
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Iterative Bounded Synthesis for Efficient Cycle
Detection in Parametric Timed Automata∗

Étienne André1 , Jaime Arias2 , Laure Petrucci2 , and Jaco van de Pol3�

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
2 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, France

3 Aarhus University, Aarhus, Denmark, jaco@cs.au.dk

Abstract. We study semi-algorithms to synthesise the constraints un-
der which a Parametric Timed Automaton satisfies some liveness re-
quirement. The algorithms traverse a possibly infinite parametric zone
graph, searching for accepting cycles. We provide new search and prun-
ing algorithms, leading to successful termination for many examples. We
demonstrate the success and efficiency of these algorithms on a bench-
mark. We also illustrate parameter synthesis for the classical Bounded
Retransmission Protocol. Finally, we introduce a new notion of complete-
ness in the limit, to investigate if an algorithm enumerates all solutions.

Keywords: Parameter Synthesis, Liveness Properties, IMITATOR

1 Introduction

Many critical devices and processes in our society are controlled by software,
in which real-time aspects often play a crucial role. Timed Automata (TA [1])
are an important formalism to design and study real-time systems; they extend
finite automata with real-valued clocks. Their success is based on the decidability
of the basic analysis problems of checking reachability and liveness properties.

Precise timing information is often unknown during the design phase. There-
fore, Parametric Timed Automata (PTA [2]) extend TA with parameters, rep-
resenting unknown waiting times, deadlines, network speed, etc. A single PTA
represents an infinite class of TA. To facilitate design exploration, parameter
constraint synthesis aims at a description of all parameter values for which the
system meets some requirement. Unfortunately, it is already undecidable to check
if a PTA admits a parameter valuation for which a bad state can be reached [2,3].

In this paper, we study the parameter constraint synthesis problem for live-
ness properties of the full class of PTA. In particular, the goal is to compute
the parameter valuations for which a Parametric Timed Büchi Automaton has
a non-empty language. Note that this allows handling requirements in LTL and
MITL [24]. We represent the solution concisely as a disjunction of conjunctions

∗This work is partially supported by projects CNRS-INS2I TrAVAIL, IFD SE-
CReTS and ANR-NRF ProMiS (ANR-19-CE25-0015).

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12651, pp. 311–329, 2021.
https://doi.org/10.1007/978-3-030-72016-2 17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72016-2_17&domain=pdf
https://orcid.org/0000-0001-8473-9555
https://orcid.org/0000-0003-3019-4902
https://orcid.org/0000-0003-3154-5268
https://orcid.org/0000-0003-4305-0625
mailto:jaco@cs.au.dk
https://www.loria.science/ProMiS/
https://doi.org/10.1007/978-3-030-72016-2_17

É. André et al.

of linear inequalities between the parameters (a set of convex polyhedra).

We will consider semi-algorithms that operate on the so-called parametric
zone graph (PZG), where a parametric zone is a conjunction of linear inequalities
over clock and parameter values. These semi-algorithms may not terminate since
the PZG can be infinite. However, even in that case, we are interested in the
soundness and completeness of the set of all enumerated solutions.

Our contributions to the parameter constraint synthesis for liveness of PTA are:
1) A definition of soundness and completeness for non-terminating algorithms.
2) A new synthesis algorithm, using bounded search with iterative deepening;
this is the first algorithm that enumerates all accepting cycles in the possibly
infinite PZG, in contrast to previous NDFS-based algorithms [25]. 3) An experi-
mental benchmark, comparing the successful termination and runtime efficiency
of all algorithms. 4) A case study on the Bounded Retransmission Protocol.

Related Work. Decidability for (subclasses of) PTA has been extensively stud-
ied [2,19,3]. We study the emptiness and related synthesis problem for Paramet-
ric Timed Büchi Automata with unrestricted use of rational parameters and
real-valued clocks. In this general case, the model checking problem is undecid-
able [2] and therefore exact synthesis is out of reach (in contrast to the setting
with bounded integers [20,11]). Decidability of liveness properties for a subclass
of PTA, where the occurrence of parameters is restricted, is discussed in [8].

Our approach inherits basic techniques from Timed Automata, in particular
the zone graph. For TA, the zone graph is finite after LU-abstraction [27,23,17].
Another technique prunes states that are subsumed by larger states. Subsump-
tion must be applied with care, in order to preserve liveness properties [22,18].

Previous semi-algorithms were based on Nested Depth-First Search (NDFS).
They search the (possibly infinite) parametric zone graph (PZG) for accepting
cycles. Their zones are projected onto the parameters and accumulated into the
global constraint. The basic cumulative algorithm [11] prunes states whose pro-
jected zone is already included in the accumulated constraint. The cumulative
algorithm was extended with subsumption and layering for PTA [25]. The prob-
lem with all NDFS-based algorithms is that the computation can diverge in one
branch, missing solutions for accepting cycles in other branches forever.

Our main improvement is a bounded approach, which can be combined with
breadth- and depth-first search. We check for accepting cycles up to a certain
bound, and keep increasing the bound to achieve completeness in the limit.
Eventually, this will enumerate all parametric constraints corresponding to all
accepting cycles in the PZG. Sometimes, the combination of bounded search
and subsumption can even identify infinite paths that do not form a cycle, but
this is not guaranteed. A previous proposal for Bounded Model Checking for
PTA [21] considers the region graph and has not been implemented. We will
provide several small illustrative examples inspired by the invited talk [26].

To evaluate our algorithms, we implemented them in the IMITATOR toolset
[6], extending its functionality from reachability to liveness properties. This way,
we can reuse its PTA benchmark [4]. We also reimplemented the algorithms
of [11,25] in a single NDFS framework. We illustrate our method on the Bounded

312

Iterative Bounded Synthesis for Efficient Cycle Detection 313

Retransmission Protocol (BRP). We synthesize parameter constraints for live-
ness properties of BRP for the first time. Our constraints are more liberal than
the constraints reported in previous work [14,19].

2 PTA, Parametric Zone Graphs and Accepted Runs

Let X be a set of real-valued clocks (e.g. x, y) and let P be a set of rational
parameters (e.g. p, q). A linear term over parameters (plt) is an expression of
the form

∑
i αipi + β, where pi ∈ P , and coefficients αi, β ∈ Q. A (diagonal)

inequality is of the form x1−x2 �� plt , with xi ∈ X∪{0} and �� ∈ {<,≤,=,≥, >}.
Examples are x − y ≤ 2p + q, x > q − 1 and 2 ≤ p. A (convex) constraint (or
zone Z) is a conjunction of inequalities. We write C for the set of zones.

x≤1
y≤p

�0

�1

x≥1
x:=0

y≥2

True

Fig. 1. PTA A1

We define a PTA A = (L, �0, F, I, E), where L is
a finite set of locations, �0 ∈ L is the initial location
and F ⊆ L is the set of accepting locations. I : L→ C
denotes an invariant for each location and E is a set of
transitions of the form (�, g, R, �′), with source � ∈ L,
target �′ ∈ L, guard g ∈ C and clock reset R ⊆ X.

The concrete semantics of a PTA is defined in
terms of valuations. A parameter valuation is a func-
tion v : P → Q≥0 and a clock valuation is a function
w : X → R≥0. Let d ∈ R≥0 be a delay, then we define
the clock valuation w + d such that (w + d)(x) := w(x) + d. Let R ⊆ X be
a clock reset, then we define the clock valuation w[R](x) := 0 if x ∈ R and
w(x) otherwise. We write 0 for the clock valuation s.t. ∀x ∈ X : 0(x) = 0. We
extend parameter valuations to linear terms. We write v, w |= (xi − xj �� plt) iff
w(xi)− w(xj) �� v(plt), and v, w |= Z iff v, w |= e for all inequalities e in Z.

Given a parameter valuation v, we write v(A) for the timed automaton ob-
tained by replacing all parameters p in invariants and guards by v(p). The con-
crete semantics of a PTA A is derived from the TA v(A), and defined as a
timed transition system with states (�, w), initial state (�0,0) (we assume that
0 |= I(�0)), and transitions → =

d→ · e→, where continuous time delay (
d→) and

discrete transitions (
e→) are defined as

– If d ∈ R≥0 and w + d |= I(�), then (�, w)
d→ (�, w + d).

– If e = (�, g, R, �′) ∈ E and w |= g and w[R] |= I(�′) then (�, w)
e→ (�′, w[R]).

An infinite run (�0, w0) → (�1, w1) → · · · is accepted if it passes through an
accepting location infinitely often, i.e. the set {i | �i ∈ F} is infinite. We ignore
the problem of Zeno runs, which can be avoided by a syntactic transformation [9].

Example 1. The PTA A1 in Fig. 1 has locations {�0, �1}, clocks {x, y} and pa-
rameter p. Only �1 is accepting. The initial location �0 has an invariant consisting
of two inequalities. Its self-loop is enabled if x ≥ 1 and it resets clock x. Note
that clock y is never reset. For p = 2.5, we have the following example run:(

�0, (0, 0)
) 1→

(
(�0, (1, 1)

)
→

(
(�0, (0, 1)

) 1→
(
(�0, (1, 2)

)
→

(
(�1, (1, 2)

)
.

Note that the accepting location �1 would not be reachable for p < 2. On the
other hand, for all p ≥ 2, there exists an infinite accepted run through �1.

É. André et al.

We will now recall from [5,20] the parametric zone graph (PZG), providing
an abstract semantics to a PTA. A single PZG treats all parameter valuations
symbolically. Also, the PZG avoids the uncountably infinite timed transition
system. The PZG can still be (countably) infinite.

We first define some operations on zones, in terms of their valuations. It is
well known that convex polyhedra are closed under these operations, and our
implementation in IMITATOR uses the Parma Polyhedra Library [10].

– Time elapse: Z↗ corresponds to
{
(v, w + d) | d ∈ R≥0 ∧ v, w |= Z

}
.

– Clock reset: Z[R] corresponds to
{
(v, w[R]) | v, w |= Z

}
.

The PZG is a transition system where each abstract state consists of a lo-
cation and a non-empty zone. The PZG of A = (L, �0, F, I, E) is (S, s0,⇒, A),
with S ⊆ L × C, initial state s0 = (�0, (

∧
x∈X x = 0)↗ ∩ I(�0)), and accepting

states A = {(�, Z) | � ∈ F}. A transition step (�, Z)⇒ (�′, Z ′) exists if for some
(�, g, R, �′) ∈ E we have Z ′ = ((Z ∩ g)[R] ∩ I(�′))↗ ∩ I(�′) �= ∅. We write ⇒+

(⇒∗) for the transitive (reflexive) closure of ⇒.

Example 2. The PZG of A1 from Ex. 1 is shown in Fig. 2; it extends infinitely
to the right. We use that (x = 0 ∧ y = 0)↗ = (y − x = 0). The loop on �0 can
only be executed when x = 1, and it resets x := 0, while y is never reset. So after
n executions of the loop, y − x = n. These n steps are only possible if p ≥ n.

The PZG obeys two important properties (Prop. 1 and 2). First, the para-
metric constraint can only decrease along the transitions in the PZG. Second,
a state simulates the behaviour of any state that it subsumes. We first define
these notions. We write Z ⊆ Z ′ iff v, w |= Z implies v, w |= Z ′.

– Parametric constraint: (�, Z)↓P corresponds to {v | ∃w.v, w |= Z}.
– Subsumption: (�, Z)
 (�′, Z ′) iff � = �′ and Z ⊆ Z ′.

Proposition 1 ([25]). If s1 ⇒ s2 then s2↓P ⊆ s1↓P .

Proposition 2 ([25]). If s1 ⇒ s2 and s1
 s′1 then for some s′2, s
′
1 ⇒ s′2 and

s2
 s′2.

Example 3. The first �1 state in Fig. 2 shows that there is an infinite loop when
p ≥ 2. By Prop. 1, the parametric zone of all states following the dashed red
edge are contained in p ≥ 2. So we can prune the PZG at the dashed red arrow,
since no new parameter valuations will be found.

�0,
x≤1
y≤p

y−x=0
p≥0

�0,
x≤1
y≤p

y−x=1
p≥1

�0,
x≤1
y≤p

y−x=2
p≥2

�0,
x≤1
y≤p

y−x=3
p≥3

· · ·

�1,
y−x=1
y≥2
p≥2

�1,
y−x=2
p≥2 �1,

y−x=3
p≥3

Fig. 2. PZG of the PTA A1 from Fig. 1

314

Iterative Bounded Synthesis for Efficient Cycle Detection 315

y≤p

�0 x≥5
y:=0

(a) PTA A2

�0,
y≤p
x=y
p≥0

s0

�0,
y≤p

x−y≥5
x−y≤p
p≥5

s1

�0,
y≤p

x−y≥5
x−y≤2p

p≥5

s2

�0,
y≤p

x−y≥5
x−y≤3p

p≥5

s3

· · ·
�

(b) Its PZG with an infinite accepted run, but no loop

Fig. 3. PTA A2 with the corresponding PZG

Example 4. Fig. 3 shows PTA A2 and its infinite PZG. The transition can only
become enabled when p ≥ 5. Each transition must happen within the following
p time units, so after n > 0 iterations, 5 ≤ x− y ≤ n× p. Note that s1 ⇒ s2 and
s1
 s2. By Prop. 2, for some s′, s2 ⇒ s′ and s2
 s′. Repeating the argument, we
can construct an infinite trace. So, although the PZG has no cycle, the presence
of an infinite path can be deduced even if we prune the PZG at the dashed edge.

3 Sound and Complete Liveness Parameter Synthesis

Given a PTA A, we aim at synthesising the parameter valuations v for which the
TA v(A) contains an infinite accepted run. Our algorithms operate by searching
the PZG (S, s0,⇒, A) for accepting “lassos” or, as in Ex. 4, 6 and 7, even for
accepting “spirals”. We write⇒+ (⇒∗) for the transitive (reflexive) closure of⇒.
An accepting lasso on s1 consists of two finite paths s0 ⇒∗ s1 ⇒+ s1, such that
s1 ∈ A. More generally, an accepting spiral on s1 consists of two finite paths
s0 ⇒∗ s1 ⇒+ s2, with s1 ∈ A and s1
 s2.

Proposition 3. If the PZG of PTA A contains an accepting spiral on s1, then
for all v ∈ s1↓P , v(A) contains an (infinite) accepted run.

Proof. Assume s0 ⇒∗ s1 ⇒+ s2 with s1 ∈ A and s1
 s2. Note that s2 ∈ A,
since
 only holds between states with the same location. Then by monotonicity,
s1↓P
 s2↓P and by Prop. 1, s2↓P
 s1↓P , so s1↓P= s2↓P . By Prop. 2, there
exists some s3 such that s2 ⇒ s3 and s2
 s3. We can repeat this to construct
an infinite accepted run from s1, with the constant parametric constraint s1↓P .
The states from s0 ⇒∗ s1 have an even larger constraint (Prop. 1). By the
correspondence between runs in the PTA and runs in the PZG, we obtain an
infinite accepted run in v(A) for every v � s1↓P . ��

The reverse of Prop. 3 is not true. An infinite PZG could contain an infinite
path that does not form a lasso (or even a spiral). Such an infinite path in the
PZG may or may not correspond to a concrete TA run.

x≤1
y≤p

�0 x≥1
x:=0

Fig. 4. PTA A3.

Example 5. The situation of A3 in Fig. 4 is quite different
from Ex. 4. The PZG of A3 has an infinite path (�0, Zi),
where Zi contains the invariant x ≤ 1 ∧ y ≤ p and the
additional constraints y−x = i∧p ≥ i. Note that at most p
transitions can happen in A3, since we cannot wait longer
when y ≥ p. So v(A3) has only finite runs for any v. We call
this infinite path infeasible, since ∩i(Zi↓P) = ∅.

É. André et al.

3.1 Soundness and Completeness

In contrast to TA, where both reachability and liveness properties are decid-
able [1], it is well-known that even reachability-emptiness for PTA is undecid-
able [2,3]. So in particular, we cannot expect a terminating, sound and complete
algorithm for liveness synthesis. Instead, our algorithms are semi-algorithms,
which enumerate a number of aggregate solutions, but may not terminate. Each
aggregate solution will be presented as a convex polyhedral constraint on the
parameters (“parametric zone”).

x≤1 x≥1
x:=0

x=1∧y=p

True

Fig. 5. PTA A4

Such semi-algorithms can either enumerate a finite num-
ber of aggregate solutions (after which they could termi-
nate or diverge), or enumerate an infinite number of aggre-
gates (and hence never terminate). Fig. 5 shows an example
where the set of solutions, p ∈ {1, 2, 3, . . .}, is not equivalent
to a finite disjunction of convex polyhedra, so no terminat-
ing algorithm can enumerate all aggregate solutions.1

In the rest of this section, we introduce and discuss various soundness and
completeness requirements for semi-algorithms. Assume that the algorithm is
run on an input PTA A and let Sol be the set of all solutions, i.e. Sol = {v |
v(A) has an accepted run}. Assume that the algorithm enumerates a finite or
infinite collection of aggregate solutions, in the form of parametric zones Zi.

Partial correctness: This traditional correctness criterion requires that if the
algorithm terminates, then

⋃
i Zi = Sol , i.e. the finite output characterizes ex-

actly all correct parameter valuations.

Soundness: This criterion also provides some guarantee when the algorithm
diverges. It requires that all enumerated solutions are correct, i.e.

⋃
i Zi ⊆ Sol .

Completeness: We call a semi-algorithm complete if it enumerates all solu-
tions, i.e. Sol ⊆

⋃
i Zi. Enumerating p = 1, p = 2, . . . is complete for A4.

Note that for reachability, a simple Breadth-First Search (BFS) over the PZG
would yield a sound and complete (but not always terminating) semi-algorithm.
For liveness, this is insufficient: the algorithm would miss infinite paths that do
not form a cycle. Still, the following trivial semi-algorithm, EnumQ, would be
sound and complete: “Enumerate all rational parameter valuations v, decide if
v(A) has an accepting loop [1] and, if so, emit {v}.” Although it is sound and
complete, this algorithm is quite unsatisfactory, since it will never terminate, and
it will never aggregate solutions in larger polyhedra. To distinguish PZG-based
algorithms, we need a weaker form of completeness.

Completeness for symbolic lassos: A semi-algorithm is complete for symbolic
lassos if it enumerates all parameter valuations leading to accepting lassos in the
PZG, i.e.

⋃
i Zi contains s↓P , when the PZG contains an accepting lasso on s.

Completeness for symbolic lassos is weaker than completeness, since it may
miss parameter valuations v for which v(A) has an accepted run, but this only
happens when the PZG has an infinite path that does not end in a cycle.

1It is not even obvious that ∩i(Zi↓P) can be represented by a finite conjunction.

316

Iterative Bounded Synthesis for Efficient Cycle Detection 317

4 Semi-Algorithms for Liveness Parameter Synthesis

In this section, we discuss three semi-algorithms for liveness parameter synthesis.
In Sec. 4.1, we discuss the previous approach [11,25], based on Nested Depth-
First Search (NDFS). All NDFS-based variants turn out to be incomplete for
symbolic lassos. In Sec. 4.2, we introduce a simple algorithm based on Breadth-
First Search (BFS), which analyses the Strongly Connected Components (SCC)
at each new level. We show that the BFS-based algorithm is complete for sym-
bolic lassos. Finally, Sec. 4.3 introduces our new Bounded Synthesis with Iter-
ative Deepening (BSID) algorithm. BSID is also complete for symbolic lassos,
and it is compatible with all NDFS enhancements.

4.1 Nested Depth-First Search with Enhancements

The NDFS algorithm (Alg. 1) is run on the PZG, with initial state s0, accepting
states A, and next-state(s) enumerating the ⇒-successors. We first explain
basic NDFS [13], cf. the uncoloured parts of Alg. 1. The goal of the outer blue
search (ll.4–13) is to visit all states in DFS order, and just before backtracking,
call the red search on all accepting states (l.12). Note that states on the DFS
stack are cyan (l.6), and states that are handled completely are blue (l.13). The
goal of the inner red search (ll.14–21) is to detect if there is an accepting cycle.
It colours visited states red (l.16), to ensure that states are visited at most once.
It reports an accepting cycle (l.20) when a cyan state is encountered.

Cumulative pruning (pink) [11,25]. For synthesis, we collect the Constraints
that lead to accepting cycles (l.20). We prune the search when the parametric
constraint of some state is included in Constraints (l.5,15). This is justified
by Prop. 1, since all successors of the pruned state will have an even smaller
parametric constraint. Prop. 1 also implies that all states on a cycle have the
same parametric constraint. So we also prune the red search, by restricting the
search for a cycle to the current parametric constraint (l.18).

Subsumption (grey) [22,25]. This pruning strategy takes advantage of the
subsumption relation between states. The accepting lassos reachable from red
states s are already included in Constraints . By Prop. 3, any lasso on state
t
 t′ can be simulated by t′. Hence, we immediately prune the search when
we encounter a state t
 Red, i.e. ∃t′. t
 t′ ∈ Red (l.11,21). We exploit the
subsumption structure once more: if t . Cyan, i.e. ∃t′. t . t′ ∈ Cyan (l.19), we
have found an accepting spiral, which implies there is an accepted run, Prop. 3.

Lookahead (yellow) . The lookahead strategy is new (in this context) and
allows for early detection of accepting cycles in dfsBlue . It looks for a transition
to a cyan state (l.7), which is on the DFS stack. If the source or target of this
transition is accepting, then the cycle is accepting as well and reported at l.8.

Accepting First (blue). This is a new strategy, aimed at increasing the chance
of finding an accepting cycle early in the search, to promote more pruning. It
simply works by picking accepting successors before their siblings at l.10,17.

É. André et al.

Alg. 1 Collecting ndfs with strategies:
cumulative pruning subsumption lookahead accepting first

1: procedure NDFS
2: Cyan := Blue := Red := ∅ ; Constraints := ∅
3: dfsBlue (s0)

4: procedure dfsBlue (s)
5: if s↓P ⊆ Constraints then Blue := Blue ∪ {s} ; return

6: Cyan := Cyan ∪ {s}
7: if ∃s′ ∈ next-state(s) ∩ Cyan : (s ∈ A ∨ s′ ∈ A) then
8: Constraints := Constraints ∪ {s′↓P }
 Report cycle at state s’
9: else
10: for all t ∈ Reordered-next-state(s) do
11: if t �∈ Blue ∪ Cyan ∧ t �� Red then dfsBlue (t)

12: if s ∈ A then dfsRed (s)

13: Blue := Blue ∪ {s}; Cyan := Cyan \ {s}

14: procedure dfsRed (s)
15: if s↓P �⊆ Constraints then
16: Red := Red ∪ {s}
17: for all t ∈ Reordered-next-state(s) do
18: if t↓P= s↓P then
19: if Cyan � t then
20: Constraints := Constraints ∪ t↓P
 Report cycle at state t
21: else if t �� Red then dfsRed (t)

Layering (not shown here) [25]. The layering strategy gives priority to states
with large parametric constraints, since these potentially prune many other
states. To this end, successors in the next parametric layer are delayed, which is
sound, since every cycle must lie entirely in the same parametric layer (Prop. 1).

Proposition 4. All mentioned NDFS variants are sound and partially correct.

Proof. Partial correctness is shown in [25]. Soundness follows from Prop. 3, since
all collected constraints correspond to accepting spirals. ��

y≤p

�0

�1

x≥5
y:=0

y≥6
∧x:=0

True

Fig. 6. PTA A5

Example 6. None of the mentioned NDFS is complete for
symbolic lassos. Consider A5 in Fig. 6. Its PZG extends
Fig. 3(b) with a transition from all states to one additional
accepting state with self-loop, s = (�1, p+ x ≥ y ≥ 6 + x),
where s↓P= (p ≥ 6). All NDFS variants (including all com-
binations of cumulative pruning, subsumption, lookahead,
accept-first, and layering) allow the execution that diverges
on the infinite p ≥ 5 path, so they will never detect the ac-
cepting cycle on p ≥ 6.

318

Iterative Bounded Synthesis for Efficient Cycle Detection 319

4.2 Breadth-First Search

We now describe a BFS-based synthesis algorithm for accepting cycle detection.
As in Alg. 1, our BFS algorithm maintains a parameter constraint Constraints ,
initially empty. The algorithm basically explores the newly computed symbolic
states in a breadth-first search manner, i.e. by iteratively computing all sib-
lings at a given depth level, before computing their own children states. Then,
whenever one of these new states is identical to a state already present in the
state space, a cycle may exist. In this case, we run an SCC-detection algorithm
(inspired by Tarjan) and, if there is indeed a cycle, we add the cycle parameter
constraint to the result Constraints . Remember that, from Prop. 1, all states in
such a cycle have the same parametric constraint.

Note that, in contrast to the algorithms in Sec. 4.1 and 4.3, we have to use
state equality, since using unrestricted subsumption could introduce spurious cy-
cles (cf. examples in [22]). However, we do use cumulative pruning, as in Sec. 4.1:
whenever the parametric constraint of a new state s is included in the current
result Constraints (i.e. s↓P ⊆ Constraints), we discard it, as no potential loop
starting from this state, or from its successors, can improve Constraints anyhow.

In contrast to the NDFS-based algorithms in Sec. 4.1, our BFS algorithm is
complete for symbolic lassos, since every lasso will appear at some level, and the
SCC algorithm will eventually detect it.

Proposition 5. The BFS+SCC algorithm is sound, partially correct, and com-
plete for symbolic lassos.

4.3 Bounded Synthesis with Iterative Deepening

One way to enforce termination is to explore the PZG up to a given depth
(Bounded Synthesis). However, this could make the result incomplete. Therefore,
as long as there are unexplored states, the bound should be increased (Iterative
Deepening), to synthesize parameter valuations for deeper accepting cycles.

Alg. 2 presents this procedure, called BSID. Although all strategies in Sec. 4.1
are compatible with this approach, only cumulative pruning and subsumption
are shown in the algorithm. It repeatedly explores the PZG from an initial
depth depthinit, incrementing the depth by depthstep at each iteration (l.8).
The termination criterion is that the current exploration did terminate without
reaching its current depth (l.7). In this case, the result is complete. Both dfsBlue
and dfsRed do not go beyond the current exploration depth (at l.10,20).

To avoid some duplicate work at different iterations, the set of blue states is
split using two colours: Green states have a descendent not completely processed
due to the depth limit, and should thus be considered in further iterations; Blue
states are those whose children have already been completely explored and thus
should not be considered anymore. Hence, at the beginning of an iteration, all
colours but blue are reset (l.5). States are coloured green when they are at the
depth limit (l.10) or if they have a green successor (l.16). Note that dfsBlue is
not called for blue states at l.14, but it may be called for states that have been
coloured green at the previous iteration but have been uncoloured.

É. André et al.

Proposition 6. The BSID algorithm is sound, partially correct, and complete
for symbolic lassos.

Proof. Soundness follows from Prop. 3, since every collected constraint corre-
sponds to an accepting spiral. Completeness for symbolic lassos follows, since
every accepting cycle in the PZG is entirely present at some depth. When NDFS
is run beyond that depth, it will report the constraint leading to that cycle. Par-
tial correctness follows, since the algorithm only terminates if the last run did
not reach the depth-bound, in which case the PZG is searched exhaustively. ��

Example 7. On bothA2 (Fig. 3, Ex. 4) andA5 (Fig. 6, Ex. 6), BSID will correctly
report p ≥ 5 and then terminate; for A5 it may first report p ≥ 6, depending
on the search order. It is actually the combination of bounded synthesis and
subsumption that makes the algorithm complete for this example. The bound
ensures that NDFS is run after the first iteration, and subsumption ensures that
an accepting spiral is found as explained in Ex. 4. At this point, the constraint
p ≥ 5 is discovered, which prunes the rest of the PZG, ensuring termination.

Alg. 2 Iterative deepening ndfs with cumulative constraint pruning and subsumption

1: procedure IterativeCollectNDFSsub(depthinit ,depthstep)
2: Cyan := Blue := Red := Green := ∅ ; Constraints := ∅
3: depth := depthinit ; again := true

4: while again do
5: Cyan := Red := Green := ∅ ; depthreached := false

6: dfsBlue (s0, 0)
7: if ¬depthreached then again := false

8: if again then depth := depth + depthstep

9: procedure dfsBlue (s ,ds)
10: if ds ≥ depth then depthreached := true ; Green := Green ∪ {s} ; return

11: if s↓P ⊆ Constraints then Blue := Blue ∪ {s} ; return

12: Cyan := Cyan ∪ {s}
13: for all t ∈ next-state(s) do
14: if t �∈ Blue ∪ Green ∪ Cyan ∧ t �� Red then dfsBlue (t ,ds+1)

15: if s ∈ A then dfsRed (s ,ds)
16: if ∃s′ ∈ Green ∩ next-state(s) then Green := Green ∪ {s}
17: else Blue := Blue ∪ {s}
18: Cyan := Cyan \ {s}

19: procedure dfsRed (s ,ds)
20: if ds < depth ∧ s↓P �⊆ Constraints then
21: Red := Red ∪ {s}
22: for all t ∈ next-state(s) do
23: if t↓P= s↓P then
24: if Cyan � t then
25: Constraints := Constraints ∪ t↓P
 Report cycle at state t
26: else if t �� Red then dfsRed (t ,ds+1)

320

Iterative Bounded Synthesis for Efficient Cycle Detection 321

5 Experimental Evaluation

We conducted some experiments, to compare all algorithms on the number of
cases they can solve and on their efficiency. In order to compare cases in which
an algorithm does not terminate, we also counted the number of reported cycles.

To this end, we implemented our new algorithms BFS and BSID in IMI-
TATOR 3,2 and we also reimplemented all NDFS-based algorithms [11,25] in
a unified DFS framework. We ran all algorithms on a benchmark, distributed
with IMITATOR [4] and also used in [25]. The size of the benchmarks is shown
in Tab. 1 (columns L,X,P). We used a timeout of 120 s.3

In Tab. 1, we compare some combinations of NDFS enhancements (Sec. 4.1),
extending the baseline (cumulative pruning). The results show that subsumption
alone performs worst, while lookahead solves more cases, e.g. ll.3–6 of Tab. 1. In-
terestingly, adding our new accepting first strategy succeeds to find cycles (l.12)
that are missed by all other strategies. Finally, adding the layering approach
leads to success in most cases and provides the fastest results on average, but it
finds no accepting cycles at all for five cases where others found some.

Tab. 2 compares the new algorithms BFS (Sec. 4.2) and BSID (Sec. 4.3),
including all enhancements (except layering) under various depth settings. BSID
is generally faster than BFS, in particular with an iterative depth-step of 5. The
performance of BFS is closest to BSID with depth-step 1. The first two columns
evaluate the effectiveness of using the green colour (ng = -no-green). Without
green, no information from previous iterations is reused. Avoiding recomputation
is faster, leading to a deeper exploration within the time limit (e.g. on l.2).

Comparing both tables, we notice that for ll.15–17 NDFS synthesised some
parameter values that are missed by BSID and BFS. BSID is generally faster
than its NDFS counterpart A+L+Sub, but NDFS with layering is even faster.

6 Case Study: the Bounded Retransmission Protocol

The Bounded Retransmission Protocol (BRP) has been analysed in [16,14,19],
but we now synthesise the most liberal parameter constraints to obtain some
reachability and liveness guarantees. For reachability, these constraints are more
liberal than proposed in previous work. Synthesising parameter constraints for
liveness properties is new, and our new algorithms were required to achieve this.

Our starting point is the PTA model from [14]. Each session starts with a
transmission request S in and is terminated by an indication S ok, S nok or S dk
(“don’t know”). The BRP is regulated by clocks, with some timing parameters:
TD is the delay in the communication channel, TS and TR indicate the time that
the sender (receiver) should wait. Finally, SYNC models the waiting time in case
sender and receiver get out of sync. The maximum number of retransmissions is
a discrete parameter, which we fixed in most experiments to MAX = 2.

2Algorithms are integrated in IMITATOR v.3. The artifact is at doi.org/10.5281/
zenodo.4115919 and can be run at: imitator.lipn.univ-paris13.fr/artifact.

3The experiment ran on a DELL PowerEdge FC640, 2 processors (Intel Xeon Silver
4114 @ 2.20 GHz), Debian GNU/Linux 10, 187.50 GiB memory.

https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0-beta
https://doi.org/10.5281/zenodo.4115919
https://doi.org/10.5281/zenodo.4115919
https://imitator.lipn.univ-paris13.fr/artifact

É. André et al.

S
u
b
su
m
p
ti
o
n

L
o
o
ka
h
ea
d

A
cc
ep

t+
L
o
o
k

A
+

L
+

S
u
b

A
+

L
+

S
u
b
+

la
y
er
s

M
o
d
el

L
X

P
d

m
c

s
t

d
m

c
s

t
d

m
c

s
t

d
m

c
s

t
d

m
c

s
t

1
B
R
P

2
2

7
2

3
2

1
8

1
7

8
3
7
0

T
O

3
2
1
5

1
7
8
3
3
6

T
O

3
2
1
4

1
7
8
3
4
0

T
O

3
2
1
4

1
7
8
3
5
0

T
O

3
1

1
6

1
0

4
6
6
6

T
O

2
co
ff
ee

4
2

3
3
5
8
0

—
0

3
5
8
1

T
O

3
5
9
0
—

0
3
5
9
1

T
O

3
5
9
1
—

0
3
5
9
2

T
O

3
5
8
1
—

0
3
5
8
2

T
O

3
5
4
5

4
1

3
5
5
0

T
O

3
cr
it
ic
a
l-
re
g
io
n

2
0

2
2

1
0
9
8
0

—
0
1
0
9
8
1

T
O

4
3

2
7

0
.0
1
3

4
3

2
6

0
.0
1
5

4
3

2
6

0
.0
1
3

3
3

1
4

0
.0
1
2

4
cr
it
ic
a
l-
re
g
io
n
4

3
8

4
2

1
1
5
6
4

—
0
1
1
5
6
5

T
O

1
0

7
2

1
7

0
.0
4
2

1
0

7
2

1
6

0
.0
4
4

1
0

7
2

1
6

0
.0
4
3

7
7

1
8

0
.0
2
6

5
F
3

1
8

3
0

7
6
0
7

—
0

7
6
0
8

T
O

0
0

1
1

0
.0
0
9

0
0

1
1

0
.0
0
7

0
0

1
1

0
.0
0
9

0
0

1
1

0
.0
0
7

6
F
4

2
3

4
2

6
2
6
0

—
0

6
2
6
1

T
O

0
0

1
1

0
.0
1
1

0
0

1
1

0
.0
0
9

0
0

1
1

0
.0
0
9

0
0

1
1

0
.0
1
2

7
F
D
D
I4

3
4
1
3
2

9
0

3
6

2
7
4
2

1
.9
6
0

9
0
3
2

2
6
9
0

1
.6
9
5

9
0
3
2

2
6
9
0

1
.6
9
2

9
0
3
2

2
6
9
0

1
.6
9
6

1
1
0
1
0
1

1
6
6
0

1
.7
1
8

8
F
is
ch
er
A
H
V
9
3

1
3

2
4

1
5

4
2

2
4

0
.0
2
2

4
3

1
1
1

0
.0
1
3

4
3

1
1
1

0
.0
1
3

4
3

1
1
1

0
.0
1
2

4
3

1
1
1

0
.0
1
3

9
fl
ip
fl
o
p

4
9

5
2

7
5

6
2
0

0
.0
2
4

7
5

6
1
8

0
.0
2
2

7
5

6
1
8

0
.0
2
2

7
5

6
1
8

0
.0
2
3

7
7

1
8

0
.0
1
4

1
0

fm
tv
1
A
1
-v
2

1
5

3
3

3
0

1
3

7
5

4
2
2
9

T
O

3
0
1
3

7
5
4
2
3
5

T
O

3
0
1
3

6
6
4
5
3
8

T
O

3
0
1
3

6
6
4
5
3
9

T
O

2
9

1
3

5
5

5
9
2
9
6
7
.6
5
1

1
1

fm
tv
1
A
3
-v
2

1
5

3
3

4
0

2
6
1
1
6

4
9
4
9

T
O

4
0
2
6
1
1
6
4
9
7
5

T
O

4
0
2
6

1
0
8
5
0
6
5

T
O

4
0
2
6

1
0
8
5
0
4
1

T
O

4
5

—
0
1
0
8
9
8

T
O

1
2

J
L
R
-T
A
C
A
S
1
3

2
2

2
6
4
4
3

—
0

6
4
4
4

T
O

6
5
0
6
—

0
6
5
0
7

T
O

1
3
0
9

1
1
3
0
9
2
6
1
9

T
O

1
3
0
8

1
1
3
0
8
2
6
1
6

T
O

6
3
6
2

—
0

6
3
6
3

T
O

1
3

ly
n
ch

1
8

2
1

4
3

1
5

0
.0
0
8

3
3

1
4

0
.0
0
9

3
3

1
4

0
.0
1
1

3
3

1
4

0
.0
0
9

3
3

1
4

0
.0
1
2

1
4

ly
n
ch
5

4
5

5
1

1
0

9
1

2
4

0
.0
3
3

7
7

1
1
9

0
.0
2
7

7
7

1
1
9

0
.0
2
8

7
7

1
1
9

0
.0
2
5

7
7

1
1
9

0
.0
2
5

1
5

P
ip
el
in
e-
K
P
1
2
-2
-3

1
4

4
6

5
4
4

8
1

2
9

3
2
5
6

T
O

5
6
0
3
6

5
9
2
2
2
7

T
O

7
3
2
9

8
0
1
6
4
3

T
O

7
3
2
9

8
0
1
6
4
5

T
O

4
9

3
2

4
6

2
1
4
6

T
O

1
6

P
ip
el
in
e-
K
P
1
2
-2
-5

1
8

4
6

9
9
7
7
5
6

1
0

2
9
8
9

T
O

1
1
0
5
0

6
4
2
4
0
1

T
O

1
0
1
3
9

6
9
1
7
1
1

T
O

1
0
1
3
9

6
9
1
7
1
3

T
O

6
9

4
4

3
3

2
2
0
1

T
O

1
7

P
ip
el
in
e-
K
P
1
2
-3
-3

1
9

5
6

6
8
9
4
4
8

6
1
2
6
3

T
O

1
3
2
5
7

2
3

8
6
9

T
O

1
2
2
5
0

2
1

7
0
6

T
O

1
2
2
5
0

2
1

7
0
7

T
O

1
1
2

5
9

4
1
2
3
9

T
O

1
8

R
C
P

4
8

6
5

7
4

8
1
2

2
3
7

0
.8
8
6

7
4

8
1
2

2
3
7

0
.8
7
7

7
4

8
1
2

2
3
7

0
.8
7
1

7
4

8
1
2

2
3
7

0
.8
6
6

5
0

5
0

1
1
0
5

0
.1
5
2

1
9

S
ch
ed

2
.1
0
0
.0

1
7

6
2

1
3
2

3
1
9

8
7
2

5
.8
9
0

1
3
2

3
1
9

8
7
2

5
.8
7
0

1
3
2

2
1
9

8
6
9

5
.8
4
2

1
3
2

2
1
9

8
6
9

5
.8
4
4

1
7
4

2
0

4
5
9
2

2
.4
6
5

2
0

S
ch
ed

2
.1
0
0
.2

1
7

6
2

9
9
0

3
2
1

2
4
3
0

T
O

9
9
0

3
2
1
2
4
5
3

T
O

9
9
0

2
2
1
2
4
5
3

T
O

9
9
0

2
2
1
2
4
6
1

T
O

3
4
3
3

—
0

3
8
3
8

T
O

2
1

S
ch
ed

2
.5
0
.0

1
7

6
2

1
3
2

7
1
9

7
5
6

4
.4
3
4

1
3
2

7
1
9

7
5
6

4
.3
9
8

1
3
2

6
1
9

7
5
2

4
.3
4
8

1
3
2

6
1
9

7
5
2

4
.3
6
8

2
4
2

3
1

5
6
3
6

2
.8
5
3

2
2

S
ch
ed

2
.5
0
.2

1
7

6
2

1
5
5
9

7
2
2

3
0
3
7

T
O

1
5
6
1

7
2
2
3
0
3
9

T
O

1
5
6
3

6
2
2
3
0
3
7

T
O

1
5
6
7

6
2
2
3
0
4
1

T
O

2
7
3
7

—
0

4
5
8
4

T
O

2
3

si
m
o
p

4
6

8
2

2
5
3
3

—
0

2
5
3
4

T
O

2
5
2
0
—

0
2
5
2
1

T
O

2
5
2
0
—

0
2
5
2
1

T
O

2
5
2
1
—

0
2
5
2
2

T
O

2
5
2
0

—
0

2
5
2
1

T
O

2
4

sp
sm

a
ll

5
2
1
1
2

3
4

3
0
1
4
2

4
0
3
6
1
7
.6
3
7

3
4
2
6
1
4
2
3
4
4
5
1
3
.8
1
2

3
4
2
5

1
4
2
2
6
3
4
1
0
.9
5
2

3
4
2
5

1
4
2
2
6
3
4
1
0
.9
8
7

3
4

2
5
1
4
2

2
6
6
3

7
.4
3
6

2
5

tg
cT

o
g
et
h
er
2

1
2

3
6

3
2

1
3

7
1
3
7

0
.4
1
0

1
8
1
3

4
7
9

T
O

1
8
1
3

4
7
9

T
O

1
8
1
3

4
7
9

0
.1
9
3

1
4

1
3

2
4
7

0
.0
6
0

2
6

W
F
A
S
-B

B
L
S
1
5
-d
et

1
0

4
2

6
6
8
2

3
1
2

6
7
3
7

T
O

6
7
4
9

3
1
2
6
8
0
4

T
O

6
6
4
3

3
1
4
6
6
9
8

T
O

6
5
7
6

3
1
4
6
6
3
1

T
O

7
0
4
8

—
0

7
0
4
9

T
O

#
te
rm

in
a
ti
o
n
s

1
0

1
3

1
3

1
4

1
5

#
fa
st
es
t

1
0

3
3

1
1

A
v
g
.
N
o
rm

.
T
im

e
0
.8
5
3

0
.7
5
4

0
.7
4
3

0
.7
2
0

0
.6
5
1

T
a
b
le

1
.
C
o
m
p
a
ri
n
g
va
ri
o
u
s
N
D
F
S
en

h
a
n
ce
m
en

ts
.
F
o
r
ea
ch

m
o
d
el
,
L

d
en

o
te
s
th
e
n
u
m
b
er

o
f
lo
ca
ti
o
n
s,

X
th
e
n
u
m
b
er

o
f
cl
o
ck
s,

a
n
d
P

th
e
n
u
m
b
er

o
f
p
a
ra
m
et
er
s.

F
o
r
ea
ch

a
lg
o
ri
th
m
,
co
lu
m
n
d
in
d
ic
a
te
s
th
e
a
ct
u
a
l
d
ep

th
re
a
ch
ed

,
m

th
e
m
in
im

u
m

d
ep

th
a
t
w
h
ic
h
a
cy
cl
e
w
a
s

fo
u
n
d
,
c
th
e
to
ta
l
n
u
m
b
er

o
f
cy
cl
es

fo
u
n
d
,
s
th
e
n
u
m
b
er

o
f
st
a
te
s
ex
p
lo
re
d
,
a
n
d
t
th
e
ti
m
e
sp

en
t
in

th
e
a
lg
o
ri
th
m

(d
is
ca
rd
in
g
p
a
rs
in
g

th
e
m
o
d
el
)
in

se
co
n
d
s.

#
te
rm

in
a
ti
o
n
s
in
d
ic
a
te
s
th
e
n
u
m
b
er

o
f
b
en

ch
m
a
rk
s
fo
r
w
h
ic
h

th
e
a
lg
o
ri
th
m

te
rm

in
a
te
s,

a
n
d

#
fa
st
es
t
h
ow

m
a
n
y
ti
m
es

it
p
er
fo
rm

ed
b
es
t.

F
in
a
ll
y,

w
e
co
m
p
u
te
d
fo
r
ea
ch

a
lg
o
ri
th
m

th
e
A
v
er
a
g
e
N
o
rm

a
li
se
d
T
im

e
ov
er

a
ll
b
en

ch
m
a
rk
s,

w
h
er
e
w
e

n
o
rm

a
li
se
d
th
e
ti
m
e
w
.r
.t
.
th
e
la
rg
es
t
ti
m
e
u
se
d
b
y
a
n
y
a
lg
o
ri
th
m

in
T
a
b
.
1
a
n
d
2
.
T
im

eo
u
t
va
lu
es

g
et

a
n
o
rm

a
li
se
d
ti
m
e
o
f
1
.

322

Iterative Bounded Synthesis for Efficient Cycle Detection 323

D
ep

th
5
,
st
ep

5
D
ep

th
5
,
st
ep

5
(n
g
)

D
ep

th
1
0
,
st
ep

5
D
ep

th
1
0
,
st
ep

1
0

D
ep

th
0
,
st
ep

1
B
F
S

M
o
d
el

d
m

c
t

d
m

c
t

d
m

c
t

d
m

c
t

d
m

c
t

d
m

c
t

1
B
R
P

2
0
1
2

1
9

T
O

2
0
1
2

1
9

T
O

2
0
1
2

1
9

T
O

2
0
1
2

2
6

T
O

2
0
1
2

1
5

T
O

2
1
1
3

4
1

T
O

2
co
ff
ee

2
2
8
0

4
1

T
O

2
0
5
5

4
1

T
O

2
2
7
3

4
6

T
O

2
6
7
4

4
6

T
O

1
3
4
5

4
1

T
O

3
6
6
4

5
4

T
O

3
cr
it
ic
a
l-
re
g
io
n

4
3

2
0
.0
1
2

4
3

2
0
.0
1
3

4
3

2
0
.0
1
5

4
3

2
0
.0
1
4

2
2

1
0
.0
1
5

5
3

2
0
.0
2
3

4
cr
it
ic
a
l-
re
g
io
n
4

5
5

1
0
.1
4
1

5
5

1
0
.1
4
1

1
0

7
2

0
.0
4
2

1
0

7
2

0
.0
4
4

4
4

1
0
.4
3
2

7
5

2
9

3
.3
2
1

5
F
3

0
0

1
0
.0
0
7

0
0

1
0
.0
0
7

0
0

1
0
.0
0
8

0
0

1
0
.0
0
7

0
0

1
0
.0
0
9

3
1

4
0
.0
1
0

6
F
4

0
0

1
0
.0
0
9

0
0

1
0
.0
1
1

0
0

1
0
.0
1
0

0
0

1
0
.0
0
9

0
0

1
0
.0
1
1

3
1

5
0
.0
1
4

7
F
D
D
I4

7
0
3
2

2
2
.2
7
9

7
0
3
2

2
2
.6
5
8

7
0
3
2

2
2
.3
0
8

7
0
3
2

2
2
.0
1
0

7
0
3
2

2
3
.3
6
6

7
2
3
3

1
0

2
.9
0
7

8
F
is
ch
er
A
H
V
9
3

4
3

1
0
.0
1
0

4
3

1
0
.0
1
3

4
3

1
0
.0
1
4

4
3

1
0
.0
1
4

4
3

1
0
.0
1
7

6
1

1
4

0
.0
1
0

9
fl
ip
fl
o
p

7
5

6
0
.0
2
2

7
5

6
0
.0
2
3

7
5

6
0
.0
2
2

7
5

6
0
.0
2
1

7
5

6
0
.0
2
6

9
6

8
0
.0
2
4

1
0

fm
tv
1
A
1
-v
2

3
0
1
3

5
1
1
1
9
.4
0
8

3
0
1
3

5
1

T
O

3
0
1
3

5
1
1
1
9
.0
1
0

3
0
1
3

6
0

T
O

2
9
1
3

4
5
1
0
2
.7
1
6

3
2
1
4

3
2
1
1
1
3
.0
8
4

1
1

fm
tv
1
A
3
-v
2

2
0
1
3

2
1

T
O

2
0
1
3

2
1

T
O

2
0
1
3

2
1

T
O

2
0
1
3

2
2

T
O

2
0
1
3

1
0

T
O

2
1
1
4

1
0
1

T
O

1
2

J
L
R
-T
A
C
A
S
1
3

2
0
6
5

1
2
0
6
5

T
O

1
4
9
0

1
1
4
9
0

T
O

2
0
6
5

1
2
0
6
5

T
O

2
6
9
0

1
2
6
9
0

T
O

1
0
3
0

1
1
0
3
0

T
O

1
2
9
9

2
1
2
9
8

T
O

1
3

ly
n
ch

3
3

1
0
.0
0
8

3
3

1
0
.0
1
1

3
3

1
0
.0
1
3

3
3

1
0
.0
1
0

3
3

1
0
.0
1
2

6
4

1
0
.0
1
3

1
4

ly
n
ch
5

5
5

1
0
.1
0
0

5
5

1
0
.0
9
4

7
7

1
0
.0
2
5

7
7

1
0
.0
2
8

3
3

1
0
.1
2
0

6
4

1
0
.4
3
7

1
5

P
ip
el
in
e-
K
P
1
2
-2
-3

1
5
—

0
T
O

1
5
—

0
T
O

1
5
—

0
T
O

2
0
—

0
T
O

1
3
—

0
T
O

1
5
—

0
T
O

1
6

P
ip
el
in
e-
K
P
1
2
-2
-5

1
5
—

0
T
O

1
5
—

0
T
O

1
5
—

0
T
O

2
0
—

0
T
O

1
5
—

0
T
O

1
7
—

0
T
O

1
7

P
ip
el
in
e-
K
P
1
2
-3
-3

1
5
—

0
T
O

1
5
—

0
T
O

1
5
—

0
T
O

2
0
—

0
T
O

1
3
—

0
T
O

1
6
—

0
T
O

1
8

R
C
P

1
0

8
6

0
.5
0
7

1
0

8
6

0
.5
1
1

1
0

8
6

0
.3
5
2

1
0

8
6

0
.3
5
1

1
0

8
7

0
.8
3
4

1
2

9
1
0
4

1
.8
5
5

1
9

S
ch
ed

2
.1
0
0
.0

1
0
4

2
1
0

5
.7
0
9

1
0
7

2
1
0

7
.0
4
4

1
0
4

2
1
0

5
.7
1
5

1
0
4

2
1
0

4
.3
2
2

1
0
4

2
9

1
9
.0
6
8

5
4

3
5
6

2
.8
6
1

2
0

S
ch
ed

2
.1
0
0
.2

1
3
0

2
1
4

T
O

1
3
0

2
1
4

T
O

1
3
0

2
1
4

T
O

1
4
0

2
1
4

T
O

1
2
0

2
1
3

T
O

9
2

3
3
4
8

T
O

2
1

S
ch
ed

2
.5
0
.0

1
0
4

6
9

4
.0
5
4

1
0
7

6
9

5
.0
4
4

1
0
4

6
9

4
.0
4
8

1
0
4

6
9

3
.0
4
3

1
0
4

6
8

1
3
.1
7
7

3
6

7
5
2

1
.9
0
0

2
2

S
ch
ed

2
.5
0
.2

1
3
5

6
1
2

T
O

1
3
5

6
1
2

T
O

1
3
5

6
1
2

T
O

1
4
0

6
1
2

T
O

1
3
1

6
1
1

T
O

1
0
6

7
2
7
8

T
O

2
3

si
m
o
p

2
5
1
5

5
3

T
O

2
5
1
5

5
3

T
O

2
5
1
5

5
3

T
O

3
0
2
0

5
9

T
O

2
1
1
3

4
4

T
O

2
2
1
4

3
0
4

T
O

2
4

sp
sm

a
ll

3
4
2
5

1
4
2

9
.6
3
2

3
4
2
5

1
4
2

9
.6
3
3

3
4
2
5

1
4
2

9
.5
8
1

3
4
2
5

1
4
2
1
1
.2
4
6

3
4
2
5

1
4
2

1
1
.3
1
8

3
6
2
6

3
6
8

1
2
.4
8
0

2
5

tg
cT

o
g
et
h
er
2

1
5
1
3

3
0
.1
4
9

1
5
1
3

3
0
.1
5
5

1
5
1
3

3
0
.1
5
4

1
8
1
3

4
0
.1
9
7

1
4
1
3

3
0
.1
9
7

1
6
1
4

5
0
.1
5
9

2
6

W
F
A
S
-B

B
L
S
1
5
-d
et

2
0
9
0

3
9

T
O

1
4
6
5

3
9

T
O

2
0
9
0

3
1
2

T
O

2
8
0
0

3
1
2

T
O

9
9
1

3
9

T
O

6
7
4
8

4
1
7

T
O

#
te
rm

in
a
ti
o
n
s

1
5

1
4

1
5

1
4

1
5

1
5

#
fa
st
es
t

6
1

3
5

1
3

A
v
g
.
N
o
rm

.
T
im

e
0
.7
0
1

0
.7
3
5

0
.7
2
5

0
.7
0
4

0
.8
3
5

0
.8
6
3

T
a
b
le

2
.
C
o
m
p
a
ri
n
g
ex
p
lo
ra
ti
o
n
o
f
B
S
ID

(A
lg
.
2
)
w
it
h
d
iff
er
en
t
d
ep

th
se
tt
in
g
s,

u
si
n
g
a
ll
st
ra
te
g
ie
s
ex
ce
p
t
la
y
er
in
g
(A

+
L
+
S
u
b
),

a
n
d

B
F
S
(S
ec
.
4
.2
).

F
o
r
ea
ch

a
lg
o
ri
th
m
,
co
lu
m
n
d
in
d
ic
a
te
s
th
e
a
ct
u
a
l
d
ep

th
re
a
ch
ed

,
m

th
e
m
in
im

u
m

d
ep

th
a
t
w
h
ic
h
a
cy
cl
e
w
a
s
fo
u
n
d
,

c
th
e
to
ta
l
n
u
m
b
er

o
f
cy
cl
es

fo
u
n
d
,
a
n
d
t
th
e
ti
m
e
sp

en
t
in

th
e
a
lg
o
ri
th
m

(d
is
ca
rd
in
g
p
a
rs
in
g
th
e
m
o
d
el
)
in

se
co
n
d
s.

#
te
rm

in
a
ti
o
n
s

in
d
ic
a
te
s
th
e
n
u
m
b
er

o
f
b
en

ch
m
a
rk
s
fo
r
w
h
ic
h
th
e
a
lg
o
ri
th
m

te
rm

in
a
te
s,

a
n
d
#

fa
st
es
t
h
ow

m
a
n
y
ti
m
es

it
p
er
fo
rm

ed
b
es
t.

F
in
a
ll
y,

w
e

co
m
p
u
te
d
fo
r
ea
ch

a
lg
o
ri
th
m

th
e
A
v
er
a
g
e
N
o
rm

a
li
se
d
T
im

e
ov
er

a
ll
b
en

ch
m
a
rk
s,

w
h
er
e
w
e
n
o
rm

a
li
se
d
th
e
ti
m
e
w
.r
.t
.
th
e
la
rg
es
t
ti
m
e

u
se
d
b
y
a
n
y
a
lg
o
ri
th
m

in
T
a
b
.
1
a
n
d
2
.
T
im

eo
u
t
va
lu
es

g
et

a
n
o
rm

a
li
se
d
ti
m
e
o
f
1
.

É. André et al.

6.1 Synthesis for Reachability Properties: deriving sharper bounds

To illustrate synthesis for reachability properties, we first enhance the parametric
verification experiments from [14,19] in IMITATOR. The reachability properties
are: (C) the channels will never be used simultaneously; and (R) the receiver
gets a correct initial frame in each session. Property (C) is formalised as:

property := #synth AGnot(loc[channelK] = in transitK & loc[channelL] = in transitL)

We synthesise the safe parameter constraints for “unreachability” by:4

imitator -mergeq -comparison inclusion brp Channels.imi brp Channels.imiprop

IMITATOR derives within 2 s the exact constraint TS > 2*TD: The sender should
wait (TS) for the round-trip time of a message + acknowledgement (2*TD).

Property (R) is formalised by adding an error location FailureR to the
receiver, which should be unreachable. Since we learned the constraint TS>2*TD
in the previous run, we now include this constraint in the initial condition.
Within 1 s, IMITATOR synthesizes the exact constraint for this safety property:

imitator -mergeq -comparison inclusion brp RC.imi brp RC.imiprop
SYNC + TS >= TR + TD & TS > 2∗TD & TR > 4∗TS + 3∗TD

The fact that this can be computed is not surprising, but it is surprising that
this constraint is more liberal than the one derived in [14,19], which was:

SYNC >= TR & TS > 2∗TD & TR > 2∗MAX∗TS + 3∗TD

One can easily check that, for MAX = 2, their constraint is strictly stronger
than ours. So we found more parameter values for which BRP is correct. By con-
struction, we found the most liberal constraint for MAX = 2, and we confirmed
a similar result for up to MAX = 20. We cannot handle a parametric MAX.

6.2 Liveness: approximations by bounded synthesis

Next, we want to measure the overhead of liveness checking. To this end, we
make the failureR location an accepting cycle, and use a liveness property. Note
that in this case, the synthesised constraint will indicate the error condition.

accepting loc FailureR: invariant True when True goto FailureR;
init := ... & TS > 2 ∗ TD
property := #synth CycleThrough(accepting)

Since we search for an accepting loop, inclusion and merging are unsound, but
still complete. However, we can safely apply subsumption in NDFS. Without
inclusion, the zone graph is infinite, so we are forced to resort to bounded syn-
thesis, which only provides an under-approximation. Hence, we also use iterative
deepening (BSID, Sec. 4.3). The depth limit is reached in 6 s.

4Inclusion and merging are sound and complete for reachability [7]. Inclusion applies
maximal subsumption, while merging combines zones with exact convex hull.

324

Iterative Bounded Synthesis for Efficient Cycle Detection 325

imitator brp RC.imi accepting.imiprop -depth-step=5 -depth-limit=25 -recompute-green
4∗TS + 3∗TD >= TR & TS > 2∗TD

OR TR + TD > SYNC + TS & TS > 2∗TD

We could have searched even deeper for more liberal constraints, but it can
be easily checked that this error constraint is equivalent to the complement of
the safety constraint (within the initial condition), see Sec. 6.1, property (R).
Hence, we can conclude that we have already synthesised the exact constraint.

6.3 Proper Liveness Properties

GF(S in). Next, we will synthesise constraints for an actual liveness property,
stating that the number of new sessions is infinite. We use Spot [15] to generate
a Büchi automaton for the negation of this formula, and add the result as a
monitor to the IMITATOR model, synchronising with the sender process. We add
the constraints on correctness that we learned before to the initial constraints:

init := ... & SYNC >= TR & TS > 2∗TD & TR > 4∗TS + 3∗TD

The following command tries to synthesize all parameters (within the initial
constraint) for which an accepting loop is reachable, i.e. GF S in is violated. We
replaced subsumption by full inclusion, since otherwise IMITATOR gets lost in
the infinite parametric zone graph. Recall that inclusion is complete but unsound
for NDFS, so this provides an over-approximation of the constraints.

imitator -no-subsumption -comparison inclusion brp GF S in RC.imi accepting.imiprop

IMITATOR replies False in 1 second, so there is no reachable accepting cycle.
Since this was an over-approximation, the result is conclusive: GF S in holds
under all parameter values inside this initial constraint. Note that, in principle,
the property could be violated outside this initial condition. We can rerun the
same experiment with the more general initial condition TS > 2*TD. IMITATOR
confirms that the property still holds, but checking this larger space takes 19 s.

G(S in⇒ F(S ok ∨ S nok ∨ S dk)). Using the same method, IMITATOR con-
firms in 16 s, that also this response property holds: every sessions start is fol-
lowed by some indication.

imitator -no-subsumption -comparison inclusion brp GSinFSdk.imi accepting.imiprop

G(S in⇒ F(S ok ∨ S nok)). Let us pretend that we forgot the indication S dk
(don’t know). This time, we search for a symbolic counter-example (using the
option -witness), under the initial condition TS > 2*TD.

property := #witness CycleThrough(accepting)
imitator brp GSinFSnok.imi accepting one.imiprop

As expected, IMITATOR finds a counter-example quickly (within 0.04s).

É. André et al.

7 Conclusion

We presented and evaluated new semi-algorithms solving the liveness parame-
ter synthesis problem for Parametric Timed Automata. We also introduced new
soundness and completeness notions for such semi-algorithms. The new algo-
rithms, based on BFS and Bounded Synthesis (BSID), at least enumerate all
parameters leading to accepting lassos in the parametric zone graph. We showed
that this property does not hold for all previous algorithms, which were based on
NDFS. Our new algorithms are less sensitive to the particular search order than
the previous NDFS algorithms, that could get stuck in some branch of the PZG.

Tab. 3 (left) shows the soundness and completeness status of all considered al-
gorithms. Full inclusion and BS-n can only provide an over-approximation (resp.
under-approximation). The enumQ algorithm is complete, but never terminates
(indicated by ××), so its partial soundness and completeness results are vacuous
(indicated by (�)). Although the problem is undecidable, one might still hope
for an algorithm that enumerates all possible solutions (like enumQ, generating
and testing all rational solutions) and produces a finite set of aggregate solutions
(if it exists). The algorithm should terminate for practical cases.

Tab. 3 (right) shows the results of our algorithms for examples A1–A6. They
either terminate with an exact (�) or partial ((�)) result, or diverge (×). In one
case the addition of the layers strategy is needed to obtain a partial result ((L)).

x≤q
y≤p

�0 x≥q
x:=0

Fig. 7. PTA A6.

Our last example shows another challenge to obtain a
complete approach. The PZG of PTA A6 has a non-cyclic
infinite path. It seems non-trivial to compute its limit con-
straint automatically. After n steps, the parametric con-
straint is p ≥ n× q. So the limit constraint is q = 0∧ p ≥ q.

In order to handle cases where the set of solutions is
not even a finite union of convex sets (Fig. 5), an entirely
different representation of the solutions would be required.

Finally, exploiting the component-based structure of networks of PTA using
a compositional approach, such as the one developed recently for fair paths in
infinite systems [12], would be an exciting extension.

Table 3. Soundness and completeness properties of various algorithms.

Algorithm te
rm

in
a
te
s

p
a
rt
ia
ll
y

so
u
n
d

p
a
rt
ia
ll
y

co
m
p
le
te

so
u
n
d
in

th
e
li
m
it

co
m
p
le
te

in
li
m
it

co
m
p
le
te

fo
r
la
ss
o
s

A1 A2 A3 A4 A5 A6

NDFS (enhanced) × � � � × × � × × (�) (L) ×
NDFS + inclusion × × � × × × � × × (�) (L) ×
BFS + SCC × � � � × � � × × (�) (�) ×
BSID × � � � × � � � × (�) � ×
BS-n (fixed bound) � � × � × ×
Näıve enumQ ×× (�) (�) � � �

326

Iterative Bounded Synthesis for Efficient Cycle Detection 327

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC. pp. 592–601. ACM,
New York, NY, USA (1993). https://doi.org/10.1145/167088.167242

3. André, É.: What’s decidable about parametric timed automata? In-
ternational Journal on Software Tools for Technology Transfer (2019).
https://doi.org/10.1007/s10009-017-0467-0

4. André, É.: A benchmark library for parametric timed model checking. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS. Communications in Computer and Information
Science, vol. 1008, pp. 75–83. Springer (2019). https://doi.org/10.1007/978-3-030-
12988-0 5

5. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905

6. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM. Lecture Notes in Computer Science, vol. 7436, pp. 33–36. Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9 6

7. André, É., Fribourg, L., Soulat, R.: Merge and conquer: State merging in
parametric timed automata. In: Hung, D.V., Ogawa, M. (eds.) ATVA. Lec-
ture Notes in Computer Science, vol. 8172, pp. 381–396. Springer (Oct 2013).
https://doi.org/10.1007/978-3-319-02444-8 27

8. André, É., Lime, D.: Liveness in L/U-parametric timed automata.
In: Legay, A., Schneider, K. (eds.) ACSD. pp. 9–18. IEEE (2017).
https://doi.org/10.1109/ACSD.2017.19

9. André, É., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed
automata under non-Zenoness assumption. In: Barrett, C., Kahsai, T. (eds.)
NFM. Lecture Notes in Computer Science, vol. 10227, pp. 35–51. Springer (2017).
https://doi.org/10.1007/978-3-319-57288-8 3

10. Bagnara, R., M., H.P., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008).
https://doi.org/10.1016/j.scico.2007.08.001

11. Bezděk, P., Beneš, N., Barnat, J., Černá, I.: LTL parameter synthesis of
parametric timed automata. In: Nicola, R.D., eva Kühn (eds.) SEFM. Lec-
ture Notes in Computer Science, vol. 9763, pp. 172–187. Springer (2016).
https://doi.org/10.1007/978-3-319-41591-8 12

12. Cimatti, A., Griggio, A., Magnago, E.: Proving the existence of fair paths in
infinite-state systems. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI.
Lecture Notes in Computer Science, vol. 12597, pp. 104–126. Springer (2021).
https://doi.org/10.1007/978-3-030-67067-2 6

13. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System De-
sign 1(2/3), 275–288 (1992). https://doi.org/10.1007/BF00121128

14. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The bounded re-
transmission protocol must be on time! In: Brinksma, E. (ed.) TACAS. Lec-
ture Notes in Computer Science, vol. 1217, pp. 416–431. Springer (1997).
https://doi.org/10.1007/BFb0035403

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-030-12988-0_5
https://doi.org/10.1007/978-3-030-12988-0_5
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.1007/978-3-319-57288-8_3
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-319-41591-8_12
https://doi.org/10.1007/978-3-030-67067-2_6
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/BFb0035403

É. André et al.

15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — A framework for LTL and ω-automata manipulation. In: ATVA.
Lecture Notes in Computer Science, vol. 9938, pp. 122–129. Springer (2016).
https://doi.org/10.1007/978-3-319-46520-3 8

16. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data pack-
ets. In: Wirsing, M., Nivat, M. (eds.) AMAST. Lecture Notes in Computer Science,
vol. 1101, pp. 536–550. Springer (1996). https://doi.org/10.1007/BFb0014338

17. Herbreteau, F., Srivathsan, B.: Efficient on-the-fly emptiness check for timed Büchi
automata. In: Bouajjani, A., Chin, W.N. (eds.) ATVA. Lecture Notes in Computer
Science, vol. 6252, pp. 218–232. Springer (2010). https://doi.org/10.1007/978-3-
642-15643-4 17

18. Herbreteau, F., Srivathsan, B., Tran, T.T., Walukiewicz, I.: Why liveness for timed
automata is hard, and what we can do about it. ACM Transactions on Computa-
tional Logic 21(3), 17:1–17:28 (2020). https://doi.org/10.1145/3372310

19. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming 52-53,
183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

20. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Transactions on Software Engineering 41(5), 445–461 (2015).
https://doi.org/10.1109/TSE.2014.2357445

21. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
Transactions on Petri Nets and Other Models of Concurrency 5, 141–159 (2012).
https://doi.org/10.1007/978-3-642-29072-5 6

22. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV. Lecture Notes in Computer Science, vol. 8044,
pp. 968–983. Springer, Heidelberg, Germany (2013). https://doi.org/10.1007/978-
3-642-39799-8 69

23. Li, G.: Checking timed Büchi automata emptiness using LU-abstractions. In: Ouak-
nine, J., Vaandrager, F.W. (eds.) FORMATS, Lecture Notes in Computer Science,
vol. 5813, pp. 228–242. Springer (2009). https://doi.org/10.1007/978-3-642-04368-
0 18

24. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS. Lecture Notes in Computer Science, vol. 4202,
pp. 274–289. Springer (2006). https://doi.org/10.1007/11867340 20

25. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collect-
ing NDFS with subsumption for parametric timed automata. In: Lin,
A.W., Sun, J. (eds.) ICECCS. pp. 1–9. IEEE Computer Society (2018).
https://doi.org/10.1109/ICECCS2018.2018.00009

26. van de Pol, J., Petrucci, L.: On completeness of liveness synthesis for parametric
timed automata (extended abstract, invited talk). In: Roggenbach, M. (ed.) WADT
2020 (2021), to appear

27. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata empti-
ness efficiently. Formal Methods in System Design 26(3), 267–292 (2005).
https://doi.org/10.1007/s10703-005-1632-8

328

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/BFb0014338
https://doi.org/10.1007/978-3-642-15643-4_17
https://doi.org/10.1007/978-3-642-15643-4_17
https://doi.org/10.1145/3372310
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1007/978-3-642-29072-5_6
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1007/11867340_20
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1007/s10703-005-1632-8

Iterative Bounded Synthesis for Efficient Cycle Detection 329

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

	Iterative Bounded Synthesis for Efficient Cycle Detection in Parametric Timed Automata
	1 Introduction
	2 PTA, Parametric Zone Graphs and Accepted Runs
	3 Sound and Complete Liveness Parameter Synthesis
	3.1 Soundness and Completeness

	4 Semi-Algorithms for Liveness Parameter Synthesis
	4.1 Nested Depth-First Search with Enhancements
	4.2 Breadth-First Search
	4.3 Bounded Synthesis with Iterative Deepening

	5 Experimental Evaluation
	6 Case Study: the Bounded Retransmission Protocol
	6.1 Synthesis for Reachability Properties: deriving sharper bounds
	6.2 Liveness: approximations by bounded synthesis
	6.3 Proper Liveness Properties

	7 Conclusion
	References

