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Abstract. Gliomas are the most common brain tumors, which have a
high mortality. Magnetic resonance imaging (MRI) is useful to assess
gliomas, in which segmentation of multimodal brain tissues in 3D medi-
cal images is of great significance for brain diagnosis. Due to manual job
for segmentation is time-consuming, an automated and accurate segmen-
tation method is required. How to segment multimodal brain accurately
is still a challenging task. To address this problem, we employ residual
neural blocks and a U-Net architecture to build a novel network. We have
evaluated the performances of different primary residual neural blocks in
building U-Net. Our proposed method was evaluated on the validation
set of BraT$S 2020, in which our model makes an effective segmentation
for the complete, core and enhancing tumor regions in Dice Similarity
Coefficient (DSC) metric (0.89, 0.78, 0.72). And in testing set, our model
got the DSC results of 0.87, 0.82, 0.80. Residual convolutional block is
especially useful to improve performance in building model. Our pro-
posed method is inherently general and is a powerful tool to studies of
medical images of brain tumors.

Keywords: Brain tumor segmentation - Deep learning - Magnetic
resonance images

1 Introduction

Gliomas are the most frequent primary brain tumors, which have the highest
mortality rate [1,3,4,18]. They can be categorized to low-grade gliomas (LGG)
and high-grade gliomas (HGG). HGG is more aggressive form of the disease,
which has a median survival rate of two years or less. The slower growing low-
grade variants, such as low-grade astrocytomas and oligodendrogliomas, usually
makes life expectancy of several years [15]. MRI is a basic modality commonly
used in brain structure analysis, which provides images with high contrast for
soft tissues and high spatial resolution and can be useful to evaluate unknown
health risk [2,6,15].
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In recent years, lots of automatic approaches have been proposed for accurate
segmentation in brain tumors, and these works can be roughly categorized into
machine learning methods, deep learning methods and both-combined meth-
ods. Machine learning method is based on probabilistic models, which can learn
from brain tumor patterns that do not follow a specific model, such as Condi-
tional Random Field (CRF), Random Forrest (RF) and Support Vector Machine
(SVM). Deep learning method learns the feature representation in a data-driven
way [7], such as convolutional neural network (CNN), parallelized long short-
term memory network (LSTM) and fully convolutional network (FCN). In addi-
tion, some authors combined probabilistic model (CRF, RF or SVM) and deep
learning method to develop a novel method [5,10,12].

The fully convolutional neural networks (FCN), a new variant of CNN, gained
the great interest in the segmentation competition of PASCAL VOC 2012. The
deep convolutional learning model with substantially enlarged depth advanced
the state-of-art performance on segmentation tasks that it alleviated the opti-
mization degradation issue by approximating the objective function with residual
functions instead of simply stacking layers, and residual block are skip connec-
tions between layers of the network. FCN based approaches are the pioneering
work of deep learning in medical image segmentation, although the segmented
result is not good enough.

In the end-to-end methods, with the combination of encoding layers or decod-
ing layers, they achieved the success of image segmentation in pixel level. Com-
pared to primary convolutional neural network, the end-to-end method can avoid
a lot of duplicate calculations. U-Net architecture, based on fully convolution,
had been successfully applied to medical image segmentation [9,17,19,21] . This
model is a popular and efficient network for segmentation in brain tumors. Naser
and Deen [16] proposed a new approach to achieve segmentation in gliomas. They
combined U-Net model for convolutional segmentation and pre-trained VGG16
model for transferring learning and a fully connected classifier for tumor grad-
ing. For clinical usage, the challenge is how to pursue the best accuracy for
segmentation within limited computational budgets. Li et al. [13] proposed a
multi-modality aggregation network (MMAN), which was able to extract multi-
scale features of brain tissues and harness complementary information from
multi-modality MRI images for fast and accurate segmentation. They applied
dilated convolutional layers with different kernel size to obtain large-scale fea-
tures without increasing too many parameters and computational costs. Ding
et al. [8] developed a novel multi-path adaptive fusion network. In this model,
they applied the idea of skip-connection in ResNets to the dense block so as
to effectively reserve and propagate more low-level visual features. Liu et al.
[14] investigated the performance of U-Net model in brain tumor, stroke, white
matter hyperintensities (WMHs), eye, cardiac, liver, musculoskeletal, skin can-
cer, and neuronal pathology. They reported the different extended U-shaped
networks and analyzed their pros and cons.

In this work, inspired on the groundbreaking proposal on U-Net, we focus on
building the U-Net architecture by using residual convolutional blocks. We eval-
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uated performances of different residual blocks. In addition, it is a key element
to keep gradients independent and distributed identically. We aim to get better
segmentation score in BraTS 2020 challenge.

2 Method

2.1 Pre-processing

In this work, we applied cropping and random-slicing methods. As for cropping,
due to the GPU memory limitation, we cropped the zero-pixel region which in
MRI images before training. The zero-pixel area of image boundary does not
help to improve the segmentation accuracy. The original size of MRI images is
array size of 155 x 240 x 240. In model, we employed max-pooling function
four times that every dimension size must be divided by 16 (2%). Therefore,
considering factors above, we set the size of 3D MRI images as 144 x 192 x 192.
As for multimodal 3D images, it is 4 x 144 x 192 x 192.

For each MRI images, we cropped to nine slices randomly. This step can
effectively prevent overfitting during training stage. We randomly take 9 con-
secutive 3D sequences with length of 16 in the first dimension of the MRI
images into training. After randomly cropping, the array size of MRI images is
9 x 16 x 192 x 192. As for multimodal 3D images, it is 4 x 9 x 16 x 192 x 192.
In addition, we do the same operation for each epoch during training stage. So
the sequences that input to the neural network are generally different for per
image and per epoch. This randomization makes the neural network model pow-
erful generalization, especially in limited training data sets. We ensure that all
pixels of the brain are trained in training step.

In addition, we employed z-score normalization in medical images [11]. It is
accomplished by linearly transforming the original intensities between mean and
standard deviation into the corresponding learned landmarks, which defined as:

o= F (1)

where p is the mean of the MRI sequence in pixel level and o is the standard
deviation of the MRI sequence in pixel level.

2.2 Architecture

We build the architecture of deep learning referring to Fig. 1. It is an end-to-end
method of deep learning, which is also a pixel-to-pixel method. Each layer in this
model is five-dimensional array size of bs x ¢ x h x w x d, where bs is batch size
dimension, ¢ is the channel or multimodal (Flair, T1, Tlc and T2) sequences
and h, w, d are spatial dimensions. Each convolutional layer and de-convolutional
layer contains batch normalization and activation function.

In building this architecture, we refined three primary residual blocks and
employed these blocks into encoding stage, in which there are res-block-1, res-
block-2 and res-block-3. The residual block is a kind of skip-connect architecture,
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Fig. 1. Our proposed model using res-block-1 in encoding stage. Res-block-1 is shown
in Fig. 2

avoiding gradient vanished with increasing depth of network, in which the gra-
dient is effectively transferred to the shallow layer during training network. We
apply the randomized leaky rectified liner unit (RReLU) as activated function
for neural network.

We designed the res-block-1 block by using a dual-path convolution, an addi-
tion operation and a RReLU function. Referring to Fig.2, we employed two
convolutional layers with batch normalization in main path, where RReLU was
adopted after the first convolutional layer. And in the skip-path, we employed a
convolutional layer and a batch normalization layer. These two path are added
by weighted, after that the output data feature activated by a RReLU function.

Referring to Fig. 3, we designed the res-block-2 block by using the same dual-
path architecture like res-block-1. In res-block-2, we putted RReLU function to
the first position, so that the output feature which computed at the dual-path
added each other, and then it putted fused feature to next neural unit.

Referring to Fig.4, the res-block-3 is the main single convolutional block
with a primary skip-connect weights, in which the last convolutional layer is
connected after weighted addition operation.

In this model, we apply RReLU as activated function for neural network [20],
which defined as:

z x>0
ar otherwise

RReLU(z) = { (2)
where a is randomly sampled from uniform distribution U(L, R). L is lower bound
of the uniform distribution and R is upper bound of the uniform distribution.

We set L of 1/8 and set R of 1/3.
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Fig. 3. Res-block-2.
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Fig. 4. Res-block-3.
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As for loss function, it is used to calculate the loss of training which used in
back propagation. We used the Categorical Cross-entropy. The loss function can
be described as:

>, exp(()
= —x(class) + log(z exp(z(j))) (3)

J

loss(z, class) = — log(

which combines LogSoftmax and N LLLoss in one single class. As for NLLLoss
(—x(class)) function, the negative log likelihood loss, it is useful to train a clas-
sification problem with class classes, and obtaining log-probabilities in a neural
network is easily achieved by adding a LogSoftmax layer in the last layer. The
Categorical Cross-entropy function is useful to solve the classification problem
with multi-classes.

In encoding stage, we employ lots of convolutional layers to extract features
from MRI images. And we set parameters of convolutional function with kernel
size of 3, stride of 1, padding of 1. Channels, in encoding stage, are 32, 64, 128,
256 and 512 respectively. We use max-pooling function to down-sampling so that
model get deep features and learn segmentation ability from its.

In decoding stage, we employ transposed convolutional layer to up-sampling,
which makes the output 3D images with the same size of the input 3D images.
The transposed convolution is effective and very easy to implement.

3 Experiments

Our method was evaluated on BraT$S 2020 dataset.

3.1 Dataset

The BraTS 2020 dataset contains four modes for every patient: Flair, T1, Tlc
and T2. We trained our model in BraTS 2020 training set, which contains 369
MRI scans including high-grade and low-grade brain tumor. In addition, the val-
idation set contains 125 scans of glioblastoma and testing set contains 166 scans
of glioblastoma. BraT$S challenge has always been focusing on the evaluation of
state-of-art methods for the segmentation for brain tumors in multimodal mag-
netic resonance imaging scans. Metrics for this challenge are computed through
the online evaluation platform that the ground truth labels are not available for
public. Every region of gliomas needs to be segmented pixel-to-pixel sequences
for 4 meaningful regions: the enhancing tumor (ET), the tumor core (TC), the
whole tumor (WT) and normal tissues.

3.2 Setup

Some of the hyper-parameters of the architectures were shown in Table1. We
approached brain tumor segmentation as a multi-class classification problem,
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segmented normal tissue, necrosis, edema, non-enhancing, and enhancing tumor
from MR images respectively. However, the given MR images are not suitable
for pouring into neural network directly that the redundant data will cost large
GPU memory. So we cropped images of effective parts in three dimensions.
Similarly, the same process was used on label set. Additionally, in brain tumor
segmentation, the number of samples of necrosis and enhancing tumor is small
in training set. To deal with that, we normalized all pixel-level image using z-
score (zero-mean) normalization, which made the input data follow a normal
distribution and speeded up training. The learning rate was linearly decreased
each epoch during the training stage. Our model was developed using PyTorch.
We train the model using four GPUs of Nvidia RTX 2080 TI with 40 h.

3.3 Evaluation

The evaluation metrics of brain tumor segmentations consist of three types of
measures: Dice similarity coefficient (DSC), Sensitivity and Specificity. The DSC
measures the spatial overlap between the automatic segmentation and the label.

It is defined as:
2TP

= 4

FP+2TP+ FN )
where FP, FN and TP are false positive, false negative detections and true
position, respectively. Sensitivity, also called the true positive rate or probability
of detection, measures the proportion of positives that are correctly identified as
such:

DSC

TP
TP+ FN (5)
A larger value of Sensitivity denotes a higher proximity of abnormal tissue

between label and prediction of segmentation. Finally, specificity, also called the
true negative rate, measures the proportion of negatives. It is defined as:

Sensitivity =

TN

TN + FP (6)

Speci ficity =
where TN is true negative detections. A larger value of Specificity denotes a
higher proximity of normal tissue between label and prediction of segmentation.

3.4 Result

We evaluate our proposed model on validation with three different residual block,
and compared with other state-of-art methods. Lastly, we report the result of
segmentation on BraTS 2020 testing dataset. The performance of our model is
presented on Fig. 5.

Referring to Table 2, the Res-Block-1 get better performance of segmentation
than others. In Dice metric of WT region, the Res-Block-2 gain a little advan-
tage. In addition, all the res-block get good score in segmentation of WT region.
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Table 1. Hyper-parameters of our proposed model. The weights and bias in initial-
ization are each convolutional layers’ setting. We set the randomized leaky ReLLU with
default parameter setting.

Stage Hyper-parameters | Value

Initialization Weights 1.0
Bias 0.0

Training Max epoch 100
Batch size 4
Learning rate 0.002

Learning rate decay | 0.95
GPU RTX 2080Ti |4

Randomized leaky ReLU | Lower 1/8
Upper 1/3
Inplace True
Rair T1 Tice T2

Our model

Predict label

Fig. 5. Our predict MRI images using res-block-1 block.
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Table 2. Segmentation result of Res-Block-1, Res-Block-2 and Res-Block-3 on BraTS
2020 Validation dataset

Method Dice Sensitivity Specificity

ET |WT | TC |ET |WT |TC |ET |WT |TC
Res-Block-1{0.723|0.892 | 0.788 | 0.732 | 0.908 | 0.776 | 0.999 | 0.998 | 0.999
Res-Block-2 | 0.690 | 0.897 | 0.748 | 0.717 | 0.920 | 0.750 | 0.999 | 0.998 | 0.999
Res-Block-3 | 0.680 | 0.891 | 0.740 | 0.686 | 0.885 | 0.693 | 0.999 | 0.999 | 0.999

Table 3. Segmentation result of our proposed model, DeepLab and U-Net model on
BraTS 2020 Validation dataset

Method Dice Sensitivity Specificity

ET |WT |TC |ET |WT |TC |ET |WT |TC
Our method | 0.723 | 0.892 | 0.788 | 0.732 | 0.908 | 0.776 | 0.999 | 0.998 | 0.999
DeepLab 0.7070.884 1 0.774 | 0.742 | 0.876 | 0.754 | 0.999 | 0.999 | 0.999
U-Net 0.688 1 0.8710.703 | 0.720 | 0.835 | 0.687 | 0.999 | 0.999 | 0.999

However, it is diverse to design res-block in U-shaped like model. Further exper-
imental investigations are needed to estimate the performance of these decoding
method in segmentation of medical image.

We compared our model with DeepLab and U-Net model by applying the
same pre-processing methods for quantitative study. Our study is focus on per-
formance of deep learning neural model. The results are reported on Table 3. The
most difficult tasks in this brain tumor segmentation is marking the tumor core
region for LGG and the enhancing tissues for HGG. To compare with two classi-
cal end-to-end model and referring to Table 3, our proposed model outperformed
these models in Dice metrics.

Table 4. Segmentation result of our proposed model on BraTS 2020 testing dataset

Method Dice Sensitivity Specificity
ET |WT | TC |ET |WT |TC |ET WT | TC
Mean 0.803 | 0.872 | 0.823 | 0.808 | 0.896 | 0.819 {0.999 | 0.999 | 0.999

StdDev 0.2020.132|0.250 | 0.220 | 0.138 | 0.246 | 0.0003 | 0.001 | 0.0006
Median 0.85410.913|0.910 | 0.886 | 0.936 | 0.920 | 0.999 | 0.999 | 0.999
25quantile | 0.774 | 0.850 | 0.832 | 0.792 | 0.879 | 0.796 | 0.999 |0.998 | 0.999
75quantile | 0.916 | 0.944 | 0.951 | 0.935 | 0.965 | 0.956 | 0.999 | 0.999 | 0.999

The BraTS§ challenge testing result is reported on Table 4. In segmentation of
the core and the enhancing tumor, our proposed method have better performance
on testing set.
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4 Conclusion

In this work, we propose a U-shaped architecture using residual block. We evalu-
ated performance of different residual block in this U-shaped architecture. Resid-
ual block is an effective block to build deep neural network in feature extrac-
tion stage. In brain tumor segmentation, there are lots of deep-learning models
including 2D and 3D model that the architecture becomes more and more com-
plex as the development of computer hardware and the result of segmentation
becomes more and more precise. Our research approach is a powerful tool to
studies of 3D medical images of brain tumors and our proposed model is an
effective deep-learning model, especially in 3D brain tumor segmentation.

Acknowledgement. This work was supported in part by National Natural Science
Foundation of China under Grant No. 61976126, Shandong Natural Science Foundation
under Grant No. ZR2019MF003, No. ZR2017MF054.
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