ iRBU 0.454 ‡
EBR 0.558 † EBR 0.386 ERR 0.563 † ERR 0.381

AP 0.541 ERR 0.386 EBR 0.550 EBR 0.375

(b) TREC18Core (50 topics)

(I) full split (II) 10 vs. 10 (III) full split (IV) 10 vs. 10

VE2 = 0.00149 VE2 = 0.00328 VE2 = 0.00158 VE2 = 0.00369

Q 0.660 ♣ Q 0.547 ♣ Q 0.689 ♣ Q 0.579 ♣
AP 0.658 ♣ AP 0.543 ♣ AP 0.684 ♣ AP 0.578 ♣
RBP 0.626 ♦ RBP 0.521 ♦ nDCG 0.652 ♦ nDCG 0.558 ♦
nDCG 0.620 ♦ nDCG 0.517 ♦ RBP 0.645 ♦ RBP 0.549 ♦
EBR 0.586 † EBR 0.438 † EBR 0.588 † EBR 0.444 †
ERR 0.584 † ERR 0.432 † ERR 0.584 † ERR 0.433 †
iRBU 0.549 iRBU 0.386 iRBU 0.532 iRBU 0.375

(c) NTCIR13STC2 (100 topics)

(I) full split (II) 10 vs. 10 (III) full split (IV) 10 vs. 10

VE2 = 0.000404 VE2 = 0.00132 VE2 = 0.000405 VE2 = 0.00132

AP 0.788 ♠ AP 0.598 ♠ AP 0.788 ♠ AP 0.598 ♠
Q 0.765 ♣ nDCG 0.569 ♦ Q 0.765 ♣ nDCG 0.572 ♥
nDCG 0.757 ♦ Q 0.567 ‡ nDCG 0.757 ♦ Q 0.567 ‡
RBP 0.753 ♦ RBP 0.563 ‡ RBP 0.753 ♦ RBP 0.563 ‡
iRBU 0.736 ‡ iRBU 0.562 ‡ iRBU 0.736 ‡ iRBU 0.562 ‡
ERR 0.726 † ERR 0.529 † ERR 0.726 † ERR 0.529 †
EBR 0.697 EBR 0.487 EBR 0.697 EBR 0.487

(d) NTCIR15WWW3 (160 topics)

(I) full split (II) 10 vs. 10 (III) full split (IV) 10 vs. 10

VE2 = 0.000597 VE2 = 0.00369 VE2 = 0.000707 VE2 = 0.00421

nDCG 0.851 ♣ RBP 0.566 ♥ RBP 0.866 ♣ Q 0.673 ♣
RBP 0.851 ♣ nDCG 0.564 ♥ Q 0.866 ♣ nDCG 0.624 ♣
Q 0.845 ♥ Q 0.561 ♥ nDCG 0.853 ♥ RBP 0.598 ♥
EBR 0.813 ‡ EBR 0.503 † AP 0.836 ♦ AP 0.576 ♦
iRBU 0.813 ‡ iRBU 0.492 † EBR 0.803 ‡ EBR 0.054 ‡
ERR 0.783 † ERR 0.446 † ERR 0.779 † iRBU 0.446

AP 0.777 AP 0.416 iRBU 0.757 ERR 0.442

– The results with WWW3 (Fig. 3(d)) is similar to the TREC ones, except
that AP performs very poorly. That is, in contrast to the results with STC2,
graded relevance works very effectively to differentiate between the WWW3
runs.

The overall picture is that, with the exception of iRBU on STC2 (which is not
an adhoc IR data set), diminishing return measures tend to suffer in terms of
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discriminative power. While it was already known that ERR has low discrim-
inative power due to its diminishing return probability distribution PERR(r)
(Eq. 1) [29], our results generalises the observation for all three diminishing
return measures on modern, diverse data sets. In other words, we have demon-
strated that diminishing return measures may suffer in terms of discriminative
power regardless of the utility function U(r) employed (See Table 1).

0
0.1
0.2
0.3
0.4
0.5

40
1

41
1

42
1

43
1

44
1

45
1

46
1

47
1

48
1

49
1

50
1

51
1

52
1

53
1

54
1

55
1

56
1

57
1

58
1

59
1

60
1

61
1

62
1

63
1

64
1

65
1

66
1

AP nDCG Q RBP EBR ERR iRBU

(a) TR19DL 
43 topics, 37 runs
(666 run pairs)

P-value

Run pairs

0
0.1
0.2
0.3
0.4
0.5

10
01

10
51

11
01

11
51

12
01

12
51

13
01

13
51

14
01

14
51

15
01

15
51

16
01

16
51

17
01

17
51

18
01

18
51

19
01

19
51

AP nDCG Q RBP EBR ERR iRBU

(b) TR18core 
50 topics, 63 runs
(1,953 run pairs)

P-value

Run pairs

0
0.1
0.2
0.3
0.4
0.5

20
01

21
11

22
21

23
31

24
41

25
51

26
61

27
71

28
81

29
91

31
01

32
11

33
21

34
31

35
41

36
51

37
61

38
71

39
81

40
91

42
01

43
11

44
21

45
31

46
41

47
51

AP nDCG Q RBP EBR ERR iRBU

(c) STC2 
100 topics, 99 runs
(4,851 run pairs)

P-value

Run pairs

0
0.1
0.2
0.3
0.4
0.5

201 231 261 291 321 351 381 411 441 471 501 531 561 591 621
AP nDCG Q RBP EBR ERR iRBU

(d) WWW3 
160 topics, 36 runs
(630run pairs)

P-value

Run pairs

Fig. 3. Discriminative power curves of the seven measures (with cutoff L = 20) on the
four data sets (Randomised Tukey HSD tests for paired data with 5,000 trials).
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8 Conclusions

The present study compared some properties of three diminishing return mea-
sures (ERR, EBR, and iRBU) with other adhoc IR measures (nDCG, Q,
RBP, and the binary AP), using diverse ranked retrieval data sets from TREC
and NTCIR. iRBU was of particular interest, as Sakai and Zeng [36–38] have
reported that it performed surprisingly well in terms of agreement with users’
SERP preferences, along with nDCG. Our findings can be summarised as follows.

System Ranking Similarity Between Two Measures. The three dimin-
ishing return measures rank systems substantially differently compared to
the other measures. However, while ERR and EBR behave very similarly,
iRBU behaves more similarly to nDCG than to other measures with some
data. These results are in line with the aforementioned results of Sakai and
Zeng [36–38], who reported that nDCG, iRBU, RBP (with p = 0.85), and Q
performed best in terms of agreement with users’ SERP preferences, in this
exact order.

System Ranking Consistency. With a few exceptions, the three diminishing
return measures statistically significantly underperform the other measures
in terms of system ranking consistency across two disjoint topic sets.

Discriminative Power. Similarly, the diminishing return measures generally
perform poorly in terms of discriminative power. These results generalise a
previous finding regarding the low discriminative power of ERR [29].

Both the consistency and discriminative power results demonstrate that the
diminishing return property hurts the statistical stability of the measures,
regardless of the utility function (U(r)) employed.

A practical recommendation for researchers working on adhoc IR would be to
use both nDCG and iRBU, the top two measures in the user-based experiments
of Sakai and Zeng [36–38], under the awareness that iRBU may be substantially
less stable than nDCG due to its intuitive diminishing return model. Hence, a
statistically significant difference in terms of nDCG may often not be significant
in terms of iRBU. The NTCIR-15 WWW-3 task [35] has already used iRBU
as an official evaluation measure in addition to nDCG, Q, and normalised ERR
(nERR).

The fact that iRBU is statistically unstable despite its high agreement with
users’ SERP preferences serves as a reminder that evaluation measures should
also be examined from multiple viewpoints. We argue that both offline evaluation
approaches such as the ones we took in the present study and the user-based
validations are necessary.

The present study did not aim to cover all existing diminishing-return IR
measures for the reason discussed in Sect. 2. To help other researchers repro-
duce and extend our work, we have made all of our topic-by-run score matrices
publicly available.12

12 https://waseda.box.com/ECIR2021PACK.

https://waseda.box.com/ECIR2021PACK
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2. Amigó, E., Gonzalo, J., Mizzaro, S., de Albornoz, J.C.: An effectiveness metric for
ordinal classification: formal properties and experimental results. In: Proceedings
of ACL 2020 (2020)
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Abstract. A key application of conversational search is refining a user’s
search intent by asking a series of clarification questions, aiming to
improve the relevance of search results. Training and evaluating such
conversational systems currently requires human participation, making
it unfeasible to examine a wide range of user behaviors. To support robust
training/evaluation of such systems, we propose a simulation frame-
work called CoSearcher (Information about code/resources available
at https://github.com/alexandres/CoSearcher.) that includes a param-
eterized user simulator controlling key behavioral factors like coopera-
tiveness and patience. Using a standard conversational query clarifica-
tion benchmark, we experiment with a range of user behaviors, semantic
policies, and dynamic facet generation. Our results quantify the effects
of user behaviors, and identify critical conditions required for conversa-
tional search refinement to be effective.

Keywords: Conversational search · User simulation for conversational
search · Conversational query clarification

1 Introduction

As personalized information agents become ubiquitous, people increasingly
expect to engage them in information-seeking dialogues, instead of having to
formulate a precise query. A user’s query to a search system often under-specifies
the search intent (or facet of the information need, as is often referred to in the
literature). A conversational system could elicit a more precise information need
from a user, by asking her a series of clarification questions to narrow down the
set of possible intents, ultimately to improve the relevance of the search results.
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Recent work [7] has shown the theoretical value of obtaining answers to such
clarification questions to improve the final retrieval.

Search refinement is also critical in practice, namely for voice-based agents
like Alexa or Siri. Generally, only a small number of results can be returned to the
user via a voice modality, and matching the correct search intent is critical [31].
Furthermore, in applications such as e-commerce, successive search refinement
is natural for narrowing down the choice of products using facets of the target
item.

Unfortunately, conversational search refinement is highly challenging due to
the reliance on human participation for developing, training, and evaluating
system variants or parameters. Furthermore, some users may not be willing to
provide additional information to the search system after the initial request,
while others might be willing to collaborate with the system by engaging in a
dialogue. To address these issues, training and evaluating such conversational
systems with a large number of users or crowd workers has been the dominant
strategy. This has two shortcomings: (1) High cost, especially when different
variations of a search system must be tested; (2) The pool of human participants
might not be representative of future participants, who might, for example, be
less cooperative and/or patient. A key contribution of this paper is re-examining
the underlying assumptions of conversational search, to quantify the effects of
user cooperativeness, i.e., willingness to provide clarification information, and
user patience, i.e., willingness to engage in a long dialogue with a search system.
We quantify this intuition by developing a simple, yet powerful, stochastic user
simulator CoSearcher for conversational search refinement, and investigate
the implications of cooperativeness and patience of users by extensive simulation
experiments that would not be feasible with human participants. This proposed
simulator provides a way to better understand the effectiveness and limitations
of the a given conversational search system, for a wider range of potential future
users, without degrading their search experience.

Although our user simulator has only two parameters (cooperativeness and
patience), and might thus be deemed unrealistically simple because humans have
far more “variables”, we argue that these are the characteristics directly respon-
sible for the user behavior observable by a search system, and thus form an
acceptable proxy for scalable evaluation of a conversational search system under
a wide range of realistic configurations of complex latent search behavior “vari-
ables”.

In summary, our contributions include:

– We systematically investigate the task of conversational search intent clari-
fication, comparing facet identification and ranking methods, for both static
and dynamically generated candidate intents.

– We present a simple yet powerful conversational search simulator, Co-
Searcher, with key parameters of cooperativeness and patience, to enable
systematic and scalable experimentation with conversational search refine-
ment (Sect. 3.4).
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– Using CoSearcher, we for the first time demonstrate using extensive sim-
ulation experiments, that modeling cooperation and patience of the searcher
is fundamental for the success of conversational search, and identify the con-
ditions where conversational search can be effective. This required evaluating
results for hundreds of thousands parameter combinations for conversational
experiments, which would not be feasible with human participants. (Sect. 5).

Broadly, our work adds to the growing evidence of the importance of engaging
in conversations with users to improve search performance, and provides the
critical building block, the CoSearcher user simulator, for scalable evaluation
of a given conversational search system under a variety of conditions. Next, we
briefly review related work to place our contributions in context.

2 Related Work

There is a large body of work in NLP and IR that addresses conversational
systems [8,14,34,37]. Advances in NLP and IR in the last few years have also
been accompanied by a surge in research of conversational systems.

Within the sub-field, understanding user behavior is an important research
direction. [31] and [21] performed user studies to understand what kind of user
behavior is useful for conversational search, but they did not explicitly model the
results for use in simulations. Additionally, [30,39] perform user simulation, but
unlike our work focus solely on recommender systems and use a fixed user model.
For chat systems and task-completion dialogues, developing user simulators has
also been shown to be an effective way to reduce the required training data [11,
16,24], which inspired our efforts to adapt that general idea to search-oriented
conversational systems. To the best of our knowledge, our paper is the first to
propose a user simulator for conversational search.

A parallel line of work focuses on learning to ask clarification questions to
fill in missing information [25–28,38]. None of these, however, focus on intent
refinement, nor do they make use of a variable user model for evaluation. Another
related direction is faceted search, where a user reacts to the proposed facets
to refine the information need or to restrict or change the set of results [17–
19,22,23,32,33,36].

Most similar to our work is that of [7], which uses human annotation of
clarification questions which are then used within an IR system to evaluate
how they could help retrieval performance. They release the resulting dataset,
called Qulac, which we use as the basis of our paper. Qulac makes use of the
198 topics, corresponding facets and relevance judgements from the TREC09-
12 diversity track [12,13], supplemented by crowdsourced human clarification
questions and answers for each facet. For each topic, there are multiple human
generated clarification questions corresponding to the each of the topic’s facets,
and for each (topic,facet,question) triple, there is an human generated answer
where the human assumes the role of a searcher looking for the facet and answers
the given question. Very recently, the Qulac dataset was expanded into ClariQ
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[6] via the addition of new data, including synthetic multi-turn conversations.
Our work is evaluated using the original Qulac dataset which is sufficient to
investigate the research questions posed here. Our other, expanded facet dataset
constructed from Bing query suggestions and manual annotations, complements
Qulac and allows us to investigate additional challenges that arise with numerous
query facets.

The Qulac paper [7] presents the Neural Question Selection (NeuQS) model,
which given a conversation context (a series of questions/answers), selects the
next question to ask from a candidate question database (the Qulac dataset).
The human answer is then used to simulate the end of the conversation and the
whole conversation is used as input to a query-likelihood IR system to evaluate
the utility of the clarification question.

We differ from this work by focusing on intent refinement—the goal of our
system is to narrow a set of candidate intents down to a specific intent—and by
creating a user model and simulator, CoSearcher, which allows us to evaluate
the utility of clarification questions not just on a specific set of human anno-
tators, but rather a large set of simulated parameterized users. CoSearcher
also enables the possibility of scalable training of conversational search systems,
optimized for different types of users, and supporting sophisticated, yet data
hungry, end-to-end deep learning approaches for conversational search, e.g., via
Reinforcement Learning [9,35].

3 Modeling Conversational Search Intent Refinement
Through User Simulation

We now overview the conversational search intent refinement setting, following
the recent formulation in [7], and our simulation-based approach for investigating
this topic.

3.1 Problem Setting: Conversational Search Refinement

Often, a searcher (user) provides an under-specified query to the search sys-
tem, which may reflect multiple information needs, or different facets of the
same intent. A conversational search refinement system attempts to pinpoint the
user’s search intent via a series of clarification questions, which the Searcher can
choose to answer cooperatively (by volunteering additional information about
their intent), lazily (“yes/no”) or not respond to the system at all, e.g., if the
Searcher ran out of time or patience. After each turn, the search system may
chose to ask additional clarification questions, or return search results, or both.
An example conversational search dialogue is shown in Fig. 3a, for the initial
under-specified query, where the system follows with a sequence of clarification
questions to generate the result ranking using the expanded/refined query.

Formally, we assume that the searcher has an information need (topic) t (i.e.,
the initial search query), and a true information need facet or aspect ft, which
the system has to infer to properly rank the search results. We also assume that
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Fig. 1. (a) System overview, illustrating CoSearcher instantiated with (topic, intent
facet), and a Facet Provider, which provides candidate facets that the search refinement
system uses to converse with the CoSearcher to identify the intended facet; (b): An
actual simulated conversation with a partially cooperative CoSearcher instance.

candidate facets C for the topic t is either known (e.g., from a knowledge base
if the query is an entity), or can be dynamically generated (e.g., from query
refinement logs of a search engine, or from popular entity attributes). The goal
of the search system, then, is to identify the intended topic facet ft by asking
clarification questions, and return a list of results relevant to ft. Specifically,
the search system picks the first candidate facet c ∈ C and asks a clarification
question: “Are you looking for c?”. The user can respond with either “Yes” or
“No”. If the answer is “Yes”, the agent stops, accepting c as its best guess for
the searcher’s true information need. If the answer is “No”, the agent selects
the next candidate facet c from the list of candidate facets. If the user’s “No” is
informative (has additional information which might guide refinement, such as
“No, I’m looking for...”) we add the answer to the current context to be used for
re-ranking. Candidates facets are then re-ranked, as described below, and this
process repeated until either there are no more candidate facets or the user’s
patience runs out. Note that in our setup, we choose to model neutral responses
(when the proposed facet is related to intended facet but not quite the same) as
“No”, since the intended facet has not yet been identified.
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3.2 Candidate Facet Ranking Strategies

We consider two facet ranking strategies: (1) Rand: a random baseline that
orders facets randomly. (2) Sim: a semantic similarity strategy, which assigns a
score for every candidate facet by computing the mean cosine similarity between
the facet and each informative “No” in the conversation context, using mean bag-
of-vectors as sentence embeddings. We use the LexVec n-gram subword vectors
[29] to represent each word.

3.3 Dynamic Facet Generation

The previous state of the art approach—NeuQS [7] and similar methods—require
knowing a priori a set of candidate questions and answers for a given facet, which
is not realistic for most search topics or information needs. We now investigate
how to abstract and generalize this approach to dynamically generated a set of
candidate facets using a facet provider.

One example of such a facet provider is a search engine query suggestion
mechanism, e.g., the Bing search engine Autosuggest available via an API,1

which, given an initial query, returns a set of 8 query completions. The query
topic is used the initial query and the returned set of completions as candidate
facets. We experiment with two variants of this facet provider: (1) S-Bing, which
uses a single call to Autosuggest, resulting in at most 8 facets per topic and (2)
the superset B-Bing, which makes makes 26 additional calls for a topic by
appending to the query each letter of the alphabet, resulting in 8 + 8 ∗ 26 = 216
candidate facets per topic. Note that this can be seen as a breadth-first-search
of the Autosuggest API, where nodes are expanded by this letter-appending
technique. Though we restrict ourselves to a single level, this search can go
deeper, to allow for more in-depth and comprehensive exploration of the user
intent refinement task, using a simulator described next.

3.4 COSEARCHER: User Simulator for Conversational Search

Our core contribution, CoSearcher, is the parameterized modeling of conver-
sation search system users. The model is general, and is applicable to a broad
set of conversational search tasks. It has two key components: (1) User Intent: a
task-specific representation of the user’s goals; and (2) User Parameters: values
representing levels of cooperativeness and patience;

User Intent: In our search intent refinement use case, the goal is a search intent
known only to the user, and the goal of a system is to discover this intent through
a series of questions. The simulator returns a Boolean response depending on
whether the question matches the intent.

Formally, the user model has a function g(topic, intent, question) that returns
a similarity score between the topic/intent and the question. The “Yes”/“No” is

1 https://azure.microsoft.com/en-us/services/cognitive-services/autosuggest/.

https://azure.microsoft.com/en-us/services/cognitive-services/autosuggest/
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then decided using a threshold that be chosen using downstream performance,
or intrinsically evaluated if there is labeled “Yes”/“No” data.

CoSearcher Behavior Parameters: CoSearcher has two core parameters:
cooperativeness and patience. Cooperativeness is a key user characteristic which
has been assumed by conversational systems, and represents the users willingness
to help the agent. Patience, representing the maximum number of interactions a
user is willing to have with the conversational system, is based on the observation
that user willingness to examine results diminishes over time [20]. Manipulating
these two parameters via simulations enables us to expose the direct relationship
between these key user behavior factors and conversational system results.

Cooperativeness: A user of a conversational system can be more cooperative
by providing extra information (an informative answer) in addition to a minimal
response. The informative answer can be task agnostic, by leaking the score from
g(·) via answers such as “No, not even close”/“No, but you’re close”, or directly
leaking intent (with or without rewording), such as “No, I’m looking for $intent”.
We define Cooperativeness as a Bernoulli random variable where p is the level of
cooperativeness (i.e., a user with cooperativeness=0 only gives boolean answers,
and a user with cooperativeness=1 always gives informative answers). Task-
specific informative responses can be provided by making use of labeled data
from human annotated informative answers, or by training a generative model
using this data.

Patience: A user also has a patience level p, such that the conversation ends
when the conversation exceeds a predefined number of turns p. This corresponds
to the maximum amount of effort this user is willing to expand by interacting
with the search system.

While in this paper we fix a user’s patience and cooperativeness parame-
ters throughout a conversation session, CoSearcher can also be configured to
update these values dynamically, which can increase or decrease cooperativeness
or patience of the user as the session progresses. In this work, we explore a wide
range of these values through simulation, thus exhaustively testing the effect of
user behavior on the success of a conversational search refinement system.

4 Experimental Setup

4.1 Resources and Evaluation

Our study uses only publicly available resources. The main dataset used is the
previously described Qulac benchmark dataset [7]. Our “Yes”/“No” classifier
fine-tunes the BERT-large uncased model from [15]. The similarity rankers use
the LexVec [29] n-gram embeddings.2 The IR search system is the same query-
likelihood model used by [7]3 indexed on ClueWeb09b.

2 https://github.com/alexandres/lexvec.
3 Implementation distributed by authors at https://github.com/aliannejadi/qulac.

https://github.com/alexandres/lexvec
https://github.com/aliannejadi/qulac
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We measure the success of a dialogue by evaluating the relevance of the results
retrieved using the enhanced query with identified user intent (topic + facet),
using standard IR evaluation metrics: Mean Reciprocal Rank (MRR), Preci-
sion@k (P@k), and normalized Discounted Cumulative Gain@k (nDCG@k).

4.2 Conversational Intent Refinement Simulations

We now describe the concrete implementation of CoSearcher used to evaluate
a conversational search refinement system under variety of conditions. Figure 1
shows the flow of an experiment for a given query topic and (hidden) true intent
facet. For these experiments, the user intent is represented as a combination of
topic and true intent facet, as described in Sect. 3.

To simulate cooperative users, we need a mechanism to provide informa-
tive answers that incorporate feedback. We achieve this through implementing
for function g(.) a simple heuristic to allow us to use a dataset such as Qulac
(described above) to train CoSearcher. Specifically, we automatically label
each instance (topic, facet, question, answer) in the Qulac dataset as follows: if
answer contains “Yes”/“No” in its first three words, label (topic, facet, question,
answer, 1/0) accordingly, else ignore it.

For CoSearcher to respond to a clarification question, we experiment with
a variety of lexical and semantic matching mechanisms to determine a match
between a question and a user’s intended topic facet. We adapt the work on
Semantic Textual Similarity (STS) for this task [1–5,10]. Specifically, we fine-
tune the BERT-large model [15] which achieves state of the art performance on
the STS Benchmark (STS-B) [10]. We use the same setup as used in [15] for the
STS-B task, but train a binary classifier rather than a regressor. The input to
BERT model is “topic . intent [SEP] question” using WordPiece tokenization,
and the output is a match score - if a threshold is exceeded, CoSearcher
returns “Yes” to indicate that the correct facet was proposed, and “No” otherwise
(potentially with additional information as described above).

We split Qulac’s 198 topics into 100 training, 25 validation, and 73 test
topics, using only training and validation topics for the intent match classifier
training/evaluation, and reserving the test topics as hidden for the full con-
versational system evaluations. At threshold 0.5, which we use throughout this
paper, the classifier achieves an 0.63 F1 score. Figure 2a shows the resulting
Precision/Recall curve of our trained classifier. This setup allows us to test our
system with a fully configurable user. The system is run via a controller that
selects the user parameters, including topic/facet and also initializes the inter-
action with the agent.

5 Results and Discussion

We formulate the IR query with the topic and the first facet to which the user
model answers “Yes”, or only the topic if no “Yes” is received before user patience
runs out. We use the exact same Query-Likelihood IR model/data as in the
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NeuQS paper [7].4 Although submitting the entire dialogue could potentially
improve search performance, since it includes human user responses which often
contain paraphrases of the search facet, we opt to use only the system’s best
guess of what the correct facet is, as it excludes the previous (likely incorrect)
facets discussed in the conversation.

We were not completely successful at adapting NeuQS to our exact problem
setting (explicit intent refinement), so we compare our system using the Sim facet
ranker to the results reported by [7] on the same overall IR task and dataset.
We mimick the combinatorially-generated dialogue used as input to NeuQS by
setting CoSearcher cooperativeness to 1 and patience to 3. Results are given
in Table 1. Our system using Qulac facets has a larger gap to the Topic-only
baseline (+.1061) than NeuQS to its Topic-only baseline (+.0910). Dynamic
facet generation outperforms the topic-only baseline; we see that having a large
number of candidate facets is important: B-Bing has 26x more facets than S-
Bing, allowing for finer matching.

5.1 Effects of Patience and Cooperativeness

We set cooperativeness to 1 and vary the patience of the user model. Results
are shown in Fig. 2c. We note that similarity based ranking always outperforms
random selection, and retrieval improves as patience increases. Random facet
selection is feasible when the set of candidate facets is small, as is the case with
Qulac and S-Bing. The performance degrades substantially, however, for the
larger B-Bing facet generator, remaining close to the baseline topic MRR (see
Table 1). In contrast, semantic similarity ranking shows clear improvements as
the conversation progresses.

We repeat these experiments, but this time vary the cooperativeness rather
than patience (which is now fixed at 3). Results are shown in Fig. 2d. The
Sim ranker clearly benefits from higher cooperativeness, while Rand shows no
improvement, as expected. The considerable gap between B-Bing and S-Bing
has a simple explanation: the user intent is less likely to be present in the small
S-Bing set of facets than in the B-Bing superset, so additional cooperativeness
helps one but no the other.

We next investigate the interaction between cooperativeness and patience,
repeating the same setup from the previous IR experiments but this time varying
both patience and cooperativeness. We study only B-Bing facets since these
pose the hardest facet identification problem, requiring a deeper conversation
to narrow down candidates. Results shown in Fig. 2b clearly indicate that both
cooperativeness and patience are required to achieve maximal IR performance.

In sum, we showed that different CoSearcher configurations (user config,
facet providers, etc.) led to a wide range of IR performances, demonstrating the
functionality and applicability of our framework.

4 Note that since they do not perform explicit intent refinement, they submit the entire
dialogue context as a query to the IR system, whereas we submit only the topic and
the refined facet.
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Table 1. Performance comparison between prior state of the art methods, including
[7] (top) and CoSearcher (bottom). “Topic-only” refers to the baseline method issu-
ing only the topic as the query to the search system, ignoring any facet information
obtained through conversation.

Method MRR P@1 nDCG@1 nDCG@5 nDCG@20

Topic-only 0.2715 0.1842 0.1381 0.1451 0.1470

σ-QPP 0.3570 0.2548 0.1960 0.1938 0.1812

LambdaMART 0.3558 0.2537 0.1945 0.1940 0.1796

RankNet 0.3573 0.2562 0.1979 0.1943 0.1804

NeuQS 0.3625 0.2664 0.2064 0.2013 0.1862

Topic-only 0.2938 0.1900 0.1329 0.1456 0.1525

CoSearcher- Qulac 0.3999 0.3025 0.2263 0.2110 0.1908

CoSearcher- S-Bing 0.3136 0.2010 0.1415 0.1653 0.1597

CoSearcher- B-Bing 0.3444 0.2366 0.1781 0.1769 0.1703

6 Analysis and Discussion

6.1 Characterization of Successful Conversational Refinement

Using the conversations generated with a wide range of behavior simulator fea-
tures, we can explore what makes for a successful conversational search session.
It is clear that the topic of the query has some effect on the difficulty of the task.
We attempt to quantify this intuition through semantic analysis of the properties
of search topics and facets to gain insight into the system performance.

We observe that ambiguous entities are associated with lower success rates
across all facet providers. Examples of such entities with multiple senses include:
iron (chemical element, clothing iron, nutritional supplement), Euclid (person,
multiple businesses), Rice (food, person name, e.g., Rice university). Conversely,
unambiguous entities are associated with much higher success rates, e.g., Uni-
versal Animal Cuts (a product), or solar panels. To quantify this we simulate 100
dialogues for each facet and measure the ratio of successful conversations. Using
a sample of 20 topics (10 ambiguous entities, 10 non-ambiguous) we observe an
average success rate of 55% for the ambiguous ones, compared to 72% for the
non-ambiguous entities.

Similarly, topic ambiguity is a key factor. Topics that are broad in nature,
with a large number of potential facets, yield poorer results. One such example
is the topic cass county missouri with the facet “What was the 2008 budget
for Cass County, MO?’. For a sample of 10 topics with ≥ 5 Qulac facets, we
observe a mean success rate of 58%, against 66% for 10 topics with ≤ 3 facets.
We hypothesize that it can be difficult to refine the query to such a specific facet
within a reasonable number of turns.

Finally, facets containing multiple entities and entities that are complex noun
phrases were often associated with poorer performance. For a sample of 10 topics
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Fig. 2. (a) Precision-Recall curve of BERT Yes/No classifier on Qulac validation set.
(b, c, d) The effect of varying patience/cooperativeness: (b) Heatmap of MRR for B-
Bing using similarity facet ranker as patience/cooperativeness vary. (c) MRR for all
facet providers using Sim and Rand facet rankers for cooperativeness=1 as patience
varied. (d) Same as (c), but fixing patience at 3 and varying cooperativeness.

with complex entities, we observed an average success rate of 54%, compared to
an overall average of 62%. These results indicates that entity extraction and
disambiguation are key building blocks for successful conversational systems.

6.2 Qualitative Analysis: Case Studies

We complement our analysis above by offering case studies to provide intuition on
why conversational search succeeds and fails in different situations under various
user “personas” with varying degrees of cooperativeness. First, we consider an
example of a cooperative user interacting with a system using the Qulac (static)
topic facets, shown in Fig. 1b. Recall that for high value of cooperativeness, the
user (and the simulator) often volunteer information to the search system, even
if the initial response or guess was not correct, i.e., provide “informative no”
responses. As a result, we observe the search system quickly converging on the
true searcher intent. Another successful example using the Bing query suggestion
facets is shown in Fig. 3a. Given the large number of relevant facets available via
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Fig. 3. (a) an example of a successful conversation (cooperativeness=1, Bing facets);
(b) an example of a matching error (cooperativeness=1, Bing facets). The user incor-
rectly accepts a facet that is very closely related to the true intent.

the external search provider, the system is able to match the Qulac facet within
2 turns.

The example in Fig. 3a highlights the importance of realistically modeling
“informative rejection” via our proposed cooperativeness parameter. In this
example, a cooperative user volunteers her intent immediately, as soon as the
system asks a clarification question. This is a known limitation of the Qulac
dataset (which is crowdsourced with highly cooperative “users”), but may not
be realistic. A more common scenario is that a user may not be able to fully
specify her intent (hence the vague original query), but can easily recognize the
topic facets she is, or is not interested in when prompted. The CoSearcher
framework explicitly models and allows to automatically identify such cases.
Consider a failed conversation (Fig. 3b), also with a cooperative user, using the
Bing query suggestions (dynamic facets) as candidate facets. In the simulated
conversation example below, the search system continues to ignore the search
intent refinements volunteered by the cooperative CoSearcher user model,
until the user simulator finally accepts the (incorrect) intent suggestion, likely
resulting in non-relevant results.

We can see that in the above examples the system uses the information from
the user to identify the true intent within a few turns. These examples provide
additional intuition about the challenges in conversational search refinement,
and illustrate the range of conversations and interactions that CoSearcher
can support to simulate different types of users and search tasks.
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7 Conclusions and Future Work

We investigated the effectiveness of conversational search refinement, a key task
for conversational search systems. We hypothesized that the success of con-
versational search depends significantly on the users’ behavior and the search
task characteristics. To accomplish this, we introduced a parameterized con-
versational search user simulator, CoSearcher, to systematically probe the
boundaries of conversational search intent refinement. CoSearcher was used
to evaluate the effectiveness of query facet identification algorithm under a vari-
ety of conditions corresponding to different types of users. Our experiments on
an existing benchmark (Qulac) and a new, dynamically generated dataset of
search intent facets, demonstrate the power and generality of CoSearcher,
exhibiting a new state of the art performance.

We also systematically explored the space of conversational search refine-
ment outcomes for different types of search tasks and users. Specifically, we
characterized the semantic differences between search topics and intents which
are more (or less) amenable to conversational search refinement; We also empir-
ically showed that (1) For the interesting real-world scenario where set of facets
is large and a non-random facet ranker is used (B-Bing-Sim), cooperation on the
user’s part is fundamental for the success of conversational search refinement (in
Fig. 2d, a uncooperative user’s MRR in 3-turn-or-less dialogue is nearly identi-
cal to the .2938 topic-only baseline, improving up to .3444 as cooperativeness
increases); and as illustrated in Fig. 2b), the effort (characterized by patience and
cooperativeness) vs. benefit (MRR) tradeoff can be quantified: linear regression
gives MRR = .0038×patience+ .034×cooperativeness + .29 with R2 = 0.77. (2)
A simple semantic policy is effective for identifying searcher intent: in all exper-
iments, it outperforms Random facet selection; in particular for B-Bing-Sim in
Fig. 2c, MRR plateauing at 4 turns indicates that the best matching facet of
the 216 candidates facets has been identified; (3) Dynamic search intent facet
generation is feasible: MRR of .3444 for B-Bing-Sim is much higher than the
topic-only baseline of .2938, suggesting a promising direction for future exten-
sions by considering other sources of search intent facets.

We emphasize that the described results and analysis required simulating
hundreds of thousands of conversational search refinement experiments, enabled
by the presented CoSearcher simulator. In the future, we plan to expand Co-
Searcher to support more sophisticated behavior dynamics, which could be
conditioned on the conversation length, search result quality, task characteristics,
or other contextual factors. Additionally, CoSearcher is naturally suited for
scenarios where the user intent is in natural language, but the system represents
facets as database queries (e.g., over an e-commerce catalogue) and must select
or generate these queries through dialogue.

The combination of the new state of the art results, our empirical insights,
and the newly introduced flexible CoSearcher framework – complemented by
the new dynamic search intent dataset to be released, provide significant progress
towards more intelligent and effective conversational search systems.
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Abstract. The business objectives of recommenders, such as increasing
sales, are aligned with the causal effect of recommendations. Previous
recommenders targeting for the causal effect employ the inverse propen-
sity scoring (IPS) in causal inference. However, IPS is prone to suffer
from high variance. The matching estimator is another representative
method in causal inference field. It does not use propensity and hence
free from the above variance problem. In this work, we unify traditional
neighborhood recommendation methods with the matching estimator,
and develop robust ranking methods for the causal effect of recommen-
dations. Our experiments demonstrate that the proposed methods out-
perform various baselines in ranking metrics for the causal effect. The
results suggest that the proposed methods can achieve more sales and
user engagement than previous recommenders.

Keywords: Recommendation · Causal inference · Matching estimator

1 Introduction

Recommender systems have been used in various services to improve sales and
user engagement [15]. For these purposes, it is essential to increase users’ pos-
itive interactions, such as purchases and views. If recommended items are pur-
chased or viewed, the recommendations are typically considered to be successful.
However, the recommended items might have been interacted even without the
recommendations. In this case, the user interactions are not caused by the rec-
ommendations. For example, if a user is an enthusiastic fan of a movie director,
the user would watch a new movie of the director whether it is recommended
or not. Sharma et al. [43] analyzed the browsing logs of an e-commerce site
and revealed that at least 75% of recommended visits would likely occur in the
absence of the recommendations. To improve sales and user engagement, it is
important to generate recommendations that truly increase user interactions.

Such an increase produced purely by recommendation is called causal effect.
Figure 1 illustrates the causal effect of recommendation. It is the difference of user
interactions in two cases: if recommended and if not recommended. The challenge
for ranking items by the causal effect is that we can not directly measure the
causal effect since an item is either recommended or not for a specific user.
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Fig. 1. A figure to illustrate the causal effect of recommendations. Recommending
Item B results in increase of user interactions than without recommending, hence it
has positive causal effect.

Such unobservable nature is a fundamental problem of causal inference [12] and
various methods have been developed to address the problem [11,14].

Few works targeting recommendation causal effect exist [4,38–40], and it is
largely an unexplored area of research. Among them, a recent work [40] employed
IPS method [27] in causal inference field, and developed unbiased learning-to-
rank methods. However, the IPS has been known to suffer from high variance due
to small propensities [35,45,50]. Although the previous work [40] mitigates the
variance by propensity capping, it incurs bias and affects the recommendation
performance. The matching estimator [44] is another representative method in
causal inference. It does not rely on propensities and enables a stable estimate
of causal effect under various conditions of propensities. Despite the potential
advantage, there have been no attempts to apply the matching estimator for the
causal effect of recommendations.

In this work, we explore the matching estimator approach to rank items by
the causal effect of recommendations. Matching estimators estimate causal effect
by comparing observed outcomes for treated/untreated persons to those of simi-
lar persons in untreated/treated group. Leveraging person similarity is analogous
to traditional neighborhood recommendation methods. We unify neighborhood
recommendation methods with the matching estimator, and construct estima-
tors of the causal effect for each user-item pair. To obtain item rankings robust
to randomness of user behaviors, we further improve the estimators by 1) mixing
own and neighbor observations and 2) introducing a shrinkage hyper-parameter
to adjust outcome estimates depending on computed neighborhood size. We
experimentally compare our methods with various baselines including recent
IPS-based methods. The results demonstrate the effectiveness of our methods
for ranking items by the causal effect. Such ranking can lead to increase of sales
and user engagement, and have a practical benefit for businesses.

2 Related Work

Collaborative filtering is a widely used technique in recommender systems. It can
be grouped into the two general classes: neighborhood and model-based meth-
ods [23,29]. Among model-based methods, matrix factorization models have been
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most popular [20,24] and recently neural network models are gaining popular-
ity [53]. Neighborhood methods have been used since the dawn of recommender
systems [37,42]. They are still competitive to recent neural model-based meth-
ods [7], especially in session-based recommendation [26]. In this work, we extend
neighborhood methods for the causal effect of recommendations.

Early work of recommendation for the causal effect proposed a two-stage
purchase prediction model comprising awareness and satisfaction [4], similar to
recent exposure modeling [25]. It assumed that recommendations make users
aware of the items. Later work [38] incorporated user- and item-dependent
responsiveness to recommendations. Both methods predict purchase probabil-
ities with and without recommendations and rank items by the difference of
these probabilities. Another strategy is to directly optimize ranking models for
the causal effect [39,40]. ULRMF and ULBPR [39] are heuristic pointwise and
pairwise learning methods inspired by the label transformation [16,22] in uplift
modeling [8,32]. Very recent work [40] proposed DLCE, an IPS-based unbiased
learning-to-rank method for the causal effect.

The IPS has been gaining popularity in counterfactual learning [17,31]. It has
been applied to address missing not at random recommender feedback [36,41],
position bias in information retrieval [2,18,51], and selection bias in bandit feed-
back [6,54]. Domain adaptation is another counterfactual learning method [19]
that are applied for recommenders [5]. To the best of our knowledge, matching
estimator has not been applied for recommenders or information retrieval.

3 Preliminaries

3.1 Matching Estimator for Causal Inference

Let Y T
n and Y C

n be the potential outcomes [34] of subject n that would occur
under treatment and control conditions, respectively. A potential outcome is one
of possible two outcomes: one under treatment and another under control con-
ditions. In medicine, for example, a subject is a patient, an outcome is recovery
from disease, and treatment is to take a specific drug. Let Zn be the indicator
of treatment (Zn = 1 if treated and Zn = 0 if not treated). Observed outcome
is expressed as: Yn = ZnY T

n + (1 − Zn)Y C
n . Note that Yn = Y T

n if Zn = 1 and
Yn = Y C

n if Zn = 0. The causal effect τn is defined as the difference between
the potential outcomes: τn = Y T

n − Y C
n . However, τn can not be obtained since

either Y T
n or Y C

n is observed for each subject. Matching estimator [44] estimates
unobserved potential outcomes from the observed outcomes of the closest sub-
jects.

Ŷ T
n =

1
|MT(n)|

∑

m∈MT(n)

ZmYm, Ŷ C
n =

1
|MC(n)|

∑

m∈MC(n)

(1 − Zm)Ym, (1)

where MT(n) and MC(n) are sets of matched subjects under treatment and
control conditions. Matched samples are typically chosen by similarity of sub-
jects’ covariates, e.g., demographics or previous medical histories. The causal
effect τn is estimated as, τ̂n = Zn

(
Yn − Ŷ C

n

)
+ (1 − Zn)

(
Ŷ T

n − Yn

)
.
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In the field of causal inference, we are mostly interested in the average treat-
ment effect (ATE) or the average treatment effect on the treated (ATT), hence
we take average of the above estimate over the set of subjects S or the set of
treated subjects ST: τ̄ATE = 1

|S|
∑

n∈S τ̂n, τ̄ATT = 1
|ST|

∑
n∈ST τ̂n. The higher

the value, the treatment is considered to be more effective.

3.2 Neighborhood Method for Recommender System

Neighborhood methods are divided into user-based neighborhood (UBN) and
item-based neighborhood (IBN) methods. Let U and I be sets of users and
items, respectively, and u, v ∈ U and i, j ∈ I. The predictions of UBN and IBN
are expressed as follows.

Ŷ UBN
ui =

∑
v∈N (u) wuvYvi∑

v∈N (u) wuv
, Ŷ IBN

ui =

∑
j∈N (i) wijYuj∑

j∈N (i) wij
, (2)

where N (u) and N (i) are the sets of neighborhood users for u and neighborhood
items for i, respectively. The weights wuv and wij depend on the similarity
between user pairs u and v, and between item pairs i and j, respectively.

The similarities are calculated based on previous interactions. In UBN, if
user u and user v have positive interactions for same items, they are regarded to
be similar. Popular choices for the similarity measure include cosine similarity,
Pearson correlation, and Jaccard index among others [29]. The cosine similarity
between users is expressed as, cos(u, v) = Y u∗ ·Y v∗/||Y u∗||||Y v∗||, where Y u∗ ≡
[Yu1, Yu2, ...Yu|I|] and Y v∗ ≡ [Yv1, Yv2, ...Yv|I|] are vectors representing previous
interactions for u and v, respectively. Top k users by the similarity measure
are chosen as neighborhood N (u). The weight wuv becomes wuv = (cos(u, v))α,
where α is a scaling factor. N (i) and wij for IBN are derived analogously.

4 Causality-Aware Neighborhood Method

Using notations similar to Subsect. 3.1, the causal effect of recommending item
i to user u is expressed as τui = Y T

ui − Y C
ui . In this setting, treatments are

recommendations (Zui = 1 if recommended) and outcomes are users’ interactions
(Yui = 1 means positive interactions, such as purchases). Total interactions
from recommendations is the sum of τui in recommendation lists. Hence, we
want to estimate τui and rank items by the estimates. In this section, we unify
the matching estimator in causal inference and the neighborhood methods for
recommender systems, and propose causality-aware neighborhood methods to
rank items for the causal effect of recommendations.

Estimating the unobserved potential outcomes is a key component for esti-
mating the causal effect. We can apply UBN or IBN for the estimates.

UBN: Ŷ T
ui =

∑
v∈N (u) wuvZviYvi∑

v∈N (u) wuvZvi
, Ŷ C

ui =

∑
v∈N (u) wuv(1 − Zvi)Yvi∑

v∈N (u) wuv(1 − Zvi)
, (3)
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IBN: Ŷ T
ui =

∑
j∈N (i) wijZujYuj∑

j∈N (i) wijZuj
, Ŷ C

ui =

∑
j∈N (i) wij(1 − Zuj)Yuj∑

j∈N (i) wij(1 − Zuj)
. (4)

Note that these estimates require only observed variables. Direct application of
the matching estimator to our setting yields the formula below,

τ̂ui = Zui

(
Yui − Ŷ C

ui

)
+ (1 − Zui)

(
Ŷ T

ui − Yui

)
. (5)

The observed outcome Yui is used either as Y T
ui or Y C

ui .
However, user behavior is not deterministic and the observed outcome has a

random noise.1 Hence we mix the own interaction Yui and the neighbor interac-
tions Yvi or Yuj to reduce random noises. More specifically, we include u and i
in N (u) and N (i), respectively, and we set wuu = 1 and wii = 1.

To further reduce the variance, we force the estimates to shrink to zero if they
rely on a few neighbors with low similarity. We introduce shrinkage parameters
βT and βC for the estimates of Ŷ T

ui and Ŷ C
ui , respectively, and add them in the

denominator.

UBN: Ŷ T
ui =

∑
v∈N ′(u) wuvZviYvi

βT +
∑

v∈N ′(u) wuvZvi
, Ŷ C

ui =

∑
v∈N ′(u) wuv(1 − Zvi)Yvi

βC +
∑

v∈N ′(u) wuv(1 − Zvi)
, (6)

IBN: Ŷ T
ui =

∑
j∈N ′(i) wijZujYuj

βT +
∑

j∈N ′(i) wijZuj
, Ŷ C

ui =

∑
j∈N ′(i) wij(1 − Zuj)Yuj

βC +
∑

j∈N ′(i) wij(1 − Zuj)
. (7)

Here the sets of neighbors N ′(u) and N ′(i) include u and i themselves. With
Eqs. (6) and (7), we estimate the causal effect as,

τ̂ui = Ŷ T
ui − Ŷ C

ui , (8)

where the own interaction Yui is included in either Ŷ T
ui or Ŷ C

ui depending on Zui.
Finally, to generate recommendation lists, items are ranked by the descending
order of τ̂ui for each user.

We call our causality-aware user-based and item-based neighborhood meth-
ods as CUBN and CIBN, respectively. To calculate similarity of users or items, we
can use previous interactions, similar to original UBN and IBN. We can also use
the similarity based on previous treatment assignments Zu∗ ≡ [Zu1, Zu2, ...Zu|I|]
since we can expect that similar users receive similar recommendations if rec-
ommendations are properly personalized. We suffix -O or -T in the names of our
methods to clarify whether outcomes or treatment assignments are used. The
pseudo code of CUBN-O is shown in Algorithm 1. Here ranku(τ̂ui) is the ranking
position of item i for user u when items are sorted by τ̂ui in descending order.
Cosine similarity is used in this work. To obtain the algorithm for CUBN-T, line
4 is substituted with wuv ← (Zu∗ · Zv∗/||Zu∗||||Zv∗||)α.

1 If we focus on ATE or ATT, as often the case in causal inference, the random noise
is not a severe problem since it disappears by taking average of large samples. It
becomes a problem when we want to rank items by the estimates for each item.
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Algorithm 1: Causality-aware User-Based Neighborhood method by Out-
come similarity (CUBN-O).
Input: k, α, βT, βC, {Yui}, {Zui}
Output: {Lu|u ∈ U}
// Phase1: neighborhood preparation

1 for u ∈ U do
2 for v ∈ U do

3 wuv ←
(

Y u∗·Y v∗
||Y u∗||||Y v∗||

)α

// cosine similarity with scaling

4 N ′(u) ← arg maxG(u)⊂U,|G(u)|=k

∑
v∈G(u) wuv // top-k neighbors

// Phase2: item ranking

5 for u ∈ U do
6 for i ∈ I do

7 τ̂ui ←
∑

v∈N′(u) wuvZviYvi

βT+
∑

v∈N′(u) wuvZvi
−

∑
v∈N′(u) wuv(1−Zvi)Yvi

βC+
∑

v∈N′(u) wuv(1−Zvi)

8 Lu ← {ranku(τ̂ui)|i ∈ I} // ranking list by descending order of τ̂ui

9 return {Lu|u ∈ U}

Standard collaborative filtering methods use only interaction logs {Yui}. Our
methods require previous recommendation logs {Zui} in addition. We assume
that a certain recommender is already deployed in the service and we have
the logs of the recommender.2 Recommendation logs are commonly needed for
previous methods targeting the causal effect [4,38–40]. The previous IPS-based
method [40] further requires propensity, i.e., the probability of recommendations.
Our methods do not use propensity, hence we believe they are easier to deploy.

Our methods are based on standard assumptions of causal inference: ignora-
bility, no interference, and no multiple versions [11,14].3 The ignorability assump-
tion implies that treatment assignment (Zui) is independent of the potential out-
comes (Y T

ui , Y
C
ui) given the covariates (Xu,Xi): Y T

ui , Y
C
ui ⊥ Zui|Xu,Xi (see also

causal graph of Fig. 1(b) in [40]). Here Xu and Xi are features of user u and
item i, respectively. We assume that user neighbors N (u) and item neighbors
N (i) have features similar to user u and item i, respectively. The no interference
assumption means that a recommendation (Zui) does not affect other users’ or
items’ outcomes (Yvi or Yuj). As a result of this assumption, there is no influence
by item sequences in recommendation lists. The no multiple versions assump-
tion states that there is only a single version of recommendation. There could be
several ways to recommend items, such as browser pop-ups and sending e-mails,
but we assume that only one way is chosen for each dataset. Relaxing these

2 Note that the deployed recommender is different from recommenders that we train
and evaluate from {Yui} and {Zui}, hence we might not have control over previ-
ous recommendation logs. In experiment section, we also investigate how different
conditions of previous recommendations affect the proposed recommenders.

3 The latter two taken together are called the stable unit treatment value assumption
(SUTVA).
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assumptions is an active area of research in causal inference [13,49,52] and is
also interesting future direction of this study.

5 Experiments

5.1 Experimental Settings4

Datasets. We used the MovieLens (ML)5 100K and 1M datasets, and the
Dunnhumby (DH)6 dataset. The ML datasets [10] contains five-star movie rat-
ings. The DH dataset contains purchase and promotion logs from grocery stores.
For DH, we followed procedure described in [40] to generate a semi-synthetic
dataset in Original (DH-Ori) and Personalized (DH-Per) settings. For ML, we
generated semi-synthetic datasets as follows,

1. The ratings of all user-item pairs {R̂ui} were predicted using rating matrix
factorization [24].

2. The probabilities of observing the ratings {Ôui} were predicted using logistic
matrix factorization [20].

3. The probabilities of positive outcomes with and without recommendations
were formulated as follows.

μT
ui = σ(R̂ui − ε), μC

ui = Ôui. (9)

Here σ is a sigmoid function that converts predicted ratings R̂ui ∈ [1, 5] to
probabilities μT

ui ∈ [0, 1]. We set ε = 5.0 the same as [36].
4. The propensities were determined by users’ preferences to items.

Pui = min
(
1, a (1/ranku)b

)
. (10)

Here ranku is item rankings by μT
ui +μC

ui. The parameters a and b control the
average and the unevenness of propensities, respectively. We set b = 1.0 for
the default condition. The average number of recommendations for users was
set to 100 by adjusting a.

5. The potential outcomes under treatment and control conditions, and recom-
mendation assignments were sampled as follows.

Y T
ui ∼ Bernoulli(μT

ui), Y C
ui ∼ Bernoulli(μC

ui), Zui ∼ Bernoulli(Pui). (11)

Then, causal effect τui and observed outcome Yui were obtained as,

τui = Y T
ui − Y C

ui , Yui = ZuiY
T
ui + (1 − Zui)Y C

ui . (12)

Note that τui was provided only for evaluation. This sampling can be repeated
n times for each user-item pair. We independently sampled training, valida-
tion, and test data, and used for the purposes.

4 The codes and chosen hyper parameters for each method are available as ancillary
files at http://arxiv.org/abs/2012.09442.

5 https://grouplens.org/datasets/movielens.
6 https://www.dunnhumby.com/careers/engineering/sourcefiles.

http://arxiv.org/abs/2012.09442
https://grouplens.org/datasets/movielens
https://www.dunnhumby.com/careers/engineering/sourcefiles
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The steps 1, 2 and 3 are similar to that of [36]. The steps 4 and 5 are similar
to steps 3 and 4 of [40]. Unlike [40], we generated only one observation for each
user-item pair for training data (i.e., we set ntrain = 1 as opposed to ntrain = 10
in [40]) since this setting more directly reflects the unobservable nature of the
causal effect. The reasoning of Eq. (9) in step 3 is as follows. A choice of a movie
to watch (Oui) may be said to depend on expected entertainment from watching
it. A rating (Rui) reflects the experienced entertainment value after watching
the movie. If a user knew the entertainment value before consumption, the user
would choose movies based on this. Recommendations are often provided with
explanations [47] and the explanations help users predict entertainment values of
items [3,46]. Hence we related the watching probability with recommendation μT

ui

to experienced entertainment value Rui, and the watching probability without
recommendation μC

ui to users’ natural watching behavior Oui.
The statistics of generated datasets are summarized in Table 1. ATE over

whole user-item pairs are positive, meaning that recommendations generally tend
to promote user interactions. We also confirmed that μT

ui > μC
ui for about 90%

of user-item pairs in the ML datasets and about 80% of user-item pairs in the
DH datasets. However, μT

ui < μC
ui for the remaining pairs and thus τui tend to

be negative for those pairs. Recommendations can have negative impact when
they create bad feelings for users, e.g., creepiness [48]. Note that τui can become
negative by the randomness of user behaviors when μT

ui ≈ μC
ui.

Compared Methods. The following methods were compared.

– Random: Items are ranked randomly.
– Pop: Items are ranked by popularity, i.e., number of positive outcomes.
– UBN/IBN: Traditional user-based and item-based neighborhood methods.
– BPR [33]: A commonly used pairwise learning method.
– CausE [5]: A joint training of prediction models for Y T

ui and Y C
ui .

– ULRMF/ULBPR [39]: Pointwise and pairwise learning methods for τui.
– DLTO/DLCE [40]: IPS-based unbiased learning methods for Y T

ui and τui.
– CUBN/CIBN: Our causality-aware user-based and item-based neighbor-

hood methods for τui.

By comparing CUBN/CIBN and UBN/IBN, we verify whether our methods
successfully extend UBN/IBN for the causal effect. We also compare our neigh-
borhood methods with previous model-based methods targeting the causal effect:

Table 1. Statistics of generated datasets.

Dataset #User #Item {Yui = 1} {Zui = 1} ATE

DH-Original 2,309 1,372 35,010 483,660 0.0044

DH-Personalized 2,309 1,372 37,731 483,727 0.0045

ML-100K 943 1,682 92,523 94,054 0.0735

ML-1M 6,040 3,952 985,994 603,108 0.0981
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ULBPR, ULRMF, and DLCE. Previous research [39,40] shows that CausE and
DLTO are also strong baselines, hence we included them. Our methods can
use treatment assignments or positive outcomes for calculating user/item sim-
ilarities. We suffix -T or -O to clarify which one is used. To investigate the
effectiveness of mixing own and neighbor interactions, we also experimented on
our methods without the mixture (-woM), i.e., Eqs. (3)–(5) are used instead of
Eqs. (6)–(8).

Evaluation Protocols. Commonly used accuracy metrics, such as precision,
reward positive interactions even if that would occur in the absence of recommen-
dation (e.g., item A in Fig. 1.) We want to reward positive interactions purely
caused by recommendation (e.g., item B in Fig. 1), and the accuracy metrics
is not suitable (see also Sect. 2.1 in [39]). Hence, we used the causal variants
of precision@n (CP@n), discounted cumulative gain (CDCG), and average rank
(CAR) [40]. They are expressed respectively as,

∑

i

1(ranku(ŝui) ≤ n)τui

n
,

∑

i

τui

log2(1 + ranku(ŝui))
,

1
I

∑

i

ranku(ŝui)τui

where ŝui is the predicted score of item i for user u and ranku(ŝui) is the ranking
position of the item. Items are ranked by the descending order of ŝui. In our
methods, items are ranked by the causal effect estimates τ̂ui, i.e., ŝui = τ̂ui. We
calculated the above metrics for each user and took average over all users. Note
that τui is a ternary variable (τui ∈ {1, 0,−1}) and the metrics can be negative.

The hyper parameters of each method were tuned with validation data
to optimize each metric, i.e., chosen parameters were different for each met-
ric. We used the same shrinkage parameters for treatment and control (β =
βT = βC). The exploration ranges for the proposed methods were as fol-
lows: the maximum number of neighbors ∈ {10, 30, 100, 300, 1000, 3000, 10000},
the scaling factor α ∈ {0.33, 0.5, 1.0, 2.0, 3.0, 5.0}, and the shrinkage parame-
ter β ∈ {0, 0.3, 1, 3, 10, 30, 100}. The exploration ranges for other baselines were
same with [40].

5.2 Results and Discussions

Performance Comparison. Tables 2 and 3 show the performance comparison.
The best among previous methods differ for datasets. Our CUBNs constantly
outperform them in all datasets. CIBNs perform worse but are still competitive
to other baselines. CUBN-O and CUBN-T tend to perform similarly, and any
differences depend on datasets and metrics. CUBN-O uses previous outcomes
for user similarities same as traditional UBN. On the other hand, CUBN-T
uses previous treatment assignments for user similarities that is original to our
work. The result indicates that similarity of previous treatment assignments
can provide good measure of user similarities. Furthermore, CUBN and CIBN
counterparts not using own and neighborhood interaction mixtures (-woM) are
often outperformed by methods which do, showing its importance.
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Table 2. Performance comparison in the Dunnhumby (DH) dataset. The best results
are highlighted in bold. Note that the smaller is better in CAR.

DH-Original DH-Personalized

CP@10 CP@100 CDCG CAR CP@10 CP@100 CDCG CAR

Random 0.0046 0.0049 0.726 3.01 0.0048 0.0044 0.672 2.84

Pop 0.0293 0.0157 0.925 1.86 0.0275 0.0131 0.858 1.64

BPR 0.0331 0.0153 0.923 1.86 0.0564 0.0187 0.858 1.54

UBN 0.0294 0.0153 0.926 1.87 0.0419 0.0190 0.922 1.36

IBN 0.0301 0.0138 0.903 1.94 0.0438 0.0179 0.928 1.49

CausE 0.0337 0.0204 1.009 1.95 0.0857 0.0186 1.110 1.39

ULRMF 0.0359 0.0168 0.937 1.78 0.0802 0.0203 1.005 1.39

ULBPR 0.0343 0.0143 0.918 1.80 0.0806 0.0209 1.038 1.32

DLTO 0.0358 0.0151 0.955 1.82 0.0813 0.0198 1.063 1.41

DLCE 0.0354 0.0116 0.882 2.70 0.0839 0.0209 1.036 1.38

CUBN-O 0.0424 0.0193 0.986 1.98 0.0877 0.0240 1.124 1.24

CUBN-T 0.0513 0.0216 1.030 1.78 0.0890 0.0257 1.112 1.13

CIBN-O 0.0328 0.0110 0.892 2.43 0.0871 0.0190 1.112 1.36

CIBN-T 0.0301 0.0095 0.872 2.61 0.0889 0.0181 1.135 1.61

CUBN-O-woM 0.0437 0.0186 0.979 2.20 0.0902 0.0199 1.107 1.30

CUBN-T-woM 0.0436 0.0198 0.991 2.10 0.0901 0.0124 1.005 2.40

CIBN-O-woM 0.0382 0.0140 0.909 2.38 0.0738 0.0175 1.008 1.39

CIBN-T-woM 0.0333 0.0098 0.890 2.69 0.0881 0.0168 1.098 2.03

Table 3. Performance comparison in the MovieLens (ML) 100K and 1M datasets. The
best results are highlighted in bold. Note that the smaller is better in CAR.

ML-100K ML-1M

CP@10 CP@100 CDCG CAR CP@10 CP@100 CDCG CAR

Random 0.076 0.075 13.9 61.8 0.097 0.098 38.0 194

Pop -0.215 -0.085 11.3 73.7 -0.135 -0.042 35.5 196

BPR 0.092 0.088 14.0 61.7 0.102 0.103 38.1 194

UBN -0.217 -0.102 11.1 66.6 -0.175 -0.058 35.2 165

IBN 0.098 0.099 14.0 63.2 0.052 0.055 36.8 177

CausE 0.310 0.214 16.4 34.4 0.309 0.246 42.4 122

ULRMF 0.302 0.148 15.8 39.0 0.160 0.152 39.9 152

ULBPR 0.333 0.163 15.6 43.9 0.245 0.187 40.4 143

DLTO 0.330 0.155 15.3 53.2 0.289 0.202 40.5 152

DLCE 0.330 0.215 16.6 28.8 0.319 0.258 42.4 119

CUBN-O 0.349 0.218 16.9 27.2 0.334 0.258 42.7 116

CUBN-T 0.350 0.218 16.8 25.9 0.336 0.256 42.6 127

CIBN-O 0.184 0.145 15.5 30.0 0.236 0.186 41.1 120

CIBN-T 0.160 0.149 15.6 31.8 0.188 0.173 40.9 122

CUBN-O-woM 0.310 0.194 16.6 29.0 0.291 0.233 42.4 115

CUBN-T-woM 0.311 0.194 16.6 29.0 0.294 0.237 42.4 114

CIBN-O-woM 0.147 0.123 15.1 34.6 0.216 0.183 40.6 117

CIBN-T-woM 0.118 0.126 15.2 34.5 0.160 0.168 40.8 123
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Dependence on Hyper Parameters. As our methods are neighborhood
methods, the dependence on the number of neighbors is important. Figure 2
shows the results. General trends show that performance improves with increas-
ing numbers of neighbors. In ML-100K and ML-1M datasets, CIBNs reach max-
imum performance with relatively smaller numbers of neighbors.

Our methods have other two key hyper-parameters: the scaling factor α and
the shrinkage parameter β. We investigated the dependence on these parameters
(Fig. 3). The best performances were obtained at β > 0, showing the effective-
ness of introducing the shrinkage. Optimal β for CP@10 is larger than that for
CP@100. This trend was similarly observed in other datasets. We suppose that
inappropriate item selection by random noise of causal effect estimates affects
CP more severely when recommendation list is small, thus the shrinkage β should
be larger for CP@10.

(a) DH-Ori. (b) DH-Per. (c) ML-100K. (d) ML-1M.

Fig. 2. Dependence on the number of neighbors in validation datasets. The scaling
factor α and the shrinkage parameter β are set to the optimal values for each number
of neighbors. Note that the possible number of neighbors are restricted by either the
number of users or that of items.

(a) ML-1M (CP@10). (b) ML-1M (CP@100).

Fig. 3. Dependence on the scaling factor α and the shrinkage parameter β for CUBN-O
in the ML-1M dataset. The number of neighbors are set to 6,040.
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Influence of Difference in Previous Recommendation Logs. IPS are
known to suffer from variance by very small propensities. This happens when rec-
ommendation assignments shift toward deterministic assignments, i.e., propen-
sities are close to 0.0 or 1.0. In our semi-synthetic data generation, increasing
unevenness parameter b in Eq. (10) makes recommendations more deterministic.
Hence we investigated how it affects our methods and IPS-based previous method
(DLCE). As seen from Fig. 4(a, b), DLCE degrades with increasing unevenness.
On the other hand, our methods are more robust to this unevenness.

Recommendation methods targeting the causal effect commonly require rec-
ommendation logs. Here we investigated how the number of logged recommen-
dations for each user affects the performance. For CP@10 (Fig. 4(c)), the per-
formances of CUBN-O and DLCE are mostly stable, while CUBN-T degrades
with less number of logged recommendations. This is reasonable considering that
CUBN-T obtains neighbors by the similarity of recommendation assignments.
For CP@100 (Fig. 4(d)), all methods are affected by the number of logged rec-
ommendations, but CUBN-O is relatively robust.

(a) CP@10. (b) CP@100. (c) CP@10. (d) CP@100.

Fig. 4. Performances under the varied unevenness of propensity (a, b) and the varied
number of logged recommendations per user (c, d).

6 Conclusions

We proposed causality-aware neighborhood methods to generate item ranking by
the causal effect of recommendations. We unified traditional neighborhood-based
recommendation methods with matching estimator, and further enhanced them
by mixing the own and neighbor observations and introducing the shrinkage
for potential outcome estimates. Models proposed in this paper outperformed
baselines on causal effect versions of commonly used ranking metrics. This was
particularly true for models augmenting user-based neighborhood methods for
causal effect. The results suggest that these models can lead to improved sales
and user engagement and are thus highly beneficial for businesses employing
recommender systems. In the future work, our methods can be enhanced by
applying graph-based neighborhood similarities [9,28] or by learning neighbor-
hood similarities [21,30]. Another direction of future work is to leverage contex-
tual information [1]. Since neighborhood methods are known to be effective in
session-based recommendations [26], it would be also interesting to extend our
methods for session-based recommendations.
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Abstract. Clarification is increasingly becoming a vital factor in var-
ious topics of information retrieval, such as conversational search and
modern Web search engines. Prompting the user for clarification in a
search session can be very beneficial to the system as the user’s explicit
feedback helps the system improve retrieval massively. However, it comes
with a very high risk of frustrating the user in case the system fails in
asking decent clarifying questions. Therefore, it is of great importance
to determine when and how to ask for clarification.

To this aim, in this work, we model search clarification prediction
as user engagement problem. We assume that the better a clarifica-
tion is, the higher user engagement with it would be. We propose a
Transformer-based model to tackle the task. The comparison with com-
petitive baselines on large-scale real-life clarification engagement data
proves the effectiveness of our model. Also, we analyse the effect of all
result page elements on the performance and find that, among others,
the ranked list of the search engine leads to considerable improvements.
Our extensive analysis of task-specific features guides future research.

Keywords: Search clarification · Mixed-initiative conversations · User
engagement prediction

1 Introduction

The primary goal of an information retrieval (IR) system is satisfying the user
information need, which can often be ambiguous when expressed as short queries.
Incorporating users’ implicit feedback has long been studied for improved
retrieval [17]. However, the recent rise of interest in conversational systems and
mixed-initiative interactions have enabled IR systems to collect users’ explicit
feedback. Current research focuses on prompting users for feedback by asking
for clarification [2,32,43]. For example, search clarification has recently been
utilised in search engines, leading to an improved user experience [43]. Another
prominent area studying clarification is conversational search, as the system can
usually output only one response, thus requiring to clarify the user’s intent [2,32].
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Fig. 1. An example of Bing clarification pane taken from [44].

The importance of clarification further increases in a mixed-initiative conversa-
tional setting [39], where control of the conversation goes back and forth between
user and system through assertions, prompts, and questions [32].

However, clarification in search proved to be a cumbersome task [45], posing
higher risk of user dissatisfaction. The challenge arises from two main aspects:
deciding whether or not it is necessary to ask for clarification, and selecting or
generating the appropriate clarifying question. Clarification selection can in fact
be formalised as a user engagement prediction problem. User engagement refers
to the quality of user experience characterised by, among others, attributes of
positive affect, attention, interactivity, and perceived user control [26]. Persistent
users’ interactions with the clarification mechanism are an indication of a well-
designed system. Furthermore, through these interactions users provide implicit
feedback about the necessity and the quality of prompted clarifications.

Recently, modern search engines include various types of clarification com-
ponents into their systems. An example of such a component in Bing, namely
a clarification pane, can be seen on Fig. 1. Given a user query, a number of
Microsoft’s internal algorithms propose a clarifying question and offer clickable
answers that would filter the retrieved results according to the user’s need. The
research on the quality of asked clarifying questions and potential answers is
still in its early stages [43]; however, Zamani et al. [44] argued that engagement
level could be an indicator of the clarification system quality. User engagement
prediction has been studied in various domains of IR [25]. However, studying and
modelling user engagement for web search clarification is relatively unstudied.

In this paper, we focus on the task of predicting user engagement level (ELP)
on clarification panes. Given an initial query, search results, and clarification
pane, ELP aims to estimate how engaged the user would be with the clarifi-
cation pane. Previous work [45] studies how engagement levels correlate with
the query attributes such as query type and aspects. However, the relationship
between SERPs and engagement has not yet been explored. We stress the impor-
tance of utilising retrieved results, as they can contain cues as to how faceted or
ambiguous the query is, suggesting how necessary the clarification is in the first
place.

Moreover, users’ engagement with the system implicitly discloses information
about the necessity and the quality of the asked clarification. The quality aspect
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can be modelled under the assumption that the higher the engagement levels,
the better the question and the provided answers are. We make this assump-
tion inspired by a large body of work in the IR community on implicit feedback
from aggregated click-through rates for document retrieval [42]. Also, we study
clarification necessity prediction through ELP. Our clarification necessity pre-
diction model takes as input the initial query and the retrieved results list and
predicts the level of user engagement with a clarification pane. Although certain
attributes of the initial query such as length and ambiguity could indicate the
necessity of asking clarifying questions, we show that incorporating other SERP
elements such as result titles and snippets play important roles in improved
prediction accuracy.

We formulate the task as supervised regression and propose a deep learning-
based model for the prediction of the engagement levels. We compare the per-
formance of the model to various central tendency measures and a number of
traditional machine learning algorithms, as well as popular neural models. Our
model, based on a Transformer architecture, jointly encodes the user query,
the clarification pane, and the SERP elements, outperforming competitive base-
lines. We evaluate the performance of our model on a large-scale dataset of
search clarification engagements called MIMICS1 [44], collected from millions of
interaction records of Bing2 users. Our extensive experiments establish a strong
baseline for the task, while ablation studies and analysis of the model’s inner
mechanisms provide guidelines for future research. Our main contributions can
be summarised as follows:

• We formally introduce the clarification pane ELP task as supervised regres-
sion and propose a transformer-based model to tackle it. We make the code
publicly available for reproducibility purposes3.

• We perform ablation studies with respect to the model input data. We find
that utilising retrieved search results greatly benefits the model’s perfor-
mance.

• We perform detailed analysis of the performance of our model w.r.t. various
characteristics of the SERP.

To the best of our knowledge, our work is the first to utilise SERP elements
for clarification pane engagement prediction. More precisely, we find that util-
ising search results in certain ways is highly beneficial for the ELP task, as the
performance of our model increases by up to 40% when provided with retrieved
results, compared to the query and the clarification pane only.

2 Related Work

Our work is related to work done in conversational and web search clarifica-
tion, engagement level prediction, and neural networks. In this section we briefly
review some of the works in these areas.
1 https://github.com/microsoft/MIMICS.
2 http://www.bing.com.
3 https://github.com/isekulic/mimics-EL-benchmark.

https://github.com/microsoft/MIMICS
http://www.bing.com
https://github.com/isekulic/mimics-EL-benchmark
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Clarification. Search clarification has recently been addressed as an impor-
tant problem in the IR community. Recent research efforts study clarification
in a wide range of areas, including web search engines [45], community question
answering [6], voice queries [18], dialogue systems [38], entity disambiguation [9],
and information-seeking conversations [2,20,36].

Radlinski and Craswell [32] discuss the need for clarification in their pro-
posed theoretical framework for conversational search, highlighting the necessity
of multi-turn interactions with users. Moreover, the report from the Dagstuhl Sem-
inar on Conversational Search [4] summarises potential research topics in conver-
sational search, and recognises clarification as an integral part of a conversational
information seeking (CIS) system, which was also argued by Penha et al. [29] for
information-need elucidation. Asking clarifying questions was studied by Alian-
nejadi et al. [2], who propose an offline evaluation setting of an open-domain CIS
system, which was highlighted as a hard-to-evaluate setting [30]. They find that
asking clarifying questions reduces the number of turns needed for identifying the
underlying user information need. Adding the fact that users like to be prompted
for clarification [18], we see a clear importance for clarification.

Clarification is further highlighted in mixed-initiative conversational search,
where system in each turn needs to decide whether to ask for clarification or
issue a response [32]. Hashemi et al. [15] propose a Guided Transformer model
for document retrieval and next clarifying question selection in a conversational
search setting. Zamani et al. [43] propose supervised and reinforcement learn-
ing models for generating clarifying questions and the corresponding candidate
answers from weak supervision data. On the other hand, Ren et al. [34] introduce
the task of conversations with search engines, where system generates a short,
summarised response of the retrieved passages. Although generating and select-
ing clarifying questions for such purposes has recently been studied, the necessity
of asking for clarification is still a relatively unexplored topic [1]. Whether or not
it is necessary to ask for clarification depends mostly on the level of ambiguity
of the query.

User Engagement. O’Brien and Toms [26] define user engagement as the
quality of user experience in interaction with a system, characterised by various
attributes, e.g., positive affect, aesthetic and sensory appeal, attention, novelty,
perceived user control. In their recent study [25], they point user engagement as
an important outcome measure in interactive IR research. User engagement has
previously been studied in the context of commercial software, social media [13],
online news [24], student engagement with online courses [12], and applications
for monitoring health-related signals [3].

User engagement in the aforementioned studies has usually been measured by
self-reported questionnaires, facial expression analysis or speech analysis, signal
processing methods, or web analytics [21]. Recently, Zamani et al. [44] created
a collection of datasets for studying clarification in search by aggregating user
interactions with clarification pane in a major commercial search engine, thus
falling into the category of measuring the user engagement by web analytics. In
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this paper however, instead of estimating the engagement levels with a goal of
advancing search engine clarification feature, we analyse the implicit signals of
the interactions that contain valuable information about the ambiguity of the
query, diversity of retrieved results, and the quality of the clarifying question.
Thus, motivated by work on implicit feedback of aggregated users’ click-through
logs for ad hoc retrieval [17], we view the engagement levels as implicit evaluation
of clarifying questions with respect to the query and search results. Intuitively,
the higher the engagement levels with the clarification system, the higher the
quality of the prompted clarification, and higher the need for asking for clarifi-
cation.

Zamani et al. [45] study the clarifying question selection with respect to user
queries, prompted questions and candidate answers in clarification panes of a
search engine. However, the retrieved search engine results for a query have not
yet been studied. To bridge this gap, in this paper, we propose a model to predict
the user engagement levels, not only from the information in clarification pane,
but from the retrieved search results.

Transformers. The unprecedented success of the Transformer-based architec-
tures in the large variety of the IR and natural language processing tasks moti-
vated their application to the engagement level prediction task as well. One of
the most prominent Transformer-based models is BERT [11]. BERT has reached
state-of-the-art results in multiple language understanding benchmarks, such as
GLUE [40] and SQuAD [33], as well as IR tasks, such as passage and document
ranking [23,37]. In this work, we utilise ALBERT [22] – a lite BERT. ALBERT
offers the performance of BERT, or even a higher one, while having fewer param-
eters, reducing the GPU/TPU memory requirements.

3 Engagement Level Prediction

In this section, we first describe the dataset used for engagement level prediction
(ELP). Then, we formally introduce the task of ELP and propose a BERT-based
model to tackle it.

3.1 Data

MIMICS [44] is a recently proposed large-scale collection of datasets for research
on search clarification. It enables the IR community to study various aspects of
search clarification, ranging from clarification generation and selection, over re-
ranking of candidate answers, to user engagement prediction and click models
for clarification. MIMICS consists of three datasets:

1. MIMICS-Click, including over 400k unique queries, their corresponding
clarification panes, and the aggregated user interaction signals.

2. MIMICS-ClickExplore, consisting of over 60k unique queries, each with
multiple clarification panes, and the aggregated interaction signals.
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Table 1. Dataset statistics for MIMICS-Click.

Mean Std Median min-max

Query length 2.66 1.18 2 1 - 12

Question length 6.05 0.47 6 5 - 14

SERP Titles length 7.65 2.71 8 0 - 30

SERP Snippets length 43.47 14.76 45 0 - 149

Answers per query 2.81 1.06 2 2 - 5

Responses per query 9.07 1.19 9 0 - 10

3. MIMICS-Manual, containing 2k query-clarification pairs, manually
labelled for the quality of clarifying questions, candidate answer sets, and
landing result pages of each answer.

In this work, we mainly focus on MIMICS-Click, as the largest, most generic
one. Each sample in MIMICS-Click consists of the initial query q, the clarification
question c, and answers offered as options by the system A = [a1, ...a5]. The sam-
ple is associated with user interaction signals as labels. The impression level i, a
categorical variable where i ∈ {low,medium, high}, represents the frequency of
the clarification pane being presented to the user for the corresponding query.
The engagement level e ∈ [0, 10] shows the level of total engagement received by
the users in terms of click-through rate. Each answer is also associated with its
conditional click probability.

The authors also released search engine results pages (SERPs) for each query,
as retrieved by Bing. In addition to the query meta-data, SERPs contain up to 10
retrieved instances with a title, an URL, and a short snippet of a web document.
We denote retrieved results as R = [r1, r2, . . . rn], where n ∈ [0, 10]. Each of the
results ri consists of a tuple ri = (ti, si), where ti and si are title and snippet of
the i-th result. Table 1 shows the average lengths of queries4, questions, retrieved
titles and snippets, as well as the number of retrieved results in SERPs. We utilise
all of the available text and information as input to our models to compose our
experiments, as described in Sect. 3.3.

3.2 Task Formulation

We formulate the task of user engagement level prediction as a supervised regres-
sion. The goal of the regression is to predict the value of the target variable y,
given a D-dimensional vector x of input variables [5]. Given the dataset of N
observation pairs (xn, yn), where n = 1, ..., N , the goal is to find a function f(x)
whose outputs ŷ for new inputs x produce the predictions for the corresponding
values of y. The loss function of the predicted values ŷ and the actual values y
are model-dependent and described in Sect. 3.3.

4 The length was computed by splitting the text on whitespaces.
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The target variable y is given in the dataset in the range of 0 to 10, corre-
sponding to the level of user engagement with the clarification pane. We approach
ELP as a regression problem as it poses itself as a natural formulation of our
task. Compared to classification, false predictions of different value are penalised
differently. For example, classification would punish false predictions of ŷ = 7
and ŷ = 1 for a sample with y = 8 the same, while in reality, the predicted
label of 7 is much closer to the actual engagement level. Therefore, even though
still wrong, one would prefer a system to predict 7 instead of 1. Moreover, the
task of user engagement prediction has been evaluated as regression in various
applications such as [12,35].

3.3 Our Approach

We now define our model called ELBERT (Engagement Level prediction by
ALBERT). As mentioned in the previous section, the goal is to predict the
engagement level y based on the initial query q, clarification question c, list of
candidate answers A, and retrieved results R. We predict the engagement level
EL as follows:

EL(q, c, A,R) = ψ(φq(q), φc(c), φA(A), φR(R)) (1)

where φ{q,c,A,R} are high-dimensional representations of q, c, A, and R. The
aggregation function ψ outputs the final engagement levels based on the input
representations. All of these components can be modelled with numerous meth-
ods. In this work, we utilise ALBERT as our encoder for generating φ{q,c,A,R}
representations in a joint fashion. More specifically, as ALBERT has been shown
to consistently help downstream tasks with multiple inputs [22], we essentially
learn the joint representation of query, clarification question, answers, and results
as:

Φ(q, c, A,R) = ALBERT (q, c, A,R) (2)

reducing our Eq. 1 to:

EL(q, c, A,R) = ψ(Φ(q, c, A,R)). (3)

Input to the ALBERT component is composed of tokenized query, question,
answers, and results, separated by the separation token [SEP ], with classification
token [CLS] inserted in the beginning of a sequence. Answers ai are aggregated
before feeding them to the model. Similarly, we aggregate SERP information R,
with a difference that we experiment with both, titles ti and snippets si as inputs.
In either case, texts of titles or of snippets are joined by whitespace prior to being
fed to the model. We note that in ablation studies some of the components are
left out by simply removing them from Eq. 2. We use a pretrained ALBERT-base
[22] as a text encoder and truncate the total input sequence length to a maximum
of 512 tokens. Our model has 11M training parameters, making it considerably
smaller than other Transformer-based model (e.g., BERT has 110M).

The regression component ψ, that outputs the engagement level, is con-
structed as follows: last layer hidden-state of the first token of the encoded
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sequence ([CLS] token) is further processed by a linear layer and a non-linear
activation function. We then add another linear layer, with dropout and a non-
linear activation function in between, to produce the final 1-dimensional output
that corresponds to EL. The model is trained using mean squared error as a
loss function for 4 epochs, with a learning rate of 5× 10−5, Adam optimizer [19]
and linear weight decay with warmup.

4 Experiments

In this section, we introduce our experimental setup and present main results
for the engagement level prediction. Furthermore, we analyse the effect of SERP
elements on model’s performance and perform detailed analysis w.r.t. various
characteristics of the data.

4.1 Baselines

We use central tendency measures as our first baselines for predicting the engage-
ment level. More specifically, we have three different static baselines: (i) mean of
the data (MeanEngagement); (ii) median of the data (MedianEngagement); (iii)
sampling from a normal distribution N (μ, σ2), where μ and σ are the mean and
the standard deviation of the engagement levels in the training data, respectively
(NormalEngagement).

To tackle the task of ELP, we experiment with a number of models from
traditional machine learning and deep learning. Namely:

Linear Regression. First baseline is a linear regression model, fitted using
ordinary least squares approach.

SVR. We employ support vector regression machines [14], a version of support
vector machines [10] for regression. We experiment with the linear, as well as
the radial basis function (RBF) kernel.

Random Forests. An ensemble meta-algorithm that uses bootstrap aggregating
(bagging) technique to improve the stability of decision trees [7].

LSTM. Long-short term memory [16] are a well-established method for sequence
modelling, especially on text data. We experiment with multi-layer bidirec-
tional networks.

The input to traditional ML models are tf-idf weighted bag-of-word features
extracted from the input text. LSTM is fed with pretrained GloVe word embed-
dings [31] of tokenized input text. We use Scikit-learn [28], HuggingFace [41],
and Pytorch [27] for the implementation of the aforementioned models.

4.2 Evaluation Metrics

We evaluate the effectiveness of our models using standard evaluation metrics for
the task of supervised regression. The first two are Mean Absolute Error (MAE)
and Mean Squared Error (MSE). We also evaluate our regression models with
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Table 2. Performance on the full MIMICS-Click dataset (400k+ samples) and a subset
where engagement levels are higher than zero (71k samples). Bold values denote the
best results for each metric. Symbols † and ‡ mark statistically significant improvement
over central tendency measures and traditional ML models, respectively (p < 0.01).

Model Full MIMICS-Click EL-only MIMICS-Click

MAE MSE R2 MAE MSE R2

Mean 0.1531 0.0546 0.0 0.2426 0.0790 0.0

Median 0.0921† 0.0531 0.0 0.2412 0.0805 0.0

Normal 0.1896 0.0823 0.0 0.4316 0.2637 0.0

Linear Regression 0.1463 0.0530 0.0359 0.2364 0.0783 0.0083

SVR 0.1462 0.0522 0.0490 0.2318† 0.0736† 0.0676†

RandomForest 0.1477 0.0526 0.0423 0.2301† 0.0729† 0.0775†

BiLSTM 0.1452†‡ 0.0511†‡ 0.0606†‡ 0.2299† 0.0720† 0.0789†

ELBERT 0.1439†‡ 0.0505†‡ 0.0762†‡ 0.2224†‡ 0.0692†‡ 0.1124†‡

Coefficient of Determination or R2. It is a statistical measurement that examines
the proportion of the variance in one variable that is predictable from the second
variable, estimating the “goodness of a fit”. It is defined as: R2 = 1−

∑N
i=1(yi−ŷi)

2
∑N

i=1(yi−yi)
2 ,

where N is the number of samples, yi is the actual value in the dataset for the
i-th sample, ŷ is the predicted value, and y is the mean of the actual values.

4.3 Experimental Setup

We evaluate our models using a hold-out method, i.e., reserving 20% of the
dataset for the test set. We train, and tune traditional ML models in a cross-
validation manner [8]. We use 5-fold split of the training set into training and
development set, which is used for grid-searching of the best parameters. The
extensive grids of parameters include regularisation parameter C, the choice of
kernel, gamma, and epsilon for SVR, number of estimators and depth of random
forest regressor, as well as feature selection process. All of the parameters can
be found on our GitHub repository.

For tuning the hyper-parameters of our neural models, we split the training
set into training and development sets. Notice that models are retrained on the
full training set with the best parameters before being evaluated on the hold-out
test set.

We evaluate the models on the full MIMICS-Click dataset, consisting of more
than 400k query-clarification-SERP tuples, and on the subset of that dataset, in
which only samples with the engagement level larger than zero are selected. The
models in this setting were fed all the available data, i.e., the queries, clarification
panes, and the SERPs, while the ablation studies in Sect. 4.4 go into the analysis
of input data.
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Table 3. Impact of SERP elements available on the model performance. Bold values
denote the best performance of each metric. Statistically significant results (with p <
0.05) over query setting and query+pane setting are marked with † and ‡, respectively.

# Setting Full MIMICS-Click EL-only MIMICS-Click

MAE MSE R2 MAE MSE R2

1 query 0.1500 0.0519 0.0485 0.2275 0.0719 0.0776

2 query+pane 0.1354† 0.0512 0.0626† 0.2257† 0.0714 0.0839†

3 query+titles 0.1335†‡ 0.0436†‡ 0.0814†‡ 0.2229†‡ 0.0692†‡ 0.1124†‡

4 query+snippets 0.1459† 0.0513 0.0606† 0.2255†‡ 0.0706†‡ 0.0944†‡

5 query+pane+titles 0.1450† 0.0505† 0.0745†‡ 0.2224†‡ 0.0692†‡ 0.1124†‡

6 query+pane+snippets 0.1439† 0.0505† 0.0762†‡ 0.2240†‡ 0.0704†‡ 0.0969†‡

4.4 Results and Discussion

Performance Comparison. Here, we compare the performance of our
ELBERT model against the baselines on the complete dataset, as well as the
subset of data with EL> 0. Table 2 lists the results in terms of all our evaluation
metrics. We can notice that heuristic baselines (i.e., MeanEngagement, Media-
nEngagement and NormalEngagement) are consistently outperformed by both,
the traditional ML models, and the neural models. However, one exception is
MedianEngagement, a baseline that always outputs the median of the training
set, i.e., EL of 0.0, when evaluated on the full MIMICS-Click by mean absolute
error. Since more than 80% of the dataset have EL of 0.0, and MAE does not
penalise large errors as hard as MSE or R2, this is expected. The tide turns
swiftly when evaluating on the subset of the data with EL larger that 0.0, where
all of the static baselines, including MedianEngagement, are outperformed by
all of our models.

Moreover, we see a clear disparency in the performance of traditional ML
models and neural networks. This is consistent with recent research in various
tasks in IR and NLP fields. Moreover, we see that ELBERT significantly out-
performs BiLSTM model. Through its powerful encoder, ELBERT is able to
capture deeper semantic relations, as it is pretrained on a large body of text.
This is also consistent with recent research on deep learning-based models for
natural language understanding.

Effect of SERP Elements on ELP. In this experiment, we aim to analyse
the effect of clarification panes and every SERP element on the performance
of our model. Our hypothesis is that each SERP element (e.g., result titles
and snippets) provides a complementary set of features that aids the model
towards more effective prediction. Therefore, we train our ELBERT model with
different combination of SERP elements and clarification panes, and compare
the performance of the different models. We report the results in Table 3. We
see that the relative improvement when utilising titles from SERPs is up to 35%
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compared to using query and clarification pane, and more than 45% over query-
only setting. The results strongly suggest the advantage of making use of SERP
elements for ELP.

An interesting finding is that even though snippets contain more text than
titles and thus arguably more information as well, the model does not consis-
tently perform better with snippets as input. In fact, even though results with
titles seem better than ones with snippets, we observe no statistically signifi-
cant difference between the performance of query+titles and query+snippets on
full MIMICS-Click, nor EL-only MIMICS-Click. There are several reasons why
snippets do not exceed the performance of titles. First, it might be the quality
and type of text shown in snippets. Snippets often show only short excerpts, or
even multiple excerpts which are not clearly divided, from a longer document,
focusing on query words in the retrieved document. Thus, they might not con-
tain all the semantics of the document, while titles usually do. Second, it might
be the maximum input length of our encoder, which is 512 sub-word tokens.
As mentioned in Table 1, a median length of a title is 8 tokens, while median
snippet length is 45. Considering that most of the samples have 9 or more title-
snippet pairs in their SERPs, it is evident that some portion of concatenated
snippets get left out. The potential limitation of truncating input length in most
of BERT-based models is a research direction on its own.

Fig. 2. Performance by impression levels (left) and query lengths (right) with different
input configurations.

We point out that the necessity of asking the clarification can be estimated
from the initial query and retrieved search results, i.e., rows 1, 3, and 4 in Table 3,
The success of the model to predict EL based on SERPs and the query alone,
suggests that this framework can be used for determining whether or not to ask
a clarifying question. However, we leave this aspect for future work. Instead, in
the next subsection we evaluate our model trained on ELP task for clarification
pane selection, addressing the pane quality aspect.
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4.5 Additional Experiments

Here we show ELBERT performance, as measured by R2, with respect to various
characteristics of the dataset and the input components.

Impression Level. Figure 2 (left) shows the performance of our model
w.r.t. impression levels. We notice that our model performs significantly bet-
ter on queries with high impression rate, i.e., those whose clarification panes
have been shown to users more frequently. The differences between models at
each impression level are not statistically significant, while differences between
levels are, with p < 0.01. As the engagement level labels have been computed
by aggregating user click information, this suggest that query-clarification pairs
that have been implicitly evaluated by a small number of users, i.e., have low
impression level, contain noise.

Fig. 3. Performance by number of search results made available to the model.

Query Length. Figure 2 (right) presents the performance of our model
w.r.t. query length. The difference in performance between all query lengths
is statistically significant. We notice that longer queries generally lead to better
performance. This can be attributed to them being more descriptive, thus allow-
ing the search engine to retrieve more relevant results. Consequently, our model
would utilise SERPs of higher quality, improving the ELP. Highest improvement
is seen for a query and pane-only setting. Since the model in that setting does
not see any SERP content, it benefits the most out of longer, more descriptive
queries.

Number of Search Results. Since user behaviour is mainly biased by the
results they see, and they mostly look at top results only, we perform experiments
to see how our models behave in a setting with limited number of retrieved
results. As mentioned before, MIMICS dataset contains up to 10 retrieved results
for each query. We evaluate our model with 1, 2, . . . 10 SERP elements made
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available to it. Results for both, titles setting and snippets setting, are presented
in Fig. 3. We see a clear improvement in the performance as the number of search
results fed to the model rises. This suggests that our model highly utilises SERP
elements for ELP. We notice a saturation after 7 elements, especially in the
setting with snippets. This might be due to snippets exceeding the maximum
length of input to transformer-based models, which is 512 subword tokens.

5 Conclusions

In this study, we conducted various experiments on engagement level predic-
tion task for clarification in search. We showed that semantic-rich models, like
ALBERT, are much more successful in the task than traditional ML models.
Furthermore, we demonstrated the benefit of utilising information from search
engine result pages, such as titles and text snippets of retrieved documents, in
the ELP task. Modelling of engagement levels can help guide the system on when
and which clarifications to prompt, thus improving the overall user experience.
Future work involves deeper analysis of topical changes in the retrieved pages,
that could lead to more accurate prediction of engagement levels, and estimating
the necessity of asking for clarification.
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Abstract. In this era of multimedia Web, text-to-image retrieval is a
critical function of search engines and visually-oriented online platforms.
Traditionally, the task primarily deals with matching a text query with
the most relevant images available in the corpus. To an increasing extent,
the Web also features visual expressions of preferences, imbuing images
with sentiments that express those preferences. Cases in point include
photos in online reviews as well as social media. In this work, we study
the effects of sentiment information on text-to-image retrieval. Particu-
larly, we present two approaches for incorporating sentiment orientation
into metric learning for cross-modal retrieval. Each model emphasizes
a hypothesis on how positive and negative sentiment vectors may be
aligned in the metric space that also includes text and visual vectors.
Comprehensive experiments and analyses on Visual Sentiment Ontol-
ogy (VSO) and Yelp.com online reviews datasets show that our mod-
els significantly boost the retrieval performance as compared to various
sentiment-insensitive baselines.

Keywords: Text-to-image retrieval · Cross-modal retrieval · Metric
learning · Sentiment orientation

1 Introduction

The Web is awash in visual imagery. Millions of images are added daily to the
billions already existing in various image-oriented platforms such as Instagram,
Pinterest, Flickr, etc. In addition, product reviews in virtually any category,
be it of restaurants on Yelp or consumer electronics on Amazon, frequently
feature photos accompanying (complementing and even enhancing) the textual
content of the reviews. In the face of such abundance and diversity, finding images
relevant to one’s purpose remains a pertinent challenge. While images are now a
cornerstone modality on the Web, the manner in which most users express their
intent is still predominantly textual. In this paper, we focus on text-to-image
retrieval, i.e., retrieving images from a textual query. This is distinct from image
retrieval, i.e., retrieving images from an image query [10], which is an active
research topic in its own right.
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The presumption by many previous works on cross-modal retrieval (involving
multiple modalities, such as text and image) [8,41] is that queries, and by exten-
sion the images the queries are aimed at, are generally of an objective nature.
For instance, a user may be looking for pictures of a cat, a car, a specific person,
etc. In reality, images are not universally devoid of sentiment. To the contrary,
recent literature on visual sentiment analysis [31,36–38,47] attests to the man-
ifestation of sentiments within some images. Within reviews for a restaurant or
a hotel for example, someone may post an image of “restroom” in the positive
sense (perhaps an especially clean or well-appointed specimen) or in the nega-
tive sense (such as the case where hygiene is less than desired). Conceivably, an
“objective” query may turn out images of varied sentiments, due to its lack of
specificity of which sentiment is fit and proper for the occasion at hand.

Problem. For a more holistic and expressive capacity for retrieving relevant
images, we posit that in some scenarios the query intent may indeed have a
sentiment dimension. For simplicity of discourse, we assume binary sentiment
classes of positive and negative respectively. In other words, a query is now a
tuple of (textual keywords, sentiment class), and we seek to return a ranked
list of images (from a corpus), which are relevant to the specified keywords and
sentiment. It is worth noting that the corpus of interest consists of mere images,
unadorned explicitly with text nor sentiment.

There are several challenges to this problem. One challenge inherent to cross-
modality learning is how to learn associations among different modalities with
distinct feature spaces, in this case text and images. Another challenge pertinent
to retrieval is how to model relevance between varied modalities. Over and above
these that plague cross-modal retrieval, we also have the peculiar challenge of
modeling the third modality of interest, namely sentiment.

Approach. To deal with these challenges, we propose a framework called
Sentiment-Oriented Metric Learning or SML. To overcome the variety in modal-
ities, we learn modality-specific feature mappings that respectively map text
and image inputs onto a common space. Presuming training data in the form
of text-sentiment-image triples, we preserve relevant associations in these triples
through proximity constraints relating texts, sentiments, as well as images in the
resulting common feature space. Of particular interest are the manners in which
we model sentiments as directional vectors in the common metric space, giving
rise to two variants, SMLOPPO and SMLFLEX , based on different assumptions
in bringing sentiment-oriented queries closer to the relevant images.

Contributions. In this work, we make several contributions. First, to our best
awareness, this is the first work to study the effect of sentiment information
for better understanding of text-to-image retrieval. Second, to characterize the
effect of sentiments, we develop two models, namely SMLOPPO and SMLFLEX ,
that learn metric spaces in which the sentiments are represented by directional
vectors. Third, we conduct comprehensive experiments comparing the proposed
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models with other cross-modal retrieval approaches. Experiments on real-life
datasets, which include Visual Sentiment Ontology (Flickr images) and online
review images from Yelp.com, show that our models significantly outperform the
sentiment-insensitive baselines, underlining the import of sentiment on text-to-
image retrieval.

2 Related Work

In this section, we review the related work along the two broad lines of metric
learning as well as multi-view learning.

Metric Space Learning. The notion of distance is fundamental to many
machine learning algorithms. Metric representation learning [22] deals with
learning representations of objects so as to reflect the relationships among
those objects in terms of distances in the metric space, i.e., putting relevant
objects in proximity while distancing irrelevant ones. It finds applications in
various contexts, such as image classification [26,35], image retrieval [21,40],
text retrieval [46] and collaborative filtering [15], whereby in each case context-
specific constraints may apply.

In the context of cross-modal retrieval, the constraints may include minimiz-
ing distances between positive pairs while maximizing distances between negative
pairs [24,25]. Additional considerations may include preserving geometric struc-
tures such as global consistency and local smoothness [48] or making the feature
learning modality-specific [42,49]. Orthogonally, we investigate metric learning
for sentiment-oriented text-to-image retrieval, whereby the sentiment-orientation
is particularly novel. We further propose a framework incorporating recent devel-
opments in deep representation learning, with new objectives to factor sentiment
into the learned metric space (in addition to text and image modalities).

Multi-view Learning. An object may have multiple “views”, i.e., observa-
tions in distinct feature spaces. In cross-modal retrieval, we have text and
images. Multi-view learning finds object representations across several views,
which would preserve the associations among different views of an object as well
as among objects within a view.

A classical technique for feature learning across spaces is Canonical Correla-
tion Analysis (CCA) [2,14]. The crux is to find linear projections of two vectors
(one for each view), so as to maximize their correlations. To incorporate non-
linearity, one approach is based on kernel methods [1,5,11,27]. A more recent
approach is to use deep neural networks [3,16,23], of which DCCA [3] is the
most recent work presenting a complete learning framework. In experiments, we
compare to both CCA and DCCA.

Aside from correlation analysis, neural networks are also used for multi-view
learning in different ways. Within the autoencoder framework, the objective is
usually to find a feature representation in a common space that could reconstruct
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the inputs in the respective feature spaces [8,29,43]. In turn, [30,41] employ
adversarial learning framework. As a recent competitive method for cross-modal
retrieval based on adversarial learning, ACMR [41] is included as a baseline.

Note that ours has a different problem setting from those [17,32,41] that
learn discriminative common representations by exploiting labels to distinguish
between semantic categories. For one, sentiment can be seen as an independent
modality, rather than labels during learning. For another, sentiment itself is
a part of the query. Also incidentally related are approaches based on cross-
modal hashing [7,33,34,45,50] that focus primarily on retrieval efficiency, while
tolerating some loss in accuracy due to potential loss of information.

Fig. 1. Illustration of the SML framework. Image and text are embedded into the
metric space using deep neural networks. For SMLOPPO (a), sentiment vectors are in
opposite directions, while sentiment vectors in SMLFLEX (b) are unconstrained. Given
that the query is positive, the sentiment margin constraint, d(q+

i ,pi) < d(qi,pi) − τ1,
is demonstrated in green color (negative is in red color). In turn, the distance margin
constraint between correct and incorrect query-photo pairs, d(q+

i ,pi) < d(q+
i ,pj)−τ2,

is demonstrated in blue color. (Color figure online)

3 Sentiment-Oriented Metric Learning (SML)

An input data collection T = {(xi, zi,yi)}N
i=1 contains N instances of text-

sentiment-image triples. Here, zi is binary {positive, negative}. Our objective is
to infuse the text with sentiment in order to form a sentiment-sensitive query
(xi, zi) that would better match the desired image yi than xi could on its own.

In essence, we propose SML framework which seeks to find two functions f
and g transforming queries and images, respectively, into a metric space in which
their similarities can be measured. Specifically, fθ and gψ , parameterized by θ
and ψ, independently map (xi, zi) and yi to a D-dimensional Euclidean space
RD, in which the distance between query (xi, zi) and image yi is measured as:

dθ ,ψ ((xi, zi),yi) = ‖fθ (xi, zi) − gψ (yi)‖2 (1)
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In this framework, we posit that sentiments are high-level abstraction con-
cepts which should be represented as independent vectors in the metric space.
We model a sentiment-infused query in additive form fθ (xi, zi) = qi + si, where
qi and si are vectors in the metric space representing text and sentiment respec-
tively. In turn, gψ (yi) = pi is a vector representing the image in the same metric
space. The specific instantiation of si manifests slightly differently in two models,
SMLOPPO and SMLFLEX , which will be discussed subsequently. The learning
output consists of transformations for qi and pi, as well as the sentiment vectors
{si} that allow us to measure distances for new queries and images.

3.1 Opposing Sentiment Vectors (SMLOP P O )

In the first model, referred to as SMLOPPO, we propose learning opposing sen-
timent vectors in a metric space. In other words, the two sentiment vectors
(positive and negative) are in opposite directions and having the same magni-
tude. Thus, we only need to learn a single vector s. It follows that the positive
vector is +s and the negative vector is −s. For each query tuple (xi, zi), the
sentiment vector si is in the form of:

si = αi ∗ Γ (zi) ∗ s (2)

αi = ln(1 + exp(WT
αqi)) (3)

Γ (zi) =

{
+1 if zi = positive

−1 if zi = negative
(4)

where s is the sentiment basis vector shared across queries, Γ (∗) is a sign func-
tion, αi is query-specific scale factor controlling the magnitude of the sentiment
vector si. Hypothetically, αi is a function of qi as different semantic concepts in
different text queries require different intensity for the sentiment to be expressed.
The choice of softplus [9] function for αi is because of its smoothness and to
ensure the value domain αi ∈ (0,+∞) for vector magnitude.

Our model learning can be specified as a constrained optimization problem:

min
θ ,ψ ,Wα,s

λ(r(θ) + r(ψ)) +
N∑

i=1

d(qi + si,pi)

s.t. d(qi + si,pi) < d(qi,pi) − τ1
d(qi + si,pi) < d(qi + si,pj) − τ2,∀j �= i

(5)

where r(∗) is regularizer on the model parameters {θ,ψ}, d(∗) is the loss due to
Euclidean distance, and λ is the trade-off between regularizer and loss. The first
constraint is margined relative distance between sentiment-oriented-query and
neutral-query towards the correct image. The second constraint is margined rela-
tive distance between correct and incorrect query-photo pairs. The relationships
amongst vectors and constraints are demonstrated in Fig. 1a.

We transform this constrained optimization into a regularized empirical risk
minimization problem. The constraints are enforced using the standard hinge
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loss [δ]+ = max(0, δ). We then derive an unconstrained loss function with l2-
regularization as follows:

L = λ
(
‖Wα‖2F +

Lf∑
l=1

(‖Wl
f‖2F + ‖bl

f‖22) +
Lg∑
l=1

(‖Wl
g‖2F + ‖bl

g‖22)
)

+
N∑

i=1

[
‖(qi + si) − pi‖22 + max

(
0, τ + ‖(qi + si) − pi‖22 − ‖qi − pi‖22

)

+
N∑

j=1

1(i �= j) max
(
0, 1 + ‖(qi + si) − pi‖22 − ‖qi − pj‖22

)]
(6)

where Lf and Lg are the numbers of layers of the two neural networks charac-
terizing fθ and gψ , respectively.

Parameters of the model can be optimized via minimizing the loss function
using stochastic gradient descent. In practice, we optimize the model using mini-
batch to speed up the learning process. For each mini-batch of triples B =
{(xi, zi,yi)}|B|

i=1 sampled from the collection T , each query will be paired with
other images within the mini-batch to form negative pairs instead of considering
all possible negative combinations from the whole collection T . This stochastic
process drastically reduces convergence time, and in expectation achieves our
global objective (Eq. 6). Algorithm 1 describes the optimization procedure with
the mini-batch gradient descent.

3.2 Flexible Sentiment Vectors (SMLF LEX )

In some ways, the previous assumption by SMLOPPO could be quite restrictive,
as the opposing directions of the sentiment vectors are enforced on every single
dimension of the learned metric space.

To allow for greater flexibility, we arrive at another variant, which we refer
to as SMLFLEX , by allowing the positive sentiment vector and negative senti-
ment vector to take their own independent directions. That way, they can be
opposing in some dimensions, but not necessarily across all D dimensions. Thus,
it provides another degree of freedom for the model to allocate coordinates judi-
ciously between the objective of capturing sentimental concepts as well as that of
capturing textual-visual semantic concepts. SMLFLEX decouples and learns two
global sentiment vectors s+ and s− separately. Figure 1b illustrates the learned
metric space of SMLFLEX . The constrained optimization is as follows:

min
θ ,ψ ,s+,s−

λ(r(θ) + r(ψ)) +
N∑

i=1

d(qi + sΓ (zi),pi)

s.t. d(qi + sΓ (zi),pi) < d(qi,pi) − τ1
d(qi + sΓ (zi),pi) < d(qi + sΓ (zi),pj) − τ2,∀j �= i

(7)

Similarly to SMLOPPO, we can derive an unconstrained loss function and pro-
ceed minimization with the stochastic gradient descent algorithm.
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3.3 Implementation Details

In this work, we use two neural networks, recurrent and convolution, to learn
text and image transformations. The former uses LSTM cell [13], which had
been shown to be effective in learning textual representation in many machine
learning tasks. Word embeddings to the LSTM are initialized from pre-trained
Word2vec [28] of 300 dimensions. For the latter, we employ ResNet-50 [12] archi-
tecture, which has also been used extensively for obtaining image representation
of numerous vision-related tasks. The output representations from LSTM and
ResNet-50 are both projected into the metric space using two-layer perceptrons
(each layer is followed by the hyperbolic tangent activation function). The imple-
mentation of SML is made available at https://code.preferred.ai/sml/.

Algorithm 1. Parameter learning with mini-batch gradient descent
Input: T = {(xi, zi,yi)}N

i=1, learning rate η
Output: Learned parameters {θ, ψ, s}

1: initialization
2: θ, ψ, s ← randomly initialized
3: while not converged do
4: Tbatch = {Bb}num batch

b=1 ← uniformly sampled from T
5: for all Bb ∈ Tbatch do
6: gθ = 0; gψ = 0; gs = 0;
7: for all (xi, zi,yi) ∈ Bb do
8: for all (xj , zj ,yj) ∈ Bb where (j �= i) do
9: gθ = gθ + ∂

∂θ
L(xi, si,yi,yj);

10: gψ = gψ + ∂
∂ψ

L(xi, si,yi,yj);

11: gs = gs + ∂
∂s

L(xi, si,yi,yj);
12: end for
13: end for
14: θ = θ − η · gθ

|Bb| ; ψ = ψ − η · gψ
|Bb| ; s = s − η · gs

|Bb| ;
15: end for
16: end while
17: return {θ, ψ, s}

4 Experiments

The objectives are to investigate the impact of sentiment on text-to-image
retrieval and to assess the efficacy of sentiment-oriented metric learning frame-
work via comparison with various cross-modal retrieval baselines.

4.1 Experimental Setup

Datasets. We conduct experiments on two datasets including Visual Sentiment
Ontology (VSO) [6] and online reviews crawled from Yelp.com.

https://code.preferred.ai/sml/
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VSO dataset consists of adjective-noun pairs (ANP), e.g., delicious drink or
angry face, associated with sentiment scores. Images are retrieved from Flickr
when using these ANPs as queries. Firstly, sentiment is binarized based on the
sign of the scores. Secondly, to reduce sentiment biases, we neutralize the queries
by only using the nouns. Images from all ANPs belonging to the same noun
are merged together. To remove the biases, we balance the number of images
between two sentiments within each query via uniform sampling. These would
then form (xi, zi,yi) triples in T , which is randomly split into 5 folds for model
cross-validation. Statistics of the VSO dataset after being processed is shown in
Table 1. The numbers of triples are not identical as not all queries have divisible-
by-5 number of triples. A small fraction of images appear in multiple queries,
thus, the number of images is smaller than the number of triples.

Table 1. Data statistics

VSO Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

#images 29,745 30,033 29,654 30,039 29,614 149,085

#triples 29,798 30,088 29,704 30,080 29,660 149,330

Yelp BO CH LA NY SF Total

#images 19,054 19,054 19,054 19,054 19,054 95,270

#triples 38,303 37,643 38,816 37,762 38,654 191,178

Yelp dataset consists of reviews of businesses in 5 US cities: Boston (BO),
Chicago (CH), Los Angeles (LA), New York (NY), and San Francisco (SF).
Each review has a rating, review text, and one or more images taken by the
user. Sentiment is derived from the rating score, whereby ratings 1 and 2 are
considered negative, ratings 4 and 5 are considered positive, while rating 3 is
dropped as being ambiguous. Review text is split into shorter passages; each
sentence is considered a text query. An image can be paired with multiple queries
from the same review. To identify the best-matching text-image pairs, we rank
the text queries based on cosine similarity of their TF-IDF vectors to that of the
user-provided image caption, and consider up to 3 highest-ranked text queries
to be relevant. These form the (xi, zi,yi) triples in T . To neutralize a text
query xi, words strongly suggestive of sentiment (i.e., objective score < 0.5
by SentiWordNet [4]) are replaced by a special token -MSK-. We balance the
number of images between the two sentiments and across the cities via uniform
sampling. Table 1 shows statistics of the Yelp dataset after being processed. The
numbers of triples are not identical as not all queries have 3 matched images.

Evaluation Protocols. We adopt a similar test procedure as [18,39]. In our
case, we conduct 5-fold validation, where for the Yelp dataset, four cities are
used for training and one city is used for testing. During the test phase, for each
query we construct a sample of 1,000 images, which include the correct images as
well as uniformly sampled images in the test set. For each experiment, we report
average result across 10 independent runs as well as the standard deviation.
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Comparative Methods. We compare the proposed methods SMLOPPO and
SMLFLEX with the following approaches:

– Random is the simplest baseline without learning,
– CCA [14] is one of the strongest statistical methods for cross-modal retrieval,

which learns linear projections from input features, i.e., average Word2vec
embeddings for text query and ResNet-50 features for images,

– DCCA [3] is the most recent extension of CCA transforming the same input
features using multilayer perceptrons (i.e., we follow the original architecture
of MLP in the original work) to capture non-linear interactions,

– ACMR [41] is a competitive method for cross-modal retrieval based on adver-
sarial learning, in which modality-invariant representation in the common
space is achieved by confusing a modality discriminator. We use the same
neural network architectures for ours and ACMR for parity.

For all methods, the size of latent space is set to D = 300. For models that use
stochastic gradient optimization, their parameters are updated with Adam [19]
adaptive rule, batch size of 256, and learning rate of 0.001. Upon grid search for
regularization λ ∈ {1e−5, 1e−4, . . . , 1e−1} and margins τ∗ ∈ {0.0, 0.1, . . . , 1.0},
the best hyper-parameters are obtained with cross-validation.

Metrics. We employ three established ranking metrics to measure the retrieval
performance of the compared methods.

– Percentile Rank (PR) measures how well the correct images are being ranked

amongst the image population. PR = 1
N

N∑
i=1

(
1

|Di|
∑

j∈Di

rankj

M

)
, where Di

denotes the set correct images for the query i, rankj is the rank of image j
by the model, and M is the total number of images being ranked.

– Normalized Discounted Cumulative Gain (NDCG) measures the quality of

ranking. NDCG = 1
N

N∑
i=1

DCGi

idealDCGi
, where DCGi =

∑
j∈Di

1
log (rankj+1) , is

the gain of image i relative to its position in a ranked list, and idealDCGi is
the best achievable DCGi in which all the correct images are at the top.

– Recall@K (R@K) denotes the ratio of correct images in the top-K retrieved

images to the total number of correct images. R@K = 1
N

N∑
i=1

∑
j∈Di

1[j∈Li]

|Di| ,

where 1[∗] is the indicator function and Li is the top-K retrieved images.

4.2 Quantitative Evaluation

Comparison Among Baselines. For an overall sense of the retrieval accu-
racy, Tables 2 and 3 report the results of comparative approaches on different
metrics on the two datasets, respectively. Random is the ground-level reference
for relative comparisons with other methods.

The statistical method CCA shows a competitive performance. Starting with
pre-trained embeddings from Word2Vec and ResNet-50, it benefits from the
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richly-compressed features from those underlying models, even though the pro-
jections it learns on top of these features are linear. DCCA obtains better results,
attributable to further adaptation by learning non-linear transformations opti-
mized for the same CCA objective. Even so, the gap between CCA and DCCA
seems to be close on VSO dataset as the text queries are simpler (single nouns).

Considered a strong method for cross-modal retrieval, ACMR outperforms
DCCA across all metrics on VSO and also on Yelp except for Recall@10. How-
ever, by adopting adversarial learning with less stable optimization [20], the
variances of ACMR tend to be higher than other methods. That explains why

Table 2. Performance of comparative methods on VSO dataset.

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.

PR Random 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00

CCA 80.94 ± 0.00 81.05 ± 0.01 80.82 ± 0.01 80.67 ± 0.01 80.86 ± 0.01 80.87 ± 0.00

DCCA 81.22 ± 0.11 81.33 ± 0.11 81.14 ± 0.05 81.00 ± 0.10 81.06 ± 0.09 81.15 ± 0.04

ACMR 84.35 ± 0.21 84.43 ± 0.22 84.01 ± 0.14 84.16 ± 0.22 84.02 ± 0.26 84.19 ± 0.08

SMLOP P O 85.38 ± 0.10† 85.42 ± 0.08† 85.04 ± 0.12† 85.15 ± 0.06† 85.11 ± 0.11† 85.22 ± 0.04†

SMLF LEX 85.34 ± 0.08† 85.42 ± 0.11† 85.10 ± 0.07† 85.14 ± 0.09† 85.13 ± 0.07† 85.23 ± 0.03†

NDCG (%) Random 12.30 ± 0.02 12.32 ± 0.03 12.32 ± 0.03 12.31 ± 0.03 12.32 ± 0.03 12.31 ± 0.01

CCA 19.55 ± 0.02 19.70 ± 0.02 19.59 ± 0.03 19.55 ± 0.04 19.62 ± 0.02 19.60 ± 0.01

DCCA 20.08 ± 0.07 20.20 ± 0.10 19.96 ± 0.05 20.04 ± 0.07 20.06 ± 0.08 20.07 ± 0.03

ACMR 20.64 ± 0.22 20.67 ± 0.20 20.41 ± 0.11 20.61 ± 0.21 20.56 ± 0.25 20.58 ± 0.09

SMLOP P O 21.95 ± 0.14† 21.93 ± 0.14† 21.74 ± 0.19† 21.80 ± 0.13† 21.89 ± 0.15† 21.86 ± 0.05†

SMLF LEX 21.93 ± 0.15† 21.97 ± 0.15† 21.84 ± 0.12† 21.87 ± 0.09† 21.92 ± 0.13† 21.91 ± 0.05†

R@10 (%) Random 0.99 ± 0.07 1.00 ± 0.08 1.02 ± 0.05 0.99 ± 0.09 0.99 ± 0.05 1.00 ± 0.02

CCA 12.00 ± 0.06 12.26 ± 0.06 12.01 ± 0.06 11.89 ± 0.09 12.19 ± 0.08 12.07 ± 0.03

DCCA 13.25 ± 0.20 13.52 ± 0.25 13.08 ± 0.16 13.17 ± 0.13 13.23 ± 0.18 13.25 ± 0.08

ACMR 14.01 ± 0.45 13.98 ± 0.41 13.61 ± 0.22 13.98 ± 0.49 13.94 ± 0.49 13.91 ± 0.18

SMLOP P O 16.75 ± 0.29† 16.77 ± 0.27† 16.43 ± 0.41† 16.50 ± 0.25† 16.72 ± 0.38† 16.63 ± 0.13†

SMLF LEX 16.75 ± 0.36† 16.85 ± 0.31† 16.54 ± 0.26† 16.57 ± 0.18† 16.71 ± 0.25† 16.68 ± 0.12†

†improvements of SML models over the second-best baseline are statistically significant (p-value < 0.01).

Table 3. Performance of comparative methods on Yelp dataset.

Method BO CH LA NY SF Avg.

PR Random 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00

CCA 69.45 ± 0.01 68.65 ± 0.00 68.59 ± 0.01 69.01 ± 0.00 69.25 ± 0.01 68.99 ± 0.00

DCCA 79.22 ± 0.26 78.67 ± 0.24 78.79 ± 0.34 79.01 ± 0.27 78.44 ± 0.28 78.83 ± 0.19

ACMR 83.76 ± 0.89 83.32 ± 0.96 83.63 ± 0.65 83.67 ± 0.53 83.12 ± 0.80 83.50 ± 0.36

SMLOP P O 85.51 ± 0.09† 84.84 ± 0.12† 84.89 ± 0.17† 84.92 ± 0.14† 84.32 ± 0.24† 84.89 ± 0.10†

SMLF LEX 85.48 ± 0.12† 84.81 ± 0.10† 84.93 ± 0.17† 84.96 ± 0.13† 84.38 ± 0.12† 84.91 ± 0.07†

NDCG (%) Random 12.65 ± 0.03 12.76 ± 0.03 12.38 ± 0.03 12.41 ± 0.03 12.60 ± 0.02 12.56 ± 0.01

CCA 19.82 ± 0.04 19.21 ± 0.02 18.80 ± 0.02 18.89 ± 0.02 18.97 ± 0.01 19.14 ± 0.01

DCCA 21.06 ± 0.21 20.85 ± 0.20 20.38 ± 0.24 20.54 ± 0.21 20.40 ± 0.20 20.64 ± 0.14

ACMR 20.88 ± 0.91 21.00 ± 0.92 20.29 ± 0.70 20.59 ± 0.54 21.01 ± 0.76 20.75 ± 0.38

SMLOP P O 22.83 ± 0.14† 22.51 ± 0.26† 21.66 ± 0.21† 21.95 ± 0.31† 22.20 ± 0.46† 22.23 ± 0.16†

SMLF LEX 22.82 ± 0.09† 22.57 ± 0.25† 21.77 ± 0.33† 22.10 ± 0.40† 22.44 ± 0.19† 22.34 ± 0.16†

R@10 (%) Random 0.96 ± 0.06 1.02 ± 0.08 0.99 ± 0.06 0.98 ± 0.06 1.01 ± 0.04 0.99 ± 0.02

CCA 12.78 ± 0.05 11.31 ± 0.05 11.80 ± 0.04 11.56 ± 0.04 11.55 ± 0.04 11.80 ± 0.02

DCCA 14.75 ± 0.47 13.96 ± 0.43 14.39 ± 0.49 14.62 ± 0.52 13.77 ± 0.40 14.30 ± 0.31

ACMR 13.43 ± 1.94 13.45 ± 1.86 13.19 ± 1.52 13.81 ± 1.19 14.25 ± 1.60 13.62 ± 0.81

SMLOP P O 17.49 ± 0.27† 16.44 ± 0.58† 16.04 ± 0.51† 16.59 ± 0.69† 16.65 ± 0.92† 16.64 ± 0.34†

SMLF LEX 17.45 ± 0.22† 16.62 ± 0.56† 16.21 ± 0.67† 16.93 ± 0.84† 17.10 ± 0.40† 16.86 ± 0.32†

†improvements of SML models over the second-best baseline are statistically significant (p-value < 0.01).
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DCCA can surpass ACMR on Yelp-Recall@10, which takes into account only
top-10 items rather than global ranking by Percentile Rank and NDCG.

Effect of Proposed Sentiment-Orientation. By leveraging sentiment infor-
mation, both SMLOPPO and SMLFLEX significantly outperform all the
sentiment-insensitive baselines across virtually all metrics and datasets. On aver-
age, SMLFLEX model is slightly better than SMLOPPO. This is not unexpected
as SMLOPPO makes a stricter assumption on the direction of sentiment vectors.

Figure 2 visualizes the learned metric spaces of SML with four sample queries:
“bill”, “service”, “drink”, and “toilet”, and their sentiment-infused queries, by
projecting their vectors onto 2D using PCA [44]. For SMLOPPO, we observe
opposing directions between positive and negative sentiments. For SMLFLEX ,
they are not directly opposing but still form obtuse angles. This indicates a
strong contrast of the sentiment concepts captured by the models. In addition,
with the relaxation, SMLFLEX can pull “bill” and “service” together, i.e., they
are considered closer semantically as compared to “drink” or “toilet”. This could
be an explanation for the higher accuracies exhibited by SMLFLEX .

Fig. 2. Learned metric spaces of SML visualized in 2D using PCA.

Fig. 3. Performance with varying the number of dimensions D of metric spaces.

Effect of Dimensionality. To further understand how the size of the metric
space affects SML models, we conduct an experiment with different settings
of dimensionality D on Yelp dataset. Figure 3 illustrates performance of the
SMLOPPO and SMLFLEX when D ranges from 50 to 300. Across all metrics,
the model performances are sharply boosted when D increases from 50 − 200
and tends to converge around the values of 250 − 300, especially so in terms
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of Percentile Rank. Even though the performance of SMLFLEX is potentially
better if D goes beyond 300, it does not seem to be the case for SMLOPPO.
Thus, we stop at D = 300, and all experiments are also conducted under this
setting.

4.3 Case Studies

To gain more insights on the SML models, especially when the notion of sen-
timent is visually prominent, we illustrate examples from Yelp-LA dataset.
Figure 4 shows retrieved images with different queries and sentiments. In addi-
tion, we include ACMR as a reference baseline. In each ranking (top-4 are ver-
tically positioned), the ground-truth is marked with a dotted rectangle. First
of all, we notice that SMLFLEX can retrieve the correct image in both cases
and SMLOPPO in one case. This observation concurs with the higher retrieval
performance of SMLFLEX in the previous quantitative analysis. Interestingly,
in the second example, not only can SMLFLEX pull the correct one into top-4,
but it also illustrates a strong notion of sentiment when the first-ranked image,
“burned pizza”, is evidently negative. Meanwhile, ACMR retrieves images based
on the concepts implied by text queries, but not the ground-truth in both cases,
presumably as it might not have captured the sentiment aspects well.

Fig. 4. Top retrieved images organized along queries.

Fig. 5. Top retrieved images while changing sentiments.
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For understanding the notion of sentiments captured by SMLOPPO and
SMLFLEX , in Fig. 5 we analyze 2 queries “toilet” and “service”, while alternat-
ing the sentiment input. Neutral means the sentiment vectors are set to zeros.
For both queries, there are contrasts between “negative” and “positive” images.
SMLOPPO demonstrates that effect more clearly, especially on “toilet” query.
This is due to desired constraint of the model, and can also be explained via Fig. 2
(i.e., sentiment vectors of “toilet” query are slightly longer in magnitude than
the other queries’). For “service” query, negative images show complaint notes
which imply customer unhappiness. Surprisingly, the positive images turn out to
be smiling faces showing customer satisfaction. With such sentimental concepts
captured via SML models, the case studies shed some light on understanding
how the models work as well as how the performance could be interpreted.

5 Conclusion

We propose Sentiment-Oriented Metric Learning framework to incorporate sen-
timents into text-to-image retrieval. Our models SMLOPPO and SMLFLEX out-
perform comparable baselines on experiments involving images obtained from
Flickr (VSO) as well as from online reviews (Yelp). As future work, the pro-
posed framework could potentially be further extended to learn other visual
concepts (e.g., human emotions, fashion styles) for text-to-image retrieval.

Acknowledgement. This research is supported by the National Research Founda-
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Abstract. Session-based recommenders, used for making predictions
out of users’ uninterrupted sequences of actions, are attractive for many
applications. Here, for this task we propose using metric learning, where a
common embedding space for sessions and items is created, and distance
measures dissimilarity between the provided sequence of users’ events
and the next action. We discuss and compare metric learning approaches
to commonly used learning-to-rank methods, where some synergies exist.
We propose a simple architecture for problem analysis and demonstrate
that neither extensively big nor deep architectures are necessary in order
to outperform existing methods. The experimental results against strong
baselines on four datasets are provided with an ablation study.

Keywords: Session-based recommendations · Deep metric learning ·
Learning to rank

1 Introduction

We consider the session-based recommendation problem, which is set up as fol-
lows: a user interacts with a given system (e.g., an e-commerce website) and
produces a sequence of events (each described by a set of attributes). Such a
continuous sequence is called a session, thus we denote sk = ek,1, ek,2, . . . , ek,t
as the k-th session in our dataset, where ek,j is the j-th event in that session.
The events are usually interactions with items (e.g., products) within the sys-
tem’s domain. In comparison to other recommendation scenarios, in the case of
session-based recommendations—information about the user across sessions is
not available (in contrast to session-aware recommendations). Also, the browsing
sessions originate from a single site (which is different from task-based recom-
mendations).

The sequential nature of session-based recommendations means that it shares
some similarities with tasks found within natural language processing (NLP),
where sequences of characters, words, sentences, or paragraphs are analyzed.
This connection leads to a situation where many methods that are successful
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in NLP are later applied to the field of recommendations. One such example is
connected with recurrent neural networks (RNNs), which have led to a variety of
approaches applied to recommender systems [9,36,41]. Another, one is connected
with the transformer model [3] applied to model users’ behavior [38].

Despite the apparent steady progress connected with neural methods, there
are some indications that properly applied classical methods may very well beat
these approaches [21]. Therefore in this paper, we propose combining the classical
KNN algorithm with a neural embedding function based on an efficient neigh-
borhood selection of top-n recommendations. The method learns embeddings of
sessions and items in the same metric space, where a given distance function
measures dissimilarity between the user’s current session, and next items. For
this task, a metric learning loss function and data sampling are used for train-
ing the model. During the evaluation, the nearest neighbors are found for the
embedded session. This makes the method attractive for real-life applications,
as existing tools and methods for neighborhood selection can be used. The main
contributions of this paper are as follows:

– we verify selected metric learning tools for session-based recommendations,
– we present a comparison of the metric learning approach and learning to

rank, where some potential future directions for recommender systems can
be explored based on the latest progress in deep metric learning,

– we introduce a generic model for recommendations, which allows the impact of
different architectures of session and item encodings on the final performance
to be evaluated—which we do in the provided ablation studies,

– we evaluate our approach using known protocols from previous session-based
recommendation works against strong baselines over four datasets; for the
sake of reproducibility and future research1.

2 Related Works

Session-Based Recommendations. Time and sequence models in context-
aware recommender systems were used before the deep learning methods
emerged. Many of these approaches can be applied to session-based recommen-
dation problems with some additional effort to represent time, e.g., modeling it
as a categorical contextual variable [10,29] or explicit bias while making pre-
dictions [16]. The sequential nature of the problem can also be simplified and
used with other well-known methods, i.e., Markov chains [31], or applying KNNs
combined with calculating the session items sets’ similarities [12].

The Gru4Rec method [9] has been an important milestone in applying RNNs
to session-based recommendation tasks. The authors focused on sessions solely
represented by interactions with items and proposed a few contributions: using
GRU cells for session representation, negative exemplars mining within mini-
batch, and a new TOP1 loss function. In the followup work [8] authors proposed
further improvements to loss functions. Inspired by the successful application of
1 https://github.com/btwardow/dml4rec.

https://github.com/btwardow/dml4rec
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convolutional neural networks (CNNs) for textual data [14], new methods were
proposed. One example is the Caser approach [39], which uses a CNN-based
architecture with max pooling layers for top-n recommendations for sessions.
Another, proposed in [47], utilises dilated 1D convolutions similar to WaveNet
[27]. The embedding techniques known from NLP, e.g. skip-gram and CBOW,
were also extensively investigated for recommender systems. Methods such as
item2vec and prod2vec were proposed for embedding-based approaches. However
recently conducted experiments with similar approaches, were unsuccessful in
obtaining better results than simple neighbourhood methods for session-based
recommendations [20].

Metric Learning. Metric learning has a long history in information retrieval.
Among the early works, the SVM algorithm was used to learn from relative
comparisons in [32]. Such an approach directly relates to Mahalanobis distance
learning, which was pursued in [22] and [17]. Even though new and more effi-
cient architectures emerge constantly, the choice of loss functions and training
methods still plays a significant role in metric learning. In [6], the authors pro-
posed the use of contrastive loss, which minimizes the distance between similar
pairs while ensuring the separation of non-similar objects by a given margin. For
some applications, it was found hard to train, and in [11], the authors proposed
improvement by using an additional data point—anchor. All three data points
make an input to the triplet loss function, where the objective is to keep the
negative examples further away from the anchor than the positive ones with a
given margin. Recently more advanced loss functions were proposed: using angu-
lar calculation in triplets [42], signal-to-noise ratio [48], and multi-similarity loss
[43]. Still, contrastive and triple losses in many applications have proven to be
a strong baseline when trained correctly [7]. Nevertheless, the high computa-
tional complexity of data preparation (i.e. creating point tuples for training) for
contrastive and triplet approaches cannot be solved by changing only the loss
function. These problems are addressed by different dataset sampling strategies
and efficient mining techniques. One notable group here is online approaches,
which try to explore relations in a given mini-batch while training, e.g., hard
mining [7], n-pairs [37], the lifted structure method [26], and weighting by dis-
tance [46]. Many combinations of sampling and mining techniques, along with
the loss functions, can be created, which makes a fair comparison hard [4,13,24].

3 Metric Learning vs. Ranking Learning for
Session-Based Recommendations

An ordered output of the session-based recommender in the form of a sorted
list for a given input sk is the ranking rk. In learning-to-rank, as well as recom-
mender systems, the main difficulty is the direct optimization of the output’s
quality measures (e.g., recall, mean average precision, or mean reciprocal rank).
The task is hard for many (gradient-based) methods due to the non-smoothness
of the optimized function [1]. This problem can be resolved either by minimizing
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a convex upper bound of the loss function, e.g., SVM-MAP [49], or by opti-
mizing a smoothed version of an evaluation measure, e.g., SoftRank [40]. Many
approaches exist, which depend on the model of ranking: pointwise (e.g. SLIM
[25], MF [15], FM [29]), pairwise (BPR [30], pLPA [18], GRU4Rec [9]), or list-
wise (e.g. CLIMF/xCLIMF [2,33], GAPfm [34], TFMAP [35]). However, not
all are applicable to session-based recommendations. Pairwise approaches for
ranking top-N items are the most commonly used, along with neural network
approaches. In the GRU4Rec method, two pairwise loss functions for training
were used—Bayesian Personalized Ranking (BPR) [30] and TOP-1:

lBPR(sk, ip, in) = − ln
(
σ(ŷsk,ip − ŷsk,in)

)
(1)

lTOP1(sk, ip, in) = σ(ŷsk,in − ŷsk,ip) + σ(ŷ2
sk,in

) (2)

where sk denotes the session for which ip is a positive example of the next item,
and in is a negative one. The ŷsk,i is a score value predicted by the model for
the session sk and the item i. The score value allows items to be compared and
the ordered list rk to be produced, where i.e. ip >rk in, and >rk⊂ I2 denotes
total order [30].

In metric learning, the main goal is to align distance with dissimilarity of
objects. In [6], the contrastive loss function for two vectors xi,xj ∈ R

d is given
as:

lCont(xi,xj) = yd(xi,xj) + (1 − y)max
(
0, d(xa,xn) − m

)
(3)

where y is an indicator variable, 1 if both vectors are from the same class, 0
otherwise, m ∈ R+ is the margin, and d(xi,xj) is a distance function, e.g.,
Euclidian or cosine. This loss function pulls similar items (y = 1) and pushes
dissimilar ones. A direct extension – the triplet loss [11] – is defined as follows:

lTriplet(xa,xp,xn) = max
(
0, d(xa,xp) − d(xa,xn) + m

)
(4)

where xp and xn are respectively positive and negative items for a given anchor
xa and m ∈ R+ is the margin.

Both contrastive and triplet losses can be used to optimize the goal of the
total ordering of objects [19,30] as induced by the learned metric. If d(xi,xj) = 0
does not imply xi = xj, d is then a pseudo metric [32], and total order cannot
be induced. If we assume that two functions ϕ(sa) = xa and item ω(ik) = xk

are given to embed the session and item to the same R
d space, where scoring is

done by cosine similarity ŷs,i = 1−d(ϕ(s), ω(i)), then previously defined ranking
losses and metric can be presented as:

lBPR(sk, ip, in) = − ln(σ(dkn − dkp)) , (5)

lTOP1(sk, ip, in) = σ(dkp − dkn) + σ((1 − dkn)2) , (6)
lTriplet(sk, ip, in) = max(0, dkp − dkn + m) (7)

where dkj = d(ϕ(sk), ω(ij)). A direct connection can be seen: that minimizing
each of the loss functions will try to keep ip closer to sk than in. In all cases, for
session-based recommendations, positive items are known, while the negatives
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are sampled from the rest of the items (e.g., uniformly or by a given heuristic).
In both BPR and TOP1, a sigmoid σ(x) function is used for optimizing AUC in
place of a non-differentiable Heaviside function directly, as explained in [30]. In
TOP1, the authors added a regularization term for negative predictions, which
further constrains the embedding space by keeping negatives close to zero. Met-
ric learning losses use a rectifier nonlinearity (max(0, x)) to prevent from moving
data points that are already in order. When considering partial derivative w.r.t
distances between our anchor session sk and positive and negative items, they
contribute equally, as was discussed in [43]. If in a single calculation, more rela-
tions are explored (usually inside the same mini-batch), techniques like lifted
structures [26] are used. However, the relations are made between known classes
of examples. In learning to rank, each instance inside a selected set can be
ordered, which can be used i.e., to estimate overall ranking, like in Weighted
Approximated-Ranking Pairwise (WARP) [44]. All losses have one more impor-
tant thing in common: they do not take into account the relationship between
positive and negative items (without the anchor). This is a subject of further
improvements in metric learning methods like [42,43]. In our solution, we pro-
pose using a simple weighting for ranking to address this shortcoming.

4 Proposed Method

We propose a method for session-based recommendations using deep metric
learning, where the main input is the sequence of user’s actions (i.e. the ses-
sion) sk = {ek,1, ek,2, . . . , ek,t} ∈ S, and items i ∈ I. At the high-level the
network’s architecture can be described as ŷsk,i = d(ϕ(sk), ω(i)), where ϕ and ω
denote the session and item encoders respectively, and ŷsk,i denotes how score
for recommending item i in the context of session sk. We decided on a simple
and modular approach in order to investigate the impact of each module on the
final outcome—focusing mainly on the session encoder and different metric loss
functions. The only constraint of the model towards the used network is the used
dimensionality of ϕ(sk), ω(i) ∈ R

d for learning a common metric space. The out-
puts of networks are normalized and cosine distance functions d(ϕ(sk), ω(i)) are
used in final scoring ŷsk,i calculation.

4.1 Metric Loss for Ranking

Triplet Loss. The overall triplet loss function is calculated over the prepared
training dataset. Assuming that session sk has L positive items, the final triplet
loss function for balanced positive-negative sampling is as follows:

L =
1

|S|
∑

sk∈S

L∑

j=0

wj max (0, d (ϕ(sk), ω(ip)) − d (ϕ(sk), ω(in)) + m) (8)

where weight wj is weight used for particular position. In experiments, we used√
1/(1 + j) for weighting, which is expected to change the magnitude of the
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calculated gradient based on the ranking position. To incorporate the relation
between positives and negatives items we used a swaping technique for a triplet
loss, where anchor is exchanged with positive and the final distance to a negative
point is taken as a minimum d′

kn = min (dkn, dpn).

Neighborhood Component Analysis with Smoothing (NCAS) Loss.
Based on the NCA loss [5,23] used commonly in deep metric learning we intro-
duce a version prepared for ranking session-based recommendations as follows:

p(ij |sk) =
exp (−d (ϕ(sk), ω(ij)))∑

ij∈Z exp (−d(ϕ(sk), ω(ij)))
(9)

LNCAS =
1

|S|
∑

sk∈S

KLD (p(i|sk)||p′(i)) (10)

where predictions of true labels inside N -sized mini-batches are smoothed with:
p′(i) = (1− ε)p(i)+ ε/N and Z is a sampled set containing positive and negative
examples for each session sk. The main goal of using this loss function was to
compare the triplet loss to other functions that can be applied for our setting in
order to get more insight of its applicability and results.

4.2 Session Encoder Networks

We use several neural network architectures for the session encoder module. Each
one of these networks takes as an input a sequence of session events, which are
clicked items in all used datasets, and encodes it to a vector of embedding size
d. Used network architectures as session encoders go as follows:

– Pooling – this architecture embeds the sequence of clicked items to a vector of
size d by pooling the maximum or average value in each dimension. Inspired
by how pre-trained embeddings (e.g. word2vec) are used in NLP downstream
tasks. However, all relations in a sequence are lost.

– CNN based approaches including TextCNN [14], TagSpace [45], Caser [39].
– RNN-based approaches—these use one of the chosen recurrent networks

(GRU, LSTM, RNN) to encode the sequence followed by multiple fully con-
nected layers to generate recommendation scores for individual items.

4.3 Positive and Negative Sampling

Training data is prepared from all available users’ sessions S. We want to predict
the user’s next action for a given session sk. Thus, training data preparation
tries to enforce this for the model. Each session is split randomly—the first part
is used as an input for the network sk, and the following actions with items
are used as positive examples for that session ip,1, . . . , ip,l. For each l positive,
the same number of negatives are sampled randomly. We investigated a few
different strategies in case the session after random split has not enough positive
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examples. One of the successful approaches we used is to prepare more positives
before training using KNN method. Sampling is done at a beginning of each
training epoch. However, the improved MRR score is counterbalanced by lower
items’ coverage.

Table 1. Experimental dataset stats—(before) and after preprocessing.

Dataset Source Items Sessions Events

RR/5 Retail rocket 32K (117K) 64K (380K) 242K (606K)

RSC15/64 2015 RecSys challange 17K (34K) 118K (1.7M) 495K (6.6M)

SI-T Proprietary e-commerce data #1 2K (2K) 114K (119K) 305K (315K)

SI-D Proprietary e-commerce data #2 3K (3K) 25K (34K) 94K (106K)

In other works, the negative sampling is done randomly from all non-positive
items, e.g., [29]. From the optimization perspective [9] took a different approach
and sample negative examples from the same mini-batch given to the network.
What relates to online samples mining used in deep metric learning techniques,
but here without enforcing a margin of error like in hard negative mining [7].

5 Experiments

To conduct our experiments, we have followed the procedure utilized by [21], and
used five splits for RR and one 64’th of RSC15 data. For each dataset, we have split
the events into individual user sessions and removed the ones that contained only
a single event. Furthermore, in our experiments, we have included only items
that occurred at least five times in the data. A train-test split was prepared
by taking the last 10% of sessions. We further evaluated our models by using
common information retrieval and ranking evaluation metrics: mean average
precision, mean reciprocal rank, recall, precision, and hit ratio. All metrics were
computed on a list of top 20 recommendations. Following [21] and [9], in case of
MRR@20 and HR@20 only the next item was used as the ground truth. This no
look-ahead evaluation can be considered as a more adequate, when after each of
a user’s action a session state is updated and predictions for the next user’s step
is given.

5.1 Datasets and Baselines

To conduct the experiments, we used four datasets from the e-commerce domain,
which are summarized in Table 1. Two of these (RR/5 and RSC15/64) are stan-
dard benchmarks for session-based recommender systems, while the remaining
ones are smaller, real-world proprietary datasets with data gathered in the early
2020. The difference between SI-T and SI-T is the category of products for
which data were collected. In all datasets users’ events are represented only by
interactions with a products (i.e., view, click), thus ek,l ∼ I.
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Fig. 1. Session length distribution (left) and repeating items (right) for each dataset.

Figure 1(left) presents a histograms of session lengths for the preprocessed
datasets, which shows that short sessions seem to dominate in all datasets. This
might be more challenging for methods that focus on the sequential nature of the
users’ data. Furthermore, when analyzing the percentage of recurring items among
the sessions presented onFig. 1(right), itmay be noticed that the session frequently
contain multiple interactions with the same products. The data suggests that users
seem to revisit already seen items quite often. However, this also poses an interest-
ing question from the perspective of recommender systems: should such a system
suggest items that a user has already seen in the given session or only new ones?
The answer will depend on the specific use case and whether the system should
provide a more explorative or exploitative user experience.

We compared our Session-based Metric Learning (SML) method against six
baseline algorithms. Starting from the simplest ones, POP denotes a simple
popularity-based algorithm, which simply recommends the top-n most popu-
lar items. SPOP recommend items already seen in the session ordered by number
of occurrences and fills the rest with popular ones. This recommender performs
well when predictions are expected to be repetitions. The KNN algorithm was
the basis of the next two baseline methods: SKNN and VSKNN. The SKNN app-
roach for a given session recommends the top-n most frequent items among the
K-most similar sessions from the training data, for which a cosine distance is
used. The VSKNN [21] approach works similarly, however it puts more weight on
more recent events in a given session. The last two methods include a Markov
first-order recommender reported as MARKOV-1 and GRU4Rec+ [8].

5.2 Implementation Details

All the variations of the proposed model were implemented using the PyTorch
[28] library and trained in an end-to-end fashion with Adam optimizer using
lr = 0.001, for max 150 epochs (early stop after lowering lr three times when
improvement on 5% validation data is lower than 0.5%) with batch size of 32,
and 8 positive/negative samples per session. Max session length was 15 for RR/5
and RSC15/64, and 8 for SI—this plays an important role for CNNs where all
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sessions are padded to exactly the same size. For item embedding simple feed-
forward network with tanh activation is used. The embedding dimension is set
to 400 for all the methods. The margin value m for triplet loss is set to 0.3.
Smoothing parameter for NCAS is set to ε = 0.3. For the RNN encoder a GRU
cells are used with, 400 dimensions. For the TextCNN convolution filters of sizes
1, 3, 5 were used.

5.3 Performance Comparison

Evaluation. In Table 2 we present the results obtained during the experiments
conducted with the proposed method and compare them against the baselines.
Not all combinations of session encoders with loss function are presented, only
the most promising or interesting ones from the future research perspective (e.g.,
NCAS for RSC15/64 and RR/5).

The modification introduced by VSKNN to the non-weighted version of the
method (i.e., SKNN) seems to be effective for all the datasets, thus making VSKNN
a strong baseline indeed. Nevertheless, in some cases (like RR/5), the simpler
SKNN method still obtains better results. Dataset specifics and used metrics play
an important role here, as can be seen in Fig. 1 (right)—RR/5 in comparison
with other datasets (especially RSC15/64) contains more repeating items. If we
place them at the beginning of our recommendation and fill up the rest with the
most popular items, we can receive high MRR@20 values. However, the practical
usefulness of such recommendations can be questionable.

The low results of MARKOV-1 for all datasets show that a simple association
of the item and the next following action is not enough to obtain good results.
Extracting additional information from entire sequences is needed to improve
recommendations, which is the basis on which the sequential modeling with
GRU4Rec+ method stands. Still, in most cases, it is less accurate in the meaning
of used metrics than the simple heuristic of VSKNN. One possible explanation is
that the VSKNN model additionally incorporates recency in the scoring function.
We can consider that as a simply encoded contextual information about when the
sequence occurred. This information is not used in other models. When scoring
sequences within short periods of time this may not introduce a big difference,
but becomes important as the time difference increases, as e.g., some trends
arise, and others fade out.

From the overall results, our SML family methods are the best for two
datasets, the proprietary SI-T and the open available RSC15/64. For SI-T the
proposed triplet loss function seems to be the right choice, wherein the case of
RSC15/64, training with NCAS is more stable and is giving overall better results.
This situation can be caused by far bigger inventory size and number of events
in this dataset. Moreover, on SI-D and RR/5 our methods position themselves
as the second-best ones with a minimal margin to kNN based methods, VSKNN
and SKNN, respectively. For SI-D only the PREC@20 is lower, due to the fact
of far better results of SKNN (which we double-checked for the correctness with
such good results for both SI datasets). The Retail-Rocket dataset presents con-
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Table 2. Results obtained during the experiments. The baseline SKNN, VSKNN and
GRU4Rec+ values for RR/5 and RSC15/64 are taken from supplementary materials to
[21]. Best results for each measure – dataset pair are in boldface, while the second
bests are underlined; � indicates the sort column. The SML naming convention is:
SML-SessionEncoder-LossFunction, with: RNN and MaxPool denote encoders described
in Sect. 4.2, and three loss functions: Contrastive, Triplet and smoothed NCA—NCAS.

Dataset Method MAP PREC �REC HR MRR

SI-T SML-TextCNN-Triplet 0.0407 0.0526 0.7463 0.8525 0.6050

SML-RNN-Triplet 0.0407 0.0526 0.7462 0.8523 0.6015

VSKNN 0.0410 0.0619 0.7455 0.8511 0.6088

SML-MaxPool-Triplet 0.0400 0.0518 0.7368 0.8414 0.5974

SML-MaxPool-NCAS 0.0389 0.0504 0.7195 0.8246 0.5857

SML-RNN-NCAS 0.0389 0.0503 0.7193 0.8248 0.5910

SML-TextCNN-NCAS 0.0386 0.0499 0.7152 0.8206 0.5844

SPOP 0.0336 0.0437 0.6384 0.7317 0.5724

SML-TagSpace-Triplet 0.0335 0.0435 0.6352 0.7311 0.5602

GRU4Rec+ 0.0318 0.0463 0.5948 0.7578 0.5437

SKNN 0.0293 0.4524 0.5609 0.6533 0.5640

POP 0.0192 0.0257 0.3600 0.3954 0.1369

MARKOV-1 0.0376 0.0218 0.2433 0.2875 0.1965

SI-D VSKNN 0.0394 0.1228 0.6499 0.7484 0.4483

SML-RNN-Triplet 0.0374 0.0536 0.6401 0.7350 0.4468

SML-TextCNN-Triplet 0.0371 0.0531 0.6375 0.7334 0.4445

SML-MaxPool-NCAS 0.0360 0.0515 0.6215 0.7185 0.4379

SML-RNN-NCAS 0.0355 0.0509 0.6153 0.7130 0.4358

SML-TextCNN-NCAS 0.0346 0.0496 0.6033 0.6990 0.4171

SKNN 0.0350 0.1502 0.5942 0.6878 0.4321

SML-MaxPool-Triplet 0.0340 0.0489 0.5929 0.6822 0.3718

SML-TagSpace-Triplet 0.0309 0.0445 0.5470 0.6261 0.3733

SPOP 0.0285 0.0406 0.5180 0.5853 0.4263

GRU4Rec+ 0.0332 0.0680 0.4966 0.6450 0.3043

MARKOV-1 0.0348 0.0515 0.2582 0.3038 0.1741

POP 0.0122 0.0197 0.2040 0.2248 0.0655

RSC15/64 SML-RNN-NCAS 0.0358 0.0639 0.5248 0.6557 0.2884

SML-MaxPool-NCAS 0.0355 0.0634 0.5213 0.6502 0.2841

SML-TextCNN-NCAS 0.0351 0.0627 0.5145 0.6393 0.2766

SML-RNN-Triplet 0.0348 0.0623 0.5126 0.6371 0.2824

VSKNN 0.0386 0.0928 0.5009 0.6961 0.2879

SML-MaxPool-Triplet 0.0337 0.0607 0.4975 0.6143 0.2680

SKNN 0.0363 0.0881 0.4780 0.6423 0.2522

GRU4Rec+ 0.0285 0.0721 0.4009 0.6528 0.2752

SML-TextCNN-Triplet 0.0244 0.0462 0.3793 0.4615 0.1389

SML-TagSpace-Triplet 0.0218 0.0416 0.3398 0.4082 0.1396

MARKOV-1 0.0333 0.0446 0.3011 0.3912 0.1771

SPOP 0.0164 0.0318 0.2879 0.3464 0.2205

POP 0.0063 0.0129 0.1075 0.1264 0.0292

RR/5 SKNN 0.0283 0.0532 0.4704 0.5788 0.3370

SML-MaxPool-NCAS 0.0273 0.0443 0.4673 0.5692 0.3340

VSKNN 0.0278 0.0531 0.4632 0.5745 0.3395

SML-RNN-NCAS 0.0270 0.0437 0.4609 0.5600 0.3379

GRU4Rec+ 0.0272 0.0502 0.4559 0.5669 0.3237

SML-RNN-Triplet 0.0270 0.0456 0.4542 0.5560 0.3605

SML-TextCNN-NCAS 0.0264 0.0427 0.4516 0.5476 0.3197

SML-MaxPool-Triplet 0.0245 0.0392 0.4357 0.5243 0.3451

SPOP 0.0201 0.0331 0.3773 0.4614 0.3985

SML-TextCNN-Triplet 0.0183 0.0293 0.3278 0.3988 0.2156

SML-TagSpace-Triplet 0.0117 0.0192 0.2321 0.2817 0.2397

MARKOV-1 0.0183 0.0428 0.1557 0.1964 0.1162

POP 0.0009 0.0020 0.0181 0.0227 0.0058
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sistent results with [21], where many new methods cope to beat SKNN. With
SML-MaxPooling-NCAS, we get close to the position of being the leader.

Between the investigated encoders, we can observe from the results that a
simple max-pooling performs well and falls very close to the best score for SI-*
datasets. Intuitively, GRU and CNN based methods should be better in encoding
longer sequences of actions, like RSC15/64 and RR/5 (see Fig. 1 (left)). However,
this proved to be true only for RSC15/64 results, where CNN and RNN based
methods are among the best ones. For RR/5 simple pooling with the proposed
NCAS loss function is the best one from the SML method family. Additionally,
in practical terms, CNN-based models can be preferred from GPU utilization
perspective, as the architecture and many libraries are optimized for computer
vision and image processing.

Table 3. Ablation results obtained for the RNN and MaxPool session encoders. Columns
labels in order: (1) True/False is common embedding was used; (2) Sampler: SW –
sliding window, Pos-Neg – session positive negative sampling as described in Sect. 4.3;
(3) Triplet loss with: N – L2 normalization, M – 0.3 margin used, S – swaping anchor-
session with positive item. Results are sorted by REC@20.

Comm. RNN MaxPool

Emb. Sampler Loss �REC@20 MRR@20 REC@20 MRR@20

True Pos–Neg N-M 0.7435 0.5973 0.7402 0.5978

True Pos–Neg N 0.7377 0.5973 0.7340 0.5932

True Pos–Neg N-M-S 0.7371 0.5908 0.7359 0.5888

False Pos–Neg N 0.6565 0.5746 0.6508 0.5727

False Pos–Neg N-M 0.6341 0.5783 0.6192 0.5767

False Pos–Neg N-M-S 0.6192 0.5678 0.6247 0.5796

False SW N-M-S 0.0022 0.0006 0.0525 0.0191

Coverage and Popularity Bias. Similar to [20,21] we investigated the distri-
bution of predicted items for the selected approaches. Interestingly, our metric
learning based methods usually give wider spectrum of recommended items.
Even checking simple statistic of overall unique items being recommended, for
SI datasets our methods return almost twice as much unique items as VSKNN
method (666 to 1,542 and 1,522 to 2,542 for a sample run, all items 2k, 3k
respectively, see Table 1), while for RR/5 and RSC the difference is not so big
(16,334 to 19,063, 12,232 to 11,216 for a sample run).

Ablation Study. To verify the impact of each component in our proposed
solution, we run a series of experiments on SI-T dataset for two encoders: RNN
and MaxPool, enabling each improvements one by one. The results with REC@20
and MRR@20 are shown in Table 3.
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One of the first sampling methods evaluated with SML was a simple sliding
window-based technique. For a defined number of events (padded if necessary),
we take only the next following items as positive examples, and negative ones are
randomly sampled. We quickly switched to sampling presented in Sect. 4.3, as we
notice that the windowing technique is not reflecting how the system is utilized
in real use cases. Specifically, for various sub-sequences from the beginning of a
session, predictions are also required, disregarding the sliding window size. As
the next step, we evaluated the impact of the inner elements from triplet loss, like
normalization (which is very common), margin usage (which for some datasets
are set to very small values), and swapping of anchor and positive elements.
To our surprise, swapping is not always giving good results for a session-based
recommendations setting.

A crucial role for improving our model was the use of common embeddings
for both session encoder ϕ(sk) and items encoder ω(ij) for the prediction. This
lowered the number or all parameters to train and positively influenced the
overall results. We think that even further improvements can be made to the
proposed method by a more global network parameters search. But this was out
of scope of our computational possibilities. Thus, we constrained some of the
network’s hyper-parameters that are related (e.g., GRU hidden state dimension
and following feed-forward network dimension to be the same).

6 Conclusions

In this paper, we have presented a novel approach to session-based recommen-
dations that utilizes concepts from the field of metric learning. The proposed
method has a clear and modular architecture that combines session and item
embeddings with a metric loss function. Each of these elements may be individ-
ually tweaked and thus defines a potential direction for further research. We test
our approach against independent results obtained for strong baseline methods
using a well-established evaluation procedure and receive state-of-the-art results.
The analysis is also extended by ablation studies, which confirm that the pro-
posed solution does not have unnecessary elements.

Our approach’s main advantage is a modular design and extensibility that
makes it possible to tweak its components to best match the dataset or incor-
porate some prior knowledge. Moreover, the fact that SML is based on principles
originating from metric learning, many improvements from that field can still be
transferred and evaluated for session-based recommendations. From usage per-
spective, our approach can be attractive in combination with existing pipelines
(KNN recommendations) and libraries (optimized CNN).

We can identify two main weaknesses of our method. Firstly, sampling has
a significant impact on the results both in terms of quality and computational
efficiency, so careful GPU usage and memory management is required. Secondly,
many improvements that can be taken for granted within computer vision do
not necessarily improve the final model when combined with other elements for
session-based recommendations, which was presented in the ablation study.
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Although we achieved promising results with the current method, this work
only touched the subject of applying metric learning to session-based recommen-
dations, and much more is to be explored. Apart from the already mentioned
embeddings, the positive/negative sampling strategy used during the training
phase seems to deserve more attention. Based on good experimental results
achieved by some baselines, an introduction of a missing users’ actions time
context into session-based recommendation also seems worth exploring. Further
investigation of improvements in the deep metric learning field can result in even
better session-based recommendations, and similar synergy can be found, like in
the case of NLP.
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Abstract. Machine translation (MT) systems, especially when designed
for an industrial setting, are trained with general parallel data derived
from the Web. Thus, their style is typically driven by word/structure
distribution coming from the average of many domains. In contrast, MT
customers want translations to be specialized to their domain, for which
they are typically able to provide text samples. We describe an approach
for customizing MT systems on specific domains by selecting data similar
to the target customer data to train neural translation models. We build
document classifiers using monolingual target data, e.g., provided by the
customers to select parallel training data from Web crawled data. Finally,
we train MT models on our automatically selected data, obtaining a
system specialized to the target domain. We tested our approach on the
benchmark from WMT-18 Translation Task for News domains enabling
comparisons with state-of-the-art MT systems. The results show that
our models outperform the top systems while using less data and smaller
models.

Keywords: Web data · Language customization · Text classifier

1 Introduction

Industrial MT services have greatly impacted multiple commercial applications,
e.g., Google Translate and Amazon Translate. It has also become an indispens-
able technological component worldwide during the current pandemic to dissemi-
nate COVID-19’s public service announcements to the public [15]. The result has
been collectively attained by leveraging Web data: training examples (parallel
text) can indeed be automatically built by aligning sentences from multilingual
pages, which naturally occur on the web [7,18,19,21].

The harvesting of parallel data from the web has been shown successfully
by [4,18], resulting in highly heterogeneous collected data, as sampled from the
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entire web. Thus, the distribution of the content is inevitably dominated by
the commercial websites working in a multi-language setting. On the one hand,
this distribution may reflect the average expected demand submitted to an MT
service by web users; on the other hand, it can hardly capture the specificity
of less represented domains. In particular, users working with domains that
traditionally do not require multilingual content, e.g., documentation of local
administration or businesses having no internationalization interest, may find a
general-purpose translation inadequate.

For example, if we use general terms, such as project meeting and sport meet-
ing, which occur in many websites, a standard MT system provides rather accu-
rate Italian translations, incontro di progetto and incontro sportivo, respectively.
However, if we try terms less frequent in multilingual web data, for example,
condo meeting or condominium meeting, we may obtain the following wrong
translations: riunione del condominio or condominio incontro, instead of the cor-
rect one, riunione di condominio1. In particular, the MT system cannot select
the right preposition di since (i) the most typical Italian construction uses del,
and (ii) condo meeting is infrequent in web parallel data. In contrast, project
meeting is correctly translated in incontro di progetto by most MT services: we
did not observe mistakes of the type incontro del progetto or a less used term
incontro progettuale. We speculate that such term, being more frequent, is typi-
cally supported by more training examples.

Current MT systems deal with the problem of under-represented domains by
averaging the patterns observed in all available domains. Thus, the bias in gen-
erating translation towards the populated domain persists. This causes a trans-
lation targeting low-frequent phrases to use irrelevant or inappropriate words. In
extreme cases, such problems may create embarrassing biased translations [5];
for example, pornographic domains appear very frequently on the web [1], if not
adequately filtered, common terms may be interpreted in a sex key.

This paper explores automatic customization/personalization of MT systems
by automatically selecting training data similar to the text in a target customer
application. Such data will carry terminology and syntactic constructions specific
to the target domain.

Our main assumption, supported by general machine learning theory, is that
we can customize neural network models by training them with this selected
data. Such an approach can produce three main benefits:

– The MT system requires less data to learn to translate in the target domain
than when using general data. Indeed, specific domains are characterized by
less lexical variability due to the need to express specific concepts/situations.
The use of less data produces efficiency benefits at training time, with possibly
a better translation quality in the domain.

– The fine-tuning step with customized domain data can increase accuracy in
translating text from such domain in neural MT. In particular, infrequent

1 As of May 2020, Google Translate provided riunione condominiale, which, although
correct, is a bit too formal term for this kind of meeting.
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patterns with respect to the average web distribution will better emerge from
the model in the target domain as they will occur relatively more often.

– A positive side effect of this approach is that specific data can automati-
cally diminish the bias on undesired domains, e.g., political inclinations or
explicit content, when operating in a critical setting, e.g., kid protected con-
tent. Indeed, amplifying the term distribution of the kid domain can help
mitigate the impact of very different and undesired training data.

To customize an MT system on a target domain, we assume to know the
monolingual data of the domain in advance. This is a realistic assumption as the
customer can specify their target data/domain, e.g., providing their website or
textual documentation. Simultaneously, the MT service provider can continue
to refresh their parallel data repository asynchronously and periodically. There-
fore, the customization process is reduced to selecting the parallel data portion
similar to the one from the target domain to train/fine-tune the MT models on
the target context. We propose the design of topical classifiers to recognize the
target domain data among the extremely large web crawled data. We note three
important aspects:

– First, the data provided for the customization domain does not need to be
parallel. We only need monolingual text data similar to the target domain to
train the topic classifier. This is very important, as acquiring parallel data
can be a key limitation to any customization approach’s applicability. In con-
trast, monolingual data can be easily acquired from the customer’s website,
documentation or other related data.

– Our classifier is built to predict webpages instead of sentences as carried out
in previous MT domain adaptation works based on language model [2]. Using
entire pages allows for reaching a high accuracy in selecting data potentially
similar to the target data since the document content distribution is not
sparse and richer than the content of individual sentences.

– The negative examples can be generated by randomly sampling webpages
from the entire crawled data. Indeed, given the very low occurrence proba-
bility of the documents of the target domain in comparison with billions of
pages in the crawled data, the number of false negatives would be extremely
low.

We tested the following research questions:

q1: Can we build efficient document classifiers to select large training data
for MT systems specific to target domains?
q2: Are the classifiers accurate enough to select training data for the target
domain from web crawled data?
q3: Does the data selected by the classifiers produce improvement of the MT
systems when tested on the target domain?

To answer the questions above, we compared our selection approach against
the state-of-the-art MT systems of the WMT-18 News Translation benchmark.
The results show that using the data selected by our classifier, we can train a
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much simpler model and still be on par with the state-of-the-art approaches,
e.g., those proposed by RWTH and Microsoft Research. These use a Big Trans-
former and are much more expensive. Our results show that (i) our approach
for selecting target data is effective; and (ii) it is possible to customize MT sys-
tems on a target domain, i.e., the news domain. Although wider experimentation
over different domains of possibly different sizes is needed to claim that our is a
general-purpose approach to MT customization and personalization, our paper
provides examples in such directions, enabling promising future work. It also
shows interesting evidence on the potential of IR techniques for converting web
data in specific applications without going through knowledge-based methods.

2 Domain Customization Approach

Our approach consists in (i) acquiring monolingual data for a target domain; (ii)
training a topic classifier for such domain, using the acquired data as positive
examples and randomly sampled web data as negative examples; (iii) selecting
parallel data of the target domain by applying the built classifier to the mono-
lingual text part of the crawled data; (iv) training or fine-tuning the MT system
on the data selected by the classifier; and finally (v) applying the trained MT
system for user data.

We describe the details in the following subsections.

2.1 Components and Notation

Our model requires the following components:

– a general large repository C of crawled parallel data for MT training.
– Several domains D+

1 , ..,D+
n for different applications, businesses, and users.

– A sampling procedure S to get the negative examples from C not in D+
i ,

denoted D−
i = S

(C,D+
i

)
.

– A linear fast topic classifier RDi
, which we will train on Di = {D+

i ,D−
i }.

– A vanilla state-of-the-art MT model, TC , to be trained on parallel data.

The customized MT system will then be TCi
, trained on Ci ⊂ C, where

Ci = RDi
(C). Specifically, RDi

selects relevant parallel data from C based on
Di characteristics. Note that RDi

is trained using D+
i as positive examples and

D−
i = S(C,D+

i ) ⊂ C as negative examples.

2.2 Customization Pipeline

Figure 1 describes our pipeline to build an MT system customized for a particular
user/domain. The diagram displays three different processes: (i) the training
of a classifier RDi

, (ii) the data selection, (iii) the MT training, and (iv) the
customized translation.

In the first phase, the user provides a sample of the Target Data constituted
by monolingual documents. These are positive examples (blue squares) used to
train a classifier for the target data. The negative examples (grey squares) are
sampled from the Heterogeneous Dataset (parallel data crawled from the web).
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Fig. 1. Customization process of MT Systems

Table 1. Training data for WMT-18 for
English–German

Corpus Sent. (MM)

News commentary v13 0.3

Rapid (press releases) 1.3

Common crawl 1.9

Europarl v7 2.4

ParaCrawl (Zipporah) 40.6

ParaCrawl (BiCleaner) 27.7

In the second phase, the trained classifier produces a classification score for
all Heterogeneous Dataset documents. The classification is done by exploiting
only the monolingual side of the parallel data (in the same language of the
target domain data). Although the Heterogeneous Dataset can be potentially
very large, the classifier runs in linear time and can be parallelized.

In the third phase, the pairs of parallel documents, i.e., the circle and square
pairs, are ranked with respect to the classifier score. The top k Selected Tar-
get Batches are split in pair of parallel sentences, and used to train the Neural
MT model. Note that using ranked data we (i) avoid to tune up a classifica-
tion threshold, which can be rather challenging as it requires the annotation of
crawled data; and (ii) can select higher quality data from the top until we need
or until the MT system does not improve anymore.

Finally, the users can apply the Target Customized Model (MT system) on
their new monolingual text and receive translated data.

2.3 Target Data Classifier

As we need to process millions of instances, we implement our standard text
classifier with Support Vector Machines (SVMs). As previously mentioned, the
positive examples are created by randomly sampling a fixed amount of text from
the target data provided by the customer. In contrast, the negative examples are
randomly sampled from the heterogeneous background dataset.

The instance representation is based on the bag-of-word model, using the
weighting scheme for the terms described below. Given a document d, the term
frequency tf of a word ωi ∈ d is normalized by the following equation:

tf (ωn
1 , d) =

count (ωn
1 , d)

max(ωn
1 ,d) count

(
ωn
1 , d

)

where, count (ωi, d) is the number of ωi occurrences in d.
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In general, the classifier scores indicate the likelihood of a text sampled from
a source to be in the same domain of the target data.

2.4 Selection Approach

In principle, a binary topic classifier would be appropriate to select relevant
data. However, estimating the threshold associated with an effective F1 could
be cumbersome as we do not have a development set reflecting the target data
required by the MT system. Thus, we do not even know the amount of the needed
data and the Precision required to train the MT system effectively. Therefore,
instead of a classifier, we use a ranker. This can be formally defined as a function

R : C → P(C),

which takes the set of documents, C = {d1, .., d|C|}, and returns a subset of
size k, i.e., R(C) = [di1, ..., dik]. To implement the reranker, we can still use
a binary SVM classifier, which will learn a point-wise reranker: this outputs a
score s(d) = w · d + b. The ranker is supposed to compute the set of indices
as [i1, ..., ik] = k-argmaxi s(di), where k-argmax returns the indices of the top
scored k documents.

R selects domain data from a heterogeneous dataset (e.g., the crawled data)
based on the classifier’s scores when applied to the monolingual documents.
The top k documents associated with their parallel counterparts are selected for
training, or fine-tuning, the MT systems.

3 Experiments

We demonstrate the effectiveness of our proposed method step-wise in a typical
pipeline to build state-of-the-art MT models using data selected by our proposed
classifier. For this purpose, we first study the performance of the domain clas-
sifier separately. We then show its concrete impact in training both standard
MT systems and a large-scale well-known MT benchmark, the WMT-18 News
Translation Shared Task. This experiment enables us to explain empirically the
performance of our approach in comparison with other MT systems trained on
the exact benchmark setting and using the same experimental dataset. The set-
ting includes a large, noisy parallel data crawled from the web.

3.1 Experimental Setup

We use the evaluation setting of the News Shared Task from WMT-2018 [6]. In
particular, we carry out experiments on two translation tasks: English–German
and German–English.
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Data. The data provided by WMT-2018 is summarized in Table 1. The first four
datasets are considered of high quality or clean in this experiment. The next two
datasets, newly introduced as part of the WMT-2018 benchmarks, are ParaCrawl
cleaned by two different filtering methods. They are parallel sentences extracted
automatically from crawled web data and subsequently cleaned by Zipporah and
BiCleaner.

In our experiment, we propose the following setting to implement our diagram
in Fig. 1:

– The News Commentary v13’s text in English side is used as Target Data as
we set news translation as the target domain application.

– The ParaCrawl (BiCleaner) data is considered as the Heterogeneous
Dataset, given its web nature, large size, and noise quality.

– Our neural MT models are trained with all clean data (the first four datasets)
in Table 1 and an automatically selected portion from the Heterogeneous
Dataset.
It should be noted that this data comes in the form of individual paired-

sentences. We simulated documents by grouping sentences in batches to train
our document classifier. The procedure is a key factor as we can (i) avoid pos-
sible topical bias regarding individual documents but (ii) also capture sufficient
thematic or stylistic information of the target domain. In other words, we do not
classify individual sentences but sentence batches.

Domain Classifier Data. We generate positive and negative examples for
building a classifier for news domains as follows:

– for positive examples, we form an example by randomly selecting n English
sentences without repetition from the news data, News Commentary v13. The
example may contain sentences from different source documents yet they are
from the news domain. This helps capture the journalistic signal in news
reports while discouraging possible topical text from a particular story or
section.

– For negative examples, we alternatively sample from the ParaCrawl dataset
cleaned by BiCleaner while keeping the size of n sentences per example.
Even though journalistic text can appear in the example, the probability
with respect to all the other content of the web makes the contribution of
false-negative examples negligible.

– We also set the ratio between negative/positive to 2:1 to have enough positive
examples.

3.2 Domain Classifier Results

We study the performance of the proposed classifier in this section. Specifically,
we set n to 100 for the number of sentences per example. This results in 2,828
and 5,656 positive and negative examples, respectively, from News Commentary
v13.



Machine Translation Customization via Automatic Training Data Selection 673

We apply a split of 30% for training and 70% for testing. As the original
sentences from News Commentary v13 are distinct, the generated examples for
training and testing should also share no content overlapping. We used SVMs to
build the classifier/reranker. We set the probability parameter to enable Platt
scaling calibration on the classifier score. The feature set consists of 70,000 most
frequent words with stop-words being removed in the dataset.

Fig. 2. Accuracy of the classifier in different
setting of n.

Table 2. Accuracy comparison of the
proposed method and other baselines.

Accuracy

Sentence-based classifier 62.8%

Batch-based sentence

majority

77.8%

Batch-based classifier (our

method)

99.0%

We use the default setting for the other SVM parameters of the sklearn.svm
toolkit. We compare the effectiveness of our proposed selection method, Batch-
based Classifier, with two related yet different configurations as baselines:

– Sentence-based Classifier : we build a classifier similar to the above configura-
tion, except for the size n of each batch set to 1. This is equivalent to building
a classifier, where the documents are constituted by just individual sentences.

– Batch-based Sentence Majority : we classify a batch of n = 100 sentences via
majority voting, i.e., we apply the Sentence-based Classifier to all sentences
of the batch, and we classify the batch according to the majority of positive
or negative classifications.

The accuracy of the classifier and the baselines is presented in Table 2. Train-
ing and classification at document level is much more advantageous than the one
at sentence level. Because the word distribution from a larger text is more sta-
tistically reliable – the basic theory of large samples provides support for such
intuition, where the samples in our case are constituted by set of words. Note
that the distribution of positive and negative batches is still 1:2, i.e., the same
sentence distribution; thus the results are comparable.

To better show the intuition that the larger is the sentence batch, the higher
is the accuracy, we have plotted the accuracy of our batch classifier with respect
to the batch size in Fig. 2. We see that as soon as the batch content is larger
than 10 sentences, the accuracy exceeds 95%. With batches of 20 sentences or
more, the classifier reaches perfect accuracy. This can be explained by the fact
that random documents from the Web (approximated by the ParaCrawl) are
statistically very different from those of the target domain. At the same time,
we built our training and test sets with a positive/negative example distribution
of 1:2. The classification accuracy over the entire ParaCrawl, which shows a
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much more skewed distribution can be significantly lower. However, the purpose
of this experiment was to show that we can build an accurate classifier. Given
the above positive result, we can use the classifier for reranking our data. The
effectiveness of the classifier in selecting data will be shown in the next sections.

3.3 Machine Translation Results

We study the impact of the proposed data selection approach in MT tasks. In
particular, we conducted experiments to address the following two questions:

(i) Can the classifier select relevant data for the target domain?
(ii) Can the selected data be used to improve the state-of-the-art in MT on a

specific domain?

Table 3. BLEU-based evaluation of
CSE on WMT-18

ParaCrawl Buckets Clean & Bucket

2017 2018 2017 2018

0% – – 27.2 32.4

0%–25% 28.1 34.3 29.8 36.2

25%–50% 23.4 27.8 27.3 32.8

50%–75% 12.7 14.7 25.2 30.3

75%–100% 5.8 6.6 25.0 29.7

0%–100% 23.7 29.21 28.22 34.41

Table 4. Average-z of human evaluation
scores for WMT-18 systems, including 5
anonymized translation services.

System EN-DE DE-EN

RWTH Aachen – 0.413

Microsoft Research 0.551 –

University of Cambridge 0.537 0.395

University of Edinburgh 0.352 0.261

JHU MT Systems 0.377 0.317

Universitat Politècnica de València – 0.321

ONLINE-A 0.561 0.346

ONLINE-B 0.396 0.310

ONLINE-C 0.060 0.268

ONLINE-D −0.385 −0.296

ONLINE-E −0.416 −0.074

To reliably answer the second question, we used the WMT-18 benchmark as
it is well-known both in academic and industrial MT communities. We performed
two main experiments: the first aims at exploring the quality of the candidates
with respect to their position in the rank generated by the topic classifier. The
second aims at measuring the potential of our selected data with respect to the
state of the art.

Data Quality in the Ranked Examples. In these experiments, we used an
efficient MT approach, namely, the LSTM cell by [3,14], as we were interested
in relative values of the accuracy and carrying out a fast experimentation.

We order documents and thus sentences in ParaCrawl in the descendent
order of the classifier score described in Sect. 2.4. We then split the rank into
four buckets of the same size. We used one bucket at a time to train an MT
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model using the default setting of Sockeye2 (LSTM cell). We evaluated such
models against the standard WMT-2017 and WMT-2018 test sets, using BLEU
as our evaluation metric. The results are reported in Table 3, under the column
Buckets, using the evaluation tool, sacrebleu [17]. Each row, labeled with an
interval percentage, corresponds to a different MT system trained with the rank
interval data. As expected, the systems trained with higher ranked data show a
larger BLEU score. The system trained with the bottom bucket shows a very low
performance. It is also interesting to compare with the second column showing
the results using the 6M clean sentence pairs from WMT-2018: the MT system
trained with our selected data in the first interval, 0%–25%, shows a higher
accuracy. This is important as the crawled data is generally rather noisy, meaning
that our classifier can select clean MT data.

Additionally, we combined the bucket data with the clean WMT-2017/2018
data. The results are reported under column Clean & Bucket, starting from the
second row. We note that the combination can improve the system using just the
clean data, e.g., from 29.8 to 36.2 on the WMT-2018 test set. This confirms that
our approach can improve MT systems. The combination of clean data with all
the other buckets also does not improve the clean data-based system or decreases
accuracy. In particular, when all crawled data is used together with the clean
data, the MT systems improve their accuracy only 50% of what they do when
trained on our smaller selected data.

WMT-18 Shared Task: Machine Translation of News. To compare with
the state-of-the-art, we needed a powerful model, which can approach the results
of the best MT systems. Thus, we used the Transformer [20], a more expensive
model in terms of computation than the LSTM-based but it is still largely less
costly than the top performant systems in the WMT competition.

We trained our MT model with the clean data and the top 6M pairs from
ParaCrawl selected with our classifier. We follow the typical model building
pipeline described in [12]. We use the setting from Marian toolkit3. Table 5 shows
the result. We note that our model, which uses a relatively much simpler neu-
ral network than the state-of-the-art approaches, e.g., RWTH and Microsoft
Research (using a Big Transformer), is just 1.6 BLEU score points behind. This
shows that our approach can build more efficient models with less data since the
crawled data we used is closer to the target domain.

Discussion. Besides automatic evaluation, the WMT-18 Shared Task also con-
ducted a human evaluation of the participating systems. Specifically, translations
from individual systems were manually validated by assessors, comprised of both
researchers and crowd-sourced workers from Mechanical Turk. The assessment
was based on how well a translation replicates the meaning of the reference trans-
lation. The scores from an assessor are first standardized individually, according
2 https://github.com/awslabs/sockeye [11].
3 https://github.com/marian-nmt/marian-examples/tree/

336740065d9c23e53e912a1befff18981d9d27ab/wmt2017-transformer.

https://github.com/awslabs/sockeye
https://github.com/marian-nmt/marian-examples/tree/336740065d9c23e53e912a1befff18981d9d27ab/wmt2017-transformer
https://github.com/marian-nmt/marian-examples/tree/336740065d9c23e53e912a1befff18981d9d27ab/wmt2017-transformer
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to their overall mean and standard deviation. Then, the average standardized
scores for translations rated by an assessor for a system are computed. The
overall score, Average z, is finally computed as the average of its scores from the
assessors.

Table 5. Comparison of our model with the results reported by WMT-18 using the
BLEU score.

System Clean pairs Noisy pairs Monolingual

for back-

translation

Model EN-DE DE-EN

RWTH Aachen 6M 18M 18M Trans.-Big – 48.4

Microsoft Research 6M 10M 10M Trans.-Big 48.3 –

University of Cambridge 6M 15M 20M Trans.-Big 46.6 46.8

University of Edinburgh 6M 4M 20M Trans.-Base 44.4 43.9

JHU MT systems 6M All UNK RNN 43.4 45.3

Universitat Politècnica de

València

6M 10M 20M Trans.-Base – 45.1

Our model 6M 6M 10M Trans.-Base 46.7 46.1

Table 4 shows a human evaluation carried out by WMT-2018 organizers.
They consider the systems in Table 5 and five anonymized commercial translation
services, named ONLINE-A, B, C, D and E. We note that the ranking produced
by the manual evaluation is close to the one automatically carried out with
BLEU score reported in Table 5. Most critically, the table also shows that almost
all online services underperform the top MT participant systems, which are
comparable to our approach.

This is an important comparison as it indirectly shows that the results of our
approach are better than those of the services mentioned above. Additionally, the
news domain is not under-represented in MT domains, suggesting that a larger
gap between our approach and MT services could be observed when dealing
with more specific domains. In other words, translations from online services
may consider moving toward customization, not only for better translations [9]
but also for better satisfying requests of different groups of users.

4 Related Work

Previous work has studied methods for selecting effective data for MT. Some of
the approaches include:

– perplexity-based selection: this approach ranks sentences based on the per-
plexity scores given by a targeted language model [10,16,22]. Only sentences
within a certain perplexity threshold are selected.
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– Language model and translation model combination: this approach ranks
sentence-pairs by both the target language model and the translation model
trained by general and specific data [2,13]. The selection is based on the total
cross-entropy difference from both sides.

The core difference with our proposed approach is that we use (i) documents
(or at least grouped-sentences) rather than individual sentences [8], and (ii)
negative examples randomly selected from a heterogeneous dataset from the
web.

In contrast with methods aiming at selecting sentences with the same lan-
guage models, our approach selects documents and thus sentences that belong
to the same topics, i.e., approaching the data distribution of specific domains. In
particular, the use of statistics of an entire large document enables a much more
robust approach and an accurate selection of data related to the target domain.

Finally, the role of negative examples is also fundamental as patterns present
in negative documents are automatically filtered out by the machine learning
approach together with the negative sentences.

The business advantage of our approach is clear: given a customer request,
we only require their monolingual examples in the target domain, e.g., their
websites, documentations, etc. A classifier for selecting similar training data can
be automatically built on their data, as we generate negative examples from the
crawled data. We then apply the classifier to select parallel data from a large
repository of parallel data from the Web. Finally, we train an MT model using
the selected data, to obtain a system specialized on the target customer data.
This model, being trained on the target domain data, will generate translations
using style and text construction typical from the target domain. In addition
to language customization our approach also enables the use of smaller models,
which have less hardware requirement to fulfill the needs of small or medium
enterprises.

5 Conclusion

We have proposed our strategy for customizing MT systems’ training using data
selected from a heterogeneous parallel corpus. This way, customers can provide
their data as examples of the text on which the MT system should provide high
accurate translations. Specifically, we propose a supervised classifier trained on
a small sample of monolingual target data. The classifier makes predictions per
batch of sentences to better capture the target domain’s patterns and terms.

We show the effectiveness of our method by comparing it with the state-of-
the-art on well-known MT benchmarks. The results demonstrate that we can
achieve competitive performance on WMT-18 Shared Tasks, but our approach
only requires a small monolingual sample of the target data. Finally, we believe
our proposed method can be applied to customize other IR or Natural Language
Processing applications exploiting Web data and IR techniques.

In the future, we are exploring the possibility to apply our method for select-
ing locale-sensitive training data and thus building locale-specific translation
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engines. We will also explore other data dimensions that are orthogonal to the
topical categories. Indeed, we can build a classifier to select particular text
styles, ranging from formal (thus building MT systems for translating formal
documents), to informal languages, e.g., for more colloquial or less formal text
applications, such as blog translation. We may also be able to target sublan-
guages and jargons as we can train the MT system with such kind of data, e.g.,
forums, or non native speaker languages. We can also build more powerful data
selection classifiers that can be learned on customer data in different languages,
i.e., neural multilingual topic/style classifiers.
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Abstract. Most existing large-scale knowledge graphs are suffering from
incompleteness, and many research efforts have been devoted to the
task of knowledge graph completion. One popular approach is to learn
low-dimensional representations for all entities and relations, and then
employ them to infer new facts. However, we find that most of the current
knowledge graph embedding models are lack of suitable strategy to uti-
lize global contextual information. In this paper, we propose an embed-
ding model, named GCE, to explore the capability of global contextual
information to the task of knowledge graph completion. In GCE, we care-
fully design a global contextual information module with the attention
mechanism. This module could aggregate global contextual information
adaptively, thus enhancing feature representation for knowledge graph
completion. To demonstrate the effectiveness of our proposed GCE, we
conduct extensive experiments on two benchmark datasets FB15k-237
and WN18RR. Experimental results show that GCE achieves competi-
tive results compared with the existing state-of-the-art embedding mod-
els on both datasets. The results validate our central hypothesis – that
global contextual information is beneficial to knowledge graph comple-
tion performance.

Keywords: Global contextual information · Knowledge graph
embedding · Knowledge graph completion · Link prediction · Attention
mechanism

1 Introduction

Over the recent years, many famous large-scale knowledge graphs (KGs), such
as Wordnet [19], Freebase [4], NELL [6], DBpedia [1], and YAGO3 [18], have
been developed to store huge structured information about common facts. KGs
can be represented as multi-relational directed graphs, in which the nodes repre-
sent entities and edges represent different relationships between entities. The
information of entities and relations is modeled in the form of triples (sub-
ject, relation, object), denoted as (s, r, o), e.g., (Sydney, city of, Austria). These
KGs are important resources for many information applications, such as seman-
tic search [3,14,45], recommendation [33,41], data integration [15,26], question
answering [39] and information retrieval [10,44].
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Although these large-scale KGs have already contained millions of triples,
they are still suffering from incompleteness, missing a lot of valid triples [37].
For example, in Freebase more than 60% of the person entities are missing their
birthplaces. To this end, many research efforts have been devoted towards cor-
recting errors as well as adding missing facts to KGs, commonly known as the
task of knowledge graph completion or Knowledge Graph Augmentation. We
can complete existing KGs by extracting new facts from external sources, such
as Web corpora, or by inferring missing facts from those already in the KGs.
The latter approach, called Link Prediction (LP), is the focus of our research.

In general, most existing LP models are based on knowledge graph embed-
ding. These models first encode the semantics of entities and relations into a
continuous low-dimensional vector space (called embedding), and then employ
them to infer whether new triples are valid or not [5]. These embedding based
models are broadly classified as translational distance models [5,12,16,36], com-
positional based models [23,30,38], graph based models [20,25,27] and convolu-
tional neural network (CNN) based models.

TransE [5], TransH [36], TransR [12] and TransD [12] are examples of trans-
lational distance models. These models employ translational characteristic to
model relationships between entities and are faster with fewer parameters. Com-
positional based models, such as RESCAL [23], DISTMULT [38], HOLE [24] and
ComplEx [30], could capture rich interactions with a large number of parameters.
Graph based models, such as R-GCN [25], SACN [27] and KBGAT [20], could
capture the structure information and node attributes from relational data, and
are always applied as an encoder. CNN based models could learn more expres-
sive embedding due to their parameter efficiency and consideration of complex
relations.

Recently, CNN based models have received significant research attention in
knowledge graph embedding learning. ConvE [9] is the first model applying con-
volutional filters for the knowledge graph completion task. In ConvE, only the
embedding of subjects and relations are reshaped and then fed to the convolution
layer. To capture global relationships and translational characteristics between
entities and relations, ConvKB [21] models the relationships among same dimen-
sional entries of entity and relation embeddings. In CapsE [22], authors applied
capsule network for modeling relationship triples by replacing the fully con-
nected layer in ConvKB with two capsule layers. To further increase feature
interactions between entity and relation embeddings, InteractE [31] augments
the expressive power of ConvE through feature permutation, “checkered” fea-
ture reshaping, and circular convolution. From the above methods, it is obvious
that to enhance discriminative feature representations is beneficial for the task
of knowledge graph completion.

In this paper, we find that one major issue for current CNN based models
is lack of suitable strategy to utilize global contextual information. Many link
prediction errors for triples with complex relations are partially or completely
related to global contextual information. To address the above issue, we propose
GCE, a novel CNN based KG embedding model which aims to sufficiently incor-
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porate the global contextual information. The local and global features together
make the final prediction more reliable. Our main contributions in this paper
are as follows:

– We propose GCE, a CNN based embedding model, to capture suitable global
contextual information and selectively enhance discriminative feature repre-
sentations. To the best of our knowledge, our work is the first consideration
of exploring global contextual information to knowledge graph completion.

– An global contextual information encoding module with the attention mech-
anism is proposed to learn rich global contextual information over local fea-
tures. This module could adaptively aggregate global contextual information,
thus enhancing feature representations for knowledge graph completion.

– We evaluate our proposed GCE for knowledge graph completion on two
benchmark datasets including FB15k-237 [29] and WN18RR [9]. Experimen-
tal results demonstrate the effectiveness of our proposed GCE.

The rest of the paper is organised as follows. In Sect. 2 we provide a review of
related work on knowledge graph completion and global contextual information
modelling. In Sect. 3 we describe our GCE in detail. In Sect. 4 we report the
experimental results and analysis. Finally, in Sect. 5 we draw our conclusion and
future research direction.

2 Related Work

In this section, we briefly review some related works on knowledge graph embed-
ding and global contextual information.

2.1 Knowledge Graph Embedding

Recently, knowledge graph embedding learning has been an active research area
with applications directly in knowledge graph completion and relation extrac-
tion. Several knowledge graph embedding models have been proposed. These
methods can be broadly classified as: (i) compositional based models, (ii) trans-
lational distance models, (iii) graph based models, and (iv) CNN based models.

RESCAL [23], DISTMULT [38], HOLE [24] and ComplEx [30] are the exam-
ples of compositional based models. RESCAL use tensor product to capture rich
interactions, but require a large number of parameters. To reduce model com-
plexity, DISTMULT simplifies RESCAL by restricting relation matrices to diag-
onal matrices. ComplEx generalizes DISTMULT by using complex embeddings
and Hermitian dot products to better model asymmetric relations [34]. HOLE
combines the expressive power of RESCAL with the efficiency and simplicity of
DistMult with circular correlation of entity embeddings.

In comparison, translational distance models like TransE [5], TransH [36],
TransR [16] and TransD [12] are arguably simpler models. TransE considers
the translation operation between head and tail entities for relations. TransH
enables an entity to have distributed representations in different relations.
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TransR projects entities from entity space to corresponding relation space and
then builds translations between projected entities. These translational distance
models are faster with fewer parameters and relatively easier to train with com-
petitive performance.

R-GCN [25], SACN [27] and KBGAT [20] are examples of graph based mod-
els. These models apply graph neural networks to relation data and learn features
of entities and relations in a joint manner [20,27]. R-GCN applies a convolution
operation to the neighborhood of each entity and assigns them equal weights.
SACN applies a weighted graph convolution network (WGCN) as the encoder.
It weighs the different types of relations differently when aggregating connected
entities. KBGAT extends graph attention mechanisms to capture entity and rela-
tion features in a multi-hop neighbourhood of a given entity. These GCN based
models could leverage graph structure and capture semantically rich, latent rela-
tions among the triples.

Recently, CNN based models have received significant research attention
in knowledge graph embedding learning. ConvE [9] uses 2-D convolution over
embeddings to predict links. It comprises of a convolution layer, a fully connected
projection layer and an inner product layer for the final predictions. ConvKB [21]
applies 1-D convolution over same dimensional entries of an embedding triple, so
that it could capture transitional characteristic between entities and relations.
CapsE [22] extends ConvKB by using a capsule network to model relationship
triples for knowledge graph competition. InteractE [31] extends ConvE by further
increasing feature interactions between entity and relation embeddings through
feature permutation, “checkered” feature reshaping, and circular convolution.
These models are parameter efficient, fast to compute and robust to control
over-fitting.

2.2 Global Contextual Information

Understanding and utilizing global contextual information is vitally important
for many tasks, such as machine translation, information extraction, visual
question answering, image caption, video classification, semantic segmentation,
object detection, and image de-raining [2,8,11,17,35]. For text and sequences
data, we commonly apply recurrent neural networks, such as RNN, GRU, and
LSTM, to capture global contextual information. Then methods based on atten-
tion mechanism [2,17,32] were proposed for better global contextual informa-
tion. For computer vision task, several model variants were proposed to enhance
contextual aggregation. Deeplabv3+ [7] proposes an atrous spatial pyramid pool-
ing (ASPP) module to capture multi-scale contextual information. PSPNet [43]
designs a pyramid spatial pooling module to collect the effective global contex-
tual information. OCNet [40] adopts self-attention mechanism with ASPP( or
PPM) to exploit the context dependencies. EncNet [42] introduces a channel
attention mechanism to capture global context. DANet [11] proposes two atten-
tion modules to enhance the discriminant ability of feature representations.

Different from previous works, we explore the global contextual information
in the task of knowledge base completion. We carefully design a global contextual
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information module to adaptively aggregate global contextual information and
enhance feature representations. Comprehensive experimental results verify the
effectiveness of our proposed method.

3 The Proposed GCE

In this section, we first provide some notations and definitions used in the rest
of the paper, followed by a general framework of our proposed GCE. Finally, we
introduce the global contextual information module in detail followed by how to
combine them together for knowledge graph embedding learning.

3.1 Background

Given a Knowledge Graph (KG) G = (E , R), where E and R denote the set of
entities (nodes) and relations (edges), respectively. The task of link prediction
is to predict new triple (s′, r′, o′), where s′, o′ ∈ E and r′ ∈ R, based on the
existing triples in KGs. Formally, the link prediction task can be considered as
a ranking problem. Knowledge graph embedding models try to learn effective
representations of entities, relations and a scoring function f(s, r, o), such that
for a given triple t = (es, er, eo), f(t) is defined to measure the validity of triple
t. We generally assume that valid triples probably receive higher scores than
invalid triples [9,21,22].

3.2 Overview of Our GCE

Following ConvKB and CapsE [21,22], we view each embedding triple (es, er, eo)
as a matrix A = [es,er,eo] ∈ R

k×3. In the convolution layer, we use a filter
ω ∈ R

1×3 to capture some relation-specific attribute of triples. We denote Ω
as the set of filters and N as the number of filters, thus we have feature maps
as a matrix F ∈ R

k×N, for which each feature map can capture one single
characteristic among triples at the same dimension [22]. These features are local
features and lack of enough associations among each other. To address this issue,
we try to explore global contextual information by building associations among
features with the attention mechanism.

We illustrate our GCE in Fig. 1, where embedding size k = 4, the num-
ber of filters N = 5. We design a global contextual information module with
attention mechanism to draw global contextual information over local features,
thus obtaining better representations for link prediction. Specifically, we feed
the original features into the global contextual information module and generate
enhanced features through the following three steps. The first step is to calcu-
late the attention matrix from the original features. Next, we perform a matrix
multiplication between the original features and the attention matrix. Third,
we perform an element-wise sum operation on the above multiplied resulting
matrix and original features to obtain the enhanced representations reflecting
global contextual information.
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Finally, we feed the enhanced features into two single capsule layers following
CapsE [22]. And the length of the output from second capsule layer is used as
the score for the input triple. Formally, we define the score function f for the
input triple (s, r, o) as follows:

f(s, r, o) = ||capsnet(G(g([es, er, eo] ∗ Ω)))|| (1)

where Ω is shared parameters in the convolution layer; ∗ denotes a convolution
operator; G means the global contextual information with attention operator;
capsnet denotes a capsule operator. We use Adam optimizer [13] to train GCE
by minimizing the loss function [21,22,30] with L2 regularization as follows:

L =
∑

(s,r,o)∈{G∪G′}
log

(
1 + exp

(−t(s,r,o) · f (s, r, o)
))

+
λ

2
||w||22 (2)

in which,

t(s,r,o) =
{

1 for (s, r, o) ∈ G
−1 for (s, r, o) ∈ G′ (3)

here G and G′ are collections of valid and invalid triples, respectively. G′ is gen-
erated by corrupting valid triples in G.

Fig. 1. An overview of the GCE with k = 4,N = 3.

3.3 Global Contextual Information Module

Each channel map of high level features can be regarded as a relation-
specific attributes [22], and different semantic attributes are associated with
each other [11]. By exploiting the inter-dependencies between relation-specific
attributes, we could emphasize some interdependent feature and enhance the
feature representations of specific semantics. Therefore, we introduce a global
contextual information module with attention mechanism to draw global con-
textual information and enhance feature representations.

As illustrated in Fig. 2, we directly calculate the attention map X ∈ R
N×N

from the original feature F ∈ R
k×N. Specially, we perform a matrix multiplica-

tion between the transpose of F and original F . Then we apply a softmax layer
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Fig. 2. The global contextual information module.

to obtain the attention map X ∈ R
N×N:

xji =
exp (Fi · Fj)∑N
i=1 exp (Fi · Fj)

(4)

where xji measures the ith filter’s impact on the jth filter. Then we perform a
matrix multiplication between X and the transpose of F and reshape their result
to R

k×N. Then we multiply the result by a scale parameter α and perform an
element-wise sum operation with original feature F to obtain the final output
E ∈ R

k×N:

Ej = α

N∑

i=1

(xjiFi) + Fj (5)

where α gradually learns a weight from 0. The Eq. 5 shows that the final
enhanced features E of each channel is a weighted sum of the features of all chan-
nels and original features F , which models the semantic dependencies between
feature maps.

It is notable that our global contextual information module is simple and can
be directly inserted in the existing CapsE pipeline. We do not increase too much
computational consumption while effectively enhancing feature representations.

4 Experiments and Results

4.1 Benchmark Datasets

To evaluate the performance of our proposed GCE, we carry out comprehen-
sive experiments on two benchmark datasets including WN18RR [9] and F15k-
237 [29]. And Table 1 lists the statistics of WN18RR and FB15k-237.

WN18RR [9] is created from WN18 [5], which is a subset of WordNet [19].
It is first pointed in [29] that 97% of the training triples in WN18 have inverse
relations linked to test set. Thus WN18RR [9] is introduced to remove the inverse
relations. In summary, WN18RR contains 93,003 triples with 40,943 entities and
11 different relations.
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FB15k-237 [29] is a subset of FB15K [5], originally derived from Freebase [4].
It is first pointed in [29] that FB15K suffers from test leakage through inverse
relations. And then FB15k-237 is introduced, in which inverse relations have
been removed. FB15k-237 contains 310,116 triples with 14,541 entities and 237
different relations.

Table 1. Statistics of the experimental datasets.

Dataset Entities Relations Triples

Training Validation Test Total

WN18RR 40,943 11 86,835 3034 3,134 93,003

FB15k-237 14,541 237 272,115 17,535 20,466 310,116

4.2 Evaluation Protocol

Following [5], for each valid test triple (s, r, o), we replace either s or o by other
entities to create a set of corrupted triples. We use the “Filtered” setting protocol
produced by [5], i.e., and filter out all corrupted triples before ranking. We rank
the valid test triples and corrupted triples in descending order of their scores.
To evaluate the performance of the models, we employ five common evaluation
metrics in link prediction task, mean rank (MR), mean reciprocal rank (MRR),
Hits@10, Hits@3 and Hits@1 (the proportion of the valid test triples ranking
in top 10, 3 and 1 predictions). Lower MR, higher MRR, higher Hits@N indicates
better performance of models. We report average results across 5 runs. We find
that the variance is substantially low on all the metrics.

4.3 Training Protocol

During the training process, we use the common Bernoulli strategy [16,21,22,36]
to generate invalid triples. Following ConvKB [21] and CapsE [22], we use the
pre-trained entity and relation embeddings produced by TransE [5] to initialize
the entity and relation embeddings in our GCE for WN18RR and FB15K237.
We employ the TransE training implementations provided by [21,22].

In our GCE, we set the batch size as 128, the number of neurons with the
capsule in the second capsule layer as 10, the number of iterations in the routing
algorithm as 1, ReLU as the activation function, Adam [13] as the optimizer.
We run GCE up to 100 epochs and monitor the MRR and Hits@10 score after
each 10 training epochs to choose optimal hyper-parameters. The convolution
filters are initialized by a truncated normal distribution or by [0.1, 0.1,−0.1].

For WN18RR, the highest MRR and Hits@10 score on the validation set are
obtained when using d = 100, lr = 1e−5, N = 40, the L2-regularization λ =
0.01, and the truncated normal distribution for convolution filter initialization.
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For FB15K237, the highest MRR and Hits@10 scores on the validation set are
obtained when using d = 100, lr = 1e−4, N = 50, the L2-regularization λ =
0.001, and [0.1, 0.1,−0.1] for convolution filter initialization.

4.4 Ablation Experiments

Global Contextual Information Module. We employ the global contextual
information module on the top of the convolution layer to capture global con-
textual information for better link prediction. To verify the performance of the
global contextual information module, we conduct experiments with different
settings in Table 2.

As shown in Table 2, the global contextual information module remarkably
improves the link prediction performance on both FB15k237 and WN18RR.
Compared with the baseline CapsE, our GCE performs better on both experi-
mental datasets. On FB15k-237, GCE gains 0.043 improvement in MRR, and 3%
absolute improvement in Hits@10. On WN18RR, GCE obtains 0.016 improve-
ment in MRR, and 1.2% absolute improvement in Hits@10. These improvements
conduct the effectiveness and robustness of the global contextual information
module.

Table 2. Ablation study on FB15k237 and WN18RR val sets. GCIM represents the
global contextual information module.

Method GCIM FB15K237 WN18RR

MR MRR Hits@10 MR MRR Hits@10

CapsE 303 0.523 0.593 719 0.415 0.560

GCE � 324 0.566 0.623 1648 0.429 0.572

4.5 Comparing with State-of-the-art Methods

To evaluate the effectiveness of our proposed GCE, we perform a comprehensive
comparison with the existing state-of-the-art methods. These TransE [5], Dist-
Mult [38], ComplEx [30], R-GCN [25], ConvE [9], ConvKB [21], CapsE [22],
RotatE [28] and InteractE [31]. Table 3 shows the experimental results of
our GCE with previous state-of-the-art models on two standard link prediction
datasets under the same evaluation protocols. The results of all the baselines are
taken directly from the values reported in the papers [9,21,22,28,31]. Since our
GCE is built on CapsE, we specially compare against it. We find that our GCE
outperforms CapsE on four out of five metrics on both FB15k237 and WN18RR.
Specially, on FB15k-237, GCE gains 0.043 improvement in MRR, 3% absolute
improvement in Hits@10, 4.6% absolute improvement in Hits@3, and 4.3% abso-
lute improvement in Hits@1. On WN18RR, GCE obtains 0.016 improvement in
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MRR, 1.2% absolute improvement in Hits@10, 1.6% absolute improvement in
Hits@3 and 1.7% absolute improvement in Hits@1. Compared with other baseline
methods, our GCE obtains the highest MRR, highest Hits@10, highest Hits@3
and highest Hits@1 on FB15k-237, highest Hits@10 and second highest Hits@3
on WN18RR.

Table 3. Experimental results on WN18RR and FB15K-237 test sets. The best score
is in bold and second best score is underlined.

FB15K-237 WN18RR

Hits@N Hits@N

Model MR MRR @10 @3 @1 MR MRR @10 @3 @1

TransE [5] 323 0.279 0.441 0.376 0.198 2300 0.243 0.532 0.441 0.042

DistMult [38] 254 0.241 0.419 0.263 0.155 5110 0.444 0.504 0.470 0.412

ComplEx [30] 339 0.247 0.428 0.275 0.158 5261 0.449 0.531 0.469 0.410

R-GCN [25] 216 0.248 0.417 0.258 0.153 6700 0.123 0.207 0.138 0.083

ConvE [9] 244 0.325 0.501 0.356 0.237 4187 0.433 0.521 0.442 0.410

ConvKB [21] 245 0.407 0.529 0.426 0.348 763 0.253 0.567 0.445 0.051

SACN [27] – 0.352 0.541 0.393 0.259 – 0.473 0.541 0.480 0.431

CapsE [22] 303 0.523 0.593 0.528 0.493 719 0.415 0.560 0.466 0.351

RotatE [28] 177 0.338 0.533 0.375 0.241 3340 0.476 0.571 0.492 0.428

InteractE [31] 172 0.354 0.535 – 0.263 5202 0.463 0.528 – 0.430

Our GCE 324 0.566 0.623 0.569 0.536 1648 0.429 0.572 0.482 0.368

4.6 Evaluation on Different Relation Types

Following [5,22,36], we categorize the relations r in FB15k-237 into four cate-
gories: one-to-one (1-1), one-to-many (1-M), many-to-one (M-1) and many-to-
many (M-M). we calculate the averaged number ηs of head entities per tail entity
and the averaged number ηo of tail entities per head entity. A given relation is 1-1
if ηs <1.5 and ηo <1.5, 1-M if ηs <1.5 and ηo ≥1.5, M-1 if ηs ≥1.5 and ηo <1.5,
M-M if ηs ≥1.5 and ηo ≥1.5. Then there are 17, 26, 81 and 113 relations labelled
1-1, 1-M, M-1 and M-M, respectively. And we obtain that FB15k-237 test set
has 0.9% of 1-1, 6.3% of 1-M, 20.5% of M-1 and 72.3% of M-M.

Figure 3 shows the Hits@10 and MRR results for head and tail prediction
w.r.t each relation category on FB15k-237 test set. It is notable that GCE woks
better than CapsE in entities prediction on the “side M” of triples (e.g., head
prediction in 1-M, M-1 and M-M; tail prediction in 1-M and M-M). On M-
M triples, our GCE gains 3.86% and 3.29% absolute improvements in Hits@10
for head and tail prediction, 0.047 and 0.048 improvements in MRR for head
and tail prediction. And these improvements means better predictions on M-M
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triples are possible with our GCE. Considering that 72.3% of FB15k-237 test
triples are M-M triples, the performance of GCE on FB15k-237 maybe benefit
from the better prediction on M-M triples.

Figure 4 shows the Hits@10 and MRR results w.r.t each relation on WN18RR
dataset. also see, similar to, verb group and derivationally related form are
symmetric relations and could be considered as M-M relations [22]. From Fig. 4,
our GCE also performs a little better than CapsE on triples with these M-M
relations. Thus, results in Fig. 3 and Fig. 4 are consistent and demonstrate that
our GCE has better performance on the prediction of triples with M-M relations.
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Fig. 3. Hits@10 and MRR on the FB15k-237 test set w.r.t each relation category.
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Fig. 4. Hits@10 and MRR on the WN18RR test set w.r.t each relation. The right
y-axis is the percentage of triples corresponding to relations.

5 Conclusion

In this paper, we propose GCE—a simple and effective embedding model to
explore the capability of global contextual information in the task of knowledge
graph completion. We carefully design a global contextual information module
with the attention mechanism. This module could adaptively aggregate global
contextual information and enhance the feature representations. It could be
directly inserted in the existing pipelines while increasing a little computational
consumption. Experimental results show that our GCE achieves competitive
results on two benchmark datasets FB15K237 and WN18RR for knowledge base
completion. The ablation experiments show that our GCE has better link pre-
diction performance on the triples with complex relations. This implies that our
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GCE would be a potential candidate for applications which contain many M-M
relations such as search personalization.
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Abstract. Story generation is a challenging task, which demands to
maintain consistency of the plots and characters throughout the story.
Previous works have shown that GPT2, a large-scale language model, has
achieved advanced performance on story generation. However, we observe
that several serious issues still exist in the stories generated by GPT2,
which can be categorized into two folds: consistency and coherency. In
terms of consistency, on the one hand, GPT2 cannot guarantee the con-
sistency of the plots explicitly. On the other hand, the generated stories
usually contain coreference errors. In terms of coherency, GPT2 does
not take account of the discourse relations between sentences of stories
directly. To enhance the consistency and coherency of the generated sto-
ries, we propose a two-stage generation framework, where the first stage
is to organize the story outline which depicts the story plots and events,
and the second stage is to expand the outline into a complete story.
Therefore, the consistency of the plots can be controlled and guaranteed
explicitly. In addition, coreference supervision signals are incorporated to
reduce coreference errors and improve coreference consistency. Moreover,
we design an auxiliary task of discourse relation modeling to improve
the coherency of the generated stories. Experimental results on a story
dataset show that our model outperforms baseline approaches in terms
of both automatic metrics and human evaluation.

1 Introduction

A story is anything that is narrated in the form of a causally/logically linked set
of event plots involving some shared characters [21]. Story generation aims at
automatically generating stories with such attributes. Different from other text
generation tasks, story generation is more challenging because it is restricted to
several constraints: (1) it must maintain consistent plots to form a reasonable
story; (2) it must guarantee the consistency of the characters throughout the
story; (3) the coherency of the text units such as the clauses or sentences
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Table 1. A story generated by GPT2.

Prompt: The zombie apocalypse is upon us but all humans are immune to the virus
. All other mammals are susceptible

Story: As I sat there I tried to remember how many days it had been since the last
one died . [My wife and daughter were dead , I knew they would n’t be alive any time
soon .]1a The food ran out quickly , they had to be taken away to stay in the house
, but that was no reason to be angry if there were a few people left living there .
After a month of food being gone a little girl sat next to me . She was the only other
survivor who was n’t bitten , as it was hard for us to eat them , we were all sickly .
That would be another month to go and if the other animals were still alive in the
food, they would n’t be able to eat her . “ Hey little one . ” I looked up and saw
her . [I had a big smile on my face at this point .]2a [My wife was the only one who
noticed , but her smile was all that was visible of me , and not of her .]1b [I looked
at her , and smiled sadly .]2b She looked sad , but did n’t care . She never cared for
me .

should be concerned. In order to improve the quality of plot consistency, some
previous works focus on the perspective of plot planning and then merge the text
units according to the order of plots [15,16,24,25,28]. We observe that those
approaches rely heavily on human annotations and are restricted to the abstract
story representation level without surface realization in natural language, such as
producing event verb sequence and sentence segments. Therefore, these methods
need to work with sentence templates or rules to generate stories.

In the past few years, several end-to-end approaches based on Sequence-to-
Sequence (Seq2Seq) models [1,31] are proposed, which can generate a story at
a stroke in a left-to-right manner [7,9,12]. These methods are data-driven and
can directly generate stories in natural language form instead of other abstract
representations. However, these methods struggle to capture the high-level inter-
actions between the plot points and maintain consistent plots throughout the
story. Thus, several two-stage models for story generation have recently been
proposed [5,10,20,33,35]. These models usually decompose story generation into
two stages: generating the middle form first and then generating the final story.

Recently, the OpenAI GPT2/3 language model [4,27] achieves strong perfor-
mance on several language generation tasks such as dialogue systems [18,19,32].
[30] and [11] verify the performance of GPT2 on story generation and GPT2
outperforms both end-to-end methods and two-stage methods. However, after
analyzing the generated stories carefully, we observe that there are still some seri-
ous issues in the generated stories by GPT2. Take a story generated by GPT2
as shown in Table 1 for example. The story is about survivors at the end of the
world. First, plot consistency cannot be guaranteed among multiple sentences of
the story, such as blue sentences in Table 1. The sentence 1a describes “My wife
and daughter were dead”. But the sentence 1b talks about “My wife” again. It
is contradictory. There is the same problem in the sentence 2a and 2b. Second,
there are still coreference errors in generated stories, such as red text in Table 1.
It is not clear who they and them refer to. Moreover, Top-k sampling [4,27,30]
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is usually utilized as the decoding strategy in long text generation. The ran-
dom operation in sampling will disturb the generation procedure by producing
improper tokens which will decrease the quality. This phenomenon is more pro-
nounced at the border of sentences, therefore we can sometimes observe the bad
performance in discourse coherency.

To solve the aforementioned problems, we propose a two-stage generation
model based on Transformer-based auto-regressive language models to improve
the consistency and coherency of stories. Specifically, the first stage is to orga-
nize the story outline which depicts the story plots and events, and the second
stage is to expand the outline into a complete story. Therefore, the consistency
of the plots can be controlled and guaranteed explicitly. In addition, coreference
supervision signals are incorporated to reduce coreference errors and improve
coreference consistency. Moreover, we design an auxiliary task of discourse rela-
tion modeling to enhance the discourse coherency of the generated stories. Both
the backbone models in the two stages are designed based on Transformer-based
language models. Thus, on the one hand, the framework can still inherit the
superior performance of GPT2, on the other hand, it can guarantee the plot
consistency, coreference consistency, as well as discourse coherency. The main
contributions of this paper are summarized as follows:

– A two-stage framework based on Transformer-based language models is
designed to control the plots and improve the consistency of generated stories.

– A coreference constraint is applied to improve the coreference consistency of
generated stories.

– We design a discourse relation modeling component as an auxiliary task dur-
ing training to enhance the performance of discourse coherency.

– Experiments on a story dataset from Reddit demonstrate that our model
outperforms baseline methods in terms of both automatic metrics and human
evaluation.

2 Methodology

Fig. 1. The framework of our model for story generation.

To begin with, we state the problem of story generation as follows: given a
prompt context X = {x1, ..., xi..., xk} where xi denotes each word in the prompt,
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the model needs to generate a story Y = {y1, ..., yi, ..., yn} following the prompt
X by maximizing the conditional probability p(Y|X).

As shown in Fig. 1, to enhance the consistency and coherency of generated
stories, we propose a two-stage framework for story generation. The first stage is
story outline generation which can generate the plot outline based on the given
prompt. Then in the second stage, the whole story is completed by embellishing
the outline generated in the first stage. Transformer-based language models are
introduced as backbone models for those two stages respectively.

2.1 Transformer-Based Language Model

Inspired by the popular pre-trained language models for text generation such as
GPT2 [27], XLNET [34] and GPT3 [4], we also employ the Transformer-based
auto-regressive language models as our backbone frameworks.

Transformer-based language models only contain a decoder. The decoder
consists of N identical self-attention blocks and each block contains two sub-
layers: a self multi-head attention layer and a feed-forward layer. A add & norm
layer is employed around each of two sub-layers. Formally, given the input Hn−1,
the output Hn of each decoder block is computed as follows:

Cn = LN
(
SELF-ATT

(
Hn−1

)
+ Hn−1

)
(1)

Hn = LN(FFN (Cn) + Cn) (2)

where SELF-ATT(·), LN(·), and FFN(·) are respectively self-attention mecha-
nism, layer normalization, and feed-forward network with ReLU activation in
between. SELF-ATT(·) computes attention over the input Hn−1 as follows:

SELF-ATT
(
Hn−1

)
= softmax

(
QK�
√

dk

)
V (3)

where {Q,K,V} are query, key and value vectors that are transformed from
the input Hn−1.

√
dk is the scaling factor where dk is the dimension size of

the query and key vectors. Given the word embeddings E = {e1, e2, ..., em} and
corresponding positional embeddings P = {p1, p2, ..., pm} of a sentence with m
words, the first block input H0 = E + P.

Finally, a linear function with softmax activation is used to compute the
probability of next word xt via:

p (xt|x≤t−1) = softmax (g (ht)) (4)

We calculate negative log-likelihood loss for model training:

Llm = − 1
m

∑

t

log p (xt|x≤t−1) (5)
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2.2 Two-Stage Generation

Outline Preparation
In order to regard the outline generation task as a supervised learning problem,
we must construct a high-quality training dataset including sufficient prompt-
outline pairs. In this work, we investigate two forms of the outline: keyword and
abstract. These two forms retain the important information of the story and
ignore some details and commonly used in two-stage based methods [5,10,35].
Our motivation is to use two-stage generation to improve performance of one-
stage Transformer-based language models, so we do not design a new middle
form. Specifically, we use the RAKE algorithm [29]1 to extract keywords of sto-
ries. According to [35] and the average length of stories in our corpus, we extract
10 keywords for each story. We use a variation of the TextRank algorithm [3]2 to
extract abstracts of stories. In order to retain important information and ignore
some detail information, we extract 30% sentences of each story as abstract in
TextRank. Thus, we can get (prompt, outline, story) triples automatically to
train the two-stage model.

Prompt to Outline Generation
A Transformer-based language model based decoder is used to generate outlines.
Specifically, we concatenate prompt X and outline Z with <SEP> token to get
a sequence X′. For training, we compute cross entropy of all tokens in X′ as
normal language model. When testing, given the prompt tokens as context, the
decoder generates outline tokens.

Prompt and Outline to Story Generation
Another decoder with the same architecture is used to generate stories. We
concatenate prompt X, outline Z and story Y with <S> and <SEP> token to get a

Table 2. Example pairs from Books 8 dataset.

S1 Marker S2

Her eyes flew up to his

face.

and Suddenly she realized why he looked so different.

The concept is simple. but The execution will be incredibly dangerous.

You used to feel pride. because You defended innocent people.

Belter was still hard at

work.

when Drade and barney strolled in.

I’ ll tell you about it. if You give me your number.

We plugged bulky

headsets into the

dashboard.

so We could hear each other when we spoke into the

microphones.

It was mere minutes or

hours.

before He finally fell into unconsciousness.

And then the cloudy

darkness lifted.

though The lifeboat did not slow down.

1 https://pypi.org/project/rake-nltk/.
2 https://radimrehurek.com/gensim/.

https://pypi.org/project/rake-nltk/
https://radimrehurek.com/gensim/
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sequence X′′. For training, we compute cross entropy of prompt and story tokens
in X′′. Note that we don’t calculate the loss of the outline tokens. Because the
outline tokens come from the story and we avoid computing loss of these tokens
twice. When testing, given the prompt and the outline tokens as context, the
decoder generates story tokens. Next, two components are incorporated in this
stage to enhance discourse coherency and coreference consistency.

2.3 Discourse Coherency Enhancement

In order to improve discourse representation of Transformer-based language
model, we design a discourse relation classification task as an auxiliary task. Dis-
course relations describe how two segments (e.g., clauses, sentences, and larger
multi-clause groupings) of discourse are logically connected. These relations can
be used to describe the high-level organization of the text. Thus, discourse rela-
tion is an important aspect of story coherence. In this work, we only consider
shallow discourse relations between adjacent sentences as many research on dis-
course relation classification do [2,6,14].

Discourse Information Preparation
In order to get discourse label of adjacent sentences in stories, we need to train
a golden discourse relation classification model. However, there is limited anno-
tation corpus of implicit discourse relations and explicit discourse relations. For
example, the commonly used dataset Penn Discourse Treebank 2.0 [26] contains
about 10k pairs. Following [22], we use discourse markers as replacement of dis-
course relations. Because we are able to automatically curate a sizable training
set of sentence pairs with discourse markers. We use the discourse marker dataset
Book 8 from [22], which contains 3.6M sentence pairs and each pair is labeled
with one connective of 8 connectives as discourse label. Several sentence pairs
and corresponding discourse markers are shown in Table 2.

We fine tune BERT [8]3 in this dataset to get a golden discourse marker
prediction model. Then we use this model to tag discourse relation label of
sentence pairs in our story corpus. Considering that this automatic tagging may
produce large errors, we only keep labels with high classification probability (the
threshold is 0.8), and labels with lower probability are replaced with the ninth
label unknown and are discarded. The sentence pairs with labels belonging to 8
connectives are used to train our discourse relation classification component.

Discourse-aware Story Generation
The discourse relation classification component contains a sentence encoder and
a two-layer MLP. The encoder is used to extract semantic feature of sentences
and the MLP is used to convert feature into classification probability. The sen-
tence encoder shares parameters with the story decoder excluding the output
layer. For a story Y contains several sentence {S1,Si,Sp} and each sentence
contains several words Si = {yi1, yij , yiq}, we get output hw

ij of encoder as word

3 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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representation and use max pooling operation on words of this sentence to get
sentence representation hs

i :

Hs
i = encoder(Si) (6)

hs
i = max(Hs

i ) (7)

Then the MLP is used to classify adjacent sentences as follows:

f = tanh(Wf [hs
i , h

s
i+1] + bf ) (8)

p(dis|Si,Sj) = softmax(Wof + bo) (9)

The loss function Ldis of this component is the cross-entropy of discourse label.
Then a joint loss function is applied to train the second stage model:

L = Llm + λ1Ldis (10)

where λ1 is a hyperparameter to balance two tasks.

2.4 Coreference Consistency Enhancement

Although Transformer-based language model has the ability of long-distance
dependence, there are still some coreference errors in the generated stories. In
order to encourage the model to attend correct entities, we add a supervision on
attention weight of entity mention tokens. We use Stanford’s CoreNLP tool4 to
extract coreference annotation of stories.

Specifically, for a story Y we get p coreference clusters and each cluster con-
tains q entity mentions. We assign each token yc

i in entity mention subsequence
Yc = {yc

1, y
c
i , y

c
pq} a cluster label ci to get cluster label sequence C = {c1, ci, cpq}.

During training, for an entity mention token yc
i , we get attention weights between

current token and previous tokens {yc ≤ i − 1} in last self-attention layer of the
decoder, the sum of which is 1:

i−1∑

k=1

αik = 1 (11)

We design a coreference loss to maximize attention weights of tokens in the same
cluster as follows:

Lcoref = − 1
pq

pq∑

i=1

i−1∑

k=1

1(ck = ci) log αik (12)

Considering these two components, the loss function for the second stage model
is as follows:

L = Llm + λ1Ldis + λ2Lcoref (13)

4 https://stanfordnlp.github.io/CoreNLP/.

https://stanfordnlp.github.io/CoreNLP/
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3 Experimental Setup

3.1 Settings and Data Set

For two Transformer decoders, we apply the same model size as GPT2-117M
[27]. Thus we can analyze the effect of pre-trained weights of GPT2. Specifically,
the dimension of word embedding and the dimension of hidden vectors are set
to 768. The number of self-attention block is set to 12 and 12 heads are used
in self multi-head attention. We train the model using Adam [13] with learning
rate 0.0005. The dropout rate is set to 0.3 for regularization. λ1 and λ2 are set to
0.1 and 0.3 according to the performance in valid set. Following [9] we generate
stories with random top k sampling, where next words are sampling from the
top k = 20 candidates rather than the entire vocabulary distribution.

We use writing prompts dataset from [9], which is collected from Reddit’s
WRITINGPROMPTS forum5. WRITINGPROMPTS is a community where
online users inspire each other to write by submitting story prompts. Each
prompt can have multiple story responses. The prompts have a large diver-
sity of topic, length, and detail. There are 300k stories and the dataset is split
into TRAIN, VAL and TEST (90%/5%/5%). For our experiments, we limit the
length of the stories to 500 words maximum. We use GPT2’s BPE vocabulary
with size of 50,527 in our model.

3.2 Evaluation Metrics

Automatic Evaluation. Many commonly used metrics based on n-gram over-
lap between the generated text and the human text, such as BLEU [23], are
not useful in story generation, which is also observed by previous works [9,20].
Because we do not aim to generate a specific story; we want to generate viable
and novel stories.

In order to evaluate different aspects of stories, we use four types of metrics.
We use Perplexity to evaluate the fluency of stories. Perplexity is commonly
used to evaluate the quality of language models, and it reflects how fluently the
model can produce the correct next word given the preceding words. What’s
more, in order to evaluate the diversity of stories we compute Distinct-1/2
[17], which is the percentage of distinct n-grams in all generated stories and is
widely used in conversation generation.

In order to evaluate the discourse coherency of the stories, we reuse the fine-
tuned BERT for evaluation. Specifically, we use BERT to tag discourse label
for sentence pairs in generated stories in the same way as the tagging process
of training set in Sect. 2.3. We compute the percentage of sentence pairs with
Unknown labels in generated stories. The fewer sentence pairs with unknown
labels the model generates, the better the coherency of stories are. In order to
evaluate the coreference coherence, we compute the averaged number of Coref-
erence Chains in each story. Specifically, we use Stanford’s CoreNLP tool6 to
extract coreference chains of generated stories.
5 https://www.reddit.com/r/WritingPrompts/.
6 https://stanfordnlp.github.io/CoreNLP/.

https://www.reddit.com/r/WritingPrompts/
https://stanfordnlp.github.io/CoreNLP/
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Human Evaluation. To further evaluate the quality of generated stories, we
conduct pair-wise comparisons with two strong baseline models (FConvS2S and
GPT2P). We evaluate the models from the following three perspectives: Rel-
evance to indicate whether a story is relevant to the given prompt, Gram-
maticality to indicate whether a story is natural and fluent, and Logicality to
indicate whether a story is consistent and coherent in terms of causal dependen-
cies in the context. Note that the three aspects are independently evaluated. We
randomly sample 100 prompts from the test set and obtain 300 stories from three
models. For each pair of stories (one by our model and the other by a baseline,
along with the prompt), three graduate students as annotators are asked to give
a preference (win, lose, or tie) in terms of three metrics respectively. We adopt
majority voting to make final decisions among the three annotators.

3.3 Comparison Methods

Conv Seq2Seq with self-attention (ConvS2S). We replicate the model pro-
posed by [9] using their source code, which applies a convolutional sequence-to-
sequence model with gated self-attention to generate stories from prompts.
Fusion of Conv Seq2Seq with self-attention (FConvS2S). The model
is also proposed by [9], which utilizes a fusion mechanism to integrate two
ConvS2S.
GPT2. The model only contains a Transformer-based decoder and has the same
model size as GPT2-117M [27]. We train the model from scratch.
GPT2 with Pre-trained (GPT2P). We first load pre-trained weights of
GPT2-117M and then fine tune the model on the used dataset.
Ours. Our overall model contains two-stage generation, discourse relation clas-
sification and coreference supervision. In order to evaluate the upper bound of
two-stage generation, we use different percentages of tokens of ground truth
outlines as contexts to generate stories. Ours(0%) means using own generated
outlines as contexts in the second stage to generate stories. It is our final model.
Ours(100%) means all tokens of ground truth outlines are used as contexts. It
is the upper bound model.

4 Results and Discussions

Automatic Evaluation and Human Evaluation
As shown in Table 3, we compute four types of metrics for these methods. We can
see that GPT2 outperforms FConvS2S and ConvS2S in all metrics. This indi-
cates that the self-attention based model is superior to the convolutional based
model in story generation. Although FConvS2S and ConvS2S are enhanced with
a self-attention mechanism, their ability to capture long-distance dependence is
still weaker than GPT2. Compared to GPT2, GPT2P improves the perplexity
and distinct significantly. GPT2P also generates the least sentence pairs with
unknown discourse relation. This shows that pre-trained weights contribute to
generating more fluent, diverse and coherent stories. Compared to these methods,
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Table 3. Automatic evaluation results on TEST set.

Method Perplexity↓ Dis-1(%)↑ Dis-2(%)↑ Unknown(%)↓ Coref Chains↑
ConvS2S 34.61 0.400 5.191 76.01 5.52

FConvS2S 33.97 0.482 6.271 75.60 5.43

GPT2 29.50 0.474 6.796 74.95 5.67

GPT2P 25.64 0.493 7.333 73.61 5.61

Ours (0% ground truth outline) 30.84 0.531 7.379 75.19 5.98

Ours (50% ground truth outline) 19.21 1.311 13.253 75.15 5.97

Ours (100% ground truth outline) 10.32 1.509 15.266 74.97 5.80

Table 4. Human evaluation results on TEST set.

Method Relevance Grammaticality Logicality

Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%)

Ours vs. FConvS2S 23 66 11 28 53 19 40 33 27

Ours vs. GPT2P 21 60 19 17 69 14 31 47 22

our model (Ours(0%)) achieves the best diversity and coreference performance.
This demonstrates the effectiveness of our overall model. Ours performs worse
than GPT2 and GPT2P in perplexity score. This indicates that our model sac-
rifices part of fluency for the plot control. What’s more, we can see that all
two-stage models perform worse in unknown score compared with GPT2 and
GPT2P. We claim that two-stage generation and discourse relation component
may repel each other.

Table 4 reports human evaluation results. Our method achieves the best
scores in three metrics. Specifically, our method mainly improves scores on Log-
icality. This shows that our method can generate more coherent stories by uti-
lizing discourse and coreference supervision. Our method performs similarly to
GPT2P in terms of Relevance and Grammaticality. Because both methods use
Transformer as the decoder and our model does not design a component to
improve the relevance to the prompt. Next, we conduct ablation experiment to
evaluate each component of our method.

Outline Analysis

Table 5. Comparison of different outlines.

Method Perplexity↓ Dis-1(%)↑ Dis-2(%)↑ Unknown(%)↓ Coref Chains↑
First stage

keyword 74.46 0.964 7.132 / /

abstract 35.53 0.776 10.060 / /

Second stage

story with keyword 17.82 0.461 6.188 74.26 5.67

story with abstract 10.65 0.512 7.358 74.54 5.81
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Fig. 2. The attention weight distribution of story tokens in different positions.

We compare the performance of keyword and abstract as outlines. As shown
in Table 5, in the first stage keyword is more difficult to generate than abstract,
for that keyword gets a higher perplexity. From the second stage, we can see that
stories using abstract as outline get better scores in four metrics. This indicates
that the abstract contributes to generating stories with better diversity and
consistency. Therefore, we take abstract as outline in our model. In order to
evaluate whether the stories are generated following the plot order of abstract,
we plot story tokens’ attention weight distributions on abstract tokens. The
attention weight distributions are computed by averaging 2,000 generated stories.
Because of the limited space, we only list tokens of the abstract and the story
in the front positions. The result is shown in Fig. 2. There are several lines with
darker colors in the diagonal direction of the figure. This demonstrates that the
story’s focus follows the plot order of the abstract and our two-stage model can
control the plots of the story well.
Discourse Relation Classification

Table 6. The percentages of discourse relations with different λ1.

TLM+Discourse And(%)↑ When(%)↑ Unknown(%)↓
0.1 11.43 2.90 72.94

0.3 11.38 2.80 73.60

0.5 10.91 2.72 73.78
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Table 7. The percentages of discourse relations of different methods.

Method And(%)↑ When(%)↑ Unknown(%)↓
ConvS2S 8.52 2.45 76.01

FConvS2S 8.67 2.41 75.59

GPT2 10.14 2.50 74.96

GPT2P 10.96 2.60 73.61

TLM+Discourse 11.43 2.90 72.94

We evaluate the effect of discourse relation classification with TLM+Dis-
course, which enhances Transformer based language model with our proposed
discourse relation classification component. We show the percentages of and,
when and unknown for that the percentages of other relations are small. We
first try several different values for λ1 in loss function and the result is shown in
Table 6. When λ1 is high, there is no gain in three discourse metrics. When
λ1 is 0.1, we get the most gain in three discourse metrics. This indicates
that large weight affects the main task and damages the performance of lan-
guage model. Therefore, we use 0.1 in our final model. Then we compare
TLM+Discourse with other baselines. The percentages of discourse relations
are shown in Table 7. We can see that GPT2 and GPT2P perform better than
ConvS2S and FConvS2S. TLM+Discourse generates least sentence pairs with
unknown relation and achieves the best score among all methods. This shows
that discourse relation classification component is helpful to generate more sen-
tence pairs with certain discourse relations and further improve the coherency
of generated stories.
Case Study
We analyze some generated stories to evaluate our overall model. An example is
shown in Table 8. Stories generated by GPT2P have poor plot consistency and
have some coreference errors, such as blue sentences and red words in Table 8.
Compared with GPT2P, our model can effectively control the plot consistency of
the story through the abstract. Therefore, stories generated by our model have
better plot consistency. In addition, our model has fewer coreference errors than
GPT2P and generates stories with better coreference consistency. What’s more,
the coherency between sentences is also better than GPT2P.
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Table 8. Comparison of different methods.

Prompt: The zombie apocalypse is upon us but all humans are immune to the
virus . All other mammals are susceptible.

GPT2P: As I sat there I tried to remember how many days it had been since the
last one died . [My wife and daughter were dead, I knew they would n’t be alive
any time soon.]1a The food ran out quickly , they had to be taken away to stay
in the house , but that was no reason to be angry if there were a few people left
living there . After a month of food being gone a little girl sat next to me . She
was the only other survivor who was n’t bitten , as it was hard for us to eat them
, we were all sickly . That would be another month to go and if the other animals
were still alive in the food, they would n’t be able to eat her . “ Hey little one . ”
I looked up and saw her . [I had a big smile on my face at this point .]2a [My wife
was the only one who noticed , but her smile was all that was visible of me , and
not of her .]1b [I looked at her , and smiled sadly .]2b She looked sad , but did n’t
care . She never cared for me .

Our (generated abstract): He was the last to see the end of this world . The
only reason John had survived was by his own hand , and it took much more than
he could bear with a few months to heal his wounds . It took a few months for
him to be able to see the end and get his arm back from the dead , and he did n’t
care for a few more years without having to go back .

Our (generated story): When he had been first laid to rest the first few days he
did n’t care , and he had thought it was just a small thing, but it started getting
worse . He was the last to see the end of this world . The only reason John had
survived was by his own hand, and it took much more than he could bear with a
few months to heal his wounds . John had lived the rest of his life on Earth without
anything else but the clothes on his back , and the rifle he kept at home when he
was alone . The first few days were easy . A little bit of food , a bit of protection
. He spent a few days walking around the city and drinking a beer , thinking he
was safe , but the next few months were hell . It took a few months for him to be
able to see the end and get his arm back from the dead , and he did n’t care for a
few more years without having to go back. It was better to go back , to be safe ,
so he would be safe for a while , and so he would n’t get infected .

5 Conclusion

In this paper, we propose a two-stage generation model to improve the consis-
tency and coherency of generated stories. The first stage is to build the story
outline, and the second stage is to expand the outline into a complete story.
What’s more, we design a supplementary task of discourse relation classification
to improve the discourse representation ability of the model. In addition, we
enhance the model with coreference supervision to improve coreference consis-
tency in generated stories. Experimental results on a story dataset show that
our method is superior to baseline methods.
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Abstract. Most existing approaches for the extraction of entities and relations
face two main challenges: extracting overlapping relations and capturing the
interactions between entity and relation extractions. In this paper, we present
a novel sequence-to-sequence model with a hierarchical decoder to solve both
issues elegantly and efficiently. Specifically, we use the low-level decoder to
predict multi-relations and produce a relation vector for each triple. Given this
relation vector, the high-level decoder generates two entities associated with the
triple. In this manner, we can directly capture the interactions between entity
and relation extractions. Moreover, by decomposing two tasks into two decod-
ing phases, the overlapping multi-relations extraction can be naturally separated.
Experiments on popular public datasets demonstrate that our model can effec-
tively extract overlapping triples.

Keywords: Entity recognition · Relation extraction · Hierarchical architecture

1 Introduction

Entity and relation extraction are two fundamental tasks in natural language processing
field. Detecting and extracting the structured triples from the unstructured document can
support many other tasks such as knowledge base construction, information retrieval
and question answering. The concrete goal is to extract triples like 〈rel, e1, e2〉 from
unstructured text, which means there is a relation rel between entity e1 (also called
source entity) and entity e2 (also called target entity).

Some problems still remain in the previous methodology for entity and relation
extraction. First, most previous approaches can not capture the interaction between entity
recognition and relation extraction. The pipeline method [5,27] regards named entity
recognition (NER) and relation classification (RC) as two separate tasks, and it classifies
relations based on theNER results. This kind of approach ignores the correlation between
the two sub-tasks and may cause error propagation. Second, overlapping multi-relations
in sentence are not handled well in many prior studies. Most of the existing methods
assume that there is only one single relation in the sentence. Those approaches ignore
the multi-relations scenarios, so their performance will be affected by the existence of
multi-relations. Finally, prior studies about joint extraction of entities and relations are
c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12656, pp. 710–723, 2021.
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expensive to train. These models are task-specific and cannot utilize the transfer learning
method to initialize the parameter and save the computing resources.

In this paper, we propose an end-to-end joint learning method without any additional
feature engineering. The proposed model with encoder-decoder architecture could cap-
ture the interaction between entity and relation extraction by introducing a hierarchical
decoder in which the low-level decoder is used to generate one or more relations con-
tained in the sentence and the high-level decoder are designed to detect entity pairs
by fusing the information of relations generated from low-level decoder. In such way,
extracting each triple can be separated in each low-level decoding step. Besides, our
approach is configurable. We can apply different types of encoder including popular
Bidirectional Encoder Representations from Transformers (BERT) proposed by [7].

Moreover, our model is equipped with hierarchical attention mechanism. One atten-
tion module in low-level decoder is used to improve the performance of relation predic-
tion and the other in high-level decoder is designed to integrate the extracted relation to
obtain more accurate entity label sequence corresponding to the current relation. Based
on this unique design, our model could generate multiple triples in one sentence. Since
each relation and entity pair is independently generated, our model will not be affected
by the overlapping multi-relations situation.

The contributions of our work are concluded as follows:

– We introduce a novel entity and relation extractor with hierarchical attention mod-
ules, in which the low-level decoder serves as a relation generator, and the high-level
decoder combines the predicted relation information to complete the entity recogni-
tion process. Through this framework, our model can handle complex overlapping
multi-relations extraction.

– We design a configurable sequence-to-sequence approach for entity and relation
extraction in which we can utilize any contextual feature extractor including some
popular pre-trained models like BERT.

– Experiments on widely used dataset including NYT10 and NYT11 show that this
method achieves the best results and further outperforms state-of-the-art with 7.0%
and 7.6% improvement by introducing BERT, respectively.

2 Related Work

Recent years, many works have been contributed to entity and relation extraction, which
can be roughly classified into two categories. The first class is pipeline-based methods.
These methods regard name entity recognition [14,31] and relation extraction [17,30]
as two independent tasks, which means relation extraction is performed based on the
output of name entity recognition. Since the powerful representation and feature extrac-
tion capability of neural network, these methods prefer adopting recurrent neural net-
work (RNN) and convolution neural network (CNN) as backbone. Given the marked
target entity pairs, [22] first proposed using RNN for relation classification, and [28]
used CNN for this task. [4,8,24] improved the previous works and achieved better per-
formance on relation classification. Unfortunately, there are several shortcomings of
pipeline-based method: error propagation, neglecting the correlation between two sub-
tasks and generating redundant information.
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The second class is joint learning method [6,25], which have received considerable
attentions in recent years. Joint learning methods use a single model to extract enti-
ties and relations simultaneously, which can utilize the close interaction between entity
extraction and relation extraction. Joint learning methods can be divided into two cate-
gories: feature-based [15,19,20] and deep learning-based. [18] used neural networks to
extract entities and relations jointly. They shared the underlying encoded information
and presented a sequence-based LSTM for NER, and a tree-based dependency LSTM
for RC. [13] introduced attention mechanism to extract entities and relations in combi-
nation with Bi-LSTMs without using any dependency features. [32] proposed an entity
relation extraction method based on a novel tagging schema, which combines entity and
relation information in the tags. This method completely transforms the joint learning
model into a sequence labeling problem. Although [32] can extract multiple relations,
it cannot handle the overlapping relation extraction well, because each entity can only
be assigned with a single label in this method.

In the past two years, several studies have been carried out on overlapping multi-
relations extraction, such as [2,3,9,11]. [29] proposed an end-to-end model based on
sequence-to-sequence method with copy mechanism, which can classify relation types
from predefined relational tables or copy entities from original text at the specified
time, but it cannot extract complete multi-word entities. [23] introduced a hierarchical
reinforcement learning (HRL) framework to solve the overlapping relation extraction
problem, which decomposes the task into using high-level RL for relation detection
and low-level RL for entity extraction. However, the training process for HRL is time-
consuming, and it is hard to converge.

From the perspective of model architecture, hierarchical recurrent network has been
widely used to simulate the hierarchy of the language directly [16]. Early work applied
hierarchical recurrent networks to simple algorithmic problems [10]. In recent years, it
has been successfully used in image captioning [12] and video captioning [26]. In this
paper, we creatively introduce hierarchical architecture for joint extraction of entities
and relations.

3 Method

In this section, we will describe our hierarchical sequence-to-sequence framework with
hierarchical attention for overlapping multi-relations extraction in detail. The overall
structure of our model is shown in Fig. 1. In the encoding phase, the model encodes
the variable-length word sequence into a fixed-length vector representation. Then the
model decodes the encoding vector representation by hierarchical decoder. The low-
level decoder decodes the relation at each step. The high-level decoder combined CRF
layer calculates the corresponding label sequence according to the relation generated by
the low-level decoder to extract entity pair. Based on this design, our model can extract
multiple triples in multiple decoding steps.

3.1 Encoder

As mentioned, our model is configurable. In the encoder phase, we can utilize differ-
ent contextual feature extractors. Here in this paper, we use two types of encoder. One
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Fig. 1. The overall structure of our model. The orange blocks on the left represent the encoder, the
yellow blocks represent the low-level decoder cells, and the green blocks represent the high-level
decoder cells. For the i-th decoding step, the low-level decoder generates a relation contains, and
the high-level decoder predicts an entity label sequence according to the relation.

is based on Bi-LSTMs, and the other is based on BERT, which is a pre-trained lan-
guage representation model that has shown marvellous improvements across various
NLP tasks. We will describe the use of two encoders, respectively.

Bi-LSTMs. Giving a text sequence S = [w1, w2, ..., wn], where wt represents the t-th
word in the sentence of length n. First, we transform one-hot vector of each word into
embedding matrix through embedding layer, and get E = [x1, x2, ..., xn], where xt

means the word vector of t-th word in the sequence. We use Glove 1 to initialize our
embedding layer and the parameters are updated during the training of model.

Then we use Bi-LSTMs to encode the input sequence. Bi-LSTMs consists of a
forward LSTM (encoding from left to right) and a backward LSTM (encoding from
right to left). LSTM network is a variant of RNN, which has the ability to model long-
term dependency in the sequence. Then we concatenate

−→
ht which is obtained by forward

LSTM and
←−
ht which is obtained by backward LSTM as the final encoding vector of the

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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t-th word, denoted as ht = [
−→
ht ,

←−
ht]. In this way, the encoding vector of each word can

obtain the semantic information of its surrounding context.

ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(1)

The calculation formula of LSTM cell is shown in Eq. (1), where xt represents the
word vector of t-th word, ht represents hidden states vector at the time t, Wf , Wi, Wc,
Wo are learnable weight matrices, bf , bi, bc, bo are learnable bias vectors, σ and tanh
are nonlinear activation function.

BERT. BERT is a bidirectional transformer-based language representation model that
is pre-trained on a large-scale corpus. Usually, for a downstream NLP task, a task-
specific layer is added on top of a pre-trained BERT model. In this paper, since the
following work of the model involves NER (case-sensitive), we choose the BERT-Base-
Cased version as the encoder and fine-tune along with the training of the whole model.
The BERT-Base-Cased structure contains 12 layers of transformer blocks.

For a given token, the input representation is constructed by summing the cor-
responding token, segment, and position embeddings. The first word of each input
sequence is always a special classification token ([CLS]). Similar to LSTM, to obtain a
fixed-dimensional pooled representation of the input sequence, we use the hidden state
of the last layer of the first token as the sentence embedding to initialize the initial
state of the decoder. Meanwhile, we select ht, which represents the hidden state of the
last layer of BERT at time t, as the final vector representation of the t-th word in the
sentence.

3.2 Decoder

The model uses the hierarchical decoder structure with a hierarchical attention mecha-
nism to decode relations and corresponding entity pairs.

Low-Level Decoder. A unidirectional LSTM is used to generate one or more relations
contained in the input sequence.

oi, si = cell([ri−1, h
rel
i ], si−1) (2)

In Eq. (2), cell represents an LSTM cell. In the training phase, ri−1 is the embedding
of the target relation at the previous step in the decode sequence. In the test phase, ri−1

is the embedding vector of the relation predicted at the previous step, si−1 is the hidden
state of the previous step.
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Meanwhile, the low-level attention aims to score how well the t-th input word and
the output i-th relation match. hrel

i represents the weighted sum of the hidden state of
the encoder. We use the attention calculation method proposed by [1] as follows:

eit = vreltanh(W rel
h ht + W rel

s si−1 + brelattn)

ai = softmax(ei)

hrel
i =

∑

t

ai
tht

(3)

where W rel
h , W rel

s and brelattn are learnable parameters, ht means the t-th hidden state
of encoder when the input is the word vector xt of the t-th word, si is the hidden state
of low-level LSTM in decoder at step i. We get hrel

i and concatenate it with relation
embedding as input for the next decoding step. The output of LSTM oi is fed through a
linear layer and then we calculate the probability distribution over relation vocabulary:

Prel = softmax(Wroi + br) (4)

where Wr, br are learnable parameters. We select the relation with the highest proba-
bility as the predicted relation at the current time.

High-Level Decoder. This hierarchy is designed to generate a NER tag sequence
according to the current relation. We adopt Bi-LSTMs with CRF structure, CRF can
learn the transition probability between tags, which has a certain constraint on the gen-
eration of adjacent tags. The target tag set includes {O, S-B, S-I, T-B, T-I}, where S-B
denotes the beginning of a source entity in a triple, S-I denotes the rest of the source
entity, T-B denotes the beginning of the target entity, T-I denotes the rest of the target
entity, and O denotes non-entity.

oti, s
t
i = cell([xt, h

ner
i ], st−1

i ) (5)

In Eq. (5), cell represents LSTM cell. For two types of encoder structures, xt has
two forms. When the encoder is Bi-LSTMs, xt is the word vector of each word. When
the encoder is BERT, xt is the hidden vector representation of the last layer of the
BERT model. hner

i is the weighted sum of the hidden states of the encoder calculated
by attention mechanism.

High-level attention is used to optimize NER tag prediction by making full use of
the relation information. In detail, we use the relation embedding ri of current low-level
decoding step i to attend over the encoder representation, thus relation information
is incorporated into hner

i to help high-level NER tag decoding. This can be formally
defined as follows:

mi
t = vnertanh(Wner

h ht + Wner
s ri + bnerattn)

ni = softmax(mi)

hner
i =

∑

t

ni
tht

(6)
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Similarly, we concatenate xt and hner
i as the input of high-level LSTM cell. The

output of Bi-LSTMs hlabel is transformed by a linear layer and fed to a CRF layer,
and then we get the final NER label sequence y = [y1, y2, ..., yn] decoded by CRF as
Eq. (7):

P (y|S) = exp(
∑

t(W
yt

crfhlabel
t + T (yt−1,yt)))

∑
y′ ∈Y exp(

∑
t(W

y
′
t

crfhlabel
t + T (y

′
t−1,y

′
t)))

(7)

where T is a square transition matrix in which each entry represents transition score
from one tag to another, Wcrf is a learnable parameter, Y represents a set of all possible
label sequences. We apply the Viterbi algorithm to find the label sequence with the
highest probability.

3.3 Training

During training, we minimize the cross-entropy loss for relation extraction which is
using low-level LSTM, denoted as Lrel, and CRF loss for entity pair extraction, which
is high-level LSTM, denoted as Lner. These two loss functions are defined as follows:

Lrel =
1

B ∗ I

B∑

b=1

I∑

i=1

−log(P b
i (rel))

Lner =
1
B

B∑

b=1

−log(P (y|Sb))

(8)

where B is the batch size and I is the maximum step of low-level decoder, Sb is the
b-th sentence in the batch.

The total loss is a linear combination of Lrel and Lner controlled by the hyperpa-
rameter λ.

Ltotal = Lrel + λ ∗ Lner (9)

The complete training process is shown in Algorithm 1.

4 Experiment

4.1 Experimental Setting

Dataset. Two widely used public datasets, NYT10 and NYT11 are used to evaluate
the performance of the different model. NYT (New York Times) dataset is generated
by aligning Freebase relations with the New York Times (NYT) corpus, NYT10 [21]
and NYY11 [20] are two versions of this dataset. For NYT10 dataset, we use the orig-
inal train and test set, in which sentences from the years 2005–2006 are for training
while those from 2017 for testing. For NYT11 dataset, this dataset consists of 1.18M
sentences sampled from 294 k 1987–2007 New York Times news articles. We use the
segmentation method same as [29] which randomly selects sentences as the training set,
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Algorithm 1: Training procedure of our model

Calculate ht for each word in the sentence using encoder by Eq. (1);
Use hn (where n represents the length of sentence) to initialize decoder states;
for i = 1 → max decode step do

Calculate attention weight and context vector for relation extraction by Eq. (3);
Get hidden state si of low-level LSTM cell at step i by Eq. (2);
Sample relation r from oi by Eq. (4);
Use si to initialize high-level LSTM states;
Calculate attention weight and context vector hner

i for sequence labeling using
relation embedding of ri by Eq. (6);
Obtain hidden state of high-level LSTM by Eq. (5);
Calculate label sequence using CRF layer by Eq. (6);
if r = 〈end〉 then

break;
end

end
Calculate Low-level LSTM loss and High-level CRF loss by Eq. (8) and Eq. (9);
Optimize the model by Adam;

validation set, and test set, respectively. For both datasets, we filter sentences that do not
contain valid triples. The statistical information of these two pre-processed datasets is
shown in Table 1.

Table 1. Statistics of NYT10 and NYT11 datasets.

NYT10 NYT11

Relation types 29 24

Entity tag types 5 5

Vocab size 78,350 83,002

Train set 66,823 60,000

Train triples 83,353 101,044

Test set 4006 3335

Test triples 5859 5574

Evaluation Metrics. We adopt standard micro Precision, Recall, and F1 score to eval-
uate the model. We do not use the label of entity types to train the model, so entity types
are not considered when computing F1 score [32]. A triple is regarded as correct only
when its relation type and two corresponding entities are all correct, where an entity is
considered correct if the head and tail offsets are both correct.

Hyperparameters Setting. In our experiments, for LSTM cell, we set 256 as the hid-
den state dimension and for BERT, we use its pre-trained model version BERT-Base-
Cased, following its hidden state with dimension of 768. We set the dimension of word
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vector as 100. Both relation type vectors and entity tag vectors are initialized randomly.
The maximum low-level decoding step of our model is set to be 10, which means the
model can generate up to 10 triples. And we set λ as 5. We update all model parameters
by backpropagation using Adam with a learning rate of 0.001 and the batch size is set
to 64. These hyperparameters are tuned on the validation set.

Baselines. Our model is compared with several influential extraction methods as fol-
lowing:

– NovelTagging [32]: a method converts the joint extraction task to a sequence label-
ing problem based on a novel tagging scheme where each tag contains entity and
relation type information.

– CopyR [29]: an end-to-end model based on sequence-to-sequence learning with
copy mechanism in which the decoder can generate multi-relations.

– HRL [23]: a hierarchical reinforcement learning framework to handle overlapping
relations where high-level RL process for relation detection and low-level RL pro-
cess for entity extraction.

Table 2. Comparison of results of our model and baselines on NYT10 dataset.

Model NYT10

Precison Recall F1 score

Noveltagging 0.564 0.377 0.452

CopyR 0.510 0.426 0.465

HRL 0.716 0.578 0.639

Our LSTM-based 0.694 0.601 0.649

Our BERT-based 0.734 0.640 0.684

Table 3. Comparison of results of our model and baselines on NYT11 dataset.

Model NYT11

Precison Recall F1

Noveltagging 0.594 0.380 0.463

CopyR 0.586 0.574 0.580

HRL 0.797 0.664 0.725

Our LSTM-based 0.775 0.742 0.758

Our BERT-based 0.777 0.783 0.780
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4.2 Experimental Results

The results of different methods on NYT10 and NYT11 dataset are shown in Table 2
and Table 3. It is noticeable that our LSTM-based model (LSTM as the encoder) out-
performs other methods in F1 score and achieves 1.6% and 4.6% improvements in F1
score over the state-of-the-art (HRL) [23]. After introducing BERT, our model has been
further improved and exceeds HRL 7.0%, 7.6% on two datasets, respectively. From the
two tables above, we can see our LSTM-based model is slightly lower than HRL in
precision, but gains about 4% and 11% improvement in recall, which shows that our
model is better at extracting multiple relations from sentences than HRL.

4.3 Effect on Overlapping Relation Extraction

In our experiment, we divide overlapping triple containing in a sentence into two
classes: EntityPairOverlap and SingleEntityOverlap. EntityPairOverlap refers to a
pair of entities having multiple relations. As shown in S1 in Fig. 2, entity pair
〈Poland, Warsaw〉 is shared by two relations in the sentence. SingleEntityOverlap
means multiple triples share a single entity. Such as S2 in Fig. 2, entity Venice belongs
to two relations in the sentence.

Fig. 2. Two sentences with different degrees of overlap. S1 belongs to EntityPairOverlap class
and S2 belongs to SingleEntityOverlap class.

We divide the test set of NYT10 into two subsets. One subset contains sentences
in SingleEntityOverlap category, and the other contains sentences in EntityPairOver-
lap category. Note that if a sentence contains both cases, it will appear in both sub-
sets. Finally, we get (1) 865 sentences containing 2421 triples, which fall into Entity-
PairOverlap class (2) 245 sentences containing 723 triples, which fall into SingleEntity-
Overlap class, respectively. The experimental results are shown in Table 4 and Table 5.

As shown in the two following tables, our model performs better in extracting
overlapping multiple relations in both EntityPairOverlap class and SingleEntityOver-
lap class. Again, after the introduction of BERT, the performance has been further
improved. Compared with HRL, our model can extract more triples from data, which
we believe is due to the nature of the RNN structure. We use LSTM as the decoder
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Table 4. Comparison of effect of our model and baselines on EntityPairOverlap extraction.

Model EntityPairOverlap

Precison Recall F1

Noveltagging 0.335 0.316 0.325

CopyR 0.524 0.332 0.406

HRL 0.820 0.487 0.611

Our LSTM-based 0.808 0.539 0.647

Our BERT-based 0.811 0.552 0.657

Table 5. Comparison of effect of our model and baselines on SingleEntityOverlap extraction.

Model SingleEntityOverlap

Precison Recall F1

Noveltagging 0.279 0.268 0.273

CopyR 0.398 0.209 0.274

HRL 0.646 0.299 0.408

Our LSTM-based 0.600 0.320 0.417

Our BERT-based 0.643 0.356 0.458

and set a special identifier 〈END〉 to indicate the end of decoding. When a sentence
contains multiple relations, it is more likely to generate valid relations than generating
〈END〉.

4.4 Effect on Relation Classification

To further analyze the extraction ability of the model, we compare the performance
of our proposed model and baselines in relation classification on NYT11 dataset. The
results are shown in Table 6.

Table 6. Comparison of effect of our model and baselines on relation classification.

Model Relation classification

Precison Recall F1

CopyR 0.863 0.846 0.855

HRL 0.909 0.774 0.836

Our LSTM-based 0.893 0.855 0.873

Our BERT-based 0.899 0.906 0.903

From Table 6, we can see that our proposed method performs better than baselines
in relation classification. The performance of relation classification is improved after
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introducing BERT, which also proves that the vector representation of each word can
obtain sufficient semantic information when using the pre-trained language model, as it
is better in capturing the relations between words.

4.5 Case Study

To show the superiority of our method more explicitly, we show the prediction results
of our method and select two representative examples to illustrate as Fig. 3. The first
sentence comes from the test set of NYT11, which is in SingleEntityOverlap class. In
particular, it contains two triples with the same relation contains and our model can still
extract the two triples correctly. The second sentence is selected from the test set of
NYT10 which is in EntityPairOverlap class. Chad Hurley works in YouTube and is also
the founder of YouTube. When the encoder obtains the semantic encoding information,
the low-level decoder decodes two relations including Worked in and Founder, and the
high-level decoder detects the corresponding entity pair 〈Chad Hurley, Youtube〉. Each
triple can be generated independently by using the hierarchical decoder structure with-
out being affected by overlapping entities.

Fig. 3. Extraction examples by our model. Words on the left below the sentence represent rela-
tions, and tables on the right represent entity label sequences based on the left relations. We use
different colors to mark out source entity and target entity.

5 Conclusion

In this paper, we propose a novel sequence-to-sequence model based on hierarchi-
cal attention to extract entities and relations jointly, and effectively solve the problem
of overlapping multi-relations extraction. In this hierarchical structure, the low-level
decoder is used to extract one or more relations, and the high-level decoder performs the
corresponding entity recognition process. Additionally, a hierarchical attention mecha-
nism is introduced in two places to generate relations and label sequences better. The
experimental results demonstrate the effectiveness of our model and outperform the
state-of-the-art method. In the future, we will continue to explore how to integrate rela-
tion information into the entity recognition process better and improve the existing per-
formance.
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Abstract. User and item reviews are valuable for the construction of rec-
ommender systems. In general, existing review-based methods for recom-
mendation can be broadly categorized into two groups: the siamese models
that build static user and item representations from their reviews respec-
tively, and the interaction-based models that encode user and item dynam-
ically according to the similarity or relationships of their reviews. Although
the interaction-based models have more model capacity and fit human pur-
chasing behavior better, several problematic model designs and assump-
tions of the existing interaction-based models lead to its suboptimal per-
formance compared to existing siamese models. In this paper, we identify
three problems of the existing interaction-based recommendation models
and propose a couple of solutions as well as a new interaction-based model
to incorporate review data for rating prediction. Our model implements
a relevance matching model with regularized training losses to discover
user relevant information from long item reviews, and it also adapts a zero
attention strategy to dynamically balance the item-dependent and item-
independent information extracted from user reviews. Empirical experi-
ments and case studies on Amazon Product Benchmark datasets show that
our model can extract effective and interpretable user/item representa-
tions from their reviews and outperforms multiple types of state-of-the-art
review-based recommendation models.

Keywords: Review modeling · Interaction-based model · Relevance
matching

1 Introduction

Review text is considered to be valuable for effectively learning user and item
representations for recommender systems. Previous studies show that the incor-
poration of reviews into the optimization of recommender systems can signif-
icantly improve the performance of rating prediction by alleviating data spar-
sity problems with user preferences and item properties expressed in review
text [5,19,20,41]. In general, existing review based recommender systems for
rating prediction can be roughly categorized into two groups: 1) The siamese
models that independently encode static user and item representations from
reviews and use the static representations to predict the rating [5,41]; 2) The
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interaction-based models that dynamically learn the user and item representa-
tions based on their context [10,31]. In particular, the interaction-based models
assume that, given different target items, different user reviews might play dif-
ferent roles in determining the utility of the items. For example, when the target
item is about an album from the Led Zeppelin, the user review that reflects her
interest on Rock & Roll music might be more useful than the rest of her reviews.

Although the interaction-based models have more model capacity and fit
the human purchasing behavior better [31], several problematic model designs
and assumptions lead to its lower performance than siamese models as shown
in recent studies [25]. First, most existing interaction-based models exploit
co-attention mechanism [6,26,30,36] to distill textual similarity information
between user and item reviews, but such information might be diluted when
there is a vast amount of text in user and item reviews. Second, because the
number of reviews to profile each user in the training set is limited, it is common
that the target item’s characteristics are beyond the interest of a user expressed
in her limited reviews. Interaction-based models that force the user representa-
tions to extract valuable information from user reviews for the target item might
introduce irrelevant aspects of the user and cause serious overfitting. Third, exist-
ing interaction-based models extract user-item relationships mostly by modeling
the textual similarity between user and item reviews. High textual similarities
between user and item reviews, however, not necessarily reflect the user’s true
opinion on the target item. For example, an item review “the taste of cappuccino
is really good” might have higher textual similarity with a user review “I really
enjoy the taste of beef pho” than with “I am a big coffee fan”, but the latter
review that reflects the user opinion on coffee could be more informative when
predicting her rating on the target item.

Based on these observations, in this paper, we propose a new interaction-
based rating prediction model to mitigate the weakness of the existing
interaction-based recommendation models. First, we implement a relevance
matching model [11] instead of a semantic matching model [36] to search the
relevant review from the user to the target item. Our relevance matching model
treats each user review as a query to search and extracts relevant information
from all the reviews of the target item. It is capable of discovering relevance
information from a large amount of review text with thousands or more words.
Second, to better capture the semantic relationships instead of the textual simi-
larity between user and item reviews, we use the ground-truth review (available in
the training stage) written from the user to the target item and the correspond-
ing item reviews as a pair of positive “query-document” to train our relevance
matching module and plug it as the auxiliary loss in the training objective, since
the ground-truth review expresses the user true opinion to the target item. After
the relevance matching function is well-trained, other user reviews that have high
relevance matching scores to the target item would share similar characteristics
to the ground-truth review and also reflect the user true interest to the target.
Last but not least, when there is not relevant review from the user to the target
item, we exploit a zero-attention network [1] to avoid using irrelevant reviews to
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build user representations. Our zero-attention network not only builds dynamic
user representations when there are high informative reviews from the user to
the target item, but also allows the model to degenerate to a siamese model with
static user representations when all user reviews are not relevant to the target
item. Specifically, separated from the interaction module, we build static user
and item embeddings using a multi-layer convolutional self-attention network to
extract information hierarchically from words, sentences and reviews. We then
construct the final user representations using both the dynamic user representa-
tions extracted by the interaction module and the static user embeddings created
by the self-attention network. When there is no user review relevant to the target
item, the dynamic user representation created by the interaction module with
zero attention networks would be downgraded to a zero vector and the final rat-
ing prediction of the user-item pair would purely depend on the static user and
item embeddings. Empirical experiments and case studies on four datasets from
Amazon Product Benchmark show that our proposed model the Zero Attentive
Relevance Matching Network (ZARM) can extract effective and interpretable
user/item representations from review data and outperforms multiple types of
state-of-the-art review-based recommendation models.

2 Related Works

Review Based Recommendation. Using review text to enhance user and
item representations for recommender system has been widely studied in recent
years [9,14,19,20,23,29,39,40]. Many works are focus on topic modeling from
review text for users and items. For example, the HFT [20] uses LDA-like topic
modeling to learn user and item parameters from reviews. The likelihood from
the topic distribution is used as a regularization for rating prediction by matrxi
factorization (MF). The RMR [19] uses the same LDA-like model on item reviews
but fit the ratings using Guassian mixtures but not MF-like models. Recently,
with the advance of deep learning, many recommendation models start to com-
bine neural network with review data to learn user and item representations,
including DeepCoNN [41], TransNets [4] D-Att [27], NARRE [5], HUITA [33],
HANN [7], MPCN [31], AHN [10], HSACN [38]. Despite their differences, exist-
ing work using deep learning models for review modeling can be roughly divided
into two styles – siamese networks and interaction-based networks. For exam-
ple, DeepCoNN [41] uses two convolution neural networks to learn user and
item representations from reviews statically; NARRE [5] extends CNN with an
attention network over review-level to select reviews with more informative-
ness. In addition, the MPCN [31], a interaction-based network, uses co-attention
mechanism to select the most informative and matching reviews from the user
and item respectively, then another attention mechanism is applied to learn the
fixed dimensional representation, by modeling the word-level interaction on the
matched reviews. However, both of these two styles have their own weaknesses.
The siamese models lack the dynamic target-dependent modeling and neglect
the interaction between the user and target. But the interaction-based models
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forcely require the dynamic matching between each user and item, neglecting
the fact that not every user exists the informative review to the target. Even the
informative review exists, the matching information might be diluted considering
thousands of words within tens of review for profiling the user and item.
Interaction Based Text Matching. The review based dynamic user-item
modeling is closely related to query-document representation learning in the QA
[26] task or premise-hypothesis encoding in the NLI [6,30,36] task that exploit
the co-attention mechanism. The co-attention mechanism computes the pairwise
similarity between two sequences, builds the pair-wise attention weights, and
integrates them with other feautres of the sequences for effective text semantic
matching learning. Besides the text semantic matching in the NLP tasks, several
works on the IR tasks [2,11,12,34] also utilize the interaction-based approaches
for text relevance matching learning. For example, DRMM [11] proposes a pool-
ing pyramid technique that converts the pair-wise similarity matrix into the
histogram, and use it as feature for final text matching prediction. Based on the
DRMM, K-NRM [34] introduces the kernel-based differential pooling technique
that can learn the matching signal in different level. Recent work [22] further
investigate using the semantic matching and relevance matching together or
alone in the NLP and IR tasks. It finds that using relevance matching alone
performs reasonable well in many NLP tasks but the semantic matching is not
effective for IR tasks.
Rethinking the Progress of Deep Recommender System. While we
have witnessed the rapid advancements of deep learning methodology and its
applications on the field of recommender systems, there are worries about the
progress we made. Dacrema et al. [8] investigated the performance of several
recent algorithms proposed in top conferences and found most of them can not
compete with traditional methods, like Matrix Factorization and its derivative
models [15,18,35], BPR [24] or Item-KNN. Furthermore, Sachdeva et al. [25]
focused on the usefulness of reviews. He examined several review-based recom-
mendation algorithms and found that applying complex structures to extract
semantic information in reviews, not necessarily improve the system’s perfor-
mance. Our goal is to try to tackle these existing problems in this field and
propose an interpretable method to effectively utilize the review information.

3 Proposed Method

3.1 Overview

The goal of the proposed model is to predict the rating from the user to the target
item based on their review text. The architecture of our model is shown in Fig. 1.
Our model contains two parallel encoders that use multi-layer convolution self-
attention network to hierarchically encode user and item static representations
from their reviews respectively. Besides, the model has a interaction module that
encodes the user dynamic representation according to her current interacted item
where we first compute the relevant level of each user review to the target item
by the relevance matching function. Then the zero-attention network is applied
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Fig. 1. Overview of our model structure

to allow the dynamic user representation degrade to a zero vector when there is
no user review relevant to the target, in which case the final user representation
would purely depend on the static user representation. The encoded user static
and dynamic representations will be concatenated and be taken as the input to
the feature transformation layer to encode the final user representation. On the
rightmost of the model, the prediction layer is added to let the learned user and
item final representations interact with each other and compute the final rating
prediction. In the training stage, the auxiliary loss is plugged to guide the train-
ing of relevance matching function. In the following sections, we will introduce
the static user/item encoder (Sect. 3.2), dynamic user encoder composed of the
relevance matching function and zero-attention network (Sect. 3.3), prediction
layer(Sect. 3.4), and the training objective (Sect. 3.5) in details.

3.2 Static User/Item Encoder

Since the static user and item encoder only differ in their inputs, we introduce the
process of encoding user static representation in the following in details. And the
same process is applied to static item encoder in the similar way. Assume the input
of the user encoder is {ru

1 , . . . ru
N}, where N is the number of reviews written by

the user. We learn each review representation hierarchically from word-level to
sentence-level. More specifically, a user review ru = {s1, . . . sT } consists of T sen-
tences, and each sentence si is composed of a sequence of L words {wi

1, . . . w
i
L}.

To learn the sentence representation si , we apply the word-level self-attentive
convolution network to encode the contextual representation of each word in the
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sentence and use the attention network to aggregate the learned contextual embed-
dings in to a single vector.Mathematically, we first apply the word embedding layer
to map each word wi

j into a vector wi
j ∈ R

dw to form a sequence of word embed-
dings W i ∈ R

dw×L, then we apply the word-level convolution neural network to
learn the local semantic representation of each words:

Qi
w = CNNQ

w(W i), K i
w = CNNK

w (W i), V i
w = CNNV

w(W i) (1)

where Qi
w, Ki

w, V i
w ∈ R

dw×L. To enrich each word semantic representation
and capture long-range dependencies between words, we apply the multihead-
self-attention network [32] on top of the learned word local representation from
CNN(·). Finally, a 1 layer feed-forward network is sequentially plugged to learn
more flexible representations:

Z i
w = FFNw

(
Multihead-Self-Attentionw(Qi

w,K i
w,V i

w)

)
(2)

where Zi
w ∈ R

ds×L. Then we use addictive-attention network [37] to aggre-
gate the contextual representations into a single vector si ∈ R

ds for sentence
modeling:

si = Addictive-Attentionw(Z i
w) (3)

We apply the same procedure on each sentence of the review ru to form a
sequence of sentence representations S = [s1, . . . sT ] ∈ R

ds×T . Then we take the
sentence sequences as an input to sentence-level self-attentive convolution network
with addictive-attention network to form the review representation ru ∈ R

dr :

Zs = Multihead-Self-Attentions

(
CNNQ

s (S), CNNK
s (S), CNNV

s (S)

)
(4)

ru = Addictive-Attentions(Zs) (5)

We apply the same hierarchical network on each review written by the user,
then form a sequence of review representations R = [ru

1 , . . . ru
N ] ∈ R

dr×N .
Finally, we apply the user-level addictive-attention network to aggregate the
information of these reviews and form a single vector ustatic ∈ R

dr to form the
user static representation:

ustatic = Addictive-Attentionu(Ru) (6)

The item static representation istatic can be obtained using a similar proce-
dure.
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3.3 Dynamic User Encoder
To learn the dynamic user representation, we first compute the relevant scores
of the reviews of the user to the target item using relevance matching function.
In other words, given N reviews written by the user {ru

1 , . . . ru
N}, we want to

compute their corresponding relevance scores {α1, . . . αN} to the target. The
detailed introduction of the relevance matching function is in the following.
Relevance Matching Function: The input of the function is a query-
document pair where we treat the user review as a query and the target item
reviews as a document, and we denote the function as m(·, ·). Formally, each user
review ru

k can be alternatively represented as a sequence of word embeddings
[eu

1 , . . . ,eu
M ] := Sk

u, and the item document is a concatenation of a sequence
of word embeddings of its each review [ei

1, . . . ,e
i
M , . . . ,ei

(N−1)M+1, . . . ,e
i
NM ] :=

Si, where eu
k , ei

k ∈ R
dw , Sk

u ∈ R
dw×M , Si ∈ R

dw×MN , dw is the dimension of
the word embedding, M is the review length, and N is the number of review
from the target item. To get the relevant matching score from the k-th user
review to its target item, we first compute the word similarity matrix S:

M = Sk
u

T
Si ∈ R

M×MN (7)

where Mi,j can be considered as cosine similarity score (we normalize it into
cosine space) by matching i-th word of user review with j-th word of item docu-
ment. We apply mean pooling and max pooling on every row of similarity matrix
to obtain discriminate features:

mean(M) =

⎡
⎢⎣

mean(M1:)

. . .

mean(Mn:)

⎤
⎥⎦ ∈ R

M , max(M) =

⎡
⎢⎣

max(M1:)

. . .

max(Mn:)

⎤
⎥⎦ ∈ R

M (8)

Also, we consider the relative important score for each word in the user review
Sk

u by applying a function imp(·):

imp(Sk
u) =

⎡
⎢⎣

imp(eu
l )

. . .

imp(eu
l )

⎤
⎥⎦ ∈ R

M where, imp(eu
j ) =

exp(wT
p e

u
k)∑n

o=1 exp(wT
p eu

o )
(9)

where wp ∈ R
dw , then the input feature for scoring function parameterized by

a 2 layer feed-forward neural network is:

Irel =

[
imp(Sk

u) � mean(M)

imp(Sk
u) � max(M)

]
∈ R

2M (10)

Hence the relevant score between the k-th user review Su
k and item document

Si is:

m(Su
k ,Si) = FFN

(
FFN(Irel)

)
= αk ∈ [−∞, ∞] (11)
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When there is no user review relevant to the target item, we can expect each
relevant score αk � 0. However, if we naively normalized the relevant scores,
and use them as weights to measure the importance of each user review, the
final dynamic user representation we get by weighted sum of the user review
representations would be a non-zero vector. It is due to the fact that after the
normalized process, every relevant score will be assigned as a probability mea-
sure, and summation of these probabilities being 1 makes the situation that
every normalized relevant weight ak ≈ 0 become impossible, hence the weighted
sum of the user reviews cannot be a zero vector. For example, suppose that the
relevant scores of all user reviews are αk = −100, where k = 1, . . . N , then the
normalized relevant score would be αk = 1

N . The dynamic item representation

will become udynamic =
N∑

k=1

1
N

ru
k , which is not a zero vector even when all user

reviews are not relevant to the target item. To resolve the problem, we use the
zero-attention network motivated by [1].
Zero-Attention Network: we introduce a zero score α0 = 0, and re-normalize
the relevant scores by taking the zero score in to account. Formally, α̂k =

exp (0)+exp(αk)
exp (0)+exp (α1)+... exp (αm) = 1+exp(αk)

1+exp (α1)+... exp (αm) , k = 1, . . . N , and α̂0 =
1

1+exp (α1)+... exp (αm) , then the user dynamic representation is,

udynamic =
N∑

k=1

α̂kr
u
k + α̂00 (12)

Intuitively, when αk � 0, the normalized score α̂k ≈ 0 for all k = 1, . . . , N , and
the udynamic ≈ 0, which is close to a zero vector. In the other hand, if there exist
a large relevant score, for example αk = 10 for a certain k, the effect of α0 = 0
will be very low, and the normalized score will be α̂k ≈ 1, and udynamic ≈ ru

k

3.4 Prediction Layer

This layer combine the static and dynamic user representations to form a final
user representation learned from reviews. Also, it learns a final item static rep-
resentation from reviews by 1-layer feed-forward neural network:

ur = Relu
( [

Wstatic
u , Wdynamic

u

] [
ustatic

udynamic

]
+ bu

)
(13)

ir = Relu
(
W static

i istatic + bi

)
(14)

where W static
u , W static

u , W dynamic
i , W static

i ∈ R
dh×dr , bu, bi ∈ R

dh . Finally,
we combine the user and item id embeddings uid, iid ∈ R

dh , with user and item
embeddings learned from reviews ur, ir, to form their final representations,
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which are u = ur +uid, i = ir + iid. We take the user and item embeddings as
input to get the final rating prediction:

ŷu,i = wT
f (u � i) + bu + bi + bg (15)

where wf ∈ R
dh , bu, bi, bg ∈ R

3.5 Training Objective

Besides a regression loss for the rating prediction, an auxiliary loss is utilized for
better training the relevance matching function. Specifically, we assumed there is
a user-item pair (u, i) with the ground-truth rating yu,i in the training stage, and
the ground-truth review rg

u,i written from the user to the target item is treated
as a “positive query” to the target item. Also we randomly sample a review
from the different user different item as a “negative query” to the target item
which is rn

u,i. The corresponding word sequence representation of the ground-
truth review, negative review and target item document is Su

g , Su
n, Si. Ideally,

a good relevance matching function m(·, ·) can distinguish the positive query-
document pair from the negative one, in other words, we wish m(Su

g ,Si) >

m(Su
n,Si). In the same time, we want to minimize the regression loss between

ground-truth rating yu,i and predicted rating ŷu,i computed from Eq. 15. To
achieve the above two goals, we write the objective function as followed,

loss =
∑

{(u,i)}∈S

(
yu,i − ŷu,i

)2

︸ ︷︷ ︸
regression loss

−
(

log
(
m(Su

g ,Si)
)

+ log
(
1 − m(Su

n ,Si)
))

︸ ︷︷ ︸
auxiliary loss

4 Experimental Setup

Datasets and Evluation Metrics. We conduct our experiment on four dif-
ferent categories of 5-core Amazon product review datasets [13]. The statistics
of these four categories are shown in the first and second columns of the Table 1.
For each dataset, we randomly split user-item pairs into training, validation, and
testing sets with ratio 8:1:1. We use NLTK [3] to tokenize sentences and words
of reviews. We let the number of reviews be the same for profiling user and
item where the number of reviews is set to cover 90% of users for the balance
of efficiency and performance. We adopt Mean Square Error (MSE) as the main
metric to evaluate the performance of our model. The source code can be found
here1.
Compared Methods. To evaluate the performance of our method, we compare
it to several state-of-the-art baseline models: (1) MF [17]: a basic but well-known
CF model that predict the rating using inner product between user, item hidden
1 https://github.com/HansiZeng/ZARM.

https://github.com/HansiZeng/ZARM
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representations plus user, item and global bias; (2) NeurMF [15]: the CF based
model combines linearity of GMF and non-linearity of MLPs for modeling user
and item latent representations; (3) HFT [20]: the topic modeling based model
combines the ratings with reviews via LDA; (4) DeepCoNN [41]: the CNN
based model uses two convolution neural network to learn user and item rep-
resentation; (5) NARRE [5]: the CNN based model modifies the DeepCoNN
by using the attention network over review-level to select reviews with more
informativeness. (6) MPCN [31]: the model that selects informative reviews
from user and item by review-level pointers using the co-attention technique,
and selects informative word-level representations for the rating prediction by
applying word-level pointers over the selected reviews; (7) AHN [10]: a dynamic
model using co-attention mechansim but treats user and item asymmetrically;
(8) ZARM-static: the variant of the ZARM that only user static representa-
tions; And (9) ZARM-dynamic: the variant of the ZARM that only uses user
dynamic representations.
Parameter Settings. We use 300-dimensional pretrained word embeddings
from Google News [21], and employ the Adam [16] for optimization with an
inital learning rate 0.001. We set the dimension of sentence hidden vector and
review hidden vector as 100, and the latent dimension of the prediction layer as
32. Also, the convolution kernel size is 1 or 3 based on the performance in each
dataset, and number of head for each self-attention layer is 2. We apply dropout
after the word embedding layer, after each feed forward layer in sequence encod-
ing modules, and before the prediction layer with rate [0.2, 0.3, 0.5]. The hidden
dimension of the two layer neural network in the Relevance Matching Module
is set to 16. The hyper-parameters of baselines are set following the settings of
their original papers.

5 Results and Analysis

The MSE results of compared models are shown in Table 1. Based on the results,
we can make several observations. Firstly, the siamese models outperform the
interaction-based models significantly. As discussed previously, due to the fact
that not every user exists informative review to the target, interaction-based
models that force to extract informative reviews from user data will suffer from
heavily over-fitting. Among siamese networks, we observe that the ZARM-static
outperforms the other siameses models. This demonstrates that ZARM-static
can capture the review hierarchical structure and use attention neural network to
select the important information in each level. Among interaction-based models,
ZARM-dynamic outperforms the other baselines such as MPCN and AHN. This
demonstrates the effectiveness of the relevance matching component in discov-
ering relevant information from vast review text and the utility of the auxiliary
training loss that makes the found relevant review more aligned with the ground-
truth that reflect the user true opinion on the target item. Finally, our model
(i.e., ZARM) shows consistently improvement over siamese and interaction-based
models across all datasets. Our model uses the zero-attention network that can
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Table 1. Experiment results on benchmark datasets. † and ‡ represents the best per-
formance among siamese and interaction-based models, respectively. The bold value is
the best performance among all models in each dataset.

Dataset

#Reviews / #Users / #Items

Toys & games

167k/19k/12k

Video games

232k/24k/11k

Kindle store

983k/68k/62k

Office products

53k/2k/4k

Non-text-based MF 0.8010 1.0979 0.6231 0.6954

NeuMF 0.8012 1.0931 0.6255 0.6941

Siamese HFT 0.7947† 1.0837 0.6172 0.6881

DeepCoNN 0.8273 1.1241 0.6437 0.7102

NARRE 0.7982 1.0881 0.6199 0.6794

ZARM-static 0.7952 1.0774† 0.6159† 0.6757†

Interaction-based MPCN 0.8199 1.1062 0.6337 0.7101

AHN 0.8233 1.1137 0.6341 0.7341

ZARM-dynamic 0.8054‡ 1.1054‡ 0.6279‡ 0.7024‡

Hybrid ZARM 0.7881 1.0632 0.6083 0.6695

Table 2. Ablation study (validation MSE) on four datasets

Architecture Toys-and-games Video-games Kindle-store Office-product

Default 0.7897 1.0611 0.5961 0.6731

(1) max pooling 0.7922 1.0645 0.6075 0.6795

(2) avg embedding 0.7854 1.0641 0.6043 0.6742

(3) Remove pos. vec 0.7913 1.0654 0.5985 0.6755

(4) Remove u/i bias 0.8021 1.0713 0.6022 0.6761

(5) Remove aux. loss 0.8147 1.0944 0.6189 0.6893

(6) Add item dyn 0.7938 1.0695 0.6053 0.6800

build dynamic user representations from reviews when there are high informative
reviews and can easily degrade to user static representations when there is not.
This strategy combines the advantages of both the siamese and interaction-based
models.

5.1 Ablation Studies

We conduct the ablation study on the validation sets of the four benchmark
datasets. We report the performance of 6 variant models from the defualt model
setting: (1) we change the static review aggregator in Eq. 6 to max pooling; (2) we
encode each review using average embedding of words; (3) We use the relative
position representations [28] to encode the relative position between entities
in the self-attention network, now we remove the position encoding vectors to
conduct ablation study; (4) we remove the user and item bias in Eq. 15; (5) we
remove the auxiliary loss in the training objective; And (6) we make our user
and item representations symmetrically by adding the dynamic item encoding
to represent the item.
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As shown in Table 2, the performance of ZARM would drop when we use
max pooling in the aggregator, remove the position encoding vectors in self-
attention network, or remove the u/i bias. Using average word embeddings for
review embeddings achieves suboptimal performance on most datasets, but it
also outperforms the default ZARM on Toys-and-Games, which indicates that
such simple aggregators may have some value on specific data types. Interest-
ingly, in our experiments, the variant architecture that encodes item using its
dynamic and static representation underperforms the default ZARM which only
use the item static encoding. This indicates that building interaction-based rep-
resentations on the item side may not as profitable as they are on the user side,
or the current interaction module is not suitable for the construction of dynamic
item representations.

5.2 Behavior of the Dynamic Interaction Matching

Fig. 2. The distribution of user-item pairs with
different numbers of relevant review (αk > 0).

We conduct several experiments
on investigating the behaviors of
the dynamic interaction matching
Firstly, we investigate the num-
ber of relevant reviews (αk > 0
in Eq. (11)) each user have to the
target item as shown in Fig. 2.
Although the number of relevant
review from the user to the tar-
get is dataset dependent, there
are around 50% of user-item pairs
do not have the relevant review
in each dataset where the type of
pairs in Video Games dataset account for 60% the most, and in Office Product
account for 48% the least. On the other hand, some users have more than one
relevant reviews to their target items. For example, in the Toys & Games dataset,
15% of the user-item pairs have relevant review more than 3. Such observation
implies that some users have consistent interests and tend to buy items with
similar characteristics, which lead to their target item matched to her multiple
history items in high possibility.

To further analyze the interaction module in our model, we randomly sam-
ple 40 users and their corresponding target items in the validation set for case
studies. For each user we visualize the zero score and the relevant score of each
review to the target item (from r1 to r11) as shown in Fig. 3. We observe that
there are roughly half of the user-item pairs having large zero score which is
larger than 0.5. On the other hand, there are some users containing reviews with
high relevant scores like the pair (user5, item5), (user36, item36) with review id
r6, r9. We then take a closer look into the two high relevant review r6, r9 and
their corresponding target item documents as shown in Table 3. We observe that
the high relevant reviews and their target item documents share multiple similar
keywords, and these keywords are highly informative that can describe the item
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Fig. 3. The distribution of relevance matching scores of each user review given a user-
item pair.

characteristics to a large extent. For example, the keyword “Gyro Hercules” in
the r6 and “Gyro Hercules helicopter” in its corresponding target item document
have high textual similarity and describe the general characteristics of the two
items that that r6 and target item belong to. Moreover, The user true opinion
on the target item can be reflected in the high relevant reviews from the user
to target. For example, the first target item (item5) which has the advantage
of “keep on going and not falls down” meets the user interest that is shown
in r6 that mentions she likes a helicopter that is “truly withstand a hard fall”.
And the second target item (item 36) which is suitable for kid Christmas gift
conforms to the user interest reflected in r9 in which she mention that she needs
a Christmas gift for her 3-year-old granddaughter.

Table 3. Examples of high relevant reviews r6, r9 and their corresponding target item
documents. The first column is their complete user review, and the second column are
sampled text selected from the item documents.

User review Target item document

I have bought other remote control
helicopters only to take them outside
and have a little breeze of wind knock it
down and break. With the Gyro
Hercules it can truly withstand a hard
fall so you can fly it nearly anywhere

My kids demolish other helicopters/keeps
on going and not falls
down/helicopter/Gyro Hercules
helicopter/ it is durable enough I can’t
even break it with my terrible skills.

Bought for our Granddaughter(she is
3) for Christmas. She just loves the write
on wipe off A, B, C’s and 1, 2, 3’s. The art
projects that were included and quality
of the items for the project, TERRIFIC!
Would recommend for all 3 year olds

This is perfect for a rainy day Christmas
Vacation/my three yr old LOVES
crafts/Filled with all the supplies to make
16 high quality crafts
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6 Conclusion

We propose a new model ZARM for the review based rating prediction task. In
our model, the interaction module based on relevance matching function with
zero-attention network is utilized to learn user dynamic representation in more
flexible way. And the auxiliary loss plugged into the training object make the
relevance matching function better trained. Experiments on the four Amazon
benchmark datasets show our model can outperform the state-of-art models
based on the siamese network and interaction-based network. By conducting
case studies, we take a deeper look into the behavior of our interaction module,
and investigate the several statistical and semantic characteristics of the relevant
reviews for users to targets extracted by the interaction module.
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Abstract. Word embedding models typically learn dense and fixed-length vec-
tors based on local word collocation patterns in a text corpus. Recent studies
have discovered that these models often underestimate similarities between simi-
lar words and overestimate similarities between distant words. This leads to word
similarity results obtained fromword embedding models inconsistent with human
judgment. A number of manifold learning-based word re-embedding methods are
proposed to address this problem by re-embedding word vectors from the original
embedding space to a new embedding space. However, these methods perform a
weighted locally linear combination of embeddings of words and their neighbors
twice. Besides, the reconstruction weights are easily influenced by the selection
of word neighbors and the whole combination process is very time-consuming.
In this paper, we introduce a novel word re-embedding method based on local
tangent information to re-embed word vectors into a refined new space. Unlike
previous approaches, our method re-embeds word vectors by aligning original
and new embedding spaces based on the tangent information instead of perform-
ing weighted locally linear combination twice. To validate the proposed method,
experiments were conducted on two standard evaluation tasks. The experimental
results show that our method achieves better performance than state-of-the-art
methods for word re-embedding.

Keywords: Word re-embedding · Local tangent information · Manifold learning

1 Introduction

Word embedding models represent words as dense and fixed-length vectors by mapping
them from high-dimensional space to low-dimensional space. As the common knowl-
edge, the distance between these dense vectors reflects the semantic relatedness of their
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corresponding words. Furthermore, vectors generated by these models contain seman-
tic and syntactic features, which are beneficial to mine the semantic relationships of
words. Due to the ability of vector-space representations, word embedding models play
an important role in a lot of Information Retrieval (IR) and Natural Language Processing
(NLP) tasks, such as question answering [1], ad-hoc retrieval [2] and machine transla-
tion [3], part-of-speech tagging [4], named entity recognition [5], text classification [6].
Obviously, the discovery of semantic information is closely linked to the quality of word
vectors. The representation quality of word vectors can directly affect the performance
of a large amount of IR and NLP tasks as well.

Recently, a variety of word embedding models has been proposed to generate word
embeddings, such asBERT [7], C&W[8], ContinuousBag-of-Words (CBOW) [9], Skip-
Gram [9], GloVe [10] and other variants [11, 12]. BERT [7] and its variants [13, 14]
can effectively produce contextual word embeddings with better support for different IR
and NLP tasks. However, the computational cost is very high due to the huge amount of
parameters. The refinement of contextual word embeddings will be studied in the future.
In comparison with contextual models, static word embedding models are generally
simple and efficient with a much lower computational cost. Although these static word
embedding models can easily learn word vectors with linear structure data distribution,
they fail to estimate similarities between words when the data distribution of words
shows strong non-linear characteristics. They may underestimate similarities between
nearby words and overestimate similarities between distant words, causing the problem
about word similarity results obtained by word embedding models inconsistent with
human judgment [15, 16].

As an example given in previous studies [15, 16], an example of the ground truth
similarities between words obtained by human experience in a typical semantic simi-
larity task is shown in Fig. 1. Another example of cosine similarity results of the same
word pairs obtained by GloVe is shown in Fig. 2. As shown in these two Figures, the
similarity result between “physics” and “proton” is more similar than that of “shore”
and “woodland” based on human experience in Fig. 1. However, it achieves the opposite
result in Fig. 2. The phenomenon fully reflects that similarity results between word pairs
obtained by word embedding models may be inconsistent with human judgment.

Fig. 1. Standard word similarity results judged by human beings

Fig. 2. Word similarity results obtained by GloVe word embedding models

To address the similarity inconsistency problem, the existing studies show that re-
embedding can rectify this problem by using manifold learning-based methods [15, 16].
Several approaches were proposed to re-embed word vectors into a new embedding
space by using manifold learning-based methods for this purpose. For example, Locally
Linear Embedding (LLE) [15] and Modified Locally Linear Embedding (MLLE) algo-
rithms [16] were proposed to re-embed pre-trained GloVe word vectors into a new
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embedding space. The above two methods both consider the local geometric informa-
tion between words and their local neighboring words. They re-embed word vectors
based on the weighted locally linear combination of words and their neighbors in both
original and refined semantic spaces. Although they achieve good performance on word
re-embedding, there exist certain demerits in both methods. On the one hand, the recon-
struction weights can be easily affected by various options of word neighbors because
these weights are generated by a linear combination of nearby words. On the other hand,
these two methods need to perform the weighted locally linear combination twice in
both two embedding spaces, which is time-consuming with high computation cost.

Unlike LLE and MLLE methods, in this paper, we introduce a novel word re-
embedding method based on Local Tangent Information (denoted as LTI) to re-embed
word vectors into a refined new space. Our method firstly applies Principal Components
Analysis (PCA) on word neighbors to construct a locally linear plane, which can be
regarded as an approximation of the tangent information of these local words [17, 18].
Our LTI method then re-embeds word vectors by aligning original and refined new
embedding space based on the local tangent information (containing different local geo-
metric information). The proposedmethod can bemore effective and efficient by directly
aligning two embedding spaces based on local tangent information in comparison with
LLE and MLLE methods, which perform combination operation twice. To verify the
proposedLTImethod, we conduct several experiments on standard semantic relatedness
and semantic similarity tasks. The experimental results show that our method achieves
better performance than the state-of-the-art baseline methods for word re-embedding.

The contributions of our work are summarized as follows:

• We introduce a novel word re-embedding method based on local tangent information.
Our method re-embeds word vectors by aligning original and refined semantic spaces
based on the tangent information of words, which contains more geometric informa-
tion and directly captures the relationships between original and refined embedding
spaces.

• We are the first to demonstrate that local tangent information can be used to improve
the performance of word re-embedding.

• We conduct several experiments to validate our proposed method in this paper. Com-
pared with the state-of-the-art baseline methods of word re-embedding, the results
show that our proposed method can achieve better performance by utilizing local
tangent information of words and their neighbors.

The rest of our paper is organized as follows: Sect. 2 describes the related work. Our
method is presented in Sect. 3. Section 4 shows the details of experimental settings. In
Sect. 5, we provide and analyze the experimental results. Finally, Sect. 6 concludes the
paper and discusses future research.

2 Related Work

2.1 Count-Based Word Embedding Methods

Count-based word embedding methods only focus on word co-occurrence probability or
word counts. Vector space model is the early idea to use vectors to express words [19].
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This method constructed a word-document co-occurrence matrix and used it to represent
words and documents as vectors by using TF-IDF. However, this method does not con-
sider the true semantic information of words. Latent Semantic Analysis (LSA) [20] can
also generate word embeddings by applying Singular Value Decomposition (SVD) to a
word-document matrix. Subsequently, Lund and Burgess [21] proposed a Hyperspace
Analogue to Language (HAL) model that constructed a word-context word matrix based
on a corpus to form vector representations. Dhillon et al. [22] introduced an alternative
method leveraging Canonical Correlation Analysis (CCA) between left and right con-
texts to generate word embeddings. Lebret and Collobert [23] used Hellinger PCA to
the word-context matrix to obtain word embeddings. In summary, these methods glob-
ally utilize word-context co-occurrence or counts to produce word embeddings based
on word-context matrices in a corpus. Though the aforementioned methods are simple
and effective, these count-based methods only consider the co-occurrence probability
or word counts between words and their context words rather than the real semantic
relationships between them.

2.2 Prediction-Based Word Embedding Methods

Prediction-based word embedding methods generate word embeddings by using the
contexts of words. In the early time, Hinton proposed a word distributed representation
hypothesis [24]. Most of the subsequent methods are inspired by this hypothesis. They
represent words as distributional dense, fixed-length and low-dimensional word vectors.
Bengio et al. [25] proposed an N-Gram neural network language model and used it
to generate word embeddings. In this method, embeddings are a by-product during
training a neural network language model (NNLM). Bengio and Senecal [26] improved
NNLMby using aMenote Carlomethod and hierarchical softmax layer to speed upword
embedding generation. Similarly, Mnih and Hinton [27] proposed a slightly modified
log-bilinearmodel to produceword embeddings.Asword embeddings are by-products of
previousmodels, Collobert andWeston [28] designed amodel solely aimed at generating
word embeddings by using unlabeled data. Following these mentioned works, Collobert
et al. proposed a unified neural network architecture C&W and a learning algorithm to
discover internal representations ofwords [8].Mikolov et al. presented two famousmodel
architectures for learning high-quality continuous vector representations for words [9].
One model (CBOW) predicts the current word by utilizing the context of this word.
Another model (Skip-gram) predicts the surrounding words based on the current word.
Inspired by Skip-gram and CBOW, Qiu et al. proposed two variants of the CBOW
model and the Skip-gram model to produce high-quality distributed representations for
words by considering both word proximity and ambiguity [11]. Similar to these studies,
Pennington et al. [10] proposed a GloVe model that combines the global features of a
corpus and the local contextual features of words for generating word representations.

Apart from the static word embedding models described above, several contextual
embedding models have been proven to be effective for word embedding generation
these days, such as BERT [7] and its variants [13, 14]. Though word embeddings gen-
erated from such models can provide good support for different IR and NLP tasks, the
computational cost is very high due to the huge amount of parameters. On the contrary,
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static word embedding models are simpler and more efficient with a much lower com-
putational cost. In this paper, we mainly focus on static word embeddings and leave the
study of refining contextual word embeddings as the future work.

2.3 Word Vector Re-embedding Methods

Many studies are focusing on re-embedding word vectors for improving the quality of
word vectors. For example, Chaudhary et al. adapted continuousword representations by
using morphological and phonological subword representations for low-resourced lan-
guages [29]. Kolyvakis et al. utilized a novel entity alignment method called DeepAlign-
ment to refine pre-trained word vectors for generating ontological entity descriptions in
the ontology matching task [30]. Seyeditabari et al. incorporated emotional information
of words into pre-trained word vectors for generating emotional embeddings, which
can capture the emotional contents of words [31]. Utsumi proposed a simple method
to re-embed pre-trained word embeddings by using layer-wise relevance propagation
[32]. Yu et al. presented an improved word vector model to refine existing pre-trained
word vectors by leveraging real-valued sentiment intensity scores provided by sentiment
lexicons [33].

However, this paper mainly focuses on studies about word vector re-embedding by
re-mapping word vectors from the original embedding space to a new refined embedding
space. Mu et al. projected word embeddings by removing the common mean vectors of
pre-trained word vectors [34]. Somemethods focus on exploring the geometric structure
of word embeddings by using manifold-learning based algorithms and they show that
reconstruction of word embeddings can capture the underlying manifold of the data [15,
16, 35]. Hasan and Curry utilized word neighbors in the original embedding space to
re-embed pre-trainedGloVe vectors into a new embedding space based on LLE [15]. The
re-embedded word vectors could learn rich semantic information of word embeddings
from a new embedding space for addressing the word similarity inconsistency issue.
Furthermore, Chu et al. used a Modified Locally Linear Embedding (MLLE) algorithm
to refine word representations in the aspect of geometric information of words and their
neighbors [16].

Although the aforementioned manifold learning algorithms for word re-embedding
have been proven to be effective, these methods need to perform the weighted locally
linear combinations twice in both original and refined embedding spaces. Unlike these
methods, we approach the problem of word re-embedding by utilizing local tangent
information of words. This information can directly capture the relationships between
the original and new embedding space instead of relying on local weights. Our method
also avoids performing a locally linear combination of nearby words twice.

3 A Novel Word Re-embedding Method

3.1 Overall Framework

The overall framework of our proposed method based on Local Tangent Information
(LTI) is shown in Fig. 3. There are four main steps in our method. In step (a), we choose
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Fig. 3. The framework of our proposed method

a subset of word vector samples from the original embedding space by using a sample
window. Word vectors are ordered according to their correspondent word frequencies
(frequent word co-occurrences) in this corpus. Note that as in previous studies [15, 16],
ordering word vectors and selecting samples instead of using all vectors can avoid a high
computational cost. In our work, the original embedding space we used is trained by
GloVe, because the pre-trained word vectors from this model can effectively represent
words by considering contextual features of words and global features of a corpus in
comparison with other static word embedding generation models. In step (b), we train
a Local Tangent Information algorithm (LTI) on these selected samples in step (a) and
this fitted manifold learning algorithm will be used to transform word vectors from
original embedding space to a new refined embedding space. In this process, we just
transform between two equally-dimensional coordinate systems and keep the dimension
of word vectors unchanged. In step (c), we obtain word vectors of test word pairs (test
word pairs from specific tasks to validate the effect of word re-embedding) from the
original embedding space. In step (d), we re-embed these test word vectors into a new
re-embedding space to obtain new vectors by using the fitted LTI obtained in step (b).

3.2 Word Re-embedding Based on Local Tangent Information

LLE [15] and MLLE [16] methods aim at addressing the problem that word similar-
ity results of word pairs obtained by word embedding models are inconsistent with
that determined by human beings through word re-embedding. These two methods re-
embedword vectors by preserving local geometric information of words and their neigh-
bors. However, their research has certain limitations that the reconstruction weights are
easily influenced and these two methods need to perform the weighted locally linear
combination twice in both two embedding spaces.
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Algorithm 1. Word Re-embedding Algorithm based on LTI
Input: original word embedding space , test words 

Output: refined word representations set of test words
1: choose word vector samples from 
2: for each do 

3: according to Eq. (1), (5) and (6), fit to obtain new word 
embedding space 

4: end for 
5: for all do
6: obtain word vectors of from 
7: re-embed vector of to obtain refined vector set based on 
8: end for 
9: return refined word representations set of test words

Unlike LLE and MLLE methods, our proposed method uses local geometric infor-
mation different from those of the above twomethods. To address the limitations brought
by their methods, in this paper, we introduce a novel word re-embedding method based
on Local Tangent Information (denoted as LTI) to re-embed word vectors into a refined
new space. To be specific, a locally linear plane is constructed by leveragingPCAonword
neighbors. It is considered as an approximation of the tangent information at each word
point [17, 18]. Since both the original and new embedding spaces exist a linear mapping
of each word from their spaces to the local tangent information, our method aligns these
linear mappings based on local tangent information to re-embed word representations.

As we mentioned in the last subsection, word vector samples are firstly chosen from
pre-trained GloVe word vector corpus (original embedding space S) through a simple
window and Local Tangent Information (LTI) is trained on these samples. The set of
selected samples is defined as aword vector setX = [x1, x2, · · · , xN], whereX ∈ Rd×N ,
N is the number ofwords andd represents the dimension ofword vectors. In our proposed
method, for each word vector xi, (i = 1, 2, · · ·N ), we find its k nearest neighborhoods
(including xi itself) and denote the adjacent neighborhood set asXi = [xi1, xi2, · · · , xik].
Subsequently, for each word vector xi, we apply PCA to each neighborhood set Xi to
approximate the local tangent information of the word corresponding to a word vector xi
for preserving the local structure of the neighborhood setXi of xi. The objective function
is

arg min
Qi,θi

k∑

j=1

∣∣∣∣(xij − x
) − Qθij

∣∣∣∣2 = arg min
Qi,Ω i

||XiHk − QΩ i||2 (1)

where Hk = I − eeT
k is centralization matrix, I is an identity matrix, e means the

vector of all 1’s, Q is an orthonormal basis matrix of the tangent information, �i =
[θi1, θi2, · · · , θik ] represents a local linear approximation of Xi, i.e. θij is the tangent
coordinate corresponding to the orthonormal basis matrix Qi. Apparently, the optimal x
is the mean value of all neighborhood words vectors xij, (j = 1, 2, · · · k) of the sample
point xi, (i = 1, 2, · · ·N ). The optimal Q is given by Qi and it is made up of t left
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singular vectors of XiHk corresponding to its t largest singular values (t is equal to d ,
as the embedding dimension is the same in both two embedding spaces.) The tangent
coordinates �i can be computed as

�i = QT
i XiHk (2)

After obtaining the local tangent coordinates, we have to construct the global coordi-
nates in a new embedding space. The purpose of the global arrangement of local tangent
information is to find a group of new space coordinates Y = [

y1, y2, · · · , yN
]
, which are

called global coordinates in a new embedding space. Therefore, we assume that there is
a projection matrix, which re-embeds tangent coordinates �i to new space coordinates
Yi = {

yi1, yi2, · · · , yiN
}
, then we have

YiHk = Li�i + Ei (3)

where Li is the projection matrix mapping �i to Yi and Ei is the local reconstruction
error term. To preserve as much of the local geometry in a new embedding space as
possible, we intend to find Yi and Li by minimizing the reconstruction error Ei

argmin
Y

N∑

i=1

||Ei||2 = argmin
Y

N∑

i=1

||YiHk − Li�i||2 (4)

Obviously, the mapping error is minimal when Li = YiHk�
+
i , where �+

i is Moore-
Penrose generalized inverse of �i. Let refined word vector set Y = [

y1, y2, · · · , yN
]
be

the d dimensional global coordinates of all words inX (Y also be refined new embedding
space) and φi be the 0-1 selection matrix such that Yφi = Yi. The optimal Y can be
achieved by minimizing the overall reconstruction error of all neighborhoods and the
Formula (4) can be rewritten as:

argmin
Y

N∑

i=1

||Ei||2 = argmin
Y

N∑

i=1

||YiφiWi||2

= mintrace
(
YφWWTφTYT

)

= mintrace
(
YBYT

)
(5)

where φ = [φ1, φ2, · · · , φN ],W = diag(W1,W2, · · · ,WN )withWi = Hk
(
I − �+

i �i
)

and B = φWWTφT . In order to uniquely obtain Y , we will impose the constraint
YYT = I. The refined new word vector set Y is composed of the t eigenvectors of the
matrix B, and these eigenvectors correspond to the 2nd to (t + 1)th smallest eigenvalues
of B. Then the eigenvector matrix picked from B is

[
u2, · · · ,ut+1

]
, where ui is an

eigenvector of B. Thus, d dimensional refined new embedding set Y should be:

Y = [
u2, · · · ,ut+1

]
(6)

In our work, we firstly use word vectors samples from the original embedding space
to train the LTI algorithm by Eq. (1), Eq. (5) and Eq. (6) to obtain a new embedding
space Y . Then we can obtain the refined new embedding set of test word vectors in
specific tasks by using the new embedding space Y . The overall procedure of our Word
Re-embedding Algorithm based on LTI is described in Algorithm 1.
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4 Experimental Setup

4.1 Data Description

As we mentioned before, we use the original word vectors trained by GloVe [10]. More-
over, we use two sets ofGloVeword vectors1. One is trained fromWikipedia 2014+Giga-
word 5 (consists of 6 Billion tokens, 400,000 vocabularies, word vectors with 50, 100,
200, and 300 dimensions, denoted as 6B50/100/200/300d). Another set is trained from
Common Crawl (consists of 42 Billion tokens, 1.9 Million vocabularies, word vectors
with 300 dimensions, denoted as 42B300d). To demonstrate the effectiveness of our
proposed method, we conduct experiments on semantic relatedness and semantic simi-
larity tasks. The semantic relatedness task focuses on the degree of semantic relatedness
between words. It contains three datasets, including MEN dataset (3000 word pairs)
[36], WordRel (WordRel) dataset (252 word pairs) [37], MTurk (MTurk) dataset (287
word pairs) [38]. The semantic similarity task pays attention to the degree of semantic
similarity between words. It includes four datasets, which are RG65 (RG) dataset (65
word pairs) [39], WordSim-353 (WS353) dataset (353 word pairs) [40], SimLex-999
(SimLex) dataset (999 word pairs) [41], and WordSim-203 (WS203) dataset (203 word
pairs) [42] respectively.

4.2 Baselines

We validate our proposed method for word re-embedding by comparing it with the
following representative baseline methods.

GloVe. It is the original GloVe method [10]. This distributed word representation
method is general and quite effective. The word vectors trained by this method consider
local features of contextual words and global features of a corpus.

LLE. Hasan and Curry utilized local word neighbors to re-embed pre-trained word
vectors (also trained by GloVe) based on the LLE manifold learning algorithm [15].

RoM. Mu et al. removed the common mean vectors of the pre-trained word vectors
and the top principal components of all words for post-processing word vectors [34].

MLLE. Similar to [15], Chu et al. used the MLLE manifold learning algorithm to
re-embed word vectors trained by GloVe [16].

LTI. The method proposed in the current paper. We use a manifold learning method
that utilizing local tangent information of words and their neighbors to re-embed
word vectors by aligning the original and new embedding space based on the tangent
information of words.

4.3 Evaluation Metrics

To evaluate the performance of our proposed method and baseline methods, we adopt
Spearman’s method to compute the Spearman Rank Correlation coefficient between
word similarity scores (similarity scores of word pairs obtained fromword re-embedding

1 http://nlp.stanford.edu/projects/glove.

http://nlp.stanford.edu/projects/glove
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methods)with human judgments (original similarity scores ofword pairs in each dataset).
The Spearman Rank Correlation is defined as:

cos(u1, u2) = u1 · u2
‖u1‖ · ‖u2‖ (7)

r = px,y = cov(x, y)

σx · σy
(8)

Equation (7) is used to calculate the similarity results of each pair of words in
specific tasks, where u1 and u2 represent two word vectors. Equation (8) represents
the Spearman Rank Correlation coefficient between word similarity scores and human
ratings, cov(x, y) represents the covariance between the score ranking list x and y, which
denote the score list of word similarity scores obtained by word re-embedding methods
and the score list of human judgments respectively, σx andσy represent the corresponding
standard deviations of these two score lists. The more consistent similarities of word
pairs obtained by word re-embedding methods with human judgments, the higher the
Spearman score is.

4.4 Implementation Details

Firstly, we select word vector samples from a pre-trained word vector corpus by using a
sample window and use the LTI algorithm to train these samples. Then for each specific
task, we obtain word vectors of test word pairs and transform these word vectors into
a new embedding space by using the fitted LTI algorithm. Finally, we compute cosine
similarity scores of word pairs in each specific task and compute the Spearman scores.
In our method, the range value of number of neighbors chosen was set as [300, 1500]
and the step is 100. The range value of the training sample window size was set as [300,
2000] and the step is 50. Previous experiments show that the best sample size should be
as close as possible to the number of neighbors because a wider range has no significant
difference in results and has high time and computation cost.

5 Results and Discussion

5.1 Performance on Word Vectors with Different Embedding Dimensions

In order to evaluate the performance of our proposed method and other word re-
embedding methods on word vectors with different embedding dimensions, we conduct
experiments on WS353 and RG dataset as in previous studies [15, 16]. The experimen-
tal results are shown in Table 1. As shown in this table, LLE, MLLE and our proposed
LTI method perform better than GloVe in most cases. This demonstrates that using
a manifold-learning based algorithm is beneficial to generate word embeddings with
high quality. Furthermore, we can observe that our proposed method achieves better
performance than LLE and MLLE methods in 5 out of 10 experimental runs. In terms
of dataset, the MLLE method achieves good performance on RG dataset than that of
WS353 dataset. We can observe that our proposed method achieves the best result in 4
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out of 5 experimental runs on RG dataset. However, this proposed method only obtains
the highest scores in 2 out of 5 experimental runs on WS353 dataset. This is probably
due to some noises existing in word vectors in the due dataset. Another reason is that the
distance of words and their neighbors in RG dataset may be closer than that of words and
their neighbors in WS353 dataset, so the geometric information of RG dataset is more
beneficial to the manifold-learning based methods for word re-embedding than that of
WS353 dataset.

Table 1. Spearman correlations scores of variousmethods on two evaluation datasets. Bold values
represent that ourmethod achieves the best results than baselinemethods. Note that baseline results
are taken from [16].

Space Task GloVe LLE MLLE LTI

6B50d WS353 61.2 56.6 63.2 61.2

6B100d WS353 64.5 64.3 64.6 66.4

6B200d WS353 68.5 69.7 67.0 68.2

6B300d WS353 65.8 70.3 67.9 69.3

42B300d WS353 75.2 78.4 78.6 78.6

Space Task GloVe LLE MLLE LTI

6B50d RG 60.2 53.0 64.4 62.6

6B100d RG 65.3 67.3 68.8 73.3

6B200d RG 75.5 76.0 79.4 81.5

6B300d RG 75.5 80.5 81.1 83.1

42B300d RG 80.0 83.4 83.5 86.5

In addition, with regard to embedding dimensions, our proposedmethod outperforms
theMLLEmethod on both datasets with embedding dimensions more than 50. However,
when RG and WS353 datasets containing 6B tokens and the embedding dimension is
50, the MLLE shows better performance than our method. The reason may be that
multiple weights are more suitable to describe the relationships between words and their
neighbors than the tangent information when the embedding dimension is very low.
However, when RG dataset contains 6B tokens and the embedding dimension increases,
our proposed method shows better performance than all baseline methods. It is obvious
that the higher dimension of word vectors is, the better performance of our proposed
method can get because word vectors with high dimensions can capture more semantic
information.

Moreover, we can observe that when the size of datasets increases (from 6B to 42B)
and the embedding dimension reaches 300, our proposed method can greatly improve
word similarity performance on both datasets. This indicates that the larger training
size and larger dimension are beneficial for word re-embedding. Then, we conduct
experiments on seven datasets with a size of 42B and use the embedding dimension of
300 to further validate the effectiveness of our proposed LTI method.
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5.2 Performance on Two Evaluation Tasks

In addition to these experiments, more experiments are conducted on seven datasets
to further validate the performance of our proposed LTI method. Table 2 displays the
results of all methods in two evaluation tasks. From this table, an observation is that
almost all word re-embedding methods (LTI, MLLE, LLE and RoM) perform better
than Glove. These results are in-line with previous findings so that these two tasks are
quite suitable to evaluate the word re-embedding methods. This further suggests that
word re-embedding can improve the performance of word representations.

Table 2. Spearman correlations between scores predicted by our method and scores obtained
from human judgment on two evaluation tasks. Bold values represent that our method achieves
the best results than baseline methods. Note that baseline results are taken from [16].

Semantic similarity task Semantic relatedness
task

Method RG WS353 SimLex WS203 MTurk WordRel MEN

GloVe 76.90 71.25 40.83 80.15 69.29 64.43 80.49

LLE 74.71 77.14 48.14 81.40 71.92 72.90 83.37

RoM 74.36 76.79 44.97 – 70.85 – 81.78

MLLE 77.19 78.40 49.40 82.32 72.78 73.69 84.19

LTI 86.48 78.58 50.46 81.92 73.15 74.65 83.50

We notice that our proposed LTI method is the best performing method on 5 out of
7 datasets in comparison with the MLLE method. This is because the MLLE method
may be strongly influenced by the local weights. Our method aligns the original and
refined semantic space based on the local tangent information rather than the multiple
local weights. Furthermore, our method does not calculate the weighted combination
of embedding of words and their neighbors twice, which is more efficient. Our LTI
method performs slightly worse than the MLLE method on WS203 and MEN datasets.
This is likely caused by the better effect of the local weights in the MLLE method.
However, the differences are quite small (0.49%and0.83%). In summary, ourmethod can
achievebetter performance than all other baselinemethods and it ismore computationally
efficient than all previously proposed word re-embedding methods that are included in
the comparison.

6 Conclusion

Word re-embedding can address the problem that the similarity scores of word pairs
obtained by word embedding models are inconsistent with human ratings. In this paper,
we introduce a novel word re-embedding method based on Local Tangent Informa-
tion (LTI) to re-embed word vectors. Our LTI method tries to re-embed vectors by
aligning the original and new embedding spaces based on local tangent information.
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We conduct several experiments on semantic relatedness and semantic similarity tasks.
The results demonstrate that our proposed method achieves better performance than the
existing word re-embedding methods. In future work, our method can be advanced in
two directions. On the one hand, we will try to discover the key factors that influence
the effectiveness of the word re-embedding process. On the other hand, we will explore
the contextual word embedding refinement by using manifold learning methods.
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42. Gerz, D., Vulić, I., Hill, F., Reichart, R., Korhonen, A.: Simverb-3500: a large-scale evaluation
set of verb similarity. arXiv preprint arXiv:1608.00869 (2016)

http://arxiv.org/abs/1906.00112
http://arxiv.org/abs/1608.00869


Content Selection Network
for Document-Grounded Retrieval-Based

Chatbots

Yutao Zhu1(B), Jian-Yun Nie1, Kun Zhou2, Pan Du1, and Zhicheng Dou3
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Abstract. Grounding human-machine conversation in a document is
an effective way to improve the performance of retrieval-based chatbots.
However, only a part of the document content may be relevant to help
select the appropriate response at a round. It is thus crucial to select
the part of document content relevant to the current conversation con-
text. In this paper, we propose a document content selection network
(CSN) to perform explicit selection of relevant document contents, and
filter out the irrelevant parts. We show in experiments on two public
document-grounded conversation datasets that CSN can effectively help
select the relevant document contents to the conversation context, and
it produces better results than the state-of-the-art approaches. Our code
and datasets are available at https://github.com/DaoD/CSN.

Keywords: Content selection · Document-grounded dialogue ·
Retrieval-based chatbots

1 Introduction

Retrieval-based chatbots such as Microsoft XiaoIce [19] and Amazon Alexa [16]
are widely used in real-world applications. Given a user input, an upstream
retrieval system can provide a set of response candidates, and the retrieval-based
chatbot should choose the appropriate one. This mainly relies on a matching
score between the context and each candidate response. It has been found that
the conversation context alone is insufficient in many cases for response selec-
tion [22,28]. In fact, human conversations are usually also grounded in external
knowledge or documents: our responses are strongly related to our knowledge or
information contained in the documents at hand. On Reddit, for example, people
usually discuss about a document posted at the beginning of a thread, which
provides the background topics and basic facts for the following conversations.
c© Springer Nature Switzerland AG 2021
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On Twitter, people may also exchange opinions related to a news article. In these
cases, in addition to the conversation context, the document or news article also
provides useful background information to guide response selection. A conver-
sation that does not take into account the background information may lead to
off-topic responses. This paper deals with the problem of document-grounded
conversation - conversation based on a given document [1,4,15,28,29].

The task of document-grounded response selection is formulated as selecting
a good response from a candidate pool that is consistent with the context and
relevant to the document. Several existing studies have shown that leveraging
the background document can significantly improve response selection [4,28,29].
Generally, the common strategy is selecting the response based on a combination
of context-response matching and document-response matching. The latter can
boost the responses that are related to the document content. However, a good
response does not need to be related to the whole content of the document, but
to a small part of it. The selection of the relevant part of the document is crucial.

The problem can be illustrated by an example from CMUDoG [30] in Fig. 1.
In this dataset, a movie-related wiki article is used as the grounding document.
We can see that the conversation is highly related to the document. R1, R2, and
R3 are three candidate responses for U6, and R3 is the desired response. The
wrong response R1 could be highly scored because it shares several key words
with the document (i.e., document-response matching score is high). However,
R1 is not an appropriate response in the current context, which asks about

Fig. 1. An example in CMUDoG dataset. The words in color correspond to those in
the document. R3 is the ground-truth response.
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the length of the movie. This example shows that a correct response is well
grounded in the document not because it corresponds to the document content,
but because it corresponds to the part relevant to the conversation context.
Therefore, a first challenge is to select the part of the document content relevant
to the current conversation context. R2 looks like a proper response to U6, yet
it conveys similar information as U3, which makes the dialogue less informative.
This response could be selected if we use the whole conversation history as con-
versation context - the response could have a high context-response matching
score. In fact, the current context in this example is about the length of the
movie. The previous utterances in the history are less relevant. This case illus-
trates the need to well calibrate and model the current conversation context.

The two key problems illustrated by the above example (R1 and R2) are not
well addressed in previous studies: (1) They usually perform a soft selection of
document content by assigning attention weights to them [4,29]. Even though
the less relevant parts could be assigned lower weights, the cumulative weight
of many irrelevant parts could be large, so that they collectively influence the
response selection in a wrong direction. We believe that a key missing element
is a proper (hard) selection of the document content that fits the current con-
versation context, instead of a (soft) weighting. The hard selection of document
content is motivated by the following observation: although the whole conversa-
tion can cover many aspects described in the grounding document, each of the
step is related to only a small part of the document content. For example, in our
conversation about a movie, we could discuss about an actor in one step. The
selection of such a small part of the content is crucial. This observation advo-
cates a hard selection rather than a soft weighting used in the previous studies.
(2) The existing studies usually use the entire context to determine the weights
of parts (sentences) of the document content. This strategy fails to distinguish
the current conversation context from the ones in the history. As a result, a
past round of conversation could be mistaken as the current one, leading to a
redundant response as illustrated by the R2 example.

In this paper, we propose a Content Selection Network (CSN) to tackle
these problems. First, we use a modified gate mechanism to implement the
document content selection according to the conversation context, before using
it to match with the response candidate. The content relevant to the current
conversation step will be assigned a higher weight and pass the selection gate,
while the irrelevant parts will be blocked. We use the gate mechanism to select
sentences or words. Second, as the topic usually evolves during the conversation,
we determine the current conversation context by focusing on the most recent
utterances, rather than on the whole conversation history. To this end, we design
a decay mechanism for the history to force the model focusing more on the
current dialogue topic. The selected document contents and the conversation
context are finally combined to select the candidate response.

The main contributions of this paper are: (1) We propose a content selection
network to explicitly select the relevant sentences/words from the document to
complement the conversation context. Our experiments show that this is a much
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more effective way to leverage the grounding document than a soft weighting.
(2) We show that document-grounded conversation should focus on the topics
in the recent state rather than using the whole conversation context. On two
public datasets for document-grounded conversation, our method outperforms
the existing state-of-the-art approaches significantly.

2 Related Work

Retrieval-Based Chatbots. Existing methods for open-domain dialogue
can be categorized into two groups: retrieval-based and generation-based.
Generation-based methods are mainly based on the sequence-to-sequence
(Seq2seq) architecture with attention mechanism and aim at generating a new
response for conversation context [2,8,17,18,26]. On the other hand, retrieval-
based methods try to find the most reasonable response from a large repository
of conversational data [10,21,25,27]. We focus on retrieval-based methods in this
paper. Early studies use single-turn response selection where the context is a sin-
gle message [6,7], while recent work considers all previous utterances as context
for multi-turn response selection [21,25,27,31]. In our work, we also consider the
whole conversation history (but with decaying weights).

Document-Grounded Conversation. Multiple studies have shown that being
grounded in knowledge or document can effectively enhance human-machine
conversation [3,11,28,29]. For example, a Seq2seq model is first applied to gen-
erate responses based on both conversation history and external knowledge [3].
An approach using a dually interactive matching network has been proposed,
in which context-response matching and document-response matching are per-
formed separately using a shared structure [4]. This model achieved state-of-the-
art performance on persona-related conversation [28]. Recently, Zhao et al. [29]
proposed a document-grounded matching network that lets the document and
the context to attend to each other so as to generate better representations for
response selection. Through the attention mechanism, different parts (sentences)
of the document are assigned different weights and will participate in response
selection to different extents. However, even though one may expect the noise
contents (for the current step) be assigned with lower weights, they can still
participate in response selection.

Our work differs from the existing studies in that we explicitly model the doc-
ument content selection process and prevent the irrelevant contents from partic-
ipating in response selection. In addition, we also define the current conversation
context by focusing more on recent utterances in the history rather than taking
the whole history indistinctly. These ideas will bring significant improvements
compared to the existing methods.

3 Content Selection Network

3.1 Problem Formalization

Suppose that we have a dataset D, in which each sample is represented as
(c, d, r, y), where c = {u1, . . . , un} represents a conversation context with {ui}ni=1
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Fig. 2. The structure of CSN.

as utterances; d = {s1, . . . , sm} represents a document with {si}mi=1 as sentences;
r is a response candidate; y ∈ {0, 1} is a binary label, indicating whether r is a
proper response. Our goal is to learn a matching model g from D, such that for
a new context-document-response triplet (c, d, r), g(c, d, r) measures the degree
of suitability of a response r to the given context c and the document d.

3.2 Model Overview

We propose a content selection network (CSN) to model g(·, ·, ·), which is shown
in Fig. 2. Different from the previous work [4,21,25] which uses the whole docu-
ment contents, we propose a selection module with a gate mechanism to select
the relevant parts of document content based on the context. Then, the context-
response matching and the document-response matching are modeled based on
the sequential, self-attention, and cross-attention representations. Finally, CNNs
and RNNs are applied to extract, distill, and aggregate the matching features,
based on which the response matching score is calculated.

3.3 Representation

Consider the i-th utterance ui = (wu
1 , · · · , wu

L) in the context, the j-th sen-
tence sj = (ws

1, · · · , ws
L) in the document, and the response r = (wr

1, · · · , wr
L),

where L is the number of words1. CSN first uses a pre-trained embedding table
to map each word w to a de-dimension embedding e, i.e., w ⇒ e. Thus the
utterance ui, the sentence sj , and the response r are represented by matrices
Eui = (eui

1 , · · · , eui

L ), Esj = (esj1 , · · · , esjL ), and Er = (er1, · · · , erL), respectively.
Then, CSN encodes the utterances, sentences and responses by bi-directional

1 To simplify the notation, we assume their lengths are the same.
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long short-term memories (BiLSTM) [5] to obtain their sequential representa-
tions: ui = BiLSTM(Eui), sj = BiLSTM(Esj ), r = BiLSTM(Er). Note that the
parameters of these BiLSTMs are shared in our implementation. The whole con-
text is thus represented as C = [u1, · · · ,un]. With the BiLSTM, the sequential
relationship and dependency among words in both directions are expected to be
encoded into hidden vectors.

3.4 Content Selection

In document-grounded conversation, the document usually contains a large
amount of diverse information, but only a part of it is related to the current
step of the conversation. To select the relevant part of document contents, we
propose a content selection phase by a gate mechanism, which is based on the rel-
evance between the document and the context. We design the gate mechanism
at two different levels, i.e., sentence-level and word-level, to capture relevant
information at different granularities. If the sentences/words in the document
are irrelevant to the current conversation, they will be filtered out. This is an
important difference from the traditional gating mechanism, in which elements
are assigned different attention weights, but no element is filtered out. We use the
conversation context to control the gate, which contains several previous turns
of conversation. Along the turns, the conversation topic gradually changes. The
most important topic is that of the most recent turn, while more distant turns
are less important. To reflect this fact, we design a decay mechanism on the his-
tory to assign a higher importance to the recent context than to the more distant
ones. The selection process is automatically trained with the whole model in an
end-to-end manner.

Sentence-Level Selection. Let us first explain how document sentences
are selected according to conversation context. Considering the context c =
(u1, · · · , un) and the j-th sentence sj in the document, CSN computes a score
for the sentence sj by measuring its matching degree with the current dialogue
context. In particular, CSN first obtains the sentence representations of the con-
text c and the sentence sj by mean-pooling over the word dimension of their
sequential representations:

C̄ = mean
dim=2

(C), s̄j = mean
dim=1

(sj), (1)

where C̄ ∈ R
n×2d and s̄j ∈ R

2d. Then CSN computes a sentence-level matching
vector A by cosine similarities:

A = cos(C̄, s̄j). (2)

We can treat A ∈ R
n as a similarity array A = [A1, · · · , An] and compute a

matching score S for the sentence sj by fusing the similarity scores:

S = f(A1, A2, · · · , An). (3)
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The fusion function f(·) can be designed in different ways, which will be discussed
later. After obtaining the matching scores for sentences, we select the relevant
sentences and update their representations as follows:

S′ = S × (σ(S) ≥ γ), s′
j = S′ × sj , (4)

where σ(·) is the Sigmoid function and γ is a hyperparameter of the gate thresh-
old. By this means, we will filter out a sentence sj if its relevance score is below
γ. The filtering is intended to remove the impact of clearly irrelevant parts of
document content.

Word-Level Selection. In the sentence-level selection, all words in a sentence
are assigned the same weights. We can further perform a selection of words by
computing a score for each word in the sentence. Specifically, CSN constructs a
word-level matching map through the attention mechanism as follows:

B = v� tanh(s�
j W1C + b1), (5)

where W1 ∈ R
2d×2d×h, b1 ∈ R

h and v ∈ R
h×1 are parameters. B ∈ R

n×L×L

is the word-alignment matrix between the context and the document sentence.
Then, to obtain the most important matching features between sj and each
utterance in the context, CSN conducts a max-pooling operation as follows:

B̂ = max
dim=3

B, (6)

where B̂ ∈ R
n×L, and it can be represented in an array form as B̂ =

[B̂1, · · · , B̂n]. The element B̂i ∈ R
L contains L local matching signals for all

words in the document sentence sj with respect to the utterance ui. There-
after, CSN applies a fusion function to combine these local matching signals and
obtains a global matching vector:

S = f(B̂1, B̂2, · · · , B̂n). (7)

S ∈ R
L thus contains L global matching scores for all words in sj to the whole

context. In the next step, CSN selects the relevant words in the document and
updates the document representation as follows:

S′ = S � (σ(S) ≥ γ), s′
j = S′ � sj , (8)

where � is the element-wise product. Different from the sentence-level matching
score S′ in Eq. 4, the word-level matching score S′ is a vector containing weights
for different words.

Fusion Function. The fusion function f(·) in Eq. (3) and (7) is used to aggre-
gate the matching signals with each utterance in the context. Our fusion strate-
gies attribute different weights to the utterances in the conversation history.
Two different functions are considered: (1) Linear combination – the weight of
each matching signal is learned during the model training. Ideally, an utterance
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containing more information about the conversation topic will contribute more
to the selection of document content. (2) Linear combination with decay factors.
This method assumes that the topic gradually changes along the conversation
and the response is usually highly related to the most recent topic in the context.
Therefore, we use a decay factor η ∈ [0, 1] on the utterances in the context to
decrease their importance when they are far away. The matching scores are then
computed as:

Ai = Ai ∗ ηn−i, (sentence-level) B̂i = B̂i ∗ ηn−i. (word-level) (9)

The decay factor η is a hyperparameter. Note that when η = 1, it degenerates
to the normal linear combination.

3.5 Matching and Aggregation

The next problem is to select the appropriate response by leveraging the selected
document parts. Following a recent study [4], CSN uses a dually interactive
matching structure (as shown in Fig. 2) to determine context-response matching
and document-response matching, where the two kinds of matching features are
modeled by the same structure.

Based on the recent work [25,27,31] that constructs different matching fea-
ture maps, in addition to using the sequential representations of the sentences,
CSN also uses matching on both self-attention and cross-attention representa-
tions. Given the sequential representations of the context C = [u1, · · · ,un], the
document D = [s′

1, · · · , s′
m], and the response candidate r, CSN first constructs

a word-word similarity matrix M1 by dot product and cosine similarity:

Mcr
1 = CH1r� ⊕ cos(C, r), Mdr

1 = DH1r� ⊕ cos(D, r), (10)

where H1 ∈ R
2d×2d is a parameter, and ⊕ is the concatenation operation.

To better handle the gap in words between two word sequences, CSN applies
the attentive module, which is similar to that used in Transformer [23]. The
input of an attentive module consists of three sequences, namely query (Q), key
(K), and value (V). The output is a new representation of the query and is
denoted as fATT(Q,K,V) in the remaining description.

At first, CSN uses the attentive module over the word dimension to construct
multi-grained representations, which is formulated as:

Ĉ = fATT(C,C,C), D̂ = fATT(D,D,D), r̂ = fATT(r, r, r). (11)

The second similarity matrix M2 is computed based on these self-attention rep-
resentations:

Mcr
2 = ĈH2r̂� ⊕ cos(Ĉ, r̂), Mdr

2 = D̂H2r̂� ⊕ cos(D̂, r̂). (12)

Then, another group of attentive modules (cross-attention) is also applied to
represent semantic dependency between the context, the document, and the
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response candidate:

C̃ = fATT(C, r, r), r̃c = fATT(r,C,C), (13)

D̃ = fATT(D, r, r), r̃d = fATT(r,D,D). (14)

Next, CSN also constructs a similarity matrix M3 as:

Mcr
3 = C̃H3r̃c� ⊕ cos(C̃, r̃c), Mdr

3 = D̃H3r̃d� ⊕ cos(D̃, r̃d). (15)

The above matching matrices are concatenated into two matching cubes:

Mcr = Mcr
1 ⊕ Mcr

2 ⊕ Mcr
3 , Mdr = Mdr

1 ⊕ Mdr
2 ⊕ Mdr

3 . (16)

Then CSN applies a CNN with max-pooling operation to extract matching fea-
tures from Mcr and Mdr. The output feature maps are flattened as matching
vectors. As a result, we obtain two series of matching vectors: (1) between the
context and the response vcr = [vu1 , · · · ,vun ]; and (2) between the selected
document and the response vdr = [vs1 , · · · ,vsm ].

Finally, CSN applies LSTMs to aggregate these two series of matching vectors
into two hidden vectors (the last hidden states of the LSTMs):

h1 = LSTM(vcr), h2 = LSTM(vdr). (17)

These vectors are concatenated together and used to compute the final matching
score by an MLP with a Sigmoid activation function:

g(c, d, r) = σ
(
MLP(h1 ⊕ h2)

)
. (18)

CSN learns g(c, d, r) by minimizing the following cross-entropy loss with D:

L(θ) = −
∑

(y,c,d,r)∈D
[y log(g(c, d, r)) + (1 − y) log(1 − g(c, d, r))]. (19)

4 Experiments

4.1 Dataset

We conduct experiments on two public datasets.

PersonaChat. [28] contains multi-turn dialogues with user profiles. The goal
is to generate/retrieve a response that corresponds to the user profile, which
is used as a grounding document [28]. This dataset consists of 8,939 complete
dialogues for training, 1,000 for validation, and 968 for testing. Response selec-
tion is conducted at every turn of a dialogue, and the ratio of the positive and
the negative samples is 1:19 in training, validation, and testing sets, resulting in
1,314,380 samples for training, 156,020 for validation, and 150,240 for testing.
Positive responses are real human responses while negative ones are randomly
sampled from other dialogues. To prevent the model from taking advantage of
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trivial word overlap, the revised version of the dataset modified the persona
profiles by rephrasing, generalizing, or specializing sentences, making the task
much more challenging. We use “revised” and “original” to indicate the different
versions of the dataset.

CMUDoG. [30] is designed specifically for document-grounded conversation.
During the conversation, the speakers are provided with a movie-related wiki
article. Two scenarios are considered: (1) Only one speaker has access to the
article thus she should introduce the movie to the other; (2) Both speakers have
access to the article thus they have a discussion. We use the dataset provided
by [29], where the data of both scenarios are merged because the size of each
dataset is relatively small. Notice that the model is only asked to select a response
for the user who has access to the document. The ratio of the positive and the
negative is 1:19 in training, validation, and testing sets. This results in 723,180
samples for training, 48,500 for validation, and 132,740 for testing.

Following previous work [29], we employ recall at position k as evaluation
metrics (R@k), where k = {1, 2, 5}. For a single sample, if the only positive
candidate is ranked within top k positions, then R@k = 1, otherwise, R@k = 0.
The final value is the average over all test samples. Note that R@1 is equivalent
to hits@1 that is used in related work [4,28].

4.2 Baseline Models

We compare CSN using sentence-level and word-level selection (denoted as CSN-
sent and CSN-word respectively) with the following models:

(1) Starspace [24] concatenates the document with the context as a long sen-
tence and learns its similarity with the response candidate by optimizing the
embeddings using the margin ranking loss and k-negative sampling. Match-
ing is done by cosine similarity of the sum of word embeddings.

(2) Profile Memory Network [28] uses a memory network with the context as
input, then performs attention over the document to find relevant sentences.
The combined representation is used to select the response. This model relies
on the attention mechanism to weigh document contents.

(3) Key-value (KV) Profile Memory Network [28] uses dialogue histories as keys
and the next dialogue utterances as values. In addition to the memory of
the document, this model has a memory of past dialogues that can influence
the response selection.

(4) Transformer [23] is used in [11] as an encoder for the context, document,
and response. The obtained representations are input to a memory network
to conduct matching in the same way as in Profile Memory Network.

(5) DGMN [29] is the state-of-the-art model on the CMUDoG dataset. It
employs a cross attention mechanism between the context and document
and obtains a context-aware document representation and a document-aware
context representation. The two representations and the original context
representation are all matched with the response representation. The three
matching features are finally combined to output the matching score.
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(6) DIM [4] is the state-of-the-art model on the PersonaChat dataset. It applies a
dually interactive matching structure to model the context-response match-
ing and document-response matching respectively. DIM conducts representa-
tion, matching, and aggregation by multiple BiLSTMs, and the final match-
ing features are used to compute the matching score by an MLP.

4.3 Implementation Details

We use PyTorch [13] to implement the model. A 300-dimensional GloVe embed-
ding [14] is used on all datasets. On PersonaChat, another 100-dimensional
Word2Vec [12] embedding provided by [4] is used. Dropout [20] with a rate
of 0.2 is applied to the word embeddings. All hidden sizes of the RNNs are set as
300. Two convolutional layers have 32 and 64 filters with the kernel sizes as [3,
3] and [2, 2]. AdamW [9] is employed for optimization with a batch size of 100.
The initial learning rate is 0.001 and is decayed by 0.5 when the performance on
the validation set is not increasing.

4.4 Experimental Results

The experimental results are shown in Table 1. The results on all three datasets
indicate that our CSN outperforms all baselines, including DGMN and DIM,
which are two state-of-the-art models. On the PersonaChat dataset, both CSN-
word and CSN-sent achieve statistically significant improvements (p-value ≤
0.05) compared with DIM, which is the best model on this dataset. In general,
CSN-word performs better than CSN-sent, indicating the word-level selection
is more able to select fine-grained document contents than the sentence-level
selection. This comparison also confirms our intuition that it is advantageous
for document-grounded conversation to rely on fine-grained information from
the document. On CMUDoG, the two document content selection strategies
work equally well. We explain this by the fact that the grounding document is
longer in this dataset, and there is no obvious reason that one level of selection

Table 1. Experimental results on all datasets.

PersonaChat-Original PersonaChat-Revised CMUDoG

R@1 R@2 R@5 R@1 R@2 R@5 R@1 R@2 R@5

Starspace 49.1 60.2 76.5 32.2 48.3 66.7 50.7 64.5 80.3

Profile 50.9 60.7 75.7 35.4 48.3 67.5 51.6 65.8 81.4

KV Profile 51.1 61.8 77.4 35.1 45.7 66.3 56.1 69.9 82.4

Transformer 54.2 68.3 83.8 42.1 56.5 75.0 60.3 74.4 87.4

DGMN 67.6 81.3 93.3 56.7 73.0 89.0 65.6 78.3 91.2

DIM 75.5 87.5 96.5 68.3 82.7 94.4 59.6 74.4 89.6

CSN-sent 77.5 88.8 96.8 70.1 83.4 95.1 70.1 82.5 94.3

CSN-word 78.1 89.0 97.1 71.3 84.2 95.5 69.8 82.7 94.0
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(a) Effect of γ. (b) Effect of η.

Fig. 3. Performance of different γ and η settings on original PersonaChat.

can determine more relevant parts than another. Nevertheless, both selection
strategies show clear advantages over the baseline methods without selection.

Compared with other baselines that represent the whole document as a single
vector, DGMN, DIM and our CSN consider fine-grained matching between parts
of the document and response. We can see that these models achieve clearly
better performances, confirming the necessity to use parts of the document rather
than the whole document. However, DGMN and DIM only assign attention
weights to sentences according to the context, without eliminating low-weighted
ones. In contrast, our CSN model filters out all the irrelevant parts. In so doing,
we expect the model not to be influenced by clearly irrelevant parts. As we can
see in the experimental results, CSN achieves significantly higher performance
than DGMN and DIM on all the datasets, confirming the usefulness of explicit
selection (and filtering) of document contents.
Effect of Content Selection. The hyperparameter γ in Eq. (4) and (8) con-
trols how much the document content is selected. We test the effect of this
hyperparameter on the original PersonaChat dataset. Figure 3a shows that if γ
is too small or too large, too much or too little information from the document
may be selected. In particular, when γ = 0 – the whole document content is
kept, the performance drops a lot. This strategy is comparable to that used in
the existing models DIM and DGMN based on attention. We see again the use-
fulness of explicit document content filtering. On the other hand, when γ = 1,
i.e., no document content is selected, it degenerates to non document-grounded
response selection and the performance also drops sharply. The best setting of
γ is around 0.3 for both CSN-sent and CSN-word, which retains an appropriate
amount of relevant document content for response matching.
Effect of Decaying Factor. The decay factor η works as prior knowledge
to guide the model focusing more on the recent utterances. A lower η means
the previous utterances have less contribution in the selection of the document.
“η = 1” corresponds to the model with a normal linear combination (the first
kind of fusion function). Based on the results, we can see that our decaying
strategy (η = 0.9) performs the best. This confirms our assumption that focusing
more on the recent topic of the conversation is helpful. However, when η = 0,
only the last utterance in the history is used and the performance is lower. This
illustrates the necessity of using a larger context.
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5 Conclusion and Future Work

In this paper, we proposed a document content selection network to select the
relevant content to ground the conversation. We designed a gate mechanism
that uses conversation context to retain the relevant document contents while
filtering out irrelevant parts. In addition, we also use a decay factor on the
conversation history to focus on more recent utterances. Our experiments on two
large-scale datasets for document-grounded response selection demonstrated the
effectiveness of our model. We showed that both document content selection (and
filtering) and the use of decay factor contributed in increasing the effectiveness
of response selection. As a future work, it would be interesting to study if the
selection can be done at topic level, in addition to sentence and word levels.
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