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Abstract. In this paper we described our approach for glioma segmen-
tation in multi-sequence magnetic resonance imaging (MRI) in the con-
text of the MICCAI 2020 Brain Tumor Segmentation Challenge (BraTS).
We proposed an architecture based on U-Net with a new computational
unit termed “SE Norm” that brought significant improvements in seg-
mentation quality. Our approach obtained competitive results on the val-
idation (Dice scores of 0.780, 0.911, 0.863) and test (Dice scores of 0.805,
0.887, 0.843) sets for the enhanced tumor, whole tumor and tumor core
sub-regions. The full implementation and trained models are available at
https://github.com/iantsen/brats.
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1 Introduction

Glioma is a group of malignancies that arises from the glial cells in the brain.
Nowadays, gliomas are the most common primary tumors of the central nervous
system [1,2]. The symptoms of patients presenting with a glioma depend on
the anatomical site of the glioma in the brain and can be too common (e.g.
headaches, nausea or vomiting, mood and personality alterations) to give an
accurate diagnosis in early stages of the disease. The primary diagnosis is usually
confirmed by magnetic resonance imaging (MRI) or computed tomography (CT)
that provide additional structural information about the tumor.

Gliomas usually consist of heterogeneous sub-regions (edema, enhancing and
non-enhancing tumor core, etc.) with variable histologic and genomic pheno-
types [1]. Presently, multimodal MRI scans are used for non-invasive tumor eval-
uation and treatment planning, due to its ability to depict the tumor sub-regions
with different intensities. However, segmentation of brain tumors in multimodal
MRI scans is one of the most challenging tasks in medical imaging because of
the high heterogenity in tumor appearances and shapes.

The brain tumor segmentation challenge (BraTS) [3–6] is aimed at devel-
opment of automatic methods for the brain tumor segmentation. All partici-
pants of the BraTS are provided with a clinically-acquired training dataset of
pre-operative MRI scans (4 sequences per patient) and segmentation masks for
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three different tumor sub-regions, namely the GD-enhancing tumor, the peritu-
moral edema, and and the necrotic and non-enhancing tumor core. The MRI
scans were acquired with different clinical protocols and various scanners from
multiple 19 institutions. Each scan was annotated manually by one to four raters
and subsequently approved by expert raters.

The performance of proposed algorithms was evaluated by the Dice score,
sensitivity, specificity and the 95th percentile of the Hausdorff distance.

2 Materials and Methods

2.1 SE Normalization

Normalization layers have become an integral part of modern deep neural net-
works. Existing methods, such as Batch Normalization [7], Instance Normal-
ization [8], Layer Normalization [9], etc., have been shown to be effective for
training different types of deep learning models. In essence, any normaliza-
tion layer performs the following computations. First, for a n-dimensional input
X = (x(1), x(2), . . . , x(n)), we normalize each dimension

x′(i) =
1

σ(i)
(x(i) − μ(i)) (1)

where μ(i) = E[x(i)] and σ(i) =
√

Var[x(i)] + ε with ε as a small constant.
Normalization layers mainly differ in terms of the dimensions chosen to com-
pute the mean and standard deviation [10]. Batch Normalization, for example,
uses the values calculated for each channel within a batch of examples, whereas
Instance Normalization - within a single example. Second, a pair of parameters
γk, βk are applied to each channel k to scale and shift the normalized values:

yk = γkx′
k + βk (2)

The parameters γk, βk are fitted in the course of training and enable the
layer to represent the identity transform, if necessary. During inference, both
parameters are fixed and independent of the input X. In this paper, we propose to
apply instance-wise normalization and design each parameter γk, βk as functions
of the input X, i.e.

γ = fγ(X) (3)
β = fβ(X) (4)

where γ = (γ1, γ2, . . . , γK) and β = (β1, β2, . . . , βK) - the scale and shift
parameters for all channels, K is a number of channels. We represent the function
fγ using the original Squeeze-and-Excitation (SE) block with the sigmoid [11],
whereas fβ is modeled with the SE block with the tanh activation function to
enable the negative shift (see Fig. 1a). This new architectural unit, that we refer
to as SE Normalization (SE Norm), is the major component of our model.
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(a) SE Normalization layer
(b) Residual layer with the
shortcut connection

(c) Residual layer with the
non-linear projection

Fig. 1. Proposed layers. Output dimensions are depicted in brackets.

2.2 Network Architecture

The widely used 3D U-Net [12,13] serves as the basis to design our model. The
basic element of the model, a convolutional block comprised of a 3 × 3 × 3
convolution followed by the ReLU activation function and the SE Norm layer,
is used to construct the decoder (Fig. 2, blue blocks). In the encoder, we utilize
residual layers [14] consist of convolutional blocks with shortcut connections (see
Fig. 1b). If numbers of input / output channels in a residual layer are different,
we perform a non-linear projection by adding the 1 × 1 × 1 convolutional block
to the shortcut in order to match the dimensions (see Fig. 1c).

In the encoder, we perform downsampling applying max pooling with the
kernel size of 2 × 2 × 2. To linearly upsample feature maps in the decoder, we
use 3 × 3 × 3 transposed convolutions. In addition, we supplement the decoder
with three upsampling paths to transfer low-resolution features further in the
model by applying the 1 × 1 × 1 convolutional block to reduce the number of
channels, and utilizing trilinear interpolation to increase the spatial size of the
feature maps (Fig. 2, yellow blocks).

The first residual layer placed after the input is implemented with the kernel
size of 7 × 7 × 7 to increase the receptive field of the model without significant
computational overhead. The softmax layer is applied to output probabilities for
four target classes.

To regularize the model, we add Spatial Dropout layers [15] right after the
last residual block at each stage in the encoder and before 1× 1× 1 convolution
in the decoder tail (Fig. 2, red blocks).

2.3 Data Preprocessing

Intensities of MRI scans are not standardized and typically exhibit a high vari-
ability in both intra- and inter-image domains. In order to decrease the intensity
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Fig. 2. Proposed network architecture with SE normalization. (Color figure online)
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inhomogeneity, we perform Z-score normalization for each MRI sequence and
each patient separately. The mean and standard deviation are calculated based
on non-zero voxels corresponding to the brain region. All background voxels
remain unchanged after the normalization.

2.4 Training Procedure

Due to the large size of provided MRI scans, we perform training on random
patches of the size 144×160×192 voxels (depth × height × width) on two GPUs
NVIDIA GeForce GTX 1080 Ti (11 GB) with a batch size of 2 (one sample per
worker).

We train the model for 300 epochs using Adam optimizer with β1 = 0.9 and
β2 = 0.99 for exponential decay rates for moment estimates, and apply a cosine
annealing schedule gradually reducing the learning rate from lrmax = 10−4 to
lrmin = 10−6 within 25 epochs and performing the learning rate adjustment at
each epoch.

2.5 Loss Function

We utilize the unweighted sum of the Soft Dice Loss [16] and the Focal Loss [17]
as the loss function in the course of training. The Soft Dice Loss is the differen-
tiable surrogate to optimize the Dice score that is one of the evaluation metrics
used in the challenge. The Focal Loss, compared to the Soft Dice Loss, has much
smoother optimization surface that ease the model training.

Based on [16], the Soft Dice Loss for one training example can be written as

LDice(y, ŷ) = 1 − 1
C

C∑

c=1

2
∑N

i yc
i ŷ

c
i + 1

∑N
i yc

i +
∑N

i ŷc
i + 1

(5)

The Focal Loss is defined as

LFocal(y, ŷ) = − 1
N

N∑

i

C∑

c=1

yc
i (1 − ŷc

i )
γ ln(ŷc

i ) (6)

In both definitions, yi =
[
y1

i , y2
i , . . . , yC

i

]� - the one-hot encoded label for

the i-th voxel, ŷi =
[
ŷ1

i , ŷ2
i , . . . , ŷC

i

]� - predicted probabilities for the i-th voxel.
N and C are the total numbers of voxels and classes for the given example,
respectively. Additionally we apply Laplacian smoothing by adding +1 to the
numerator and denominator in the Soft Dice Loss to avoid the zero division in
cases when one or several labels are not represented in the training example.
The parameter γ in the Focal Loss is set at 2.

The training data in the challenge has labels for three tumor sub-regions,
namely the necrotic and non-enhancing tumor core (NCR & NET), the peritu-
moral edema (ED) and the GD-enhancing tumor (ET). However, the evaluation
is done for the GD-enhancing tumor (ET), the tumor core (TC), which is com-
prised of NCR & NET along with ET, and the whole tumor (WT) that combines
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all provided sub-regions. Hence, during training we optimize the loss directly on
these nested tumor sub-regions.

2.6 Ensembling

To reduce the variance of the model predictions, we build an ensemble of models
that are trained on different splits of the train set and use the average as the
ensemble prediction. At each iteration, the model is built on 90%/10% splits of
the train set and subsequently evaluated on the online validation set. Having
repeated this procedure multiple times, we choose 20 models with the highest
performance on the online validation set and combine them into the ensemble.
Predictions on the test set are produced by averaging predictions of the individ-
ual models and applying a threshold operation with a value equal to 0.5.

2.7 Post-processing

The Dice score used for the performance evaluation in the challenge is highly
sensitive to cases wherein the model predicts classes that are not presented in the
ground truth. Therefore, a false positive prediction for a single voxel leads to the
lowest value of the Dice score and might significantly affect the average model
performance on the whole evaluation dataset. This primarily refers to patients
without ET sub-regions. To address this issue, we add a post-processing step
to remove small ET regions from the model outcome if their area is less than a
certain threshold. We set its value at 32 voxels since it is the smallest ET area
among all patients in the train set.

3 Results and Discussion

The results of the BraTS 2020 segmentation challenge are presented in Table 1
and Table 2. The Dice score, Sensitivity and Hausdorff distance (HD) were uti-
lized for the evaluation. Results in Table 1 were obtained on the online validation
set with 125 patients without publicly available segmentation masks. The U-Net
model was used as a baseline for comparison purposes. Final results on the test
set consisted of 166 patients are shown in Table 2.

For all cases, the lowest average Dice score was obtained for the ET sub-
region. This can be partially explained by the relatively small size of the ET class
compared to the other tumor sub-regions that made segmentation of this class
more challenging. The proposed model outperformed U-Net in all evaluation
metrics except for the Dice score for the ET class. It is mainly caused by cases
wherein the ET sub-regions were not presented. Combining multiple models into
the ensemble allowed to address this issue since it reduced the chance to receive
false positive predictions for the ET class as well as led to the better performance
in terms of HD.
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Table 1. Performance on the online validation set (n = 125). Average results are
provided for each evaluation metrics.

Metrics Dice score Sensitivity HD

Class ET WT TC ET WT TC ET WT TC

U-Net 0.772 0.899 0.825 0.794 0.896 0.813 5.813 5.973 6.576

Best Model 0.740 0.908 0.862 0.816 0.909 0.854 3.841 4.602 5.339

Ensemble 0.761 0.911 0.863 0.814 0.908 0.850 3.695 4.475 4.816

Ensemble + pp 0.780 0.911 0.863 0.815 0.908 0.850 3.717 4.475 4.816

Table 2. Performance on the test set (n = 166).

Metrics Dice score Sensitivity HD

Class ET WT TC ET WT TC ET WT TC

Ensemble + pp 0.805 0.887 0.843 0.854 0.909 0.866 15.429 4.535 19.589
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