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Abstract. Machine learning (ML) integrated with medical imaging has intro-
duced new perspectives in precision diagnostics of GBM tumors, through
radiomics and radiogenomics. This has raised hopes for developing non-invasive
and in-vivo biomarkers for prediction of patient survival, tumor recurrence, or
molecular characterization, and therefore, encouraging treatments tailored to indi-
vidualized needs. Characterization of tumor infiltration based on pre-operative
multi-parametric magnetic resonance imaging (MP-MRI) scans would help in
predicting the loci of future tumor recurrence, and thereby aiding in planning the
course of treatment for the patients, such as increasing the resection or escalat-
ing the dose of radiation. Specifying molecular properties of GBM tumors and
prediction of their changes over time and with treatment would help characterize
the molecular heterogeneity of a tumor, and potentially use a respective combina-
tion treatment. In this article, we will provide examples of our work on radiomics
and radiogenomics, aiming to offer personalized treatments to patients with GBM
tumors.
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1 Introduction

Glioblastoma (GBM) is the most common and fatal primary brain tumor. The current
standard of care for treatment of patients with GBM tumors involvesmaximal safe tumor
resection followed by radiotherapy and adjuvant temozolomide (TMZ) chemotherapy,
and maintenance TMZ therapy for 6–12 months. The standard treatment at the very best
provides the patients with a median progression-free survival (PFS) of 6.2–7.5 months
and an overall survival (OS) of around 14.6–16.7months [1, 2]. The patients who tolerate
TMZ treatment and do not show tumor progression, can be prescribed to receive tumor-
treating fields (TTFields), improving the prognosis only to a median OS of 20.9 months
[1, 2]. One of the main reasons for the failure of treatments in GBM patients is marked
intra-tumor heterogeneity of GBM tumors, diffuse and immense infiltration of tumor
cells in the adjacent brain parenchyma which mainly remain untreated, and resistance
of tumor subpopulations to the given therapies.

Medical imaging, and specifically magnetic resonance imaging (MRI), has evolved
into an indispensable diagnostic tool in neuro-oncology. It can contribute to personalized
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patient management by offering patient prognosis, treatment guidance, and monitoring
the response of a patient to the therapy, based on specific characteristics of the tumor,
manifested with different phenotypes on MRI scans [3]. A mounting body of literature
over the past decade has shown that subvisual aspects of GBM tumor heterogeneity can
be captured by integrating characteristics that relate to cellular density, neo-angiogenesis,
water content, etc. from multi-parametric MRI (MP-MRI) scans [4, 5].

Radiomics is an emerging computational method that combines diverse imaging
features through machine learning (ML) modeling into distinctive imaging signatures
[6–8]. It can reveal patterns underlying the tumor’s progression, response to standard,
adjuvant, or novel therapies, and can help to achieve a more personalized medicine for
the GBM patients. Imaging phenotypes discovered by radiomics have shown promise in
risk stratification, prediction of overall and progression-free survival, disease follow-up
(discrimination of true vs pseudo-progression of the disease), characterization of tumor
genomics [9], and upfront prediction of the response to treatment.

In this article, we will briefly review the proposed techniques for characterization,
prognostication, and treatment planning of the patients with GBM.

2 Patient Prognosis

Upfront prediction of PFS and OS could potentially identify high-risk patients, who are
suspected to have a short OS, e.g. of less than 6 months, and enroll them to alternative
therapies or palliative care, depending on personal choices. While OS is a primary
endpoint for determination of the efficacy of treatment strategies in clinical trials, PFS
could serve as a surrogate for OS to overcome several limitations of OS, such as long
trial times [10]. Moreover, as patients with GBM have a poor prognosis, with PFS as
an early marker of OS, the course of the prescribed treatments for the patients can be
modified or changed. In this regard, radiomics has shown potential in stratification of
high- and low-risk patients, and prediction of OS or PFS.

In our 2016 study, quantitative imaging features were extracted from pre-operative
MP-MRI scans, including pre- and post-contrast T1-weighted images (T1, T1-Gd), T2-
weighted (T2), T2 fluid attenuated inversion recovery (FLAIR), dynamic susceptibility
contrast-enhanced (DSC)-MRI, and diffusion tensor imaging (DTI). Features of inten-
sity from the MP-MRI scans, volume, location, and growth model parameters were
combined by support vector machine (SVM) classification algorithm for stratification
of patients with GBM tumors into groups of short, medium, and short survivors. The
results suggested that an overall 3-way classification into short/medium/long survivor
groups was around 79% in the prospective cohort [11].

As DSC-MRI and DTI sequences are not frequently included with the routine pre-
surgical brain tumor protocols at many imaging centers, in a later study, we investigated
the accuracy of a predictive model built based on augmented radiomics feature panel
(ARFP), including morphology and textural descriptors, extracted only from basic MP-
MRI (Bas-mpMRI, comprising of T1, T1-Gd, T2, FLAIR) for stratification of OS risk
groups [12]. This predictive model, generated with ARFP from Bas-mpMRI yielded a
comparable accuracy to the previous model [11] that was generated with advanced MP-
MRI (Adv-mpMRI) scans without using ARFP [12]. It was proposed that Bas-mpMRI
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and advanced radiomics features can compensate for the lack of Adv-mpMRI [12]. This
approach also showed generalizability across different scanners in a multi-center study
[13].

In a recent multi-center study, we investigated the role of radiomics in prediction
of PFS based on MP-MRI scans, acquired prior to the primary surgery in patients with
GBM [14, 15]. A prognostic model was generated with a rich panel of quantitative
features of intensity, first-order histogram, texture, morphology, and volume, through
an SVM classifier, resulting an AUC = 0.82 for the data from two institutions. This
radiomics study was carried out using the publicly available and open-source Cancer
Imaging Phenomics Toolkit (CaPTk) software [14].

A few studies have reported the added value of radiomics models to clinical and
molecular predictors for risk stratification of patients with GBM tumors. A radiomics
study of GBM patients showed a Concordance index (C-index) = 0.696 for prediction
of OS by integrating radiomics and clinical variables, i.e. age and Karnofsky perfor-
mance score (KPS), compared to a C-index = 0.640 with only clinical variables [16].
Similarly, on a larger cohort of patients, it was suggested that a combination of key
clinical characteristics, i.e. age, extent of resection, and KPS, with molecular diagno-
sis, i.e. MGMT methylation status, yielding integrated Brier scores (IBS) of 0.119 and
0.098 for prediction of OS and PFS, respectively, improved to 0.103 and 0.0809 when
integrated with radiomics variables. For prediction of PFS, [17]. Another study inves-
tigated the improvement of survival prediction using radiomics integrated with clinical
and molecular profiles [18]. They found an improvement of risk stratification of GBM
patients into low and high survivor groups when radiomics was combined with clinical
and molecular variables, denoting an area under the curve (AUC) = 0.78 compared to
an AUC = 0.70 for a model based only on clinical and molecular variables [18].

3 Intratumor Heterogeneity and Tumor Recurrence

A hallmark characteristic of GBM is diffuse infiltration into the surrounding brain tis-
sue, extending beyond the hyperintense regions visible on T1-Gd MRI scans into the
peritumoral edema, and leading to tumor recurrence. Mapping peritumoral infiltration
would augment precision treatment through escalating the radiation therapy dose in
densely infiltrated regions, and potentially prolonging survival of the patients [11]. Pat-
tern analysis of MP-MRI scans can reveal infiltration of tumor cells in the peritumoral
edema by quantification of spatial heterogeneity in terms of the changes in regional
microvasculature, microstructure, and water content [4]. We have developed an imaging
signature of tumor infiltration that serves as an early biomarker of the likely location of
tumor recurrence [19]. Quantitative features estimated fromMP-MRI scans (T1, T1-Gd,
T2, FLAIR, DTI, and DSC-MRI) within peritumoral edema were combined using an
ML approach to generate predictive maps of tumor recurrence, with an odds ratio of
9.29, AUC of 0.84, sensitivity of 91%, and specificity of 93%. Figure 1 shows examples
of infiltration maps generated using pre-operative MP-MRI scans of two patients with
GBM tumors and the location of tumor recurrence in the patients.

A common dilemma in evaluating the response ofGBM tumors to therapy is differen-
tiation of progressive disease, or true progression (TP), from pseudo-progression (PsP).
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Fig. 1. An illustration of two examples of generating infiltration maps from pre-operative MP-
MRI scans. The images on the right side indicate the corresponding recurrence scans of the same
patients. As it can be inferred from the images, the predicted infiltration maps are highly predictive
of future recurrence.

Radiomics signatures distinguishing between TP and PsP in patients with GBM tumors
have been reported including a recent study of our group, on a cohort of GBM patients
who underwent second resection due to progressive radiographic changes suspicious for
recurrence [20]. A multivariate analysis of deep learning and conventional features from
multi-parametric MRI scans was performed, showing an accuracy of 87% for predicting
PsP and 84% for predicting TP that compared with similar categories blindly defined by
board-certified neuropathologists [20]. In another recent study on a cohort of patients
with GBM tumors, a feature learning method based on deep convolutional generative
adversarial networks (DCGAN) and AlexNet was implemented to discriminate between
PsP and TP, which showed a performance of AUC > 0.90 [21].

4 Radiogenomics

Advances in genomic profiling of tissue specimens in a variety of diseases, especially
cancers, has encouraged development of treatments targeted at the genetic makeup of the
tumor and paved the way towards personalized treatments and precision medicine [22].
However, several factors, including tumor heterogeneity, sampling error during biopsy,
insufficient tissue quality for sequencing, limitations of the sequencing methods, etc.,
may hinder characterization of tumor genomics. Radiographic imaging phenotypes have
shown strong associations with the underlying biology of GBM tumors. Through anML
approach, radiogenomics studies aim to bridge the gap between the two disciplines by
generating imaging signatures that represent genetic characteristics or heterogeneity of
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the tumor. Thereby, radiogenomics signatures can serve as noninvasive biomarkers for
tumor genomics or as complementary data for predicting patient prognosis [9].

In our radiogenomics study for generating a signature of EGFRvIII mutation in
GBM tumors, we integrated quantitative features derived fromMP-MRI through an ML
approach that predicted the EGFRvIII mutation status with an accuracy of 87% in a
replication cohort [23]. The results suggested that the tumors with EGFRvIII mutations
had a propensity to occur in the frontal and temporal regions of the brain, and were asso-
ciated with higher neovascularization and cell density compared to the wildtype tumors
[23]. Figure 2 shows the descriptive characteristics of GBM tumors with EGFRvIII
mutation. We further found that heterogeneity in hemodynamic patterns within peritu-
moral edema, quantified by pattern analysis of perfusionMRI scans, is strongly linked to
EGFRvIII mutation status [24]. EGFRvIII mutant tumors displayed a highly infiltrative-
migratory phenotype while the wildtype tumors had a confined vascularization within
their peritumoral area [24].

Fig. 2. This image illustrates the characteristics of GBM tumors with mutation in EGFRvIII
(EGFRvIII(+)). As indicated, EGFRvIII(+) patients have a fronto-parietal propensity, and show
increased neovascularization and cell density [23].

In a study on exploring the synergies between imaging and genomics, we identified
three distinct and reproducible imaging subtypes, including rim-enhancing, irregular,
and solid, which exhibit clearly different clinical outcome and molecular characteris-
tics, including IDH1, MGMT methylation, EGFRvIII, and transcriptomic molecular
subtypes, i.e. classical, mesenchymal, neural, proneural [25]. Our findings signify the
importance of precision diagnostics and personalized therapies for patients with GBM
tumors.

There are many other notable radiogenomics studies of GBM tumors, which
overviewing them is out of scope of this paper. We refer the interested readers to the
relevant review papers [9, 22, 26–28].



Computational Diagnostics of GBM Tumors in the Era of Radiomics 35

5 Current Challenges and Future Directions

Despite the promises that radiomics and radiogenomics offer for achieving precision
diagnostics in management of GBM tumors, challenges of reproducibility and gener-
alizability of the proposed methods have yet to be tackled for these methods to be
translated into clinical applications. First, radiomics is not directly related to biologi-
cal characteristics, and reproducibility of the features mainly depends on the imaging
process, from acquisition, to post-processing and feature extraction. Most radiomics
studies are retrospective, therefore, not all aspects of reproducibility such as standard-
ization of image acquisition protocol, intra-patient test-retest repeatability, and across
scanner reproducibility can be addressed [29]. This issue complicates generalizability of
the radiomics models across different institutions. The clinical trials follow standardized
image acquisition guidelines, although the number of data is usually limited and data
sharing is restricted due to ownership concerns [9].

Another impedance to reproducible radiomics research is variability in analysismeth-
ods, i.e. different results can be achieved for the same data depending on the feature
extraction, feature selection and modeling approaches. Lack of clear and comprehen-
sive description of researchmethodology, including data processing and parametrization
of the computational algorithms, and unwillingness or hesitance of the researchers to
share their methods with the community mainly due to an understandable reason of
intellectual property, further poses a challenge to research reproducibility [9]. In this
regard, multiple open-source software toolkits have been developed and made publicly
available. To this end, Cancer Imaging Phenomics Toolkit (CaPTk), an imaging analytics
suite of open-source software algorithms, has been implemented to facilitate estimation
of extensive panels of quantitative imaging phenomics (CIPh) features and integrating
them with prognostic models to support a course of tailored treatment strategies for the
patients [30]. CaPTk has a three-level functionality design for radiomics analysis. The
users can build their image preprocessing pipelines, composed of algorithms for con-
version of image format, registration of the scans, segmentation of the desired regions,
artifact reduction, and intensity normalization with the tools provided in the first-level
functionality. The second level provides general-purpose applications, including exten-
sive set of radiomics features with adjustable parameters for feature extraction, feature
selection, and ML model construction. Numerous features representing morphology,
volume, intensity, and regional heterogeneity, compliant with the guidelines provided
by the Image Biomarker Standardization Initiative (IBSI) [31] to ensure reproducibility
and comparability, can be extracted. In the third level, the methods in the first level
features have been synthesized into a smaller and meaningful subset of features, com-
bined with second level ML algorithms for specialized applications that aim to support
specific clinical applications, including risk stratification of patients, stratification of
patients according to their transcriptomic molecular subtypes, predicting genomics of
the tumor, etc. [30].

As any other ML approach, radiomics studies require ample and diverse data for
learning the underlying patterns of the disease, and to overcome the so-called “curse of
dimensionality” problem, i.e. a remarkably larger number of features compared to the
number of samples. Clinical data collected at a single institution is usually limited in the
number and diversity, thereby, hampering generalization of the ML methods [9]. These
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challenges motivated the formation of ReSPOND (Radiomics Signatures for PrecisiON
Diagnostics) consortium, as an international initiative for machine learning in GBM
imaging [32]. ReSPOND is a collaborative effort of over 10 international institutions
that aims to gather brain MRI scans from over 3000 de novo GBM patients and develop
radiomics biomarkers for personalized prognostication. The main four areas of focus
for ReSPOND include prediction of OS and PFS, early prediction of tumor recurrence
to help in adopting aggressive treatments of GBMs through an extended resection and
escalation of the dose within the peritumoral regions that are suspected of recurrence,
differentiation of true tumor progression from pseudo-progression, and prediction of
molecular characteristics of the GBM tumors [32, 33].

6 Conclusion

Artificial intelligence, in the forms of radiomics and radiogenomics, has introduced
appealing solutions to the current clinical problems for management of GBM tumors
and has raised the hopes for accomplishing the purpose of tailoring diagnosis and treat-
ments for the patients at an individual level. Risk stratification of the GBM patients by
upfront projection of their OS and PFS, early prediction of tumor recurrence, distinguish-
ing TP from PsP, and prediction of the molecular properties of the tumor and the spatial
heterogeneity are among the key applications of radiomics and radiogenomics. Nonethe-
less, these promising tools face the challenges of reproducibility and generalizability that
need to be carefully addressed by the community.
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