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Abstract. Robot visual control often involves multiple objectives such
as achieving high efficiency, maintaining stability, and avoiding failure.
This paper proposes a novel Vision-Based Control method (VBC) with
the Discounted Sampling Policy Gradient (DSPG) and Cosine Annealing
(CA) to achieve excellent multi-objective control performance. In our
proposed visual control framework, a DSPG learning agent is employed to
learn a policy estimating continuous kinematics for VBC. The deep policy
maps the visual observation to a specific action in an end-to-end manner.
The DSPG agent finally can update the policy to obtain the optimal
or near-optimal solution using shaped rewards from the environment.
The proposed VBC-DSPG model is optimized using a heuristic method.
Experimental results demonstrate that the proposed method performs
very well compared with some classical competitors in the multi-objective
visual control scenario.

Keywords: Multi-objective visual control · Kinematics · Discounted
sampling policy gradient · Cosine annealing

1 Introduction

Vision-based control is a mainstream approach to drive the mobile robot to
achieve multi-objective control by visual feedback, such as navigation and path
planning [1,2]. The error of the feature points on the image plane is used as the
feedback to drive the mobile robot towards the targets. Feature error reflects
the difference between the current image features and the desired image fea-
tures. One practical advantage of the VBC method is that there is no need for a
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geometric model of the target. A key issue is how to achieve an efficient mapping
from the 2D feature errors to the velocities in the 3D Cartesian coordinate sys-
tem. The kinematics bridges two [3]. The multi-objective visual control requires
the motion process to consider different objectives such as stability, rapidity, and
keeping the target. To achieve the trade-off between different objectives, a feasi-
ble way is to use modular controllers [4]. Another way is to regard performance
efficiency as the primary objective and others as constraints [5]. The latter can
simplify the multi-objective control task into a single objective task with con-
straints. Previous methods heavily rely on dynamic modeling, and it is difficult
to make these dynamic models scalable and generalizable.

The Jacobian matrix transforms the multi-objective visual control problem
into a matrix estimation and optimization problem [6]. Three conventional meth-
ods are used to approximate the Jacobin matrix for multi-objective visual con-
trol. The first one is to employ the current matrix; one is the desired matrix and
the other is the average matrix [7]. The universal Jacobian matrix involves a lin-
ear combination of the current matrix and the desired matrix. A control param-
eter ranging from 0 to 1 is used to balance the current matrix and the desired
one. It is appropriate to assign a smaller value for the parameter to ensure stable
convergence when a mobile robot is close to the target. Instead, a larger value
achieves faster convergence [8]. Previous work used the proportional-integral-
differential (PID) method to estimate the Jacobian matrix but the performance
is limited due to the unsuitable parameters [9]. Until now, the estimation of the
matrix still needs human experts’ experience. Reinforcement Learning (RL) does
not require any prior knowledge about the environment and it drives agents to
explore the environment to obtain the best solution via trial and error.

RL methods have been demonstrated to have excellent performance in devel-
oping more advanced robots, including multi-objective visual control systems
[10]. [11] developed a novel RL method to stabilize a biped robot on a rotating
platform. The proposed method addresses the overfitting problem with guar-
anteed model complexity. However, these conventional methods with tabular
RL have a bottleneck due to its discrete action space. It is also helpless for a
high-dimensional or continuous control task. Advances in deep learning models
have made it possible to extract high-level features from sensory data, and it
provides an opportunity of scaling to problems with infinite state spaces. Deep
Reinforcement Learning (DRL) applies the computational power of deep learn-
ing to relaxing the curse of dimensionality for complex tasks [12]. It can learn a
direct mapping from the state space to the policy space in an end-to-end way.
Carlos Sampedro et al. developed a deep reinforcement learning controller to
achieve the mapping from state space to linear velocity commands for multiro-
tor aerial robots [13]. The learning performance of the DRL based controller is
significantly impacted by hyperparameters. A heuristic strategy is an approach
to Hyperparameters [14].

This paper proposes a reinforcement learning method with a heuristic strat-
egy to obtain the transient matrix for multi-objective VBC systems. DSPG algo-
rithm employs discounted return sampling which provides an opportunity for
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the control system with continuous spaces. The proposed method reduces the
computation of the performance gradient to an expectation that is estimated
by the discounted sampling return. It requires only a fixed computing interval
instead of a predetermined environmental model. The deep policy network pro-
duces control actions via an on-policy learning method. An appropriate action
hence is chosen to improve the performance of the conventional multi-objective
visual control, in terms of the convergence rate and stability. The hyperparam-
eter for the proposed RL based controller is optimized by a heuristic strategy,
which can give better performance to the learning model of mobile robots.

Major contributions of this work are stated as follows:

1) A VBC method with the DSPG algorithm (VBC-DSPG) is proposed for
the multi-objective control. The DSPG algorithm is used to select the time-
varying Jacobian matrix online.

2) A parameter tuning method with the Cosine Annealing for the VBC-DSPG
method is proposed. The learning rate of the RL model is tuned to improve
the learning performance of the proposed method.

3) Related experiments are conducted to investigate the potential of the sug-
gested scheme in a renowned robot platform.

This paper is organized as follows. Section 2 gives a brief introduction to
the Multi-objective visual control model. Section 3 gives details of the proposed
VBC-DSPG method with a Cosine Annealing. Section 4 demonstrates the exper-
iment setup and experimental results. In the last section, the conclusions are
presented.

2 Vision-Based Multi-objective Control

2.1 Multi-objective Visual Control Model

In a visual control process, a robot uses an RGB-D vision to extract features from
the current image, which is Sc = (sc
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c
N)T. To use visual control methods

with the closed-loop feedback mechanism, we denote the desired features as
S∗ = (s∗

1, s
∗
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∗
N)T. Then, the errors e(t) = [sc1 − s∗
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N]T ∈
R2N×1 between the current features and the desired features can be calculated.
The feature errors e(t) is a time-varying vector and its change depends on the
motion of the robot. The velocities for the robot are derived from the time
derivative for the vector e(t) and it is as follows

ė(t) = de(t)/dt = (d [sc
1 − s∗

1] /dt, d [sc
2 − s∗

2] /dt, . . . , d [sc
N − s∗

N ] /dt) . (1)

Multi-objective visual control requires the movement of a robot to simulta-
neously satisfy three different objectives, which are less fluctuation, short time,
and no loss of target. The Jacobian matrix J transforms the change rate for
feature errors into velocities of the robot. The conversion process is as follows

ė(t) = J [ωt, v
x
t , vy

t ]T = J[ω,v]T,J ∈ R2N∗3, (2)
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where N is the number of the features. The previous study [4] used ė(t) = −ϕe(t)
to ensure an exponential decoupled decrease for the error vector e(t). Equation
(3) gives the visual control law using the universal Jacobian matrix.

[ωr
t , vx

t , vy
t ]T = −ϕĴ+e(t), Ĵ+ ∈ R3∗2N

J = xJ1 + (1 − x)J2
, (3)

where Ĵ+ is the pseudo-inverse for the Jacobian matrix.ϕis a constant, which is
the servo gain [4]. Based on the Jacobian matrix, a multi-objective visual control
model is given by,

minimize F (x) = [f1(x), f2(x), . . . , fm(x)] , x ∈ [0, 1]

subject to
{

ϕ(e(t),J(x)) = [ω,v]T

J(x) = xJ1 + (1 − x)J2

, (4)

where x is the control parameter and its value ranges from 0 to 1. f1(x),
f2(x), . . . , fm(x) represents the objectives for a perfect control performance,
which are defined in a specific task. ϕ(•) is a conversion function mapping the
feature errors to velocities of the robot. In this work, these objectives are less
fluctuation, short time, and the low probability of target loss. An appropriate
value for the control parameter x can satisfy the high-efficiency multi-objective
control.

2.2 Computation of the Jacobian Matrix

Figure 1 describes a coordinate transformation model for visual features. In the
transformation model, the coordinate for the origin O1 (uo, vo) on the image
plane is mapped to the coordinate for the origin O2 on the camera plane.

If the coordinate in pixel for the point a on the camera plane is a(u, v), the
3D point concerning the point a on the Cartesian coordinate system is A. Take
the point a and the point A, for example, Eq. (5) gives the transformation from
a point on the camera plane to a 3D point in the Cartesian coordinate system.
The value of the pixel for the point a is d (u′, v′) on the image plane.

{
Xa = Zadx (u − uo) /f2

Ya = Zady (v − vo) /f2 , (5)

where the focal length of the RGB-D camera is f . The scaling constants from
the image plane to the camera plane in the x-axis and y-axis directions are
represented by ϑx and ϑy. For the j − th feature point (uj , vj), the expression
for the Jacobian matrix is given by Eq. (6).

Jj =
[− (f/Zaϑx) 0 vj (ϑy/ϑx)

0 − (f/Zaϑx) uj (ϑx/ϑy)

]
, (6)

For the N features, the whole expression for the Jacobian matrix is J =
[J1,J2, . . . , JN ]T ∈ R2N∗3.
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Fig. 1. Coordinate transformation model for visual features.

3 A Discounted Sampling Policy Gradient with a
Heuristic Strategy for Multi-objective Visual Control

3.1 Reinforcement Learning

An RL agent selects an action at using a policy π(s, a) when receives state
st. Then, the agent gets a reward rt from the environment and moves to the
next state st+1. This process is repeated until the RL agent reaches the target
position. The action policy π is constantly updated with the exploration of the
agent. The RL method maximizes the expectation of the cumulative rewards
R (st) = rt+γR (st+1) =

∑∞
i=0 γirt+i for each state. γ is the discount factor. The

value function is used to represent the expectation for the cumulative reward.
The value function for the state st is given by,

V (st) = E
[
rt+1 + γrt+2 + γ2rt+3 + . . . | s = st

]
=

∑
a π(s, a)

∑
st+1

P a
st+1

(rt + γV (st+1))
. (7)

The Q-learning method uses the action-value function to represent the expec-
tation for the cumulative reward. The action-value function for Q-learning in
one-step prediction to the RL problems can be represented by,

Q(s, a) = E

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
. (8)

For the RL problems, the policy gradient optimizes the policy with the gra-
dient in the policy space, instead of the value function. This method is practical
when encountering a task with a stochastic action space [15]. DSPG algorithms
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are often used to address the problem of action selection in a continuous or high-
dimensional space for RL tasks with unstructured environments. The agent is
driven to move to the next state and receive a reward from the environment.
The discounted reward sampling in a fixed interval allows us to estimate the
value function, resulting in a policy that is considered to be optimal or closer to
optimal.

3.2 Discounted Sampling Policy Gradient with a Cosine Annealing

Similar to the Deep Q-network (DQN) method, a nonlinear neural network func-
tion approximator is used for the DSPG method. The DSPG method uses low-
dimensional observations, such as the joint angles or pixels, to learn competitive
policies for many cases.

The goal of the DSPG method is to maximize the long-term discounted
return with the weights θ, which is J(θ) = Eτ∼pθ(τ) �∑t r (st, at)]. The optimal
parameter space setting θ∗ makes the robot get an optimal behavior trajectory
τ , which can obtain the maximum long-term return r(τ) = max

∑
t r (st, at).

The better the trajectory means the robot can make a wise decision to select
a time-varying matrix J. s0 is the initial state. The probability of a trajectory
with a differentiable distribution function pθ(τ) is shown in Eq. (9).

pθ(τ) = p (s0)
T−1∏
t=0

p (st+1 | st, at) πθ (at | st) , (9)

where πθ (at | st) is the parameterized policy and p (st+1 | st, at) is the state
transition probability. The gradient for the objective function is given by,

∇θJ(θ) =
∫

pθ(τ)r(τ)dτ
= Eτ∼pθ(τ) [(

∑
t ∇θ log (πθ (at | st))) (

∑
t r (st, at))]

≈ 1
N

∑N
j=1

∑
t [∇θ log (πθ (at,j | st,j)) (

∑
t′=t r (st′,j , at′,j))] ,

(10)

where the objective function samples N trajectories. The sampled returns are
used to approximate the value function. In an episode, the effect of current
reward on current policy decreases with the increase of time step. So, a dis-
counted return sampling method for the expectation is proposed. The objective
function with a discounted return sampling is given by,

∇θJ(θ) =
∫

pθ(τ)r(τ)dτ

≈ 1
N

∑N
j=1

∑
t

[
∇θ log (πθ (at,j | st,j))

(∑
t′=t γt−t′

r (st′,j , at′,j)
)]

, (11)

where γ is the discount factor. ηt is the learning rate. The updating law for the
policy network is given by,

θt+1 ← θt + ηt∇θt
J (θt) . (12)

Hyperparameter strategies evaluate the performance of each configuration
on the learning tasks. This method can complete the training process of auto-
matically parameter testing for a machine learning model. However, the time
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cost of the evaluation for a configuration is expensive. In the process of Hyper-
parameter tuning, re-evaluation is necessary, which will be very inefficient for
complex models. Some heuristic methods, such as evolutionary algorithms, are
difficult to apply in the tuning of Hyperparameter. Previous works often lever-
age the Simulated Annealing (SA) to optimize the Hyperparameters [16]. As a
heuristic method, SA simulates the annealing process in the thermodynamics
energetics. A rule of the agent learning process should be satisfied: more current
experience should be reserved in the early stage of learning. Conversely, the more
prior experience should be preserved. A Cosine Annealing scheme is employed to
tune the learning rate for the RL controller. The updating law with the Cosine
Annealing is given by,

ηt ← ηmin +
1
2

(
1 + cos

(
Tt

Tmax
π

))
(ηmax − ηmin) , (13)

where ηmax and ηmin are the maximum and minimum of learning rate respec-
tively, which are constant. Tt represents the number of current epochs. Tmax is
the maximum epochs. An exploration noise N sampled from a noise process is
added to the policy network to develop an exploration action policy. The action
policy with an exploration noise is given by,

at = πθ (st) + N. (14)

3.3 An Adaptive Multi-objective Visual Control Model with DSPG
(VBC-DSPG)

DSPG method employs the policy network to select a time-varying matrix and
uses a sample discounted return to estimate the value of the action function.
An RGB-D camera receives image features by the contour recognition meth-
ods. Then, the current observation st is calculated. The observation information
consists of a 4-dimensional vector defined by Eq. (15).

St = (ex, dex/dt, ey, dey/dt) , (15)

where ex, ey represents the vector for the feature errors of the current positions
concerning the desired positions defined in the image plane respectively. The
current policy network receives the vector of the current observation as the input
and outputs a distribution πθ (at | st) for the action space. This work defines a
mapping function to ensure that the output action is limited between 0 and 1
because the control parameter x ranges from 0 to 1. Equation (16) gives the
expression for the mapping function.

x = f (at) =
1
π

arctan (at) + 0.5. (16)

As illustrated in Fig. 2, the DSPG agent consists of a feed-forward neural
network with an input layer, an output layer, and hidden layers of 20 and 40
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Fig. 2. Structure of the proposed DSPG model.

units. In hidden layers, the Sigmoid function is utilized as the activation function
mapping an input to an output.

In the VBC-DSPG method, the shaping reinforcement signal rt in Eq. (17)
is used to update the policy.

rt = −R

2

(
N∑
i=1

√
(eix)

2 +
(
eiy

)2
+

√
(deix/dt)

2 +
(
deiy/dt

)2)
/

(
N

√
row2 + col2

)
, (17)

where the weight and length of the image plane are represented by row and col
respectively. The environment gives the reward R to the RL agent depending
on the actual situation. The number of feature points is N . The robot receives
a higher reward if it is closer to the target.

The main motivation for employing the reinforcement signal is to drive the
robot to achieve the target as soon as possible. In Eq. (17), the reward term
penalizes the learning agent when the feature errors are big. The weights of
the policy network are updated in the way that the robot adaptively selects a
time-varying matrix for Multi-objective visual control.

4 Experiments

4.1 Experimental Environment

As shown in Fig. 3, we construct a simulation model with the same dynam-
ics as the real device using commercial robotic software, Webots7.0.3. In the
simulation, the robot learns policy using the DSPG algorithm and when the
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policy converges, this policy is optimized using the Cosine Annealing. Noise and
disturbance are added in the simulation environment to create a complex task
environment close to the real-world. Then, the experiments on a mobile robot
are performed to appraise the practicality of the proposed method. Finally, the
proposed method and the conventional pseudo inverse kinematics methods are
used to select the matrix. Experimental results are recorded to test whether the
proposed method has better performance.

Fig. 3. A visual control task in the simulation environment.

4.2 Training for RL

An episodic RL setting is used to train the RL agent. This control task requires
the mobile robot to move from an initial position to a target position, as shown
in Fig. 3. The visual control process of a robot should satisfy multiple objec-
tives: less fluctuation, short time, and no loss of target. In each episode, the
initial position for the RL agent is randomly selected, and the desired position
is (0.463 m, 0.593 m, 37.8◦). In each time step, the DSPG agent acts with an
added exploration noise. The gain ϕ◦ is set to 0.35. The hyperparameters for
the DSPG agent are shown below. The initial value for the learning rate η is 0.5.
The discount γ is 0.95. The reward R is 10. The maximum epochs Tmax is 1000.

The rules for the RL agent are as follows. 1). This episode will be terminated
if the robot loses some features. 2). This episode will be terminated if the feature
errors remain a certain pixel for a certain time. 3). This episode will be termi-
nated if the robot does not arrive at the desired position after the maximum
number of steps. 4). After a new action is selected by the RL agent, the matrix
is updated using Eq.(3). 5). The robot returns to the starting position if a new
episode starts.

When this episode is terminated negatively, the reward −10 is given to the
RL agent. In other episodes, the RL agent is rewarded with the reward function.
With this configuration, the agent learns a stable motion behavior after consid-
erable training episodes. Since the RL agent is given a negative reward before
reaching the desired position, the reward is a negative value per episode. After
training, agents will learn a policy from state space to behavior space.



450 M. Xu et al.

Fig. 4. Experimental results, in terms of the Feature error, Feature trajectories, and
Velocities. For each item, from left to right, from top to bottom are A-JM, C-JM,
D-JM, and Proposed method.
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4.3 Simulation

In the simulation, to verify the effectiveness of the proposed method, the pro-
posed VBC-DSPG method and three competitors were run on the platform. The
initial position is (0.0289 m, 0.062 m, 0.07◦) and the desired position is (0.463 m,
0.593 m, 37.8◦). Three competitors include the Jacobian matrix method using
the current one (C-JM) [1], the matrix using the desired one (D-JM) [1], and
the matrix using the average one (A-JM) [4]. The four methods were tested 50
times and the average values for these 50 times are shown in Fig. 4.

Experimental results show that the C-JM method converges in around 129
control cycles. The D-JM method converges in around 115 control cycles. The
A-JM method converges in around 111 control cycles. The convergence time
for the proposed method is around 92 control cycles. Although the three con-
ventional competitors reach the desired position, the convergence rates for the
three competitors are slower than the proposed method. Different methods select
different Jacobian matrix, which results in different behavior. In Fig. 4, at the
beginning of the control process, the proposed method chooses a larger velocity,
which drives the robot to reach the target position faster.

However, in the beginning, excessive-velocity may lead to instability, dif-
ficulty in control, and even loss of target, resulting in danger, such as C-JM
methods. Figure 4 shows the feature trajectories for the four methods. Conven-
tional methods cause one dimension to reach the desired position, while others
do not. So, there are many fluctuations in the feature trajectory. The proposed
method enables the robot to learn a policy to achieve better multi-objective
control performance.

5 Conclusion

This paper developed a new multi-objective visual control method that inte-
grates discounted sampling policy gradient and a heuristic strategy. A DSPG
based scheme is proposed to handle the multi-objective visual control challenges
of mobile robots by selecting an appropriate Jacobian matrix adaptively. The
policy network is obtained by a training process. Then, the network can automat-
ically calculate a time-varying matrix to achieve a robust control performance.
The proposed method has been extensively compared with three conventional
methods.
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