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Abstract. Automatic segmentation of brain glioma from multimodal
MRI scans plays a key role in clinical trials and practice. Unfortunately,
manual segmentation is very challenging, time-consuming, costly, and
often inaccurate despite human expertise due to the high variance and
high uncertainty in the human annotations. In the present work, we
develop an end-to-end deep-learning-based segmentation method using
a multi-decoder architecture by jointly learning three separate sub-
problems using a partly shared encoder. We also propose to apply
smoothing methods to the input images to generate denoised versions
as additional inputs to the network. The validation performance indi-
cates an improvement when using the proposed method. The proposed
method was ranked 2nd in the task of Quantification of Uncertainty in
Segmentation in the Brain Tumors in Multimodal Magnetic Resonance
Imaging Challenge 2020.

Keywords: Brain tumor segmentation · Uncertainty estimation ·
Medical imaging · MRI · Ensemble · Deep learning

1 Introduction

Glioma is a particular kind of brain tumor that develops from glial cells. It
is the most frequently occurring type of brain tumor and the one with the
highest mortality rate. Glioma is categorized by the World Health Organiza-
tion (WHO) into four grades: low-grade glioma (LGG) (class I and II), and
high-grade glioma (HGG) (class III and IV), where HGG is being considered
a dangerous and life-threatening tumor. Specifically, about 190,000 cases occur
annually worldwide [6], and around 90 % [18] of patients die within 24 months of
surgical resection. Segmentation of the tumor plays a role both for radiotherapy
treatment planning and for diagnostic follow-up of the disease. Manual segmen-
tation is time-consuming, subjective, and associated with uncertainties due to
the variation of shape, location, and appearance of the tumors. Hence, decision
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Fig. 1. Schematic visualization of the MDNet architecture.

support or automating the segmentation may improve the treatment quality as
well as enhancing the efficiency when handling this patient group.

Inspired by a need of automatic segmentation of brain tumors in multimodal
magnetic resonance imaging (MRI) scans, the Brain Tumors in Multimodal Mag-
netic Resonance Imaging Challenge 2020 (BraTS 2020) [2–5,14] is a yearly chal-
lenge (associated with the International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI)) that aims to evaluate
state-of-the-art methods for brain tumor segmentation. BraTS 2020 provides the
participants with images from four structural MRI modalities: post-contrast T1-
weighted (T1c), T2-weighted (T2w), T1-weighted (T1w), and T2 Fluid Atten-
uated Inversion Recovery (FLAIR) for brain tumor analysis and segmentation.
Masks were annotated manually by one to four raters followed by improvements
by expert raters. The segmentation performances of the participants were eval-
uated using the Sørensen-Dice coefficient (DSC), sensitivity, specificity, and the
95th percentile of the Hausdorff distance (HD95).

Since the introduction of the U-Net by Ronneberger et al. [16], Convolutional
Neural Networks (CNNs) incorporating skip connections have become the base-
line architecture for medical image segmentation. Various architectures, often
building on or extending this baseline, have been proposed to address the brain
tumor segmentation problem. In BraTS 2019, Jiang et al. [11], who was the first-
place winner of the challenge, proposed an end-to-end two-stage cascaded U-Net
to segment the substructures of brain tumors from coarse (in the first stage) to
fine (in the second stage) prediction. In the same challenge, Zhao et al. [21], who
won the second place, introduced numerous tricks for 3D MRI brain tumor seg-
mentation including processing methods, model designing methods, and optimiz-
ing methods. McKinley et al. [13] proposed DeepSCAN, which is a modification
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of their previous 3D-to-2D Fully Convolutional Network (FCN), by replacing
batch normalization with instance normalization and adding a lightweight local
attention mechanism to secure the third place in the BraTS 2019.

The architecture proposed in this work is an extension of the one in [20]
from the BraTS 2019 where End-to-end Hierarchical Tumor Segmentation using
Cascaded Networks (TuNet) was introduced. Despite achieving a decent perfor-
mance, the main drawback of TuNet is that it comprises three cascaded networks
that make it hard to fit a full volume, with shape 240 × 240 × 155, into mem-
ory on any recent graphics processing units (GPUs). Because of this, the TuNet
adapted a patch-based segmentation approach, leading to long training times.
In addition to that, the TuNet might suffer from a lack of global information
about the image.

Motivated by the successes of the cascaded networks, presented in e.g. [11,
20], the present work proposes a multi-decoder architecture, denoted End-to-
end Multi-Decoder Cascaded Network for Tumor Segmentation (MDNet), to
separate a complicated problem into simple sub-problems. We also propose to
use multiple denoised versions of the original images as inputs to the network.
The hypothesis was that this would counteract the salt and pepper noise often
seen in MRI scans [1]. To the best of our knowledge, this is the first use of this
technique.

The authors hypothesize that the MDNet will reduce overfitting problems
by employing a shared encoder between three different decoders, while denoised
MRI images will help the network to gain more insight into the multimodal
input images with the presence of another two versions of the images: (i) a salt
and pepper-free one from the use of a median filter, and (ii) one with reduced
high-frequency components by employing a low-pass Gaussian filter.

2 Methods

Inspired by the drawbacks of the method proposed in [20], the authors here also
propose an end-to-end framework that separates the complicated multi-class
tumor segmentation problem into three simpler binary segmentation problems,
but with a major change in the design. The MDNet consumes much less memory
compared to the TuNet, which means that whole input volumes can be fit into
the GPU memory. Hence, the proposed MDNet can take advantage of global
details. In addition to that, the design of MDNet results in shorter training
times since it uses whole volumes instead of patches, as was the case with the
TuNet.

2.1 Encoder Network

The encoder network consists of conventional convolution blocks [16], where each
block includes a convolution layer with batch normalization and a leaky rectified
linear unit (LeakyReLU) activation function. Each convolutional block is then
followed by a Squeeze-and-Excitation block (SEB) (see Sect. 2.3). Max-pooling
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layers were used for downsampling. All convolutional filters had the size of 3 ×
3 × 3, and the initial numbers of filters were set to twelve, which in the proposed
architecture is equivalent to three denoising methods applied to the four given
modalities (see Sect. 2.4). The encoder output has shape 96 × 20 × 24 × 16. The
complete architecture of the proposed encoder network is detailed in Table 1.

Table 1. The encoder architecture. “Conv3” denotes a 3 × 3 × 3 convolution, “BN”
stands for batch normalization, “LeakyReLU” is the leaky rectified linear unit, and
“SEB” denotes the Squeeze-and-Excitation block (see Sect. 2.3).

Name Layers Repeat Output size

Input 12 × 160 × 192 × 128

EncBlk–0 Conv3, BN, LeakyReLU, SEB 2 12 × 160 × 192 × 128

EncDwn–1 MaxPooling 1 12 × 80 × 96 × 64

EncBlk–1 Conv3, BN, LeakyReLU, SEB 2 24 × 80 × 96 × 64

EncDwn–2 MaxPooling 1 24 × 40 × 48 × 32

EncBlk–2 Conv3, BN, LeakyReLU, SEB 2 48 × 40 × 48 × 32

EncDwn–3 MaxPooling 1 48 × 20 × 24 × 16

EncBlk–3 Conv3, BN, LeakyReLU, SEB 2 96 × 20 × 24 × 16

2.2 Multi-decoder Networks

Table 2 illustrates the proposed multi-decoder networks. The decoder networks
include three separate paths, where each path is employed to cope with a specific
aforementioned tumor region including whole, core, and enhancing, that are
denoted by W-Net, C-Net, and E-Net, respectively. Each decoder path comprises
skip connections as in U-Net. There was also a SEB after each convolution block
and a concatenation operation of the output of the spatial upsampling layers
with the feature maps from the encoder at the same level. To enrich the feature
maps at the beginning of each level in the C-Net, the feature map at the end
of the W-Net on the same level is used. A similar approach is employed in the
decoder network of the E-Net and C-Net. By utilizing these, we hypothesize that
the W-Net will constrain the C-Net, while the C-Net will constrain the E-Net.
Figure 1 illustrates the proposed architecture.

2.3 Squeeze-and-Excitation Block

We added a channel-based SEB as proposed by Hu et al. [8] after each convolu-
tion block or concatenation operation. The idea of SEB is to adapt the weight of
each channel in a feature map by adding a content-aware mechanism at almost
no computational cost. In recent days, SEB has been widely employed to achieve
a huge boost in performance. A conventional SEB includes the following layers in
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Table 2. Decoder architectures. Here, “Conv3” means a 3× 3× 3 convolution, “Conv1”
a 1 × 1× 1 convolution, “BN” denotes for batch normalization, “LeakyReLU” means
the leaky rectified linear unit, “SEB” denotes the Squeeze-and-Excitation block (see
Sect. 2.3), “Up–{X}” represents the 3D linear spatial upsampling of block X, (+)
denotes the concatenation operation. In the name column, W–, C– and E– correspond
to the whole, core, and enhancing tumor regions, respectively.

Name Layers Repeat Output size

W–DecCat–2 Up–EncBlk–3 + EncBlk–2 1 144 × 40 × 48 × 32

W–DecSae–2 SEB 1 144 × 40 × 48 × 32

W–DecBlk–2 Conv3, BN, LeakyReLU, SEB 2 48 × 40 × 48 × 32

W–DecCat–1 Up–DecBlk–2 + EncBlk–1 1 72 × 80 × 96 × 64

W–DecSae–1 SEB 1 72 × 80 × 96 × 64

W–DecBlk–1 Conv3, BN, LeakyReLU, SEB 2 24 × 80 × 96 × 64

W–DecCat–0 Up–DecBlk–1 + EncBlk–0 1 36 × 160 × 192 × 128

W–DecSae–0 SEB 1 36 × 160 × 192 × 128

W–DecBlk–0 Conv3, BN, LeakyReLU, SEB 2 12 × 160 × 192 × 128

W–Output Conv1, Sigmoid 1 1 × 160 × 192 × 128

C–DecCat–2 W–DecBlk–2 + W–DecCat–2 1 192 × 40 × 48 × 32

C–DecSae–2 SEB 1 192 × 40 × 48 × 32

C–DecBlk–2 Conv3, BN, LeakyReLU, SEB 2 48 × 40 × 48 × 32

C–DecCat–1 W–DecBlk–1 + W–DecCat–1 1 96 × 80 × 96 × 64

C–DecSae–1 SEB 1 96 × 80 × 96 × 64

C–DecBlk–1 Conv3, BN, LeakyReLU, SEB 2 24 × 80 × 96 × 64

C–DecCat–0 W–DecBlk–0 + W–DecCat–0 1 48 × 160 × 192 × 128

C–DecSae–0 SEB 1 48 × 160 × 192 × 128

C–DecBlk–0 Conv3, BN, LeakyReLU, SEB 2 12 × 160 × 192 × 128

C–Output Conv1, Sigmoid 1 1 × 160 × 192 × 128

E–DecCat–2 C–DecBlk–2 + W–DecCat–2 1 240 × 40 × 48 × 32

E–DecSae–2 SEB 1 240 × 40 × 48 × 32

E–DecBlk–2 Conv3, BN, LeakyReLU, SEB 2 48 × 40 × 48 × 32

E–DecCat–1 C–DecBlk–1 + W–DecCat–1 1 96 × 80 × 96 × 64

E–DecSae–1 SEB 1 96 × 80 × 96 × 64

E–DecBlk–1 Conv3, BN, LeakyReLU, SEB 2 24 × 80 × 96 × 64

E–DecCat–0 C–DecBlk–0 + W–DecCat–0 1 48 × 160 × 192 × 128

E–DecSae–0 SEB 1 48 × 160 × 192 × 128

E–DecBlk–0 Conv3, BN, LeakyReLU, SEB 2 12 × 160 × 192 × 128

E–Output Conv1, Sigmoid 1 1 × 160 × 192 × 128

sequence: global pooling, fully connected, rectified linear unit (ReLU) activation
function, fully connected, and a sigmoid activation function [8].
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2.4 Denoising the Inputs

The inputs to the network were the MRI modalities, and also each modality
after denoising using two different methods: median denoising and Gaussian
smoothing. The authors then concatenated the three versions of the images for
each modality (the raw image, and the two denoised versions) to obtain a total of
twelve images, that were input as different channels. For the median denoising,
we used a 3 × 3 × 3 median filter; the Gaussian smoothing used a 3 × 3 × 3
Gaussian filter with a standard deviation of 0.5. In this sense, adding a Gaussian
smoothed version of the input is similar to adding a down-scaled version of the
input image as was proposed for the TuNet [20].

2.5 Preprocessing and Augmentation

All input images were normalized to have a mean zero and unit variance. In
order to reduce overfitting and increase the diversity of data available for train-
ing models, we used on-the-fly data augmentation [9] comprising: (1) randomly
rotating the images in the range [−1, 1] degrees on all three axes, (2) random
mirror flipping with a probability of 0.5 on all three axes, (3) elastic transfor-
mation with a probability of 0.3, (4) random scaling in the range [0.9, 1.1] with
a probability of 0.3, and (5) random cropping with subsequent resizing with a
probability of 0.3.

As in [17], the elastic transformations used a random displacement field, Δ,
such that

Rw = Ro + αΔ, (1)

where α is the strength of the displacement, while Rw and Ro denote the location
of a voxel in the warped and original image, respectively. For each axis, a random
number was drawn uniformly in [−1, 1] such that Δx ∼ U(−1, 1), Δy ∼ U(−1, 1),
and Δz ∼ U(−1, 1). The displacement field was finally convolved with a Gaussian
kernel having standard deviation σ. In the present case, α = 1 and σ = 0.25.

2.6 Post-processing

The most challenging task of BraTS 2020 specifically, and BraTS challenges in
general, is to distinguish between LGG and HGG patients by labeling small
vessels lying in the tumor core as edema or necrosis. In order to tackle this
problem, we used the same strategy as proposed in our previous work [20]. In
specific, we labeled all small enhancing tumor region with less than 500 connected
voxels as necrosis. The proposed post-processing step aims to handle a few cases
where the proposed networks fail to differentiate between the whole and core
tumor regions.

2.7 Task 3: Quantification of Uncertainty in Segmentation

The organizers of the BraTS challenge introduced the task of “Quantification
of Uncertainty in Segmentation” in BraTS 2019 and was held again in BraTS
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2020. This task is aimed to measure the uncertainty in the context of glioma
region segmentation by rewarding predictions that are (a) confident when cor-
rect and (b) uncertain when incorrect. Participants were expected to generate
uncertainty maps in the range of [0, 100], where 0 represents the most certain
and 100 represents the most uncertain. The performance was evaluated based on
three metrics: Dice Area Under Curve (DAUC), Ratio of Filtered True Positives
(RFTPs), and Ratio of Filtered True Negatives (RFTNs).

Similar to [20], the proposed network, MDNet, predicts the probability of
three tumor regions, it thus benefits from this task. Following [20], an uncertainty
score, ur

i,j,k, at voxel (i, j, k) is defined by

ur
i,j,k =

{
200(1 − pri,j,k), if pri,j,k ≥ 0.5,

200pri,j,k, if pri,j,k < 0.5,
(2)

where ur
i,j,k ∈ [0, 100]|R| and pri,j,k ∈ [0, 1]|R| are the uncertainty score map and

probability map, respectively. Here, r ∈ R, where R is the set of tumor regions,
i.e. whole, core, and enhancing region.

3 Experiments

3.1 Implementation Details and Training

The proposed method was implemented in Keras 2.2.41 with TensorFlow 1.12.02

as the backend. The experiments were trained on NVIDIA Tesla V100 GPUs
from the High Performance Computer Center North (HPC2N) at Ume̊a Uni-
versity, Sweden. Seven models were trained from scratch for Ne = 200 epochs,
with a mini-batch size of one. The training time for a single model was about
six days.

3.2 Loss

For evaluation of the segmentation performance, we used a combination of the
DSC loss and categorical cross–entropy (CE) as the loss function. The DSC is
defined as [19,20]

D(u, v) =
2 · |u ∩ v|
|u| + |v| , (3)

where u and v are the output segmentation and its corresponding ground truth,
respectively. To include the the DSC in the loss function, we employed the soft
DSC loss, which is defined as [10,19,20]

LDSC(u, v) =
−2

∑
i uivi∑

i ui +
∑

i vi + ε
, (4)

1 https://keras.io.
2 https://tensorflow.org.

https://keras.io
https://tensorflow.org
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where for each label i, the ui is the softmax output of the proposed network for
label i, v is a one-hot encoding of the ground truth labels (segmentation maps
in this case), and ε = 1 ·10−5 is a small constant added to avoid division by zero.

Following [10,19], for unbalanced data sets with small structures like in the
BraTS 2020 data, we added the CE term to our loss function to make the loss
surface smoother. The CE is defined as

LCE(u, v) = −
∑
i

ui · log(vi). (5)

The combination of the DSC loss and CE (denoted a hybrid loss) is simply
defined as the sum of the two losses, as

Lhybrid(u, v) = LDSC(u, v) + LCE(u, v). (6)

The final loss function that was used for training contained one hybrid loss for
each tumor region, and was thus

L(u, v) =
∑
r∈R

Lhybrid(ur, vr), (7)

where R again is the set of tumor regions (the whole, core, and enhancing regions)
and Lhybrid(ur, vr) is the hybrid loss for a particular tumor region.

The segmentation performance was also evaluated using the HD95, a common
metric for evaluating segmentation performances. The Hausdorff distance (HD)
is defined as [7]

H(u, v) = max{d(u, v), d(v, u)}, (8)

where
d(u, v) = max

ui∈u
min
vi∈v

‖ui − vi‖2, (9)

in which ‖ui − vi‖2 is the spatial Euclidean distance between points ui and vi
on the boundaries of output segmentation u and ground truth v.

3.3 Optimization

The authors used the Adam optimizer [12] with an initial learning rate of α0 =
1 · 10−4 and momentum parameters of β1 = 0.9 and β2 = 0.999. Following
Myronenko et al. in [15], the learning rate was decayed as

αe = α0 ·
(

1 − e

Ne

)3

, (10)

where e and Ne = 200 are epoch counter and total number of epochs, respec-
tively.

The authors also used L2 regularization with a penalty parameter of 1 ·10−5,
which was applied to the kernel weight matrices, for all convolutional layers to
counter overfitting. The activation function of the final layer was the logistic
sigmoid function.
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4 Results and Discussion

Table 3 shows the mean DSC and HD95 scores and standard deviations (SDs)
computed from the five-folds of cross-validation on 369 cases of the training set.
From Table 3 we see that: (i) the U-Net with denoised input improved the DSC
and HD95 on all tumor regions, and (ii) the proposed model with denoising
boosted the performance in both metrics (DSC and HD95) by a large margin.

Table 3. Mean DSC (higher is better) and HD95 (lower is better) and their SEs (in
parentheses) computed from the five-folds of cross-validation on the training set (369
cases) for the different models.

Model DSC HD95

Whole Core Enh. Whole Core Enh.

U-Net without denoising 90.66
(0.38)

86.93
(0.71)

76.16
(1.37)

4.91
(0.41)

4.78
(0.42)

3.46
(0.31)

U-Net with denoising 90.98
(0.31)

87.53
(0.68)

76.55
(1.36)

4.49
(0.26)

4.32
(0.29)

3.41
(0.29)

Proposed with denoising 92.75
(0.25)

88.34
(0.70)

78.13
(1.32)

4.32
(0.29)

4.30
(0.31)

3.29
(0.24)

Table 4 shows the mean DSC and HD95 scores on the validation set, com-
puted on the predicted masks by the evaluation server3 (team name UmU ). The
BraTS 2020 final validation dataset results were 90.55, 82.67 and 77.17 for the
average DSC, and 4.99, 8.63 and 27.04 for the average HD95, for whole tumor,
tumor core and enhanced tumor core, respectively. These results were slightly
lower than the top-ranking teams.

Table 5 provides the mean DAUC, RFTPs, and RFTNs scores on the valida-
tion set obtained after uploading the predicted masks and corresponding uncer-
tainty maps to the evaluation server4. As can be seen from Table 5, the RFTNs
scores were the best amongst the best-ranking participants.

Table 6 and Table 7 show the mean DSC and HD95, and the mean DAUC,
RFTPs, and RFTNs scores on the test set, respectively. In the task of Quantifi-
cation of Uncertainty in Segmentation, our proposed method was ranked 2nd.

3 https://www.cbica.upenn.edu/BraTS20/lboardValidation.html.
4 https://www.cbica.upenn.edu/BraTS20/lboardValidationUncertainty.html.

https://www.cbica.upenn.edu/BraTS20/lboardValidation.html
https://www.cbica.upenn.edu/BraTS20/lboardValidationUncertainty.html
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Table 4. Results of Segmentation Task on BraTS 2020 validation data (125 cases). The
results were obtained by computing the mean of predictions of seven models trained
from the scratch. “UmU” denotes the name of our team. The metrics were computed
by the online evaluation platform. All the predictions were post-processed before sub-
mitting to the server. The top rows correspond to the top-ranking teams from the
online system retrieved at 11:38:02 EDT on August 3, 2020.

Team DSC HD95

Whole Core Enh. Whole Core Enh.

deepX 91.02 85.00 78.53 4.44 5.90 24.06

Radicals 90.82 84.96 78.69 4.71 8.56 35.01

WassersteinDice 90.58 83.79 78.01 4.74 8.96 27.02

CKM 90.83 83.82 78.59 4.87 5.97 26.57

UmU 90.55 82.67 77.17 4.99 8.63 27.04

Table 5. Results of Quantification of Uncertainty Task on BraTS 2020 validation
data (125 cases) including mean DAUC (higher is better), RFTPs (lower is better)
and RFTNs (lower is better). The results were obtained by computing the mean of
predictions of seven models trained from scratch. “UmU” denotes the name of our
team and the ensemble of seven models that were trained from the scratch. The metrics
were computed by the online evaluation platform. The top rows correspond to the top-
ranking teams from the online system retrieved at 11:38:02 EDT on August 3, 2020.

Team DAUC RFTPs RFTNs

Whole Core Enh. Whole Core Enh. Whole Core Enh.

med vision 95.24 92.23 83.24 0.28 0.62 0.93 87.74 98.74 98.74

nsu btr 93.58 90.04 85.14 35.72 48.18 9.59 98.44 98.60 98.64

SCAN 93.46 82.98 80.64 12.40 19.95 21.53 0.87 0.42 0.24

UmU 92.59 83.61 78.83 4.48 10.13 7.95 0.27 0.17 0.08

Table 6. Results of Segmentation Task on BraTS 2020 test data (166 cases). The
results were obtained by computing the mean of predictions of seven models trained
from the scratch. The metrics were computed by the online evaluation platform. All
the predictions were post-processed before submitting to the server.

Team DSC HD95

Whole Core Enh. Whole Core Enh.

UmU 88.26 82.49 80.84 6.30 22.27 20.06
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Table 7. Results of Quantification of Uncertainty Task on BraTS 2020 test data (166
cases) including mean DAUC (higher is better), RFTPs (lower is better) and RFTNs
(lower is better). The results were obtained by computing the mean of predictions of
seven models trained from scratch. The metrics were computed by the online evaluation
platform.

Team DAUC RFTPs RFTNs

Whole Core Enh. Whole Core Enh. Whole Core Enh.

UmU 90.61 85.83 83.03 4.18 5.49 4.45 0.31 1.68 0.07

5 Conclusion

In this work, we proposed a multi-decoder network for segmenting tumor sub-
structures from multimodal brain MRI images by separating a complex problem
into simpler sub-tasks. The proposed network adopted a U-Net-like structure
with Squeeze-and-Excitation blocks after each convolution and concatenation
operation. We also proposed to stack original images with their denoised versions
to enrich the input and demonstrated that the performance was boosted in both
DSC and HD95 metrics by a large margin. The results on the test set indicated
that: (i) the proposed method performed competitively in the task of Segmenta-
tion, with DSC scores of 88.26/82.49/80.84 and HD95 scores of 6.30/22.27/20.06
for the whole tumor, tumor core, and enhancing tumor core, respectively, (ii)
the proposed method was top 2 performing ones in the task of Quantification of
Uncertainty in Segmentation.
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