
Automatic Glioma Grading Based on
Two-Stage Networks by Integrating

Pathology and MRI Images

Xiyue Wang1, Sen Yang2(B), and Xiyi Wu3

1 College of Computer Science, Sichuan University, Chengdu 610065, China
2 College of Biomedical Engineering, Sichuan University, Chengdu 610065, China

3 Shanghai Jiao Tong University, Shanghai 200240, China

Abstract. Glioma with a high incidence is one of the most common
brain cancers. In the clinic, pathologist diagnoses the types of the glioma
by observing the whole-slide images (WSIs) with different magnifica-
tions, which is time-consuming, laborious, and experience-dependent.
The automatic grading of the glioma based on WSIs can provide aided
diagnosis for clinicians. This paper proposes two fully convolutional net-
works, which are respectively used for WSIs and MRI images to achieve
the automatic glioma grading (astrocytoma (lower-grade A), oligoden-
droglioma (middle-grade O), and glioblastoma (higher-grade G)). The
final classification result is the probability average of the two networks.
In the clinic and also in our multi-modalities image representation, grade
A and O are difficult to distinguish. This work proposes a two-stage train-
ing strategy to exclude the distraction of the grade G and focuses on the
classification of grade A and O. The experimental result shows that the
proposed model achieves high glioma classification performance with the
balanced accuracy of 0.889, Cohen’s Kappa of 0.903, and F1-score of
0.943 tested on the validation set.
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1 Introduction

Glioma is one common brain tumor, which occupies approximately 80% of malig-
nant brain tumors [8]. According to its severity degree evaluated on the pathol-
ogy images, world health organization (WHO) categorizes glioma as three grades:
astrocytoma (lower grade), oligodendroglioma (middle grade), and glioblastoma
(higher grade). The lower grade has more optimistic and more survival years.
However, the higher grades with worse prognosis are usually life-threatening. In
the clinic, the glioma is diagnosed depending on the histopathology technique on
the microscopic examination environment. The accurate diagnosis of lesions for
pathologists is very time-consuming, laborious, and expertise-dependent. The
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computer-aided diagnosis is highly required to alleviate the difficulties of the
pathologists.

The emergence of whole-slide images (WSIs) technology has realized the
transformation from a microscopic perspective to a computer perspective and
promoted the application of image processing technology to digital pathology.
The digital pathology image analysis can help pathologists diagnose and provide
quantitative information calculated from the WSIs, achieving the objectivity and
reproducibility in the clinical diagnosis.

Magnetic resonance image (MRI) as a non-invasive imaging technique has
been routinely used in the diagnosis of brain tumors. Multi-modalities with dif-
ferent brain tissue enhancement can be selected to make a clinical decision.
Multi-modalities fusion technology can capture more abundant feature informa-
tion to perform more precise tumor classification. MRI with the advantage of
safety and non-invasion has been used to classify glioma [5,6,16,18]. However,
pathological information acquired by invasive methods is adopted as the gold
standard in the current clinical environment. The integration of the two types
of images could achieve higher glioma grading performance.

The CPM-RadPath 2020 MICCAI challenge releases a multi-modalities
dataset which contains paired MRI scans and histopathology images of brain
gliomas collected from the same patients. Their glioma classification annota-
tions (astrocytoma, oligodendroglioma, and glioblastoma) have been provided
for the training set. Based on this dataset, this work trains one 3D Densenet for
MRI images classification and 2D fully constitutional networks (EfficientNet-
B2, EfficientNet-B3, and SE-ResNext101) for pathology classification. The final
glioma grading is determined by the average of the two types of models.

2 Related Work

In recent years, automatic glioma classification and grading have attracted
widespread attention using machine learning and deep learning techniques.

A majority of these methods adopt the MRI image as their experiment data
since MRI modality is a non-invasive and fast imaging technique and is routinely
used for glioma diagnosis in the clinic. These MRI-based glioma grading meth-
ods can be mainly divided into two categories: hand-crafted feature engineering
and deep learning-based feature representation. These hand-crafted features are
usually extracted based on the ROI (region of interest) region that is delineated
by experienced radiologists or some automatic image segmentation techniques.
These extracted features comprise histogram-based features [7], shape features
[19], texture features [13], contour feature[13], and wavelet features [15]. Based
on these features, some machine learning techniques including SVM (support
vector machines), RF (random forest), NN (neural network), and DT (decision
tree) are used to achieve the automatic glioma classification or grading. How-
ever, these traditional feature engineering techniques fail to generate a robust
and general feature parameter and are easily affected by the data variations
(MRI scanner, data collection protocol, and image noises), which limits their
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promise for clinical application. Deep learning has the ability to learn high-level
feature representation from the raw data through the network training proce-
dure. Due to the 3D nature of MRI images, 2D and 3D models are alternative.
These 3D models could contact the context information during each MRI scan,
such as the 3-D multiscale CNN model [7] and the 3D residual network [5]. It
is known that the 3D model extremely increases the number of parameters and
requires a large amount of computation resources to support network training.
These 2D models, such as the VGG model [1,4] and Residual Network (ResNet)
architecture [1,9], ignore the connection between MRI slices and treat each MRI
slice as an independent image to complete the classification task.

The previously mentioned MRI-based studies have achieved limited perfor-
mance since the gold standard for the glioma diagnosis is from the pathology
images. Thus, a combination of the MRI and pathology images may provide
complementary information and achieve finer classification results. The previous
CPM challenge has reported four solutions for the glioma grading by combin-
ing MRI and pathology images [10,12]. Pei et al. [12] used an Unet-like model
to segment ROI and a 3D CNN to classify the glioma types focusing on the
extracted course tumor region. Their experimental results reported that using
MRI sequences alone can realize better performance than using the pathol-
ogy alone or the combination of MRI and pathology images. Ma et al. [10]
applied a 2D ResNet-based model to classify glioma based on pathology and a
3D DenseNet-based model to classify glioma based on MRI images. Then, a sim-
ple regression model was used to achieve the ensemble of the two models. Chan
et al. [2] extracted features by using two CNN networks (VGG16 and ResNet
50) and then classified three types of brain tumors based on several clustering
methods (K-means and random forest). Xue et al. [17] trained a 2D ResNet18
and a 3D ResNet18 to classify three types of gliomas based on the pathology
and MRI images, respectively. The features in fully connected layers of the two
models were concatenated together as the input of the following softmax layer
to achieve the classification of brain tumors.

Our work is different from the above-mentioned methods. We apply a two-
stage classification algorithm to first detect the glioblastoma and then pay more
attention to the distinction between the astrocytoma and oligodendroglioma.
Sine the glioblastoma is defined as the Grade IV and astrocytoma and oligoden-
droglioma are both defined as the Grade II or III by WHO. Thus, astrocytoma
and oligodendroglioma can be more difficult to separate. Our two-stage train-
ing has the ability to improve classification performance for astrocytoma and
oligodendroglioma cases.

3 Method

This paper applies two fully convolutional networks to achieve a feature-
independent end-to-end glioma grading. In the following, we introduce the image
preprocessing and network framework in detail.



458 X. Wang et al.

3.1 Data Preprocessing

The data used in this paper includes paired pathology and multi-sequence MRI
(T2-FLAIR, T1, T1ce, and T2) images. Figure 1 and Fig. 2 illustrate the pathol-
ogy and corresponding four modalities MRI images in terms of three glioma
types (astrocytoma, glioblastoma, and oligodendroglioma).

Astrocytoma Glioblastoma Oligodendroglioma

Fig. 1. Visualization of astrocytoma (A), glioblastoma (G), and oligodendroglioma (O)
in pathology image

Astrocytoma Glioblastoma Oligodendroglioma

T2-FLAIR T1 T2-FLAIR T1 T2-FLAIR T1

T1ce T2 T1ce T2 T1ce T2

Fig. 2. Visualization of astrocytoma (A), glioblastoma (G), and oligodendroglioma (O)
in MRI image. For each MRI case, four modalities are included (T2-FLAIR, T1, T1ce,
and T2).

For the preprocessing procedure of the pathology images, the OTSU method
is firstly adopted to remove the non-tissue region [10]. The original WSIs with
large size (e.g., 50000 × 50000) can not be directly fed into the network as
the input, we apply a sliding window with no overlap to segment the WSI into
image patch with the size of 1024×1024 (Fig. 3). Not every path contains tumor
tissue, so we set some rules for each path to exclude these useless patches. First,
the mean value of the patch is limited from 100 to 200. Second, the standard
deviation of each patch is limited to greater than 20. Third, in the color space
HSV (hue, saturation, value), the mean of channel 0 is set as greater than 50.
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In the preprocessing procedure of MRI images, the four MRI modalities images
are all cropped to 128×192×192.

3.2 Model Details

Figure 4 illustrates the overall architecture of our proposed glioma grading sys-
tem which is composed of two types of networks: 2D CNN for pathology image
classification (Fig. 5) and 3D CNN for MRI image classification (Fig. 6). Each
type of network performs the two-stage classification. Since the astrocytoma and
oligodendroglioma appear as more similar, the first stage achieves the detection
of glioblastoma, after that, the second stage distinguishes the astrocytoma and
oligodendroglioma.

For the 2D pathology image classification network, the input image is a small
WSI patch that is segmented from a large WSI in the preprocessing proce-
dure. The backbone networks include EfficientNet-B2, EfficientNet-B3, and SE-
ResNext101. Before the fully connected layer, generalized-mean (GEM) pooling
is applied to the learned features, which is defined as

f (g) =
[
f (g)1 . . . f (g)k . . . f (g)K

]�
, f (g)k =

(
1

|Xk|
∑
x∈Xk

xpk

) 1
pk

(1)

where X and f represent the input and output, respectively. When pk equals to
∞ and 1, the equation denotes the max pooling and average pooling, respectively.
Following [14], this work set pk to 3.

After the GEM operation, the Meta info (age information) is added to the
final classification feature vector. Then, a classification and a regression branches
are appended as the cross-entropy (LBCE) and smooth L1 (L1) losses, respec-
tively, to achieve more robust brain tumor classification.

LBCE = −
∑
l

[(yl log ŷl) + (1 − yl) log (1 − ŷl)] (2)

Lloc =
∑
l

smoothL1 (ŷl − yl) (3)

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise (4)

where yl and ŷl denote the ground truth and predicted annotations.
For the 3D MRI image classification network, the input image is MRI images

with four channels, which correspond to the four modalities. The backbone
adopts 3D ResNet, following by global average pooling and fully connected
layer to grade the brain tumor. In the MRI-based classification process, the
loss function also adopts the cross-entropy. To minimize the loss function, Adam
optimization algorithm is used.

The ensemble of the 2D pathology and 3D MRI classification models is the
probability average of the two types of networks.
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Extract patches

Fig. 3. The preprocessing process for the pathology image

4 Results and Discussion

4.1 Data and Evaluation Metrics

Dataset. The CPM-RadPath 2020 MICCAI challenge provides paired radiol-
ogy scans and digitized histopathology images of brain gliomas, and image-level
ground truth label as well. The goal of CPM2020 is classifying each case into
three sub-types: Glioblastoma (grade IV), Oligodendroglioma (grade II or III),
and Astrocytoma (grade II or III).
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2D CNNPathology image

2D CNN

3D CNN

3D CNN

MRI image

Glioblastoma

No Glioblastoma

Astrocytoma

Oligodendroglioma

Glioblastoma

No Glioblastoma

Astrocytoma

Oligodendroglioma

Fig. 4. The overall architecture of our glioma grading system. A two-stage classification
strategy is applied to both the 2D pathology and 3D MRI images. The glioblastoma
with more serious anatomy representation is detected in the first step. Then, in the
second step, our algorithm focuses on the classification of astrocytoma and oligoden-
droglioma.

Backbone:
EfficientNet-B2
EfficientNet-B3
SE_resnext101

Loss function: 
cross entropy,smooth L1

Prediction Ground truth

Meta info

Reg

Cls

Gem

Fig. 5. The detailed 2D CNN network. The backbone includes EfficientNet-B2,
EfficientNet-B3, and SE-ResNext101. In the final feature representation, the Meta info
(age information) is included. A regression branch with a smooth L1 loss function is
added to relieve the overfitting. The classification branch with the cross-entropy loss
function is used to complete the classification procedure.

Fig. 6. The detailed 3D CNN network. The four MRI modalities are integrated as the
network input. All the images are cropped to a fixed size of 128×192×192. The back-
bone adopts the 3D ResNet, following by global average pooling and fully connected
layer to grade the brain tumor.
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Specifically, for each patient, the provided 3D MRI images comprise four
modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). All MRI images were
co-registered to the same anatomical template and interpolated to the same res-
olution (1 cubic mm) in three directions. Also, the contest provides one digitized
whole slide tissue image for each case, which were scanned at 20x or 40x mag-
nifications. The dataset is divided into 221, 35, 73 cases for training, validation,
and testing respectively.

Evaluation Metrics. The algorithmic performance is evaluated from three
aspects: F1-Score, Balanced Accuracy, and Cohen’s Kappa. Suppose TP, FP,
FN is the number of true positives, false positives, and false negatives respec-
tively. Then the three metrics can be computed as below.

Sensitivity =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1 Score =
2 ∗ (Precision ∗ Sensitivity)
(Precision + Sensitivity)

(7)

Balanced Accuracy =
K∑

Class=1

Sensitivity/K (8)

Kappa =
po − pe
1 − pe

(9)

where K is the number of classes, po is the relative observed agreement among
raters, and pe is the hypothetical probability of chance agreement, using the
observed data to calculate the probabilities of each observer randomly seeing each
category [3]. The aforementioned evaluation metrics are suitable for imbalanced
categories, avoiding depending on the proportion of each class.

4.2 Experiments and Discussion

In the training stage, we perform 5-fold cross validation for local validation.
Adam optimizer is used with an initial learning rate of 0.001 and decreases by
10 times every 50 epochs. All models are implemented based on the Pytorch
framework [11] and trained on a workstation with Intel(R) Xeon(R) CPU E5-
2680 v4 2.40 GHz processors and four NVIDIA Tesla P40s (24 GB) installed.

In the inference stage, the multimodal MRI images and the whole-slide
pathology images are pre-processed and sent to the classification network respec-
tively. The average predictions of the 5-fold models are employed to get more
accurate results. Then, we sum the probabilities of the two networks to obtain
the final ensemble prediction.
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As the online evaluation performances shown in Table 1, our proposed two-
stage coarse-to-fine classification framework contributes to gaining higher accu-
racy on all three evaluation metrics. What’s more, the classification model of
MRI and pathological images can complement each other to obtain more robust
and accurate results.

Table 1. Online results on CPM2020 validation data

Method Balanced acc Kappa F1 micro

ResNet50 only MRI (One stage) 0.700 0.665 0.800

ResNet50 only MRI (Two stage) 0.733 0.712 0.829

Efficientb2 only Pathology (One stage) 0.767 0.758 0.857

Efficientb2 only Pathology (Two stage) 0.822 0.808 0.886

Ensemble 0.889 0.903 0.943

5 Conclusion

This paper proposed a two-stage glioma grading algorithm to classify the brain
tumor into three types: astrocytoma, glioblastoma, and oligodendroglioma. The
classification algorithm is designed based on the feature representation difference
between the severe and lower glioma grades. The more serious glioblastoma grade
is separated out in the first stage, and the second stage eliminates the interference
of glioblastoma and only focuses on learning the difference between astrocytoma
and oligodendroglioma. Our two-stage strategy is applied on the classification
networks for the pathology (2D CNN) and MRI images (3D ResNet), respec-
tively. By testing on the validation data, we have achieved state-of-the-art per-
formance by the ensemble of the 2D pathology and 3D MRI images classification
networks. In the final submission of this challenge, we omit the 3D MRI image
classification network, since the diagnosis based on pathology is adopted as the
gold standard in the clinic. In this CPM-RadPath 2020 MICCAI challenge, the
number of training samples is limited, which can greatly influence the robustness
of designed network. In future work, small sample based deep learning could be
developed to build a more general model.
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