
Chapter 7
Formal Validation of Interlocking Under
Signaling Rules

Pengfei Sun, Simon Collart-Dutilleul, and Philippe Bon

7.1 Introduction

The railway principles and standards used to be validated at the national level where
each country has its own “language ” for railway and its own requirements for
managing trains on its network. Now, to promote the European rail market for
passengers and freight, European Union has provided a solution called the ERTMS
(European Railway Traffic Management System) that aims to create a common,
harmonized, and standardized management of rail traffic and signaling in Europe in
order to have a seamless network at the European level.

This brand new standard is easier to apply in the new lines, where wayside
signaling cost is kept to a minimum, but all the vehicle fleets that operate on
these lines must be equipped with the ERTMS on-board system. However, for the
existing lines, there is an alternative “Mixed operation ” solution. This is a strategy
where the wayside signaling is equipped with both ERTMS and conventional
systems. Normally, the conventional one is the legacy line used during the upgrade
program. The main reasons for applying such a mixed solution are: financial
and organizational constraints make it impossible to install ERTMS in the whole
network in a short time. In addition, not every train has to go across the border line,
and ERTMS-equipped trains sometimes have to run on the conventional lines. Most
national companies prefer to gradually deploy the ERTMS in order to replace the
conventional systems with a unified European system.

P. Sun (�)
Southwest Jiaotong University Chengdu, Chengdu, China
e-mail: pengfeisun@home.swjtu.edu.cn

S. Collart-Dutilleul · P. Bon
COSYS/ESTAS, Université Gustave Eiffel, Villeneuve d’Ascq, France
e-mail: simon.collart-dutilleul@univ-eiffel.fr; philippe.bon@univ-eiffel.fr

© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul (ed.), Operating Rules and Interoperability in Trans-National
High-Speed Rail, https://doi.org/10.1007/978-3-030-72003-2_7

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72003-2_7&domain=pdf
mailto:pengfeisun@home.swjtu.edu.cn
mailto:simon.collart-dutilleul@univ-eiffel.fr
mailto:philippe.bon@univ-eiffel.fr
https://doi.org/10.1007/978-3-030-72003-2_7

164 P. Sun et al.

Every conventional signaling system is the result of historical evolution, which
was boosted by progressively technological development and lessons of accidents.
Generally, its safety is ensured by engineering experiences, rather than by systematic
methodology and their evaluations. So far, there has not been a lot of engineering
experiences of ERTMS, which means it is impossible to evaluate the new system in
the traditional way. Meanwhile, the management of railway signaling in ERTMS is
based on the local rules pertaining to each country and not on global ones, which
makes it difficult to evaluate the combined system in terms of safety. However, as
a signaling system, its most important responsibility is to maintain transportation
safety. Therefore, any implementations before being put into use should have
detailed verification and validation (V&V), especially the compatibility of ERTMS
and conventional signaling standards and systems.

One of the basic requirements of the railway safety is that a system must
prevent trains from collision. For this reason, there is a mechanism, called railway
interlocking system (RIS), which is a collection of associated devices, complying
with explicit signaling principles. The purpose of the RIS is to maintain the transit
safety by connecting and arranging the points and signals, so that a hazardous
condition cannot arise. The specification and analysis of the RIS is an important part
of the deployment of ERTMS. The evaluation of their global consistency is needed,
which concerns the consistency between the conventional system and the ERTMS-
equipped system, with regard to safety. This issue is crucial, and yet it has scarcely
been covered by scientific literature. In fact, one of the difficulties of this problem
comes from the lack of formal representations of both systems that could enable the
validation of different aspects through test scenarios. So some new methodologies
that are more systematic and formal need to be adopted.

In order to maintain high-level safety with deterministic scope, a project, called
“PERFECT,” was launched to develop the safety specification and verification
of French railway interlocking systems in the context of national rules and the
influence of implementing ERTMS laws on the original systems (Bon et al. 2013;
Collart-Dutilleul et al. 2014; Sun et al. 2014). This chapter will introduce the
low-level part and the fundamental phase of the project. It focuses on the formal
validation approach of the French railway RIS based on the computer-controlled
relay-based system. This study aims to provide a methodology for a comprehensive
assessment of the consistency of the following two aspects: the operating rules of
local signaling systems and the additional safety requirements (which means the
ERTMS).

With this methodology, we are able to follow the safety analysis: the safety
assessment of new systems, the analysis of given scenarios, and the evaluation of
safety requirements of system updates. After this method is recognized by railway
experts, we will develop the method in an automatic methodological tool easily
applied in practice. Then, we will provide a methodology for translations between
the exclusive model train and classical Petri net model. This will allow us the
opportunity to apply our research results in actual practice.

7 Formal Validation of Interlocking Under Signaling Rules 165

7.2 State of Art

Nowadays, the design of railway systems increasingly benefits from advances in
computer science, information technology, mathematics, and other engineering
disciplines. Most of the railway devices are computer-related devices, which means
either of these systems includes some software or is controlled by software. But
software is notorious for having unpredictable bugs that may threaten its correct
functioning. With the rising complexity, for a system that is composed of multiple
computing elements, it is unfeasible to demonstrate the safety of a collection of
behaviors with traditional safety assessments. “The employment of very stable
technology and the quest for the highest possible guarantees have been key aspects
in the adoption of computer-controlled equipment in railway applications” (Fantechi
2012; Fantechi et al. 2012). Therefore, the development and the implementation of
formal proof and verification of system safety have been seen as a necessity for the
railway domain.

So far, the railway signaling-related domain has been considered the most
suitable and the most fruitful areas for formal methods (Fantechi et al. 2012). It is
because railway signaling is safety critical. It has discrete nature and absence of hard
real-time need. The broad use of FMs in this field has already been witnessed by over
182 references in an early review (Bjørner 2003). Some recent surveys and reviews
(Bacherini et al. 2006; Fantechi 2012, 2014; Fantechi et al. 2014, 2012) focus on
the advances in both formal method approaches and railway signaling applications.
Still, lots of related work that has been performed by railway companies are not
published because of confidentiality considerations.

In this chapter, our candidate is colored Petri net (CPN), a graphical modelling
language, whose basic concept, Petri net, is first introduced by C. A. Petri (1966).
The basic Petri net (or element Petri net) has the advantage of expressing discrete
event control systems, and studies of Petri nets in railway can be traced back almost
20 years ago. However, the descriptive ability of basic Petri net seems not to meet
the needs of complex systems. Many derivatives of Petri net have been introduced
in this research area, such as colored Petri net (Jensen 1981, 1987).

With the help of such high-level Petri net, there comes a large-scale application—
Oslo Subway (Bjørk 2006; Hagalisletto et al. 2007; Moen and Yu 2004; Yu
2004)—that integrates CPNs into the system development to simulate the Oslo
subway and analyze schedules of trains. This project developed a specification tool
for specifying and automatically constructing large CPN models of railroads. One of
the important project experiences shows that CPN is a good specification language
for communication because the research group collaborated with chief engineers
from railroad infrastructure and traffic department. Although none were specialists
in Petri nets nor formal methods, they understood the models and were able to
provide suggestions for improving the system.

The specification, analysis, and implementation of railway control logic are
always a hot research topic. In work, Fanti et al. (2006), Giua and Seatzu (2008)
discuss the control of the railway network using CPNs. A resource-oriented CPN

166 P. Sun et al.

method is introduced in Wu and Zhou (2004), which could deal with the deadlock
of automated guided vehicle (AGV) systems. Cheng and Yang (2009) use a fuzzy
Petri net for railway traffic control. A similar solution can be found in Kaakai et al.
(2007) using a hybrid Petri net.

The level crossing (LC) is also a critical crux in both road and rail infrastructures.
Stochastic Petri nets are applied in Ghazel (2009), Huang et al. (2010) in order to
precisely reflect the system’s dynamics. Furthermore, stochastic Petri nets could
be used to evaluate the real-time system in railways, such as data processing
(Zimmermann and Hommel 2003) and device-to-device communication (Lei et al.
2013).

Besides ETCS, there is another advanced train control system, called
“communication-based train control (CBTC),” which has been applied to many
metros. Its protocols and services have been studied by CPN (Chen et al. 2007; Xu
and Tang 2007), deterministic and stochastic Petri net (Zhu et al. 2012), and timed
Petri net (Wang and Bai 2010).

In France’s railway domain, the French National Railway Company (SNCF) has
initiated and participated in many projects. One of the most successful projects is
to develop a formal validation method and tools for new computerized RISs and
existing RISs (Antoni 2009a,b,c; Antoni and Ammad 2007, 2008). This project is
led by Marc Antoni, the head of Innovation and technologic pole of SNCF Infra
and director of the Rail System Department of UIC. This study developed four
successive DSL tools (Antoni 2012b):

1. Tools A: general way for the definition of safety properties
2. Tools B: generation of the safety properties file
3. Tools C: proving tool: formal validation tool
4. Tools D: reached system state tree and execution certificate

In Tools A and B, the safety properties are specified with interpretable determin-
istic Petri nets, which will be later interpreted in the target machine. This method
has been accepted by SNCF Infra. Now it has been applied in real RIS of “Noisy le
Roy,” situated next to Paris, and also applied in a new double-track level crossing.
It is said that this method will be used by UIC and will be applied in the German
system (Antoni 2012a).

Moreover, in order to verify the high-level systems’ safety requirements, SNCF
has made some performance assessments for both local signaling rules and Euro-
pean signaling standards, by specification and analysis of CPNs (Buchheit et al.
2011; Lalouette et al. 2010; Gregory et al. 2010).

7.3 Preliminary of Railway Safety and Interlocking System

This chapter aims to describe and to formalize some major safety properties and the
control logic of interlocking systems in French railway. The reader who is familiar
with the background can skip this section.

7 Formal Validation of Interlocking Under Signaling Rules 167

7.3.1 Safety Management of French Railway System

The concept of safety has different explanations depending on the nature of the
systems and activities. The safety of rail traffic is particularly based on “the
possibility of stopping.” Most of the signaling rules take this concept as the primary
requirement. If no train is moving, there will not be any danger to the traffic itself.
So the basic system state can be simplified as the diagram shown in Fig. 7.1. This
concept of safety is also widely used in the train control procedures, such as the ATP
system, which stops the train according to the radio-based signals, in order to avoid
a collision.

Any signaling rules and signaling-related procedures require a full explanation
of safety properties. In French, they are historically based on determinism. Every
system state has one or more causes. If a state is undesirable, removing its causes
should help to avoid it.

One commonly used method is reasoning, which is necessary to exploit for every
state, and especially to ensure that an undesirable event does not take place. The
deterministic reasoning can only be applied to a closed system; otherwise, there
will be a risk of unforeseen system state. Thus, the principle of the organization of
the external environment is to limit the number of interactions, in order to avoid
introducing chaos. As the external environment is one of the foundations of safety
design, only those directly related to safety should be considered. This technique
has already been used for operating safety and technical safety in French railway
for a long time and its result proved to be safe.

Nowadays, with the development of the computer, the computer-controlled
equipment plays an important role in many industrial areas. It has some advantages
such as:

• Handling of complex new functions
• Ability of long distance remote control
• Reduction in staff

But everything has its two sides. It also has disadvantages such as:

• Long development cycle and hard to modify safely once the produce is finished.
• Require qualified operating and maintenance staffs.

Fig. 7.1 Railway system
state

168 P. Sun et al.

• More difficult to validate and to integrate into the global system.
• The life cycle of computer devices is shorter than that of mechanical ones.

Unfortunately, many experiences show that the current development method cannot
provide a safety guaranteed system according to SIL3 or SIL4. And the integration
safety cannot be ensured under the global framework. A study has shown that “more
than 3/4 accidents in relation with computerized systems are due to specification
errors” (Antoni 2012a). Those accidents are caused by incorrect fiction descriptions,
unthoughtful modifications, or improper maintenance.

In the traditional system, it was necessary to identify the failure events and to
reduce their occurrence causes. When adopting the computer-controlled system,
formal proof or verification is therefore regarded as a necessity. The following
aspects should be taken into consideration.

• The functions and behaviors of such automated systems must be deterministic.
• Some properties should be specified rigorously:

– Safety predicates
– Functional predicates
– Assumptions of interactions with the external environment

• For model checking-based formal proof, it is only possible when the reachable
system states are finite.

The safety state of a computer-controlled signaling system is shown in Fig. 7.2.
Transitions with red forbidden sign are the undesired system changes, which should

Fig. 7.2 The overall safety of a computer-controlled signaling system

7 Formal Validation of Interlocking Under Signaling Rules 169

be identified and reduced through formal specification & verification. In this way,
the final system could operate as a “fail safe ” system.

7.3.2 French Railway Interlocking System

One of the basic requirements of the railway safety is that a system must prevent
trains from collision. For this reason, there is a mechanism, called railway inter-
locking system (RIS), which is a collection of associated devices, complying with
explicit signaling principles. The purpose of the RIS is to maintain the transit safety
by connecting and arranging the points and signals, so that a hazardous condition
cannot arise.

There is a simple example of an interlocking system, as illustrated in Fig. 7.3.
Track segments are represented in a topology structure, and all of them have track
circuits that detect the occupation of a train. Joints of different track lines represent
the points. The sign-board-like symbols are signals of various types of transition
control. This example is constituted by 2 allowed routes, 1 point, 2 signals, and 3
track circuits. The interlocking route that a train can go through safely must meet
the following requirements:

• All points are properly positioned and are locked.
• Conflicting routes must be protected.
• All the tracks along the route must be clear.

When all of the above conditions are satisfied, the signals can be set to green
to let the train enter the route. These rules express the fundamental principles that

Fig. 7.3 An example of railway interlocking system

170 P. Sun et al.

hold for all the RISs. Such rules ensure only the correct combinations of tracks,
points, and signals, in order to avoid accidents. The signal indications authorize the
movements of the train. They are handled by the interlocking system and can be
considered as an indicator of the route establishment.

In our research, we restrict ourselves to the modelling of RISs. To better specify
this complex system, we now introduce its composition and main components. In
railway signaling, the term “interlocking” has two meanings (Pachl 2002). First,
“an interlocking” is an arrangement of signal appliances that prevent conflicting
movements through an arrangement of tracks. Second, principles to achieve a safety
arrangement between signal appliances are also generally called “interlocking.”

According to the above definition and considering the train and the operator as
external interactions, the RIS could be roughly divided into two parts: the signaling
operations and the fixed installations.

Signaling operations are a set of operating rules and procedures that can maintain
safety and high efficiency of transits. It comprises computer automatic controls and
human control processes. Normally, the computer responds to most of the device-
oriented operations, such as route establishment, route auto-destruction, · · ·, while
human control deals with decision-making, such as route selection, route mode
selection, route manual destruction, · · ·, and some non-regular operations, such
as shunting operations.

Fixed installations are a set of components of geographical routes that include
straight track sections, points, signal lights, and some ground-based automatic
signaling devices that could work automatically and do not need supervision from
the signaling center. Thus, they should be treated as a component in the geographical
route.

7.4 Formal Modelling of Railway Interlocking System via
HCPN

In this section, we will study the modelling of the French railway interlocking
system using hierarchical colored Petri net.

First, we describe the modelling structure of an interlocking system and its
corresponding network, as well as a set of interlocking properties that this network
should obey. Subsequently, we specify this interlocking system with colored Petri
nets in a generic and compact structure. In this modelling framework, the high-level
functions of RIS are modelled in terms of a hierarchical and modular point of view.
The railway layout (networks) is modelled in a geographical perspective, in order
to be easily understood by railway expert engineers. Then, for the high-level parts
of RIS, we propose a modelling pattern of the French railway interlocking system,
which is a parameterized model that respects the French national rules. It is a general
reusable solution to this kind of problem and can be used in many different given
contexts. Finally, for the low-level parts of RIS, we introduce an event-based concept

7 Formal Validation of Interlocking Under Signaling Rules 171

into the modelling process, in order to better describe the internal interaction of low-
level interlocking logic. In this process, a reduction policy is applied both before
and after the state space calculation to obtain a new compact graph with the same
reliability for analysis.

7.4.1 GRAFCET and Petri Net

Petri net is a formal, mathematical, well-developed theory. However, French
industry still prefers to use another informal tool—GRAFCET. In order to be close
to industry usage habits, and to take advantage of formal methods, we make a little
comparison of GRAFCET and Petri nets to discuss why the Petri net is our best
solution for modelling the French railway system.

GRAphe Fonctionnel de Commande Étape/Transition (GRAFCET) is a method
of representation and analysis of automation. This is a graphical tool for describing
the behaviors of the control processes. It describes the informational interactions
across the system boundary. This mode of representation is independent of the
technology used in the automation and reflects a consistent specification of the
automatism.

This method was proposed in 1977 by the Association Français pour la Cyberne-
tique Economique et Technique (AFCET) as a standard to represent specifications
for software control systems. It was accepted in 1982 as a French standard. Latter in
1987, it was accepted as an international standard IEC 1131.3 by the International
Electrotechnical Commission. The GRAFCET is also known as DFS (Diagramme
Fonctionnel en Séquence) or in English, the SFC (Sequential Function Chart).

The GRAFCET has many advantages, and it already has a wide range of appli-
cations. However, with the increasing safety need of the international standards,
GRAFCET has also long been criticized because of its lack of a formal foundation
that allows it to ensure correctness and safety requirements. On the other hand, “it
lacks adequate methodology that allows an efficient development of high quality
models in the case of complex systems on the other” (Zaytoon and Villermain-
Lecolier 1999).

To compensate for its deficiency, researchers began to use other formal languages
to describe GRAFCET. Particularly, formal design methods of state diagrams and
Petri nets are available. State diagrams are easy to learn and can be converted
into many existing programming languages of GRAFCET without any problem.
However, some complex structures, such as a parallel, cannot be well represented.
Petri nets can achieve almost all the structures of GRAFCET (René and Alla 1992,
1997). The models can be extensively analyzed by PNs in order to prove formally.
Also, the model of PNs can be converted into GRAFCET. Furthermore, PNs are
also accepted by some French industries. Here is a comparison of the structure of
GRAFCET and PN in Table 7.1.

Based on Table 7.1, we can easily transform a GRAFCET model into a PN model
as shown in Fig. 7.4. Their notation formalism is so close that the engineer who is

172 P. Sun et al.

Table 7.1 Structure
comparison between
GRAFCET and Petri net

GRAFCET Petri net

Step ⇔ Place

Transition ⇔ Transition

Link ⇔ Arc

Receptivity ⇔ Guard

Action ⇔ Auxiliary place

Fig. 7.4 Model comparison between GRAFCET and Petri net

familiar with the GRAFCET will easily understand the models of PNs. In other
words, if a system is specified by PNs, it can be validated both by PN tools and by
experienced expert engineers. In this way, the designed system can be considered as
a strong formal proof. As a result, the PN is the most appropriate formal language to
continue our research. Currently, the PNs are accepted by some French industries,
such as the French National Railway Company (SNCF) (Antoni 2012b; Buchheit
et al. 2011; Lalouette et al. 2010).

The major difference between these two languages is the mechanism of “con-
currency.” The GRAFCET allows all the enabled concurrent transitions to be
fired at the same time, while in PNs, there will be a “choice” of firing one or
another transition, thus reaching different new markings. Further information on
the differences between GRAFCET and PNs can be found in Giua and DiCesare
(1993).

7 Formal Validation of Interlocking Under Signaling Rules 173

7.4.2 Initial Colored Petri Net Specification of Railway
Interlocking System

In our research, we focus on the traffic safety aspect and suppose that all the fixed
infrastructures are both reliable and robust. The only threat to safety comes from the
imperfect signaling rules or the incompatible international standards.

The modelling framework of the whole railway interlocking system could be
divided into three parts: the signaling operations, the fixed installations, and rolling
stock, as in Fig. 7.5. The train driver communicates with the dispatcher and
requests an interlocking route. Train movement is a series of interactions with
fixed installations (such as stopping at red lights and actions on track circuit). In
response to train requests, the signaling operations send certain commands to fixed
installations (such as points and signal lights) according to its operating principles:

• Signaling operations is a set of operating rules and control procedures of an
interlocking system. It comprises computer automatic control and human manual
control. Normally, the computer processes are responsible for most of the device-
oriented operations, while human dispatchers deal with decision-making and
non-regular operations.

• Fixed installations include track segments, points, signal lights, and other
automatic facilities that could be self-acting without the instruction from the train
controlling center. Whereas the critical safety results are always represented in
the fixed installations, the safety verification for all the fixed ones’ function is
needed.

• Rolling stock runs on interlocking routes and is supervised by both route
conditions and operating instructions.

Fig. 7.5 Specification framework of railway interlocking system

174 P. Sun et al.

Considering the large scale and the space complexity of interlocking systems,
one feasible solution is to model the RIS by HCPN. The signaling operations and
the fixed installations are represented by the topology structure of PN, in order to
express complex connections and logical relations between different devices, while
each train is defined as a colored token that can move along the network of track
work.

To distinguish between various syntactic parts of a Petri net model, we classify
different nets into 3 types. The first two basic types in RIS are the signaling
operations and the fixed installations. The net No = (T o, P o,Ao, εo) represents
the operation part that implements the route management process and movement
authority control. The net Ni = (

T i, P i, Ai, εi
)

represents the installation part
where the train movements are realized by the transitions t ∈ T i . The notation
Ns = (T s, P s, As, εs) denotes the supplemental part that is used to ensure the
integrity of the model simulation and safety analysis. It could realize the initial
simulation inputs or actions from the human operators, where p ∈ P s may be a
compound place existing in other nets.

In order to standardize our modelling process, we have definitions below:

Definition 7.1 A basic unmarked RIS net is a connected Petri net

NRIS = No
⋃

Ni
⋃

Ns,

where No ∩ Ni = Pequip, No should not be an empty set No �= ∅pn and Ni is
strongly connected.

The common parts Pequip of the operation nets and the installation nets are signal
equipment, such as signal lights and position of points. They perform the role of
indicator in the operation nets and conduct the train movement in the installation
nets.

7.4.3 A Geographical Approach of Railway Interlocking
System

As a first approach, the RIS is specified into a CPN in a hierarchical and
geographical perspective. This study can be found in our previous work (Sun et al.
2014). The basic hierarchy of the HCPN model framework is described in Fig. 7.6
The main net is the topmost net, which is the carrier of the whole model, “storing”
all the subsystems and their interactions.

In the following subsections, we introduce the specifications of signaling part
and installation part separately.

7 Formal Validation of Interlocking Under Signaling Rules 175

Fig. 7.6 Basic specification
framework of railway
interlocking system

7.4.3.1 Signaling Operation Specification

RIS signaling operations are a system with multi-input and multi-output. Their
operating processes are involved with the functions in distributed levels. When
modelling such a system, a specific model for system functionality seems not
suitable for achieving the modelling objective. Successful experience in modelling
the European Train Control System using CPN (Janhsen et al. 1997; Jansen et al.
1998) could give us some useful inspiration. In such systems, there are three aspects
that should be integrated: components, scenarios, and functions.

When modelling the component view, the aim is to specify the communications
and the interactions between different subsystems. A net of the component view
shows a subsystem and its interfaces, and it could be further detailed in additional
levels. The scenario view is the modelling of operational procedures. Its main ele-
ments are the sequence of events required to maintain operation, and the interactions
between the signaling operations and the fixed installations. Individual scenarios are
categorized into different groups, and in this way, they could be integrated into the
corresponding component model. The functions represent the lower model level.
They are involved in the process aspect and represent the activities or the response
to interactions from the scenarios. Some of the functional modules can be used in
different objects and the so-called functional blocks. These functional blocks are
modelled as separate nets and can serve as functions in different scenarios, under
the modelling principle of hierarchic decomposition. In this way, the subnets can be
reused.

As the objective model framework needs to have so many features, an extensible
framework is needed, which should also be readable, maintainable, and easy to
accept by others. As a result, it should be modelled in a modular way. The
hierarchical structure is the most consistent with the modelling requirements. It
could integrate different functions of the system description and contain isolated
modularity views in the model. Besides, their advantages are easy to comprehend
and adapt and modular models can be reused. Meanwhile, the hierarchical ability of
CPN provides a good basis for setting up the model in a straightforward way.

In order to structure the main component models of the signaling operations, a
layered approach, proposed by Janhsen et al. (1997), Jansen et al. (1998), is adopted.
Dynamics and functionality are expressed by both scenarios and functions. Sce-
narios show the behaviors of the system in its external environment, which means
the railway operation context. Functions can process data received from external
components or internal ones. The difference between scenarios and functions is that

176 P. Sun et al.

Fig. 7.7 Hierarchical model
structure of signaling
operation

functions are not subordinated to any scenarios. They are independent of scenarios
and can be used within arbitrary scenarios.

Moreover, the concept of function in this thesis is not restricted to the very basis
mathematical functions but can also represent procedures (may complex ones). To
be more precise, each function represents a task. However, given the nature of their
functionalities, we continue to use “functions” to refer to them. The corresponding
vertical decomposition model is in Fig. 7.7 with several levels. The generic structure
has a “Top Level” to store all the components. It shows the connections between
components and their corresponding communications. The “Composition” layer
shows the detail of the component models. The “Decomposition” layer represents
the decomposition of the component model because some components are too
complex to represent in one single model. The “Function” layers and the “Scenario”
layers represent the function view and scenario view, respectively, and they may be
further decomposed if necessary.

Moreover, for simulation purposes and compatibility reasons, two supplementary
levels should be added into the hierarchical structure. The “Elementary” level is used
to replace the preliminary transition of the top level. The “Pre/Post”-level concerns
relations between components. They are used for preprocessing incoming messages
and post-processing outgoing messages.

To illustrate how to map from signaling operation to the CPN model, here is
a small demonstration of the route formation procedure, an important part of the
interlocking operation. A complete process control always involves many aspects
(see Page 392 in Rétiveau (1987)). As a demonstration example, only the core of
the control flow will be presented. In Fig. 7.8a, there is the control flow chart. It

7 Formal Validation of Interlocking Under Signaling Rules 177

Fig. 7.8 Example of mapping signaling operations. (a) Route establishment flow chart. (b)
Corresponding HCPN model

receives the route control instruction (route command) and checks whether this
instruction is feasible and compatible with the existing ones. Then it will format
the route according to its formation information, such as the positions of points.

The first 2 consecutive actions of interlocking route establishment are: control
and formation. The control part validates the input of “Route control” instruction
and acts as a filter. Only when the requested route is satisfied with current
interlocking status, it is allowed to establish. Otherwise, an error message will be
output and the process ends. In the French context, 2 aspects are checked concerning
safety:

Forbidden route Inverse transit is forbidden and must be deactivated. When a
track segment is acting as the destination of an established route, any new route
originated from it is forbidden.

Incompatible route The region ahead of the signal must be free (in the case of a
DA1 route). This means that only when a route is partially destroyed because
of the use of flexible transit 5, the corresponding initial signal can be used for
another route. Otherwise, any new routes originating from the same signal are
incompatible.

The formation part positions all the points of the commanded route. If the point
is already in the expected position, no further action is performed. If the point

1Destruction automatic: A typical French interlocking route type that could be destructed by the
passage of the train.

178 P. Sun et al.

Fig. 7.9 Example of mapping signaling operations (2). (a) Composition net (route establishment).
(b) Decomposition net (route control). (c) Scenario net (route type check). (d) Function net
(permission verification)

is occupied by other routes, the process will wait until it is released. Only if a
point is not in the right position and is liberated, an instruction will be sent to the
fixed installation model to change the point. After receiving the new position, the
procedure continues to confirm the next point of the route. When all the points are
in the right position, this process is over.

The real corresponding model of the control flow is represented in Fig. 7.9.
Figure 7.9a represents a “Component level.” It consists of hierarchical transitions

for route control and route formation. The input place contains the token of
route information. It could be passed through the model or output an error token.
Figure 7.9b is the decomposition net of route command procedure. It still contains
sequences of functions: route type check, permission verification, and compatibility
verification. Figure 7.9c is a scenario net, because the place “Routes on TP” contains

7 Formal Validation of Interlocking Under Signaling Rules 179

the configuration of a certain scenario. Figure 7.9d is a function net, because its
function is independent of the scenarios.

It should be noted that in this hierarchical structure, only the scenario nets reflect
the localization of the stations by their configurations (the initial tokens), while the
other parts of the model are the specifications of national railway standards and do
not vary with different stations. Once we have completed a model of the signaling
operations, the models of other stations under the same national standards could
easily be derived from the previous model by only changing the initial tokens in
each scenario net.

7.4.3.2 Geographical Railroad Layout Specification

The normal solution of modelling the fixed installations is the geographical
approach. This approach can be considered as distributing the knowledge of
the interlocking rules to objects modelling the geographic placement of physical
elements (Banci et al. 2004). Its geographical structure allows us to slice the whole
railway layout into independent and distributed components that can be individually
modelled and physically located next to their relevant units.

Normally, an RIS route layout is made up of multiple similar components: tracks,
points, and track-side signals. A track segment is a section of straight track that
contains a complete track circuit for occupation detection. It is a simple straight
or Y-shape with a point. A point is a railroad switch enabling railway trains to be
guided from one track to another. The direction of the point is controlled by the
signaling system according to the route requests. Generally, an interlocking system
is within a station yard, where trains are running at low speed, so train movements
are partly directed by fixed signal lights installed along the rail. A signal light mainly
uses two aspects: red (stop intermediately) and green (route clear).

Both track and point are referenced as atomic components, which could form
the geo-graphical structure of the whole railway layout and compose the route for
transit. These journeys are also properly controlled by signal components along
the railway layout, so the signal light could be regarded as constraints for train
movement.

Track Segments

Figure 7.10 shows a demo of PN of two successive track segments. Each place
represents a track segment. Two transitions move train tokens between the two
segments, depending on the direction of the train and supervision by the guard
function of the transitions. The direction from left to right is referred to as the “odd”
direction (impair in French system), and the opposite direction is called the “even”
(pair in French system) direction.

180 P. Sun et al.

Fig. 7.10 A Petri net representation of track segments. (a) Track segment demo. (b) Correspond-
ing CPN model

Fig. 7.11 A Petri net representation of point component. (a) Point demo. (b) Corresponding CPN
model

Points

Figure 7.11 shows a CPN model of a point component. In the French railway system,
a point is attached to a track segment, as shown in Fig. 7.11a. In its corresponding
model, the point is represented by a single place that stores the current connection
information (left or right). In the French system, the position “left” or “right” refers
to the tracks on the left or right side when facing a point. This point place works as
a condition place of 4 transitions (movements). However, its position will not affect
the movements between TS2 and TS4 as they are constantly connected.

7 Formal Validation of Interlocking Under Signaling Rules 181

Fig. 7.12 A Petri net representation of signal light. (a) Signal light demo. (b) Corresponding CPN
model

Signal Lights

Figure 7.12 shows a CPN model of a signal light component. Normally, a signal
light can only be in charge of one direction of the transit. In Fig 7.12a, the movement
from TS7 to TS9 is controlled by signal light. So, in Fig. 7.12b, signal place is only
connected to the transition “TS7 to TS9.” This transition is only enabled when the
token (indicator color) of signal place is not “red.” After a train passes the signal
light (firing the transition), the signal light is switched off by setting the indicator to
red. The operator “<>” in the guard function means “not equate to (�=).”

Automatic Unlock Devices

In the French system, there is a ground-based automatic mechanism that could
unlock the interlocked formation by the action of train passage (Rétiveau 1987).
This mechanism is used for a flexible transit, and it is called the “DA” mode. This
DA mode is fully automatic and ground-based, so we treat it as a fixed installation,
rather than part of the signaling operations. The conditions of establishing a DA
mode interlocking route are:

• There is a pedal (see in Fig. 7.13a.) on the track segment.
• The direction of the interlocking route is the same as the direction of the pedal.

If a route is established in DA mode, when a train passes and activates the pedal,
all the upstream tracks will be automatically unlocked. Based on the original model
in Fig. 7.11, this type of mechanism is represented with two additional parallel
transitions. Each DA sub-model unlocks a track segment that is stored in the fusion
place (see in Fig. 7.13c).

In our research, a typical station from the French railway signalization book
(Rétiveau 1987) is studied, shown in Fig. 7.14. It is only half of the station that
contains 5 points, 6 effective signal lights, 12 track segments, and 13 complete
interlocking routes. The detailed information about this case study can be found

182 P. Sun et al.

Fig. 7.13 A Petri net representation of “DA” mode. (a) DA mode. (b) Corresponding CPN model.
(c) Sub-model of DS_TS4_TS6

Fig. 7.14 Case study of a station layout

in Chapter 15 in (Rétiveau 1987). This case study example has been chosen as an
academic benchmark by experts involved in the PERFECT project (Collart-Dutilleul
et al. 2014; Sun et al. 2014).

The whole layout is represent by the CPN model in Fig. 7.15, using the basic
components that have been discussed before. This layout allows all the train
movements according to the interlocking routes.

Together with the signal operation parts in Sect. 4.3.1, the whole HCPN model
is a complete RIS specification. It can perform basic functions of an RIS by
automatically arranging the routes according to different train commands, blocking
the inverse path and signal light when a route is established, and enabling the route
destruction function after the train passes through. The whole model is too big and
not necessary for a detailed demonstration in this section. However, all the other
nets are modelled by the previous methodology.

7 Formal Validation of Interlocking Under Signaling Rules 183

Z_
02

Z_
02

ZO
NE

Z_
02

Z_
01

Z_
01

ZO
NE

Z_
01

Z_
2

Z_
2

ZO
NE

Z_
2

Z_
1

ZO
NE

Z_
3

ZO
NE

Z_
5

ZO
NE

Z_
9

Z_
9

ZO
NE

Z_
9

Z_
11

Z_
11

ZO
NE

Z_
11

Z_
7

Z_
7

ZO
NE

Z_
7

Z_
4

ZO
NE

Z_
6

ZO
NE

Z_
8

Z_
8

ZO
NE

Z_
8

TT
 1

T
1

PO
S

1`
R T

1

Si
gn

al
 5

S
5

SG
L

1`
(C

,"
")

S
5 Si

gn
al

 3
S

3
SG

L

1`
(C

,"
")

S
3

Si
gn

al
 7

S
7

SG
L

1`
(C

V,
""

)

S
7

TT
 2

T
2

PO
S

1`
R

T
2

Z_
1_

D
A

ZO
NE

TT
 3

a
T

3a
PO

S

1`
R

T
3a TT

 3
b

T
3b

PO
S

1`
R

T
3b

TT
 4

T
4

PO
S1`
R

T
4

Si
gn

al
 1

S
1

SG
L

1`
(C

V,
""

)

S
1

Si
gn

al
 6

S
6

SG
L

1`
(C

,"
")

S
6

Si
gn

al
 2

S
2

SG
L

1`
(C

,"
")

S
2

Z_
5_

D
A

ZO
NE

O
cc

up
ie

d
Si

gn
al

 L
ig

ht
s

SL
 O

CC
UP

AT
IO

N
LS

T_
NO

'S
G

L
1`

[]

SL
 O

CC
UP

AT
IO

N

O
cc

up
ie

d
Zo

ne
s

ZO
NE

 O
CC

UP
AT

IO
N

LS
T_

TS
'R

T

1`
ni

l

ZO
NE

 O
CC

UP
AT

IO
N

Pr
ot

ec
tie

d
Zo

ne
s

PR
O

TE
CT

IO
NS

PR
O

TE
CT

IO
N

1`
{Z

ep
=

[]
,S

ei
=

[]
}

PR
O

TE
CT

IO
NS

Z
02

to Z
 1

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
od

d]

Tt
 1 to Sg
l 5

[#
5

tr
ai

n=
ev

en
]

Z
01

to T
t 1

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
od

d]

Z
1

 to

Z
01

[#
5

tr
ai

n=
ev

en
]

le
av

e
Z1

on
 D

A D
A

3_
5

od
d

[#
4

tr
ai

n=
D

A
an

da
ls

o
#

5
tr

ai
n=

od
d]

D
A

3_
5

od
d

Z
1 to Z
7

Z
1 to Z
3

Tt
 2

 to

Z
3

on
 T

P

[#
4

tr
ai

n=
TP

an
da

ls
o

#
5

tr
ai

n=
od

d]

Z
3 to Z
2

[#
5

tr
ai

n=
ev

en
]

Z
3 to Z
5

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
od

d]

Z
3 to Z
4

[#
5

tr
ai

n=
ev

en
]

Z
4 to Z
3[#

5
tr

ai
n=

od
d]

Z
2

 to

Z
4

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
od

d]

Z
4 to Z
 2

[#
5

tr
ai

n=
ev

en
]

Z
4

 to

Z
6

[#
5

tr
ai

n=
od

d]

Z
6 to Z
4 D
A

2
ev

en

[#
4

tr
ai

n=
D

A
an

da
ls

o
#

5
tr

ai
n=

ev
en

]

D
A

2
ev

en

Z
5 to Z
3 D

A
7_

6
ev

en

[#
4

tr
ai

n=
D

A
an

da
ls

o
#

5
tr

ai
n=

ev
en

]

D
A

7_
6

ev
en

Z
6 to Z
8

[#
5

tr
ai

n=
od

d]

Sg
L

2
to Z

6

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
ev

en
]

le
av

e
Z5

on
 D

A D
A

7_
6

od
d

[#
4

tr
ai

n=
D

A
an

da
ls

o
#

5
tr

ai
n=

od
d]

D
A

7_
6

od
d

Z
5 to Z
9

Z
5 to Z

11

Z
11 to Z
5

[P
er

m
it

in
d

an
da

ls
o

#
5

tr
ai

n=
ev

en
]

Z
5 to Z
9'

[#
4

tr
ai

n<
>

D
A

an
da

ls
o

#
5

tr
ai

n=
od

d]

Z
6

to
Z

4
on

 T
P

[#
4

tr
ai

n=
TP

an
da

ls
o

#
5

tr
ai

n=
ev

en
]

Z
5 to

Z
11

'
[#

4
tr

ai
n<

>
D

A
an

da
ls

o
#

5
tr

ai
n=

od
d]

R

tr
ai

n

(in
d,

Rt
Nm

)

tr
ai

n

tr
ai

n

tr
ai

n

ca
se

 R
tN

m
 o

f
"5

/1
7"

 =
>

 (C
,"

5/
17

")
|"

5/
15

"
=

>
 (S

,"
5/

15
")

|"
5/

13
"

=
>

 (S
,"

5/
13

")

R

L

tr
ai

n

L

tr
ai

n
tr

ai
n

tr
ai

n

(in
d,

Rt
Nm

)

ca
se

 R
tN

m
 o

f
"3

/1
7"

 =
>

 (C
,"

3/
17

")
|"

3/
15

"
=

>
 (S

c,
"3

/1
5"

)
|"

3/
13

"
=

>
 (S

,"
3/

13
")

tr
ai

n

tr
ai

n

tr
ai

n
tr

ai
n

L

R

tr
ai

n

tr
ai

n
tr

ai
n

tr
ai

n

R

tr
ai

n
tr

ai
n

R

tr
ai

n
tr

ai
n

(E
t,R

tN
m

)

(C
V,

Rt
Nm

)

L L

tr
ai

n

tr
ai

n

tr
ai

n

tr
ai

n

L L

tr
ai

n
tr

ai
n

(M
,R

tN
m

)

(C
V,

Rt
Nm

)

tr
ai

n
tr

ai
n

R

tr
ai

n
tr

ai
n tr
ai

n
tr

ai
n

tr
ai

n
tr

ai
n

tr
ai

n
tr

ai
n

tr
ai

n
tr

ai
n

(in
d,

Rt
Nm

)

(S
,R

tN
m

)

tr
ai

n
tr

ai
n

R

tr
ai

n
tr

ai
n

L

tr
ai

n

tr
ai

n

tr
ai

n

(in
d,

Rt
Nm

)

ca
se

 R
tN

m
 o

f
"6

/5
"

=
>

 (C
,"

6/
5"

)
|"

6/
1"

 =
>

 (S
,"

6/
1"

)
|"

6/
3"

 =
>

 (C
,"

6/
3"

)

L

tr
ai

n

R

tr
ai

n
tr

ai
n

tr
ai

n
tr

ai
n

tr
ai

n
tr

ai
n

L

R

R

F
ig
.7

.1
5

T
he

Pe
tr

in
et

m
od

el
of

ro
ut

e
la

yo
ut

184 P. Sun et al.

7.4.4 A Pattern of Railway Interlocking Modelling

An RIS has two main parts: the signaling operations and the fixed installations.
In each station, signaling operations are localized instances of the national railway
standards, which monitor and control the status of the fixed installations. It could be
established via a hierarchical structure as we discussed in Sect. 4.3.1.

However, fixed installations consist of a series of track-side appliances, which
are diverse in practice, as each station has its own rail route structure. Specification
and evaluation of each station along a railway line is a repetitive and tedious job,
and it has low efficiency and will probably introduce new errors from re-modelling
processes. A feasible solution is to summarize all the common parts of the RIS and
establish a parameterized model framework that can be applied to all stations. This
study can be found in our previous work (Sun et al. 2015).

In this section, a generalization model pattern is presented, which is a reusable
solution for the RIS with PIPC type. Models of different stations can be derived from
this pattern without re-modelling, just changing the configurations in the pattern.

7.4.4.1 Generalization Concept

The stations that are equipped with the same type of RIS follow the same national
rules. The only differences are the layouts of their fixed installations.

The expected structure should be both general and parameterized, which allows
the specifications of stations to be derived from the same model with diverse
configurations. That is to say, in this structure, the unmarked colored Petri net is
a set of RIS functional rules, while the initial tokens are the concrete performance
of stations. In such a model framework, the configurations (tokens) represent all the
scenario information, based on the formation of the RIS layout and the “condition
table” (or control table). When modelling a new station, the only job is to change
the initial tokens on the expected structure.

To have this general structure, the railroad layouts cannot be performed by the
physical location of places and connection of transitions. However, this information
is indeed important for train movements, so all this diverse information must be
represented in the token forms, ensuring the PN structure itself remains universal.

For a better understanding of the generalization concept, we use an incremental
process and comparison examples to illustrate how to generalize the railroad
structure.

Basis Track segments

Compared to Fig. 7.10, the new model in Fig. 7.16 has the same performance
capabilities but in a parameterized form. A token in “train location” place indicates
the train ID and its current location. Each time the transition occurs, the value of

7 Formal Validation of Interlocking Under Signaling Rules 185

Fig. 7.16 Generalized representation of track segments

Fig. 7.17 Generalized representation including points

the train token will be refreshed according to the enabled binding elements. The
“track connection” place is the constraint of train movement, which guides the train
to move forward.

Adding Points

When we introduce the points into the generalized structure, it will first need a
place to “store” all the point information, including point IDs and the positions.
Meanwhile, the points will have an impact on the train movements, so the
configuration of track connection should be modified. The new model in Fig. 7.17
is the corresponding model of the example in Fig. 7.11. The new color set of TC
contains the point constraints. Only when the point stored in the point list place
satisfies the point constraints, the train can move.

Adding Signal Lights

Similar to a point, a signal light is also the movement constraint. So the introduction
of signal lights comes with a new place and a modification to the color set of TC. The
new model in Fig. 7.18 is the corresponding model of the example in Fig. 7.19. The
function SL’Permit checks the corresponding signal indicator. If the indicator is red
(Cv in French), then it returns false to prevent train movement. Otherwise, it returns
true to permit the transit. The function SL’Close switches off the corresponding
signal lights after firing the transition.

186 P. Sun et al.

Fig. 7.18 Generalized representation including signal lights

From the above examples, we can conclude that the components of railroad
and their combinations can be expressed by generalized structure, using constraint
places and different transition conditions.

However, in a real practice, there are more constraints (appliances) and rules.
First, we should list all the scenario-related elements and prepare their specification
forms for the expected model.

In Table 7.2, train, track, point, and signal light are normal components that we
have introduced in the previous parts. In this table, we give them several attributes
to distinguish between each token. The Track Connection stores all the connection
information between different tracks, considering the constraints of points, signal
lights, and formation release triggers (the pedals). The pedal is the prerequisite
condition for “DA” mode interlocking route. The “Destruct Auto” is the automatic
unlock mechanism and its devices. It contains the related unlock conditions and the
unlock actions.

With all these variables and their notations, the next step is to describe the
movement of a train. Although the expected model does not have visible routes,
we can determine train movement by token values. If the value of the train position
changes, that means this train actually moves. Generally, there are two types of
routing routes, DA and TP, in the French national context.2 We also consider
the route for shunting (OM), and the “staff responsible” mode (SR) for override
operations. However, due to the space limitation, only DA mode will be discussed
in this section.

The conditions for enabling DA movement are:

• There should be a pedal (passage detector for DA mode) in the current track.
• Points of the route must be proper positioned.
• Signal light (if any) in front of the train should be green.
• Train’s movement authority allows it to move onto the next track.

2DA: Destruction automatique, TP: Tracé permanent.

7 Formal Validation of Interlocking Under Signaling Rules 187

Track
Segements

TS TS
1`{NM'TS="Z.01", OCP=Available}++

1`{NM'TS="Z.02", OCP=Available}++
1`{NM'TS="Z.2", OCP=Available}++
1`{NM'TS="Z.1", OCP=Available}++
1`{NM'TS="Z.3", OCP=Available}++
1`{NM'TS="Z.4", OCP=Available}++
1`{NM'TS="Z.5", OCP=Available}++
1`{NM'TS="Z.6", OCP=Available}++
1`{NM'TS="Z.7", OCP=Available}++
1`{NM'TS="Z.8", OCP=Available}++
1`{NM'TS="Z.9", OCP=Available}++
1`{NM'TS="Z.11", OCP=Available}

Turnouts
Points LST'PT

1`[("1",R),("2",R),("3",R),("4",R)]

SignalLights

Signal Light LST'SL

1`[("1",Cv),("2",Cv),("3",Cv),
("5",Cv),("6",Cv),("7",Cv)]

Track
Connections

TC TC

1`{CUR="Z.01",DIR=odd,POST="Z.1",LTT=[("1",L)],SL="3",PED=false}++
1`{CUR="Z.02",DIR=odd,POST="Z.1",LTT=[("1",R)],SL="5",PED=false}++
1`{CUR="Z.1",DIR=odd,POST="Z.3",LTT=[("2",R),("3",R)],SL="",PED=true}++
1`{CUR="Z.1",DIR=odd,POST="Z.7",LTT=[("2",L)],SL="",PED=true}++
1`{CUR="Z.2",DIR=odd,POST="Z.4",LTT=[("3",L)],SL="1",PED=false}++
1`{CUR="Z.2",DIR=odd,POST="Z.4",LTT=[("3",R)],SL="1",PED=false}++
1`{CUR="Z.3",DIR=odd,POST="Z.5",LTT=[("3",R)],SL="7",PED=false}++
1`{CUR="Z.3",DIR=odd,POST="Z.5",LTT=[("3",L)],SL="7",PED=false}++
1`{CUR="Z.4",DIR=odd,POST="Z.6",LTT=[("3",R)],SL="",PED=false}++
1`{CUR="Z.4",DIR=odd,POST="Z.3",LTT=[("3",L)],SL="",PED=false}++
1`{CUR="Z.5",DIR=odd,POST="Z.9",LTT=[("4",R)],SL="",PED=true}++
1`{CUR="Z.5",DIR=odd,POST="Z.11",LTT=[("4",L)],SL="",PED=true}++
1`{CUR="Z.6",DIR=odd,POST="Z.8",LTT=[],SL="",PED=false}++
1`{CUR="Z.7",DIR=odd,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.8",DIR=odd,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.9",DIR=odd,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.11",DIR=odd,POST="",LTT=[],SL="",PED=false}++

1`{CUR="Z.01",DIR=even,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.02",DIR=even,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.1",DIR=even,POST="Z.01",LTT=[("1",L)],SL="",PED=false}++
1`{CUR="Z.1",DIR=even,POST="Z.02",LTT=[("1",R)],SL="",PED=false}++
1`{CUR="Z.2",DIR=even,POST="",LTT=[],SL="",PED=false}++
1`{CUR="Z.3",DIR=even,POST="Z.1",LTT=[("2",R),("3",R)],SL="",PED=false}++
1`{CUR="Z.3",DIR=even,POST="Z.4",LTT=[("3",L)],SL="",PED=false}++
1`{CUR="Z.4",DIR=even,POST="Z.2",LTT=[("3",L)],SL="",PED=false}++
1`{CUR="Z.4",DIR=even,POST="Z.2",LTT=[("3",R)],SL="",PED=false}++
1`{CUR="Z.5",DIR=even,POST="Z.3",LTT=[("4",R)],SL="",PED=false}++
1`{CUR="Z.5",DIR=even,POST="Z.3",LTT=[("4",L)],SL="",PED=true}++
1`{CUR="Z.6",DIR=even,POST="Z.4",LTT=[("3",R)],SL="",PED=true}++
1`{CUR="Z.7",DIR=even,POST="Z.1",LTT=[("2",L)],SL="",PED=false}++
1`{CUR="Z.8",DIR=even,POST="Z.6",LTT=[],SL="2",PED=false}++
1`{CUR="Z.9",DIR=even,POST="Z.5",LTT=[("4",R)],SL="",PED=false}++
1`{CUR="Z.11",DIR=even,POST="Z.5",LTT=[("4",L)],SL="6",PED=false}

Inside
StationInside Station TR

Destruction Auto
Records

DAinfo DS
1`{CUR="Z.1",DIR=odd,
 LPT=[("1",L)],LNT=["Z.1"],SL="3",LMT=["1","2"]}++
1`{CUR="Z.1",DIR=odd,
 LPT=[("1",R)],LNT=["Z.1"],SL="5",LMT=["1","2"]}++
1`{CUR="Z.5",DIR=odd,
 LPT=[("3",R)],LNT=["Z.3","Z.5"],SL="",LMT=["3","4"]}++
1`{CUR="Z.5",DIR=odd,
 LPT=[("3",L)],LNT=["Z.3","Z.4"],SL="1",LMT=["3","4"]}++
1`{CUR="Z.5",DIR=even,
 LPT=[("4",L)],LNT=["Z.5"],SL="6",LMT=["4"]}++
1`{CUR="Z.6",DIR=even,
 LPT=[],LNT=["Z.5"],SL="2",LMT=["4"]}

Turnouts
OccupiedPT_OCCP

LST'NM'PT

nil

Signal
d'occupation

SL OCCUPATION
LST'NS'ENS

nil

Zone
Occupe

ZN OCCP
LST'ZN'RT

nil

DA Movement

[#TYPE train=DA
andalso #PED tc
andalso FormationOK train tc ts1 ts2 LstPT
andalso SL'Permit tc LstSL
andalso SafeMove tc ts1 ts2
andalso MA'Prmt train (#POST tc)
andalso DAcondition DAinfo train LstPT]

input (LstSL,train,tc,ts1,ts2);
output (LstSL2,train2,ts1n,ts2n);
action
(let
val ens= #ENS train
val newSL = CloseLights ens tc LstSL

val newTR = RefreshTR train tc
val newTR2= TR'Move train (#POST tc)

val newts1=TS.set_OCP ts1 Available
val newts2=TS.set_OCP ts2 Occupied

in (newSL,newTR2,newts1,newts2)
end
);

tc

LstPT

1`ts1++1`ts2

LstSL

train

train2

LstSL2

1`ts1n++1`ts2n

DAinfo

LstNsEns

DA'SL LstNsEns (#SL DAinfo)

LstNmPT

listsubfix LstNmPT (#LMT DAinfo)

LstZR

DA'Ped LstZR (#LNT DAinfo)

TC

Inside Station

PT_OCCP

SL OCCUPATION

ZN OCCP

DAinfo

Signal Light

Points

TS

Fig. 7.19 Generalized Petri net model of “DA” route pattern

188 P. Sun et al.

Table 7.2 Scenario-related elements in general structure

Element Content Notation

Train Train name NmTr

Train direction DirTr

Route name NmRt

Route type (DA,TP,etc) TpRt

Train position PosTr

Movement authority MA

Track Track name NmTs

Occupation status Ocp

Track connections Current track CurTs

Connection direction DirTs

Post-track PostTs

Points (number varies [0,2]) (with name and its position) PtTs

Signal light name [0,1] NmSl

Indication of pedal Ped

Point Point list (contains name and its position) LstPt

Signal light Signal light list (contain name and its color) LstSl

Destruct Auto Exiting track (where DA takes place) TsDa

Effective direction of pedal DirDa

Tracks to be destructed TsLstDa

Signal light to release SlDa

Points to release PtDa

The actions that release the formation of the route along with train movement:

• Release tracks of the route behind the train
• Release points of those tracks
• Switch off signal light (if any) after passing

For analysis purposes, we introduce a security guard function that constantly
checks the occupation of the front track. The train’s movement is safe provided that
the front track is clear. Otherwise, if the front track is occupied, there will be a “face
to face” or “face to tail” collision.

From what has been mentioned above, the more formal definition of the enabling
rules of the DA movement is shown in Table 7.3. With the help of CPN ML
language, all the conditions above can be embedded into one transition and can
be combined into a single model to represent all the DA mode movements.

The study case of Fig. 7.15 is modelled by the generalization concept above.
The complete CPN model provides a pattern that could be applied to all the relay-
based computer-controlled RIS in the French national context. It can automatically
arrange the routes for different trains, block the incompatible routes when a certain
route is established, enable the route destruction function after a train passes, and
support four types of route modes along with their mixed traffic operations. The

7 Formal Validation of Interlocking Under Signaling Rules 189

Table 7.3 Conditions and
equations of “DA” movement

Condition Equation

Route type TpRt = DA

Ped=TRUE

Route formation PosTr = CurTs

DirTr=DirTs

PtTs ⊆ LstPt

Signal open (NmSl,green) ⊆ LstSl

Movement authority PostTs∈ MA

DA activated TsDa = PosTr

DirDa = DirTr

To release TsLstDa

SlDa

PtDa

Security check Ocp of CurTs = Occupied

Ocp of PostTs = Clear

whole model is really large for a demonstration. Only one layer of the model and
its results will be introduced. The other parts of the model are built by successive
implementation.

Figure 7.19 shows the DA module of the general structure that includes all
the necessary elements mentioned before: tokens of train, track segments, track
connections, points, signals, and information of automatic destruction. Then, this
transition is ordered by the conditions and fulfils the following actions. Train tokens
are stored in an “Inside Station” place, with all the trains within this station. All
tokens in this module do not really transit. They only “update” the data inside
themselves.

Supposing we have the following initial parameters of simulation:

• Train demand route “3/15” : 1‘{ NmTr= “TER-0315” , DirTr= odd, NmRt= (“3”
,“15”), TpRt= DA, PosTr = “” , MA = []} ;

• List of all points: 1‘[(“1” ,R),(“2” ,R),(“3” ,R),(“4” ,R)];
• List of all signal lights: 1‘[(“1” ,Cv), (“2” ,Cv), (“3” ,Cv), (“5” ,Cv), (“6” ,Cv),

(“7” ,Cv)].

The simulation result of CPN tools is shown in Table 7.4. After the establishment
of the route “3/15,” related points change their position, and related track segments
are blocked in memory. After switching on, signal lights change their indication
and become blocked. After receiving an MA, the train can start with permission.
As the train moves, its MA is gradually reduced and block components are released
by the mechanism of automatic destruction. When MA equals zero, the train stops
right away and triggers the route destruction. Finally, all the blocked components
become free and the train exits the station.

190 P. Sun et al.

Table 7.4 Result of route “3/15” simulation

Last Train Signal Points Tracks Signals
action token lights Points occupied occupied

Initial Canton=Z.01 (3,Cv) (1,R),(2,R)

MA=() (7,Cv) (3,R),(4,R)

Route establish Canton=Z.01, (3,Cv) (1,L),(2,R) Z.01, Z.1, Z.3,

MA=() (7,Cv) (3,R),(4,L) Z.5, Z.11

Open signal lights Canton=Z.01, (3,VL) (1,L), (2,R) Z.01, Z.1, Z.3, 3, 7

MA=() (7,Et) (3,R),(4,L) Z.5, Z.11

Generate MA Canton=Z.01, (3,VL) (1,L), (2,R) Z.01, Z.1, Z.3, 3, 7

MA=(Z.1,Z.3,Z.5,Z.11) (7,Et) (3,R),(4,L) Z.5, Z.11

Z.01→ Z.1 Canton=Z.01, (3,Cv) (1,L), (2,R) Z.1, Z.3, Z.5, 3, 7

MA=(Z.3,Z.5,Z.11) (7,Et) (3,R),(4,L) Z.11

Z.1 → Z.3 Canton=Z.01, (3,Cv) (1,L), (2,R) Z.3, Z.5, Z.11 7

MA=(Z.5,Z.11) (7,Et) (3,R),(4,L)

Z.3→Z.5 Canton=Z.01, (3,Cv) (1,L), (2,R) Z.5, Z.11 7

MA=(Z.11) (7,Cv) (3,R),(4,L)

Z.5 →Z.11 Canton=Z.01, (3,Cv) (1,L), (2,R) Z.11

MA=() (7,Cv) (3,R),(4,L)

Destruction (3,Cv), (1,L), (2,R)

(7,Cv) (3,R),(4,L)

Then we use the state space analysis function that is embedded in CPN tools
to analyze the space state of this simulation. Its calculation result shows that this
“single train” scenario has 26 states and 32 arcs. There is not any deadlock or live
lock in the system. Then we perform another two simulations with 2 trains and 3
trains demanding for different interlocking routes. The sizes of the state space are
339 and 2025, and all the states are “safe.”

7.4.5 An Event-Based Approach for Relay-Based Logic

In the previous two sections, we mainly focus on the high-level parts of the RIS.
More precisely, we study and model the computer-controlled parts of the RIS. In this
section, we analyze the low-level parts of RIS. That is the modelling methodology
of the relay-based systems.

7.4.5.1 Background of Relay-Based Logic

All the controls and commands that come from the high-level part of RIS are
implemented by a set of relays. They achieve the control procedures by changing
their states. Most relays have two states, activated and deactivated, sometimes may
be left and right. Because of different functional purposes, the relay circuit diagrams

7 Formal Validation of Interlocking Under Signaling Rules 191

can be divided into separate diagrams. For example, according to the book (Rétiveau
1987), the functional phases of the route establishment of the PRCI type have four
stages:

• Route formation: receiving the route command from the dispatcher, and setting
point to the right position by point machines.

• Formation verification for interlocking: verifying the positions of the points relay.
If all the relays are properly positioned, the formation will be interlocked.

• Route verification: verifying the real point positions; if they are well positioned,
then send a command to signal light control logic.

• Signal light control: switching on the lights and displaying different colors
depending on the interlocking route itself.

For a better understanding, we create a small scenario with only one point. This
example is designed on the basis of the control logic and the circuit diagram in
Fig. 15.23, Fig. 15.27, Fig. 15.29, Fig. 15.39, Fig. 15.40, Fig. 15.46 in Rétiveau
(1987), and it is shown in Fig 7.20. The example contains the main components for
route establishment. It is realized by a set of relays and switches that are located

Fig. 7.20 An example of PRCI type system of a single point

192 P. Sun et al.

in different layers (circuits diagram). However, as shown in Fig. 7.20, the dash-
dotted line connected elements, in nature, are the same element. They are physically
connected together, changing their states at the same time, but located in different
circuits. The established procedures of this example are explained as follows:

• After receiving the formation command (LC.Ag.L => left or LC.Ag.L => right),
the control relay CAG is going to change for the preparation of the route.

• After the point is well positioned, interlocking command L.EIt(O) is sent to
interlock the enable relay EAG by locking its transit with Tr.I or Tr.P.

• When command LCOC is received, if the point is in the right position and well-
locked, a further command will be sent to control the signal light.

• Switching on the signal light according to the relays CFR and BS.

From Fig. 7.20 and its procedures, we know that relays can be activated or deacti-
vated in different layers by commands from the signaling center, occupation changes
of the track segments, or the internal relay state changes. Moreover, each switches
affiliated with these relays will be changed at the same time. Consequently, once a
relay changes its values, all the related circuits will be refreshed simultaneously.
However, this kind of concurrence is quite different from the rules in CPN. It
has brought some problems in our early attempts. Nonetheless, all these problems
are caused by the HCPN models that consist of several subnets. If all the logic
connections are modelled in a single net, we can combine all the linked elements
into one element (place), and there will be no further problem of concurrence.
But, in that way, we will obviously lose the readability of the model and lose the
description of the system’s structure. So all the following problems, discussions,
and their solutions are based on the model with multiple nets.

The following part begins with two simple examples to illustrate the problems.
Then, we apply the event-driven concept to solve these problems.

Modelling Problem I: Synchronous Firing

In the envisioned model with the hierarchical structure, relays and switches are
located in different nets. So if a relay changes its state, the related transitions cannot
fire at the same time. As the states of the relays are closely coupled to each other, the
dissynchronization of firing transitions fails to refresh the system simultaneously,
and it may lead the system to uncertain states, such as standstill, livelock, deadlock,
or even an unreasonable state. Such an example can be found in Fig. 7.21.

This example describes two logical processes that are controlled by relay A and
relay C. Processes are placed in different nets, and each one has two transitions.
Assuming the initial state is Sinit = [m, n|A,B,C] = [1, 1|1, 1, 1], the expected
firing sequence is: T1n, T1m −→ T2m, T2n, and the expected final state is
Sinit = [3, 3|1, 0, 1]. But if the transition T2n fires before T1m, the result state is
[m, n|A,B,C] = [1, 3|1, 0, 1]. This state does not exist in a real system, and it may
cause unknown problems. This issue demands a transition management mechanism
that could organize all the marking-enabled transitions to be fired in the right orders,

7 Formal Validation of Interlocking Under Signaling Rules 193

Fig. 7.21 Modelling problem I: synchronous firing

as they do in the real system. Moreover, considering the compatibility, the proposed
solution should be achieved under the framework of CPN.

Modelling Problem II: Firing Conditions

Generally, a relay’s status is controlled by several circuit elements, including
electrical sources and switches. These elements can be considered as constant
variables. If a relay is controlled by such constant variables, no matter the order,
when all the elements meet the required conditions, the relay is activated. However,
there is another “temporary” type of conditions. They are pulse signals that are
a kind of instant variables. A relay connected to such pulse signals will only be
activated at the “pulse” moment. For such a relay, we need to pay more attention to
its activating condition order. The example is shown in Fig. 7.22a.

The Cmd_E is a command from signaling control and the SW_F is a controlled
switch. Their states affect the value of Relay_G. If we have a corresponding model,
as shown in Fig. 7.22b, we will encounter the unreasonable firing sequence: E =
true → F = true → t1. In order to solve this problem, a reset mechanism (non-
timed CPN approach) can be applied or time concept (timed CPN approach) can
be introduced. Considering that an RIS is more like a continuous sequence event

194 P. Sun et al.

Fig. 7.22 Modelling
problem II: firing conditions.
(a) Example of different
conditions. (b)
Corresponding model

system, it is not necessary to add time factors into our models. The rest solution
would be a new mechanism to differentiate two kinds of condition types with good
readability.

7.4.5.2 Event-Driven Concept

In relay-based systems, every circuit state change is driven by an event, such as
external commands or internal switch actions. Such a mechanism reminds us of
a special PN—the controlled Petri net (CtlPN). It is a class of Petri nets with
external enabling conditions called control places that allow an external controller to
influence the progression of tokens in the net (Holloway and Krogh 1994; Holloway
et al. 1997). Figure 7.23 illustrates a controlled Petri net, where the squares (c1, c2,
c3) indicate the external control place.

As with the ordinary Petri nets, the state of a CtlPN is given by its marking, which
is the distribution of tokens in places. A controlled transition can only be fired when
this transition is marking-enabled and the connected control places are “TRUE.”

Inspired by this occurrence rule, we design a similar mechanism to solve our
previous problems under the framework of CPN without breaking any existing rules
of CPN. This mechanism is achieved by introducing event-based enabling rules and
an event place into ordinary CPN models. An event-driven model is a class of Petri
nets with event conditions stored in the event place (fusion type place), which makes
the connected transitions event-driven, in order to allow internal/external event to
influence the progression of tokens. The event place contains an FIFO list that
stores all the events in progress in their order of occurrence. This FIFO list has
the following properties:

7 Formal Validation of Interlocking Under Signaling Rules 195

Fig. 7.23 An example of
controlled Petri net

• Only the head (first element) of the list is referred as the current activated event
and tt will activate its corresponding transitions.

• The tail (exception of the first element) of the list is considered as deactivated
until the head of the list is removed. The new head will become activated.

• New events that are induced by internal actions are stored at the end of the list.
• Only when the system has no more events in this list, this system can accept an

external command.

As in the Petri net literature, it is commonly assumed that only one transition
can be fired at a given instant. So, parallel actions become “choices.” If one
transition introduces new internal events (relay status changes) before the last event
is complete, the system status will appear confusing. However, with the help of
event places, we can achieve a loose synchronization of firing the transitions. It
continues firing all the enabled transitions related to the first event until there are
no more enabled transitions. Then an event management function (transition) will
be enabled. It removes the “useless” event (the first event), then moves on to the
next event, and makes it the new head of the list. In this way, the whole system is
gradually progressing forward, event by event, in order to imitate a synchronization
system.

The expected event-driven model has 4 transition priorities: PEvent > PClear >

Pnormal > PExternal .

PEvent belongs to the event-related transitions that are directly connected to event
place.

Pnormal belongs to the set of transitions that are not directly connected to event
place.

PClear belongs to an event remove mechanism that will remove the “useless”
event from the FIFO list if this event cannot fire any transitions.

PExternal belongs to external inputs for scenario analysis and state space calcula-
tion purposes.

196 P. Sun et al.

Fig. 7.24 Event-driven colored Petri net model of Fig. 7.21

Now, we can rebuild the example in modelling problem I: “the synchronous
firing” with the event-driven concept. In Fig. 7.24, the color set of events is defined
as colset Event= STRINGxBOOL. It contains the name of the event and its value, for
example (“A,” true) means relay “A” is activated and (“B,” false) means relay “B”
is inactivated. All the transitions are connected to an “Event Place” that stores the
events to be triggered in their order of occurrence. Its color set is colset EvntList=
list Event. The token in this place is in the form of list type. The head of the list
(hd list, in meta language grammar, is to abstract the first element from the list)
represents the event that is currently taking place in the system. The guard function
checks the first element of the event list (hd EvtLst) and determines whether the
transition is event-enabled or not. Any event-enabled transition has the ability to
fire, and it can fire if it is also marking-enabled. Moreover, if a transition brings in
a new event, then this new event will be stored at the end of the event list in “Event
place,” and it can be triggered in later progress. After all the enabled high-priority
transitions are fired, the transition with low priority is enabled. It will remove the
current activated event from the list (tl EvtLst returns a new list with exception of
the first element) and the second event becomes activated.

7 Formal Validation of Interlocking Under Signaling Rules 197

Fig. 7.25 Simplification rules of system space state. (a) Space state of Fig. 3.26. (b) Important
states of analysis

The state space of this model is shown in Fig. 7.25. For a concise indication,
in this state space graph, the system state is represented by the marking of the
vector (m, n, B). Here, m is a mapping from markings of (m1,m2,m3), and m →
{0, 1, 2} represents the markings of {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}. Similarly, n :
(n1, n2, n3) → {0, 1, 2}. B indicates the marking in “B place ” and 1/0 is used to
represent “true/false.” The inscriptions under the vector are the content of the FIFO
event list. The label on the arcs between two states is the fired transition. The initial
state of the system is (m, n, B) = (1, 1, 1), EventList = [(

“A′′, 1
) (

“C′′, 1
)]

.
Each time the transition EventEnd is fired, an event will be removed from the event
list.

The state in blue is called “event-steady” state. This means that a previous event
is finished and begins to activate a new event. The state in red is an “event free” state.
This means there are no more events and the system state is preserved until there
is an external input event. The state in white is the internal state, or instantaneous
state. Between two successive system-steady states, there may be more than one
path, and the number of combinations of the path depends on the number of parallel
transitions, which could result in a large number of system states. But no matter how
the state changes, it will eventually be stabilized and finally reach the next steady
state.

When we analyze this space state graph, we will find that not every state has equal
importance. The event-steady and event-free states are more concise to describe
the safety reachability of a system. Hence, an abstraction method to minimize the
size of the system state will be demonstrated in Fig. 7.25b. From the perspective
of analysis, the internal states are not useful because they have less value than
the steady ones. Each internal state is a tiny change inside the fixed installations,
only when the system finishes all the changes in a space state path, which means a
complete response to the external input. While, from the modelling point of view, all
the states and changes between two steady states should not exist in the real system,

198 P. Sun et al.

because they are parallel at the same time, as in the modelling result, these states
can be considered as transient states.

Therefore, the original state space in Fig. 7.25a can evolve into a quite simple
one in Fig. 7.25b. The new state space has an initial state (1, 1, 1) and two external
input events [(“A”, 1) , (“C”, 1)] , and each event allows the system to advance into
a new state. This method will effectively reduce the state space complexity caused
by the relay-based components that act simultaneously in different layers.

Also the modelling problem II: the “firing condition” can be solved by the event-
driven model in Fig. 7.26. The original pulse signal CmdE was replaced by a single
event in the “Event Place,” in order to achieve a similar instantaneous effect. From
the simulation scenarios and results on the right side, it is clear that this model will
fire transition “t1” only in the right action sequence “F=true → E=true → t1 fire.”

From the above examples, we can have a general idea of an even-driven
transition. It relies on both the condition places and the event place. However, in
real systems, condition changes may call a new event. Moreover, an action could be
either new condition change or new event. So the property (event, condition, action)
of different system processes should be clearly defined. All the possible types we
may use in fixed installations are summarized in Table 7.5.

Fig. 7.26 Event-driven colored Petri net model of Fig. 7.22

Table 7.5 Type of logical variables ant its properties

Type Description Event Condition Action

Control The status of relay (or switch) X X

Command The output command of relay X X

Indicator Internal variable X X X

Message Command send by controlling center X

Action Command or data send back to controlling center X

7 Formal Validation of Interlocking Under Signaling Rules 199

7.4.5.3 System Validation of Event-Based Model

The final aim is to verify whether the system specification will hold the safety
properties. Standard model checking algorithms are based on an exhaustive visit
to all the reachable states of the specification. In our study, we chose CPN tools that
integrate a powerful state space tool. It could generate the full state space of the PNs
mode, and it could analyze the state space by means of a CTL-like temporal logic
that allows user-defined searches and queries.

Model checking relies on the simulation environment. It determines which
scenarios are going to be simulated and how each of the scenarios will be simulated.
In each case study, we consider the original system to be a multi-input multi-output
module. To be able to check its entire property, a test layer is added to provide
external input events and variables and allows them to vary freely. In the system
priority aspect, the test layer has the lowest priority. The test layer can give a
new external input, but only when the original system reaches a new steady state.
This assumption is also consistent with real practice, where RIS is a relay-based
computer-controlled system. It has a faster processing cycle than its external inputs,
such as human instruction or train movements. So it is reasonable to have a test layer
with the lowest priority to simulate external input.

Safety performance of the system specification is “Safety property holds in every
reachable state” or “danger case never happens.” During the state exploring, if we
meet an unsafe state, there is no need to exploit its successive states, because all post-
states are potentially unsafe. With this selective exploring method, we can reduce
the state space without loss of reliability of safety analysis. So, before starting the
state space calculation, we use the safety properties to specify that, under certain
circumstances (system not safe), the CPN tools do not need to calculate all the
successors of a state.

Normally, after a state exploring, we will get a large number of states and their
marking information. A lot of them are internal states caused by subsystems. From
the perspective of the safety analysis, we are more interested in a concise state space
and system counterexamples. So, we make our own queries (ML functions) to search
for all the “event-steady” states and the unsafe states, to generate an event-based
state space tree, and to list the event paths of all the counterexamples.

System Modelling

To illustrate a complete practical use, a model of RIS in Fig. 7.20 will be demon-
strated. This case study is very simple in that it only contains one point and two
interlocking routes. The signaling operations in this model are to send commands to
establish or destroy an interlocking route. A reasonable modelling structure and its
simulation environment are shown in Fig. 7.27.

It should be noted that in order to better illustrate the analysis capabilities,
we need an imperfect system model. So, when modelling the signal system, we

200 P. Sun et al.

Fig. 7.27 Modelling structure and simulation environment

deliberately ignore a condition that is “System needs to wait 150ms, before sending
command to switch on the signal light.” Then, we get a potentially unsafe system.

The first part of the RIS model is the signaling operations as we discussed in
Sect. 4.3.1. There is a simplified version of it in Fig. 7.28a, which contains different
route phases (unformed, permitted, formed, etc.) and the corresponding transitions.
Figure 7.28b is also a simplified version of route formation. As the signaling
operations have been discussed before, considering the space restrictions, other sub-
models of signaling operations are not shown here. The events in this model are
defined in the form of (Event type, Event name, value), for example, the event to
form the route “AB” is (MSG, “AB ” , form). The event-trigger function is fun
EV : Eventlist ∗ Eventx− > BOOL . It is the guard function of event-related
transitions and will return true if the Eventx is at the top of the Eventlist .

The point control (in Fig. 7.29) contains two parts: 1. The point layer that could
change the point’s logical position by route command, interlock, or release point
by shared resources and send commands to the point machine to change the rail
connection (as shown in dashed line). 2. The transition layer is the necessary
condition of route formation in flexible transition mode of the French context. The
function “gEV ” is a multi-event condition for transitions, which means any of the
following events will enable this transition.

The final RIS layer is the signal light control (in Fig. 7.30) that could switch
on signal lights if a route is established and the front zone is unoccupied. If the
route is destroyed or if the front zone is occupied or if the point machine is not well
positioned, then the light is switched off.

7 Formal Validation of Interlocking Under Signaling Rules 201

Fig. 7.28 Colored Petri net model of signaling operations. (a) Colored Petri net model of signaling
operations layer. (b) Colored Petri net model of route formation

For model checking purposes, we need to add a test layer to simulate all the
external input events in Fig. 7.27, and allow those events to vary freely. In this mode,
the considered external inputs are route command (formation/destruction), zone
occupation, pedal action, and point machine status KAg. (If a point is positioned to
the right side, then relay KAgR=true else KAgR=false.) The outputs are signal light
status and point machine command CAg. The model of simulation environment is
shown in Fig. 7.31.

State Space Analysis

The safety statements of this system are:

ϕ1: If any route is formed or zone is occupied, the relay CAg that controls the point
cannot change.

202 P. Sun et al.

Fig. 7.29 Colored Petri net model of point control. (a) Colored Petri net of point layer. (b) Colored
Petri net of transit layer

ϕ2: If no route is formed or zone is occupied, signal light cannot be switched on.
ϕ3: If the zone is occupied, the point machine must not act.

The selective branching option for exploiting the state space is designed as
ϕ1 (S)∧ϕ2 (S)∧ϕ3 (S) → BOOL , if the function returns false the state S will be a
terminal state. With the result, we can start queries to examine if the state space will
break any safety statements. The simulation result is shown in the second column
of Table 7.6.

Although the size of the system state space has been simplified, it is still not
readable. Moreover, too much information on CPN marking makes it difficult for

7 Formal Validation of Interlocking Under Signaling Rules 203

SignalLight

Light LIGHT

1`closed

Light

EventPlace
EventPlace

EventList

1`[]

EventPlace

ZONE
ZONE ZONE

1`free

ZONE

KAgR
KAgR REG

1`Unact

KAgR

Route
Indicators

RouteIND RouteIND

1`("AB",unformed)++
1`("AC",unformed)

RouteIND KAgL
KAgL REG

1`Active

KAgL

KIt
KIt REG

1`Unact

KIt

CloseLight

[gEVEvtLst
[(IND," KIt" ,Unact),
(CTL,"ZN",occupy),
(CTL,"KAgR",Unact),
(CTL,"KAgL",Unact)]]

P_EVENT

OpenLightforAB

[gEVEvtLst
[(IND," KIt" ,Active),
(CTL,"KAgR",Active),
(CTL,"ZN",free)]]

P_EVENT

OpenLightforAC

[gEVEvtLst
[(IND," KIt" ,Active),
(CTL,"KAgL",Active),
(CTL,"ZN",free)]]

P_EVENT

closed opened

EvtLst

("AB",formed)

Active

free

EvtLst

("AC",formed)

free

Active

opened

closed closed

opened

EvtLst

Active Active

Fig. 7.30 Colored Petri net model of signal light control

EventPlace
EventPlace EventList

1`[]

Next
ABFormation

RouteCde

1`form

ZONE
ZONE ZONE

1`free

KAgR
KAgR REG

1`Unact

SignalLight
Light LIGHT

1`closed

KAgChg
KAgChg KAgActs

1`[]

KAgL
KAgL REG

1`Active

Next
ACFormation

RouteCde

1`form

Route
IndicatorsRouteIND RouteIND

1`(" AB",unformed)++
1`(" AC",unformed)

RouteAB
Command

P_EXTERNAL

Pad
Action

[Pad=dest]

P_EXTERNAL

Zone
Action

[(Zone=occupyandalsolight=opened)
orelse(Zone=free)]

P_EXTERNAL

KAgR
Action

[kag=KAgR]

P_EXTERNAL

KAgNull
Action

[kag=Null]

P_EXTERNAL

KAgL
Action

[kag=KAgL]

P_EXTERNAL

RouteAC
Command

false

P_EXTERNAL

b

RtAB

Zone
notZone

Active Unact

nil

[(CTL," KAgR",Active)]

light

occupy

kag::Klst

Klst

RtAC

b

Klst

kag::Klst

Unact

Unact

regR

regL

ActiveUnact

kag::Klst

Klst

[(CTL," KAgR",Unact),
(CTL,"KAgL",Unact)]

nil

[(CTL," KAgL",Active)]

nil

("AB",RtAB)

("AC",RtAC)

[(MSG," AB",notRtAB)]

nil

nil

[(MSG," AC",notRtAC)]

[(CTL," ZN",Zone)]

nil

nil

[(CTL," Pad",Pad)]

RouteIND KAgR

KAgL

KAgChgEventPlace

ZONE

Light

Fig. 7.31 Colored Petri net model of test layer

humans to compare each state. So another query is needed to transform the original
state space into a more compatible form. Only event-free states and unsafe states
will appear in the new state space. The original paths between each new state will be
replaced by an external input event. So the new state space is an event-state graph,
where each input event leads the system to a new state. Each of the new states

204 P. Sun et al.

Table 7.6 State space calculation result

Exploring type Default Selective Vectorization

State space size 366 301 76

Statement ϕ1 Holds Holds Holds

Statement ϕ2 Holds Holds Holds

Statement ϕ3 Not holds (48 states) Not holds (48 states) Not holds (48 states)

is represented by a vector, Si = [A,B,C,D,E/F,G] , each variable represents
either a layer status or a relay value, and here, Si .= [Route progress, CAg, EAg, Tri,
light / Zone, KAgR]. The new state space graph has a total number of 76 states,
where 29 are duplicates and 6 are danger states (third column of Table 7.6). Part
of the graph is shown in Fig. 7.32, where the node in grey dashed style is the state
already visited (duplicates) and the red node is the danger state.

The counterexamples of the verification are generated by giving the paths from
initial state to each danger state. There are six paths in this example:

• Init → rAB=1 → LcAgR=1 → L.Eit=1 → L.Kit=1 → KAgL=0 → rAB=0 →
KAgR=1 → rAB=1 → LcAgR=1 → L.Eit=1 → L.Kit=1 → Zon=0 → KAgR=0

• . . . → L.Kit=1 → Zon=0 → rAB=0 → KAgR=0
• . . . L.Kit=1 → Zon=0 → Pad=1 → KAgR=0
• . . . → L.Kit=1 → Zon=0 → Zon=1 → Zon=0 →KAgR=0
• . . . → L.Kit=1 → Zon=0 → Zon=1 → Zon=0 → rAB=0 → KAgR=0
• . . . → L.Kit=1 → Zon=0 → Zon=1 → Zon=0 → Pad=1 → KAgR=0.

All of the counterexamples violate the statement ϕ3. The reason for this danger
situation is that when a new command is sent from RIS to point machine, its
feedback KAg will take some time. If the RIS does not wait for new KAg data and
continue to perform subsequent processing programs, then the old KAg data may
lead the RIS to switch on the signal light and allow the train to enter while the point
machine is going to change the point’s position. So we get a dangerous state. The
point position is changing, but there is a train in this zone and this will probably
cause derailment.

System Specification Improvement

The solution to this fault is to add a time constraint to the RIS route establishing
process. When the logical position of point CAg is changed and the front light is
not yet switched on, the RIS waits for a moment, which is longer than the operation
cycle of a point machine, thereby ensuring that all the actions of the point machine
will be accomplished before the light switches on.

After we applied this new constraint to the model and analyzed its safety
property, it turns out that the new system holds all the safety statements for every
state. The new model has 259 original states in CPN tools’ state space calculation,

7 Formal Validation of Interlocking Under Signaling Rules 205

Fig. 7.32 Part of the state space tree

while after state abstraction, it has 65 states where 25 are duplicates, no danger state
and no counterexample.

7.5 Conclusion and Perspectives

7.5.1 Conclusion

This chapter has been devoted to the model-based system engineering for safety
of railway interlocking system. It provides a new approach via formal languages
that aims to aid designers in effectively ensuring railway safety and improving
the quality with system design and verification in railway industry. The study has
focused on the formal modelling of French railway interlocking system. The nature

206 P. Sun et al.

and its formal specifications of RIS have been studied. A hierarchical modelling
framework is proposed via CPN to specify and verify properties and behaviors of
the RISs. The work has been presented as follows.

Due to various reasons, the knowledge of railway is partly written in textual
documents and partly unwritten while owned by engineers. So in the system design
or development process, we always need the assistance and supervision of expert
engineers who have got both the written and unwritten knowledge. Initially, a quick
comparison of GRAFCET and CPN is given, which illustrates their similarity and
the ability to be seamlessly converted. So CPN has been chosen as our formal
specification language. Its hierarchy and color features make it possible to propose
a generic and compact structure that contains all high-level functions of RIS. At the
same time, PN’s rigorous semantics allow us to implement formal proofs.

The RIS is one of the crucial parts of the railway transit safety. In the French
railway domain, the computer-controlled relay-based RIS (PRCI type) is the
dominant practice. Its complex sequences and consequent actions make it difficult
to be verified and validated. For such systems, first we analysis the architecture of
RIS and the hierarchical structure of modelling framework. After that, we introduce
an intuitive modelling approach that could formally specify the constructions of
the fixed installations and the signaling operations of the interlocking logic. As a
multi-input multi-output system, the signaling part of RIS is suitable to be modelled
in a vertical decomposition way. It should contain different aspects, including
components, scenarios, and functions. The fixed installation part is represented
by logical objects connected to each other in the form of the track layout. It is
natural for us to model it in a geographic way. However, in practice, each station
or yard in a single line has its own RIS, which respects the same national standards
but has different facility layouts. Normally, to specify all the stations, we have to
rebuild models. It has low efficiency and will probably introduce new errors during
the rebuilding process. With the modelling power of CPN, a general solution is
proposed by introducing a modelling pattern, which could be easily adapted to
different stations with PRCI type RIS. It is a general solution in a parameterized
form. The “place/transition” structure (unmarked CPN model) represents a set
of RIS functional rules. The logical formation of railway layout (configuration)
is represented by the information contained in tokens. Besides, models that are
less compact can be derived from this generic one in order to validate various
aspects while keeping the safety property. Finally, we analysis the low-level part of
the RIS that is the relay-based logic circuits. The relay-based circuit components
have the nature of concurrency. An event-based concept is introduced to better
describe these internal interactions. All the relay-based transitions (actions) are
supervised by an “event place,” and different transition priorities realize their
relative synchronization. Furthermore, this event-based model is compatible with
the classic CPN.

7 Formal Validation of Interlocking Under Signaling Rules 207

7.5.2 Perspectives

7.5.2.1 Transformation from CPN to B machine

Since the formalism of Petri nets has the advantage of communicating and their
models could be validated by some engineering experts, it is still a long distance
from the final implementation. To bridge the gap between the specifications and the
implementations, we carry out another study—a model transformation from colored
Petri net to B language, which could help people to quickly shift from a valid design
solution to a valid input of B development process in the design phase. Detailed
references can be found in Bon and Collart-Dutilleul (2013), Sun et al. (2015), Sun
(2015).

The B method can offer a formal software development. In the French railway
context, the B method is industry recognized tool and already has some success
implementations, such as Météor (Behm et al. 1999), the new metro line number
14 in Paris. These successful engineering stories convince people of the reliability
of the B method because the final implementation code generated from abstract
B machine is considered safe and is proved to be safe. So in the French railway
context, B proved model is accepted as a strong safety proof (Boulanger 2013a,b).

In our study, after mapping colored Petri nets (CPNs) formalism into B language
formalism, the transformed B machines will be the input of the B development
process and could be automatically refined into the implementable codes. Moreover,
considering the limitations of model checking, sometimes we want to apply a
theorem-proving for the purpose of verification. As the B proved models are
considered “safe” in French industry, the transformation from Petri net to B machine
is needed by any means necessary.

In the transformation framework, we maintain the mechanism of multi-set
behaviors, and the transformed machines can be automatically proved by Atelier
B tool. Besides, we propose some mapping rules for different color sets, in favor of
raising the compatibility.

Furthermore, the concept of hierarchy is integrated into the mapping process. A
multi-system that is modelled in a hierarchical way can be translated into a set of
abstract B machines. The hierarchy is expressed by the composition relations of the
machines and the accessible operations. Then, the concept of prioritized transition is
introduced into the transformation. It is achieved by giving each operation a priority
and adding an operation to the machine for priority management. It maintains the
same priority mechanism of as in Petri nets.

7.5.2.2 Transformation from UML to CPN

Nowadays, UML is considered to be the standardized language for object-oriented
modelling and analysis. However, UML cannot be used for automatic analyses and
simulation. In Kerkouche et al. (2010), they propose an approach for transforming

208 P. Sun et al.

UML state chart and collaboration diagrams to colored Petri net models. It produces
highly structured, graphical, and rigorously analyzable models that facilitate early
detection of errors such as deadlock and livelock. This transformation helps to
bridge the gap between informal notation (UML diagrams) and more formal
notation (colored Petri net models) for analysis purposes.

All the model transformations above along with the formal modelling of RIS aim
to contribute toward a global safe analysis framework.

References

Antoni, M. (2009a). Formal validation method and tools for French computerized railway
interlocking systems. International Journal of Railway, 2(3), 99–106.

Antoni, M. (2009b). Formal validation method for computerized railway interlocking systems. In
International Conference on Computers Industrial Engineering, CIE 2009, pp. 1532–1541.

Antoni, M. (2009c). Validation d’automatismes ferroviaires de sécurité à base de réseaux de
Petri. Ph.D. thesis. Braunschweig, Allemagne: Technischen Universität Carolo-Wilhelmina zu
Braunschweig.

Antoni, M. (2012a). Formal validation method and tools for computerized interlocking system. In
FM Industry Day, pp. 1–44.

Antoni, M. (2012b). Méthode de validation formelle d’un poste d’aiguillage informatique.
Recherche Transports Sécurité, 28(2), 101–118.

Antoni, M., & Ammad, N. (2007). Feasibility study for the implementation of a formal proof
of interpretable specification (for an interlocking system). In FORMS/FORMAT 2007, Formal
Methods for Automation and Safety in Railway and Automotive Systems, Braunschweig.

Antoni, M., & Ammad, N. (2008). Formal validation method and tools for French computerized
railway interlocking systems. In 4th IET International Conference on Railway Condition
Monitoring, pp. 1–10.

Bacherini, S., Fantechi, A., Tempestini, M., & Zingoni, N. (2006). A story about formal methods
adoption by a railway signaling manufacturer. FM 2006, Formal Methods (pp. 179–189).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Banci, M., Fantechi, A., & Gnesi, S. (2004). The role of formal methods in developing a distributed
railway interlocking system. In FORM-S/FORMAT 2004, pp. 220–230.

Behm, P., Benoit, P., Faivre, A., & Meynadier, J.-M. (1999). Météor: a successful application of
B in a large project. Petri nets: Central models and their properties (pp. 369–387). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Bon, P., & Dutilleul, S.C. (2013). From a solution model to a B model for verification of safety
properties. Journal of Universal Computer Science, 19(1), 2–24.

Bon, P., Collart-Dutilleul, S., & Sun, P. (2013). Study of implementation of ERTMS with respect
to French national rules using a B centred methodology. In Industrial Engineering and Systems
Management (IESM 2013), pp. 1–5.

Boulanger, J.-L. (2013a). Formal methods: industrial use from model to the code. ISTE. Wiley.
Boulanger, J.-L. (2013b). Industrial use of formal methods: formal verification. ISTE. Wiley.
Bjørner, D. (2003). New results and trends in formal techniques & tools for the development of

software for transportation systems – a review. In Formal Methods for Railway Operation and
Control Systems (FORMS03), pp. 1–20.

Bjørk, J. (2006). Executing large scale colored Petri nets by using Maude. Ph.D. thesis. Oslo,
Norway: University of Oslo.

7 Formal Validation of Interlocking Under Signaling Rules 209

Buchheit, G., Malassé, O., Brinzei, N., Lalouette, J., Walter, M., et al. (2011). évaluation des
performances d’un axe ferroviaire en fonction des caractéristiques fiabilistes de ses systèmes de
signalisations. In Qualita 2011, 9ème Congrès international pluridisciplinaire qualité et sûreté
de fonctionnement.

Chen, L., Ning, B., & Xu, T. (2007). Research on modeling and simulation of vehicle-on-board
automatic train protection subsystem of communication based train control system. In ICVES
2007, IEEE International Conference on Vehicular Electronics and Safety, pp. 1–5.

Cheng, Y.-H., & Yang, L.-A. (2009). A fuzzy Petri nets approach for railway traffic control in
case of abnormality: evidence from Taiwan railway system. Expert Systems with Applications,
36(4), 8040–8048.

Collart-Dutilleul, S., Bon, P., El-Koursi, E., & Lemaire, é. (2014). Study of the implementation
of ERTMS with respect to French national on board rules using a collaborative methodology
based on formal methods and simulation. In TRA 2014, 5th Transport Research Arena 2014,
Paris, France.

Fantechi, A. (2012). The role of formal methods in software development for railway applications.
In Railway Safety, Reliability and Security: Technologies and System Engineering (chapter 12),
pp. 282–297.

Fantechi, A. (2014). Twenty-five years of formal methods and railways: what next? Software
engineering and formal methods (pp. 167–183). Cham: Springer International Publishing.

Fantechi, A., Flammini, F., & Gnesi, S. (2014). Formal methods for railway control systems.
International Journal on Software Tools for Technology Transfer, 16(6), 643–646.

Fantechi, A., Fokkink, W., & Morzenti, A. (2012). Some trends in formal methods applications
to railway signaling. Formal methods for industrial critical systems (pp. 61–84). Hoboken, NJ,
USA: John Wiley & Sons, Inc.

Fanti, M.P., Giua, A., & Seatzu, C. (2006). Monitor design for colored Petri nets: an application to
deadlock prevention in railway networks. Control Engineering Practice, 14(10), 1231–1247.

Ghazel, M. (2009). Using stochastic Petri nets for level-crossing collision risk assessment. IEEE
Transactions on Intelligent Transportation Systems, 10(4), 668–677.

Giua, A., & DiCesare, F. (1993). GRAFCET and Petri nets in manufacturing. Intelligent manufac-
turing (pp. 153–176). London: Springer London.

Giua, A., & Seatzu, C. (2008). Modeling and supervisory control of railway networks using Petri
nets. Automation Science and Engineering, 5(3), 431–445.

Buchheit, G., Malassé, O., Brinzei, N., & Lalouette, J. (2010). Évaluation des performances
d’un axe ferroviaire en fonction des caractéristiques fiabilistes de ses systèmes de signalisa-
tions. In 9ème Congrès International Pluridisciplinaire Qualitéet Sûreté de Fonctionnement,
Qualita’2011.

Hagalisletto, A.M., Bjørk, J., Yu, I.C., Yu, I.C., & Enger, P. (2007). Constructing and refining
large-scale railway models represented by Petri nets. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 37(4), 440–460.

Holloway, L., & Krogh, B. (1994). Controlled Petri nets: A tutorial survey. English. In G. Cohen,
& J.-P. Quadrat (Eds.), 11th International Conference on Analysis and Optimization of Systems
Discrete Event Systems (vol. 199). Lecture notes in control and information sciences (pp. 158–
168.). Berlin, Heidelberg: Springer.

Holloway, L., Krogh, B., & Giua, A. (1997b). A survey of Petri net methods for controlled discrete
event systems. English. Discrete Event Dynamic Systems, 7(2), 151–190.

Huang, Y.-S., Weng, Y.-S., & Zhou, M. (2010). Critical scenarios and their identification in parallel
railroad level crossing traffic control systems. IEEE Transactions on Intelligent Transportation
Systems, 11(4), 968–977.

Janhsen, A., Lemmer, K., Meyer zu Hörste, M., & Schnieder, E. (1997). Migration strategy
for different level of the European train control system to existing railway environment. In
Proceedings of World Congress of Railway Research, volume C: Power Supply, Signaling,
Telecommunications and Non-conventional Systems, Florence, pp. 101–118.

210 P. Sun et al.

Jansen, L., Meyer Zu Hörste, M., & Schnieder, E. (1998). Technical issues in modelling the
European train control system (ETCS) using coloured Petri nets and the design/CPN tools.
In Workshop on Practical Use of Coloured Petri Nets and Design/CPN (pp. 103–115). Aarhus,
Denmark: Citeseer.

Jensen, K. (1981). Coloured Petri nets and the invariant-method. Theoretical Computer Science,
14(3), 317–336.

Jensen, K. (1987). Coloured Petri nets. Petri nets: central models and their properties (pp. 248–
299). Berlin, Heidelberg: Springer Berlin Heidelberg.

Kaakai, F., Hayat, S., & El Moudni, A. (2007). A hybrid Petri nets-based simulation model for
evaluating the design of railway transit stations. Simulation Modelling Practice and Theory,
15(8), 935–969.

Kerkouche E, Chaoui, A.A., Bourennane, E.B., et al. (2010). A UML and colored Petri nets
integrated modeling and analysis approach using graph transformation. Journal of Object
Technology, 9(4), 25–43.

Lalouette, J., Caron, R., Scherb, F., Brinzei, N., Aubry, J.-F., Malassé, O., et al. (2010). évaluation
des performances du système de signalisation ferroviaire européen superpose au système
français, en présence de défaillances. In Lambda-Mu 2010, 17e Congrès de Maîtrise des
Risques et de Sûreté de Fonctionnement.

Lei, L., Zhang, Y., Shen, X., Lin, C., & Zhong, Z. (2013). Performance analysis of device-to-device
communications with dynamic interference using stochastic Petri nets. IEEE Transactions on
Wireless Communications, 12(12), 6121–6141.

Moen, A., & Yu, I.C. (2004). Large scale construction of railroad models from specifications. In
IEEE International Conference on Systems, Man and Cybernetics, pp. 6212–6219.

Pachl, J. (2002). Railway operation and control. VTSTD Rail Publishing.
Petri, C.A. (1966). Communication with automata, technical report RADC-TR-65–377 1 (2nd

edn.). New York: Griffiss Air Force Base.
René, D., & Alla, H. (1992). Petri nets and Grafcet: tools for modelling discrete event systems.

Prentice Hall (cit. on p. 56).
René, D., & Alla, H. (1997). Du grafcet aux réseaux de Petri. In Ouvrage. ISBN13: 978-2-86601-

325 7.
Rétiveau, R. (1987). La signalisation ferroviaire. Presse de l’école nationale des Ponts et

Chaussées.
Sun, P. (2015). Model based system engineering for safety of railway critical systems. Ph.D. thesis.

Lille, France: école centrale de lille.
Sun, P., Collart-Dutilleul, S., & Bon, P. (2014). Formal modeling methodology of French railway

interlocking system via HCPN. In COMPRAIL 2014, International Conference on Railway
Engineering Design and Optimization, Rome, Italy.

Sun, P., Bon, P., & Collart-Dutilleul, S. (2015). A joint development of coloured Petri nets and B
method in critical system. Journal of Universal Computer Science, 21(12), 1654–1683.

Sun, P., Collart-Dutilleul, S., & Bon, P. (2015). A model pattern of railway interlocking system by
Petri nets. In MT-ITS 2015, Models and Technologies for Intelligent Transportation Systems,
Budapest, Hungary.

Wang, F., & Bai, Z. (2010). Research for urban rail transit train regulation based on time Petri nets.
In CCTAE 2010, International Conference on Computer and Communication Technologies in
Agriculture Engineering, Chengdu, China, pp. 461–465.

Wu, N., & Zhou, M. (2004). Modeling and deadlock control of automated guided vehicle systems.
IEEE/ASME Transactions on Mechatronics, 9(1), 50–57.

Xu, T., & Tang, T. (2007). The modeling and analysis of data communication system (DCS)
in communication based train control (CBTC) with colored Petri nets. In ISADS 2007, 8th
International Symposium on Autonomous Decentralized Systems, Sedona, AZ, pp. 83–92.

Yu, I.C. (2004). A layered approach to automatic construction of large scale Petri nets. Ph.D. thesis.
Oslo, Norway: University of Oslo.

Zaytoon, J., & Villermain-Lecolier, G. (1999). Grafcet: methodological and formal issues.
Advances in manufacturing (pp. 101–114). London: Springer London.

7 Formal Validation of Interlocking Under Signaling Rules 211

Zhu, L., Yu, F.R., Ning, B., & Tang, T. (2012). Service availability analysis in communication-
based train control (CBTC) systems using WLANs. In ICC 2012, IEEE International
Conference on Communications, Ottawa, ON, pp. 1383–1387.

Zimmermann, A., & Hommel, G. (2003). A train control system case study in model-based
real time system design. In IPDPS 2003, International Parallel and Distributed Processing
Symposium, 8 pp.

	7 Formal Validation of Interlocking Under Signaling Rules
	7.1 Introduction
	7.2 State of Art
	7.3 Preliminary of Railway Safety and Interlocking System
	7.3.1 Safety Management of French Railway System
	7.3.2 French Railway Interlocking System

	7.4 Formal Modelling of Railway Interlocking System via HCPN
	7.4.1 GRAFCET and Petri Net
	7.4.2 Initial Colored Petri Net Specification of Railway Interlocking System
	7.4.3 A Geographical Approach of Railway Interlocking System
	7.4.3.1 Signaling Operation Specification
	7.4.3.2 Geographical Railroad Layout Specification

	7.4.4 A Pattern of Railway Interlocking Modelling
	7.4.4.1 Generalization Concept

	7.4.5 An Event-Based Approach for Relay-Based Logic
	7.4.5.1 Background of Relay-Based Logic
	7.4.5.2 Event-Driven Concept
	7.4.5.3 System Validation of Event-Based Model

	7.5 Conclusion and Perspectives
	7.5.1 Conclusion
	7.5.2 Perspectives
	7.5.2.1 Transformation from CPN to B machine
	7.5.2.2 Transformation from UML to CPN

	References

