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Abstract. It is a challenging task to segment brain tumors from multi-
modality MRI scans. How to segment and reconstruct brain tumors more
accurately and faster remains an open question. The key is to effectively
model spatial-temporal information that resides in the input volumet-
ric data. In this paper, we propose Multi-View Pointwise U-Net (MVP
U-Net) for brain tumor segmentation. Our segmentation approach fol-
lows encoder-decoder based 3D U-Net architecture, among which, the
3D convolution is replaced by three 2D multi-view convolutions in three
orthogonal views (axial, sagittal, coronal) of the input data to learn spa-
tial features and one pointwise convolution to learn channel features.
Further, we modify the Squeeze-and-Excitation (SE) block properly and
introduce it into our original MVP U-Net after the concatenation section.
In this way, the generalization ability of the model can be improved while
the number of parameters can be reduced. In BraTS 2020 testing dataset,
the mean Dice scores of the proposed method were 0.715, 0.839, and
0.768 for enhanced tumor, whole tumor, and tumor core, respectively.
The results show the effectiveness of the proposed MVP U-Net with the
SE block for multi-modal brain tumor segmentation.
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1 Introduction

Qualitative and quantitative assessment of brain tumors is the key to deter-
mine whether medical images can be used in clinical diagnosis and treat-
ment. Researchers began to explore faster and more accurate methods for brain
tumor segmentation. However, due to the fuzziness of the boundaries of each
tumor subregion, the complete automatic segmentation of brain tumors remains
challenging.

Brain Tumor Segmentation (BraTS) Challenge [1–4,17] has always been
focusing on the evaluation of state-of-the-art methods for the segmentation of
brain tumors in multimodal magnetic resonance imaging (MRI) scans. BraTS
2020 utilizes multi-institutional pre-operative MRI scans and primarily focuses
on the segmentation of intrinsically heterogeneous brain tumors, namely gliomas.
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The BraTS 2020 dataset is annotated manually by one to four raters, following
the same annotation protocol, and their annotations are approved by experi-
enced neuro-radiologists. Annotations comprise the background (label 0), the
enhancing tumor (ET, label 4), the peritumoral edema (ED, label 2), and the
necrotic and non-enhancing tumor (NCR/NET, label 1). Each patient’s MRI
scan consists of four modalities, i.e., native T1 weighted, post-contrast T1-
weighted (T1ce), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery
(T2-FLAIR).

Since the U-Net network was first proposed by Ronneberger et al. in 2015
[18], the neural network represented by U-Net and its variants has been shining
brightly in the field of medical image segmentation. It is a specialized convo-
lutional neural network (CNN) with a down-sampling encoding path and an
up-sampling decoding path similar to an auto-encoder architecture. However,
because the U-Net network takes as input two-dimensional data while medical
images are usually three-dimensional, using the U-Net network will lose the spa-
tial details of the original data. As a result, the image segmentation accuracy
is not satisfying. Alternatively, 3D U-Net [8] was proposed and has been widely
used for segmentation in medical image segmentation due to its outstanding
performance. However, 3D U-Net network is prone to overfitting and difficult
to train because of its huge number of model parameters, which greatly limits
its application. Both 2D and 3D U-Net models have their own advantages and
disadvantages. One question naturally arises, is it possible to build a neural net-
work that computes as low cost as a 2D network, but performs as well as a 3D
network?

Researchers have been investigating this question for a long time and numer-
ous approaches have been proposed. Haquer et al. [9] proposed 2.5D U-Net which
consists of three 2D U-Net trained with axial, coronal, and sagittal slices, respec-
tively. Although it achieves the goal of lower computation cost of 2D U-Net and
the effectiveness of 3D U-Net, it does not make full use of the spatial infor-
mation of volumetric medical image data. Chen et al. [6] proposed S3D U-Net
which uses separable 3D convolutions instead of 3D convolutions. Although its
segmentation of medical images is efficient, the number of model parameters
is still large, which greatly limits its application in practical scenarios. It is a
challenging task to achieve both low computational cost and high performance.
The key is how to explore the spatial-temporal modeling for the input volumet-
ric data. Recently, spatial-temporal 3D networks have received more and more
attention [15]. It performs 2D convolution along three orthogonal views of vol-
umetric video data to learn the spatial appearance and temporal motion cues,
respectively, and fuses together to obtain the final output. Inspired by this, we
propose Multi-View Pointwise U-Net (MVP U-Net) for brain tumor segmenta-
tion. The proposed MVP U-Net follows the encoder-decoder-based 3D U-Net
architecture in which we use three multi-view convolutions and one pointwise
convolution to reconstruct the 3D convolution.

Meanwhile, the Squeeze-and-Excitation (SE) block, proposed by Hu et al.
[11] in 2017, can be incorporated into existing state-of-the-art deep CNN
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architecture such as ResNet and DenseNet as a subunit structure, and it can
further improve the generalization ability of the original network by explicitly
modeling the interdependencies between channels and adaptively calibrating the
characteristic responses of channel correlation. In view of this, we incorporate
this block into our MVP U-Net after appropriate modification.

2 Methods

2.1 Preprocessing

The images are preprocessed according to the following three steps before fed
into the proposed MVP U-Net. First, each image is cropped to the region of
nonzero values, and, at the same time, the image is normalized to the [2.0,
98.0] percentiles of the intensity values of the entire image. Second, the brain
regions of images for each modality are normalized by Z-score normalization. The
region outsides the brain is set to 0. Third, batch generators (a python package
maintained by the Division of Medical Image Computing at the German Cancer
Research Center) are applied to do data augmentation, including random elastic
deformation, rotation, scaling, and mirroring [12].

2.2 Network Architecture

MVP Convolution Block. The architecture of the proposed MVP convolu-
tion is shown in Fig. 1(a), where we divide a 3D convolution into three orthogo-
nal views (axial, sagittal, coronal) in a parallel fashion, followed by a pointwise
convolution. The pointwise convolution is part of the Depthwise Separable Con-
volution network first proposed by Google [7], which consists of a depthwise
convolution and a pointwise convolution. Figure 1(b) shows the traditional 3D
convolution.

Figure 2 shows our MVP convolution block, which includes an activa-
tion function and an instance normalization, where our activation function is
LeakyReLU (leakiness = 0.01). At the same time, in order to solve the problem
of gradient disappearance caused by the increase of depth, we add the residual
structure on the basis of the original structure. MVP convolution block is the
main contribution of our proposed method. Each level of the network comprises
two MVP convolution blocks of different resolutions.

MVP U-Net Architecture. The proposed MVP U-Net follows the encoder-
decoder based 3D U-Net architecture. Instead of traditional 3D convolution [19],
we employ the multi-view convolution to learn spatial-temporal features and
the pointwise convolution to learn channel features. The multi-view convolution
performs 2D convolutions in three orthogonal views of the input data, i.e., axial,
sagittal, coronal. The pointwise convolution [10] is used to merge the antecedent
outputs. In this way, the generalization ability of the model can be improved
while the number of parameters can be reduced.



96 C. Zhao et al.

Fig. 1. Comparison of MVP convolution and 3D convolution.

The sketch map of the proposed network is shown in Fig. 3. Just like the origi-
nal 3D U-Net [8], our network consists of three parts: 1) the left part corresponds
to the contracting path that encodes the increasingly abstract representation of
the input. Different layers are connected through an encoder module which con-
sists of a 3×3×3 convolution with stride 2, padding 1 instead of max pooling; 2)
the right part corresponds to the expanding path that restores the original reso-
lution, and 3) the jump connection which corresponds to connecting the encoder
results to the output of submodules with the same resolution in the encoder as
input to the next submodule in the decoder.

MVP U-Net with the SE Block Architecture. SE block consists of three
operation modules: Squeeze, Exception, and Reweight. It is a new subunit struc-
ture which focuses on the characteristic channel. Among them, the Squeeze oper-
ation is to compress each feature channel in the spatial dimension and transform
each two-dimensional feature channel into a real number. The real number has
the global receptive field to some extent, and the output dimension matches
the number of input feature channels. The Exception operation is a mecha-
nism similar to the gate in recurrent neural networks. It can generate weights
for each feature channel, which is learned to explicitly model the correlation
between feature channels. The Reweight operation regards the output weight
of the exception operation as the importance of each feature channel and then
weights it to the previous feature channel by channel through multiplication.
After the above steps, the recalibration of the original features in the channel
dimension is completed.

However, it was originally proposed to improve the classification performance
of two-dimensional images. We modify it properly so that it can be used in the
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Fig. 2. The architecture of the proposed MVP convolution block.

Fig. 3. The architecture of the proposed MVP U-Net.
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classification of 3D feature map, and introduce it into our MVP U-Net after
the concatenation section, as is shown in Fig. 4. It gives different weights to the
features of different channels in the feature map after concatenation, in order to
enhance those related features and suppress those less related features.

Fig. 4. The architecture of the proposed MVP U-Net with SE block.

2.3 Loss

The performance of a neural network depends not only on the choice of the
network structure but also on the choice of the loss function, especially in the
case of class imbalance. It holds for the task of brain tumor segmentation, in
which the dataset varies in the size of classes [5,14]. In this paper, a hybrid
loss function is employed that combines a multiclass Dice loss, used for multi-
classification segmentation, and a focal loss aimed to alleviate class imbalance.
Our loss function can be expressed as follows,

L = LDice + Lfocal (1)

The Dice loss is defined as,

LDice =

(
1 − 2

K

∑
k∈K

∑
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i vk
i∑
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i +

∑
i vk

i

)
(2)

where u is the softmax of the output map, v is the one-hot encoding of the
corresponding ground truth label, i is the number of voxels of the output map
and the corresponding ground truth label, k represents the current class, and K
is the total number of classes.

The focal loss [16] is defined as,

Lfocal =
{−α(1 − y′)γ log y′ , y = 1

−(1 − α)y′γ log(1 − y′) , y = 0 (3)

where α and γ are constants. In our experiments, they are 0.25 and 2, respec-
tively. y is the voxel value of the output map, and correspondingly, y′ is the voxel
value of the ground truth label.
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2.4 Optimization

We use Adam optimizer to train our model [13]. The learning rate decreases as
the epoch increases, which can be expressed as

lr = lr0 ∗ (1 − i

Ni
)0.9 (4)

where i represents the current number of epochs, Ni is total number of epochs.
The initial learning rate lr0 is set as 10−4.

3 Experiments and Results

We use the data provided by Brain Tumor Segmentation (BraTS) Challenge
2020 to evaluate the proposed network. The training dataset consists of 369
cases with accompanying ground truth labels by expert board-certified neurora-
diologists. Our model is trained on one GeForce GTX 1080Ti GPU in a Pytorch
environment. The batch size is 1 and the patch size is set to 160 × 192 × 160.
We concatenate four modalities into a four-channel feature map as input where
each channel represents one modality. The results of our MVP U-Net on the
BraTS 2020 training dataset are shown in Table 1, and the BraTS 2020 Training
013 case in training dataset with groundtruth and predicted labels are shown in
Fig. 5.

Table 1. Mean Dice, Hausdorff95, Sensitivity and Specificity on BraTS 2020 training
dataset of the proposed method: original MVP U-Net. ET: enhancing tumor, WT:
whole tumor, TC: tumor core.

Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Original MVP U-Net 0.600 0.799 0.635 0.676 0.909 0.716 0.999 0.997 0.999 56.655 29.831 26.878

The validation dataset and testing dataset contain 125 and 166 cases with
unknown glioma grade and unknown segmentation, respectively. Ground truth
segmentations for them are unknown and the evaluation is carried out via an
online CBICA portal for the BraTS 2020 challenge. The models we have trained
on the training dataset, including the original 3D U-Net, the original MVP
U-Net, and MVP U-Net with SE block, are respectively used to predict the
validation dataset of BraTS 2020, and the quantitative evaluation is obtained as
shown in Table 2. As can be seen from the results, compared with the original
3D U-Net, the original MVP U-Net and the MVP U-Net with SE block has
improved performance in most metrics. Meanwhile, the segmentation effect of
the MVP U-Net with SE block is better than the original MVP U-Net.
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Fig. 5. The BraTS 2020 Training 013 case of training dataset with groundtruth and
predicted labels (yelow:NCR/NET, green:ED, red:ET). (Color figure online)

Table 2. Mean Dice, Hausdorff95, Sensitivity and Specificity on BraTS 2020 validation
dataset of the proposed methods: original MVP U-Net and MVP U-Net with SE block.
ET: enhancing tumor, WT: whole tumor, TC: tumor core.

Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Original 3D U-Net 0.585 0.762 0.604 0.686 0.868 0.742 0.999 0.997 0.998 78.429 43.598 44.543

Original MVP U-Net 0.601 0.785 0.639 0.659 0.901 0.715 0.993 0.970 0.997 56.653 29.837 26.870

MVP U-Net with the SE block 0.671 0.862 0.623 0.675 0.885 0.634 1.000 0.998 0.999 47.333 12.581 50.149

Finally, we used the MVP U-Net with the SE block to predict the testing
dataset, and the results are shown in Table 3. Our method achieves average Dice
scores of 0.715, 0.839, and 0.768 for enhancing tumor, whole tumor, and tumor
core, respectively. The results are similar to those in the validation dataset, indi-
cating that the model we designed has achieved desirable results in the automatic
segmentation of multimodal brain tumors and the generalization ability of this
model is also relatively powerful.
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Table 3. Dice, Hausdorff95, Sensitivity and Specificity on BraTS 2020 testing dataset
of the proposed method: MVP U-Net with SE block. ET: enhancing tumor, WT: whole
tumor, TC: tumor core.

Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.715 0.839 0.768 0.756 0.912 0.800 0.999 0.998 0.999 33.147 10.362 33.577

StdDev 0.272 0.160 0.292 0.301 0.141 0.318 0.002 0.003 0.003 96.501 16.592 92.627

Median 0.818 0.893 0.892 0.903 0.961 0.962 1.000 0.998 1.000 2.000 4.243 3.317

25quantile 0.654 0.835 0.742 0.665 0.900 0.816 0.999 0.997 0.999 1.414 2.871 2.000

75quantile 0.895 0.927 0.940 0.957 0.985 0.988 1.000 0.999 1.000 4.472 7.729 9.312

4 Conclusion

In this paper, we propose a novel CNN-based neural network called Multi-View
Pointwise (MVP) U-Net for brain tumor segmentation from multi-model 3D
MRI. We use three multi-view convolutions and one pointwise convolution to
reconstruct the 3D convolution in conventional 3D U-Net, in which the purpose
of multi-view convolution is to learn spatial-temporal features while pointwise
convolution to learn channel features. In this way, the proposed architecture can
not only improve the generalization ability of the network but also reduce the
number of parameters. Further, we modify the SE block properly and introduce
it into our original MVP U-Net after the concatenation section. Experiments
showed that the performance of this method was improved compared with the
original MVP U-Net.

During the experiment, we tried a variety of approaches. We found that the
model performance could be improved by changing the encoders of the U-shaped
network from max pooling to 3D convolution, and the results could also be
improved by increasing the number of channels. Finally, the trained MVP U-Net
with SE block was used to predict the testing dataset, and achieved mean Dice
scores of 0.715, 0.839, and 0.768 for enhancing tumor, whole tumor, and tumor
core, respectively. The results showed the effectiveness of the proposed MVP
U-Net with the SE block for multi-modal brain tumor segmentation.

In the future, we will make further efforts in data preprocess and network
architecture design to alleviate the imbalance of tumor categories and improve
the accuracy of tumor segmentation.
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