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Abstract. Portfolio optimization is a well-known problem in the domain
of finance with reports dating as far back as 1952. It aims to find a trade-
off between risk and expected return for the investors, who want to invest
finite capital in a set of available assets. Furthermore, constrained portfo-
lio optimization problems are of particular interest in real-world scenarios
where practical aspects such as cardinality (among others) are consid-
ered. Both mathematical programming and meta-heuristic approaches
have been employed for handling this problem. Evolutionary Algorithms
(EAs) are often preferred for constrained portfolio optimization prob-
lems involving non-convex models. In this paper, we propose an EA with
a tailored variable representation and initialization scheme to solve the
problem. The proposed approach uses a short variable vector, regard-
less of the size of the assets available to choose from, making it more
scalable. The solutions generated do not need to be repaired and sat-
isfy some of the constraints implicitly rather than requiring a dedicated
technique. Empirical experiments on 20 instances with the numbers of
assets, ranging from 31 to 2235, indicate that the proposed components
can significantly expedite the convergence of the algorithm towards the
Pareto front.

Keywords: Representation for evolutionary algorithm ·
Multi-objective portfolio optimization · Constrained portfolio
optimization

1 Introduction and Background

Portfolio optimization is a prominent application problem in the field of finance.
A number of studies have been reported on this subject since 1952, as reviewed
in [9]. The core task is to find the optimal allocation of limited capital among
certain given assets so that two conflicting goals, minimizing risk and maximiz-
ing returns, can be achieved. Mean-Variance (MV) model is an original portfolio
optimization model, which estimates the expected return by mean of the profit
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and measures the risk by variance of the profit [11]. This model is a quadratic
problem since it assumes that the risk of an investment should be assessed by a
covariance matrix based on the variance and the correlation among the assets.
As a general quadratic problem, it is not difficult to solve using contemporary
optimization techniques [14]. However, practical portfolio problems involve a
range of constraints, such as cardinality, minimum lot size, pre-selected assets,
etc. Incorporating these constraints result in mixed integer/combinatorial mod-
els. There are also some exact algorithms, which have been designed and utilized
to tackle the constrained portfolio optimization problems [1]. Nonetheless, there
is no polynomial-time algorithm for the case when a cardinality constraint is
involved [13].

Therefore, meta-heuristic algorithms such as Evolutionary Algorithms (EAs)
have gained attention to solve complex instances of portfolio optimization prob-
lems. Moreover, population-based metaheuristics are also inherently suited for
solving multiobjective optimization problems, since the optimum of such prob-
lems consists of a trade-off solution set (Pareto optimal front). They have
been used to solve different constrained portfolio optimization problems based
on the mean-variance (MV) model, with different numbers of objectives and
various different types of constraints. For single-objective problems, Chang et
al. [2] used three different meta-heuristics, namely genetic algorithms, tabu
search, and simulated annealing, to handle the problem with a fixed amount
of invested assets. Gaspero et al. [8] proposed a hybrid algorithm with a local
search and a quadratic programming solver. The numerical experiments on a
portfolio optimization problem with three constraints (cardinality, quantity, and
pre-assignment) showed that it performed better than some of the widely used
softwares such as CPLEX and MOSEK. As for the constrained multi-objective
problems, Pouya et al. [15] transformed the problem into a single-objective form
with a fuzzy normalization. Subsequently, they used a metaheurstic method
to solve the transformed problem and obtained improved results over Particle
Swarm Optimization [15]. Deb et al. [6] solved the problem using a customized
hybrid algorithm with specialized evolutionary operators, repair, local search and
clustering. Lwin et al. [10] proposed a learning-guided multi-objective evolution-
ary algorithm (MODEwAwL), utilizing the information about selection of assets
from previous generation to guide the search. It was based on a multiobjective
Differential Evolution (DE) algorithm and the study compared results obtained
with four well known Multi-Objective Evolutionary Algorithms (MOEAs). The
simulation results on a MV model based problem, including four constraints such
as cardinality, quantity, pre-assignment, and round lot constraints, indicated that
the proposed algorithm improved the performance over the others. Yi et al. [3,4]
introduced a tailored representation, Compressed Coding Scheme (CCS) for the
same problem as that in [10]. This representation used one gene fragment to rep-
resent both the selection and allocation of one asset. The comparison between
CCS and the direct representation illustrated that this tailored representation
was superior for this problem with regard to the obtained efficient front since
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it could reduce the interaction between the selection and allocation elements of
the problem.

In the methods available to solve constrained multiobjective optimization
problems, including those discussed above, the representation of a solution vec-
tor is typically done using a binary vector that indicates whether a particular
asset is selected or not. Consequently, the length of the solution vector increases
significantly as the number of assets increases; resulting in a corresponding (expo-
nential) increase in the solution search space. Therefore, in this paper, we propose
and show initial results on a new representation scheme that remains of a fixed
size (equal to the cardinality of the portfolio) regardless of the number of assets
available to choose from. Moreover, we also propose a customized initialization
which guarantees one of the global extremities of the true Pareto front (PF).
An evolutionary algorithm constructed with the proposed components shows a
commendable speed-up in convergence, delivering a good PF approximation in
relatively small number (≈20%) of evaluations compared to the peer algorithms.
The mathematical model for the problem is detailed next in Sect. 2, followed
by the proposed method in Sect. 3. Numerical experiments and conclusions are
presented in Sects. 4 and 5, respectively.

2 Mathematical Model

The constrained portfolio optimization problem studied here has two conflicting
objectives (minimum risk, maximum return) and is subject to four constraints:
cardinality, quantity, pre-assignment, and round lot constraints [10]. The follow-
ing notations are used in the formulation:

N the number of available assets
K the number of assets in a portfolio, i.e., the cardinality
L the number of assets in the pre-assignment set

wi the proportion of capital invested in the ith asset
ρij the correlation coefficient of the returns of ith and jth assets
σi the standard deviation of ith asset

σij the covariance of ith and jth assets
μi the expected return of the ith asset
υi the minimum trading lot of the ith asset
εi the lower limit on the investment of the ith asset
δi the upper limit on the investment of the ith asset
yi the multiple of the minimum trading lot in the ith asset

σij = ρijσiσj

si =

{
1, if the ith (i = 1, . . . , N) asset is chosen
0, otherwise

zi =

{
1, if the ith asset is in the pre-assigned set
0, otherwise
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With above notations, the problem can be formulated as:

Minimize f1 =
N∑
i=1

N∑
j=1

wiwjσij , (1)

Maximize f2 =
N∑
i=1

wiμi, (2)

subject to
N∑
i=1

wi = 1, 0 ≤ wi ≤ 1, (3)

N∑
i=1

si = K, (4)

εisi ≤ wi ≤ δisi, i = 1, ..., N, (5)
si ≥ zi, i = 1, ..., N, (6)
wi = yiυi, i = 1, ..., N, yi ∈ Z+, (7)
si, zi ∈ {0, 1}, i = 1, ..., N, (8)

The Eqs. (1) and (2) represent the two conflicting objectives, i.e., risk minimiza-
tion and return maximization. Equation (3) ensures that all available capital
should be invested. Equation (4) is the cardinality constraint enforcing that
exactly K assets are selected. Equation (5) is the floor and ceiling constraint,
it defines that investment in the ith asset should lie between εi to δi. Further,
Eq. (6) designates the pre-assignment constraint that certain asset(s) must be
selected (zi = 1) in the portfolio, eg, based on investors’ preferences. Equa-
tion (7) defines the round lot constraint, specifying a minimum number of lots to
be traded for a selected asset. Finally, Eq. (8), discrete constraint, limits both si
and zi to be binary. In this study, these constraints are set in consistency with
the past study [3] as follows:

– Cardinality K = 10, floor εi = 0.01, ceiling δi = 1.0, pre-assignment z30 = 1
and round lot υi = 0.008.

The goal in solving the above problem is to seek a set of portfolios that lie
close to/on the Pareto front, with a good diversity to cater to the investors with
different risk-return appetite.

3 Proposed Method

The proposed approach follows a canonical evolutionary framework as shown
in Algorithm 1. The algorithm uses customized representation and opera-
tors (including initialization, offspring generation) to suit the constrained multi-
objective portfolio optimization problem considered. The intent behind the cus-
tomization is to improve the convergence rate, and they assume no more prior
knowledge about the problem than already given in the existing works (e.g. [3]).
The key components of the algorithm are discussed in the following subsections.
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Algorithm 1. Proposed method for multiobjective portfolio optimization
Input: Problem data (See Sect. 2), Population size (Np), Total evaluations (FEmax)
Output: PF approximation

1: Set #function evaluation FE = 0, archive of evaluated solutions A = ∅, generation count t = 0
2: Initialize the population P 0 (of size Np) with the tailored method in Sect. 3.2, and evaluate all

solutions. Update A, FE
3: while (FE < FEmax) do
4: Generate offspring solutions Ct from current population P t in three different ways with

probabilities, pr1, pr2 and pr3 respectively.
5: Evaluate offspring solutions Ct Update A, FE
6: Rank T t = P t ∪ Ct

7: Select top Np individuals in T t as the next generation population P t+1 Update pr1, pr2, pr3

8: Set t = t + 1
9: end while
10: Output the non-dominated solutions N ∈ A as the PF approximation

3.1 Solution Representation

From Sect. 2, one can observe that the solution vector under the standard nota-
tions includes 2N decision variables. The first N variables si, i = 1, . . . , N , are
binary, indicating whether ith is selected or not; whereas the next N variables
wi, i = 1, . . . , N , are discrete, indicating the proportion of the capital invested
in ith asset. Given that the given number of assets (N) may often comprise a
large set, this representation gives rise to a large number of variables.

In this work, we propose and investigate a compact representation, which
consists of merely 2K variables. The first K variables ai, i = 1, . . . ,K, 1 ≤ ai ≤
N , are categorical, indicating the labels (ids) of the chosen assets. The next K
variables qi, i = 1, . . . , K, are discrete (positive integers), representing the lot
size acquired of these K assets.

Note that the above representation helps in implicitly satisfying some of
constraints and avoiding repair operators. Since the round lot υi = 0.008, the
total number of trading lots can be calculated as p =

∑N
i qi = 1/0.008 =

125. Now, since, floor εi = 0.01 and ceiling δi = 1.0, therefore, 2 ≤ qi ≤ 125.
Thus, having qi as integers in the given range automatically satisfy the round
lot and floor-ceiling constraints. Moreover, the problem converts to a form akin
to distributing the available capital (given number of lots (p = 125)) lots to
a selected number (K) of assets. Such types of problems commonly occur in
probability theory, and there is an opportunity to leverage some of the existing
techniques to solve them (as detailed in further subsections).

3.2 Initialization

The initialization of the solutions occurs in two parts. First half is a customized
initialization to obtain solutions close to the solution with the best return. Of
these the one with the maximum return is guaranteed globally for the prob-
lem, while the others are created by perturbing it. The second half is generated
randomly.
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Initializing the Best Return Solution(s): In order to maximize the overall
return, one would need to buy the maximum quantity of the asset with highest
return, while satisfying the prescribed constraints discussed in Sect. 2. We do so
in these steps:

– Sort the assets in the decreasing order of their expected return
– Identify the top K assets in the sorted list, and assign the minimum trading

lot (qi = 2) to each. This list is referred to as SK

– If the pre-assigned asset (z30) already exists in the above list, move to next
step, otherwise replace the last asset in SK by the pre-assigned asset.

– Thereafter, assign qi = p − 2 × (K − 1) lots to the first asset in SK (the one
with the largest return) and assign qi = 2 lots to the remaining K − 1 assets.
This assignment satisfies all constraints, sums up to p lots traded, and assigns
maximum possible lots to the highest return asset. Thus, it constitutes the
solution with maximum overall return, denoted by xmaxR

– For generating the rest of the Np/2−1 solutions of the first half, the quantity
of the first asset in Sk is decreased by 1, while that of the second asset is
increased by 1 to construct each subsequent solution.

Initializing the Remaining Solutions: The remaining Np/2 solutions are
initialized randomly. For generating each solution, K − 1 assets are selected
randomly, and the pre-assigned asset z30 is appended to the list to complete
the selection. As for their lot sizes, the total p round lots are divided among
K assets using the stars and bars (SaB) approach in probability theory [7].
This particular instance is equivalent to dividing n indistinguishable objects
into m partitions. SaB approach solves this problem using a graphical aid by
representing n objects as indistinguishable symbols (‘stars’) in a single row, and
placing m − 1 separators (‘bars’) between them to specify the number assigned
to each bin. For example, for dividing 5 objects in 3 bins, 2 bars can be placed
between the them in different positions. Assuming each bin needs to have at least
1 object, the bars cannot be placed at either of the ends of the row. Thus, a total
of

(
n−1
m−1

)
possibilities exist for such an assignment. Correspondingly, for the given

portfolio problem, there are
(
p−2K−1

K−1

)
distributions possible where each chosen

asset has the minimum round lot qi = 2 allocated. One of such combinations is
chosen randomly, that satisfies the minimum round lot constraint.

3.3 Creating Offspring Solutions

The method proposed to create of the offspring solutions attempts to gener-
ate offspring solutions targeting different parts of the PF approximation, i.e.,
some toward low risk solutions, some towards high return solutions, and some
across whole PF. The probability of generating the solution in either of these
parts is controlled via a set of self-adapting parameters {pr1, pr2, pr3}, such that∑

pri = 1. The values are initialized to be equal at the beginning of the run,
i.e., {1/3, 1/3, 1/3}.
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The offspring solutions are generated through pairwise recombination among
the current population. For two parent solutions px1 and px2, the recombination
proceeds as follows:

– Let us denote the assets in px1 and px2 as apx1 and apx2, respectively. The
common assets between the two parents are identified as apc = apx1 ∩ apx2

Correspondingly, the assets that are not common between the two parents
can be identified as apu1 = apx1\apc and apu2 = apx2\apc.

– The assets of the offspring solutions are then assigned as follows. The com-
mon assets (apc) are kept in both offspring solutions. The remaining K−|apc|
assets are chosen randomly from apu1 ∪ apu2, while ensuring no asset is
assigned to both offspring solutions.

– The lot size for each asset for the offspring solutions are assigned as follows.
The lot sizes of the common assets are directly inherited from the parent
solutions. For the remaining (not common) assets, first of all, the lot sizes
vector qi, i = 1 . . . |K − |apc||, are generated using the same approach as used
in initialization (i.e., SaB approach). Then,

• With probability pr1, the lot sizes are assigned in decreasing order to the
assets with highest to lowest return. This is to encourage generation of
solutions towards the PF extremity with high return.

• With probability pr3, the lot sizes are assigned in decreasing order by
picking the assets with lowest expected risk based on the risk covari-
ance matrix σ. This is to encourage generation of solutions towards the
extremity of the PF with lowest risk.

• With probability pr2, the lot sizes are assigned randomly, to encourage
the solutions across the PF with no bias.

Adjustment of Probabilities {pr1, pr2, pr3}: After each generation, the
probabilities {pr1, pr2, pr3} are adjusted by the algorithm to allow focus on unex-
plored regions as per the above conditions. The adjustment is done as follows:

• The curve length Cl of the current non-dominated set (in the objective space)
is calculated assuming it to be piece-wise linear among the non-dominated
points.

• The number of solutions in the left (min. risk), middle, and right (max
return) are identified as n1, n2, n3 are counted as those within length
l ≤ Cl/3, Cl/3 ≤ l ≤ 2Cl/3 and 2Cl/3 ≤ l ≤ Cl from the one extrem-
ity (say min. risk) along the curve. These numbers are then normalized as
{N1, N2, N3} = exp({n1, n2, n3}/(n1 + n2 + n3)). In the final step, the prob-
abilities are calculated as {pr1, pr2, pr3} = {1/N1,1/N2,1/N3}

1/N1+1/N2+1/N3
.

The rationale behind the above adjustments is to simply map the sections
of the non-dominated set with fewer solutions to high probability of exploration
and vice-versa. Other mathematical forms that achieve similar mapping can also
be used.
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3.4 Ranking and Reduction

For ranking the population, the widely used non-dominated sorting and crowding
distance are used [5]. The former targets convergence towards the PF and the
latter helps promote diversity among the non-dominated solutions during the
search process.

4 Empirical Study

In this section, we discuss the experimental set-up and the results of the bench-
marking.

4.1 Experiment Configuration

Two sets of test problems are considered here. One is established recently based
on the data from Yahoo Finance website (D1−15) with the number of available
assets as high as 2235. The other one is a classic but small scale (D16−20)
benchmark suite1. Their details are given in Table 1.

Table 1. Twenty benchmark instances considered in this study

Instance Origin Name #Assets Instance Origin Name #Assets

D1 Korea KOSPI Composite 562 D11 USA NASDQ Industrial 808

D2 USA AMEX Composite 1893 D12 USA NASDQ Telecom 139

D3 USA NASDAQ 2235 D13 USA NYSE US100 94

D4 Australia All ordinaries 264 D14 USA NYSE World 170

D5 Italy MIBTEL 167 D15 USA S&P 500 469

D6 UK FTSE ACT250 128 D16 Hong Kong Hang Seng 31

D7 USA NASDAQ Bank 380 D17 Germany DAX100 85

D8 USA NASDAQ Biotech 130 D18 UK FTSE 100 89

D9 USA NASDQ Computer 417 D19 US S&P 500 98

D10 USA NASDQ Financial00 91 D20 Japan Nikkei 225

For benchmarking with peer algorithms, the popularly used multiobjective
performance metric, Hypervolume (HV) [16], is used in a normalized objective
space. HV measures the volume of dominated space by a non-dominated set Q
relative to a reference point r. The reference point needs to be carefully cho-
sen for computing HV, to ensure that the contributions of the extreme points
are counted but do not overwhelmingly contribute more than those of the other
points in the set. Thus it is recommended to set r slightly dominated by the nadir
point of the true PF (where known). In this work, we have set r = (1.2, 1.2)
for this reason in the normalized space. Note that while calculating HV, the
second objective (maximize return) is also converted to minimization by negat-
ing the values. The second key aspect is to select the normalization bounds.
1 Datasets can be accessed at https://github.com/CYLOL2019/Portfolio-Instances.

https://github.com/CYLOL2019/Portfolio-Instances
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For the datasets from OR-Library (D16–D20), the true PFs can be obtained
with a quadratic approach using CPLEX and a mathematical multiobjective
method [12]. Therefore, true ideal and nadir points of the true PF are used as
normalization bounds for these cases. However, the true PFs are unavailable
for some problems in NGINX dataset (D1–D15) due to large number of assets.
For these cases, the best known unconstrained Pareto fronts (UCPFs) are con-
sidered with the following modification. They are truncated by the best return
solution (known to be feasible and globally optimal from Sect. 3). This truncated
version of the UCPF is referred to as TUCPF. The PFs, UCPFs and TUCPFs
for selected problems are depicted in Fig. 1. It can be seen that PFs and TUCPFs
are significantly different from the UCPFs for both instances. Many solutions of
UCPFs are infeasible. For instance, on D6, the return for UCPF ranges from 0
to 4, however, the solutions with return higher than 3 are all unavailable. On
the other hand, although PFs are very close to TUCPFs on D6, the differences
are distinct on D17. These results demonstrate the necessity of utilizing the
PFs (where available) or TUCPFs (where PFs are not available) instead of the
UCPFs contrary to some past studies that have used UCPFs. Since true PFs are
unknown for some problems, we utilize the bounds of TUCPFs for normalizing
the obtained PF approximations in those cases.

The proposed method is compared with two recent peer algorithms, namely
MODEwAwL [10] and CCS [3]. The number of objective function evaluations
are limited to 5000, and each algorithm is run 31 times with a population size
of 100 for gathering the statistics of performance (HV).
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Fig. 1. The three different PFs.

4.2 Results and Comparisons

The statistics of HV obtained using the three algorithms are shown in Table 2.
The rank and mean rank of each algorithm on all instances is listed in parenthe-
sis [∗] and last row, respectively; where lower value indicates better performance.
The best result of each instance is highlighted in gray. The symbol “+/−/=”
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indicates better, worse, and equal performance relationship between paired algo-
rithms in terms of Wilcoxon rank-sum test (5% significant level). Lastly, if a PF is
unavailable (for HV normalization bounds calculation) after running the mathe-
matical approach for 7 days, the datasets are shown with a star(*). In such cases,
TUCPFs are used for HV normalization bounds during benchmarking. We note
that the problems are unsolvable with a 7 days time limit for the mathematical
approaches when the available number of assets exceed 225.

Table 2. HV obtained using the three algorithms. Note: for brevity, we denote MOD-
EwAwL, CCS and proposed method with ‘A’, ‘B’ ‘C’ respectively here.

Data\ Alg. A B C Data\ Alg. A B C

D1∗ Median 7.64e-01[3] 7.84e-01[2] 8.07e-01[1]
D11∗ Median 8.57e-01[2] 7.77e-01[3] 8.83e-01[1]

Std 4.04e-02 9.49e-02 1.44e-04 Std 2.68e-02 1.08e-01 1.60e-03

D2∗ Median 7.80e-01[2] 7.70e-01[3] 7.80e-01[1]
D12

Median 8.38e-01[2] 8.11e-01[3] 8.56e-01[1]

Std 1.10e-02 1.25e-01 1.90e-04 Std 3.71e-02 1.14e-01 3.01e-04

D3∗ Median 8.67e-01[2] 6.47e-01[3] 8.85e-01[1]
D13

Median 8.45e-01[2] 8.11e-01[3] 8.45e-01[1]

Std 2.74e-02 1.03e-01 3.68e-04 Std 1.48e-02 4.62e-02 4.00e-03

D4∗ Median 8.68e-01[2] 7.40e-01[3] 8.96e-01[1]
D14

Median 8.42e-01[1] 7.54e-01[3] 8.39e-01[2]

Std 3.72e-02 1.12e-01 2.63e-04 Std 3.42e-02 1.22e-01 2.26e-03

D5
Median 8.91e-01[2] 8.39e-01[3] 8.92e-01[1]

D15∗ Median 9.10e-01[2] 8.04e-01[3] 9.15e-01[1]

Std 6.56e-03 3.35e-02 5.68e-03 Std 9.08e-03 9.43e-02 3.88e-03

D6
Median 8.07e-01[1] 8.01e-01[3] 8.06e-01[2]

D16
Median 8.13e-01[3] 8.32e-01[1] 8.24e-01[2]

Std 1.32e-02 7.01e-03 5.20e-04 Std 3.52e-02 2.34e-03 1.11e-03

D7∗ Median 8.65e-01[1] 8.33e-01[3] 8.63e-01[2]
D17

Median 8.97e-01[2] 8.84e-01[3] 9.01e-01[1]

Std 1.85e-02 1.12e-01 2.53e-04 Std 3.11e-02 1.86e-02 4.32e-03

D8
Median 8.40e-01[1] 8.28e-01[3] 8.29e-01[2]

D18
Median 8.33e-01[1] 8.19e-01[2] 8.19e-01[3]

Std 3.03e-02 6.94e-03 3.11e-03 Std 1.70e-02 3.26e-02 4.22e-03

D9∗ Median 8.44e-01[1] 6.99e-01[3] 8.39e-01[2]
D19

Median 8.60e-01[2] 8.45e-01[3] 8.78e-01[1]

Std 2.97e-02 1.20e-01 1.67e-03 Std 1.12e-02 2.72e-02 2.62e-03

D10
Median 8.99e-01[2] 8.77e-01[3] 9.07e-01[1]

D20
Median 8.82e-01[1] 7.84e-01[3] 8.47e-01[2]

Std 6.03e-03 1.92e-02 1.58e-03 Std 8.29e-03 2.29e-02 1.60e-02

MeanRank 1.8(A) 2.8(B) 1.4(C) +/-/= 9/4/7(C&A) 16/1/3(C&B) -

The results show that the proposed algorithm performs first or second in
all problems with an exception of D18. Furthermore, it achieves the best mean
rank (1.4) among the three approaches. With regards to the Wilcoxon rank-
sum tests, the proposed algorithm outperforms the others on most problems.
For example, it shows better performance over MODEwAwL and CCS for large
number of instances (9 and 16 times respectively), while it is worse on small
number of instances (4 and 1 respectively). Furthermore, the differences are also
clear from Fig. 2 in terms of the PF approximations obtained corresponding
to the median HV. Due to space limitations, we only show the results for two
instances, D3 and D19; but others show a similar trend. The figures show the
improved PF approximation obtained by the proposed algorithm. It is able to
find solutions covering most regions of the PF, especially the high return end.
For example, in Fig. 2(a), the PF approximations of MODEwAwL and CCS
only focus on the low risk area, whereas the proposed algorithm achieves much
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Fig. 2. PF approximations and the corresponding HV convergence curves.

better coverage. Furthermore, the HV convergence plots indicate the significant
speedup using the proposed method. It converges to the near-final PF within
1000 fitness evaluations, while the other two algorithms require 5000 fitness
evaluations to get to equivalent stage.

On the other end of the spectrum, one relative shortcoming of the proposed
algorithm also seems apparent, which is in obtaining the solutions on the low-
risk end. For instance, in Fig. 2(c), the PF approximation of CCS can achieve
much better low-risk solutions (below 2.5e−4). Moreover, we also observed in
preliminary experiments that when large number of evaluations are made avail-
able (say 40,000–100,000), the relative advantage of the proposed algorithm is
not as significant as its performance for lower evaluation budgets.

To summarize, initial experiments establish that the proposed algorithm is
competitive to the state-of-the-art forms and shows significant promise in achiev-
ing fast convergence. However, a more in-depth investigation, extensive experi-
mentation and parametric studies need to be further conducted to understand
the impact of each component individually, and to improve their performance.
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5 Conclusion and Future Work

This paper proposes a new compact representation and initialization for multi-
objective portfolio optimization problem. The proposed approach can implicitly
satisfy some of the constraints, avoiding the need for specialized repair operators,
and can guarantee to obtain one of the extremities (highest return) of the PF.
Numerical experiments are conducted on a range of problems with assets up to
2235, and results compared with two other established algorithms. The proposed
algorithm shows favorable results for most problems, especially demonstrating
remarkable fast convergence rate when compared to the peer algorithms. While
the performance is promising, there is further scope for improving performance
in terms of obtaining low-risk solutions and further improving its performance
for higher computational budgets, which will be studied in the future work.
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