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Abstract. The brain tumor segmentation task aims to classify tissue
into the whole tumor (WT), tumor core (TC) and enhancing tumor (ET)
classes using multimodel MRI images. Quantitative analysis of brain
tumors is critical for clinical decision making. While manual segmenta-
tion is tedious, time-consuming, and subjective, this task is at the same
time very challenging to automatic segmentation methods. Thanks to the
powerful learning ability, convolutional neural networks (CNNs), mainly
fully convolutional networks, have shown promising brain tumor segmen-
tation. This paper further boosts the performance of brain tumor seg-
mentation by proposing hyperdense inception 3D UNet (HI-Net), which
captures multi-scale information by stacking factorization of 3D weighted
convolutional layers in the residual inception block. We use hyper dense
connections among factorized convolutional layers to extract more con-
texual information, with the help of features reusability. We use a dice
loss function to cope with class imbalances. We validate the proposed
architecture on the multi-modal brain tumor segmentation challenges
(BRATS) 2020 testing dataset. Preliminary results on the BRATS 2020
testing set show that achieved by our proposed approach, the dice (DSC)
scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respec-
tively.

Keywords: Brain tumor · 3D UNet · Dense connections · Factorized
convolutional · Deep learning

1 Introduction

Primary and secondary are two types of brain tumors. Primary brain tumors
originate from brain cells, whereas secondary tumors metastasize into the brain
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from other organs. Gliomas are primary brain tumors. Gliomas can be further
sub-divided into two parts: low-grade (LGG) and high-grade (HGG). High-grade
gliomas are an aggressive type of malignant brain tumor that proliferates, usually
requires surgery and radiotherapy, and has a poor survival prognosis. Magnetic
resonance imaging (MRI) is a critical diagnostic tool for brain tumor analy-
sis, monitoring, and surgery planning. Usually, several complimentary 3D MRI
modalities - such as T1, T1 with contrast agent (T1c), T2, and fluid attenuation
inversion recover (FLAIR) are required to emphasize different tissue properties
and areas of tumor spread. For example, the contrast agent, usually gadolinium,
emphasizes hyperactive tumor subregions in T1c MRI modality.

Deep learning techniques, especially CNNs, are prevalent for the automatic
segmentation of brain tumors. CNN can learn from examples and demonstrate
state-of-the-art segmentation accuracy both in 2D natural images and in 3D
medical image modalities. The information of segmentation provides an accu-
rate, reproducible solution for further tumor analysis and monitoring. Multi-
modal brain tumor segmentation challenge (BRATS) aims to evaluate state-of-
the-art methods for the segmentation of brain tumors by providing a 3D MRI
dataset with ground truth labels annotated by physicians [1–4,14]. A 3D UNet
is a popular CNN architecture for automatic brain tumor segmentation [8]. The
multi-scale contextual information of the encoder-decoder sub-networks is effec-
tive for the accurate brain tumor segmentation task. Several variations of the
encoder-decoder architectures were proposed for MICCAI BraTS 2018 and 2019
competitions. The potential of several deep architectures [12,13,17] and their
ensembling procedures for brain tumor segmentation was discussed by a top-
performing method [11] for MICCAI BRATS 2017 competition. Wang et al. [18]
proposed architectures with factorized weighted layers to save the GPU memory
and the computational time. At the same time, the majority of these architec-
tures used either the bigger input sizes [16] or cascaded training [10] or novel
pre-processing [7] and post-processing strategies [9] to improve the segmentation
accuracy. In contrast, few architectures demonstrate the important memory con-
sumption of 3D convolutional layers. Chen et al. [5] used an important concept
in which each weighted layer was split into three branches in a parallel fashion,
each with a different orthogonal view, namely axial, sagittal, and coronal. How-
ever, more complex combinations exist between features within and in-between
different orthogonal views, which can significantly increase the learning repre-
sentation [6]. Inspired by the S3D UNet architecture [5,19], we propose a variant
encoder-decoder based architecture for the brain tumor segmentation. The key
contributions of our study are as follows:

– A novel hyperdense inception 3D UNet (HI-Net) architecture is proposed
by stacking factorization of 3D weighted convolutional layers in the residual
inception block.

– In each residual inception block, hyper-dense connections are used in-between
different orthogonal views to learn more complex feature representation.

– Our network achieves state-of-the-art performance as compared to other
recent methods.
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2 Proposed Method

Figure 1 shows the proposed HI-Net architecture for brain tumor segmentation.
The network’s left side works as an encoder to extract the features of different
levels, and the right component of the network acts as a decoder to aggregate the
features and the segmentation mask. The modified residual inception blocks of
the encoder-decoder sub-networks have two 3D convolutional layers, and each
layer has followed the structure of Fig. 2(b). In contrast, traditional residual
inception blocks are shown in Fig. 2(a). This study employed inter-connections of
dense connections within and in-between different orthogonal views to learn more
complex feature representation. In the stage of encoding, the encoder extracts
feature at multiple scales and create fine-to-coarse feature maps. Fine feature
maps contain low-level features but more spatial information, while coarse fea-
ture maps provide the opposite. Skip connection is used to combine coarse and
fine feature maps for accurate segmentation. Unlike standard residual UNet, the
encoder sub-network uses a self-repetition procedure on multiple levels to gener-
ate semantic maps for fine feature maps and thus select relevant regions in the
fine feature maps to concatenate with the coarse feature maps.

Fig. 1. Proposed HI-Net architecture. The element-wise addition operations (+ symbol
with the oval shape) are employed to design the proposed architecture. The modified
residual inception blocks (violet), known as hyperdense residual inception blocks, are
used in the encoder-decoder paths. The length of the encoder path is longer than the
decoder part by performing repetitions on several levels. The maximum repetition is 4
on the last level of the encoder part to draw the semantic information from the lowest
input resolution. Finally, the softmax activation is performed for the outcomes. (Color
figure online)

3 Implementation Details

3.1 Dataset

The BRATS 2020 [1–4,14] training dataset included 369 cases (293 HGG and
76 LGG), each with four rigidly aligned 3D MRI modalities (T1, T1c, T2, and
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FLAIR), resampled to 1×1×1 mm isotropic resolution and skull-stripped. The
input image size is 240×240×155. The data were collected from 19 institutions,
using various MRI scanners. Annotations include 3 tumor subregions: WT, TC,
and ET. Two additional datasets without the ground truth labels are provided
for validation and testing. These datasets required participants to upload the
segmentation masks to the organizers’ server for evaluations. In validation (125
cases) and testing (166) datasets, each subject includes the same four modalities
of brain MRI scans but no ground truth. In our experiment, the training set is
applied to optimize the trainable parameters in the network. The validation and
testing sets are utilized to evaluate the performance of the trained network.

3.2 Experiments

The network is implemented by Keras and trained on Tesla V100–SXM2 32 GB
GPU card with a batch size of 1. Adam optimizer with an initial learning rate
3 × 10−5 is employed to optimize the parameters. The learning rate is reduced
by 0.5 per 30 epochs. The network is trained for 350 epochs. During network
training, augmentation techniques such as random rotations and mirroring are
employed. The size of the input during the training of the network is 128 ×
128 × 128. The multi-label dice loss function [15] addressed the class imbalance
problem. Equation 1 shows the mathematical representation of loss function.

Loss = − 2
D

∑

d∈D

∑
j P(j,d)T(j,d) + r

∑
j P(j,d) +

∑
j T(j,d) + r

(1)

where P(j,d) and T(j,d) are the prediction obtained by softmax activation and
ground truth at voxel j for class d, respectively. D is the total number of classes.

Table 1. BRATS 2020 training, validation and testing results. Mean average scores on
different metrics.

Dataset Metrics WT TC ET

BRATS 2020 training DSC 92.967 90.963 80.009

Sensitivity 93.004 91.282 80.751

Specificity 99.932 99.960 99.977

BRATS 2020 validation DSC 90.673 84.293 74.191

Sensitivity 90.485 80.572 73.516

Specificity 99.929 99.974 99.977

BRATS 2020 testing DSC 87.494 83.712 79.457

Sensitivity 91.628 85.257 82.409

Specificity 99.883 99.962 99.965
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Fig. 2. Difference between baseline and modified residual inception blocks. (a) repre-
sent a baseline residual inception block with a separable 3D convolutional layer, while
the proposed block with inter-connected dense connections is shown in (b).

Fig. 3. Segmentation results on the training dataset of the BRATS 2020. From left to
right: Ground-truth and predicted results on FLAIR modality; WT (brown), TC (red)
and ET (blue). (Color figure online)
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Table 2. Performance evaluation of different methods on the BRATS 2020 validation
dataset. For comparison, only DSC scores are shown. All scores are evaluated online.

Methods ET WT TC

Baseline work 70.616 90.670 82.136

Proposed work 74.191 90.673 84.293

3.3 Evaluation Metrics

Multiple criteria are computed as performance metrics to quantify the segmen-
tation result. Dice coefficient (DSC) is the most frequently used metric for eval-
uating medical image segmentation. It measures the overlap between the seg-
mentation and ground truth with a value between 0 and 1. The higher the Dice
score, the better the segmentation performance. Sensitivity and specificity are
also commonly used statistical measures. The sensitivity called true positive rate
is defined as the proportion of positives that are correctly predicted. It measures
the portion of tumor regions in the ground truth that is also predicted as tumor
regions by the segmentation method. The specificity, called true negative rate,
is defined as the proportion of correctly predicted negatives. It measures the
portion of normal tissue regions in the ground truth that is also predicted as
normal tissue regions by the segmentation method.

3.4 Results

The performance of our proposed architecture is evaluated on training, vali-
dation, and the testing sets provided by BRATS 2020. Table 1 presents the
quantitative analysis of the proposed work. We have secured mean DSC scores
of ET, WT, and TC as 0.74191, 0.90673, and 0.84293, respectively, on the vali-
dation dataset, while 0.80009, 0.92967, and 0.90963 on the training dataset. At
the same time, our proposed approach obtained mean DSC scores of ET, WT,
and TC as 0.79457, 0.87494, and 0.83712, respectively, on the testing dataset.
In Table 1, sensitivity and specificity are also presented on training, validation,
and the testing datasets. Table 2 shows the comparable study of proposed work
with the baseline work [5]. Our proposed HI-Net achieves higher scores for each
tumor than the baseline work. Furthermore, ablation studies are conducted to
assess the modified residual inception blocks’ influence with and without the
inter-connected dense connections. The influence of these connections on DSCs
of ET, WT, and TC is shown in Table 2. To provide qualitative results of our
method, three-segmented images from training data are shown in Fig 3. In sum-
mary, modified inception blocks significantly improve the DSCs of ET, WT, and
TC against the baseline inception blocks.

4 Conclusion

We proposed a HI-Net architecture for brain tumor segmentation. Each 3D con-
volution is splitted into three parallel branches in the residual inception block,
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each with different orthogonal views, namely axial, sagittal and coronal. We
also proposed hyperdense connections among factorized convolutional layers to
extract more contextual information. The HI-Net architecture secures high DSC
scores for all types of tumors. This network has been evaluated on the BRATS
2020 Challenge testing dataset and achieved average DSC scores of 0.79457,
0.87494, and 0.83712 for the segmentation of ET, WT, and TC, respectively.
Compared with the performance of the validation dataset, the scores on the
testing set are higher. In the future, we will work to enhance the robustness
of the network to improve the segmentation performance by using some post-
processing methods such as a fully connected conditional random field (CRF).
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