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Abstract. Gliomas are the most common and severe malignant tumors of the
brain. The diagnosis and grading of gliomas are typically based on MRI images
and pathology images. To improve the diagnosis accuracy and efficiency,we intend
to design a framework for computer-aided diagnosis combining the twomodalities.
Without loss of generality, we first take an individual network for each modality
to get the features and fuse them to predict the subtype of gliomas. For MRI
images, we directly take a 3D-CNN to extract features, supervised by a cross-
entropy loss function. There are too many normal regions in abnormal whole slide
pathology images (WSI), which affect the training of pathology features. We call
these normal regions as noise regions andpropose two ideas to reduce them.Firstly,
we introduce a nucleus segmentation model trained on some public datasets. The
regions that has a small number of nuclei are excluded in the subsequent training
of tumor classification. Secondly, we take a noise-rank module to further suppress
the noise regions. After the noise reduction,we train a gliomas classificationmodel
based on the rest regions and obtain the features of pathology images. Finally, we
fuse the features of the two modalities by a linear weighted module. We evaluate
the proposed framework on CPM-RadPath2020 and achieve the first rank on the
validation set.
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1 Introduction

Gliomas are the most common primary intracranial tumors, accounting for 40% to 50%
of all cranial tumors. Although there are many systems for gliomas grading, the most
common one is the World Health Organization (WHO) grading system, which classifies
gliomas into grade 1 (least malignant and best prognosis) to grade 4 (most malignant and
worst prognosis). According to the pathological malignancy of the tumor cells, brain
gliomas are also classified into low-grade gliomas (WHO grade 1 to 2) and high-grade
gliomas (WHO grade 3 to 4).

Magnetic resonance imaging (MRI) is the common examination method for glioma.
In MRI images, different grades of gliomas show different manifestations: low-grade

© Springer Nature Switzerland AG 2021
A. Crimi and S. Bakas (Eds.): BrainLes 2020, LNCS 12659, pp. 465–474, 2021.
https://doi.org/10.1007/978-3-030-72087-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72087-2_41&domain=pdf
https://doi.org/10.1007/978-3-030-72087-2_41


466 B. Yin et al.

gliomas tend to show T1 low signal, T2 high-signal. They are mainly located in the
white matter of the brain and usually have a clear boundary with the surrounding tissue.
However, high-grade gliomas usually show heterogeneous signal enhancement, and the
boundary between tumor and surrounding brain tissue is fuzzy. Asmentioned in previous
works [4, 5], MRI is mainly used to identify low-grade gliomas and high-grade gliomas,
while it alone cannot accurately identify astrocytoma (grade II or III), oligodendroglioma
(grade II or III), and glioblastoma (grade IV).

The current standard diagnosis and grading of brain tumors are done by pathologists
according to Hematoxylin and Eosin (H&E) staining tissue sections fixed on glass slides
under an optical microscope after resection or biopsy. Different subtypes of stained
cells often have unique characteristics that pathologists use to classify glioma subtypes.
However, somegliomaswith amixture of features fromdifferent subtypes are difficult for
pathologists to distinguish accurately. In addition, the entire process is time-consuming
and is prone to sampling errors. The previous studies [6–8, 10] have shown that CNN
can be helpful for improving the accuracy and efficiency of pathologists. The whole
slide pathological image is too large for end-to-end training, hence, typical solutions
are patch-based, in which they assign the whole image label directly to the randomly
sampled patches. This process introduces quite a lot of noisy samples inevitably and
affects the network training.

In this paper, we intend to reduce the noise samples in the training stage. Main
contributions of this paper can be highlighted as follows:

(1) A nucleus segmentation model is adopted to filter patches with a small number of
nuclei.

(2) We stack the nucleus segmentation mask with the original image as the input to
increase the attention on the nucleus.

(3) The noise-rank module in study [9] is used to further suppress noise samples. In
addition to CNN features, we also introduce the LBP feature as complementary.

2 Related Work

The goal of CPM-RadPath is to assess automated brain tumor classification algorithms
developed on both radiology and histopathology images. Pei et al. [11] proposed to
use the tumor segmentation results for glioma classification, and experimental results
demonstrated the effectiveness. However, the pathological images were not employed in
their work. Weng et al. [12] used the pre-trained VGG16 models to extract pathological
features and a pyradiomics module [13] to extract radiological features, which were
not updated by the CPM-RadPath data. Yang et al. [14] introduced a dual path resid-
ual convolutional neural network model and trained it by MRI and pathology images
simultaneously. This work did not impose any constraints in the patch sampling pro-
cess from the whole slide images, which could introduce noisy patches during training
inevitably. [15] won the first-place in CPM-RadPath 2019, which set several constraints
to prevent sampling in the background. Unfortunately, not all the patches sampled in
the foreground contained diseased cells. These noisy patches have no discriminative
features and will affect the training. In order to remove the noisy patches as much as
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possible, and dig more informative patches, we propose a delicate filtering strategy and
a noise-rank module in this work.

3 Dataset and Method

In this section, we describe the dataset and our solution including preprocessing and
networks.

3.1 Dataset

The training dataset of CPM-RadPath-2020 [1] consists of 221 paired radiology scans
and histopathology images. The pathology data are in.tiff format, and there are four
types of MRI data: Flair, T1, T1Ce, and T2. The corresponding pathology and radiology
examples are shown in Fig. 1.

Fig. 1. Visualization of pathology and MRI images.

The patients’ age information was also provided in the dataset. The age distribution
of different subtypes was shown in Fig. 2. Low-grade astrocytoma and glioblastoma
have different age distributions. Low-grade astrocytoma is predominantly in the lower
age groups, while glioblastoma is predominantly in the higher age groups.

CPM-RadPath2020 aims to distinguish between three subtypes of brain tumors,
namely astrocytoma (Grade II or III), oligodendroglioma (Grade II or III) and glioblas-
toma (Grade IV). The number of each subtype in the training data is shown in
Table 1.

Except for the CPM-RadPath2020 dataset, two public datasets are also utilized:
the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS-2019) [2] and
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Fig. 2. Age distribution of different subtypes

Table 1. Data distribution of different subtypes in the training set

Subtype A O G Total

Nums 54 34 133 221

A = astrocytoma (Grade II or III)
O = oligodendroglioma (Grade II or III)
G = glioblastoma (Grade IV)

MoNuSAC [3]. The BraTS-2019 dataset is used to train a tumor segmentation model of
MRI images and MoNuSAC dataset is used to train a nucleus segmentation model of
pathology images.

3.2 Preprocessing

Pathology. Due to limited computational resources, it is not feasible to process the
whole image directly, so we performed patch extraction on the whole slide image. In
each WSI, only a few cells were stained, most of the regions were white background,
we need to find an efficient way to extract valid information from WSI. In this paper,
the WSI was first down-sampled to generate a thumbnail, and then these thumbnails
were binarized to distinguish between foreground and background. We only sampled
patches for training from the foreground. In addition, some of the data also had staining
anomalies, we refer to the work [15] to constrain the extracted patch.

The above operations can filter out most of the background patches, but there are still
some patches with less information or abnormal staining (e.g. Fig. 3c or d). Therefore,
the nucleus segmentation model was added to suppress the noise patches by counting
the proportion of nuclei in the patch. Figure 3 lists four different types of patch data.

The size of WSI in the training set has a wide range, which means the number of
the extracted patches also differs from each WSI. To balance the training patches from
different WSIs, we set a maximum number of extracted patches from one WSI as 2000.
The extracted patch was assigned the same label as the corresponding WSI, as most
studies [5] do. This process is unavoidable to bring in some noisy patches, which may
affect the model training. We provide some solutions detailed in the next section.
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Fig. 3. Visualization of the extracted patches from pathological whole slide images

Due to differences in the staining process of the slices, WSIs have a big variance in
color. The general practice is color normalization [17]. For the sake of simplicity, this
paper adopted the same strategy as study [15] to directly convert RGB images into gray
images.

The whole pipeline of the preprocessing step is shown in Fig. 4.

Fig. 4. Preprocessing of the pathological image

The pre-processing failed for one WSI (CPM19_TCIA06_184_1.tiff), depicted in
Fig. 5. We could not sample any valid patches from it. Hence, this WSI was discarded
during the training.

Radiology. For each patient, there are four types of MRI images, with a size of 240 *
240 * 155. We first used BraTS2019 dataset to train a segmentation model of the tumors
and then extracted the tumor regions according to the segmentation mask. The extracted
regions were resized to a fixed size of 160 * 160 * 160. The extracted regions from
different MRIs of the same patient were concatenated forming a 4D data, with a size of
4 * 160 * 160 * 160. Z-score normalization was performed for a fast convergence.
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Fig. 5. Thumbnail of the discarded WSI (CPM19_TCIA06_184_1.tiff)

3.3 Classification Based on MRI Images and Noise Reduced Pathology Images

The pipeline of the proposed framework is shown in the Fig. 6, including a pathological
classification network, a radiological classification network and a features fusionmodule.
Next, we will detail each module.

Fig. 6. Pipeline of the proposed framework. The black dotted lines indicate that these processes
are only used in the training phase. (Color figure online)

Pathological Classification Network. The nucleus segmentation Model was trained
on the MoNuSAC dataset. After the training, we used it to filter the patches whose total
area of nuclei was less than 7% of the patch size. The rest patches were transformed
into gray images and resized to 256 * 256. To force the classification model to focus
on the nuclei, we stitched the original gray image with the nucleus segmentation mask.
The final input size of the classification model was 2 * 256 * 256. We adopted a unified
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Densenet network structure [16] for feature extraction, and set the numbers of dense
blocks in different stages as 4, 8, 12, 24.

Directly assigning the whole image label to the patches inevitably introduced noisy
samples, so we took a noise-rank [9] module to filter out those samples with high noise
probability. In the noise-rank module, we first used K-means to cluster in the feature
space for each subtype. Besides the CNN features, we also utilized LBP features [18] for
the clustering, which is visually discriminative and a complementary to CNN features.
The center of each cluster was regarded as a prototype, with an original label of its
corresponding subtype.We can also obtain a predicted label by KNN for each prototype.
Based on the original and predicted label of these prototypes, the posterior probability
that indicates the label noise for all the samples was estimated. We then ranked all the
samples according to the probability and dropped the top 20% samples in the training
of classification model. The detail of noise-rank could be found in the study [9]. The
noise-rank module and the classification model were trained alternatively.

The loss function was cross entropy. To avoid overfitting, the same augmentation
methods as the study [19] were used, including Random-Brightness, Random-Contrast,
Random-Saturation, Random-Hue, Flip and Rotation.

Radiological Classification Network. We extracted regions of interest (ROI) by a
lesion segmentation model pre-trained on BraTS2019 [2] as the input to the classifi-
cation network. The backbone of the network was a 3D-Densenet [16]. The numbers
of dense blocks in different stages were 4, 8, 12. The loss function was cross entropy.
Dropout and augmentation were also used to avoid over-fitting.

Features Fusion. After the training of the above two classificationmodels, we extracted
the features from the two models. To keep the same feature length of different patholog-
ical images, we only selected a fixed number of patches to represent the whole patholog-
ical image. Then we predicted a weight for each modality to fuse the two features. The
fused features were sent to a multi-layer perception (MLP) for glioma classification.

4 Experiments

4.1 Implementation Details

The tumor segmentation model of radiology images was trained on TensorFlow [20] and
all the other models were based on MXNet [21]. Parameters were optimized by SGD
[22], and the weight decay and momentum were set to 1e−4 and 0.95 respectively. All
of our models were trained for 200 epochs on a TeslaV100 GPU. The learning rate was
initially set to 0.001 and was divided by 10 at 50% and 75% of the total training epochs.
The Noise-Rank module was updated every 20 epochs during the training.

4.2 Results and Discussion

In this section, we will present our experimental results on CPM-RadPath-2020. Since
the number of training data is small, we perform 3-forder cross validation on the training
data for all the experiments.
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Figure 2 shows that low-grade astrocytoma and glioblastoma have different age
distributions. We tried to combine the age information with the CNN features after
global average pooling. However, the results did not show any improvement brought by
the age information. So we discarded the age information in the subsequent experiments.

We first show the classification results based on only pathology images in Table 2.
The baseline model was trained on original gray image patches directly with a lot of
noisy samples. When we filtered out some noisy patches with a small number of nuclei
and concatenated the nuclei segmentation mask with the original gray image patches, all
the indexes got a significant increase. And noise-rank module brought a further increase.
These results demonstrated the effectiveness of the proposed noise reduction algorithm.

Table 2. Classification results based on pathology images.

Model Data Balanced-ACC F1-micro Kappa

Baseline Cross validation 0.814 0.887 0.794

+ nuclei segmentation Cross validation 0.853 0.894 0.812

+ noise-rank Cross validation 0.877 0.917 0.852

The results of radiology imageswere quite lower than the pathology images, as shown
in Table 3. We figure out that the reason is that MRI images have poor discriminative
capacity between astrocytoma and oligodendroglioma. When fusing the features of the
two modalities by the proposed linear weighted module, the F1-micro was increased
from 91.7% to 93.2 on the cross-validation dataset. The results indicated that MRI
images could provide some complementary features to pathology images, despite the
big performance difference.

Table 3. Classification results on cross validation.

Model Data Balanced-ACC F1-micro Kappa

Pathology only Cross validation 0.877 0.917 0.852

Radiology only Cross validation 0.722 0.818 0.683

Fusion Cross validation 0.886 0.932 0.878

Table 4 presents the results on the online validation set. Since the online validation
sets are the same as the last year, we compared our results with the first-place methods
[15] in CPM-RadPath-2019. We achieved higher performances on both pathology only
and radiology only settings. The results further demonstrated the effectiveness of the
proposed noise reduction in pathology images. The ROI extraction step in MRI images
couldmake themodel focus on tumor regions, so it brought improvements.We evaluated
our solution on the validation set of CPM-RadPath-2020. The final F1-micro reached
0.971 and ranked 1st among 61 teams.
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Table 4. Results on CPM-RadPath-2020

Model Data Balanced-ACC F1-micro Kappa

Pathology only [15] Online validation set 0.833 0.914 0.866

MRI only [15] Online validation set 0.711 0.829 0.748

Pathology only [ours] Online validation set 0.889 0.943 0.903

MRI only [ours] Online validation set 0.820 0.857 0.767

Ensemble [ours] Online validation set 0.944 0.971 0.952

5 Conclusion

In this paper, we proposed a framework combiningMRI Images and pathology Images to
identify different subtypes of glioma. To reduce the noisy samples in pathology images,
we leverage a nucleus segmentation model and a noise-rank module. With the help of
noise reduction, we obtain amore precise classificationmodel. Fusing the twomodalities
on feature space provides a more complete representation. Our results ranked in the
first place on the validation set, which demonstrates the effectiveness of the proposed
framework.
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