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Abstract. R2HCA-EMOA is a recently proposed hypervolume-based
evolutionary multi-objective optimization (EMO) algorithm. It uses an
R2 indicator variant to approximate the hypervolume contribution of
each solution. Meanwhile, it uses a utility tensor structure to facilitate
the calculation of the R2 indicator variant. This makes it very efficient for
solving many-objective optimization problems. Compared with HypE,
another hypervolume-based EMO algorithm designed for many-objective
problems, R2HCA-EMOA runs faster and at the same time achieves bet-
ter performance. Thus, R2HCA-EMOA is more attractive for practical
use. In this paper, we further improve the efficiency of R2HCA-EMOA
without sacrificing its performance. We propose two strategies for the
efficiency improvement. One is to simplify the environmental selection,
and the other is to change the number of direction vectors depending on
the state of evolution. Numerical experiments clearly show that the effi-
ciency of R2HCA-EMOA is significantly improved without deteriorating
its performance.

Keywords: Hypervolume indicator · R2HCA-EMOA · Evolutionary
multi-objective optimization

1 Introduction

In the field of Evolutionary Multi-objective Optimization (EMO), new algo-
rithms are proposed every year. In general, these algorithms are classified into
three categories: Pareto dominance-based (e.g., NSGA-II [5]), decomposition-
based (e.g., MOEA/D [18]), and indicator-based (e.g., SMS-EMOA [2,7]).
Among these three categories, indicator-based EMO algorithms transform a
multi-objective optimization problem into a single-objective optimization prob-
lem where the single-objective is to optimize the value of an indicator (e.g.,
GD [16], IGD [3], Hypervolume [19], R2 [8]). The performance of EMO algo-
rithms is usually evaluated by indicators. Each indicator-based EMO algorithm
is likely to achieve a good performance with respect to the indicator used in
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the algorithm. That is, an IGD-based algorithm is likely to achieve a good IGD
performance, and a hypervolume-based algorithm is likely to achieve a good
hypervolume performance. This is the main advantage of the indicator-based
algorithms.

Among different indicators, the hypervolume indicator is the most popu-
lar one in the EMO community since it has solid theoretical foundations and
is comprehensively investigated [14]. The hypervolume-based EMO algorithms
use the hypervolume indicator as the optimization criterion, which have been
successfully applied to solve multi- and many-objective optimization problems.
Some representative hypervolume-based algorithms are SMS-EMOA [2,7], FV-
MOEA [11], HypE [1], and R2HCA-EMOA [12]. SMS-EMOA and FV-MOEA
use the exact hypervolume calculation. The advantage of these two algorithms
is that a good hypervolume performance can be achieved. The main disadvan-
tage of these two algorithms is that the exact hypervolume calculation is very
time-consuming in high-dimensional objective spaces. Thus, their efficiency is
very low when solving many-objective problems.

In order to solve the above issue, HypE and R2HCA-EMOA are proposed.
These two algorithms use hypervolume approximation methods in the algorithm
implementations, and thus they can solve many-objective problems efficiently.
Since the hypervolume is approximated in these two algorithms, their hyper-
volume performance is worse than SMS-EMOA and FV-MOEA. As reported
in [12], R2HCA-EMOA is able to run faster and at the same time achieve better
hypervolume performance than HypE. Thus, R2HCA-EMOA is more efficient
and effective than HypE for solving many-objective problems.

However, compared with other popular EMO algorithms (e.g., NSGA-II,
MOEA/D, NSGA-III [4]), R2HCA-EMOA is still not very efficient (i.e., slower
than those algorithms). Thus, the question is whether we can further improve
the efficiency of R2HCA-EMOA without sacrificing its high performance. In this
paper, we investigate this issue and propose two strategies to further improve the
efficiency of R2HCA-EMOA. The improved version of R2HCA-EMOA is more
efficient and its performance is not deteriorated. That is, the improved version
is more attractive for practical use.

The rest of the paper is organized as follows. R2HCA-EMOA is briefly intro-
duced in Sect. 2. Two efficiency improvement strategies are presented in Sect. 3.
Numerical experiments are conducted in Sect. 4. The conclusions are drawn in
Sect. 5.

2 R2HCA-EMOA

R2HCA-EMOA follows the framework of SMS-EMOA. In each generation, one
offspring is generated and added into the population. Then one individual with
the least hypervolume contribution in the last front is removed from the popula-
tion. The main difference between R2HCA-EMOA and SMS-EMOA is that the
hypervolume contribution is approximated in R2HCA-EMOA instead of exactly
calculated. The pseudocode of R2HCA-EMOA is shown in Algorithm1.



Improving the Efficiency of R2HCA-EMOA 117

Algorithm 1. R2HCA-EMOA
Input: Population Size N , Maximum Function Evaluations FEsmax.
Output: Final Population P .
1: Initialize Population P , Direction Vector Set Λ, Utility Tensor T, reference point

r, FEs = N ;
2: while FEs ≤ FEsmax do
3: q = GenerateOffspring(P );
4: P = P ∪ {q};
5: P ′ = Normalize(P );
6: T = UpdateUtilityTensor(T, P ′, Λ);
7: {F1, F2, ..., Fl} = NondominatedSort(P ′);
8: if |Fl| == 1 then
9: RHCA

2 (s) = 0, ∀s ∈ Fl;
10: else if |Fl| == N + 1 then
11: RHCA

2 (s) = CalculateR2HCA(T), ∀s ∈ Fl;
12: else
13: T′ = ExtractUtilityTensor(T, Fl);
14: RHCA

2 (s) = CalculateR2HCA(T′), ∀s ∈ Fl;
15: end if
16: sworst = arg mins∈Fl RHCA

2 (s);
17: P = P \ {sworst};
18: FEs = FEs + 1;
19: end while

In R2HCA-EMOA, the hypervolume contribution is approximated by an R2
indicator variant, and a utility tensor structure is used to facilitate the calcula-
tion of the R2 indicator variant. Next, the R2 indicator variant and the utility
tensor structure are briefly explained.

2.1 R2-Based Hypervolume Contribution Approximation

In R2HCA-EMOA, an R2 indicator variant is used to approximate the hyper-
volume contribution of a solution s to a solution set A in an m-dimensional
objective space1:

RHCA
2 (s) =

1
|Λ|

∑

λ∈Λ

min
{

min
a∈A\{s}

{
g*2tch(a|λ, s)

}
, gmtch(r|λ, s)

}m

, (1)

where A is a non-dominated solution set with s ∈ A, Λ is a direction vector set,
each direction vector λ = (λ1, λ2, ..., λm) ∈ Λ satisfies ‖λ‖2 = 1 and λi ≥ 0 for
i = 1, ...,m, and r is the reference point.

The g*2tch(a|λ, s) function is defined for minimization problems as

g*2tch(a|λ, s) = max
j∈{1,...,m}

{
aj − sj

λj

}
. (2)

1 In this paper, the solutions (individuals) are assumed to be points in the objective
space, i.e., a solution s denotes an objective vector.
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For maximization problems, it is defined as

g*2tch(a|λ, s) = max
j∈{1,...,m}

{
sj − aj

λj

}
. (3)

The gmtch function is defined for both minimization and maximization prob-
lems as

gmtch(r|λ, s) = min
j∈{1,...,m}

{ |sj − rj |
λj

}
. (4)

The geometric meaning of the R2 indicator variant is illustrated in Fig. 1.
Given a non-dominated solution set {a1,a2,a3} and a set of line segments with
different directions in the hypervolume contribution region of a2, the R2 indica-
tor variant in (1) is calculated as RHCA

2 (a2) = 1
|Λ|

∑|Λ|
i=1 lmi where li is the length

of the ith line segment. For more detailed explanations of the R2 indicator vari-
ant, please refer to [13].

Fig. 1. An illustration of the geometric meaning of RHCA
2 for the hypervolume contri-

bution approximation.

2.2 Utility Tensor Structure

In R2HCA-EMOA, a utility tensor structure is introduced to facilitate the cal-
culation of RHCA

2 . From the definition of RHCA
2 in (1), we can see that in order to

compute the RHCA
2 value of a solution s ∈ A, we need to compute g*2tch(a|λ, s)

for all a ∈ A\{s} and all λ ∈ Λ, and gmtch(r|λ, s) for all λ ∈ Λ. Thus, we can
store g*2tch and gmtch values in a matrix M as follows:

M =

⎡

⎢⎢⎢⎣

g*2tch(a1|λ1, s) g*2tch(a1|λ2, s) · · · g*2tch(a1|λ|Λ|, s)
...

...
. . .

...
g*2tch(a|A|−1|λ1, s) g*2tch(a|A|−1|λ2, s) · · · g*2tch(a|A|−1|λ|Λ|, s)

gmtch(r|λ1, s) gmtch(r|λ2, s) · · · gmtch(r|λ|Λ|, s)

⎤

⎥⎥⎥⎦

|A|×|Λ|

After obtaining the above matrix, we can calculate RHCA
2 (s) as follows:

RHCA
2 (s) =

1
|Λ|

|Λ|∑

j=1

(
min

i={1,2,...,|A|}
Mij

)m

. (5)



Improving the Efficiency of R2HCA-EMOA 119

Since we need to calculate RHCA
2 for each s ∈ A, we need to have |A| matrices

for all solutions in A. These |A| matrices form a tensor

T =
[
M1,M2, ...,M|A|

]
,

where Mk is the matrix for ak ∈ A.
We use tensor T as a memory to store useful information for the calculation

of RHCA
2 . As shown in Algorithm 1, since only one offspring is generated and one

individual is removed in each generation, we do not need to recalculate tensor T
in each generation. Instead, we only update T with respect to the changed ele-
ments to maximize the efficiency. Furthermore, if all the solutions in the current
population are non-dominated, we can use (5) to calculate RHCA

2 . However, if
there are some dominated solutions, we need to extract useful information from
T to calculate RHCA

2 for the last front. For more detailed explanation of tensor
T and its operations, please refer to [12].

3 Efficiency Improvement Strategies

In this section, we propose two strategies to further improve the efficiency of
R2HCA-EMOA. The first strategy is to simplify the environmental selection,
and the second strategy is to change the number of direction vectors depending
on the state of evolution.

3.1 Simplify the Environmental Selection

The first strategy is to simplify the environmental selection in R2HCA-EMOA.
As explained in the previous section, we use tensor T to calculate RHCA

2 val-
ues, i.e., the approximated hypervolume contributions. If there are dominated
solutions, we cannot directly use tensor T to calculate RHCA

2 for the last front.
Thus, a tensor extraction is performed to get a subtensor T′. This will lower the
efficiency of R2HCA-EMOA.

The idea is to simplify the environmental selection when there are dominated
solutions. Instead of extracting a subtensor T′ and calculating RHCA

2 for the last
front, we simply randomly remove one solution from the last front. In this way,
we can avoid the tensor extraction procedure and the algorithm efficiency can
be improved. To be more specific, lines 8–15 in Algorithm 1 are replaced by the
following lines:
1: if |Fl| == N + 1 then
2: RHCA

2 (s) = CalculateR2HCA(T), ∀s ∈ Fl;
3: else
4: RHCA

2 (s) = rand(0, 1)2, ∀s ∈ Fl;
5: end if

The question is whether this simple strategy can deteriorate the performance
of R2HCA-EMOA. The answer is NO (which will be verified in the experiments).
2 rand(0, 1) means a random number between 0 and 1.
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The reason can be explained as follows. In many-objective optimization, all or
almost all solutions in the current population are non-dominated. In this situa-
tion, it is not likely that dominated solutions play an important role in multi-
objective evolution. That is, it is likely that all dominated solutions in the current
population are almost equally useless (if compared with the non-dominated solu-
tions). As a result, it is not needed to carefully evaluate each dominated solution
to identify the worst one with the least contribution.

3.2 Change the Number of Direction Vectors

The second strategy is to dynamically change the number of direction vectors
used in R2HCA-EMOA. As discussed in [12], the worst-case time complexity
of one generation of R2HCA-EMOA is O(N2|Λ|). We can see that the time
complexity is related to the number of direction vectors |Λ|. We can improve the
efficiency of R2HCA-EMOA by decreasing the value of |Λ|. However, a smaller
value of |Λ| means a lower approximation quality of RHCA

2 . Thus, if we simply
set |Λ| as a small value, the performance of RHCA

2 may be deteriorated.
The idea is to use a small number of |Λ| in the early stage of the evolution and

use a large number of |Λ| in the late stage of the evolution. In the early stage of
the evolution, we do not need a very high approximation quality of RHCA

2 since
the main focus is the convergence of the population. Also, as we discussed in the
first strategy, the solutions in the last front are randomly removed. In this case,
we do not need to calculate RHCA

2 . In the late stage of the evolution, we use a
large number of |Λ| to achieve a good hypervolume performance.

The question is the timing to change the number of direction vectors. Ideally,
the timing for the change is when the population has converged to the Pareto
front. However, the Pareto front is usually unknown in practice. Thus, we need
to have a mechanism to decide the timing for the change. In this paper, we use
the following mechanism:

|Λ| =
{

a small number, if FEs ≤ θFEsmax

a large number, otherwise (6)

where θ ∈ [0, 1] is a timing control parameter. The small number and the large
number are set to 10 and 100, respectively, in our experiments.

We need to note that when |Λ| is changed, the direction vector set Λ is
regenerated, and tensor T needs to be reinitialized since the size of T is also
changed.

4 Experiments

In this section, we examine the effect of the proposed two strategies on the
performance of R2HCA-EMOA through computational experiments.
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4.1 Experimental Settings

1. Platforms. Our experiments are performed on PlatEMO [15], which is
a MATLAB-based open source platform for evolutionary multi-objective
optimization. The source code of R2HCA-EMOA is available at https://
github.com/HisaoLabSUSTC/R2HCA-EMOA. The hardware platform is a
PC equipped with Intel Core i7-8700K CPU@3.70 GHz, 16 GB RAM.

2. Test Problems. DTLZ1-4 [6], WFG1-9 [9], and their minus versions (i.e.,
MinusDTLZ1-4 and MinusWFG1-9) [10] are selected as test problems in our
experiments. The number of objectives is set to m = 5. The number of deci-
sion variables is set to m + 4 for DTLZ1 and MinusDTLZ1, and m + 9 for
the other DTLZ and MinusDTLZ problems. For WFG and MinusWFG prob-
lems, the distance and position decision variables are set to 24 and m − 1,
respectively.

3. Parameter Settings. The population size N is set to 100. For DTLZ1,
DTLZ3, WFG1 and their minus versions, the maximum function evaluations
FEsmax is set to 100,000, while FEsmax is set to 30,000 for the other test
problems. The simulated binary crossover (SBX) and the polynomial muta-
tion are adopted in the algorithms where the distribution index is specified
as 20 in both operators. The crossover and mutation rates are set to 1.0 and
1/n respectively, where n is the number of decision variables. Each algorithm
is run 20 time independently on each test problem.

4. Performance Metrics. The hypervolume indicator is used to evaluate the
performance of the algorithms, and the runtime is recorded to evaluate the
efficiency of the algorithms. We employ the WFG algorithm [17] to calcu-
late the exact hypervolume of the obtained solution sets. The hypervolume is
calculated as follows. First, using the true ideal point z∗ and the true nadir
point znad calculated from the true PF, the objective space is normalized,
i.e., the two points z∗ and znad are (0, ..., 0) and (1, ..., 1) after the normaliza-
tion. Then, the reference point r is specified as (1.1, ..., 1.1) to calculate the
hypervolume of the obtained solution set in the normalized objective space.

5. Algorithm Configurations. The compared algorithms are R2HCA-EMOA
and its improved version (denoted as R2HCA-EMOA-II) equipped with the
two strategies. For R2HCA-EMOA, the number of direction vectors |Λ| is
set to 100. For R2HCA-EMOA-II, |Λ| is initially set to 10, and finally
changed to 100 according to (6). The timing control parameter θ is set to
{0.0, 0.3, 0.5, 0.8}, i.e., we examine the effect of different θ values. All the
results are analyzed by the Wilcoxon rank sum test with a significance level
of 0.05. ‘+’, ‘−’ and ‘≈’ indicate that R2HCA-EMOA-II is ‘significantly bet-
ter than’, ‘significantly worse than’ and ‘statistically similar to’ the original
R2HCA-EMOA, respectively.

4.2 Results

The mean hypervolume results and the mean runtime results over 20 runs are
shown in Table 1 and Table 2, respectively.

https://github.com/HisaoLabSUSTC/R2HCA-EMOA
https://github.com/HisaoLabSUSTC/R2HCA-EMOA
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Table 1. Statistical results of hypervolume values obtained by R2HCA-EMOA and
R2HCA-EMOA-II. The best result for each test problem is shaded.

Problem R2HCA-EMOA
R2HCA-EMOA-II

θ = 0.0 θ = 0.3 θ = 0.5 θ = 0.8

DTLZ1 1.5657e+0 1.5656e+0 ≈ 1.5647e+0 ≈ 1.5636e+0 ≈ 1.5651e+0 ≈
DTLZ2 1.2852e+0 1.2861e+0 ≈ 1.2844e+0 ≈ 1.2852e+0 ≈ 1.2850e+0 ≈
DTLZ3 1.2826e+0 1.2823e+0 ≈ 1.2825e+0 ≈ 1.2826e+0 ≈ 1.2797e+0 −
DTLZ4 1.1013e+0 1.1123e+0 ≈ 1.1372e+0 ≈ 1.1152e+0 ≈ 1.1387e+0 ≈
MinusDTLZ1 1.6317e−2 1.6310e−2 ≈ 1.6233e−2 ≈ 1.6327e−2 ≈ 1.6294e−2 ≈
MinusDTLZ2 2.0310e−1 2.0346e−1 ≈ 2.0264e−1 ≈ 2.0282e−1 ≈ 2.0270e−1 ≈
MinusDTLZ3 2.0302e−1 2.0287e−1 ≈ 2.0283e−1 ≈ 2.0298e−1 ≈ 2.0280e−1 ≈
MinusDTLZ4 2.0184e−1 2.0203e−1 ≈ 2.0190e−1 ≈ 2.0208e−1 ≈ 2.0185e−1 ≈
WFG1 1.6027e+0 1.6005e+0 ≈ 1.5981e+0 ≈ 1.5945e+0 ≈ 1.5888e+0 ≈
WFG2 1.5915e+0 1.5921e+0 ≈ 1.5913e+0 ≈ 1.5902e+0 ≈ 1.5872e+0 −
WFG3 3.1829e−1 2.7968e−1 ≈ 2.9585e−1 ≈ 2.6692e−1 − 2.6957e−1 −
WFG4 1.2607e+0 1.2636e+0 ≈ 1.2593e+0 ≈ 1.2585e+0 ≈ 1.2546e+0 −
WFG5 1.1983e+0 1.1988e+0 ≈ 1.1987e+0 ≈ 1.1979e+0 ≈ 1.1972e+0 ≈
WFG6 1.2002e+0 1.2066e+0 ≈ 1.2061e+0 + 1.1985e+0 ≈ 1.2016e+0 ≈
WFG7 1.2767e+0 1.2774e+0 ≈ 1.2768e+0 ≈ 1.2760e+0 ≈ 1.2739e+0 −
WFG8 1.1532e+0 1.1527e+0 ≈ 1.1462e+0 − 1.1434e+0 − 1.1419e+0 −
WFG9 1.2124e+0 1.2186e+0 + 1.2149e+0 ≈ 1.2145e+0 ≈ 1.1968e+0 −
MinusWFG1 4.1141e−3 4.1346e−3 ≈ 4.1124e−3 ≈ 4.0299e−3 − 4.0278e−3 −
MinusWFG2 1.3725e−2 1.3776e−2 ≈ 1.3681e−2 ≈ 1.3743e−2 ≈ 1.3651e−2 ≈
MinusWFG3 1.6000e−2 1.5931e−2 ≈ 1.5991e−2 ≈ 1.5972e−2 ≈ 1.5887e−2 ≈
MinusWFG4 2.0259e−1 2.0243e−1 ≈ 2.0226e−1 ≈ 2.0247e−1 ≈ 2.0230e−1 ≈
MinusWFG5 1.9853e−1 1.9895e−1 ≈ 1.9904e−1 ≈ 1.9814e−1 ≈ 1.9717e−1 −
MinusWFG6 2.0067e−1 2.0059e−1 ≈ 2.0092e−1 ≈ 2.0039e−1 ≈ 2.0101e−1 ≈
MinusWFG7 2.0072e−1 2.0093e−1 ≈ 2.0006e−1 ≈ 2.0056e−1 ≈ 2.0029e−1 ≈
MinusWFG8 2.0230e−1 2.0211e−1 ≈ 2.0221e−1 ≈ 2.0231e−1 ≈ 2.0270e−1 ≈
MinusWFG9 1.9961e−1 1.9952e−1 ≈ 1.9956e−1 ≈ 1.9945e−1 ≈ 1.9858e−1 −
+/ − / ≈ - 1/0/25 1/1/24 0/3/23 0/10/16

From Table 1, we can see that R2HCA-EMOA-II achieves a comparable
hypervolume performance to R2HCA-EMOA when θ = 0.0, 0.3. When θ = 0.0
(i.e., we only consider the first strategy), R2HCA-EMOA-II is significantly bet-
ter on WFG9. When θ = 0.3, it is significantly better on WFG6 and significantly
worse on WFG8, and has no significant difference on all the other test problems.
It should be noted that the difference in the average hypervolume value between
the two algorithms is very small even when there exists a statistically signifi-
cant difference (see the results on WFG6, WFG8 and WFG9). When θ = 0.5,
R2HCA-EMOA-II is slightly worse than R2HCA-EMOA. It is significantly worse
on 3 out of the 26 test problems, and has no significant difference on all the other
test problems. When θ = 0.8, the performance of R2HCA-EMOA-II is clearly
deteriorated. It is significantly worse on 10 out of the 26 test problems. From
these results, we can see that the first strategy does not degrade the performance
of R2HCA-EMOA-II (i.e., when θ = 0.0). We can also see that the second strat-
egy has a large effect on the performance of R2HCA-EMOA-II depending on
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Table 2. Statistical results of runtime (in seconds) of R2HCA-EMOA and R2HCA-
EMOA-II. The best result for each test problem is shaded.

Problem R2HCA-EMOA
R2HCA-EMOA-II

θ = 0.0 θ = 0.3 θ = 0.5 θ = 0.8

DTLZ1 4.5574e+2 4.5307e+2 ≈ 3.5623e+2 + 2.7796e+2 + 1.6856e+2 +

DTLZ2 1.6576e+2 1.6766e+2 ≈ 1.3070e+2 + 1.0260e+2 + 6.1985e+1 +

DTLZ3 4.0426e+2 3.8419e+2 + 3.2252e+2 + 2.5434e+2 + 1.5958e+2 +

DTLZ4 1.6334e+2 1.6439e+2 ≈ 1.3528e+2 + 1.0462e+2 + 6.2214e+1 +

MinusDTLZ1 5.3837e+2 5.3888e+2 ≈ 4.3997e+2 + 3.4244e+2 + 2.0172e+2 +

MinusDTLZ2 1.6480e+2 1.7038e+2 ≈ 1.3480e+2 + 1.0591e+2 + 6.1981e+1 +

MinusDTLZ3 5.2682e+2 5.2273e+2 ≈ 4.9828e+2 + 3.3254e+2 + 1.9823e+2 +

MinusDTLZ4 1.8391e+2 1.7922e+2 + 1.4052e+2 + 1.1022e+2 + 6.5740e+1 +

WFG1 4.6995e+2 4.7799e+2 ≈ 3.9469e+2 + 3.1191e+2 + 1.8881e+2 +

WFG2 1.5686e+2 1.5491e+2 ≈ 1.3662e+2 + 1.0389e+2 + 6.2514e+1 +

WFG3 1.7011e+2 1.6653e+2 ≈ 1.3885e+2 + 1.0886e+2 + 6.4457e+1 +

WFG4 1.5867e+2 1.5813e+2 ≈ 1.3048e+2 + 1.0211e+2 + 6.2384e+1 +

WFG5 1.6327e+2 1.8309e+2 ≈ 1.3231e+2 + 1.0401e+2 + 6.6410e+1 +

WFG6 1.4974e+2 1.5208e+2 ≈ 1.2421e+2 + 9.5330e+1 + 6.2164e+1 +

WFG7 1.7443e+2 1.7106e+2 ≈ 1.3610e+2 + 1.0749e+2 + 6.4252e+1 +

WFG8 1.3313e+2 1.3389e+2 ≈ 1.1160e+2 + 8.9537e+1 + 5.6189e+1 +

WFG9 1.7798e+2 1.7765e+2 ≈ 1.4325e+2 + 1.1197e+2 + 6.6564e+1 +

MinusWFG1 4.6240e+2 4.6057e+2 ≈ 3.6451e+2 + 2.9485e+2 + 1.8118e+2 +

MinusWFG2 1.5324e+2 1.5700e+2 ≈ 1.2389e+2 + 9.8582e+1 + 6.0794e+1 +

MinusWFG3 1.7885e+2 1.7575e+2 ≈ 1.4634e+2 + 1.1536e+2 + 6.9738e+1 +

MinusWFG4 1.7316e+2 1.7272e+2 ≈ 1.4242e+2 + 1.1180e+2 + 6.7144e+1 +

MinusWFG5 1.6915e+2 1.6888e+2 ≈ 1.3963e+2 + 1.0950e+2 + 6.5649e+1 +

MinusWFG6 1.6638e+2 1.6679e+2 ≈ 1.3882e+2 + 1.0950e+2 + 6.6004e+1 +

MinusWFG7 1.8269e+2 1.8287e+2 ≈ 1.4910e+2 + 1.1705e+2 + 7.8022e+1 +

MinusWFG8 1.7359e+2 1.7494e+2 ≈ 1.4802e+2 + 1.1267e+2 + 6.7384e+1 +

MinusWFG9 1.8258e+2 1.8270e+2 ≈ 1.4986e+2 + 1.1747e+2 + 7.0116e+1 +

+/ − / ≈ 2/0/24 26/0/0 26/0/0 26/0/0

the value of θ. A too large θ value can deteriorate the performance of R2HCA-
EMOA-II. In our results, θ = 0.5 is an acceptable value since the performance
of R2HCA-EMOA-II is almost the same as that of R2HCA-EMOA.

From Table 2, we can see that the efficiency of R2HCA-EMOA-II is slightly
improved by the first strategy when θ = 0.0. The runtime of R2HCA-EMOA-II
is significantly better on 2 out of the 26 test problems. This is because the first
strategy only works when there exist dominated solutions. If all the solutions are
non-dominated, the two algorithms are exactly the same. It is very likely that
the first strategy only works for a small number of generations. For the second
strategy, the efficiency of R2HCA-EMOA-II is significantly improved compared
with R2HCA-EMOA. We can also see that R2HCA-EMOA-II runs faster as θ
increases. Take DTLZ1 as an example, when θ = 0.3, the runtime of R2HCA-
EMOA-II is about 0.78 times that of R2HCA-EMOA. When θ = 0.5, the runtime
of R2HCA-EMOA-II is about 0.61 times that of R2HCA-EMOA. When θ = 0.8,
this number is about 0.37. Similar results are obtained for other test problems.
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Based on Table 1 and Table 2, we can see that if θ is properly specified (e.g.,
θ = 0.3, 0.5), we can improve the efficiency of R2HCA-EMOA without sacrificing
its performance, which suggests the usefulness of the proposed two strategies.

5 Conclusions

In this paper, we proposed two strategies to further improve the efficiency of
R2HCA-EMOA. The first strategy is to randomly remove one individual in the
last front when there are dominated solutions. The second strategy is to use a
small number of direction vectors in the early stage and a large number of direc-
tion vectors in the late stage of the evolution. The experimental results verified
the effectiveness of the proposed two strategies. The efficiency of R2HCA-EMOA
was improved without sacrificing its hypervolume performance. The results in
this paper make R2HCA-EMOA more attractive for practical use.

In the future, the improved R2HCA-EMOA can be tested on more test prob-
lems and real-world problems. It is also interesting to propose other strategies
to further improve the efficiency of R2HCA-EMOA. For example, removing the
non-dominated sorting procedure and using the R2 indicator variant (i.e., RHCA

2 )
to evaluate all the solutions (not only the solutions in the last front) is an inter-
esting way to go.
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