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Abstract The diameter of a convex planar polygon is defined as the maximum of
the distances measured between all of its vertex pairs. LSP(n), the largest small
polygon with n vertices, is the polygon of unit diameter that has maximal area A(n).
It has been known for almost a century that for all odd values n ≥ 3, LSP(n) is the
regular n-polygon. Perhaps surprisingly, this statement is not valid for even values
of n. Finding the polygon LSP(n) and A(n) for even n ≥ 6 has been a long-standing
“puzzle” that can be considered as a class of global optimization problems. We
present numerical solution estimates for all even values 6≤ n≤ 80, using the AMPL
model development environment with the LGO global–local solver engine option.
Based on these results, we also present a regression model-based estimate of the
optimal area sequence {A(n)}.

Keywords Largest small polygons · Global optimization model · Numerical
optimization by AMPL-LGO and other solvers · Illustrative results and
comparisons · Regression model

1 Introduction

The diameter of a convex planar polygon is defined as the maximum of the distances
measured between all of its vertex pairs. In other words, the diameter of the polygon
is the length of its longest diagonal. The largest small polygon with n vertices is the
polygon of unit diameter that has maximal area. For a given integer n ≥ 3, we will
refer to this polygon as LSP(n) with corresponding area A(n). To illustrate, see Fig. 1
that depicts the largest small hexagon LSP(6); in this case, all polygon diagonals are
of unit length.

For unambiguity, wewill consider all LSP(n) instanceswith a fixed position corre-
sponding to appropriatemodifications of Fig. 1 for even values n≥ 6. Specifically, we
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Fig. 1 Largest small
hexagon LSP(6)

define a planar Cartesian coordinate system in which the LSP(n) polygons are posi-
tioned and express the “height” of each vertex by its coordinate on the vertical axis.
Following a standard assumption, each even n-polygon considered here is symmet-
rical with respect to its diagonal that connects its “lowest” vertex (which is placed at
the origin) with its “highest” vertex.

Reinhardt [27] proved that for all odd values n ≥ 3, LSP(n) is the regular n-
polygon. Perhaps surprisingly, this statement is not valid for even values of n. For
n = 4 (tetragon), the square with diameter 1 has maximum area A(4) = 0.5, but
infinitely many other tetragons with diameter 1 have the same area. The case n =
6 (hexagon) was analyzed and solved by Graham [11]; the case n = 8 (octagon)
was solved by Audet et al. [2]. More recently, Henrion and Messine [14] found the
largest small polygons for n = 10 (decagon) and n = 12 (dodecagon) and for n ≤
16 presented rigorous bounds for the optimum value. We refer to these studies and
cited works therein for theoretical background and for further details regarding the
analysis of the problem class {LSP(n)}. We will also review the results obtained by
using general-purpose nonlinear optimization software, as reported in [4] and [5].
In addition to the publications cited in our study, we refer to the topical webpages
[29–31] for concise discussions with further references.

In this work, we follow a numerical global optimization approach, in order to
find LSP(n) configurations and corresponding estimated values A(n). Following this
introduction, one of the standard optimization model forms is reviewed in Sect. 2.
Earlier alternative solution approaches and best-known results are reviewed inSect. 3.
The AMPL model development environment [1] and the AMPL-LGO solver option
[22] are briefly discussed in Sect. 4, followed by AMPL-LGO results compared to
results by other researchers and using also other solvers (Sect. 5). A regressionmodel
based on our numerical results is presented in Sect. 6, together with corresponding
optimum estimates {A(n)} for n ≥ 6. Conclusions are presented in Sect. 7, followed
by references.
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2 A Standard Optimization Model for Finding LSP(n)

Our objective is to find numerically optimized LSP(n) configurations with n ≥ 6
vertices, n being an input parameter of the general model. The model formulation
presented here is cited from Bondarenko et al. [4] who refer to Gay’s model [8],
discussed also in [9]. The AMPL model pgon.mod [8] refers to a GAMS model
developed by Francisco J. Prieto (noting that a more accurate reference to Prieto’s
original work is unknown to this author). The corresponding GAMS model library
item polygon.gms [7] refers to [8, 11] and the benchmarking study [5].

Following themodel formulations referred to above,we consider polar coordinates
to describe LSP(n), assuming that vertex i is positioned at polar radius ri and at angle
θ i. For unambiguity, we assume that the polygon vertices i = 1,…, n–1 are arranged
(indexed) according to increasing angles θ i. Placing the last vertex position at the
origin, we have rn = 0, θn = π. Please refer to Fig. 1 for the hexagon instance LSP(6)
that corresponds to this standardized position.

2.1 Model Formulation

Maximize total area of the n-polygon:

max A(n) = 1
/
2

∑

i=1,...,n−1

riri+1 sin(θi+1 − θi ). (1)

Bounds for pairwise distance between vertices i and j:

r2i + r2j − 2rir j cos(θi − θ j ) ≤ 1,
for 1 ≤ i ≤ n − 2, i + 1 ≤ j ≤ n − 1.

(2)

Vertex angle ordering relations:

θi+1 − θi ≥ 0, for 1 ≤ i ≤ n − 2. (3)

Decision variable bounds, including the two fixed settings:

0 ≤ θi ≤ π and 0 ≤ ri ≤ 1, for 1 ≤ i ≤ n−1; rn = 0, θn = π. (4)
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2.2 Numerical Challenges

Difficulties can be expected to arise, due to the nonconvex objective function (1) and
the nonconvex constraints (2). The number of these nonlinear constraints increases
quadratically as a function of n. For example, the LSP(80) model instance has 158
decision variables (since rn and θn are fixed) with corresponding bound constraints;
and it has 3241 constraints of which 3161 are nonconvex (adding to the 78 linear
constraints (3) the two fixed value constraints from (4)). As conjectured by other
researchers and numerically supported also by the present study, while the standard-
ized LSP(n) model instances have a unique globally optimal solution, the number
of local optima increases with n. Many of the local optima are close in quality to
the (unknown or only approximately known) global optimum. These features make
the {LSP(n)} problem-class numerically challenging, similarly to many other object
configuration design problems arising e.g. in computational physics, chemistry and
biology.

3 Related Earlier Studies

3.1 Analytical Approaches

Following Graham [11]—who combines geometric insight with results based on
[33]—finding LSP(6) requires the exact solution of a 10th order irreducible poly-
nomial equation. More specifically, the area A(6) of LSP(6) can be found as the
second-largest real root r of the equation

11993 − 78488r + 144464r2 + 1232r3 − 221360r4 + 146496r5

+ 21056r6 − 30848r7 − 3008r8 + 8192r9 + 4096r10 = 0.

Audet et al. [2], Henrion and Messine [14] follow a different approach:
in their studies finding LSP(n) requires the exact solution of a corresponding
nonconvex quadratic programming problem with quadratic constraints, combined
with geometric analysis. These solution strategies, based on a different model from
the one cited in Sect. 2, also brings the LSP(n) problem-class into the realm of global
optimization.

In [14] it is conjectured that LSP(n) for all even values n ≥ 4 has a symmetry
axis, as indicated by Fig. 1 for LSP(6). This conjecture was proven by Reinhardt
[27] for n = 4, and by Yuan [34] for n = 6. As noted by Henrion and Messine,
Graham used this conjecture to find LSP(6); the LSP(8) configuration found in [2]
also supports the conjecture. The software packages SeDuMi [28], VSDP [16], and
GloptiPoly [12, 13] are used in [14] to solve LSP(n) instances for 6≤ n≤ 16. Henrion
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Table 1 Numerical results based on analytical approaches

n LSP(n) area A(n) References

4 0.5 Reinhardt [27]

6 0.674981 Graham [11]a

8 0.726867 Audet et al. [2]a

8 0.72686845 ≤ A(8) ≤ 0.72686849 Henrion and Messine [14]b

10 0.74913721 ≤ A(10) ≤ 0.74913736 Henrion and Messine [14]

12 0.76072986 ≤ A(12) ≤ 0.76072997 Henrion and Messine [14]

14 0.76753100 ≤ A(14) ≤ 0.76893595 Henrion and Messine [14]

16 0.77185969 ≤ A(16) ≤ 0.77279135 Henrion and Messine [14]

aThe results given with lower (6-decimal digit) precision are cited from [2, 11, 29]
bNotice the slight numerical discrepancy between the results of [2, 14] for the case n = 8

and Messine also discuss the current computational limitations of this approach, as
runtimes increase rapidly from seconds to tens of minutes in their numerical tests.

Table 1 summarizes all currently known validated numerical results, including
also the bounds reported in [14].

3.2 Numerical Solution Approaches

The COPS technical report [4] by Bondarenko et al. presents comparative numerical
results for several LSP(n) instances as shown in Table 2. These results were obtained
by using the local nonlinear optimization software packagesDONLP2, LANCELOT,
LOQO, MINOS, and SNOPT (as of September 1998) linked to the AMPL modeling
environment.

Table 2 summarizes the best numerical solution—obtained by at least one of the
above listed solvers—cited from theCOPS report. The term best refers to the solution

Table 2 Numerical results
obtained by using local
nonlinear optimization
software [4, 5]. Best results
attained by one of DONLP2,
LANCELOT, LOQO,
MINOS, SNOPT

n LSP(n) area A(n)

6 0.6749814429

10 0.7491373458

20 0.7768587560

25 0.779740a

50 0.7840161480

75 0.784769a

100 0.7850565708

aThe numerical results given with 6 decimal digit precision are
cited from [5]
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Table 3 Numerical results
reported by Mossinghoff [17]

n LSP(n) area A(n)

6 0.6749814429

8 0.7268684828

10 0.7491373459

12 0.7607298734

14 0.7675310111

16 0.7718613220

18 0.7747881651

20 0.7768587560

which has the highest objective function value, while meeting all model constraints
with at least 10−8 precision. For completeness, we also added results for n = 25, 50,
75, 100 from the subsequent benchmarking study [5] in which LANCELOT, LOQO,
MINOS, and SNOPT were tested: again, we cite only the best results.

Mossinghoff [17] also studied the {LSP(n)} problem-class. He describes an
approach to search for polygons with an even number of sides n and fixed diam-
eter d (here d = 1), aiming at the largest possible area. The construction is based
on optimizing a parameterized polygon model, leading to an apparently difficult
numerical problem to handle. For arbitrary even n ≥ 6, Mossinghoff’s construction
leads to a polygon, denoted by Qn which provably has a larger area than that of
the regular polygon Pn. Mathematica, by Wolfram Research [32], has been used
by Mossinghoff to find Qn for 6 ≤ n ≤ 20: see Table 3. The required calculations
are far from trivial: consult [17] for further details and alternatives. To the author’s
knowledge, this approach has not been applied to find Qn for n > 20. Arguably—
and similarly to work performed by other researchers—this is due to the rapidly
increasing difficulties to carry out the calculations required.

3.3 The Asymptotic Behaviour of A(n)

According to the optimization model presented in Sect. 2, the numerical solution of
LSP(n) instances requires the handling of a nonlinear programming problem with
O(n2) nonconvex constraints, and a nonconvex objective function. In spite of the
implied difficulty, LSP(n) problems are thought not to become dramatically more
difficult to handle as n increases—at least in terms of finding reasonable numerical
optimum estimates. This opinion is based on the generally postulated structural
similarity and symmetry of the sequence of {LSP(n)} configurations. As noted e.g.,
in [4], the optimal LSP(n) configurations approach the circle of unit diameter as
n → ∞ consult [17] for related asymptotic results. Consequently,

A(∞) = lim
n→∞ A(n) = π

/
4 ∼ 0.7853981634.
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Based on this conjectured structure, in [4, 5] “a polygon with almost equal sides”
is used as the initial solution guess in all numerical tests. This approach is imple-
mented in both the AMPL and GAMSmodel codes referred to earlier. Such solution
strategy illustrates the point that, in optimization models good insight and resulting
initial solution guess can become a valuable step towards finding credible numerical
solutions efficiently. This heuristic approach, however, does not guarantee provable
global optimality in many nonconvex models, including the {LSP(n)} model-class
discussed here. In spite of such “hand-crafted” initial solutions, the high-quality
local nonlinear solvers mentioned above often failed to find solutions, the solutions
returned were typically somewhat different, and in a number of cases evidently
suboptimal. For further details regarding this point, consult [4, 5], and the results
presented later on in Tables 4 and 5.

4 Solving LSP Problems Numerically by AMPL-LGO

4.1 Solution Approach

In this study, we follow a numerical optimization approach, keeping in mind also the
cautionary notes presented above. Specifically, using theLGOglobal–local optimiza-
tion solver engine linked to the AMPLmodeling environment, we present numerical
optimum estimates for all even values 6 ≤ n ≤ 80. Our results, presented in Sect. 5,
are in close agreement with the best results reported in Tables 1, 2 and 3—when
comparable results are available. For comparison, we also report results obtained by
using the currently available alternative solver options MINOS [18], SNOPT [10],
and IPOPT [15] linked to AMPL.

4.2 The AMPL Model Development Environment

AMPL is a powerful modeling language that facilitates the formulation of optimiza-
tion models. AMPL enables model development in a natural, concise, and scalable
manner. AMPL also supports model analysis, the usage of different data sets for
the same model, the seamless invocation of various solver engine options to handle
optimization models, together with report generation and many other useful features
not discussed here. AMPL has been extensively documented elsewhere: we refer to
the AMPL book [6], and to the resources available at the AMPL website [1].



238 J. D. Pintér

4.3 LGO Solver Suite for Nonlinear Optimization

Nonlinear optimizationmodels frequently havemultiple—local and global—optima:
the objective of global optimization is to find the best possible solution under
such circumstances. LGO is an integrated global–local solver suite for constrained
nonlinear optimization. The model-class addressed by LGO is concisely defined by
the vector of decision variables x ∈ Rn; the explicit, finite n-vector variable bounds
l and u; the continuous objective function f (x); and the (possibly absent) m-vector
of continuous constraint functions g(x). Applying these notations, LGO is aimed at
numerically solving models of the general form.

min f (x) subject to x ∈ D := {l ≤ x ≤ u, g(x) ≤ 0}. (5)

In (5) all vector inequalities are interpreted component-wise: l, x, u, are n-
component vectors and 0 denotes the m-component zero vector. Formally more
general optimization models that include also = and constraint relations and/or
explicit lower and upper bounds on the constraint function values can be directly
deduced to the model form (5). If D is non-empty, then the stated key analytical
assumptions guarantee that the optimal solution set X* of the model is non-empty;
however, finding X* could still remain a formidable analytical and/or numerical
challenge. Clearly, the {LSP(n)} problem-class is encompassed by the optimization
model form (5).

Without going into further details regarding LGO, we mention that the founda-
tions of the LGO software development project are discussed by Pintér [19]; further
implementation aspects are discussed e.g., in [20, 21]. Here we utilize the LGO
solver option available for use with AMPL [22]; the current stand-alone LGO imple-
mentation is documented in [23]. In addition to these references, the studies [24,
25] present numerical results using LGO to solve a range of nonlinear optimization
problems, from relatively simple standard test problems to well-known challenges.
LGO also has been applied to handle a broad range of business, engineering and
scientific optimization problems.

5 Numerical Results and Comparisons

5.1 AMPL-LGO Results

In our numerical tests reported here, the AMPL code implementation pgon.mod
was used. All test runs were conducted on a several years old laptop PC with Intel
Core i5-3337-U CPU@ 1.80 GHz (x-64 processor), 16 Gb RAM, running under the
Windows 10 (64-bit) operating system.

The results of a single, completely reproducible run-sequence are summarized in
Table 4 for all even values 6≤n≤80,with a single default setting of all solver options,
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using LGO in global search mode. In several (seemingly more difficult) cases, we
received somewhat better numerical results in additional tests, at the expense of
longer runtimes: however, for consistency, we did not include those results here. Let
us alsomention that LGO in its local searchmode often found optimumestimates that
are numerically identical or close to the global search-based solution, at a fraction
of the runtimes reported below. (Recall the related comment from Sect. 3.3.)

The results summarized in Table 4 are directly cited from the AMPL-LGO solver
output; the corresponding LSP(n) configurations can be optionally reported in the
AMPL command window, and/or written to a result text file. To avoid reporting
such excessive details, the optimized configurations found are not presented here. An
illustrative collection of detailed results has been kept for documentation and archival
purposes, and all results can be reproduced in a few minutes. The reported precision
of our numerical results is set to 10 digits after the decimal point. Arguably, this is
a bit of “overkill”, but it is in line with the required constraint satisfaction precision
as shown below. The results reported also support an in-depth comparison with the
results cited earlier, as well as with the results obtained using alternative AMPL
solvers (noting that in some cases the differences between the optimum estimates
found are rather small).

Our numerical results for n≤ 20 are in fairly close agreement with the best results
displayed inTables 1, 2 and 3. In several cases,we found somewhat better conjectured
optimum estimates compared to the earlier results in Tables 1 and 2; and our results
up to n = 20 are in close agreement (up to 8 decimal digits) with those reported by
Mossinghoff, see Table 3. The runtimes appear to scale rather well for 6 ≤ n ≤ 80,
mostly (but not always) increasing with n.The entire sequence of the 38 optimization
runs reported here took a little over 10 min.

Although AMPL-LGO seems to perform reasonably well in comparison to the
other solvers tested by us or by others (as reported above), its numerical limi-
tations start to show around n = 64 when used in a pre-set default mode. The
results presented in Table 4 for n = 64, 74, and 78 are clearly suboptimal, while
all other A(n) values are monotonically increasing with n, as expected. Instead
of “tweaking” the LGO option parameters—e.g., by increasing the pre-set global
search effort limit (which was actually reached in several cases reported above,
for some of the larger n values), or increasing the runtime limit (set to 5 min
for each run, but never reached)—here we very simply use linear interpolation to
“adjust” the clearly suboptimal results based on the bracketing values in Table 4.
For example, A(64) is estimated on the basis of the results obtained for A(62) and
A(66). Applying such simple interpolation leads to the following estimated values:
A(64) ∼ 0.7845510976, A(74) ∼ 0.7847519869, A(78) ∼ 0.7847919330.

The reason to produce these simple estimates is to use them in Sect. 6, to develop
a regression model for the entire sequence A(n).
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Table 4 AMPL-LGO numerical results

n LSP(n) area A(n) Runtime (seconds) Maximum constraint violation

6 0.6749814433 0.55 2.21e-09 (i.e., 2.21·10–9, etc.)
8 0.7268684830 0.70 6.47e-09

10 0.7491373457 0.95 2.96e-10

12 0.7607298709 1.30 8.9e-10

14 0.7675310106 1.69 3.91e-09

16 0.7718613224 2.55 4.09e-09

18 0.7747881650 2.63 9.78e-09

20 0.7768587506 3.02 2.23e-09

22 0.7783773308 3.95 9.08e-09

24 0.7795240461 5.22 7.73e-09

26 0.7804111201 5.34 6.34e-09

28 0.7811114192 6.05 9.83e-09

30 0.7816739255 6.98 3.67e-09

32 0.7818946320 5.72 6.29e-10

34 0.7823103007 7.61 9.03e-09

36 0.7826513767 9.50 9.75e-09

38 0.7829526627 9.34 5.08e-09

40 0.7832011589 9.55 8.47e-11

42 0.7834135187 12.06 4.62e-09

44 0.7835966860 13.22 1.42e-09

46 0.7837554636 16.88 3.43e-09

48 0.7838942710 17.95 8.31e-09

50 0.7840161496 16.53 9.99e-09

52 0.7841233641 20.61 8.78e-09

54 0.7842192995 21.38 9.18e-09

56 0.7843044654 23.91 3.87e-09

58 0.7843807534 22.95 8.43e-09

60 0.7844492943 27.97 9.79e-09

62 0.7845111362 21.22 8.93e-09

64 0.7834620877 30.48 9.82e-09

66 0.7845910589 34.17 1.19e-09

68 0.7846139029 35.84 9.00e-09

70 0.7846403575 22.33 6.45e-09

72 0.7847454020 42.75 7.34e-09

(continued)
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Table 4 (continued)

n LSP(n) area A(n) Runtime (seconds) Maximum constraint violation

74 0.7845564840 26.25 3.54e-09

76 0.7847585719 49.19 8.95e-09

78 0.7845160579 49.47 9.64e-09

80 0.7848252941 51.45 7.25e-09

5.2 An Illustrative Comparison with Results Obtained
by Several AMPL Solvers

For a somewhat more comprehensive picture, we also generated a set of comparative
results using several currently available AMPL solvers, namely: MINOS, SNOPT,
IPOPT, and LGO. All solvers are used with their default settings. We did not include
all even values 6 ≤ n ≤ 80, only a representative subset (starting from n = 30, we
increased n by 10), since—based on the results obtained—the solver performance
tendencies seem rather clear. Table 5 summarizes these numerical results; the LGO
results are directly imported from Table 4.

In several cases, MINOS and SNOPT issued interim (runtime) warning
messages—while in most runs they report optimal solutions on return—but all runs
were properly terminated with the results shown in Table 5. All solvers return close,
but slightly different results for n = 6 and n = 8. The first clearly notable difference
appears at n = 10, where IPOPT returns a somewhat inferior result compared to the
other three solvers.

The numerical limitations of all tested solvers become more apparent as n
increases. In several cases, MINOS returns clearly inferior results, and except for
small values of n, it produces inferior results that are a few percent below the best
solution returned considering all solvers. IPOPT consistently returns somewhat infe-
rior results, but still within a few percent of the best solution returned by at least one
of the solvers. SNOPT works well for the considered range of n values, in several
cases returning slightly better objective function value estimates than LGO. In the
other cases, LGO returns best results, with relatively little difference between LGO
and SNOPT results. Let us point out that the constraint satisfaction levels attained
by these solvers are a bit different, depending also on the LSP(n) instance solved:
therefore, it would be inappropriate to draw far-reaching conclusions based on rather
small differences in the reported objective function values.

The LSP model-class clearly poses a challenge to the high-quality solvers tested
here. Arguably, the same conclusion remains valid for other solver engines which
could not be considered in the present study. To support this statement, consult also
[4, 5] for the numerical results included for LSP models.
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Table 5 Comparative numerical results obtained by using several AMPL solvers nLSP(n) area
A(n)

MINOS SNOPT IPOPT LGO

6 0.6749814429 0.6749814429 0.6749814308 0.6749814433

8 0.7268684828 0.7268684827 0.7268684678 0.7268684830

10 0.7491373459 0.7491373459 0.7371215901 0.7491373457

12 0.7607298734 0.7607298734 0.7542668597 0.7607298709

14 0.7521931121 0.7675310112 0.7675309793 0.7675310106

16 0.7625954979 0.7718613220 0.7696844715 0.7718613224

18 0.7554106917 0.7747881651 0.7491373424 0.7747881650

20 0.7649920891 0.7768587560 0.7732071277 0.7768587506

22 0.7640946468 0.7783773301 0.7607298336 0.7783773308

24 0.7640946468 0.7795240452 0.7548403603 0.7795240461

26 0.7636943870 0.7804111199 0.7523851367 0.7804111201

28 0.7641232665 0.7807502582 0.7523851373 0.7811114192

30 0.4738428148 0.7813775853 0.7491373081 0.7816739255

40 0.7740433310 0.7832011593 0.7268684622 0.7832011589

50 0.5591307889 0.7820205034 0.7197409051 0.7840161496

60 0.7403488333 0.7827992931 0.6749814462 0.7844492943

70 0.7605166660 0.7846838685 0.7268685003 0.7846403575

80 0.5070738413 0.7848417622 0.7197409068 0.7848252941

6 Regression Model Development

Basedon theAMPL-LGOnumerical results,wepresent a simple nonlinear regression
model that enables the estimation of the optimal area A(n), for all even values of n
≥ 6. Obviously, the same type of regression model could be used to estimate A(n)
also for odd values. However, based on the optimality of regular n-polygons [27],
one could exactly compute A(n) for all odd values of n.

Given that A(n) is a monotonically increasing function of n, and A(∞) = π/4, the
following model form is conjectured for even values n ≥ 6:

A(n) = π
/
4 − c1

/
n − c2

/
n2 − c3

/
n3. (6)

In (6), the parameters c1, c2, c3 are expected to be positive. To calibrate this
model, we use the estimated A(n) 6 ≤ n ≤ 80 values found by AMPL-LGO, substi-
tuting the three apparently suboptimal calculated A(n) values by their interpolated
approximation as discussed earlier.

The regression model parameters were determined using the NonlinearMod-
elFit function of Mathematica [32]. This leads to the following model, rounding
the coefficients to five digits after the decimal point (to reflect the expected model
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Table 6 Estimated A(n) values based on the regression model (7) vs. best known results

n 6 8 10 20 30 40

A(n) est 0.674983 0.726829 0.749185 0.776816 0.781572 0.783209

Best res 0.674981 0.726868 0.749137 0.776859 0.781674 0.783201

n 50 60 70 80 90 100

A(n) est 0.783965 0.784378 0.784629 0.784794 0.784908 0.784991

Best res 0.784016 0.784449 0.784684 0.784842 0.784946 0.785028

n 200 300 400 500 1000 2000

A(n) est 0.785270 0.785329 0.785352 0.785364 0.785384 0.785392

Best res 0.785316 0.785309 0.785356 ??? ??? ???

accuracy):

A(n) ∼ π
/
4 − 0.01098

/
n − 2.91512

/
n2 − 5.96369

/
n3. (7)

Applying this regression model, in Table 6 we present an illustrative set of A(n)
estimates vs. the best known numerical results from Tables 1, 2, 3, 4 and 5. All values
are rounded to 6-digit precision after the decimal point.

All estimated values shown in Table 6 are in reasonable agreement with the best
numerical results presented in Tables 1, 2, 3, 4 and 5 whenever such values are
available. The relative difference between the calculated best values and estimated
values is less than 10–4 in all examples included in Table 5, except for n = 30, where
the relative difference approximately equals 1.3 · 10–4.

The calculated optima shown for n = 90, 100, 200, 300, 400 were found using
SNOPT. (Due to the current pre-set model size limitations of AMPL-LGO, it could
not be used for doing these calculations; and the solvers MINOS and IPOPT were
deemed unsuitable due to their inferior performance experienced for smaller n
values). The SNOPT runtimes—which were below one second in most cases for
n < 100 (reaching about 5 s for n = 100) – increased rapidly when n was sequen-
tially set to 200, 300, and 400. SNOPT was running for more than an hour on the
computer mentioned earlier to solve the n = 400 model instance. The entries ??? for
n = 500, 1000, 2000 indicate that we did not attempt to calculate these, since none
of the solvers used in this study seemed capable to return numerical results within
an acceptable timeframe.

Let us point out that while the LSP(100) model-instance has “only” 198 decision
variables and 5049 constraints (omitting the prefixed values), the LSP(400) model-
instance has 798 variables, and the number of constraints is 80199. It seems clear
that solving LSP(n) models directly, for arbitrarily large even values n, is beyond
the capability of current (and perhaps also of future) numerical optimization tools.
This aspect makes the regression model based estimation approach a simple viable
alternative.
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Since the data used to develop the regression model (2) are likely to be at least
slightly suboptimal, one can expect that—generally speaking—the estimated A(n)
values could be also suboptimal. This tendency can be observed in Table 6, but one
can see also some exceptions, indicating regression model error and/or optimization
inaccuracy.

Let us also note that—for the purpose of developing a regression model—the
exact values {A(n)} for odd n could also be used. However, this approach would be
based on “mixing” numerically exact and estimated optima, and hence would give
less indication of the quality of the numerical solutions found for even values of n.
For this reason, we used only the results obtained in the present study, and we did
not attempt to find adjusted optimum estimates based on further information.

To support a more complete comparative analysis, first and second order regres-
sion models (with 1/n as their input argument) were also calculated, but the third
order model (6) clearly resulted in a superior fit to the entire data set used. Obvi-
ously, within reason, higher order models (or perhaps other model types) could give
even more precise fit to the data, but—considering also the inherent data inaccura-
cies—the third order model (6) already gives a fairly good fit. Figure 2 displays the
model function curve defined by (7) together with the adjusted data set (represented
by dots) that includes the interpolated data.

Figure 3 displays the regression model residuals. With a few exceptions, the
residual errors are less than 1·10–4; the absolute value of the singularly largest esti-
mated error is around 8 · 10–4. All estimated error values are fairly small, compared
to the approximate range [0.674981, 0.784825] of the observed data.

One can observe that most of the residuals seem to follow an interesting cyclical
pattern that—in the author’s opinion—seems more due to the inherent structure of
the LSP(n) problem-class than to numerical fluctuations and other “noise” induced
by the computational environment.

Fig. 2 The nonlinear
regression model (7), vs. the
adjusted data set A(n) (dots)
for 6 ≤ n ≤ 80

n
0 20 40 60 80

0.68
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0.72

0.74
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0.78

Fig. 3 Residuals (see dots)
in the regression model (7)
of A(n), for 3 ≤ n ≤ 40

n
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7 Concluding Remarks

In this study, we address the problem of finding numerically the sequence of largest
small n-polygons LSP(n) with unit diameter and maximal area A(n). Finding LSP(n)
and A(n) for even values of n ≥ 6 has been a long-standing challenge, leading to an
interesting class of nonlinear optimization problems with different formulations by
a number of researchers.

The structural properties of this problem, and of similar optimization challenges—
e.g., atomic structure models, potential energy models, regular object packings, and
other problems inwhich the goal is to find the best configuration of identical objects—
often support the proposition of “credible” initial solutions and solution guesses.
However, finding the true global solution typically remains difficult, as the cited
earlier studies and our present work illustrate.

Using the AMPL modeling environment with the LGO solver option, we present
global search based numerical solutions for all even values 6 ≤ n ≤ 80, in a matter
of minutes. Our results are comparable to (and in a number of cases are somewhat
better than) the best results obtained earlier by other authors and by other solver
software options, before our results were produced. Based on the results obtained,
we also propose a regression model that enables the simple estimation of the optimal
area sequence {A(n)}, for arbitrary integer values of n.

Upon revising the manuscript of this work, it was brought to our attention by a
helpful reviewer that a recently posted (September 2020) study [3] presentsnumerical
optimum estimateswhich are somewhat better for n≥ 32 than the numerical optimum
estimates presented in our work. To illustrate, [3] reports for n = 32 the estimate
0.7821325276 versus our estimate 0.7818946320: the approximate ratio of these
values is 0.9996958. To produce the results reported in [3] for a selection of even
values n≤ 128, a different global optimization model was used; MATLAB and CVX
serve as the modeling environment, and the MOSEK Optimization Suite was used
(with a default precision setting which, without delving into further details, seems
to be similar to the numerical feasibility tolerance used in our study).

In response to the above, we point out that [3] cites our numerical results obtained
in 2018 (and left unchanged for the present study). We never claimed more than
producing credible numerical optimum estimates using off-the-shelf optimization
softwarewhich returns results in seconds orminutes for themodel instances discussed
here.

Let us add that in a recently completed study [26] we present numerical results
for an illustrative sequence of even values of n, up to n ≤ 1000. Our results are in
close agreement with (or surpass) the best results reported in all earlier studies known
to us, including the results presented in [3]. For completeness, we also calculated
numerically optimized results for a selection of odd values of n, up to n ≤ 999. In
this study, we used a tighter model formulation; to handle this model, Mathematica
was used with the IPOPT solver option. Following up by corresponding regression
models (similarly to our present work), we present numerical solution estimates for
the entire LSP model-class.
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The motto of the benchmarking studies [4, 5] is, arguably, somewhat provocative
and funny, but the message is worth quoting: “COPS: Keeping optimization software
honest.” In line with this message, let us conclude with some honest and pragmatic
advice, not driven by unconditional “software developer’s pride”. Facing the vast
universe of nonlinear optimization problems, it is advisable to refrain from confident
blanket statements regarding the superiority of any particular solver software over
others. Instead, it is good practice to use a repertoire of appropriate model versions
and solver options whenever possible, especially since it may not be obvious a priori
which model type or solver engine will work best for a novel or unusually hard
optimization challenge.
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