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Abstract. It is well-known that the winning region of a parity game
with n nodes and k priorities can be computed as a k-nested fixpoint
of a suitable function; straightforward computation of this nested fix-
point requires O(n%) iterations of the function. Calude et al.’s recent
quasipolynomial-time parity game solving algorithm essentially shows
how to compute the same fixpoint in only quasipolynomially many itera-
tions by reducing parity games to quasipolynomially sized safety games.
Universal graphs have been used to modularize this transformation of
parity games to equivalent safety games that are obtained by combin-
ing the original game with a universal graph. We show that this ap-
proach naturally generalizes to the computation of solutions of systems
of any fixpoint equations over finite lattices; hence, the solution of fix-
point equation systems can be computed by quasipolynomially many
iterations of the equations. We present applications to modal fixpoint
logics and games beyond relational semantics. For instance, the model
checking problems for the energy p-calculus, finite latticed p-calculi, and
the graded and the (two-valued) probabilistic p-calculus — with numbers
coded in binary — can be solved via nested fixpoints of functions that
differ substantially from the function for parity games but still can be
computed in quasipolynomial time; our result hence implies that model
checking for these p-calculi is in QP. Moreover, we improve the exponent
in known exponential bounds on satisfiability checking.

games, energy games, p-calculus

1 Introduction

Fixpoints are pervasive in computer science, governing large portions of recur-
sion theory, concurrency theory, logic, and game theory. One famous example
are parity games, which are central, e.g., to networks and infinite processes [5],
tree automata [43], and p-calculus model checking [17]. Winning regions in parity
games can be expressed as nested fixpoints of particular set functions (e.g. [8,16]).
In recent breakthrough work on the solution of parity games in quasipolynomial
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time, Calude et al. [9] essentially show how to compute this particular fixpoint
in quasipolynomial time, that is, in time 2€(1°27)%) for some constant ¢. Subse-
quently, it has been shown [13,14,28] that universal graphs (that is, even graphs
into which every even graph of a certain size embeds by a graph morphism) can
be used to transform parity games to equivalent safety games obtained by pairing
the original game with a universal graph; the size of these safety games is deter-
mined by the size of the employed universal graphs and it has been shown [13,14]
that there are universal graphs of quasipolynomial size. This yields a uniform
algorithm for solving parity games to which all currently known quasipolynomial
algorithms for parity games have been shown to instantiate using appropriately
defined universal graphs [13,14].

Briefly, our contribution in the present work is to show that the method of
using universal graphs to solve parity games generalizes to the computation of
nested fixpoints of arbitrary functions over finite lattices. That is, given functions
fi : P(U)**1 — P(U), 0 < i < k on a finite lattice U, we give an algorithm that
uses universal graphs to compute the solutions of systems of equations

Xi =y, fi(Xo,..., Xg) 0<i<k

where 7; = GFP (greatest fixpoint) or n; = LFP (least fixpoint). Since there are
universal graphs of quasipolynomial size, the algorithm requires only quasipoly-
nomially many iterations of the functions f; and hence runs in quasipolynomial
time, provided that all f; are computable in quasipolynomial time. While it
seems plausible that this time bound may also be obtained by translating equa-
tion systems to equivalent standard parity games by emulating Turing machines
to encode the functions f; as Boolean circuits (leading to many additional states
but avoiding exponential blowup during the process), we emphasize that the
main point of our result is not so much the ensuing time bound but rather the
insight that universal graphs and hence many algorithms for parity games can
be used on a much more general level which yields a precise (and relatively low)
quasipolynomial bound on the number of function calls that are required to
obtain solutions of fixpoint equation systems.

In more detail, the method of Calude et al. can be described as annotating
nodes of a parity game with histories of quasipolynomial size and then solving
this annotated game, but with a safety winning condition instead of the much
more involved parity winning condition. It has been shown that these histories
can be seen as nodes in universal graphs, in a more general reduction of parity
games to safety games in which nodes from the parity game are annotated with
nodes from a universal graph. This method has also been described as pairing
separating automata with safety games [14]. It has been shown [13,14] that there
are exponentially sized universal graphs (essentially yielding the basis for e.g. the
fixpoint iteration algorithm [8] or the small progress measures algorithm [27]) and
quasipolynomially sized universal graphs (corresponding, e.g., to the succinct
progress measure algorithm [28], or to the recent quasipolynomial variant of
Zielonka’s algorithm [38]).

Hasuo et al. [22], and more generally, Baldan et al. [4] show that nested
fixpoints in highly general settings can be computed by a technique based on
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progress measures, implicitly using exponentially sized universal graphs, obtain-
ing an exponential bound on the number of iterations. Our technique is based
on showing that one can make explicit use of universal graphs, correspondingly
obtaining a quasipolynomial upper bound on the number of iterations. In both
cases, computation of the nested fixpoint is reduced to a single (least or greatest
depending on exact formulation) fixpoint of a function that extends the given
set function to keep track of the exponential and quasipolynomial histories, re-
spectively, in analogy to the previous reduction of parity games to safety games.
Our central result can then be phrased as saying that the method of trans-
forming parity conditions to safety conditions using universal graphs generalizes
from solving parity games to solving systems of equations that use arbitrary
functions over finite lattices. We use fizpoint games [4,42] to obtain the cru-
cial result that the solutions of equation systems have history-free witnesses,
in analogy to history-freeness of winning strategies in parity games. These fix-
point games have exponential size but we show how to extract polynomial-size
witnesses for winning strategies of Eloise, and use these witnesses to show that
any node won by Eloise is also won in the safety game obtained by a universal
graph. For the backwards direction, we show that a witness for satisfaction of
the safety condition regarding the universal graph induces a winning strategy
in the fixpoint game. This proves that universal graphs can be used to compute
nested fixpoints of arbitrary functions over finite lattices and hence yields the
quasipolynomial upper bound for computation of nested fixpoints. Moreover, we
present a progress measure algorithm that uses the nodes of a quasipolynomial
universal graph to measure progress and that can be used to efficiently compute
nested fixpoints of arbitrary functions over finite lattices.

As an immediate application of these results, we improve known deterministic
algorithms for solving energy parity games [10], that is, parity games in which
edges have additional integer weights and for which the winning condition is
a combined parity condition and a (quantitative) positivity condition on the
sum of the accumulated weights. Our results also show that the model checking
problem for the associated energy p-calculus [2] is in QP. In a similar fashion,
we obtain quasipolynomial algorithms for model checking in latticed p-calculi [7]
in which the truth values of formulae are computed over arbitrary finite lattices,
and for solving associated latticed parity games [30].

Furthermore, our results improve generic upper complexity bounds on model
checking and satisfiability checking in the coalgebraic p-calculus [12], which
serves as a generic framework for fixpoint logics beyond relational semantics.
Well-known instances of the coalgebraic pu-calculus include the alternating-
time p-calculus [1], the graded p-calculus [32], the (two-valued) probabilistic
p-calculus [12,34], and the monotone p-calculus [18] (the ambient fixpoint logic
of concurrent dynamic logic CPDL [39] and Parikh’s game logic [37]). This level
of generality is achieved by abstracting system types as set functors and sys-
tems as coalgebras for the given functor following the paradigm of universal
coalgebra [40]. It was previously shown [24] that the model checking problem
for coalgebraic p-calculi reduces to the computation of a nested fixpoint. This
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fixpoint may be seen as a coalgebraic generalization of a parity game winning
region but can be literally phrased in terms of small standard parity games
(implying quasipolynomial run time) only in restricted cases. Our results show
that the relevant nested fixpoint can be computed in quasipolynomial time in
all cases of interest. Notably, we thus obtain as new specific upper bounds that
even under binary coding of numbers, the model checking problems of both the
graded p-calculus and the probabilistic p-calculus are in QP, even when the
syntax is extended to allow for (monotone) polynomial inequalities.

Similarly, the satisfiability problem of the coalgebraic p-calculus has been
reduced to a computation of a nested fixpoint [25], and our present results imply
a marked improvement in the exponent of the associated exponential time bound.
Specifically, the nesting depth of the relevant fixpoint is exponentially smaller
than the basis of the lattice. Our results imply that this fixpoint is computable in
polynomial time so that the complexity of satisfiability checking in coalgebraic
p-calculi drops from 20(n*klogn) 1 90(nklogn) for formulae of size n and with
alternation depth k.

Related Work The quasipolynomial bound on parity game solving has in the
meantime been realized by a number of alternative algorithms. For instance, Ju-
rdzinski and Lazic [28] use succinct progress measures to improve to quasilinear
(instead of quasipolynomial) space; Fearnley et al. [19] similarly achieve quasilin-
ear space. Lehtinen [33] and Boker and Lehtinen [6] present a quasipolynomial
algorithm using register games. Parys [38] improves Zielonka’s algorithm [43]
to run in quasipolynomial time. In particular the last algorithm is of interest
as an additional candidate for generalization to nested fixpoints, due to the
known good performance of Zielonka’s algorithm in practice. Daviaud et al. [15]
generalize quasipolynomial-time parity game solving by providing a pseudo-
quasipolynomial algorithm for mean-payoff parity games. On the other hand,
Czerwinski et al. [14] give a quasipolynomial lower bound on universal trees, im-
plying a barrier for prospective polynomial-time parity game solving algorithms.
Chatterjee et al. [11] describe a quasipolynomial time set-based symbolic algo-
rithm for parity game solving that is parametric in a lift function that determines
how ranks of nodes depend on the ranks of their successors, and thereby unifies
the complexity and correctness analysis of various parity game algorithms. Al-
though part of the parity game structure is encapsulated in a set operator CPre,
the development is tied to standard parity games, e.g. in the definition of the
best function, which picks minimal or maximal ranks of successors depending on
whether a node belongs to Abelard or Eloise.

Early work on the computation of unrestricted nested fixpoints has shown
that greatest fixpoints require less effort in the fixpoint iteration algorithm, which
can hence be optimized to compute nested fixpoints with just O(ng) calls of
the functions at hand [35,41], improving the previously known (straightforward)
bound O(n*); here, n denotes the size of the basis of the lattice and & the number
of fixpoint operators. Recent progress in the field has established the above-
mentioned approaches using progress measures [22] and fixpoint games [4] in
general settings, both with a view to applications in coalgebraic model checking
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like in the present paper. In comparison to the present work, the respective
bounds on the required number of function iterations in the above unrestricted
approaches all are exponential.

A preprint of our present results, specifically the quasipolynomial upper
bound on function iteration in fixpoint computation, has been available as an
arXiv preprint for some time [23]. Subsequent to this preprint, Arnold, Niwin-
ski and Parys [3] have improved the actual run time by reducing the overhead
incurred per iteration (and they give a form of quasipolynomial lower bound for
universal-tree-based algorithms), working (like [23]) in the less general setting of
directly nested fixpoints over powerset lattices; we show in Section 6 how such
an improvement can be incorporated also in our lattice-based algorithm.

2 Notation and Preliminaries

Let U and V be sets, and let R C U x U be a binary relation on U. For
u € U, we then put R(u) := {v € U | (u,v) € R}. We put [k] = {0,...,k} for
k € N. Labelled graphs G = (W, R) consist of a set W together with a relation
R C W x Ax W where A is some set of labels; typically, we use A = [k]
for some k € N. An R-path in a labelled graph is a finite or infinite sequence
Vg, G0, V1, a1,V . .. (ending in a node from W if finite) such that (v;, a;,v;41) € R
for all i. For v € W and a € A, we put R,(v) = {w € W | (v,a,w) € R} and
sometimes write |G| to refer to |W|. As usual, we write U* and U¥ for the sets of
finite sequences or infinite sequences, respectively, of elements of U. The domain
dom(f) of a partial function f : U — V is the set of elements on which f is
defined. As usual, the (forward) image of A’ C A under a function f: A — B
is f[A'] = {b € B|3a € A" f(a) = b} and the preimage f~'[B'] of B C B
under f is defined by f~![B] = {a € A | 3b € B'. f(a) = b}. Projections
A X ... x Ay = Aj for 1 < j < m are given by m;(a1,...,an) = a;. We
often regard (finite) sequences 7 = wg,uy,... € U* U U of elements of U as
partial functions of type N — U and then write 7(i) to denote the element w;,
for i € dom(7). For 7 € U* UU%, we define the set Inf(7) = {u € U | Vi >
0.3j > i.7(j) = u} of elements that occur infinitely often in 7 (so Inf(7) = 0
for 7 € U*). An infinite R-path vy, po,v1,p1,... in a labelled graph G = (W, R)
with labels from [k] is even if max(Inf(pg,p1,...)) is even, and G is even if every
infinite R-path in G is even. We write P(U) for the powerset of U, and U™ for
the m-fold Cartesian product U x --- x U.

Finite Lattices and Fixpoints A finite lattice (L, C) (often written just as L)
consists of a non-empty finite set L together with a partial order C on L, such
that there is, for all subsets X C L, a join | | X and a meet [ ] X. The least and
greatest elements of L are defined as T = | |0 and element T = []{), respectively.
A set By, C L such that | = | [{b € B | b C I} is a basis of L. Given a finite
lattice L, a function g : L¥ — L is monotone if g(Vi,..., Vi) E g(Wy,..., W)
whenever V; C W; for all 1 < ¢ < k. For monotone f : L — L, we put

GFPf=|{VEL|VEf(V)} LFPf=[{V EL]| f(V)EV}
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which, by the Knaster-Tarski fixpoint theorem, are the greatest and the least
fixpoint of f, respectively. Furthermore, we define fO(V) =V and fm*4(V) =
f(f™(V)) for m > 0, V C L; since L is finite, we have GFP f = f™(T) and
LFP f = f™(L) by Kleene’s fixpoint theorem. Given a finite set U and a natural
number n, (nY,C) is a finite lattice, where n¥ = {f : U — [n — 1]} denotes the
function space from U to [n—1] and f C gif and only if for all u € U, f(u) < g(u).
For n = 2, we obtain the powerset lattice (2V, C), also denoted by P(U), with
least and greatest elements () and U, respectively, and basis {{u} | u € U}.

Parity games A parity game (V, E, §2) consists of a set of nodes V', a left-total
relation £ C V x V of moves encoding the rules of the game, and a priority
function 2 : V — N, which assigns priorities 2(v) € N to nodes v € V.
Moreover, each node belongs to exactly one of the two players Eloise or Abelard,
where we denote the set of Eloise’s nodes by V3 and that of Abelard’s nodes
by V. A play p € V¥ is an infinite sequence of nodes that follows the rules
of the game, that is, such that for all ¢« > 0, we have (p(i),p(i + 1)) € E. We
say that an infinite play p = vg,v1,... is even if the largest priority that occurs
infinitely often in it (i.e. max(Inf({2 0 p))) is even, and odd otherwise, and call
this property the parity of p. Player Eloise wins exactly the even plays and
player Abelard wins all other plays. A (history-free) Eloise-strategy s : V3 — V
is a partial function that assigns single moves s(z) to Eloise-nodes @ € dom(s).
Given an Eloise-strategy s, a play p is an s-play if for all ¢ € dom(p) such that
p(i) € Va, we have p(i + 1) = s(p(i)). An Eloise-strategy wins a node v € V' if
Eloise wins all s-plays that start at v. We have a dual notion of Abelard-strategies;
solving a parity game consists in computing the winning regions wing and winy
of the two players, that is, the sets of states that they respectively win by some
strategy.

It is known that solving parity games is in NP NCONP (and, more specifi-
cally, in UP N co-UP). Recently it has also been shown [9] that for parity games
with n nodes and k priorities, wing and winy can be computed in quasipolyno-
mial time O(n'°2#+6). Another crucial property of parity games is that they are
history-free determined [21], that is, that every node in a parity game is won by
exactly one of the two players and then there is a history-free strategy for the
respective player that wins the node.

3 Systems of Fixpoint Equations

We now introduce our central notion, that is, systems of fixpoint equations over
a finite lattice. Throughout, we fix a finite lattice (L,C) and a basis By, of L
such that | ¢ By, and k 4+ 1 monotone functions f; : L**! — L, 0 <i < k.

Definition 3.1. A system of equations consists of k + 1 equations of the form

Xi =y, fi(Xo,..., Xk)
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where 7; € {LFP, GFP}, briefly referred to as f. For a partial valuation o : [k] —
L, we inductively define

[[X’L]]U = niXi‘figv
where the function f/ is given by
FO(A) = £i([X0]7 s [Xica]” Ayev(a’ i+ 1), ... ev(a', k)

for A € L, where (o[i — A])(j) = o(j) for j # i and (o[i — A])(i) = A,
o' = ofi — A] and where ev(o,j) = o(j) if j € dom(o) and ev(o,j) = [X;]?
otherwise (the latter clause handles free variables). Then, the solution of the
system of equations is [X]¢ where € : [k] — L denotes the empty valuation
(i.e. dom(e) = ). Similarly, we can obtain solutions for the other components
as [X;]¢ for 0 < i < k; we drop the valuation index if no confusion arises, and
sometimes write [X;] ; to make the equation system f explicit. We denote by Efo
the solution [X}] for the canonical system of equations of the particular shape

Xi=n; Xia Xo =crp fo(Xo, ..., Xk),
where 0 < ¢ < k, n; = LFP for odd ¢ and n; = GFP for even .

Example 3.2. (1) Parity games and the modal p-calculus: Let (V, E, 2) be a
parity game with priorities 0 to k, take L = P(V), and consider the canonical
system of fixpoint equations E/2 for the function f5: P(V)k*+t — P(V) given by

Vo, ..., Vi) ={v e V5| E(v)N V_Q(v) * @} U{velw|E@)C VQ(U),}

for (Vg,..., Vi) € P(V)EFTL Tt is well known that wing = E/3, i.e. parity games
can be solved by solving fixpoint equation systems. Intuitively, v € f3(Vo,..., V)
iff Eloise can enforce that some node in Vi, is reached in the next step. The
nested fixpoint expressed by E/3 (in which least (greatest) fixpoints correspond
to odd (even) priorities) is constructed in such a way that Eloise only has to rely
infinitely often on an argument V; for odd 7 if she can also ensure that some
argument V; for j > ¢ is used infinitely often.

Model checking for the modal p-calculus [29] and solving parity games are
linear-time equivalent problems. Formulae of the p-calculus are evaluated over
Kripke frames (U, R) with set of states U and transition relation R. Formulae
¢ of the p-calculus can be directly represented as equation systems over the
lattice P(U) by recursively translating ¢ to equations, mapping subformulae
uX;. ¥(Xo, ..., Xg) and vX;. (X, ..., Xi) to equations

Xi —pu ¢(X077Xk> Xj v X(X07"'an>7
and interpreting the modalities ¢ and [J by functions

fo(X) ={ueU]| R(u)nX #0} foX) ={ueU]| R(u) € X}
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The solution of the resulting system of equations then is the truth set of the
formula ¢, that is, model checking for the model p-calculus reduces to solving
fixpoint equation systems. Furthermore, satisfiability checking for the modal p-
calculus can be reduced to solving so-called satisfiability games [20], that is,
parity games that are played over the set of states of a determinized parity
automaton. These satisfiability games can be expressed as systems of fixpoint
equations, where the functions track transitions in the determinized automaton.

(2) Energy parity games and the energy u-calculus: Energy parity games [10] are
two-player games played over weighted game arenas (V, E,w, {2), where w : E —
7 assigns integer weights to edges. The winning condition is the combination
of a parity condition with a (quantitative) positivity condition on the sum of
the accumulated weights. It has been shown [2,10], that b = n-d-W is a
sufficient upper bound on energy level accumulations in energy parity games
with n nodes, k priorities and maximum absolute weight W. We define a function
5 (b+1)Y)R — (b+1)Y over the finite lattice (b+1)" (whose elements are
functions from V' to the set {0,...,b+ 1}) by putting

min(en(v, Vo)) ifve Vi
max(en(v, Vo)) ifvely,

(FS(Vo, ..., Vi) () :{

for (Vo,..., Vi) € (b+1)V) ! and v € V, using en(v, o) as abbreviation for

en(v,0) ={n € {0,...,b} | Ju € E(v).n = max{0,0(u) — w(v,u)}} U
{b+1]|3Fue EWw).o(u) —w(v,u) >bora(u) > b},

where 0 : V' — {0,...,b+ 1}. Then it follows from the results of [2] that player
Eloise wins a node v in the energy parity game with minimal initial credit ¢ < b+1
if (Ef3)(v) = ¢, that is, if the solution of the canonical equation system over f5
maps v to a value ¢ that is at most b.

The energy p-calculus [2] is the fixpoint logic that corresponds to energy par-
ity games. Its formulae are evaluated over weighted game structures and involve
operators Op¢ and Og¢ that are evaluated depending on the energy function
[¢] : V— {0,...,b+ 1} that is obtained by first evaluating the argument for-
mula ¢. The semantics of the diamond operator then is an energy function that
assigns, to each state v, the least energy value ¢ € {0,...,b+ 1} such that there
is a move from v to some node w such that the credit ¢ suffices to take the
move from v to u and retain an energy level of at least [¢](u). Formulae can be
translated to equation systems over the finite lattice (b + 1)V, where the func-
tions for modal operators are defined according to their semantics as presented
in [2]. Solving these equation systems then amounts to model checking energy
pu-calculus formulae over weighted game structures.

(3) Latticed p-calculi: In latticed p-calculi [7], formulae are evaluated over com-
plete lattices L rather than the powerset lattice; for finite lattices L, formulae of
latticed p-calculi hence can be translated to fixpoint equation systems over L, so
that model checking reduces to solving equation systems. An associated latticed
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variant of games has been introduced in [30] and for finite lattices L, solving
latticed parity games over L reduces to solving equation systems over L.

(4) The coalgebraic p-calculus and coalgebraic parity games: The coalgebraic
p-calculus [12] supports generalized modal branching types by using predicate
liftings to interpret formulae over T-coalgebras, that is, over structures whose
transition type is specified by an endofunctor T on the category of sets. For
instance the functors T = P, T = D and T = G map sets X to their pow-
erset P(X), the set of probability distributions D(X) = {f : X — [0,...,1]}
over X, and to the set of multisets G(X) = {f : X — N} over X, respectively.
The corresponding T-coalgebras then are Kripke frames (for 7' = P), Markov
chains (for 7' = D) and graded transition systems (for 7' = G), respectively. In-
stances of the coalgebraic p-calculus comprise, e.g. the two-valued probabilistic
p-calculus [12, 34] with modalities (,¢ for p € [0,...,1], expressing ‘the next
state satisfies ¢ with probability more than p’; the graded p-calculus [32] with
modalities Q4¢ for g € N, expressing ‘there are more than ¢ successor states
that satisfy ¢’; or the alternating-time p-calculus [1] that is interpreted over
concurrent game frames and uses modalities (D)¢ for finite D C N (encoding a
coalition) that express that ‘coalition D has a joint strategy to enforce ¢’.

It has been shown in previous work [24] that model checking for coalgebraic
p-calculi against coalgebras with state space U reduces to solving a canonical
fixpoint equation system over the powerset lattice P(U), where the involved func-
tion interprets modal operators using predicate liftings, as described in [12,24].
This canonical equation system can alternatively be seen as the winning region
of Eloise in coalgebraic parity games, a highly general variant of parity games
where the game structure is a coalgebra and nodes are annotated with modal-
ities. Examples include two-valued probabilistic parity games and graded parity
games in which nodes and edges are annotated with probabilities or grades, re-
spectively. In order to win a node v, player Eloise then has to have a strategy
that picks a set of moves to nodes that in turn are all won by Eloise, and such
that the joint probability (joint grade) of the picked moves is greater than the
probability (grade) that is assigned to v. It is known that solving coalgebraic
parity games reduces to solving fixpoint equation systems [24].

Furthermore, the satisfiability problem of the coalgebraic u-calculus has
been reduced to solving canonical fixpoint equations systems over lattices P(U),
where U is the state set of a determinized parity automaton and where the inner-
most equation checks for joint one-step satisfiability of sets of coalgebraic modal-
ities [25]. By interpreting coalgebraic formulae over finite lattices dV rather than
over powerset lattices, one obtains the finite-valued coalgebraic p-calculus (with
values {0,...,d}), which has the finite-valued probabilistic u-calculus (e.g. [36])
as an instance. Model checking for the finite-valued probabilistic p-calculus hence
reduces to solving equation systems over the finite lattice d!V!, where {0,...,d}
encodes a finite set of probabilities.
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4 Fixpoint Games and History-free Witnesses

We instantiate the existing notion of fixpoint games [4,42], which characterize
solutions of equation systems, to our setting (that is, to finite lattices), and then
use these games as a technical tool to establish our crucial notion of history-
freeness for systems of fixpoint equations.

Definition 4.1 (Fixpoint games). Let X; =,, fi(Xo,...,Xk), 0 <i <k, be
a system of fixpoint equations. The associated fizpoint game is a parity game
(V, E, 2) with set of nodes V = (B, x [k]) U LF*1, where nodes from By, x [k]
belong to player Eloise and nodes from L¥*! belong to player Abelard. For nodes
(u,i) € By, x [k], we put

E(u,i) = {(Uy,...,Ux) € L* ' |u C f;(Uo,...,Us)},
and for nodes (Uy,...,Us) € L**1, we put
E(U, ..., Uy) = {(u,i) € By, x [K] | w C U;}.

The alternation depth ad(i) of an equation X; =,, fi(Xo,...,X1) is defined as
ad! if n; = p and as ady if n; = v, where ad!’, ad; are recursively defined by

ad? i>0,m1=pn ad | +1 i>0,m-1=p
ad=<dad/ ;+1 i>0,m_1=v adf =<ad/, i>0,m_1=v
1 1=0 0 1=0

for 0 < ¢ < k. The priority function §2 : V' — [ad(k)] then is defined by £2(u,i) =
ad(i) and Q2(Us, ..., Uy) = 0.

Remark 4.2. In [4], an alternative priority function 2’ : V' — [2k + 1] with

2i if n; = GFP
Q=9
2i+1 ifn, =LFP

and 2'(Up,...,U;) = 0 is used. Since ad(7) is even if and only if 7; is even, and
moreover ad(i) < ad(j) for ¢ < j, and ¢ < j whenever ad(i) < ad(j), it is easy to
see that £2 and (2’ in fact assign identical parities to all plays. In the following,
we will use the more economic parity function §2 so that fixpoint games have
only d := ad(k) < k priorities.

We import the associated characterization theorem [4, Theorem 4.8]:

Theorem 4.3 ([4]). We have u T [X;]; if and only if Eloise wins the node
(u,4) in the fixpoint game for the given system f of equations.

Remark 4.4. While this shows that parity game solving can be used to solve
equation systems, the size of fixpoint games is exponential in |By|, so they do
not directly yield a quasipolynomial algorithm for solving equation systems.
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Next we define our notion of history-freeness for systems of fixpoint equations.

Definition 4.5 (History-free witness). A history-free witness for v C [X;] ¢
is an even labelled graph (W, R) with labels from [d] such that W C By x
[d], (u,i) € W, and for all (v,p) € W, we have v T f,(Up,...,U;) where
Uj = |Umi[Raagj)(v,p)] for 0 < j < k, noting that Ruq(;)(v,p) € W so that
T [Rad(j)(v,p)] C By, and Uj € L.

In analogy to history-free strategies for parity games, history-free witnesses as-
sign tuples (R1(v,p), ..., Ra(v,p)) of sets R;(v,p) € W to pairs (v, p) € W with-
out relying on a history of previously visited pairs. We have |W| < (d + 1)|By|
and |R| < (d+1)|[W|?, that is, the size of history-free witnesses is polynomial in
|Bp|. Crucially, history-free witnesses always exist:

Lemma 4.6. For all u € Br, and i € [k], we have
u C [X;]y if and only if there is a history-free witness for u C [X;]¢.

Proof. In one direction, we have u T [X;]; so that Eloise wins the node (u,1)
in the according fixpoint game by Lemma 4.3. Let s be a corresponding history-
Jfree winning strategy (such strategies always exists, see e.g. [21]). We inductively
construct a witness for u C [X;]y, starting at (u,4). When at (v,p) € B x [k]
with s(v, p) = (Uo, ..., Ux), we put R;(v,p) = Ujjaq(j)=i(Us x {j}) for 0 <i < d
and hence have ad(j) = i for all ((v,p),i,(u,j)) € R. Since s is a winning
strategy, the resulting graph (W, R) is a history-free witness for v T [X;]; by
construction; in particular, (W, R) is even. For the converse direction, the witness
for u C [X;] s directly yields a winning Eloise-strategy for the node (u,4) in the
associated fixpoint game. This implies v C [X;]; by Lemma 4.3. O

5 Solving Equation Systems using Universal Graphs

We go on to prove our main result. To this end, we fix a system f of fixpoint
equations f; : LF*1 — L, 0 <4 < k, and put n := |Br| and d := ad(k) for the
remainder of the paper.

Definition 5.1 (Universal graphs [13, 14]). Let G = (W,R) and G' =
(W', R') be labelled graphs with labels from [d]. A homomorphism of labelled
graphs from G to G’ is a function @ : W — W' such that for all (v,p,w) € R,
we have (®(v),p,P(w)) € R'. An (n,d + 1)-universal graph S is an even graph
with labels from [d] such that for all even graphs G with labels from [d] and with
|G| < n, there is a homomorphism from G to S.

We fix an (n(d + 1), (d + 1))-universal graph S = (Z, K), noting that there
are (n(d + 1), (d + 1))-universal graphs (obtained from universal trees) of size
quasipolynomial in n and d [14]. We now combine the system f with the uni-
versal graph S to turn the parity conditions associated to general systems of
fixpoint equations into a safety condition, associated to a single greatest fixpoint
equation.



Quasipolynomial Computation of Nested Fixpoints 49

Definition 5.2 (Chained-product fixpoint). We define a function
g: P(B x [k] x Z) — P(Br x [k] x Z)
U = {(pqg) €BLx[klxZ|vC f(P,....P")}

where
P =| |{u€ By | 3s € Kagy(q)- (u,i,s) € U},

We refer to Yy =grp 9(Y0) as the chained-product fizpoint (equation) of f and S.

We now show our central result: apart from the annotation with states from the
universal graph, the chained-product fixpoint g is the solution of the system f.

Theorem 5.3. For allu € By, and 0 <i < k, we have
u C [Xi]s if and only if there is g € Z such that (u,i,q) € [Yol,.

Proof. For the forward direction, let v C [X;] ;. By Lemma 4.6, there is a history-
free witness G = (W, R) for u C [X;];. Since S is a (n(d + 1), d + 1)-universal
graph and since G is a witness and hence an even labelled graph of suitable
size |G| < n(d + 1), there is a graph homomorphism & from G to S. Start-
ing at (u,4,®(u,i),0), we inductively construct a witness for containment of
(u,1,P(u,i)) in [Yp],. When at (vi,p1,P(v1,p1),0) with (vi,p1) € W, we put

R/O(’Ulaplvds(vlapl)ao) :{(Uz,pg,ds(vg,pz),O) S BL X [d] X Z X [O] |
(v2,P2) € Rad(py) (v1,11), P(v2,p2) € Kad(py) (P(v1,p1)) }

and continue the inductive construction with all these (vg, p2, @(va, p2),0), hav-
ing (vg,p2) € W. The resulting structure G’ = (W', R’) indeed is a witness
for containment of (u,i,q) in [Yy]s: G’ is even by construction. Moreover, we
need to show that for (vy,p1, P(v1,p1),0) € W, we have (v1,p1,P(v1,p1),0) €
g(mi[Rh(v1,p1, P(v1,p1),0)]), ie. vy T fp (Péj’ds(vl’pl), o P,g’(p(vl’pl)) where
U = m[R}(v1, p1,P(v1,p1),0)]. Since G is a witness and (vy,p1) € W by con-
struction of W', we have v; C f,, (U, ..., Ug) where U; = | |(7j[Raq(i)(v1,p1)])-

By monotonicity of f,,, it thus suffices to show that U; T PjU’@(vl’p D for

0 < j < k; by definition of P{"*"**) this follows if

71 [Raa(jy (v1,01)] S{u € Br | 3s € Kagy)(P(v1,p1))-(u, 4, 8) € W},

where W = 7[R (v1,p1,q1,0)]. So let w € By, such that w € 71 [Ryq(;y(v1,p1)]-
Since R is a witness that is constructed as in the proof of Lemma 4.6, we
have i = ad(i') for all ((v',p’),4,(w’,7")) € R. Thus (w,j) € Raq(j)(vi,p1)
for some j such that ad(j) = 4, that is, ((vi,p1),ad(j),(w,7)) € R, hence
(D(v1,p1),2d(j), P(w,j)) € K because ¥ is a graph homomorphism. By
definition of R{, we have (w,j, ®(w,5),0) € R,(vi,p1,P(v1,p1),0) so that
(w,7,P(w, 7)) € m[Ry(v1,p1,P(v1,p1),0)]. We are done since P(w,j) €
Kaq(j) ((v1,p1))-
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For the converse implication, let (ug,po,qo) € [Yo], for some gy € Z. Let
G = (W, R) be a history-free witness for this fact. By Lemma 4.3, it suffices
to provide a strategy in the fixpoint game for the system f with which Eloise
wins the node (ug, pg). We inductively construct a history-dependent strategy s
as follows: For ¢ > 0, we abbreviate U; = Ro(u;, pi, ¢i,0). We put s(ug,po) =
(POUO’qO, e P,g‘”qo). For the inductive step, let

U,

Uos, Uo, Un—1,qn— 13—
T:(UOapo)v(POOqov"'aPkoqo)a"'?(PO i 17"'7Pk;n b 1)a(unapn)

be a partial play of the fixpoint game that follows the strat-
egy that has been constructed so far. Then we have an R-path
(uo, oy 90,0), (u1,01,q1,0), ..., (Un,Pn, @n,0), where, for 0 < i < n, we
have (¢, pit1,¢i+1) € K since u;11 Pg;fl by the inductive construction.
Put s(r) = (P ..., P/™). Since G is a witness, the strategy uses only
moves that are available to Eloise (i.e. ones with u,, T f,, (s(7))). Also, s is a
winning strategy as can be seen by looking at the K-paths that are induced by
complete plays 7 that follow s, as described (for partial plays) above. Since S is
a universal graph and hence even, every such K-path is even and the sequence
of priorities in 7 is just the sequence of priorities of one of these K-paths. 0O

Remark 5.4. Since the set [Yp], is the greatest fixpoint of g, it can be computed
by simple approximation from above, that is, as ¢" (B, x [k] X Z) where m =
|Br, x [k] x Z|. However, each iteration of the function g may require up to |Z|
evaluations of an equation. In the next section, we will show how this additional
iteration factor in the computation of [Y;], can be avoided.

6 A Progress Measure Algorithm

We next introduce a lifting algorithm that computes the set [Yy], efficiently,
following the paradigm of the progress measure approach for parity games
(e.g. [27,28]). Our progress measures will map pairs (u,) € By, X [k] to nodes in
a universal graph that is equipped with a simulation order, that is, a total order
that is suitable for measuring progress.

Definition 6.1 (Simulation order). For natural numbers 4, i’, we put ¢ = @’
if and only if either ¢ is even and 7 = 4/, or both ¢ and i’ are odd and 7 > /. A
total order < on Z is a simulation order if for all q,¢' € Z,

q < ¢ implies that for all 0 <4 < k and s € K;(q), there are
i’ =i and s € Ky (q') such that s < s'.

Lemma 6.2. There is an (n(d + 1),d + 1)-universal graph (Z,K) of size
quasipolynomial in n and d, and over which a simulation order < exists.

Proof (Sketch). Tt has been shown [14, Theorem 2.2] (originally, in different
terminology, [28]) that there are (I, h)-universal trees (a concept similar to, but
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slightly more concrete than universal graphs) with set of leaves T such that
IT| < 2l(1°glzh+1). Leaves in universal trees are identified by navigation paths,
that is, sequences of branching directions, so that the leaves are linearly ordered
by the lexicographic order < on navigation paths (which orders leafs from the
left to the right). As described in [13], one can obtain a universal graph (7, K)
over T in which transitions (¢,4,¢") € K for odd i (the crucial case) move to
the left, that is, ¢’ is a leaf that is to the left of ¢ in the universal tree (so
that ¢’ < ¢), ensuring universality. As it turns out, the lexicographic ordering
on T is a simulation order. Adapting this construction to our setting, we put
l=n(d+1) and h = d+ 1 and obtain a (n(d+ 1),d + 1)-universal graph (along
with a simulation order <) of size at most 2n(d + 1) (log("(d(;_ll)Hd*z) which is
quasipolynomial in n and d. 0O

We fix an (n(d+1),d+ 1)-universal graph (Z, K') and a simulation order < on Z
for the remainder of the paper (these exist by the above lemma).

Definition 6.3 (Progress measure, lifting function). We let gnin € Z de-
note the least node w.r.t. < and fix a distinguished top element * ¢ Z, and
extend > to Z U {%} by putting x > ¢ for all ¢ € Z. A measure is a map
w: Br x [k] = Z U {x}, i.e. assigns nodes in the universal graph or x to pairs
(v,p) € Br x [k]. A measure p is a progress measure if whenever p(v,p) # *,
then v C f,,(U[",...,Uf"?) where ¢ = p(v, p) and

Ukt = |_|{u € Br, | 3s € Kuai)(q)- p(u, i) < s}

We define a function Lift : (By X [k] = ZU{x}) — (Br x [k] = ZU {x}) on
measures by

(Lift(1))(v,p) =min{g € Z | v C f,(U?, ..., UM}

where min(Z’) denotes the least element of Z' w.r.t. <, for ) £ Z' C Z; also we
put min(()) = *.

The lifting algorithm then starts with the least measure my,;, that maps all pairs
(v,p) € B x [k] to the minimal node (i.e. Muyin(v,P) = ¢min) and repeatedly
updates the current measure using Lift until the measure stabilizes.

Lifting algorithm

(1) Initialize: Put p := muyip.

(2) If Lift(p) # p, then put p:= Lift(x) and go to 2. Otherwise go to 3.

(3) Return the set E = {(v,p) € Br, x [k] | u(v,p) # x}.

Lemma 6.4 (Correctness). For allv € By, and 0 < p < k, we have

(v,p) € E if and only if v € [Xp];.
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Proof (Sketch). Let p denote the progress measure that the algorithm computes.
For one direction of the proof, let (v, p) € E. By Lemma 4.6 it suffices to construct
a witness for v € [X,];. We extract such a witness (E, R) from the progress
measure j, relying on the properties of the simulation order < that is used
to measure the progress of p to ensure that any infinite sequence of measures
that p assigns to some R-path induces an infinite (and hence even) path in the
employed universal graph. This shows that (E, R) indeed is an even graph and
hence a witness. For the converse direction, let v € [X,]; so that there is, by
Theorem 5.3, some ¢ € Z such that (v,p,q) € [Yo],. For (u,i) such that there is
q' € Z such that (u,i,q") € [Yoly, let qu,;) € Z denote the minimal such node
w.r.t. <. It now suffices that u(u,4) < q(,,;) for all such (u,4), which is shown by
induction on the number of iterations of the lifting algorithm. ]

Corollary 6.5. Solutions of systems of fixpoint equations can be computed with
quasipolynomially many evaluations of equations.

Proof. Given an (n(d+ 1),d + 1)-universal graph (Z, K) and a simulation order
on Z, the lifting algorithm terminates and returns the solution of f after at
most n(d + 1) - |Z] many iterations. This is the case since each iteration (except
the final iteration) increases the measure for at least one of the n(d + 1) nodes
and the measure of each node can be increased at most |Z| times. Using the
universal graph and the simulation order from the proof of Lemma 6.2, we have

|Z] < 2n(d + 1)(1°g("(d(;r11))+d+2) so that the algorithm terminates after at most

2(n(d + 1))2(1°g("(dd++11))+d+2) € O((n(d + 1))os(d+1) iterations of the function
Lift. Each iteration can be implemented to run with at most n(d+ 1) evaluations

of an equation. O

Corollary 6.6. The number of function calls required for the solution of systems
of fizpoint equations with d < logmn is bounded by a polynomial in n and d.

Proof. Following the insight of Theorem 2.8 in [9], Theorem 2.2. in [14] implies
that if d < logn, then there is an (n(d+1), d+1)-universal tree of size polynomial
in n and d. In the same way as in the proof of Lemma 6.2, one obtains a universal
graph of polynomial size and a simulation order on it. O

Example 6.7. Applying Corollary 6.5 and Corollary 6.6 to Example 3.2, we
obtain the following results:

(1) The model checking problems for the energy p-calculus and finite latticed
p-calculi are in QP. For energy parity games with sufficient upper bound b on
energy level accumulations, we obtain a progress measure algorithm that termi-
nates after a number of iterations that is quasipolynomial in b.

(2) Under mild assumptions on the modalities (see [24]), the model checking
problem for the coalgebraic p-calculus is in QP; in particular, this yields QP
model checking algorithms for the graded p-calculus and the two-valued prob-
abilistic p-calculus (equivalently: QP progress measure algorithms for solving
graded and two-valued probabilistic parity games).
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(3) Under mild assumptions on the modalities (see [25]), we obtain a novel upper
bound 2€(ndlogn) for the satisfiability problems of coalgebraic p-calculi, in par-
ticular including the monotone p-calculus, the alternating-time p-calculus, the
graded p-calculus and the (two-valued) probabilistic p-calculus, even when the
latter two are extended with (monotone) polynomial inequalities. This improves
on the best previous bounds in all cases.

7 Conclusion

We have shown how to use universal graphs to compute solutions of systems of
fixpoint equations X; = ;. fi(Xo, ..., Xx) (with the n; marking least or greatest
fixpoints) that use functions f; : L*¥*' — L (over a finite lattice L with basis
By) and involve up to k + 1-fold nesting of fixpoints. Our progress measure
algorithm needs quasipolynomially many evaluations of equations, and runs in
time O(q-t(f)), where ¢ is a quasipolynomial in |Br| and the alternation depth
of the equation system, and where ¢(f) is an upper bound on the time it takes
to compute f; for all i.

As a consequence of our results, the upper time bounds for the evaluation
of various general parity conditions improve. Example domains beyond solv-
ing parity games to which our algorithm can be instantiated comprise model
checking for latticed p-calculi and solving latticed parity games [7,30], solving
energy parity games and model checking for the energy p-calculus [2,10], and
model checking and satisfiability checking for the coalgebraic p-calculus [12].
The resulting model checking algorithms for latticed p-calculi and the energy
p~calculus run in time quasipolynomial in the provided basis of the respective
lattice. In terms of concrete instances of the coalgebraic p-calculus, we obtain,
e.g., quasipolynomial-time model checking for the graded [32] and the prob-
abilistic u-calculus [12,34] as new results (corresponding results for, e.g., the
alternating-time p-calculus [1] and the monotone p-calculus [18] follow as well
but have already been obtained in our previous work [24]), as well as improved
upper bounds for satisfiability checking in the graded p-calculus, the probabilis-
tic p-calculus, the monotone p-calculus, and the alternating-time p-calculus. We
foresee further applications, e.g. in the computation of fair bisimulations and fair
equivalence [26,31] beyond relational systems, e.g. for probabilistic systems.

As in the case of parity games, a natural open question that remains is
whether solutions of fixpoint equations can be computed in polynomial time
(which would of course imply that parity games can be solved in polynomial
time). A more immediate perspective for further investigation is to generalize
the recent quasipolynomial variant [38] of Zielonka’s algorithm [43] for solving
parity games to solving systems of fixpoint equations, with a view to improving
efficiency in practice.
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