q

Check for
updates

Symbolic Coloured SCC Decomposition*

Nikola Benes®, Lubos Brim, Samuel Pastva, and David Safranek

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbenes3,brim,xpastva,safranek}}@fi.muni.cz

Abstract. Problems arising in many scientific disciplines are often mod-
elled using edge-coloured directed graphs. These can be enormous in the
number of both vertices and colours. Given such a graph, the original
problem frequently translates to the detection of the graph’s strongly
connected components, which is challenging at this scale.

We propose a new, symbolic algorithm that computes all the monochro-
matic strongly connected components of an edge-coloured graph. In the
worst case, the algorithm performs O(p - n - logn) symbolic steps, where
p is the number of colours and n the number of vertices. We evaluate the
algorithm using an experimental implementation based on Binary Deci-
sion Diagrams (BDDs) and large (up to 2*®) coloured graphs produced
by models appearing in systems biology.

Keywords: strongly connected components - symbolic algorithm - edge-coloured
digraphs - systems biology

1 Introduction

Processing massive data sets poses a series of interesting computational challenges.
A variety of these data sets can be modelled as very large multigraphs, augmented
by a specific collection of application-dependent edge attributes. These attributes
are often represented as colours and the resulting formalism is called an edge-
coloured graph [4,10]. Geographic information systems, telecommunications traffic,
or internet data are prime examples of data that are best represented as such edge-
coloured graphs. For instance, in social networking, it is typically used to identify
groups of nodes related to each other by some specific criteria (Sports, Health,
Technology, Religion, etc.) represented as colours. Our interest in processing huge
edge-coloured graphs is primarily motivated by applications taken from systems
biology [5,29] and genetics [25] where we have to deal not only with giant graphs
as measured by the number of vertices and edges but also with large sets of
colours. The colours in such graphs represent various parameters that influence
the dynamics of a biological system [5,9, 46].

Fundamental graph algorithms such as breadth-first search, spanning tree
construction, shortest paths, decomposition into strongly connected components

* Supported by the Czech Science Foundation grant No. 18-00178S.

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 64-83, 2021.
https://doi.org/10.1007/978-3-030-72013-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-72013-1_4

Symbolic Coloured SCC Decomposition 65

(SCCs), etc., are building blocks of many practical applications. For the edge-
coloured graphs, the primary research focus so far has been on some of the
“classical” coloured graph problems, like the determination of the chromatic index,
finding sub-graphs with a specified colour property (the coloured version of the
k-linked problem), properly edge-coloured cycles and paths, alternating cycles,
rainbow cliques, monochromatic cliques, monochromatic cycles, etc. [1-4,55, 33].
To the best of our knowledge, we are not aware of any work on SCC decom-
position for edge-coloured graphs, even though this problem has many important
applications. For example, in biological systems, connected components represent
the attractors of the system. These play an essential role in determining the
system’s properties, since they may correspond, for example, to the specific phe-
notypes of a cell [21]. The parameters (e.g. reaction rates) in such systems might
be represented as edge colours in the state transition graph. The knowledge of
attractors and how their structure depends on parameters is vital for understand-
ing various biological phenomena [24, 38]. Other applications where investigation
of attractors is crucial include predictions of the global climate change [52], or
predictions of spreading of infectious diseases such as COVID-19 [39].

There is a serious computational problem related to the processing of massive
edge-coloured graphs, even the non-coloured ones, that significantly affects the
tractability of SCC decomposition. The graphs often cannot be handled with
standard (explicit) representations since they are too large to be kept in the main
memory. Various approaches have been considered to deal with such giant graphs:
distributed-memory structures, structures for representing graphs symbolically,
or storing the graphs in external memory. We review these approaches in more
detail in the related work section.

In [6,13] we have initially attacked the SCC decomposition problem for
massive edge-coloured graphs by developing a parallel semi-symbolic algorithm
for detecting terminal SCCs. The algorithm uses symbolic structures to represent
sets of parameters, while the graph itself is represented explicitly. The results
have shown that the parallel semi-symbolic algorithm is not sufficient for the
practical needs to tackle large graphs representing real-world problems. Those
findings have motivated us to propose an entirely symbolic approach.

In this paper, we consider edge-coloured multi-digraphs, i.e., multi-digraphs
such that each directed edge has a colour and no two parallel (i.e., joining the
same pair of vertices) edges have the same colour. Here, we refer to such graphs
simply as coloured graphs. For coloured graphs, we can define several notions
of strongly connected components involving colours. We consider the simplest
case, where the SCCs are monochromatic, that is all their edges have the same
colour [35]. This choice is motivated by the application in systems biology, as
mentioned above.

We propose a novel fully symbolic algorithm for detecting all monochro-
matic components in coloured graphs which is in practice significantly faster
than is achievable with a naive execution of an algorithm for symbolic SCC
decomposition scanning all colours one-by-one, in particular on massive coloured
graphs. This is because in many applications, the edges are largely shared among

66 N. Benes et al.

individual colours [5] and our algorithm is capable of exploiting this fact. The
algorithm conceptually follows the lock-step reachability approach by Bloem [14]
for monochromatic digraphs. The key new ingredients behind our algorithm are
a careful orchestration of the forward and backward reachability for different
colours and a sophisticated selection of a set of pivots.

1.1 Related Work

The detection of SCCs in (monochromatic) digraphs is a well-known problem com-
putable in linear time. Best serial (explicit) algorithms are Kosaraju-Sharir [50]
and Tarjan [53], which are both inherently based on depth-first search. However,
these algorithms do not scale for large graphs, e.g., those encountered in model-
checking. Therefore, alternative approaches to SCC decomposition have been
proposed (I/O efficient, parallel, symbolic algorithms).

The algorithm of Jiang [32] gives an I/O-efficient alternative based on a com-
bination of depth-first and breadth-first search.

Efficient parallel distributed-memory algorithms avoid the inherently sequen-
tial DFS step [45] in several different ways. The Forward-Backward algorithm [26]
employs a divide-and-conquer approach relying on picking a pivot state and split-
ting the graph in three independent (no crossing SCCs) parts. The approach of
Orzan [44] uses a different distribution scheme called a colouring transformation
employing a set of prioritised colours to split the graph into many parts at once.
The recursive OWCTY-Backward-Forward (OBF) approach is proposed in [8].
It recursively splits the graph in a number of independent sub-graphs called
OBF slices and applies to each slice the One-Way-Catch-Them-Young (OWCTY)
technique. In [51] the authors utilise variants of Forward-Backward and Orzan’s
algorithms for optimal execution on shared-memory multi-core platforms. Fi-
nally, Bloemen et al. [15] utilise the important ability of Tarjan’s algorithm to
return detected SCCs on-the-fly. In particular, they present an on-the-fly parallel
algorithm showing promising speedups for large graphs containing large SCCs.
On another end, GPU-accelerated approaches to computing SCCs have been
addressed, e.g., in [7, 30, 37, 56].

Computing SCCs of (monochromatic) digraphs symbolically is another way
to handle giant graphs and has been thoroughly explored in literature. As
in the case of efficient parallelisation, depth-first search is not feasible in the
symbolic framework [28]. In consequence, many DFS-based algorithms cannot be
easily revised to work with symbolically represented graphs. An algorithm based
on forward and backward reachability performing O(n?) symbolic steps was
presented by Xie and Beerel in [57]. Bloem et al. present an improved O(n -logn)
algorithm in [14]. Finally, an O(n) algorithm was presented by Gentilini et
al. in [27,28]. This bound has been proved to be tight in [20]. In [20], the authors
argue that the algorithm from [27] is optimal even when considering more fine-
grained complexity criteria, like the diameter of the graph and the diameter of the
individual components. Ciardo et al. [59] use the idea of saturation [22] to speed
up state exploration when computing each SCC in the Xie-Beerel algorithm, and
compute the transitive closure of the transition relation using a novel algorithm

Symbolic Coloured SCC Decomposition 67

based on saturation. Besides these generic algorithms, there have been recently
also proposed symbolic SCC decomposition methods to deal with specific large
graphs, e.g., graphs generated by Boolean networks [42, 58].

2 Problem Definition

As we have already stated in the introductory section, the SCC decomposition
problem for edge-coloured graphs has remained mostly unexplored until now. We
thus start this paper by introducing and formalising the notion of coloured SCC
decomposition itself and state some of its basic properties.

Before giving exact definitions, it might be instructive to discuss the substance
of the coloured SCC decomposition intuitively. There are several ways of capturing
the notion of a “coloured connected component”. For example, one of them is that
of a colour-connectivity first introduced by Saad [47]. It is based on alternating
paths in which successive edges differ in colour. However, there is no unique,
universally acceptable notion of a coloured component.

In the biological application we have in mind, we want to identify a coloured
component as a coloured collection of SCCs—a collection where for every colour
there is a set of all relevant monochromatic SCCs. Such setting leads us to
represent SCCs in the form of a relation. To that end, we first introduce such a
relation for monochromatic graphs (Section 2.1) and consequently extend it to
edge-coloured graphs (Section 2.2). The relation-based approach gives us also
the advantage of allowing a feasible symbolic encoding of the problem.

2.1 Graphs and Strongly Connected Components

Let us first recall the standard definitions of a directed graph and its strongly
connected components:

Definition 1. A directed graph is a tuple G = (V, E) where V is a set of graph
vertices and E CV x V is a set of graph edges.

We are going to use the word graph to mean directed graph in the following.
We write u — v when (u,v) € E and u —* v when (u,v) € E*, the reflexive
and transitive closure of E. We say that v is reachable from u if w —* v. The
reachability relation allows us to decompose a graph into strongly connected
components, defined as follows:

Definition 2. In a graph G = (V, E), a strongly connected component (SCC)
is a mazximal set W CV such that for all u,v € W, u —* v and v =" u. For a
fized v € V, we write SCC(G,v) to denote the SCC of G that contains v.

If the graph G is clear from the context, we can simply write SCC(v). A
set of vertices S C V is said to be SCC-closed if every SCC W is either fully
contained inside S (W C S), or in its complement (W C V' \ S). Notice that
given a vertex v, the set of all vertices reachable from v, as well as the set of all
vertices that can reach v, are both SCC-closed.

68 N. Benes et al.

A pivotal problem in computer science is to find the SCC decomposition of G.
As mentioned above, we represent the decomposition in the form of an equivalence
relation Rg.. such that the individual SCCs are exactly the equivalence classes
of Rgce. The relation-based formulation of the SCC decomposition problem is
the following:

Problem 1 (SCC decomposition) Given a graph G = (V, E), find the SCC
decomposition relation Rs.. € V x V such that (u,v) € Rgee if and only if
SCC(u) = SCC(v).

Note that SCC(u) is the section of the first attribute of Ry, i.e. SCC(u) =
{u] (u,v) € Rsee}. We denote such a section in the following way: SCC(u) =
Rgeo(u,). Here, u is the specific value of an attribute at which the section is
taken, and _ is used in place of the attributes that remain unchanged. Such
notation naturally extends to relations of arbitrary arity.

2.2 Coloured SCC Decomposition Problem

We now lift the formal framework to the coloured setting. An edge-coloured
graph can be seen as a succinct representation of several different graphs, all
sharing the same set of vertices. Note that to emphasise the difference from the
standard graphs as given in Definition 1, we sometimes call the standard graphs
monochromatic.

Definition 3. An edge-coloured directed multi-graph (coloured graph for short)
is a tuple & = (V,C, E) where V is a set of vertices, C is a set of colours and
ECV xC xV is a coloured edge relation.

We also write u — v whenever (u,c,v) € E. By fixing a colour ¢ € C and
keeping only the c-coloured edges (with the colour attribute removed), we obtain
a monochromatic graph &(c) = (V, {(u,v) | (u,c,v) € E}). We call this graph
the monochromatisation of & with respect to c. Intuitively, one can view the
elements of C' as a type of graph parametrisation where the edge structure of the
graph changes based on the specific ¢ € C.

The SCC decomposition relation R,.. is extended to the coloured SCC
decomposition relation PR, by relating every colour ¢ € C with all SCCs of the
monochromatisation &(c¢). In consequence, the SCC decomposition problem is
then lifted to the coloured SCC decomposition problem as follows:

Problem 2 (Coloured SCC decomposition) Given a coloured graph & =
(V,C,E), find the coloured SCC decomposition relation Rsee € V x C x V
satisfying (u,c,v) € Rsee if and only if (u,v) € Rsee of B(c).

From this definition, we can immediately observe the following properties
about the relationship of R, with the terms which we have defined before:

— Rscc of a monochromatisation &(c) is exactly the section R (L, ¢, -);
— SCC(8(c),v) is exactly the section R (v, ¢, -).

From this, it should be immediately clear that $R.. contains all components of
the underlying monochromatisations.

Symbolic Coloured SCC Decomposition 69

3 Algorithm

Conceptually, our algorithm follows the lock-step reachability approach by
Bloem [14] for monochromatic graphs. The lock-step algorithm itself is based on
the basic forward-backward decomposition algorithm [57]. In this section, we first
briefly introduce these two algorithms in order to explain better the key ideas
behind our approach and, in particular, to explain what were the main difficulties
encountered in employing the concepts of these algorithms to edge-coloured
graphs. Although the algorithms were originally presented as producing a set of
SCCs, we reformulate them slightly using the equivalent relation-based approach
as explained in the previous section. After that, we present the coloured SCC
decomposition algorithm. However, before we dive into the algorithmics, let us
first briefly discuss the computation model we are using.

3.1 Symbolic Computation Model

As a complexity measure of our algorithm, we consider the number of symbolic
steps, or more specifically, symbolic set and relation operations that the algorithm
performs. As is customary, we assume that sets of vertices (V') and colours (C)
can be represented symbolically (for example, using reduced ordered binary
decision diagrams [17]) as well as any relations over these sets. In particular, we
often talk about coloured vertex sets, by which we mean the subsets of V' x C.

Aside from normal set operations (union, intersection, difference, product and
element selection), we also require some basic relational operations, all of which
we outline in Fig. 1. These extra operations tend to appear in other applications
as well (such as symbolic model checking [18]), and are thus typically already
available in mature symbolic computation packages.

Finally, there are several derived operators that are partially specific to our
application to coloured graphs. However, these can be constructed using standard
set and relation operations. The intuitive meaning of the derived operators is
as follows: COLOURS returns all the colours that appear in the given coloured
vertex set. PRE and POST compute the pre and post-image of a (monochromatic
or coloured) set of vertices, i.e. the set of successors or predecessors of all the
vertices in the given set, respectively. Finally, JOIN takes a coloured vertex set A
and computes the set {(u,c,v) | (u,c) € A, (v,c) € A}.

3.2 Forward-backward Algorithm

To symbolically compute the SCCs of a graph G = (V, E), Xie and Beerel [57]
observed that for any vertex v € V, the intersection W = F'N B of the forward
reachable vertices F' = {v' € V | v —* ¢’} and the backward reachable vertices
B={v €V |v —=* v} is exactly the strongly connected component of G which
contains v.

The algorithm thus picks an arbitrary pivot v € V| and divides the vertices of
the graph into four disjoint sets: W, FA\W, B\W and V'\ (FUB). This is illustrated
graphically in Fig. 2 (left). The set W is then immediately reported as an SCC

70 N. Benes et al.

Standard set operations
pick element PIck(A) arbitrary « € A
union AUB {r|x€e Avaxe B}
intersection ANB {z|ze€ ANz € B}
difference A\ B {z|zeANx ¢ B}
product Ax B {(z,y) |z € ANy € B}
Relation manipulation (R C S1 X ... X Sy)
. : {(yl,---7yi—17yi+17~~~7yn)|
i-th section at z oi(z, R) Wts e Yimts ToYosts o2 yn) € R
existential
quantification of Fi(R) U.es, oi(z, R)
the i-th element
swap SwaP(R C A X B) {(y,z) € Bx A| (z,y) € R}
Derived operations (G = (V, E),® = (V,C, E))
colours COLOURS(A CV x () 31 (A)
pre-image PRrRE(G,ACYV) B(VxANE)
post-image PosT(G,ACYV) FJ((AXV)NE)
coloured pre-image | PRE(®,ACV x () J3((V x Swap(A)) N E)
coloured post-image | PosT(®,ACV x C) SwAP(F1((A X V)N E))
coloured join JOIN(ACV x C) (V x SwaP(A))N (A x V)

Fig. 1. Summary of symbolic operations that appear in the presented algorithms. The
derived operations can be implemented using the standard and relational operations.
However, typically they also have a slightly more efficient direct implementations.

of the graph, and added into the component relation: Rs.. < Rgee U (W x W).
It is easy to see that every other SCC is fully contained within one of the three
remaining sets (they are SCC-closed), and the algorithm thus recursively repeats
this process independently in each set.

The correctness of the algorithm follows from the initial observation and the
fact that every vertex eventually appears in W (either as a pivot or as a result of
F N B). In the worst case, the algorithm performs O(|V|?) symbolic steps, since
every vertex is picked as a pivot at most once and the computation of F' and B
requires at most O(|V|) PRE/POST operations.

3.3 Lock-step Algorithm

To improve the efficiency of the forward-backward algorithm, the lock-step
approach [14] uses another important observation: To compute W, it is not
necessary to fully compute both F' and B; only the smaller (in terms of diameter)
of the two sets needs to be entirely known. With this observation, the computation
of F and B can be modified in the following way: Instead of computing F' and
B one after the other, the computation is interleaved in a step-by-step manner
(dovetailing). When one of the sets is fully computed, the computation of the
second set is stopped. Let us call the computed set converged and denote it by

Symbolic Coloured SCC Decomposition 71

V V

Fig. 2. Illustration of the difference between the forward-backward algorithm (left) and
the lock-step algorithm (right). On the left, we fully compute both backward (B) and
forward (F’) reachable sets from the pivot v, identifying W as F' N B. On the right,
without loss of generality, assume F' is fully computed first. It thus becomes converged
(Con) and the computation of B (Non) is stopped before it is fully explored.

Con, and the unfinished set non-converged and denote it by Non. This situation
is illustrated in Fig. 2 (right).

However, even when Con is fully known, we still need to finish the computation
of states in Non that are inside Con to discover the whole component W. This
is necessary if there are vertices w in W whose forward distance from v (i.e. the
length of the path v —* w) is short while their backward distance (the length of
the path w —* v) is long, or vice versa. Such vertices are thus only discovered
in one of the two reachability procedures and still need to be discovered by the
other one to identify the whole component. However, an important observation
is that only the vertices already inside Con need to be considered in this step.

After this, the SCC can be identified and reported just as in the forward-
backward algorithm. Finally, the recursion now continues in sets Con \ W and
V'\ Con. This is due to Non being not fully computed; we cannot guarantee that
no SCC overlaps outside of Non (Non is not necessarily SCC-closed).

The algorithm is still correct because every vertex is eventually either picked
as a pivot or discovered in some W. Furthermore, due to the way Con and Non
are computed guarantees that W is still a whole SCC. In terms of complexity,
the algorithm performs O(|V|-log|V|) symbolic steps in the worst case. To see
why this is true, we may observe that every vertex appears in W exactly once,
and that the smaller of the two sets Con \ W and V' \ Con, let us call it .S, is
always smaller than ‘Qll The authors then argue that the price of every iteration
can be attributed (up to a multiplicative constant) to the vertices in S UW and
that every vertex appears in S at most O(log|V|)-times.

3.4 Coloured Lock-step Algorithm

When developing an algorithm for coloured graphs, we had to deal with multiple
challenges which do not appear for monochromatic graphs and require careful
consideration. In the following, we refer to the pseudocode in Algorithm 1.

An important observation is that the structure of components in the graph can
change arbitrarily with respect to the graph colours. In consequence, our algorithm

72

N. Benes et al.

Algorithm 1: Symbolic Coloured SCC Decomposition

1
2
3
4

© o N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34

35
36
37
38
39
40
41
42

Function COLOUREDSCC(6 = (V,C, E))
Rsee T (VX C xV) <+ 0
DECOMPOSITION(®, Reee, V X C);
return R,.;

Function DECOMPOSITION(® = (V,C, E),Rsec € (VxC x V),V C(Vx())
if V = () then return;
F, B,?, B C (V x C) « Pwvots(V);
ﬁ,EQ(VXCM—@;
Fiock, Biock € C < 0;
while Fioer U Biock € COLOURS(V) do
CV x C (PosT(®, F)NV)\ F;
B CVxC« (PRE(®, B)NV)\ B;
Flock < Flock U (COLOURS(V) \ COLOURS(?));
Biot “ Biook U (COLOURS(V) \ COLOURS(B) \ Fioct);
.ﬁ — .?u} U (]:ﬂ (V X Block));
Ei — K?u) UBN(V X Flock))
F e« F\(V x Buow);
? — ? \ (V X Flock);
Fe FUF
B« BUE;

end
Con CV X C+ (FN(V X Floer)) U(BN(V X Biock));

?<—]?u>ﬁCon;
? <—l7u>ﬁCon;
while?#@/\g#@do
« (PoST(®, F) N Con) \ F:
B « (Pre(®, B) N Con) \ B;
Fe FUF,
B+« BUB;

end

WCV xC<«+ FNh;

%scc < mscc U JOIN(W);
DECOMPOSITION(®, Ree, V \ Con);
DECOMPOSITION(®, Rsce, Con \ W);

Function P1voTs(V)
PC(VxC)+ 0V C(VxC)+V;
while V' # 0 do

(v,c) + Pick(V');

P+ PU{v} xo1(v,V));

V'« V'\ (V x CoLOURS(P));
end
return P;

)

Symbolic Coloured SCC Decomposition 73

cannot simply operate with sets of graph vertices as the normal algorithm would.
To that end, we use the notion of coloured vertex sets as introduced in Section 3.1
where the symbolic operations we perform on these sets have been described.

Initially, the algorithm starts with all vertices and colours, i.e. the full set
V x C. However, as the components are discovered, the intermediate results may
contain different vertices appearing only for certain subsets of C. As a result,
we often cannot pick a single pivot vertex that would be valid for all considered
colours. Instead, we aim to pick a pivot set P C V x C such that for every colour
that still appears in V), the set contains ezxactly one vertex. Alternatively, one can
also view the pivot set as a (partial) function from C to V. This is done in the
Prvors function.

The lock-step reachability procedure also cannot operate as in a standard
graph. First of all, there can be colours where the forward reachability converges
first, as well as colours where this happens for backward reachability. The
algorithm thus has to account for both options simultaneously. Second, for each
colour, the reachability can converge in a different number of steps. To deal
with this problem, we introduce the Fj,.; and Bj,.; variables. These store the
mutually disjoint sets of colours for which forward and backward reachability
already converged. The lock-step procedure terminates when Fj,.; and B,k
contain all the colours that appear in V.

Throughout the algorithm, we keep track of several coloured-set variables.
The first two, F and B, represent the forward and backward reachable sets,
respectively. We then have four variables ? Fus g, l?u) to represent the frontiers
of these sets, i.e., the set of pairs (v, c) such that the vertex v has not yet been
expanded in the correspondmg reachability procedure for the colour c. The
frontier of F is the set ? U]—' The sets %

involves those colours for which the lock-step reachability procedure has not
finished yet, while .7-" represents the unfinished part of the frontier that shall be
explored in the second while cycle; similarly for 5 and l?u) .

In the first while cycle (lines 10-21), we compute the reachability sets in
the lock-step manner. Once a reachability set is completed for some colours
(i.e., there are no vertices to expand with those colours), we add the colours to
the corresponding Fj,.; or B, variable. Note that we ensure that Fj,.; and
Biocr, remain disjoint even if the two reachability procedures converged at the
same time for certain colours—see line 14. We use Fj,cr and By, to split the
newly computed frontier sets into the parts that are to be explored in the next
iteration (F, B) and the parts that are currently left unfinished (F,, By).

After the first while cycle, we compute the set Con that is an analogue for the
converged set of the original lock-step algorithm (line 22). As already suggested
above and unlike the original algorithm, this set cannot be just F or B, but is
instead a mixture of both, depending on the convergent colours. To compute this
set, we use the Fj,.. and Bj,. variables.

The second while cycle (lines 25-30) then completes the unfinished forward
and backward reachability set, restricted to the inside of the converged set. The
intersection of F and B then forms a coloured set W with the property that

and F, contain disjoint colours —

74 N. Benes et al.

for all ¢ € CoLOURS(V), W(_, ¢) is a strongly connected component of &(c). We
create the corresponding relation using the JOIN operation, add this relation to
the resulting R, and recursively call the whole procedure with V \ Con and
Con \ W as the base coloured sets of vertices.

Let us note that there is possibly another approach. Instead of trying to work
with all colours still appearing in the coloured vertex set at once, we cold fork
a new recursive procedure whenever the colour set splits due to the differences in
the graph structure. For example, instead of picking multiple coloured vertices
as pivots, one could pick a single vertex with a valid subset of colours and then
address the remaining colours in a separate recursive call. While such approach
could be to some extent beneficial in a massively parallel environment where
each recursive call can be executed independently on a new CPU, the amount
of forking in large systems will soon become unreasonable. More importantly,
it defeats the purpose of symbolic representation which aims to minimise the
number of symbolic operations.

3.5 Correctness and Complexity of the Coloured Lock-step
Algorithm

Theorem 1. Let & = (V,C,E) be a coloured graph. The coloured lock-step
algorithm terminates and computes the coloured SCC decomposition relation Rec.

Proof. We first show that the set W computed on line 31 indeed contains one SCC
for every colour ¢ € COLOURS(V) and that the recursive calls of DECOMPOSITION
preserve the property that V is SCC-closed with respect to all colours.

Let us assume that V is SCC-closed and let us take an arbitrary ¢ €
CoLouRrs(V). The function PIvoTs chooses a set that contains exactly one
pair whose colour is ¢, let us call this pair (v,c). Let us further assume that ¢ is
assigned into Fj,.x first (the case with B, is completely symmetric).

Let us now choose an arbitrary vertex w such that v and w are in the same
SCC of &(c), i.e. v =* w and w —* v. As the first while cycle finishes, F contains
all the pairs of the form (u,c) € V where u is reachable from v in &(c). Thus, it
also contains (w, ¢) due to the fact that V is SCC-closed. Now, either (w,c¢) € B,

or there exists a vertex z such that w —* , x =" v in &(c) and x € I?Z This
means that (w,c) is added to B in the second while cycle. In both cases, both
(v,¢) and (w, ¢) are then added to W. As the vertex choices were arbitrary, this
proves that the SCC of v in &(c) is contained in W. Furthermore, if (y,c) € W
for an arbitrary y, then v —* y and y —* v in &(c¢), which means that y is in
SCC(®(c),v). This proves that W contains exactly one SCC for every colour
¢ € COLOURS(V).

We now argue that Con is SCC-closed with respect to all colours. This
immediately implies that both V \ Con and Con \ W are SCC-closed. Let us
assume that there is a colour ¢ € COLOURS(V) and two vertices v, w in the
same SCC of &(c) such that (v,c) € Con, but (w,c) € Con. Let us assume that
¢ € Fjoer (as above, the case of By, is completely symmetrical). Then (v, c) € F

Symbolic Coloured SCC Decomposition 75

after the first while cycle finishes. This also means that (w,c¢) € F as the forward
reachability procedure is completed for ¢ and thus (w,c) € Con, a contradiction.

What remains is to show that the algorithm terminates and that every SCC
is eventually found. Termination is trivially proved by the fact that size of the
set V) always decreases in recursive calls: both W and Con are nonempty, because
they contain the initial pivot set as a subset. Clearly, a representant of every
SCC of every monochromatisation &(c) is eventually chosen as a pivot. Together
with the above reasoning, this implies that the algorithm is correct. a

Theorem 2. Let |V| be the number of vertices in the coloured graph and let
|C| be the number of colours. The coloured lock-step algorithm performs at most
O(|C] - |V - log|V]) symbolic steps.

Proof. Let us first note that all the derived operations defined in Fig. 1 use
only a constant number of the basic symbolic operations. As we are considering
asymptotic complexity here, we can view all the operations in Fig. 1 as elementary
symbolic steps.

We first make the observation that each vertex may be chosen as a part of
the pivot set at most |C| times. Clearly, once a vertex is included in the pivot
set with a set of colours C’, then, {v} x C’ C Con (due to the monotonicity of
the construction of F and B) and the elements of {v} x C’ do not appear in
subsequent recursive calls. This means that the total complexity of the calls to
P1vorTs is bounded by O(|C| - |V|) and we can exclude the calls from the rest of
the complexity analysis.

We now consider the complexity of a single call to DECOMPOSITION without
the subsequent recursive calls. Let us now select one of the colours for which
the lock-step reachability procedure (lines 10-21) finished last, i.e., one of the
colours that have been added to Fj,c; or Bjoer in the final iteration of the cycle.
Let us call this colour ¢. Recall that o3(c, X) is the set of vertices with colour ¢
in a coloured set X.

Let us denote by W := g3(c, W) and let S be the smaller of oy(c,V \ Con)
and o2(c,Con \ W). Clearly S contains at most |V'|/2 vertices. Let k = |S U W/|.
We now argue that the number of symbolic steps in a given call (without the
recursive calls) is bounded by O(k).

Assume w.l.0.g. that ¢ € Fj,e; (a completely symmetric argument solves the
case ¢ € Bjyer)- Then oo(c,Con) = oo(c, F). If S is o3(c,Con \ W) then k is the
size of oa(c, F). Each iteration of the first while cycle puts at least one vertex
with colour ¢ into F; otherwise ¢ would not be one of the last colours to finish.
This means that the cycle runs for at most k iterations. This also means that
the size of o9(x, X) for all colours z and X € {F, B} is also bound by k, which
in turn means that the second while cycle cannot make more than O(k) steps.

If S is o2(c,V \ Con) instead, let us define B := o3(c, B) right after the first
while cycle has finished. We know that B C S U W: if a vertex v were in B\ S
then (v,c) € Con = F and thus v € W. Again, each iteration of the first while
cycle puts at least one vertex with colour ¢ into B; otherwise ¢ would have been
in By, before it appeared in Fj,qx. Similarly to the previous case, this means
that both while cycles run for at most O(k) steps.

76 N. Benes et al.

The rest of the argument uses amortised reasoning, in a way similar to the
proof in [14]. Note that each vertex is going to be an element of the set W as
described above at most |C| times (once for each colour). Furthermore, each
vertex is going to be an element of the set S as described above at most |C|-log |V
times: for each colour, the vertex can be an element of the smaller of the two
sets at most log |V] times. As the cost of each single call can be charged to the
vertices in S U W as explained above, it is sufficient to charge each vertex the
total cost of |C|+ |C| - log |V|. Together, this means that the total number of
symbolic steps is bounded by O(|C| - |V] - log |V]). O

Note that the upper bound established by Theorem 2 is no better than the one
we would get if we split the coloured graph into its monochromatic constituents
and processed each monochromatic graph separately using the original lock-step
algorithm [14]. We remark, however, that the coloured approach is a heuristic
whose real complexity might be much smaller. Indeed, the complexity analysis
in the previous proof focused on a single colour, omitting the fact than SCCs
for many other colours are found at the same time. In case where the edges are
largely shared among the colours, which is true in many applications, the heuristic
has the potential to significantly outperform the parameter-scan approach. The
situation is similar to that of the coloured model checking; see the observations
made in [5].

4 Experimental Evaluation

In this section, we examine the applicability of our algorithm in real-world sit-
uations. First, we discuss how we implemented the algorithm and share some
useful recommendations in this regard. We then look at how the implementa-
tion performs on real-life coloured graphs which are derived from large models
considered in computational biology.

4.1 Implementation

As our symbolic set representation, we consider standard reduced ordered binary
decision diagrams (ROBDDs, or just BDDs for short) [17]. The source of our
edge-coloured graphs are the transition systems of parametrised Boolean networks
(PBN) as understood in [11, 60].

Boolean networks. Normal (non-parametrised) Boolean networks [34, 46,
49, 54] appear in computational systems biology as logical models of complex bio-
chemical processes [16]. Here, we use the asynchronous variant of BNs introduced
by Thomas [54]. A Boolean network consists of Boolean variables, each having a
Boolean update function. Update functions are executed non-deterministically
and change the state of the Boolean variables. The semantics of such a network
is a directed graph where the vertices are the possible valuations of the Boolean
variables and the edges are induced by the non-deterministic execution of the
update functions.

Symbolic Coloured SCC Decomposition 77

This type of models is especially challenging for symbolic analysis. It is a
well-known fact, that using symbolic structures, like BDDs, to represent very
large state spaces gives good results for synchronous systems, but shows its limits
when trying to tackle asynchronicity (see e.g. [23]).

In the parametrised variant, the update functions can be partially unknown.
This introduces a set of colours (parametrisations), each colour fully instantiating
all update functions of the network. As a result, the semantics of such a model is
an edge-coloured directed graph as we consider in this paper. For a full technical
description of PBNs and their coloured graph semantics, please refer to [11].

Our implementation heavily relies on the existing internal libraries of our
tool AEON [12], which at the moment partially supports symbolic analysis of
PBNs. Specifically, AEON uses symbolic BDD-based representation of colour
sets, but relies on explicit state space exploration. In this work, we extend these
capabilities to fully symbolic analysis of the whole graph.

Custom operations. Aside from implementing the POST and PRE opera-
tions for a given PBN, we also choose to provide specialised implementations for
the COLOURS and P1voTs procedures. Especially for the PIvoTs procedure, this
can greatly reduce the number of necessary symbolic steps, as we avoid picking
pivots vertex-by-vertex.

To implement these two operations as efficiently as possible, we always order
the Boolean variables in our BDDs starting from the colour and ending with vertex
variables. This ensures that both P1voTs and COLOURS can be implemented by
pruning the vertex variable nodes and minimising the BDD.

Specifically, in this ordering, for COLOURS, all vertex nodes are effectively
substituted with the true terminal node and the BDD is minimised. For P1voTs,
one (arbitrary) path of vertex variable nodes (corresponding to one pivot vertex)
is preserved for every colour, and the rest of the vertex nodes are pruned.

Trimming. Finally, most graphs typically contain a large number of trivial
SCCs that introduce unnecessary overhead to the main algorithm. To avoid this
overhead, we additionally perform a trimming step before each invocation of
DECOMPOSITION. Trimming consists of repeatedly removing all vertices which
have no outgoing or no incoming edges and is employed by most symbolic SCC
algorithms on standard directed graphs as well. The coloured analogue of trimming
is straightforward, as it can be achieved using PRE and POST operations just as in
the non-coloured case. For a coloured set of vertices V, POST(PRE(®,V)N V)NV
returns only vertices which have at least one predecessor in V. The successor
variant simply exchanges the POST and PRE operations.

4.2 Experiments

We evaluated our algorithm on 7 real-world networks based on the models from
the Ginsim Boolean network database [19]. The experiments were performed
on a 32-core AMD Ryzen workstation with 64GB of RAM memory. All tested
models are available in our source code repository.> Note that the smaller models

3 https://github.com/sybila/biodivine-1ib-param-bn/tree/tacas

78 N. Benes et al.

Table 1. Overview of the test models for the algorithm evaluation. The times
(minutes:seconds) refer to the total runtime of the SCC decomposition procedure. The
model variables and parameters give the number of Boolean variables necessary to
represent the PBN symbolically. Finally, the graph size and colour set size specifies the
magnitude of |V|-|C| and |C| for the coloured graph corresponding to the network.

Model Name Vgioaclloeﬁes Paxﬁietlers GSria;zh S((:;(i?lg?zre Time
siiiﬂiiﬁic[?ﬁ] 10 46 ~2° | ~2" | 00:58.35
?gﬁjﬁfgfﬁf 9 54 ~2% | ~2'% | 01:13.39
B?I(iiilr;g) F?i(iTSt 18 44 ~2% | ~2'" | 50:44.80
Differe?l;iiilii)n [41] 23 48 ~ 2% ~ 2! 71:80.12
Vgg;thsvivir;aﬁfag 26 38 ~2% | ~2% | 78:38.34
Signzlllil;arfigrfl{ [36] 30 4 ~27 | ~2'7 1118:34.88

(< 23%) should be easy to process even on a less powerful machine, however the
larger models can require substantial amounts of RAM.

The PBNs and their analysis runtime is summarised in Table 1. For each
network, we specify the number of Boolean variables used by symbolic encoding,
separated into model variables (vertices) and model parameters (colours), and
the actual approximate size of the coloured graph. Note that not all combinations
of parameters (possible graph colours) are usually biologically admissible, and
these are filtered out before the coloured SCC decomposition. Hence the size of
the graph is smaller than the space of all the considered BDD variables.

From the presented results, we can draw the following observations: First,
fully symbolic approach allows us to scale to much larger graphs than before,
especially in terms of state space. Until now, AEON was typically limited (even
for an easier problem of bottom SCC detection) to vertex counts of 215 — 220,
exhausting memory even for much smaller state spaces when dealing with complex
parameter space. Here, we can easily handle up to 23° vertices with non-trivial
parameter space and we hope to push this number even higher with further
optimisations to our experimental implementation.

Second, the coloured heuristic is beneficial for symbolic computation. To
support this claim, we considered a monochromatic variant of the decomposition
problem for the WG Signaling Pathway and tested the basic lock-step algorithm
on a collection of pseudo-random monochromatisations of this graph. Processing
one such monochromatisation typically required 0.5 — 1 second. Considering the

Symbolic Coloured SCC Decomposition 79

graph in question has 2359296 colours, processing the colours one-by-one would,
even in ideal conditions, take well above 300 hours (more than 12 days).

5 Conclusions

In this paper we have presented a fully symbolic algorithm for detecting all
monochromatic strongly connected components in edge-coloured graphs. The
work has been motivated by systems sciences, namely systems biology, where the
need for efficient automated analysis of components in large graphs with large
sets of coloured edges is emergent. The algorithm combines several ideas inspired
by existing state-of-the-art algorithms for SCC decomposition in a non-trivial
way. We believe this is the first fully symbolic algorithm aiming to solve the
problem efficiently.

The experimental evaluation has shown that in expected practical scenar-
ios, the presented algorithm has a strong potential to be significantly faster
than iterating a standard algorithm for SCC decomposition executed on all
monochromatic sub-graphs one-by-one.

References

1. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R.:
Paths and trails in edge-colored graphs. In: LATIN 2008: Theoretical Informatics.
pp. 723-735. Springer (2008)

2. Akbari, S., Alipour, A.: Multicolored trees in complete graphs. Journal of Graph
Theory 54(3), 221-232 (2007)

3. Alon, N., Gutin, G.: Properly colored hamilton cycles in edge-colored complete
graphs. Random Structures & Algorithms 11(2), 179-186 (1997)

4. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multi-
graphs: A survey. Discrete Mathematics 165-166, 39 — 60 (1997)

5. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek,
T.: On parameter synthesis by parallel model checking. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 9(3), 693705 (2012)

6. Barnat, J., Benes, N., Brim, L., Demko, M., Hajnal, M., Pastva, S., Safranek, D.:
Detecting attractors in biological models with uncertain parameters. In: Compu-
tational Methods in Systems Biology (CMSB 2017). Lecture Notes in Computer
Science, vol. 10545, pp. 40-56. Springer (2017)

7. Barnat, J., Bauch, P., Brim, L., Ceska, M.: Computing strongly connected compo-
nents in parallel on CUDA. In: 25th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2011 - Conference Proceedings. pp. 544-555.
IEEE (2011)

8. Barnat, J., Chaloupka, J., Van De Pol, J.: Distributed algorithms for SCC decom-
position. J. Log. and Comput. 21(1), 23-44 (2011)

9. Batt, G., Page, M., Cantone, 1., Goessler, G., Monteiro, P.T., de Jong, H.: Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. Bioinformatics 26(18) (2010)

10. Behzad, M., Chartrand, G., Lesniak-Foster, L.: Graphs and Digraphs. Wadsworth
Publishing (1979)

80

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. Benes et al.

Benes, N., Brim, L., Pastva, S., Polacek, J., Safrének, D.: Formal analysis of
qualitative long-term behaviour in parametrised boolean networks. In: Ait-Ameur,
Y., Qin, S. (eds.) Formal Methods and Software Engineering. pp. 353-369. Springer
International Publishing, Cham (2019)

Benes, N., Brim, L., Pastva, S., Safrdnek, D.: AEON: attractor bifurcation analysis
of parametrised boolean networks. In: Computer Aided Verification - 32nd Inter-
national Conference, CAV 2020. Lecture Notes in Computer Science, vol. 12224.
Springer International Publishing, Cham (2020)

Benes, N., Brim, L., Pastva, S., Polacek, J., Safrdnek, D.: Formal analysis of
qualitative long-term behaviour in parametrised boolean networks. In: Formal
Methods and Software Engineering (ICFEM 2019). Lecture Notes in Computer
Science, vol. 11852, pp. 353-369. Springer (2019)

Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected compo-
nent analysis in n log n symbolic steps. In: Formal Methods in Computer-Aided
Design (FMCAD 2000). pp. 37-54. Lecture Notes in Computer Science, Springer-
Verlag (2000)

Bloemen, V., Laarman, A., van de Pol, J.: Multi-core on-the-fly SCC decomposition.
In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’16, ACM, New York, NY, USA (2016)

Brim, L., Ceska, M., Safrdnek, D.: Model checking of biological systems. In: Formal
Methods for Dynamical Systems. pp. 63-112. Springer Berlin Heidelberg (2013)
Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677-691 (1986)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10°20 states and beyond. Inf. Comput. 98(2), 142-170 (1992)
Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with ginsim. In: Bacterial Molecular Networks, pp. 463-479. Springer (2012)
Chatterjee, K., Dvoirdk, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: Strongly connected components, liveness, safety,
and diameter. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2018). pp. 2341-2356. SIAM (2018)

Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype
attractors of a large-scale boolean network. BMC Systems Biology 10(1), 95 (2016)
Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4-25
(2006)

Couvreur, J., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model
structure. In: FORTE 2005. Lecture Notes in Computer Science, vol. 3731, pp.
443-457. Springer (2005). https://doi.org/10.1007/11562436 32

Deritei, D., Aird, W.C., Ercsey-Ravasz, M., Regan, E.R.: Principles of dynamical
modularity in biological regulatory networks. Nature Scientific Reports 6, 21957
(2016)

Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Discrete
Applied Mathematics 50(2), 159 — 168 (1994)

Fleischer, L.K., Hendrickson, B., Pmar, A.: On identifying strongly connected
components in parallel. In: Parallel and Distributed Processing. Lecture Notes in
Computer Science, vol. 1800, pp. 505-511. Springer (2000)

Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003). vol. 3, pp. 573-582.
STAM (2003)

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Symbolic Coloured SCC Decomposition 81

Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: Linear solutions to connec-
tivity related problems. Algorithmica 50(1), 120-158 (2008)

Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixao, T., Petrov, T.:
Model checking the evolution of gene regulatory networks. Acta Informatica 54(8),
765—787 (2017)

Hong, S., Rodia, N.C., Olukotun, K.: On fast parallel detection of strongly connected
components (SCC) in small-world graphs. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
SC 2013, ACM, New York, NY, USA (2013)

Irons, D.: Logical analysis of the budding yeast cell cycle. Journal of theoretical
biology 257(4), 543-559 (2009)

Jiang, B.: I/O- and CPU-optimal recognition of strongly connected components.
Information Processing Letters 45(3), 111 — 115 (1993)

Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored
graphs - a survey. Graphs and Combinatorics 24(4), 237-263 (2008)

Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3), 437-467 (1969)

Kiraly, Z.: Monochromatic components in edge-colored complete uniform hyper-
graphs. European Journal of Combinatorics 35, 374 — 376 (2014)

Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A method-
ology for the structural and functional analysis of signaling and regulatory networks.
BMC bioinformatics 7(1), 56 (2006)

Li, G., Zhu, Z., Cong, Z., Yang, F.: Efficient decomposition of strongly connected
components on GPUs. Journal of Systems Architecture 60(1), 1 — 10 (2014)

Li, Q., Wennborg, A., Aurell, E., Dekel, E., Zou, J.Z., Xu, Y., Huang, S., Ernberg,
I.: Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of
stability, and escape. Proceedings of the National Academy of Sciences 113(10),
26722677 (2016)

Matouk, A.: Complex dynamics in susceptible-infected models for covid-19 with
multi-drug resistance. Chaos, Solitons & Fractals 140, 110257 (2020)

Mbodj, A., Junion, G., Brun, C., Furlong, E.E., Thieffry, D.: Logical modelling of
drosophila signalling pathways. Molecular BioSystems 9(9), 2248-2258 (2013)
Mendoza, L., Xenarios, I.: A method for the generation of standardized qualita-
tive dynamical systems of regulatory networks. Theoretical Biology and Medical
Modelling 3(1), 13 (2006)

Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 16(1), 31-42 (2019)

Orlando, D.A., Lin, C.Y., Bernard, A., Wang, J.Y., Socolar, J.E., Iversen, E.S.,
Hartemink, A.J., Haase, S.B.: Global control of cell-cycle transcription by coupled
CDK and network oscillators. Nature 453(7197), 944-947 (2008)

Orzan, S.: On Distributed Verification and Verified Distribution. Ph.D. thesis, Free
University Amsterdam (2005)

Reif, J.H.: Depth-first search is inherently sequential. Information Processing Letters
20(5), 229 — 234 (1985)

Richard, A., Comet, J.P., Bernot, G.: Graph-based modeling of biological regulatory
networks: Introduction of singular states. In: Computational Methods in Systems
Biology (CMSB 2005). Lecture Notes in Computer Science, vol. 3082, pp. 58-72.
Springer (2005)

Saad, R.: Sur quelques problémes de complexité dans les graphes. Ph.D. thesis, U.
de Paris-Sud, Orsay (1992)

82

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

N. Benes et al.

Sénchez-Osorio, 1., Herndndez-Martinez, C.A., Martinez-Antonio, A.: Modeling
asymmetric cell division in caulobacter crescentus using a boolean logic approach.
In: Asymmetric Cell Division in Development, Differentiation and Cancer, pp. 1-21.
Springer (2017)

Schwab, J.D., Kiihlwein, S.D., Ikonomi, N., Kiihl, M., Kestler, H.A.: Concepts in
boolean network modeling: What do they all mean? Computational and Structural
Biotechnology Journal 18, 571-582 (2020)

Sharir, M.: A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications 7(1), 67-72 (1981)

Slota, G.M., Rajamanickam, S., Madduri, K.: BFS and coloring-based parallel
algorithms for strongly connected components and related problems. In: 2014 IEEE
28th International Parallel and Distributed Processing Symposium. pp. 550-559
(2014)

Steffen, W., Rockstrom, J., Richardson, K., Lenton, T.M., Folke, C., Liverman,
D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F.,
Fetzer, 1., Lade, S.J., Scheffer, M., Winkelmann, R., Schellnhuber, H.J.: Trajectories
of the earth system in the anthropocene. Proceedings of the National Academy of
Sciences 115(33), 8252-8259 (2018)

Tarjan, R.E.: Depth-first search and linear graph algorithms. STAM J. Comput.
1(2), 146-160 (1972)

Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42(3), 563-585 (1973)

Thomason, A., Wagner, P.. Complete graphs with no rainbow path. Journal of
Graph Theory 54(3), 261-266 (2007)

Wijs, A., Katoen, J.P., Bosnacki, D.: GPU-based graph decomposition into strongly
connected and maximal end components. In: Computer Aided Verification (CAV
2014). Lecture Notes in Computer Science, vol. 8559, pp. 310-326. Springer (2014)
Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19(10), 1225-1230 (2000)

Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method
for detecting attractors in synchronous boolean networks. Science of Computer
Programming 180, 18-35 (2019)

Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components and
fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141-150 (2011)

Zou, Y.M.: Boolean networks with multiexpressions and parameters. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 10, 584-592 (2013)

Symbolic Coloured SCC Decomposition 83

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Symbolic Coloured SCC Decomposition
	1 Introduction
	1.1 Related Work

	2 Problem Definition
	2.1 Graphs and Strongly Connected Components
	2.2 Coloured SCC Decomposition Problem

	3 Algorithm
	3.1 Symbolic Computation Model
	3.2 Forward-backward Algorithm
	3.3 Lock-step Algorithm
	3.4 Coloured Lock-step Algorithm
	3.5 Correctness and Complexity of the Coloured Lock-step Algorithm

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Experiments

	5 Conclusions
	References

