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Abstract. Due to the impact of environmental changes, dynamic evolu-
tionary multi-objective optimization algorithms need to track the time-
varying Pareto optimal solution set of dynamic multi-objective optimiza-
tion problems (DMOPs) as soon as possible by effectively mining histor-
ical data. Since online machine learning can help algorithms dynami-
cally adapt to new patterns in the data in machine learning community,
this paper introduces Passive-Aggressive Regression (PAR, a common
online learning technology) into dynamic evolutionary multi-objective
optimization research area. Specifically, a PAR-based prediction strategy
is proposed to predict the new Pareto optimal solution set of the next
environment. Furthermore, we integrate the proposed prediction strategy
into the multi-objective evolutionary algorithm based on decomposition
with a differential evolution operator (MOEA/D-DE) to handle DMOPs.
Finally, the proposed prediction strategy is compared with three state-
of-the-art prediction strategies under the same dynamic MOEA/D-DE
framework on CEC2018 dynamic optimization competition problems.
The experimental results indicate that the PAR-based prediction strat-
egy is promising for dealing with DMOPs.

Keywords: Evolutionary multi-objective optimization · Dynamic
environment · Prediction strategy · Online machine learning

1 Introduction

In the real world, there exist a lot of dynamic multi-objective optimization prob-
lems (DMOPs) which usually involve several conflicting objective functions and
may be subject to a number of constraints. Furthermore, the objective functions,
constraints and/or relative parameters of DMOPs may change over time [1].
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In this work, we consider the following continuous DMOPs:{
min
v∈Ω

F (v, t) =
(
f1(v, t), f2(v, t), ..., fm(v, t)

)T
s.t. hi(v, t) ≤ 0, i = 1, 2, ..., p; lj(v, t) = 0, j = 1, 2, ..., r

(1)

where v is the decision vector defined in the decision space Ω, F (v , t) is the
objective vector that calculates a numerical value for each objective of the solu-
tion v at time t, m is the number of objectives. The functions hi and lj are
the inequality and equality constraints which change over t, respectively. As
a result, the Pareto optimal solution set (POS) in the decision space and/or
Pareto optimal front (POF) in the objective space of DMOPs may also change
over time, which imposes a big challenge to evolutionary multi-objective opti-
mization (EMO) researches.

Over the past decade or so, there are increasing interests in designing
dynamic evolutionary multi-objective optimization (DEMO) algorithms to han-
dle DMOPs. The task of a DEMO is to trace the movement of the POS and/or
POF with reasonable computational costs. How to take action to respond to a
new change is the key issue of DEMO, since an effective change reaction method
can help the DEMO algorithm adapt to the new environment quickly. A lot of
change reaction methods have been proposed to handle changes. These methods
include diversity introduction after a change occurs [2,3] or maintain diversity
throughout the run [4], multi-population approaches [5], memory schemes [6,7],
and prediction strategies [8–14].

In recent years, prediction strategies have gained much attention. This kind of
methods predicts POS of the new environment in advance by exploiting different
machine learning techniques. According to the amount of historical information
used for prediction, the prediction strategies can be roughly categorized into two
types: local information-based prediction (LIP) and time series-based prediction
(TSP). LIP approaches usually only use information obtained from several recent
environments to make predictions, so that the history data has not been fully
mined. Some representative LIP methods are simple linear model [9], Kalman
filter [11], differential model [12], and transfer learning [13]. In contrast, TSP
approaches make use of much more historical environmental information than
LIP approaches. TSP approaches first collect approximate optimal solutions from
past environments as training data, and then feed them to some machining learn-
ing model to predict the location of the new optimal solutions. Therefore, TSP
approaches generally have higher training costs than LIP approaches. Autore-
gressive model [8,10] and support vector regression [14] are some well-known
models used in TSP approaches.

The Motivation of This Work. Dealing with a dynamic and uncertain envi-
ronment is not a unique challenge to evolutionary optimization. There are also
active research activities within online machine learning community that try to
tackle similar challenges from changing data streams [15]. Online learning is used
to update the prediction model for future data at each time step, as opposed to
batch learning techniques which generate the best predictor by learning on the
entire training data set at once [16]. Online learning is also used in situations
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where it is necessary for the algorithm to dynamically adapt to new patterns
in the data [17]. In addition, online learning algorithms are typically easy to
implement and generally have low computational cost [18], which is particularly
suitable for dynamic optimization. Inspired by the aforementioned advantages
of online learning, we introduce online learning into DEMO in order to help
dynamic optimization algorithms better adapt to changing environments.

The Contribution of This Work. We first introduce Passive-Aggressive
Regression (PAR, a common online learning technique) into DEMO, and then
propose a PAR-based prediction strategy (PARS) to react the new change of
DMOPs. Furthermore, we incorporate this prediction strategy into MOEA/D-
DE [19] to deal with DMOPs. Finally, in order to fairly evaluate the performance
of the proposed prediction strategy, it is compared with three state-of-the-art
prediction methods under the same dynamic MOEA/D-DE framework.

The rest of this paper is organized as follows. Section 2 provides a brief survey
on the prediction strategies for DEMO, and introduces the basic knowledge of
PAR. In Sect. 3, PARS is proposed, and then it is incorporated into MOEA/D-
DE to handle DMOPs. In the following section, some experimental results are
reported to show the effectiveness of our proposed strategy. The final section
concludes this paper.

2 Related Works

2.1 Prediction Strategies for DEMO Algorithm

Local Information-Based Prediction Strategies: Zhou et al. [9] proposed a
prediction strategy (PRE) in 2007. In PRE, a simple linear prediction model with
Gaussian noise is used to reinitialize population in new environment by utilizing
only optimal individuals of last two environments. The idea of this simple linear
prediction model was employed by other algorithms which focused predicted
optimal individuals on some special points [7,20] or multiple directions [21].
Instead of making predictions based on data from the previous two environments,
Cao et al. [12] proposed a differential model for predicting the movement of the
centroid by its locations in three former environments. Muruganantham et al. [11]
proposed a Kalman filter (KF) prediction model to guide the search toward a new
POS. This KF model was essentially implemented as first- or second-order linear
prediction model [14]. Recently, Jiang et al. [13] only utilized the approximate
optimal solutions under two sequential environments to construct a prediction
model by adopting transfer learning.

Time Series-Based Prediction Strategies: Zhou et al. [10] proposed a
population-based prediction strategy (PPS). The movement of centers of the
population is learnt by a univariate autoregressive model. The predicted center
point and estimated manifold are utilized to generate a new population for the
next environment. Cao et al. [14] proposed a support vector regression (SVR)
predictor for better solving DMOPS with nonlinear correlation. Whenever there
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is a new change taken place, the historical approximate optimal solutions in time
series are first used to train a group of SVR models. Then the POS of the next
environment can be predicted by using the trained SVR models.

2.2 Online Passive-Aggressive Regression

In 2006, Crammer et al. [18] proposed a Passive-Aggressive Regression (PAR)
which has become a common online machine learning method. To deal with
noises of the samples, two PAR variants (i.e., PAR-I and PAR-II) were also
proposed in [18]. In this paper, we only focus on PAR-II just for simplicity. On
each time step, the PAR-II algorithm receives an instance x t ∈ Rn and predicts
a target value ŷt ∈ R using its regression function, that is, ŷt = w t · x t where
w t is the incrementally learned vector. After prediction, the algorithm obtains
the true target value yt and suffers an instantaneous loss. PAR-II uses the ε-
insensitive hinge loss function:

�ε(wt; (xt, yt)) =

{
0, |wt · xt − yt| ≤ ε

|wt · xt − yt| − ε, otherwise
(2)

where ε is a positive parameter which controls the sensitivity to prediction errors.
At the end of each time step, the algorithm uses w t and the example (x t, yt) to
generate a new weight vector w t+1, which will be utilized to continue making a
prediction on the next time step. Firstly, w1 is initialized to (0, . . . ,0). On each
time step, the PAR-II algorithm updates the new weight vector to be,

wt+1 = arg min
w∈Rn

1
2
||w − wt||2 + Cξ2 s.t. �ε

(
w; (xt, yt)

) ≤ ξ (3)

where ξ is a non-negative slack variable and C is a positive parameter which
controls the influence of the slack term on the objective function. Specifically,
larger values of C imply a more aggressive update step and therefore C is referred
to as the aggressiveness parameter of the algorithm. Using the shorthand �t =
�ε (w t; (x t, yt)), the update given in Eq. (3) has a closed form solution as follows,

wt+1 = wt + sign(yt − ŷt)τ tx t where τ t =
�t

||x t||2 + 1
2C

(4)

This update keeps a balance between the amount of progress made on each time
step and the amount of information retained from previous time steps [18]. On
one hand, this update requires w t+1 to correctly predict the current example
with a sufficiently high accuracy and thus progress is made. On the other hand,
w t+1 must be as close to w t as possible in order to retain the information learned
from previous time steps. After given the loss function Eq. (2) and the update
rule Eq. (4), the pseudo-code of PAR-II is presented in Algorithm 1.
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Algorithm 1. Passive-Aggressive Regression II (PAR-II) [18]
Input: aggressiveness parameter C > 0;

1: Initialize w1 = (0,0, . . ., 0);
2: for t=1, 2, . . . do
3: receive instance x t;
4: receive label yt;
5: predict: ŷt = w t · x t ;
6: suffer loss: �t = �ε(w

t; (x t, yt)); /*according to Eq. 2*/
7: update: /* according to Eq. 4*/
8: τ t = �t/(||x t||2 + 1/(2C));
9: w t+1 = w t + sign(yt − ŷt)τ tx t

10: end for

3 Proposed PAR-Based Prediction Strategy

Whenever there is a new change taken place, DEMO algorithm need make some
operation to response the new change so as to adapt to new environment as
quickly as possible. In the following, we will propose a new prediction strategy
to adapt to the new change by using PAR-II. Algorithm 2 presents our PAR-
based strategy (PARS) for predicting the new POS of the next environment. We
assume that there are N individuals in the population and each individual has d
decision variables. Because we perform regression prediction on each dimension
variable separately, there are a total of N ∗ d PAR-II regression models in this
algorithm. In addition, we assume that the dimension of the weight vector w
of PAR-II is q. Firstly line 3 is to generate a time series s from the stored
populations. Then, M samples are gotten from s in line 4. In order to reduce

Fig. 1. MOEA/D-PARS algorithm framework



198 M. Liu et al.

Algorithm 2. Passive-Aggressive Regression-based Strategy (PARS)
Input: the stored populations of the preceding time steps P1,P2,...,P t, where
Pk = {vk

ij |i = 1, 2, . . . , N ; j = 1, 2, . . . d; k = 1, 2, . . . , t}
Output: a predicted population of the next time step P t+1.

1: for i=1, 2, ..., N do
2: for j=1,2,...,d do
3: Generate a time series s = (v1

ij , v
2
ij , ..., v

t
ij) from the stored populations;

4: Get M training samples from s;
5: Initialize weight vector of PAR-II model: w1 = (0, 0, ..., 0);
6: for k=1,2,...,M do /*Train the model*/
7: receive instance xk = (v t−q−k+1

ij , ..., v t−k
ij ) from the time series s;

8: receive label yk = v t−k+1
ij from time series s;

9: predict: ŷk = wk · xk;
10: suffer loss: �k = �ε(w

k; (xk, yk)); /*according to Eq. 2*/
11: update: /* according to Eq. 4*/
12: τk = �k/(||xk||2 + 1/(2C));
13: wk+1 = wk + sign(yk − ŷk)τkxk

14: end for/*end of the training procedure*/
15: set w t+1 = wM+1;
16: set test instance x t+1 = (v t−q+1

ij , ..., v t
ij);

17: predict: v t+1
ij = w t+1 ·x t+1, and repair v t+1

ij if it is out of the boundary [10];

18: end for
19: end for
20: return P t+1 = (v t+1

1 , ..., v t+1
N ).

the training time, the size of training set is limited to no more than 20, so the
size M is set to min(20, t − q). Referring to Algorithm 1, line 5 to 15 is used to
implement a PAR-II. Line 17 predicts one component value of a Pareto optimal
solution on time step t+1 and checks whether it is out of the boundary of the
decision space. Since Algorithm 2 has three loops, its overall time complexity is
O(N ∗ d ∗ M).

In Fig. 1, we further integrate PARS into MOEA/D-DE to generate a PARS
assisted dynamic MOEA/D-DE algorithm (termed MOEA/D-PARS) which is
mainly composed of an environment change detection operator, PARS prediction
strategy and a MOEA/D-DE optimization [19]. A change detection operator sug-
gested in [2] is adopted to detect whether a new change has occurred. 10% of indi-
viduals in the population are selected randomly as detectors and re-evaluated in
every generation. If any detector’s objective values are different from its previous
ones, then we assume a change has taken place. If a new environmental change
is detected, PARS is called to respond to the change. Later on, the population is
evolved for a generation by using MOEA/D-DE. Finally, if the stop condition is
not met, the algorithm continues tracking the next dynamic change. Consider-
ing the time complexity of MOEA/D-PARS, we assume that the environmental
change frequency is τT , that is, there are τT generations of evolutionary multi-
objective optimization in an environmental change. The time complexities of the
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change detect operator, PARS, and MOEA/D-DE are O(mN ), O(N*d*M ), and
O(mNT ) [19] respectively, where T is the number of weight vectors, and m is
the number of objective functions. Therefore, the time complexity of MOEA/D-
PARS during an environmental change is O(τT mNT ).

4 Computational Experiments

4.1 Experimental Settings

Benchmark Problems. Fourteen different benchmark problems for CEC2018
competition on dynamic multi-objective optimization [22] are chosen here to
compare the performance of DEMO algorithms.

Compared Prediction Strategies and DEMO Algorithms. Three well-
known prediction strategies, i.e., PRE [9], PPS [10], and KF [11], are chosen
here to validate the performance of the proposed PARS. For fairly comparison,
we choose MOEA/D-DE as their basic multi-objective optimizer. In addition to
the proposed MOEA/D-PARS algorithm, we integrate the aforementioned PRE,
PPS, and KF into MOEA/D-DE, and then we get other three compared dynamic
MOEA/D-DE algorithms which are termed MOEA/D-PRE, MOEA/D-PPS,
and MOEA/D-KF respectively. All the algorithms are implemented by using
Python programming.

Performance Metrics. Mean Inverted Generational Distance (MIGD) [11,14]
is selected as performance metrics. It provides a quantitative measurement for
both the proximity and diversity goals of DEMO algorithms. A lower value
of MIGD implies that the algorithm has better optimization performance. In
addition, the IGD(t) [23] is used to illustrated the evolutionary tracking curves
of the compared DEMO algorithms.

Parameter Setting. The parameter settings of all the DEMO algorithms
tested in this paper were almost the same as those of their original papers.
Some key parameters in these algorithms were set as follows:

1) Population size (N ) and the number of decision variables (d): They were set
to be 100 and 10 respectively for all benchmark problems.

2) Common control parameters in MOEA/D-DE: CR= 0.5, F = 0.5 in the
differential evolution operator. Distribution ηm = 20, mutation probability
pm = 1/d in the polynomial mutation operator. In addition, neighborhood
size T = 20 and neighborhood selection probability δ = 0.8.

3) Parameters setting for PARS strategy: q = 4, C = 1, ε = 0.05.
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Table 1. Mean and standard deviation values of MIGD obtained by four algorithms
on the DF1–DF7 problems

Problem (τT , nT ) MOEA/D-PRE MOEA/D-PPS MOEA/D-KF MOEA/D-PARS

DF1 (5, 5) 4.53e−2(3.10e−3) 5.86e−2(1.09e−2) 5.48e−2(8.83e−3) 4.17e−2(9.36e−3)

(5, 10) 1.88e−2(1.54e−4) 3.52e−2(7.16e−3) 2.10e−2(2.00e−3) 2.75e−2(2.20e−3)

(10, 5) 1.42e−2(3.26e−3) 1.33e−2(2.08e−3) 1.33e−2(1.90e−3) 1.14e−2(4.11e−4)

(10, 10) 8.40e−3(2.87e−4) 1.24e−2(2.41e−3) 8.19e−3(3.31e−4) 1.00e−2(4.23e−4)

DF2 (5, 5) 1.07e−1(5.37e−3) 6.81e−2(5.86e−3) 1.40e−1(9.48e−3) 4.73e−2(3.69e−3)

(5, 10) 6.90e−2(5.62e−3) 5.38e−2(6.50e−3) 7.84e−2(5.06e−3) 4.30e−2(3.88e−3)

(10, 5) 2.08e−2(1.98e−3) 1.76e−2(9.86e−4) 2.50e−2(1.87e−3) 1.29e−2(8.66e−4)

(10, 10) 1.52e−2(1.39e−3) 1.56e−2(1.21e−3) 1.66e−2(2.64e−3) 1.26e−2(9.10e−4)

DF3 (5, 5) 3.38e−1(3.12e−3) 4.74e−1(1.32e−2) 3.22e−1(2.49e−2) 2.89e−1(3.36e−2)

(5, 10) 2.34e−1(2.13e−2) 4.79e−1(8.50e−3) 3.02e−1(2.99e−2) 3.31e−1(2.92e−2)

(10, 5) 2.16e−1(2.40e−2) 3.92e−1(1.68e−2) 2.43e−1(2.64e−2) 2.26e−1(4.55e−2)

(10, 10) 1.54e−1(2.55e−3) 3.91e−1(2.53e−2) 1.99e−1(2.48e−2) 2.40e−1(1.67e−2)

DF4 (5, 5) 7.84e−2(1.07e−3) 9.20e−2(1.95e−3) 7.99e−2(2.53e−3) 7.64e−2(5.35e−3)

(5, 10) 8.11e−2(1.97e−3) 9.81e−2(3.16e−3) 8.23e−2(2.12e−3) 8.39e−2(4.81e−3)

(10, 5) 6.36e−2(3.97e−4) 6.39e−2(5.47e−4) 6.42e−2(7.85e−3) 6.25e−2(8.87e−4)

(10, 10) 7.17e−2(6.42e−4) 7.20e−2(1.07e−3) 7.23e−2(6.64e−4) 7.19e−2(9.22e−4)

DF5 (5, 5) 1.56e−2(4.27e−4) 2.15e−2(3.98e−3) 1.26e−2(2.31e−4) 1.26e−2(7.38e−4)

(5, 10) 1.26e−2(3.26e−4) 1.96e−2(1.80e−3) 1.14e−2(2.31e−4) 1.82e−2(4.49e−4)

(10, 5) 8.18e−3(9.03e−5) 8.77e−3(8.97e−5) 7.37e−3(3.91e−5) 6.63e−3(8.36e−5)

(10, 10) 7.27e−3(4.95e−5) 8.75e−3(1.26e−4) 6.69e−3(5.15e−5) 8.74e−3(1.22e−4)

DF6 (5, 5) 2.18e+0(4.60e−1) 1.38e+0(3.52e−1) 1.73e+0(6.02e−1) 9.86e−1(3.37e−1)

(5, 10) 2.01e+0(7.23e−1) 1.66e+0(4.47e−1) 2.81e+0(1.24e+0) 8.42e−1(3.31e−1)

(10, 5) 1.05e+0(4.71e−1) 9.14e−1(2.43e−1) 1.43e+0(2.92e−1) 1.04e+0(5.01e−1)

(10, 10) 1.25e+0(5.92e−1) 1.13e+0(4.01e−1) 2.89e+0(1.27e+0) 5.99e−1(2.23e−1)

DF7 (5, 5) 1.53e+0(1.09e−1) 1.81e+0 (2.35e−2) 1.43e+0(5.00e−2) 1.51e+0(1.51e−1)

(5, 10) 5.73e−1(1.37e−1) 8.58e−1(4.28e−2) 5.64e−1(1.56e−1) 7.41e−1(7.56e−2)

(10, 5) 1.44e+0(1.19e−1) 1.69e+0(4.19e−2) 1.28e+0(3.12e−2) 1.71e+0(2.94e−2)

(10, 10) 4.78e−1(1.19e−1) 8.19e−1(3.24e−2) 2.91e−1(9.20e−2) 6.39e−1(1.18e−1)

4) Number of runs and stopping condition: For each tested algorithm, it was
executed 20 runs on each test instance, and the experimental results were
recorded to obtain the statistical information. In each run, each algorithm
stopped at pre-specified 100 environmental changes. During each environ-
mental change, each algorithm has the same number of function evaluations.

4.2 Experimental Results

The experiments were conducted with different combinations of change sever-
ity levels (nT ) and frequencies (τT ) in order to study the impact of dynamics
in changing environments. They were set to 5 and 10, respectively. Compar-
ison results of four DEMO algorithms (i.e., MOEA/D-PRE, MOEA/D-PPS,
MOEA/D-KF, and MOEA/D-PARS) are reported to study the influence of dif-
ferent prediction strategies on DEMO algorithms. Table 1 and Table 2 detail
MIGD values of these algorithms on DF benchmark problems. These two tables
show that MOEA/D-PARS obtains competitive results on the majority of the
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Table 2. Mean and standard deviation values of MIGD obtained by four algorithms
on the DF8–DF14 problems

Problem (τT , nT ) MOEA/D-PRE MOEA/D-PPS MOEA/D-KF MOEA/D-PARS

DF8 (5, 5) 8.70e−2(2.55e−3) 1.04e−1(4.42e−3) 8.66e−2(7.66e−4) 8.45e−2(1.43e−3)

(5, 10) 8.31e−2(2.47e−3) 1.25e−1(2.75e−2) 9.33e−2(5.41e−3) 8.55e−2(8.97e−3)

(10, 5) 7.65e−2(1.06e−3) 8.72e−2(1.51e−3) 7.55e−2(9.02e−4) 7.90e−2(4.68e−4)

(10, 10) 7.21e−2(1.35e−3) 9.31e−2(1.34e−2) 7.23e−2(1.47e−3) 7.77e−2(1.18e−1)

DF9 (5, 5) 2.75e−1(9.68e−2) 2.00e−1(1.90e−2) 4.56e−1(4.22e−2) 1.41e−1(1.13e−2)

(5, 10) 1.17e−1(1.81e−2) 1.81e−1(1.93e−2) 1.65e−1(1.68e−2) 1.51e−1(1.61e−2)

(10, 5) 1.23e−2(2.62e−2) 1.04e−1(7.33e−3) 2.16e−1(2.95e−2) 7.96e−2(8.62e−3)

(10, 10) 7.83e−2(1.12e−2) 9.50e−2(1.14e−2) 7.64e−2(6.40e−3) 7.83e−2(1.46e−2)

DF10 (5, 5) 1.74e−1(3.16e−3) 2.35e−1(1.05e−2) 2.18e−1(1.33e−2) 1.50e−1(3.78e−3)

(5, 10) 1.75e−1(1.16e−2) 2.37e−1(9.47e−3) 1.99e−1(1.48e−2) 1.49e−1(5.59e−3)

(10, 5) 1.39e−1(1.86e−3) 1.75e−1(2.28e−2) 1.53e−1(1.27e−2) 1.31e−1(1.79e−3)

(10, 10) 1.40e−1(2.58e−3) 1.65e−1(4.46e−3) 1.45e−1(3.35e−3) 1.30e−1(2.40e−3)

DF11 (5, 5) 7.24e−2(1.12e−4) 9.50e−2(6.58e−3) 7.22e−2(5.28e−4) 6.51e−2(6.98e−4)

(5, 10) 6.83e−2(5.66e−4) 1.01e−1(7.12e−3) 6.92e−2(9.85e−4) 6.47e−2(7.43e−4)

(10, 5) 5.80e−2(2.88e−4) 6.66e−2(2.75e−3) 5.84e−2(1.58e−4) 5.55e−2(3.98e−4)

(10, 10) 5.69e−2(4.11e−4) 6.90e−2(7.34e−3) 5.69e−2(2.75e−4) 5.52e−2(2.02e−4)

DF12 (5, 5) 2.92e−1(1.15e−2) 3.91e−1(1.02e−2) 2.94e−1(2.34e−2) 3.00e−1(1.14e−2)

(5, 10) 2.91e−1(1.01e−2) 3.88e−1(1.70e−2) 2.88e−1(1.87e−2) 2.81e−1(6.32e−3)

(10, 5) 2.58e−1(1.15e−2) 3.05e−1(1.14e−2) 2.80e−1(1.62e−2) 2.74e−1(5.61e−3)

(10, 10) 2.61e−1(1.15e−2) 3.07e−1(5.25e−3) 2.68e−1(1.43e−2) 2.59e−1(6.21e−3)

DF13 (5, 5) 2.25e−1(2.17e−4) 2.31e−1(6.13e−3) 2.23e−1(1.97e−3) 2.25e−1(2.84e−3)

(5, 10) 2.22e−1(1.48e−3) 2.41e−1(2.63e−2) 2.18e−1(2.67e−3) 2.28e−1(1.57e−3)

(10, 5) 2.26e−1(1.92e−3) 2.23e−1(2.33e−3) 2.27e−1(1.64e−3) 2.30e−1(2.35e−3)

(10, 10) 2.23e−1(2.12e−3) 2.20e−1(1.90e−3) 2.24e−1(2.66e−3) 2.24e−1(1.96e−3)

DF14 (5, 5) 6.68e−2(1.79e−3) 7.71e−2(8.41e−3) 6.28e−2(1.09e−3) 6.86e−2(6.23e−4)

(5, 10) 6.42e−2(4.86e−4) 7.84e−2(1.09e−2) 6.38e−2(1.19e−3) 6.86e−2(6.23e−4)

(10, 5) 5.67e−2(2.27e−4) 6.01e−2(2.64e−3) 5.56e−2(6.18e−4) 5.58e−2(1.02e−3)

(10, 10) 5.70e−2(1.77e−4) 6.01e−2(3.66e−4) 5.64e−2(2.35e−4) 5.85e−2(1.97e−4)

DF instances, which implies that MOEA/D-PARS has good performance regard-
ing convergence and distribution. Specifically, MOEA/D-PARS obtains the best
results on DF2, DF10, and DF11 instances, whereas MOEA/D-KF performs the
best on DF5, DF7 and DF14 instances. MOEA/D-PARS also achieves the best
results on DF1, DF3, DF4, DF6, and DF9 under some certain combinations of
severity level and frequency. Besides, MOEA/D-PRE achieves the best results in
a few cases. In most cases, the results obtained by MOEA/D-PPS are relatively
poor.

Apart from presenting the data in the above tables, we also provide the
average tracking performance of these algorithms over 20 runs in Fig. 2, where
the average IGD values are plotted versus the time. For the sake of limitation
of paper length, only results of four problems with τT = 10 and nT = 5 are
presented here. It is clear that the tracking performance of MOEA/D-PARS is
better than the other three algorithms on DF2 and DF10 problems. On DF4
problem, the tracking performance of the four algorithms is very similar. On
DF6 problem, although MOEA/D-PARS keeps fluctuating in IGD values in the
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first 50 time steps like the other three algorithms, it clearly outperformed the
other competitors in the remaining time.

(a) DF2 (b) DF4

(c) DF6 (d) DF10

Fig. 2. Evolutionary average IGD(t) curves obtained by four algorithms over 20 runs
on the DF2, DF4, DF6, and DF10 problems with τT = 10 and nT = 5

5 Conclusions

Both evolutionary dynamic optimization and online machine learning communi-
ties face the challenge of dynamic and uncertain environment change problems.
Hence, there may be an excellent opportunity for cross fertilization between them
[15]. This paper first introduces PAR, a common online learning technique, into
DEMO, and then proposes a PAR-based prediction strategy (PARS) to react
the new environmental change of DMOPs. Furthermore, the proposed predic-
tion strategy is integrated into MOEA/D-DE to deal with DMOPs. Finally,
the proposed PARS is compared with three state-of-the-art prediction strategies
under the same dynamic MOEA/D-DE framework. The experimental results
show that MOEA/D-PARS is promising for handling DMOPs, which demon-
strates that PARS is a competitive prediction strategy for DEMO.
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The work presented here is preliminary, and there are some possible directions
for future work. We would like to investigate the influence of parameter settings
of PAR-II and other PAR variants on algorithm performance. In addition, we
will try to design other prediction strategy based on other kind of online machine
learning techniques for better dealing with DMOPs.

Acknowledgment. This work was supported by China Scholarship Council (Grant
No. 201609480012) and a Project Supported by Scientific Research Fund of Hunan
Provincial Education Department(Grant Nos. 18K060, 18C0331, 18B199).

References

1. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems:
test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5),
425–442 (2004)

2. Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal power
scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70928-2 60

3. Liu, M., Zheng, J.H., Wang, J.N., Liu, Y.Z., Jiang, L.: An adaptive diversity intro-
duction method for dynamic evolutionary multiobjective optimization. In: Pro-
ceedings of 2014 IEEE Congress on Evolutionary Computation, CEC2014, Beijing,
China, pp. 3160–3167. IEEE (2014)

4. Ruan, G., Yu, G., Zheng, J.H., Zou, J., Yang, S.X.: The effect of diversity mainte-
nance on prediction in dynamic multi-objective optimization. Appl. Soft Comput.
58, 631–647 (2017)

5. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for
dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127
(2009)

6. Liu, M., Zeng, W.H.: Memory enhanced dynamic multi-objective evolutionary algo-
rithm based on decomposition. Ruan Jian Xue Bao/J. Softw. 24(7), 1571–1588
(2013)

7. Peng, Z., Zheng, J., Zou, J., Liu, M.: Novel prediction and memory strategies
for dynamic multiobjective optimization. Soft Comput. 19(9), 2633–2653 (2014).
https://doi.org/10.1007/s00500-014-1433-3

8. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary
algorithms: a forward-looking approach. In: Proceedings of Genetic and Evolution-
ary Computation Conference, GECCO 2006, Seattle, USA, pp. 1201–1208. ACM
(2006)

9. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-based popu-
lation re-initialization for evolutionary dynamic multi-objective optimization. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 832–846. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70928-2 62

10. Zhou, A.M., Jin, Y.C., Zhang, Q.F.: A population prediction strategy for evolu-
tionary dynamic multiobjective optimization. IEEE Trans. Cybern. 44(1), 40–53
(2014)

https://doi.org/10.1007/978-3-540-70928-2_60
https://doi.org/10.1007/978-3-540-70928-2_60
https://doi.org/10.1007/s00500-014-1433-3
https://doi.org/10.1007/978-3-540-70928-2_62
https://doi.org/10.1007/978-3-540-70928-2_62


204 M. Liu et al.

11. Muruganantham, A., Tan, K.C., Vadakkepat, P.: Evolutionary dynamic multiob-
jective optimization via Kalman filter prediction. IEEE Trans. Cybern. 46(12),
2862–2873 (2016)

12. Cao, L.L., Xu, L., Goodman, E.D., Li, H.: Decomposition-based evolutionary
dynamic multiobjective optimization using a difference model. Appl. Soft Com-
put. 76, 473–490 (2019)

13. Jiang, M., Huang, Z.Q., Qiu, L.M., Huang, W.Z., Yan, G.G.: Transfer learning-
based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Com-
put. 22(4), 501–514 (2018)

14. Cao, L.L., Xu, L., Goodman, E.D., Bao, C., Zhu, S.: Evolutionary dynamic mul-
tiobjective optimization assisted by a support vector regression predictor. IEEE
Trans. Evol. Comput. 24(2), 305–319 (2020)

15. Yao, X.: Challenges and opportunities in dynamic optimisation. In: Proceedings of
the 15th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, Amsterdam, The Netherlands, pp. 1761–1762. ACM (2013)

16. Sun, J.Y., Zhang, H., Zhou, A.M., Zhang, Q.F.: Learning from a stream of non-
stationary and dependent data in multiobjective evolutionary optimization. IEEE
Trans. Evol. Comput. 23(4), 541–555 (2019)

17. Minku, L.L., Xin, Y.: DDD: a new ensemble approach for dealing with concept
drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012)

18. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

19. Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

20. Zou, J., Li, Q.Y., Yang, S.X., Bai, H., Zheng, J.H.: A prediction strategy based on
center points and knee points for evolutionary dynamic multi-objective optimiza-
tion. Appl. Soft Comput. 61, 806–818 (2017)

21. Rong, M., Gong, D., Zhang, Y., Jin, Y.C., Pedrycz, W.: Multidirectional prediction
approach for dynamic multiobjective optimization problems. IEEE Trans. Cybern.
49(9), 3362–3374 (2019)

22. Jiang, S., Yang, S., Yao, X., Tan, K.C., Kaiser, M., Krasnogor, N.: Benchmark
problems for CEC 2018 competition on dynamic multiobjective optimisation. In:
CEC 2018 Competition (2018)

23. Li, X.D., Branke, J., Kirley, M.: On performance metrics and particle swarm
methods for dynamic multiobjective optimization problems. In: proceedings of
2007 IEEE Congress on Evolutionary Computation, Singapore, pp. 576–583, IEEE
(2007)


	An Online Machine Learning-Based Prediction Strategy for Dynamic Evolutionary Multi-objective Optimization
	1 Introduction
	2 Related Works
	2.1 Prediction Strategies for DEMO Algorithm
	2.2 Online Passive-Aggressive Regression

	3 Proposed PAR-Based Prediction Strategy
	4 Computational Experiments
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusions
	References




