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Abstract. The brain tumor segmentation is essential for diagnosis and
treatment of brain diseases. However, most of current 3D deep learning
technologies require large number of magnetic resonance images (MRIs).
In order to make full use of small dataset like BraTS 2020, we propose
a deep supervision-based 2D residual U-net for efficient and automatic
brain tumor segmentation. In our network, residual blocks are used to
alleviate the gradient dispersion caused by excessive depth of network,
while multiple deep supervision branches are used as the regularization
of the network, they can improve the training stability and enable the
encoder to extract richer visual features. The CBICA’s IPP’s evalua-
tion of the segmentation results verifies the effectiveness of our method.
The average Dice of ET, WT and TC are 0.7593, 0.8726 and 0.7879
respectively.
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1 Introduction

Glioma is the most common primary brain tumor, it has strong aggressiveness
and high mortality rate. The average life expectancy of patients with high-grade
tumors is usually no more than two years, but finding the tumor on MRI images
as early as possible can improve the survival time and survival probability of
patients. However, it is time-consuming and inefficient for doctors to manually
label brain tumors on such huge number of MRIs, so automatic brain tumor
segmentation plays an important role in assisting doctors in diagnosis, surgical
planning and evaluation of postoperative recovery effects.

The Multimodal Brain Tumor Segmentation Challenge (BraTS§) is currently
one of the most authoritative competitions in the field of brain tumor segmenta-
tion. It aims to evaluate the performances of the latest methods in this field [1-3].
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The BraTS 2020 training dataset [4-8] provides 369 multi-institutional rou-
tine clinically-acquired multimodal MRI scans of glioblastoma (GBM/HGG)
and lower grade glioma (LGG). This dataset is available as NIfT1T files (.nii.gz),
including MRIs of native (T1), post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes (Fig. 1).
Our task is to segment each tumor area into enhancing tumor, the peritumoral
edema, and the necrotic and non-enhancing tumor core.

(c) T1Gd (d) T2-Flair

Fig. 1. Multimodal MRI scans

2 Related Work

With the development of deep learning, the automatic segmentation of brain
tumors gets excellent performance. Especially since the emergence of Convolu-
tional Neural Networks (CNN), it greatly boosts the development of brain tumor
segmentation. It is very suitable for processing image data because it can obtain
local features more efficiently. Thus CNN-based brain tumor segmentation meth-
ods emerge in endlessly.

The first to mention is U-Net [9] (see Fig.2(a)), it is extensively studied in
the field of brain tumor segmentation. Its encoder-decoder structure and ship-
connection became the basis of many later researches. Isensee et al. [10,11] pro-
posed a modified version of U-net for brain tumor segmentation task. It increased
the depth of U-net by pre-activation residual blocks, so that achieved excellent
results in BraT$S 2017 and BraTS 2018. Specifically, the skip-connections ensured
that deep feature maps can contain more low-level informations. Zhou et al.
proposed a segmentation network called U-Net++ [13]. As shown in Fig.2(b),



160 S. Ma et al.

——» =Skip connection \=Down-sampling Sup =Supervision by ground truth

-— =Add / =Up-sampling

Fig. 2. Comparison of various U-Net. (a) U-Net. (b) U-Net++. (c¢) Two-Stage Cas-
caded U-Net. (d) Our proposed network

it was developed as an improved U-net by nested and dense skip-connections.
Then multi-scale features were fused through dense connections like DenseNet
[14-17]. In addition, deep supervision was used to train multiple sub-networks
in this method.

There are also some improvements to the encoder-decoder structure of U-net.
Myronenko [18] proposed an asymmetric encoder-decoder architecture, it used
multi-task learning [19,20] method to train the network. The network contained
two sub-networks, especially one of them used variational U-net structure to
reconstruct original input images. The variational U-net can be regarded as reg-
ularization of the network to prevent over-fitting caused by small size of training
set, also it enabled encoder to extract more features. In addition, Chen et al. [21]
proposed MASSL, it used tumor masks obtained by roughly segmentation as the
labels of the reconstruction task. This method encouraged model to learn dif-
ferences between tumor area and background through pseudo-labels mentioned
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above. Thus it can avoid the network from reconstructing original images, which
may lead encoder to pay much attention to original image features.

Furthermore, the first place in BraTS 2019 challenge was a two-stage cas-
caded U-Net [22] (see Fig. 2(c)). The first stage of this network was an asymmet-
ric encoder-decoder architecture. The prediction results of the first stage were
concatenated with original input images, then they were used as the input of the
second stage. The second stage network architecture included two branches, and
they perform segmentation tasks simultaneously. The purpose of two branches
is to help encoder learn richer features. And the difference between the two
branches lies in the decoder’s up-sampling technologies, which leads to different
segmentation results.

Based on the above-mentioned development of the U-net, we propose a new
network. As can be seen in Fig.2(d), we use residual U-net as the main struc-
ture. Then we replace the skip-connection of U-net with shortcut. Also, we use
different annotations as deep supervision labels to regularize the network, which
enable the encoder to obtain more features and correlations between tumor
regions.

Almost all segmentation methods use 2D or 3D CNN architecture. 2D CNNs
use 2D image slices to train the network, they use less memory but cannot
obtain the spatial context information of image slices. 3D CNNs use voxel to
train the network, it use enormous memory but can obtain the spatial context
information, thus can improve accuracy of segmentation. Due to the small size
of training set, we use 2D CNN architecture in this experiment.

3 Methods

In this paper, our network has a main network and three sub-networks. We use
U-net with the residual block as the backbone to perform different brain tumor
segmentation tasks, i.e.segmentation of GD-enhancing tumor, the peritumoral
edema, or the necrotic and non-enhancing tumor core. And use deep supervi-
sion method on sub-networks to realize multi-brunch architecture with different
labels. We following introduce the main structure and deep supervision of the
network respectively.

3.1 Main Network

As can be seen in Fig. 3, the input of network includes four slices, which belong to
four modalities respectively, so that the network can obtain richer information.
The encoder includes input, four down-sampling layers and 2, 2, 2, 3 residual
blocks after each down-sampling layer. Among them, each residual block contains
two sub-blocks, which are composed of a layer normalization, a relu activation
function and a 3 x 3 2D convolutional layer. In the down-sampling stage, we use
3 x 3 2D convolutional layer with strides of 2 for operations. Basically, the input
slices first pass through a 2D convolutional layer with relu activation function
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Fig. 3. The structure of our network.

and a dropout layer with dropout rate of 0.3, then enter followed residual blocks
and down-sampling layers successively.

The decoder includes transpose blocks, add blocks and residual blocks. The
transpose block is used for up-sampling. It includes a 1 x 1 2D convolution and a
3 x 3 deconvolution layer with strides of 2. The 1 x 1 2D convolution is used for
dimensionality reduction, and the deconvolution layer is used to restore the size
of feature map. The add block includes an add layer and a 3 x 3 2D convolution
layer for the fusion of low-dimensional and high-dimensional features. Every
time an up-sampling and add operation is over, a residual block will be used
for further feature extraction, and there are 3 residual blocks in decoder. At
different stages of decoder, we match different labels for the three sub-networks
to obtain different types of segmentation results. In this way, the encoder can
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learn more diverse features. For the main network, we set the corresponding label
for the required type of segmentation, so as to we can obtain the corresponding
segmentation result.

3.2 Deep Supervision Method

We use the relevance between three types of labels to reduce the mutual misjudg-
ment between multiple tumor regions, thus we can get better segmentation result
of a single label. Therefore, for three different labels, we add three additional
sub-networks for segmentation. We elicit a branch before each transpose block
as decoder of a sub-network. The decoder of the first sub-network includes three
transpose blocks, the decoder of the second sub-network includes two transpose
blocks, and the third sub-network has only one transpose block. Multiple net-
works share a same encoder, it can increase the demand for features of encoder
and enable the encoder to obtain richer features.

For different segmentation tasks of the main network, the tasks of three sub-
networks are variable. For example, when our main network task is to segment
enhancing tumor, the label of the first sub-network is necrotic and non-enhancing
tumor core, the label of the second sub-network is peritumoral edema, and the
label of the third sub-network is GD-enhancing tumor. In this way, the task of
each sub-network depends on the segmentation task of main network. We need
to choose different solutions according to different tasks.

3.3 Loss Functions

Due to the imbalance between the tumor area and the background in the brain
tumor segmentation task, the target tumor area only occupies a small part of
the entire slice. So cross-entropy loss function always pay more attention to
background area. To solve this problem, we use the combination of binary cross-
entropy and dice loss [23] as our loss function.

Among them, dice loss is used to solve the problem of class imbalance, it is
expressed as follows:

_2]yng|
lylulg]

where y is the ground truth and ¢ is the prediction.
And binary cross-entropy loss function is as follows:

Ldice =1 (1)

n

1 . N
BOE=—3 ZO (yilog gi + (1 — yi) log(1 — 4s)) (2)
where n is the number of categories, y; is the ground truth and ¢; is the

prediction.
Therefore, the total loss of our network is described as follows:

Ltotal = Ldice + BCEweight * BCE (3)
where BCEyeignts is the weight of BCE in the total loss, which is set to 0.5.
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4 Experiments

In this section, we introduce our pre-processing method, post-processing method
and some experimental details.

4.1 Pre-processing

The data of each patient contains slices of four modalities. On a axial, each modal
has 155 slices with a size of 240 x 240 pixels. In the process of pre-processing, by
dividing by the maximum pixel value of 155 slices, we normalize the pixel values
of all slices to 0—1. Then, so as to obtain more training data, we flip the slices
and therefore get the same number of data as original.

4.2 Post-processing

In order to reduce the influence of false positive on prediction maps, we identify
the relative positions of GD-enhancing tumor, the necrotic and non-enhancing
tumor core and peritumoral edema in the segmentation results. Then we delete
those pixels that belong to the GD-enhancing tumor but are outside of the
peritumoral edema. It can eliminate some theoretically impossible pixels.

4.3 Training Details

We use the Adam optimizer and train for 60 epochs. The initial learning rate is
set to 1le~. Then it becomes 2¢~° when reach to the 10th epoch. And when the
20th epoch is reached, the learning rate is reduced to le=°. After 30 epochs, the
learning rate remains at 2e~6.

5 Results

We train our network on BraTS 2020 training set. After data enhancement, we
use 520 cases as the training set, 115 cases as the validation set and 115 cases as
the test set. Then we adjust the network parameters through the performance of
the test set. After that we make predictions on the validation dataset provided
by BraTS 2020, and finally we submit them to the online evaluation platform to
evaluate the segmentation results. Finally, the average Dice we get on ET, WT,
and TC are 0.7040, 0.8794 and 0.7731. And the median of our Dice scores on
ET, WT and TC are 0.8350, 0.9101, and 0.8642 respectively. The performances
are shown in Table 1.

The results of test set are presented in Table2. We can see that the results
of the test set are slightly higher than of the validation set.
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Table 1. Performances on BraTS 2020 validation dataset

Validation dataset | Dice_mean Dice_median
ET WT TC ET WT TC
Our method 0.7040 | 0.8794 | 0.7731 | 0.8350 | 0.9101 | 0.8642

Table 2. Performances on BraTS 2020 test dataset

Test dataset | Dice_mean Dice_median
ET WT TC ET WT TC
Our method |0.7593 | 0.8726 | 0.7879 | 0.8326 | 0.9062 | 0.8909

6 Conclusion

In this paper, we propose a CNN network that uses residual blocks and deep
supervision method. There are two key points in this paper. Firstly, the shortcut
in the residual blocks can effectively alleviate the problem of gradient dispersion,
so that the network can capture high-level visual features. Secondly, deep super-
vision method helps to improve the training stability of deeper networks, and
enables the encoder to obtain richer features. Currently, our method is dedicated
to 2D segmentation based on a single axis. However, due to the lack of spatial
information in 2D data, it cannot effectively segment brain tumors with spa-
tial correlation. So in the future work, we will apply the above method to 3D
networks to improve segmentation performance.
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