
Springer Proceedings in Mathematics & Statistics

Mehiddin Al-Baali
Anton Purnama
Lucio Grandinetti Editors

Numerical
Analysis and
Optimization
NAO-V, Muscat, Oman, January 2020

Springer Proceedings in Mathematics &
Statistics

Volume 354

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at https://link.springer.com/bookseries/10533

http://www.springer.com/series/10533

Mehiddin Al-Baali · Anton Purnama ·
Lucio Grandinetti
Editors

Numerical Analysis
and Optimization
NAO-V, Muscat, Oman, January 2020

Editors
Mehiddin Al-Baali
Department of Mathematics
Sultan Qaboos University
Muscat, Oman

Lucio Grandinetti
DIMES
University of Calabria
Arcavacada di Rende, Cosenza, Italy

Anton Purnama
Department of Mathematics
Sultan Qaboos University
Muscat, Oman

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-3-030-72039-1 ISBN 978-3-030-72040-7 (eBook)
https://doi.org/10.1007/978-3-030-72040-7

Mathematics Subject Classification (2020): 49Mxx, 65-XX, 35-XX, 34-XX, 49-XX, 65-XX, 68Nxx,
90-XX, 93-XX, 97Cxx, 97Nxx, 97Pxx

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-72040-7

Preface

This special edited book series of Springer Proceedings inMathematics and Statistics
contains 12 selected keynote papers presented at the Fifth International Conference
on Numerical Analysis and Optimization: Theory, Methods, Applications and Tech-
nology Transfer (NAOV-2020) held during January 6–9, 2020, at Sultan Qaboos
University (SQU), Muscat, Oman. The NAOV-2020 conference was sponsored by
SQU, AMPL (USA), and Weierstrass Institute for Applied Analysis and Stochastics
(WIAS, Germany). Twenty-four world leading researchers gave keynote lectures. In
total, forty-three international participants contributed talks. After the conference,
selected contributed papers were invited to be submitted for publication in a special
issue of the following international journals: Optimization Methods and Software,
Springer Nature Operations Research Forum and SQU Journal for Science. More
information on the conference is available at the Website conferences.squ.edu.om/
naov-2020/Home. Each of the keynote papers was accepted for this edited proceed-
ings volume after a stringent peer review process by independent reviewers. We wish
to express our gratitude to all contributors. We are also indebted to many anonymous
referees for the care taken in reviewing the papers submitted for publication.

The NAO conference series is held once every 3 years at SQU: the first conference
(NAO-2008) was held on April 6–8, 2008; the second conference (NAOII-2011)
was held on January 3–6, 2011; the third conference (NAOIII-2014) was held on
January 5–9, 2014; and the fourth conference (NAOIV-2017) was held on January
2–5, 2017. The NAO conference will hopefully remain a forum where prominent
mathematicians, worldwide experts, and active researchers gather and meet to share
their knowledge on new scientific methodologies and stimulate the communication
of new innovative ideas, promote scientific exchange, and discuss possibilities of
further cooperation, networking, and promotion of mobility of senior and young
researchers and research students.

For the previous NAOIV-2017 conference, a total of 13 keynote papers were
published in an edited book of Springer series on Proceedings in Mathematics and
Statistics (volume 235, 2018). This volume is dedicated to the late Profs. Mike JD
Powell and Roger Fletcher (passed away on 2015 and on 2016, respectively), who
were the pioneers and leading figures in the mathematics of nonlinear optimization.

v

http://conferences.squ.edu.om/naov-2020/Home

vi Preface

Seven papers were published in the volume 23(1) for the (2018) special issue of the
SQU Journal for Science (free download from the Website https://journals.squ.edu.
om/index.php/squjs/issue/view/197).

For the past NAOIII-2014 conference, a total of 13 keynote papers were published
in an edited book of Springer series on Proceedings in Mathematics and Statistics
(volume 134, 2015), and eight papers were published in the volume 20(2) for the
(2015) special issue of the SQU Journal for Science (free download from theWebsite
https://journals.squ.edu.om/index.php/squjs/issue/view/50).

For the past NAOII-2011 conference, nineteen papers were selected for two
special issues of the SQU Journal for Science highlighting the two themes of the
conference Numerical Optimization and Numerical Analysis. Eleven papers were
published in the volume 17(1) for the (2012) special issue on Numerical Optimiza-
tion (free download from the Website https://journals.squ.edu.om/index.php/squjs/
issue/view/44) and eight papers in the volume 17(2) for the (2012) special issue on
Numerical Analysis (free download from the Website https://journals.squ.edu.om/
index.php/squjs/issue/view/45).

For the first NAO-2008 conference, Mike Powell was the first plenary speaker.

Muscat, Oman
Muscat, Oman
Rende, Cosenza, Italy

Mehiddin Al-Baali
Anton Purnama

Lucio Grandinetti

https://journals.squ.edu.om/index.php/squjs/issue/view/197
https://journals.squ.edu.om/index.php/squjs/issue/view/50
https://journals.squ.edu.om/index.php/squjs/issue/view/44
https://journals.squ.edu.om/index.php/squjs/issue/view/45

A Personal Perspective on Numerical Analysis
and Optimization

Desmond J. Higham
School of Mathematics, University of Edinburgh, Edinburgh, UK

Summary I give a brief, non-technical, historical perspective on numerical anal-
ysis and optimization. I also touch on emerging trends and future challenges. This
content is based on the short presentation that I made at the opening ceremony of The
International Conference on Numerical Analysis and Optimization, which was held
at Sultan Qaboos University, Muscat, Oman, on January 6–9, 2020. Of course, the
material covered here is necessarily incomplete and biased towards my own interests
and comfort zones. My main aim is to give a feel for how the area has developed
over the past few decades and how it may continue. I hope that this material will also
provide some context that motivates and complements the research described in the
main body of the conference proceedings.

1. Definitions

Mathematicians love to make definitions. But defining an area of mathematics is
a thankless task. The best one-sentence definitions that I can come up with for
numerical analysis and optimization are as follows.

Numerical Analysis: the design, analysis, and implementation of computa-
tional algorithms to deliver approximate solutions to problems arising in applied
mathematics.

Optimization: the design, analysis, and implementation of computational algo-
rithms to approximate the best solution to a problem arising in applied mathematics
when there may be many feasible solutions.

For alternative versions, I refer to the references [3, 24, 29].

2. Emergence

The unstoppable growth of interest in the use of computational algorithms can be
attributed to twomain factors. First, technologyhas advanced rapidly and consistently
since the digital computing era began in the 1950s. The CDC6600, widely acknowl-
edged to be the world’s first “supercomputer”, was introduced in 1964, achieving a
speed of 3 megaflops (that is, 3 × 106 floating operations per second) [17]. Today’s

vii

viii A Personal Perspective on Numerical Analysis and Optimization

fastest supercomputers can achieve petaflop speeds (1015 floating operations per
second). By contrast, in his 1970 Turing Award Lecture [28, 1971], JamesWilkinson
discussed the use of mechanical desk calculators:

“It happened that some time after my arrival [at the National Physical Laboratory in 1946], a
system of 18 equations arrived in Mathematics Division and after talking around it for some
time we finally decided to abandon theorizing and to solve it… The operation was manned
by Fox, Goodwin, Turing, and me, and we decided on Gaussian elimination with complete
pivoting.”

Leslie Fox [12] noted that the computation referred to in this quotation took about
two weeks to complete. By my estimation, this corresponds to around 0.003 floating
operations per second!

A second, and equally important, factor behind the rise of scientific computation
is the availability of ever-increasing sources of data, caused by improvements in
experimental techniques and, perhaps most notably, by the inexorable sensorization
and digitization of our everyday lives. Hence, although numerical analysis and opti-
mization build on classical ideas that can be attributed to the likes of Newton, Euler,
Lagrange, andGauss, they continue to be shaped by current developments. Of course,
many disciplines make extensive use of computational techniques. For example, the
word “Computational” often appears before the words Biology, Chemistry, Physics,
and Social Science. Furthermore, Computational Science and Engineering [23] is
a well-established discipline that is often referred to as the third leg of the science
and engineering stool, equal in stature to observation and theory. In addition, many
graduate schools now offer courses with titles such as “Data Analytics” and “Data
Science.” Although there is clearly much overlap, my view is that numerical anal-
ysis and optimization have a distinct role of focusing on the design and analysis of
algorithms for problems in applied mathematics, in terms of complexity, accuracy,
and stability, and hence they are informed by, but not driven by, application fields.

3. Reflections

Myown exposure to numerical analysis and optimization dates back to themid 1980s
when I enrolled on anMSc course on “Numerical Analysis and Programming” at the
University of Manchester. The course, in which optimization was treated as a branch
of numerical analysis, made heavy use of the series of textbooks published by Wiley
that was written by members of the highly influential numerical analysis group at
the University of Dundee [27]. Here are the topics, and most recent versions of these
books: approximation theory [26], numerical methods for ODEs [18], numerical
methods for PDEs [22, 25], and optimization [11]. An additional topic was numerical
linear algebra [14]. Eachof these topics remains active andhighly relevant.Numerical
linear algebra and optimization are often important building blocks within larger
computational tasks, and hence their popularity has never waned. Partial differential
equations lie at the heart of most models in the natural and engineering sciences,
and they come in many varieties, giving rise to an ever-expanding problem set.
Timestepping methods for ODEs gained impetus through the concept of geometric
integration [15] and now play a prominent role in the development of tools for

A Personal Perspective on Numerical Analysis and Optimization ix

statistical sampling [6]. ODE simulation also forms a key component in certain
classes of neural network, as described in [7], which received a Best Paper Award
at NeurIPS 2018, a leading conference in machine learning. Approximation theory
lies at the heart of the current deep learning revolution [16, 19], and, in particular,
understanding very high-dimensional data spaces and/or parameter spaces remains
a fundamental challenge.

4. Impact

In a special issueof the journalComputing inScience andEngineering, JackDongarra
and Francis Sullivan published their top-ten list of algorithms that had the “greatest
influence on the development and practice of science and engineering in the 20th
century” [9]. These were as follows:

• Metropolis Algorithm for Monte Carlo.
• Simplex Method for Linear Programming.
• Krylov Subspace Iteration Methods.
• The Decompositional Approach to Matrix Computations.
• The Fortran Optimizing Compiler.
• QR Algorithm for Computing Eigenvalues.
• Quicksort Algorithm for Sorting.
• Fast Fourier Transform.
• Integer Relation Detection.
• Fast Multipole Method.

Here, the word “algorithm” is being used in a very general sense, but it is clear that
most of these achievements have ideas from numerical analysis and optimization at
their heart.

Researchers in numerical analysis and optimization are in the advantageous posi-
tion that their work is not only recorded in journals and textbooks, but may also be
made operational through public domain software. Many authors now deposit code
alongside their academic publications, and state-of-the-art code is available in a wide
range of languages and platforms, including FORTRAN, C, R, MATLAB, Maple,
(Scientific) Python, and the more recent Julia [4].

5. Momentum

Judging by the level of activity around graduate classes, seminar series, conferences,
and journals, there is a strong pull for further research in numerical analysis and
optimization. Particularly active, and overlapping, directions include

• dealing with, or exploiting, randomness, both in the simulation of mathematical
models that are inherently stochastic [20] and in the use of randomization in
solving deterministic problems [8, 21],

• accurately and efficiently simulatingmathematical models that operate over a vast
range of temporal or spatial scales [10, 13],

x A Personal Perspective on Numerical Analysis and Optimization

• tackling problems of extremely high dimension, notably large-scale optimization
and inverse problems in machine learning and imaging [2, 5], and

• exploiting the latest computer architectures and designing algorithms that effi-
ciently trade off between issues such as memory bandwidth, data access, commu-
nication, and, perhaps most topically, the use of low precision special function
units [1].

Such items, and may others, emphasize that important challenges remain for
researchers in numerical analysis and optimization in the design, evaluation, and
extension of the modern computational scientist’s toolbox.

Acknowledgements The author is supported by Programme Grant EP/P020720/1 from the
Engineering and Physical Sciences Research Council of the UK.

References

1. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, M. Gates, T. Grütz-
macher, N. J. Higham, S. Li, N. Lindquist, Y. Liu, J. Loe, P. Luszczek, P. Nayak, S. Pranesh,
S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai,
I. Yamazaki, and U. M. Yang, A survey of numerical methods utilizing mixed precision arith-
metic, The International Journal of High Performance Computing Applications, 35 (2021),
pp. 344–369.

2. S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using data-
driven models, Acta Numerica, 28 (2019), pp. 1–174.

3. J. Barrow-Green and R. Siegmund-Schultze, The history of applied mathematics, in The
Princeton Companion to Applied Mathematics, N. J. Higham, M. R. Dennis, P. Glendinning,
P. A. Martin, F. Santosa, and J. Tanner, eds., Princeton University Press, Princeton, NJ, USA,
2015, pp. 55–79.

4. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Review, 59 (2017), pp. 65–98.

5. L.Bottou, F. E.Curtis, and J.Nocedal,Optimizationmethods for largescalemachine learning,
SIAM Review, 60 (2018), pp. 223–311.

6. S. Brooks, A. Gelman, G. L. Jones, and X.-L.Meng, eds.,Handbook of Markov ChainMonte
Carlo, CRC Press, Boca Raton, 2011.

7. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, andD. K. Duvenaud,Neural ordinary differential
equations, in Advances in Neural Information Processing Systems 31, S. Bengio, H.Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Curran Associates, Inc.,
2018, pp. 6571–6583.

8. M.P.Connolly,N. J.Higham, andT.Mary,Stochastic roundingand its probabilistic backward
error analysis, SIAM J. Sci. Comput., 43 (2021), pp. A566–A585.

9. J. Dongarra and F. Sullivan,Guest editors’ introduction to the top 10 algorithms, Computing
in Science and Engineering, 2 (2000), pp. 22–23.

10. W. E, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011.
11. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Chichester, 2000.
12. L. Fox, James Hardy Wilkinson, 1919–1986, Biographical Memoirs of Fellows of the Royal

Society, 33 (1987), pp. 671–708.
13. M. G. D. Geers, V. G. Kouznetsova, K. Matouš, and J. Yvonnet, Homogenization methods

andmultiscalemodeling:Nonlinear problems, inEncyclopedia ofComputationalMechanics,
Second Edition, Wiley, 2017, pp. 1–34.

14. G. H. Golub and C. F. Van Loan,Matrix Computations, The Johns Hopkins University Press,
3rd ed., 1996.

A Personal Perspective on Numerical Analysis and Optimization xi

15. E.Hairer, C. Lubich, andG.Wanner,GeometricNumerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, Springer, Berlin, 2nd ed., 2006.

16. C. F. Higham and D. J. Higham,Deep learning: An introduction for applied mathematicians,
SIAM Review, 61 (2019), pp. 860–891.

17. S. Hongwei, Seymour Cray: The father of world supercomputer, History Research, 7 (2019),
pp. 1–6.

18. J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value
Problem, John Wiley and Sons, Chichester, 1991.

19. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), pp. 436–444.
20. G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic

PDEs, Cambridge University Press, Cambridge, 2014.
21. P.-G. Martinsson and J. Tropp, Randomized numerical linear algebra: Foundations and

algorithms, Acta Numerica, 29 (2020), pp. 403–572.
22. A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential

Equations, John Wiley and Sons, Chichester, 1980.
23. U. Rüde, K. Willcox, L. C. McInnes, H. D. Sterck, G. Biros, H. Bungartz, J. Corones, E.

Cramer, J. Crowley, O. Ghattas, M. Gunzburger, M. Hanke, R. Harrison, M. Heroux, P. J. Jan
Hesthaven, C. Johnson, K. E. Jordan, D. E. Keyes, R. Krause, V. Kumar, S. Mayer, J. Meza,
K. M. Mørken, J. T. Oden, L. Petzold, P. Raghavan, S. M. Shontz, A. Trefethen, P. Turner,
V. Voevodin, B. Wohlmuth, and C. S. Woodward, Research and education in computational
science and engineering, SIAM Review, 60 (2018), pp. 707–754.

24. L. N. Trefethen, The definition of numerical analysis, SIAM News, 25 (1992).
25. R. Wait and A. Mitchell, Finite Element Analysis and Applications, John Wiley and Sons,

Chichester, 1985.
26. G. A. Watson, Approximation Theory and Numerical Methods, John Wiley and Sons,

Chichester, 1980.
27. G. A. Watson, The history and development of numerical analysis in Scotland: a personal

perspective, in The Birth of Numerical Analysis, World Scientific, London, 2009, pp. 161–
177.

28. J. H. Wilkinson, Some comments from a numerical analyst, J. Assoc. Comput. Mach., 18
(1971), pp. 137–147.

29. S. J. Wright,Continuous optimization (nonlinear and linear programming), in The Princeton
Companion to Applied Mathematics, N. J. Higham, M. R. Dennis, P. Glendinning, P. A.
Martin, F. Santosa, and J. Tanner, eds., Princeton University Press, Princeton, NJ, USA,
2015, pp. 281–293.

A Personal View of Numerical Analysis
and Optimization

David M. Gay
AMPL Optimization

Nowand then I need to fill out a formonwhich Imust specifymyoccupation. I always
say “numerical analyst”. My introduction to numerical analysis came in a couple of
college courses and a stint at the numerical summer school that used to be run at
the University of Michigan. When it came time for graduate studies, I sought places
where I could learn more numerical analysis, as I liked the mix of practicalities one
must deal with in that discipline. I ended up doing my graduate work in Computer
Science at Cornell University. At that time the Computer Science Department had
three numerical professors, Jim Bunch, John Dennis, and Jorge Moré—an emphasis
on numerical linear algebra and optimization. I took courses or had other interactions
with all three and ended up with John Dennis as my thesis advisor. There was also a
lot of work on algorithms at that time at Cornell, and I absorbed much material on
algorithms.

Since graduate school, I’ve been interested in practical scientific computing. My
optimization interests for a while were drawn to data fitting, starting with work with
John Dennis and Roy Welsch on NL2SOL, though I was also interested in good
linear algebra for the simplex method. When Bob Fourer spent a sabbatical at Bell
Labs, he, Brian Kernighan and I came up with the AMPL modeling language, on
which I have since spent much time. I was aware of forward automatic differentiation
via the AUGMENT pre-processor and thought of implementing forward AD in the
interface to nonlinear solvers, but when I explained this to Andreas Griewank at a
Mathematical Programming Symposium, he told me about backwards AD, which is
much more efficient for gradient computations, and I ended up writing several AD
papers and providing a backwards AD implementation in the AMPL/Solver Interface
Library (ASL).

In general I am still drawn to practical scientific computing. I like ideas of using
good algorithms for practical scientific computations.

xiii

Contents

A New Inexact Nonmonotone Filter Sequential Quadratic
Programming Algorithm . 1
Hani Ahmadzadeh and Nezam Mahdavi-Amiri

Behavior of Limited Memory BFGS When Applied to Nonsmooth
Functions and Their Nesterov Smoothings . 25
Azam Asl and Michael L. Overton

Subgradient Smoothing Method for Nonsmooth Nonconvex
Optimization . 57
A. M. Bagirov, N. Sultanova, S. Taheri, and G. Ozturk

On Some Optimization Problems that Can Be Solved in O(n) Time 81
Yanqin Bai and Kees Roos

Iteration Complexity of a Fixed-Stepsize SQP Method
for Nonconvex Optimization with Convex Constraints 109
Francisco Facchinei, Vyacheslav Kungurtsev, Lorenzo Lampariello,
and Gesualdo Scutari

Modelling and Inferring the Triggering Function in a Self-Exciting
Point Process . 121
Craig Gilmour and Desmond J. Higham

A New Multi-point Stepsize Gradient Method for Optimization 135
Yakui Huang, Yu-Hong Dai, and Xin-Wei Liu

A Julia Implementation of Algorithm NCL for Constrained
Optimization . 153
Ding Ma, Dominique Orban, and Michael A. Saunders

A Survey on Modeling Approaches for Generation
and Transmission Expansion Planning Analysis . 183
Giovanni Micheli and Maria Teresa Vespucci

xv

xvi Contents

Second Order Adjoints in Optimization . 209
Noémi Petra and Ekkehard W. Sachs

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 231
János D. Pintér

Computational Science in the 17th Century. Numerical Solution
of Algebraic Equations: Digit–by–Digit Computation 249
Trond Steihaug

NAOV-2020 Conference Participants . 271

Contributors

Hani Ahmadzadeh Faculty of Mathematical Sciences, Sharif University of Tech-
nology, Tehran, Iran

Azam Asl University of Chicago Booth School of Business, Chicago, IL, USA

A. M. Bagirov School of Engineering, Information Technology and Physical
Sciences, Federation University Australia, Ballarat, Australia

Yanqin Bai Department of Mathematics, Shanghai University, Shanghai, China

Yu-Hong Dai State Key Laboratory of Scientific and Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing, China

Francisco Facchinei Department of Computer, Control, and Management Engi-
neering Antonio Ruberti, Sapienza University of Rome, Rome, Italy

Craig Gilmour Department of Mathematics and Statistics, University of Strath-
clyde, Glasgow, UK

Desmond J. Higham School ofMathematics, University of Edinburgh, Edinburgh,
UK

Yakui Huang Institute of Mathematics, Hebei University of Technology, Tianjin,
China

Vyacheslav Kungurtsev Department of Computer Science, Faculty of Electrical
Engineering, Czech Technical University in Prague, Prague, Czech Republic

Lorenzo Lampariello Department of Business Studies, Roma Tre University,
Rome, Italy

Xin-Wei Liu Institute of Mathematics, Hebei University of Technology, Tianjin,
China

Ding Ma Department of Management Science and Department of Marketing,
College of Business, City University of Hong Kong, Kowloon, Hong Kong

xvii

xviii Contributors

Nezam Mahdavi-Amiri Faculty of Mathematical Sciences, Sharif University of
Technology, Tehran, Iran

Giovanni Micheli Department of Management, Information and Production Engi-
neering, University of Bergamo, Dalmine, BG, Italy

Dominique Orban GERAD and Department of Mathematics and Industrial Engi-
neering, Ecole Polytechnique de Montréal, Montreal, QC, Canada

Michael L. Overton Courant Institute of Mathematical Sciences, New York
University, New York, USA

G. Ozturk Department of Industrial Engineering, Eskisehir Technical University,
Eskisehir, Turkey

Noémi Petra Department of Applied Mathematics, University of California,
Merced, CA, USA

János D. Pintér Department of Management Science and Information Systems,
Rutgers University, Piscataway, NJ, USA

Kees Roos Department of Electrical Engineering, Mathematics and Computer
Science, Technical University Delft, CD Delft, The Netherlands

Ekkehard W. Sachs Department ofMathematics, Trier University, Trier, Germany

Michael A. Saunders Systems Optimization Laboratory, Department of Manage-
ment Science and Engineering, Stanford University, Stanford, CA, USA

Gesualdo Scutari School of Industrial Engineering, Purdue University, West-
Lafayette, IN, USA

Trond Steihaug Department of Informatics, University of Bergen, Bergen, Norway

N. Sultanova School of Engineering, Information Technology and Physical
Sciences, Federation University Australia, Ballarat, Australia

S. Taheri School of Science, RMIT University, Melbourne, Australia

Maria Teresa Vespucci Department of Management, Information and Production
Engineering, University of Bergamo, Dalmine, BG, Italy

A New Inexact Nonmonotone Filter
Sequential Quadratic Programming
Algorithm

Hani Ahmadzadeh and Nezam Mahdavi-Amiri

Abstract An inexact nonmonotone filter sequential quadratic programming algo-
rithm is presented for solving general constrained nonlinear programming problems.
At every iteration, a steering direction is computed as a minimizer of a linear model
of the constraint violation over a trust region. A possible infeasible stationary point
can be detected using the steering direction. If the current iterate is not an infeasible
stationary point, a strongly convex feasible quadratic programming subproblem is
defined to compute a search direction as an inexact solution satisfying some loose
and achievable conditions. We prove that the search direction is a descent direc-
tion for the constraint violation or the objective function. Moreover, we use a penalty
parameter updating strategy to yield the search direction as a descent direction for the
penalty function. To attain a superlinear local convergence, an accelerating direction
is computed in certain iterations. We use a nonmonotone filter strategy to compute
the step-length along the accelerating direction or the search direction. The global
convergence and superlinear local convergence of the algorithm can be obtained
under some standard assumptions. Competitive numerical results obtained by an
implementation of our algorithm are reported.

Keywords Nonlinear optimization · Sequential quadratic programming · Inexact
methods · Nonmonotone filter · Penalty function

H. Ahmadzadeh · N. Mahdavi-Amiri (B)
Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
e-mail: nezamm@sharif.edu

H. Ahmadzadeh
e-mail: hani.ahmadzadeh@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_1&domain=pdf
mailto:nezamm@sharif.edu
mailto:hani.ahmadzadeh@gmail.com
https://doi.org/10.1007/978-3-030-72040-7_1

2 H. Ahmadzadeh and N. Mahdavi-Amiri

1 Introduction

Nonlinear optimization problems appear in various areas of science and engineer-
ing, such as finance [4, 21], economics [17], optimal control [7, 30, 41], process
engineering [8, 42, 44] and many other branches of engineering [5, 15]. Sequen-
tial quadratic programming (SQP) comprises a well-known class of algorithms for
solving nonlinear optimization problems [22], specially when a sequence of related
problems such asmixed integer nonlinear programming [19, 34, 35], optimal control
[3], and partial differential equations (PDE)-constrained optimization [9, 31] need
to be solved.

Despite the many advantages of SQP algorithms including the warm-start ability
and fast detection of infeasibility, they often suffer from the heavy computational
cost in every iteration. This major disadvantage of SQP methods served to be a key
motivation for researchers to develop inexact/truncated SQP algorithms [16, 39]. A
recent foray into this area is the algorithm proposed by Curtis et al. [14]. The most
striking characteristic of their algorithm is the computation of the search direction
as a convex combination of inexact solutions of two quadratic programming (QP)
subproblems: “penalty QP” and “feasibility QP”. The authors provided a set of
complicated but loose conditions for inexact solutions of QP subproblems so that
the algorithm is globally convergent. Nevertheless, they could not provide a reliable
implementation of the inexact SQP algorithm, because the available QP solvers at the
time were not capable of finding an inexact solution of the QP subproblem satisfying
the desired conditions.

Commonly, filter [20, 43] or merit functions [13, 28] are used in the context of
line-search or trust region framework to guarantee the global convergence of SQP
algorithms. An undesirable phenomenon in the traditional filter methods is the need
for use of a restoration phase when infeasible subproblems are faced. Gould et al.
[24] replaced the restoration phase in traditional filter methods with a penalty mode
to reduce infeasibility, thereby obtaining a new filter line-search method for solving
nonlinear programs. Aiming to prevent the occurrence of the Maratos effect [38]
and loss of superlinear local convergence, they proposed a nonmonotone version of
their algorithm [25]. On theoretical front, the global and local superlinear rate of
convergence of the nonmonotone algorithm were shown; on the practical side, the
reliability and efficiency of the algorithm were shown on some small- and medium-
scale test problems.

Here, we propose an inexact nonmonotone filter SQP algorithm, based upon the
ideas of the algorithms proposed in [14, 24, 25]. In every iteration, we compute
a steering direction by solving a linear optimization problem. Using the optimal
solution of the linear problem, a possible infeasible stationary point is figured out.
If the current iterate is not an infeasible stationary point, a feasible strongly convex
QP subproblem is built. The search direction is computed using an inexact solution
of the QP subproblem satisfying some loose and achievable conditions. Solving the
QP subproblems inexactly turns to reduce the computational cost of the algorithm
significantly, without adversely affecting either the global convergence or the rate

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 3

of convergence of the nonmonotone SQP algorithm, and thus the superlinear rate of
convergence is preserved.

The remainder of our work is organized as follows. Section 2 provides some
preliminaries needed for describing our algorithm. In Sect. 3, a brief overview of the
nonmonotone filter SQP algorithm of Gould et al. [24, 25] is given. The process of
computing the search direction as an inexact solution of a feasible strongly convex
QP subproblem and complete description of the algorithm are presented in Sect. 4.
We report some encouraging comparative numerical results in Sect. 5. Finally, we
conclude in Sect. 6.

Notations. Here, R denotes the set of real numbers and R̄ := R ∪ {±∞} is the
extended real number system. The j th component of a vector x ∈ R̄

n is shown by
[x] j . For two vectors a, b ∈ R̄

n , the notation a ≤ b means that [a] j ≤ [b] j , for all
j = 1, . . . , n, min{a, b} is an n-vector with the j th component beingmin{[a] j , [b] j },
and the n-vector max{a, b} is defined similarly. Moreover, [·]+ = max{·, 0} and
[·]− = max{−·, 0}. The �p-norm is denoted by ‖ · ‖p, for p = 1, 2,∞, and 1n and
0n are the n-vectors with all entries being one and zero, respectively. A superscript
is used to declare an iteration number; for example, x (k) is the kth iterate, or f (k) is
the value of a function f at a point x (k).

2 Preliminaries

Consider the general nonlinear optimization problem,

min
x

f (x)

s.t. cl ≤ c(x) ≤ cu,

xl ≤ x ≤ xu,

(1)

where f : Rn → R and c : Rn → R
m are twice continuously differentiable func-

tions, cl , cu ∈ R̄
m and xl , xu ∈ R̄

n are constant vectors so that cl ≤ cu and xl < xu .
The i th major constraint is an equality constraint if [cl]i = [cu]i , is unbounded from
below if [cl]i = −∞, and is unbounded from above if [cu]i = ∞. Similarly, the
j th decision variable [x] j is unbounded from below (from above) if [xl] j = −∞
([xu] j = ∞). The measure of constraint violation is defined as follows:

h(x) := ‖[c(x) − cl]−‖1 + ‖[c(x) − cu]+‖1 + ‖[x − xl]−‖1 + ‖[x − xu]+‖1.

Obviously, a point x ∈ R
n satisfies all the constraints of problem (1), or simply is

a feasible point of problem (1), if and only if h(x) = 0. The Lagrangian function
related to (1) is defined to be

L(x, yl , yu , zl , zu) := f (x) − yTl (c(x) − cl) − yTu (cu − c(x)) − zTl (x − xl) − zTu (xu − x),

4 H. Ahmadzadeh and N. Mahdavi-Amiri

where yl ∈ R
m , yu ∈ R

m , zl ∈ R
n and zu ∈ R

n are the Lagrangemultiplier vectors of
the constraints c(x) ≥ cl , c(x) ≤ cu , x ≥ xl and x ≤ xu , respectively. If [cl]i = −∞
or [cu]i = ∞, then the related term is omitted in the Lagrangian function by setting
[yl]i = 0 or [yu]i = 0. Similarly, the j th component of zl (zu) is fixed to be zero
whenever [xl] j = −∞ ([xu] j = ∞).

The KKT conditions for problem (1) are:

∇xL(x, yl , yu, zl , zu) = 0n, (2a)

c(x) − cl ≥ 0m, yl ≥ 0m, (2b)

cu − c(x) ≥ 0m, yu ≥ 0m, (2c)

x − xl ≥ 0n, zl ≥ 0n, (2d)

xu − x ≥ 0n, zu ≥ 0n, (2e)

yTl (c(x) − cl) = 0, (2f)

yTu (cu − c(x)) = 0, (2g)

zTl (x − xl) = 0, (2h)

zTu (xu − x) = 0. (2i)

Considering g(x) := ∇ f (x) as the gradient of the objective function and J (x) :=
∇T c(x) as the Jacobian matrix of the function c(x), we have

∇xL(x, yl , yu, zl , zu) = g(x) − J (x)T (yl − yu) − (zl − zu).

So, the condition (2a) implies z = g(x) − J (x)T y, where z := zl − zu and y := yl −
yu . Consequently, from the complementary slackness conditions (2f)–(2i) and non-
negativity of the vectors yl , yu , zl and zu , we have yl = [y]+, yu = [y]−, zl = [z]+
and zu = [z]−. Hence, the KKT conditions (2) can be compactly written as follows:

Ψ (x, y) :=

⎡
⎢⎢⎣

min{cu − c(x), [y]−}
min{c(x) − cl , [y]+}

min{xu − x, [∇xL0(x, y)]−}
min{x − xl , [∇xL0(x, y)]+}

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0m
0m
0n
0n

⎤
⎥⎥⎦ , (3)

whereL0(x, y) := f (x) − yT c(x) is the reducedLagrangian function corresponding
to (1). The vector Ψ (x, y) is the KKT residual of (1) at a primal-dual pair (x, y). If
Ψ (x, y) = 02m+2n , then (x, y) is called a KKT pair and x is called a KKT point of
problem (1).

We say that x is a stationary point of h if and only if all of its directional derivatives
are non-negative, that is,

Dph(x) := lim
t↓0

h(x + tp) − h(x)

t
≥ 0, ∀p ∈ R

n.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 5

If x is a stationary point of the constraint violation function and h(x) > 0, then x
is called an infeasible stationary point (see [40, Definition 17.1]), and the nonlinear
optimization problem (1) is said to be locally infeasible at the point x [13]. Infea-
sibility is an important feature to be detected by nonlinear programming algorithms
[10, 12], specially when used in branch and boundmethods for solvingmixed integer
nonlinear programs [35].

The �1-penalty function is denoted by P(x;μ) := μ f (x) + h(x), for a penalty
parameter μ > 0. It is known (e.g., see [6]) that if some suitable assumptions are held
and the penalty parameter μ is chosen to be small enough, then any local solution of
(1) is a local minimizer of P(x;μ). Furthermore, if x is a stationary point of P(x;μ),
for all μ > 0 small enough, then x is a KKT point or an infeasible stationary point,
whenever h(x) = 0 or h(x) > 0, respectively (see [40, Theorem 17.4]).

Linear models of the functions f , h, and P at a point x , along a direction d, are
defined by

f̄ (d; x) := f (x) + dT g(x), (4a)

h̄(d; x) :=‖[c(x) + J (x)d − cl]−‖1 + ‖[c(x) + J (x)d − cu]+‖1
+ ‖[x + d − xl]−‖1 + ‖[x + d − xu]+‖1, (4b)

P̄(d; x,μ) :=μ f̄ (d; x) + h̄(d; x). (4c)

For a given symmetric matrix B ∈ R
n×n , quadratic models of f (x) and P(x;μ)

along a direction d are specified to be

f̆ (d; x, B) := f (x) + dT g(x) + 1

2
dT Bd, (5a)

P̆(d; x, B,μ) := μ f̆ (d; x, B) + h̄(d; x). (5b)

Moreover, linear predicted changes in the objective function, the constraint violation
function, and the penalty function are specified by

� f̄ (d; x) := f (x) − f̄ (d; x) = −dT g(x), (6a)

�h̄(d; x) := h(x) − h̄(d; x), (6b)

�P̄(d; x,μ) := P(x;μ) − P̄(d; x,μ) = μ� f̄ (d; x) + �h̄(d; x). (6c)

Quadratic predicted changes in the objective function and the penalty function are
defined by

6 H. Ahmadzadeh and N. Mahdavi-Amiri

� f̆ (d; x, B) := f (x) − f̆ (d; x, B) = −dT g(x) − 1

2
dT Bd, (7a)

�P̆(d; x, B,μ) := P(x,μ) − P̆(d; x, B,μ) = μ� f̆ (d; x, B) + �h̄(d; x) (7b)

= �P̄(d; x,μ) − μ

2
dT Bd. (7c)

Lemma 2.5 of [24] expresses a relationship between the linear predicted changes in
the constraint violation function and its directional derivative. Moreover, a relation-
ship between the linear predicted changes in the penalty function and its directional
derivative is delineated in [24, Lemma 2.9]. Here, we merge these results into the
following lemma.

Lemma 1 For a point x, a direction d, and a penalty parameter μ > 0, we have

Ddh(x) ≤ −�h̄(d; x), (8a)

Dd P(x;μ) ≤ −�P̄(d; x,μ). (8b)

Using these notations, we first provide a review of nonmonotone filter SQP algo-
rithm of Gould et al. [24, 25] (FiSQP) in the next section.

3 FiSQP Algorithm

This section gives a brief description of the FiSQP algorithm, proposed by Gould
et al. [24, 25]. At the kth iteration of this algorithm, with a certain trust region radius
ρk > 0, a steering subproblem is defined as

min
s

h̄(s; x (k)) s.t. ‖s‖∞ ≤ ρk . (9)

Because h̄(s; x (k)) is a convex function, (9) is a convex subproblem. Consequently,
if s(k) is an optimal solution of the steering subproblem, then we have

h̄(s(k); x (k)) ≤ h̄(s; x (k)),

for all s in the trust region, that is, {s : ‖s‖∞ ≤ ρk}. Specially, for s = 0n , we have

h(k) := h(x (k)) = h̄(0n; x (k)) ≥ h̄(s(k); x (k)),

and therefore, �h̄(s(k); x (k)) := h(k) − h̄(s(k); x (k)) ≥ 0. If �h̄(s(k); x (k)) = 0 and
h(k) > 0, then x (k) is recognized as an infeasible stationary point (see [13, Theorem
3.2]) and the algorithm terminates. In this situation, problem (1) is decided to be
locally infeasible at the point x (k) (see [10]–[13]).

If x (k) is not an infeasible stationary point, then a matrix B(k) is chosen as
a symmetric positive-definite approximation of H (k) := ∇2

xxL0(x (k), y(k)). After-

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 7

wards, depending on whether h̄(s(k); x (k)) = 0 or h̄(s(k); x (k)) > 0, two different
feasible convex QP subproblems are defined to compute a predictor direction. In the
case h̄(s(k); x (k)) = 0, the predictor direction p(k) is computed as the unique optimal
solution of the following feasible strongly convex QP subproblem:

min
p

1

2
pT B(k) p + pT g(k)

s.t. cl ≤ c(k) + J (k) p ≤ cu,

xl ≤ x (k) + p ≤ xu,

(10)

where g(k) := g(x (k)), J (k) := J (x (k)) and c(k) := c(x (k)). If h̄(s(k); x (k)) > 0, then
the QP subproblem (10) is infeasible. Hence, in this case the predictor direction
is defined as p(k) := argminp∈Rn P̆(p; x (k), B(k),μk), where μk > 0 is the penalty
parameter at the current iterate.

The search direction is computed as a convex combination of the predictor direc-
tion and the steering direction, that is,

d(k) := d(τk) := τk p
(k) + (1 − τk)s

(k),

where

τk = max
{
τ j | �h̄(d(τ j); x (k)) ≥ ζ1�h̄(s(k); x (k)), j = 0, 1, 2, . . .

}
, (11)

for predesignated scalars τ , ζ1 ∈ (0, 1). Hence, Lemma 1 ensures that the search
direction d(k) is a descent direction for the constraint violation function provided
that �h̄(s(k); x (k)) > 0. Moreover, if �h̄(s(k); x (k)) = 0 and x (k) is not an infeasible
stationary point, then d(k) is a descent direction for the objective function.

To have the search direction d(k) as a descent direction for the penalty function,
the penalty parameter is updated as follows:

μk+1 =

⎧⎪⎨
⎪⎩

μk, if �P̄(d(k); x (k),μk)

≥ ζ2�h̄(s(k); x (k)),

min
{
1
2μk,

ζ2�h̄(s(k);x (k))−�h̄(d(k);x (k))

� f̄ (d(k);x (k))

}
, otherwise,

(12)

where ζ2 ∈ (0, ζ1) is a predesignated constant. This penalty parameter updating for-
mula along with Lemma 1 guarantees that

Dd(k) P(x (k);μk+1) ≤ −�P̄(d(k); x (k),μk+1) ≤ −ζ2�h̄(s(k); x (k)).

Consequently, the search direction d(k) is a descent direction for P(x;μk+1) at the
point x = x (k) (see [24, Lemma 2.10]).

In order to accelerate the convergence of the algorithm, Gould et al. [24, 25]
compute an accelerating direction in every iteration.Active sets of general constraints

8 H. Ahmadzadeh and N. Mahdavi-Amiri

and bound constraints are respectively defined as follows:

AG(p; x (k)) :={i = 1, . . . ,m | [c(k) + J (k) p]i = [cl]i or [c(k) + J (k) p]i = [cu]i },
(13a)

AB(p; x (k)) :={ j = 1, . . . , n | [x (k) + p] j = [xl] j or [x (k) + p] j = [xu] j }. (13b)

The accelerating direction is computed to be

d(k)
A := p(k) + a(k), (14)

where a(k) is an optimal solution of the accelerating subproblem, posed as

min
a

1

2
aT H (k) a + aT (g(k) + H (k) p(k))

s.t. [c(k) + J (k)a]i = 0, i ∈ A(k)
G ,

[a] j = 0, j ∈ A(k)
B ,

‖a‖2 ≤ ρA
k ,

(15)

whereA(k)
G := AG(p(k); x (k)) andA(k)

B := AB(p(k); x (k)), with ρA
k > 0 being a trust-

region radius.
Next, we describe the nonmonotone filter strategy of Gould et al. [25] for com-

puting the step-length along the search direction d(k) or the accelerating direction
d(k)
A . We first need to state some basic definitions of filter methods.

Definition 1 x (k) is called to be acceptable to x (i), if either one of the following
conditions holds:

h(k) ≤ max
{
βh(i), h(i) − αiζ1�h̄(s(i); x (i))

}
, (16a)

f (k) ≤ f (i) − γ min
{
βh(i), h(i) − αiζ1�h̄(s(i); x (i))

}
, (16b)

where γ,β ∈ (0, 1) are constants, ζ1 is defined as in (11), and αi is the step-length in
the i th iteration. If neither (16a) nor (16b) holds, then we say that x (k) is dominated
by x (i).

At the kth iteration (k ≥ 1), thefilterFk is taken to be a subset of the set {0, . . . , k −
1} such that for every i, j ∈ Fk , we have x (i) acceptable to x (j). This clearly means
that i, j ∈ Fk if and only if x (i) is acceptable to x (j). For k = 0, we have F0 = ∅. In
the following definition, we define acceptability of a trial point x to a filter Fk .

Definition 2 If x is acceptable to x (i), for every i ∈ Fk , then x is called acceptable
to the filter Fk . We say x is acceptable to Fk augmented by x (k) if and only if x is
acceptable to Fk and also to x (k).

Consider a searchdirectiond(k), andpossibly an acceleratingdirectiond(k)
A , computed

at a point x (k). Using a backtracking line-search procedure, a step-length α ∈ (0, 1]

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 9

is found so that a trial point x (k) + αd̂(k), where d̂(k) ∈ {d(k)
A , d(k)}, satisfies one of

the four possible sets of conditions. The filter mode and the penalty mode are the two
alternative modes in which these conditions are checked. The algorithm starts at the
filter mode; this implies that the quality of a trial point is to be assessed by the filter.
According to certain conditions being satisfied, the pair (α, d̂(k)) is called an h-, an
f - or a b-(blocking)-pair, and the related iterate is correspondingly called an h-, an
f -, or a b-type iterate, respectively. The algorithm switches to the penaltymodewhen
a b-type iterate is encountered. There, a step-length α is found so that x (k) + αd̂(k)

sufficiently reduces the penalty function. The pair (α, d̂(k)) is then called a p-type
pair and the related iterate is called a p-type iterate. The penalty mode continues
until an acceptable point to the filter is found. In order to describe those conditions,
the Cauchy steps are employed. Gould and Robinson [28, 29] used the Cauchy steps
to utilize the exact curvature of the problem in their SQP algorithms.

Definition 3 (Cauchy steps) At iteration k, the Cauchy- f step d(k)
c f is defined to be

d(k)
c f = α

f
k d

(k), where α
f
k = argmin0≤α≤1 f̆ (αd

(k); x (k), H (k)), (17)

and the Cauchy-P step d(k)
cP is defined to be

d(k)
cP = αP

k d
(k), where αP

k = argmin0≤α≤1 P̆(αd(k); x (k), H (k),μk+1). (18)

The iterations of the nonmonotone algorithm are partitioned into a set of success-
ful iterations S and a set of unsuccessful iterations U . Let R(k) := max{i | 1 ≤ i ≤
k, i ∈ S} be the largest successful iteration index i ≤ k. The following four defini-
tions describe the four possible scenarios for updating an iterate.

Definition 4 (h-type pair/iterate)Apair (α, d) forms anh-type pairwhenever x (k) +
αp is acceptable to FR(k) augmented by x (R(k)), and

� f̄ (d(R(k)); x (R(k))) < κ1�h̄(d(R(k)); x (R(k))), (19)

for some constant κ1 ∈ (0, 1). If (αk, d(k)) is an h-type pair, then x (R(k)) is called an
P-type iterate, and k + 1 is added to the set of successful iterations.

Definition 5 (f -type pair/iterate) A pair (α, d) forms an f -type pair whenever
x (R(k)) + αd is acceptable to FR(k), inequality (19) does not hold, and

f (x (k) + αd) ≤ f (R(k)) − κ2αω
f
R(k), (20)

where κ2 ∈ (0, 1) is a constant, and

ω
f
R(k) := min

{
� f̄ (d(R(k)); x (R(k))), � f̆ (d(R(k))

c f ; x (R(k)), H (R(k)))
}

. (21)

10 H. Ahmadzadeh and N. Mahdavi-Amiri

If (αk, d(k)) is an f -type pair, then x (R(k)) is called an f -type iterate, and k + 1 is
added to the set of successful iterations.

Definition 6 (b-type pair/iterate) A pair (α, d) forms a b-type pair whenever we
have

h(x (k) + αd) < h(R(k)) (22)

and
P(x (k) + αd;μk+1) ≤ P(x (R(k));μR(k)+1) − κ3αωP

R(k), (23)

where κ3 ∈ (0, 1) and

ωP
R(k) := min

{
�P̄(d(R(k)); x (R(k)),μR(k)+1),

�P̆(d(R(k))
cP ; x (R(k)), H (R(k)),μR(k)+1)

}
.

(24)

If (αk, d(k)) is a b-type pair, then x (R(k)) is called a b-type iterate, and k + 1 is added
to the set of successful iterations.

Definition 7 (p-type pair/iterate) A pair (α, d) forms a p-type pair whenever (23)
holds. If (αk, d(k)) is a p-type pair, then x (R(k)) is called an p-type iterate, and k + 1
is added to the set of successful iterations.

In the FiSQP algorithm, a non-negative integer variable named as fails stores the
number of consecutive unsuccessful iterations. Moreover,maxfails > 0 is a predesig-
nated integer that specifies the maximum number of allowed consecutive unsuccess-
ful iterations. The logical variable Pmode indicates whether the algorithm is currently
in penalty mode or filter mode.

If fails ≤ maxfails, then steering, predictor, accelerating and search directions are
computed as stated above, and the penalty parameter is updated by (12). The algo-
rithm sets d̂(k) ← d(k)

A , and checks whether (1, d̂(k)) is a successful pair or not. If
(1, d̂(k)) is a p-type pair (when Pmode = true) or an h-, an f - or a b-type pair (when
Pmode = false), then (1, d̂k) is called a successful pair (k + 1 is added to S), fails is
set to zero and Pmode is updated. Otherwise, (1, d̂k) is called an unsuccessful pair
(k + 1 is added to U), and fails is increased by one. Regardless of (1, d̂(k)) being a
successful or an unsuccessful pair, the iterate is updated as x (k+1) = x (k) + d̂(k).

If fails > maxfails, then the algorithm returns to the last successful iteration (k ←
R(k)), and a backtracking line-search is performed to compute a step-length αk so
that (αk, d̂(k)) is a successful pair for either d̂(k) = d(k)

A or d̂(k) = d(k). Then, fails is
set to zero, Pmode is updated, and the iterate is updated as x (k+1) = x (k) + αk d̂(k).

Finally, the penalty parameter is decreased by the factor 1
2 , provided that

�P̆(d(k); x (k), B(k),μk+1) < ζ3�P̆(p(k); x (k), B(k),μk+1), (25)

for some ζ3 ∈ (0, 1). Moreover, the last successful iteration index (R(k)) and the
filter are updated.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 11

On the basis of the FiSQP algorithm, we propose our new inexact nonmonotone
filter SQP algorithm in the next section.

4 iFiSQP Algorithm

Wepresent a new inexact nonmonotone filter SQP algorithm (iFiSQP) for solving the
general nonlinear program (1). The main contribution of our work is in computing
the search direction as an inexact solution of a feasible strongly convex quadratic
program. We first describe the process for computing the search direction.

In practice, by defining the slack variables, the steering subproblem (9) is refor-
mulated as the following linear program:

min
s,r+,r−,t+,t−

1Tm(r+ + r−) + 1Tn (t+ + t−)

s.t. cl ≤ c(k) + J (k)s + r+ − r− ≤ cu,

xl ≤ x (k) + s + t+ − t− ≤ xu,

− ρk ≤ [s] j ≤ ρk, j = 1, . . . , n,

r+, r− ≥ 0m, t+, t− ≥ 0n.

(26)

Let (s(k), r+(k), r−(k), t+(k), t−(k)) be an optimal solution of (26). Accordingly, s(k)

would be an optimal solution of the steering subproblem (9), which is called the
steering direction. If x (k) is not an infeasible stationary point, then�h̄(s(k); x (k)) = 0
implies that h(k) = 0. Conversely, if h(k) = 0, then s(k) = 0n is an optimal solution of
(9) and we have �h̄(s(k); x (k)) = 0. As a result, if x (k) is not an infeasible stationary
point, then

h(k) = 0 ⇔ �h̄(s(k); x (k)) = 0, (27)

for every optimal solution s(k) of the steering subproblem (9).Wenote that if h(k) = 0,
then there is no need to solve the subproblem (9). In this case, we set s(k) = 0n as a
trivial optimal solution of the steering subproblem. Algorithm 1 gives an outline of
the steps for computing the steering direction.

12 H. Ahmadzadeh and N. Mahdavi-Amiri

Algorithm 1 Compute the steering direction.

1: procedure steering_direction (x (k)).
2: if h(k) = 0 then
3: Set s(k) = t+(k) = t−(k) = 0n and r+(k) = r−(k) = 0m ;
4: return (s(k), r+(k), r−(k), t+(k), t−(k));
5: else
6: Choose a trust region radius ρk ∈ [ρ, ρ];
7: construct the linear program (26);
8: obtain (s(k), r+(k), r−(k), t+(k), t−(k)) by solving (26);
9: return (s(k), r+(k), r−(k), t+(k), t−(k));
10: end if
11: end procedure.

Using the optimal solution of (26) and defining r (k) := r+(k) − r−(k) and t (k) :=
t+(k) − t−(k), a feasible strongly convex QP subproblem is defined as follows:

min
d

1

2
dT B(k)d + dT g(k)

s.t. cl ≤ c(k) + J (k)d + r (k) ≤ cu,

xl ≤ x (k) + d + t (k) ≤ xu .

(28)

Obviously, d = s(k) satisfies all the constraints of (28), and it is a feasible point for
this QP subproblem. The KKT conditions for (28) can be compactly stated as

ψk(d, y) :=

⎡
⎢⎢⎣

min{cu − c(k) − J (k)d − r (k) , [y]−}
min{c(k) + J (k)d + r (k) − cl , [y]+}

min{xu − x (k) − d − t (k) , [B(k)d + ∇xL0(x, y)]−}
min{x (k) + d + t (k) − xl , [B(k)d + ∇xL0(x, y)]+}

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0m
0m
0n
0n

⎤
⎥⎥⎦ ,

(29)
in a similar manner that (3) was obtained for the main problem (1). Because (28)
is a strongly convex QP, d would be the optimal solution of this problem if and
only if there exists a Lagrange multiplier vector y so that ψk(d, y) = 02m+2n . It is
worthwhile to note that ψk(0n, y) = Ψ (x (k), y).

In order to compute the search direction, a quadratic program solver (QP-solver)
is invoked to find an approximate solution (d(k), y(k)

d) of (28) satisfying the following
conditions:

ζ1�h̄(s(k); x (k)) ≤ �h̄(d(k); x (k)) ≤ �h̄(s(k); x (k)), (30a)

�P̆(d(k); x (k), B(k),μk) ≥ �P̆(s(k); x (k), B(k),μk), (30b)

‖ψk(d
(k), y(k)

d)‖ ≤ η‖Ψ (x (k), y(k))‖, (30c)

where η, ζ1 ∈ (0, 1) are some predesignated constants. The steps for computing the
search direction is presented in Algorithm 2.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 13

Algorithm 2 Compute the search direction.

1: procedure search_direction (x (k), s(k), r (k), t (k),μk).
2: Given constants: ζ1, η ∈ (0, 1);
3: choose a symmetric positive-definite matrix B(k);
4: construct the QP subproblem (28);
5: call a QP-solver to find (d(k), y(k)

d) as an approximate primal-dual solution of (28) that
satisfies conditions (30);

6: return (d(k), y(k)
d);

7: end procedure.

According to the condition (30c), as iterates get closer to a stationary point of the
main problem, QP subproblems are solved more accurately. If h(k) = 0, then the kth
iteration is called a feasible iteration; otherwise, it is called an infeasible iteration.
In the following lemma, we investigate descent properties of the computed search
direction satisfying the conditions (30a) and (30b).

Lemma 2 If x (k) is neither an infeasible stationary point nor a stationary point
of (1), B(k) is a symmetric positive-definite matrix, and d(k) satisfies the conditions
(30a) and (30b), then we have the followings:

(a) If h(k) = 0, then

Dd(k) P(x (k);μ) ≤ −μ

2
d(k)T B(k)d(k), (31)

Dd(k) f (x (k)) ≤ −1

2
d(k)T B(k)d(k), (32)

for every penalty parameter μ > 0. So, if d(k) �= 0n, then d(k) is a descent direc-
tion for both the penalty function and the objective function.

(b) If h(k) > 0, then d(k) �= 0n, and

Dd(k)h(x (k)) ≤ −�h̄(d(k); x (k)) < 0, (33)

and thus, d(k) is a descent direction for the constraint violation function.

Proof As stated before, h(k) = 0 implies s(k) = 0n , �h̄(s(k); x (k)) = 0, and
�P̆(s(k); x (k), B(k),μk) = 0. From (8b), (7c) and (30b), we have

Dd(k) P(x (k);μ) ≤ −�P̄(d(k); x (k),μ)

= −�P̆(d(k); x (k), B(k),μ) − μ

2
d(k)T B(k)d(k)

≤ −�P̆(s(k); x (k), B(k),μ) − μ

2
d(k)T B(k)d(k)

= −μ

2
d(k)T B(k)d(k),

for every penalty parameter μ > 0. So, (31) is established.

14 H. Ahmadzadeh and N. Mahdavi-Amiri

Moreover, it follows from�h̄(s(k); x (k)) = 0 and (30a) that�h̄(d(k); x (k)) = 0. From
f being a continuously differentiable function and attending to the definition of
predicted changes in the objective function and the penalty function, we have

Dd(k) f (x (k)) = g(k)T d(k)

= −� f̄ (d(k); x (k))

= − 1

μ

(
μ� f̄ (d(k); x (k)) + �h̄(d(k); x (k))

)

= − 1

μ
�P̆(d(k); x (k), B(k),μ) − 1

2
d(k)T B(k)d(k)

≤ − 1

μ
�P̆(s(k); x (k), B(k),μ) − 1

2
d(k)T B(k)d(k)

= −1

2
d(k)T B(k)d(k),

which establishes the inequality (32).
On the other hand, if h(k) > 0 and x (k) is not an infeasible stationary point, then

according to (27) we have �h̄(s(k); x (k)) > 0. Thus, (30a) yields �h̄(d(k); x (k)) > 0
and this shows that d(k) �= 0n . Consequently, (33) is obtained from (8a). �

As Lemma 2 states, in the infeasible iterations the computed search direction is a
descent direction for the constraint violation function. In the next lemma we will see
that the search direction would be a descent direction for the penalty function using
the penalty parameter updating rule (12). Indeed, the following lemma incorporates
the results of Lemmas 2.8, 2.9 and 2.10 of [24] for our settings.

Lemma 3 Assume x (k) is neither a stationary point of (1) nor an infeasible station-
ary point. If μk ∈ (0, 1), then the penalty parameter update formula (12) is well-
defined, and immediately we have

μk+1 ∈ (0, 1), and (34)

�P̄(d(k); x (k),μk+1) ≥ ζ2�h̄(s(k); x (k)), (35)

to yield
Dd(k) P(x (k);μk+1) ≤ −�P̄(d(k); x (k),μk+1) < 0. (36)

Proof In the feasible iterations, we have s(k) = 0n , �h̄(s(k); x (k)) = 0 and
�P̆(s(k); x (k), B(k),μk) = 0. Hence, from (7c), (30b) and positive-definiteness of
B(k), we obtain:

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 15

�P̄(d(k); x (k),μk) = �P̆(d(k); x (k), B(k),μk) + μk

2
d(k)T B(k)d(k)

≥ �P̆(s(k); x (k), B(k),μk) + μk

2
d(k)T B(k)d(k)

≥ 0 = ζ2 �h̄(s(k); x (k)).

As a result, we get μk+1 = μk ∈ (0, 1) from (12). Hence, (34) and (35) are clearly
established in the feasible iterations.

On the contrary, consider x (k) being an infeasible iterate which is not an infeasible
stationary point. We have �h̄(s(k); x (k)) > 0 in this case. If

�P̄(d(k); x (k),μk) ≥ ζ2 �h̄(s(k); x (k)),

then according to (12) we have μk+1 = μk ∈ (0, 1) and (35) is at hand. In the rest of
the proof, we assume

�P̄(d(k); x (k),μk) < ζ2 �h̄(s(k); x (k)). (37)

Thus, from (6c), (37), �h̄(s(k); x (k)) > 0, μk > 0, ζ2 ∈ (0, ζ1) and (30a), we have

� f̄ (d(k); x (k)) = 1

μk

(
�P̄(d(k); x (k),μk) − �h̄(d(k); x (k))

)

<
1

μk

(
ζ2�h̄(d(k); x (k)) − �h̄(s(k); x (k))

)

<
1

μk

(
ζ1�h̄(d(k); x (k)) − �h̄(d(k); x (k))

)
< 0. (38)

As a consequence of (38), (30a), ζ2 ∈ (0, ζ1), and μk ∈ (0, 1), we have the penalty
parameter update, given by

μk+1 = min

{
1

2
μk,

ζ2�h̄(s(k); x (k)) − �h̄(d(k); x (k))

� f̄ (d(k); x (k))

}
∈ (0, 1),

to be well-defined, and to yield (35), whenever (37) holds. Therefore, under the
assumptions, (34) and (35) are valid. Finally, (36) is concluded form (8b) and (35).

�

In accordance with the proof of Lemma 3, we note that the penalty parameter
should not be changed in the feasible iterations. We also note that conditions (30a)–
(30c) hold for (d(k)∗ , y(k)

d∗), the optimal primal-dual solution of the QP subproblem
(28). Hence, using an appropriate QP-solver, Algorithm 2 is well-defined for com-
puting the search direction.

Similar to [24, 25], and in order to accelerate the convergence of the algorithm, we
use an accelerating direction. Gould et al. [24, 25] compute an accelerating direction
in every iteration. However, an accelerating direction is only useful when the iterate

16 H. Ahmadzadeh and N. Mahdavi-Amiri

is near the feasible region of the problem [2]. So, in our algorithm, we compute
an accelerating direction only when h̄(d(k); x (k)) = 0, which holds near the feasible
region.

Algorithm 3 gives an outline of a procedure to compute the accelerating direction.

Algorithm 3 Compute the accelerating direction.

1: procedure accelerating_direction (x (k), d(k), y(k)
d).

2: Compute H (k) ← ∇2
xxL0(x (k), y(k)

d);

3: form the sets A(k)
G := AG(d(k); x (k)) and A(k)

B := AB(d(k); x (k)) by (13);
4: choose a trust region radius ρA

k ∈ [ρ, ρ];
5: construct accelerating subproblem (15);
6: find (a(k), y(k)

A) as a primal-dual solution of (15);

7: compute d(k)
A by (14);

8: return (d(k)
A , y(k)

A);
9: end procedure.

We also equip our algorithm with the nonmonotone filter strategy of Gould et
al. [25]. Algorithm 4 provides the steps for checking whether a trial point x+ :=
x (k) + αk d̂(k) is successful or not.Now, our complete inexact nonmonotone filter SQP
algorithm is presented as Algorithm 5. In this algorithm, parameters fails andmaxfails
hold the number of successive unsuccessful iterations and the maximum number of
allowed successive unsuccessful iterations, respectively. These parameters are used
for the nonmonotone aspects of the algorithm.

The main difference between our algorithm and the FiSQP algorithm of [24,
25] is in computing the search direction. In our algorithm, the search direction is
computed as an inexact solution of a feasible and strongly convex QP subproblem.
But, in the FiSQP algorithm, at first the predictor direction is computed as an exact
solution of a feasible convex QP subproblem. Then, using a backtracking procedure,
the search direction is computed as a convex combination of the predictor direction
and the steering direction. Therefore, our algorithmmay consume less computational
cost for obtaining the search direction. However, our search direction has the same
descent properties as the search direction of the FiSQP algorithm; compare the results
of Lemmas 2 and 3 in our work here with results of Lemmas 2.6, 2.7 and 2.10 of
[24].

As another difference, the accelerating direction is computed in every iteration
of the FiSQP algorithm. But, in our algorithm, the accelerating direction is only
computed when h̄(d(k); x (k)) = 0. Let (x∗, y∗) be the optimal primal-dual solution
of the main problem (1) that satisfies the following conditions:

1. The linear independence constraint qualification (LICQ) holds,
2. The second order sufficient optimality conditions hold,
3. The strict complementary conditions hold.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 17

Algorithm 4 Check for success of a trial point.

1: procedure check (x (k),αk , d̂(k),μk+1, R(k), fails,Fk , Pmode).
2: Given constants: ζ1,β, γ,κ1,κ2,κ3,∈ (0, 1);
3: compute the trial point x+ ← x (k) + αk d̂(k);
4: if Pmode then
5: if (αk , d̂(k)) is a p-pair then
6: if x+ is acceptable to Fk then
7: Pmode ← false;
8: end if
9: Set success ← true, type ← p and fails ← 0; � S ← S ∪ {k + 1}
10: else
11: Set success ← false and fails ← fails + 1; � U ← U ∪ {k + 1}
12: end if
13: else
14: if (αk , d̂(k)) is an h-pair then
15: Set success ← true, type ← h and fails ← 0; � S ← S ∪ {k + 1};
16: else if (αk , d̂(k)) is an f -pair then
17: Set success ← true, type ← f and fails ← 0; � S ← S ∪ {k + 1};
18: else if (αk , d̂(k)) is a b-pair then
19: Set Pmode ← false, success ← true, type ← b and fails ← 0;

� S ← S ∪ {k + 1};
20: else
21: Set success ← false, type ← u and fails ← fails + 1; � U ← U ∪ {k + 1}
22: end if
23: end if
24: return Pmode, fails, success, and type;
25: end procedure.

If (x (k), y(k)) is sufficiently close to (x∗, y∗), then the linearized constraints around
x (k) are compatible (h̄(s(k); x (k)) = 0) and the optimal active-set can be detected by
the search direction (see, for example, [40, Theorem 18.1]). Hence, condition (30a)
implies that h̄(d(k); x (k)) = 0, when x (k) is near x∗. Consequently, in our algorithm,
the accelerating direction is computed at every iteration in which the iterate is near
the optimal solution. Since the optimal active-set can be recognized by the search
direction only near the optimal solution, it is reasonable to compute the accelerating
direction only near the optimal solution.

According to the above arguments, and with similar arguments given by [24, 25],
the global convergence and a superlinear local convergence of the iFiSQP algorithm
can be obtained under some standard assumptions. Formore details, seeAhmadzadeh
and Mahdavi-Amiri [1] presenting a more comprehensive discussion of a similar
inexact nonmonotone filter SQP algorithm.

18 H. Ahmadzadeh and N. Mahdavi-Amiri

Algorithm 5 Inexact filter SQP (iFiSQP) algorithm.
1: Choose ζ1, ζ2,β, γ,κ1,κ2,κ3, η, τ ∈ (0, 1), 0 < ρ < ρ < ∞ and maxfails ∈ N;

2: Initialization: Give an initial pair (x (0), y(0)), set k ← 0, F0 ← ∅, fails ← 0,
terminate ← false, Pmode ← false, R(k) ← 0, and choose a penalty parameter μ0 > 0;

3: while not terminate do
4: if ‖Ψ (x (k), y(k))‖ = 0 then � A KKT point is at hand
5: set terminate ← true, and go to line 40;
6: end if
7: if fails ≤ maxfails then
8: (s(k), r+(k), r−(k), t+(k), t−(k)) = STEERING_DIRECTION (x (k));
9: if h(k) = h̄(s(k); x (k)) > 0 then � An infeasible stationary point is found
10: terminate ← true, and go to line 40;
11: end if
12: set r (k) ← r+(k) − r−(k) and t (k) ← t+(k) − t−(k);
13: (d(k), y(k)

d) = SEARCH_DIRECTION (x (k), s(k), r (k), t (k),μk);
14: update the penalty parameter by (12);
15: evaluate H (k) = ∇2

xxL0(x (k), y(k)
d);

16: compute the Cauchy steps d(k)
cP and d(k)

c f by (18) and (17), respectively;

17: if h̄(d(k); x (k)) = 0 then
18: (d(k)

A , y(k)
A) = ACCELERATING_DIRECTION (x (k), d(k), y(k)

d);

19: set d̂(k) ← d(k)
A , and αk ← 1;

20: else
21: set d̂(k) ← d(k), and αk ← 1;
22: end if
23: (Pmode, fails, success, type) = CHECK (x (k),αk , d̂(k),μk+1, R(k), fails,Fk , Pmode);
24: go to line 32;
25: else
26: x (k) ← x (R(k)), d̂(k) ← d(R(k)), y(k)

d ← y(R(k))
d , B(k) ← B(R(k)), d(k)

cP ← d(R(k))
cP ,

d(k)
c f ← d(R(k))

c f , αk ← 1, and μk+1 ← μR(k)+1;

27: (Pmode, fails, success, type) = CHECK (x (k),αk , d̂(k),μk+1, R(k), fails,Fk , Pmode);
28: while not success do
29: αk ← ταk ;
30: (Pmode, fails, success, type) = CHECK (x (k),αk , d̂(k),μk+1, R(k), fails,Fk , Pmode);
31: end while
32: end if
33: if success then
34: R(k + 1) ← k + 1
35: if t ype = b or t ype = h then
36: Fk+1 ← Fk ∪ {R(k)};
37: end if
38: end if
39: x (k+1) ← x (k) + αk d̂(k), and k ← k + 1;
40: end while.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 19

5 Experimental Results

Here, we present comparative results obtained from the iFiSQP method (Algorithm
5), implemented in MATLAB, and the FiSQP method of Gould et al. [25]; the latest
corresponding program for FiSQP method in MATLAB was provided by Loh and
Robinson, co-authors of [25]. Both methods are tested on a set of small/medium
scale test problems from the CUTEst library [27] listed in Tables 1.1 and 1.3 of [23].

In our implementation, we made use of the primal simplex solver of Cplex [33]
in Algorithm 1 to compute the steering direction. The symmetric positive-definite
matrix B(k) is chosen using a modified Newton strategy as in [25]. In order to com-
pute the search direction in Algorithm 2, we added conditions (30) as termination
tests to the source code of the qpa, qpb, qpc and cqp solvers in GALAHAD [26]
to find a desirable approximate solution of the QP subproblem (28) satisfying con-
ditions (30). When no GALAHAD’s QP-solver (qpa, qpb, qpc and cqp) can find
a proper approximate solution of (28), we use the QP-solver of Cplex to find the
search direction; however, there are ill-conditioned problems, for which neither an
approximate nor an exact solution of an associated subproblem can be found. In the
almost feasible iterations, that is when h̄(d(k); x (k)) = 0, the accelerating direction
is computed by the method introduced in [25].

Our algorithm terminates in any one of the following situations:

1. ‖Ψ (x (k), y(k))‖∞ ≤ ε1. In this case, (x (k), y(k)) is known as an approximate first
order KKT point of (1).

2. h(k) ≤ ε1 and�P̆(d(k); x (k), B(k),μk) ≤ ε2. In this case, (x (k), y(k)) is also known
as an approximate first order KKT point of (1).

3. h(k) ≥ 100ε1 and�h̄(s(k); x (k)) ≤ ε2. In this case, x (k) is detected as an infeasible
stationary point.

4. The iteration number exceedsmaxiter . This case is known as a failure of a method.
5. The CPU time exceeds 10 minutes time limit. This case is also considered as a

failure of a method.

The initial trust region radii of the steering subproblem (26) and the accelerating
subproblem (15) are chosen as ρ0 = ρA

0 = 102 and they are updated in every iteration
as in [13]. In agreement with the code of [25], we set parameters of our method as
the ones given in Table 1.

Table 1 Parameters used in the programs

Parameter Value Parameter Value Parameter Value

ζ1 10−3 ζ2 10−6 η 0.5

κ1 10−3 κ2 10−4 κ3 10−4

τ 0.5 β 0.99 γ 10−3

μ0 1 ρ 1 ρ 104

maxfails 3 ε1 10−5 ε2 10−12

20 H. Ahmadzadeh and N. Mahdavi-Amiri

Table 2 The infinity norm of the KKT residual of QP subproblems at the computed approximate
solution for the test problem BT13

iter FiSQP iFiSQP

1 1.46E–11 3.43E–01

2 3.55E–15 3.43E+01

3 2.78E–16 6.01E+00

4 1.11E–16 1.97E–01

5 6.51E–18 5.49E–02

6 1.78E–15 1.24E–02

7 0.00E+00 2.31E–03

8 1.11E–16 9.11E–04

9 2.78E–17 1.13E–04

10 1.36E–20 5.47E–05

11 6.78E–21 8.57E–06

12 4.34E–19 2.79E–11

13 2.12E–22 9.65E–16

14 1.68E–23 1.21E–18

15 1.32E–23 9.14E–15

Table 2 gives the infinity norm of the KKT residual of QP subproblems at the
computed approximate solution during solving the test problem BT13 by FiSQP and
iFiSQP. Here, looking at the size of the infinity norm of the residual for the two
methods, inexact solutions of the QP subproblems for iFiSQP are evidently used in
the early iterations, while the FiSQP always compute exact solutions, within a con-
siderable tolerance in every iteration. This behavior can be expected in almost all the
test problems. This observation shows that solving QP subproblems inexactly, while
reducing the computational costs, may have no adverse effect on the performance of
the algorithm.

The list of the test problems on which the FiSQP and iFiSQP algorithms failed,
are reported in Tables 4 and 5, respectively. Table 3 gives the meaning of the values
for the flag ‘status’.

We note that in every iteration of the FiSQP algorithm the accelerating direction
is computed, while our algorithm calculates the accelerating direction only in almost
feasible iterations. In our experiments, on the average, in 67.56% of iterations, the
iFiSQP algorithm computes the accelerating direction.

Figure 1 shows the performance profile [18] for the CPU times consumed by
testing iFiSQP and FiSQPmethods on a set of small andmedium test problems listed
inTables 1.1 and 1.3 of [23].We should note that the profile does not include problems
for which the two algorithms converged to different stationary points; the deleted
problems are DUAL3, DUALC2, DUALC5, DUALC8, QPNBOEI1, HIMMELBK,

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 21

Table 3 The meaning of the values for the flag ‘status’ [23, Table 5.2]

Status Meaning

–5 Cplex was unable to find a verifiably optimal solution to a steering subproblem

–6 Cplex was unable to find a verifiably optimal solution to a predictor
subproblem

–7 Cplex crashed while solving either a steering or predictor subproblem

–8 A steering step was computed that increased the feasibility model

–9 The computed step was too small to make additional progress

–10 A NaN was encountered while evaluating a problem function

1 The maximum number of 10000 iterations was reached before a solution was
found

2 The maximum CPU limit of 10 minutes was reached before a solution was
found

Table 4 The list of failed test problems by FiSQP algorithm and their statuses
Name Status Name Status Name Status Name Status

ACOPP118 −6 COOLHANS −7 KTMODEL −10 POWELLSQ 1

ACOPP30 −6 CRESC50 1 LEWISPOL −8 QC 1

ACOPP57 −6 DALLASL −6 LHAIFAM 1 S365 −10

ACOPR118 −6 EQC 1 MESH −6 SAWPATH −5

ACOPR14 −6 ERRINBAR 1 MSS1 −6 SSEBLIN 1

ACOPR30 −6 FLT −6 NYSTROM5 −6 STEENBRC −6

ACOPR57 −6 HEART6 −6 PFIT1 −6 STEENBRE −6

AGG 1 HIMMELBD 1 PFIT2 −6 STEENBRG −6

ALLINITA −6 HIMMELBJ −6 PFIT3 −6 TRO11X3 −5

ANTWERP 1 HS106 1 POLAK2 −5 TRO21X5 −5

ARGAUSS −8 HS13 −7 POLAK3 −5 TRO3X3 −7

AVION2 1 HYDROELM 2 POLAK6 −5 ZAMB2-8 1

Table 5 The list of failed test problems by iFiSQP algorithm and their statuses
Name Status Name Status Name Status Name Status

ACOPR118 2 HIMMELBJ −6 POLAK3 −5 STEENBRG −6

AGG 1 HS13 1 POLAK6 −5 TENBARS1 1

ALLINITA 1 HYDROELM 2 POWELLSQ −6 TENBARS2 1

ALLINITC −6 KTMODEL −10 QC 1 TENBARS3 1

ANTWERP 1 LEWISPOL −8 QPNBOEI2 1 TRO11X3 −6

ARGAUSS −8 MESH −5 SAWPATH −5 TRO21X5 −6

AVION2 1 NYSTROM5 1 SSEBLIN 1 TRO3X3 −5

CRESC100 −5 PFIT2 −5 STEENBRB −6 YFITNE −8

ELATTAR 1 PFIT3 1 STEENBRC −5 ZAMB2-8 1

EQC 1 PFIT4 −5 STEENBRE 1

HIMMELBD −6 POLAK2 −5 STEENBRF 2

22 H. Ahmadzadeh and N. Mahdavi-Amiri

252015105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(

)
CPU-time

iFiSQP
FiSQP

Fig. 1 The performance profile for CPU times of iFiSQP and FiSQP methods

HS101. Figure 1 shows that computing inexact solutions of QP subproblems, instead
of exact solutions, and computing the accelerating direction only on almost feasible
iterations apear to improve the roboustness and efficiency of the SQP algorithm.

6 Concluding Remarks

An inexact nonmonotone sequential quadratic programmingalgorithmwasproposed.
Similar to the algorithms of [24, 25], in each step of the algorithm a linear program
is solved and the steering direction is obtained. Using the steering direction, either
an infeasible stationary point is detected or a strongly convex feasible quadratic
programming (QP) subproblem is constructed. It should be noted that we compute
an inexact (or truncated) solution of the QP subproblem, as opposed to an exact
solution of [24, 25]. In order to accelerate the rate of convergence, in certain iterations
an accelerating direction is computed. Using a backtracking line-search procedure
and a nonmonotone filter strategy of [25], a step-length is found along the search
direction or the accelerating direction. Competitive numerical results attest to the
competitiveness of the proposed algorithm.

Acknowledgements The authors thank Sharif University of Technology for supporting this work.
They are also grateful to Yueling Loh and Daniel Robinson for providing the source code of the
algorithm used in our comparative testing. Thanks are also due toMehi Al-Baali and the anynomous
reviewer for their constructive comments and suggestions.

A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm 23

References

1. Ahmadzadeh, H. and Mahdavi-Amiri, N.: A competitive inexact nonmonotone filter SQP
method: convergence analysis and numerical results. Submitted in revised form to the special
issue of OMS for the Fifth International Conference on Numerical Analysis and Optimization,
41 pages (2020).

2. Ansari, M.R. andMahdavi-Amiri, N.: A robust combined trust region-line search exact penalty
projected structured scheme for constrained nonlinear least squares. Optim. Methods Softw.
30(1), 162–190 (2015).

3. Barclay, A., Gill, P.E. and Rosen, J.B.: SQPmethods and their application to numerical optimal
control. In Variational calculus, optimal control and applications, pp. 207–222. Birkhäuser,
Basel (1998).

4. Bartholomew-Biggs, M.: Nonlinear Optimization with Financial Applications. Springer Sci-
ence & Business Media (2006).

5. Bartholomew-Biggs, M.: Nonlinear Optimization with Engineering Applications. Springer
Science & Business Media (2008).

6. Bertsekas, D.P.: ConstrainedOptimization and LagrangeMultiplierMethods. First edn. Athena
Scientific (1996).

7. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming. SIAM publications (2010).

8. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical
Processes. SIAM publications (2010).

9. Biegler, L.T., Ghattas, O., Heinkenschloss, M. and van Bloemen Waanders, B.: Large-scale
PDE-constrained optimization: an introduction. In Large-Scale PDE-Constrained Optimiza-
tion. Springer (2003).

10. Burke, J.V., Curtis, F.E. and Wang, H.: A sequential quadratic optimization algorithm with
rapid infeasibility detection. SIAM J. on Optim. 24(2), 839–872 (2014).

11. Boggs, P.T. and Tolle, J.W.: Sequential quadratic programming.ActaNumer. 4(1), 1–51 (1995).
12. Byrd, R.H., Curtis, F.E. and Nocedal, J.: Infeasibility detection and SQPmethods for nonlinear

optimization. SIAM J. Optim. 20(5), 2281–2299 (2010).
13. Byrd, R.H., Lopez-Calva, G. andNocedal, J.: A line search exact penaltymethod using steering

rules. Math. Program. 133(1), 39–73 (2012).
14. Curtis, F.E., Johnson, T., Robinson, D.P. and Wächter, A.: An inexact sequential quadratic

optimization algorithm for nonlinear optimization. SIAM J. Optim. 24(3), 1041–1074 (2014).
15. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. PHI LearningPvt.

Ltd. (2012).
16. Dembo, R.S. and Tulowitzki, U.: Sequential truncated quadratic programming methods. In

Numerical Optimization. Proceedings of the SIAM Conference on Numerical Optimization,
Boulder, Colorado, June 12-14, 1984, 20, pp. 83–101, SIAM Publications.

17. Dixit, A.K. and Sherrerd, J.J.F.: Optimization in Economic Theory. Oxford University Press
on Demand (1990).

18. Dolan, E.D. and Moré, J.J.: Benchmarking optimization software with performance profiles.
Math. Program. 91(2), 201–213 (2002).

19. Fletcher, R. and Leyffer, S.: Solvingmixed integer nonlinear programs by outer approximation.
Math. Program. 66(1), 327–349 (1994).

20. Fletcher, R., Leyffer, S. and Toint, P.L.: On the Global Convergence of a Filter–SQPAlgorithm.
SIAM J. Optim. 13(1), 44–59 (2002).

21. Gerard, C. and Reha, T.: Optimization Methods in Finance. Mathematics, Finance and Risk,
Cambridge University Press (2007).

22. Gill, P.E. and Wong, E.: Sequential quadratic programming methods. In Lee, J., Leyffer, S.
(eds.) Mixed Integer Nonlinear Programming, pp. 147–224. Springer, New York, NY, (2012).

23. Gould, N.I.M., Loh, Y. and Robinson, D.P.: A Nonmonotone Filter SQP Method: Local Con-
vergence and Numerical Results. preprint, RAL-P-2014-012R (2014).

24 H. Ahmadzadeh and N. Mahdavi-Amiri

24. Gould, N.I.M., Loh, Y. and Robinson, D.P.: A filter method with unified step computation for
nonlinear optimization. SIAM J. Optim. 24(1), 175–209 (2014).

25. Gould, N.I.M., Loh, Y. and Robinson, D.P.: A nonmonotone filter SQP method: Local conver-
gence and numerical results. SIAM J. Optim. 25(3), 1885–1911 (2015).

26. Gould, N.I.M., Orban, D. and Toint, P.L.: GALAHAD, a library of thread-safe Fortran 90
packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. (TOMS) 29(4),
353–372 (2003).

27. Gould, N.I.M., Orban, D. and Toint, P.L.: CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3),
545–557 (2015).

28. Gould, N.I.M. and Robinson, D.P.: A second derivative SQP method: Global convergence.
SIAM J. Optim. 20(4), 2023–2048 (2010).

29. Gould, N.I.M. and Robinson, D.P.: A second derivative SQP method: Local convergence and
practical issues. SIAM J. Optim. 25(3), 2049–2079 (2010).

30. Gregory, J.: Constrained Optimization in the Calculus of Variations and Optimal Control The-
ory. Chapman and Hall/CRC Press (2018).

31. Herzog, R. and Kunisch, K.: Algorithms for PDEconstrained optimization. GAMMMitteilun-
gen 33(2), 163–176 (2010).

32. HSL(2013). A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk

33. IBM, ILOG CPLEX: High-Performance Software for Mathematical Programming and Opti-
mization (2006).

34. Lee, J. and Leyffer, S.: Mixed Integer Nonlinear Programming, Vol. 154. Springer Science &
Business Media (2011).

35. Leyffer, S. :Integrating SQP and branch-and-bound for mixed integer nonlinear programming.
Comput. Opim. Appl. 18(3), 295–309 (2001).

36. Mahdavi-Amiri, N. and Bartels, R.H.: Constrained nonlinear least squares: An exact penalty
approach with projected structured quasi-Newton updates. ACM Trans. Math. Softw. (TOMS)
15(3), 220–242 (1989).

37. Mangasarian, O.L. and Fromovitz, S.: The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints. J. Math. Anal. Appl. 17(1), 37–47 (1967).

38. Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization
problems. Ph.D. diss., Imperial College London (University of London) (1978).

39. Murray,W.and Prieto, F.J.: A sequential quadratic programming algorithm using an incomplete
solution of the subproblem. SIAM J. Optim. 5(3), 590–640 (1995).

40. Nocedal, J. and Wright, S.J.: Numerical Optimization. 2nd ed., Springer, New York, NY, USA
(2006).

41. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1),
497–528 (2009).

42. Wächter, A.: An interior point algorithm for large-scale nonlinear optimization with applica-
tions in process engineering. Ph.D. diss., Carnegie Mellon University (2002).

43. Wächter, A. and Biegler, L.T.: Line search filter methods for nonlinear programming: motiva-
tion and global convergence. SIAM J. Optim. 16(1), 1–31 (2005).

44. Zhou, M., Cai, Y., Su, H., Wozny G. and Pan, H.: A survey on applications of optimization-
based integrating process design and control for chemical processes. Chem. Eng. Commun.
205(10), 1365–1383 (2018).

Behavior of Limited Memory BFGS
When Applied to Nonsmooth Functions
and Their Nesterov Smoothings

Azam Asl and Michael L. Overton

Abstract Themotivation to study the behavior of limited-memoryBFGS (L-BFGS)
on nonsmooth optimization problems is based on two empirical observations: the
widespread success of L-BFGS in solving large-scale smooth optimization prob-
lems, and the remarkable effectiveness of the full BFGS method in solving small
to medium-sized nonsmooth optimization problems, based on using a gradient, not
a subgradient, oracle paradigm. We first summarize our theoretical results on the
behavior of the scaled L-BFGS method with one update applied to a simple convex
nonsmooth function that is unbounded below, stating conditions under which the
method converges to a non-optimal point regardless of the starting point. We then
turn to empirically investigatingwhether the samephenomenonholdsmore generally,
focusing on a difficult problem of Nesterov, as well as eigenvalue optimization prob-
lems arising in semidefinite programming applications. We find that when applied
to a nonsmooth function directly, L-BFGS, especially its scaled variant, often breaks
down with a poor approximation to an optimal solution, in sharp contrast to full
BFGS. Unscaled L-BFGS is less prone to breakdown but conducts far more function
evaluations per iteration than scaled L-BFGS does, and thus it is slow. Nonetheless,
it is often the case that both variants obtain better results than the provably conver-
gent, but slow, subgradient method. On the other hand, when applied to Nesterov’s
smooth approximation of a nonsmooth function, scaled L-BFGS is generally much
more efficient than unscaled L-BFGS, often obtaining good results even when the
problem is quite ill-conditioned. Summarizing, we find that although L-BFGS is
often a reliable method for minimizing ill-conditioned smooth problems, when the
condition number is so large that the function is effectively nonsmooth, L-BFGS

A. Asl
University of Chicago Booth School of Business, Chicago, IL, USA
e-mail: azam.asl@chicagobooth.edu

M. L. Overton (B)
Courant Institute of Mathematical Sciences, New York University, New York, USA
e-mail: mo1@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_2&domain=pdf
mailto:azam.asl@chicagobooth.edu
mailto:mo1@nyu.edu
https://doi.org/10.1007/978-3-030-72040-7_2

26 A. Asl and M. L. Overton

frequently fails. This behavior is in sharp contrast to the behavior of full BFGS,
which is consistently reliable for nonsmooth optimization problems. We arrive at
the conclusion that, for large-scale nonsmooth optimization problems for which full
BFGS and other methods for nonsmooth optimization are not practical, it is often
better to apply L-BFGS to a smooth approximation of a nonsmooth problem than to
apply it directly to the nonsmooth problem.

1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f (x),

where the function f is convex but nonsmooth. By this we mean that it is not differ-
entiable everywhere, and, typically, is not differentiable at minimizers.

Classical approaches to optimization of convex nonsmooth functions generally
require themethod to have access to an oracle that, given x ∈ R

n , returns the function
value f (x) and a subgradient g ∈ ∂ f (x). The oldest such method, the subgradient
method of Shor, which dates to the 1960s, uses the iteration

xk+1 = xk − tkgk, for some gk ∈ ∂ f (xk), (1)

where {tk} is a pre-determined sequence of positive stepsizes. One well-known result
states that, assuming f is convex and bounded below, and provided the steplengths
{tk} are square-summable (that is,

∑∞
k=0 t

2
k < ∞, and hence the steps are “not too

long”), but not summable (that is,
∑∞

k=0 tk = ∞, and hence the steps are “not too
short”), then convergence of f (xk) to the minimal value of f must take place [28].
However, despite the strength of this theoretical result, it is well known that conver-
gence to the optimal value is often very slow. This observation led to the development
of other algorithms, particularly the bundle methods pioneered by Lemaréchal [23]
for nonsmooth convex functions in the mid-1970s, as well as the bundle methods
of Kiwiel [22] for nonsmooth, nonconvex problems in the 1980s. As suggested by
the name, at each iteration, bundle methods use subgradient information obtained at
former iterates as well as at the current iterate xk to generate the next iterate xk+1.
Convergence results are available for these methods, but the computational cost per
iteration is significant for large n as computing xk+1 from xk usually requires the
solution of a quadratic program in n variables [7, p. 306 and 313]. For more methods
for nonsmooth optimization using the subgradient oracle, see [6, 7].

In this paper, we do not use the subgradient oracle paradigm. One reason for
this is that, in practice, in the presence of rounding errors, it is often difficult, if not
impossible, to determine whether the function f is differentiable at a given point x
and hence to return a vector g which can be guaranteed to be a subgradient. A second

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 27

is that since convex functions (and more generally, locally Lipschitz functions) are
differentiable almost everywhere, there is no reason, at least in the absence of exact
line searches, to suppose that a method will ever generate a point xk where f is not
differentiable. We therefore use the simpler paradigm that, given x , an oracle returns
f (x) and g = ∇ f (x), if f is differentiable at x . Clearly, the subgradient and gradient
oracles coincide when f is indeed differentiable at x . What if this is not the case?
In theory, we need to assume that the oracle informs the method that the function
is not differentiable and therefore a gradient cannot be provided. But in practice,
the gradient oracle is simply implemented as if f is differentiable at x , breaking
ties arbitrarily if necessary. For example, if f (x) is defined as max(f1(x), f2(x)),
where f1 and f2 are smooth functions, the oracle returns ∇ f1(x) if f1(x) > f2(x),
∇ f2(x) if f1(x) < f2(x), and either one if f1(x) = f2(x), a property that is difficult
to determine anyway in the presence of rounding errors. A subgradient oracle might,
in principle, return any convex combination of ∇ f1(x) and ∇ f2(x), but there is no
reason for it to return anything other than ∇ f1(x) or ∇ f2(x), unless, for example,
the intent is to return a “steepest descent” subgradient.

Using the gradient oracle instead of the subgradient oracle, we may ask the ques-
tion: what can be said if we consider the ordinary gradient method,

xk+1 = xk − tkgk, where gk = ∇ f (xk), (2)

where the steplength tk is obtained, not from a predetermined sequence, but from a
backtracking or Armijo-Wolfe line search? The answer is well known: it is often the
case that xk converges to a point x̄ where f is not differentiable and not minimal.
See [2] for a historical discussion and for a detailed analysis of an interesting special
case. Note that in relevant illustrative examples, it is typical that f is differentiable
at all iterates {xk}, and nondifferentiable only at the limit point x̄ . This demonstrates
that the power of Shor’s subgradient method is not so much that it is defined even if f
is not differentiable at xk , as that the acceptable predetermined sequence of stepsizes
{tk}, unlike stepsizes generated by a line search, ensures convergence to a minimal
value.

In the early 2000s, Burke, Lewis and Overton introduced the gradient sampling
algorithm [8] for nonsmooth, nonconvex optimization. Thismethod uses the gradient,
not the subgradient, oracle paradigm, and a convergence analysis for a rather general
class of functions states that, with probability one, the method generates iterates {xk}
where f is differentiable and that, if f is convex and bounded below, the function
values { f (xk)} converge to the minimal value (more generally, that all cluster points
of {xk} are Clarke stationary). However, the cost per iteration is prohibitive when the
number of variables is large. See the survey paper [5] for more details, as well as
recent work [10] introducingmore efficient variants of the gradient samplingmethod.

As discussed by Lewis and Overton [25], the “full” BFGS quasi-Newton method
is a very effective alternative choice for nonsmooth optimization, and its O(n2) cost
per iteration is generally much less than the cost of the bundle or gradient sampling
methods, but its convergence results for nonsmooth functions are limited to very
special cases. It also uses the gradient, not the subgradient, oracle paradigm.

28 A. Asl and M. L. Overton

Since the limited memory variant of BFGS [24] (L-BFGS) costs only O(n) oper-
ations per iteration, like the gradient and subgradient methods, it is natural to ask
whether L-BFGS could be an effective method for nonsmooth optimization. This is
the topic of this paper, which is organized as follows. In Sect. 2, we summarize our
theoretical results. Then in Sect. 3, we give extensive experimental results. Although
the methods we discuss are applicable to nonconvex problems, we restrict our dis-
cussion to the convex case for simplicity, focusing on a difficult nonsmooth problem
of Nesterov as well as eigenvalue optimization problems, including those arising
from semidefinite programming formulations of the max cut and matrix completion
problems. We also consider Nesterov’s smooth approximations to these nonsmooth
problems. We make some concluding remarks in Sect. 4.

2 Limited Memory BFGS for Nonsmooth Optimization
in Theory

We begin this section by defining the concept of an Armijo-Wolfe line search. Then
we discuss the full BFGS method on which L-BFGS is based, along with its proper-
ties, before discussing our results for the L-BFGS method.

2.1 Armijo-Wolfe Line Search

The BFGS and L-BFGS methods rely on an Armijo-Wolfe line search (also often
known as a “weak Wolfe” line search). Let c1 and c2 be parameters (the Armijo
parameter and the Wolfe parameter respectively) satisfying 0 < c1 < c2 < 1. Let
xk ∈ R

n be a given iterate where f is differentiable and let dk ∈ R
n be a descent

direction for f from xk , that is,with∇ f (xk)
T dk < 0.We say that a positive steplength

tk satisfies the Armijo condition if

f (xk + tkdk) ≤ f (xk) + c1tk∇ f (xk)
T dk, (3)

and that tk satisfies the Wolfe condition if f is differentiable at xk + tkdk and

∇ f (xk + tkdk)
T dk ≥ c2∇ f (xk)

T dk . (4)

The Armijo condition imposes a “sufficient decrease” in the value of f (xk + tkdk)
compared to f (xk), while the Wolfe condition imposes a “sufficient increase” in the
directional derivative∇ f (xk + tkdk)T dk compared to the negative value∇ f (xk)T dk .
If f is bounded below on the ray {xk + tdk : t > 0}, then it is known that points tk
satisfying these conditions exist under various assumptions on f , such as f being
convex (but not necessarily smooth). For further discussion, including specification

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 29

of a bracketing line search algorithm based on bisection and doubling to compute tk ,
see [25].

While it is often recommended in the context of general smooth nonlinear opti-
mization to set the Armijo parameter to a rather small value such as 10−4 [31, p. 62],
we note that for satisfactory complexity results for the gradient method applied to
smooth, strongly convex functions, the Armijo parameter must not be too small [9,
pp. 466–468]. An analysis of the gradient method using an Armijo-Wolfe line search
applied to a nonsmooth function that we discuss later in this paper (see (9)) was given
in [2]. It was shown that, in this case, the success or failure of the gradient method
depends critically on the Armijo parameter being sufficiently small, and experiments
applying the gradient method to another nonsmooth function (10) confirm the impor-
tance of this issue [2, Fig. 6]. On the other hand, as we will see in Sect. 2.3, the choice
of Armijo parameter is less critical to the success or failure of L-BFGS when applied
to the same function (9).

2.2 Full BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, proposed independently
by these four authors in 1970, is a quasi-Newton method that maintains an approxi-
mation Hk to the inverse of the Hessian ∇2 f (xk). Let an initial iterate x0 ∈ R

n and
an initial positive definite matrix H0 be given. The BFGS method is defined by the
following iteration. For k = 0, 1, 2, . . ., let

dk = −Hk∇ f (xk)

xk+1 = xk + tkdk where tk > 0 satisfies (3), (4)

sk = tkdk (5)

yk = ∇ f (xk+1) − ∇ f (xk) (6)

ρk = 1

sTk yk

Hk+1 = (
I − ρksk y

T
k

)
Hk

(
I − ρk yks

T
k

) + ρksks
T
k (7)

Equation (7) is called the BFGS update. It is easy to check that the Wolfe condition
ensures that sTk yk > 0, and it is well known that the positive definiteness of Hk+1

follows as a consequence. It is also clear that Hk+1 can be computed in O(n2)
operations.

The most important convergence property of BFGS is due to Powell [33]. It states
that if f is twice continuously differentiable and strongly convex on the level set
S = {x : f (x) ≤ f (x0)}, then the sequence {xk} converges to the global minimizer.
Furthermore, the convergence theory of Dennis and Moré states that if we further
assume that the Hessian of f , ∇2 f (x), is Lipschitz continuous at the global mini-
mizer, then the rate of convergence is superlinear. See [31] for more details.

30 A. Asl and M. L. Overton

For many years, BFGS was not considered as a possible stand-alone method
for nonsmooth optimization, although Lemaréchal briefly mentioned this possibility
in a 1982 technical report. Instead, Lemaréchal and others focused on using the
BFGS update to provide second-order information to bundle methods [7, p. 313].
In contrast, Lewis and Overton [25] advocated using the pure BFGS method, with
no bundle method component, as a practical method for nonsmooth optimization,
using the gradient, not the subgradient, oracle paradigm. The Wolfe condition (4)
ensures in theory that f is differentiable at all iterates, although in practice, as already
noted, it is difficult to check whether or not f is differentiable at a given point.
If f is not differentiable at x , then the gradient oracle may return very different
gradients at points that are close to x . The consequence is that, in the nonsmooth
case, BFGS builds a very ill-conditioned inverse “Hessian” approximation, with
some tiny eigenvalues corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors. This phenomenon, illustrated in [25, Fig. 4], is
apparently what makes BFGS so effective for nonsmooth optimization. Remarkably,
the condition number of the inverse Hessian approximation often reaches 1016 before
the method breaks down numerically, usually because, as a consequence of rounding
error, the line search is unable to return tk satisfying theArmijo condition even though,
in principle, an Armijo-Wolfe step exists. Convergence of f (xk) to theminimal value
of f often appears to be linear (not superlinear, as in the smooth case).

Although empirically BFGS works very well when f is nonsmooth, convergence
results are limited to a few special cases. The following results hold for all x0 as long
as f is differentiable at x0 and for all positive definite H0. We use x (i) to denote the
i th entry of the vector x .

• n = 1 with f (x) = |x |: the sequence generated by BFGS converges linearly to
zero and is related to a certain binary expansion of the starting point [25].

• f (x) = |x (1)| + ∑n
i=2 x

(i): eventually a direction is identified on which f is
unbounded below [36]; see also [26].

• f (x) = ‖x‖2: iterates converge to the origin [17]. This is a special case of a more
general result whose proof is based on Powell’s theorem mentioned above.

As far as we know, even the case f (x) = |x (1)| + (x (2))2 remains open!
BFGS has been used successfully in many practical applications of nonsmooth

optimization including the design of fixed-order controllers for linear dynamical
systemswith input and output, shape optimization for spectral functions of Dirichlet-
Laplacian operators and condition metric optimization. For more details, see [25,
pp. 159–160]. Software is available in the hanso package.1

Finally, BFGS has also proved useful for optimization problems with nonsmooth
constraints. Consider problems of the form

min f (x)

subject to ci (x) ≤ 0, i = 1, . . . , p

1 http://www.cs.nyu/overton/software/hanso/.

http://www.cs.nyu/overton/software/hanso/

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 31

where f and c1, . . . , cp may not be differentiable at local minimizers. A successive
quadratic programming (SQP) method based on BFGS was introduced by [11] to
solve problems of this form, and applied to problems in static output feedback control
design that involve spectral radius and pseudospectral radius constraints. Although
there are no theoretical results, it is typically much more efficient in practice than an
SQP gradient sampling method [12] which does have convergence results. Software
is available in the granso package.2

2.3 Limited Memory BFGS

Unlike the full BFGS method, L-BFGS does not store a matrix approximating the
inverse of the Hessian ∇2 f (x). Instead, it uses an implicit approximation. Let m be
a small integer. Instead of using (7) to update a stored matrix Hk , the matrix Hk+1 is
implicitly defined by applying m BFGS updates successively, starting with an initial
matrix H (0)

k+1 andusing the updates definedby the pairs (s j , y j), j = k − m + 1, . . . k,
defined in (5) and (6). This method is called L-BFGS-m. We consider two variants.
In the scaled variant, with

H (0)
k+1 = sTk yk

yTk yk
I, (8)

a scaling of the identity matrix often known as Barzilai-Borwein scaling [4] is used to
initialize the implicit updating at iteration k. In the unscaled variant, H (0)

k+1 is set to the
identity matrix. We also refer to these two different variants of L-BFGS-m as with
and without scaling, respectively. Substantial numerical experience with applying
L-BFGS-m to minimize smooth functions shows that the use of scaling is strongly
preferred. For more details on L-BFGS, including efficient implementation, see [24,
31].

Our theoretical analysis of the behavior of limited memory BFGS uses the scaled
variant with m = 1: Hk+1 is defined by applying just one BFGS update to (8). This
method, L-BFGS-1, is sometimes called memoryless BFGS [31, p. 180]. We focus
on the nonsmooth function

f (x) = a|x (1)| +
n∑

i=2

x (i) (9)

with a ≥ √
n − 1. This function is obviously unbounded below, but it is bounded

below along any steepest descent direction d = −∇ f (x). One advantage of studying
this function is its simplicity, but another is that it is easy to determine whether a
method succeeds or fails when it is applied to (9): a method is successful only if it
generates a sequence of function values f (x (k)) → −∞ or identifies a direction dk
onwhich { f (xk + tdk) : t > 0} is unbounded below. Otherwise, since Armijo-Wolfe

2 http://www.timmitchell.com/software/granso/.

http://www.timmitchell.com/software/granso/

32 A. Asl and M. L. Overton

steps always exist along directions on which f is bounded below, the sequence of
function values f (x (k)) is well defined, bounded below, and must converge to a non-
optimal finite value. The following theorem shows that this last scenario occurs when
the Armijo parameter is not sufficiently small compared to the parameter a defining
the function definition in (9). The proof is given in [1, Sect. 3.2].

Theorem 1 Suppose f is defined by (9) with a ≥ 2
√
n − 1. Set x0 to any point with

x (1)
0
= 0. If the Armijo parameter c1 is chosen so that

1 − c1
c1

(n − 1) < a2 + a
√
a2 − 3(n − 1)

holds, then the scaled L-BFGS-1 method is well defined, in the sense that Armijo-
Wolfe steps always exist, but fails in the sense that f (xk) is bounded belowas k → ∞.

Note that a ≥ 2
√
n − 1 implies

a2 + a
√
a2 − 3(n − 1) ≥ 4(n − 1) + 2

√
n − 1

√
n − 1 = 6(n − 1).

So, if c1 > 1/7, the failure condition holds. It was proved in [2] that, when applied
to (9), the gradient method with an Armijo-Wolfe line search fails in the same sense
if the stronger condition

1 − c1
c1

(n − 1) < a2

on the Armijo parameter holds. So, surprisingly, in some cases scaled L-BFGS-1
fails although the gradient method succeeds in generating f (xk) → −∞.

If the specificArmijo-Wolfe bracketing line search given in [25] is used, we obtain
a failure condition for scaled L-BFGS-1 that is independent of the Armijo parameter.
The proof of the next result is given in [1, Sect. 3.3].

Theorem 2 Suppose f is defined by (9) with a ≥ 2
√
n − 1. Set x0 to any point with

x (1)
0
= 0. If scaled L-BFGS-1 is implemented using the Armijo-Wolfe bracketing line
search of [25], the method is well defined in the sense that the line search always
returns an Armijo-Wolfe steplength tk , but fails in the sense that f (xk) is bounded
below as k → ∞.

In fact, in the experiments reported in [1] we observe that a ≥ √
3(n − 1) suffices

for the method to fail. Furthermore, experiments indicate that, for any number of
updates m, there is a threshold for the parameter a beyond which scaled L-BFGS-m
always fails in the same sense: f (xk) is bounded below as k → ∞. This threshold
value for a increases with m.

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 33

3 Limited Memory BFGS for Nonsmooth Optimization
in Practice

In this section we carry out extensive experiments applying L-BFGS-m, with and
without scaling, using the Armijo-Wolfe bracketing line search of [25], to several
challenging nonsmooth examples. All of the functions we consider from now on
are bounded below. In most cases, in assessing whether a method succeeds or fails,
we compare the final computed result with the known optimal value. We also com-
pare the results with those obtained by the full BFGS method using the same line
search.We used thehanso packagewhich implements both full and limited-memory
BFGS, with the default settings for the Armijo andWolfe parameters: c1 = 10−4 and
c2 = 0.5. In many cases, we also compared the results to those obtained by the sub-
gradient method with predetermined stepsizes tk = 1/k. All methods, including the
subgradient method, are implemented using the gradient oracle paradigm discussed
in Sect. 1: no attempt is made to determine whether the objective function is differ-
entiable at a given iterate xk . Instead of using a stopping criterion such as discussed
in [25, p. 159], we run each method until it reaches a maximum number of function
evaluations or iterations, or the line search fails to find an acceptable step (either
because a limit on the number of bisections in the line search is exceeded or because
of rounding errors). If the method terminates because of failure in the line search
when f (xk) is not a good approximation to the optimal value, we say that the method
“breaks down”. We find, in general, that this behavior is typical for L-BFGS, but not
for full BFGS. For this reason we also compare these methods on smoothed versions
of the objective functions.

We begin with a difficult nonsmooth problem devised by Nesterov, and then we
go on to consider eigenvalue optimization and semidefinite programming problems.

3.1 Nesterov’s Les Houches Problem

We now consider a nonsmooth function introduced by Nesterov. The function is
defined by

f (x) = max{|x (1)|, |x (i) − 2x (i−1)|, i = 2, . . . , n}. (10)

Let x̂ (1) = 1, x̂ (i) = 2x̂ (i−1) + 1, i = 2, . . . , n. Then f (x̂) = 1 = f (1), where 1 =
[1, . . . , 1]T , although ‖x̂‖∞ ≈ 2n and ‖1‖∞ = 1, so the level sets of f are very
distorted. The minimizer is 0 = [0, . . . , 0]T with f (0) = 0. We call this Nesterov’s
“Les Houches” function [30].

In Fig. 1, we show results for L-BFGS-1 (memoryless BFGS), with and without
scaling, as well as full BFGS and the subgradient method, for the Les Houches prob-
lem with n = 500. We display all the function values that were computed, including
those computed in the bracketing line search. We put a limit of 10,000 function eval-
uations on each method. The starting point x0 (used by all the methods) was drawn

34 A. Asl and M. L. Overton

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-4

10-3

10-2

10-1

100

f
Nonsmooth Nesterov Les Houches Function, n= 500

Full BFGS
No-LBFGS-1
Subgradient Method
Sc-LBFGS-1

Fig. 1 Comparing full BFGS, L-BFGS-1 with and without scaling and the subgradient method
on the nonsmooth Les Houches problem (10) with n = 500. Here and below, “No-LBFGS” and
“Sc-LBFGS” refer to the methods without scaling and with scaling respectively

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-4

10-3

10-2

10-1

100

f

Full BFGS
No-LBFGS-20
Subgradient Method
Sc-LBFGS-20

Fig. 2 Comparing full BFGS, L-BFGS-20 with and without scaling and the subgradient method
on the nonsmooth Les Houches problem (10) with n = 500

randomly from the ball of radius 0.1 centered at the vector of all ones, using the
standard normal distribution.

We see fromFig. 1 that scaledL-BFGS-1 (magenta dots) breaks down,with failure
in the line search, after fewer than 2000 function evaluations. In contrast, unscaled
L-BFGS-1 (cyan) runs for the full 10,000 function evaluations. However, its scattered
plot indicates that the method performs many function evaluations per iteration in
the line search, indicating that, not surprisingly given its name, the search directions
it generates are not well scaled. Despite this, the method obtains a somewhat lower
answer than the subgradient method (dark blue). Full BFGS (black) performs much
better than any of the othermethods, reducing the function value to about 10−5 (recall
that the optimal value is zero). It is interesting to note that its convergence rate picks
up rapidly right after it has lowered the function value down to 1. We do not know
the reason for this.

We now increase the number of updatesm from 1 to 20 and repeat this experiment:
see Fig. 2. Unlike scaled L-BFGS-1, scaled L-BFGS-20 does not quit early, and
furthermore it also demonstrates a suddenly faster convergence rate toward the end
of the experiment similar to that of full BFGS (although the final answer it obtains
is not nearly as accurate as full BFGS). It obtains a function value of size 0.47,

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 35

whereas unscaled L-BFGS-20 gets a final answer of about 0.998 and the subgradient
method obtains 1.083. In this experiment, increasing the number of updates from 1
to 20 enhanced the performance of scaled L-BFGS far more than it did for unscaled
L-BFGS.

The conclusion from these experiments is that with a smallm, unscaled L-BFGS-
m performs better and with a larger m it is the scaled variant which performs better.
However, neither method performs nearly as well as full BFGS.

3.2 Smoothed Versions of Nesterov’s Les Houches Problem

Since L-BFGS-m performed poorly on (10), we consider instead applying it to a
smoothed version. Let

A =

⎡

⎢
⎢
⎢
⎣

1 0 0 . . . 0
−2 1 0 . . . 0
...

...
...

...
...

0 . . . 0 −2 1

⎤

⎥
⎥
⎥
⎦

.

Then, (10) is equivalent to
f (x) = g(Ax), (11)

where g : Rn → R is defined by

g(y) = max{|y(i)| : i = 1, 2, . . . , n}. (12)

Consider the Nesterov smoothing [29, 35] of the vector-max problem (12):

gμ(y) = μ log
n∑

i=1

(
ey

(i)/μ + e−y(i)/μ
) − μ log(2n). (13)

Without the constant term −μ log(2n), this function is sometimes known as the
softmax function [27, p. 205]. The uniqueminimizer of gμ(y) is y∗

μ = 0with g∗
μ = 0.

Since A is full-rank (although one of its singular values converges to zero as n → ∞),
via (11) we know that the unique minimizer of fμ(x) = gμ(Ax), x∗

μ, is also 0, with
the same optimal value f ∗

μ = 0, and it can be verified that

‖∇2 fμ(0)‖2 = 1

nμ
‖A‖22. (14)

We follow the standard approach [9, Sect 9.1] to defining the condition number of
the strongly convex function fμ as

36 A. Asl and M. L. Overton

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100
10-30

10-25

10-20

10-15

10-10

10-5

100

105
f

Smoothed Nesterov Les Houches Function, n=500

BFGS
L-BFGS-1-scale
L-BFGS-1-noscale

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100
101

102

103

104

ite
ra

tio
ns

 n
ee

de
d

BFGS
L-BFGS-1-scale
L-BFGS-1-noscale

Fig. 3 Comparing BFGS and L-BFGS-1 with and without scaling on the smoothed Les Houches
function (13) for n = 500. The left panel shows the final function value and the right panel shows
the iteration count, both as a function of the smoothing parameter μ. The maximum number of
iterations is set to 104

κ(fμ) =
(

max
x∈S ‖∇2 fμ(x)‖2

) (

max
x∈S ‖(∇2 fμ(x))−1‖2

)

(15)

where S = {x : f (x) ≤ f (x0)}. For small μ, the second factor is enormous as all
eigenvalues of ∇2 fμ(x0) are tiny. Using (14) as a lower bound for the first factor we
conclude that, for small μ,

κ(fμ)
 1

μ
.

We now report on experiments we conducted applying full BFGS and L-BFGS,
with and without scaling, to the smooth function fμ, with n = 500 as before. All of
the methods start from the same initial point used earlier. The left panel of Fig. 3
shows the final function value computed by full BFGS and L-BFGS-1 with and
without scaling as a function of the smoothing parameter μ using a log-log scale.
Let us focus first on the results for full BFGS (black circles).

BFGS always finds a solution with magnitude smaller than 10−15, even for a
very small μ, when the function is extremely ill conditioned. This is a remarkable
property of full BFGS: its accuracy does not deteriorate significantly3 as the condition
number κ(fμ) of the smoothed problem blows up with μ → 0. In fact, when μ is
sufficiently small, say μ = 10−16 (approximately the rounding unit in IEEE double
precision used by matlab), the smoothed problem is essentially equivalent to the
original nonsmooth problem when rounding errors are taken into account, so the left
panel shows the transition of the accuracy of full BFGS from smoothed variants of
the problem to the limiting nonsmooth problem. The right panel shows the number
of iterations that were required, again as a function of the smoothing parameter μ

3 Surprisingly, the accuracy increases somewhat as μ decreases, but this is at the level of rounding
errors and could perhaps be explained by a rounding error analysis. Certainly the scatter at the
bottom left corner of the left panel of Fig. 3 is a consequence of rounding error.

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 37

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100
10-30

10-25

10-20

10-15

10-10

10-5

100

f
Smoothed Nesterov Les Houches Function, n=500

BFGS
L-BFGS-20-scale
L-BFGS-20-noscale

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100
101

102

103

104

ite
ra

tio
ns

 n
ee

de
d

BFGS
L-BFGS-20-scale
L-BFGS-20-noscale

Fig. 4 Comparing BFGS and L-BFGS-20 with and without scaling on the smoothed Les Houches
function (13) for n = 500. The left panel shows the final function value and the right panel shows
the iteration count, both as a function of the smoothing parameter μ. The maximum number of
iterations is set to 104

and again using a log-log scale. The maximum number of iterations (not function
evaluations) was set to 104 for each μ. Remarkably, we see that the number of
iterations required for full BFGS to accurately minimize fμ does not significantly
increase asμ → 0, even though the condition number κ(fμ) blows up asμ decreases
to zero, and the number required for the effectively nonsmooth instance μ = 10−16

is not much more than the number required for much better conditioned smoothed
problems arising from moderate values of μ.

The results for L-BFGS-1 are very different. Unscaled L-BFGS-1 (cyan squares)
finds an accurate answer forμ ≥ 10−3, but the number of iterations required increases
rapidly as μ is decreased further so the iteration limit is reached for μ ranging from
10−4 to 10−9. However, starting with μ = 10−10, unscaled L-BFGS-1 breaks down
before reaching the maximum number of iterations. The behavior of scaled L-BFGS-
1 (magenta asterisks) is similar except that it breaks down only for μ = 10−16. Note
that, since we are displaying the number of iterations, not the number of function
evaluations, the performance of unscaled L-BFGS-1 looks better than it really is: the
scaled version is computing substantially fewer function evaluations per line search.

When we increase the number of updates to m = 20, scaled L-BFGS reacts
much better than unscaled L-BFGS; see Fig. 4. Unscaled L-BFGS-20 finds accurate
answers forμ ≥ 10−4 before hitting the iteration limit, while the scaled version does
so for μ ≥ 10−5. Furthermore, when the maximum iteration limit is reached, scaled
L-BFGS-20 achieves an answer of magnitude ≈ 10−2, whereas unscaled L-BFGS-
20 is still giving an answer of magnitude ≈ 100, similar to unscaled L-BFGS-1.
However, overall, both are still doing poorly compared to full BFGS.

Our conclusions from this subsection are consistent with the generally accepted
wisdom concerning L-BFGS. For smooth problems, even very ill-conditioned ones,
it is best to use the scaled version of L-BFGS, and choosing the number of updatesm
to be larger rather than smaller gives better performance, although, in contrast to full
BFGS, the number of iterations required increases significantly with the conditioning

38 A. Asl and M. L. Overton

of the problem. Again in contrast with full BFGS, when the ill conditioning increases
to the nonsmooth limit implicit in consideration of rounding errors, scaled L-BFGS
generally fails to converge to an optimal solution. However, for the smooth but
ill-conditioned problems considered in this subsection, unscaled L-BFGS offers no
advantage compared to scaled L-BFGS. Themost important conclusion is that, while
applying full BFGS directly to nonsmooth problems works remarkably well, this is
not the case for L-BFGS; at least for the Les Houches problem, it is far preferable
to apply scaled L-BFGS to a smooth approximation of the nonsmooth problem.

3.3 Max Eigenvalue Problem

Let SN denote the space of N × N real symmetric matrices, and let A : SN → R
n

denote a linear operator acting on X as follows:

AX =
⎡

⎢
⎣

〈A1, X〉
...

〈An, X〉

⎤

⎥
⎦ , (16)

with Ai ∈ SN for i = 1., . . . , n. Its adjoint operator; AT : Rn → SN , is defined by

AT y =
n∑

i=1

y(i)Ai . (17)

The Max Eigenvalue problem is to minimize the function

f (y) = λmax(C − AT y), (18)

where C ∈ SN and λmax : SN → R denotes largest eigenvalue of its argument. It
is well known that λmax is a convex function on SN . Early papers on eigenvalue
optimization include [32].

Assuming the maximum eigenvalue of C − AT y is simple, the gradient of f is

∇ f (y) = −A(qqT) = −[qT A1q, . . . , qT Anq]T .

Following the gradient oracle paradigm discussed in Sect. 1, we make no attempt to
estimate whether or not the maximum eigenvalue is simple at a given iterate. How-
ever, at optimal solutions, we generally expect that C − AT y has a multiple largest
eigenvalue and hence f is not differentiable. As is well known, eigenvalue optimiza-
tion problems are instances of semidefinite programs, and hence small problems can
be solved using CVX [16].

Using the standard normal distribution, we generated a random instance of this
problem, definingA andC with N = 50 and n = 49. Figure 5 shows the performance

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 39

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-12

10-10

10-8

10-6

10-4

10-2

10 0

10 2
(f

 -
 f*

)/
f*

Max Eigenvalue Problem, N=50, n=49

Full BFGS
No-LBFGS-1
Subgradient Method
Sc-LBFGS-1

Fig. 5 Comparing BFGS, L-BFGS-1 with and without scaling and the subgradient method on a
randomly generated Max Eigenvalue problem (18) with N = 50 and n = 49

of full BFGS, L-BFGS-1 with and without scaling, and the subgradient method (as
before with tk = 1/k) for minimizing (18). As earlier, we display all the function
values that were computed, including those computed in the bracketing line search.
Allmethodswere terminated after 104 function evaluations. Each function evaluation
f (y) makes a call to the Matlab function eig to compute all the eigenvalues of
C − AT y.

The vertical axis shows the relative error |(f − f ∗)/ f ∗|, where we used the
SDPT3 solver in CVX to obtain the optimal solution f ∗ with accuracy 10−14. As in
the experiment on the nonsmooth Les Houches problem reported in Fig. 1, scaled
L-BFGS-1 (magenta dots) breaks down early. However, unlike in that experiment,
here unscaled L-BFGS-1 (cyan dots) also breaks down early, and as a result the sub-
gradient method (green dots) obtains a better answer, though not nearly as good as
full BFGS (black dots).

It’s also of interest to examine the multiplicity of the eigenvalues of C − AT y at
the optimal solution y∗ and its computed approximations. FromSDPT3,weknow that
the optimal multiplicity for this problem is 5. Table 1 shows the top 6 eigenvalues
of the final answer found by each method. Besides SDPT3, only BFGS and the
subgradient method are able to determine the correct optimal multiplicity. BFGS
finds a solution with 11 correct digits, while the subgradient method obtains 3 correct
digits. Both variants of L-BFGS-1 converge to answers with multiplicity 4. Although
the multiplicity is wrong, unscaled L-BFGS-1 gets a better answer than its scaled
counterpart, with 2 correct digits, but at the cost of requiring many more function
evaluations.

Next, we repeat this experiment on the same problem, increasing the number of
L-BFGS updates fromm = 1 tom = 20. See Fig. 6 as well as Table 2 which presents
the top 6 eigenvalues for the final answer obtained by scaled and unscaled L-BFGS-
20. Both methods find the right multiplicity, with scaled L-BFGS-20 obtaining 3
correct digits and unscaled L-BFGS-20 obtaining 4 correct digits.

In summary, we observe that for the Max Eigenvalue problem, unlike the Les
Houches problem, increasingm from 1 to 20 does not result in scaled L-BFGS doing
better than unscaled L-BFGS.

40 A. Asl and M. L. Overton

Table 1 Top 6 eigenvalues of C − AT y for Max Eigenvalue problem (18) where y is computed
by SDPT3, full BFGS, scaled/unscaled L-BFGS-1 and the subgradient method for a randomly
generated problem with N = 50 and n = 49. The optimal multiplicity is 5

SDPT3 BFGS Sc L-BFGS-1 No L-BFGS-1 Subgradient

7.82702970305352 7.82702970306035 8.08455876518360 7.85155000878711 7.82953885641783

7.82702970305349 7.82702970306035 8.08455876518359 7.85155000044960 7.82746561454846

7.82702970305348 7.82702970306034 8.08197715145863 7.85154996050940 7.82673229360627

7.82702970305346 7.82702970306031 8.05541534062475 7.85141043900471 7.82472408900949

7.82702970305334 7.82702970306017 7.84362627205676 7.69075549655739 7.82286893229481

7.70350538019538 7.70350432059448 7.56258926523925 7.48734455288558 7.70188538367848

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-12

10-10

10-8

10-6

10-4

10-2

10 0

10 2

(f
 -

 f*
)/

f*

Max Eigenvalue Problem, N=50, n=49

Full BFGS
No-LBFGS-20
Subgradient Method
Sc-LBFGS-20

Fig. 6 Comparing BFGS, L-BFGS-20 with and without scaling and subgradient method on a
randomly generated Max Eigenvalue problem (18) with N = 50 and n = 49

Table 2 Top 6 eigenvalues of C − AT y for Max Eigenvalue problem (18) where y is computed by
scaled and unscaled L-BFGS-20 for the same problem reported in Table 1. The optimal multiplicity
is 5

Sc L-BFGS-20 No L-BFGS-20

7.82959659952176 7.82735384547039

7.82959659952176 7.82735380191247

7.82959659952174 7.82735377961470

7.82959659952166 7.82735377236995

7.82959659950328 7.82735372682267

7.62982269438813 7.69181664817458

3.4 Smoothed Max Eigenvalue Problem

Consider now Nesterov smoothing of the Max Eigenvalue function (18) [13]

fμ(y) = μ log
N∑

i=1

exp(λi (C − AT y)/μ) − μ log N , (19)

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 41

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

smoothing parameter mu

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
f

-f
B

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

L-BFGS-1-scale
L-BFGS-1-noscale

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

smoothing parameter mu

102

103

104

105

ite
ra

tio
ns

 n
ee

de
d

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

BFGS
L-BFGS-1-scale
L-BFGS-1-noscale

Fig. 7 Comparing L-BFGS-1 with and without scaling on the smoothed Max Eigenvalue problem
(19) for N = 50 and n = 49. The left panel shows the final function value, shifted by f Bμ , the
optimal value computed by BFGS, and the right panel shows the iteration count, both as a function
of the smoothing parameter μ. The maximum number of iterations is set to 105

where λ1(W) ≥ λ2(W) ≥ · · · ≥ λN (W) denote the ordered eigenvalues of a sym-
metric matrixW ∈ SN . Thus, λ1 is equivalent to λmax. Unlike the Les Houches prob-
lem, where the nonsmooth optimal value is equal to the smoothed optimal value, that
is f ∗ = f ∗

μ = 0, for any μ as μ → 0, the same statement is not true for the Max
Eigenvalue problem. The smoothed Max Eigenvalue problem requires a complete
eigendecomposition in order to obtain every eigenvalue for a given matrix, and since
CVX does not allow such functions but only those that it knows to be convex such
as the maximum eigenvalue function, we could not compute the optimal value f ∗

μ

from CVX. Instead, we use full BFGS with the max number of iterations set to 105

to minimize (19) to high accuracy: we denote this computed value by f Bμ .
In Fig. 7 we report on an experiment using the smoothed version of the same

instance of the randomly generated Max Eigenvalue problem as earlier with N = 50
and n = 49, using L-BFGS-1 to minimize (19). The left panel shows the final value
computed by scaled (magenta asterisks) and unscaled (cyan squares) L-BFGS-1
shifted by f Bμ (the answer found by full BFGS), as a function of the smoothing
parameter μ, in log-log scale. The right panel shows the number of iterations as a
function of μ, also in log-log scale. The maximum number of iterations is 105.

In the left panel we see that forμ = 1 down toμ = 10−4 bothmethods yield about
the same accuracy as each other, but that this deteriorates as μ decreases. Scaled L-
BFGS-1 continues to obtain a reasonable approximation to the presumed accurate
solution f Bμ for μ down to 10−9, although this accuracy continues to decrease as μ

is reduced. Looking at the right panel, we see that starting with μ = 10−10 scaled
L-BFGS-1 hits the maximum iteration limit and starting with 10−12 it breaks down
before reaching the maximum iteration limit. In contrast, unscaled L-BFGS-1 hits
the maximum iteration limit for μ = 10−5 and breaks down for μ ≤ 10−8.

Table 3 shows the top 6 eigenvalues of the final answer found by BGFS and L-
BFGS-1 for the smoothed Max Eigenvalue problem with μ = 10−7. We also repeat

42 A. Asl and M. L. Overton

Table 3 Top 6 eigenvalues of C − AT y for Max Eigenvalue problem where y is computed by
applying BFGS, scaled L-BFGS-1 and unscaled L-BFGS-1 to fμ with μ = 10−7, for the same
instance of the randomly generatedMax Eigenvalue problem as in Table 1. The optimal multiplicity
is 5. The first column gives the top 6 eigenvalues of the solution to the original nonsmooth problem

SDPT3 BFGS Sc L-BFGS-1 No L-BFGS-1

7.82702970305352 7.82702976093363 7.82702978971152 7.82703432112405

7.82702970305349 7.82702968960443 7.82702971836333 7.82703424950540

7.82702970305348 7.82702966768912 7.82702969644540 7.82703422776180

7.82702970305346 7.82702963829977 7.82702966707913 7.82703419808905

7.82702970305334 7.82702954704101 7.82702957585856 7.82703410710019

7.70350538019538 7.70350539089203 7.70374015675041 7.69886385782543

Table 4 Top 6 eigenvalues of C − AT y for Max Eigenvalue problem where y is computed by
applying BFGS, scaled L-BFGS-20 and unscaled L-BFGS-20 to fμ with μ = 10−7, for the same
instance of the randomly generatedMax Eigenvalue problem as in Table 1. The optimal multiplicity
is 5

Sc L-BFGS-20 No L-BFGS-20

7.82702976201688 7.82702976326908

7.82702969067290 7.82702969273000

7.82702966877706 7.82702966880138

7.82702963938214 7.82702964120678

7.82702954813253 7.82702954355970

7.70348252862186 7.70344821498698

the optimal top 6 eigenvalues of the minimizer of the original nonsmooth function
f found by SDPT3 for the sake of comparison. Note that the result computed by
applying scaled L-BFGS-1 to the smoothed problem agrees with the nonsmooth
optimal value f ∗ to 8 digits, compared to 0 digits when applied directly to the
nonsmooth problem (Table 1).

We repeated this experiment withm = 20, reported in Fig. 8. In the left panel, we
observe that the loss of accuracy in L-BFGS as a function of μ is less pronounced
with 20 updates. Roughly speaking, overall the error decreases by a factor of 10−2.
In the right panel we see that neither scaled nor unscaled L-BFGS-20 reaches the
maximum iteration limit, but that both methods break down for sufficiently small μ.
The top eigenvalues produced by L-BFGS-20 for μ = 10−7 are shown in Table 4.

Comparing the final computed maximum eigenvalue in Tables 1, 2, 3, and 4,
note that full BFGS obtains a more accurate solution when applied to the original
nonsmooth problem than it does when applied to the smoothed approximation using
μ = 10−7, while the opposite is true for scaled L-BFGS-1 and scaled L-BFGS-20.
In summary, as with the Les Houches problem, it is much more effective to apply
L-BFGS to the smoothed max eigenvalue problem than directly to the nonsmooth
problem. As earlier, this is in sharp contrast to the behavior of full BFGS.

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 43

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

smoothing parameter mu

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
f

-f
B

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

L-BFGS-20-scale
L-BFGS-20-noscale

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

smoothing parameter mu

102

103

104

105

ite
ra

tio
ns

 n
ee

de
d

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

BFGS
L-BFGS-20-scale
L-BFGS-20-noscale

Fig. 8 Comparing L-BFGS-20 with and without scaling on the smoothedMax Eigenvalue problem
(19) for N = 50 and n = 49. The left panel shows the final function value, shifted by f Bμ , the optimal
value computed by BFGS, and the right panel shows the iteration count, both as a function of the
smoothing parameter μ. The maximum number of iterations is set to 105

3.5 Semidefinite Programming

Consider the following primal and dual semidefinite programs (SDP) in standard
form [20, 21]

max
X∈SN

〈C, X〉 (20)

subject to AX = b and X ∈ SN
+ ,

min
y∈Rn

bT y (21)

subject to Z = AT y − C and Z ∈ SN
+ ,

where b ∈ R
n , C ∈ SN andA : SN → R

n is a linear operator as defined in (16) and
(17). Here SN+ ⊆ SN denotes the cone of positive semidefinite N × N matrices. Let
us assume that strong duality holds, so that the optimal primal and dual values are
the same, and that the optimal values are attained. It follows that if X∗ is an optimal
solution to the primal problem (20) and Z∗ is an optimal solution to the dual problem
(21), we have X∗Z∗ = 0. Further assume that X∗ is nonzero, and consequently, Z∗
has at least one eigenvalue equal to zero. Then the dual problem (21) is equivalent
to the following unconstrained eigenvalue optimization problem

min
y∈Rn

f (y), (22)

with the exact penalty dual function [14]

f (y) = bT y + αmax{λmax(C − AT y), 0}, (23)

44 A. Asl and M. L. Overton

for sufficiently large α, where λmax denotes maximum eigenvalue as earlier. Note
that this exact penalty function differs from the eigenvalue optimization formulation
in [21], namely

bT y + αλmax(C − AT y)

which does not include the max{· , 0} operator. In that formulation, to give a correct
equivalence α must be exactly equal to a critical value, as opposed to greater than or
equal to this value. For the SDP problems we consider in the following subsections
we already know valid lower bounds for α. Note that at an optimal solution y∗ the
maximum eigenvalue of −Z∗ = C − AT y∗ is zero, often with multiplicity greater
than one, and hence f is nonsmooth at y∗.

3.6 Max Cut Problem

Our first example of semidefinite programming (SDP) arises from the Max Cut
problem. This subsection and a subsequent one on the Matrix Completion problem
were motivated by the recent paper [14] and the observation made there that the first-
order algorithms they used to minimize the penalized dual function (23) arising from
Max Cut and Matrix Completion SDP relaxations were slow. Here we compare full
BFGS, scaled and unscaled L-BFGS and the subgradient method (again with tk =
1/k) on penalized dual functions arising fromGoemans-Williamson SDP relaxations
of the Max Cut problem. We note that one of the key ideas in [14] is that, when the
primal SDP optimal solution X∗ has rank much less than N , an accurate estimate of
the optimal value of the SDP obtained from minimizing the penalized dual function
allows the use of a novel method for obtaining efficient low-rank solutions to the
primal SDP even when N is large.

The primal Max Cut SDP relaxation and its dual are [19]:

max
X

1

4
〈L , X〉 (24)

subject to diag (X) = 1 and X ∈ SN
+ ,

min
y∈Rn

1T y (25)

subject to Z = Diag (y) − 1

4
L and Z ∈ SN

+ ,

where L is theLaplacianmatrix of a given undirected graph, diag ()maps the diagonal
of a matrix to a vector, and Diag ()maps a vector to a diagonal matrix. Note that these
are instances of the primal and dual SDP introduced in (20) and (21), respectively.
By definition for the SDP Max Cut problem we have n = N . The exact penalty dual
function (23) for the Max Cut SDP relaxation is

f (y) = 1T y + α max{λmax(L − Diag (y)), 0}. (26)

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10 -6

10 -4

10 -2

10 0

10 2
(f

 -
 f*

)/
f*

Full BFGS
No-LBFGS-5
Sc-LBFGS-5
Subgradient Method

Fig. 9 Comparing BFGS, L-BFGS-5 with and without scaling and the subgradient method on the
penalized dual Max Cut problem (26)

Due to the constant trace property of the primalMaxCut SDP (24), the trace (nuclear)
norm of the primal optimal solution is known to be N , and hence any solution y∗ to
the penalized dual max cut problem (26) with α ≥ N is also a solution to the dual
SDP (25) and vice versa [14, Lemma 6.1].

We picked graph G1 from the Gset group in the sparse matrix collection [18] for
the following experiment. G1 is an unweighted graph with N = 800 vertices and the
adjacency matrix is a sparse symmetric matrix with 38352 nonzero entries (all equal
to 1). Since N is relatively small we can apply the SDPT3 solver via CVX [15] to the
primal SDP (24), obtaining the optimal primal and dual value f ∗ = 12083.19765.
The rank r∗ of the optimal primal solution X∗ is 13, and strict complementarity holds,
so the nullity of the dual solution Z∗ is also 13.

In Fig. 9, we compare the performance of full BFGS, L-BFGS-5 with and with-
out scaling, and the subgradient method (with tk = 1/k) to minimize the penalized
dual function (26) with α = 2N = 1600.We display all the function values that were
computed, with the maximum number of function evaluations set to 104. The vertical
axis shows the relative error (f − f ∗)/ f ∗. In contrast to the two experiments pre-
sented in Figs. 5 and 6 for the nonsmoothMax Eigenvalue problem, the results of this
experiment are in favor of L-BFGS when compared to the subgradient method. Both
scaled L-BFGS-5 (magenta dots) and unscaled L-BFGS-5 (cyan dots) reduce the
relative error down to below 10−2 while the subgradient method (blue dots) reduces
the relative error to about 100. Full BFGS (black dots) reduces the relative error to
below 10−6.

In Fig. 10, we show the negative of the top 20 eigenvalues of the final negative
dual slack matrix −Z (equivalently, the smallest 20 eigenvalues of Z) obtained by
the four methods, along with values obtained by SDPT3. It is interesting to note that
full BFGS approximates the eigenvalues well, in the sense that it clearly separates
the first 13 approximately zero eigenvalues from the approximations to the nonzero
eigenvalues, although not as decisively as SDPT3. However, the final eigenvalues
obtained by L-BFGS-5 are not clearly separated.

46 A. Asl and M. L. Overton

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10 -15

10 -10

10-5

100

105

Full BFGS
No-LBFGS-5
Sc-LBFGS-5
Subgradient Method
SDPT3

Fig. 10 Comparing smallest 20 eigenvalues of the dual slackmatrix Z obtained byBFGS, L-BFGS-
5 with and without scaling and the subgradient method on the penalized dual Max Cut problem (26)
for the G1 graph with n = 800. The nullity of the optimal dual slack matrix Z∗ is 13. The smallest
20 eigenvalues obtained from SDPT3 are shown as well. The lack of monotonicity at the left end
of some of the plots occurs because we actually plotted the absolute values of the ordered largest
eigenvalues of −Z , and some of these eigenvalues are positive, either because of rounding errors
or insufficient accuracy in the optimization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10 -6

10 -4

10 -2

10 0

10 2

(f
 -

 f*
)/

f*

Full BFGS
No-LBFGS-20
Sc-LBFGS-20
Subgradient Method

Fig. 11 Comparing BFGS, L-BFGS-20 with and without scaling and the subgradient method on
the penalized dual Max Cut problem (26)

Next we increase the number of L-BFGS updates fromm = 5 tom = 20, showing
the results in Figs. 11 and 12. The results for BFGS and the subgradient method are
shown again for comparison.We see that scaled L-BFGS-20 now reduces the relative
error down to 10−4 and unscaled to about 10−3, compared to about 10−2 for scaled
and unscaled L-BFGS-5. However, the eigenvalue plot is similar to the corresponding
plot for L-BFGS-5: neither variant is able to discover that the nullity of the optimal
dual slack matrix Z∗ is 13.

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 47

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10 -15

10 -10

10-5

100

105

Full BFGS
No-LBFGS-20
Sc-LBFGS-20
Subgradient Method
SDPT3

Fig. 12 Comparing smallest 20 eigenvalues of the dual slackmatrix Z obtained byBFGS, L-BFGS-
5 with and without scaling and the subgradient method on the penalized dual Max Cut problem (26)
for G1 graph with n = 800. The nullity of the optimal dual slack matrix Z∗ is 13. The smallest 20
eigenvalues obtained from SDPT3 are shown as well. See legend of Fig. 10 regarding eigenvalue
monotonicity

3.7 Smoothed Max Cut Problem

Consider now Nesterov smoothing of the penalized dual Max Cut problem (26):

fμ(y) = 1T y + αμ log

(

1 +
n∑

i=1

exp (λi (L − Diag (y))/μ)

)

− αμ log(n + 1).

(27)
Note the presence of the term “1” which does not appear in (19): this reflects the
presence of the max{· , 0} operator in the penalty function (23).

Figure 13 shows the results of applying BFGS, scaled L-BFGS-5 and scaled L-
BFGS-20 to minimize (27) with μ = 10−7. We do not include the unscaled L-BFGS
variants because it seems clear that they offer no advantage on smooth problems.
Interestingly, and in contrast to our other experiments with smoothed nonsmooth
functions, scaled L-BFGS-20 does better than full BFGS during its first several
thousand function evaluations, but eventually it is overtaken by full BFGS. Scaled
L-BFGS-5 does relatively poorly.

Table 5 shows the final answers we obtained from full BFGS, scaled L-BFGS-
20 and scaled L-BFGS-5 on the smoothed and nonsmooth Max Cut problem. The
optimal SDP value f ∗ is also shown. All three of full BFGS, scaled L-BFGS-5 and
scaled L-BFGS-20 obtain better approximations to f ∗ when applied directly to the
nonsmooth problem than when applied to the smoothed problem with μ = 10−7.
This is in contrast to what we observed for the Les Houches problem and the Max
Eigenvalue problem, where this was true only for full BFGS.

It would be interesting to investigate whether L-BFGS might be useful in the
solution of large-scale Max Cut problems or other SDPs. A first step in this direction
appears in [3, Sect. 4.2.5], utilizing a variant of the smoothed exact penalty dual

48 A. Asl and M. L. Overton

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-4

10-3

10-2

10-1

100

101
(f

-f
*)/

f*

Scaled L-BFGS-5
Scaled L-BFGS-20
BFGS

Fig. 13 Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on Smoothed Max Cut prob-
lem (27) for the same problem as in the Nonsmooth Max Cut problem. The smoothing parameter
is μ = 10−7

Table 5 Final objective valuewe obtained from full BFGS, scaled L-BFGS-20 and scaled L-BFGS-
5 on the smoothed and nonsmooth Max Cut problem presented in Figs. 13, 11 and 9 respectively.
The optimal SDP value f ∗ is also shown for comparison

SDP-optimal 12083.19765454945

BFGS-smooth 12083.83341694415

BFGS-nonsmooth 12083.20108505506

L-BFGS-20-smooth 12085.35533081401

L-BFGS-20-nonsmooth 12083.97779371002

L-BFGS-5-smooth 12848.47893036591

L-BFGS-5-nonsmooth 12143.81352524515

function (27) that includes only the largest eigenvalues in the smoothing, since these
are the ones that dominate (27). This allows the use ofMatlab’s eigs to compute
only the largest few eigenvalues of C − AT y via the Lanczos method.

3.8 Matrix Completion Problem

The Matrix Completion problem is as follows. Suppose X ∈ R
N1×N2 denotes a low-

rank matrix for which we only have access to some of its entries and would like to
recover entirely by minimizing the rank over all matrices whose entries agree with
the known values. This rank minimization problem is NP-hard, so we relax it by
minimizing a well-known convex surrogate for the rank: the nuclear norm (sum of
all the singular values). Let � be the set of pairs (i, j) for which Xi j is known. Then
the nuclear norm minimization problem can be expressed as the following SDP [34]

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 49

max
X∈S(N1+N2)

− Tr (W1) − Tr (W2) (28)

subject to Ui j = Xi j , (i, j) ∈ �,

X =
[
W1 U
UT W2

]

∈ S(N1+N2)+ .

We write the primal problem in the max form in order to be consistent with the SDP
form (20), with N = N1 + N2. Define the constraint Ui j = Xi j for (i, j) ∈ � in
linear operator form B(U) = b, where b ∈ R

n with n = |�| is the vector consisting
of the known entries of X in some prescribed order and B : RN1×N2 → R

n , with BT

its adjoint operator. The dual SDP is

min
y∈Rn

bT y (29)

subject to Z =
[

IN1 BT (y)
(BT (y)

)T
IN2

]

, Z ∈ S(N1+N2)+ .

The exact penalty dual function (23) for the Matrix Completion problem is then

f (y) = bT y + αmax

{

λmax

(

−
[

IN1 BT (y)
(BT (y)

)T
IN2

])

, 0

}

. (30)

For the experiment in this part, we generated a low-rank random matrix X of
size N1 = 20 by N2 = 160 with rank 3. We then selected the ordered pairs in �

randomlywith the probability of each (i, j)being included set to 0.2. For this problem
instance we got |�| = n = 587. We then applied the various methods to minimize
(30) with α = 2‖X∗‖∗ = 2 Tr (X∗) = −2 f ∗ = 3.0796, where f ∗ = −1.5398 and
X∗ ∈ SN1+N2+ were obtained from solving the SDP (29) via SDPT3. Note that the
optimal value is negative because of the minus sign in the max formulation of the
primal SDP.

Figure 14 shows the performance of full BFGS, L-BFGS-5 with and without scal-
ing, and the subgradient method (with tk = 1/k). The vertical axis shows the relative
error (f − f ∗)/| f ∗|. The maximum number of function evaluations is set to 104.
As is evident from the plot, both variants of L-BFGS-5 outperform the subgradi-
ent method, even though scaled L-BFGS-5 quits early before 5000 evaluations and
unscaled L-BFGS-5 just before 10000 evaluations.

Figure 15 presents the negative of the top 20 eigenvalues of the final negative
dual slack matrix −Z , or equivalently, the 20 smallest eigenvalues of Z , obtained by
the four methods, along with values obtained by SDPT3. As before, BFGS is able
to separate the zero and nonzero eigenvalues of Z∗, agreeing with SDPT3 that the
nullity of Z∗ is effectively 11. Note that this is larger than 3, the rank of the original

50 A. Asl and M. L. Overton

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-6

10-4

10-2

100

102

104
(f

 -
 f*

)/
|f*

|
Full BFGS
No-LBFGS-5
Subgradient Method
Sc-LBFGS-5

Fig. 14 Comparing BFGS, LBFGS-5 with and without scaling and the subgradient method on the
penalized dual Matrix Completion problem (30)

0 4 6 8 10 12 14 16 18 20

Eigenvalues

10-15

10-10

10 -5

10 0

Full BFGS
No-LBFGS-5
Sc-LBFGS-5
Subgradient Method
SDPT3

2

Fig. 15 Comparing smallest 20 eigenvalues of the dual slackmatrix Z obtained byBFGS, L-BFGS-
5 with and without scaling and the subgradient method on the penalized dual Matrix Completion
problem (30). See legend of Fig. 10 regarding eigenvalue monotonicity

matrix X , implying that 20% was not enough observations to reconstruct X . It is
interesting that the eigenvalues of the solution found by scaled L-BFGS-5 do suggest
a nullity of 3, but this may just be a coincidence.

In the experiment reported in Figs. 16 and 17, we increase m to 20 and again we
compare the relative error and the smallest 20 eigenvalues of the dual slack matrix,
respectively. In both plots the result from BFGS and the subgradient method are
repeated for comparison. In Fig. 16, neither L-BFGS-20 method quits early this
time; the unscaled variant gets a slightly lower answer. The eigenvalues shown for
L-BFGS-20 in Fig. 17 do not suggest any conclusion about the nullity of Z∗.

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10-6

10-4

10-2

10 0

10 2

10 4
(f

 -
 f*

)/
|f*

|

Full BFGS
No-LBFGS-20
Subgradient Method
Sc-LBFGS-20

Fig. 16 Comparing BFGS, LBFGS-20 with and without scaling and subgradient method on the
penalized dual Matrix Completion problem (30)

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10 -10

10 -8

10 -6

10 -4

10 -2

100

102

Full BFGS
No-LBFGS-20
Sc-LBFGS-20
Subgradient Method
SDPT3

Fig. 17 Comparing smallest 20 eigenvalues of the dual slackmatrix Z obtained byBFGS, L-BFGS-
20 with and without scaling and the subgradient method on the penalized dual Matrix Completion
problem (30). See legend of Fig. 10 regarding eigenvalue monotonicity

3.9 Smoothed Matrix Completion Problem

Nesterov smoothing of the penalized dual Matrix Completion problem (30) gives

fμ(y) = bT y (31)

+ αμ log

(

1 +
N1+N2∑

i=1

exp

(

λi

(

−
[

IN1 BT (y)
(BT (y)

)T
IN2

])

/μ

))

− αμ log(N1 + N2 + 1).

In Fig. 18, we show the result of applying full BFGS, scaled L-BFGS-5 and
scaled L-BFGS-20 to (31) withμ = 10−7. The underlying referencematrix,X , is the
same matrix as in the nonsmooth experiment in Fig. 14, with N1 = 20, N2 = 160,
f ∗ = −1.5398. We set α = 3.0796 as before. The maximum number of function
evaluations is set to 104.

52 A. Asl and M. L. Overton

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10 -4

10 -2

10 0

10 2

10 4
(f

-f*)/
|f* |

Scaled L-BFGS-5
Scaled L-BFGS-20
BFGS

Fig. 18 Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on Smoothed Matrix Com-
pletion problem (31) for the same problem as in the Nonsmooth Matrix Completion problem. The
smoothing parameter is μ = 10−7

Table 6 Final objective valuewe obtained from full BFGS, scaled L-BFGS-20 and scaled L-BFGS-
5 on the smoothed and nonsmooth Matrix Completion problem presented in Figs. 18, 16 and 14
respectively. The optimal SDP value f ∗ is also shown for comparison

SDP-optimal −1.53978555575175

BFGS-smooth −1.53941270679104

BFGS-nonsmooth −1.53946718487809

L-BFGS-20-smooth −1.52686081626082

L-BFGS-20-nonsmooth −1.52864965852708

L-BFGS-5-smooth −1.51868588317043

L-BFGS-5-nonsmooth −1.50422184883968

We see in Fig. 18 that although the relative error obtained by scaled L-BFGS-20
and full BFGS are about the same as when applied to the nonsmooth function, scaled
L-BFGS-5 gets a lower error when it is applied to the smoothed function, and more
importantly, it does not break down early.

Table 6 shows the final answers we obtained from full BFGS, scaled L-BFGS-20
and scaled L-BFGS-5 on the smoothed and nonsmooth Matrix Completion problem.
The optimal SDP value f ∗ is also shown for comparison.

4 Concluding Remarks

In Sect. 2, we presented theoretical results showing that L-BFGS may converge
to non-optimal points when applied to a simple class of nonsmooth functions. In
Sect. 3, we investigated whether the same phenomenon holds in practice. We found
that when applied to a nonsmooth function directly, L-BFGS, especially its scaled
variant, often breaks downwith a poor approximation to an optimal solution, in sharp
contrast to full BFGS. Unscaled L-BFGS is less prone to breakdown but conducts

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 53

far more function evaluations per iteration than scaled L-BFGS does, and thus it is
slow. Nonetheless, it is often the case that both variants obtain better results than the
provably convergent, but slow, subgradient method.

On the other hand, when applied to a smooth approximation of a nonsmooth
function, scaled L-BFGS invariably performs better than unscaled L-BFGS, often
obtaining good results even when the problem is quite ill-conditioned. In particular,
scaled L-BFGS may be a reasonable approach to finding approximate minimizers
of smoothed exact penalty dual functions arising in large-scale semidefinite pro-
grams, although further investigation is needed to investigate the practicality of this
approach. Minimization of the SDP exact penalty dual function is a key component
of a recently proposed method for solving large-scale SDPs with low-rank primal
solutions [14].

Most importantly, we find that although L-BFGS is often a reliable method for
minimizing ill-conditioned smooth problems, it frequently fails when the condition
number is so large that the function is effectively nonsmooth. This behavior is in sharp
contrast to the behavior of full BFGS, which is consistently reliable for nonsmooth
optimization problems. We arrive at the conclusion that, for large-scale nonsmooth
optimization problems for which full BFGS and other methods are not practical, it
is often better to apply L-BFGS to a smoothed variant of a nonsmooth problem than
to apply it directly to the nonsmooth problem.

Acknowledgements The work of the first author was conducted as part of her Ph.D. studies
at the Courant Institute of Mathematical Studies, New York University. Many thanks to Mar-
garet H. Wright for providing her financial support through a grant from the Simons Foundation
(417314,MHW).

References

1. AzamAsl andMichael L. Overton. Analysis of limited-memory BFGS on a class of nonsmooth
convex functions. IMA Journal of Numerical Analysis, 01 2020. drz052.

2. Azam Asl and Michael L. Overton. Analysis of the gradient method with an Armijo-Wolfe
line search on a class of non-smooth convex functions. Optimization Methods and Software,
35(2):223–242, 2020.

3. Azam Asl. Behavior of the Limited Memory BFGS Method on Nonsmooth Optimization Prob-
lems in Theory and Practice. PhD thesis, NewYorkUniversity, 2020. https://cs.nyu.edu/media/
publications/asl_thesis_final_UtpoLsu.pdf.

4. JonathanBarzilai and JonathanM.Borwein.Two-point step size gradientmethods. IMAJournal
of Numerical Analysis, 8(1):141–148, 1988.

5. James V. Burke, Frank E. Curtis, Adrian S. Lewis, Michael L. Overton, and Lucas E. A.
Simões. Gradient sampling methods for nonsmooth optimization. In Adil M. Bagirov, Manlio
Gaudioso,NapsuKarmitsa,MarkoM.Mäkelä, and SonaTaheri, editors,Numerical Nonsmooth
Optimization: State of the Art Algorithms, pages 201–225. Springer International Publishing,
Cham, 2020.

6. Adil M. Bagirov, Manlio Gaudioso, Napsu Karmitsa, Marko M. Mäkelä, and Sona Taheri.
Numerical Nonsmooth Optimization: State of the Art Algorithms. Springer International Pub-
lishing, Cham, 2020.

https://cs.nyu.edu/media/publications/asl_thesis_final_UtpoLsu.pdf
https://cs.nyu.edu/media/publications/asl_thesis_final_UtpoLsu.pdf

54 A. Asl and M. L. Overton

7. Adil Bagirov, Napsu Karmitsa, and Marko M. Mäkelä. Introduction to Nonsmooth Optimiza-
tion. Springer, Cham, 2014. Theory, Practice and Software.

8. JamesV.Burke,AdrianS.Lewis, andMichaelL.Overton.A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM J. Optim., 15(3):751–779, 2005.

9. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

10. Frank E. Curtis and Minhan Li. Gradient sampling methods with inexact subproblem solutions
and gradient aggregation, 2020. arXiv:2005.07822.

11. Frank E. Curtis, TimMitchell, and Michael L. Overton. A BFGS-SQP method for nonsmooth,
nonconvex, constrained optimization and its evaluation using relative minimization profiles.
Optimization Methods and Software, 32(1):148–181, 2017.

12. Frank E. Curtis and Michael L. Overton. A sequential quadratic programming algorithm for
nonconvex, nonsmooth constrained optimization. SIAM J. Optim., 22(2):474–500, 2012.

13. Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM J. Optim.,
19(3):1171–1183, 2008.

14. Lijun Ding, Alp Yurtsever, Volkan Cevher, Joel A. Tropp, and Madeleine Udell. An optimal-
storage approach to semidefinite programming using approximate complementarity, February
2019. arXiv:1902.03373.

15. Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control,
Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag Limited,
2008. https://web.stanford.edu/~boyd/papers/pdf/graph_dcp.pdf.

16. Michael Grant and Stephen Boyd. CVX:Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, March 2014.

17. J. Guo and A. Lewis. Nonsmooth variants of Powell’s BFGS convergence theorem. SIAM
Journal on Optimization, 28(2):1301–1311, 2018.

18. The University of Florida sparse matrix collection: Gset group. http://www.cise.ufl.edu/
research/sparse/matrices/Gset/index.html, March 2014.

19. Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, November 1995.

20. C. Helmberg, M.L. Overton, and F. Rendl. The spectral bundle method with second-order
information. Optimization Methods and Software, 29(4):855–876, 2014.

21. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM
Journal on Optimization, 10(3):673–696, 2000.

22. Krzysztof C. Kiwiel. Methods of descent for nondifferentiable optimization, volume 1133 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

23. C. Lemaréchal. An extension of Davidon methods to non differentiable problems. Math. Pro-
gramming Stud., (3):95–109, 1975.

24. Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Math. Programming, 45(3, (Ser. B)):503–528, 1989.

25. Adrian S. Lewis andMichael L. Overton. Nonsmooth optimization via quasi-Newtonmethods.
Math. Program., 141(1-2, Ser. A):135–163, 2013.

26. A. S. Lewis and S. Zhang. Nonsmoothness and a variable metric method. J. Optim. Theory
Appl., 165(1):151–171, 2015.

27. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learn-
ing. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2012.

28. Angelia Nedić andDimitri P. Bertsekas. Incremental subgradientmethods for nondifferentiable
optimization. SIAM J. Optim., 12(1):109–138, 2001.

29. Yu. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1, Ser.
A):127–152, 2005.

30. Yu. Nesterov. Private communication, 2016. Les Houches, France.
31. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.

http://arxiv.org/abs/2005.07822
http://arxiv.org/abs/1902.03373
https://web.stanford.edu/~boyd/papers/pdf/graph_dcp.pdf
http://cvxr.com/cvx
http://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html
http://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html

Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions … 55

32. M.L. Overton. Onminimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix
Anal. Appl., 9:256–268, 1988.

33. M. J. D. Powell. Some global convergence properties of a variable metric algorithm for min-
imization without exact line searches. In Nonlinear Programming, pages 53–72, Providence,
1976. Amer. Math. Soc. SIAM-AMS Proc., Vol. IX.

34. Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

35. Lieven Vandenberghe. Optimization methods for large-scale systems, 2019. http://www.seas.
ucla.edu/~vandenbe/236C/lectures/smoothing.pdf, Lecture Notes for ECE236C.

36. Yuchen Xie and AndreasWaechter. On the convergence of BFGS on a class of piecewise linear
non-smooth functions, December 2017. arXiv:1712.08571.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/smoothing.pdf
http://www.seas.ucla.edu/~vandenbe/236C/lectures/smoothing.pdf
http://arxiv.org/abs/1712.08571

Subgradient Smoothing Method
for Nonsmooth Nonconvex Optimization

A. M. Bagirov, N. Sultanova, S. Taheri, and G. Ozturk

Abstract In this chapter an unconstrained nonsmooth nonconvexoptimization prob-
lem is considered and a method for solving this problem is developed. In this method
the subproblem for finding search directions is reduced to the unconstrained mini-
mization of a smooth function. This is achieved by using subgradients computed in
some neighborhood of a current iteration point and by formulating the search direc-
tion finding problem to the minimization of the convex piecewise linear function
over the unit ball. The hyperbolic smoothing technique is applied to approximate
the minimization problem by a sequence of smooth problems. The convergence of
the proposed method is studied and its performance is evaluated using a set of nons-
mooth optimization academic test problems. In addition, the method is implemented
inGAMSand numerical results using different solvers fromGAMSare reported. The
proposed method is compared with a number of nonsmooth optimization methods.

Keywords Nonsmooth optimization · Nonconvex optimization · Subdifferential
mapping · Smoothing techniques

1 Introduction

Consider the following unconstrained optimization problem.

{
minimize f (x)

subject to x ∈ IRn,
(1)

A. M. Bagirov (B) · N. Sultanova
School of Engineering, Information Technology and Physical Sciences,
Federation University Australia, Ballarat, Australia
e-mail: a.bagirov@federation.edu.au

S. Taheri
School of Science, RMIT University, Melbourne, Australia

G. Ozturk
Department of Industrial Engineering, Eskisehir Technical University,
Eskisehir, Turkey
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_3&domain=pdf
mailto:a.bagirov@federation.edu.au
https://doi.org/10.1007/978-3-030-72040-7_3

58 A. M. Bagirov et al.

where the objective function f is, in general, locally Lipschitz continuous (LLC).
There are no further assumptions on the structure of this function.

Problem (1) arises in variety of applications such as economics, mechanics, engi-
neering, control theory, optimal shape design and machine learning [1–10], to name
a few. Various algorithms have been developed to solve Problem (1). The proximal
bundle [11, 12], bundle-Newton [13], variable metric [14], gradient set splitting [15],
subgradient [16], gradient sampling [17] methods and hybrid methods, such as the
discrete gradient [18], the quasisecant [19] and limited memory bundle [20] methods
are among them.

One interesting approach for solvingProblem (1) is the use of smooth optimization
methods. Such an approach has been studied in [21–23]. Although this approach is
not supported by strong convergence results, it enables us to apply powerful smooth
optimization methods for solving nonsmooth optimization problems.

In this chapter we propose a rather different approach to apply smooth opti-
mization methods for solving nonsmooth optimization problems. Using subgradi-
ents computed in some neighborhood of the current iteration point we formulate the
search direction finding subproblem as a minimization of a convex piecewise linear
function over the unit ball. Then by applying the hyperbolic smoothing technique
this subproblem is replaced by the sequence of unconstrained smooth optimization
problems. A new method is designed based on this approach to solve Problem (1).

The proposed method is tested using nonsmooth optimization academic test prob-
lems and compared with the number of nonsmooth optimization solvers. We also
demonstrate the implementation of the proposed method using several smooth opti-
mization solvers from the GAMS software.

The rest of the chapter is organized as follows. Section 2 provides some necessary
preliminaries. Section 3 presents definitions and results used for designing the new
method. In Sect. 4 we propose an algorithm for computing the search directions and
describe the minimization algorithm to solve Problem (1). We present the results of
numerical experiments in Sect. 5. Section 6 concludes the chapter.

2 Preliminaries

In what follows we denote by IRn the n-dimensional Euclidean space, by 〈u, v〉 =∑n
i=1 uivi the inner product of vectorsu, v ∈ IRn andby‖ · ‖ the associatedEuclidean

norm. Furthermore, S1 = {u ∈ IRn : ‖u‖ = 1} is the unit sphere, Bε(x) = {u ∈ IRn :
‖u − x‖ < ε} is the open ball centered at the point x with the radius ε > 0 and
Bε = Bε(0n).

Let the function f : IRn → IR be LLC at x ∈ IRn . The generalized directional
derivative f ◦(x, d) of f at x in the direction d ∈ IRn is defined as [24, 25]

f ◦(x, d) = lim sup
y→x,α↓0

f (y + αd) − f (y)

α
.

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 59

Note that the generalized directional derivative always exists for LLC functions. The
subdifferential of the function f at x is [25]

∂ f (x) =
{
ξ ∈ IRn : f ◦(x, d) ≥ 〈ξ, d〉 ∀d ∈ IRn

}
.

According to Rademacher’s theorem the LLC function f is differentiable almost
everywhere and its subdifferential ∂ f (x) at a point x ∈ IRn can also be defined as

∂ f (x) = conv

{
lim
i→∞ ∇ f (xi) : xi → x and ∇ f (xi) exists

}
,

where “conv ” denotes the convex hull of a set. Each vector v ∈ ∂ f (x) is called a
subgradient. Note that the subdifferential ∂ f (x) is a compact and convex set at any
x ∈ IRn . The point x∗ ∈ IRn is called stationary if 0n ∈ ∂ f (x∗). Stationarity is a nec-
essary condition for local optimality and, in the convex case, it is also sufficient for
global optimality.

Hyperbolic smoothing technique.

For a given τ > 0 the hyperbolic smoothing function φτ to approximate the function

θ(x) = max{0, x}, x ∈ IR

is defined as [26–29]

φτ (x) = x + √
x2 + τ 2

2
. (2)

Here τ > 0 is called a precision or smoothing parameter. The hyperbolic smoothing
function for the general finite maximum function was studied in [26]. Consider the
function

h(x) = max
i∈I hi (x), I = {1, . . . , k},

where the functions hi , i ∈ I are continuously differentiable. Using an additional
auxiliary variable t ∈ IR we define the following function:

F(x, t) = t +
∑
i∈I

max{0, hi (x) − t}.

It is obvious that h(x) = F(x, h(x)). Applying (2) we can write the hyperbolic
smoothing of the function F for a given τ ≥ 0 as

Ψτ (x, t) = t +
∑
i∈I

hi (x) − t + √
(hi (x) − t)2 + τ 2

2
. (3)

60 A. M. Bagirov et al.

The function Ψτ (x, t) is differentiable and for any x ∈ IRn, t ∈ IR and τ > 0 we
have [26]

0 < Ψτ (x, t) − F(x, t) ≤ kτ

2
.

3 Theoretical Background

In this section we introduce some definitions and results which will be used to design
a new method for solving, in general, nonsmooth nonconvex optimization problems
and to study its convergence.

Let f : IRn → IR be LLC and ε > 0 be a given number. The Goldstein ε-
subdifferential of the function f at a point x ∈ IRn is defined as [24]:

∂G
ε f (x) = cl conv

{
ξ ∈ IRn : ξ ∈ ∂ f (y), y ∈ Bε(x)

}
.

The set ∂G
ε f (x) is compact and convex for any x ∈ IRn .

Definition 1 The Goldstein ε-directional derivative f ◦
ε (x, d) of the function f at

x ∈ IRn in a direction d ∈ IRn is:

f ◦
ε (x, d) = max

ξ∈∂G
ε f (x)

〈ξ, d〉.

Proposition 1 Let f : IRn → IR be LLC and ε > 0 be a given number. Then for any
d ∈ S1

f (x + εd) − f (x) ≤ ε f ◦
ε (x, d).

Proof By Lebourg’s mean value theorem [25] for any x, y ∈ IRn there exists α ∈
(0, 1) such that

f (y) − f (x) = 〈ξ, y − x〉

for some ξ ∈ ∂ f (αx + (1 − α)y). Then we have that for ε > 0 and d ∈ S1 there
exist ε′ ∈ (0, ε) and ξ ′ ∈ ∂ f (x + ε′d) such that

f (x + εd) − f (x) = ε〈ξ ′, d〉.

It follows that ξ ∈ ∂G
ε f (x) and therefore,

f (x + εd) − f (x) ≤ ε max
ξ∈∂G

ε f (x)
〈ξ, d〉 = ε f ◦

ε (x, d).

This completes the proof. �
Following Proposition 1 we will assume that a function f : IRn → IR satisfies the

following assumption.

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 61

Assumption 1 Let f : IRn → IR be an LLC function. There exists ε0 > 0 such that

f (x + εd) − f (x) ≤ ε〈ξ, d〉 (4)

for all ε ∈ (0, ε0], x ∈ IRn, ξ ∈ ∂ f (x + εd), d ∈ S1.

Convex functions and functions represented as a difference of two polyhedral
functions aswell as a difference of general convex functions and polyhedral functions
satisfy this assumption.

Definition 2 A point x∗ ∈ IRn is called the ε-stationary point of the function f iff

0n ∈ ∂G
ε f (x∗).

Proposition 2 Assume that x ∈ IRn is not an ε-stationary point of the function f .
Let

ξ 0 = argmin
ξ∈∂G

ε f (x)
‖ξ‖

and d0 = −‖ξ 0‖−1ξ 0. Then for any d ∈ S1

f (x + εd0) − f (x) ≤ −ε‖ξ 0‖.

Proof Since x is not an ε-stationary point ξ 0 �= 0n . The set ∂G
ε f (x) is convex and

compact, therefore the optimality condition implies that

〈ξ 0, ξ − ξ 0〉 ≥ 0 ∀ξ ∈ ∂G
ε f (x).

This means that 〈ξ, d0〉 ≤ −‖ξ 0‖ for all ξ ∈ ∂G
ε f (x). Therefore,

f ◦
ε (x, d) ≤ −‖ξ 0‖.

Then the proof follows from Proposition 1. �

It follows from Proposition 2 that if the point x is not the ε-stationary then the
set ∂G

ε f (x) can be used to find descent directions of the function f at x . However,
it is not always easy to calculate the set ∂G

ε f (x). Below we introduce an algorithm
which uses only several elements from this set to compute descent directions.

Finally,we give the definition of the so-called (ε, δ)-stationary pointswhere ε, δ >

0. Similar points are defined in [19, 30].

Definition 3 A point x is called the (ε, δ)-stationary point of Problem (1) if

0n ∈ ∂G
ε f (x) + Bδ(0n). (5)

62 A. M. Bagirov et al.

4 Minimization Algorithm

First we design an algorithm to find descent directions for the objective function
f in Problem (1) and then, we introduce the minimization algorithm to solve this
problem.

4.1 Computation of Descent Directions

The algorithm for computing descent directions of the function f is as follows.

Algorithm 1 Computation of descent directions.

Data. Let the numbers ε > 0, c ∈ (0, 1) and the tolerance δ > 0 be given. Select
any d1 ∈ S1.

Step 1. Compute a subgradient ξ 1 ∈ ∂ f (x + εd1). Set V1(x) = {ξ 1} and k = 1.
Step 2. Compute d̄ as a solution to the minimization problem

{
minimize max

i∈Ik
〈ξ i , d〉

subject to d ∈ S1,
(6)

where Ik = {1, . . . , k}. If Dk ≡ max
i∈Ik

〈ξ i , d̄〉 > −δ, then stop.

Step 3. If
f (x + εd̄) − f (x) ≤ cεDk, (7)

then stop. Otherwise set dk+1 = d̄.
Step 4. Compute a subgradient ξ k+1 ∈ ∂ f (x + εdk+1) and construct the set

Vk+1(x) = conv
{
Vk(x) ∪ {ξ k+1}

}
.

Set k = k + 1 and go to Step 2.

Next we show that Algorithm 1 terminates after a finite number of iterations. First,
we prove the following propositions and corollaries.

Proposition 3 If Dk > −δ, then

min
ξ∈Vk (x)

‖ξ‖ < δ. (8)

Proof Let ξ̃ be a solution to the problem

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 63

{
minimize 1

2‖ξ‖2
subject to ξ ∈ Vk(x).

(9)

If ξ̃ = 0, then (8) is true. Now assume that ξ̃ �= 0. Since ξ̃ is the solution to Problem
(9) it follows from the necessary condition for a minimum that

〈ξ̃ , ξ − ξ̃〉 ≥ 0 ∀ξ ∈ Vk(x),

or
‖ξ̃‖2 ≤ 〈ξ̃ , ξ 〉 ∀ξ ∈ Vk(x). (10)

Since Dk > −δ we have

max
i=1,...,k

〈ξ i , d〉 > −δ ∀d ∈ S1. (11)

Consider d̃ = −‖ξ̃‖−1ξ̃ . Then it follows from (11) that there exists i ∈ Ik such that

〈ξ̃ , ξ i 〉 < δ‖ξ̃‖.

This together with (10) completes the proof. �

Corollary 1 If Dk > −δ, then the point x is an (ε, δ)-stationary point.

Proof Since Vk(x) ⊂ ∂G
ε f (x) it follows from Proposition 3 that

min
ξ∈∂G

ε f (x)
‖ξ‖ < δ,

which means that x is an (ε, δ)-stationary point. �

Remark 1 It follows from Proposition 3 that if Dk > −δ in Step 2 of Algorithm
1, then the point x ∈ IRn is an approximate stationary point satisfying (5) for given
ε > 0 and δ > 0.

Corollary 2 If Dk ≥ 0, then 0n ∈ Vk(x).

Proof Assume the contrary, that is 0n /∈ Vk(x). Then ξ̃ �= 0, where ξ̃ is the solution
to Problem (9). Since Dk ≥ 0 we have

max
i∈Ik

〈ξ i , d〉 ≥ 0 ∀d ∈ S1. (12)

Consider d̃ = −‖ξ̃‖−1ξ̃ . Then there exists i ∈ Ik such that

〈ξ̃ , ξ i 〉 ≤ 0.

64 A. M. Bagirov et al.

However, it follows from (10) that 0 ≥ 〈ξ̃ , ξ i 〉 ≥ ‖ξ̃‖2 > 0 ∀i ∈ Ik . This is a contra-
diction, and therefore, 0n ∈ Vk(x). �

Proposition 4 If min
ξ∈Vk (x)

‖ξ‖ < δ, then Dk > −δ.

Proof Assume the contrary, that is min
ξ∈Vk (x)

‖ξ‖ < δ but Dk ≤ −δ. This means that

〈ξ i , d̄〉 ≤ −δ, i ∈ Ik,

where d̄ ∈ S1 is the solution to Problem (6). Let

‖ξ̃‖ = min
ξ∈Vk (x)

‖ξ‖ < δ.

Since ξ̃ ∈ Vk(x) we get

ξ̃ =
∑
i∈ Ĩ

αiξ
i ,

∑
i∈ Ĩ

αi = 1, αi ∈ (0, 1], i ∈ Ĩ ⊆ Ik,

and therefore,
〈ξ̃ , d̄〉 ≤ −δ. (13)

On the other hand, we have∣∣∣〈ξ̃ , d̄〉
∣∣∣ ≤ ‖ξ̃‖‖d̄‖ = ‖ξ̃‖ < δ,

which contradicts (13). The proof is complete. �

Proposition 5 Let the function f be LLC at x ∈ IRn. Then Algorithm 1 terminates
after a finite number of iterations.

Proof Algorithm 1 has two stopping criteria. The first criterion is in Step 2, which
means that the point x is (ε, δ)-stationary and the second criterion is in Step 3, which
means that d̄ is the descent direction satisfying the condition (7). If both conditions
for the termination of the algorithm are not satisfied, then ξ k+1 /∈ Vk(x). Indeed, in
this case

f (x + εd̄) − f (x) > cεDk .

It follows from (4) that

f (x + εd̄) − f (x) ≤ ε〈ξ k+1, d̄〉,

and therefore, 〈ξ k+1, d̄〉 > cDk . It then follows that −〈ξ k+1, d̄〉 < −cDk ≤ −c(−δ)

and consequently
〈ξ k+1, d̄〉 > −cδ. (14)

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 65

Assume the contrary, that is ξ k+1 ∈ Vk(x). Since Dk ≤ −δ, we have

〈ξ i , d̄〉 ≤ −δ, i ∈ Ik .

Assuming that ξ k+1 ∈ Vk(x) = conv {ξ 1, . . . , ξ k} we can write

ξ k+1 =
∑
i∈Ik

αiξ
i ,

∑
i∈Ik

αi = 1, αi ≥ 0, i ∈ Ik .

Then we get

〈ξ k+1, d̄〉 =
〈 ∑
i∈Ik

αiξ
i , d̄

〉
=

∑
i∈Ik

〈
αiξ

i , d̄
〉
=

∑
i∈Ik

αi

〈
ξ i , d̄

〉
≤ −δ,

which contradicts (14). This means that ξ k+1 /∈ Vk(x).
Now we show that Algorithm 1 is terminating. Assume the contrary. Then

Algorithm 1 generates an infinite sequence {dk} where dk ∈ S1. From (14) we have

〈ξ k, dk〉 > −cδ ∀ k = 2, 3, (15)

Let L > 0 be the Lipschitz constant of f on the bounded set cl Bε(x). It follows from
Theorem 3.1.4 [12] that ‖ξ‖ ≤ L for all ξ ∈ ∂ f (y), y ∈ cl Bε(x). In addition, since
the direction dk+1 is the solution to Problem (6) and Algorithm 1 is not terminating
we get

max
i∈Ik

〈ξ i , dk+1〉 ≤ −δ.

Therefore, dk+1 is the solution to the system

〈ξ i , d〉 + δ ≤ 0, i ∈ Ik .

Then we obtain

‖dk+1 − d j‖ >
(1 − c)δ

L
∀ j = 2, . . . , k. (16)

Indeed, if there exists j ∈ {2, . . . , k} such that

‖dk+1 − d j‖ ≤ (1 − c)δ

L
,

then we have ∣∣〈ξ j , dk+1〉 − 〈ξ j , d j 〉∣∣ ≤ (1 − c)δ.

This implies that
〈ξ j , d j 〉 ≤ 〈ξ j , dk+1〉 + (1 − c)δ ≤ −cδ,

66 A. M. Bagirov et al.

which contradicts (15). Therefore, the inequality (16) holds and can be rewritten as

min
j=2,...,k

‖dk+1 − d j‖ >
(1 − c)δ

L
.

This means that Algorithm 1 generates a sequence {dk} of directions dk ∈ S1 such
that the distance between dk and the set of all previous directions is bounded below.
Since the set S1 is compact the number of such directions is finite. This completes
the proof. �

4.2 Solving Subproblem in Finding Search Directions

The most important step in Algorithm 1 is Step 2, where Problem (6) is solved
to find search directions. In order to solve this problem, we first reduce it to the
minimization of the convex piecewise linear function over the unit ball. We then
replace the constrained problem by the unconstrained one using a distance function.
We use the hyperbolic smoothing technique to replace the problem by the sequence
of smooth problems and apply smooth optimization solvers to solve it.

Note that the search direction finding problem in most bundle-type methods usu-
ally solved by dualization which gives rise to a structured quadratic programming
problem. There exists in literature several efficient algorithms for solving this family
of problems (see, for example, [31–33]).

Denote the objective function in Problem (6) by

ϕk(d) = max
i∈Ik

〈ξ i , d〉.

Then Problem (6) can be rewritten as

{
minimize ϕk(d)

subject to d ∈ S1.
(17)

In addition to Problem (17), we consider the convex programming problem

{
minimize ϕk(d)

subject to d ∈ B1,
(18)

where B1 = {y ∈ IRn : ‖y‖2 ≤ 1}. Denote by G1k and G2k sets of solutions and by
D1k and D2k the optimal values of Problems (17) and (18), respectively.

Proposition 6 The following hold for Problems (17) and (18):

(1) if D2k = 0, then D1k ≥ 0. If in this case D1k = 0, then G1k ⊆ G2k , otherwise
G1k �⊂ G2k .

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 67

(2) if D2k < 0, then G1k = G2k and D1k = D2k .

Proof Note that the function ϕk is positively homogeneous, that is

ϕk(λd) = λϕk(d) ∀d ∈ IRn and λ ≥ 0. (19)

Since 0n ∈ B1 we always have D2k ≤ 0. It follows from the inclusion S1 ⊂ B1 that
D1k ≥ D2k . Therefore, we consider only two cases: (1) D2k = 0 and (2) D2k < 0.

Case (1) If D2k = 0, then D1k ≥ 0, which triggers the stopping criterion in
Algorithm 1. According to Corollary 2 in this case 0n ∈ Vk(x). Take any d̄ ∈ G1k .

• If D1k = 0, then ϕk(d̄) = 0 and ϕk(d) ≥ ϕk(d̄) for all d ∈ S1. Since for any d ∈ B1

there exist d0 ∈ S1 and λ ∈ [0, 1] such that d = λd0 it follows from (19) that
ϕk(d) ≥ 0 for all d ∈ B1. This means that d̄ ∈ G2k and therefore, G1k ⊆ G2k .

• If D1k > 0, then (19) implies that ϕk(d) > 0 for all d ∈ B1, d �= 0n . This means
that in this case G2k = {0n}, and therefore, G1k �⊂ G2k .

Case (2) Consider the case when D2k < 0. We prove that in this case G1k = G2k ,
which means that D1k = D2k . Let d̃ be the solution to Problem (18). It is clear that
d̃ �= 0n . Then d̃ ∈ S1. Indeed, assume that d̃ /∈ S1. Then we can construct d̄ = λd̃
with λ > 1 such that d̄ ∈ S1 ⊂ B1. Applying (19) we have

ϕk(d̄) = λϕk(d̃) = λD2k < D2k,

which contradicts that d̃ is the solution to Problem (18). Thenwe get that all solutions
of Problem (18) lie on the unit sphere S1. This means that G1k = G2k , and therefore
D1k = D2k . The proof is completed. �

Results from this proposition show that we can replace the nonconvex minimiza-
tion problem (17) by the convex programming problem (18). Note that by solving
Problem (18) we get either the same stopping criterion or the same descent direction
that can be obtained by solving (17).

We apply the hyperbolic smoothing technique to replace Problem (18) by the
sequence of smooth problems. Consider the function

Fk(d, t) = t +
∑
i∈Ik

max
{
0, 〈ξ i , d〉 − t

}
.

It is clear that Fk(d, ϕk(d)) = ϕk(d). It follows from results obtained in [26] that the
set of minimizers of functions Fk and ϕk coincide when t = ϕk(d). Define a function

Φk(d) ≡ Fk(d, ϕk(d)), d ∈ IRn.

Then Problem (18) can be reformulated as

68 A. M. Bagirov et al.

{
minimize Φk(d)

subject to d ∈ B1.
(20)

For a given (d, ϕk(d)), the index set Ik can be represented as Ik = I1k ∪ I2k, where

I1k =
{
i ∈ Ik : 〈ξ i , d〉 < ϕk(d)

}
and I2k =

{
i ∈ Ik : 〈ξ i , d〉 = ϕk(d)

}
.

The subdifferential of the function Φk at d ∈ IRn can be written as

∂Φk(d) =
∑
i∈I2k

conv
{
0n, ξ

i
}
.

For a given τ > 0 applying (3) to the function Φk we get

Ψkτ (d) = ϕk(d) + 1

2

∑
i∈Ik

[
〈ξ i , d〉 − ϕk(d) +

(
(〈ξ i , d〉 − ϕk(d))2 + τ 2

)1/2]
.

Applying Proposition 5 from [26] we have 0 < Ψkτ (d) − Φk(d) ≤ kτ/2. The
gradient of the function Ψτ is

∇Ψkτ (d) = 1

2

∑
i∈Ik

(
1 + βiτ (d)

)
ξ i ,

where

βiτ (d) = 〈ξ i , d〉 − ϕk(d)(
(〈ξ i , d〉 − ϕk(d))2 + τ 2

)1/2 , i ∈ Ik .

From Proposition 6 in [26] it follows that if z = lim
τ↓0 ∇Ψkτ (d), then z ∈ ∂Φk(d).

In addition, we have the following proposition (see Proposition 7 in [26]).

Proposition 7 Assume that sequences {dl} and {τl} are given such that dl ∈ IRn and
τl > 0, l = 1, 2, Moreover, dl → d, τl → 0 as l → ∞ and

z = lim
l→∞ ∇Ψτl (dl).

Then z ∈ ∂Φk(d).

We replace a nonsmooth optimization problem (20) by the sequence of the fol-
lowing smooth optimization problems:

{
minimize Ψkτ (d)

subject to d ∈ B1.
(21)

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 69

Next using the penalty function method we replace the constrained problem (21) by
the unconstrained problem:

{
minimize Ψkτ (d) + L̂gB1(d)

subject to d ∈ IRn.
(22)

Here L̂ ≥ L , and L > 0 is the Lipschitz constant of the function ϕk which can be
computed explicitly as

L = max
i∈Ik

‖ξ i‖

and gB1 is the distance function of the set B1:

gB1(d) = max
{
0, ‖d‖2 − 1

}
.

It is well known that Problems (21) and (22) have the same set of solutions (see, for
example, Lemma 5.1.5 from [12]).

Applying hyperbolic smoothing (3) to the function gB1 we get its following smooth
approximation:

Hτ (d) = 1

2

[
‖d‖2 − 1 +

(
(‖d‖2 − 1)2 + τ 2

)1/2]
.

Then Problem (22) can be reformulated as a smooth unconstrained optimization
problem

{
minimize Ψkτ (d) + L̂ Hτ (d)

subject to d ∈ IRn.
(23)

To solve Problem (18) we take a sequence {τl} of a precision parameter τ where
τl ↓ 0 as l → ∞ and solve Problem (23). It is shown in [26] that the sequence of
solutions to this problem converges to the set of solutions of Problem (18).

4.3 Minimization Algorithms

First we introduce an algorithm to find (ε, δ)-stationary points of Problem (1) for
given ε > 0 and δ > 0. Then we develop an algorithm to compute Clarke station-
ary points of Problem (1). An algorithm for finding (ε, δ)-stationary points utilizes
Algorithm 1 to find descent directions and proceeds as follows.

Algorithm 2 Finding (ε, δ)-stationary points.

Data. Numbers ε > 0, δ > 0, c1 ∈ (0, 1) and c2 ∈ (0, c1].

70 A. M. Bagirov et al.

Step 1. Select any starting point x1 ∈ IRn and set l = 1.
Step 2. ApplyAlgorithm1 to compute a search direction dl ∈ S1 at the point x = xl

for given ε, δ > 0 and c = c1 ∈ (0, 1) such that for some k > 1

Dl = min
d∈S1

max
i∈Ik

〈ξ i , d〉.

This algorithm terminates after a finite number k of iterations with either Dl > −δ

or for the search direction dl ∈ S1 we get

f (xl + εdl) − f (xl) ≤ c1εDl . (24)

Step 3. If Dl > −δ, then stop. The point xl is (ε, δ)-stationary.
Step 4. If (24) holds, then find the step length αl > 0 as follows:

αl = argmax
{
α ≥ 0 : f (xl + αdl) − f (xl) ≤ c2αDl

}
. (25)

Step 5. Set xl+1 = xl + αldl , l = l + 1 and go to Step 2.

In the next proposition we prove that Algorithm 2 is finite convergent to the set
of (ε, δ)-stationary points of Problem (1).

Proposition 8 Assume that the function f is bounded below, that is

f ∗ = inf
{
f (x) : x ∈ Rn

}
> −∞. (26)

Then Algorithm 2 finds (ε, δ)-stationary points in at most M iterations, where

M ≡
⌈
f (x1) − f ∗

c2εδ

⌉
. (27)

Proof Assume the contrary, that is the sequence {xl} generated by Algorithm 2 is
infinite and the points xl are not (ε, δ)-stationary points for any l = 1, 2, This
means that

Dl ≤ −δ ∀l = 1, 2, . . .

Then the descent direction dl will be found at xl so that the sufficient decrease
condition (24) is satisfied

f (xl + εdl) − f (xl) ≤ c1εDl ≤ c2εDl .

Furthermore, it follows from (25) that αl ≥ ε. Therefore, we have

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 71

f (xl+1) − f (xl) = f (xl + αldl) − f (xl)

< c2αl Dl

≤ c2εDl .

This together with the condition Dl ≤ −δ implies that

f (xl+1) ≤ f (x1) − lc2εδ.

Therefore, f (xl) → −∞ as l → ∞which contradicts (26). Therefore, the algorithm
is finite convergent. Since f ∗ ≤ f (xl+1) it is clear that the maximum number of
iterations M is given by (27).

Remark 2 One can design a very simple procedure for the estimation of the step-
length αl, l ≥ 1 in Step 4 of Algorithm 2. Since c2 ≤ c1 we always have αk ≥ ε. In
order to estimate αl we define a sequence θs = sε, s ≥ 1. Then αl is defined as the
largest θs satisfying the inequality (25) in Step 4 of Algorithm 2.

Now we design an algorithm for finding Clarke stationary points of Problem (1).

Algorithm 3 Finding Clarke stationary points.

Data. A tolerance σ > 0, sequences {ε j }, {δ j } such that ε j ↓ 0, δ j ↓ 0 as j → ∞.
Step 1. Choose any starting point x1 ∈ IRn . Set j = 1.
Step 2. Apply Algorithm 2 with ε = ε j and δ = δ j starting from the point x j to

find an (ε j , δ j)-stationary point x j+1.
Step 3. Set j = j + 1. If ε j ≤ σ and δ j ≤ σ , then stop. Otherwise go to Step 2.

Next we prove the convergence of Algorithm 3.

Proposition 9 Assume that the function f satisfies Assumption 1, the set L(x1) =
{x ∈ IRn : f (x) ≤ f (x1)} is bounded for the starting point x1 and σ = 0. Then any
accumulation point of the sequence {x j } generated by Algorithm 3 is the Clarke
stationary point of Problem (1).

Proof Since the function f is LLC and the setL(x1) is bounded we have f ∗ > −∞.
Then, according to Proposition 8 the (ε j , δ j)-stationary point will be generated in
Step 2 of Algorithm 2 after a finite number of steps l j > 0 for all iterations j > 0.
Since the point x j+1 is the (ε j , δ j)-stationary point for any j > 0 it follows from the
definition of such points that

min
{
‖ξ‖ : ξ ∈ ∂G

ε j
f (x j+1)

}
≤ δ j . (28)

Furthermore, Algorithm 3 is a descent algorithm and we have {x j } ⊂ L(x1). The
boundedness of the setL(x1) implies that the sequence {x j } has at least one accumu-
lation point. Let x̄ be an accumulation point of {x j }. Then there exists the subsequence
{x ji } such that x ji → x̄ as i → ∞. Replacing j by ji − 1 in (28) we get

72 A. M. Bagirov et al.

min
{
‖ξ‖ : ξ ∈ ∂G

ε ji−1
f (x ji)

}
≤ δ ji−1. (29)

It follows from upper semicontinuity of the subdifferential mapping that at the point
x̄ for any γ > 0 there exists η > 0 such that

∂G
ε f (y) ⊂ ∂ f (x̄) + Bγ (0n)

for all y ∈ Bη(x̄) and ε ∈ (0, η). Since the sequence {x ji } converges to x̄ there exists
i0 such that x ji ∈ Bη(x̄) for all i > i0. On the other hand, since ε j , δ j ↓ 0 as j → ∞
there exists j0 > 0 such that ε j < η and δ j < γ and for all j > j0. This means that
there exists i1 such that ji > j0 + 1 for all i > i1. Let i2 = max{i0, i1}, then we have

∂G
ε ji

f (x ji) ⊂ ∂ f (x̄) + Bγ (0n) (30)

for all i > i2. It follows from (29) and (30) that for any i > i2 we get

min
{
‖ξ‖ : ξ ∈ ∂ f (x̄)

}
≤ 2γ.

Since γ is arbitrary we have 0n ∈ ∂ f (x̄). That is the point x̄ is Clarke stationary. �

5 Numerical Experiments

To test the efficiency of the proposed method and to compare it with various nons-
mooth optimization methods we carry out numerical experiments using some aca-
demic test problems available from [24, 34]. We call the proposed method SSM—
Subgradient Smoothing Method. We use the following methods for comparison:

• Proximal bundle method (PBUN) [12];
• Newton-bundle method (PNEW) [13];
• Variable metric bundle method (PVAR) [14];
• Discrete gradient method (DGM) [18]; and
• Quasi-Newton method for nonsmooth optimization (QN-NSO) [35].

AlgorithmsPBUN,PNEW,PVAR,DGMandSSMare implemented inFortran95 and
compiled using the gfortran compiler. We use the MATLAB implementation of QN-
NSO available from “https://cs.nyu.edu/overton/software/hanso/”. The experiments
are performed on an Intel(R)Core(TM)2 i5withCPU1.86GHz and 1.97GBofRAM.

Parameters in the SSM are chosen as follows: c1 = 0.2, c2 = 0.05, ε j+1 =
0.5ε j , j ≥ 1, ε1 = 1 and δ j ≡ 10−7 for all j ≥ 1. Parameters for the implementa-
tion of the PBUN, PNEW and PVAR are described in [36] and the parameters for
the DGM are given in [18].

In the experiments, we use the academic test problems: CB2, WF, SPIRAL,
EVD52, Polak6, Davidon2, OET5, OET6, Wong1, Wong2, Wong3, Polk2, Polak3,

https://cs.nyu.edu/overton/software/hanso/

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 73

Watson, Rosenbrock, Crescent, CB3, DEM,QL, LQ,Mifflin1,Mifflin2,Wolfe, Shor,
El-Attar, Maxquad, Gill, Steiner2, Maxq, Maxl, Goffin, MAXHILB, L1HILB and
Sheel Dual. Detailed description of these problems can be found in [24, 34]. For each
problem, 20 random starting points are used and they are the same for all algorithms.

We do not use all test problems from [24, 34] since the objective functions in
some problems are unbounded from below. Furthermore, since we use many starting
points for each test problem those with many local solutions are excluded to make
easier comparison of algorithms. Nevertheless, we use test problems with very few
local solutions.

All algorithms are local search algorithms and do not intend to always find the
global minimum of a nonconvex objective function. Starting from the same point
algorithms may converge to different stationary points. We say that an algorithm
solves a nonconvex optimization problem if it finds its local minimizer with a given
tolerance even if this local minimizer is different from the global one. An algorithm
finds a solution to a problem with a tolerance σ > 0 if

| f̄ − flocal |
1 + | flocal | ≤ σ.

Here f̄ is the best value of the objective function found by the algorithm and flocal is
the closest to f̄ among values of the objective function at its known local minimizers.
We choose σ = 10−4.

First, we use performance profiles to demonstrate the pairwise comparison of the
proposed method with the others. Then we present results obtained using smooth
optimization solvers from the optimization package GAMS [37].

Results with performance profiles. The performance profiles were introduced in
[38]. They are defined as the function ρs(τ) for some parameter τ ≥ 1 using CPU
time, the number of function and (sub)gradient evaluations. The ratio of the number
of function and subgradient evaluations are usually too large, therefore it is scaled
using the base two logarithm.

The value ρs(0) gives the percentage of test problems for which the corresponding
algorithm is the best. The value ρs(τ) for a given τ ≥ 0 shows the percentage of
problems solved by a solver s using τ times more computational effort (CPU time,
the number of function and (sub)gradient evaluations) comparingwith the best solver.
The value of ρs(τ) at the rightmost abscissa gives the percentage of test problems that
the corresponding algorithm can solve. This number characterizes the robustness of
the algorithm, that is its ability to solve most problems irrespective of the choice of
a starting point. Moreover, the relative efficiency of each algorithm can be directly
seen from the performance profiles: the higher the particular curve, the better the
corresponding algorithm. This means that the algorithm can solve more problems
using less computational effort than other algorithms.

We demonstrate the efficiency and robustness of the algorithms using the number
of function and subgradient evaluations. We do not include the CPU time since it is
almost 0 for all algorithms in most of the test problems. Performance profiles with

74 A. M. Bagirov et al.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s(

)

SSM
PBUN

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
PNEW

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
PVAR

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
QN-NSO

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
DGM

Fig. 1 Performance profiles using the number of function evaluations

the academic test problems mentioned above are presented in Figs. 1 and 2. Since
the DGM is a semi-derivative free method we do not include it in Fig. 2.

The results presented in Figs. 1 and 2 demonstrate that the SSM is the most
robust method in comparison with other five methods used in our experiments. It
outperforms the other methods in terms of the accuracy and solves more than 90%
of problems. This method requires more function and subgradient evaluations than
PBUN, PNEW, PVAR and QN-NSO, and thus it is not as efficient as the other four
algorithms.Nevertheless, it can be observed fromFig. 1 that the SSM ismore efficient
than DGM.

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 75

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s(

)

SSM
PBUN

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
PNEW

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
PVAR

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(
)

SSM
QN-NSO

Fig. 2 Performance profiles using the number of subgradient evaluations

ExperimentswithGAMS. Herewe present results obtained using theGAMS imple-
mentation of the SSM where CONOPT, MINOS and SNOPT solvers are applied to
solve subproblems for finding search directions (for details of these solvers, see [37]).
We compare the SSMwith the same solvers using theDNLP,which is aGAMSoption
to handle nonsmoothness. Ten test problems are selected with the different number
of variables. Starting points from [24, 34] are used in numerical experiments. Results
are given in Table 1, where the following notations are used:

• n: number of variables;
• fopt : optimum value of the objective function;
• fv: function value obtained by an algorithm;
• nt : number of iterations;
• n f : number of function evaluations;
• ns : number of subgradient evaluations.

Results presented in Table 1 demonstrate that the SSM in combination with all
three solvers is much more robust than the DNLP option of the same solvers. The
latter solver fails to solve most of test problems with a required accuracy, however
the SSM is able to find solutions with the given accuracy for all problems except two
of them: Maxq and Goffin problems with the solver MINOS.

76 A. M. Bagirov et al.

Table 1 Results obtained using GAMS solvers

SSM DNLP

Prob n fopt fv n f ns fv n f nt

CONOPT

CB2 2 1.9522 1.9522 175 47 1.9523 41 41

WF 2 0.0000 0.0000 219 52 0.0000 41 41

Spiral 2 0.0000 0.0000 85810 10873 0.0480 91 91

Crescent 2 0.0000 0.0000 130 19 0.0000 16 16

EVD52 3 3.5997 3.6000 221 34 3.7595 32 32

Wong1 7 680.6301 680.7588 1074 202 700.7282 32 32

Polak2 10 54.5982 54.6037 297 91 54.6036 43 43

Polak3 11 3.7035 3.7039 301 69 3.9047 73 73

Maxq 20 0.0000 0.0000 853 227 0.0000 224 224

Goffin 50 0.0000 0.0001 10845 3365 0.0041 39435 39435

MINOS

CB2 2 1.9522 1.9522 201 57 1.9523 22 173

WF 2 0.0000 0.0000 219 52 0.0000 7 96

Spiral 2 0.0000 0.0000 9294 1306 0.1250 8 77

Crescent 2 0.0000 0.0001 130 19 0.0000 15 125

EVD52 3 3.5997 3.6000 216 35 4.2126 14 145

Wong1 7 680.6301 680.6972 455 130 681.4484 319 1947

Polak2 10 54.5982 54.6036 511 109 60.9528 4 52

Polak3 11 3.7035 3.7037 288 52 4.0400 48 278

Maxq 20 0.0000 62.7313 207 42 0.0000 72 375

Goffin 50 0.0000 52.7149 4577 1307 152.4616 105 704

SNOPT

CB2 2 1.9522 1.9522 385 111 1.9522 300 1251

WF 2 0.0000 0.0000 219 52 0.0000 18 112

Spiral 2 0.0000 0.0000 6316 851 0.1250 9 68

Crescent 2 0.0000 0.0001 130 19 0.0004 26 178

EVD52 3 3.5997 3.6000 216 35 3.5997 194 470

Wong1 7 680.6301 680.6974 361 114 686.0448 100 417

Polak2 10 54.5982 54.6036 265 89 54.6036 38 134

Polak3 11 3.7035 3.7037 778 105 4.0006 54 184

Maxq 20 0.0000 0.0000 2373 713 0.0000 130 611

Goffin 50 0.0000 0.0001 12321 3859 111.4632 303 1321

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 77

6 Conclusions

In this chapter, we introduced a new method, the subgradient smoothing method, for
solving nonsmooth optimization problems. The main feature of this method, which
makes it different from other existing nonsmooth optimization methods, is that one
can use any smooth optimization method to find descent directions. This allows us to
use powerful smooth optimization methods to solve general nonsmooth optimization
problems.

We presented results of numerical experiments using well-known nonsmooth
optimization test problems. The subgradient smoothing method was implemented
both in Fortran andGAMS to compare it with other nonsmooth optimizationmethods
as well as with nonsmooth optimization solvers in GAMS. Results demonstrated that
the proposed method is the most robust in comparison with the other five methods
used in numerical experiments. The subgradient smoothing method considerably
outperforms GAMS solvers with the DNLP option.

Acknowledgements The work is financially supported by the Australian Government through the
Australian Research Council’s Discovery Projects funding scheme (Project No. DP19000580) and
partially by the Academy of Finland (Project No. 319274).

References

1. Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for data mining:
Formulations and challenges. INFORMS J. on Comput. 11, 217–238 (1999)

2. Carrizosa, E., Romero Morales, D.: Supervised classification and mathematical optimization.
Comput. and Oper. Res. 40(1), 150–165 (2013)

3. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control
Theory. Springer, New York (1998)

4. Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material
and Topology Design, 2nd edition. John Wiley & Sons, Chichester (1996)

5. Kärkkäinen, T., Heikkola, E.: Robust formulations for training multilayer perceptrons. Neural
Comput. 16, 837–862 (2004)

6. Karmitsa, N., Bagirov, A., Taheri, S.: New diagonal bundle method for clustering problems in
large data sets. Eur. J. of Oper. Res. 263(2), 367–379 (2017)

7. Karmitsa, N., Bagirov, A., Taheri, S.: Clustering in large data sets with the limited memory
bundle method. Pattern Recognit. 83, 245–259 (2018)

8. Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex Optimization inMechanics. Smooth andNon-
smooth Algorithms, Heuristics and Engineering Applications by F.E.M. Kluwert Academic
Publishers, Dordrecht (1998)

9. Moreau, J., Panagiotopoulos, P.D., Strang, G. (eds.): Topics in Nonsmooth Mechanics.
Birkhäuser Verlag, Basel (1988)

10. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth approach to optimization problems with equi-
librium constraints: theory, applications and numerical results, vol. 28. Springer Science &
Business Media (2013)

11. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization.
Math. Program. 46(1), 1059–1066 (1990)

12. Mäkelä,M.M., Neittaanmaki, P.: NonsmoothOptimization.World Scientific, Singapore (1993)

78 A. M. Bagirov et al.

13. Lukśan, L., Vlćek, J.: A bundle-Newton method for nonsmooth unconstrained minimization.
Math. Program.: Series A 83(1), 373–391 (1998)

14. Lukśan, L., Vlćek, J.: Globally convergent variable metric method for convex nonsmooth
unconstrained minimization. J. of Optim. Theory and Appl. 102(3), 593–613 (1999)

15. Gaudioso, M., Gorgone, E.: Gradient set splitting in nonconvex nonsmooth numerical opti-
mization. Optim. Methods and Softw. 25(1), 59–74 (2010)

16. Shor, N.Z.: Minimization Methods for Nondifferentiable Functions. Berlin, New York,
Springer-Verlag (1985)

17. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth,
nonconvex optimization. SIAM J. on Optim. 15(3), 751–779 (2005)

18. Bagirov, A.M., Karasozen, B., Sezer, M.: Discrete gradient method: Derivative-free method
for nonsmooth optimization. J. of Optim. Theory and Appl. 137, 317–334 (2008)

19. Bagirov, A.M., Ganjehlou, A.N.: Quasisecant method for minimizing nonsmooth functions.
Optim. Methods and Softw. 25(1), 3–18 (2010)

20. Haarala, N.,Miettinen, K.,Mäkelä,M.M.: Globally convergent limitedmemory bundlemethod
for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)

21. Asl, A., Overton, M.L.: Analysis of limited-memory BFGS on a class of nonsmooth convex
functions, arxiv (2018). Preprint

22. Asl, A., Overton, M.L.: Analysis of the gradient method with an Armijo-Wolfe line search on
a class of non-smooth convex functions. Optim. Methods and Softw. 35(2), 223–242 (2020)

23. Curtis, F.E.,Mitchell, T., Overton,M.L.: ABFGS-SQPmethod for nonsmooth nonconvex, con-
strained optimization and its evaluation using relative minimization profiles. Optim. Methods
and Softw. 32(1), 148–181 (2017)

24. Bagirov, A.M., Karmitsa, N.,Mäkelä,M.M.: Introduction toNonsmoothOptimization: Theory,
Practice and Software. Springer (2014)

25. Clarke, F.H.: Optimization and Nonsmooth Analysis. New York, John Wiley (1983)
26. Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyperbolic smoothing function method for

minimax problems. Optim. 62(6), 759–782 (2013)
27. Bagirov, A.M., Al Nuaimat, A., Sultanova, N., Taheri, S.: Solving minimax problems: Local

smoothing versus global smoothing. In:M. Al-Baali, L. Grandinetti, A. Purnama (eds.) Numer-
ical Analysis and Optimization, Springer Proceedings in Mathematics & Statistics, pp. 23–43.
Springer, Cham (2018)

28. Xavier, A.E.: The hyperbolic smoothing clustering method. Pattern Recognit. 43, 731–737
(2010)

29. Xavier, A.E., Oliveira, A.A.F.D.: Optimal covering of plane domains by circles via hyperbolic
smoothing. J. of Glob. Optim. 31(3), 493–504 (2005)

30. Bagirov, A.M., Jin, L., Karmitsa, N., Al Nuaimat, A., Sultanova, N.: Subgradient method for
nonconvex nonsmooth optimization. J. of Optim. Theory and Appl. 157(2), 416–435 (2013)

31. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algo-
rithms. Comput. and Oper. Res. 23, 1099–1118 (1996).

32. Kiwiel, K.C.:A dualmethod for certain positive semidefinite quadratic programming problems.
SIAM J. on Sci. Stat. Comput. 10, 175–186 (1989)

33. Lukśan, L.: Dual method for solving a special problem of quadratic programming as a sub-
problemat linearly constrained nonlinearminmax approximation.Kybernetika:20(6), 445–457
(1984)

34. Lukśan, L., Vlćek, J.: Test problems for nonsmooth unconstrained and linearly constrained
optimization. Technical report, No. 78, Institute of Computer Science, Academy of Sciences
of the Czech Republic (2000)

35. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Pro-
gram. 141, 135–163 (2013)

36. Lukśan, L., Vlćek, J.: Algorithm 811: NDA: Algorithms for nondifferentiable optimization.
ACM Trans. on Math. Softw. 27(2), 193–213 (2001)

Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization 79

37. Rosenthal, R.E.: GAMS: a user’s manual. GAMS Development Corporation: Washington, DC
(2008)

38. Dolan, E.D.,More, J.J.: Benchmarking optimization software with performance profiles.Math.
Program. 91, 201–213 (2002)

On Some Optimization Problems
that Can Be Solved in O(n) Time

Yanqin Bai and Kees Roos

Abstract Weconsider nine elementaryproblems inoptimization.Wesimply explore
the conditions for optimality as known from the duality theory for convex optimiza-
tion. This yields a quite straightforward solution method for each of these problems.
The main contribution of this paper is that we show that even in the harder cases the
solution needs only O(n) time.

Keywords Optimization problems · Linear time methods · Optimality conditions

1 Introduction

This paper was inspired by a result in [2]. In that paper we needed the optimal
objective value of the minimization problem

min
y,z,β

{‖z‖ : y ≥ 0, 1T y = 1, y = z + βv, zT v = 0
}
,

where v is a given vector and 1 the all-one vector in Rn; the variables are the scalar
β and the vectors y and z in Rn . It is a so-called second-order cone problem [1]. It
turned out that the problem can be solved analytically in O(n log n) time. To obtain
this result the entries of vmust be ordered; this explains the factor log n. The approach

The first author was supported by the National Natural Science Foundations of China, Grant
#11771275.

Y. Bai
Department of Mathematics, Shanghai University, Shanghai 200444, China
e-mail: yqbai@shu.edu.cn

K. Roos (B)
Department of Electrical Engineering, Mathematics and Computer Science,
Technical University Delft, 2628 CD Delft, The Netherlands
e-mail: c.roos@tudelft.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_4&domain=pdf
mailto:yqbai@shu.edu.cn
mailto:c.roos@tudelft.nl
https://doi.org/10.1007/978-3-030-72040-7_4

82 Y. Bai and K. Roos

that led us to this surprising result is quite straightforward. It simply explores the
conditions for optimality as known from the duality theory for convex optimization.

It is a natural question whether there are more nontrivial problems that can be
solved analytically in a similar way. In this paper we show this true for problems of
the following form:

min
x

{‖a − x‖p1 : ‖x‖p2 ≤ 1
}
,

where a denotes a given vector inRn , and p1 and p2 are 1, 2 or ∞. In words, given a
point a ∈ Rn , we look for a point x in the unit sphere—with respect to the p2-norm—
that has minimal distance to a—with respect to the p1-norm. Figure 1 provides a
graphical illustration of the solution of each of the nine problems considered in this
paper when n = 2, and a = [1.3; 0.8].

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

1.5

2

p1 = 1, p2 = 1 p1 = 1, p2 = 2 p1 = 1, p2 = ∞

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

1.5

2

p1 = 2, p2 = 1 p1 = 2, p2 = 2 p1 = 2, p2 = ∞

-1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

1.5

2

p1 = ∞, p2 = 1 p1 = ∞, p2 = 2 p1 = ∞, p2 = ∞

Fig. 1 Illustration of the optimal solutions of the nine problems considered in this paper, for n = 2
and a = [1.3; 0.8]. The blue dot represents the origin, the red dot a and the green dot the (or
sometimes ‘an’) optimal solution x . The blue curve surrounds the region where the p2-norm is less
than 1, whereas the red curve depicts the p1-neighborhood of a that just touches the blue region

On Some Optimization Problems that Can Be Solved in O(n) Time 83

Obviously, there are nine different (ordered) pairs (p1, p2). For each of these nine
pairs we show that the above problem can be solved in linear time. In doing so, we
always assume without saying that the vector a is ordered nonincreasingly:

a1 ≥ a2 ≥ · · · ≥ an.

It turns out that in some cases (specifically, if p1 = p2 or p2 = ∞) the solution is
trivial, or almost trivial; in other cases this is certainly not obviously the case. But as
we show, in each case the problem can be solved in linear time. As far as the authors
know, the method leading to this result is new; at least we are not aware of any such
result in the existing literature.

In our analysis duality plays a crucial role. As a consequence we also need the
so-called dual norm of ‖.‖p, for p ∈ {1, 2, ∞}, which is defined by

‖y‖p∗ = max
x

{
xT y : ‖x‖p = 1

}
,

where x and y are vectors in Rn . For future use we also recall an important conse-
quence of this definition, namely the so-called Hölder inequality:

‖x‖p ‖y‖p∗ ≥ xT y, ∀x, y ∈ Rn .

The outline of the paper is as follows.
Section 2 is preliminary. It consists of four subsections. Section 2.1 describes the

fundamental role of duality in our approach. It recalls the so-called vanishing gap
condition for optimality. For the problems that we consider in this paper this condi-
tion implies the primal and dual feasibility conditions, which is quite exceptional.
Section 2.2 contains three lemmas dealing with the question of when the Hölder
inequality holds with equality, for each of the three values of p considered in this
paper. Section 2.3 serves to show that we may restrict our investigations to the case
where the given vector a is nonnegative (cf. Lemma4), and in Sect. 2.4we distinquish
easy types from harder types (p1, p2).

Section 3 contains the analysis of the nine problems, each in a separate subsection.
Finally, Sect. 4 contains some recommendations for further research.

2 Preliminaries

2.1 Duality

As announced in the previous section, we consider problems of the following form:

min
x

{‖a − x‖p1 : ‖x‖p2 ≤ 1
}
, (1)

84 Y. Bai and K. Roos

where a denotes a given vector inRn , and p1 and p2 are 1, 2 or∞. The dual problem
of (1) is given by

max
y

{
aT y − ‖y‖p∗

2
: ‖y‖p∗

1
≤ 1

}
, (2)

where ‖.‖p∗
1
refers to the dual norm of ‖.‖p1 , and similarly for p2.

In one case the solutions of problem (1) and problem (2) are immediate, namely
if a is feasible for the primal problem, i.e., ‖a‖p2 ≤ 1. Then x = a solves the primal
problem, because then the objective value equals zero, which is minimal. On the
other hand, y = 0 is feasible for the dual problem, yielding zero as dual objective
value. Hence, if we take x = a and y = 0 then the feasibility conditions are satisfied
and the primal and dual objective values are equal. This means that we have solved
the problem in case ‖a‖p2 ≤ 1. We call this the trivial case of the problem.

In the sequel we only consider the nontrivial case, i.e., ‖a‖p2 > 1. In that case any
optimal solution x will satisfy x 	= a. Since then ‖a − x‖p1 > 0, the optimal value
of the primal problem will be positive. As a consequence, y = 0 does not close the
duality gap. Therefore, at optimality we also have y 	= 0.

Now let x and y be primal and dual feasible, respectively. Then the duality gap
can be reduced as follows:

‖a − x‖p1 −
(

aT y − ‖y‖p∗
2

)
= ‖a − x‖p1 − aT y + ‖y‖p∗

2

≥ ‖a − x‖p1 ‖y‖p∗
1
− aT y + ‖y‖p∗

2
‖x‖p2

≥ (a − x)T y − aT y + yT x

= 0.

where the second inequality follows by using the Hölder inequality twice. Thus we
see that the duality gap vanishes if and only if

‖a − x‖p1 = ‖a − x‖p1 ‖y‖p∗
1
= (a − x)T y (3)

and

‖y‖p∗
2
= ‖y‖p∗

2
‖x‖p2 = yT x . (4)

Since x 	= a, (3) implies ‖y‖p∗
1
= 1, whence y 	= 0. The latter implies ‖y‖p∗

2
> 0.

But then (4) implies ‖x‖p2 = 1. We conclude that in the nontrivial case the duality
gap vanishes if and only if

‖x‖p2 = 1 = ‖y‖p∗
1

(5)

‖y‖p∗
2

= yT x (6)

‖a − x‖p1 = yT (a − x) . (7)

On Some Optimization Problems that Can Be Solved in O(n) Time 85

Obviously (5) implies that the feasibility conditions in (1) and (2) are satisfied.
Therefore, it suffices to solve the above system, under the assumption that x 	= a.

As stated before, we assume p1, p2 ∈ {1, 2,∞}. For the sake of convenience we
call the problems (1) and problem (2) of type (p1, p2).

Nextwe include a sectionwith some lemmas that enable us to restate the conditions
(6) and (7) in a way that is more tractable.

2.2 Basic Lemmas

For future use we deal in this section with three elementary lemmas; they deal with
the question when Hölder’s inequality holds with equality. The first lemma concerns
the well-known lemma of Cauchy-Schwartz, where p∗ = p = 2.

Lemma 1 The inequality ‖x‖2 ‖y‖2 ≥ xT y holds with equality if and only if x = λy
or y = λx for some λ ≥ 0.

Proof We omit the proof, because the result is well-known. �

Less well-known are the next two lemmas that deal with the cases p = 1 and
p = ∞.

Lemma 2 The inequality ‖x‖1 ‖y‖∞ ≥ xT y holds with equality if and only if xi yi ≥
0 for each i and xi 	= 0 implies |yi | = ‖y‖∞.

Proof We may write

‖x‖1 ‖y‖∞ =
n∑

i=1

|xi | ‖y‖∞ ≥
n∑

i=1

|xi | |yi | ≥
n∑

i=1

xi yi = xT y.

For each i , the i th terms in the three subsequent summations are not increasing.
Hence it follows that ‖x‖1 ‖y‖∞ = xT y holds if and only if these terms are mutually
equal. In other words,

|xi | ‖y‖∞ = |xi | |yi | = xi yi , 1 ≤ i ≤ n.

Thefirst equality holds if andonly if xi 	= 0 implies |yi | = ‖y‖∞. The second equality
holds if and only if |xi yi | = xi yi , which is equivalent to xi yi ≥ 0. �

Lemma 3 The inequality ‖x‖∞ ‖y‖1 ≥ xT y holds with equality if and only if xi yi ≥
0 for each i and yi 	= 0 implies |xi | = ‖x‖∞.

Proof This lemma follows from the previous lemma by interchanging x and y. �

86 Y. Bai and K. Roos

2.3 Simplifying Observations

In this section we mention some properties of optimal solutions x and y of respec-
tively (1) and (2) that are easy to understand. They lead us to the conclusion that in the
following nine sections we only need to consider the case where a is a nonnegative
vector, and also that we may safely assume that the optimal solutions x and y are
nonnegative.

First we note that the contribution of xi to ‖x‖p2 , with p2 = 1, 2 or ∞, is deter-
mined completely by the absolute value |xi | of xi . As a consequence, if x is feasible
for (1) this will remain so if we change the sign of one or more of the entries in x .

Now consider the expression that we want to minimize: ‖a − x‖p1 . The contri-
bution of xi to this expression depends monotonically on |ai − xi |. If xi ai ≥ 0 then
|ai + xi | ≥ |ai − xi |. Therefore, we may safely assume that each xi has the same
sign as ai . A similar argument makes clear that we may assume that each entry yi has
the same sign as ai , because changing the sign of yi leaves ‖y‖p∗

1
and ‖y‖p∗

2
invariant

in (2). On the other hand, the contribution of the product ai yi to the dual objective
value is maximal if the sign of yi is the same as that of ai . Therefore, if y is optimal
then ai yi ≥ 0.

We use the above observations as a preparation for the following lemma that
makes clear that in the analysis of the system (5)–(7) we may safely assume a ≥ 0.
In this lemma we use a map fS , where S is a subset of the indices 1 to n, which
is defined as follows: for each vector z ∈ Rn , fS(z) is the vector that arises from
z by changing the signs of the entries zi , i ∈ S. Obviously, when S is fixed, fS is
one-to-one, and idempotent, i.e., f 2S = fS .

Lemma 4 Let x and y denote solutions of the system (5)–(7) and S ⊆ {1, 2 . . . , n}.
Then fS(x) and fS(y) solve the system when a is replaced by fS(a).

Proof Let x , y and S be as in the lemma. It is obvious that ‖x‖p2 does not change
if x is replaced by fS(x), because the norm of a vector does only depend on the
absolute values of its entries. So, the same holds for the other norms in the system, in
particularly also for ‖a − x‖p1 , since if i ∈ S then also ai − xi changes sign, because
(−ai) − (−xi) = −(ai − xi). Also the inner products do not change, because, e.g.,
(−xi)(−yi) = xi yi for each i ∈ S. Hence the lemma follows. �

We apply this lemma as follows. If the vector a has negative entries we define the
index set S = {i : ai < 0}. Then fS(a) ≥ 0. We then solve the system (5)–(7) with
a replaced by fS(a). Let the solution be denoted as x ′ and y′. Then it follows from
Lemma 4 that x = fS(x ′) and y = fS(y′) are the solutions of the original system.
As a consequence, below we may always assume that the vector a is nonnegative.

On Some Optimization Problems that Can Be Solved in O(n) Time 87

Table 1 A specific solutions of (1) for each of the nine cases

p1\p2 1 2 ∞
1

a

‖a‖1 min(a,α1) min(a, 1)

2 (a − α1)+ a

‖a‖2 min(a, 1)

∞ (a − α1)+ (a − α1)+ a

‖a‖∞

2.4 Easy and Harder Cases

In the following sections we deal with each of the nine types separately. It will turn
out that for five of the nine problem-types a specific solution of (1) can be expressed
nicely in a, as shown in Table 1. These are the types with p1 = p2 or p2 = ∞. We
call these types for the moment easy. It maybe worth pointing out that x = min(a, 1)
solves the primal problem in all cases with p2 = ∞, also if p1 = ∞. From Fig. 1 one
easily understands that—at least in some cases—multiple solutions exist. In general,
we are not satisfied with the specific solution in Table 1 alone, but we intend to
describe the whole set of optimal solutions.

For the remaining four cases Table 1 also shows a specific solution of (1), but
their descriptions need besides the vector a also a parameter α. Below we describe
in more detail how α can be obtained, for each of the four hard cases. The notation
x+ is used to denote the vector that arises from a vector x by replacing its negative
entries by zero. In other words, x+ = max(x , 0).

Table 2 shows that in all cases one specific dual optimal solution can be expressed
in a alone or in a and an arbitrary primal optimal solution x ; thiswill become apparent
in the related sections below. In this table x > 0 is used to denote the set of indices
i for which xi is positive. In a similar way a ≥ 1 denotes the index set {i : ai ≥ 1}
and a = max(a) the index set {i : ai = max(a)}. For any index set I , we use aI

to denote the vector that arises from a by putting ai = 0 if i /∈ I . This explains
the meaning of the notations 1a≥1 and 1a=max(a) in Table 2. It may be verified that
if p1 = 2 and p2 = ∞ the dual optimal solution can be expressed in a alone; this
follows by substitution of the primal optimal solution in Table 1 into a − x , which
yields the vector (a − 1)a>1.

As far as the authors know, up till now problems that are not ‘easy’ in the above
sense, can be solvedonly algorithmically. Themainmotivation of this paper, however,
is to show that these problems are also easy in the sense that they can be solved
analytically in O(n) time. So, formally, in terms of computational complexity all
nine types belong to the same class. Nevertheless, we will refer to the four types that
are not ‘easy’ in the above sense as the harder-types, just to separate them from the
‘easy’ types.

The O(n) time solution method for each of the four harder-type problems is
achieved by introducing the parameter α that was mentioned before. It divides the

88 Y. Bai and K. Roos

index set {1, . . . , n} into two classes I and J , according to

I = {i : ai > α} , J = {i : ai ≤ α} .

The numberα is uniquely determined by a linear or quadratic equation f (α) = 0,
with f (α) as in Table 3. We use |I | to denote the cardinality of the index set I . The
number α and hence also I can be computed in linear time. After this the solution
of the problem at hand needs O(n) additional time. For the details we refer to the
related sections below.

3 Analysis of the Nine Problems

3.1 Problems of Type (1, 1)

With ‖a‖1 > 1, the primal problem is given by

min
u

{‖a − x‖1 : ‖x‖1 ≤ 1} , (8)

and the dual problem by

max
y,z

{
aT y − ‖y‖∞ : ‖y‖∞ ≤ 1

}
. (9)

We recall from (5)–(7) the optimality conditions for x and y:

Table 2 Solutions of (2) for the five easy cases

p1\p2 1 2 ∞
1 1

x

‖x‖∞
1a≥1

2
a − x

‖a − x‖2
a

‖a‖2
a − x

‖a − x‖2
∞ 1x>0

‖1x>0‖1
x

‖x‖1
1a=max(a)∥∥1a=max(a)

∥∥
1

Table 3 Definition of the number α

type f (α) α

(1, 2) 1 − ‖aJ ‖22 − |I | α2 ‖x‖∞
(2, 1) 1 − ‖aI ‖1 + |I | α ‖a − x‖∞
(∞, 1) 1 − ‖aI ‖1 + |I | α ‖a − x‖∞
(∞, 2) 1 − ‖aI ‖22 + 2α ‖aI ‖1 − |I | α2 ‖a − x‖∞

On Some Optimization Problems that Can Be Solved in O(n) Time 89

Table 4 Optimal solutions for type (1, 1)

ai xi yi

> 0 ≤ ai 1

0 0 0 ≤ yi ≤ 1

‖x‖1 = 1 = ‖y‖∞ (10)

‖y‖∞ = yT x . (11)

‖a − x‖1 = (a − x)T y (12)

As explained in Sect. 2.3 we may assume that a, and also x and y are nonnegative.
According to Lemma 2, if (10) holds, then (11) is equivalent to

(i) for each i : xi 	= 0 implies yi = ‖y‖∞ = 1.

Similarly, by Lemma 3, if (10) holds, then (12) is equivalent to

(i i) for each i : (ai − xi) yi ≥ 0 and ai − xi 	= 0 implies yi = ‖y‖∞ = 1,

Next we derive properties from the above conditions. Suppose that ai > 0 for some
i . Then either xi 	= 0 or ai − xi 	= 0. Hence, by (i), (i i) and (10), yi = ‖y‖∞ = 1.
But then (i i) also implies xi ≤ ai . This justifies the first line in Table 4.

The second line deals with the case where ai = 0. If xi > 0, we get from (i)
that yi = 1. As in the previous case, then (i i) gives xi ≤ ai , whence xi = 0. Since
‖y‖∞ = 1, this justifies the second line in Table 4.

This is all the information we can extract from the system (10)–(12). It means that
the two (lower) lines in Table 4 represent all the possibilities for the triples (ai , xi , yi),
provided that ‖x‖1 = 1. In general multiple optimal solutions for problem (8) exist,
because every vector x satisfying

0 ≤ x ≤ a, ‖x‖1 = 1

is optimal. Since ‖a‖1 > 1, one of these vectors is x = a/‖a‖1, as given in Table 1.
If a has only positive entries then (9) has only one optimal solution, namely y = 1.

If a has zero entries, then also other solutions exist. Then any vector y satisfying

1a>0 ≤ y ≤ 1,

is optimal, where 1a>0 denotes the vector whose entries are 1 where a is positive and
zero elsewhere.

3.2 Problems of Type (1, 2)

In this section the primal problem is

90 Y. Bai and K. Roos

min
x

{‖a − x‖1 : ‖x‖2 ≤ 1} , (13)

where ‖a‖2 > 1. Its dual problem is

max
y

{
aT y − ‖y‖2 : ‖y‖∞ ≤ 1

}
, (14)

According to (5)–(7), x is optimal for (13) and y for (14) if and only if

‖x‖2 = 1 = ‖y‖∞ (15)

‖y‖2 = yT x (16)

‖a − x‖1 = (a − x)T y. (17)

As established in Sect. 2.3, we may take for granted that a ≥ 0, x ≥ 0 and y ≥ 0.
We have ‖y‖∞ = 1, by (15). So y 	= 0. Also, ‖x‖2 = 1. As a consequence, (16)

holds if and only if ‖x‖2 ‖y‖2 = yT x . This in turn is equivalent with

(i) x = y

‖y‖2
,

by Lemma 1. Moreover, by Lemma 3 (17) holds if and only if

(i i) for each i : (ai − xi)yi ≥ 0 and if ai − xi 	= 0 then yi = ‖y‖∞ = 1.

Since y = ‖y‖2 x , by (i), and y 	= 0, we may conclude that xi and yi have the
same sign, for each i , and they vanish at the same time. Therefore, (i i) implies
xi ≤ ai , for each i . We define

I := {i : xi < ai } , J := {i : xi = ai } , (18)

Now let i ∈ I and j ∈ J . Since ai > xi , (i i) implies yi = ‖y‖∞. Since y = ‖y‖2 x ,
we also have xi = ‖x‖∞. It follows that

ai > xi = ‖x‖∞ ≥ x j = a j , i ∈ I, j ∈ J. (19)

This shows that the entries in aI are strictly larger than those in aJ .
Recall that we always assume that the entries of a are ordered nonincreasingly.

Therefore, (19) implies the existence of an index q such that

I = {i : i ≤ q} , J = {i : i > q} . (20)

Putting α = ‖x‖∞, we see that (19) holds if and only if

aq > α ≥ aq+1, (21)

Moreover, when knowing q and α, x uniquely follows from (18) and (19), according
to

On Some Optimization Problems that Can Be Solved in O(n) Time 91

xi =
{

α, if i ≤ q
ai , if i > q.

(22)

Since x is nonzero and ‖y‖∞ = 1, we deduce from y = ‖y‖2 x that

y = x

‖x‖∞
. (23)

Next we arrive at the main objective of this paper, namely to show that in the current
case q and also α can be found in O(n) time. Because of (22) and (23) we may
therefore conclude that (13) and (14) can be solved in O(n) time.

From (15) we get ‖x‖2 = 1. Also using (22) we may write

1 = ‖x‖22 =
n∑

i=1

x2
i =

∑

i≤q

xi
2 +

∑

i>q

xi
2 = qα2 +

∑

i>q

a2
i .

Since q = |I | and ∑
i>q a2

i = ‖aJ ‖22, we recognize at this stage that α satisfies
f (α) = 0, with f (α) as defined in Table 3 for type (1, 2). Since α is nonnegative, α
uniquely follows from q, because f (α) = 0 holds if and only if

α2 = 1 − ∑
i>q a2

i

q
.

As the next lemma reveals, q uniquely follows from (21). In order to prove this we
define the vector τ as follows:

τk = 1 − ∑
i>k a2

i

k
, 1 ≤ k ≤ n. (24)

We then must find q such that α2 = τq , with τq satisfying

a2
q > τq ≥ a2

q+1. (25)

Lemma 5 q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (26)

Proof For k < n the definitions of τk and τk+1 imply

(k + 1)τk+1 = 1 −
∑

i>k+1

a2
i = a2

k+1 + 1 −
∑

i>k

a2
i = a2

k+1 + kτk . (27)

This can be rewritten in the following two ways:

92 Y. Bai and K. Roos

(k + 1) (τk+1 − τk) = a2
k+1 − τk

k (τk+1 − τk) = a2
k+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ a2
k+1 > τk ⇔ a2

k+1 > τk+1. (28)

So, τ is (strictly!) increasing at k if and only if a2
k+1 > τk and this holds if and only if

a2
k+1 > τk+1, for each k < n. From this we draw two conclusions. First that (25) holds
if and only if τ is increasing at k = q − 1 and nonincreasing at k = q. Second, if τ
is nonincreasing at some k < n it remains nonincreasing if k increases. This can be
understood as follows. Suppose that τ is nonincreasing at some k < n, i.e., τk+1 ≤ τk .
Then a2

k+1 ≤ τk+1. Since 0 ≤ ak+2 ≤ ak+1, it follows that also a2
k+2 ≤ τk+1. This in

turn implies τk+2 ≤ τk+1, which proves the claim. The above two properties imply
the statement in the lemma. �

The vector τ can be computed in O(n) time by first computing τ1 and then using
(27), which gives1:

τ1 = 1 + a2
1 − ‖a‖2 , τk+1 = a2

k+1 + kτk

k + 1
, 1 ≤ k < n. (29)

Then (26) yields the value of q, still in O(n) time. As mentioned before, this means
that the current approach solves problem (13) and problem (14) in O(n) time. Obvi-
ously, both solutions are unique.

Example 1 Table 5 shows the outcome of our analysis for a randomly generated
vector a. It shows that τ is maximal at k = 5. So I = {1, . . . , 5}, and α = √

τ5 =
0.3554. So xi = 0.3554 for i ∈ I and xi = ai for i > 5.

3.3 Problems of Type (1,∞)

With ‖a‖∞ > 1, we consider the problem

min
x

{‖a − x‖1 : ‖x‖∞ ≤ 1} . (30)

The dual of this problem is

max
y

{
aT y − ‖y‖1 : ‖y‖∞ ≤ 1

}
. (31)

The conditions for optimality are

1 It may be worth mentioning that (29) reveals that τi+1 is a convex combination of a2
i+1 and τi .

On Some Optimization Problems that Can Be Solved in O(n) Time 93

Table 5 Numerical illustration type (1, 2)

i ai τi xi a − x yi

1 0.9293 −1.0048 0.3554 0.5739 1.0000

2 0.8308 −0.1573 0.3554 0.4754 1.0000

3 0.6160 0.0216 0.3554 0.2606 1.0000

4 0.5853 0.1019 0.3554 0.2299 1.0000

5 = q 0.4733 0.1263 0.3554 0.1179 1.0000

6 0.3517 0.1259 0.3517 0.0000 0.9897

7 0.3500 0.1254 0.3500 0.0000 0.9849

8 0.2511 0.1176 0.2511 0.0000 0.7066

9 0.2435 0.1111 0.2435 0.0000 0.6852

10 0.0000 0.1000 0.0000 0.0000 0.0000

Table 6 Optimal solutions for type (1,∞)

ai xi yi

> 1 1 1

= 1 1 ∈ [0, 1]
< 1 ai 0

‖x‖∞ = 1 = ‖y‖∞ (32)

‖y‖1 = yT x (33)

‖a − x‖1 = (a − x)T y. (34)

As always we assume that a ≥ 0, x ≥ 0 and y ≥ 0. According to Lemma 3, if (32)
holds, then (33) holds if and only if

(i) for each i : yi 	= 0 implies xi = ‖x‖∞;

and, by the same lemma, if (32) holds, then (34) holds if and only if

(i i) for each i : (ai − xi) yi ≥ 0 and ai − xi 	= 0 implies yi = ‖y‖∞.

We consider three cases, according to the value of ai .
Let ai > 1. Since xi ≤ ‖x‖∞ = 1, we then have ai − xi > 0. Then (i i) implies

yi = ‖y‖∞ = 1, and because of this (i) implies xi = ‖x‖∞ = 1, where we also used
(32). So, if ai > 1, then xi = 1 and yi = 1.

If ai < 1,wemust have yi = 0. Because otherwise yi > 0, and then (i)would give
xi = 1 again. But then ai − xi < 0. This would imply (ai − xi) yi < 0, contradicting
(i i). So yi = 0. But then we have yi < ‖y‖∞, which implies xi = ai , by (i i).

Finally, let ai = 1. Suppose xi 	= ai . Then (i i) implies yi = 1. Then, as before,
(i) implies xi = 1, whence xi = ai . Note that in that case (i) and (i i) are satisfied.

We conclude that at optimality x and y are as given in Table 6.

94 Y. Bai and K. Roos

The primal solution is unique, and as given in Table 1, namely x = min(a, 1). On
the other hand, if all entries of a differ from 1, y is also unique. More precisely, then
y = 1a>1. Otherwise there are multiple optimal solution. Every vector y such that

1a>1 ≤ y ≤ 1a≥1

is dual optimal.

3.4 Problems of Type (2, 1)

The problem that we consider in this section is

min
x

{‖a − x‖2 : ‖x‖1 ≤ 1} , (35)

where ‖a‖1 > 1. Its dual problem is

max
y,z

{
aT y − ‖y‖∞ : ‖y‖2 ≤ 1

}
. (36)

According to (5)–(7), x is optimal for (35) and y for (36) if and only if

‖x‖1 = 1 = ‖y‖2 (37)

‖y‖∞ = yT x (38)

‖a − x‖2 = (a − x)T y. (39)

As before, under reference to Sect. 2.3, we assume that a, x and y are nonnegative.
Then Lemma 2, (37) and (38) imply

(i) for each i : xi 	= 0 implies yi = ‖y‖∞,

whereas, by Lemma 1, (37) and (39) imply

(i i) y = a − x

‖a − x‖2 .
We define

I := {i : xi > 0} , J := {i : xi = 0} . (40)

Let i ∈ I . Then (i) implies yi = ‖y‖∞. Due to (37), y 	= 0. Hence yi > 0. Because
of (i i) we thus obtain ai > xi . From yi = ‖y‖∞ and (i i) we deduce that ai − xi =
‖a − x‖∞. Now defining

α = ‖a − x‖∞ , (41)

we get ai − xi = α > 0, whence

On Some Optimization Problems that Can Be Solved in O(n) Time 95

xi = ai − α, i ∈ I. (42)

Hence
‖x‖1 =

∑

i∈I

(ai − α) = ‖aI ‖1 − |I | α.

Since ‖x‖1 = 1, we obtain f (α) = 0, where f (α) = 1 − ‖aI ‖1 + |I | α, as
announced in Table 3 for type (2, 1). This gives

α = ‖aI ‖1 − 1

|I | . (43)

Thus we find that if the index set I is known, then we can compute x and y: first one
computes α from (43), and then xI from (42). Since xJ = 0, we then know x , and y
follows from (i i).

The question remains how we can find I . For that purpose we first observe that if
i ∈ I and j ∈ J then

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j . (44)

This shows that the entries in aI are strictly larger than those in aJ . Since the entries
of a are ordered nonincreasingly, there must exist an index q such that

I = {i : i ≤ q} , J = {i : i > q} .

Then (44) holds if and only if
aq > α ≥ aq+1, (45)

with α as in (43). We define the vector τ according to

τk =
∑

i≤k ai − 1

k
, 1 ≤ k ≤ n. (46)

Then (45) holds if and only if

aq > τq ≥ aq+1, (47)

and thenwe necessarily haveα = τq .We are now in a similar situation as in Sect. 3.2,
and we proceed accordingly with the next lemma.

Lemma 6 q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (48)

Proof For k < n the definition of τk implies

96 Y. Bai and K. Roos

(k + 1)τk+1 =
∑

j≤k+1

a j − 1 = ak+1 +
∑

j≤k

a j − 1 = ak+1 + kτk . (49)

This can be rewritten in the following two ways:

(k + 1) (τk+1 − τk) = ak+1 − τk

k (τk+1 − τk) = ak+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ ak+1 > τk ⇔ ak+1 > τk+1, (50)

which proves that τ is increasing at k if and only if ak+1 > τk and this holds if and
only if ak+1 > τk+1, for each k < n. From here on we can use the same arguments
as in the proof of Lemma 5. From (47) we conclude that τ is increasing at k =
q − 1 and nonincreasing at k = q. Next, if τ is nonincreasing at some k < n it
remains nonincreasing if k increases, because if τk+1 ≤ τk then ak+1 ≤ τk+1. Since
0 ≤ ak+2 ≤ ak+1, it follows that also ak+2 ≤ τk+1. This in turn implies τk+2 ≤ τk+1,
proving the claim. From this the lemma follows. �

As in Sect. 3.4, the vector τ can be computed in O(n) recursively from2

τ1 = a1 − 1, τk+1 = ak+1 + kτk

k + 1
, 1 ≤ k < n. (51)

Then (48) yields the value of q, still in O(n) time.Due to (42) thismeans that problem
(35) and it dual problem can be solved in O(n) time. Obviously, the solutions of (35)
and (36) are unique.

Example 2 Table 7 demonstrates our analysis for a randomly generated vector a. It
shows that τ is maximal at q = 5. So I = {1, . . . , 5}, and τ = 1.2799.

3.5 Problems of Type (2, 2)

The primal problem is
min

x
{‖a − x‖2 : ‖x‖2 ≤ 1} , (52)

with ‖a‖2 > 1, and its dual problem

max
y

{
aT y − ‖y‖2 : ‖y‖2 ≤ 1

}
. (53)

2 It may be worth mentioning that (51) reveals that τk+1 is a convex combination of ak+1 and τk .

On Some Optimization Problems that Can Be Solved in O(n) Time 97

Table 7 Numerical illustration type (2, 1)

i ai τi xi ai − xi yi

1 1.6363 0.6363 0.3564 1.2799 0.4181

2 1.6351 1.1357 0.3552 1.2799 0.4181

3 1.4449 1.2388 0.1650 1.2799 0.4181

4 1.3639 1.2701 0.0841 1.2799 0.4181

5 = q 1.3192 1.2799 0.0393 1.2799 0.4181

6 1.0433 1.2405 0.0000 1.0433 0.3409

7 0.2997 1.1061 0.0000 0.2997 0.0979

8 0.0000 0.9678 0.0000 0.0000 0.0000

9 0.0000 0.8603 0.0000 0.0000 0.0000

10 0.0000 0.7742 0.0000 0.0000 0.0000

According to (5)–(7) the optimality conditions are

‖x‖2 = 1 = ‖y‖2 (54)

‖y‖2 = yT x (55)

‖a − x‖2 = (a − x)T y. (56)

According to Lemma 1, (54) and (55) hold if and only if

(i) x = y
‖y‖2 ,

and by the same lemma, (54) and (56) hold if and only if

(i i) y = a−x
‖a−x‖2 .

From (i) we derive that x and y have the same direction. Since x and y are both
unit vectors, we must have y = x . By (i i), the vectors y and a − x have the same
direction. Since y 	= 0 this implies a − x = αy for some α > 0. Thus we obtain
(1 + α)x = a. This proves that x has the same direction as a. Since x is a unit
vector, it follows that x = a

‖a‖2 , as in Table 1. Since y = x , we have solved (52) and
(53). In this case both the primal and the dual solution are unique.

3.6 Problems of Type (2,∞)

The problem can then be stated as

min
u

{‖a − x‖2 : ‖x‖∞ ≤ 1} . (57)

The dual problem is

98 Y. Bai and K. Roos

Table 8 Optimal solutions for type (2,∞)

ai xi yi

> 1 1 (ai − xi)/ ‖a − x‖2
≤ 1 ai 0

max
y,z

{
aT y − ‖y‖1 : ‖y‖2 ≤ 1

}
. (58)

As in previous sections, we assume ‖a‖∞ > 1 and that x , y and a are nonnegative.
According to (5)–(7), x is optimal for (57) and y for (58) if and only if

‖x‖∞ = 1 = ‖y‖2 (59)

‖y‖1 = yT x (60)

‖a − x‖2 = (a − x)T y. (61)

Let us assume (59). Then Lemma 3 states that (60) holds if and only if

(i) for each i : yi 	= 0 implies xi = ‖x‖∞ = 1,

whereas Lemma 1 states that (61) holds if and only if

(i i) y = a − x

‖a − x‖2 .
At optimality ‖a − x‖2 > 0, whence x 	= a. Let i be such that yi > 0. Then (i)
implies xi = 1. Since yi and ai − xi have the same sign, we get ai > xi = 1.

We just showed that yi > 0 implies ai > 1. As a consequence we have yi = 0 if
ai ≤ 1. By (i i) we then have xi = ai . We conclude that at optimality x and y are
as given in Table 8. It follows that both x and y are unique, with x as in Table 1:
x = min(a, 1).

3.7 Problems of Type (∞, 1)

With ‖a‖1 > 1, we consider the problem

min
x

{‖a − x‖∞ : ‖x‖1 ≤ 1} . (62)

The dual of this problem is

max
y

{
aT y − ‖y‖∞ : ‖y‖1 ≤ 1

}
. (63)

As before,we only consider the casewhere a, x and y are nonnegative. The optimality
conditions are

On Some Optimization Problems that Can Be Solved in O(n) Time 99

‖x‖1 = 1 = ‖y‖1 (64)

‖y‖∞ = yT x (65)

‖a − x‖∞ = (a − x)T y. (66)

According to Lemma 2, if (64) holds, then (65) is equivalent to

(i) for each i : xi 	= 0 implies yi = ‖y‖∞;

and, for the same reason, then (66) is equivalent to

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

We partition the index set in the same way as in Sect. 3.4. So

I = {i : xi > 0} , J = {i : xi = 0} .

Then (i) implies
yi = ‖y‖∞ , i ∈ I. (67)

Since y 	= 0, by (64), we get yi > 0. So (i i) applies, which implies ai − xi =
‖a − x‖∞. Defining

α = ‖a − x‖∞ , (68)

it follows that
xi = ai − α, i ∈ I, (69)

and hence we may write

‖x‖1 =
∑

i∈I

(ai − α) = ‖aI ‖1 − |I | α.

Since ‖x‖1 = 1 we obtain

α = ‖aI ‖1 − 1

|I | . (70)

So, when we know I we can compute α from (70), and then the nonzero entries of
x follows from (68). An interesting observation is that the formula for α is the same
as (43) in Sect. 3.4. Like there, we also may write

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j , i ∈ I, j ∈ J, (71)

Hence we have, for some index q,

I = {i : i ≤ q} , J = {i : i > q} .

Then (71) holds if and only if
aq > α ≥ aq+1, (72)

100 Y. Bai and K. Roos

withα as in (69). Thus the problem of finding q is the exactly the same as in Sect. 3.4.
So we may state without further proof the following lemma.

Lemma 7 One has α = τq , where q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} , (73)

and where the vector τ is defined recursively by

τ1 = a1 − 1, τk+1 = ak+1 + kτk

k + 1
, 1 ≤ k < n. (74)

This means that problem (62) can be solved in O(n) time, and the solution is unique.
In Sect. 3.4 the dual vector y was uniquely determined by x . This is now different,

as becomes clear below.Wederived from (i) that for indices i ∈ I , where x is positive,
the entries yi are positive and equal to ‖y‖∞. If i ∈ J , where x is zero, (i i) requires
that if ai 	= ‖a − x‖∞ then yi = 0. So, if ai = α then condition (i i) is void, and
hence the only condition on yi becomes 0 ≤ yi ≤ ‖y‖∞. This can happen only if
aq+1 = α. Since α = τq this is equivalent to τq+1 = τq , by (74). Stated otherwise,
we can have 0 ≤ yq+1 ≤ ‖y‖∞ if and only if τ is not decreasing at q. More generally,
if q ′ is the highest index at which τ is maximal, with q ′ ≥ q, i.e., if

τq = τq+1 = · · · = τq ′ = α,

which happens if and only if

aq = aq+1 = · · · = aq ′ = α. (75)

then for any i such that q ≤ i ≤ q ′ we can have 0 ≤ yi ≤ ‖y‖∞. Any such vector y
is obtained by first defining a vector z as follows:

zi =
⎧
⎨

⎩

1 if i ≤ q,
∈ [0, 1] if q < i ≤ q ′,
0 if i > q ′,

(76)

and then taking

y = z

‖z‖ 1
. (77)

We then have ‖y‖1 = 1 and, because of (69) and (75), for each positive yi that
ai − xi = α = ‖a − x‖∞. This implies that y is dual feasible and also optimal.

Example 3 Table 9 demonstrates our analysis for a given vector a. It shows that τ
is maximal at q = 5. So I = {1, . . . , 5}, and α = τ5 = τ6 = 0.5362.

On Some Optimization Problems that Can Be Solved in O(n) Time 101

Table 9 Numerical illustration type (∞, 1)

i ai τi xi ai − xi yi

1 0.9174 −0.0826 0.3812 0.5362 0.1772

2 0.7655 0.3415 0.2293 0.5362 0.1772

3 0.7384 0.4738 0.2022 0.5362 0.1772

4 0.6834 0.5262 0.1472 0.5362 0.1772

5 = q 0.5762 0.5362 0.0400 0.5362 0.1772

6 = q ′ 0.5362 0.5362 0.0000 0.5362 0.1142

7 0.2691 0.4980 0.0000 0.2691 0.0000

8 0.2428 0.4661 0.0000 0.2428 0.0000

9 0.1526 0.4313 0.0000 0.1526 0.0000

10 0.0000 0.3882 0.0000 0.0000 0.0000

3.8 Problems of Type (∞, 2)

With ‖a‖2 > 1, we consider the problem

min
x

{‖a − x‖∞ : ‖x‖2 ≤ 1} . (78)

The dual of this problem is

max
y

{
aT y − ‖y‖2 : ‖y‖1 ≤ 1

}
. (79)

As always, a ≥ 0, x ≥ 0 and y ≥ 0. The conditions for optimality are

‖x‖2 = 1 = ‖y‖1 (80)

‖y‖2 = yT x (81)

‖a − x‖∞ = (a − x)T y (82)

According to Lemma 1, if (80) holds, then (81) is equivalent to

(i) x = y

‖y‖2
;

and, by Lemma 2, (82) is equivalent to

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

With
I = {i : xi > 0} , J = {i : xi = 0} ,

102 Y. Bai and K. Roos

the pair (I, J) is a partition of the index set. Let i ∈ I . So, xi > 0. Now (i) implies
yi > 0. Therefore, (i i) implies ai − xi = ‖a − x‖∞. Since ‖a − x‖∞ > 0, we get
xi < ai . To simplify the presentation we define

α = ‖a − x‖∞ . (83)

Then we have
xi = ai − α, i ∈ I. (84)

Now let j ∈ J . Then using x j = 0, we may write

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j . (85)

This proves that the entries in aI are strictly larger than those in aJ . Since the entries
of a are ordered nonincreasingly, we get, for some q,

I = {1, 2, . . . , q} , J = {q + 1, . . . , n} .

Assuming that J is not empty, (85) implies

aq > α ≥ aq+1. (86)

Otherwise, i.e., when q = n, we define an+1 = 0; so we can always work as if (86)
holds. Because of (80) we may write

1 = ‖x‖22 =
∑

i∈I

x2
i =

∑

i∈I

(ai − α)2 = ‖aI ‖22 − 2α ‖aI ‖1 + |I | α2.

Thus we obtain that α is one of the two roots of the equation f (α) = 0, where

f (α) := 1 − ‖aI ‖22 + 2α ‖aI ‖1 − |I | α2.

Before proceeding, it will be convenient to introduce the notation

σ jk :=
k∑

i=1

ai
j , j ∈ {1, 2} , k ∈ {1, . . . , n} . (87)

Then ‖aI ‖1 = σ1q and ‖aI ‖22 = σ2q , and hence f (α) can be rewritten as

f (α) = 1 − σ2q + 2ασ1q − qα2. (88)

Now the sum of the two roots equals 2σ1q/q. So their average value is σ1q/q. By
(86) we have aq > α. Combining this with a1 ≥ a2 ≥ · · · ≥ aq , we conclude that
σ1q > qα, whence σ1q/q > α. It thus follows that the root α is smaller than the

On Some Optimization Problems that Can Be Solved in O(n) Time 103

other root. This means that the discriminant of the equation f (α) = 0 is positive. In
other words

σ2
1q − q

(
σ2q − 1

)
> 0. (89)

Motivated by the solution technique developed in some of the preceding sections,
we define

fk(ξ) = 1 − σ2k + 2ξσ1k − kξ2, 1 ≤ k ≤ n. (90)

and

ωk := σ2
1k − k (σ2k − 1) , τk := 1

k

(
σ1k − √

ωk
)
, 1 ≤ k ≤ n. (91)

Obviously, ωk is just the discriminant of the equation fk(ξ) = 0 and if ωk ≥ 0 then
τk is its smallest root. In particular, τq = α. Hence, according to (86) we need to find
q such that

aq > τq ≥ aq+1. (92)

When knowing q, α follows from α = τq , and then x follows from (84).
The question remains how much time it takes to solve q from (92) and similarly

for x and y. We claim that all this can be done in O(n) time. This can be understood
as follows.

Clearly, ω1 = 1 and τ1 = a1 − 1. For j = 1, 2, the recursive computation of
σ j1, . . . ,σ jq requires O(q) time, and so does the computation of ωq and τq . If
we have found q such that τq satisfies (92), then we also know α, because α = τq .
Then x follows from xi = ai − α if i ≤ q and xi = 0 otherwise. Finally, from (i)
we derive that

y = x

‖x‖1 .

Thus we have shown that problem (78) and its dual problem can be solved in O(n)
time.

Example 4 Table 10 shows the outcome of our analysis for a randomly generated
vector a. Because of (92) the optimal value of q is 6 in this example. Note that the
sequence τk is increasing, until it becomes undefined due to ωk < 0.

In Table 10 one may observe that the vector ω shows behaviour that we recognize
from the vector τ in preceding sections: (i) when ωk is nonincreasing at some k
it remains nonincreasing when k grows, and (i i) the optimal index q occurs at the
moment whenω attains its maximal value. It turns out that this surprising observation
can be turned into the next lemma. A consequence of this lemma is that the index
q can be obtained without computing τ . One only needs to compute the first q + 1
entries of the vector ω.

104 Y. Bai and K. Roos

Table 10 Numerical illustration for a problem of type (∞, 2)

k ak fk(ak) ωk τk xk ak − xk yk

1 2.9667 1.0000 1.0000 1.9667 0.6736 2.2932 0.3023

2 2.7888 0.9683 1.9683 2.1763 0.4957 2.2932 0.2224

3 2.6370 0.8683 2.8366 2.2361 0.3439 2.2932 0.1543

4 2.5963 0.8241 3.6607 2.2689 0.3031 2.2932 0.1360

5 2.5521 0.7629 4.4236 2.2876 0.2590 2.2932 0.1162

6 = q 2.4462 0.5415 4.9651 2.2932 0.1530 2.2932 0.0687

7 2.0900 −1.1531 3.8120 2.3035 0.0000 2.0900 0.0000

8 1.7484 −4.3254 −0.5134 – 0.0000 1.7484 0.0000

9 1.6817 −5.1398 −5.6532 – 0.0000 1.6817 0.0000

10 0.0000 −52.0241 −57.6773 – 0.0000 0.0000 0.0000

Lemma 8 q is the first index such that

ωq = max
k

{ωk : 1 ≤ k ≤ n} . (93)

Proof We first derive from (92) that the index q satisfies

fq(aq) > 0 ≥ fq(aq+1). (94)

Recall that τq is the smallest roots of the quadratic equation fq(ξ) = 0. For the
moment, let τ ′

q denote the second (i.e., largest) root. By its definition (90), fq(ξ) is
concave. We therefore have

fq(ξ) > 0 ⇔ τq < ξ < τ ′
q , (95)

where τq and τ ′
q are such that

qτq = σ1q − √
ωq

qτ ′
q = σ1q + √

ωq .

By (92), aq+1 ≤ τq < aq . The first inequalitymakes clear that aq+1 does not belong to
(τq , τ

′
q). Therefore, we immediately get the second inequality in (94): fq(aq+1) ≤ 0.

According to (95), the first inequality in (94) holds if and only if τq < aq < τ ′
q . We

already have aq > τq . So it remains to prove aq < τ ′
q . Since the entries of a are

ordered nonincreasingly, we have qaq ≤ σ1q . Since σ1q < σ1q + √
ωq = qτ ′

q , we
obtain aq < τ ′

q , as desired. Thus (94) has now been proven.
We proceed by showing that the sequence fk(ak) is nonincreasing for 1 ≤ k ≤ n.

By the definition (90) of fk(ξ) we may write

On Some Optimization Problems that Can Be Solved in O(n) Time 105

fk(ξ) = 1 −
∑

i≤k

a2
i + 2ξ

∑

i≤k

ai − kξ2 = 1 −
∑

i≤k

(ai − ξ)2. (96)

Since ak ≥ ak+1, we get ai − ak+1 ≥ ai − ak for each i . So one also has

∑

i≤k+1

(ai − ak+1)
2 =

∑

i≤k

(ai − ak+1)
2 ≥

∑

i≤k

(ai − ak)
2 .

Thus it follows from (96) that, for any k < n,

fk+1(ak+1) = fk(ak+1) ≤ fk(ak). (97)

This proves that the sequence fk(ak) is nonincreasing when k increases. Because
of this, (94) implies that fk(ak) is positive if and only if k ≤ q. This has important
consequences for the sequence ωk , 1 ≤ k ≤ n. This becomes clear by considering
ωk+1 − ωk . This expression can be reduced as follows.

ωk+1 − ωk = σ2
1,k+1 − (k + 1)

(
σ2,k+1 − 1

) − (
σ2
1k − k (σ2k − 1)

)

= σ2
1,k+1 − (k + 1)σ2,k+1 + (k + 1) − σ2

1k + kσ2k − k

= 1 + σ2
1,k+1 − σ2

1k − k
(
σ2,k+1 − σ2k

) − σ2,k+1

= 1 + (
σ1,k+1 − σ1k

) (
σ1,k+1 + σ1k

) − k a2
k+1 − σ2,k+1

= 1 + ak+1 (ak+1 + 2σ1k) − k a2
k+1 − σ2,k+1

= 1 − σ2k + 2ak+1σ1k − ka2
k+1

= fk(ak+1) = fk+1(ak+1).

Wemay conclude that ωk+1 > ωk holds if and only if fk+1(ak+1) > 0. Since we have
fk(ak) ≥ fk+1(ak+1) for each k and because of (94) it follows that fk+1(ak+1) > 0
holds if and only if k + 1 ≤ q. So, when k runs from 1 to n then ω increases at k
if and only if k ≤ q − 1, and from k = q on ω is nonincreasing. Hence the lemma
follows. �

3.9 Problems of Type (∞,∞)

While assuming ‖a‖∞ > 1 we consider the problem

min
x

{‖a − x‖∞ : ‖x‖∞ ≤ 1} . (98)

The dual of this problem is

max
y

{
aT y − ‖y‖1 : ‖y‖1 ≤ 1

}
. (99)

106 Y. Bai and K. Roos

As in the previous eight sections, we assume a ≥ 0, x ≥ 0 and y ≥ 0. The conditions
for optimality are given by

‖x‖∞ = 1 = ‖y‖1 (100)

‖y‖1 = yT x (101)

‖a − x‖∞ = (a − x)T y. (102)

According to Lemma 3, (100) and (101) imply

(i) for each i : yi 	= 0 implies xi = ‖x‖∞;

and, by Lemma 2, (100) and (102) imply

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

Let yi > 0. Then (i) and (i i) imply xi = ‖x‖∞ and ai − xi = ‖a − x‖∞. By adding
these two equalities we obtain

ai = ‖x‖∞ + ‖a − x‖∞ .

Hence, for any other j 	= i , since x j ≤ ‖x‖∞ and a j − x j ≤ ‖a − x‖∞, we get

ai ≥ x j + (a j − x j) = a j .

Hence, since the entries in a are ordered nonincreasingly, ai = a1. So, yi is zero for
each i with ai < a1 andmaybe also for one ormore indices i with ai = a1. Therefore,
if I denotes the set of indices with yi > 0 and J its complement, then

I ⊆ {i : ai = a1} , J = {i : i /∈ I } ⊇ {i : ai < a1} ,

with I nonempty, whereas yI > 0 with ‖yI ‖1 = 1 and yJ = 0. The dual objective
value at y equals aT y − ‖y‖1 = a1 − 1. Since the optimal primal objective value
has the same value, this implies ‖a − x‖∞ = a1 − 1. This value is positive, because
‖a‖∞ = a1 > 1.

For x we are left with the following conditions. By (i), xi = 1 for i ∈ I ; then
(i i) also holds because ai − xi = a1 − 1 = ‖a − x‖∞. For the remaining indices i
(i ∈ J) there is a lot of freedom. The only condition for each i ∈ J is that the value
of xi does not change the given values of ‖x‖∞ (= 1) and ‖a − x‖∞ (= a1 − 1). So,
with α = a1 − 1, we must have

0 ≤ xJ ≤ 1J

−α1J ≤ aJ − xJ ≤ α1J .

Summarizing, a vector x is optimal for problem (98) if and only if

xI = 1I , max(0, aJ − α1J) ≤ xJ ≤ min(1J , aJ + α1J). (103)

On Some Optimization Problems that Can Be Solved in O(n) Time 107

Table 11 Two numerical solutions for a problem of type (∞,∞)

i ai x (1)i ai − x (1)i x (2)i ai − x (2)i yi

1 1.9154 1.0000 0.9154 1.0000 0.9154 0.5354

2 1.9154 1.0000 0.9154 1.0000 0.9154 0.0000

3 1.9154 1.0000 0.9154 1.0000 0.9154 0.4646

4 1.2754 0.3600 0.9154 1.0000 0.2754 0

5 1.0543 0.1389 0.9154 1.0000 0.0543 0

6 1.0361 0.1207 0.9154 1.0000 0.0361 0

7 0.9148 0 0.9148 1.0000 −0.0852 0

8 0.8802 0 0.8802 1.0000 −0.1198 0

9 0.5620 0 0.5620 1.0000 −0.4380 0

10 0 0 0 0.9154 −0.9154 0

Example 5 For a randomly generated vector a, Table 11 shows two solutions, x (1)

and x (2). In x (1) we took for each entry the smallest possible value, and in x (2) the
largest possible value, according to (103). All other optimal vectors x are obtained by
taking for each xi a value between these two extreme values. One of these solutions
is x = a/‖a‖∞, as mentioned in Table 1, and as easily can be verified. Another ‘nice’
solution is x = min(1, a).

4 Concluding Remarks

This paper was inspired by a result in [2], where a nontrivial second-order cone
optimization problem was solved analytically in linear time. This raised the question
whether there exist other (classes of) problems that can be solved in linear time, by
a variant of the same method. In this paper we consider a class of nine potentially
important, easily stated and fundamental problems that form such a class. It is worth
noting that in the four harder cases an important characteristic of the new method is
that it first yields an ‘optimal partition’ of the variables in the problem. After this the
values of the variables can be easily found. Though the problems considered in this
paper are quite basic, hopefully it will inspire further research in this direction.

Figure 1 and Tables 5, 7, 9, 10, 11 were generated by using Matlab. The related
Matlab files can be used to solve each of the problems that we considered in this
paper for any vector a; they can be provided by writing to the second author.

Acknowledgements The authors want to express their thanks to an anonymous referee who care-
fully read the first draft of this paper. His critical remarks and questions were very stimulating and
helpful during the preparation of the final version.

108 Y. Bai and K. Roos

References

1. A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. MPS/SIAM Series on
Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

2. Zhang Wei and Kees Roos. Using Nemirovski’s Mirror-Prox method as Basic Procedure in
Chubanov’s method for solving homogeneous feasibility problems, 2019. Optimization Online.

Iteration Complexity of a Fixed-Stepsize
SQP Method for Nonconvex
Optimization with Convex Constraints

Francisco Facchinei, Vyacheslav Kungurtsev, Lorenzo Lampariello,
and Gesualdo Scutari

Abstract We consider an SQP method for solving nonconvex optimization prob-
lems whose feasible set is convex and with an objective function that is the sum of
a smooth nonconvex term and a nonsmooth, convex one. In the proposed method, at
each iteration, a direction is generated by solving a strongly convex approximation
to the original problem and then a fixed-stepsize is taken in that direction. The com-
plexity result we establish is, as far as we are aware, the best available for the rather
general setting we consider.

Keywords SQP methods · Iteration complexity · Fixed-stepsize
1 Introduction

We consider the nonconvex optimization problem with convex constraints

minimize
x

f (x) + q(x)

s.t. g(x) ≤ 0
Ax + b = 0
x ∈ K ,

(P)

F. Facchinei (B)
Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza
University of Rome, Rome, Italy
e-mail: francisco.facchinei@uniroma1.it

V. Kungurtsev
Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University
in Prague, Prague, Czech Republic
e-mail: vyacheslav.kungurtsev@fel.cvut.cz

L. Lampariello
Department of Business Studies, Roma Tre University, Rome, Italy
e-mail: lorenzo.lampariello@uniroma3.it

G. Scutari
School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
e-mail: gscutari@purdue.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_5

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_5&domain=pdf
mailto:francisco.facchinei@uniroma1.it
mailto:vyacheslav.kungurtsev@fel.cvut.cz
mailto:lorenzo.lampariello@uniroma3.it
mailto:gscutari@purdue.edu
https://doi.org/10.1007/978-3-030-72040-7_5

110 F. Facchinei et al.

where

– K ⊆ R
n is a nonempty, convex, and compact set;

– f : Rn → R is C1,1 (i.e., continuously differentiable with locally Lipschitz con-
tinuous gradients) on an open set containing K , with L∇ f being the Lipschitz
modulus of ∇ f on K ;

– q : Rn → R is convex on K and locally Lipschitz continuous on an open set
containing K ;

– gi : Rn → R, i = 1, . . . ,m, is convex on K and C1,1 on an open set containing
K , with L∇gi being the Lipschitz modulus of ∇gi on K ;

– A ∈ R
p×n and b ∈ R

p;

and we denote the feasible set of (P) by

X �
{
x ∈ R

n : g(x) ≤ 0, Ax + b = 0, x ∈ K
}
.

We assume that the feasible set X is nonempty. The algorithm we present is a fixed-
stepsize method. More specifically, the search direction is iteratively computed by
solving the strongly convexSQP-type approximating (at the base point x) subproblem

minimize
d

f (x) + ∇ f (x)T d + 1
2d

T H(x)d + q(x + d)

s.t. g(x) + ∇g(x)T d ≤ 0
A(x + d) + b = 0,
x + d ∈ K ,

(Px)

where ∇g(x) is the transposed Jacobian of g evaluated at x and H : Rn → R
n×n is

assumed to be continuous over K with H(x) a positive definite symmetric matrix
for every x ∈ K (for example, we could take H(x) = I for all x). By compactness
of K and continuity of H , there exist constants c and LH such that

min
x∈K λmin(H(x)) ≥ c > 0 and max

x
{‖H(x)‖ | x ∈ K } ≤ LH < ∞, (1)

where λmin(H(x)) denotes the minimum eigenvalue of H(x).
We denote by X̃ (x) and d(x) the feasible set (which is shown to be nonempty in

Proposition 1) and the unique solution of strongly convex problem (Px), respectively.
Algorithm 1 below can be summarized as follows. Given the current iterate xν , a

fixed step γ > 0 is taken along the search direction d(x) so that

xν+1 = xν + γd(xν). (2)

Note that since x0 satisfies the linear equality constraints in the original problem
(P) (see Data in Algorithm 1), also all points xν generated by the algorithm are such
that Axν + b = 0, and the equality constraints in (Px) can therefore be rewritten as
Ad = 0. In Sect. 2.3 we show that the stopping criterion used in step S.2 is sensible
and closely related to the violation of the KKT conditions.

Iteration Complexity of a Fixed-Stepsize SQP Method … 111

Algorithm 1: SQP method for nonconvex problems with convex constraints

Data: γ ∈ (0, 1], K
 x0 : Ax0 + b = 0, δ > 0, ν ←− 0;
repeat

(S.1) compute the solution d(xν) of problem (Pxν);
(S.2) if ‖d(xν)‖ ≤ δ then

stop and return xν ;
end

(S.3) set xν+1 = xν + γd(xν), ν ←− ν + 1;
end

The setting of Problem (P) and the corresponding direction-defining subproblems
have been analyzed in [3, Sect. 5]. This setting covers a wide array of problems
arising, for example, in contemporary applications in statistical andmachine learning,
where typical examples for q are q(x) = ‖x‖1 or q(x) = ‖x‖22. In [3], convergence
to KKT points is established for a diminishing stepsize method. We remark that the
algorithm presented in [3] is, in turn, a simplification of a more general method first
analyzed in [2]. In [2] some complexity results are obtained also for a fixed-stepsize
policy using SQP-like subproblems; however, in the case of the setting described
above and under the same assumptions relied upon in this paper, only some weaker
global convergence rates are obtained there (see [2] for the distinction between
the stronger notion of iteration complexity and global convergence rate). The main
contribution of this paper is to show that Algorithm 1 exhibits an actual iteration
complexity of O(δ−2) (recall that δ is the stopping tolerance used in step S.2 of the
algorithm; see Theorem 2 for a clarification on the stopping criterion used in the
algorithm). To prove this result, as main technical tool, we resort to the analysis of
the decrease, at each iteration, of the classical penalty function

W (x; ε) � f (x) + q(x) + 1

ε
θ(x),

with ε a positive penalty parameter, and

θ(x) � max
i, j

{gi (x)+, |aT
j x + b j |},

where α+ � max{0,α} and aT
j denotes the j th row in matrix A. Note that, in the

setting of this paper, W acts as a Lyapunov function for our algorithm; however we
do not need to know, let alone use, an appropriate value for ε. For this and other
reasons that are explained in [2], we refer to this penalty function as a ghost penalty
function.

The paper is organized as follows. In the next section we discuss some prelimi-
nary issues: optimality conditions, measures of optimality and a suitable constraint
qualification. The main complexity result is given in Sect. 3.

112 F. Facchinei et al.

2 Preliminaries

2.1 Stationarity and Constraint Qualifications

We recall the KKT conditions for problem (P):

0 ∈ ∇ f (x) + ∂q(x) + ∇g(x)ξ + ATπ + NK (x)
0 ≤ ξ ⊥ g(x) ≤ 0

Ax + b = 0
x ∈ K ,

(3)

where ∂q(x) is the set of subgradients of q at x , NK (x) is the normal cone to K at x ,
⊥ denotes orthogonality, i.e., a ⊥ bmeans aTb = 0, and finally, ξ ∈ R

m and π ∈ R
p

denote the multipliers for the inequality and equality constraints, respectively. In
order to introduce our constraint qualification, it is expedient to define also the set
of “abnormal” multipliers

M0(x) �
{
(ξ,π) | ξ ∈ NR

m−(g(x)), π ∈ R
p, 0 ∈ ∇g(x)ξ + ATπ + NK (x)

}
.

If x̂ is a local minimum point of (P), it is well-known that either x̂ satisfies the KKT
conditions, or M0(x̂)
= {0} (i.e., x̂ is a Fritz-John point). The constraint qualification
(CQ) we use is the Mangasarian-Fromovitz one that, in our setting including the
geometric constraint x ∈ K , can be stated as follows.

Definition 1 The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds
at x̂ ∈ K if M0(x̂) = {0}.
Under the convexity assumption on the constraints, this condition is automatically
satisfied at any infeasible point in K : if x̂ ∈ K is not feasible, then x̂ is easily seen
not to be stationary for the violation-of-the-constraints measure θ on K , i.e.,

0 /∈ ∂θ(x̂) + NK (x̂),

since θ is a convex function on K whose zerominimal value is attained only at feasible
points. In turn, it is immediate to check that 0 /∈ ∂θ(x̂) + NK (x̂) is equivalent to
M0(x̂) = {0}. On the other hand, by [4, Exercise 6.39], this condition is equivalent
to the Slater-like CQ requiring a point x̄ ∈ rel int K to exist such that g(x̄) < 0,
Ax̄ + b = 0 and {0} = {π | πT Aw = 0, ∀w ∈ TK (x)} for every feasible x , where
TK (x) denotes the tangent cone to K at x . In more standard settings, if K = R

n ,
M0(x̂) = {0} reduces to the classical Mangasarian-Fromovitz condition, which in
turn, whenever the equality constraints are not present, is equivalent to the standard
Slater constraint qualification, i.e., to the existence of a point x̄ such that g(x̄) < 0.

In the light of these considerations, we make the following standing assumption
for our analysis.

Iteration Complexity of a Fixed-Stepsize SQP Method … 113

Assumption. The MFCQ holds on X .

A direct consequence of the assumed MFCQ for (P) is that the MFCQ holds also for
(Px) for any x ∈ K and that X̃ (x) is nonempty. The following proposition is proven
in [3, Proposition 5.2].

Proposition 1 For any x ∈ K there exists d ∈ rel int(K − x) such that g(x) +
∇g(x)T d < 0, A(x + d) + b = 0 and {0} = {π | (ATπ)Tw = 0,∀w ∈ TK−x (v)} for
every v ∈ X̃ (x). A fortiori, the feasible set of (Px) is nonempty.

Of course, the nonemptiness of the feasible set of (Px) in turn implies that this problem
has a unique solution because the objective function is strongly convex.

2.2 Giving an Explicit Bound on the Multipliers

It is rather classical to show that, under the MFCQ, the set of KKT multipliers for
the inequality constraints in subproblems (Px) is bounded. Leveraging the convexity
of the feasible set of (P) and the MFCQ, here we prove a stronger result, in that
we can give an explicit uniform bound (over K) on the set of KKT multipliers for
the inequality constraints in subproblems (Px); in fact, we show that this bound can
actually be expressed by means of problem-related constants that are conceptually
known a priori.

Theorem 1 The KKT multipliers ξ for the inequality constraints in subproblems
(Px) are bounded from above on K by a uniform constant M: for any multiplier ξ,
and for all x ∈ K,

‖ξ‖1 ≤ M � D(L f + Lq + LH D)

|σ| , (4)

with L f � maxx∈K ‖∇ f (x)‖, Lq � maxx,d{‖ρ‖ | x + d ∈ K , ρ ∈ ∂q(x + d)}, D is
the diameter of the set K , i.e., D � maxv,w{‖v − w‖| | v, w ∈ K }, LH is defined
in (1), and σ is a negative constant such that 0 > σ ≥ gi (x̄) for every i , where x̄ is
a Slater point for problem (P).

Proof First we bound the KKT multipliers for inequality constraints in a general
convex problem under the Slater CQ; then, we specify the result for subproblems
(Px). Thus, consider the convex problem

minimize
d

φ(d)

s.t. β(d) ≤ 0
Ad + c = 0
d ∈ S,

(5)

where

114 F. Facchinei et al.

– S ⊆ R
n is a nonempty, convex, and compact set;

– φ : Rn → R is convex on S and locally Lipschitz continuous on an open set con-
taining S;

– βi : Rn → R, for every i = 1, . . . ,m, are convex on S and continuously differen-
tiable on an open set containing S;

– c ∈ R
p.

Furthermore, the following problem-related constants are involved in the forthcom-
ing analysis:

– D is the diameter of S, i.e., D � maxv,w{‖v − w‖ | v, w ∈ S};
– L is an upper bound on the norm of the subgradients of φ on S: L � supd,ω{‖ω‖ |
d ∈ S,ω ∈ ∂φ(d)}, which is finite because the set of subgradients is locally
bounded.

Under the Slater CQ, let d ∈ S be a KKT point for problem (5):

ω + ∇β(d)ξ + ATπ + η = 0, (6)

β(d) ≤ 0, Ad + c = 0, for some ω ∈ ∂φ(d), and KKT multipliers ξ ∈ R
m , π ∈ R

p

and η ∈ NS(d). Setting I � {i ∈ {1, . . . ,m} : βi (d) = 0}, we have, for some d̄ ∈
rel int S, Ad̄ + c = 0 and, for every i ∈ I ,

0 > σ ≥ βi (d̄) ≥ βi (d) + ∇βi (d)
T (d̄ − d) = ∇βi (d)

T (d̄ − d), (7)

where the third inequality is due to the convexity of βi . We can write

−DL ≤ −‖d̄ − d‖‖ω‖ ≤ −(d̄ − d)Tω ≤ −(d̄ − d)Tω − (d̄ − d)Tη

= (d̄ − d)T∇βI (d)ξI + (d̄ − d)T ATπ ≤ σ
∑

i∈I
ξi = σ‖ξ‖1,

where the third inequality is due to η ∈ NS(d), the first equality follows from (6),
the second equality holds because (d̄ − d)T A = 0 since both d and d̄ satisfy the
equality constraints, and the last inequality is a consequence of (7). Therefore, for
any multiplier ξ satisfying (6),

‖ξ‖1 ≤ DL

|σ| .

We now apply the previous general result to the convex subproblems (Px). Since the
MFCQ holds on X , let x̄ ∈ X be a Slater point for (P): we observe that, for every
x ∈ K ,

0 > σ ≥ gi (x̄) ≥ gi (x) + ∇gi (x)
T d̄, (8)

and A(x + d̄) + b = 0, where d̄ � x̄ − x . We remark that σ provides a uniform
bound in (8), not depending on x . Therefore, following the same line of reasoning
as for the general case with

Iteration Complexity of a Fixed-Stepsize SQP Method … 115

φ(d) = ∇ f (x)T d + 1
2d

T H(x)d + q(x + d), βi (d) = gi (x) + ∇gi (x)T d,
c = b + Ax,

and noting that

L = maxx,d,ρ{‖∇ f (x) + H(x)d + ρ‖ | x ∈ K , x + d ∈ K , ρ ∈ ∂q(x + d)}
≤ L f + LH D + Lq ,

we get the sought bound on the norm of the KKT multipliers ξ, not depending on x ,
for the subproblems (Px) over K . �

2.3 Detecting Stationarity

In this section we first recall two results from [3] showing that ‖d(x)‖ is a valid
stationarity measure. Then, we give an actual quantitative relation between ‖d(x)‖
and the violation of the KKT conditions. The following two results correspond to
Propositions 5.3 and 5.4 in [3].

Proposition 2 The function d(•) is continuous on K .

Proposition 3 We have ‖d(x)‖ = 0 at x ∈ K if and only if x is a KKT point for (P).

The results above indicate that ‖d(x)‖, being a continuous measure that is 0 if and
only if x is a KKT point for (P), can be employed in order to detect stationarity.
In fact, the stopping criterion in Algorithm 1 requires ‖d(x)‖ to be smaller than
a prescribed accuracy δ. Even more, here we show that, apart from some problem-
dependent constants, ‖d(x)‖ provides a bound on the violation of theKKTconditions
for (P). For the sake of completeness, we recall that the stationarity conditions (3)
for problem (P) can be equivalently rewritten as

∥∥∥prox IK +q
1+‖(ξ,π)‖

(
x − ∇ f (x)+∇g(x)ξ+AT π

1+‖(ξ,π)‖
)

− x
∥∥∥ = 0,

maxi
∣∣∣gi (x)

ξi
1+‖(ξ,π)‖

∣∣∣ = 0,

maxi {gi (x)+} = 0,

(9)

with x ∈ K such that Ax + b = 0, andwhere IK denotes the indicator function for K ,
ξ ∈ R

m+ and π ∈ R
p, and prox is the proximal operator: proxh(y) � argminx (h(x) +

1
2‖x − y‖22).
Theorem 2 The quantity ‖d(x)‖, with x ∈ K, provides a bound on the violation of
conditions (9):

∥∥∥prox IK +q
1+‖(ξ,π)‖

(
x − ∇ f (x)+∇g(x)ξ+AT π

1+‖(ξ,π)‖
)

− x
∥∥∥ ≤ (2 + LH)‖d(x)‖,

maxi |gi (x) ξi
1+‖(ξ,π)‖ | ≤ (maxi Lgi)‖d(x)‖,

maxi {gi (x)+} ≤ (maxi Lgi)‖d(x)‖,
(10)

116 F. Facchinei et al.

for some ξ ∈ R
m+, π ∈ R

p, where Lgi � maxx∈K ‖∇gi (x)‖ and LH is defined in (1).

Proof Recalling that d(x) satisfies the KKT conditions for subproblem (Px), we
have

0 ∈ ∇ f (x) + H(x)d(x) + ∂q(x + d(x)) + ∇g(x)ξ + ATπ + NK−x (d(x)),

for some ξ ∈ NR
m−(g(x) + ∇g(x)T d(x)) and π ∈ R

p, which is equivalent to the fol-
lowing relation:

x + d(x) = prox IK +q
1+‖(ξ,π)‖

(
x + d(x) − ∇ f (x) + H(x)d(x) + ∇g(x)ξ + ATπ

1 + ‖(ξ,π)‖
)
.

(11)
In order to bound the measure of KKT conditions violation, focus first on the
Lagrangian-related term in (9), i.e.,

∥∥∥∥prox IK +q
1+‖(ξ,π)‖

(
x − ∇ f (x) + ∇g(x)ξ + ATπ

1 + ‖(ξ,π)‖
)

− x

∥∥∥∥ =
∣∣∣∣

∣∣∣∣d(x)

+ prox IK +q
1+‖(ξ,π)‖

(
x − ∇ f (x) + ∇g(x)ξ + ATπ

1 + ‖(ξ,π)‖
)

− prox IK +q
1+‖(ξ,π)‖

(
x + d(x) − ∇ f (x) + H(x)d(x) + ∇g(x)ξ + ATπ

1 + ‖(ξ,π)‖
)∣∣∣∣

∣∣∣∣

≤ ‖d(x)‖ + ‖ − d(x) + H(x)d(x)‖ ≤ (2 + LH)‖d(x)‖,

where the first equality follows, in view of (11), by adding and subtracting d(x) in
the left-hand side term, and the inequality is due to the nonexpansive property of the
proximal mapping.

As for the feasibility violation measure, since gi (x) ≤ −∇gi (x)T d(x), we have

max
i

{gi (x)+} ≤ (max
i

Lgi)‖d(x)‖.

Finally, concerning complementarity conditions, consider ı̄ ∈ {1, . . . ,m} such that
|gı̄ (x)ξı̄ | = maxi |gı̄ (x)+ξı̄ ||gı̄ (x)ξı̄ |with gı̄ (x) + ∇gı̄ (x)T d(x) = 0, otherwise ξı̄ =
0. Hence,

max
i

|gi (x)ξi | ≤ (max
i

Lgi)‖d(x)‖(1 + ‖(ξ,π)‖).

�

Theorem 2 justifies the choice of condition ‖d(x)‖ ≤ δ as stopping criterion in step
S.3 of Algorithm 1: if ‖d(x)‖ ≤ δ, then the KKT conditions, rewritten as in (9), are
satisfied at x within an accuracy δ, up to some given, problem-dependent constants.

Iteration Complexity of a Fixed-Stepsize SQP Method … 117

3 Complexity Analysis

Wearefinally ready to study the iteration complexity ofAlgorithm1:wegive anupper
bound, that depends only on some problem-dependent constants, on the maximal
number of iterations needed to satisfy the stopping criterion ‖d(xν)‖ ≤ δ at step
S.2, and, thus, to reach a point satisfying the KKT conditions with an accuracy
δ, up to some given, problem-dependent constants. In the following theorem, we
establish that, if the stepsize γ is sufficiently small, this can be done in at most
O(δ−2) iterations. For reader’s convenience, we recall that, in Theorem 3, M is the
constant defined in Theorem 1.

Theorem 3 In the setting described in the introduction and supposing the MFCQ
assumption holds, consider the sequence {xν} generated by Algorithm 1 with a posi-

tive stepsize γ ≤ min
{

c
L∇ f +M maxi L∇gi

, 1
}
and fix an accuracy δ ≤ 1, with c defined

in (1). Then, Algorithm 1 stops at step S.2 in at most

⌈
2

δ2
f (x0) + q(x0) + 1

M maxi {gi (x0)+} − (f m + qm)

cγ

⌉

(12)

iterations, where f m + qm � minx { f (x) + q(x)|x ∈ K }.
Proof Since the starting point x0 belongs to the convex set K , the stepsize satisfies
γ ≤ 1 by construction and, by the last constraint in (Pxν), xν + d(xν) ∈ K for all
ν, it is easily seen that all points xν generated by the algorithm belong to K . As a
consequence, the sequence {xν} is bounded. Also, since x0 is such that Ax0 + b = 0,
we have Ad(xν) = 0 and Axν + b = 0, for every ν. Preliminarily, observe that,
at each step, in view of Proposition 1, multipliers {ξν} and {πν} exist with ξν ∈
NR

m−(g(x
ν) + ∇g(xν)T d(xν)) such that

0 ∈ ∇ f (xν) + H(xν)d(xν) + ∂q(xν + d(xν)) + ∇g(xν)ξν + ATπν + NK−xν (d(xν)). (13)

We also recall that, by (1), H(x) satisfies

d(xν)T H(xν)d(xν) ≥ c‖d(xν)‖2. (14)

Also, by the convexity of q, for every ρν ∈ ∂q(xν + d(xν)),

ρν T d(xν) ≥ q(xν + d(xν)) − q(xν). (15)

Moreover, since d(xν) is feasible for (Pxν), on the one hand,

−ξν
i ∇gi (xν)T d(xν) = ξν

i gi (x
ν), (16)

due to ξν ∈ NR
m−(g(x

ν) + ∇g(xν)T d(xν)). Therefore, by (13)–(16),wehave for some
ρν ∈ ∂q(xν + d(xν)) and ζν ∈ N(K−xν)(d(xν)),

118 F. Facchinei et al.

∇ f (xν)T d(xν) + c‖d(xν)‖2 + q(xν + d(xν)) − q(xν)

≤ ∇ f (xν)T d(xν) + d(xν)T H(xν)d(xν) + ρν T d(xν)

= −ξν T∇g(xν)T d(xν) − πν T Ad(xν) − ζν T d(xν) ≤ ξν T g(xν)

≤ ξν T [maxi {gi (xν)+}]e ≤ θ(xν)‖ξν‖1,

where the second inequality is due to Ad(xν) = 0 and 0 ∈ βBn∞ ∩ (K − xν). Hence

∇ f (xν)T d(xν) ≤ −c‖d(xν)‖2 + θ(xν) ‖ξν‖1 + q(xν) − q(xν + d(xν)). (17)

Let us now consider the nonsmooth (ghost) penalty function already described in the
introduction:

W (x; ε) = f (x) + q(x) + 1

ε
max
i, j

{gi (x)+, |aT
j x + b j |}.

W is used as a Lyapunov function (but does not appear anywhere in the algorithm
itself).

Recalling aT
j x

ν + b j = 0 and aT
j d(x

ν) = 0 for every ν, we have

W (xν+1; ε) − W (xν; ε) = f (xν + γd(xν)) − f (xν) + q(xν + γd(xν)) − q(xν)

+ 1

ε

[
max

i
{gi (xν + γd(xν))+} − max

i
{gi (xν)+}

]

(a)≤ γ∇ f (xν)T d(xν) + (γ)2L∇ f

2
‖d(xν)‖2 + q(xν + γd(xν)) − q(xν)

+ 1

ε

[
max

i
{(gi (xν) + γ∇gi (x

ν)T d(xν))+} − max
i, j

{gi (xν)+}

+ (γ)2 maxi {L∇gi }
2

‖d(xν)‖2
]

(b)≤ γ∇ f (xν)T d(xν) + (γ)2

2
(L∇ f + maxi {L∇gi }

ε
)‖d(xν)‖2

+ q(xν + γd(xν)) − q(xν) + 1

ε

[
max

i
{(1 − γ)gi (x

ν)+} − max
i

{gi (xν)+}
]

= γ∇ f (xν)T d(xν) + (γ)2

2
(L∇ f + maxi {L∇gi }

ε
)‖d(xν)‖2

+ q(xν + γd(xν)) − q(xν) − γ

ε

[
max

i
{gi (xν)+}

]

= γ∇ f (xν)T d(xν) + (γ)2

2
(L∇ f + maxi {L∇gi }

ε
)‖d(xν)‖2 − γ

ε
θ(xν)

+ q(xν + γd(xν)) − q(xν), (18)

where (a) follows from thedescent lemmaapplied to f and gi , for every i = 1, . . . ,m;
and (b) holds for any positive γ ≤ 1, since∇gi (xν)T d(xν) ≤ −gi (xν). Furthermore,
we observe that

Iteration Complexity of a Fixed-Stepsize SQP Method … 119

γ[∇ f (xν)T d(xν) − 1

ε
θ(xν)] + q(xν + γd(xν)) − q(xν) ≤ γ[−c‖d(xν)‖2

+ (‖ξν‖1 − 1

ε
) θ(xν)] + γ[q(xν) − q(xν + d(xν))] + q(xν + γd(xν)) − q(xν)

≤ γ[−c‖d(xν)‖2 + (‖ξν‖1 − 1

ε
)θ(xν)], (19)

where the first inequality is due to (17) and the second relation is a consequence of
the convexity of q. Since, in view of Theorem 1, for any multiplier ξν , ‖ξν‖ ≤ M ,
where M is defined in (4), we obtain from (19), for every ν,

∇ f (xν)T d(xν) − 1

ε
θ(xν) + 1

γ
[q(xν + γd(xν)) − q(xν)] ≤ −c‖d(xν)‖2, ∀ε ≤ 1

M
. (20)

Combining (18) and (20), we get

W (xν+1; 1
M) − W (xν; 1

M) ≤ −γc‖d(xν)‖2 + (γ)2

2 (L∇ f + maxi {L∇gi }
1
M

)‖d(xν)‖2
= −γ

[
c − γ

2 (L∇ f + M maxi {L∇gi })
] ‖d(xν)‖2.

Thus,

W (xν+1; 1

M
) − W (xν; 1

M
) ≤ − c

2
γ‖d(xν)‖2. (21)

Suppose now that the procedure did not stop until iteration N , i.e., ‖d(xν)‖ > δ for
all iterates up to N − 1. We get from (21)

δ2N <

N−1∑

ν=0

‖d(xν)‖2 ≤ 2
f (x0) + q(x0) + 1

M maxi {gi (x0)+} − (f m + qm)

cγ
,

Thus the algorithm stops in at most a number of iterations equal to (12), giving a
complexity of O(δ−2). �

Theorem 3, together with the boundedness of K and Propositions 2 and 3, easily
yields the following asymptotic convergence result for Algorithm 1.

Corollary 1 Under the assumptions of Theorem 3, if we set δ = 0 at step S.2 of
Algorithm 1, the sequence generated by Algorithm 1 is bounded and each of its limit
points is a KKT solution.

Remark 1 In the introductionwementioned that Algorithm 1 is a simplified version
of the algorithm analyzed in [2]. The analysis in this paper can be extended to the
algorithm considered in [2] under the assumptions we make here.

Remark 2 The bound of order O(δ−2) given in Theorem 3 is the best available for
the class of problems we considered here when only first-order information is used,
see [1] and references therein.

120 F. Facchinei et al.

4 Conclusions

We have presented the first complexity analysis for an SQP-type method for noncon-
vex optimization problems with convex constraints and an objective function that is
the sum of a smooth term and of a (possibly nonsmooth) convex one. These results
are of obvious theoretical interest and hopefully will pave the way for the complexity
analysis of more standard line-search-type SQP methods. Furthermore, while we do
not expect a fixed-stepsize method to be practically more efficient than a traditional
line-search one in general, a fixed-stepsize strategy could still be of practical interest,
for example, whenever the computation of the objective function is very expensive.

Acknowledgements The authors are very grateful to a Referee whose very accurate and insightful
comments helped improve the paper. Francisco Facchinei was partially supported by Progetto di
Ateneo Distributed optimization algorithms for Big Data. Vyacheslav Kungurtsev was supported
by the OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.
Lorenzo Lampariello was partially supported byMIUR PRIN 2017 grant 20177WC4KE. Gesualdo
Scutari was partially supported by NSF Grants CIF 1564044, CIF 1719205, and CMMI 1832688;
and ARO Grant W911NF1810238.

References

1. Cartis, C., Gould, N. I., Toint, P. L. (2018) Second-order optimality and beyond: Characteriza-
tion and evaluation complexity in convexly constrained nonlinear optimization. Foundations of
Computational Mathematics, 18(5), 1073-1107.

2. Facchinei, F., Kungurtsev, V., Lampariello, L., Scutari, G. (2021) Ghost penalties in noncon-
vex constrained optimization: Diminishing stepsizes and iteration complexity. Mathematics of
Operations Research. Available on-line at https://doi.org/10.1287/moor.2020.1079

3. Facchinei, F., Kungurtsev, V., Lampariello, L., Scutari, G. (2020) Diminishing stepsize methods
for nonconvex composite problems via ghost penalties: from the general to the convex regular
constrained case. Optimization Methods and Software. Available on-line at https://doi.org/10.
1080/10556788.2020.1854253

4. Rockafellar, R. T., Wets, R. J. B. (2009) Variational Analysis. Springer Science & Business
Media.

https://doi.org/10.1287/moor.2020.1079
https://doi.org/10.1080/10556788.2020.1854253
https://doi.org/10.1080/10556788.2020.1854253

Modelling and Inferring the Triggering
Function in a Self-Exciting Point Process

Craig Gilmour and Desmond J. Higham

Abstract Self-exciting spatio-temporal point processes offer a flexible class ofmod-
els that have found success in a range of applications. They involve a triggering effect
that accounts for the clustering patterns observed in many natural and sociological
applications. In this work, we focus on the key step of inferring or designing the
form of the triggering function. In the inference setting, we use a nonparametric
approach to fit a process to a range of datasets arising in criminology. By analysing
this public domain data we find that the inferred trigger shape varies across different
categories of crime.Motivated by these observations, and also by hypotheses from the
criminology literature, we then propose a variation on the classical Epidemic-Type
Aftershock Sequences trigger, which we call the Delayed Response trigger. After
calibrating both parametric models, we show that Delayed Response is compara-
ble with Epidemic-Type Aftershock Sequences in terms of predicting future events,
and additionally provides an estimate of the time lag before the risk of triggering is
maximised.

Keywords Inference · Trigger · Criminology

1 Introduction

Self-exciting point processes allow the occurrence of an event to increase the prob-
ability of a subsequent event, close by in space and time. Such follow-on events
are said to have been “triggered” by that previous event. Originally used to model
earthquakes, in recent years this class of models has been shown to be relevant in the
context of social interactions, disease propagation and crime [21, 24].

In this work, we focus on the key problem of how to specify a suitable form for
the trigger function. We make four main contributions.

C. Gilmour
Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

D. J. Higham (B)
School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
e-mail: d.j.higham@ed.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_6

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_6&domain=pdf
mailto:d.j.higham@ed.ac.uk
https://doi.org/10.1007/978-3-030-72040-7_6

122 C. Gilmour and D. J. Higham

1. To infer the trigger function directly, and nonparametrically, from the data in the
case of public domain data sets recording acts of crime. This gives, for the first
time, a quantified indication of how the overall shape of the triggering depends
on the type of crime involved.

2. For each crime type, to display both the temporal and spatial pattern of the trig-
gering effect.

3. To propose a new parametrised form for the trigger, which we call Delayed
Response, differing from the widely-used Epidemic-Type Aftershock Sequences
version, motivated by the inference results and by empirical observations from
the criminology literature.

4. To show that the newDelayedResponse version is comparablewith the Epidemic-
TypeAftershockSequencesmodel in termsof accuracy inpredicting future events.

The manuscript is organized as follows. Section 2 summarizes the ideas behind
self-exciting point processes. In Sect. 3 we infer the shape of the triggering function
from real data sets. Section 4 looks at parametrised trigger models and introduces
the Delayed Response trigger. In Sect. 5 the trigger functions are fitted to real data
and compared. Conclusions are given in Sect. 6.

2 Background

A spatial-temporal point process, N (·, ·, ·), is a random measure on a region of R ×
R × R taking non-negative integer values [24]. Let x and y denote spatial coordinates
in two dimensions, with t denoting time. The process can then be characterized by
its conditional intensity function

λ(x, y, t) = lim
Δx,Δy,Δt→0

E(N (x + Δx, y + Δy, t + Δt) − N (x, y, t))

ΔxΔyΔt
. (1)

Here, N (x + Δx, y + Δy, t + Δt) − N (x, y, t) records how many events have
occurred with the first spatial coordinate in (x, x + Δx), the second in (y, y + Δy)
and time in (t, t + Δt).

In our context, events are recorded acts of crime, and the notation {ti , xi , yi }
will be used for an event that took place at time ti in location (xi , yi). Here, it has
been proposed that the conditional intensity function should take the Epidemic-Type
Aftershock Sequences (ETAS) form [19]

λ(x, y, t) = μ(x, y, t) +
∑

t>ti

g(t − ti , x − xi , y − yi). (2)

In (2),μ represents thebackground rate, and g is the triggering function that quantifies
how an event creates a “knock-on” effect of increased likelihood of further events
nearby in space and future time. This type of self-exciting model is often referred to

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 123

Fig. 1 Illustration of a Hawkes process. Here we have suppressed the spatial components, and the
horizontal axis represents time. We show first and second generation effects. A background event
can trigger a first-generation offspring event, which in turn can trigger a second-generation offspring
event, and so on. In Hawkes processes we typically see a stronger clustering of events than we do for
a simple Poisson process. In practice, only the event times (bottom row of picture) t1, t2, t3, . . . , t11
would be available, and recovering the background/triggering narrative is an inference problem

as a Hawkes process. Specifying the form of the trigger g in (2) is a key modelling
step. Some authors have proposed specific, parametrized forms; notably Gaussian in
space and exponentially decaying in time1 [18, 24]

g(t, x, y) = f (t)h(x, y) = αωe−ωt 1

2πσ2
e−(x2+y2)/2σ2

. (3)

In Sect. 4 we discuss the form of (3), and its motivation in the criminology setting.
A Hawkes process can be viewed as a branching process [14], which is helpful

from the perspective of simulation. Events occur according to the background rate
μ. An event which happens at time ti produces offspring events at a temporal rate
proportional to f (t − ti) for times t > ti independently of each other. The direct
offspring of the background events are known as first-generation offspring. These
individual events can then trigger further events independently of each other, which
are known as second-generation offspring, and so on. A simple overview of such a
process is shown in Fig. 1.

1 In some literature the temporal aspect of this triggering function is written in the equivalent form
αe−βt , with the interpretation that each arrival increases the intensity by α, with this influence
decaying at rate β [14]. We use the form αωe−ωt because it has the useful property that each event
is expected to trigger α events.

124 C. Gilmour and D. J. Higham

3 Non-parametric Estimation

Marsan and Lengliné proposed a method for matching a Hawkes processes to earth-
quake data without making any prior parametric assumptions [16]. The method,
named Model Independent Stochastic Declustering, is similar to expectation-
maximization (EM), but uses a probability weighted histogram when estimating the
triggering function and background rate. Essentially, this approach involves discretis-
ing the background observation window into cells and/or discretising the triggering
components, and building probability weighted histograms in the maximization step
based on the sum of the probabilities from the expectation step which fall in each
discretised region.

In this section, we use the method to infer the triggering function for various
categories of crime data from [2]. This allows us to (a) judge whether the ETAS-
style trigger (3) is appropriate, and (b) look for different triggering patterns between
the crime types. Full details of the implementation can be found in [10].

We applied themethod to public domain data concerning five different crime types
in Chicago: homicide, motor vehicle theft, theft with a reported value of over 500
dollars, aggravated assault, and burglary. The homicide data consists of 4465 events
which took place between 2005 and 2014, the motor vehicle theft data consists of
9860 events in 2014, the data for theft of a value over 500 dollars consists of 14909
events in 2014, the aggravated assault data consists of 13251 events which took place
from 2012 until the end of 2014, and the burglary data consists of 13071 events in
2014.

We focus here on two aspects, both of which are of interest from a criminology
perspective: namely, the temporal and spatial shape of the triggering effect.

Figure 2 shows the temporal decay of the time lag between an event and a triggered
follow-on event, in units of days. We see that each plot produces a profile that
decays over time with an exponential-type behaviour. However, there is a significant
difference in the rates. The half-life is around 10 days for motor vehicle theft and
burglary, around 20 days for theft over 500 dollars, and around 40 days for aggravated
assault. Although homicide produces a qualitatively similar picture, the the decay
rate is much larger, with a half-life of around 400 days.

Figure 3 concerns the spatial aspect of triggering. In each plot, with the triggering
event located at the origin, the markers indicate the location of a follow-on triggered
event. Here, the horizontal and vertical axes represent east-west and north-south
directions, with distance measured in kilometers. We note that streets in Chicago
typically follow an east-west and north-south orientation, with block sizes of around
100–200 m [1]. We see that theft over 500 dollars, aggravated assault and burglary
show spatial concentration—a triggered event is typically within one or two blocks
of the parent event. For homicide and motor vehicle theft there is less evidence of
spatial concentration.

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 125

Homicide

Time

F
re

qu
en

cy

0 500 1000 1500

0
20

40
60

80
Motor Vehicle Theft

Time

F
re

qu
en

cy

0 20 40 60 80

0
50

15
0

25
0

Theft over 500 Dollars

Time

F
re

qu
en

cy

0 20 40 60 80

0
50

10
0

15
0

20
0

Aggravated Assault

Time
F

re
qu

en
cy

0 20 40 60 80

0
10

20
30

40
Burglary

Time

F
re

qu
en

cy

0 20 40 60 80

0
50

15
0

25
0

Fig. 2 Histograms show the time, in days, after an initial event when crimes are assumed to have
been triggered for the non-parametric point process fitted to five different crime types

4 Parametric Trigger Models

Several authors have motivated the use of self-exciting point processes in the context
of crime by observing that certain categories, including burglary and gang violence,
produce highly clustered event sequences that can be accounted for by a triggering
mechanism. For example, a gang shooting may lead to retaliatory acts of violence
against rival gangs, and burglars often target houseswhich have recently been burgled
and nearby houses [19]. Hence, self-exciting point processes have been used tomodel
crime in a number of studies, including to model burglary and other crimes in Kent
[20], LosAngeles [19] andPittsburgh [25], tomodel gang rivalries inLosAngeles [9],
to predict gun crime and homicides in Chicago [18], to model the use of improvised
explosive devices during “The Troubles” [26], and to model civilian deaths in Iraq
[15].

The parametrized triggering function in (3) captures the broad requirement that
likelihood decays in time and space, and is generally consistent with the inferred pro-
files in Figs. 2 and 3. The function is also sufficiently simple that themodel parameters
have natural interpretations and can be inferred from data. Of course, isotropic trig-
ger models, where the triggering effect depends on distance but not direction, do

126 C. Gilmour and D. J. Higham

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Homicide

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Motor Vehicle Theft

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Theft over 500 Dollars

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Aggravated Assault

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Burglary

Fig. 3 Locations of assumed triggered events in relation to the event that triggered them. Euclidean
distance is measured in kilometers and the direction north is vertical

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 127

not account for geographical heterogeneities (lakes, hills, one-way systems, types
of urban zone), and hence more detailed information could be incorporated at the
expense of model complexity. Another unnatural feature of the model (3) is that
the trigger takes its largest value, temporally, immediately after the event has taken
place: we have f (0) = αω and exponential decay thereafter. To remedy this potential
drawback, we propose the following alternative trigger, which we will refer to as the
delayed response (DR) model:

f (t)h(x, y) = ᾱω̄2te−ω̄t 1

2πσ2
e−(x2+y2)/2σ2

. (4)

As t varies, this function has maximum intensity at time t = 1/ω̄, with ᾱ giving the
expected number of events triggered.

We argue that the DR trigger function (4) is more readily justified than the ETAS
version (3), on the grounds that the risk of follow-on crime increases over a certain
period following the initial crime, before then starting to decay. For example, it has
been reported in the criminology literature that perpetrators of homicide often have a
‘cooling-off’ period between victims [8]. In terms of burglary, several theories have
been posited to suggest that repeat victimisation may be more likely to occur after a
period of time has passed from the initial incident, including the notion that a burglar
will want to wait until the previous victims have replaced their stolen belongings,
or that information about a ‘successful’ crime being committed would take time to
pass between criminals [22].

Figure 4 shows how the two triggering functions (3) and (4) compare.

0 5 10 15 20

0.
00

0.
02

0.
04

Time

In
te

ns
ity

ETAS Model
DR Model

Fig. 4 Example of the ETAS model (3) in blue, with α = 0.2 and ω = 0.2, and the DR model (4)
in red, with ᾱ = 0.2 and ω̄ = 0.2

128 C. Gilmour and D. J. Higham

5 Parametrised Trigger on Real Data

In this section we fit the two models (3) and (4) to real data and compare their
predictive power.

5.1 EM-Algorithm

Following work in this context by [18, 20, 27, 29], the models are fitted using an
EM approach, We note that local convergence of the algorithm has been studied [7].
Because the underlying problem is not convex, the algorithm suffers from a drawback
that is shared by many numerical methods, namely the tendency to converge to local
maxima [28].

Full details of our approach may be found in [10]. We estimate the background
rate μ(x, y, t) through kernel density estimation. The EM-algorithm begins with an
initial guess (α(0),μ(0),ω(0)). A lower triangular matrix of probabilities, P (0), is also
initialized, with pii representing the probability that event i was a background event,
and p(k+1)

i j representing the probability that it was caused by event j for i > j . The
algorithm then iterates between expectation and maximisation steps [11].

The expectation step at the (k + 1)th iteration for a self-exciting point process
with triggering function (3) takes the form

p(k+1)
i i = μ(k)(ti , xi , yi)

μ(k)(ti , xi , yi) + ∑i−1
j=1 g(ti − t j , xi − x j , yi − y j)

, (5)

p(k+1)
i j = g(ti − t j ;α(k),ω(k))

μ(k)(t j , x j , y j) + ∑i−1
j=1 g(ti − t j , xi − x j , yi − y j)

. (6)

The corresponding maximization step is then

α(k+1) =
∑n

i=1

∑i−1
j=1 p

(k+1)
i j

n
, (7)

ω(k+1) =
∑n

i=1

∑i−1
j=1 p

(k+1)
i j∑n

i=1

∑i−1
j=1 p

(k+1)
i j (ti − t j)

, (8)

σ2(k+1) =
∑n

i=1

∑i−1
j=1 pi j ((xi − x j)

2 + (yi − y j)2)
∑n

i=1

∑i−1
j=1 2pi j (ti − t j)

. (9)

With theDRmodel (4), the steps in theEM-algorithmare the same,with the exception
that (8) changes to

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 129

ω̄(k+1) =
∑n

i=1

∑i−1
j=1 2p

(k+1)
i j∑n

i=1

∑i−1
j=1 p

(k+1)
i, j (ti − t j)

. (10)

5.2 Results on Real Data

We fitted the ETAS and DR models with Gaussian spatial components to the five
different Chicago crime data sets mentioned in Sect. 3. When fitting the models we
assumed that no crime was triggered more than a kilometer from the original event
or after 90 days of an event occurring, with the exception of the homicide data where
we did not limit the length of time over which an event could trigger another. These
results are summarised in Tables 1 and 2. The corresponding temporal factors in the
trigger functions are displayed on the left of Figs. 5 and 6.

5.3 Prediction Results

Having fitted both models to the crime data, we now test their performance in terms
of predicting future behaviour. To do this, following the type of approach used in
[18, 19], we separated Chicago into 75 × 75 m gridsquares and used hourly time
points. Having fitted the two models to data from previous time points, at each new

Table 1 Parameters found when fitting the ETAS model with Gaussian spatial components, (3), to
the five selected different crime types

Crime type α ω σ

Homicide 0.1782 0.004 0.3681

Motor vehicle theft 0.2432 0.1688 0.2897

Theft over 500 dollars 0.2507 0.1610 0.2868

Aggravated assault 0.1756 0.1205 0.2528

Burglary 0.2442 0.1692 0.2369

Table 2 Parameters found when fitting the DR model with Gaussian spatial components, (4), to
the five selected different crime types

Crime type ᾱ ω̄ σ

Homicide 0.2438 0.006 0.3775

Motor vehicle theft 0.3661 0.2023 0.3182

Theft over 500 dollars 0.3702 0.2093 0.3206

Aggravated assault 0.1915 0.1063 0.3150

Burglary 0.3431 0.2764 0.2771

130 C. Gilmour and D. J. Higham

hourly interval we applied eachmodel.We then ranked the gridsquares in terms of the
predicted intensity. This quantifies the relative likelihood of future events occurring
in each gridsquare, according to each model. To judge the result, we then checked
what proportion of the total number of actual (unseen) events in the next hour were
accounted for by the first gridsquare, the first two gridsquares, first three gridsquares,
and so on.

The right-handpictures inFigs. 5 and6 show results that compare (3) and (4).Here,
for example, 0.01 on the x-axis corresponds to using the top 1% of the gridsquares
and 0.1 on the y-axis corresponds to accounting for 10% of the total activity. In
general, as is the case for a classic Receiver Operating Characteristic (ROC) curve,
a higher curve indicates better performance. In the figures, a red line is used for the
ETAS model (3) and a blue line for the DR model (4). We see that the two models
have comparable performance on the four categories in Fig. 5. For the burglary data
in Fig. 6, ETAS starts to outperform DR as more gridsquares are considered.

We note that for the DR model, the maximum trigger effect for motor vehicle
theft, theft over 500 dollars, aggravated assault and burglary arises at around 5-10
days, whereas for homicide this value increases to around 150 days. These results are
consistent with, and add further insight to, previous findings; in particular, a study of
repeat victimization in [22] found that the highest risk of a follow-on burglary arose
during the first week after an initial event.

6 Discussion

Mathematical models are used in a vast range of disciplines within science and
engineering as a means to investigate hypotheses, understand patterns and make pre-
dictions. Their use in the field of criminology has undergone a recent dramatic growth
[4, 5], although it is imperative to acknowledge that any practical deployment of auto-
mated data-driven algorithms must address important, and possibly insurmountable,
challenges around ethics, privacy and fairness [3, 6, 12, 13, 17, 23].

Our work focused on the development and evaluation of high-level mathematical
models that allow us to incorporate and test hypotheses from the field of crimi-
nology about the overall mechanisms at play—what are the “laws of motion” for
criminal events and how do they differ between crime types? We concentrated on
one specific issue: the use of a triggering effect in self-exciting spatio-temporal point
processes. Using a nonparametric approach, we quantified and visualised the charac-
teristic triggering patterns for five distinct categories of crime.We then compared two
parametrised trigger functions: the widely used Exponential TypeAfter Shockmodel
(3) and a new Delayed Response model (4). Both models have the same number of
parameters and the same overall exponential decay in space and time. The Expo-
nential Type After Shock model is based on the hypothesis that the trigger effect is
greatest at the exact instant that an event takes place, whereas the Delayed Response
model incorporates a tuneable “lag time” before the likelihood of a triggered event is
maximum. The two models were seen to perform similarly with respect to predictive

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 131

0 500 1000 1500

0e
+

00
4e

−
04

8e
−

04

Homicide

Time

f

0.000 0.005 0.010 0.015

0.
00

0.
04

0.
08

0.
12

Proportion of 75x75m grids flagged

P
ro

po
rt

io
n

of
 h

om
ic

id
es

de
te

ct
ed

0 20 40 60 80

0.
00

0.
02

0.
04

Motor Vehicle Theft

Time

f

0.000 0.005 0.010 0.015
0.

00
0.

02
0.

04
0.

06
Proportion of 75x75m grids flagged

P
ro

po
rt

io
n

of
 v

eh
ic

le
th

ef
ts

 d
et

ec
te

d

0 20 40 60 80

0.
00

0.
02

0.
04

Theft over 500 Dollars

Time

f

0.000 0.005 0.010 0.015

0.
00

0.
05

0.
10

0.
15

Proportion of 75x75m grids flagged

P
ro

po
rt

io
n

of
 th

ef
ts

de
te

ct
ed

0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0

Aggravated Assault

Time

f

0.000 0.005 0.010 0.015

0.
00

0.
04

0.
08

0.
12

Proportion of 75x75m grids flagged

P
ro

po
rt

io
n

of
 a

ss
au

lts
de

te
ct

ed

Fig. 5 Left: red and blue lines show the temporal component of the ETAS andDR trigger functions,
respectively, with the parameters from Tables 1 and 2. Right: corresponding prediction results on
unseen data; here, higher is better

132 C. Gilmour and D. J. Higham

0 20 40 60 80

0.
00

0.
02

0.
04

Burglary

Time

f

0.000 0.005 0.010 0.015

0.
00

0.
04

0.
08

0.
12

Proportion of 75x75m grids flagged

P
ro

po
rt

io
n

of
 b

ur
gl

ar
ie

s
de

te
ct

ed

Fig. 6 As for Fig. 5, with burglary data

power. The Delayed Response model also delivers lag times that are consistent with
empirical studies in repeat victimization, and in this sense we believe that it adds
value to current modelling activities in this area.

Acknowledgements CG was supported by EPSRC Programme Grant EP/P020720/1. DJH was
supported by grant EP/M00158X/1 from the EPSRC/RCUK Digital Economy Programme and by
EPSRC Programme Grant EP/P020720/1. Illustrative R code may be downloaded from https://
www.maths.ed.ac.uk/~dhigham/algfiles.html

References

1. Street and Site Plan Design Standards, City of Chicago. https://www.cityofchicago.org/
dam/city/depts/cdot/StreetandSitePlanDesignStandards407.pdf, 2007. [Online; accessed 13-
November-2018].

2. City of Chicago Data Portal. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-
present/ijzp-q8t2/data, 2016. [Online; accessed 20-November-2016].

3. L. Bennett Moses and J. Chan. Algorithmic prediction in policing: assumptions, evaluation,
and accountability. Policing and Society, 28(7):806–822, 2018.

4. H. Berestycki, S. Johnson, J. Ockendon, and M. Primicerio. Criminality. European Journal of
Applied Mathematics, 21(4-5), 2010.

5. A. Bertozzi, S. Johnson, and M. Ward. Mathematical modelling of crime and security: Special
issue of EJAM. European Journal of Applied Mathematics, 27(3):311–316, 2016.

6. A. A. Braga. The effects of hot spots policing on crime. The ANNALS of the American Academy
of Political and Social Science, 578(1):104–125, 2001.

7. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages
1–38, 1977.

8. J. E. Douglas, R. K. Ressler, A. W. Burgess, and C. R. Hartman. Criminal profiling from crime
scene analysis. Behavioral Sciences & the Law, 4(4):401–421, 1986.

9. M. Egesdal, C. Fathauer, K. Louie, J. Neuman, G.Mohler, and E. Lewis. Statistical and stochas-
tic modeling of gang rivalries in Los Angeles. SIAMUndergraduate Research Online, 3:72–94,
2010.

10. C. Gilmour. Self-exciting Point Processes and their Applications to Crime Data. PhD thesis,
University of Strathclyde, 2019.

11. P. Grindrod. Mathematical Underpinnings of Analytics. Oxford University Press, 2015.
12. P. Hunt, J. Saunders, and J. S. Hollywood. Evaluation of the Shreveport predictive policing

experiment. Rand Corporation, 2014.

https://www.maths.ed.ac.uk/~dhigham/algfiles.html
https://www.maths.ed.ac.uk/~dhigham/algfiles.html
https://www.cityofchicago.org/dam/city/depts/cdot/StreetandSitePlanDesignStandards407.pdf
https://www.cityofchicago.org/dam/city/depts/cdot/StreetandSitePlanDesignStandards407.pdf
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process 133

13. T. Karppi. “The computer said so”: On the ethics, effectiveness, and cultural techniques of
predictive policing. https://doi.org/10.1177.2056305118768296, May 2018. Social Media+
Society.

14. P. J. Laub, T. Taimre, and P. K. Pollett. Hawkes processes. arXiv:1507.02822, 2015.
15. E. Lewis, G. Mohler, P. J. Brantingham, and A. L. Bertozzi. Self-exciting point process models

of civilian deaths in Iraq. Security Journal, 25(3):244–264, 2012.
16. D. Marsan and O. Lengliné. Extending earthquakes’ reach through cascading. Science,

319(5866):1076–1079, 2008.
17. A.Meijer andM.Wessels. Predictive policing: Reviewof benefits and drawbacks. International

Journal of Public Administration, 42(12):1031–1039, 2019.
18. G. Mohler. Marked point process hotspot maps for homicide and gun crime prediction in

Chicago. International Journal of Forecasting, 30(3):491–497, 2014.
19. G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita. Self-

exciting point process modeling of crime. Journal of the American Statistical Association,
106(493):100–108, 2011.

20. G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J.
Brantingham.Randomized controlled field trials of predictive policing. Journal of theAmerican
Statistical Association, 110(512):1399–1411, 2015.

21. Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point pro-
cesses. Journal of the American Statistical Association, 83(401):9–27, 1988.

22. N. Polvi, T. Looman, C. Humphries, and K. Pease. The time course of repeat burglary victim-
ization. The British Journal of Criminology, 31(4):411–414, 1991.

23. J. H. Ratcliffe, R. B. Taylor, A. P. Askey, K. Thomas, J. Grasso, K. J. Bethel, R. Fisher,
and J. Koehnlein. The Philadelphia predictive policing experiment. Journal of Experimental
Criminology, in press, 2020.

24. A. Reinhart. A review of self-exciting spatio-temporal point processes and their applications.
Statistical Science, 33(3):299–318, 2018.

25. A. Reinhart and J. Greenhouse. Self-exciting point processes with spatial covariates: modelling
the dynamics of crime. Journal of the Royal Statistical Society: Series C (Applied Statistics),
67(5):1305–1329, 2018.

26. S. Tench, H. Fry, and P. Gill. Spatio-temporal patterns of ied usage by the provisional Irish
republican army. European Journal of Applied Mathematics, 27(3):377–402, 2016.

27. A. Veen and F. P. Schoenberg. Estimation of space–time branching process models in
seismology using an em–type algorithm. Journal of the American Statistical Association,
103(482):614–624, 2008.

28. C. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, pages
95–103, 1983.

29. S. F. C. K. Zipkin, J. and A. Bertozzi. Point-process models of social network interactions:
Parameter estimation and missing data recovery. European Journal of Applied Mathematics,
27, 2016.

https://doi.org/10.1177.2056305118768296
http://arxiv.org/abs/1507.02822

A New Multi-point Stepsize Gradient
Method for Optimization

Yakui Huang, Yu-Hong Dai, and Xin-Wei Liu

Abstract The Barzilai-Borwein (BB) gradient method, which employs two-point
stepsizes computed by the information of two consecutive iterations, is efficient
in solving large-scale unconstrained optimization. In this paper, motivated by the
success of BB method and the multi-point stepsize proposed by Dai and Fletcher
(Mathematical Programming, 2006, 106: 403–421), we develop a new efficient gra-
dient method, called MPSG, which adaptively uses the Dai-Fletcher long stepsize
and Dai-Fletcher short stepsize. The R-linear convergence of MPSG for general n-
dimensional strictly convex quadratic functions is established. By making use of two
modified multi-point stepsizes and nonmonotone line searches, MPSG is extended
to solve general unconstrained optimization. Moreover, the proposedMPSGmethod
is further generalized for solving extreme eigenvalue problems. Numerical experi-
ments on quadratic optimization, general unconstrained optimization and extreme
eigenvalue problems demonstrate the efficiency of our method.

Keywords Gradient methods · Multi-point stepsize · Quadratic optimization ·
Unconstrained optimization · Extreme eigenvalue problems

Y. Huang · X.-W. Liu
Institute of Mathematics, Hebei University of Technology, Tianjin 300401, China
e-mail: huangyakui2006@gmail.com

X.-W. Liu
e-mail: mathlxw@hebut.edu.cn

Y.-H. Dai (B)
State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190, China
e-mail: dyh@lsec.cc.ac.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_7&domain=pdf
mailto:huangyakui2006@gmail.com
mailto:mathlxw@hebut.edu.cn
mailto:dyh@lsec.cc.ac.cn
https://doi.org/10.1007/978-3-030-72040-7_7

136 Y. Huang et al.

1 Introduction

The Barzilai-Borwein (BB) gradient method [4] is efficient for solving large-scale
unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable. In particular, the BB method
updates iterates by

xk+1 = xk − αkgk, (2)

where gk = ∇ f (xk) and αk > 0 is calculated by

αBB1
k = argmin

α>0
‖α−1sk−1 − yk−1‖ = sTk−1sk−1

sTk−1yk−1
(3)

or

αBB2
k = argmin

α>0
‖sk−1 − αyk−1‖ = sTk−1yk−1

yTk−1yk−1
, (4)

where sk−1 = xk − xk−1, yk−1 = gk − gk−1 and ‖ · ‖ means the Euclidean norm.
Clearly,when sTk−1yk−1 > 0, there holdsαBB1

k ≥ αBB2
k .Unlike the traditional steepest

descent (SD)method [8], the BBmethod generally generates nonmonotone objective
values. However, it often performs much better than the SD method in practice, see
[22, 33, 40] for example. Theoretically, when f (x) is a strictly quadratic function,
i.e.,

f (x) = 1

2
xT Ax − bT x, (5)

where b ∈ R
n and A ∈ R

n×n is symmetric and positive definite, the BB method
converges R-superlinearly for the two-dimensional case [4], which is better than the
Q-linear convergence rate of the SD method [2]. For general n-dimensional case,
the BBmethod is globally convergent [32] and the convergence rate is R-linear [15].

For general unconstrained optimization, to ensure global convergence of the BB
method, line searches are often necessary. Raydan [33] suggested to incorporate the
Grippo-Lampariello-Lucidi (GLL) nonmonotone line search in [24], which requires
the new objective value is smaller than the maximal function value in recent M
iterations, i.e.,

f (xk − λkgk) ≤ fr − σλkg
T
k gk, (6)

where fr = max0≤ j≤min{k,M−1} f (xk− j) with M being a positive integer and λk is
the step length. By combining the GLL nonmonotone line search, a global BB
(GBB) method was proposed. With carefully investigation of performances of the
BB method, Fletcher [22] argued that when a not high accuracy is required, the BB

A New Multi-point Stepsize Gradient Method for Optimization 137

method could be even competitive with nonlinear conjugate gradient (CG) methods.
Extensive studies support the view of Fletcher, especially for the case of smooth
unconstrained optimization, see [6, 22, 33] for example.

A great advantage of the BB method is its easy extension to solve general uncon-
strained and constrained optimization. For unconstrained optimization, Zhou et al.
[42] proposed the adaptive BB (ABB) method, which employs the stepsize

αk =
{

αBB2
k , if αBB2

k /αBB1
k < τ ;

αBB1
k , otherwise,

(7)

where τ ∈ (0, 1). Although ABB is originally developed for quadratics, it performs
well for general functions [42]. Dai et al. [13] developed an adaptive cyclic BB
(CBB) method which reuses the same BB stepsize for m consecutive iterations.
They observed that when m > n/2 > 3, where n is the problem dimension, CBB is
locally superlinearly convergent. Motivated by the Broyden class of quasi-Newton
methods [7], Dai et al. [14] derived a family of BB-like methods whose stepsize is
given by the convex combination of the two BB stepsizes, i.e.,

αk = γαBB1
k + (1 − γ)αBB2

k , (8)

where γ ∈ [0, 1]. Clearly, αBB1
k and αBB2

k correspond to γ = 1 and 0, respectively. It
is shown that each method in the family converges R-superlinearly when minimiz-
ing two-dimensional strictly convex quadratics and R-linearly for the n-dimensional
case. As for constrained optimization, by combining gradient projection techniques,
Birgin et al. [5] generalized the GBB method to minimize differentiable functions
on closed convex sets. Dai and Fletcher [11] suggested to solve the bound con-
strained optimization by the so-called projected alternating BB method which uses
the stepsize

αk =
{

αBB1
k , for odd k;

αBB2
k , for even k.

(9)

By incorporating smoothing techniques,Huang andLiu [27] generalized themodified
projected alternating BBmethod for solving non-Lipschitz constrained optimization.
BB-like methods have been successfully applied in many important fields including
image restoration [37], signal processing [31], eigenvalue problems [30], nonnegative
matrix factorization [28], sparse reconstruction [38], machine learning [36], etc. See
[6, 14, 20, 22, 40] and references therein formore BB-likemethods and applications.

In [12], Dai and Fletcher considered singly linearly constrained quadratic pro-
grams subjected to upper and lower bounds. They introduced a new multi-point
stepsize calculated by using information of recent m iterations:

αDF1
k+1 = argmin

α
‖α−1s̃k − ỹk‖ = s̃Tk s̃k

s̃Tk ỹk
=

∑m−1
i=0 sTk−i sk−i∑m−1
i=0 sTk−i yk−i

, (10)

138 Y. Huang et al.

where m ≥ 1 and

s̃k = (sTk , sTk−1, . . . , s
T
k−m+1)

T , ỹk = (yTk , yTk−1, . . . , y
T
k−m+1)

T . (11)

Obviously, αDF1
k+1 reduces to αBB1

k+1 when m = 1. The stepsize αDF1
k+1 performs very

well in training support vector machines.
In this paper, motivated by the success of the Dai-Fletcher stepsize, we develop

an efficient gradient method using multi-point stepsizes for solving general uncon-
strained optimization. Particularly, as (4), we can derive another multi-point stepsize
as follows

αDF2
k+1 = argmin

α
‖s̃k − α ỹk‖ = s̃Tk ỹk

ỹTk ỹk
=

∑m−1
i=0 sTk−i yk−i∑m−1
i=0 yTk−i yk−i

. (12)

Clearly, when s̃Tk ỹk > 0, there holds αDF1
k+1 ≥ αDF2

k+1 . So, we will refer to αDF1
k+1 and

αDF2
k+1 as Dai-Fletcher long stepsize and Dai-Fletcher short stepsize, respectively.

Based on the two stepsizes αDF1
k+1 and αDF2

k+1 , we first propose an adaptive multi-
point stepsize gradient (MPSG) method for quadratics. The R-linear convergence of
MPSG is established for n-dimensional strictly convex quadratics. Then we extend
the MPSG method to solve general unconstrained optimization by slightly mod-
ifying the two stepsizes and incorporating the adaptive nonmonotone line search
proposed by Dai and Zhang [17]. Furthermore, we extend the method for solving
extreme eigenvalues problems. Numerical results on quadratic optimization, general
unconstrained optimization and extreme eigenvalue problems show that our proposed
MPSG method is very efficient.

The paper is organized as follows. In Sect. 2, we first propose the MPSG method
for quadratics and show its R-linear convergence. Then we generalize the method
to solve general unconstrained optimization. In Sect. 3, we apply the method to
extreme eigenvalue problems. Section 4 present our extensive numerical experiments
on solving quadratic optimization, general unconstrained and eigenvalue problems.
Finally, some conclusions and discussions are given in the last section.

2 MPSG Method

In this section, based on the Dai-Fletcher long stepsize αDF1
k+1 and Dai-Fletcher short

stepsize αDF2
k+1 , we propose an adaptive multi-point stepsize gradient method MPSG

for quadratics. Then we extend it to solve general unconstrained optimization.

A New Multi-point Stepsize Gradient Method for Optimization 139

2.1 Quadratic Case

Now we consider to minimize a strictly quadratic function (5). Without loss of gen-
erality, we assume that the matrix A is diagonal, i.e.,

A = diag{λ1, . . . ,λn}, (13)

where 0 < λ1 ≤ . . . ≤ λn .
It follows from the definitions of s̃k and ỹk in (11) that

s̃Tk ỹk = s̃Tk Bs̃k and ỹTk ỹk = s̃Tk B
2s̃k,

where B = I ⊗ A with ⊗ being the Kronecker product. By Theorem 4.2.12 in [25],
we know that the matrix B has same eigenvalues as A. Thus, by the Cauchy-Schwarz
inequality, we obtain

1

λn
≤ αDF2

k+1 ≤ αDF1
k+1 ≤ 1

λ1
. (14)

So, the two Dai-Fletcher stepsizes have similar spectral property as the BB stepsizes.
Recent studies show that a gradient method using the adaptive scheme with a long

and some short stepsizes performs generally better than that with only one stepsize,
see [13, 42] for example. So, our method incorporates an adaptive scheme similar
as the one in [42]. In order to get a short stepsize, we would like to use the smaller
one of recent two Dai-Fletcher short stepsizes. More precisely, our method uses the
following stepsize

αk+1 =
{
min{αDF2

k ,αDF2
k+1 }, if αDF2

k+1 /αDF1
k+1 < τ ;

αDF1
k+1 , otherwise,

(15)

where τ ∈ (0, 1). Recall that both αDF1
k+1 and αDF2

k+1 need information of recent m
iterations. When k ≤ m, we simply setm = k. In what follows, the method (15) will
be referred to as MPSG.

To establish the R-linear convergence of MPSG, we need the following notation

G(k, l) =
l∑

i=1

(g(i)
k)2.

In [10], Dai proved that if a gradient method employs some stepsize satisfies the
following Property (A) then it converges R-linearly.

Property (A) [10]. Suppose that there exist an integer M1 and positive constants
c1 ≥ λ1 and c2 such that

140 Y. Huang et al.

(i) λ1 ≤ α−1
k ≤ c1;

(ii) for any integer l ∈ [1, n − 1] and ε > 0, if G(k − j, l) ≤ ε and (g(l+1)
k− j)2 ≥ c2ε

hold for j ∈ [0,min{k, M1} − 1], then α−1
k ≥ 2

3λl+1.

Based on Dai’s result, we show R-linear convergence of MPSG in the following
theorem.

Theorem 1 Suppose that the sequence {‖gk‖} is generated by applying MPSG to
n-dimensional quadratics with the matrix A has the form (13) and 1 = λ1 ≤ λ2 ≤
· · · ≤ λn. Then either gk = 0 for some finite k or the sequence {‖gk‖} converges to
zero R-linearly.

Proof We are suffice to proveMPSG satisfies Property (A). Let c1 = λn , c2 = 2 and
M1 = m + 1. By (14), we conclude that (i) of Property (A) holds.

If G(k − i, l) ≤ ε and (g(l+1)
k−i)2 ≥ c2ε hold for i ∈ [0,min{k, M1} − 1], we have

(αDF1
k+1)−1 =

∑m−1
i=0 sTk−i yk−i∑m−1
i=0 sTk−i sk−i

=
∑m−1

i=0 (αDF1
k−i)2

∑n
j=1 λ j (g

(j)
k−i)

2∑m−1
i=0 (αDF1

k−i)2
∑n

j=1(g
(j)
k−i)

2

≥ λl+1
∑m−1

i=0 (αDF1
k−i)2

∑n
j=l+1(g

(j)
k−i)

2∑m−1
i=0 (αDF1

k−i)2(ε + ∑n
j=l+1(g

(j)
k−i)

2)

= λl+1∑m−1
i=0 (αDF1

k−i)2ε∑m−1
i=0 (αDF1

k−i)2
∑n

j=l+1(g
(j)
k−i)

2
+ 1

≥ c2
c2 + 1

λl+1 = 2

3
λl+1.

When αDF2
k+1 /αDF1

k+1 < τ , by (14), one has

(αk+1)
−1 ≥ (αDF2

k+1)−1 ≥ (αDF1
k+1)−1.

So, (ii) of Property (A) holds. This completes the proof. �

2.2 General Unconstrained Optimization

In this subsection, we extendMPSG for solving general unconstrained optimization.
When applied theMPSGmethod to general functions, it is possible that sTk yk ≤ 0.

To address this issue, for BB-like methods, a frequently used strategy is adding
safeguards

αk+1 = max{αmin,min{αk+1,αmax}}, (16)

whereαmax andαmin are preassigned positive constants satisfyingαmax 	 αmin > 0.
However, for multi-point stepsizes αDF1

k+1 and αDF2
k+1 , s

T
k−i yk−i may be negative for any

A New Multi-point Stepsize Gradient Method for Optimization 141

i ∈ {0, . . . ,m − 1}, which may further lead to αDF1
k+1 < 0 and αDF2

k+1 < 0. In this case,
Dai andFletcher [12] suggested to compute themulti-point stepsize by replacingm by
min{m, m̄}, where m̄ is themaximal integer such that sTk−i yk−i > 0 for all 0 ≤ i ≤ m̄.
And when m̄ = 0, setting αk+1 = αmax. Takingm = 2 for example, if sTk yk ≤ 0 then
αk+1 will be set to αmax, which is not a good stepsize in general since it is very large.
However, sTk−1yk−1 may be positive which is abandoned by the above strategy. So,
to avoid negative stepsizes and exploit the information carried by recent iterations,
we would like to use the following modified stepsizes

αMDF1
k+1 =

∑m−1
i=0 sTk−i sk−i∑m−1
i=0 |sTk−i yk−i |

(17)

and

αMDF2
k+1 =

∑m−1
i=0 |sTk−i yk−i |∑m−1
i=0 yTk−i yk−i

. (18)

Similarly as the quadratic case, our MPSG method for general unconstrained opti-
mization uses the above two modified stepsizes adaptively, i.e.,

αk+1 =
{
min{αMDF2

k ,αMDF2
k+1 }, if αMDF2

k+1 /αMDF1
k+1 < τ ;

αMDF1
k+1 , otherwise,

(19)

where τ ∈ (0, 1). We also enforce safeguards (16) to chop any extreme values of the
stepsize.

To ensure global convergence, a nonmonotone line search is often employed by
BB-like methods. Although the GLL nonmonotone line search [24] performs well
in many cases, Dai [9] presented an example to show that the GLL condition (6)
may fail for any fixed M . To address this issue, Zhang and Hager [41] developed
a new nonmonotone line search that uses a reference value defined by the convex
combination of the former function values. A nonmonotone line search specially
suitable for BB-like methods is due to Dai and Zhang [17], which accepts the step
length λk = 1 if

f (xk − gk) ≤ fr − σgTk gk . (20)

Otherwise, an Armijo-type back tracking line search will be performed to find a step
length λk such that

f (xk − λkαkgk) ≤ min{ fmax, fr } − σλkαkg
T
k gk, (21)

where fmax is the maximal function value in recent M iterations. See [17] for the
update of the reference value fr .

Using the same arguments as the one in Theorem 3.2 of [17], we can show that,
when f (x) is twice-continuously differentiable and is bounded from below, our
MPSG method is global convergent in the sense lim infk→∞ ‖gk‖ = 0.

142 Y. Huang et al.

3 Extension to Extreme Eigenvalue Problems

In this section, we extend our MPSG method to solve extreme eigenvalue problems
of large-scale symmetric positive definite matrices.

For a given n × n real symmetric matrix A, its eigenvalue decomposition has the
form

A = Q�QT ,

where Q ∈ R
n×n is an orthogonal matrix whose columns are eigenvectors of A and

� = diag{λ1, . . . ,λn} with λ1 ≤ . . . ≤ λn .
The calculation of eigenvalue and eigenvector is a fundamental problem with

important applications in scientific computing and engineering such as principal
component analysis [18] and electronic structure calculation [26]. In practice, it is
usually realistic to compute the first r � n largest/smallest eigenvalues and their
corresponding eigenvectors of matrix A.

The problem of computing the first r � n largest/smallest eigenvalues and their
corresponding eigenvectors of matrix A can be written as Rayleigh quotient mini-
mization [1]

min
X∈Rn×r

tr(XT AX (XT X)−1) (22)

or trace minimization [34, 35]

min
X∈Rn×r

tr(XT AX)

s.t. XT X = Ir ,
(23)

where Ir denotes the r × r identity matrix. A drawback of the above two models lies
in computing inverse or orthogonalization of a matrix, which may be expensive for
large matrices.

Recently, Jiang et al. [29] suggested the following unconstrained model

min
X∈Rn×r

Pμ(X) = 1

4
tr(XT X XT X) + 1

2
tr(XT (A − μIn)X), (24)

where μ > 0 is a scaling parameter. They proved that, with proper μ, the global
minimizers of (24) lie in the eigenspace corresponding to the r smallest eigenvalues
of A. Furthermore, they suggested an alternate BB method, called EigUncABB, for
solving (24), which uses the following modified BB stepsize alternately

αMBB1
k = tr(STk−1Sk−1)

|tr(STk−1Yk−1)| and αMBB2
k = |tr(STk−1Yk−1)|

tr(Y T
k−1Yk−1)

,

i.e.,

αk =
{

αMBB2
k , for odd k;

αMBB1
k , for even k.

(25)

A New Multi-point Stepsize Gradient Method for Optimization 143

Here, Sk−1 = Xk − Xk−1 andYk−1 = ∇Pμ(Xk) − ∇Pμ(Xk−1). To ensure global con-
vergence, the EigUncABB method incorporates the nonmonotone line search used
in [12], which can be viewed as a simplified version of the Dai-Zhang nonmonotone
line search. In particular, the nonmonotone line search requires the step length λk to
satisfy

f (xk − λkαkgk) ≤ fr − σλkαkg
T
k gk, (26)

where the reference value fr is updated as follows:

i f fk < fbest ,
fbest = fk , fc = fk , l = 0 ,

else
fc = max{ fc, fk} , l = l + 1 ,
i f l = L ,

fr = fk , fc = fk , l = 0 ,
end

end

Here, fbest is the current best function value, i.e.,

fbest = min
1≤ j≤k

f (x j),

l is the number of iterations since the value of fbest was obtained, fc is the maxi-
mum value of the objective function since the value of fbest was found, and L is a
preassigned number.

The EigUncABBmethod appears very competitive with theMatlab build-in func-
tion EIGS and other recent methods. Motivated by EigUncABB, we would like to
extend ourMPSGmethod to solve extreme eigenvalue problem (24). In fact, we only
need to adopt the twomulti-point stepsizes (17) and (18) tomatrix cases. Particularly,
we can compute them by

αMDF1
k+1 =

∑m−1
i=0 tr(STk−i Sk−i)∑m−1
i=0 |tr(STk−i Yk−i)|

(27)

and

αMDF2
k+1 =

∑m−1
i=0 |tr(STk−i Yk−i)|∑m−1
i=0 tr(Y T

k−i Yk−i)
. (28)

Ourmethod for (24)will be referred to as EigUncMPSG,which employs the adaptive
stepsize (19) with the above two stepsizes and the above simplified nonmonotone
line search. That is, the only difference between EigUncMPSG and EigUncABB is
the stepsize. In the next section, we will see that our new EigUncMPSG method
often performs better the EigUncABB method.

144 Y. Huang et al.

4 Numerical Results

In this section, we present numerical comparisons of our proposed MPSG method
with other recent successful gradient methods on quadratic optimization, general
unconstrained optimization and extreme eigenvalue problems. All the algorithms
were implemented in Matlab (v.9.0-R2016a) and run on a laptop with an Intel Core
i7, 2.9 GHz processor and 8 GB of RAM running Windows 10 system.

4.1 Quadratic Optimization Problems

In this subsection, we compare our MPSG method with the BB1 [4], DY [16],
ABBmin2 [23], and SDC [19] methods on solving quadratic optimization problems.

We tested the methods on randomly generated quadratic problems in [39], i.e.,

min
x∈Rn

f (x) = (x − x∗)T V (x − x∗). (29)

Here, x∗ is a randomly generated solution whose components lie in [−10, 10], and
V = diag{v1, . . . , vn} is a diagonal matrix whose diagonal components are v1 = 1,
vn = κ and v j ∈ (1,κ), j = 2, . . . , n − 1, are generated by the rand function.

As we know, if the Hessian V has different spectral distributions the performances
of a gradientmethodmay be quite different. So,we tested problem (29) using five sets
of different spectral distributions of the Hessian listed in Table 1 with n = 1, 000.We
stopped themethod if the number of iteration exceeds 20,000 or ‖gk‖ ≤ ε‖g0‖, where
ε > 0 is a given tolerance. To investigate the performances of the compared methods
on different tolerances and condition numbers, we set ε = 10−6, 10−9, 10−12 and
κ = 104, 105, 106.

Table 1 Distributions of v j Problem Spectrum

*1 {v2, . . . , vn−1} ⊂ (1,κ)

*2 {v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , vn−1} ⊂ (κ
2 ,κ)

*3 {v2, . . . , vn/2} ⊂ (1, 100)

{vn/2+1, . . . , vn−1} ⊂ (κ
2 ,κ)

*4 {v2, . . . , v4n/5} ⊂ (1, 100)

{v4n/5+1, . . . , vn−1} ⊂ (κ
2 ,κ)

*5 {v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , v4n/5} ⊂ (100, κ
2)

{v4n/5+1, . . . , vn−1} ⊂ (κ
2 ,κ)

A New Multi-point Stepsize Gradient Method for Optimization 145

Fig. 1 Performance profiles
of compared methods on
solving random quadratic
problems (29) with spectral
distributions in Table 1,
iteration metric

1 1.5 2 2.5 3 ρ
0

0.2

0.4

0.6

0.8

1

BB1

DY

SDC

ABB

ABBmin2

MPSG

The parameter τ was set to 0.9 for the ABBmin2 method as suggested in [23]
whereas the pair (h, s) of the SDC method was set to (8, 6) which is more efficient
than other choices for this test. The parameters m and τ for our MPSG method were
set to 2 and 0.1, respectively. For each value of κ or ε, averaged results of 10 instances
using the starting point x0 = (0, . . . , 0)T are presented.

The performance profiles of Dolan and Moré [21] on iteration metric was
employed to compare the algorithms, where the vertical axis shows the percent-
age of the problems the method solves within the factor ρ of the metric used by the
most effective method in this comparison. It can be seen from Fig. 1 that MPSG is
much better than other methods in terms of number of iterations.

Table 2 gives the numbers of averaged iterations of the comparedmethods. Appar-
ently, MPSG outperforms the BB1, DY, ABB and SDCmethods on the first problem
set though ABBmin2 is faster than MPSG. For the second to fifth problem sets,
MPSG is much better than other methods. In addition, for each tolerance, MPSG is
the fastest method in terms of total number of iterations.

4.2 Unconstrained Optimization Problems

Now we compare our MPSG method with the GBB method of Raydan [33] on 59
unconstrained problems from [3] listed in Table 3 with n = 1, 000.

For the Dai-Zhang nonmonotone line search, the parameter values were set as
follows:

αmin = 10−20, αmax = 1020, M = 8, σ = 10−4, α0 = 1/‖g0‖∞.

146 Y. Huang et al.

Table 2 The numbers of averaged iterations of the BB1, DY, ABB, ABBmin2, SDC and MPSG
methods on solving quadratic problems (29) with spectral distributions in Table 1

Set ε BB1 DY SDC ABB ABBmin2 MPSG

1 1e–06 266.8 227.4 222.5 214.4 197.4 224.1

1e–09 2381.3 2657.4 1758.4 1039.2 501.2 699.5

1e–12 6128.6 6108.0 4262.8 1294.9 661.4 1018.4

2 1e–06 315.5 275.0 170.5 277.2 272.4 143.4

1e–09 1776.5 1462.8 727.1 1567.0 1329.9 532.4

1e–12 3151.6 2539.9 1316.8 2688.5 2135.8 908.3

3 1e–06 379.7 321.4 219.1 347.2 422.1 183.4

1e–09 1685.4 1522.1 852.7 1655.7 1460.1 592.0

1e–12 3055.0 2608.9 1340.5 2874.9 2364.3 943.8

4 1e–06 523.0 458.4 253.5 449.4 528.7 211.0

1e–09 1956.4 1737.7 859.8 1802.1 1540.2 612.6

1e–12 3080.8 2842.8 1310.4 2996.9 2481.6 995.3

5 1e–06 846.1 655.7 679.3 685.7 867.7 616.4

1e–09 4237.9 3763.3 3361.1 2943.4 3146.0 2518.9

1e–12 7174.5 7567.8 6070.2 4878.0 4936.7 4239.0

Total 1e–06 2331.1 1937.9 1544.9 1973.9 2288.3 1378.3

1e–09 12037.5 11143.3 7559.1 9007.4 7977.4 4955.4

1e–12 22590.5 21667.4 14300.7 14733.2 12579.8 8104.8

Fig. 2 Performance profile
of the MPSG and GBB
methods, iteration metric on
unconstrained problems
listed in Table 3

1 1.5 2 2.5 3 ρ
0

0.2

0.4

0.6

0.8

1

GBB

MPSG

We used m = 2 and τ = 0.8 for MPSG which performs better than other settings.
Default parameters were used for GBB. Each method was stopped if the number of
iteration exceeds 200,000 or ‖gk‖∞ ≤ 10−6.

FromFig. 2we can see thatMPSGperforms better thanGBBon the test problems.

A New Multi-point Stepsize Gradient Method for Optimization 147

Table 3 Test problems from [3]

Problem Name Problem Name

1 Extended Freudenstein
& Roth function

31 NONDIA

2 Extended
Trigonometric

32 DQDRTIC

3 Extended White &
Holst

33 Partial Perturbed
Quadratic

4 Extended Beale 34 Broyden Tridiagonal

5 Extended Penalty 35 Almost Perturbed
Quadratic

6 Perturbed Quadratic 36 Perturbed Tridiagonal
Quadratic

7 Raydan 1 37 Staircase 1

8 Raydan 2 38 Staircase 2

9 Diagonal 1 39 LIARWHD

10 Diagonal 2 40 POWER

11 Diagonal 3 41 ENGVAL1

12 Hager 42 EDENSCH

13 Generalized
Tridiagonal 1

43 BDEXP

14 Extended Tridiagonal
1

44 GENHUMPS

15 Extended TET 45 NONSCOMP

16 Generalized
Tridiagonal 2

46 VARDIM

17 Diagonal 4 47 QUARTC

18 Diagonal 5 48 Extended
DENSCHNB

19 Extended Himmelblau 49 Extended
DENSCHNF

20 Extended PSC1 50 LIARWHD

21 Generalized PSC1 51 BIGGSB1

22 Extended Powell 52 Generalized Quartic

23 Extended Cliff 53 Diagonal 7

24 Perturbed quadratic
diagonal

54 Diagonal 8

25 Quadratic QF1 55 Full Hessian FH3

26 Extended quadratic
exponential EP1

56 SINCOS

27 Extended Tridiagonal
2

57 Diagonal 9

28 BDQRTIC 58 HIMMELBG

29 TRIDIA 59 HIMMELH

30 ARWHEAD

148 Y. Huang et al.

4.3 Extreme Eigenvalue Problems

In this subsection, we compare our EigUncMPSG method with the EigUncABB
method in [29] on solving extreme eigenvalue problems.

The methods were compared on the example in [29], where a 16, 000 × 16, 000
matrix was generated by the following Matlab command

[lambda,Uex,A] = laplacian([20, 20, 40], ’DD’ ’NN’ ’P’);

Here, “lambda” is the exact eigenvalues of A while “Uex” is the corresponding
eigenvectors. This matrix is symmetric positive definite and can be viewed as the 3D
negative Laplacian on a rectangular finite difference grid.

Let ūi and λ̄i be the i th approximate eigenvector and eigenvalue obtained by the
compared algorithms. Further denote the relative eigenvalue error and residual error
of the i th eigenpair by

erri = |λ̄i − λi |
max{1, |λi |} and resii = ‖Aūi − λ̄i ūi‖

max{1, |λ̄i |}
.

The mean values of erri and resii , i = 1, . . . , r , are used to measure the quality of
the computed solution.

The parameters for our EigUncMPSG are same as the former subsection except
L = 10 and τ = 0.3. Default parameters were set for EigUncABB. We stopped the
iteration when ‖∇Pμ(Xk)‖F ≤ 10−4. For fair comparison, the same initial point
generated by the following Matlab codes was used

seed = 100; rng(seed,’twister’); X0 = randn(n, r); X0 = orth(X0).

And the initial trial stepsize was set to α0 = ‖∇Pμ(X0)‖−1
F . The initial value of μ

was set to 1.01 × λr̄ (XT
0 AX0), where r̄ = max{�1.1r�, 10} with �·� denoting the

nearest integer less than or equal to the corresponding element. In addition, μ was
updated as follows:

i f ‖∇Pμ(Xk)‖F ≤ 0.1 j0‖∇Pμ(X0)‖F and j0 ≤ jmax

μ = 1.01λr̄ (XT
k AXk)

j0 = j0 + 1
end

In our test, as [29], j0 and jmax were set to 1 and 3, respectively. See [29] for more
details on the updating of μ.

Table 4 presents results obtained by the two compared methods where “nfe”
denotes the total number of function evaluations and “time” denotes the CPU time
in seconds. It can be seen that, for a given r , our EigUncMPSG method often out-
performs EigUncABB in terms of function evaluations and CPU time. In addition,
the values of relative eigenvalue error obtained by EigUncMPSG are better than or

A New Multi-point Stepsize Gradient Method for Optimization 149

Table 4 Comparison of EigUncMPSG and EigUncABB on extreme eigenvalue problems

EigUncABB EigUncMPSG

r resi err nfe Time resi err nfe Time

20 1.37e–05 9.78e–09 160 2.7 8.48e–05 1.34e–08 144 2.2

50 1.62e–05 1.76e–08 170 5.3 1.66e–05 5.39e–08 151 4.7

100 7.09e–05 2.02e–09 183 10.5 7.51e–05 3.87e–09 193 11.9

200 3.75e–06 5.23e–10 216 29.9 5.71e–05 1.20e–09 195 27.5

300 4.11e–06 8.12e–11 188 44.5 2.10e–06 6.43e–11 158 40.9

400 6.86e–07 6.72e–13 168 69.8 5.59e–07 1.43e–12 172 66.7

500 3.17e–06 2.87e–11 227 124.8 5.79e–07 2.56e–13 221 127.0

600 3.16e–06 1.59e–12 238 175.4 1.10e–06 1.26e–12 199 153.2

700 5.99e–07 1.05e–12 212 215.0 2.47e–07 1.04e–13 239 243.5

800 2.36e–06 1.93e–11 234 306.7 3.27e–06 2.68e–12 193 242.3

900 3.51e–06 7.33e–12 194 312.4 8.84e–08 8.98e–15 235 342.6

1000 1.28e–06 2.06e–12 240 434.3 2.37e–07 3.46e–13 230 429.8

comparable to those by EigUncABB for most of the values of r . This suggests the
potential benefits of our new multi-point stepsizes for solving matrix optimization.

Notes and Comments.
Based on the Dai-Fletcher stepsizes, we have proposed an efficient adaptive multi-
point stepsize gradient method MPSG for minimizing quadratics and extended it to
solve unconstrained optimization by slightly modifying the stepsizes. The R-linear
convergence of MPSG for strictly quadratics has been established whereas its global
convergence for general unconstrained optimization is ensured by the nonmonotone
line search. The proposed MPSG method was further generalized for solving an
unconstrained model of extreme eigenvalue problems. Numerical comparisons of
our proposed MPSG method and other successful gradient methods were presented.

Notice that both the two Dai-Fletcher stepsizes αDF1
k and αDF2

k treat the recent
m iterations equally. However, the information carried by those iterations is updated
along the iterative process. So, it is useful to treat the iterations differently. To this
end, we may use the following weighted Dai-Fletcher long stepsize

αWDF1
k+1 = argmin

α
‖Wk(α

−1s̃k − ỹk)‖ = s̃Tk Wks̃k
s̃Tk Wk ỹk

=
∑m−1

i=0 w
(i+1)
k sTk−i sk−i∑m−1

i=0 w
(i+1)
k sTk−i yk−i

, (30)

where Wk is a diagonal matrix given by

Wk = diag{w(1)
k , w

(2)
k , . . . , w

(m)
k } ⊗ In

with w
(1)
k , w

(2)
k , . . . , w

(m)
k ≥ 0, which can be viewed as weights for sk−i , i = 0, 1,

. . .m − 1. Obviously, αWDF1
k+1 reduces to αDF1

k+1 when Wk = I . The weighted Dai-

150 Y. Huang et al.

Fletcher short stepsize which generalizes αDF2
k+1 can be obtained by

αWDF2
k+1 = argmin

α
‖Wk(s̃k − α ỹk)‖ = s̃Tk Wk ỹk

ỹTk Wk ỹk
=

∑m−1
i=0 w

(i+1)
k sTk−i yk−i∑m−1

i=0 w
(i+1)
k yTk−i yk−i

. (31)

Our preliminary results show the above weighted stepsizes lead to an efficient gra-
dient method that comparable to MPSG. However, one remain question is how to
choose weights for them iterations. We will investigate this issue in our future work.

Acknowledgements This work was supported by the Natural Science Foundation of China (No.
11701137, 11991020, 11631013, 11971372, 11991021, 11671116) and Beijing Academy of Arti-
ficial Intelligence (BAAI). The authors are grateful to Associate Professor Bo Jiang of Nanjing
Normal University for providing the codes of EigUncABB. They also thank the anonymous refer-
ees for their useful suggestions and comments.

References

1. Absil, P., Mahony, R., Sepulchre, R., VanDooren, P.: AGrassmann–Rayleigh quotient iteration
for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)

2. Akaike, H.: On a successive transformation of probability distribution and its application to
the analysis of the optimum gradient method. Ann. Inst. Stat. Math. 11(1), 1–16 (1959)

3. Andrei, N.: An unconstrained optimization test functions collection. Adv.Model. Optim. 10(1),
147–161 (2008)

4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1),
141–148 (1988)

5. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods
on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

6. Birgin, E.G., Martínez, J.M., Raydan, M., et al.: Spectral projected gradient methods: review
and perspectives. J. Stat. Softw. 60(3), 539–559 (2014)

7. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp.
19(92), 577–593 (1965)

8. Cauchy, A.: Méthode générale pour la résolution des systemes déquations simultanées. Comp.
Rend. Sci. Paris 25, 536–538 (1847)

9. Dai, Y.: On the nonmonotone line search. J. Optimz. Theory App. 112(2), 315–330 (2002)
10. Dai, Y.H.: Alternate step gradient method. Optimization 52(4-5), 395–415 (2003)
11. Dai, Y.H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box-constrained

quadratic programming. Numer. Math. 100(1), 21–47 (2005)
12. Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs

subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006)
13. Dai, Y.H., Hager, W.W., Schittkowski, K., Zhang, H.: The cyclic Barzilai–Borwein method for

unconstrained optimization. IMA J. Numer. Anal. 26(3), 604–627 (2006)
14. Dai, Y.H., Huang, Y., Liu, X.W.: A family of spectral gradient methods for optimization.

Comput. Optim. Appl. 74, 43–65 (2019)
15. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA

J. Numer. Anal. 22(1), 1–10 (2002)
16. Dai, Y.H., Yuan, Y.X.: Analysis of monotone gradient methods. J. Ind. Mang. Optim. 1(2),

181–192 (2005)

A New Multi-point Stepsize Gradient Method for Optimization 151

17. Dai, Y.H., Zhang, H.: Adaptive two-point stepsize gradient algorithm. Numer. Alg. 27(4),
377–385 (2001)

18. Daspremont, A., Ghaoui, L.E., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for sparse
PCA using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)

19. De Asmundis, R., Di Serafino, D., Hager, W.W., Toraldo, G., Zhang, H.: An efficient gradient
method using the Yuan steplength. Comp. Optim. Appl. 59(3), 541–563 (2014)

20. Di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient
methods for unconstrained optimization. Appl. Math. Comput. 318, 176–195 (2018)

21. Dolan, E.D.,Moré, J.J.: Benchmarking optimization software with performance profiles.Math.
Program. 91(2), 201–213 (2002)

22. Fletcher, R.: On the Barzilai–Borwein method. Optimization and Control with Applications
pp. 235–256 (2005)

23. Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods.
J. Ind. Mang. Optim. 4(2), 299–312 (2008)

24. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s
method. SIAM Journal on Numerical Analysis 23(4), 707–716 (1986)

25. Horn, R.A., Johnson., C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge
(1991)

26. Hu, J., Jiang, B., Lin, L., Wen, Z., Yuan, Y.: Structured quasi-Newton methods for optimization
with orthogonality constraints. SIAM J. Sci. Comput. 41(4), A2239–A2269 (2019)

27. Huang, Y., Liu, H.: Smoothing projected Barzilai–Borwein method for constrained non-
Lipschitz optimization. Comp. Optim. Appl. 65(3), 671–698 (2016)

28. Huang, Y., Liu, H., Zhou, S.: Quadratic regularization projected Barzilai–Borwein method for
nonnegative matrix factorization. Data Min. Knowl. Disc. 29(6), 1665–1684 (2015)

29. Jiang, B., Cui, C., Dai, Y.H.: Unconstrained optimizationmodels for computing several extreme
eigenpairs of real symmetric matrices. Pac. J. Optim. 10(1), 53–71 (2014)

30. Jiang,B.,Dai,Y.H.: FeasibleBarzilai–Borwein-likemethods for extreme symmetric eigenvalue
problems. Optim. Method Softw. 28(4), 756–784 (2013)

31. Liu, Y.F., Dai, Y.H., Luo, Z.Q.: Coordinated beamforming for miso interference channel: Com-
plexity analysis and efficient algorithms. IEEE Trans. Signal Process. 59(3), 1142–1157 (2011)

32. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA
J. Numer. Anal. 13(3), 321–326 (1993)

33. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)

34. Sameh, A., Tong, Z.: The trace minimization method for the symmetric generalized eigenvalue
problem. J. Comput. Appl. Math. 123(1), 155–175 (2000)

35. Sameh, A., Wisniewski, J.A.: A trace minimization algorithm for the generalized eigenvalue
problem. SIAM J. Numer. Anal. 19(6), 1243–1259 (1982)

36. Tan, C., Ma, S., Dai, Y.H., Qian, Y.: Barzilai–Borwein step size for stochastic gradient descent.
In: Advances in Neural Information Processing Systems, pp. 685–693 (2016)

37. Wang, Y., Ma, S.: Projected Barzilai–Borwein method for large-scale nonnegative image
restoration. Inverse Probl. Sci. En. 15(6), 559–583 (2007)

38. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approxima-
tion. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

39. Yuan, Y.X.: A new stepsize for the steepest descent method. J. Comput. Math. 24(2), 149–156
(2006)

40. Yuan, Y.X.: Step-sizes for the gradient method. AMS IP Studies in Advanced Mathematics
42(2), 785–796 (2008)

41. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to uncon-
strained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

42. Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comp. Optim. Appl.
35(1), 69–86 (2006)

A Julia Implementation of Algorithm
NCL for Constrained Optimization

Ding Ma, Dominique Orban, and Michael A. Saunders

Abstract Algorithm NCL is designed for general smooth optimization problems
where first and second derivatives are available, including problems whose con-
straints may not be linearly independent at a solution (i.e., do not satisfy the LICQ).
It is equivalent to the LANCELOT augmented Lagrangian method, reformulated as a
short sequence of nonlinearly constrained subproblems that can be solved efficiently
by IPOPT and KNITRO, with warm starts on each subproblem. We give numerical
results from a Julia implementation of Algorithm NCL on tax policy models that do
not satisfy the LICQ, and on nonlinear least-squares problems and general problems
from the CUTEst test set.

Keywords Constrained optimization · Second derivatives · Algorithm NCL · Julia

1 Introduction

Algorithm NCL (nonlinearly constrained augmented Lagrangian [15]) is designed
for smooth, constrained optimization problems for which first and second derivatives
are available. Without loss of generality, we take the problem to be

D. Ma
Department of Management Science and Department of Marketing, College of Business, City
University of Hong Kong, Kowloon, Hong Kong
e-mail: dingma@cityu.edu.hk
URL: https://www.cb.cityu.edu.hk/staff/dingma

D. Orban (B)
GERAD and Department of Mathematics and Industrial Engineering, Ecole Polytechnique de
Montréal, Montreal, QC, Canada
e-mail: dominique.orban@gerad.ca
URL: https://dpo.github.io

M. A. Saunders
Systems Optimization Laboratory, Department of Management Science and Engineering,
Stanford University, Stanford, CA, USA
e-mail: saunders@stanford.edu
URL: http://stanford.edu/~saunders

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_8

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_8&domain=pdf
mailto:dingma@cityu.edu.hk
https://www.cb.cityu.edu.hk/staff/dingma
mailto:dominique.orban@gerad.ca
https://dpo.github.io
mailto:saunders@stanford.edu
http://stanford.edu/\LY1\textasciitilde saunders
https://doi.org/10.1007/978-3-030-72040-7_8

154 D. Ma et al.

NCO minimize
x∈Rn

φ(x)

subject to c(x) = 0, � ≤ x ≤ u,

where φ(x) is a scalar objective function and c(x) ∈ Rm is a vector of linear or
nonlinear constraints. Inequality constraints are accommodated by including slack
variableswithin x .We take the primal and dual solutions to be (x∗, y∗, z∗).We denote
the objective gradient by g(x) = ∇φ(x) ∈ Rn , and the constraint Jacobian by J (x) ∈
Rm×n . The objective and constraint Hessians are Hi (x) ∈ Rn×n , i = 0, 1, . . . ,m.

If J (x∗) has full row rank m, problem NCO satisfies the linear independence
constraint qualification (LICQ) at x∗. Most constrained optimization solvers have
difficulty if NCO does not satisfy the LICQ. An exception is LANCELOT [4, 5, 13].
AlgorithmNCL inherits this desirable property by being equivalent to the LANCELOT
algorithm. Assuming first and second derivatives are available, Algorithm NCLmay
be viewed as an efficient implementation of the LANCELOT algorithm. Previously we
have implemented Algorithm NCL in AMPL [1, 6, 15] for tax policy problems [11,
15] that could not otherwise be solved.1 Here we describe our implementation in
Julia [3] and give results on the tax problems and on a set of nonlinear least-squares
and general problems from the CUTEst test set [9].

2 LANCELOT and NCL

For problem NCO, LANCELOT implements what we call a BCL algorithm (bound-
constrained augmented Lagrangian algorithm), which solves a sequence of about 10
bound-constrained subproblems

BCk minimize
x

L(x, yk, ρk) = φ(x) − yTk c(x) + 1
2ρk‖c(x)‖2

subject to � ≤ x ≤ u

for k = 0, 1, 2, . . . , where yk is an estimate of the dual variable associated with
c(x) = 0, andρk > 0 is a penalty parameter. Each subproblemBCk is solved (approx-
imately) with a decreasing optimality tolerance ωk , giving an iterate (x∗

k , z
∗
k). If‖c(x∗

k)‖ is no larger than a decreasing feasibility tolerance ηk , the dual variable is
updated to yk+1 = yk − ρkc(x∗

k). Otherwise, the penalty parameter is increased to
ρk+1 > ρk .

Optimality is declared if c(x∗
k) ≤ ηk and ηk , ωk have already been decreased to

specified minimum values η∗, ω∗. Infeasibility is declared if c(x∗
k) > ηk and ρk has

already been increased to a specified maximum value ρ∗.

1 Available from https://github.com/optimizers/ncl.

https://github.com/optimizers/ncl

A Julia Implementation of Algorithm NCL for Constrained Optimization 155

If n is large and not many bounds are active at x∗, the BCk subproblems havemany
degrees of freedom, and LANCELOTmust optimize in high-dimension subspaces. The
subproblems are therefore computationally expensive. The algorithm in MINOS [16]
(we call it an LCL algorithm) reduces this expense by including linearizations of the
constraints within its subproblems:

LCk minimize
x

L(x, yk, ρk) = φ(x) − yTk c(x) + 1
2ρk‖c(x)‖2

subject to c(x∗
k−1) + J (x∗

k−1)(x − x∗
k−1) = 0, � ≤ x ≤ u.

The SQP algorithm in SNOPT [8] solves subproblems with the same linearized con-
straints and a quadratic approximation to the LCk objective. Complications arise for
both MINOS and SNOPT if the linearized constraints are infeasible.

Algorithm NCL proceeds in the opposite way by introducing additional variable
r ≡ −c(x) into subproblems LCk to obtain the NCL subproblems

NCk minimize
x, r

φ(x) + yTk r + 1
2ρk‖r‖2

subject to c(x) + r = 0, � ≤ x ≤ u.

These subproblems have nonlinear constraints and far more degrees of freedom
than the original NCO! Indeed, the extra variables r make the subproblems more
difficult if they are solved by MINOS and SNOPT. However, the subproblems satisfy
the LICQ because of r . Also, interior solvers such as IPOPT [10] and KNITRO [12]
find r helpful because at each interior iteration p they update the current primal-
dual point (xp, rp, λp) by computing a search direction (Δx,Δr,Δλ) from a linear
system of the form

⎛
⎝

(Hp + Dp) J T
p

ρk I I
Jp I

⎞
⎠

⎛
⎝

Δx
Δr
Δλ

⎞
⎠ = −

⎛
⎝
g(xp) + J T

p λp − z p + wp

yk + ρkrp + λp

c(xp) + rp

⎞
⎠ , (1)

where Dp, z p and wp are an ill-conditioned positive-definite diagonal matrix and
two vectors arising from the interior method, and each Lagrangian Hessian Hp =
H0(xp) − ∑

i (yk)i Hi (xp)maybe altered to bemore positive definite. Directmethods
for solving each sparse system (1) are affected very little by the higher dimension
caused by r , and they benefit significantly from

(
Jp I

)
always having full row rank.

If an optimal solution for NCk is (x∗
k , r

∗
k , y

∗
k , z

∗
k) and the feasibility and optimality

tolerances have decreased to their minimum values η∗ and ω∗, a natural stopping
condition for Algorithm NCL is ‖r∗

k ‖∞ ≤ η∗, because the major iterations drive r
toward zero and we see that if r = 0, subproblem NCk is equivalent to the original
problem NCO.

156 D. Ma et al.

We have found that Algorithm NCL is successful in practice because

– there are only about 10 major iterations (k = 1, 2, . . . , 10);
– the search-direction computation (1) for interior solvers is more stable than if the
solvers are applied to NCO directly;

– IPOPT and KNITRO have run-time options that facilitate warm starts for each sub-
problem NCk , k > 1.

3 Optimal Tax Policy Problems

The above observations were confirmed by our AMPL implementation of Algorithm
NCL in solving some large problems modeling taxation policy [11, 15, 17]. The
problems have very many nonlinear inequality constraints c(x) ≥ 0 in relatively few
variables. They have the form

TAX maximize
c, y

∑
i λiU i (ci , yi)

subject to Ui (ci , yi) −Ui (c j , y j) ≥ 0 for all i, j
λT (y − c) ≥ 0

c, y ≥ 0,

where ci and yi are the consumption and income of taxpayer i , and λ is a vector of
positive weights.2 The utility functions Ui (ci , yi) are each of the form

U (c, y) = (c − α)1−1/γ

1 − 1/γ
− ψ

(y/w)1/η+1

1/η + 1
,

where w is the wage rate and α, γ , ψ and η are taxpayer heterogeneities. More
precisely, the utility functions are of the form

Ui, j,k,g,h(cp,q,r,s,t , yp,q,r,s,t) = (cp,q,r,s,t − αk)
1−1/γh

1 − 1/γh
− ψg

(yp,q,r,s,t/wi)
1/η j+1

1/η j + 1
,

where (i, j, k, g, h) and (p, q, r, s, t) run over na wage types, nb elasticities of
labor supply, nc basic need types, nd levels of distaste for work, and ne elasticities
of demand for consumption, with na, nb, nc, nd, ne determining the size of the
problem, namelym = T (T − 1) nonlinear constraints, n = 2T variables, with T :=
na × nb × nc × nd × ne.

To achieve reliability, we found it necessary to extend the AMPLmodel’s definition
ofU (c, y) to be a piecewise-continuous function that accommodates negative values
of (c − α).

2 In this section, (c, y, λ) refer to problem TAX, not the variables in Algorithm NCL.

A Julia Implementation of Algorithm NCL for Constrained Optimization 157

Table 1 Run-time options for warm-starting IPOPT and KNITRO on subproblem NCk

IPOPT KNITRO

k = 1 algorithm=1

k ≥ 2 warm_start_init_point=yes bar_directinterval=0

bar_initpt=2

bar_murule=1

k = 2, 3 mu_init=1e-4 bar_initmu=1e-4

bar_slackboundpush=1e-4

k = 4, 5 mu_init=1e-5 bar_initmu=1e-5

bar_slackboundpush=1e-5

k = 6, 7 mu_init=1e-6 bar_initmu=1e-6

bar_slackboundpush=1e-6

k = 8, 9 mu_init=1e-7 bar_initmu=1e-7

bar_slackboundpush=1e-7

k ≥ 10 mu_init=1e-8 bar_initmu=1e-8

bar_slackboundpush=1e-8

At a solution, a large proportion of the constraints are essentially active. The failure
of LICQ causes numerical difficulties for MINOS, SNOPT, and IPOPT. LANCELOT
is more able to find a solution, except it is very slow on each subproblem NCk .
For example, on the smallest problem of Table 2 with 32220 constraints and 360
variables, LANCELOT running on NEOS [18] timed-out at a near-optimal point on
the 11th major iteration after 8 hours of CPU.

Note that when the constraints of NCO are inequalities c(x) ≥ 0 as in problem
TAX, the constraints of subproblem NCk become inequalities c(x) + r ≥ 0 (and
similarly for mixtures of equalities and inequalities). The inequalities mean “more
free variables” (more variables that are not on a bound). This increases the problem
difficulty for MINOS and SNOPT, but has only a positive effect on the interior solvers.

In wishing to improve the efficiency of Algorithm NCL on larger tax problems,
we found it possible to warm-start IPOPT and KNITRO on each NCk subproblem
(k > 1) by setting the run-time options shown in Table 1. These options were used
byNCL/IPOPT andNCL/KNITRO to obtain the results inTable 2.We see that NCL/IPOPT
performed significantly better than IPOPT itself, and similarly for NCL/KNITRO com-
pared to KNITRO. The feasibility and optimality tolerances ηk , ωk were fixed at
η∗ = ω∗ = 1e− 6 for all k. Our Julia implementation saves computation by start-
ing with larger ηk , ωk and reducing them toward η∗, ω∗ as in LANCELOT.

158 D. Ma et al.

Table 2 Solution of tax problems of increasing dimension using IPOPT and KNITRO on the
original problem (cold starts) and the AMPL implementation of Algorithm NCL with IPOPT or
KNITRO as subproblem solvers (warm-starting with the options in Table 1). The problem size
increases with a problem parameter na. Other problem parameters are fixed at nb = nc = 3, nd =
ne = 2. There are m nonlinear inequality constraints and n variables. For IPOPT, > indicates
optimality was not achieved

IPOPT KNITRO NCL/IPOPT NCL/KNITRO

na m n itns Time itns Time itns Time itns Time

5 32220 360 449 217 168 53 322 146 339 63

9 104652 648 >98 >360 928 825 655 1023 307 239

11 156420 792 >87 >600 2769 4117 727 1679 383 420

17 373933 1224 2598 11447 1021 6347 486 1200

21 570780 1512 1761 17218 712 2880

4 Julia Implementation

Modeling languages such as AMPL and GAMS are domain-specific languages, as
opposed to full-fledged, general-purpose programming languages like C or Java. In
the terminology of Bentley [2], they are little languages. As such, they have under-
standable, yet very real, limitations that make it difficult, inefficient, and perhaps
even impossible, to implement an algorithm such as Algorithm NCL in a sufficiently
generic manner so that it may be applied to arbitrary problems. Indeed, our AMPL

implementation of Algorithm NCL is specific to the optimal tax policy problems, and
it would be difficult to generalize it to other problems. One of the main motivations
for implementing Algorithm NCL in a language such as Julia is to be able to solve a
greater variety of optimization problems.

We now describe the key features of our Julia implementation of Algorithm NCL

and show that it solves examples of the same tax problems more efficiently. We then
give results on a set of nonlinear least-squares problems from the CUTEst test set to
indicate that Algorithm NCL is a reliable solver for such problems where first and
second derivatives are available for the interior solvers used at eachmajor iteration. To
date, this means that Algorithm NCL is effective for optimization problems modeled
in AMPL, GAMS, and CUTEst. (We have not made an implementation in GAMS [7], but
it would be possible to build a major-iteration loop around calls to IPOPT or KNITRO
in the way that we did for AMPL [15].)

4.1 Key Features

The main advantage of a Julia implementation over our original AMPL implementa-
tion is that we may take full advantage of our Julia software suite for optimization,
hosted under the JuliaSmoothOptimizers (JSO) organization [22]. Our suite provides

A Julia Implementation of Algorithm NCL for Constrained Optimization 159

a general consistent API for solvers to interact with models by providing flexible data
types to represent the objective and constraint functions, to evaluate their derivatives,
to examine bounds on the variables, to add slack variables transparently, and to pro-
vide essentially any information that a solver might request from a model. Thanks
to interfaces to modeling languages such as AMPL, CUTEst and JuMP [14], solvers in
JSO may be written without regard for the language in which the model was written.

The modules from our suite that are particularly useful in the context of our
implementation of Algorithm NCL are the following.

– NLPModels [24] is the main modeling package that defines the API on which
solvers can rely to interact with models. Models are represented as instances of
a data type deriving from the base type AbstractNLPModel, and solvers can
evaluate the objective value by calling the obj() method, the gradient vector by
calling the grad() method, and so forth. The main advantage of the consistent
API provided by NLPModels is that solvers need not worry about the provenance
of models. Other modules ensure communication between modeling languages
such as AMPL, CUTEst or JuMP, and NLPModels.

– AmplNLReader [20] is one suchmodule, and, as the name indicates, allows a solver
written in Julia to interact with a model written in AMPL. The communication is
made possible by the AMPL Solver Library (ASL),3 which requires that the model
be decoded as an nl file.

– NLPModelsIpopt [23] is a thin translation layer between the low-level Julia inter-
face to IPOPT provided by the IPOPT.jl package4 and NLPModels, and lets users
solve any problem conforming to the NLPModels API with IPOPT.

– NLPModelsKnitro [25] is similar to NLPModelsIpopt, but lets users solve prob-
lems with KNITRO via the low-level interface provided by KNITRO.jl.5

Julia is a convenient language built on top of state-of-the-art infrastructure under-
lying modern compilers such as Clang. Julia may be used as an interactive language
for exploratory work in a read-eval-print loop similar toMatlab. However, Julia func-
tions are transparently translated to low-level code and compiled the first time they
are called. The net result is compiled code whose efficiency rivals that of binaries
generated from standard compiled languages such as C and Fortran. Though this
last feature is not particularly important in the context of Algorithm NCL because
the compiled solvers IPOPT and KNITRO perform all the work, it is paramount when
implementing pure Julia optimization solvers.

3 http://www.netlib.org/ampl/solvers.
4 https://github.com/jump-dev/Ipopt.jl.
5 https://github.com/jump-dev/KNITRO.jl.

http://www.netlib.org/ampl/solvers
https://github.com/jump-dev/Ipopt.jl
https://github.com/jump-dev/KNITRO.jl

160 D. Ma et al.

4.2 Implementation and Solver Features

The Julia implementation of Algorithm NCL, named NCL.jl [19], is in two parts.
The first part defines a data type NCLModel that derives from the basic data
type AbstractNLPModelmentioned earlier and represents subproblem NCk . An
NCLModel is a wrapper around the underlying problem NCO in which the current
values of ρk and r can be updated efficiently. The second part is the solver itself, each
iteration of which consists of a call to IPOPT or KNITRO, and parameter updates. The
solver takes an NCLModel as input. If the input problem is not an NCLModel, it is
first converted into one. Parameters are initialized as

η0 = 10, ω0 = 10, ρ0 = 100, μ0 = 0.1,

where μ0 is the initial barrier parameter for IPOPT or KNITRO. The initial values of
x are those defined in the underlying model if any, or zero otherwise. We initialize
r to zero and y to the vector of ones. When the subproblem solver returns with NCk

solution (x∗
k , r

∗
k , y

∗
k , z

∗
k), we check whether ‖r∗

k ‖ ≤ max(ηk, η∗). If so, we decide
that good progress has been made toward feasibility and update

yk+1 = yk − ρkr
∗
k , ηk+1 = ηk/10, ωk+1 = ωk/10, ρk+1 = ρk,

where this definition of yk+1 is the first-order update of the multipliers. Otherwise,
we keep most things the same but increase the penalty parameter:

yk+1 = yk, ηk+1 = ηk, ωk+1 = ωk, ρk+1 = min(10ρk, ρ∗),

where ρ∗ > 0 is the threshold beyond which the user is alerted that the problem may
be infeasible. In our implementation, we use ρ∗ = 1012.

Note that updating the multipliers based on ‖r∗
k ‖ instead of ‖c(x∗

k)‖ is a departure
from the classical augmented-Lagrangian update. From the optimality conditions for
NCk wecanprove that thefirst-order update is equivalent to choosing yk+1 = y∗

k when
NCk is solved accurately. We still have a choice between the two updates because we
use low accuracy for the early NCk . We could also “trim” yk+1 (i.e., for inequality
constraints ci (x) + ri ≥ 0 or ≤ 0, set components of yk+1 with non-optimal sign to
zero). These are topics for future research.

With IPOPT as subproblem solver, we warm-start subproblem NCk+1 with the
options in Table 1 and (y∗

k , z
∗
k) as initial values for the Lagrange multipliers. With

KNITRO as subproblem solver, (y∗
k , z

∗
k) as starting point did not help or harm KNITRO

significantly. We allowed KNITRO to determine its own initial multipliers, and it
proved to be significantly more reliable than IPOPT in solving the NCk subproblems
for the optimal tax policy problems. In the next sections, Algorithm NCL means our
Julia implementation with KNITRO as subproblem solver.

A Julia Implementation of Algorithm NCL for Constrained Optimization 161

4.3 Results with Julia/NCL on the Tax Policy Problems

AMPL models of the optimal tax policy problems were input to the Julia imple-
mentation of Algorithm NCL. The notation 1D, 2D, 3D, 4D, 5D refers to problem
parameters na, nb, nc, nd, ne that define the utility function appearing in the objective
and constraints. The subproblem solver was KNITRO 12 [12].

Tables 3, 4, 5, 6 and 7 illustrate that, as with our AMPL implementation of Algo-
rithm NCL, about 10 major iterations are needed independent of the problem size.
(The problems have increasing numbers of variables and greatly increasing numbers
of nonlinear inequality constraints.) In each iteration log,

outer and inner refer to the NCL major iteration number k and the total number of
KNITRO iterations for subproblems NCk ;

NCL obj is the augmented Lagrangian objective value, which converges to the objective
value for the model;

Table 3 Tax1D problem with realistic data. NCL with KNITRO solving subproblems

Table 4 Tax2D problem. NCL with KNITRO solving subproblems

162 D. Ma et al.

Table 5 Tax3D problem. NCL with KNITRO solving subproblems

Table 6 Tax4D problem. NCL with KNITRO solving subproblems

Table 7 Tax5D problem. NCL with KNITRO solving subproblems

A Julia Implementation of Algorithm NCL for Constrained Optimization 163

η and ω show the KNITRO feasibility and optimality tolerances ηk and ωk decreasing from
10−2 to 10−6;

‖∇L‖ is the size of the augmented Lagrangian gradient, namely ‖g(x∗
k) − J (x∗

k)T yk+1‖ (a
measure of the dual infeasibility at the end of major iteration k);

ρ is the penalty parameter ρk ;

μ init is the initial value of KNITRO’s barrier parameter;

‖x‖ is the size of the primal variable x∗
k at the (approximate) solution of NCk ;

‖y‖ is the size of the corresponding dual variable y∗
k ;

time is the number of seconds to solve NCk .

We see from the decreasing inner iteration counts that KNITRO was able to warm-
start each subproblem, and from the decreasing ‖r‖ and ‖∇L‖ values that it is
sufficient to solve the early subproblems with low (but steadily increasing) accuracy.

4.4 Results with Julia/NCL on CUTEst Test Set

Our Julia module CUTEst.jl [21] provides an interface with the CUTEst [9] environ-
ment and problem collection. Its main feature is to let users instantiate problems from
CUTEst using the CUTEstModel constructor so they can be manipulated transpar-
ently or passed to a solver like any other NLPModel.

On a set of 166 constrained problemswith at least 100 variables whose constraints
are all nonlinear, KNITRO solves 147 and NCL solves 126. Although our simple
implementation of NCL is not competitive with plain KNITRO in general, it does
solve a few problems on which KNITRO fails. Those are summarized in Tables 8
and 9. The above results suggest that NCL’s strength might reside in solving difficult
problems (rather than being the fastest), and that more research is needed to improve
its efficiency.

5 Nonlinear Least Squares

An important class of problemsworthy of special attention is nonlinear least-squares
(NLS) problems of the form

min
x

1
2‖c(x)‖2 subject to � ≤ x ≤ u, (2)

where the Jacobian of c(x) is again J (x), and the bounds are often empty. Such
problems are not immediatelymeaningful toAlgorithmNCL,but if they are presented
in the (probably infeasible) form

164 D. Ma et al.

Ta
bl
e
8

K
N
IT
R
O
re
su
lts

on
C
U
T
E
st
co
ns
tr
ai
ne
d
pr
ob

le
m
s
(a

su
bs
et
th
at
fa
ile

d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

‖c
‖ 2

t
ite

r
#
f

#∇
f

#c
#∇

c
#∇

2
L

St
at
us

C
A
T
E
N
A
R
Y

30
03

10
00

−2
.0
1e

+1
0

4.
9e

+0
0

2.
0e

+0
9

18
.5
0

20
00

78
35

20
02

78
35

20
02

20
00

M
ax
_i
te
r

C
O
SH

FU
N

60
01

20
00

−9
.8
2e

+1
7

5.
0e

−0
1

0.
0e

+0
0

19
.4
0

20
00

20
01

20
01

20
01

20
01

20
00

M
ax
_i
te
r

D
R
C
A
V
T
Y
1

44
89

39
69

0.
00

e+
00

0.
0e

+0
0

2.
2e

−0
3

45
6.
00

20
00

91
91

20
02

91
91

20
02

20
00

M
ax
_i
te
r

E
G
3

10
00
1

20
00
0

5.
11
e+

05
2.
0e

+0
3

3.
3e

−0
1

7.
18

51
55

52
55

52
52

In
fe
as
ib
le

JU
N
K
T
U
R
N

10
01
0

70
00

1.
78
e−

03
1.
0e

−0
2

6.
4e

−0
7

12
3.
00

19
13

15
05
1

19
15

15
05
1

19
15

19
14

U
nk
no
w
n

L
U
K
V
L
E
11

99
98

66
64

5.
12

e+
04

5.
1e

+0
2

4.
1e

−0
1

86
.5
0

20
00

69
45

20
01

69
45

20
01

20
00

M
ax
_i
te
r

L
U
K
V
L
E
17

99
97

74
97

3.
22

e+
04

1.
8e

−0
2

9.
9e

−0
7

47
.0
0

20
00

31
90

20
01

31
90

20
01

20
00

M
ax
_i
te
r

L
U
K
V
L
E
18

99
97

74
97

1.
12

e+
04

4.
0e

+0
1

2.
5e

−0
8

83
.9
0

20
00

41
90

20
01

41
90

20
01

20
00

M
ax
_i
te
r

O
R
T
H
R
D
S2

50
03

25
00

7.
62

e+
02

3.
7e

−0
1

5.
0e

−1
3

0.
70

42
92

43
92

43
43

U
nk
no
w
n

A Julia Implementation of Algorithm NCL for Constrained Optimization 165

Ta
bl
e
9

N
C
L
re
su
lts

on
th
e
sa
m
e
pr
ob

le
m
s
(a
ll
su
cc
es
sf
ul
)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

‖c
‖ 2

t
ite

r
#
f

#∇
f

#c
#∇

c
#∇

2
L

St
at
us

C
A
T
E
N
A
R
Y

30
03

10
00

−2
.1
0e

+0
6

1.
54

e−
09

1.
00

e−
07

1.
76

18
3

43
0

19
5

43
0

20
6

19
4

Fi
rs
t_
or
de
r

C
O
SH

FU
N

60
01

20
00

−7
.8
1e

−0
1

9.
02

e−
07

1.
00

e−
07

6.
46

32
8

17
12

33
7

17
12

34
6

33
7

Fi
rs
t_
or
de
r

D
R
C
A
V
T
Y
1

44
89

39
69

0.
00

e+
00

1.
19
e−

08
1.
00

e−
06

29
.3
0

22
2

34
4

23
3

34
4

24
3

23
2

Fi
rs
t_
or
de
r

E
G
3

10
00
1

20
00
0

1.
94

e−
07

1.
00

e−
08

1.
00

e−
07

4.
94

37
47

47
47

57
47

Fi
rs
t_
or
de
r

JU
N
K
T
U
R
N

10
01
0

70
00

9.
94

e−
06

6.
79
e−

07
1.
00

e−
07

5.
29

10
8

13
1

11
9

13
1

12
9

11
8

Fi
rs
t_
or
de
r

L
U
K
V
L
E
11

99
98

66
64

9.
32

e+
02

4.
57
e−

08
1.
00

e−
06

1.
86

37
63

47
63

57
47

Fi
rs
t_
or
de
r

L
U
K
V
L
E
17

99
97

74
97

3.
24

e+
04

1.
59
e−

08
1.
00

e−
07

2.
45

60
94

78
94

96
78

Fi
rs
t_
or
de
r

L
U
K
V
L
E
18

99
97

74
97

1.
10

e+
04

2.
00

e−
12

1.
00

e−
09

3.
43

60
81

79
81

98
79

Fi
rs
t_
or
de
r

O
R
T
H
R
D
S2

50
03

25
00

7.
62

e+
02

9.
96
e−

08
1.
00

e−
07

1.
23

47
63

62
63

77
62

Fi
rs
t_
or
de
r

166 D. Ma et al.

min
x

0 subject to c(x) = 0, � ≤ x ≤ u, (3)

the first NCL subproblem will be

NC0 minimize
x, r

yT0r + 1
2ρ0‖r‖2

subject to c(x) + r = 0, � ≤ x ≤ u,

which is well suited to KNITRO and is equivalent to (2) if y0 = 0 and ρ0 > 0. If we
treat NLS problems as a special case, we can set y0 = 0, ρ0 = 1, η0 = η∗, ω0 = ω∗
and obtain an optimal solution in one NCL iteration. In this sense, Algorithm NCL is
ideally suited to NLS problems (2).

The CUTEst collection features a number of NLS problems in both forms (2)
and (3).While formulation (2) allows evaluation of the objective gradient J (x)T c(x),
it does not give access to J (x) itself. In contrast, a problem modeled as (3) allows
solvers to access J (x) directly.

The NLPModels modeling package allows us to formulate (2) from a problem
given as (3) and fulfill requests for J (x) in (2) by returning the constraint Jacobian
of (3). Alternatively, problem NC0 is easily created by the NCLModel constructor.
The construction of both models is illustrated in Listing 1.1. Once a problem in
the form (2) has been simulated in this way, it can be passed to KNITRO’s nonlinear
least-squares solver, which is a variant of the Levenberg-Marquardt method in which
bound constraints are treated via an interior-point method.

Listing 1.1 Formulating (2) from (3)� �

julia> using CUTEst
julia> model = CUTEstModel("ARWHDNE") #
problem in the form (*@(3)@*)
julia> nls_model = FeasibilityResidual(model) # interpretation of
(*@(3)@*) as representing (*@(2)@*)
julia> knitro(nls_model) # NLPModelsKnitro calls
KNITRO/Levenberg-Marquardt
julia> ncl_model = NCLModel(model,
y=zeros(model.meta.ncon), ρ=1.0) # problem NC0
julia> knitro(ncl_model) # NLPModelsKnitro calls standard KNITRO

� �

We identified 127 problems in the form (3) in CUTEst. We solve each problem in
two ways:

Solver knitro_nls applies KNITRO’s nonlinear least-squares method to (2).
Solver ncl_nls uses KNITRO to perform a single NCL iteration on NC0.

In both cases, KNITRO is given a maximum of 500 iterations and 30 minutes of CPU
time. Optimality and feasibility tolerances are set to 10−6.
knitro_nls solved 101 problems to optimality, reached the iteration limit in 19

cases and the time limit in 3 cases, and failed for another reason in 4 cases.ncl_nls
solved 119 problems to optimality, reached the iteration limit in 3 cases and the time
limit in 3 cases, and failed for another reason in 2 cases.

A Julia Implementation of Algorithm NCL for Constrained Optimization 167

Fig. 1 Performance profiles comparing knitro_nls (KNITRO’s NLS solver applied to (2))
and ncl_nls (KNITRO solving NC0) on 127 nonlinear least squares problems from CUTEst.
ncl_nls is more efficient

168 D. Ma et al.

Figure 1 shows Dolan-Moré performance profiles comparing the two solvers. The
top and middle plots use the number of residual and residual Jacobian evaluations
as metric, which, in the case of (3), corresponds to the number of constraint and
constraint Jacobian evaluations. The bottom plot uses time as metric. ncl_nls
outperforms knitro_nls in all three measures and appears substantially more
robust. It is important to keep inmind that a keydifference between the two algorithms
is that ncl_nls uses second-order information, and therefore performs Hessian
evaluations. Nevertheless, those evaluations are not so costly as to put NCL at a
disadvantage in terms of run-time. For reference, Tables 10 and 11 give the detailed
results.

6 Summary

Our AMPL implementation of the tax policy models and Algorithm NCL has been the
only way we could handle these particular problems reliably [15], with KNITRO solv-
ing each subproblem accurately. Our Julia implementation of NCL achieves greater
efficiency on these AMPL models by gradually tightening the KNITRO feasibility
and optimality tolerances. It also permits testing on a broad range of problems, as
illustrated on nonlinear least-squares problems and other problems from the CUTEst

test set. We believe Algorithm NCL could become an effective general-purpose opti-
mization solver when first and second derivatives are available. It is especially useful
when the LICQ is not satisfied at the solution. The current Julia implementation of
NCL (with KNITRO as subproblem solver) is not quite competitive with KNITRO itself
on the general CUTEst problems in terms of run-time or number of evaluations, but
it does solve some problems on which KNITRO fails. An advantage is that the imple-
mentation is generic and may be applied to problems from any collection adhering
to the interface of the NLPModels.jl package [24].

7 Detailed Results for Julia/NCL on NLS Problems

Table 10 reports the detailed results of KNITRO/Levenberg-Marquardt on problems
of the form (2) using the modeling mechanism of Sect. 5. In the table headers, “nvar”
is the number of variables, “ncon” is the number of constraints (i.e., the number
of least-squares residuals), f is the final objective value, ‖∇L‖2 is the final dual
residual, t is the run-time in seconds, “iter” is the number of iterations, “#c” is the
number of constraint (i.e, residual) evaluations, “#∇c” is the number of constraint
(i.e., residual) Jacobian evaluations, and “status” is the final solver status.

Table 11 reports the results of Julia/NCL solving Problem NC0 for the same
models. In the interest of space, the second table does not repeat problem dimensions.
The other columns are as follows: ‖c‖2 is the final primal feasibility, and #∇2L is
the number of Hessian evaluations.

A Julia Implementation of Algorithm NCL for Constrained Optimization 169

Ta
bl
e
10

k
n
i
t
r
o
_
n
l
s
re
su
lts

on
12
7
C
U
T
E
st
no
nl
in
ea
r
le
as
t-
sq
ua
re
s
pr
ob
le
m
s.
10
1
pr
ob
le
m
s
w
er
e
so
lv
ed

su
cc
es
sf
ul
ly

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

A
R
W
H
D
N
E

50
0

99
8

6.
97
1e

+0
1

8.
5e

−0
6

0.
46

22
16
7

23
Fi
rs
t_
or
de
r

B
A
-L
1

57
12

1.
20

4e
−2

5
3.
8e

−1
0

0.
00

5
6

6
Fi
rs
t_
or
de
r

B
A
-L
16

66
46
2

16
74
36

4.
24
3e

+0
5

4.
2e

−0
4

69
.9
2

27
30

28
Fi
rs
t_
or
de
r

B
A
-L
1S

P
57

12
1.
62
0e

−2
3

5.
1e

−0
9

0.
01

5
6

6
Fi
rs
t_
or
de
r

B
A
-L
21

34
13
4

72
91
0

1.
97
5e

+0
5

7.
2e

−0
5

12
9.
28

11
9

16
0

12
0

Fi
rs
t_
or
de
r

B
A
-L
49

23
76
9

63
68
6

1.
24
1e

+0
5

4.
0e

+0
5

18
09

.4
4

12
1

72
8

12
2

M
ax
_t
im

e

B
A
-L
52

19
26
27

69
43
46

2.
14
7e

+0
6

3.
9e

+0
7

18
08

.9
1

37
20
0

38
M
ax
_t
im

e

B
A
-L
73

33
75
3

92
24
4

6.
31
2e

+0
5

9.
5e

+0
6

18
01

.2
4

39
6

23
12

39
7

M
ax
_t
im

e

B
A
R
D
N
E

3
15

4.
10
7e

−0
3

2.
7e

−0
9

0.
00

5
6

6
Fi
rs
t_
or
de
r

B
D
Q
R
T
IC
N
E

50
00

99
92

1.
00
0e

+0
4

1.
4e

−0
1

91
.6
7

50
0

36
68

50
1

M
ax
_i
te
r

B
E
A
L
E
N
E

2
3

1.
49
1e

−2
5

2.
6e

−1
2

0.
00

6
8

7
Fi
rs
t_
or
de
r

B
IG

G
S6

N
E

6
13

2.
36
7e

−1
7

5.
9e

−0
9

0.
01

30
12
4

31
Fi
rs
t_
or
de
r

B
O
X
3N

E
3

10
3.
25
9e

−1
9

3.
9e

−1
0

0.
00

5
6

6
Fi
rs
t_
or
de
r

B
R
O
W
N
B
SN

E
2

3
0.
00
0e

+0
0

0.
0e

+0
0

0.
00

12
53

13
Fi
rs
t_
or
de
r

B
R
O
W
N
D
E
N
E

4
20

4.
29
1e

+0
4

2.
4e

+0
0

0.
09

50
0

16
97

50
1

M
ax
_i
te
r

B
R
Y
B
N
D
N
E

50
00

50
00

1.
49
9e

−2
1

8.
2e

−1
1

1.
16

6
7

7
Fi
rs
t_
or
de
r

C
H
A
IN

W
O
O
N
E

40
00

11
99
4

4.
69
9e

+0
3

5.
9e

+0
1

63
.9
6

50
0

13
39

50
1

M
ax
_i
te
r

C
H
E
B
Y
Q
A
D
N
E

10
0

10
0

4.
74
9e

−0
3

1.
5e

−0
4

7.
53

50
0

19
94

50
1

M
ax
_i
te
r

C
H
N
R
SB

N
E

50
98

7.
39

4e
−1

8
3.
2e

−0
8

0.
01

38
78

39
Fi
rs
t_
or
de
r

C
H
N
R
SN

B
M
N
E

50
98

1.
45
2e

−2
0

1.
8e

−0
9

0.
02

54
13
2

55
Fi
rs
t_
or
de
r

C
O
A
T
IN

G
N
E

13
4

25
2

2.
52
7e

−0
1

5.
5e

−0
7

0.
01

9
11

10
Fi
rs
t_
or
de
r

C
U
B
E
N
E

2
2

1.
08
5e

−2
6

1.
1e

−1
3

0.
00

4
9

5
Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

170 D. Ma et al.

Ta
bl
e
10

(c
on
tin

ue
d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

D
E
C
O
N
V
B
N
E

63
40

4.
54
2e

−1
0

6.
0e

−0
7

0.
03

54
21
4

55
Fi
rs
t_
or
de
r

D
E
C
O
N
V
N
E

63
40

2.
24
5e

−1
6

8.
5e

−1
0

0.
00

2
3

3
Fi
rs
t_
or
de
r

D
E
N
SC

H
N
B
N
E

2
3

8.
57
3e

−2
7

1.
9e

−1
3

0.
00

5
6

6
Fi
rs
t_
or
de
r

D
E
N
SC

H
N
C
N
E

2
2

2.
83
8e

−2
2

8.
4e

−1
1

0.
00

7
8

8
Fi
rs
t_
or
de
r

D
E
N
SC

H
N
D
N
E

3
3

8.
30
7e

−1
0

5.
5e

−0
7

0.
00

17
18

18
Fi
rs
t_
or
de
r

D
E
N
SC

H
N
E
N
E

3
3

3.
00
5e

−2
2

2.
4e

−1
1

0.
00

8
19

9
Fi
rs
t_
or
de
r

D
E
N
SC

H
N
FN

E
2

2
1.
39
2e

−2
6

2.
1e

−1
2

0.
00

5
6

6
Fi
rs
t_
or
de
r

D
E
V
G
L
A
1N

E
4

24
1.
06
3e

−1
3

2.
4e

−0
8

0.
00

11
31

12
Fi
rs
t_
or
de
r

D
E
V
G
L
A
2N

E
5

16
4.
82
8e

−1
5

5.
9e

−0
7

0.
00

9
16

10
Fi
rs
t_
or
de
r

E
G
G
C
R
A
T
E
N
E

2
4

4.
74

4e
+0

0
9.
6e

−0
7

0.
00

5
6

6
Fi
rs
t_
or
de
r

E
L
A
T
V
ID

U
N
E

2
3

2.
73
8e

+0
1

3.
2e

−0
6

0.
00

15
30

16
Fi
rs
t_
or
de
r

E
N
G
V
A
L
2N

E
3

5
2.
46
5e

−3
2

2.
2e

−1
6

0.
00

10
14

11
Fi
rs
t_
or
de
r

E
R
R
IN

R
O
SN

E
50

98
2.
02
0e

+0
1

1.
8e

−0
5

0.
01

45
63

46
Fi
rs
t_
or
de
r

E
R
R
IN

R
SM

N
E

50
98

1.
92
6e

+0
1

1.
7e

−0
5

0.
01

44
66

45
Fi
rs
t_
or
de
r

E
X
P2

N
E

2
10

1.
61
8e

−1
9

8.
7e

−1
2

0.
00

5
6

6
Fi
rs
t_
or
de
r

E
X
PF

IT
N
E

2
10

1.
20
3e

−0
1

4.
9e

−0
7

0.
00

10
12

11
Fi
rs
t_
or
de
r

E
X
T
R
O
SN

B
N
E

10
00

99
9

8.
07
1e

−3
1

1.
3e

−1
4

0.
07

6
14

7
Fi
rs
t_
or
de
r

FB
R
A
IN

2N
E

4
22
11

1.
84
2e

−0
1

6.
8e

−0
7

0.
08

8
11

9
Fi
rs
t_
or
de
r

FB
R
A
IN

N
E

2
22
11

2.
08
3e

−0
1

5.
7e

−0
7

0.
02

5
6

6
Fi
rs
t_
or
de
r

FR
E
U
R
O
N
E

2
2

2.
44
9e

+0
1

1.
8e

−0
5

0.
01

19
10
2

20
Fi
rs
t_
or
de
r

G
E
N
R
O
SE

B
N
E

50
0

99
8

7.
96
5e

+0
2

3.
6e

−0
6

0.
04

8
10

10
Fi
rs
t_
or
de
r

G
E
N
R
O
SE

N
E

10
00

19
99

1.
24
7e

+0
2

6.
3e

+0
0

3.
40

50
0

15
67

50
1

M
ax
_i
te
r

G
U
L
FN

E
3

99
2.
10
7e

−0
1

4.
0e

+0
6

0.
27

50
0

25
78

50
1

M
ax
_i
te
r

(c
on
tin

ue
d)

A Julia Implementation of Algorithm NCL for Constrained Optimization 171

Ta
bl
e
10

(c
on
tin

ue
d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

H
A
T
FL

D
A
N
E

4
4

2.
17
2e

−1
7

3.
4e

−0
9

0.
00

8
10

9
Fi
rs
t_
or
de
r

H
A
T
FL

D
B
N
E

4
4

2.
78
6e

−0
3

1.
4e

−0
7

0.
00

7
8

8
Fi
rs
t_
or
de
r

H
A
T
FL

D
C
N
E

25
25

1.
01
8e

−1
5

1.
5e

−0
8

0.
00

3
4

4
Fi
rs
t_
or
de
r

H
A
T
FL

D
D
N
E

3
10

1.
27
3e

−0
7

7.
1e

−1
1

0.
00

6
9

7
Fi
rs
t_
or
de
r

H
A
T
FL

D
E
N
E

3
21

1.
36

4e
−0

6
8.
2e

−1
2

0.
00

5
6

6
Fi
rs
t_
or
de
r

H
A
T
FL

D
FL

N
E

3
3

3.
25

4e
−0

5
9.
1e

−0
7

0.
01

11
69

12
Fi
rs
t_
or
de
r

H
E
L
IX

N
E

3
3

2.
19
5e

−2
0

2.
8e

−0
9

0.
00

9
11

10
Fi
rs
t_
or
de
r

H
IM

M
E
L
B
FN

E
4

7
1.
59
3e

+0
6

4.
4e

−0
4

0.
01

28
66

29
Fi
rs
t_
or
de
r

H
S1

N
E

2
2

3.
27

4e
−1

7
4.
0e

−0
9

0.
00

9
20

10
Fi
rs
t_
or
de
r

H
S2

5N
E

3
99

1.
64
2e

+0
1

9.
2e

−0
9

0.
00

0
1

1
Fi
rs
t_
or
de
r

H
S2

N
E

2
2

2.
47
1e

+0
0

2.
1e

−0
8

0.
00

6
8

8
Fi
rs
t_
or
de
r

IN
T
E
Q
N
E

12
12

6.
93
8e

−1
4

2.
1e

−0
7

0.
00

2
3

3
Fi
rs
t_
or
de
r

JE
N
SM

PN
E

2
10

6.
21
8e

+0
1

7.
1e

−0
6

0.
01

10
82

11
Fi
rs
t_
or
de
r

JU
D
G
E
N
E

2
20

8.
04
1e

+0
0

1.
2e

−0
6

0.
00

9
10

10
Fi
rs
t_
or
de
r

K
O
E
B
H
E
L
B
N
E

3
15
6

3.
87
6e

+0
1

7.
5e

−0
7

0.
10

19
4

75
7

19
5

Fi
rs
t_
or
de
r

K
O
W
O
SB

N
E

4
11

1.
53
9e

−0
4

6.
9e

−0
7

0.
00

16
30

17
Fi
rs
t_
or
de
r

L
IA

R
W
H
D
N
E

50
00

10
00
0

1.
60
8e

−2
7

4.
4e

−1
2

1.
07

5
6

6
Fi
rs
t_
or
de
r

L
IN

V
E
R
SE

N
E

19
99

29
97

3.
40
5e

+0
2

1.
2e

−0
2

13
.2
8

50
0

17
53

50
2

M
ax
_i
te
r

M
A
N
C
IN

O
N
E

10
0

10
0

7.
96
6e

−2
2

2.
2e

−0
8

0.
10

5
6

6
Fi
rs
t_
or
de
r

M
A
N
N
E

60
00

40
00

3.
26
1e

+3
9

1.
4e

+1
9

95
.7
1

16
7

16
8

16
8

U
nk
no
w
n

M
A
R
IN

E
11
21
5

11
19
2

3.
92
2e

−2
1

8.
0e

−0
8

8.
51

9
10

10
Fi
rs
t_
or
de
r

M
E
Y
E
R
3N

E
3

16
4.
39
7e

+0
1

1.
1e

−0
3

0.
00

11
19

12
U
nk
no
w
n

(c
on
tin

ue
d)

172 D. Ma et al.

Ta
bl
e
10

(c
on
tin

ue
d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

M
O
D
B
E
A
L
E
N
E

20
00
0

39
99
9

1.
37

4e
+0

0
8.
3e

−0
7

10
9.
80

38
73

39
Fi
rs
t_
or
de
r

M
O
R
E
B
V
N
E

10
10

1.
08
5e

−1
4

1.
9e

−0
8

0.
00

2
3

3
Fi
rs
t_
or
de
r

M
U
O
N
SI
N
E

1
51
2

2.
19

4e
+0

4
8.
8e

−0
4

0.
02

36
37

37
Fi
rs
t_
or
de
r

N
G
O
N
E

20
0

50
48

7.
20
3e

−1
3

8.
3e

−0
7

36
.9
0

22
1

91
4

22
3

Fi
rs
t_
or
de
r

N
O
N
D
IA

N
E

50
00

50
00

4.
94
9e

−0
1

1.
9e

−0
8

2.
63

16
39

17
Fi
rs
t_
or
de
r

N
O
N
M
SQ

R
T
N
E

49
00

49
00

3.
54
3e

+0
2

1.
1e

+0
1

15
4.
67

50
0

26
24

50
1

M
ax
_i
te
r

N
O
N
SC

O
M
PN

E
50
00

50
00

1.
37
8e

−0
6

5.
6e

−0
7

11
.3
1

80
21
7

81
Fi
rs
t_
or
de
r

O
SC

IG
R
N
E

10
00
00

10
00
00

3.
13
8e

−2
4

8.
3e

−0
9

3.
62

7
8

8
Fi
rs
t_
or
de
r

O
SC

IP
A
N
E

10
10

5.
00
0e

−0
1

1.
1e

−0
1

0.
11

50
0

28
80

50
1

M
ax
_i
te
r

PA
L
M
E
R
1A

N
E

6
35

4.
49

4e
−0

2
6.
7e

−0
7

0.
01

25
84

26
Fi
rs
t_
or
de
r

PA
L
M
E
R
1B

N
E

4
35

1.
72

4e
+0

0
2.
6e

−0
8

0.
00

6
7

7
Fi
rs
t_
or
de
r

PA
L
M
E
R
1E

N
E

8
35

1.
82
2e

−0
1

1.
3e

+0
2

0.
17

50
0

34
71

50
1

M
ax
_i
te
r

PA
L
M
E
R
1N

E
4

31
5.
87
7e

+0
3

8.
4e

+0
0

0.
13

50
0

25
61

50
1

M
ax
_i
te
r

PA
L
M
E
R
2A

N
E

6
23

8.
55
5e

−0
3

5.
9e

−0
7

0.
02

58
24
8

59
Fi
rs
t_
or
de
r

PA
L
M
E
R
2B

N
E

4
23

3.
11
6e

−0
1

5.
2e

−0
8

0.
00

8
10

9
Fi
rs
t_
or
de
r

PA
L
M
E
R
2E

N
E

8
23

1.
95
2e

−0
2

8.
9e

−0
7

0.
01

9
68

10
Fi
rs
t_
or
de
r

PA
L
M
E
R
2N

E
4

23
1.
82
6e

+0
3

4.
1e

−0
6

0.
01

26
92

27
U
nk
no
w
n

PA
L
M
E
R
3A

N
E

6
23

1.
02
2e

−0
2

1.
0e

−0
7

0.
00

18
39

19
Fi
rs
t_
or
de
r

PA
L
M
E
R
3B

N
E

4
23

2.
11

4e
+0

0
1.
5e

−0
7

0.
00

11
14

12
Fi
rs
t_
or
de
r

PA
L
M
E
R
3E

N
E

8
23

2.
30
3e

−0
2

1.
2e

+0
1

0.
15

50
0

33
48

50
1

M
ax
_i
te
r

PA
L
M
E
R
3N

E
4

23
1.
13
3e

+0
3

5.
7e

−0
2

0.
15

50
0

33
03

50
1

M
ax
_i
te
r

PA
L
M
E
R
4A

N
E

6
23

2.
03
0e

−0
2

3.
8e

−0
7

0.
03

98
44
5

99
Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

A Julia Implementation of Algorithm NCL for Constrained Optimization 173

Ta
bl
e
10

(c
on
tin

ue
d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

PA
L
M
E
R
4B

N
E

4
23

3.
41
8e

+0
0

6.
1e

−0
7

0.
00

14
18

15
Fi
rs
t_
or
de
r

PA
L
M
E
R
4E

N
E

8
23

6.
28
6e

−0
2

9.
3e

−0
7

0.
04

69
66
7

70
Fi
rs
t_
or
de
r

PA
L
M
E
R
4N

E
4

23
1.
14
3e

+0
3

2.
2e

−0
5

0.
01

35
16
3

36
U
nk
no
w
n

PA
L
M
E
R
5A

N
E

8
12

1.
70
6e

−0
1

1.
2e

+0
0

0.
13

50
0

30
00

50
1

M
ax
_i
te
r

PA
L
M
E
R
5B

N
E

9
12

4.
87
6e

−0
3

3.
4e

−0
7

0.
03

93
48
1

94
Fi
rs
t_
or
de
r

PA
L
M
E
R
5E

N
E

8
12

1.
69
9e

−0
2

1.
4e

+0
0

0.
16

50
0

35
08

50
1

M
ax
_i
te
r

PA
L
M
E
R
6A

N
E

6
13

2.
79
7e

−0
2

2.
3e

−0
7

0.
00

17
30

18
Fi
rs
t_
or
de
r

PA
L
M
E
R
6E

N
E

8
13

2.
42

4e
−0

2
5.
8e

−0
7

0.
08

14
2

16
54

14
3

Fi
rs
t_
or
de
r

PA
L
M
E
R
7A

N
E

6
13

5.
52
6e

+0
0

2.
4e

+0
0

0.
13

50
0

28
06

50
1

M
ax
_i
te
r

PA
L
M
E
R
7E

N
E

8
13

3.
35
3e

+0
0

1.
4e

+0
2

0.
16

50
0

32
43

50
0

M
ax
_i
te
r

PA
L
M
E
R
8A

N
E

6
12

3.
70
0e

−0
2

5.
8e

−0
7

0.
02

72
30
3

73
Fi
rs
t_
or
de
r

PA
L
M
E
R
8E

N
E

8
12

1.
68
7e

−0
1

2.
3e

−0
4

0.
22

50
0

50
07

50
1

M
ax
_i
te
r

PE
N
LT

1N
E

10
11

3.
57
6e

−1
0

8.
1e

−0
7

0.
02

11
1

38
5

11
2

Fi
rs
t_
or
de
r

PE
N
LT

2N
E

4
8

4.
70
1e

−1
1

9.
6e

−0
7

0.
03

16
3

61
3

16
4

Fi
rs
t_
or
de
r

PI
N
E
N
E

88
05

87
95

5.
18

4e
−1

7
1.
1e

−0
7

1.
72

2
10

3
Fi
rs
t_
or
de
r

PO
W
E
R
SU

M
N
E

4
4

2.
32
5e

−1
7

7.
6e

−0
7

0.
00

17
21

18
Fi
rs
t_
or
de
r

PR
IC
E
3N

E
2

2
5.
61

4e
−2

2
3.
9e

−1
0

0.
00

7
8

8
Fi
rs
t_
or
de
r

PR
IC
E
4N

E
2

2
1.
32
1e

−1
4

9.
8e

−0
7

0.
00

21
22

22
Fi
rs
t_
or
de
r

Q
IN

G
N
E

10
0

10
0

9.
46
1e

−2
0

1.
2e

−0
9

0.
00

5
8

6
Fi
rs
t_
or
de
r

R
SN

B
R
N
E

2
2

4.
83
2e

−3
0

3.
1e

−1
5

0.
00

11
34

12
Fi
rs
t_
or
de
r

S3
08
N
E

2
3

3.
86
6e

−0
1

9.
1e

−0
7

0.
00

34
36

35
Fi
rs
t_
or
de
r

SB
R
Y
B
N
D
N
E

50
00

50
00

1.
79
0e

−2
1

3.
0e

−0
7

1.
16

6
7

7
Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

174 D. Ma et al.

Ta
bl
e
10

(c
on
tin

ue
d)

N
am

e
nv
ar

nc
on

f
‖∇

L
‖ 2

t
ite

r
#c

#∇
c

St
at
us

SI
N
V
A
L
N
E

2
2

3.
85
2e

−3
2

2.
8e

−1
5

0.
00

4
11

5
Fi
rs
t_
or
de
r

SP
E
C
A
N
N
E

9
15
00
0

3.
29
1e

−1
3

5.
3e

−0
8

0.
08

6
7

7
Fi
rs
t_
or
de
r

SR
O
SE

N
B
R
N
E

50
00

50
00

5.
54
7e

−2
8

6.
7e

−1
6

0.
49

2
3

3
Fi
rs
t_
or
de
r

SS
B
R
Y
B
N
D
N
E

50
00

50
00

5.
27

4e
−2

2
4.
0e

−1
0

1.
15

6
7

7
Fi
rs
t_
or
de
r

ST
R
E
G
N
E

4
2

2.
23
6e

−0
3

4.
7e

−0
1

0.
05

50
0

53
5

50
1

M
ax
_i
te
r

ST
R
T
C
H
D
V
N
E

10
9

3.
72
3e

−1
0

4.
4e

−0
7

0.
00

8
9

9
Fi
rs
t_
or
de
r

T
Q
U
A
R
T
IC
N
E

50
00

50
00

2.
63
1e

−2
6

2.
3e

−1
3

0.
39

1
2

2
Fi
rs
t_
or
de
r

T
R
IG

O
N
1N

E
10

10
6.
72

4e
−1

6
1.
0e

−0
7

0.
00

4
5

5
Fi
rs
t_
or
de
r

T
R
IG

O
N
2N

E
10

31
1.
62
0e

+0
0

1.
5e

−0
9

0.
00

7
8

8
Fi
rs
t_
or
de
r

V
A
R
D
IM

N
E

10
12

7.
96
0e

−1
6

4.
0e

−0
7

0.
00

9
10

10
Fi
rs
t_
or
de
r

V
IB
R
B
E
A
M
N
E

8
30

7.
82
2e

−0
2

6.
9e

−0
7

0.
00

10
11

11
Fi
rs
t_
or
de
r

W
A
T
SO

N
N
E

12
31

1.
42
9e

−1
5

1.
3e

−1
3

0.
00

4
5

5
Fi
rs
t_
or
de
r

W
A
Y
SE

A
1N

E
2

2
3.
68
3e

−1
6

8.
7e

−0
7

0.
00

7
8

8
Fi
rs
t_
or
de
r

W
A
Y
SE

A
2N

E
2

2
3.
38
8e

−1
8

1.
3e

−0
8

0.
00

11
17

12
Fi
rs
t_
or
de
r

W
E
E
D
SN

E
3

12
1.
29

4e
+0

0
3.
0e

−0
7

0.
00

15
25

16
Fi
rs
t_
or
de
r

W
O
O
D
SN

E
40
00

30
01

5.
00
0e

−0
1

0.
0e

+0
0

0.
33

2
3

3
Fi
rs
t_
or
de
r

A Julia Implementation of Algorithm NCL for Constrained Optimization 175

Ta
bl
e
11

n
c
l
_
n
l
s
re
su
lts

on
12
7
C
U
T
E
st
no
nl
in
ea
r
le
as
t-
sq
ua
re
s
pr
ob
le
m
s.
11
9
pr
ob
le
m
s
w
er
e
so
lv
ed

su
cc
es
sf
ul
ly

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

A
R
W
H
D
N
E

6.
97
1e

+0
1

1.
5e

−1
4

1.
4e

−1
6

2.
65

30
10
5

32
31

Fi
rs
t_
or
de
r

B
A
-L
1

4.
40
0e

−3
1

9.
1e

−1
6

2.
0e

−1
0

0.
01

5
6

7
6

Fi
rs
t_
or
de
r

B
A
-L
16

4.
32

4e
+0

5
1.
4e

+0
3

4.
5e

−0
7

93
7.
15

88
45
4

90
89

U
nk
no
w
n

B
A
-L
1S

P
3.
20

4e
−2

3
7.
4e

−1
2

8.
3e

−0
5

0.
01

4
5

6
5

Fi
rs
t_
or
de
r

B
A
-L
21

1.
97
5e

+0
5

1.
5e

−0
2

3.
0e

−0
5

94
7.
20

20
1

10
93

20
3

20
3

M
ax
_t
im

e

B
A
-L
49

1.
67

4e
+0

4
1.
2e

−0
1

1.
6e

−0
4

86
9.
15

21
7

11
89

21
9

21
9

M
ax
_t
im

e

B
A
-L
52

3.
86
0e

+0
6

2.
0e

+0
2

8.
0e

−0
1

17
78

.4
5

31
50

33
32

M
ax
_t
im

e

B
A
-L
73

9.
60
9e

+0
5

1.
1e

+0
2

1.
9e

−0
6

69
3.
06

13
5

63
5

13
7

13
6

U
nk
no
w
n

B
A
R
D
N
E

4.
10
7e

−0
3

2.
3e

−1
4

5.
7e

−1
2

0.
00

5
6

7
6

Fi
rs
t_
or
de
r

B
D
Q
R
T
IC
N
E

1.
00
0e

+0
4

3.
4e

−1
0

1.
7e

−1
1

0.
47

17
25

19
18

Fi
rs
t_
or
de
r

B
E
A
L
E
N
E

4.
59
8e

−2
0

2.
0e

−1
0

1.
6e

−0
9

0.
00

8
9

10
9

Fi
rs
t_
or
de
r

B
IG

G
S6

N
E

2.
15
3e

−1
7

6.
8e

−1
2

7.
2e

−0
8

0.
02

60
74

62
61

Fi
rs
t_
or
de
r

B
O
X
3N

E
2.
64
1e

−1
9

7.
3e

−1
2

1.
8e

−1
0

0.
00

5
6

7
6

Fi
rs
t_
or
de
r

B
R
O
W
N
B
SN

E
5.
93
3e

−3
3

5.
6e

−1
2

1.
1e

−1
0

0.
00

13
42

15
14

Fi
rs
t_
or
de
r

B
R
O
W
N
D
E
N
E

4.
29
1e

+0
4

9.
7e

−0
9

3.
0e

−1
1

0.
00

14
22

16
15

Fi
rs
t_
or
de
r

B
R
Y
B
N
D
N
E

6.
66
2e

−2
0

2.
6e

−1
0

2.
5e

−1
0

0.
20

6
7

8
7

Fi
rs
t_
or
de
r

C
H
A
IN

W
O
O
N
E

6.
59
8e

+0
3

1.
8e

+0
0

2.
1e

−0
1

14
.4
0

50
0

54
6

50
2

50
1

M
ax
_i
te
r

C
H
E
B
Y
Q
A
D
N
E

4.
35
8e

−0
3

5.
1e

−0
7

2.
9e

−0
7

0.
60

33
51

35
34

Fi
rs
t_
or
de
r

C
H
N
R
SB

N
E

2.
91
3e

−2
1

1.
9e

−1
0

7.
2e

−1
1

0.
02

34
51

36
35

Fi
rs
t_
or
de
r

C
H
N
R
SN

B
M
N
E

6.
54

4e
−2

3
4.
0e

−1
1

3.
9e

−1
0

0.
02

38
57

40
39

Fi
rs
t_
or
de
r

C
O
A
T
IN

G
N
E

2.
52
7e

−0
1

1.
5e

−0
9

3.
9e

−1
0

0.
02

11
22

13
12

Fi
rs
t_
or
de
r

C
U
B
E
N
E

2.
47
9e

−3
3

9.
6e

−1
7

6.
7e

−1
5

0.
00

2
7

4
3

Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

176 D. Ma et al.

Ta
bl
e
11

(c
on
tin

ue
d)

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

D
E
C
O
N
V
B
N
E

1.
28
5e

−0
3

3.
1e

−0
7

5.
3e

−0
6

0.
03

20
34

23
21

Fi
rs
t_
or
de
r

D
E
C
O
N
V
N
E

2.
69

4e
−1

5
3.
8e

−0
8

6.
4e

−1
0

0.
00

2
3

4
3

Fi
rs
t_
or
de
r

D
E
N
SC

H
N
B
N
E

1.
22
5e

−1
7

2.
6e

−0
9

5.
8e

−0
9

0.
00

6
8

8
7

Fi
rs
t_
or
de
r

D
E
N
SC

H
N
C
N
E

9.
99
2e

−3
8

4.
3e

−1
9

6.
7e

−0
6

0.
00

6
7

8
7

Fi
rs
t_
or
de
r

D
E
N
SC

H
N
D
N
E

4.
01
2e

−2
8

4.
5e

−1
7

3.
6e

−0
4

0.
00

15
16

17
16

Fi
rs
t_
or
de
r

D
E
N
SC

H
N
E
N
E

4.
54
0e

−2
1

9.
5e

−1
1

1.
7e

−0
6

0.
00

15
20

17
16

Fi
rs
t_
or
de
r

D
E
N
SC

H
N
FN

E
2.
35
1e

−3
8

2.
2e

−1
9

1.
9e

−0
6

0.
00

4
5

6
5

Fi
rs
t_
or
de
r

D
E
V
G
L
A
1N

E
1.
06
3e

−1
3

2.
9e

−0
8

4.
0e

−1
1

0.
01

16
45

18
17

Fi
rs
t_
or
de
r

D
E
V
G
L
A
2N

E
1.
67
2e

−1
4

6.
3e

−0
8

3.
0e

−0
7

0.
00

9
12

11
10

Fi
rs
t_
or
de
r

E
G
G
C
R
A
T
E
N
E

4.
74

4e
+0

0
3.
1e

−0
8

2.
4e

−0
9

0.
00

4
5

6
5

Fi
rs
t_
or
de
r

E
L
A
T
V
ID

U
N
E

2.
73
8e

+0
1

1.
2e

−0
9

5.
0e

−1
0

0.
00

8
9

10
9

Fi
rs
t_
or
de
r

E
N
G
V
A
L
2N

E
6.
37

4e
−1

5
1.
3e

−0
8

1.
2e

−0
7

0.
00

12
20

14
13

Fi
rs
t_
or
de
r

E
R
R
IN

R
O
SN

E
2.
02
0e

+0
1

1.
4e

−0
9

4.
1e

−1
0

0.
01

17
24

19
18

Fi
rs
t_
or
de
r

E
R
R
IN

R
SM

N
E

1.
92
6e

+0
1

1.
7e

−0
8

1.
2e

−0
9

0.
02

25
38

27
26

Fi
rs
t_
or
de
r

E
X
P2

N
E

1.
61
7e

−1
9

7.
1e

−1
3

1.
9e

−1
3

0.
00

5
6

7
6

Fi
rs
t_
or
de
r

E
X
PF

IT
N
E

1.
20
3e

−0
1

2.
4e

−1
0

4.
9e

−1
2

0.
01

21
14
9

23
22

Fi
rs
t_
or
de
r

E
X
T
R
O
SN

B
N
E

−2
.0
02

e+
00

1.
0e

−0
6

1.
3e

−0
9

1.
16

25
0

18
60

25
2

25
1

Fi
rs
t_
or
de
r

FB
R
A
IN

2N
E

1.
84
2e

−0
1

6.
3e

−1
0

3.
1e

−1
1

0.
11

5
6

7
6

Fi
rs
t_
or
de
r

FB
R
A
IN

N
E

2.
08
3e

−0
1

8.
4e

−0
8

1.
7e

−0
9

0.
05

4
5

6
5

Fi
rs
t_
or
de
r

FR
E
U
R
O
N
E

2.
44
9e

+0
1

1.
5e

−1
0

5.
5e

−1
2

0.
00

7
15

9
8

Fi
rs
t_
or
de
r

G
E
N
R
O
SE

B
N
E

7.
96
5e

+0
2

1.
3e

−0
6

1.
5e

−0
6

0.
04

6
8

9
7

Fi
rs
t_
or
de
r

G
E
N
R
O
SE

N
E

5.
00
0e

−0
1

8.
9e

−1
4

1.
1e

−1
4

2.
07

43
6

63
9

43
8

43
7

Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

A Julia Implementation of Algorithm NCL for Constrained Optimization 177

Ta
bl
e
11

(c
on
tin

ue
d)

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

G
U
L
FN

E
1.
75
5e

−2
0

3.
4e

−1
1

1.
6e

−1
0

0.
02

20
28

22
21

Fi
rs
t_
or
de
r

H
A
T
FL

D
A
N
E

8.
44
5e

−2
0

5.
4e

−1
1

6.
2e

−0
9

0.
00

9
10

11
10

Fi
rs
t_
or
de
r

H
A
T
FL

D
B
N
E

2.
78
6e

−0
3

4.
8e

−1
2

1.
1e

−1
1

0.
00

7
8

9
8

Fi
rs
t_
or
de
r

H
A
T
FL

D
C
N
E

2.
67

4e
−1

7
4.
6e

−0
9

7.
8e

−0
9

0.
00

3
4

5
4

Fi
rs
t_
or
de
r

H
A
T
FL

D
D
N
E

1.
27
3e

−0
7

4.
1e

−0
9

9.
7e

−0
7

0.
00

5
8

7
6

Fi
rs
t_
or
de
r

H
A
T
FL

D
E
N
E

1.
36

4e
−0

6
5.
8e

−1
1

1.
7e

−0
9

0.
00

5
6

7
6

Fi
rs
t_
or
de
r

H
A
T
FL

D
FL

N
E

3.
00
8e

−0
5

9.
2e

−1
2

7.
3e

−0
9

0.
02

10
3

44
3

10
5

10
4

Fi
rs
t_
or
de
r

H
E
L
IX

N
E

5.
66
1e

−4
3

1.
7e

−2
1

1.
7e

−1
0

0.
00

9
12

11
10

Fi
rs
t_
or
de
r

H
IM

M
E
L
B
FN

E
2.
16
8e

+0
6

2.
1e

+0
2

2.
9e

−0
4

0.
09

50
0

72
0

50
2

50
1

M
ax
_i
te
r

H
S1

N
E

3.
35
9e

−1
7

4.
1e

−0
9

5.
8e

−1
6

0.
00

7
11

9
8

Fi
rs
t_
or
de
r

H
S2

5N
E

1.
64
2e

+0
1

8.
1e

−0
8

3.
6e

−1
1

0.
00

3
5

6
4

Fi
rs
t_
or
de
r

H
S2

N
E

2.
47
1e

+0
0

8.
4e

−1
2

1.
3e

−1
2

0.
00

5
7

8
6

Fi
rs
t_
or
de
r

IN
T
E
Q
N
E

6.
81
6e

−3
7

8.
7e

−1
9

1.
6e

−0
7

0.
00

2
3

4
3

Fi
rs
t_
or
de
r

JE
N
SM

PN
E

6.
21
8e

+0
1

1.
6e

−0
8

3.
1e

−0
9

0.
00

8
14

10
9

Fi
rs
t_
or
de
r

JU
D
G
E
N
E

8.
04
1e

+0
0

4.
8e

−0
7

2.
5e

−0
7

0.
00

5
6

7
6

Fi
rs
t_
or
de
r

K
O
E
B
H
E
L
B
N
E

3.
87
6e

+0
1

1.
4e

−0
8

4.
5e

−0
9

0.
13

11
9

16
4

12
1

12
1

Fi
rs
t_
or
de
r

K
O
W
O
SB

N
E

1.
53
9e

−0
4

2.
9e

−1
0

2.
6e

−0
9

0.
00

11
14

13
12

Fi
rs
t_
or
de
r

L
IA

R
W
H
D
N
E

1.
11
3e

−2
1

4.
7e

−1
1

4.
0e

−1
1

0.
17

6
7

8
7

Fi
rs
t_
or
de
r

L
IN

V
E
R
SE

N
E

3.
40
5e

+0
2

3.
3e

−0
7

1.
4e

−0
7

0.
31

19
22

22
20

Fi
rs
t_
or
de
r

M
A
N
C
IN

O
N
E

2.
50
7e

−3
2

1.
1e

−1
6

2.
4e

−0
9

0.
12

4
5

6
5

Fi
rs
t_
or
de
r

M
A
N
N
E

−9
.6
98
e−

01
9.
6e

−0
7

0.
0e

+0
0

10
.2
7

34
4

34
6

34
7

34
5

Fi
rs
t_
or
de
r

M
A
R
IN

E
2.
00
9e

+0
6

1.
7e

−0
8

1.
1e

−0
8

3.
76

40
43

43
41

Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

178 D. Ma et al.

Ta
bl
e
11

(c
on
tin

ue
d)

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

M
E
Y
E
R
3N

E
4.
39
7e

+0
1

2.
0e

−0
6

1.
1e

−0
8

0.
00

8
14

10
9

Fi
rs
t_
or
de
r

M
O
D
B
E
A
L
E
N
E

2.
52
1e

−1
8

1.
5e

−0
9

2.
8e

−0
9

1.
80

11
12

13
12

Fi
rs
t_
or
de
r

M
O
R
E
B
V
N
E

2.
67

4e
−3

7
9.
3e

−1
9

7.
6e

−0
8

0.
00

2
3

4
3

Fi
rs
t_
or
de
r

M
U
O
N
SI
N
E

2.
19

4e
+0

4
2.
4e

−1
1

6.
2e

−1
4

0.
02

10
15

12
11

Fi
rs
t_
or
de
r

N
G
O
N
E

−8
.5
51
e+

00
4.
0e

−0
9

3.
8e

−1
1

2.
46

10
6

10
8

10
9

10
7

Fi
rs
t_
or
de
r

N
O
N
D
IA

N
E

4.
94
9e

−0
1

1.
3e

−1
6

1.
5e

−0
7

0.
16

6
7

8
7

Fi
rs
t_
or
de
r

N
O
N
M
SQ

R
T
N
E

3.
54
3e

+0
2

1.
1e

−0
7

2.
5e

−0
6

4.
01

19
30

21
20

Fi
rs
t_
or
de
r

N
O
N
SC

O
M
PN

E
1.
80
5e

−0
7

1.
8e

−1
0

3.
0e

−0
6

0.
52

19
28

21
20

Fi
rs
t_
or
de
r

O
SC

IG
R
N
E

1.
44
9e

−3
5

4.
0e

−1
8

1.
4e

−0
7

3.
78

6
7

8
7

Fi
rs
t_
or
de
r

O
SC

IP
A
N
E

5.
00
0e

−0
1

9.
8e

−0
6

5.
5e

−0
4

0.
16

50
0

26
98

50
2

50
1

M
ax
_i
te
r

PA
L
M
E
R
1A

N
E

2.
98
8e

+0
1

2.
4e

−0
6

6.
8e

−0
8

0.
01

12
16

14
13

Fi
rs
t_
or
de
r

PA
L
M
E
R
1B

N
E

1.
72

4e
+0

0
1.
9e

−0
8

1.
9e

−1
0

0.
01

11
16

13
12

Fi
rs
t_
or
de
r

PA
L
M
E
R
1E

N
E

4.
17
6e

−0
4

7.
7e

−0
9

1.
4e

−0
6

0.
00

7
8

9
8

Fi
rs
t_
or
de
r

PA
L
M
E
R
1N

E
5.
87
7e

+0
3

2.
7e

−0
6

2.
4e

−0
9

0.
02

37
46

39
38

Fi
rs
t_
or
de
r

PA
L
M
E
R
2A

N
E

8.
55
5e

−0
3

1.
9e

−1
0

4.
1e

−0
8

0.
02

44
69

46
45

Fi
rs
t_
or
de
r

PA
L
M
E
R
2B

N
E

3.
11
6e

−0
1

1.
9e

−0
7

3.
1e

−0
9

0.
00

8
11

10
9

Fi
rs
t_
or
de
r

PA
L
M
E
R
2E

N
E

5.
81
5e

−0
2

6.
9e

−0
8

3.
2e

−1
0

0.
01

20
23

22
21

Fi
rs
t_
or
de
r

PA
L
M
E
R
2N

E
1.
82
6e

+0
3

3.
4e

−0
6

5.
3e

−0
8

0.
02

49
64

51
50

Fi
rs
t_
or
de
r

PA
L
M
E
R
3A

N
E

1.
02
2e

−0
2

2.
0e

−0
8

9.
0e

−0
7

0.
01

13
17

15
14

Fi
rs
t_
or
de
r

PA
L
M
E
R
3B

N
E

2.
11

4e
+0

0
6.
1e

−1
2

1.
1e

−1
4

0.
01

27
38

29
28

Fi
rs
t_
or
de
r

PA
L
M
E
R
3E

N
E

2.
53
7e

−0
5

4.
1e

−1
1

1.
2e

−0
9

0.
01

14
19

16
15

Fi
rs
t_
or
de
r

PA
L
M
E
R
3N

E
1.
20
8e

+0
3

1.
1e

−0
5

2.
4e

−0
8

0.
00

6
10

8
7

Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

A Julia Implementation of Algorithm NCL for Constrained Optimization 179

Ta
bl
e
11

(c
on
tin

ue
d)

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

PA
L
M
E
R
4A

N
E

2.
03
0e

−0
2

2.
8e

−0
8

1.
6e

−0
7

0.
01

11
20

13
12

Fi
rs
t_
or
de
r

PA
L
M
E
R
4B

N
E

3.
41
8e

+0
0

1.
3e

−1
2

2.
3e

−1
4

0.
01

32
41

34
33

Fi
rs
t_
or
de
r

PA
L
M
E
R
4E

N
E

7.
40
0e

−0
5

4.
7e

−0
9

2.
0e

−0
7

0.
01

11
13

13
12

Fi
rs
t_
or
de
r

PA
L
M
E
R
4N

E
1.
21
2e

+0
3

1.
5e

−0
5

4.
2e

−0
8

0.
00

6
10

8
7

Fi
rs
t_
or
de
r

PA
L
M
E
R
5A

N
E

1.
45
2e

−0
2

9.
5e

−0
7

4.
3e

−0
7

0.
10

18
2

87
4

18
4

18
3

Fi
rs
t_
or
de
r

PA
L
M
E
R
5B

N
E

4.
87
6e

−0
3

3.
7e

−0
9

1.
1e

−0
7

0.
01

44
50

46
45

Fi
rs
t_
or
de
r

PA
L
M
E
R
5E

N
E

1.
03
6e

−0
2

1.
3e

−0
9

3.
3e

−0
7

0.
02

60
20
0

62
61

Fi
rs
t_
or
de
r

PA
L
M
E
R
6A

N
E

2.
79
7e

−0
2

2.
1e

−0
8

7.
5e

−0
6

0.
01

22
31

24
23

Fi
rs
t_
or
de
r

PA
L
M
E
R
6E

N
E

6.
46
2e

−0
2

5.
5e

−0
7

2.
3e

−0
6

0.
00

7
10

9
8

Fi
rs
t_
or
de
r

PA
L
M
E
R
7A

N
E

5.
16
8e

+0
0

1.
6e

−0
7

2.
6e

−0
5

0.
16

35
5

15
51

35
7

35
8

Fi
rs
t_
or
de
r

PA
L
M
E
R
7E

N
E

3.
34
6e

+0
0

1.
5e

−0
6

4.
0e

−1
0

0.
03

54
27
4

56
55

Fi
rs
t_
or
de
r

PA
L
M
E
R
8A

N
E

3.
70
0e

−0
2

9.
3e

−0
8

3.
6e

−0
7

0.
01

19
31

21
20

Fi
rs
t_
or
de
r

PA
L
M
E
R
8E

N
E

3.
17
0e

−0
1

6.
3e

−0
8

3.
3e

−0
9

0.
01

25
35

27
26

Fi
rs
t_
or
de
r

PE
N
LT

1N
E

3.
54

4e
−1

0
5.
5e

−1
4

3.
8e

−0
5

0.
00

8
9

10
9

Fi
rs
t_
or
de
r

PE
N
LT

2N
E

4.
68
8e

−1
1

1.
4e

−1
8

5.
6e

−0
8

0.
00

5
10

7
6

Fi
rs
t_
or
de
r

PI
N
E
N
E

4.
19

4e
−0

5
4.
9e

−1
0

1.
1e

−0
6

0.
72

13
18

16
14

Fi
rs
t_
or
de
r

PO
W
E
R
SU

M
N
E

1.
79
9e

−2
2

1.
2e

−1
1

6.
0e

−1
0

0.
01

45
48

47
46

Fi
rs
t_
or
de
r

PR
IC
E
3N

E
1.
50
5e

−3
5

5.
2e

−1
8

1.
1e

−0
5

0.
00

6
7

8
7

Fi
rs
t_
or
de
r

PR
IC
E
4N

E
3.
50
8e

−3
2

3.
4e

−1
9

1.
1e

−0
4

0.
00

13
14

15
14

Fi
rs
t_
or
de
r

Q
IN

G
N
E

1.
31
8e

−3
3

2.
8e

−1
7

9.
2e

−0
5

0.
00

4
7

6
5

Fi
rs
t_
or
de
r

R
SN

B
R
N
E

5.
55
6e

−3
2

3.
3e

−1
6

3.
1e

−1
4

0.
00

1
3

3
2

Fi
rs
t_
or
de
r

S3
08
N
E

3.
86
6e

−0
1

1.
7e

−0
9

9.
0e

−1
0

0.
00

10
16

12
11

Fi
rs
t_
or
de
r

(c
on
tin

ue
d)

180 D. Ma et al.

Ta
bl
e
11

(c
on
tin

ue
d)

N
am

e
f

‖∇
L
‖ 2

‖c
‖ 2

t
ite

r
#c

#∇
c

#∇
2
L

St
at
us

SB
R
Y
B
N
D
N
E

6.
69
0e

−2
0

2.
6e

−1
0

2.
5e

−1
0

0.
18

6
7

8
7

Fi
rs
t_
or
de
r

SI
N
V
A
L
N
E

1.
57
8e

−3
0

1.
8e

−1
5

1.
8e

−1
5

0.
00

1
3

3
2

Fi
rs
t_
or
de
r

SP
E
C
A
N
N
E

3.
29
1e

−1
3

3.
5e

−0
8

1.
2e

−1
2

0.
49

10
14

12
11

Fi
rs
t_
or
de
r

SR
O
SE

N
B
R
N
E

5.
89
2e

−3
3

1.
1e

−1
8

2.
2e

−1
8

0.
05

2
3

4
3

Fi
rs
t_
or
de
r

SS
B
R
Y
B
N
D
N
E

6.
66
3e

−2
0

2.
6e

−1
0

2.
5e

−1
0

0.
21

6
7

8
7

Fi
rs
t_
or
de
r

ST
R
E
G
N
E

2.
20

4e
−2

7
6.
6e

−2
2

4.
4e

−1
5

0.
00

2
3

4
3

Fi
rs
t_
or
de
r

ST
R
T
C
H
D
V
N
E

2.
26
0e

−1
5

1.
8e

−1
0

6.
1e

−0
7

0.
00

10
11

12
11

Fi
rs
t_
or
de
r

T
Q
U
A
R
T
IC
N
E

0.
00
0e

+0
0

0.
0e

+0
0

2.
2e

−1
6

0.
05

1
2

3
2

Fi
rs
t_
or
de
r

T
R
IG

O
N
1N

E
3.
42
7e

−3
9

5.
7e

−2
0

1.
8e

−0
8

0.
00

4
5

6
5

Fi
rs
t_
or
de
r

T
R
IG

O
N
2N

E
1.
62
0e

+0
0

2.
7e

−0
9

1.
3e

−0
9

0.
00

11
12

13
12

Fi
rs
t_
or
de
r

V
A
R
D
IM

N
E

4.
87
3e

−2
0

2.
9e

−0
9

1.
2e

−1
0

0.
00

14
19

16
15

Fi
rs
t_
or
de
r

V
IB
R
B
E
A
M
N
E

7.
82
2e

−0
2

2.
3e

−1
1

1.
7e

−1
4

0.
01

7
8

9
8

Fi
rs
t_
or
de
r

W
A
T
SO

N
N
E

1.
43
0e

−1
5

5.
8e

−1
6

5.
6e

−1
4

0.
00

4
5

6
5

Fi
rs
t_
or
de
r

W
A
Y
SE

A
1N

E
0.
00
0e

+0
0

0.
0e

+0
0

2.
7e

−0
8

0.
00

7
8

9
8

Fi
rs
t_
or
de
r

W
A
Y
SE

A
2N

E
8.
38
6e

−1
7

2.
3e

−0
9

1.
0e

−0
7

0.
00

10
20

12
11

Fi
rs
t_
or
de
r

W
E
E
D
SN

E
1.
29

4e
+0

0
8.
6e

−0
8

7.
4e

−0
7

0.
01

17
24

19
18

Fi
rs
t_
or
de
r

W
O
O
D
SN

E
−1

.9
06
e+

04
9.
1e

−1
3

8.
0e

−1
0

0.
04

3
4

5
4

Fi
rs
t_
or
de
r

A Julia Implementation of Algorithm NCL for Constrained Optimization 181

Acknowledgements We are deeply grateful to Professor Ken Judd and Dr Che-Lin Su for develop-
ing the AMPL tax policy model [11] that led to the development of Algorithm NCL [15], and to the
developers of AMPL, Julia, IPOPT, and KNITRO for making the implementation and evaluation of
Algorithm NCL possible. In particular, we thank Dr RichardWaltz of Artelys for his help in finding
runtime options for warm-starting KNITRO. We also give sincere thanks to Pierre-Élie Personnaz
for obtaining the Julia/NCL results in Tables 3, 4, 5, 6 and 7, and to Professor Mehiddin Al-Baali
and other organizers of the NAO-V conference Numerical Analysis and Optimization at Sultan
Qaboos University, Muscat, Oman, which brought the authors together in January 2020. Finally,
we are very grateful to the referees for their constructive questions and comments, and to Michael
Friedlander for his helpful discussions.

References

1. AMPL modeling system. http://www.ampl.com.
2. Jon Bentley. Programming pearls: Little languages. Commun. ACM, 29(8):711–721, 1986.
3. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to

numerical computing. SIAM Rev., 59(1):65–98, 2017.
4. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent augmented Lagrangian

algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal.,
28:545–572, 1991.

5. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A Fortran Package for Large-scale
Nonlinear Optimization (Release A). Lecture Notes in Computation Mathematics 17. Springer
Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.

6. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks/Cole, Pacific Grove, second edition, 2002.

7. GAMS modeling system. http://www.gams.com.
8. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale con-

strained optimization. SIAM Rev., 47(1):99–131, 2005. SIGEST article.
9. N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Unconstrained Testing

Environment with safe threads. Comput. Optim. Appl., 60:545–557, 2015.
10. COIN-OR Interior Point Optimizer IPOPT. https://github.com/coin-or/Ipopt.
11. K. L. Judd and C.-L. Su. Optimal income taxation with multidimensional taxpayer types.

Working paper, Hoover Institution, Stanford University, 2011.
12. KNITRO optimization software. https://www.artelys.com/tools/knitro_doc/2_userGuide.

html.
13. LANCELOT optimization software. http://www.numerical.rl.ac.uk/lancelot/blurb.html.
14. M. Lubin and I. Dunning. Computing in operations research using julia. INFORMS J. Comput.,

27(2), 2015.
15. D.Ma,K.L. Judd,D.Orban, andM.A.Saunders. Stabilizedoptimizationvia anNCLalgorithm.

In M. Al-Baali et al., editor, Numerical Analysis and Optimization, NAO-IV, Muscat, Oman,
January 2017, pages 173–191. Springer International Publishing AG, 2018.

16. B. A. Murtagh and M. A. Saunders. A projected Lagrangian algorithm and its implementation
for sparse nonlinear constraints. Math. Program. Study, 16:84–117, 1982.

17. NCL AMPL models. http://stanford.edu/group/SOL/multiscale/models/NCL/.
18. NEOS server for optimization. http://www.neos-server.org/neos/.
19. D. Orban and P. E. Personnaz. NCL.jl: A nonlinearly-constrained augmented-Lagrangian

method. https://github.com/JuliaSmoothOptimizers/NCL.jl, July 2020.
20. D. Orban, A. S. Siqueira, and contributors. AmplNLReader.jl: A Julia interface to AMPL.

https://github.com/JuliaSmoothOptimizers/AmplNLReader.jl, July 2020.
21. D. Orban, A. S. Siqueira, and contributors. CUTEst.jl: Julia’s CUTEst interface. https://github.

com/JuliaSmoothOptimizers/CUTEst.jl, October 2020.

http://www.ampl.com
http://www.gams.com
https://github.com/coin-or/Ipopt
https://www.artelys.com/tools/knitro_doc/2_userGuide.html
https://www.artelys.com/tools/knitro_doc/2_userGuide.html
http://www.numerical.rl.ac.uk/lancelot/blurb.html
http://stanford.edu/group/SOL/multiscale/models/NCL/
http://www.neos-server.org/neos/
https://github.com/JuliaSmoothOptimizers/NCL.jl
https://github.com/JuliaSmoothOptimizers/AmplNLReader.jl
https://github.com/JuliaSmoothOptimizers/CUTEst.jl
https://github.com/JuliaSmoothOptimizers/CUTEst.jl

182 D. Ma et al.

22. D. Orban, A. S. Siqueira, and contributors. JuliaSmoothOptimizers: Infrastructure and solvers
for continuous optimization in Julia. https://github.com/JuliaSmoothOptimizers, July 2020.

23. D. Orban, A. S. Siqueira, and contributors. NLPModelsIpopt.jl: A thin IPOPT wrapper for
NLPModels. https://github.com/JuliaSmoothOptimizers/NLPModelsIpopt.jl, July 2020.

24. D. Orban, A. S. Siqueira, and contributors. NLPModels.jl: Data structures for optimization
models. https://github.com/JuliaSmoothOptimizers/NLPModels.jl, July 2020.

25. D. Orban, A. S. Siqueira, and contributors. NLPModelsKnitro.jl: A thin KNITRO wrapper for
NLPModels. https://github.com/JuliaSmoothOptimizers/NLPModelsKnitro.jl, July 2020.

https://github.com/JuliaSmoothOptimizers
https://github.com/JuliaSmoothOptimizers/NLPModelsIpopt.jl
https://github.com/JuliaSmoothOptimizers/NLPModels.jl
https://github.com/JuliaSmoothOptimizers/NLPModelsKnitro.jl

A Survey on Modeling Approaches
for Generation and Transmission
Expansion Planning Analysis

Giovanni Micheli and Maria Teresa Vespucci

Abstract Generation and transmission expansion planning (GTEP) models deter-
mine the evolution of power systems over a long-term planning horizon, by defining
technology, capacity and location of new generating units, as well as new electrical
interconnections to be built. The models required to plan investment decisions in
the power sector are typically large-scale models, since many variables and con-
straints are needed to represent a great number of strategic and operating decisions:
to compute a solution to GTEP models different approximations have to be intro-
duced. This paper provides a comprehensive description of the GTEP analysis, by
highlighting the characteristics and the challenges of this problem and by reviewing
the main approaches proposed in the literature to answer to specific research ques-
tions. This paper provides also a formulation of the GTEP problem suited to address
decarbonization challenges in the power sector.

Keywords Generation and transmission expansion planning · Renewable energy
sources · Stochastic programming

1 Introduction

Generation and transmission expansion planning (GTEP) models determine the evo-
lution over a long-term horizon of a power system, by defining the new power gen-
eration capacity and the new electrical interconnections to be built so as to minimize
the total investment and operation cost. The definition of joint expansion plans is

G. Micheli · M. T. Vespucci (B)
Department of Management, Information and Production Engineering, University of Bergamo,
via Marconi 5, 24044 Dalmine, BG, Italy
e-mail: maria-teresa.vespucci@unibg.it

G. Micheli
e-mail: giovanni.micheli@unibg.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_9

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_9&domain=pdf
mailto:maria-teresa.vespucci@unibg.it
mailto:giovanni.micheli@unibg.it
https://doi.org/10.1007/978-3-030-72040-7_9

184 G. Micheli and M. T. Vespucci

one of the most relevant problems in the field of power systems. Indeed, GTEP mod-
els present many applications, allowing for instance to evaluate the possibility to
achieve long-term policy goals such as decarbonization, integration of large shares
of renewables or reduction of CO2 emissions.

Addressing the GTEP problem for modern power systems requires considering
three main characteristics: (i) the long-term horizon, (ii) the high level of temporal
detail and (iii) the high uncertainty involved. Indeed, investments in both electrical
power plants and transmission lines are capital intensive decisions, which are usually
characterized by lifetimes greater than 30–50 years. Thus, when planning the expan-
sion of a power system, planning horizons of several decades are typically applied.
The second characteristic of the GTEP analysis is the need to employ a high level
of temporal detail, evaluating power system operation with an hourly resolution.
Specifically, the high level of temporal detail is needed to capture the fluctuation
of solar and wind power generation, to model some technical constraints on ther-
mal power production, such as the minimum uptime and the minimum downtime
constraints, and to properly consider the dynamics of both hydro pumped storage
and battery storage. Finally, the GTEP problem is also characterized by a high level
of uncertainty. Indeed, since expansion plans are usually provided for a long-term
planning horizon, the future system conditions are generally uncertain at the time
the expansion plans are decided. Different sources of uncertainty may affect plan-
ning decisions and must be considered in the decision-making process. They can
be divided into two groups, namely short-term and long-term uncertainties. Specif-
ically, short-term uncertainties include the stochastic production from intermittent
renewable energy sources and the demand variability throughout the hours of the
day and the days of the week. By contrast, long-term uncertainty refers to long-term
dynamics, including future values of investment costs, fossil fuel prices and policy
constraints such as carbon prices.

Because of the long-term horizon, the hourly resolution and the high uncertainty,
GTEPmodels are large-scale problems, whose solution is computationally challeng-
ing. When addressing GTEP problems, a trade-off between modeling accuracy and
computational cost has to be considered: to compute a solution to real-scale GTEP
models different approximationsmay be introduced. The aim of this paper is twofold:
(i) provide a comprehensive review of the approaches proposed in the literature for
the GTEP analysis, by highlighting the main characteristics and the challenges of
this problem; (ii) present the GTEP model we have developed in the context of a
research project aimed at planning the joint generation and transmission expansion
of power systems to reach decarbonization targets set by the European Commission,
which include an increasing penetration of renewable power sources and a reduction
of CO2 emissions.

The remainder of the paper proceeds as follows. In Sect. 2 we review the existing
literature for GTEP, by discussing three main features: (i) the modeling choices
related to the design of a GTEP model; (ii) the proposed approaches to include the
uncertainty in the expansion planning framework; and (iii) the methods developed
to provide an hourly solution to a GTEP model while maintaining the problem
computationally tractable. Section 3 describes the assumptions we introduced in our

A Survey on Modeling Approaches for Generation … 185

analysis and formulates the GTEP problem as a two-stage stochastic MILP model.
Finally, Sect. 4 concludes the paper.

2 Review of GTEP Models

2.1 Modeling Choices

This section introduces the basic choices associated with the construction of a GTEP
model, discussing some important modeling issues such as the sectors to be included
in the analysis, the problem formulation structure, the decision variables to introduce
and the representation of the transmission network.

Sectors coverage. When designing a model for GTEP, the first decision to be taken
concerns the choice of which sectors should be included in the analysis and which
other sectors should be exogenously modeled. Indeed, there exist many interconnec-
tions between power systems and several sectors, such as the transportation sector, the
heating sector or the fossil fuels sectors. In terms of sectors coverage, two different
approaches are possible:

1. Perform a single sectoral analysis, focusing only on power sector and neglecting
the interactions with other sectors.

2. Consider multiple sectors to study the high-level interactions within the whole
energy system.

Considering multiple sectors allows evaluating the interdependencies between sec-
tors, usually finding more efficient solutions for the whole energy system. However,
the drawback of this approach is an increasing computational cost. To maintain
the problem computationally tractable, multi-sector models usually introduce strong
approximations in the way single sectors are modeled. For instance, reference [1]
proposes an equilibriummodel to plan infrastructure investments in thewhole energy
system to satisfy the future energy requirements of three different demand sectors,
namely the industry sector, the residential sector and the transportation sector, while
considering climate policies and governmental regulation. A very wide geographical
scope is considered in this analysis, modeling the whole world through 30 nodes,
of which 15 are European countries and the remaining 15 model the rest of the
world, while the planning horizon of 40 years, from 2010 up to 2050, is discretized
in 10-year steps. The energy requirements of demand sectors are satisfied by using
various energy carriers (fuels) depending on relative costs, efficiencies, as well as
regulatory and technical constraints. The fuels included in the analysis are: crude oil,
oil products, natural gas, coal, lignite, electricity, biofuels, renewables, and (as an
input for power generation only) nuclear and hydro. In this work, a very simplified
representation of the power sector is considered: indeed, the power sector is modeled
as a transformation process, converting input fuels into electricity, considering only
capacity constraints stated in terms of output quantities.

186 G. Micheli and M. T. Vespucci

When a high level of technical detail is required, the multi-sector models can
be applied only by limiting the geographical scope. For instance, authors in [2]
perform a long-term investment planning analysis on the Danish heat and electricity
sector, considering the uncertainty related to the wind power production, which is
modeled as a stochastic parameter. In this paper, a more detailed representation
of the power sector is considered, including some technical constraints, such as
peaking reserve constraints, and considering different scenarios for the wind power
availability. However, the application of this analysis is limited to a single country,
i.e., Denmark. From the previous works, it can be noted the existence of a trade-off
between sectors coverage, geographical scope and technical detail: a multi-sector
analysis can be performed only by limiting the geographical scope or by considering
a low level of technical detail. Instead, by exogenously modeling all sectors but
the power sector it is possible to consider technical and geographical characteristics
in greater detail. The choice of the approach to adopt depends on the objective of
the analysis: the multi-sector approach is to be applied when the research focus is to
evaluate long-term trends, such as decarbonization pathways, taking into account the
interactions between different economic sectors and the energy system; the single
sectoral analysis is suited to plan investments in the power sector, since it allows
a more detailed representation of the power system, as well as of the short-term
operational dispatch, and therefore provides more reliable decisions to the actors
involved in theGTEPproblem. In this paper, wewill focus on single sectoral analysis,
by introducing several approaches designed to perform aGTEP analysis exogenously
modeling all sectors but the power sector. In such models, the feedback effects
between sectors are ignored and parameters like fuel prices and fuels availability are
exogenous parameters rather than decision variables. However, this choice allows
providing a more detailed representation of power systems, which is required when
modeling both long-term investment decisions and short-term operational dispatch.

Formulation structure. Works that address the GTEP problem focusing only on
power sector modeling can be further divided in two categories according to the
problem formulation structure, which determines the decision variables to be intro-
duced in the analysis. The first class includes decoupled models, i.e., researches that
only address either generation expansion or transmission expansion. Specifically,
many studies deal with only transmission expansion planning (TEP), a problem that
is typically addressed by transmission planners to identify the optimal transmission
reinforcements to be carried out with the aim of facilitating energy exchange among
producers and consumers. In suchmodels, generation expansion decisions are exoge-
nous parameters rather than model variables. Pioneering work in this area is due to
Garver [3], who in 1970 proposed a linear programming problem determining the
transmission expansion plans based on the location of overloads. Since then, many
relevant contributions based on mathematical programming have been produced.
For instance, in [4] authors deal with the TEP problem considering the integration
of large-scale wind power production, while in [5] a bi-level TEP model using conic
AC power flow formulation is presented. Many other studies only address generation
expansion planning (GEP), evaluating the adequacy of generating facilities used to

A Survey on Modeling Approaches for Generation … 187

supply load and analyzing whether it is necessary to build new power plants. The
GEP problem is typically motivated by the growth of the demand for electricity and
by the aging of existing generating facilities. As regards to the transmission network,
in some GEP models transmission constraints are totally neglected. For instance,
reference [6] proposes a mixed integer non-linear programming model to perform a
generation expansion planning analysis minimizing the planning cost and environ-
mental pollution at the same time, while considering energy storage systems. In this
paper, the test system consists of an isolated system, which does not consider any
representation of the transmission network. Instead, other works that address GEP
include also the transmission network in the analysis by considering the network
configuration as an exogenous parameter. Examples of these works are represented
by references [7, 8]. Specifically, in [7] a multiobjective generation expansion prob-
lem is considered taking into account costs, environmental impacts and portfolio
investment risk. The proposed model decides the location of the planned gener-
ation units in a multiperiod planning horizon by minimizing simultaneously costs,
environmental impact, imported fuel and fuel price risks. In [8] the generation expan-
sion problem is instead addressed considering a market framework, representing the
strategic behavior of the producer through a bi-level model: the upper-level consid-
ers both investment decisions and strategic production actions and the lower-level
corresponds to market clearing.

Studies in the second class optimize both the generation and the transmission
expansion plan. Indeed, if the demand for electricity in a zone can be supplied
with both local generation and transportation of power from other zones, generation
and transmission decisions are substitutes and have to be simultaneously consid-
ered in the optimization process [9]. By endogenously modeling the interactions
between generation and transmission expansion decisions, the joint GTEP analysis
provides solutions that are less expensive than expansionplans providedby the decou-
pled models. Two main approaches have been proposed to address the joint GTEP:
decentralized and centralized models. Specifically, decentralized models consider
that power systems consist of multiple decision makers with different objectives.
Decentralized models are usually formulated as equilibrium problems, with several
participants maximizing their own objective. For instance, in [10] the GTEP problem
is formulated as a tri-level problem, consisting of the pool-based market, the gen-
eration system and the transmission system. In [11], authors propose mathematical
models for sequential coordination of transmission expansion planningwith strategic
generation investments. The interaction between transmission company and strategic
generation companies is modeled using the sequential-move game, while the interac-
tion between the strategic generation companies is modeled as a simultaneous-move
game. Centralized models instead approach the GTEP problem as just one problem,
with a unique decision maker, such as the authority or the ministry of energy, taking
all the relevant decisions. Although this approach does not reflect the real structure
of modern power systems, consisting of several actors involved, centralized models
are widely used to perform the so-called anticipative planning, whose objective is to
identify policies and incentives that could induce generation companies to invest in
a socially efficient manner [12, 13]. Several contributions have been developed in

188 G. Micheli and M. T. Vespucci

this area. For example, reference [14] proposes a mixed integer linear programming
formulation for generation and transmission planning considering the value of lost
load. A centralized approach is also adopted in [15] to study the effect ofwind speed’s
spatial distribution on the simultaneous generation and transmission expansion plan-
ning of power systems including wind farms. Specifically, in this work investment
decisions are defined by means of a mixed integer linear programming model that
minimizes the sum of total investment cost of thermal generation units, transmission
lines and wind farms, operation cost of thermal generators and loss cost of transmis-
sion lines. The wind generation is also accurately considered in [16], where a mixed
integer linear programming model is proposed to study the GTEP problem with a
high wind power penetration rate in large-scale power grids. Also in [17–19], the co-
optimization problem is formulated as a mixed integer programming model, with the
addition of reliability constraints enforced iteratively. Finally, authors in [20] propose
a multiobjective, multiarea and multistage model to long-term expansion planning
of integrated generation and transmission facilities. The proposed model considers
three objectives: (i) minimization of investments and operation costs of power gen-
eration and transmission facilities; (ii) minimization of Life-Cycle Greenhouse Gas
Emissions; and (iii) maximization of the diversification of electricity generation mix.
Both the centralized and the decentralized approaches are useful to analyze optimal
policies in the power sector. Specifically, centralized models are suited to search
for optimal policies, modeling the power system and the short-term operations in
great details, but considering a very simplified representation of market aspects. By
contrast, decentralized models allow to validate policies, by reducing the technical
detail of the analysis to focus on the interactions between different agents involved
in the liberalized power sector. Because of computational restrictions, models with a
detailed representation of both power system technical operations andmarket aspects
cannot be applied to plan investment decisions in real-scale power systems. Due to
our interest in finding optimal policies for the evolution of power systems, rather than
in validating the outcomes of already specified policies, this survey is focused on
centralized models. For a detailed description of market aspects, we refer the reader
to [21] and the references contained in it.

Beside the choice between centralized and decentralizedmodels, when addressing
the joint GTEP problem decision variables representing infrastructure investments
in generation and transmission capacity for the power system have to be introduced.
Different types of variables can be used according to the technical detail of the anal-
ysis. Specifically, some models introduce binary variables to represent the selection
of discrete facilities within a set of candidate generating plants and candidate trans-
mission lines. This approach is typically adopted in studies that consider a very
detailed representation of power systems, such as [22], modeling the operations of
every power plant. Instead, most of the works in the literature employ linear decision
variables, representing the total aggregated capacity per technology at each node,
meaning that traditional unit commitment constraints are neglected. According to
the objective of the analysis, ignoring unit commitment constraints could be a very
restrictive approximation for expansion planning models. Specifically, when study-
ing power systems with large shares of renewables it is necessary to plan also the

A Survey on Modeling Approaches for Generation … 189

investments in new flexible resources that could respond to the variability and uncer-
tainty of stochastic generation. Ignoring unit commitment constraints leads to the
impossibility of properly evaluating such flexibility and, consequently, to underes-
timate the required new generation capacity as well as the system costs, as shown
in [23].

Transmission network. In a GTEP analysis transmission network can be modeled
in different ways. In the order of increasing realism, the available approaches include
the transshipment model, the Direct Current (DC) power flow model and the Alter-
nating Current (AC) power flowmodel [9]. In the transshipment model, transmission
lines are characterized by an efficiency parameter describing transportation losses.
Energy flows on transmission lines are subject to capacity limits and nodal power
balances are imposed at every node, while Kirchhoff’s voltage law is ignored. Amore
realistic modeling approach is the DC power flowmodel, which, in addition to trans-
mission flow limits and nodal power balances, consists of a linear relation between
power flows and voltage angle differences. Although the equations that describe the
DC power flow model are linear, when integrating this formulation in the GTEP
problem the resulting model is a non-linear and non-convex problem. Indeed, in
such formulation binary variables are introduced to model investment decisions in
candidate transmission lines and the voltage angles are divided by line reactances,
which are both decision variables. Thus, the DC power flowmodel provides a greater
fidelity but at the cost of an increasing computational complexity. Finally, the most
realistic representation of the transmission network is the AC power flow model,
which is strongly non-linear since it models both active and reactive power flows in
the transmission grid through non-linear constraints that involve nodal voltages and
angles and line impedances. Although the ACmodel provides the best representation
of power flows, the complexity in this approach is further increased: the trade-off
between modeling detail and computational complexity holds also for the choice of
the transmission network modeling approach. Usually, when a detailed geographical
scope is considered, modeling every bus of the transmission network, AC and DC
models are more appropriate choices, while the transshipment approach is generally
preferred with higher geographical scopes, such as when nodes of the transmission
network represent zones or countries. In the literature there exist also some hybrid
approaches. For instance, reference [24] uses an iterative approach where invest-
ment decisions are optimized using a transshipment model, followed by a separate
load flow model for grid expansion to check the feasibility and the robustness of the
solution provided.

2.2 Uncertainty Inclusion

Several approaches have been developed in the literature to accurately represent the
uncertainty framework in the planning decisions. In particular, given the increasing
generation from intermittent renewable power sources, many recent studies focus on

190 G. Micheli and M. T. Vespucci

the influence of these uncertainties. For instance, reference [25] develops an algo-
rithm for TEP considering wind farm generation and combining Monte Carlo simu-
lation and Point Estimation Method to investigate the effects of network uncertain-
ties. In [26] a chance-constrained formulation is proposed to tackle the uncertainties
of load and wind turbine generators in transmission network expansion planning.
Also reference [27] considers the uncertainty of load and wind power generation
by proposing an efficient approach for probabilistic TEP, dealt with by a Benders
decomposition algorithm combined with a Monte Carlo method.

Other studies deal with long-term uncertainties. For instance, reference [28] con-
siders the uncertainty related to future demand growth and the availability of genera-
tion facilities and proposes a robust optimization model to determine the investment
decisions in transmission capacity expansion minimizing the system’s total costs by
anticipating the worst-case realization of the uncertain parameters within an uncer-
tainty set. Instead, reference [29] focus on the uncertainty related to the annual
net load duration curve by introducing a robust GTEP model, including flexible
AC transmission systems (FACTS) devices. A robust optimization approach is also
adopted in [30, 31] to address generation expansion and transmission expansion,
respectively. Specifically, reference [30] models the uncertainties associated with
forecasted electricity load demand, as well as estimated investment and operation
costs, through distribution-free bounded intervals producing polyhedral uncertainty
sets. Expansion plans for generating facilities are then determined for multiple years
by applying a robust optimization model. Instead, in [31] two optimization crite-
ria for the TEP problem under the robust optimization paradigm are studied, where
maximum cost and maximum regret of the expansion plan overall uncertainties are
minimized, respectively.

Adaptation programming represents anothermethoddeveloped to dealwith uncer-
tainty. First introduced in [32] and further explored in [33], adaptation programming
designs a flexible system by minimizing the sum of investment and operational cost
and system future adaptation cost to the conditions of other identified scenarios. Sev-
eral uncertainty sources are considered in these works, including investment costs,
carbon prices, fuel prices and demand growth.

Among all the techniques developed to consider the uncertainty in theGTEP prob-
lem, themost widely used is stochastic programming [34], amethodology introduced
in the 1950s that uses a set of scenarios to model the future realization of the uncer-
tain parameters in the considered planning horizon. Works in this field can be further
classified in two groups: two-stage and multi-stage models. In a typical two-stage
stochastic model, the investment decisions represent first-stage decisions, which are
made before any uncertainty is revealed. Operational decisions are instead second-
stage decisions, made after the realization of parameter values. For instance, in [35]
a two-stage stochastic programming model for joint GTEP is presented, considering
as random events the demand, the equivalent availability of the generating plants and
the transmission capacity factor of the transmission lines. Reference [36] presents
a stochastic two-stage optimization model to evaluate interregional grid reinforce-
ments in Great Britain. The same approach is also used in [37] to determine the type

A Survey on Modeling Approaches for Generation … 191

and quantity of power plants to be constructed in each year of an extended planning
horizon, considering the uncertainty regarding future demand and fuel prices.

The two-stage approach can be extended to a multi-stage method, constructing
models that are both more flexible and complex. As explained in [38], in multi-stage
approaches expansion decisions are made at different stages, i.e., different points in
time of the planning horizon. The expansion decisions at each stage depend on the
scenario realization of the previous periods, but they do not depend on the future
scenario realizations. Examples of multi-stage models are represented by [39–41].
For instance, in [39] a multi-stage multi-scale linear stochastic model is presented
to optimize electricity generation, storage and transmission investments over a long
planning horizon. Both long-term uncertainties, such as investment and fuel-cost
changes and long-run demand-growth rates, and short-term uncertainties, such as
hour-to-hour demand and renewable-availability uncertainty, are considered in this
analysis and the progressive hedging algorithm is applied to decompose the original
model by scenario. Reference [40] proposes a risk-constrainedmulti-stage stochastic
programming model to make optimal investment decisions on wind power facilities
along amulti-stage horizon considering threemajor issues: the production variability
and uncertainty of wind power facilities, the eventual future decline in wind power
investment costs and the significant financial risk involved in such investment deci-
sions. Finally, in [41] authors study how uncertain future renewable penetration lev-
els impact the electricity system and try to quantify effects for the Central European
power market, by applying amulti-stage stochastic investment and dispatch model to
analyse the effects on investment choices, electricity generation, and system costs.
Although the multi-stage approach better represents long-term dynamics than the
two-stage method, the complexity of the problem in multi-stage models is further
increased. Finding the right balance between modeling accuracy and computation
tractability remains an open research topic for GTEP models.

2.3 High Level of Temporal Detail

To accurately study all the challenges related to integrating high shares of intermittent
energy sources, the GTEP analysis requires evaluating power system operations with
an hourly resolution. Indeed, as shown in [42], a low level of temporal detail in GTEP
models could significantly affect the results, not allowing to capture the short-term
volatility of renewable production and overestimating the renewable penetration.
However, due to the long-term horizon, considering every hour of the planning hori-
zon would be computationally infeasible. To provide an accurate representation of
the short-term operation while maintaining the problem computationally tractable,
some energy planning models use a small number of representative periods (i.e.,
days or weeks) instead of modeling every hour of the planning horizon. Different
approaches have been proposed to identify representative periods. Some authors
select representative days by using simple heuristics. For instance, to capture the
fluctuations in demand during the year, in [43] three time periods are selected as the

192 G. Micheli and M. T. Vespucci

day that contains the minimum demand level of the year, the day that contains the
maximum demand level and the day that contains the largest demand spread in 24 h.
Each of these representative days is then weighted in such way that the weighted sum
of the hourly demand of the three selected days equals the overall original demand
of the entire year. Instead, reference [44] proposes to represent the operation of a
power system by means of four representative weeks, one for every season. The
load profile of each of these representative weeks is the average of the load profiles
of all the weeks of a season. In the objective function, the operational cost of each
representative week is weighted by the number of weeks in the season. To ensure
that the power system has enough flexibility to handle extreme conditions, authors
propose also to add to the previous four average weeks a fifth week representing
extreme conditions. However, no explanations about the way the extreme week is
selected are provided in the paper. Other works combine heuristic approaches with
the random selection of some additional days. For instance, in [45] unit commitment
decisions within each investment period are optimized by considering a set of 12
days: two for each even-numbered month, with one day corresponding to the peak-
load day and the second day randomly selected from days belonging to the same
month. In [46], in order to significantly reduce the size of the planning problem,
authors propose to consider 28 representative days in the whole planning horizon
that are obtained by selecting 20 random days to characterize typical system behavior
and 8 specific days that contain hours with extreme meteorological and load events.
More advanced methods are based on clustering algorithms in order to group days
with similar load, wind power production or solar power production into clusters:
cluster’s centroid or a specific historical day for each group is then taken as represen-
tative day. Different clustering algorithms are proposed in the literature. For example,
reference [47] employs k-means algorithm, in [48] theWard’s hierarchical clustering
algorithm is used, while reference [49] suggests to apply k-means algorithm using
median representatives. Finally, some works select representative days by consid-
ering the historical load duration curve and the one obtained from the load in the
representative days (see e.g. [50, 51]). Specifically, authors in [51] design a mixed
integer linear programming model to select representative days and determine their
weights so as to minimize the distance between the historical load duration curve
and the one obtained by using the selected days. From this brief review about the
selection of representative days, four main observations can be drawn:

1. Clustering algorithms generally provide better approximations than heuristic
approaches [49, 51].

2. Using as representative days historical days rather than clusters means provide
better results, especially if power systems have large shares of renewables [48,
49].

3. Representative days selected using clustering algorithms characterize typical
system behavior. However, even the occurrence of extreme events should be
taken into account to properly design the expansion of a power system [44–46].

A Survey on Modeling Approaches for Generation … 193

4. The distance between the historical load duration curve and the one approximated
by representative days can provide useful information about the goodness of the
representation [50, 51].

Beside the method applied for representative days selection, the use of representa-
tive days raises the crucial issue regarding how these days should be linked in the
expansion planning model. Some of the existing methods, such as [52], consider
the representative days as temporally consecutive, linking these days according to
an arbitrary order, from which, however, the model results may be affected. Other
works, such as [44], assume that each representative day is followed by similar days
and, thus, state that the initial status of each representative day should be equal to
its final status. Specifically, in this approach new decision variables are introduced
to represent the initial status of each generating plants and constraints are imposed
to enforce the equality between initial and final status of each representative period.
However, this approach is not appropriate for extreme days, which represent unique
conditions. Extreme days are usually preceded by average days, thus considering
the initial status of an extreme day equal to its final status could bias the calculation
of the optimal amount of flexibility. More sophisticated approaches, such as [53],
connect representative days by computing the transitionmatrix, which gives the num-
ber of transitions between each pair of representative days. However, this approach
implies the introduction of many constraints and the interconnection among days,
which can consistently increase computational costs. In order to provide an accurate
solution to the unit commitment problem while maintaining representative days sep-
arate, reference [54] assigns to each thermal power plant an initial ON/OFF status in
every representative day by means of a decision tree built on historical data. In this
way, representative days are kept separate in the expansion planning problem, allow-
ing the implementation of decomposition techniques such as Benders algorithms to
decompose the expansion planning model by representative day.

The use of representative days introduces also a strong limitation in storage oper-
ation modeling. Indeed, representative days allow providing a good representation of
storage operation within a day, but, since the chronology among representative days
is not preserved, any energy storage system with a cycle longer than 24 h cannot be
modeled with great accuracy. To model the operation of medium-term or long-term
storage facilities, two different approaches can be applied:

1. Representative days are connected in order to catch the seasonality of storage
operation. While some works consider representative days as temporal consec-
utive [52], some recent studies model the long-term storage by considering the
Cluster Indices, which is a numeric column vector where each row indicates the
cluster assignment of the corresponding day of the year [53].

2. According to historical data or the results of a preliminary model, initial and
final energy contents are assigned to each representative day.

By imposing constraints that connect representative days, the drawback of the first
approach is an increasing computational complexity and the impossibility to decom-
pose the problem by representative day, which is a strategy commonly applied to

194 G. Micheli and M. T. Vespucci

pursue scalability in GTEP models [23]. Instead, the disadvantage of the second
approach is the need to apply a statistical analysis or an optimization model to deter-
mine the medium-term or long-term energy content of storage facilities. However,
decisions about the use of storage facilities depend on investments in new generation
and transmission and, thus, they cannot be determined by considering historical data
or by applying a preliminary model on input data.

3 A GTEP Model for the Decarbonization of Power
Systems

In this section we present a GTEP model designed to reach in the power sector the
decarbonization targets set by the European Commission, which include an increas-
ing penetration of renewable power sources and a reduction of CO2 emissions. The
model hereafter introduced is a simplified version of the model proposed in [22] to
plan the joint expansion of generation and transmission capacity in the Italian power
system.Thedistinct feature of thismodel is a high level of both technical and temporal
detail, which is required to properly evaluate all the challenges related to integrating
high shares of renewables to reach decarbonization targets. Taking into account the
trade-off between modeling accuracy and computational tractability described in the
previous section, a zonal representation of the power system is adopted, with the set
of zones denoted by Z , and only a small number of representative days is considered
to evaluate the short-term operational dispatch, with the set of representative days
denoted by C .

The structure of the power system at the beginning of the planning horizon is
described by set LE of transmission lines connecting zones, set KE of thermal power
plants, set HE of hydropower plants and parameters solz,0 and windz,0 representing
the solar power capacity and the wind power capacity, respectively, installed in zone
z ∈ Z . The decisions to be taken concern decommissioning of existing thermal power
plants as well as investments in new lines, new thermal units, new hydropower plants,
new RES generation capacity and batteries, whose installed capacity is supposed to
be negligible at the beginning of the planning horizon (as it is, for instance, in the
Italian power system). Decommissioning and investment decisions are defined for
every year of the planning horizon, with the set of years denoted by Y . Given the
zonal representation of the power system and the long-term planning horizon, a
transshipment approach is introduced to model the transmission network.

As regards to generation expansion decisions, the investments in new RES power
generation capacity are represented by continuous variables. While it is possible to
build wind and solar power plants of any capacity, thermal units usually present
specified size, which does not allow modeling thermal power capacity expansion by
means of continuous variables. Thus, investments in new thermal plants are managed
through a set of candidate projects and binary variables describing whether the units
are realized or not. Similarly, binary variables are introduced also to represent invest-

A Survey on Modeling Approaches for Generation … 195

ments in new hydropower plants and new transmission lines, while investments in
batteries capacity are modeled through continuous variables.

Since the thermal power plants production costs are uncertain parameters that
play an important role in the GTEP analysis by affecting the merit order of thermal
plants and the economic viability of renewable generation, different scenarios for
these parameters are considered, with the set of scenarios denoted by W . The joint
GTEP problem is then formulated as a two-stage stochastic programming model,
with the first stage representing the investment problem and the second stage being
the operational problem. The following paragraphs provide the nomenclature and
the mathematical formulation of the GTEP model.

Sets

Y set of years, indexed by y
Z set of zones, indexed by z
M set of macro-areas, indexed by m
K set of thermal power plants, indexed by k
KE ⊆ K set of existing thermal power plants
KC ⊆ K set of candidate thermal power plants
Ωk

z ⊆ K set of thermal power plants located in zone z
L set of lines, indexed by l
LE ⊆ L set of existing lines
LC ⊆ L set of candidate lines
F set of fuels, indexed by f
Φ f,z ⊆ Ωk

z set of thermal power plants located in zone z using fuel f
H set of hydropower plants, indexed by h
HE ⊆ H set of existing hydropower plants
HC ⊆ H set of candidate hydropower plants
Ωh

z ⊆ H set of hydropower plants located in zone z
B set of batteries, indexed by b
Ωb

z ⊆ B set of batteries located in zone z
C set of representative days, from 1 to ncluster , indexed by c
T set of hours, from 1 to 24 ncluster indexed by t
W set of scenarios, indexed by w

ma(z) macro-area that contains zone z
U P(k) upgrade project of existing thermal power plant k
r(l) receiving-end zone of transmission line l
s(l) sending-end zone of transmission line l
f uel(k) fuel used in thermal power plant k
year(c) year that contains representative day c
cl(t) representative day that contains hour t
yr(t) year that contains hour t

196 G. Micheli and M. T. Vespucci

Parameters

y0 reference year to which all investment costs are discounted
r annual discount rate
cEN P penalty for energy not provided
cOG penalty for over-generation
prw probability of scenario w

wgc weight of cluster c
DCk decommissioning cost of existing thermal power plant k ∈ KE

ICth
k investment cost of candidate thermal power plant k ∈ KC

FCk annual fixed costs of thermal power plant k ∈ K
CMk,y,w marginal production cost of thermal power plant k in year y in scenario

w
τ k earliest date for construction/decommission of thermal power plant k
τ k latest date for construction/decommission of thermal power plant k
Pk minimum power output of thermal power plant k
Pk maximum power output of thermal power plant k
SUCk start-up cost of thermal power plant k
MUTk minimum up time of thermal power plant k
MDTk minimum down time of thermal power plant k
γk,c,w0 initial status of thermal power plant k in cluster c in scenario w

hht hour of the day (from1 to 24) related to hour t (e.g. hh25 = 1, hh48 = 24)
ICsol

z,y investment cost of new solar power capacity in zone z in year y
solz,0 solar power capacity installed in zone z at the beginning of the planning

horizon
PV z,y lower bound for solar power capacity in zone z in year y
PV z,y upper bound for solar power capacity in zone z in year y
ICwind

z,y investment cost of new wind power capacity in zone z in year y
windz,0 wind power capacity installed in zone z at the beginning of the planning

horizon
Wz,y lower bound for wind power capacity in zone z in year y
W z,y upper bound for wind power capacity in zone z in year y
Dz,t load in zone z in hour t
Rz,t reserve requirement for zone z in hour t
μz,t solar power capacity factor for zone z in hour t
ρz,t wind power capacity factor for zone z in hour t
IChydro

h,y investment cost of new hydropower plant h ∈ HC in year y
Cvarh operating cost of hydropower plant h
τ h earliest date for construction of hydropower plant h
τ h latest date for construction of hydropower plant h
Eh,c0 initial energy content of hydropower plant h in cluster c
Eh,c24 final energy content of hydropower plant h in cluster c
Fh,t hourly energy inflows for hydropower plant h at time t
λh loss coefficient for energy stored by hydropower plant h (0 ≤ λh ≤ 1)
λin
h loss coefficient for hydroplant h pumping (0 ≤ λin

h ≤ 1)
λout
h loss coefficient for hydroplant h power generation (λout

h ≥ 1)

A Survey on Modeling Approaches for Generation … 197

E
in
h upper bound on hydropower plant h pumping power

E
out
h upper bound on hydropower plant h power output

EPRh maximum energy to power ratio (in hours) for hydropower plant h
ICbatt

b,y investment cost of battery b in year y
Cvarb operating cost of battery b
C APb upper bound on battery b installed capacity
λb loss coefficient for energy stored by battery b (0 ≤ λb ≤ 1)
λin
b loss coefficient for battery b charge (0 ≤ λin

b ≤ 1)
λout
b loss coefficient for battery b discharge (λout

b ≥ 1)

E
in
b upper bound on battery b charge

E
out
b upper bound on battery b discharge

EPRb maximum energy to power ratio (in hours) for battery b
ICline

l investment cost of candidate line l ∈ LC

τ l earliest date for construction of candidate line l
τ l latest date for construction/of candidate line l
Fl minimum capacity of line l
Fl maximum capacity of line l
H Rk heat rate of thermal power plant k
ECnt f energy content of fuel f
co2 f CO2 emission factor of fuel f
FA f,m,y upper bound on availability of fuel f for macro-area m in year y
CO2m,y CO2 emission limit for macro-area m in year y
ϕm,y lower bound for renewables penetration in macro-area m in year y

Decision Variables

solz,y new solar capacity installed in zone z in year y
windz,y new wind capacity installed in zone z in year y
capb,y storage capacity of battery b installed in year y
δ−
k,y 1: thermal power plant k ∈ KE is decommissioned in year y; 0:

otherwise
δ+
k,y 1: thermal power plant k ∈ KC is built in year y; 0: otherwise

δh,y 1: hydropower plant h ∈ HC is built in year y; 0: otherwise
δl,y 1: line l ∈ LC is built in year y; 0: otherwise
θ−
k,y 1: thermal power plant k ∈ KE is decommissioned within year y;

0: otherwise
θ+
k,y 1: thermal power plant k ∈ KC is built within year y; 0: otherwise

θh,y 1: hydropower plant h ∈ HC is built within year y; 0: otherwise
θl,y 1: line l ∈ LC is built within year y; 0: otherwise
pk,t,w power production of thermal power plant k in hour t in scenario w

above its minimum output Pk
Ein
h,t,w pumping power of hydro reservoir h in hour t in scenario w

Eout
h,t,w power output of hydro reservoir h in hour t in scenario w

Eh,t,w energy level of hydro reservoir h in hour t in scenario w

198 G. Micheli and M. T. Vespucci

slh,t,w spillage from hydro reservoir h in hour t in scenario w

Ein
b,t,w charge of battery b in hour t in scenario w

Eout
b,t,w discharge of battery b in hour t in scenario w

Eb,t,w energy level of battery b in hour t in scenario w

xl,t,w energy flow on transmission line l in hour t in scenario w

EN Pz,t,w energy not provided in zone z in hour t in scenario w

OGz,t,w over-generation in zone z in hour t in scenario w

RESz,t,w renewable generation in zone z in hour t in scenario w

γk,t,w 1: thermal power plant k is ON in hour t in scenariow; 0: otherwise
αk,t,w 1: thermal power plant k is started up in hour t in scenario w; 0:

otherwise
βk,t,w 1: thermal power plant k is shut down in hour t in scenario w; 0:

otherwise

Mathematical Model

min z =
∑

y∈Y

⎡

⎣
∑

k∈KE

DCkδ
−
k,y

(1 + r)y−y0
+

∑

k∈KC

ICth
k δ+

k,y

(1 + r)y−y0

⎤

⎦

+
∑

y∈Y

[
∑

z∈Z

ICsol
z,y solz,y

(1 + r)y−y0
+

∑

z∈Z

ICwind
z,y windz,y

(1 + r)y−y0

]

+
∑

y∈Y

∑

h∈HC

IChydro
h,y δh,y

(1 + r)y−y0
+

∑

y∈Y

∑

b∈B

ICbatt
b,y capb,y

(1 + r)y−y0
+

∑

y∈Y

∑

l∈LC

ICline
l δl,y

(1 + r)y−y0

+
∑

y∈Y

⎡

⎣
∑

k∈KE

FCk

(
1 − θ−

k,y

)
+

∑

k∈KC

FCkθ
+
k,y

⎤

⎦

+
∑

w∈W
prw

⎡

⎣
∑

y∈Y

∑

c|year(c)=y

wgc
∑

t |cl(t)=c

(
∑

k∈K
CMk,y,w

(
Pkγk,t,w + pk,t,w

)

+
∑

k∈K
SUCkαk,t,w +

∑

h∈H
Cvarh E

out
h,t,w +

∑

b∈B
CvarbE

out
b,t,w

+cEN P

∑

z∈Z
EN Pz,t,w + cOG

∑

z∈Z
OGz,t,w

)]

(1)

subject to

δ−
k,y = 0 k ∈ KE , y /∈ [

τ k , τ k
]

(2)

δ+
k,y = 0 k ∈ KC , y /∈ [

τ k , τ k
]

(3)

δh,y = 0 h ∈ HC , y /∈ [
τ h, τ h

]
(4)

δl,y = 0 l ∈ LC , y /∈ [
τ l , τ l

]
(5)

PV z,y ≤ solz,0 +
y∑

i=1

solz,i ≤ PV z,y z ∈ Z , y ∈ Y (6)

A Survey on Modeling Approaches for Generation … 199

Wz,y ≤ windz,0 +
y∑

i=1

windz,i ≤ Wz,y z ∈ Z , y ∈ Y (7)

∑

y∈Y
capb,y ≤ CAPb b ∈ B (8)

θ−
k,y =

y∑

i=1

δ−
k,y k ∈ KE , y ∈ Y (9)

θ+
k,y =

y∑

i=1

δ+
k,y k ∈ KC , y ∈ Y (10)

θh,y =
y∑

i=1

δh,y h ∈ HC , y ∈ Y (11)

θl,y =
y∑

i=1

δl,y l ∈ LC , y ∈ Y (12)

γk,t,w ≤ 1 − θ−
k,y k ∈ KE , t ∈ T, y = yr(t), w ∈ W (13)

γk,t,w ≤ θ+
k,y k ∈ KC , t ∈ T, y = yr(t), w ∈ W (14)

γk,t,w ≤ 1 − θ+
U P(k),y k ∈ KE , t ∈ T, y = yr(t), w ∈ W (15)

0 ≤ pk,t,w ≤ (Pk − Pk)γk,t,w k ∈ K , t ∈ T, w ∈ W (16)
γk,t,w − γk,t−1,w = αk,t,w − βk,t,w k ∈ K , t : hht > 1, w ∈ W (17)
γk,t,w − γk,c,w0 = αk,t,w − βk,t,w k ∈ K , t : hht = 1, c = cl(t), w ∈ W (18)

t∑

i=t−MUTk+1

αk,i,w ≤ γk,t,w k ∈ K , t : hht ≥ MUTk , w ∈ W (19)

t∑

i=t−MDTk+1

βk,i,w ≤ 1 − γk,t,w k ∈ K , t : hht ≥ MDTk , w ∈ W (20)

0 ≤ Ein
h,t,w ≤ E

in
h h ∈ HE , t ∈ T, w ∈ W (21)

0 ≤ Eout
h,t,w ≤ E

out
h h ∈ HE , t ∈ T, w ∈ W (22)

0 ≤ Eh,t,w ≤ EPRh E
in
h h ∈ HE , t ∈ T, w ∈ W (23)

0 ≤ Ein
h,t,w ≤ E

in
h θh,y h ∈ HC , t ∈ T, y = yr(t), w ∈ W (24)

0 ≤ Eout
h,t,w ≤ E

out
h θh,y h ∈ HC , t ∈ T, y = yr(t), w ∈ W (25)

0 ≤ Eh,t,w ≤ EPRh E
in
h θh,y h ∈ HC , t ∈ T, y = yr(t), w ∈ W (26)

Eh,t,w = (1 − λh)Eh,t−1,w + Fh,t

+ λinh Ein
h,t,w − λouth Eout

h,t,w − slh,t,w
h ∈ H, t : hht > 1, w ∈ W (27)

Eh,t,w = (1 − λh)Eh,c0 + Fh,t

+ λinh Ein
h,t,w − λouth Eout

h,t,w − slh,t,w
h ∈ H, t : hht = 1, c = cl(t), w ∈ W (28)

Eh,t,w = Eh,c24 h ∈ H, t : hht = 24, c = cl(t), w ∈ W (29)

0 ≤ Ein
b,t,w ≤

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t), w ∈ W (30)

200 G. Micheli and M. T. Vespucci

0 ≤ Eout
b,t,w ≤

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t), w ∈ W (31)

0 ≤ Eb,t,w ≤ EPRb

y∑

i=1

capb,i b ∈ B, t ∈ T, y = yr(t), w ∈ W (32)

Eb,t,w = (1 − λb)Eb,t−1,w + λinb Ein
b,t,w

− λoutb Eout
b,t,w

b ∈ B, t : hht > 1, w ∈ W (33)

Eb,t,w = (1 − λb)Eb,c0 + λinb Ein
b,t,w

− λoutb Eout
b,t,w

b ∈ B, t : hht = 1, c = cl(t), w ∈ W (34)

Eb,t,w = Eb,c0 b ∈ B, t : hht = 24, c = cl(t), w ∈ W (35)

Fl ≤ xl,t,w ≤ Fl l ∈ LE , t ∈ T, w ∈ W (36)

Flθl,y ≤ xl,t,w ≤ Flθl,y l ∈ LC , t ∈ T, w ∈ W (37)

∑

k∈Ωk
z

(
Pkγk,t,w + pk,t,w

) + μz,t

⎛

⎝solz,0 +
yr(t)∑

i=1

solz,i

⎞

⎠

+ ρz,t

⎛

⎝windz,0 +
yr(t)∑

i=1

windz,i

⎞

⎠ +
∑

l|r(l)=z

xl,t,w

+
∑

h∈Ωh
z

Eout
h,t,w +

∑

b∈Ωb
z

Eout
b,t,w + EN Pz,t,w = Dz,t

+
∑

l|s(l)=z

xl,t,w +
∑

h∈Ωh
z

Ein
h,t,w +

∑

b∈Ωb
z

Ein
b,t,w + OGz,t,w

z ∈ Z , t ∈ T, w ∈ W (38)

∑

k∈KE∩Ωk
z

(
Pk(1 − θ−

k,y) − Pkγk,t,w − pk,t,w
)

+

∑

k∈KC∩Ωk
z

(
Pkθ

+
k,y − Pkγk,t,w − pk,t,w

)
≥ Rz,t

z ∈ Z , t ∈ T, w ∈ W (39)

∑

z|ma(z)=m

∑

f ∈F

∑

k∈Φz, f

∑

c|year(c)=y

wgc

∑

t |cl(t)=c

H Rk(Pkγk,t,w + pk,t,w)co2 f ≤ CO2m,y

m ∈ M, y ∈ Y, w ∈ W (40)

∑

z|ma(z)=m

∑

k∈Φz, f

∑

c|year(c)=y

wgc

∑

t |cl(t)=c

H Rk(Pkγk,t,w + pk,t,w)

ECnt f
≤ FA f,m,y

f ∈ F, m ∈ M, y ∈ Y, w ∈ W (41)

A Survey on Modeling Approaches for Generation … 201

RESz,t,w = μz,t

⎛

⎝solz,0 +
yr(t)∑

i=1

solz,i

⎞

⎠

+ ρz,t

⎛

⎝windz,0 +
yr(t)∑

i=1

windz,i

⎞

⎠ +
∑

h∈Ωh
z

Eout
h,t,w

z ∈ Z , t ∈ T, w ∈ W (42)

∑

z|ma(z)=m

∑

c|year(c)=y

wgc
∑

t |cl(t)=c

RESz,t,w ≥

ϕm,y

∑

z|ma(z)=m

∑

c|year(c)=y

wgc
∑

t |cl(t)=c

Dz,t

m ∈ M, y ∈ Y, w ∈ W (43)

δ−
k,y, θ

−
k,y ∈ {0, 1} k ∈ KE , y ∈ Y (44)

δ+
k,y, θ

+
k,y ∈ {0, 1} k ∈ KC , y ∈ Y (45)

δh,y, θh,y ∈ {0, 1} h ∈ HC , y ∈ Y (46)
δl,y, θl,y ∈ {0, 1} l ∈ LC , y ∈ Y (47)
solz,y, windz,y ≥ 0 z ∈ Z , y ∈ Y (48)
capb,y ≥ 0 b ∈ B, y ∈ Y (49)
αk,t,w, βk,t,w, γk,t,w ∈ {0, 1} k ∈ K , t ∈ T, w ∈ W (50)
EN Pz,t,w, OGz,t,w, RESz,t,w ≥ 0 z ∈ Z , t ∈ T, w ∈ W. (51)

The objective function (1) comprises the seven terms below:

1.
∑

y∈Y
[∑

k∈KE

DCkδ
−
k,y

(1+r)y−y0 + ∑
k∈KC

ICth
k δ+

k,y

(1+r)y−y0

]
are the annualized decommission-

ing costs of existing thermal power plants and investment costs in new thermal
power generation;

2.
∑

y∈Y
[∑

z∈Z
ICsol

z,y solz,y
(1+r)y−y0 + ∑

z∈Z
ICwind

z,y windz,y
(1+r)y−y0

]
are the annualized investment costs

in new solar and wind capacity;

3.
∑

y∈Y
∑

h∈HC

IChydro
h,y δh,y

(1+r)y−y0 are the annualized investment costs in new hydropower
plants;

4.
∑

y∈Y
∑

b∈B
ICbatt

b,y capb,y
(1+r)y−y0 are the annualized investment costs in new batteries

capacity;

5.
∑

y∈Y
∑

l∈LC

ICline
l δl,y

(1+r)y−y0 are the annualized investment costs in new transmission
lines;

6.
∑

y∈Y
[∑

k∈KE
FCk

(
1 − θ−

k,y

)
+ ∑

k∈KC
FCkθ

+
k,y

]
are the fixed costs for the

available thermal power plants, i.e., not decommissioned existing plants and
already constructed candidate plants;

7.
∑

w∈W prw
[∑

y∈Y
∑

c|year(c)=y wgc
∑

t |cl(t)=c

(∑
k∈K CMk,y,w

(
Pkγk,t,w +

pk,t,w
) + ∑

k∈K SUCkαk,t,w + ∑
h∈H Cvarh Eout

h,t,w + ∑
b∈B CvarbEout

b,t,w +
cEN P

∑
z∈Z EN Pz,t,w + cOG

∑
z∈Z OGz,t,w

)]
are the second-stage costs, i.e.,

the operating costs.

202 G. Micheli and M. T. Vespucci

Specifically, item7 above considers for each representative day the sumof production
costs, start-up costs, hydro and batteries operational costs and penalties for energy not
provided and over-generation. Production costs are supposed to be linear functions
of the power output, being CMk,y,w the slopes of these linear relationships. In each
scenario w, the marginal cost of thermal plant k in year y is computed as:

CMk,y,w = OMk + HRk(Price
f uel(k)
y,w + co2 f uel(k)Price

co2
y,w) (52)

with OMk [e/MWh] being the operative and maintenance costs of plant k, HRk

[Gcal/MWh] the heat rate of thermal power plant k, Price f uel(k)
y,w [e/Gcal] the price

in year y under scenario w of fuel used by unit k, co2 f uel(k) [ton/Gcal] the CO2

emission factor of fuel used by unit k and Priceco2y,w [e/ton] the emission cost in year
y under scenario w.

In the proposed model there are three groups of constraints, namely investment
constraints (2)–(12), operational constraints (13)–(39) and target constraints (40)–
(43). Investment constraints model decommissioning and investment decisions. In
particular, assignment constraints (2) impose earliest and latest dates for decom-
missioning of existing thermal power plants. Similarly, constraints (3)–(5) impose a
temporal window for investment decisions on candidate thermal plants, hydropower
plants and lines, respectively. Inequalities (6) and (7) enforce lower and upper bounds
on solar and wind installed capacity, respectively. Inequalities (8) impose an upper
bound on batteries installed capacity at the end of the planning horizon. Finally,
equations (9)–(12) compute the values of the binary variables θ−

k,y , θ+
k,y , θh,y and

θl,y that express if decommissioning or investment decisions have been made within
every year y of the planning horizon.

Operational constraints express all the technical conditions for operating thermal
and hydropower plants, transmission lines and storages and consider the flexibil-
ity provided to the energy system by the hydro-thermal dispatch and the storage
units. In particular, the block of equations (13)–(20) models the thermal component
of the energy system. Constraints (13)–(15) ensure consistency between the binary
variables representing the commitment status and those representing the decommis-
sioning and investment decisions. Specifically, inequalities (13) force the existing
power plants decommissioned within year y to be offline in all hours after decom-
mission. Constraints (14) impose that projects built within year y can be used to
supply load, while thermal units not yet constructed are forced to be offline in all
hours of year y. Inequalities (15) model the reinforcements of existing thermal power
plants. Specifically, let k ′ = U P(k) denote the new project that replaces the existing
unit k when it starts operating: building project k ′ within year y implies the perma-
nent offline status of unit k. Inequalities (16) state that the non-negative variables
pk,t,w representing the power output above the minimum power output Pk are either
bounded above by Pk − Pk , if unit k is online, or zero if unit k is offline. Con-
straints (17) enforce consistency between the binary variables representing start-up,
shut down and status in adjacent hours in all hours of the representative days, except
the first hour of the day. Constraints (18) enforce consistency between statuses and

A Survey on Modeling Approaches for Generation … 203

maneuvers for the first hour of every representative day, where the parameter γk,c,w0
represents the status of unit k at the beginning of representative day c under scenario
w. The minimum uptime constraints (19) impose that unit k can be started-up at most
once in an interval of MUTk consecutive time periods. For each representative day,
the minimum uptime constraints are enforced on the hours in the range from MUTk
to the final (the 24th) hour of the day, to keep the representative days separate in
the description of future scenarios. The minimum downtime constraints (20) work
similarly to the shut-down of thermal power plants. Constraints (21)–(29) model the
operation of hydro plants. Specifically, constraints (21)–(23) bound the non-negative
variables corresponding to the pumping power, the power output and the energy
level of the existing hydroelectric reservoirs below their respective upper limits. If
candidate hydro plant h ∈ Hc is built within year y, inequalities (24)–(26) define the
upper bounds to pumping power, power output and energy level of new hydroelec-
tric reservoirs, otherwise set the corresponding variables to zero. Energy balances
(27) apply to all hours but the first of the representative days: they ensure that the
energy stored by hydro plant h at the end of hour t equals the energy stored at the
end of hour t − 1 (reduced by the loss coefficient λh ≤ 1), plus the natural inflows,
plus the energy injected in h (reduced by the coefficient λin

h ≤ 1), minus the energy
released from the reservoir (reduced by the coefficient λout

h ≥ 1), minus the spillage.
Equations (28) impose the energy balance for the first hour of each representative
day, while equations (29) set the energy levels of each reservoir h at the end of each
representative day to the value Eh,c24.

Constraints (30)–(35) model the operation of batteries. Specifically, inequalities
(30)–(32) impose upper bounds to non-negative variables representing charge, dis-
charge and stored energy and enforce consistency between the values of the first-stage
and second-stage variables. Similarly to constraints (27) and (28), equations (33) and
(34) impose energy balances for batteries. Constraints (35) state the equality for each
battery b between energy levels at the beginning and the end of each representative
day: in this model, batteries are supposed to have a cycle of 24 h. Inequalities (36)
restrict the energy flows on the existing transmission lines. Constraints (37) impose
lower and upper bounds to the power exchanges among zones and enforce con-
sistency between the energy flows on candidate transmission lines and the binary
variables related to investment decisions, not allowing energy flows on candidate
lines which have not been built. The zonal balance equations (38) impose equality
between energy sources and use in every zone and every hour. Specifically, the hourly
energy sources of zone z are given by thermal, solar and wind generation, incoming
energy flows, hydro generation and energy released by batteries (the left-hand side
of the equations), while and the energy uses are represented by the load, outgoing
energy flows, pumping power and energy absorbed by batteries (the right-hand side
of the equations). The variables EN Pz,t,w and OGz,t,w allow detecting and evalu-
ating problems in the simulated system that can cause a mismatch between supply
and demand. Inequalities (39) ensure the fulfillment of zonal reserve requirements
provided by available thermal plants.

Target constraints (40)–(43) model decarbonization targets. Specifically, inequal-
ities (40) impose limits for thermal energy production due to CO2 emissions. These

204 G. Micheli and M. T. Vespucci

constraints are imposed for each macro-aream, each year y, and each scenario w. In
particular, they are computed by multiplying the daily CO2 emissions under scenario
w in all the zones belonging to macro-area m by the weight of each cluster, to take
into account the different occurrences of representative days. Inequalities (41) impose
limits on thermal power generation employing fossil fuels whose availability could
be limited in time. Equations (42) compute the zonal hourly renewable production,
by considering solar, wind and hydroelectric generation. Constraints (43) control the
renewable penetration, forcing the total renewable generation inmacro-aream in year
y to cover at least ratio ϕm,y of the total yearly demand for electricity. Finally, con-
straints (44)–(51) define the binary variables and the non-negative variables whose
lower bound has not been specified in the previous equations.

Given the high dimensionality, providing a solution to the proposed model is
computationally challenging. In our numerical experiments, we applied a multi-cut
Benders decomposition algorithm, decomposing the stochastic model both by year
and by scenario, and solving at each iteration master problem and subproblems with
solver Gurobi under GAMS 24.7.4. We refer the reader to [22] for the details about
solution algorithm and computational times.

4 Conclusions

In this paper, a detailed description of the GTEP problem is provided, by highlighting
the main characteristics of the problem and by reviewing the most relevant works
developed in the literature. First, the different modeling choices associated with the
design of a GTEP model are presented, highlighting which approaches are suited to
address specific research questions. In general, performing a GTEP analysis implies
dealing with large-scale models, whose solution could be computationally challeng-
ing. Thus, when designing a model for GTEP a trade-off between modeling accuracy
and computational tractability has always to be considered.

Then, GTEPmodels are classified according to the way uncertainty is represented
in the expansion planning framework. Indeed, given the long-term planning horizon,
a high level of uncertainty affects investments in the power sector. Including this
uncertainty in the GTEP analysis provides more solid results for decision makers.

This paper discusses also the need to evaluate short-term operational condition
by considering representative days, so as to catch the fluctuation of intermittent
renewable power sources and properly evaluate the flexibility needs of power sys-
tems, while maintaining the problem computationally tractable. Therefore, different
approaches to select representative days are compared, discussing also the challenges
related to these methods.

Finally, a GTEPmodel designed to reach the decarbonization targets in the power
sector is presented in the paper. Such model co-optimizes strategic and operational
decisions for transmission, generation and storage facilities, providing a very detailed
representation of the power system and including constraints to limit the CO2 emis-
sions and to increase the generation from renewable power sources. However, this

A Survey on Modeling Approaches for Generation … 205

model does not consider the interactions between the electricity and the gas sys-
tems, which is a very relevant topic for modern power systems, given the increasing
deployment of gas-fueled thermal units and Power-to-Gas plants. The integration of
electricity and gas systems will be investigated in a future work.

References

1. D. Huppmann and R. Egging-Bratseth, “Market power, fuel substitution and infrastructure – A
large-scale equilibrium model of global energy markets,” Energy, vol. 75, no. C, pp. 483–500,
2014.

2. P. Seljom and A. Tomasgard, “Short-term uncertainty in long-term energy system models – A
case study of wind power in Denmark,” Energy Economics, vol. 49, pp. 157–167, 2015.

3. L. Garver, “Transmission network estimation using linear programming,” IEEE Transactions
on Power Apparatus and Systems, vol. 89, no. 7, pp. 1686–1697, 1970.

4. Y. Gu, J. McCalley, and M. Ni, “Coordinating large-scale wind integration and transmission
planning,” IEEE Transactions on Sustainable Energy, vol. 3, no. 4, pp. 652–659, 2011.

5. H. Haghighat and B. Zneg, “Bilevel conic transmission expansion planning,” IIEEE Transac-
tions on Power Systems, vol. 33, no. 4, pp. 4640–4642, 2018.

6. R. Hemmati, H. Saboori, and M. Jirdehi, “Multistage generation expansion planning incor-
porating large scale energy storage systems and environmental pollution,” Renewable Energy,
vol. 97, pp. 636–645, 2016.

7. J. Meza, M. Yildirim, and A. Masud, “A model for the multiperiod multiobjective power
generation expansion problem,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 871–
878, 2007.

8. S. Kazempour, A. Conejo, and C. Ruiz, “Strategic generation investment using a complemen-
tarity approach,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 940–948, 2011.

9. V. Krishnan, J. Ho, B. Hobbs, A. Liu, J. McCalley, M. Shahidehpour, and Q. Zheng, “Co-
optimization of electricity transmission and generation resources for planning and policy anal-
ysis: review of concepts andmodeling approaches,” Energy Systems, vol. 7, no. 2, pp. 297–332,
2016.

10. D. Pozo, E. Sauma, and J. Contreras, “A three-level static MILP model for generation and
transmission expansion planning,” IEEE Transactions on Power Systems, vol. 28, pp. 201–
210, 2013.

11. Y.Tohidi,M.Hesamzadeh, andF.Regairaz, “Sequential coordinationof transmission expansion
planning with strategic generation investments,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 2521–2534, 2017.

12. E. Sauma and S. Oren, “Economic criteria for planning transmission investment in restructured
electricitymarkets,” IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1394–1405, 2007.

13. D. Pozo, J. Contreras, and E. Sauma, “If you build it, he will come: Anticipative power trans-
mission planning,” Energy Economics, vol. 36, pp. 135–146, 2013.

14. J. Aghaei, N. Amjady, A. Baharvandi, andM. Akbari, “Generation and transmission expansion
planning: MILP-based probabilistic model,” IEEE Transactions on Power Systems, vol. 29,
pp. 1592–1601, 2014.

15. S. Moghaddam, “Generation and transmission expansion planning with high penetration of
wind farms considering spatial distribution of wind speed,” International Journal of Electrical
Power & Energy Systems, vol. 106, pp. 232–241, 2019.

16. S. You, S. Hadley, M. Shankar, and Y. Liu, “Co-optimizing generation and transmission expan-
sion with wind power in large-scale power grids – implementation in the us eastern intercon-
nection,” Electric Power System Research, vol. 133, pp. 209–218, 2016.

206 G. Micheli and M. T. Vespucci

17. B. Alizadeh and S. Jadid, “Reliability constrained coordination of generation and transmission
expansion planning in power systems using mixed integer programming,” IET Generation,
Transmission & Distribution, vol. 5, pp. 948–960, 2011.

18. B. Alizadeh and S. Jadid, “A dynamic model for coordination of generation and transmission
expansion planning in power systems,” International Journal of Electrical Power & Energy
Systems, vol. 65, pp. 408–418, 2015.

19. F. Fallahi, M. Nick, G. Riahy, S. Hosseinian, and A. Doroudi, “The value of energy storage
in optimal non-firm wind capacity connection to power systems,” Renewable Energy, vol. 64,
pp. 34–42, 2014.

20. C.Unsihuay-Vila, J.Marangon-Lima,A. Zambroni de Souza, and I. Perez-Arriaga, “Multistage
expansion planning of generation and interconnections with sustainable energy development
criteria: Amultiobjectivemodel,” International Journal of Electrical Power&Energy Systems,
vol. 33, no. 2, pp. 258–270, 2011.

21. M.Hesamzadeh, J. Rosellon, and I.Vogelsang,TransmissionNetwork Investment in Liberalized
Power Markets. Springer, 2020.

22. G. Micheli, M. Vespucci, M. Stabile, C. Puglisi, and A. Ramos, “A two-stage stochastic MILP
model for generation and transmission expansion planning with high shares of renewables,”
Energy Systems, 2020.

23. A. Schwele, J. Kazempour, and P. Pinson, “Do unit commitment constraints affect generation
expansion? A scalable stochastic model,” Energy Systems, 2019.

24. M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl, D. Lindenberger, and E. Tröster, “The role of
grid extensions in a cost-efficient transformation of the european electricity system until 2050,”
Applied Energy, vol. 104, pp. 642 – 652, 2013.

25. M.Moeini-Aghtaie,A.Abbaspour, andM.Fotuhi-Firuzabad, “Incorporating large-scale distant
wind farms in probabilistic transmission expansion planning–part i: Theory and algorithm,”
IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1585–1593, 2012.

26. H. Yu, C. Chung, K. Wong, and J. Zhang, “A chance constrained transmission network expan-
sion planning method with consideration of load and wind farm uncertainties,” IEEE Transac-
tions on Power Systems, vol. 24, no. 3, pp. 1568–1576, 2009.

27. G.Orfanos, P.Georgilakis, andN.Hatziargyriou, “Transmission expansion planning of systems
with increasing wind power integration,” IEEE Transactions on Power Systems, vol. 28, no. 2,
pp. 1355–1362, 2012.

28. C. Ruiz and A. Conejo, “Robust transmission expansion planning,” European Journal of Oper-
ational Research, vol. 242, no. 2, pp. 390–401, 2015.

29. Z. Li, J. Li, F. Liu,H.Ye,X.Zhang, S.Mei, andN.Chang, “Robust coordinated transmission and
generation expansion planning considering ramping requirements and construction periods,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 268–280, 2018.

30. S. Dehghan, N. Amjady, and K. Ahad, “Two-stage robust generation expansion planning: A
mixed integer linear programmingmodel,” IEEE Transactions on Power Systems, vol. 29, no. 2,
pp. 584–597, 2014.

31. S. Chen, J. Wang, Y. He, and Z. Wang, “Robust optimization for transmission expansion
planning: Minimax cost vs. minimax regret,” IEEE Transactions on Power Systems, vol. 29,
no. 6, pp. 3069–3077, 2014.

32. D. Mejía-Giraldo and J. McCalley, “Maximizing future flexibility in electric generation port-
folios,” IEEE Transactions on Power Systems, vol. 29, pp. 279–288, 2014.

33. P. Maloney, O. Olatujoye, A. Ardakani, D. Mejía-Giraldo, and J. McCalley, “A comparison of
stochastic and adaptation programming methods for long term generation and transmission co-
optimization under uncertainty,” in 2016 North American Power Symposium (NAPS), Denver,
CO, USA, 2016.

34. J. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer, New York:
Springer Series in Operations Research and Financial Engineering, 2011.

35. J. Alvarez Lopez, K. Ponnambalam, and V. Quintana, “Generation and transmission expansion
under risk using stochastic programming,” IEEE Transactions on Power Systems, vol. 22, no. 3,
pp. 1369–1378, 2007.

A Survey on Modeling Approaches for Generation … 207

36. A. Van der Weijde and B. Hobbs, “The economics of planning electricity transmission to
accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of
disregarding uncertainty,” Energy Economics, vol. 34, no. 6, pp. 2089–2101, 2012.

37. S. Jin, S. Ryan, J. Watson, and D. Woodruff, “Modeling and solving a large-scale generation
expansion planning problem under uncertainty,” Energy Systems, vol. 2, pp. 209–242, 2011.

38. A. Conejo, L. Baringo, S. Kazempour, and A. Siddiqui, Investment in electricity generation
and transmission: Decision making under uncertainty. Springer, 2016.

39. Y. Liu, R. Sioshansi, andA.Conejo, “Multistage stochastic investment planningwithmultiscale
representation of uncertainties and decisions,” IEEE Transactions on Power Systems, vol. 33,
no. 1, pp. 781–791, 2018.

40. L. Baringo andA.Conejo, “Risk-constrainedmulti-stagewind power investment,” IEEETrans-
actions on Power Systems, vol. 28, no. 1, pp. 401–411, 2013.

41. M. Fürsch, S. Nagl, and D. Lindenberg, “Optimization of power plant investments under uncer-
tain renewable energy deployment paths: a multistage stochastic programming approach,”
Energy Systems, vol. 5, pp. 85–121, 2014.

42. K. Poncelet, E. Delarue, D. Six, J. Duerinck, and W. D’haeseleer, “Impact of the level of
temporal and operational detail in energy-system planning models,” Applied Energy, vol. 162,
pp. 631–643, 2016.

43. A. Belderbos and E. Delarue, “Accounting for flexibility in power system planning with renew-
ables,” International Journal of Electrical Power & Energy Systems, vol. 71, pp. 33–41, 2015.

44. D. Kirschen, J. Ma, V. Silva, and R. Belhomme, “Optimizing the flexibility of a portfolio
of generating plants to deal with wind generation,” in 2011 IEEE Power and Energy Society
General Meeting, Detroit, MI, USA, 2011.

45. M. Fripp, “Switch: A planning tool for power systems with large shares of intermittent renew-
able energy,” Environmental Science & Technology, vol. 46, no. 11, pp. 6371–6378, 2012.

46. E. Hart and M. Jacobson, “A monte carlo approach to generator portfolio planning and carbon
emissions,” Renewable Energy, vol. 36, no. 8, pp. 2278–2286, 2011.

47. M. Nick, R. Cherkaoui, and M. Paolone, “Optimal allocation of dispersed energy storage
systems in active distribution networks for energy balance and grid support,” IEEETransactions
on Power Systems, vol. 29, no. 5, pp. 2300–2310, 2014.

48. P. Nahmmacher, E. Schmid, L. Hirth, and B. Knopf, “Carpe diem: A novel approach to select
representative days for long-term power system models with high shares of renewable energy
sources,” Energy, vol. 112, pp. 430–442, 2016.

49. M. ElNozahy, M. Salama, and R. Seethapathy, “A probabilistic load modelling approach using
clustering algorithms,” in 2013 IEEE Power & Energy Society General Meeting, 2013.

50. S. Fazlollahi, S. Bungener, P. Mandel, G. Becker, and F. Maréchal, “Multi-objectives, multi-
period optimization of district energy systems: I. selection of typical operating periods,” Com-
puters & Chemical Engineering, vol. 65, pp. 54–662, 2014.

51. K. Poncelet, H. Höschle, E. Delaru, A. Virag, and W. D’haeseleer, “Selecting representative
days for capturing the implications of integrating intermittent renewables in generation expan-
sion planning problems,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 1936–1948,
2017.

52. K. Poncelet, A. van Stiphout, J. Meus, E. Delarue, and W. D’haeseleer, “Lusym invest: a
generation expansion planning model with a high level of temporal and technical detail,” tech.
rep., KU Leuven, 2018. TME Working Paper WP EN2018-07.

53. D. Tejada-Arango, M. Domeshek, S. Wogrin, and E. Centeno, “Enhanced representative days
and system states modeling for energy storage investment analysis,” IEEE Transactions on
Power Systems, vol. 33, no. 6, pp. 6534–6544, 2018.

54. G.Micheli, M. Vespucci, M. Stabile, and A. Cortazzi, “Selecting and initializing representative
days for generation and transmission expansion planning with high shares of renewables,” in
Graphs and combinatorial optimization: from theory to applications - CTW2020 proceedings
(C. Gentile, G. Stecca, and P. Ventura, eds.), pp. 321–334, Springer, 2020.

Second Order Adjoints in Optimization

Noémi Petra and Ekkehard W. Sachs

Abstract Second order, Newton-like algorithms exhibit convergence properties
superior to gradient-based or derivative-free optimization algorithms. However,
deriving and computing second order derivatives—-needed for the Hessian-vector
product in a Krylov iteration for the Newton step—often is not trivial. Second order
adjoints provide a systematic and efficient tool to derive second derivative infor-
mation. In this paper, we consider equality constrained optimization problems in an
infinite-dimensional setting.We phrase the optimization problem in a general Banach
space framework and derive second order sensitivities and second order adjoints in a
rigorous and general way.We apply the developed framework to a partial differential
equation-constrained optimization problem.

Keywords Adjoint-based methods · Second order adjoints · Optimization in
infinite dimensions · Newton method · PDE-constrained optimization

1 Introduction

We consider second order methods for equality constrained optimization problems
in an infinite-dimensional setting. These methods are locally very fast, but on the
downside require substantial computational effort for each iteration. To alleviate this
disadvantage, variants of Newton’s methods have been developed, e.g., Newton-
Shamanskii, where the Jacobian is fixed throughout iterations, or inexact Newton
methods, where the Newton step is computed inexactly. In this paper we devote
ourselves to an adjoint-based framework that extends from the usual gradient com-
putation all the way to an efficient way to compute Hessian-vector products. This
opens up a venue to use iterative solvers for the computation of the Newton step.

N. Petra (B)
Department of Applied Mathematics, University of California, Merced, CA 95340, USA
e-mail: npetra@ucmerced.edu

E. W. Sachs
Department of Mathematics, Trier University, 54286 Trier, Germany
e-mail: sachs@uni-trier.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_10

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_10&domain=pdf
mailto:npetra@ucmerced.edu
mailto:sachs@uni-trier.de
https://doi.org/10.1007/978-3-030-72040-7_10

210 N. Petra and E. W. Sachs

Unlike in the case of approximating the Hessian-vector product by a finite-difference
quotient, which carries issues about its accuracy, the use of second order adjoints do
not exhibit this problem and can be computed to required accuracy, if needed.

Related work. The concept of second order adjoints can be found in different fields
in the literature, also under different names, for example incremental adjoints and
adjoint sensitivities. The earliest work using second order adjoints goes back to
papers in the sixties [29, 32]. Second order adjoints have been widely applied espe-
cially to inverse problems governed by differential equations. Here we give a sample
of the literature on applications to various optimization problems constrained by
differential equations: seismology [41], structural optimization [20, 21, 27], uncon-
strained discrete-time and continuous-time optimal control problems with Bolza
objective functions [13], ordinary differential equations (ODEs) and partial differen-
tial equations (PDEs)-constrained optimization problems in the context of air traf-
fic flow [38], optimization problems governed by PDEs with inequality constraints
[16, 17] or parabolic PDEs [6], optimal semiconductor design based on the standard
drift diffusioxn model [26], open loop optimal control problems governed by the
two-dimensional stationary Navier-Stokes equations [25], calculation of directional
derivatives of stiff ODE embedded functionals [35], data assimilation for numerical
weather prediction and ocean models [2, 3, 11, 12, 31, 40, 42], inversion of the
initial concentration of the airborne contaminant in a convection-diffusion transport
model [1], full wave form or global seismic inversion [7, 8, 14, 15, 33], inverse ice
sheet modeling [28, 34, 37, 43], in the context of optimal experimental design [4],
and optimal control of systems governed by PDEs with random parameter fields
[5, 10], and inexact Hessian-vector products computed using approximate second
order adjoints [24]. It is also worth mentioning the following very useful technical
reports targeting model (academic) problems [19, 22, 36].

Contributions. The derivation of second order adjoints in infinite-dimensions are
often motivated using ad-hoc analytic arguments, hence there is a need for a rigorous
in-depth investigation of such derivation and adjoint expressions. The main goal of
this paper is therefore to present a general and rigorous theory for second order
adjoints which then can be applied to various applications. In addition, when second
order optimization algorithms (e.g.,Newton’smethod or variants) are applied to solve
large-scale optimization problems often iterative solvers are used for the solution of
the systems of linearized equations. Therefore, motivated by the need to avoid the
computation of explicit Hessian information, we show in the general framework
how the adjoint calculus can be applied to compute Hessian-vector products. We
note that since we have two well studied pathways to compute first-order derivative
information, e.g., via a sensitivity approach or via an adjoint approach, there are four
pathways to obtain the second order derivatives. In this paper, we present all these
four pathways and show that in fact three of them are the same. Finally, we apply our
framework to an inverse problem that seeks to reconstruct a coefficient field in an
elliptic PDE from observational data. This problem is formulated as a nonlinear least
squares optimization problem governed by the Poisson problem. In this paper, we use
the proposed second order adjoint derivation and Hessian-vector product expression

Second Order Adjoints in Optimization 211

to derive derivative information that can be used by fast optimization methods to
solve complex optimization problems. We note that in [1, 5–8, 10, 14, 15, 28, 34,
36, 37, 43] second order adjoints are also considered in an infinite-dimensional
setting, however, using the Lagrangian approach. Here, we recast the problem as an
unconstrained optimization problem and derive the Lagrangemultipliers, i.e., adjoint
variables, directly.

Problem formulation. To set the stage, we choose a general framework: Let Y, U, Z
be Banach spaces, e.g., Y is the space variable or dependent variable, U the space of
control or design variables and Z the range space of the equality constraint. The dis-
tinction of the variable into y and u is essential for our approach, but can be found in
many applications, see e.g., PDE-constrained optimization. The optimization prob-
lem is formulated as follows:

Problem 1
min φ(y, u), (y, u) ∈ Y × U,

s.t. g(y, u) = 0,
where φ : Y × U → IR, g : Y × U → Z .

(1)

If we assume that for each control variable u we have a unique solution y =
s(u) of the equality constraint g(s(u), u) = 0, then we can rewrite the constrained
optimization problem as an unconstrained optimization problem:

min Φ(u) = φ(s(u), u), u ∈ U, Φ : U → IR.

In Newton’s method, the correction step is defined as the solution of

Φ ′′(u)v = −Φ ′(u), v ∈ U, (2)

where Φ ′(u) ∈ U ∗ and Φ ′′(u) ∈ L(U, U ∗), the space of linear operators mapping
U into U ∗. In many applications where the second derivative Φ ′′(u) is prohibitively
expensive to compute in an explicit manner, the Eq. (2) is solved by an iterative
technique, see for exampleKrylovmethods [23]. In order to implement thesemethods
efficiently, one needs a fast evaluation of the Hessian-vector product, in our notation
Φ ′′(u)v for some v ∈ U . Oneway to achieve this is in the inexact Newton framework,
where one uses the approximation

Φ ′′(u)v ≈ (Φ ′(u + hv) − Φ ′(u))/h. (3)

The use of this approximation introduces an error at each iteration of the Krylov
method which has to be handled with care, see e.g., [30].

However, if the optimization problem is of the type like shown in (1) there is
another way of computing the Hessian-vector product. The reason for this lies in the
fact that the variables are grouped into two groups y and u and the introduction of
another adjoint variable, which we call the second order adjoint. This means that we
have to solve two adjoint equations, i.e., equations of the type

212 N. Petra and E. W. Sachs

g∗
y p = r1, g∗

yπ = r2

for the first and second order adjoint variables p and π with different right hand sides
r1, r2. The advantage of such an approach lies in the fact that we do not introduce
an additional error by computing the Hessian-vector product exactly. Furthermore,
the computational cost for the second order adjoint is not higher than an additional
evaluation of the derivative Φ ′(u + hv) as in (3).

It is well known that the derivative of the function φ(y, u) can be expressed in
two ways, namely

– the sensitivity equations or
– the adjoint equations.

The first approach is considered reasonable for a small number of variables, whereas
the second one requires a bit more analysis in the derivation, but shows to be highly
efficient for large-scale problems [9].

If we turn to the second derivative applied to a vector as this required for iterative
solvers like CG or GMRES, we are free to choose for this purpose again either the
adjoint or sensitivity approach. Hence we have four different routes available which
we could follow, namely

– first the sensitivity, then the adjoint approach or
– first the sensitivity, then the sensitivity approach or
– first the adjoint, then the sensitivity approach or
– first the adjoint, then the adjoint approach.

Content. In this paper we carefully analyze these four approaches and prove rigor-
ously the results following these venues. It turns out that not four, but two different
ways exist to compute the Hessian-vector products for this optimization problem.
One approach is based on the sensitivity framework which is amenable for a small
number of variables. The second one relies on the adjoint approach which leads to
the concept of a second order adjoint that has to be computed for a Hessian-vector
product. This approach is usually much more efficient, especially for problems with
a large number of variables. The effort per iteration is comparable to if not lower
than that of an inexact Newton’s method where the matrix-vector multiplication is
approximated by a finite difference quotient, yet it gives the precise result rather than
an approximation.

The remaining sections of this paper are organized as follows. We begin by pro-
viding two venues to obtain representations of the first-order derivatives in Sect. 2.
Next, in Sect. 3 we set the stage for the second order derivatives followed by the
fourth section containing the results including proofs of the four approaches men-
tioned above. Section5 is devoted to an application in PDE-constrained optimization,
where we illustrate some of the theoretical results.

Second Order Adjoints in Optimization 213

2 Representation of First-Order Fréchet-Derivative

For notational purposes we recall that a map g : X → Z from a Banach space X to
another Banach space Z is called Fréchet-differentiable at x ∈ X , if there exists a
linear operator denoted by g′(x) : X → Z such that

‖g(x + h) − g(x) − g′(x)h‖Z ≤ α(‖h‖X)‖h‖X ,

with a function α(r) satisfying α(r) → 0 for r → 0. The partial Fréchet-derivatives
of e.g., g(y, u) is denoted by gy(y, u) or gu(y, u) with a subscript indicating the
variable with respect to which the derivative is taken. The adjoint operator of g′(x)

is denoted by g′(x)∗ : Y ∗ → X∗. We note that Fréchet-derivatives of second order
like gyu(y, u) are linear operators in the spaces L(U, L(Y, Z)) = L(U × Y, Z).

In what follows, we impose the following smoothness assumptions on the func-
tions in the problem formulation.

Assumption 1 Let the function φ and the mapping g be continuously Fréchet-
differentiable on Y × U.

Furthermore we assume the following constraint qualification to hold at a later to be
specified point (y, u) ∈ Y × U .

Assumption 2 For (y, u) ∈ Y × U let the partial Fréchet-derivative gy(y, u) :
Y → Z be surjective and invertible.

With these assumptions we can apply the implicit function theorem [39].

Theorem 1 Let Assumptions 1 and 2 hold at (y∗, u∗) ∈ Y × U. Then there exist
neighborhoods BY ⊂ Y at y∗ and BU ⊂ U at u∗ and a Fréchet-differentiable map
s : BU → BY such that

g(s(u), u) = 0 and gy(s(u), u)s ′(u) = −gu(s(u), u). (4)

This theorem can be used to reformulate the constrained optimization problem
from above as an unconstrained optimization problem in a neighborhood around a
local minimizer.

Corollary 1 Let (y∗, u∗) ∈ Y × U be a local minimizer of optimization problem 1
and let Assumptions 1 and 2 hold at (y∗, u∗). Then u∗ is also a local minimizer of
the unconstrained optimization problem

min
u∈BU

Φ(u), Φ(u) := φ(s(u), u), (5)

where Φ : BU → IR, with BU ∈ U a neighborhood of u∗, and s(u) given by the
implicit function theorem.

214 N. Petra and E. W. Sachs

In some applications the computation of s(u) is theoretically possible, but numer-
ically only feasible within a certain error tolerance. This happens, for example, for a
constraint described by partial differential equations where s(u) is the solution of a
PDE. This would introduce an additional error into s(u) and s ′(u) as well. The pur-
pose of this paper is to derive in a rigorous way the expression for second derivatives
without this additional complexity. This aspect, however, opens interesting venues
for future research.

The necessary optimality conditions of first-order require various derivatives
which are well defined under the statements above. Therefore the first derivative
of the objective function of the unconstrained problem can be computed as follows.
We note that this approach is usually denoted as the approach using the sensitivity
equations.

Theorem 2 Let Assumptions 1 and 2 hold at (y, u) ∈ Y × U. Then the Fréchet-
derivative of Φ(u) applied to Δu ∈ U is given by

Φ ′(u)Δu = φy(s(u), u)ξ + φu(s(u), u)Δu, (6)

where ξ = s ′(u)Δu ∈ Y is the unique solution of the sensitivity equation

gy(s(u), u)ξ = −gu(s(u), u)Δu. (7)

Proof The proof follows from the implicit function theorem, an application of the
chain rule and

Φ ′(u)Δu = φy(s(u), u)s ′(u)Δu + φu(s(u), u)Δu
= φy(s(u), u)ξ + φu(s(u), u)Δu.

(8)

If U is not a Banach but a Hilbert space, one would expect for the Fréchet-derivative
Φ ′(u)Δu a gradient representation. In order to achieve this onewould need an explicit
representation of the derivative in a Φ(u)′Δu = 〈∇Φ(u),Δu〉 in the proper duality
pairing. Such a representation clearly cannot be derived fromEq. (6) since ξ as shown
in (7) depends in an implicit way onΔu. The only possibility to obtain this consists in
computing thewhole sensitivity operator s ′(u) ∈ L(U, Y)which in finite dimensions
results in the computation of the sensitivity matrix. This requires repeated solves of
the sensitivity Eq. (7), which for high dimensions is not a feasible approach. For
completeness we formulate this in the following theorem.

Theorem 3 Let Assumptions 1 and 2 hold at (y, u) ∈ Y × U. The linear map s ′(u) :
U → Y is well defined by the equation

gy(s(u), u)s ′(u) = −gu(s(u), u).

Then we obtain

Φ ′(u) = s ′(u)∗φy(s(u), u) + φu(s(u), u) ∈ U ∗. (9)

Second Order Adjoints in Optimization 215

We can avoid this difficulty by using the adjoint operator s ′(u)∗ of s ′(u) ∈ L(U, Y)

and a so-called adjoint equation. The adjoint approach is outlined in the following
theorem.

Theorem 4 Let Assumptions 1 and 2 hold at (y, u) ∈ Y × U. Then we obtain

Φ ′(u) = gu(s(u), u)∗ p + φu(s(u), u) ∈ U ∗, (10)

where p ∈ Z∗ is defined as the solution of the adjoint equation

gy(s(u), u)∗ p = −φy(s(u), u) ∈ Y ∗. (11)

Alternatively, the action of the adjoint variable p ∈ Z∗ is given by

p(z) = −φy(s(u), u)gy(s(u), u)−1z ∀z ∈ Z . (12)

Proof We know from (4)

s ′(u) = −gy(s(u), u)−1gu(s(u), u) ∈ L(U, Y)

and hence for s ′(u)∗ : Y ∗ → U ∗

s ′(u)∗ = −gu(s(u), u)∗(gy(s(u), u)∗)−1.

Then the first term in (9) of the derivative of Φ can be rewritten as

s ′(u)∗φy(s(u), u) = −gu(s(u), u)∗(gy(s(u), u)∗)−1φy(s(u), u) = gu(s(u), u)∗ p,

where p ∈ Z∗ solves the adjoint equation (11).
Furthermore,we have for an arbitrary z ∈ Z withΔv := gy(s(u), u)−1z using (11)

−φy(s(u), u)gy(s(u), u)−1z = −φy(s(u), u)Δv = [gy(s(u), u)∗ p]Δv

= p(gy(s(u), u)Δv) = p(z),

which shows (12). Here we used the definition of the adjoint, namely

< gy(s(u), u)∗ p,Δv >Y ∗,Y =< p, gy(s(u), u)Δv >Z∗,Z= p(gy(s(u), u)Δv).

To synchronize the representation with the sensitivity approach we give also a
version where the Fréchet-derivative is applied to a vector Δv also for the adjoint
version.

Corollary 2 Let Assumptions 1 and 2 hold at (y, u) ∈ Y × U. Then

Φ ′(u)Δu = p(gu(s(u), u)Δu) + φu(s(u), u)Δu

216 N. Petra and E. W. Sachs

with the adjoint functional p from Theorem 4 defined in (12).

The main advantage of this approach is that we do not need to solve for the
sensitivity operator or matrix but rather need to solve only one Eq. (11) in order to
compute the adjoint variable p.

3 Representation of Second Order Fréchet-Derivative

In this section we devote our efforts to a rigorous derivation of the second derivative
of the function Φ. Since in many algorithmic applications, e.g., the use of itera-
tive solvers for the Newton step, the complete Hessian information Φ ′′(u) is not
needed, we concentrate on the computation of the Hessian-vector productΦ ′′(u)Δu.
Obviously we have to strengthen Assumption 1 as follows.

Assumption 3 Let the functional φ and the map g be twice continuously Fréchet-
differentiable on Y × U.

As noted before, the notation using second derivatives can be somewhat complex,
since the e.g., the second partial derivative gyu(y, u) can be interpreted as a map in
L(U, L(Y, Z)) or L(U × Y, Z), etc.

In order to compute the second derivative we proceed in the following way: For
fixed Δv ∈ U consider Φ ′(u)Δv as a function of u. Then we differentiate this new
functional with respect to u which gives us the second derivative. Since Φ(u) =
φ(s(u), u) contains variables y = s(u) that are implicitly defined, this will also be
the case forΦ ′(u)Δv. However, there are even more implicitly defined variables like
ξ in the sensitivity approach or p in the adjoint approach. Both ξ and p also depend
on u in an implicit way. All this has to be kept in mind for a careful computation of
the second derivatives.

In some applications, the derivativeΦ ′(u) is no longer differentiable in a classical
sense, but only in a generalized sense where generalized derivatives come into play.
Those problems can sometimes be solved efficiently using semi-smooth Newton
methods. In that case at each iteration, one has to select an element from the possibly
set-valued generalized second derivative of Φ. The theory of this section can be
extended in such a case, if this representor exhibits a certain structure close to the
problem in this paper. A similar question arises when one wants to use a Gauss-
Newton method, where several terms in the second derivative operator are omitted.
These issues of generalization will be addressed in a forthcoming paper.

Let us outline the approach we take here for the next sections. In the previous
section we found two routes to obtain a representation of the first derivative, i.e., via
the sensitivity equation or the adjoint equation. If we calculate the second derivative
as outlined above, we need to decide to use either the adjoint or sensitivity approach
in the computation of the derivative of Φ ′(·)Δv, i.e., the second derivative of Φ(u).
Therefore, we have four different routes available which we could follow, as outlined
at the end of Sect. 1.

Second Order Adjoints in Optimization 217

In the following, we proceed along these routes in rigorous mathematical terms.
Recall that in (6) the first derivative is given byΦ ′(u)Δv = φy(y, u)ξ + φu(y, u)Δv.
These terms contain two variables y and ξ which depend on u and which are defined
by the original equality constraint (1) and the sensitivity Eq.7. Hence we expand the
y-variables to ỹ := (y, ξ) ∈ Y × Y and define in analogy to φ(y, u) the function

φ̃(ỹ, u) = Φ ′(u)Δv = φy(y, u)ξ + φu(y, u)Δv. (13)

The vector ỹ := (y, ξ) ∈ Y × Y is the solution of the state and sensitivity equation
which we combine into

g̃(ỹ, u) :=
(

g(y, u)

gy(y, u)ξ + gu(y, u)Δv

)
= 0. (14)

If we want to proceed similar to the case of the first-order derivatives, i.e., eliminate
the equality constraint due to an application of the implicit function theorem, then
we need to check the invertibility of g̃ỹ .

Lemma 1 We define φ̃ : Y × Y × U → IR by (13) and g̃ : Y × Y × U → Z × Z
by (14). Then its Fréchet-derivatives are given by

g̃ỹ(ỹ, u) =
(

gy(y, u) 0
gyy(y, u)ξ + guy(y, u)Δv gy(y, u)

)
∈ L(Y × Y, Z × Z), (15)

which is invertible if Assumption 2 holds. Furthermore,

g̃u(ỹ, u) =
(

gu(y, u)

gyu(y, u)ξ + guu(y, u)Δv

)
∈ L(U, Z × Z) (16)

and for the objective function φ̃ we obtain

φ̃ỹ(ỹ, u) =
(

φyy(y, u)ξ + φuy(y, u)Δv

φy(y, u)

)
∈ Y ∗ × Y ∗ (17)

and
φ̃u(ỹ, u) = φyu(y, u)ξ + φuu(y, u)Δv ∈ U ∗. (18)

The statements of the lemma can be easily obtained from the definitions (13) and
(14).

Since g̃ỹ(ỹ, u) from (15) is invertible under Assumption 2 we can apply the
implicit function theorem, Theorem 1, to derive in the same way as in Theorem 1
the following:

Theorem 5 Let the Assumptions 2 and 3 hold at (ỹ∗, u∗) ∈ Y × Y × U with
g̃(ỹ∗, u∗) = 0 . Then there exist neighborhoods B̃U ⊂ U of u∗ and B̃Y×Y ⊂ Y × Y
of ỹ∗ and a map

218 N. Petra and E. W. Sachs

s̃(·) : B̃U → B̃Y×Y such that g̃(s̃(u), u) = 0 on B̃U

with its derivative defined by

g̃ỹ(s̃(u), u)s̃ ′(u) = −g̃u(s̃(u), u).

In the case of the adjoint approach we proceed in a similar fashion by augmenting
the variable y to ŷ = (y, p) ∈ Y × Z∗. Hence Eq. (10) becomes

φ̂(ŷ, u) := Φ ′(u)Δv = [gu(y, u)∗ p + φu(y, u)]Δv. (19)

The equality constraints then are defined as follows using (11)

ĝ(ŷ, u) := ĝ(y, p, u) =
(

g(y, u)

gy(y, u)∗ p + φy(y, u)

)
= 0. (20)

The derivatives for these mappings are computed as follows:

Lemma 2 We define φ̂ : Y × Z∗ × U → IR by (19) and ĝ : Y × Z∗ × U → Z ×
Y ∗ by (20). Then the Fréchet-derivatives for φ̂ are given by

φ̂u(ŷ, u) = (guu(y, u)Δv)∗ p + φuu(y, u)Δv ∈ U ∗ (21)

φ̂ŷ(ŷ, u) =
(

(guy(y, u)Δv)∗ p + φuy(y, u)Δv

gu(y, u)Δv

)
∈ Y ∗ × Z (22)

and for ĝ we have

ĝu(ŷ, u) =
(

gu(y, u)

(gyu(y, u)(·))∗ p + φyu(y, u)

)
∈ L(U, Z × Y ∗) (23)

ĝŷ(ŷ, u) =
(

gy(y, u) 0
(gyy(y, u)(·))∗ p + φyy(y, u) gy(y, u)∗

)
∈ L(Y × Z∗, Z × Y ∗).

(24)

Note, that also in this case Assumption 2 implies that ĝŷ is invertible. Therefore
we can apply the implicit function theorem also to this setting.

Theorem 6 For fixed Δv let the Assumptions 2 and 3 hold at (ŷ∗, u∗) ∈ Y × Z∗ × U
with ĝ(ŷ∗, u∗) = 0. Then there exist neighborhoods B̂U ∈ U of u∗ and B̂Y×Z∗ ⊂
Y × Z∗ of ŷ and a map

ŝ : B̂U → B̂Y×Z∗ with ĝ(ŝ(u), u) = 0 on B̂U

with its derivative defined by

ĝŷ(ŝ(u), u)ŝ ′(u) = −ĝu(ŝ(u), u).

Second Order Adjoints in Optimization 219

With these technicalities resolvedwe turn to the computation of the second derivative
using the four strategies outlined before.

4 Second Order Sensitivities and Second Order Adjoints

4.1 Sensitivity-Sensitivity Approach

If we apply the sensitivity equation approach to both the first and the second deriva-
tive, then we obtain the following theorem.

Theorem 7 Let Assumptions 2 and 3 hold at (y, u) with g(y, u) = 0. Then for
Δv,Δw ∈ U

Φ ′′(u)(Δv,Δw) = φuu(y, u)(Δv,Δw) + φuy(y, u)(Δv, η)

+φyu(y, u)(ξ,Δw) + φyy(y, u)(ξ, η) + φy(y, u)ρ,

where ξ, η ∈ Y solve the following first-order sensitivity equations

gy(y, u)ξ = −gu(y, u)Δv

gy(y, u)η = −gu(y, u)Δw,

and ρ ∈ Y solves the second order sensitivity equation

gy(y, u)ρ = −gyy(y, u)(ξ, η) − guy(y, u)(Δv, η)

−gyu(y, u)(ξ,Δw) − guu(y, u)(Δv,Δw).

Proof Theorem 2 applied to the problem formulation in (13) and (14) yields

Φ̃ ′(u)Δw = φ̃ỹ(s̃(u), u)ξ̃ + φ̃u(s̃(u), u)Δw,

where ξ̃ = (η, ρ)T is the unique solution of the sensitivity equation

g̃ỹ(s̃(u), u)ξ̃ = −g̃u(s̃(u), u)Δw.

Using (17)–(18) implies

Φ̃ ′(u)Δw = φ̃ỹ(s̃(u), u)ξ̃ + φ̃u(s̃(u), u)Δw

= φyy(y, u)(ξ, η) + φuy(y, u)(Δv, η)

+φy(y, u)ρ + φyu(y, u)(ξ,Δw) + φuu(y, u)(Δv,Δw),

where ξ̃ = (η, ρ)T solve

220 N. Petra and E. W. Sachs

g̃ỹ(s̃(u), u)ξ̃ = −g̃u(s̃(u), u)Δw.

With (15)–(16) this implies

(
gy(y, u)η

gyy(y, u)(ξ, η) + guy(y, u)(Δv, η) + gy(y, u)ρ

)

= −
(

gu(y, u)Δw

gyu(y, u)(ξ,Δw) + guu(y, u)(Δv,Δw)

)
.

Rearranging the terms leads to the formulation in the theorem.

This theorem shows that in order to perform a full Hessian evaluation one needs
three solves (25) of the linearized equality constraint equation, i.e. sensitivity equa-
tion. This is an interesting observation by itself, especially since only the right hand
side of the sensitivity equation is changed. However, note that this is true only for an
evaluation of the second order term in a Taylor expansion of the objective function,
i.e. the Hessian applied to two arguments, here Δv and Δw. The computation of a
Hessian vector product resulting into a vector, as it is required for a Newton step, is
still problematic. Here we would have to scan the whole space U , i.e. let Δw run
through all basis vectors, which is quite expensive.

In a similar way, one can derive a representation of the Hessian operator itself,
without any application to arguments Δv,Δw. This can be obtained easily with
mappings s ′(u) ∈ L(U, Y) and σ(u) ∈ L(U, Y) and

ξ = s ′(u)Δv, η = s ′(u)Δw, ρ = σ(u)Δv.

Theorem 8 Let Assumptions 2 and 3 hold at (y, u) with g(y, u) = 0. Then Φ ′′(u) :
U → U ∗ can be represented as

Φ ′′(u) = φuu(s(u), u) + φuy(s(u), u)s ′(u)

+s ′(u)∗φyu(s(u), u) + s ′(u)∗φyy(s(u), u)s ′(u) + σ(u)∗φy(s(u), u),

where s(u) ∈ Y solves the system equation g(s(u), u) = 0. The operators s ′(u) ∈
L(U, Y) and σ(u) ∈ L(U, Y) are the solutions to the following first and second
order sensitivity equations

gy(s(u), u)s ′(u) = −gu(s(u), u)

gy(s(u), u)σ(u) = −s ′(u)∗gyy(y, u)s ′(u) − gyu(y, u)s ′(u)

−s ′(u)∗guy(y, u) − guu(y, u).

Also for this theorem, one would need knowledge of the full operator s ′(u)which
is computationally not available. We can compute an evaluation of s ′(u)Δv by the
solve of one sensitivity equation, but to get information of the full operator s ′(u) one
would need to solve it for all basis vectors Δv.

Second Order Adjoints in Optimization 221

4.2 Sensitivity-Adjoint Approach

We start with the first-order derivative in sensitivity form as written up in Lemma 1
and used in the previous subsection. However, here we apply the adjoint approach
for the calculation of the second derivative as outlined in Theorem 4.

In this theorem one sees that two adjoint equation equations need to be solved,
both with the system matrix or operator gy(y, u)∗. The first solution p comes from
the adjoint equation (25) which we know from the computation of the gradient or
first derivative, therefore we call it the first-order adjoint. The other solution π needs
to be computed as a solution of (26) in order to obtain the information about the
second derivative, therefore we call it the second order adjoint.

Theorem 9 Let Assumptions 2 and 3 hold at (y, u) with g(y, u) = 0. Then Φ ′′(u)Δv

∈ U ∗ can be represented as

Φ ′′(u)Δv = gu(y, u)∗π + (guy(y, u)ξ)∗ p + (guu(y, u)Δv)∗ p

+ φuy(y, u)ξ + φuu(y, u)Δv.

Here ξ ∈ Y solves the first-order sensitivity equation

gy(y, u)ξ = −gu(y, u)Δv ∈ Z ,

p ∈ Z∗ is a solution of the first-order adjoint equation

gy(y, u)∗ p = −φy(y, u) ∈ Y ∗, (25)

and π ∈ Z∗ solves the second order adjoint equation

gy(y, u)∗π = −(gyy(y, u)ξ)∗ p − (gyu(y, u)Δv)∗ p − φyy(y, u)ξ − φyu(y, u)Δv ∈ Y ∗. (26)

Proof Due to the definition of g̃ in (14) the corresponding multiplier is of the form
p̃ := (π, p) ∈ Z∗ × Z∗. Then inserting (16) and (18) into (10) gives

Φ̃ ′(u) = g̃u(s̃(u), u)∗ p̃ + φ̃u(s̃(u), u)

=
(

gu(y, u)

gyu(y, u)ξ + guu(y, u)Δv

)∗ (
π
p

)
+ φyu(y, u)ξ + φuu(y, u)Δv

= gu(y, u)∗π + (gyu(y, u)ξ)∗ p + (guu(y, u)Δv)∗ p + φyu(y, u)ξ + φuu(y, u)Δv.

The adjoint equation for the second derivative is obtained by inserting (15) and (17)
into Eq. (11) which reads as

g̃ỹ(s̃(u), u)∗ p̃ = −φ̃ỹ(s̃(u), u)

or

222 N. Petra and E. W. Sachs

(
gy(y, u) 0

gyy(y, u)ξ + gyu(y, u)Δv gy(y, u)

)∗ (
π
p

)
= −

(
φyy(y, u)ξ + φyu(y, u)Δv

φy(y, u)

)

and finally

gy(y, u)∗π + (gyy(y, u)ξ)∗ p + (gyu(y, u)Δv)∗ p = −φyy((y, u)ξ − φuy(y, u)Δv

and
gy(y, u)∗ p = −φy(y, u),

which yields the statements of the theorem.

This result shows that it is possible to compute the Hessian-vector product by simply
solving the (first-order) sensitivity equation for ξ and the second order adjoint equa-
tion (26) for π. The operator or matrix for the second order adjoint solve is the same
as for the first-order adjoint. In contrast to the sensitivity approach in the previous
section we obtain the full information of the vector that represents the Hessian-vector
product. This is an highly efficient way to compute the information needed in each
step of a Krylov method to solve for the Newton step.

4.3 Adjoint-Sensitivity Approach

In this subsectionwe start with the first derivative represented by the adjoint equation.
For the computation of the second derivative we apply the sensitivity approach.
In what follows, we use the notation ŷ = (p, u) as outlined in (19) and (20). By
Theorem 2 we have from Eq. (20) that

ĝŷ(ŷ, u)ξ̂ = −ĝu(ŷ, u)Δw

or with ξ̂ = (ξ,π) using (23) and (24)

(
gy(y, u) 0
(gyy(y, u)(·))∗ p + φyy(y, u) gy(y, u)∗

) (
ξ
π

)

= −
(

gu(y, u)

(gyu(y, u)(·))∗ p + φyu(y, u)

)
Δw,

which leads to the first-order sensitivity equation for ξ

gy(y, u)ξ = −gu(y, u)Δw

and the second order adjoint equation for π

Second Order Adjoints in Optimization 223

(gyy(y, u)ξ)∗ p + φyy(y, u)ξ + gy(y, u)∗π = −(gyu(y, u)Δw)∗ p − φyu(y, u)Δw.

Furthermore, the Hessian-vector product can be obtained from (6)

φ̂ŷ(ŷ, u)ξ̂ + φ̂u(ŷ, u)Δw =
(

(guy(y, u)Δv)∗ p + φuy(y, u)Δv

gu(y, u)Δv

) (
ξ
π

)

+[(guu(y, u)Δv)∗ p + φuu(y, u)Δv]Δw

= [(gyu(y, u)ξ)∗ p + φyu(y, u))ξ + (guu(y, u)Δw)∗ p
+φuu(y, u))Δw + gu(y, u)∗π]Δv,

which is the same expression as in Theorem 9.
In summary, we obtain the following remark.

Remark 1 For fixed Δv let the Assumptions 2 and 3 hold at (ŷ∗, u∗). Then

Φ ′′(u)(Δv,Δw) = [(gyu(y, u)ξ)∗ p + φyu(y, u))ξ + (guu(y, u)Δw)∗ p
+φuu(y, u))Δw + gu(y, u)∗π]Δv,

(27)

where (y, u) solve g(y, u) = 0, p solves the adjoint equation and ξ solves the first-
order sensitivity equation

gy(y, u)ξ = −gu(y, u)Δw,

and π solves the second order adjoint equation

gy(y, u)π = −(gyy(y, u)ξ)∗ p − φyy(y, u)ξ − (gyu(y, u)Δw)∗ p − φyu(y, u)Δw.

Since in (27) the vector Δv is separated outside of the parentheses, we have an
expression for the Hessian-vector product. This result is identical with the findings
in Theorem 9.

4.4 Adjoint-Adjoint Approach

Finally we apply the adjoint approach to compute the second derivative when the
first derivative is also calculated by the adjoint approach.

The adjoint equation for the extended system reads as in (11)

ĝŷ(y, u)∗ p̂ = −φ̂ŷ(ŷ, u) p̂ ∈ Z∗ × Y

and ĝŷ(y, u)∗ ∈ L(Z∗ × Y, Y ∗ × Z). Inserting the terms from (22) and (24) we
obtain for p̂ = (π, ξ) ∈ Z∗ × Y

224 N. Petra and E. W. Sachs

(
gy(y, u) 0
(gyy(y, u)(·))∗ p + φyy(y, u) gy(y, u)∗

)∗ (
π
ξ

)

= −
(

(guy(y, u)Δv)∗ p + φuy(y, u)Δv

gu(y, u)Δv

)
∈ Y ∗ × Z ,

which results in

gy(y, u)∗π + (gyy(y, u)ξ)∗ p + φyy(y, u)ξ = −(guy(y, u)Δv)∗ p − φuy(y, u)Δv

and
gy(y, u)∗ξ = −gu(y, u)Δv.

The Hessian-vector product can be computed from Eq. (10) as

ĝu(ŷ, u)∗ p̂ + φ̂u(ŷ, u)

and inserting (21) and (23)

(
gu(y, u)

(gyu(y, u)(·))∗ p + φyu(y, u)

)∗ (
π
ξ

)
+ (guu(y, u)Δv)∗ p + φuu(y, u)Δv

and

gu(y, u)∗π + (gyu(y, u)ξ)∗ p + φyu(y, u)ξ + (guu(y, u)Δv)∗ p + φuu(y, u)Δv.

Therefore, we have the following remark.

Remark 2 The second derivative reads

Φ ′′(u)Δv = gu(y, u)∗π + (gyu(y, u)ξ)∗ p + φyu(y, u)ξ + (guu(y, u)Δv)∗ p

+ φuu(y, u)Δv,

where y, u satisfy g(y, u) = 0 and p solves the adjoint equation. Furthermore ξ
solves the sensitivity equation of first-order

gy(y, u)ξ = −gu(y, u)Δv,

and π the second order adjoint equation

gy(y, u)∗π = −(gyy(y, u)ξ)∗ p − φyy(y, u)ξ − (guy(y, u)Δv)∗ p − φuy(y, u)Δv.

From the results of the theorems abovewe realize that the four different approaches
outlined in the beginning of Sect. 3 lead to two different results: one where a second
order adjoint equation comes into play and another one where a second sensitivity
equation has to be solved. We can also see that this can be derived in a fairly gen-

Second Order Adjoints in Optimization 225

eral setting for infinite-dimensional spaces and hence can be applied to all kinds of
optimization problems. In this paper we will concentrate on two applications in the
context of Newton’s method.

5 PDE-Constrained Optimization

We consider as an application an optimization problem with a partial differential
equation and control in the coefficient. In particular, we consider an inverse problem
where the partial differential equation is given by

− ∇ · ((exp(u) + ε)∇ y) = f in Ω, y = 0 on ∂Ω (28)

on a bounded and closed domain Ω ⊂ IR2 for a given right-hand side f ∈ L2(Ω)

and some small ε > 0. The inverse problem consists of finding a proper u ∈ L∞(Ω)

such that the corresponding solution y ∈ H 1
0 (Ω) is close to a given observed output

wobs ∈ H 1
0 (Ω1), with Ω1 ⊆ Ω .

To formulate this PDE-constrained optimization problem in the form problem 1
was posed, we set

Y = H 1
0 (Ω), U = L∞(Ω), W = L2(Ω1), Z = L2(Ω).

Next we define the constraint as

g(y, u) = −∇ · ((exp(u) + ε)∇ y) − f, g : Y × U → Z ,

and the objective function including a regularization term with α > 0,

φ(y, u) = 1

2

∫
Ω1

(By(x) − wobs(x))2dx + α

2

∫
Ω

u(x)2dx,

where B : L2(Ω) → L2(Ω1) is a linear observation operator that extracts measure-
ments from y. One can show that the Fréchet-derivatives up to second order exist
and have the following form for the objective function

φy(y, u)ȳ =
∫
Ω

[B∗(By(x) − wobs(x))]ȳ(x)dx,

φu(y, u)ū = α

∫
Ω

u(x)ū(x)dx,

φyy(y, u)(ȳ, z̄) =
∫
Ω

B∗B ȳ(x)z̄(x)dx,

226 N. Petra and E. W. Sachs

φyu(y, u)(ȳ, ū) = φuy(y, u)(ū, ȳ) = 0,

φuu(y, u)(ū, v̄) = α

∫
Ω

ū(x)v̄(x)dx .

Similarly we obtain for the Fréchet-derivatives of the constraint

gy(y, u)ȳ = −∇ · ((exp(u) + ε)∇ ȳ),

gu(y, u)ū = −∇ · (exp(u)ū∇ y),

gyy(y, u)(ȳ, z̄) = 0,

gyu(y, u)(ȳ, ū) = −∇ · (exp(u)ū∇ ȳ),

guu(y, u)(ū, v̄) = −∇ · (exp(u)ūv̄∇ y).

Since the two adjoints are computed by an application of the operator g∗
y , it is straight-

forward to derive a representation for the solution p ∈ Z∗ of the equation g∗
y p = r

with given right hand side r ∈ Z along the following lines.

Lemma 3 The solution p ∈ Z∗ of g∗
y p = r for given r ∈ Y ∗ = H−1(Ω) is repre-

sented by p(ζ) = 〈 p̄, ζ〉Z , ζ ∈ Z = L2(Ω), where p̄ ∈ Y = H 1
0 (Ω) is a weak solu-

tion of
−∇ · (exp(u) + ε)∇ p̄ = r.

Proof Equivalently, g∗
y p = r can be written as

(g∗
y p)(η) = p(gyη) = 〈r, η〉Z ∀ η ∈ Y.

Let us make an ansatz for the solution p ∈ Z∗ = L2(Ω)∗, i.e., assume the linear
functional p is represented by a function p̄ ∈ H 1

0 (Ω) such that p(ζ) = 〈 p̄, ζ〉Z for
all ζ ∈ Z . Then

(g∗
y p)(η) = p(gyη) = −〈 p̄,∇ · (exp(u) + ε)∇η)〉Z = 〈∇ p̄, (exp(u) + ε)∇η)〉Z

= 〈(exp(u) + ε)∇ p̄,∇η)〉Z ∀η ∈ Y,

and

(g∗
y p)(η) = 〈r, η〉Z ⇐⇒ 〈(exp(u) + ε)∇ p̄,∇η)〉Z = 〈r, η〉Z ∀η ∈ Y.

This is the definition in weak form of a solution of the PDE

−∇ · (exp(u) + ε)∇ p̄ = r.

Therefore, the first-order adjoint p ∈ H 1
0 (Ω) according to (11) is given as the

solution of
− ∇ · (exp(u) + ε)∇ p) = −B∗(By − wobs). (29)

Second Order Adjoints in Optimization 227

The second order adjoint π ∈ H 1
0 (Ω) according to (26) is the solution of

− ∇ · ((exp(u) + ε)∇π) = ∇ · (exp(u)ū∇ p) − B∗Bξ. (30)

The solution ξ ∈ H 1
0 (Ω) of the first-order sensitivity equation can be obtained fol-

lowing (7) by solving

− ∇ · ((exp(u) + ε)∇ξ) = ∇ · (exp(u)ū∇ y). (31)

Given all the derivatives above, we can apply Theorem9 to see which partial
differential equations need to be solved for an evaluation of a Hessian of Φ applied
to a vector.

Theorem 10 For Φ(u) = φ(s(u), u) the application of the Hessian of φ to a vector
ū, Φ ′′(u)ū, can be obtained with y = s(u) from

Φ ′′(u)ū = − exp(u)[(∇π)T ∇ y + (∇ p)T ∇ξ] + [− exp(u)(∇ p)T ∇ y + α]ū,

where y ∈ H 1
0 (Ω) is the solution of the state Eq.28, p ∈ H 1

0 (Ω) is the solution of
the first-order adjoint Eq.29, ξ ∈ H 1

0 (Ω) the solution of the first-order sensitivity
Eq.31, and π ∈ H 1

0 (Ω) is the solution of the second order adjoint Eq.30.

6 Summary and Conclusions

In this paper we derived rigorously second order adjoints for equality constrained
optimization problems in a general, infinite-dimensional setting which are used for
the Hessian-vector products in Newton’s method. We showed that while there are
four routes to arrive to the second order adjoints (e.g., via combinations of sensitivity
or adjoint equations), except the sensitivity-sensitivity approach, all the other three of
these coincide, i.e., they give the same Hessian-apply expression. This finding sug-
gests that one can choose whichever route is more convenient without compromising
the underlying computational effort. However, as discussed the sensitivity-sensitivity
approach is feasible only in the case of small number parameters.

We have applied this general framework to a PDE-constrained optimization prob-
lem formulated as a nonlinear least squares problem governed by an elliptic PDE.
This application revealed the ability to derive the second order adjoints (and Hessian-
vector apply) in a straightforward manner when following the general framework
established in this paper.

In this paper we chose to derive the expressions for the second order adjoints
at the infinite-dimensional level for a number of reasons. First, the derivation and
final results do not depend on any particular discretization of the underlying PDEs.
Second, the derivation is clean and reveal similar structure. Third, the form of the
boundary conditions for the adjoints falls out cleanly from the infinite-dimensional

228 N. Petra and E. W. Sachs

expressions. However, in certain cases working in finite-dimensions is beneficial, for
instance in the case when the optimize-then-discretize (OTD) and discretize-then-
optimize (DTO) approaches do not commute [18]. In the case of Hilbert spaces, the
role of the adjoint solves could be simplified when the domain and range space are
identical and the operator gy turns out to be self-adjoint. Furthermore, the standard
formulation of a Gauss-Newton method for a nonlinear least squares problem can
be used in a Hilbert space setting and it can be shown that the adjoint solve is in fact
a second order adjoint as defined in this context. The derivation of these equations
in finite-dimension and the framework for Gauss-Newton methods is the subject of
future work.

Acknowledgements This work was partially supported by the US National Science Foundation
grant CAREER-1654311. E. S. acknowledges partial support from the University of California,
Merced, and Lawrence Livermore National Laboratory.

References

1. Akçelik, V., Biros, G., Drăgănescu, A., Ghattas, O., Hill, J., van Bloeman Waanders, B.:
Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne
contaminants. In: Proceedings of SC2005. Seattle (2005)

2. Alekseev, A.K., Navon, I.M.: The analysis of an ill-posed problem using multi-scale reso-
lution and second-order adjoint techniques. Computer Methods in Applied Mechanics and
Engineering 190, 1937–1953 (2001)

3. Alekseev, A.K., Navon, I.M., Steward, J.: Comparison of advanced large-scale minimization
algorithms for the solution of inverse ill-posed problems. Optimization Methods & Software
24(1), 63–87 (2009)

4. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method for A-optimal
design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM
Journal on Scientific Computing 38(1), A243–A272 (2016)

5. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.:Mean-variance risk-averse optimal control
of systems governed by PDEs with random parameter fields using quadratic approximations.
SIAM/ASA Journal on Uncertainty Quantification 5(1), 1166–1192 (2017)

6. Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization
problems by finite element methods. Optimization Methods Software 22, 813–833 (2007)

7. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., Wilcox, L.C.: Extreme-
scale UQ for Bayesian inverse problems governed by PDEs. In: SC12: Proceedings of the
International Conference for High Performance Computing, Networking, Storage andAnalysis
(2012). Gordon Bell Prize finalist

8. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-
dimensional Bayesian inverse problems: Part I. The linearized case, with application to global
seismic inversion. SIAM Journal on Scientific Computing 35(6), A2494–A2523 (2013)

9. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic
equations: the adjoint DAE system and its numerical solution. SIAM Journal on Scientific
Computing 24(3), 1076–1089 (electronic) (2002)

10. Chen, P., Villa, U., Ghattas, O.: Taylor approximation and variance reduction for PDE-
constrained optimal control under uncertainty. Journal of Computational Physics 385, 163–186
(2019)

11. Cioaca, A., Alexe, M., Sandu, A.: Second-order adjoints for solving PDE-constrained opti-
mization problems. Optimization Methods and Software 27(4-5), 625–653 (2012)

Second Order Adjoints in Optimization 229

12. Daescu, D.N., Navon, I.M.: An analysis of a hybrid optimization method for variational data
assimilation. International Journal of Computational Fluid Dynamics 17(4), 299–306 (2003).

13. Dunn, J.C., Bertsekas, D.P.: Efficient dynamic programming implementations of Newton’s
method for unconstrained optimal control problems. Journal ofOptimizationTheory andAppli-
cations 63(1), 23–38 (1989)

14. Epanomeritakis, I., Akçelik, V., Ghattas, O., Bielak, J.: A Newton-CG method for large-scale
three-dimensional elastic full-waveform seismic inversion. Inverse Problems 24(3), 034015
(26pp) (2008)

15. Fichtner, A., Trampert, J.: Hessian kernels of seismic data functionals based upon adjoint
techniques. Geophysical Journal International 185(2), 775–798 (2011)

16. Griesse, R.: Parametric sensitivity analysis in optimal control of a reaction-diffusion system–
part II: practical methods and examples. Optimization Methods and Software 19(2), 217–242
(2004)

17. Griesse, R., Vexler, B.: Numerical sensitivity analysis for the quantity of interest in PDE-
constrained optimization. SIAM Journal on Scientific Computing 29(1), 22–48 (2007)

18. Gunzburger, M.D.: Perspectives in FlowControl andOptimization. SIAM, Philadelphia (2003)
19. Haber, E., Hanson, L.:Model problems in PDE-constrained optimization. Tech. Rep. TR-2007-

009, Emory University (2007)
20. Haftka, R.T., Mróz, Z.: First- and second-order sensitivity analysis of linear and nonlinear

structures. AIAA journal 24(7), 1187–1192 (1986)
21. Haug, E.J.: Second-order design sensitivity analysis of structural systems. AIAA Journal 19(8),

1087–1088 (1981)
22. Heinkenschloss, M.: Numerical solution of implicitly constrained optimization problems.

Tech. Rep. TR08-05, Department of Computational and AppliedMathematics, Rice University
(2008)

23. Herzog, R., Sachs, E.: Preconditioned conjugate gradient method for optimal control problems
with control and state constraints. SIAM Journal on Matrix Analysis and Applications 31(5),
2291–2317 (2010)

24. Hicken, J.E.: Inexact Hessian-vector products in reduced-space differential-equation con-
strained optimization. Optimization and Engineering 15(3), 575–608 (2014)

25. Hinze, M., Kunisch, K.: Second order methods for optimal control of time–dependent fluid
flow. SIAM Journal on Control and Optimization 40, 925–946 (2001)

26. Hinze, M., Pinnau, R.: Second-order approach to optimal semiconductor design. Journal of
Optimization Theory and Applications 133(2), 179–199 (2007)

27. Hou, G.J.W., Sheen, J.: Numerical methods for second-order shape sensitivity analysis with
applications to heat conduction problems. International Journal for Numerical Methods in
Engineering 36(3), 417–435 (1993)

28. Isaac, T., Petra, N., Stadler, G., Ghattas, O.: Scalable and efficient algorithms for the propa-
gation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet. Journal of Computational Physics 296, 348–368
(2015)

29. Jacobson, D.H.: Second-order and second-variation methods for determining optimal control:
A comparative study using differential dynamic programming. International Journal of Control
7(2), 175–196 (1968)

30. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
31. Le Dimet, F.X., Navon, I.M., Daescu, D.N.: Second-order information in data assimilation.

Monthly Weather Review 130(3), 629–648 (2002)
32. Mayne, D.: A second-order gradient method for determining optimal trajectories of non-linear

discrete-time systems. International Journal of Control 3(1), 85–95 (1966)
33. Métivier, L., Brossier, R., Operto, S., Virieux, J.: Second-order adjoint state methods for full

waveform inversion. In: EAGE 2012-74th European Association of Geoscientists and Engi-
neers Conference and Exhibition (2012)

34. Nicholson, R., Petra, N., Kaipio, J.P.: Estimation of the Robin coefficient field in a Poisson
problem with uncertain conductivity field. Inverse Problems 34(11), 115005 (2018)

230 N. Petra and E. W. Sachs

35. Özyurt, D.B., Barton, P.I.: Cheap second order directional derivatives of stiff ODE embedded
functionals. SIAM Journal on Scientific Computing 26(5), 1725–1743 (2005)

36. Petra, N., Stadler, G.: Model variational inverse problems governed by partial differential
equations. Tech. Rep. 11-05, The Institute for Computational Engineering and Sciences, The
University of Texas at Austin (2011)

37. Petra, N., Zhu, H., Stadler, G., Hughes, T.J.R., Ghattas, O.: An inexact Gauss-Newton method
for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model.
Journal of Glaciology 58(211), 889–903 (2012)

38. Raffard, R.L., Tomlin, C.J.: Second order adjoint-based optimization of ordinary and partial
differential equations with application to air traffic flow. In: American Control Conference, pp.
798–803. IEEE (2005)

39. Rudin,W.: Principles ofmathematical analysis, third edn.McGraw-Hill , Inc., NewYork (1976)
40. Sandu, A., Zhang, L.: Discrete second order adjoints in atmospheric chemical transport mod-

eling. Journal of Computational Physics 227(12), 5949–5983 (2008)
41. Santosa, F., Symes, W.W.: An analysis of least squares velocity inversion. Society of Explo-

ration Geophysicists (1989)
42. Wang, Z., Navon, I.M., Le Dimet, F.X., Zou, X.: The second order adjoint analysis: theory and

applications. Meteorology and Atmospheric Physics 50(1-3), 3–20 (1992)
43. Zhu, H., Petra, N., Stadler, G., Isaac, T., Hughes, T.J.R., Ghattas, O.: Inversion of geothermal

heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model. The Cryosphere
10, 1477–1494 (2016)

Largest Small n-polygons:
Numerical Optimum Estimates for n ≥ 6

János D. Pintér

Abstract The diameter of a convex planar polygon is defined as the maximum of
the distances measured between all of its vertex pairs. LSP(n), the largest small
polygon with n vertices, is the polygon of unit diameter that has maximal area A(n).
It has been known for almost a century that for all odd values n ≥ 3, LSP(n) is the
regular n-polygon. Perhaps surprisingly, this statement is not valid for even values
of n. Finding the polygon LSP(n) and A(n) for even n ≥ 6 has been a long-standing
“puzzle” that can be considered as a class of global optimization problems. We
present numerical solution estimates for all even values 6≤ n≤ 80, using the AMPL
model development environment with the LGO global–local solver engine option.
Based on these results, we also present a regression model-based estimate of the
optimal area sequence {A(n)}.

Keywords Largest small polygons · Global optimization model · Numerical
optimization by AMPL-LGO and other solvers · Illustrative results and
comparisons · Regression model

1 Introduction

The diameter of a convex planar polygon is defined as the maximum of the distances
measured between all of its vertex pairs. In other words, the diameter of the polygon
is the length of its longest diagonal. The largest small polygon with n vertices is the
polygon of unit diameter that has maximal area. For a given integer n ≥ 3, we will
refer to this polygon as LSP(n) with corresponding area A(n). To illustrate, see Fig. 1
that depicts the largest small hexagon LSP(6); in this case, all polygon diagonals are
of unit length.

For unambiguity, wewill consider all LSP(n) instanceswith a fixed position corre-
sponding to appropriatemodifications of Fig. 1 for even values n≥ 6. Specifically, we

J. D. Pintér (B)
Department of Management Science and Information Systems, Rutgers University,
100 Rockafeller Rd, Piscataway, NJ 08854, USA
e-mail: jpinter@business.rutgers.edu
URL: https://www.business.rutgers.edu/faculty/janos-pinter

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_11

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_11&domain=pdf
mailto:jpinter@business.rutgers.edu
https://www.business.rutgers.edu/faculty/janos-pinter
https://doi.org/10.1007/978-3-030-72040-7_11

232 J. D. Pintér

Fig. 1 Largest small
hexagon LSP(6)

define a planar Cartesian coordinate system in which the LSP(n) polygons are posi-
tioned and express the “height” of each vertex by its coordinate on the vertical axis.
Following a standard assumption, each even n-polygon considered here is symmet-
rical with respect to its diagonal that connects its “lowest” vertex (which is placed at
the origin) with its “highest” vertex.

Reinhardt [27] proved that for all odd values n ≥ 3, LSP(n) is the regular n-
polygon. Perhaps surprisingly, this statement is not valid for even values of n. For
n = 4 (tetragon), the square with diameter 1 has maximum area A(4) = 0.5, but
infinitely many other tetragons with diameter 1 have the same area. The case n =
6 (hexagon) was analyzed and solved by Graham [11]; the case n = 8 (octagon)
was solved by Audet et al. [2]. More recently, Henrion and Messine [14] found the
largest small polygons for n = 10 (decagon) and n = 12 (dodecagon) and for n ≤
16 presented rigorous bounds for the optimum value. We refer to these studies and
cited works therein for theoretical background and for further details regarding the
analysis of the problem class {LSP(n)}. We will also review the results obtained by
using general-purpose nonlinear optimization software, as reported in [4] and [5].
In addition to the publications cited in our study, we refer to the topical webpages
[29–31] for concise discussions with further references.

In this work, we follow a numerical global optimization approach, in order to
find LSP(n) configurations and corresponding estimated values A(n). Following this
introduction, one of the standard optimization model forms is reviewed in Sect. 2.
Earlier alternative solution approaches and best-known results are reviewed inSect. 3.
The AMPL model development environment [1] and the AMPL-LGO solver option
[22] are briefly discussed in Sect. 4, followed by AMPL-LGO results compared to
results by other researchers and using also other solvers (Sect. 5). A regressionmodel
based on our numerical results is presented in Sect. 6, together with corresponding
optimum estimates {A(n)} for n ≥ 6. Conclusions are presented in Sect. 7, followed
by references.

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 233

2 A Standard Optimization Model for Finding LSP(n)

Our objective is to find numerically optimized LSP(n) configurations with n ≥ 6
vertices, n being an input parameter of the general model. The model formulation
presented here is cited from Bondarenko et al. [4] who refer to Gay’s model [8],
discussed also in [9]. The AMPL model pgon.mod [8] refers to a GAMS model
developed by Francisco J. Prieto (noting that a more accurate reference to Prieto’s
original work is unknown to this author). The corresponding GAMS model library
item polygon.gms [7] refers to [8, 11] and the benchmarking study [5].

Following themodel formulations referred to above,we consider polar coordinates
to describe LSP(n), assuming that vertex i is positioned at polar radius ri and at angle
θ i. For unambiguity, we assume that the polygon vertices i = 1,…, n–1 are arranged
(indexed) according to increasing angles θ i. Placing the last vertex position at the
origin, we have rn = 0, θn = π. Please refer to Fig. 1 for the hexagon instance LSP(6)
that corresponds to this standardized position.

2.1 Model Formulation

Maximize total area of the n-polygon:

max A(n) = 1
/
2

∑

i=1,...,n−1

riri+1 sin(θi+1 − θi). (1)

Bounds for pairwise distance between vertices i and j:

r2i + r2j − 2rir j cos(θi − θ j) ≤ 1,
for 1 ≤ i ≤ n − 2, i + 1 ≤ j ≤ n − 1.

(2)

Vertex angle ordering relations:

θi+1 − θi ≥ 0, for 1 ≤ i ≤ n − 2. (3)

Decision variable bounds, including the two fixed settings:

0 ≤ θi ≤ π and 0 ≤ ri ≤ 1, for 1 ≤ i ≤ n−1; rn = 0, θn = π. (4)

234 J. D. Pintér

2.2 Numerical Challenges

Difficulties can be expected to arise, due to the nonconvex objective function (1) and
the nonconvex constraints (2). The number of these nonlinear constraints increases
quadratically as a function of n. For example, the LSP(80) model instance has 158
decision variables (since rn and θn are fixed) with corresponding bound constraints;
and it has 3241 constraints of which 3161 are nonconvex (adding to the 78 linear
constraints (3) the two fixed value constraints from (4)). As conjectured by other
researchers and numerically supported also by the present study, while the standard-
ized LSP(n) model instances have a unique globally optimal solution, the number
of local optima increases with n. Many of the local optima are close in quality to
the (unknown or only approximately known) global optimum. These features make
the {LSP(n)} problem-class numerically challenging, similarly to many other object
configuration design problems arising e.g. in computational physics, chemistry and
biology.

3 Related Earlier Studies

3.1 Analytical Approaches

Following Graham [11]—who combines geometric insight with results based on
[33]—finding LSP(6) requires the exact solution of a 10th order irreducible poly-
nomial equation. More specifically, the area A(6) of LSP(6) can be found as the
second-largest real root r of the equation

11993 − 78488r + 144464r2 + 1232r3 − 221360r4 + 146496r5

+ 21056r6 − 30848r7 − 3008r8 + 8192r9 + 4096r10 = 0.

Audet et al. [2], Henrion and Messine [14] follow a different approach:
in their studies finding LSP(n) requires the exact solution of a corresponding
nonconvex quadratic programming problem with quadratic constraints, combined
with geometric analysis. These solution strategies, based on a different model from
the one cited in Sect. 2, also brings the LSP(n) problem-class into the realm of global
optimization.

In [14] it is conjectured that LSP(n) for all even values n ≥ 4 has a symmetry
axis, as indicated by Fig. 1 for LSP(6). This conjecture was proven by Reinhardt
[27] for n = 4, and by Yuan [34] for n = 6. As noted by Henrion and Messine,
Graham used this conjecture to find LSP(6); the LSP(8) configuration found in [2]
also supports the conjecture. The software packages SeDuMi [28], VSDP [16], and
GloptiPoly [12, 13] are used in [14] to solve LSP(n) instances for 6≤ n≤ 16. Henrion

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 235

Table 1 Numerical results based on analytical approaches

n LSP(n) area A(n) References

4 0.5 Reinhardt [27]

6 0.674981 Graham [11]a

8 0.726867 Audet et al. [2]a

8 0.72686845 ≤ A(8) ≤ 0.72686849 Henrion and Messine [14]b

10 0.74913721 ≤ A(10) ≤ 0.74913736 Henrion and Messine [14]

12 0.76072986 ≤ A(12) ≤ 0.76072997 Henrion and Messine [14]

14 0.76753100 ≤ A(14) ≤ 0.76893595 Henrion and Messine [14]

16 0.77185969 ≤ A(16) ≤ 0.77279135 Henrion and Messine [14]

aThe results given with lower (6-decimal digit) precision are cited from [2, 11, 29]
bNotice the slight numerical discrepancy between the results of [2, 14] for the case n = 8

and Messine also discuss the current computational limitations of this approach, as
runtimes increase rapidly from seconds to tens of minutes in their numerical tests.

Table 1 summarizes all currently known validated numerical results, including
also the bounds reported in [14].

3.2 Numerical Solution Approaches

The COPS technical report [4] by Bondarenko et al. presents comparative numerical
results for several LSP(n) instances as shown in Table 2. These results were obtained
by using the local nonlinear optimization software packagesDONLP2, LANCELOT,
LOQO, MINOS, and SNOPT (as of September 1998) linked to the AMPL modeling
environment.

Table 2 summarizes the best numerical solution—obtained by at least one of the
above listed solvers—cited from theCOPS report. The term best refers to the solution

Table 2 Numerical results
obtained by using local
nonlinear optimization
software [4, 5]. Best results
attained by one of DONLP2,
LANCELOT, LOQO,
MINOS, SNOPT

n LSP(n) area A(n)

6 0.6749814429

10 0.7491373458

20 0.7768587560

25 0.779740a

50 0.7840161480

75 0.784769a

100 0.7850565708

aThe numerical results given with 6 decimal digit precision are
cited from [5]

236 J. D. Pintér

Table 3 Numerical results
reported by Mossinghoff [17]

n LSP(n) area A(n)

6 0.6749814429

8 0.7268684828

10 0.7491373459

12 0.7607298734

14 0.7675310111

16 0.7718613220

18 0.7747881651

20 0.7768587560

which has the highest objective function value, while meeting all model constraints
with at least 10−8 precision. For completeness, we also added results for n = 25, 50,
75, 100 from the subsequent benchmarking study [5] in which LANCELOT, LOQO,
MINOS, and SNOPT were tested: again, we cite only the best results.

Mossinghoff [17] also studied the {LSP(n)} problem-class. He describes an
approach to search for polygons with an even number of sides n and fixed diam-
eter d (here d = 1), aiming at the largest possible area. The construction is based
on optimizing a parameterized polygon model, leading to an apparently difficult
numerical problem to handle. For arbitrary even n ≥ 6, Mossinghoff’s construction
leads to a polygon, denoted by Qn which provably has a larger area than that of
the regular polygon Pn. Mathematica, by Wolfram Research [32], has been used
by Mossinghoff to find Qn for 6 ≤ n ≤ 20: see Table 3. The required calculations
are far from trivial: consult [17] for further details and alternatives. To the author’s
knowledge, this approach has not been applied to find Qn for n > 20. Arguably—
and similarly to work performed by other researchers—this is due to the rapidly
increasing difficulties to carry out the calculations required.

3.3 The Asymptotic Behaviour of A(n)

According to the optimization model presented in Sect. 2, the numerical solution of
LSP(n) instances requires the handling of a nonlinear programming problem with
O(n2) nonconvex constraints, and a nonconvex objective function. In spite of the
implied difficulty, LSP(n) problems are thought not to become dramatically more
difficult to handle as n increases—at least in terms of finding reasonable numerical
optimum estimates. This opinion is based on the generally postulated structural
similarity and symmetry of the sequence of {LSP(n)} configurations. As noted e.g.,
in [4], the optimal LSP(n) configurations approach the circle of unit diameter as
n → ∞ consult [17] for related asymptotic results. Consequently,

A(∞) = lim
n→∞ A(n) = π

/
4 ∼ 0.7853981634.

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 237

Based on this conjectured structure, in [4, 5] “a polygon with almost equal sides”
is used as the initial solution guess in all numerical tests. This approach is imple-
mented in both the AMPL and GAMSmodel codes referred to earlier. Such solution
strategy illustrates the point that, in optimization models good insight and resulting
initial solution guess can become a valuable step towards finding credible numerical
solutions efficiently. This heuristic approach, however, does not guarantee provable
global optimality in many nonconvex models, including the {LSP(n)} model-class
discussed here. In spite of such “hand-crafted” initial solutions, the high-quality
local nonlinear solvers mentioned above often failed to find solutions, the solutions
returned were typically somewhat different, and in a number of cases evidently
suboptimal. For further details regarding this point, consult [4, 5], and the results
presented later on in Tables 4 and 5.

4 Solving LSP Problems Numerically by AMPL-LGO

4.1 Solution Approach

In this study, we follow a numerical optimization approach, keeping in mind also the
cautionary notes presented above. Specifically, using theLGOglobal–local optimiza-
tion solver engine linked to the AMPLmodeling environment, we present numerical
optimum estimates for all even values 6 ≤ n ≤ 80. Our results, presented in Sect. 5,
are in close agreement with the best results reported in Tables 1, 2 and 3—when
comparable results are available. For comparison, we also report results obtained by
using the currently available alternative solver options MINOS [18], SNOPT [10],
and IPOPT [15] linked to AMPL.

4.2 The AMPL Model Development Environment

AMPL is a powerful modeling language that facilitates the formulation of optimiza-
tion models. AMPL enables model development in a natural, concise, and scalable
manner. AMPL also supports model analysis, the usage of different data sets for
the same model, the seamless invocation of various solver engine options to handle
optimization models, together with report generation and many other useful features
not discussed here. AMPL has been extensively documented elsewhere: we refer to
the AMPL book [6], and to the resources available at the AMPL website [1].

238 J. D. Pintér

4.3 LGO Solver Suite for Nonlinear Optimization

Nonlinear optimizationmodels frequently havemultiple—local and global—optima:
the objective of global optimization is to find the best possible solution under
such circumstances. LGO is an integrated global–local solver suite for constrained
nonlinear optimization. The model-class addressed by LGO is concisely defined by
the vector of decision variables x ∈ Rn; the explicit, finite n-vector variable bounds
l and u; the continuous objective function f (x); and the (possibly absent) m-vector
of continuous constraint functions g(x). Applying these notations, LGO is aimed at
numerically solving models of the general form.

min f (x) subject to x ∈ D := {l ≤ x ≤ u, g(x) ≤ 0}. (5)

In (5) all vector inequalities are interpreted component-wise: l, x, u, are n-
component vectors and 0 denotes the m-component zero vector. Formally more
general optimization models that include also = and constraint relations and/or
explicit lower and upper bounds on the constraint function values can be directly
deduced to the model form (5). If D is non-empty, then the stated key analytical
assumptions guarantee that the optimal solution set X* of the model is non-empty;
however, finding X* could still remain a formidable analytical and/or numerical
challenge. Clearly, the {LSP(n)} problem-class is encompassed by the optimization
model form (5).

Without going into further details regarding LGO, we mention that the founda-
tions of the LGO software development project are discussed by Pintér [19]; further
implementation aspects are discussed e.g., in [20, 21]. Here we utilize the LGO
solver option available for use with AMPL [22]; the current stand-alone LGO imple-
mentation is documented in [23]. In addition to these references, the studies [24,
25] present numerical results using LGO to solve a range of nonlinear optimization
problems, from relatively simple standard test problems to well-known challenges.
LGO also has been applied to handle a broad range of business, engineering and
scientific optimization problems.

5 Numerical Results and Comparisons

5.1 AMPL-LGO Results

In our numerical tests reported here, the AMPL code implementation pgon.mod
was used. All test runs were conducted on a several years old laptop PC with Intel
Core i5-3337-U CPU@ 1.80 GHz (x-64 processor), 16 Gb RAM, running under the
Windows 10 (64-bit) operating system.

The results of a single, completely reproducible run-sequence are summarized in
Table 4 for all even values 6≤n≤80,with a single default setting of all solver options,

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 239

using LGO in global search mode. In several (seemingly more difficult) cases, we
received somewhat better numerical results in additional tests, at the expense of
longer runtimes: however, for consistency, we did not include those results here. Let
us alsomention that LGO in its local searchmode often found optimumestimates that
are numerically identical or close to the global search-based solution, at a fraction
of the runtimes reported below. (Recall the related comment from Sect. 3.3.)

The results summarized in Table 4 are directly cited from the AMPL-LGO solver
output; the corresponding LSP(n) configurations can be optionally reported in the
AMPL command window, and/or written to a result text file. To avoid reporting
such excessive details, the optimized configurations found are not presented here. An
illustrative collection of detailed results has been kept for documentation and archival
purposes, and all results can be reproduced in a few minutes. The reported precision
of our numerical results is set to 10 digits after the decimal point. Arguably, this is
a bit of “overkill”, but it is in line with the required constraint satisfaction precision
as shown below. The results reported also support an in-depth comparison with the
results cited earlier, as well as with the results obtained using alternative AMPL
solvers (noting that in some cases the differences between the optimum estimates
found are rather small).

Our numerical results for n≤ 20 are in fairly close agreement with the best results
displayed inTables 1, 2 and 3. In several cases,we found somewhat better conjectured
optimum estimates compared to the earlier results in Tables 1 and 2; and our results
up to n = 20 are in close agreement (up to 8 decimal digits) with those reported by
Mossinghoff, see Table 3. The runtimes appear to scale rather well for 6 ≤ n ≤ 80,
mostly (but not always) increasing with n.The entire sequence of the 38 optimization
runs reported here took a little over 10 min.

Although AMPL-LGO seems to perform reasonably well in comparison to the
other solvers tested by us or by others (as reported above), its numerical limi-
tations start to show around n = 64 when used in a pre-set default mode. The
results presented in Table 4 for n = 64, 74, and 78 are clearly suboptimal, while
all other A(n) values are monotonically increasing with n, as expected. Instead
of “tweaking” the LGO option parameters—e.g., by increasing the pre-set global
search effort limit (which was actually reached in several cases reported above,
for some of the larger n values), or increasing the runtime limit (set to 5 min
for each run, but never reached)—here we very simply use linear interpolation to
“adjust” the clearly suboptimal results based on the bracketing values in Table 4.
For example, A(64) is estimated on the basis of the results obtained for A(62) and
A(66). Applying such simple interpolation leads to the following estimated values:
A(64) ∼ 0.7845510976, A(74) ∼ 0.7847519869, A(78) ∼ 0.7847919330.

The reason to produce these simple estimates is to use them in Sect. 6, to develop
a regression model for the entire sequence A(n).

240 J. D. Pintér

Table 4 AMPL-LGO numerical results

n LSP(n) area A(n) Runtime (seconds) Maximum constraint violation

6 0.6749814433 0.55 2.21e-09 (i.e., 2.21·10–9, etc.)
8 0.7268684830 0.70 6.47e-09

10 0.7491373457 0.95 2.96e-10

12 0.7607298709 1.30 8.9e-10

14 0.7675310106 1.69 3.91e-09

16 0.7718613224 2.55 4.09e-09

18 0.7747881650 2.63 9.78e-09

20 0.7768587506 3.02 2.23e-09

22 0.7783773308 3.95 9.08e-09

24 0.7795240461 5.22 7.73e-09

26 0.7804111201 5.34 6.34e-09

28 0.7811114192 6.05 9.83e-09

30 0.7816739255 6.98 3.67e-09

32 0.7818946320 5.72 6.29e-10

34 0.7823103007 7.61 9.03e-09

36 0.7826513767 9.50 9.75e-09

38 0.7829526627 9.34 5.08e-09

40 0.7832011589 9.55 8.47e-11

42 0.7834135187 12.06 4.62e-09

44 0.7835966860 13.22 1.42e-09

46 0.7837554636 16.88 3.43e-09

48 0.7838942710 17.95 8.31e-09

50 0.7840161496 16.53 9.99e-09

52 0.7841233641 20.61 8.78e-09

54 0.7842192995 21.38 9.18e-09

56 0.7843044654 23.91 3.87e-09

58 0.7843807534 22.95 8.43e-09

60 0.7844492943 27.97 9.79e-09

62 0.7845111362 21.22 8.93e-09

64 0.7834620877 30.48 9.82e-09

66 0.7845910589 34.17 1.19e-09

68 0.7846139029 35.84 9.00e-09

70 0.7846403575 22.33 6.45e-09

72 0.7847454020 42.75 7.34e-09

(continued)

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 241

Table 4 (continued)

n LSP(n) area A(n) Runtime (seconds) Maximum constraint violation

74 0.7845564840 26.25 3.54e-09

76 0.7847585719 49.19 8.95e-09

78 0.7845160579 49.47 9.64e-09

80 0.7848252941 51.45 7.25e-09

5.2 An Illustrative Comparison with Results Obtained
by Several AMPL Solvers

For a somewhat more comprehensive picture, we also generated a set of comparative
results using several currently available AMPL solvers, namely: MINOS, SNOPT,
IPOPT, and LGO. All solvers are used with their default settings. We did not include
all even values 6 ≤ n ≤ 80, only a representative subset (starting from n = 30, we
increased n by 10), since—based on the results obtained—the solver performance
tendencies seem rather clear. Table 5 summarizes these numerical results; the LGO
results are directly imported from Table 4.

In several cases, MINOS and SNOPT issued interim (runtime) warning
messages—while in most runs they report optimal solutions on return—but all runs
were properly terminated with the results shown in Table 5. All solvers return close,
but slightly different results for n = 6 and n = 8. The first clearly notable difference
appears at n = 10, where IPOPT returns a somewhat inferior result compared to the
other three solvers.

The numerical limitations of all tested solvers become more apparent as n
increases. In several cases, MINOS returns clearly inferior results, and except for
small values of n, it produces inferior results that are a few percent below the best
solution returned considering all solvers. IPOPT consistently returns somewhat infe-
rior results, but still within a few percent of the best solution returned by at least one
of the solvers. SNOPT works well for the considered range of n values, in several
cases returning slightly better objective function value estimates than LGO. In the
other cases, LGO returns best results, with relatively little difference between LGO
and SNOPT results. Let us point out that the constraint satisfaction levels attained
by these solvers are a bit different, depending also on the LSP(n) instance solved:
therefore, it would be inappropriate to draw far-reaching conclusions based on rather
small differences in the reported objective function values.

The LSP model-class clearly poses a challenge to the high-quality solvers tested
here. Arguably, the same conclusion remains valid for other solver engines which
could not be considered in the present study. To support this statement, consult also
[4, 5] for the numerical results included for LSP models.

242 J. D. Pintér

Table 5 Comparative numerical results obtained by using several AMPL solvers nLSP(n) area
A(n)

MINOS SNOPT IPOPT LGO

6 0.6749814429 0.6749814429 0.6749814308 0.6749814433

8 0.7268684828 0.7268684827 0.7268684678 0.7268684830

10 0.7491373459 0.7491373459 0.7371215901 0.7491373457

12 0.7607298734 0.7607298734 0.7542668597 0.7607298709

14 0.7521931121 0.7675310112 0.7675309793 0.7675310106

16 0.7625954979 0.7718613220 0.7696844715 0.7718613224

18 0.7554106917 0.7747881651 0.7491373424 0.7747881650

20 0.7649920891 0.7768587560 0.7732071277 0.7768587506

22 0.7640946468 0.7783773301 0.7607298336 0.7783773308

24 0.7640946468 0.7795240452 0.7548403603 0.7795240461

26 0.7636943870 0.7804111199 0.7523851367 0.7804111201

28 0.7641232665 0.7807502582 0.7523851373 0.7811114192

30 0.4738428148 0.7813775853 0.7491373081 0.7816739255

40 0.7740433310 0.7832011593 0.7268684622 0.7832011589

50 0.5591307889 0.7820205034 0.7197409051 0.7840161496

60 0.7403488333 0.7827992931 0.6749814462 0.7844492943

70 0.7605166660 0.7846838685 0.7268685003 0.7846403575

80 0.5070738413 0.7848417622 0.7197409068 0.7848252941

6 Regression Model Development

Basedon theAMPL-LGOnumerical results,wepresent a simple nonlinear regression
model that enables the estimation of the optimal area A(n), for all even values of n
≥ 6. Obviously, the same type of regression model could be used to estimate A(n)
also for odd values. However, based on the optimality of regular n-polygons [27],
one could exactly compute A(n) for all odd values of n.

Given that A(n) is a monotonically increasing function of n, and A(∞) = π/4, the
following model form is conjectured for even values n ≥ 6:

A(n) = π
/
4 − c1

/
n − c2

/
n2 − c3

/
n3. (6)

In (6), the parameters c1, c2, c3 are expected to be positive. To calibrate this
model, we use the estimated A(n) 6 ≤ n ≤ 80 values found by AMPL-LGO, substi-
tuting the three apparently suboptimal calculated A(n) values by their interpolated
approximation as discussed earlier.

The regression model parameters were determined using the NonlinearMod-
elFit function of Mathematica [32]. This leads to the following model, rounding
the coefficients to five digits after the decimal point (to reflect the expected model

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 243

Table 6 Estimated A(n) values based on the regression model (7) vs. best known results

n 6 8 10 20 30 40

A(n) est 0.674983 0.726829 0.749185 0.776816 0.781572 0.783209

Best res 0.674981 0.726868 0.749137 0.776859 0.781674 0.783201

n 50 60 70 80 90 100

A(n) est 0.783965 0.784378 0.784629 0.784794 0.784908 0.784991

Best res 0.784016 0.784449 0.784684 0.784842 0.784946 0.785028

n 200 300 400 500 1000 2000

A(n) est 0.785270 0.785329 0.785352 0.785364 0.785384 0.785392

Best res 0.785316 0.785309 0.785356 ??? ??? ???

accuracy):

A(n) ∼ π
/
4 − 0.01098

/
n − 2.91512

/
n2 − 5.96369

/
n3. (7)

Applying this regression model, in Table 6 we present an illustrative set of A(n)
estimates vs. the best known numerical results from Tables 1, 2, 3, 4 and 5. All values
are rounded to 6-digit precision after the decimal point.

All estimated values shown in Table 6 are in reasonable agreement with the best
numerical results presented in Tables 1, 2, 3, 4 and 5 whenever such values are
available. The relative difference between the calculated best values and estimated
values is less than 10–4 in all examples included in Table 5, except for n = 30, where
the relative difference approximately equals 1.3 · 10–4.

The calculated optima shown for n = 90, 100, 200, 300, 400 were found using
SNOPT. (Due to the current pre-set model size limitations of AMPL-LGO, it could
not be used for doing these calculations; and the solvers MINOS and IPOPT were
deemed unsuitable due to their inferior performance experienced for smaller n
values). The SNOPT runtimes—which were below one second in most cases for
n < 100 (reaching about 5 s for n = 100) – increased rapidly when n was sequen-
tially set to 200, 300, and 400. SNOPT was running for more than an hour on the
computer mentioned earlier to solve the n = 400 model instance. The entries ??? for
n = 500, 1000, 2000 indicate that we did not attempt to calculate these, since none
of the solvers used in this study seemed capable to return numerical results within
an acceptable timeframe.

Let us point out that while the LSP(100) model-instance has “only” 198 decision
variables and 5049 constraints (omitting the prefixed values), the LSP(400) model-
instance has 798 variables, and the number of constraints is 80199. It seems clear
that solving LSP(n) models directly, for arbitrarily large even values n, is beyond
the capability of current (and perhaps also of future) numerical optimization tools.
This aspect makes the regression model based estimation approach a simple viable
alternative.

244 J. D. Pintér

Since the data used to develop the regression model (2) are likely to be at least
slightly suboptimal, one can expect that—generally speaking—the estimated A(n)
values could be also suboptimal. This tendency can be observed in Table 6, but one
can see also some exceptions, indicating regression model error and/or optimization
inaccuracy.

Let us also note that—for the purpose of developing a regression model—the
exact values {A(n)} for odd n could also be used. However, this approach would be
based on “mixing” numerically exact and estimated optima, and hence would give
less indication of the quality of the numerical solutions found for even values of n.
For this reason, we used only the results obtained in the present study, and we did
not attempt to find adjusted optimum estimates based on further information.

To support a more complete comparative analysis, first and second order regres-
sion models (with 1/n as their input argument) were also calculated, but the third
order model (6) clearly resulted in a superior fit to the entire data set used. Obvi-
ously, within reason, higher order models (or perhaps other model types) could give
even more precise fit to the data, but—considering also the inherent data inaccura-
cies—the third order model (6) already gives a fairly good fit. Figure 2 displays the
model function curve defined by (7) together with the adjusted data set (represented
by dots) that includes the interpolated data.

Figure 3 displays the regression model residuals. With a few exceptions, the
residual errors are less than 1·10–4; the absolute value of the singularly largest esti-
mated error is around 8 · 10–4. All estimated error values are fairly small, compared
to the approximate range [0.674981, 0.784825] of the observed data.

One can observe that most of the residuals seem to follow an interesting cyclical
pattern that—in the author’s opinion—seems more due to the inherent structure of
the LSP(n) problem-class than to numerical fluctuations and other “noise” induced
by the computational environment.

Fig. 2 The nonlinear
regression model (7), vs. the
adjusted data set A(n) (dots)
for 6 ≤ n ≤ 80

n
0 20 40 60 80

0.68

0.70

0.72

0.74

0.76

0.78

Fig. 3 Residuals (see dots)
in the regression model (7)
of A(n), for 3 ≤ n ≤ 40

n

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 245

7 Concluding Remarks

In this study, we address the problem of finding numerically the sequence of largest
small n-polygons LSP(n) with unit diameter and maximal area A(n). Finding LSP(n)
and A(n) for even values of n ≥ 6 has been a long-standing challenge, leading to an
interesting class of nonlinear optimization problems with different formulations by
a number of researchers.

The structural properties of this problem, and of similar optimization challenges—
e.g., atomic structure models, potential energy models, regular object packings, and
other problems inwhich the goal is to find the best configuration of identical objects—
often support the proposition of “credible” initial solutions and solution guesses.
However, finding the true global solution typically remains difficult, as the cited
earlier studies and our present work illustrate.

Using the AMPL modeling environment with the LGO solver option, we present
global search based numerical solutions for all even values 6 ≤ n ≤ 80, in a matter
of minutes. Our results are comparable to (and in a number of cases are somewhat
better than) the best results obtained earlier by other authors and by other solver
software options, before our results were produced. Based on the results obtained,
we also propose a regression model that enables the simple estimation of the optimal
area sequence {A(n)}, for arbitrary integer values of n.

Upon revising the manuscript of this work, it was brought to our attention by a
helpful reviewer that a recently posted (September 2020) study [3] presentsnumerical
optimum estimateswhich are somewhat better for n≥ 32 than the numerical optimum
estimates presented in our work. To illustrate, [3] reports for n = 32 the estimate
0.7821325276 versus our estimate 0.7818946320: the approximate ratio of these
values is 0.9996958. To produce the results reported in [3] for a selection of even
values n≤ 128, a different global optimization model was used; MATLAB and CVX
serve as the modeling environment, and the MOSEK Optimization Suite was used
(with a default precision setting which, without delving into further details, seems
to be similar to the numerical feasibility tolerance used in our study).

In response to the above, we point out that [3] cites our numerical results obtained
in 2018 (and left unchanged for the present study). We never claimed more than
producing credible numerical optimum estimates using off-the-shelf optimization
softwarewhich returns results in seconds orminutes for themodel instances discussed
here.

Let us add that in a recently completed study [26] we present numerical results
for an illustrative sequence of even values of n, up to n ≤ 1000. Our results are in
close agreement with (or surpass) the best results reported in all earlier studies known
to us, including the results presented in [3]. For completeness, we also calculated
numerically optimized results for a selection of odd values of n, up to n ≤ 999. In
this study, we used a tighter model formulation; to handle this model, Mathematica
was used with the IPOPT solver option. Following up by corresponding regression
models (similarly to our present work), we present numerical solution estimates for
the entire LSP model-class.

246 J. D. Pintér

The motto of the benchmarking studies [4, 5] is, arguably, somewhat provocative
and funny, but the message is worth quoting: “COPS: Keeping optimization software
honest.” In line with this message, let us conclude with some honest and pragmatic
advice, not driven by unconditional “software developer’s pride”. Facing the vast
universe of nonlinear optimization problems, it is advisable to refrain from confident
blanket statements regarding the superiority of any particular solver software over
others. Instead, it is good practice to use a repertoire of appropriate model versions
and solver options whenever possible, especially since it may not be obvious a priori
which model type or solver engine will work best for a novel or unusually hard
optimization challenge.

Acknowledgements The author thanksDavidM.Gay (AMPLOptimization, Inc.) for his contribu-
tions to the AMPL-LGO solver link development, and for many useful discussions. Thanks are due
also to AMPL Optimization and Wolfram Research for their long-standing support of the author’s
research.

References

1. AMPL Optimization, AMPL. www.ampl.com, 2020.
2. C. Audet, P. Hansen, F. Messine, and J. Xiong, The Largest Small Octagon, Journal of

Combinatorial Theory, Series A 98 (2002), pp. 46–59.
3. Bingane, Largest Small Polygons: A Sequential Convex Optimization Approach. Available at

https://arxiv.org/pdf/2009.07893.pdf. (Manuscript dated September 18, 2020.)
4. A.S. Bondarenko, D.M. Bortz, and J.J. Moré, COPS: Large-Scale Nonlinearly Constrained

Optimization Problems, Technical Report ANL/MCS-TM-237, Argonne National Laboratory,
Argonne, IL, 1998.

5. E.D. Dolan, and J.J. Moré, Benchmarking Optimization Software with COPS, Technical Report
ANL/MCS-TM-246, Argonne National Laboratory, Argonne, IL, 2000.

6. R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming (2nd Edition), Brooks/Cole-Thomson Learning, Pacific Grove, CA, 2003.

7. GAMSDevelopmentCorporation,Model libraries; polygon.gms: Largest small polygonCOPS
2.0 #1, https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_polygon.html; 2018.

8. D.M. Gay, pgon.mod, https://netlib.org/ampl/models/pgon.mod; 1998.
9. D.M. Gay, The AMPLModeling Language: An Aid to Formulating and Solving Optimization

Problems, in M. Al-Baali, L. Grandinetti, and A. Purnama, Eds., Numerical Analysis and
Optimization: NAO-III (Muscat, Oman, January 2014), pp. 95–116. Springer International
Publishing, Switzerland, 2015.

10. P.E. Gill, W. Murray, and M.A. Saunders, User’s Guide for SNOPT Version 7: Software
for Large-Scale Nonlinear Programming, Systems Optimization Laboratory, Department of
Management Science and Engineering, Stanford University, Stanford, CA, 2006.

11. R.L. Graham, The Largest Small Hexagon, Journal of Combinatorial Theory, Series A 18
(1975) pp. 165–170.

12. D. Henrion, and J.B. Lasserre, GloptiPoly: Global Optimization over Polynomials withMatlab
and SeDuMi, ACM Transactions on Mathematical Software 29 (2003) 2, pp. 165–194.

13. D. Henrion, J.B. Lasserre, and Loefberg, J., GloptiPoly 3: Moments, Optimization and
Semidefinite Programming, Optimization Methods and Software 24 (2009), 4–5, pp. 761–779.

14. D. Henrion, and F. Messine, Finding Largest Small Polygons with GloptiPoly. Available at
https://arxiv.org/pdf/1103.4456.pdf. (Current manuscript version dated June 17, 2018.)

http://www.ampl.com
https://arxiv.org/pdf/2009.07893.pdf
https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_polygon.html
https://netlib.org/ampl/models/pgon.mod
https://arxiv.org/pdf/1103.4456.pdf

Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6 247

15. IPOPT, Ipopt, a Library for Large-scale Nonlinear Optimization; https://projects.coin-or.org/
Ipopt. The authors of Ipopt are listed at https://projects.coin-or.org/Ipopt/browser/trunk/Ipopt/
AUTHORS; 2018.

16. C. Jansson, VSDP: A Matlab Software Package for Verified Semidefinite Programming,
Nonlinear Theory and its Applications (2006) pp. 327–330.

17. M.J.Mossinghoff, Isodiametric Problems forPolygons.Discrete andComputationalGeometry,
36 (2006) 2, pp. 363–379.

18. B.A. Murtagh, and M.A. Saunders, MINOS 5.5 User’s Guide. Technical Report SOL 83–
20R. Systems Optimization Laboratory, Department of Management Science and Engineering,
Stanford University, Stanford, CA, 1983; revised version 1998.

19. J.D. Pintér, Global Optimization in Action. Kluwer Academic Publishers, Dordrecht, 1996.
20. J.D. Pintér, Global Optimization: Software, Test Problems, and Applications, in Pardalos, P.M.

and Romeijn, H.E., Eds. Handbook of Global Optimization, Volume 2, pp. 515-569. Kluwer
Academic Publishers, Dordrecht, 2002.

21. J.D. Pintér, Software Development for Global Optimization, in Pardalos, P.M. and T. F.
Coleman, Eds. Global Optimization: Methods and Applications, pp. 183–204. Fields Institute
Communications Volume 55. Published by the American Mathematical Society, Providence,
RI, 2009.

22. J.D. Pintér, AMPL-LGO User’s Guide, AMPL Optimization, Inc.
23. J.D. Pintér, LGO Solver Suite for Global and Local Nonlinear Optimization: User’s Guide,

PCS, Inc.
24. J.D. Pintér, How Difficult is Nonlinear Optimization? A Practical Solver Tuning Approach,

with Illustrative Results, Annals of Operations Research 265 (2018), pp. 119–141.
25. J.D. Pintér, F.J. Kampas, and I. Castillo, Globally Optimized Packings of Non-uniform Size

Spheres in Rd: A Computational Study, Optimization Letters 12 (2018) 3, pp. 585–613.
26. J.D. Pintér, F.J. Kampas, and I. Castillo, Finding the Sequence of Largest Small n-Polygons by

Numerical Optimization. https://www.optimization-online.org/DB_FILE/2020/11/8112.pdf.
27. K. Reinhardt, Extremale Polygone gegebenen Durchmessers, Jahresbericht der Deutschen

Mathematiker-Vereinigung 31(1922), pp. 251–270.
28. J.F. Sturm, Using SeDuMi 1.02, A Matlab Toolbox for Optimization over Symmetric Cones,

Optimization Methods and Software 11 (1999) (1–4), 625–653.
29. E.W. Weisstein, “Biggest Little Polygon.” From MathWorld – A Wolfram Web Resource.

https://mathworld.wolfram.com/BiggestLittlePolygon.html. (Retrieved on June 28, 2020)
30. E.W. Weisstein, “Graham’s Biggest Little Hexagon.” From MathWorld—A Wolfram Web

Resource. https://mathworld.wolfram.com/GrahamsBiggestLittleHexagon.html. (Retrievedon
June 28, 2020)

31. E.W. Weisstein, “Regular Polygon. ” From MathWorld—A Wolfram Web Resource. https://
mathworld.wolfram.com/RegularPolygon.html. (Retrieved on June 28, 2020)

32. WolframResearch,Mathematica (Version 11.0),WolframResearch, Inc., Champaign, IL, 2018.
33. D.R. Woodall, Thrackles and Deadlock, in D.J.A. Welsh, Ed. Combinatorial Mathematics and

Its Applications, pp. 335-347, Academic Press, New York, 1971.
34. B. Yuan, The Largest Small Hexagon, M.Sc. Thesis, Department of Mathematics, National

University of Singapore, 2004.

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt/browser/trunk/Ipopt/AUTHORS
https://www.optimization-online.org/DB_FILE/2020/11/8112.pdf
https://mathworld.wolfram.com/BiggestLittlePolygon.html
https://mathworld.wolfram.com/GrahamsBiggestLittleHexagon.html
https://mathworld.wolfram.com/RegularPolygon.html

Computational Science in the 17th
Century. Numerical Solution of Algebraic
Equations: Digit–by–Digit Computation

Trond Steihaug

Abstract In this paper we give a complete overview of test–problems by Viète from
1600, Harriot from 1631 and Oughtred from 1647. The original material is not easily
accessible due to archaic language and lack of conciseness. Viéte’s method was
gradually elucidated by the subsequent writers Harriot and Oughtred using symbols
and being more concise. However, the method is presented in tables and from the
layout of the tables it is difficult to find the general principle. Many authors have
therefore described Viète’s process inaccurately and in this paper we give a precise
description of the divisor used in the process which has been verified on all the test–
problems. The process of Viète is an iterative method computing one digit of the root
in each iteration and has a linear rate of convergence and we argue that the digit–
by–digit process lost its attractiveness with the publications in 1685 and 1690 of the
Newton-Raphson method which doubles the number of digits for each iteration.

Keywords History of mathematics in the 17th century · History of numerical
analysis

Mathematics Subject Classification: 01A45 · 65-03

1 Introduction

Viète wrote two treatises on solving equations: one theoretical and the other numer-
ical. The second treatise De numerosa potestatum ad exegesim resolutione or On the
numerical resolution of powers was published in 1600 and offered something quite
new. Here Viète took equations that could be solved only with difficulty, or not at
all, by standard methods and showed how numerical solutions could be found to
whatever degree of accuracy was required [26]. Viète exemplifies his technique on
solving equations on numerous examples more like what we find in more modern
papers on numerical solution of nonlinear equations. All examples by Viète have

T. Steihaug (B)
Department of Informatics, University of Bergen, Box 7803, 5020 Bergen, Norway
e-mail: Trond.Steihaug@ii.uib.no

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7_12

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72040-7_12&domain=pdf
mailto:Trond.Steihaug@ii.uib.no
https://doi.org/10.1007/978-3-030-72040-7_12

250 T. Steihaug

integer solutions. Viète’s work was the first comprehensive method of solving such
equations that had been attempted, and it involved no restrictions as to terms, signs,
or degree [17]. Viète’s method closely resembles the method of Šaraf–al–Din al-
Tūsı̄ (died in the last quarter of the 12th century) [21]. This method is described in
a manuscript on algebra entitled On equations. However, Viète’s treatise from 1600
contains the first printed version of such a method.

The Appendice Algébraique of 1594, an appendix to L’arithmetique from 1585,
Simon Stevin writes that after the publication of L’ Arithmétique he has found a gen-
eral rule to solve all equations either perfectly or with any degree of approximation.
The appendix itself was reproduced in French and Latin in 1608 and in the reprint of
L’Arithmétique by A. Girard of 1625. The processes presented by Stevin and Viète
compute the solution or root one digit at time. There are basically two stages in such
a process, first ascertain the number of digits in the solution and determine the first
digit of the solution. The next stage is to determine one digit at a time. If the sought
root is an integer, the process terminates after a few steps.

The first printed method for numerical solution of equations is that of Gerolamo
Cardano (1501–1576) in Ars Magna from 1545 under the title De regula aurea. This
is the first successful general methods of approximating roots of algebraic equations.
The method was known in manuscripts and commonly referred to as the Rule of
Double False Position since the 11th century. In Ars Magna there are four examples
using the double false position. The double false position is a bracketing methods
where the solution of the equation will be in the interval. The secant method uses
the same linear interpolation as the double false position, but is not a bracketing
technique. In “Newton’s Waste Book” ([39, p. 489-49] and there tentatively dated
to early 1665) Ypma [40] identifies the method used by Newton to be the secant
method. It is well known that these techniques are not digit–by–digit computation.

The invention of decimal fractions is usually ascribed Simon Stevin [2, p. 314],
but most importantly he introduced their use inmathematics in Europe. Simon Stevin
wrote a booklet called De Thiende or “the art of tenths”, first published in Dutch in
1585, translated into French the same year and to English in 1608. With the work of
Simon Stevin, the classical restriction of “numbers” to integers or to rational fractions
was eliminated. For Stevin, the real numbers formed a continuum. His general notion
of a real number was accepted, tacitly or explicitly, by all later scientists [31, p. 69].

Viète does not use decimals. In [32, 33] Viète writes (translation byWitmer [34])

Thus if you are seeking the root of 2, a square, extract, if youwish, the root of1 2 000000000000
00 00 00 00 00 00 00 00 00 00 00, [which is] 141, 421, 356, 237, 309, 505. So the root of 2
is said to be approximately 141,421,356,237,309,505

100,000,000,000,000,000 .

Both Harriot [6] and Oughtred [18] use the same process as Viète but make different
arrangement of the computation. Harriot shows the use of fractions and Oughtred
also shows computing a solution with decimals. Wallis [35] gives a better estimate of
the new digit than Viète, Harriot, and Oughtred by not excluding terms in the divisor.

The mathematical notation of equations changes in the period we consider. In
addition themethods or processes are illustrated using examples leaving some details

1 The integer 2 · 1028 in Viète is replaced by 2 · 1034.

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 251

Fig. 1 Examples of mathematical notation in the 17th century

to interpretations and an example of the arrangement is given in Fig. 2. Figure1
contains examples of the notation used by the cited authors in the different sections
of the paper.

Cajori [1] in 1916 was one of the first to point out that the Viète process has
been described inaccurately by leading historians at that time, including Cantor in
1900.2 Due to the inexplicitness of Viète process, writers like Augustus De Morgan
in 1847,3 Cajori [1, p. 40], andNordgaard [17, p. 28] havemisinterpreted the process.
Rashed in 1974 [21], Goldstin in 1977 [4, p. 66] and Ypma in 1995 [40] make the
error of stating an explicit formula to determine a digit. As will be shown the general
equations stated in Sect. 3 serve as estimates to determine the digits used by Viète,
Harriot and Oughtred. Section3 contains a description of Viète’s method and all test
examples. However, the first section on solving equations is on Stevin’s method in
Sect. 2. The next two sections contains the examples used by Harriot in Sect. 4 and
Oughtred in Sect. 5. Compared to extensive reuse of the test problems [27] of Joseph
Raphson [20] from 1690, there are few authors that reuse the test problems of Viète.

In Sect. 6 is Newton’s annotations from Viète and Oughtred. The annotation rep-
resents ‘state of the art’ in mid 17th century but the manuscript was never published.
Newton’s method was first published in print in Wallis’ algebra in 1685, but the
algebra book also introduces a modification of the divisor used by Viète, Harriot and
Oughtred. This is treated in Sect. 7.

Already in 1670 we find evidence in a letter from Collins to Leibniz, that the
computational work using the Viète process unfit for a Christian, and more proper
to one that can undertake to remove the Italian Alps into England [22]. In Sect. 8 we
argue that with the presence of higher order methods at the end of the 17th century
the use of digit–by–digit calculation for algebraic equation diminished. However,
new variations of digit–by–digit methods for algebraic equations appears in the two
books by John Ward [37, 38], a new method by Horner [8] and by Holdred [7]. The
digit–by–digit process survived in textbooks for hand calculation until the age of

2 M. Cantor, Vorlesungen über Geschichte der Mathematik, II, 1900, p. 640–641.
3 Augustus De Morgan, Involution and Evolution, in The Penny Cyclopaedia of the Society for the
Diffusion of Useful Knowledge, London 1846, Volume 2 p. 103.

252 T. Steihaug

calculators and was practised a lot to compute square roots. This process is discussed
in the final Sect. 9.

2 Stevin’s Method 1594

The Appendice Algébraique of 1594, Stevin uses two examples. The first equation
has an integer solution. The second equation has a root that is not integral, but
Stevin does not use the decimal notation of his De Thiende. The two examples are
x3 = 300x + 33915024 and x3 = 300x + 33900000. To find a first approximation
for x , try x = 10k , for k = 0, 1, 2 The result is that for k = 2 the value of x3 is less
than that of 300x + 33915024, but for k = 3, the value of x3 is larger.Hence therewill
be 3 digits in the root (if integer) To find the first digit, or approximation for x , he now
substitutes x = 100, 200, 300, 400 and finds 300 < x < 400. The first digit is then 3.
Now he tries x = 3 · 102 + 10, 3 · 102 + 20, 3 · 102 + 30 and finds 320 < x < 330
and the second digit is 2. Then x = 3 · 102 + 2 · 10 + 1, 3 · 102 + 2 · 10 + 2, 3 ·
102 + 2 · 10 + 3, 3 102 + 2 10 + 4. It appears that for x = 3 · 102 + 2 · 10 + 4 =
324 both sides of the equation finally are equal so that x = 324 is the root.

Stevin points out that the method can also be applied if the root is not an integral
number. Consider x3 = 300x + 33900000 and we find 323 < x < 324. Then write
x = 323 + d1

10 and test for d1 = 0, 1, . . . , 9 and we find the first decimal digit d1 = 9.
Proceed with x = 323.9 + d2

100 as above, with d2 = 0, 1, 2, 3, 4, 5, 6 to find d2 = 5,
then x = 323.95 + d3 · 10−3 etc. This can go on indefinitely.

Stevin’s method was made popular in the algebra in four volumes by John Kersey
in 1673 and 1674 where four examples are given with quadratic, cubic and fourth
order polynomials and using decimals [13, Book II, Ch.X].

3 Viète’s Method 1600

Viète’smethod is an extension of Stevin’smethod.WhereStevin systematic examines
all digits 0, 1, . . . , 9, Viète makes an estimate of the digit and either increases or
decreases it. Hutton in 1795 [9, Algebra, p. 87] and [10, Tract 33, p. 270] writes:

The method is very laborious, and is but little more than what was before done by Stevinus
on this subject, depending not a little upon trials.

However, it is today agreed that François Viète was not familiar with the works of
Stevin [34, Translator’s introduction].

Viète divides the examples in two; pure and affected equations. For the pure
equations Viète uses the technique presented in Sect. 9.

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 253

Table 1 Pure equations in Viète 1600 [32, p. 3r-6v] and 1646 [33, p. 166–172]

Name p(x) = N Solution

Problem I x2 = 2916 54

Problem II x3 = 157464 54

Problem III x4 = 331776 24

Problem IV x5 = 7962624 24

Problem V x6 = 191102976 24

3.1 Pure Equations

In the sectionPurarum resolutione inDe numerosa potestatum purarum, atque adfec-
tarum ad exegesin resolutione tractatus Viète [33, p. 163–172] demonstrates digit-
by-digit computation on five problems using the technique in Sect. 9. Table1 contains
problem number used by Viète and the solution.

In Nordgaard [17, p. 25] is the arrangement of the computation in Viète’s Problem
II x3 = 157464 with a close paraphrase in modern notation.

3.2 Affected Equations

In the section Adfectarum resolutione in De numerosa potestatum purarum, atque
adfectarum ad exegesin resolutione tractatus Viète [33, p. 173–223] gives numer-
ous examples of digit–by–digit computation for positive roots of polynomials. It is
generally agreed that the language used by Viète is archaic and there is an absence
of clear symbolism and conciseness [3]. Taking Problem IX which in the notation of
Viète is

Quidam numerus ductus in sui Quadrato-cubum, & in 6000 facit 191,246,976. Queritur quis
fit numerus ille. In notis 1CC+6000N æquatur 191,246,976 & fit 1N unitatatum quout?

will in modern language be A certain number multiplied by its sixth power and by
6000 makes 191,246,976. The question is what that number is. In symbols, x6 +
6000x = 191, 246, 976. What is x?4 An equation is “duly prepared” according to
Viète if the coefficients of the polynomial are integers and N is positive and Viète
partition the equations in affected positively (I to IX), affected negatively (X to XII),
mixed (XIII to XV) and avulsed (XVI to XX). The positively and negatively affected
equations have only one positive root.

4 Translated by T. Richard Witmer [34].

254 T. Steihaug

Table 2 Quadratic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem (Ia) x2 + 7x = 60750 243 p. 7v p. 174

Example (b) x2 + 954x = 18487 19 p. 8r p. 175

Problem (Xa) x2 − 7x = 60750 250 p. 18v p. 195

Example (b) x2 − 240x = 484 242 p. 19v p. 196

Example (c) x2 − 60x = 1600 80 p. 20r p. 197

Example (d) x2 + 8x = 128 8 p. 20r p. 197

Problem (XVIa) −x2 + 370x = 9261 27 p. 27v p. 211

Example (b) −x2 + 370x = 9261 343 p. 28r p. 212

Consider the quadratic equation x2 + cx + d = 0. Let f (x) = x2 + cx + d and
consider f (x + h) = 0 for given x > 0. A bound on h can be found from h(2x +
c) ≤ − f (x), and provided 2x + c > 0 the upper bound on h is

h ≤ − f (x)

2x + c
. (1)

All the coefficients in the examples used by Viète are positive. For the quadratic
equation −x2 + cx + d = 0 the corresponding bound will be an upper bound on
h, h ≤ − f (x)

−2x+c when −2x + c ≥ 0. We can observe that the bound in the quadratic

case is the correction to the current iterate x in the Newton-Raphson method − f (x)

f ′(x)
.

Rashed [21, p. 269] points out that the method of Šaraf–al–Din al-Tūsı̄ and Viète are
identical for quadratic equations. Problem 1a) is reproduced in [21, p. 266–267] and
compared to the method of Šaraf–al–Din al-Tūsı̄. In Table2 the first column gives
the name of the problems which are found in the second column. The third column is
the solutions and the two last columns give the page numbers in the 1600 and 1646
editions.

For Problem XVIa the bound on h = α0 (the second and last digit) will be a lower
bound. Problem XVIa) and b) are Problem 4 in Harriot [6, p. 128].

We now consider the cubic equations given in Table3. Let f (x) = x3 + bx2 +
cx + d and consider the cubic equation f (x + h) = 0 for given x . Then

f (x + h) = f (x) + h(3x2 + 2bx + c) + h2(3x + b) + h3 = 0. (2)

Viète eliminates h3 so − f (x) ≥ h(3x2 + 2bx + c) + h2(3x + b). If 3x + b ≥ 0,
initial h ≤ h and 3x2 + 2bx + c ≥ 0 then an upper bound on h is,

h ≤ − f (x)

3x2 + 2bx + c + (3x + b)h
.

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 255

Table 3 Cubic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem (IIa) x3 + 30x = 14356197 243 p. 9r p. 176

Example (b) x3 + 95400x = 1819459 19 p. 10r p. 178

Problem (IIIa) x3 + 30x2 = 86220288 432 p. 10v p. 180

Example (b) x3 + 10000x2 = 5773824 24 p. 11v p. 182

Problem (XIa) x3 − 10x = 13584 24 p. 20r p. 198

Example (b) x3 − 116620x = 352947 343 p. 21r p. 199

Example (c) x3 − 6400x = 153000 90 p. 22r p. 200

Example (d) x3 + 64x = 1024 8 p. 22r p. 201

Problem (XIIa) x3 − 7x2 = 14580 27 p. 22r p. 201

Example (b) x3 − 10x2 = 288 12 p. 22v p. 202

Example (c) x3 − 7x2 = 720 12 p. 23v p. 203

Example (d) x3 + 8x2 = 1024 8 p. 24r p. 204

Problem (XVIIa) −x3 + 13104x = 155520 12 p. 29r p. 214

Example (b) −x3 + 13104x = 155520 108 p. 29v p. 215

Problem (XVIIIa) −x3 + 57x2 = 24300 30 p. 30r p. 216

Example (b) −x3 + 57x2 = 24300 45 p. 30v p. 217

In Sect. 6 on Newton’s annotation the above bound is the same as the bound (4)
when b = 0. h will depend on the number of digits in the solution, k, and the order
j > 1, 10k− j . For the cubic equation, the bound is the Newton-Raphson correction
only when h = 0. The method of Šaraf–al–Din al-Tūsı̄ and Viète deviates for cubic
equations where the estimate of the next digit is the Newton-Raphson correction
− f (x)/ f ′(x) scaled [21]. To show the differences, Rashed [21, p. 268–270] used
Problem IIa.

The arrangement ofViète’s Problem IIa) and IIb) and a close paraphrase inmodern
notation is found in Nordgaard [17, p. 26–27].

Let f be a polynomial of degree n on the form f (x) = xn + q(x) where q is a
polynomial of degree n − 1. We can write

q(x + h) =
n−1∑

i=0

hi

i ! q(i)(x)

where q(i) is the i th derivative of q. Further

(x + h)n = xn +
n−1∑

i=1

(
n

i

)
xn−i hi + hn ≥ xn + h

n−1∑

i=1

(
n

i

)
xn−i hi−1

for 0 ≤ h ≤ h. So if all q(i)(x) ≥ 0 then

256 T. Steihaug

Table 4 Higher order algebraic equations in Viète 1600 [32] and 1646 [33]

Name p(x) = N Solution 1600 1646

Problem (IVa) x4 + 1000x = 355776 24 p. 12v p. 183

Example (b) x4 + 100000x = 2731776 24 p. 13v p. 185

Problem V x4 + 10x3 = 470016 24 p. 14r p. 186

Problem (VIa) x4 + 200x2 = 446976 24 p. 14v p. 187

Example (b) x4 + 200x2 + 100x =
449376

24 p. 15r p. 188

Problem VII x5 + 500x = 254832 12 p. 16r p. 190

Problem VIII x5 + 5x3 = 257472 12 p. 16v p. 191

Problem IX x6 + 6000x = 191246976 24 p. 17v p. 193

Problem XIII x4 − 68x3 + 202752x =
5308416

32 p.24r p. 205

Problem XIV x4 + 10x3 − 200x =
1369856

32 p.25r p. 207

Problem XV x5 − 5x3 + 500x =
7905504

24 p. 26r p. 208

Problem (XIXa) −x4 + 27755x = 217944 8 p. 31v p. 219

Example (b) −x4 + 27755x = 217944 27 p. 32r p. 220

Problem XX −x4 + 65x3 = 1481544 38 p. 32v p. 221

Example (b) −x4 + 65x3 = 1481544 57 p. 33v p. 222

− f (x) ≥ h

[
n−1∑

i=1

(
n

i

)
xn−i hi−1 +

n−1∑

i=1

hi−1

i ! q(i)(x)

]
. (3)

This general case (3) will give an estimate which is either an upper bound or lower
bound on h. The first sum is by Viète called the lower part and second sum is upper
part based on the table Viète uses. To recognize the computation in the tables of
Viète, Harriot and Oughtred note that f (x j+1) = f (x j) + (f (x j+1) − f (x j)) and
some of the terms in f (x j+1) − f (x j) are also needed in computing the divisor.
Further details are given in Sect. 7.

Consider f (x) = x4 + ax3 + bx2 + cx + d. Then the two parts will be

(lower) 4x3 + 6x2h + 4xh2 and (upper) 3ax2 + 2bx + c + h(3ax + b).

Viète computes the sum of the lower and upper part to find an estimate on the (next)
digit.

An annotated version of Problem XV is found in [3, p. 214–216] and with expla-
nations omitted in [15, p. 37]. The last section in Viète’s book [33, p. 228] there is
an example on how to transform the equation to get the root correct to the tenths and
to the hundredths by scaling the variables. Given x3 + 6x = 8. Substitute x by x

10
and the equation will be x3 + 6 · 102x = 8 · 103 and solve the new equation using

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 257

the Viète process and the approximate root of the original equation will be 11
10 = 1 1

10
which will be correct to the tenths.

4 Test Examples from Harriot 1631

The test examples by Harriot are from the chapter Exegetice numerosa [6, p. 117–
167] orNumerical Exegesis [23, p. 129–182] inPraxis [6]. In themanuscripts Harriot
refers all his examples to Viète and each manuscript page with an example is marked
De numerosa potestatum resolutione [23]. However, only three of the examples in
Praxis are from Viète. Where Viète splits the computation of the divisor into a lower
part (corresponding to xn) and the upper part (the remaining divisor), Harriot also
splits the order of the terms in two parts, without the correcting term h and the part
with the correction h. Further the tables in Praxis contains symbols commenting the
computation where Viète has a verbal description.

In one example, Problem 6 in Table7, Harriot suggests another table correspond-
ing to h = 0. This will also yield an upper bound. Three problems in Praxis in Table7
are identical to problems in Viète and two of these problems are used by Newton in
his manuscript [39, p. 63–71]:

– Problem 4 (p. 128) in Table7 is Viète’s Problem XVI a) and b) in Table 3
– Example (p. 138) in Table7 is Viète’s Problem IIb in Table3 and also used by
Newton in Table5.

– Example (p. 143) in Table7 is Viète’s Problem XIa in Table3 and also used by
Newton in Table5.

Problem 13 (p. 155) in Table7 is reproduced in [15, pp. 38–39] and in [17, p. 30]
using Harriot’s original formulation and notation

aaaa − 1024aa + 6254a = 19633735875.

Hankel’s book on history of mathematics from 1874 illustrates Viète’s method
using one of Harriots’s examples [6, p. 164] x2 + 14x = 7929 in Table7 computing
the approximate root 82.319 [5, p. 370] using decimals.

The four ‘pure’ powers, Problem 1, 5, 11, and 15 in Table7, Harriot uses the same
technique as for ‘affected’ equations. The computation will be the same as described
in Sect. 9 where we always get an upper bound on the digit.

5 Test Examples from Oughtred 1647/48

No one did more to popularize the new method of Viète than did the clergyman
mathematician William Oughtred. This he accomplished by giving private tuition
to ambitious young men and these spread his teachings throughout Great Britain;

258 T. Steihaug

Table 5 Examples in Newton’s note [39, pp. 63–71]

f (x) Reference(s)

x2 − 2916 Problem I in Viète

x3 − 157464 Problem II in Viète

x5 − 7962624 Problem IIII in Viète

x3 + 30x − 14356197 Problem (IIa) in Viète and in MS

x3 + 95400x − 1819459 Example (IIb) in Viète, and in Harriot and MS

x3 − 10x − 13584 Problem (XIa) in Viète and MS

x3 − 116620x − 352947 Example (XIb) in Viète, and in Harriot and MS

among them were Seth Ward, Christopher Wren, and John Wallis [17, p. 31]. John
Wallis [35] devotes a chapter on Mr. Oughtred and his Clavis [35, Ch. xv] and points
out that Oughtred’s contributions to Viète’s method were in the simplification of the
notation.

The second edition of William Oughtred (1574–1660) Clavis Mathematicæ (The
Key toMathematics) was published in 1648 and an English translation in 1647. In the
chapter Some examples of equations resolved in numbers Oughtred [19, p. 139–172]
considers 16 examples using a digit-by-digit computation. In Table6 the page num-
bers refer to the translated version from 1647. The first edition from 1631 contains
only two examples using digit–by–digit computation,

√
3272869681 = 57209 and

3
√
187237601580329 = 57209. These two examples are also in the second edition.

Before the year 1700 five editions of this little volume had been published. The
Clavis opens with an explanation of the Hindu-Arabic notation of decimal fractions.
Oughtred would write 15|7 for 15.7.

The 16 examples are also used by Jeake [11, 12] which also includes some addi-
tional examples and comments on the computation. The same arrangement of the
computation of Example 1 in Table6 is found in De Morgan [15, p. 39–40] using
the Oughtred’s notation in Fig. 1. Oughtred’s computation in Example 2 in Table6 is
discussed by Caljori [1, pp. 458–459]. This example has the same form as discussed
in Sect. 6 and in this case (5) is an equality.

6 On Newton’s Annotations 1664

In an unpublished note from 1664(?) reproduced in [39, p. 63–71] Newton annotates
Viète’s Opera Mathematica from 1646 using the simplified notation in Oughtred’s
Clavis Mathematicæ from 1648. Newton gives 7 examples computing the root digit–
by–digit. This unpublished note represents the ’state of the art’ in mid 17th century.
In the table below the references are to Viète 1600 and 1646 [32, 33], to Harriot
[6] and MS is Harriot’s manuscripts collected by Stedall [24]. The first column in
Table5 gives the function and the second contains the references.

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 259

Table 6 Test examples from oughtred 1647/48

Name p(x) = N Solution

Example 1 (p.
140)

x5 − 15x4 + 160x3 − 1250x2 + 6480x = 170304782 47

Example 2 (p.
142)

x3 + 420000x = 247651713 417

Example 3 (p.
143)

x3 + 1007x2 = 247617936 417

Example 4 (p.
145)

x4 − 44299005x = 22252086 354

Example 5 (p.
146)

x4 − 124600x2 = 89726256 354

Example 6 (p.
147)

x4 − 340x3 = 621066096 354

Example 7 (p.
149)

x4 − 77108000x = 85530576 426

Example 8 (p.
150)

−x3 + 3200x = 46577 47

Example 9 (p.
151)

−x3 + 3200x = 46577 15.7

Example 10 (p.
152)

−x3 + 53x2 = 13254 47

Example 11 (p.
153)

−x3 + 53x2 = 13254 20.05

Example 12 (p.
154)

−x3 + 60034x = 1023768 236

Example 13 (p.
155)

−x3 + 60034x = 1023768 17.135

Example 14 (p.
156)

x4 − 72x3 + 238600x = 8725815.7056 47.6

Example 15 (p.
158)

−x3 + 3x = 1.258640782100 0.4499

Example 16 (p.
154)

x5 − 5x3 + 5x = 1.147152872702092 0.2437

For the first three problems the algorithm is the one used in Sect. 9. The other
problems are all on the form x3 + cx = d and a meta description of the algorithm
is:

– Step 1: Determine the number of digits in the root, say x = α2102 + α110 + α0.
– Step 2: Determine the first digit α2: Choose the largest 0 < α2 ≤ 9 so that

(α210
2)3 + c(α210

2) ≤ d

– Step 3: Determine the second digit α1: Choose the largest 0 ≤ α1 ≤ 9 so that

260 T. Steihaug

Ta
bl

e
7

Te
st
ex
am

pl
es

fr
om

H
ar
ri
ot

16
31

P
ra

xi
s

N
am

e
p(

x)
=

N
So

lu
tio

n

Pr
ob
le
m

1
(p
.1
17
)

x2
−

48
23
30
25

69
45

Pr
ob
le
m

2
(p
.1
19
)

x2
+

43
2x

=
13
58
42
08

34
76

E
xa
m
pl
e
1
(p
.1
21
)

x2
+

75
32
5x

=
41
50
19
84

54
7

E
xa
m
pl
e
2
(p
.1
22
)

x2
+

67
53
25

x
=

36
97
01
98
4

54
7

Pr
ob
le
m

3
(p
.1
24
)

x2
−

62
4x

=
16
30
51
26

43
62

E
xa
m
pl
e
A
(p
.1
25
)

x2
−

62
53

x
=

62
54

62
54

E
xa
m
pl
e
R
(p
.1
27
)

x2
−

73
2x

=
86
00
5

83
5

Pr
ob
le
m

4
(p
.1
28
)

−x
2
+

37
0x

=
92
61

27
an
d
34
3

Pr
ob
le
m

5
(p
.1
31
)

x3
=

10
56
89
63
63
52

47
28

Pr
ob
le
m

6
(p
.1
32
)

x3
+

68
x2

+
43
52

x
=

18
63
94
07
9

54
7

Pr
ob
le
m

7
(p
.1
34
)

x3
+

45
79
6x

=
44
93
24
75
2

74
6

E
xa
m
pl
e
(p
.1
38
)

x3
+

95
40
0x

=
18
19
45
9

19

E
xa
m
pl
e
(p
.1
39
)

x3
+

27
45
76

x
=

30
11
63
39
2

53
6

Pr
ob
le
m

8
(p
.1
41
)

x3
−

26
48

x
=

91
14
85
12

45
2

N
am

e
p(

x)
=

N
So

lu
tio

n

E
xa
m
pl
e
(p
.1
43
)

x3
−

11
66
20

x
=

35
29
47

34
3

E
xa
m
pl
e
(p
.1
45
)

x3
−

12
72
96

x
=

85
70
00
00

53
6

Pr
ob
le
m

9
(p
.1
46
)

−x
3
+

52
41
6x

=
12
44
16
0

21
6
an
d
24

Pr
ob
le
m

10
(p
.1
49
)

x3
−

68
x

=
13
44
54
52
8

53
6

Pr
ob
le
m

11
(p
.1
51
)

x4
=

19
56
52
95
37
6

37
4

Pr
ob
le
m

12
(p
.1
53
)

x4
−

42
6x

=
20
68
94
8

38

E
xa
m
pl
e
(p
.1
54
)

x4
−

43
60
23
54

x
=

41
72
00
8

35
2

Pr
ob
le
m

13
(p
.1
55
)

x4
−

10
24

x2
+

62
54

x
=

19
63
37
35
87
5

37
5

Pr
ob
le
m

14
(p
.1
58
)

x4
−

10
24

x2
−

62
54

x
=

19
62
90
45
37
5

13
75

Pr
ob
le
m

15
(p
.1
60
)

x5
=

15
75
55
09
29
81
76

43
6

Pr
ob
le
m

16
(p
.1
62
)

x5
−

57
x3

+
52
63

x
=

90
00
50
55
83
22

24
6

E
xa
m
pl
e
(p
.1
64
)

x2
+

14
x

=
79
29

82
31

9
10

00

E
xa
m
pl
e
(p
.1
66
)

x3
+

13
5x

=
98
75
4

45
24 10
0

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 261

(α210
2 + α110)

3 + c(α210
2 + α110) ≤ d

– Step 4: Determine the last digit α0: Choose the largest 0 ≤ α0 ≤ 9 so that

(α210
2 + α110 + α0)

3 + c(α210
2 + α110 + α0) ≤ d

The convergence of this technique follows from the observation that this is a brack-
eting process where the root will be in an interval on the form [·, ·) (the right end is
open) and the assumed existence of a root and monotonicity of x3 + cx in the inter-
val. The first interval will be [α2102, (α2 + 1)102), then [α2102 + α110, α2102 +
(α1 + 1)10) and the final [α2102 + α110 + α0, α2102 + α110 + α0 + 1).

Consider f (x) = x3 + cx − d and f (x + h) = 0 for given x > 0 and unknown
h. Then

f (x + h) = f (x) + h(3x2 + 3xh + h2 + c) = 0.

Let h ≥ h ≥ 0 be an initial estimate, then an upper bound on h will be

h ≤ − f (x)

3x2 + 3xh + c
= ĥ, (4)

provided c is not too negative. To determine digit number j > 1, αk− j , consider

x j =
k−1∑

i=k− j

10iαi = x j−1 + 10k− jαk− j .

Define hk− j = 10k− j then from (4)

αk− j ≤
⌊ 1

hk− j

− f (x j−1)

3x2
j−1 + 3x j−1hk− j + c

⌋
. (5)

In the following table we show the actual computation of the digits in the solution.
We assume that the magnitude of the root and the first digit are known.

x3 + 30x − 14356197 x3 + 95400x −
1819459

x∗ = 243 x∗ = 19
x 200 240 10
− f (x) 6350197 524997 864459
h 10 1 1
3x2 + 3xh + c 126030 173550 95730
ĥ 50.4 3.03 9.03
αi 4 3 9

Consider finding root x∗ of x3 + 30x − 14356197. The number of digits in x∗,
when (x∗)3 >> 30x∗ > 0, will be the number of digits in 3

√
14 356 197 which is 3

262 T. Steihaug

and the leading digit will be α2 = 2. To find the next digit of x∗ use (4) with x = 200
and h = 10. An upper bound of α1 ≤ �5.04� = 5. However, 5 is too large, and the
second digit is found to be 4.

x3 − 10x − 13584 x3 − 116620x − 352947
x∗ = 24 x∗ = 343

x 20 300 340
− f (x) 5784 8338947 699747
h 1 10 1
3x2 + 3xh + c 1250 162380 231200
ĥ 4.63 51.4 3.03
αi 4 4 3

Newton’s transcripts of Viète’s solution of x3 + 30x = 14356197 is found in [39,
p. 66] and reproduced in [40, p. 534]. The notebook (MSAdd. 4000) with transcripts
is available online.5

7 Contributions of John Wallis 1685

In his algebra and history of algebra book [35] from 1685, John Wallis discusses the
work by Viète, Harriot and Oughtred and summarizes the method in one example. In
[35, p. 103–105] he gives the example x3 − 2x2 = 186494880 and computes the root
572 following the same basic principle as in [6, 18, 32] to compute the solution digit
by digit. Consider f (x) = x3 + bx2 + d. Contrary to Viète, Harriot and Oughtred,
Wallis does not exclude the h3 term in (2) and uses

αk− j ≤
⌊ 1

hk− j

− f (x j−1)

3x2
j−1 + 2bx j−1 + (3x j−1 + b)h j−k + h2

k− j

⌋
, (6)

where hk− j = 10k− j as in Sect. 6. Further,

f (x + h) = f (x) + (f (x + h) − f (x)) = 3x2h + 3xh2 + h3 + 2bxh + bh2.

(7)
Since 500 <

3
√
186000000 ≤ 3

√
186494880 + 2x2 it follows that the sought root

has three digits (α2, α1, and α0) and the first digit will be 5. So α2 = 5, x1 = 500,
and h1 = 10 and h0 = 1. InWallis the known is denoted A and E is to be determined
which corresponds to x and h properly scaled. In the first column in Fig. 2 is the
computation in [35, p. 104] and in the next column the same computation using the
notation in this paper.

A problem proposed by Pell and later proposed to Wallis by Colonel Silas Titus
is to find a, b, and c so that [25]

5 https://cudl.lib.cam.ac.uk/view/MS-ADD-04000/1.

https://cudl.lib.cam.ac.uk/view/MS-ADD-04000/1

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 263

Fig. 2 Wallis 1685 x3 − 2x2 = 186494880

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 18.

Wallis [35, p. 225–252] treats this problem and in [35, Ch. 62] reduces the three
equations to a fourth order algebraic equation

x4 − 80x3 + 1998x2 − 14937x + 5000 = 0

to determine a = √
x∗/2 using Viète’s method. Wallis computes

x∗ = 12.756441794480744

with 17 correct digits. The second equations follows from multiplying the first
quadratic equation by a and the second by b and eliminate abc to get the equa-
tion

17b − b3 = 16a − a3, where a =
√
1

2
x∗.

This equation is solved for b to 16 digits again using Viète’s method. Having found a
and b, c is found from the first quadratic a2 + bc = 16. The third example of Viète’s
method is found using synthetic division

264 T. Steihaug

f (x) = x4 − 80x3 + 1998x2 − 14937x + 5000

x − x∗

and finding a second root of the quartic polynomial 0.350987046. In all three exam-
ples Wallis is using all terms in the divisor.

If Newton’s method is applied to the system F(a, b, c) = (a2 + bc − 16, b2 +
ac − 17, c2 + ab − 18) with the starting point (a, b, c) = (2, 3, 4) the error in F is
of order 10−14 after 5 iterations.

8 End of an Era

In the1670s John Collins (1625–1683) wrote an account of Pell’s achievements for
Leibniz, and after describing one of Pell’s table (a yard long, according to Collins)
and its use, he made the remark that in an attempt to solve the equations with Viète’s
method, Mr Warner used to call work unfit for a Christian, and more proper to one
that can undertake to remove the Italian Alps into England [22, Ch. LXXXV, p.
248]. Similar statement from 1758 on Viète’s method, Montucla [14, p. 492] regards
the calculation of the root of a biquadratic polynomial to eleven decimal places as
a work of the most extravagant labour or as Hutton says in 1795 the method is very
laborious.

OnWednesday, 17 December 1690, in a meeting of the Royal Society we find the
following announcement of Raphson’s book [20] (quote from [30])

MrRalpson’sBookwas this dayproducedbyEHalley,wherein he gives aNotable Improvemt
of ye method of Resolution of all sorts of Equations Shewing, how to Extract their Roots by a
General Rule, which doubles the known figures of the Root known by each Operation, So yt
by repeating 3 or 4 times he finds them true to Numbers of 8 or 10 places. The Society being
highly pleased with this his performance Ordered him their thanks with their Desires, that
he would please to Continue to prosecute those Studys, wherein he hath been so Successful.

This marks the end of an active area on numerical solution of algebraic equa-
tions using digit–by–digit computations. As mentioned in the introduction improved
methods appeared, but these methods were soon replaced by the Newton-Raphson
method, the Rule of Double False Position or the secant method. However, the digit–
by–digit computation of square roots continued to be popular andwas used in schools
right up to the 1960s [3, 29].

9 Computing the Square Root

Why no one before Viète should have thought of applying to the solution of algebraic
equations the classical method of finding roots of large numbers may seem strange
[17, p. 24]. In this section we discuss this classical approach to compute square
root of any positive integer digit by digit. The history of the method goes back in

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 265

Europe to the 13th century with the method of Ibn al–Bannã [3]. Already in 1695
Wallis pointed out that the digit–by–digit computation advocated by Viète, Harriot
and Oughtred was not an efficient method [36]. Other iterative methods that are not
digit-by-digit based method are based on repeated approximation of the root [28].

Let N be a positive integer and assume that
√

N is an integer. Assume for k ≥ 1
that

N =
2k−1∑

i=0

βi 10
i =

k−1∑

i=0

(β2i + 10β2i+1) 10
2i , βi ∈ {0, 1, 2, . . . , 9}

where not both β2(k−1) and β2(k−1)+1 are equal 0. The number of digits in
√

N will
then be k, say

√
N =

k−1∑

i=0

αi 10
i , αi ∈ {0, 1, . . . , 9}

In the following an approximation x j of
√

N will be the number with k digits where
the j leftmost digits αk−1, . . . , αk− j are determined and αk− j−1 = . . . = α0 = 0,

x j =
k−1∑

i=k− j

αi10
i = 10k− j

j−1∑

i=0

αi+k− j 10
i , j = 1, 2, . . . , k

and the remaining k − j digits are 0. Let

a j =
j−1∑

i=0

αi+k− j 10
i , then x j = 10k− j a j , j = 1, . . . , k − 1.

Let d j = αk− j−110k− j−1 where αk− j−1 is the digit to be determined. Since x j+1 =
x j + d j we have a j+1 = 10a j + αk− j−1.

To determine αk− j−1 choose largest αk− j−1 so that

(x j + d j)
2 ≤ N or d j (2x j + d j) ≤ N − x2

j

Then we have
102(k− j−1)(20a j + αk− j−1)αk− j−1 ≤ N − x2

j

Now use the assumption that the last k − j digits in x j are 0. Hence

N − x2
j = 102(k− j)r j +

2(k− j)−1∑

i=0

βi10
i

= 102(k− j−1)
(
102r j + 10β2(k− j−1)+1 + β2(k− j−1)

) +
2(k− j−1)−1∑

i=0

βi10
i

266 T. Steihaug

Fig. 3 Computing the square root of 3272869681 in Wallis 1685 [35, p. 99]

Then αk− j−1 is the largest integer so that

(20a j + αk− j−1)αk− j−1 ≤ r̂ j ,

where
r̂ j = 102 r j + 10β2(k− j−1)+1 + β2(k− j−1).

Further, we have

r j+1 = r̂ j − (20a j + αk− j−1)αk− j−1, j = 1, . . . k − 1.

To find the largest αk− j−1, Wallis [35, p. 98] chooses αk− j−1 ≈ � (r̂ j −β2(k− j−1))/10
2a j

� and
increase or decrease if needed. To determine an approximation to the second digit in
Fig. 3 this will be � 77

10� and for the third digit � (2386−6)/10
57·2 �.

To determine the first digit αk−1 we note that

d2
0 ≤ N , or α2

k−1 ≤ 10β2k−1 + β2(k−1),

so the first digit can be easily be determined directly.
Then we have the following digit by digit square root algorithm

r := 0

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 267

Fig. 4 Square root of 22178791 with five decimals in Newton 1707 [16, p. 32]

a := 0
for j = 1, 2, . . . , k

r := 100r + 10β2(k− j)+1 + β2(k− j)

Find the largest αk− j so that
αk− j (20a + αk− j) ≤ r

a := 10a + αk− j

r := r − αk− j (20a + αk− j)

We give two examples computing the square root by Wallis in 1685 [35, p. 99] in
Fig. 3 and Newton in 1707 [16, p. 32] in Fig. 4.

References

1. FlorianCajori.William Oughtred, a great seventeenth-century teacher of mathematics. Chicago
Open Court Pub. Co, 1916.

2. Florian Cajori. A history of mathematical notations, Volume 1. Notations in elementary math-
ematics. The Open court publishing company, Chicago, 1928.

3. Jean-Luc Chabert (Ed.). A History of Algorithms. From the Pebble to the Microchip. Springer-
Verlag, Berlin, 1999.

4. Herman Heine Goldstine. A History of Numerical Analysis from the 16th through the 19th
Century. Springer-Verlag, New York, 1977.

5. Hermann Hankel. Geschichte der Mathematik in Alterthum und Mittelalter. Leipzig, 1874.
6. Thomas Harriot. Artis Analyticae Praxis. London, 1631.
7. Theophilus Holdred. A New Method of Solving Equations with Ease and Expedition; by which

the True Value of the Unknown Quantity is Found without Previous Reduction. With a Supple-

268 T. Steihaug

ment, Containing Two Other Methods of Solving Equations, Derived from the Same Principle.
London, 1820.

8. William George Horner. A new method of solving numerical equations of all orders, by con-
tinuous approximation. Philosophical Transactions, 109:308–335, 1819.

9. Charles Hutton. A mathematical and philosophical dictionary. Volume 1. London, 1795.
10. Charles Hutton. Tracts on mathematical and philosophical subjects. Volume 2. London, 1812.
11. Samuel Jeake. A Compleat Body of Arithmetic. London, 1701.
12. Samuel Jeake, Senior. ΛOΓ IΣTIKHΛOΓ I’A, or Arithmetick surveighed and reviewed: in

four books, etc. [Edited by Samuel Jeake, the Younger.]
13. John Kersey. The Elements of That Mathematical Art Commonly Called Algebra. London,

1673.
14. Jean Étienne Montucla. Histoire des mathématiques, Volume I. Paris, 1758.
15. Augustus De Morgan. Notices of the progress of the problem of evolution. The companion to

the almanac, pages 34–52, 1839.
16. Isaac Newton. Arithmetica universalis; Sive de compositione et resolutione arithmetica liber.

London, 1707. Edited by William Whiston.
17. Martin AndrewNordgaard.A historical survey of algebraic methods of approximating the roots

of numerical higher equations up to the year 1819. PhD thesis, Columbia University, NewYork
City, 1922.

18. William Oughtred. Clavis mathematicae. London, 1631.
19. William Oughtred. The key of the mathematics new forged and filed. London, 1647.
20. Joseph Raphson. Analysis Æquationum Universalis, seu ad Æquationes Algebraicas Resol-

vendas Methodus Generalis, et Expedita, Ex nova Infinitarum serierum Doctrina, Deducta ac
Demonstrata. London, 1690.

21. Roshdi Rashed. Résolution des équations numérique et algèbre: Šaraf–al–Din al-Tūsı̄, Viéte.
Archive for History of Exact Sciences, 12(3):244–290, 1974.

22. Stephen Jordan Rigaud. Correspondence of Scientific Men of the Seventeenth Century, Vol.1.
Oxford, 1841.

23. Muriel Seltman and Robert Goulding. Thomas Harriot’s Artis Analyticae Praxis. An English
Translation with Commentary. Springer, 2007.

24. Jacqueline Anne Stedall. The Greate Invention of Algebra: Thomas Harriot’s Treatise on equa-
tions. Oxford University Press, Oxford, 2003.

25. Jacqueline Anne Stedall. Tracing mathematical networks in seventeenth-century England. In
Eleanor Robson and Jacqueline Stedall, editors, The Oxford handbook of the history of math-
ematics, pages 133–151. Oxford University Press, 2009.

26. JacquelineAnne Stedall. Reconstructing ThomasHarriot’s treatise on equations. InRobert Fox,
editor, Thomas Harriot and His World: Mathematics, Exploration, and Natural Philosophy in
Early Modern England, pages 53–63. Ashgate Publishing (Routledge), 2012.

27. Trond Steihaug. Computational science in the eighteenth century. Test cases for the methods
of Newton, Raphson, and Halley: 1685 to 1745. Numerical Algorithms, 83:1259–1275, 2020.

28. Trond Steihaug and D. G. Rogers. Approximating cube roots of integers, after Heron’s Metrica
III.20. Normat, 61(2):87–110, 2013.

29. Philip D. Straffin. Liu Hui and the first golden age of Chinese mathematics. Mathematics
Magazine, 71(3):163–181, 1998.

30. David J. Thomas and Judith M. Smith. Joseph Raphson, F.R.S. Notes and Records of the Royal
Society of London, 44(2):151–167, 1990.

31. Bartel Leendert van der Waerden. A History of Algebra. From al-Khwarizmi to Emmy Noether.
Springer, Berlin, 1985.

32. François Viète. De numerosa potestatum ad exegesim resolutione. Paris, 1600.
33. François Viète. Opera mathematica, edited by Frans van Schooten. Leiden, 1646.
34. François Viète. The analytic art. Translated by T.Richard Witmer. The Kent State University

Press, 1983.
35. John Wallis. A treatise of algebra, both historical and practical. London, 1685.

Computational Science in the 17th Century. Numerical Solution of Algebraic Equations 269

36. John Wallis. A discourse concerning the methods of approximation in the extraction of surd
roots. Philosophical Transactions (1683-1775), 19:2–11, 1695.

37. John Ward. A Compendium of Algebra. London, 1695.
38. John Ward. The Young Mathematician’s Guide. Being a Plain and Easie Introduction to the

Mathematicks. London, 1707. Reprinted 1709.
39. Derek Thomas Whiteside. The Mathematical Papers of Isaac Newton 1664-1666, Volume I.

Cambridge University Press, Cambridge, 1967.
40. Tjalling J. Ypma. Historical development of the Newton-Raphson method. SIAM Review,

37(4):531–551, 1995.

NAOV-2020 Conference Participants

Invited Speakers

• Adil M. Bagirov, Federation University, Australia
• Yu-Hong Dai, Chinese Academy of Sciences, China
• Iain Duff, Rutherford Appleton Laboratory, UK
• Francisco Facchinei, Sapienza University of Rome, Italy
• David M. Gay, AMPL Optimization Inc., USA
• Desmond J. Higham, University of Edinburgh, UK
• Michael Hintermüller, Humboldt-Universitat zu Berlin, Germany
• Sven Leyffer, Argonne National Laboratory, USA
• Nezam Mahdavi-Amiri, Sharif University of Technology, Iran
• Pammy Manchanda, Guru Nanak Dev University, India
• Dominique Orban, Ecole Polytechnique de Montreal, Canada
• Michael L. Overton, New York University, USA
• Amiya Kumar Pani, India Institute of Technology Bombay, India
• Jànos D. Pintèr, Lehigh University, Pennsylvania, USA
• Cornelis Roos, Delft University of Technology, The Netherlands
• Ekkehard W. Sachs, University of Trier, Germany
• Jesus M. Sanz-Serna, Universidad Carlos iii de Madrid, Spain
• Michael Saunders, Stanford University, USA

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer Proceedings
in Mathematics & Statistics 354, https://doi.org/10.1007/978-3-030-72040-7

271

https://doi.org/10.1007/978-3-030-72040-7

272 NAOV-2020 Conference Participants

• Abul Hasan Siddiqi, Sharda University, India
• Trond Steihaug, University of Bergen, Norway
• Philippe L. Toint, University of Namur, Belgium
• Maria Teresa Vespucci, Bergamo University, Italy
• Andy Wathen, Oxford University, UK
• Ya-xiang Yuan, Chinese Academy of Sciences, China

Organizing Committee

• Mehiddin Al-Baali (Chair), Sultan Qaboos University, Oman
• Magda Al-Hinai, Sultan Qaboos University and Oman Mathematics Committee,

Oman
• Fatma Al-Kharousi, Sultan Qaboos University and Oman Mathematics

Committee, Oman
• Nasser Al-Salti, Sultan Qaboos University, Oman
• Ibrahim Dweib, Sultan Qaboos University, Oman
• Easwaran Balakrishnan, Sultan Qaboos University, Oman
• Sebti Kerbal, Sultan Qaboos University, Oman
• Amar Oukil, Sultan Qaboos University, Oman
• Anton Purnama (Co-Chair), Sultan Qaboos University, Oman
• Bernhard Heim, German University of Technology, Oman
• Muhammad Syam, United Arab Emirates University, UAE
• Chefi Triki, HKBU, Qatar
• Issam Moghrabi, Gulf University for Science and Technology, Kuwait
• Lucio Grandinetti, Calabria University, Italy
• Hamed S. Al-Asmi (Superintendent), Sultan Qaboos University, Oman
• Wasila Al-Busaidi (WebMaster), Sultan Qaboos University, Oman

Liaison Committee

• Ahmed Al-Rawas (Chair), Dean of College of Science
• Ahmad Al-Salman, Head of Department of Mathematics
• Mehiddin Al-Baali, Chair of the Organizing Committee
• Anton Purnama, Co-Chair of the Organizing Committee
• Khamis Al Hadhrami, Public Relations Office, Sultan Qaboos University
• Mohammed A. Al-Harthi, Administrative Director of College of Science

International Programme Committee

• Mehiddin Al-Baali, Sultan Qaboos University, Oman
• Adil M. Bagirov, Federation University, Australia
• Oleg Burdakov, Linkoping University, Sweden
• Yu-Hong Dai, Chinese Academy of Sciences, China
• Iain Duff, Rutherford Appleton Laboratory, UK
• Masao Fukushima, Kyoto University, Japan

NAOV-2020 Conference Participants 273

• David M. Gay, AMPL Optimization, Inc., USA
• Lucio Grandinetti, Calabria University, Italy
• Luigi Grippo, Rome University, Italy
• Nezam Mahdavi-Amiri, Sharif University of Technology, Iran
• Jorge Moré, Argonne National Laboratory, USA
• Dominique Orban, Ecole Polytechnique de Montreal, Canada
• Martin Reed, University of Bath, UK
• Cornelis Roos, Delft University of Technology, The Netherlands
• Ekkehard W. Sachs, University of Trier, Germany, and North Carolina State

University, USA
• Michael Saunders, Stanford University, USA
• Robert C. Sharpley, University of South Carolina, USA
• Emilio Spedicato, University of Bergamo, Italy
• Brian Straughan, University of Durham, UK
• Tamas Terlaky, Lehigh University, USA
• Philippe L. Toint, University of Namur, Belgium

Supporting Committee

• Sulaiman Said Al-Alawi
• Mohammed Said Al-Ghafri
• Adnan Aziz Al-Hadhrami
• Majid Mubarak Al-Hamadani
• Mahmoud Mohammed Al-Hashami
• Ahmed Ali Al-Kasbi
• Amal Al-Kharousi
• Aasem Thabit Al-Maamari
• Abdulrahman Ali Al-Muqbali
• Azza Al-Salahi
• Mubarak Musabeh Al-Shekaili
• Afraa Mohammed Al-Shihi
• Nayif Khamis Al-Sinani
• Ahmed Azan Al-Siyabi
• Shamsa Mohamed Al-Wahaibi

Participants

Name Affiliation Email

Chetouani Abdelaziz University of Oujda,
Morocco

a.chetouani@ump.ac.ma

Usama Abdelsalam Rustaq College of
Education, Oman

usamaahmad.rus@cas.edu.om

(continued)

274 NAOV-2020 Conference Participants

(continued)

Name Affiliation Email

Najeeb Abdulaleem University of Lodz , Poland nabbas985@gmail.com

Rosni Abdullah Universiti Sains Malaysia,
Malaysia

rosni@usm.my

Reda Abu-Elwan Sultan Qaboos University,
Oman

abuelwan@squ.edu.om

Auwal Bala Abubakar King Mongkut’s University
of Technology, Thailand

ababubakar.mth@buk.edu.ng

Noura Hussein Abusalih Sultan Qaboos University,
Oman

nabusalih@squ.edu.om

Fola Adeyeye Kampala International
University, Uganda

adeyeye.john@kiu.ac.ug

Afaq Ahmad Sultan Qaboos University,
Oman

afaq@squ.edu.om

Eqbal Ahmad Diwan of Royal Court,
Oman

Naveed Ahmed Gulf University for Science
and Technology, Kuwait

ahmed.n@gust.edu.kw

Al-Jalila Al-Abri Sultan Qaboos University,
Oman

aljalila@squ.edu.om

Ibtisam Al-Abri Sultan Qaboos University,
Oman

ialabri@squ.edu.om

Hussain Ali Al-Ajmi Ministry of Education,
Oman

h.ajmi@moe.om

Sulaiman Said Al-Alawi Sultan Qaboos University,
Oman

s45454@student.squ.edu.om

Younis Awadh Al-Alawi Ministry of Education,
Oman

yo.a.m@moe.om

Masood Alam Sultan Qaboos University,
Oman

malam@squ.edu.om

Said Juma Al-Araimi Ministry of Education,
Oman

saidj.aloraimi@moe.om

Hamad Al-Asmi Sultan Qaboos University,
Oman

hasmi@squ.edu.om

Ibrahim Al-Ayyoub Sultan Qaboos University,
Oman

i.alayyoub@squ.edu.om

Nasser Hamood Al-Azri Ministry of Education,
Oman

nasser.azri@moe.om

Khalid Nasser Al-Azri Ministry of Education,
Oman

Khalidazri79@gmail.com

Mehiddin Al-Baali Sultan Qaboos University,
Oman

albaali@squ.edu.om

Amro Al-Baali McGill University, Canada amro.al-baali@mail.mcgill.ca

(continued)

NAOV-2020 Conference Participants 275

(continued)

Name Affiliation Email

Slama Said Al-Badri Ministry of Education,
Oman

Slama.badri@moe.om

Khalid Khalifa Al-Bahri Ministry of Education,
Oman

K13k@moe.om

Salim Khalfan
Al-Barashdi

Ministry of Education,
Oman

Salim.brasde@moe.om

Wasila Al-Busaidi Sultan Qaboos University,
Oman

wasila@squ.edu.om

Mohammed Said
Al-Ghafri

Sultan Qaboos University,
Oman

s104802@student.squ.edu.om

Sukina Obaid Al-Habsi Ministry of Education,
Oman

Al-HABSI-2011@moe.om

Adnan Aziz Al-Hadhrami Sultan Qaboos University,
Oman

s85292@student.squ.edu.om

Ruqaiya Hamood
Al-Hadi

Ministry of Education,
Oman

ss.325@moe.om

Saeed Abdullah Al-Hadi Ministry of Education,
Oman

Said22.hadi@moe.om

Majid Mubarak
Al-Hamadani

Sultan Qaboos University,
Oman

s104806@student.squ.edu.om

Abdullah Musallam
Al-Hasani

Ministry of Education,
Oman

Mahmoud M.
Al-Hashami

Sultan Qaboos University,
Oman

s100111@student.squ.edu.om

Mohammed Mattar
Al-Hatmi

Sultan Qaboos University,
Oman

m.alhatmi@squ.edu.om

Magda Al-Hinai Sultan Qaboos University,
Oman

magda@squ.edu.om

Ahmed Salim Al-Hrassi Ministry of Education,
Oman

aaa. alharasi@moe.om

Asmaa Salim Al-Hrassi Ministry of Education,
Oman

Salim Al-Hudaify Sultan Qaboos University,
Oman

salimsaid@squ.edu.om

Mohammed Majid Ali Ibra College of Technology,
Oman

mmali@ict.edu.om

Ishtiaq Ali Ibra College of Technology,
Oman

ishtiaqali@comsats.edu.pk

Yousef Aljarrah Tafila Technical University,
Jordan

yjarrah@ttu.edu.jo

Ahmed Ali Al-Kasbi Sultan Qaboos University,
Oman

s95573@student.squ.edu.om

(continued)

276 NAOV-2020 Conference Participants

(continued)

Name Affiliation Email

Fatma Al-Kharousi Sultan Qaboos University,
Oman

fatma9@squ.edu.om

Safiya Al-Kindi Sultan Qaboos University,
Oman

s116769@student.squ.edu.om

Aasem Thabit
Al-Maamari

Sultan Qaboos University,
Oman

s34525@student.squ.edu.om

Khaled Al-Mashrafi Ministry of Education,
Oman

khaled2014om@gmail.com

Mariam Al-Maskari Sultan Qaboos University,
Oman

u070036@hotmail.com

Abdulrahman Ali
Al-Muqbali

Sultan Qaboos University,
Oman

s91616@student.squ.edu.om

Qasim Ali Al-Muqbali Ministry of Education,
Oman

qassim.al-meqbali@moe.om

Fatma Al-Musalhi Sultan Qaboos University,
Oman

fatma@squ.edu.om

Mohamed Khamis
Al-Oufi

Ministry of Education,
Oman

Ahmed Al-Qassabi Sultan Qaboos University,
Oman

s98158@student.squ.edu.om

Fatima Al-Raisi Sultan Qaboos University,
Oman

fraisi@andrew.cmu.edu

Mohammed Alrizeiqi Sultan Qaboos University,
Oman

ruzeiki@squ.edu.om

Munira Al-Ruzaqi Ministry of Education,
Oman

ruzaqi@gmail.com

Amal Al-Saidi Sultan Qaboos University,
Oman

Amal2.ALSaeedi@moe.om

Abdul-Sattar Al-Saif Basrah University, Iraq sattaralsaif@yahoo.com

Azza Al-Salahi Sultan Qaboos University
Hospital, Oman

azzasalahi@gmail.com

Nasser Al-Salti Sultan Qaboos University,
Oman

nalsalti@squ.edu.om

Mubark Said Al-Salti Ministry of Education,
Oman

Mubarak.alsalti@moe.om

Nasser Salim Al-Shabibi Ministry of Education,
Oman

naser.salem@moe.om

Ebrahim Mansoor
Al-Shamsi

Ministry of Education,
Oman

abrnet@moe.om

Mubarak M. Al-Shekaili Sultan Qaboos University,
Oman

s29026@student.squ.edu.om

(continued)

NAOV-2020 Conference Participants 277

(continued)

Name Affiliation Email

Afraa Mohammed
Al-Shihi

Sultan Qaboos University,
Oman

s38933@student.squ.edu.om

Nayif Khamis Al-Sinani Sultan Qaboos University,
Oman

s47590@student.squ.edu.om

Ahmed Azan Al-Siyabi Sultan Qaboos University,
Oman

s45018@student.squ.edu.om

Nisreen Althweib Ministry of Education,
Palestine

thweib@hotmail.com

Talib Mousa Al-Toubi Ministry of Education,
Oman

Talip.altobi@moe.om

Shamsa Mohamed
Al-Wahaibi

Sultan Qaboos University,
Oman

s35894@student.squ.edu.om

Khalid Alzebdeh Sultan Qaboos University,
Oman

alzebdeh@squ.edu.om

Talal Shaban Amer Sultan Qaboos University,
Oman

talal@squ.edu.om

Gamal Talal Shaban
Amer

Sultan Qaboos University,
Oman

s117418@student.squ.edu.om

Neculai Andrei Research Institute for
Informatics, Romania

nandrei@ici.ro

Gunarathna W.
Arachchilage

Rajarata University, Sri
Lanka

gunarathnawa@yahoo.com

Yasir Arfat King Mongkut’s University
of Technology, Thailand

yasir.arfat@mail.kmutt.ac.th

Arunkumar Arumugam Yangzhou University, China arunapm@yahoo.com

Medhat Awadalla Sultan Qaboos University,
Oman

medhatha@squ.edu.om

Isa Abdullahi Baba Bayero University, Nigeria isababa7@yahoo.com

Adil M. Bagirov Federation University,
Australia

a.bagirov@federation.edu.au

Easwaran Balakrishnan Sultan Qaboos University,
Oman

balak@squ.edu.om

Eihab Bashier Dhofar University, Oman eihabbashier@gmail.com

Azzeddine Bellour Ecole Normale Superieure
de Constantine, Algeria

bellourazze123@yahoo.com

Mohammad U. Bokhari Aligarh Muslim University,
India

mubokhari@gmail.com

Messaoud Boulbrachene Sultan Qaboos University,
Oman

boulbrac@squ.edu.om

Oleg Burdakov Linkoping University,
Sweden

oleg.burdakov@liu.se

(continued)

278 NAOV-2020 Conference Participants

(continued)

Name Affiliation Email

Pallath Chandran Sultan Qaboos University,
Oman

chandran@squ.edu.om

Maryam Chilan Shahid Beheshti University
of Tehran, Iran

maryamchilan.tmu@gmail.com

Yu-Hong Dai Chinese Academy of
Sciences, China

dyh@lsec.cc.ac.cn

Majid Darehmiraki Behbahan Khatam Alanbi
University of technology,
Iran

darehmiraki@gmail.com

Musa Ahmed Demba King Mongkut’s University
of Technology, Thailand

musa.demba@mail.kmutt.ac.th

El Amir Djeffal University of Batna 2,
Algeria

l.djeffal@univ-batna2.dz

Iain Duff STFC RAL, UK and
Cerfacs, France

iain.duff@stfc.ac.uk

Ibrahim Dweib Sultan Qaboos University,
Oman

dweib@squ.edu.om

Adel Abd Elaziz
El-Sayed

Rustaq College of
Education, Oman

aelsayed.rus@cas.edu.om

Ibrahim Eltayeb University of Nizwa, Oman ieltayeb@unizwa.edu.om

Francisco Facchinei Sapienza University, Italy francisco.facchinei@uniroma1.it

Mohammad Fares Rustaq College of
Education, Oman

mohammad.fares.rus@cas.edu.om

Reza Farzipoor Saen Sohar University, Oman rfarzipoorsaen@su.edu.om

Giovanni Fasano University of Venice Ca
Foscari, Italy

fasano@unive.it

Daniele Funaro University of Modena and
Reggio Emilia, Italy

daniele.funaro@unimore.it

Chandrashekhar
Gangipelli

Ibra College of Technology,
Oman

chandu.724@gmail.com

David M. Gay AMPL Optimization Inc,
USA

dmg@ampl.com

Ahmed Ghaleb Cairo University, Egypt afghaleb@sci.cu.edu.eg

Mohammed Amine
Ghezzar

Mostaganem University,
Algeria

Amine.ghezzar@univ-mosta.dz

Asghar Ghorbani Ferdowsi University of
Mashhad, Iran

aghorbani@um.ac.ir

Gopakumar Sultan Qaboos University,
Oman

g.gopakumar@gmail.com

Lucio Grandinetti Calabria University, Italy lucio.grandinetti@unical.it

Francesca Guerriero University of Calabria, Italy francesca.guerriero@unical.it

(continued)

NAOV-2020 Conference Participants 279

(continued)

Name Affiliation Email

Sanjiv Gupta Sultan Qaboos University,
Oman

gupta@squ.edu.om

Yousaf Habib COMSATS University,
Pakistan

yhabib@gmail.com

Tayeb Hamaizia Vente ambulant de
vÃªtement, Algeria

el_tayyeb@yahoo.fr

Amira Hamdi Mohamed Cherif Messaadia
University, Algeria

smalika335@gmail.com

Mohammed Hanaki Faculty of Science, Ibn
Tofail University, Morocco

hanaki.mohammed@gmail.com

Bernhard Heim German Univeristy of
Technology, Oman

bernhard.heim@gutech.edu.om

Desmond J. Higham University of Edinburgh,
UK

d.j.higham@ed.ac.uk

Michael Hintermuller Humboldt-Universitat zu
Berlin, Germany

hint@math.hu-berlin.de

Afzal Hussain Sultan Qaboos University,
Oman

afzal19@squ.edu.om

Usman Jatto University of Ibadan,
Nigeria

universityofibandan@gmail.com

Z.A.M.S. Juman University of Peradeniya,
Sri Lanka

jumanabdeen@yahoo.com

Mohammad Kafini King Fahd University of
Petroleum and Minerals,
Dahran, Saudi Arabia

mkafini@kfupm.edu.sa

Aref Kamal Sultan Qaboos University,
Oman

akamal@squ.edu.om

Samir Karaa Sultan Qaboos University,
Oman

skaraa@squ.edu.om

Sebti Kerbal Sultan Qaboos University,
Oman

sebti@squ.edu.om

Anees Khadom University of Diyala, Iraq aneesdr@gmail.com

Qamar Khan Sultan Qaboos University,
Oman

qjalil@squ.edu.om

Mohammad Khan Sultan Qaboos University,
Oman

mohammad@squ.edu.om

Shamsher Khan Mazoon College, Oman shamsher.khan@mazcol.edu.om

Morteza Kimiaei University of Vienna,
Austria

kimiaeim83@univie.ac.at

Mokhtar Kirane Université de La Rochelle,
France

mkirane@univ-lr.fr

(continued)

280 NAOV-2020 Conference Participants

(continued)

Name Affiliation Email

Edamana Krishnan Sultan Qaboos University,
Oman

krish@squ.edu.om

Vijay Kumar Vyas Sur University College,
Oman

vmathsvyas@gmail.com

Arunima Kumari Bhagwan Parshuram
Institute of Technology,
India

aru68ram@gmail.com

Kenneth K. Kwikiriza Sultan Qaboos University,
Oman

kkwikk@squ.edu.om

Sven Leyffer Argonne National
Laboratory, USA

leyffer@anl.gov

Ding Ma City University of Hong
Kong, Hong Kong

dingma@cityu.hk.edu

Aliyu Ishaku Ma’ali Ibrahim Badamasi
Babangida University,
Nigeria

aaimaali4real@gmail.com

Desmond C. Maduneme University of Cocody,
Nigeria

fransico88@gmail.com

Nezam Mahdavi-Amiri Sharif University of
Technology, Iran

nezamm@sharif.ir

Morteza Maleknia Amirkabir University of
Technology, Iran

maleknia.morteza@gmail.com

Pammy Manchanda Guru Nanak Dev University,
India

pmanch2k1@yahoo.co.in

Jasbir Manhas Sultan Qaboos University,
Oman

manhas@squ.edu.om

Annadurai Manickam
Nadar

Ibra College of Technology,
Oman

annadurai@ict.edu.om

Khaled Melkemi University of Batna 2,
Algeria

k.melkemi@univ-batna2.dz

Khaled Moaddy Shaqra University, Saudi
Arabia

Moaddy@su.edu.sa

Issam Moghrabi Gulf University for Science
and Technology, Kuwait

moughrabi.i@gust.edu.kw

Dalah Mohamed Freres Mentouri
Constantine University,
Algeria

dalah.mohamed@yahoo.fr

Mutaz Mohammad Zayed University, UAE Mutaz.Mohammad@zu.ac.ae

Hassan Mohammad Zayed University, UAE hmuhd.mth@buk.edu.ng

Ahmed Mohiuddin
Mohammed

Sultan Qaboos University,
Oman

ahmedmm@squ.edu.om

Touati Brahim
Mohammed Said

University of Eloued,
Algeria

said-touatibrahim@univ-eloued.dz

(continued)

NAOV-2020 Conference Participants 281

(continued)

Name Affiliation Email

Zouhir Mokhtari University of Biskra,
Algeria

z.mokhtari@univ-biskra.dz

Aliyu Awwal Muhammed King Mongkut’s University
of Technology, Thailand

aliyumagsu@gmail.com

Haniffa Mohamed Nasir Sultan Qaboos University,
Oman

nasirh@squ.edu.om

Abdesselam Nawel Laghouat University,
Algeria

nawelabedess@gmail.com

Mohamed Yasin Noor
Mohamed

Sultan Qaboos University,
Oman

mohyasin@squ.edu.om

Dominique Orban Ecole Polytechnique de
Montreal, Canada

dominique.orban@polymtl.ca

Hassen Ouakad Sultan Qaboos University,
Oman

houakad@squ.edu.om

Amar Oukil Sultan Qaboos University,
Oman

aoukil@squ.edu.om

Michael Overton New York University, USA mo1@nyu.edu

Danumjaya Palla BITS Pilani Birla Goa
Campus, India

danu@goa.bits-pilani.ac.in

Amiya Kumar Pani Indian Institute of
Technology Bombay, India

akp@math.iitb.ac.in

Ambit Kumar Pany Siksha O Anusandhan, India ambit.pany@gmail.com

Janos D. Pinter Lehigh University, USA jdp416@lehigh.edu

Anton Purnama Sultan Qaboos University,
Oman

antonp@squ.edu.om

V.P. Ramesh Central University of Tamil
Nadu, India

vpramesh@gmail.com

Cornelis Roos Delft University of
Technology, The
Netherlands

c.roos@tudelft.nl

Farouk Saad Yusuf Maimata Sule
University, Nigeria

farouksaaad@yahoo.co.uk

Nirmal Sacheti Sultan Qaboos University,
Oman

nirmal@squ.edu.om

Ekkehard W. Sachs University of Trier,
Germany

sachs@uni-trier.de

Tokuei Sako Nihon University, Japan sako.tokuei@nihon-u.ac.jp

Ahmed Salam University Lille Nord de
France, France

salam@univ-littoral.fr

Jesus Maria Sanz-Serna University Carlos III de
Madrid, Spain

jmsanzserna@gmail.com

Michael Saunders Stanford University, USA saunders@stanford.edu

(continued)

282 NAOV-2020 Conference Participants

(continued)

Name Affiliation Email

Djamila Seba Boumerdes University,
Algeria

sebadjamila@gmail.com

Syed Muhammed
Shavalliuddin

Al-Musanna College of
Technology, Oman

syedmdshaval@gmail.com

Abul Hasan Siddiqi Sharda University, India Siddiqi.abulhasan@gmail.com

Ahsan Siddiqui Sultan Qaboos University,
Oman

ahsan@squ.edu.om

Md Ashraf Siddiqui Sultan Qaboos University,
Oman

ashrafkfu@gmail.com

Irina Skhomenko Sultan Qaboos University,
Oman

irinashk@squ.edu.om

Ola Hajj Sleiman American University of
Beirut, Lebanon

ola-sleiman@hotmail.com

Dimitri Sotiropoulos University of the
Peloponnese, Greece

dgs@eap.gr

Emilio Spedicato University of Bergamo, Italy emilio.spedicato@unibg.it

Trond Steihaug Unversity of Bergen,
Norway

trond.steihaug@ii.uib.no

Bashar Swaid University of Kalamoon,
Syria

bashar.swaid@uok.edu.sy

Muhammed I. Syam United Arab Emirates
University, UAE

m.syam@uaeu.ac.ae

Nasser-eddine Tatar King Fahd University of
Petroleum and Minerals,
Saudi Arabia

tatarn@kfupm.edu.sa

Tamas Terlaky Lehigh University, USA tat208@Lehigh.edu

Philippe L. Toint University of Namur,
Belgium

philippe.toint@unamur.be

Chefi Triki Hamad bin Khalifa
University, Qatar

ctriki@hbku.edu.qa

Maria Teresa Vespucci Bergamo University, Italy maria@unibg.it

Vladimir Vladimirov Sultan Qaboos University,
Oman

vladimir@squ.edu.om

Abdul Wahab National University of
Technology, Pakistan

abdulwahabmalik@gmail.com

Andrew Wathen Oxford University, UK wathen@maths.ox.ac.uk

Ya-xiang Yuan Chinese Academy of
Sciences, China

yyx@lsec.cc.ac.cn

Muhammad Ziad Sultan Qaboos University,
Oman

mziad@squ.edu.om

Riadh Zorgati EDF Lab Paris Saclay,
France

riadh.zorgati@edf.fr

NAOV-2020 Conference Participants 283

Fig. 1 Invitation to the NAO-V Opening Ceremony

284 NAOV-2020 Conference Participants

Fig. 2 NAO-V Opening Ceremony Program-Cover

Fig. 3 NAO-V Opening Ceremony Program

NAOV-2020 Conference Participants 285

Fig. 4 NAO-V Conference Poster

286 NAOV-2020 Conference Participants

Fig. 5 NAO-V Program

NAOV-2020 Conference Participants 287

Fig. 5 (continued)

288 NAOV-2020 Conference Participants

Fig. 5 (continued)

NAOV-2020 Conference Participants 289

Fig. 5 (continued)

290 NAOV-2020 Conference Participants

Fig. 5 (continued)

NAOV-2020 Conference Participants 291

Fig. 5 (continued)

292 NAOV-2020 Conference Participants

Fig. 5 (continued)

NAOV-2020 Conference Participants 293

Fig. 5 (continued)

294 NAOV-2020 Conference Participants

Fig. 5 (continued)

NAOV-2020 Conference Participants 295

Fig. 6 NAO-V Chairman, Mehiddin Al-Baali. Photo Courtesy of Photography Department, Sultan
Qaboos University

Fig. 7 NAO-VCo-Chairman, Anton Purnama. Photo Courtesy of PhotographyDepartment, Sultan
Qaboos University

296 NAOV-2020 Conference Participants

Fig. 8 NAO-V Opening Ceremony. Photo Courtesy of Photography Department, Sultan Qaboos
University

Fig. 9 NAO-V Opening Ceremony. Photo Courtesy of Photography Department, Sultan Qaboos
University

NAOV-2020 Conference Participants 297

Fig. 10 NAO-V Participants. Photo Courtesy of Photography Department, Sultan Qaboos Univer-
sity

	Preface
	A Personal Perspective on Numerical Analysis and Optimization
	A Personal View of Numerical Analysis and Optimization
	Contents
	Contributors
	 A New Inexact Nonmonotone Filter Sequential Quadratic Programming Algorithm
	1 Introduction
	2 Preliminaries
	3 FiSQP Algorithm
	4 iFiSQP Algorithm
	5 Experimental Results
	6 Concluding Remarks
	References

	 Behavior of Limited Memory BFGS When Applied to Nonsmooth Functions and Their Nesterov Smoothings
	1 Introduction
	2 Limited Memory BFGS for Nonsmooth Optimization in Theory
	2.1 Armijo-Wolfe Line Search
	2.2 Full BFGS
	2.3 Limited Memory BFGS

	3 Limited Memory BFGS for Nonsmooth Optimization in Practice
	3.1 Nesterov's Les Houches Problem
	3.2 Smoothed Versions of Nesterov's Les Houches Problem
	3.3 Max Eigenvalue Problem
	3.4 Smoothed Max Eigenvalue Problem
	3.5 Semidefinite Programming
	3.6 Max Cut Problem
	3.7 Smoothed Max Cut Problem
	3.8 Matrix Completion Problem
	3.9 Smoothed Matrix Completion Problem

	4 Concluding Remarks
	References

	 Subgradient Smoothing Method for Nonsmooth Nonconvex Optimization
	1 Introduction
	2 Preliminaries
	3 Theoretical Background
	4 Minimization Algorithm
	4.1 Computation of Descent Directions
	4.2 Solving Subproblem in Finding Search Directions
	4.3 Minimization Algorithms

	5 Numerical Experiments
	6 Conclusions
	References

	 On Some Optimization Problems that Can Be Solved in O(n) Time
	1 Introduction
	2 Preliminaries
	2.1 Duality
	2.2 Basic Lemmas
	2.3 Simplifying Observations
	2.4 Easy and Harder Cases

	3 Analysis of the Nine Problems
	3.1 Problems of Type (1,1)
	3.2 Problems of Type (1,2)
	3.3 Problems of Type (1,infty)
	3.4 Problems of Type (2,1)
	3.5 Problems of Type (2,2)
	3.6 Problems of Type (2,infty)
	3.7 Problems of Type (infty,1)
	3.8 Problems of Type (infty,2)
	3.9 Problems of Type (infty,infty)

	4 Concluding Remarks
	References

	 Iteration Complexity of a Fixed-Stepsize SQP Method for Nonconvex Optimization with Convex Constraints
	1 Introduction
	2 Preliminaries
	2.1 Stationarity and Constraint Qualifications
	2.2 Giving an Explicit Bound on the Multipliers
	2.3 Detecting Stationarity

	3 Complexity Analysis
	4 Conclusions
	References

	 Modelling and Inferring the Triggering Function in a Self-Exciting Point Process
	1 Introduction
	2 Background
	3 Non-parametric Estimation
	4 Parametric Trigger Models
	5 Parametrised Trigger on Real Data
	5.1 EM-Algorithm
	5.2 Results on Real Data
	5.3 Prediction Results

	6 Discussion
	References

	 A New Multi-point Stepsize Gradient Method for Optimization
	1 Introduction
	2 MPSG Method
	2.1 Quadratic Case
	2.2 General Unconstrained Optimization

	3 Extension to Extreme Eigenvalue Problems
	4 Numerical Results
	4.1 Quadratic Optimization Problems
	4.2 Unconstrained Optimization Problems
	4.3 Extreme Eigenvalue Problems

	References

	 A Julia Implementation of Algorithm NCL for Constrained Optimization
	1 Introduction
	2 LANCELOT and NCL
	3 Optimal Tax Policy Problems
	4 Julia Implementation
	4.1 Key Features
	4.2 Implementation and Solver Features
	4.3 Results with Julia/NCL on the Tax Policy Problems
	4.4 Results with Julia/NCL on CUTEst Test Set

	5 Nonlinear Least Squares
	6 Summary
	7 Detailed Results for Julia/NCL on NLS Problems
	References

	 A Survey on Modeling Approaches for Generation and Transmission Expansion Planning Analysis
	1 Introduction
	2 Review of GTEP Models
	2.1 Modeling Choices
	2.2 Uncertainty Inclusion
	2.3 High Level of Temporal Detail

	3 A GTEP Model for the Decarbonization of Power Systems
	4 Conclusions
	References

	 Second Order Adjoints in Optimization
	1 Introduction
	2 Representation of First-Order Fréchet-Derivative
	3 Representation of Second Order Fréchet-Derivative
	4 Second Order Sensitivities and Second Order Adjoints
	4.1 Sensitivity-Sensitivity Approach
	4.2 Sensitivity-Adjoint Approach
	4.3 Adjoint-Sensitivity Approach
	4.4 Adjoint-Adjoint Approach

	5 PDE-Constrained Optimization
	6 Summary and Conclusions
	References

	 Largest Small n-polygons: Numerical Optimum Estimates for n ≥ 6
	1 Introduction
	2 A Standard Optimization Model for Finding LSP(n)
	2.1 Model Formulation
	2.2 Numerical Challenges

	3 Related Earlier Studies
	3.1 Analytical Approaches
	3.2 Numerical Solution Approaches
	3.3 The Asymptotic Behaviour of A(n)

	4 Solving LSP Problems Numerically by AMPL-LGO
	4.1 Solution Approach
	4.2 The AMPL Model Development Environment
	4.3 LGO Solver Suite for Nonlinear Optimization

	5 Numerical Results and Comparisons
	5.1 AMPL-LGO Results
	5.2 An Illustrative Comparison with Results Obtained by Several AMPL Solvers

	6 Regression Model Development
	7 Concluding Remarks
	References

	 Computational Science in the 17th Century. Numerical Solution of Algebraic Equations: Digit–by–Digit Computation
	1 Introduction
	2 Stevin's Method 1594
	3 Viète's Method 1600
	3.1 Pure Equations
	3.2 Affected Equations

	4 Test Examples from Harriot 1631
	5 Test Examples from Oughtred 1647/48
	6 On Newton's Annotations 1664
	7 Contributions of John Wallis 1685
	8 End of an Era
	9 Computing the Square Root
	References

	 NAOV-2020 Conference Participants

