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Abstract In this work, we propose a new method for the analysis of time-resolved
X-ray absorption near edge structure (XANES) spectra. It allows to decompose
an experimental dataset as the product of two matrices: a pure spectral matrix,
composed by XANES spectra associable to well-defined chemical species/sites, and
their related concentration profiles. This method combines the principal component
analysis and the application of a transformation matrix whose elements are directly
accessible by the user. We demonstrate the potential of this approach applying it
to a series of XANES spectra acquired during the direct conversion of methane
to methanol (DMTM) over a Cu-exchanged zeolite characterized by the ferrierite
topology. Possibilities and limitations of this methodology are discussed together
with a critical comparison with the Multivariate Curve Resolution Alternating Least
Squares (MCR-ALS) algorithm that, in the field of X-ray absorption spectroscopy
(XAS), is imposing itself as a widely used method for spectral decomposition.
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6.1 Introduction

Oneof themain dreams for researchersworking in thefield of chemistry andmaterials
science consists in having amathematical tool which allows to obtain an atomic-scale
movie of a chemical reaction at realistic working conditions [1]. This request can be
thought as the simultaneous determination of the spectra and concentrations of all
the species involved in the analysed chemical reaction (i.e. reactants, intermediates
and products), monitored by one or more characterization methods as a function of
time. In this way, a reliable correlation between structure, kinetic and functionality
can be properly identified. Focusing on the chemical speciation, X-ray absorption
near edge structure (XANES) spectroscopy demonstrated to be an extremely useful
technique, principally thanks to its local sensitivity and element selectivity, together
with the possibility to simultaneously access both to the electronic and structural
information of the material under study [2]. This fact led to the development of
different strategies to decompose a dataset of XANES spectra acquired during a
chemical/physical process, into a set of spectral and concentration profiles. However,
most of them are based on the usage of particular constraints (i.e. the presence of a
unique chemical specie at the beginning or at the end of the process) or references that,
in some cases, are difficult or even impossible to measure, making their application
unrealizable [3–5]. The work by Tauler et al. made a substantial contribution towards
the solution of the spectral un-mixing problem. The authors proposed an automated
data processing technique referred to as Multivariate Curve Resolution Alternating
Least Squares (MCR-ALS) which has been largely used during the last two decades
in different fields of research, ranging from chromatography to image analysis [6,
7]. MCR-ALS is basically an iterative algorithm which allows the separation of
the experimental data set into pure, chemically/physically meaningful, spectra and
their associated concentrations without the use of any reference. In the last years,
an increasing numbers of research groups have begun to use it in the analysis of
large XAS datasets relevant to different scientific fields, such as battery research [8],
quantum-dots formation [9], solid-state chemistry [10] and heterogeneous catalysis
[11–14]. However, the possibility retrieve, from this method, a proper set of pure
spectra and concentration profiles having a spectroscopic meaning seems to depend
on the amount of the variance of the XANES dataset and on the initialization of the
MCR-ALS routine [15]. There are, in fact, some XANES dataset, such as the ones
reported by Guda and Bugaev [16, 17], showing only the variation of small spectral
features causing, in this way, the failure of the MCR-ALS analysis. This fact lead
to the development of a new approach (part of the PyFitIt software [18]) based on
the joined application of Principal Component Analysis (PCA) and of a user-defined
transformation matrix. In general, no particular standards are required to drive the
output of this method towards a meaningful solution. Nonetheless, some background
knowledge of the system under study (e.g. from complementary characterization
techniques or computational analysis) appears to be greatly helpful for a robust
interpretation of the results. In Sect. 6.3.1.2, this new method is applied to a dataset
constituted of a series of Cu K-edge XANES spectra, collected on Cu-exchanged
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ferririte zeolite (Cu-FER) during the direct conversion of CH4 to CH3OH. Finally,
the obtained results are critically discussed and compared in Sect. 6.3.1.2.2 with the
ones retrieved using the Multivariate Curve Resolution—Alternating Least Squares
(MCR-ALS) method.

6.2 Method

6.2.1 The Transformation Matrix Approach

Let us consider an experimental XANES dataset μi j composed by M energy points
and L spectra (i.e. dim(μi j ) = M × L), acquired during an experiment, where one
or more physical or chemical variables are varying (e.g. time, temperature, pressure,
pH…). Each spectrumμi of the datasetμi j can be expressed as a linear combination
of N pure spectral components s j (with N < L) as follow:

μi =
N∑

j=1

ci j s j + εi (6.1)

Equation (6.1) is the so-called Lambert and Beer equation [19]. Under this repre-
sentation, μi and s j are one-dimensional vectors with length equal to M, while the
scalar term ci j is the fraction of the jth component acquired during the ith scan (with
i= 0, 1,…, L). Finally, the vector εi represents the experimental noise values associ-
ated to the ith vector in the dataset. It is worth noting that each of the N components
must refer to a determined chemical species present in the analysed data mixture and
must show some well-defined spectroscopic features able to visually characterize it
(e.g. edge position, intensity/shape of the white line peak; number, energy position,
and intensity and pre-edge and rising-edge peak …).

Considering Eq. (6.1), one would recover, starting from each experimental spec-
trum μi , the related pure spectra s j and the associated concentration values ci j . This
request can be seen as an inverse problem. Herein, we present amathematical method
based on the usage of a transformation matrix able to find a solution of (6.1) realizing
this kind of bilinear separation, entering in this way, in the family of the Multivariate
Curve Resolution (MCR) methods [19, 20].

The first step of this approach foresees the application of the singular value
decomposition (SVD) on the experimental dataset μi j as follow:

μi j = uikσklvl j (6.2)

where uik is the absorption coefficient for the component k, σkl is the element of a
diagonalmatrix, called singular valuesmatrix, having the diagonal elements sorted in
decreasedorderwhile the productwk j = σklvl j canbe considered as the concentration
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value associated to the kth specie. Different statistical and empirical criteria can
be employed, on the basis of the analysis of σkl , to define how many components
correspond to the real pure species with different absorption coefficient (i.e. N) and
which of them are instead associated to the experimental noise (L–N). Among all of
them, due to its effective interpretability, we employed in this work the analysis of
the scree plot, as reported afterwards in Fig. 6.4a.

It isworth noting that the decomposition ofμi j into the product ofmultiple spectral
and concentration matrices is not unique. Equation (6.2) can be rewritten as:

μi j = uipTpkT
−1
kh wh j (6.3)

where Tpk is a square invertible matrix, called transformation matrix, having the
property: TpkT

−1
kh = δph . The inversion of Tpk can be used to realise decomposi-

tion (6.1) as: sik = uipTpk and ck j = T−1
kh wh j . This step is fundamental. In fact,

following the Eckhart-Young theorem, it is possible to state that the spectral and
concentration profiles obtained directly form the SVD decomposition are able to
guarantee the best approximation ofμi j [21]. However, these values represent only a
mathematical solution of (6.1) without any inherent chemical/physical meaning (see
Fig. 6.4c). The transformation matrix allows, in this way, to convert the set of math-
ematical spectral and concentration profiles into a set of solutions of (6.1) having
a physical/chemical interpretation. In the PCA section of the PyFitIt software [18],
the elements of the transformation matrix are accessible by user and can be varied
using sliders. Clearly, a proper set of constraints must be defined in order to reduce
the number of elements of Tpk to be used (which goes as N2) and their range of
variation. Dealing with XANES spectra, it is possible to include the non-negativity
of the spectral and concentration profiles and the mass balance condition, as stated
by Conti et al. in their pioneering work regarding the application of the MCR-ALS
approach (see Sect. 6.3.1.2.2) to the analysis of a set of XAS data [8]. While the
first two constraints can be implemented looking for a set of parameters Tpk able
to provide absorption coefficients and concentration values that are non-negative,
the mass balance condition is less straightforward to realise. Indeed, it requires the
normalization of the experimental spectral profiles. For our analysis, we used the
following formula:

�i =

√√√√√(1/(Emax − Emin))

Emax∫

Emin

dEμi (E)2 (6.4)

where �i is the normalization factor associated to the ith spectrum while Emin and
Emax are respectively the minimum and maximum energy values of the XANES
region. The requirement of the dataset normalization ensures the equality between
the element of the first abstract concentration component of (6.3) (i.e. wh1) and the
normalization coefficient related to the first abstract spectrum: wh1 = �u , where
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Fig. 6.1 Set of theoretical spectra, solution of Eq. (6.1), obtained from the XANES dataset
described in Sect. 6.3.1.2. In order to identify them, the following constraints have been adopted:
non-negativity of the spectral and concentration profiles together with the mass-balance condition

�u =
√

(1/(Emax − Emin))
Emax∫

Emin

dEu1p(E)2. This result can be used to guarantee the

condition
∑N

j=1 ci j = 1. In fact, it is possible to show that the normalization of the
components reduces the number of matrix transformation elements fromN2 to N2–N
and determines the following simplification:

N∑

j=1

ck j =
N∑

j=1

T−1
kh wh j = wh1/�u = 1 (6.5)

Similarly to the case of the Linear Combination Analysis (LCA) the uniform
normalization of the experimental XANES spectra plays a fundamental role in the
identification of spectroscopically interpretable results, in this case a set of pure
spectral and concentration profiles. If the dataset is not properly normalised the
condition reported in Eq. (6.5) cannot be satisfied leading to a set of concentration
values whose sum for each scan can slightly differ from 1. At the same time it is
possible to retrieve a series of pure spectra, characterized by a range of XANES
points sited usually above the edge, which can deviate from the global profile of the
XANES dataset, as described by Calvin in [22].

The presence of these constraints obviously limits the range of variation of the
elements of Tpk and only the construction of a proper set of strongly selective
constraints can lead to the isolation of a series of XANES components extremely
close to the real physical/chemical solution. However, as showed, a unique solution
of (6.1) cannot be identified. An ensemble of feasible XANES spectra is represented
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in Fig. 6.1. Herein, this dataset has been generated considering the XANES data
described in Sect. 6.3 and imposing the constraints described before.

The entire data analysis reported in this work has been realized using PYTHON
3.7. All the scripts can be provided by the corresponding author under request.

6.3 Case of Study

6.3.1 Spectral Decomposition for Cu K-Edge XANES
of Cu-FER During the DMTM Conversion

6.3.1.1 Experimental Setup and Description of the Protocol Followed

XAS data were collected during the DMTM conversion at beamline BM31 [23]
of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). For the
measurements, we used 3 mg of a Cu-FER sample with Cu/Al = 0.20 and Si/Al
= 11. Details about the synthesis of this Cu-exchanged zeolite can be found in
Ref. [24]. The sample was inserted in a 1 mm diameter quartz capillary with the
powdered sample placed between glass wool plugs. The capillary was then fixed on
a metal bracket and used as a fixed bed reactor. Finally, the gas inlet was connected
to a dedicated gas flow setup. The process consisted of three steps: O2 activation at
500 °C (120 min, 100% O2), CH4 loading at 200 °C (180 min, 100% CH4) and H2O
assisted CH3OH extraction at 200 °C (ca. 60 min). The temperature of the sample
was controlled using a heat gun and the heating/ cooling ramps were performed with
a 5 °C/min rate. The flow at each step was set to 2 ml/min using dedicated mass flow
controllers (MFCs).

Cu K-edge XAS spectra were collected in transmission mode, using a water-
cooled flat-Si (111) double crystal monochromator. The incident and transmitted
X-ray intensities were detected using 30 cm long ionization chambers filled with
He/Ar mixture. Scans in the range of 8800–9300 eV were continuously collected,
binned with a constant energy step of 0.5 eV with the acquisition time being ca.
5 min/scan.

6.3.1.2 Data Analysis

In order to obtain more insights into the conversion mechanism of CH4 to CH3OH
mediated by Cu-FER, we focused our analysis on the set of data acquired after the O2

activation (see Fig. 6.2), starting from theHe flushing till the extraction of CH3OHby
means of steam. The collected dataset shown in Fig. 6.3 is composed by 30 XANES
spectra properly normalized to the unity edge jump using the Athena software from
the Demeter package [25].
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Fig. 6.2 Graphical representation of the protocol followed: 120 min O2 activation at 500 °C (red),
180 min CH4 loading at 200 °C (green), steam-assisted CH3OH extraction at 200 °C for ca. 60 min
(blue). The sample and the lines were flushed with He (grey segments) after O2 activation and CH4
loading for ca. 60 min

Fig. 6.3 a Plot of the analysed time-resolved XANES dataset: the insets contain the magnification
of the spectral regions showing the highest variations during the followed experimental protocol:
white line variations (upper left inset), rising-edge peak variation (central inset). b Contour maps
associates to the insets reported in Figure (a)

As it is possible to see from Fig. 6.3a, during the entire MTM process, only small
variations in the XANES spectra occur. In particular, these variations involve the
intensities of the XANES white line and the rising-edge transitions (see the insets
of Fig. 6.3a). Analysing these spectral modifications together with the variation
of the scan index (that can be imagined as a temporal variable, being the adopted
sampling time in our experiment 5 min/scan) some interesting trends appear. By
sending CH4, scans 1–20, the energy edge is shifted progressively towards lower
values, the XANES white line magnitude becomes lower, while the intensity of the
1s→ 4p dipolar transition at ca. 8983 eV (characteristic of the Cu(I) ions) increases,
as showed in Fig. 6.3b. This phenomenon can be interpreted as the reduction of a
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Fig. 6.4 PCA output. a Scree plot (logarithmic plot of the singular values extracted by the SVD vs.
the number of PCs).b%R-factor (residual error) associated to the reconstruction of each spectrumof
the experimental dataset shown in Fig. 6.3a using three components. c First four abstract components
retrieved by PCA. All the abstract components, except for the first one, have been multiplied for a
factor 20 in order to enhance their main spectral features

certain quantity of framework-coordinated Cu(II) sites, previously formed during
the activation process in the presence of O2, to Cu(I) sites, always coordinated to the
zeolite lattice oxygens [2, 24, 26]. During the extraction of CH3OHwith water, scans
26–30, the edge energy is re-shifted towards higher energy, the intensity of the Cu(I)
1s → 4p transition is abated and the XANES white line feature grows up again (see
Fig. 6.3c). These evidences underline the presence of a higher abundance of Cu(II)
sites in the chemical mixture, plausibly encompassing both Cu(II) aquo-complexes
and framework-coordinated Cu(II) ions.

In order to identify the proper number of chemical species present in the analysed
mixture, we applied the Principal Component Analysis (PCA) on the dataset showed
in Fig. 6.3a. The results of this approach are reported in Fig. 6.4.

The analysis of the singular values, extracted by the SVD of the experimental
dataset is reported in Fig. 6.4a. It is worth to note that each singular value is tight
to the data variance explained by the related PC by the following relation: si =
σ 2
i i/(M − 1), where the subscript i denotes the ith component [21]. It follows that

those components, that are associated to the noise, contribute in the same way to the
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dataset reconstruction and, for this reason, they are characterised by similar singular
values. In the graph, an elbow is evident in proximity of the third component while
from the fourth one onwards all the singular values lay approximately on a flat line.
This trend suggests the presence of three PCs able to characterise the entire dataset.
The fourth PC presents only some rather weak features if compared to the first three
PCs, as evidenced in Fig. 6.4c and, for these reasons, it should be associated to some
noise contribution or to the presence of a highly diluted specie. It is interesting to
observe that the dataset reconstruction process with three PCs, shows an increase of
the %R-factor values in proximity of two groups of scans: 14, 16, 17, 20 and 26, 28.
The R-factor, for each scan, is defined as follows:

%RFactor = 100 ×
∑M

i=1

∣∣∣μPC
i j − μi j

∣∣∣
∑M

i=1

∣∣μi j

∣∣ (6.6)

where μPC
i j is the dataset reconstructed with three PCs. For the first group of scans,

it is interesting to underline the correlation between the higher error values with the
increasing of the spectral white line and the shift of the edge energy, as showed in
Fig. 6.3b, c. On the other hand, the error associated with the second group of scans
seems to be related to the appearance of CH3OH during the steam-assisted extraction
step. This analysis suggests that some transient chemical species are present for
the mentioned scans, influencing the experimental spectra. Probably, these small
variations in the dataset could be represented by the fourth and fifth component.
However, basedon the scree plot analysis results andon the error on the reconstruction
using three PCs (lower than 0.45%) we decided to retrieve only three PCs.

Application of the Transformation Matrix Approach and Interpretation
of the Results

Weapplied the transformationmatrix approach on the experimental dataset showed in
Fig. 6.3a. Each spectrum was initially normalised using Eq. (6.4). Then, employing
the target Transformation function of PyFitIt [18] for three PCs, we defined a 3
× 3 transformation matrix. Thanks to the normalization constraint, we reduced the
number of sliders to adjust fromnine to six. The analysis of the rawdata shows that the
background profile due to the atomic Cu K-edge absorption process is similar for all
the recorded spectra. As already pointed out by Giorgetti et al. in [27], this behaviour
indicates that there are no secondary processes such as the loss or dissolution of a
part of the sample during the entire reaction process or the movement of the powder
inside the capillary. This fact justified the application, in this case, of themass balance
condition closure described in Sect. 6.2.1. Finally, the elements of the transformation
matrix were moved according to the non-negativity of the spectra and concentration
profiles.
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Fig. 6.5 a, c Spectral and concentration profiles retrieved using the transformationmatrix approach.
b Cu-references used to test visually the goodness of the spectral decomposition

A retrieved solution of Eq. (6.1) having awell-defined chemical/physical meaning

is given bymatrix Tpk =
⎛

⎝
1/� 1/� 1/�
3.40 −1.05 −0.70
0.45 1.50 −0.30

⎞

⎠, with 1/� = −0.18 and it is showed

in Fig. 6.5a, c.
It is possible to see that the identified spectral profiles are extremely similar to

a set of references showed in Fig. 6.5b. These include a pseudo-octahedral Cu(II)
aquo-complex (Cu(II) hydr.) as well as two framework-coordinated Cu(II) and Cu(I)
species referred to asCu(II) andCu(I) fw, respectively. TheCu(II) hydr. was obtained
measuring a Cu(II) acetate aqueous solution at RT. The Cu(I) fw reference was
collected at RT after heating the sample up to 400 °C in vacuum. Finally the XANES
acquired in He at 200 °C, just before the CH4 loading step, was used as a Cu(II) fw
reference.

The extracted profiles seem to be affected by a small amount of noise. This
fact can be explained remembering that if the correct number of components is
chosen, the PCA acts as a filter removing the highest amount of noise characterizing
the dataset. However, as described by Malinowski [28], there is always a fraction
of residual noise depending on the quality of the measurement mixed in the pure
spectral and concentration profileswhich cannot be removeddeleting the unnecessary
components.
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The analysis of the concentration profiles associated to the pure spectra extracted
showed in Fig. 6.5c and can lead to the following interpretation.

Scan 1 corresponds to the first state when the CH4 is sent over the investigated
Cu-FER sample at 200 °C. As it is possible to see from the concentration profiles
(Fig. 6.5c), the amount of the second and third component is almost zero and it is
possible to conclude that this scan is dominated by framework-coordinated Cu(II)
sites (component n° 1, green spectrum in Fig. 6.5a). A precise assessment on the
nature of this Cu(II) site is not straightforward. Depending on the zeolite topology, a
number of Cu(II)-oxo species potentially active towards DMTMhave been proposed
to form during the high-temperature activation in O2 and their structures are still
debated in the literature [2, 24, 26, 29]. Among them, we can mention mono(µ-
oxo) dicopper(II) cores, dicopper(II) peroxides and monocopper(II) superoxides.
XANES simulations carried out on selected monomeric and dimeric CuxOy moieties
demonstrated that there is no sharp spectroscopic contrast in terms of spectral features
among them [30, 31]. If follows that the first component profile is associated to a pure
spectrum but it can be attributed to different Cu(II) species that, during the entire
reaction, can coexist, making their identification impossible to be achieved using this
technique.

During the sample interaction with CH4, we observe the partial reduction of
Cu(II) to Cu(I) (component n° 2, orange spectrum in Fig. 6.5a), see scans 1–25 in
Fig. 6.5c. Focusing on the Cu(I) species, it is interesting to note that the maximum
development of the related concentration profile occurs relatively early, around scan
n° 7. Subsequently, concentration values tend to stabilize, indicating saturation of
some Cu(II) reactive species. The Cu(I) spectrum, retrieved by the transformation
matrix approach, can be associated to a two-fold coordinated Cu(I) specie. In fact,
assuming the mono(µ-oxo) dicopper(II) as the active site for the CH4 oxidation,
the Cu(I) site supports the opening of the Cu-(µ-O)-Cu bridge in the mono(µ-oxo)
dicopper cores upon (µ-O) methylation giving rise to the Z[Cu(I)(OCH3)Cu(II)]Z
intermediate (where Z denotes coordination to two zeolite framework oxygen atoms
in the proximity of a charge-balancing framework Al site) [26]. Starting from this
last structure, a proposed scenario involves the di-copper core dissociation into prox-
imal Cu(I)/Cu(II) units, e.g. a bare ZCu(I) ion, having a spectral signature equal to
component 2 of Fig. 6.5a and a methoxide Z[Cu(II)(OCH3)] complex represented by
a spectrum expected to be indistinguishable by classic XAS spectroscopy from the
one associated to component 1. Novel insights about the identification of these inter-
mediates could be obtained using High Energy Resolution Fluorescence Detected
(HERFD) XANES, proven to be extremely helpful for the detection of the small
variations of the XAS features that can characterize these species [15, 32].

Considering the scans associated with the CH3OH extraction (26–30), it is inter-
esting to see from Fig. 6.5c the presence of two processes triggered by water:
the diminution of components n° 1 and n° 2, associated to framework-coordinated
Cu(II) and Cu(I) species, and the appearance of a third component (blue spectrum
and concentration profile) associated to a Cu(II) hydrated state. The framework-
coordinated Cu(II) fraction diminution can be explained by the hydrolysis mecha-
nism involving themethoxide group of the Z[Cu(II)(OCH3)] complexwhile the small
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Fig. 6.6 Graphical representation of two of the fifteen AFS, related to dataset showed in Fig. 6.3,
for the couples of variables: (T21, T31) and (T22, T23). These distributions have been obtained using
aMonte Carlo approach, initializing and minimizing Eq. (6.7) for 1000 times. The initialization has
been realized generating random numbers between−10 and 10, while for the minimization process,
the Nelder-Mead algorithm has been employed [34]. With the red points are represented the sets
of parameters able to provide the solution of Fig. 6.5, while the red cubes indicates, pictorially, the
projections of a six-dimensional hypercube with a side of 0.3 over the 2D plane defined by these
couples of parameters

abatement of the Cu(I) concentration values can be associated with H2O-mediated
re-oxidation pathways.

As previously discussed in Sect. 6.2.1, the solution obtained by the matrix trans-
formation method depends on the values of the elements of Tpk and it is not unique.
In order to quantify the maximum and minimum values of the spectral and concen-
tration profiles for the solutions of (6.1) having a chemical/physical meaning, we
proceeded with the following protocol:

First, we defined an objective function P as [33]:

P(T21, T22, T23, T31, T32, T33) =
L∑

i=1

N∑

j=1

Hs
(
si j

)
s2i j +

M∑

k=1

N∑

j=1

Hc
(
ck j

)
c2k j (6.7)

Due to the normalization constraint,P does not depend on the first rowof Tpk , fixed
to 1/�. In (6.7) Hs is a Heaviside function that returns 0 if the spectral values si j are
higher or equal to zero and 1 for their negative values, while Hc is a second function,
associated with the concentrations profiles, that returns 0 for concentrations within 0
and 1 while it is equal to 1 if this last condition is not satisfied. Initializing randomly
function P and minimizing it for a considerable number of iterations (i.e. 1000 or
more) it is possible to obtain a graphical representation of all the combination of the
elements of matrix Tpk satisfying the required constraints, called Area of Feasible
Solutions (AFS), see Fig. 6.6. The ensemble of spectra associated to every minimum
point of (6.7) is showed in Fig. 6.1.
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The geometric shapes of the obtained AFS can be explained taking into account
the portions of a R6 space enclosed in a subspace limited by the conditions si j ≥ 0
and 0 ≤ ci j ≤ 1 [33]. Despite the large range of variation of the elements of the
transformation matrix, only a small number of combinations of these parameters are
acceptable. The retrieved spectra must satisfy the imposed constraints as showed by
Figs. 6.1 and 6.6, but, at the same time, they must be characterized by determined
spectral features physically and chemically interpretable. This fact reduces drastically
the number of spectra of Fig. 6.1 and consequently the relatedAFS showed in Fig. 6.6.
Unfortunately, at the moment, there is no technique available able to automatedly
assess if a XANES spectrum, generated by a determined combination of parameters
Tpk , has a physical/chemical meaning. The transformation matrix approach is not
able to realize the so-called blind source separation of the experimental signal and
only the user’s intuition and the knowledge of the system under study can lead to a
meaningful solution. It is opinion of the authors that the creation of a large dataset
of reference XANES (experimental and simulated) spectra together with a solid
Machine Learning algorithm for spectral comparison could improve the quality of
the results. However, it is possible to select a region surrounding a feasible point and
try to identify the maximum and minimum band boundaries of the feasible solutions
having a physical/chemical meaning. To do this, we exploited the idea of Tauler [35]
and we defined the following scalar function:

fn
(
Ti j

) = sin
(
Ti j

)
cnj

(
Ti j

)

μi j
(6.8)

where the operator ||·|| indicates the Frobenius norm. This function gives the ratio
between the contribution of a particular nth specie with respect to the total contribu-
tion coming from all the components μi j . The optimization of this objective func-
tion, either maximized or minimized under the constraints, will give respectively
the maximum and the minimum boundary for each chemical specie present in the
dataset. In our case, we considered a subspace ofAFS consisting of a six-dimensional
hypercube having a side equal to 0.3 (six times the step variation used as a standard
values in PyFitIt [18]) surrounding the point which provides the spectra and concen-
trations of Fig. 6.5. Afterwards, we minimised and maximised Eq. (6.8) changing
progressively the components. This step was realised under constraints (described
before) using the Sequential Least Squares Programming method [36].

The obtained results are showed in Fig. 6.7.
Analysing this picture, it is interesting to see that the lines constituting the spectral

variation bounds are extremely close to each other. Some small differences appear
in the rising-edge region (especially for the 1s → 4p peak of the Cu(I) compo-
nent) and for the white line peak. Vice-versa, larger variations are observable for the
related concentration profiles. The explanation must be found in the selection of the
subspace of the Tpk parameters used for theminimization procedure [37]. The chosen
hypercube has been defined in order to incorporate only the spectral profiles charac-
terized by interpretable spectroscopic features. This ‘user-based’ constraint limited
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Fig. 6.7 Spectral (a) and concentration (b) band boundaries calculated for the profiles of Fig. 6.5
minimizing and maximizing for six times Eq. (6.8)

the shape of the pure spectral profiles that can be isolated but not their concentrations
that, in the selected range of variation of the Ti j can undergo significant variations.
Possible strategies to reduce the concentration band boundaries amplitude could rely
on the introduction of additional concentration constraints or by fixing a reference
spectrum as a pure component in the analysed system.

Application of the MCR-Alternate Regression (MCR-AR) Method
on the Analysed Dataset

For the sake of comparison, we performed the decomposition of the experimental
dataset of Fig. 6.3 according to Eq. (6.1) using a different MCR method based on an
alternate regression algorithm [38]. This technique is becoming extremely popular
in the field of the XAS analysis, especially for time or space-resolved measurements
when a large series of spectramust be analysed orwhen a high number of components
(i.e. >3) characterize the experimental dataset. TheMCR algorithm requires an initial
set of spectral s0ih or concentrations profiles c0h j . If, as an example, the algorithm is
initialized using s0ih , then the concentration profiles related to step k = 1 will be
given by the following minimization:

c1h j = argmin
c0hj

[FC(s0ihc
0
h j )] (6.9)

whereFC is an objective function. Once the concentration profiles have been defined,
a new set of spectral values can be retrieved minimizing a second objective function
FS:
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Fig. 6.8 Plot of the error in the dataset reconstruction, calculated using Eq. (6.11), versus the
number of iterations employed. The MCR-ALS routine has been initialized using spectra showed
in Fig. 6.5b. The insets report the magnification of minimum region located at iteration n° 12

s1ih = argmin
s0ih

[FS(s
0
ihc

1
h j )] (6.10)

Both the minimization processes (6.9) and (6.10) must be performed under
constraints. Among all the different regressors available in Python, we found partic-
ularly suitable for the XANES decomposition the OLS (ordinary least squares)
regressor, whichminimizes the L2-norm (residual sumof squares) among the original
datasetμi j and the reconstructed-one. In the literature, theMCRmethod based on the
multiple OLS regression is usually named asMCR-ALS (whereALS stands for alter-
nating least squares) [6]. Herein, the classical XANES constraints can be imposed
(i.e. spectral and concentration non-negativity and mass balance condition) allowing
one to drive the set of minimizations towards a feasible solution. The scheme of
multiple regression described above can be easily extended to k-iterations. For each
step, as a function of the retrieved skih and c

k
hj , an expression describing the goodness

of the reconstruction can be calculated. In our analysis, we adopted Ek described by
the following equation [39]:

Ek = 100 × 〈

√√√√√ 〈
(
μi j − skihc

k
h j

)2〉i
〈μ2

i j 〉i
〉 (6.11)

where the operator 〈·〉i denotes themeanover the columns’matrixwhile 〈·〉 represents
the mean calculated on a one-dimensional vector. Usually, if the difference between
the errors associated to two consecutive iterations is lower than 0.1% the routine
is stopped. In the case of the Cu-FER dataset in Fig. 6.3, the error trend related
to the MCR-ALS method versus the iteration number is reported in Fig. 6.8. It is
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Fig. 6.9 a, c Spectral and concentration profiles obtained by MCR-ALS algorithm initialized with
the spectral references showed in Fig. 6.5b. The dashed lines represent the intermediate spectra and
concentration before reaching theminimum values of the error in the dataset reconstruction process.
b Set of spectral profiles obtained by the same method initialized using SIMPLISMA algorithm

interesting to see that after three iterations the difference�E23 = (E2 − E3) < 0.1%;
after the third iteration only small variations occur, indicating that this set of spectra
is already a good candidate to represents properly the dataset. However, for the sake
of completeness, we assumed as the final state of the refinement process the one
associated to the minimum value of the error function Ek , that corresponds to the
12th iteration.

The power of this method stands principally in its blindness regarding the system
under study. However, the entire routine is extremely sensitive to the kind of initial-
ization used. Different statistical techniques such as EFA and SIMPLISMA can be
applied to generate or isolate a proper set of spectra or concentration profiles suit-
able for the subsequent minimization routine [40, 41]. Nevertheless, these methods
strongly depend on the amount of variation of spectra in the dataset [15]. If these
variations are low, as for the dataset under study, MCR-ALS algorithm often fails,
proposing a minimum characterized by spectra and concentrations, which minimize
the error associated to the reconstruction but are still a mixture of pure components;
see Fig. 6.9b.

The solutions to this problem are multiple but involve further measurements or
a deeper knowledge of the system under study. Different datasets supposed to be
characterized by the same components can be merged together in order to increase
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the variance associated to the data, helping, in this way to identify a proper initial
set of spectral and concentration profiles. An example where this strategy provided
good results can be found in [42], where multiple XANES datasets collected on Cu-
zeolites (chabazite) samples with different Si/Al and Cu/Al ratios, during the same
activation process (from 25 to 400 °C) were joined in one larger dataset. Another
strategy could be fixing some components to determined references (supposed to be
present in the data mixture) or the initialization of the ALS routing using always
selected references or some spectral profiles supposed to be connected with almost
pure species. This last method, employing the reference spectra in Fig. 6.5b, was the
one that we used to retrieve the set of spectral and concentration profiles, reported in
Fig. 6.9a, c. Herein, the isolated components have a well-defined chemical-physical
meaning anddiffer from the spectra used for the initialization only for small variations
in the pre-edge and on the white-line. Finally, it is also interesting to note that the
identifiedMCR-ALSconcentration profiles lye in the band boundaries region showed
in Fig. 6.7b, confirming the comparability of this method with the transformation
matrix approach.

6.4 Conclusions

In this work, we firstly demonstrated that the transformation matrix approach is an
efficient technique for the analysis of a generic experimental XANES dataset, even
when characterized by small spectral variations, as it is the case for the Cu K-edge
XANES dataset described in Sect. 6.3, collected during DMTMover Cu-FER. After-
wards, we compared the results obtained through the application of this method with
the ones derived by the MCR-ALS approach. We showed that both techniques are
able to isolate similar pure XANES spectra. However, we stressed the fact that the
set of spectral and concentration profiles provided by the MCR-ALS approach seem
to depend strongly on the degree of the variation characterizing the experimental
dataset and on the methods adopted for the initialization of the routine. On the other
hand, despite the inability to identify a unique solution, the application of constraints
can drastically reduce the number of solutions provided by the transformation matrix
approach, leading to a set of chemically/physically interpretable spectra and concen-
tration profiles. At the same time, the multiple minimization and maximization of
Eq. (6.8) provides a valid method to define the variation bounds associated to the
pairs of spectral and concentration profiles identified by this new technique.
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