
Sanjay Patole   Editor

Principles 
and Practice 
of Systematic 
Reviews and 
Meta-Analysis



Principles and Practice of Systematic Reviews
and Meta-Analysis



Sanjay Patole
Editor

Principles and Practice
of Systematic Reviews
and Meta-Analysis

123



Editor
Sanjay Patole
School of Medicine
University of Western Australia
Perth, WA, Australia

ISBN 978-3-030-71920-3 ISBN 978-3-030-71921-0 (eBook)
https://doi.org/10.1007/978-3-030-71921-0

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-71921-0


Preface

Evidence-Based Medicine (EBM) is at the core of
modern medicine [1, 2]. EBM is the integration of
individual clinical expertise with the best available
clinical evidence from systematic research and patient’s
values and expectations [1, 2]. EBM requires that
decisions should be taken based on the body of evi-
dence, and not just a single study [3]. Systematic
reviews offer evidence that is as good as the best
available evidence summarized by the review [3].
Systematic reviews are “the most reliable and com-
prehensive statement about what works,” and involve
identifying, synthesizing, and assessing all available

evidence, quantitative and/or qualitative, to generate a robust, empirically derived
answer to a focused research question [4]. Since their introduction in medical
sciences in 1970s, systematic reviews have been adopted in a wide range of fields,
from astronomy, international development, and global health, to zoology [5–7].
The importance of systematic reviews with meta-analyses as the best source of
evidence cannot be overemphasized considering that health care staff, public health
policy-makers, and researchers have limited time to catch up with and critically
appraise the vast amount of literature that gets added every day [8].

Written by clinicians, the objective of this reader-friendly book is to introduce
the readers from various faculties of science to the principles and practice of sys-
tematic reviews and meta-analysis. Our aim is to help them in developing skills to
use this precious tool for guiding their clinical practice and research [8].

Perth, WA, Australia Sanjay Patole
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Systematic Reviews, Meta-Analysis,
and Evidence-Based Medicine

Sanjay Patole

Abstract Evidence-based medicine (EBM) is at the core of current clinical prac-
tice. The philosophical origins of EBM date as far back as the mid-19th century
earlier. David Sackett (1934-2015) considered as the father of EBM, described it as
‘the conscientious, explicit and judicious use of current best evidence in making
decisions about the care of individual patients’. EBM requires that clinical deci-
sions should be based on the evidence in totality, and not on just a single study.
Systematic reviews offer the best available evidence for decision making in clinical
practice. They are ‘the most reliable and comprehensive statement about what
works’, and involve identifying, synthesising and assessing all available evidence
by a systematic approach, to generate a robust, empirically derived answer to a
focused research question. A systematic review may or may not contain a statistical
analysis (Meta-analysis) depending on whether it is possible, and importantly,
sensible to combine data from different studies on the same subject, or not. This
chapter covers the history, principles and characteristics of systematic reviews and
meta-analysis in the context of EBM.

Keywords Evidence-based medicine � Systematic reviews � Narrative reviews �
Meta-analysis � History � Principles � Practice � Hierarchy

Introduction

Evidence-based medicine (EBM) is at the core of current clinical practice (http://
www.senseaboutscience.org/pages/evidence-based-medicine.html; Guyatt et al.
2000). The philosophical origins of EBM date as far back as the mid-19th century
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Paris and earlier (Anderson 2015). David Sackett (1934-2015) considered as the
father of EBM, described it as’the conscientious, explicit and judicious use of
current best evidence in making decisions about the care of individual patients’
(Anderson 2015; Sackett 1997). To him, the practice of EBM meant ‘integration of
individual clinical expertise with the best available external clinical evidence from
systematic research’. EBM requires that clinical decisions should be based on the
evidence in totality, and not on just a single study (Guyatt et al. 2002). The role of a
systematic review is to offer the best available evidence for decision making in
clinical practice (Guyatt et al. 2002).

Narrative Reviews

Narrative reviews often reflect ‘Eminence-based medicine’ as they are mostly
written by invited experts (Isaacs and Fitzgerald 1999). Needless to say, they are
influenced by the author’s intuition, experience, and inevitably, their bias. Critics
point out that narrative reviews are a quick, easy, and an inexpensive way to reach
desired conclusions! (Isaacs and Fitzgerald 1999).

The definition of what constitutes ‘evidence’ is subjective. Narrative reviews
could be evidence-based, but still not truly useful as scientific evidence. In the
absence of a clear section titled ‘methods’, it is difficult to understand how the
evidence was derived and interpreted in narrative reviews. The lack of clarity and
transparency and the element of subjectivity make it challenging to derive reliable,
unbiased interpretation and conclusions on a specific topic when appraising nar-
rative reviews (Isaacs and Fitzgerald 1999). For example, a comparison of seven
narrative reviews, including the same studies showed that different reviewers
reached different conclusions!!(Cipriani and Geddes 2003) The case of vitamin C as
an intervention for cold illustrates the issues with narrative reviews quite well. The
narrative review of vitamin C (‘How to live longer and feel better, Linus Pauling
1986’) had concluded that “We should be getting 200 times the amount of vitamin
C that the Food and Nutrition Board recommends” (Linus Planning 2006). The
author, Linus Pauling, was one of the founders of quantum chemistry and molecular
biology, and one of the 20 greatest scientists of all time who went on to win the
Nobel Prize in Chemistry in 1954 (Global Firsts and Facts 2017). Furthermore in
the year 2000 he was acknowledged as the 16th most influential scientist in history.
A subsequent systematic review of vitamin C for the cold by investigators from
Oxford involved an exhaustive search of databases, journals and special collections
(Knipschild 1995). It identified 61 trials, of which 15 were methodologically sound.
The results of this systematic review suggested that even in megadoses Vitamin C
cannot prevent a cold, though it might shorten its duration if already infected. The
reviewers pointed out that the narrative review had missed five of the 15
methodologically sound trials, and had referred to other two only in passing
(Knipschild 1995). Considering their limitations, narrative reviews are becoming
less and less prevalent in the era of EBM.

2 S. Patole



Systematic Reviews

Systematic reviews are ‘the most reliable and comprehensive statement about what
works’, and involve identifying, synthesising and assessing all available evidence
by a systematic approach, to generate a robust, empirically derived answer to a
focused research question (Isaacs and Fitzgerald 1999). Systematic reviews have
been used in a wide range of fields, ‘from astronomy and zoology’ to international
development, and global health, and were introduced to the medical field only in the
1970s (Petticrew 2001; Malletta et al. 2012; Schlosser 2006; O’Rourke 2007).

A Brief History of Systematic Reviews

The phrase ‘systematic review’ was mentioned in the early and mid-19th century in
few publications on the classification of species in biology and zoology (Mees
1957; Alm 1916). In the late 1970s and early 1980s a group of health researchers in
Oxford prepared the ground for EBM by beginning a programme of systematic
reviews on the effectiveness of health care interventions.

Archie Cochrane called for developing medicine based on randomised controlled
trials (RCTs) in his seminal book in 1972 titled ‘Effectiveness and Efficiency:
Random Reflections on Health Services’ (Cochrane 1972). Later, his call for the
critical summary of all RCT’s (1979) led to the establishment of a collaborative
database of perinatal trials (The Cochrane Collaboration 2017). Systematic reviews
of RCTs started to get published in the 1980s, and in 1987 he encouraged others to
adopt the methodologies used in these reviews. Archie Cochrane’s untiring efforts
and the increasing acceptance of EBM subsequently led to the opening of the
Cochrane Collaboration Centre in Oxford, the UK in 1992, shortly after his death
(Cochrane 1972; EPPI 2017; Brent Thoma 2013). The push for systematic reviews
in the medical world started with the meeting organised by the British Medical
Journal and the Cochrane Centre in London in 1993 (Chalmers and Altman 1995).
The group at this meeting aimed to improve the scientific rigour of reviews in
clinical medicine for a reliable and evidence-based approach in advising treatments.
They believed that in the absence of scientific methods, advice on some lifesaving
therapies had been delayed for over a decade, while others shown to be harmful in
controlled trials continued to be offered (Oxman and Guyatt 1988). Systematic
reviews, as we understand them today, represent the structured approach to
undertaking literature reviews on earlier research studies and they are tied closely to
meta-analyses, i.e. a statistical method for combining the data from the previous
studies. We will learn more about meta-analysis later in this book.

The importance of systematic reviews as the best source of evidence for prac-
tising EBM cannot be overemphasised considering that health care providers,
public health policymakers, and researchers often have limited time to catch up with
and critically appraise the vast amount of literature that gets added every day

Systematic Reviews, Meta-Analysis, and Evidence-Based Medicine 3



(Malletta et al. 2012; Glasziou et al. 2004). RCTs are considered as the gold
standard in clinical research as they address the issue of not only the known but also
the unknown confounders, something that other study designs (‘Non-RCTs’: cohort
studies, case-control studies) cannot do. Systematic reviews of RCTs are, therefore,
at the top of the pyramid of the hierarchy of evidence in EBM. However, assessing
the risk of bias in various domains (e.g. randomisation, allocation concealment) of
the included trials is important before accepting systematic reviews of RCTs as the
gold standard in EBM (Fig. 1).

What Does Systematic Review Involve?

A systematic review involves systematic identification and evaluation of all the
available relevant evidence to guide clinical practice, research, and policy.
A systematic review focuses on a specific question; uses clearly stated, prespecified
scientific methods to identify, select, assess, and summarise the findings of similar
but separate studies. As Gene Glass said ‘a systematic review is an analysis of
analyses’. It is important to know that a systematic review may or may not contain a
statistical analysis (Meta-analysis) depending on whether it is possible, and
importantly, sensible to combine data from different studies on the same subject, or
not (Douglas Altman 2013; Chinchilli 2007).

Fig. 1 Hierarchy of evidence pyramid

4 S. Patole



Why Do We Need Systematic Reviews?

Limited time to catch up with and critically appraise the vast amount of literature is
not the only reason why we need systematic reviews. A comprehensive search and
unbiased interpretation of the best available evidence—a critical component of
EBM, is difficult without being systematic. Systematic reviews are useful in
interpreting conflicting results of primary studies, synthesising results of a large
number of primary studies, and judging external applicability of the evidence,
especially when there are only a few primary studies. Reproducibility of results is
another important benefit of systematic reviews given the transparency and clarity
of their methodology. Systematic reviews help us know existing research (and its
quality) in our area of interest, prevent duplication of efforts by letting us know
what has already been done, and provide insights through the comparison and/or
combination of different studies (Oakley et al. 2005).

What Are the Principles of Systematic Reviews?

A systematic review needs to have a focused, well defined, useful, and importantly,
an answerable question. It requires a clear title and objectives with explicit and
justified predefined inclusion and exclusion criteria. The question needs to convey,
with clarity, the patients (P), intervention (I), control/comparison (C), the outcome
of interest (O), and the study design (S). This is the PICOS format of the question
that the systematic review is addressing. Some prefer to add the study time frame
(T) to the phrased question, resulting in the abbreviation PICOT.

Considering the aim is to provide comprehensive and best available evidence, it
should have a clearly documented and comprehensive search strategy for tracing all
relevant studies-published as well as unpublished. Providing details of the search
strategy makes it possible to reproduce the search results, increasing the validity of
search methodology. To assure minimisation of bias, it should have a pre-stated
method for critical appraisal of included studies using pre-stated methods.

The type of synthesis of the results (Quantitative, i.e. meta-analysis or
Qualitative) depends on whether it is possible, and sensible to combine the data
from ‘more or less similar; but different individual studies together. This is perhaps
the most important step in systematic reviews.

Unbiased interpretation and conclusions and putting research into context are
important. Finally, systematic reviews are required to have a structured report for
the dissemination of results with clarity to the broader community.

As discussed above, assuring transparency, clarity, and objectivity at each step
of the systematic review is important (Table 1). The practical approach to a sys-
tematic review is summarised in Table 2. The approach can be summarised in a
sentence: Ask a focussed question; tell the readers what exactly you did in an
attempt to answer it, how and why? Baumeister et al. have emphasised the

Systematic Reviews, Meta-Analysis, and Evidence-Based Medicine 5



importance of an additional aspect—the mindset of a systematic reviewer
(Baumeister 2013). The responsibility of systematic reviewers is to provide the
comprehensive and best available evidence in the context of current clinical practice
and let the reader judge the applicability (safety and efficacy) of the evidence to
their patient. Considering human behaviour, it is not uncommon for reviewers to
take sides, consciously or subconsciously!

It is important to know what systematic reviews tell us and what they don’t. If
conducted and reported using a robust methodology, systematic reviews tell us in a
scientific, structured, and transparent way as to Who did what, why, and for whom?
How? What did they find? What does it mean in the current context? What needs to
be done? Systematic reviews do NOT tell what one should do for an individual
patient. That process is left to the health care provider and the patient as a shared
responsibility.

What Is a Meta-Analysis?

Systematic reviews represent the structured scientific approach for undertaking
literature reviews on earlier research studies addressing the desired focussed and
properly framed question (PICOS/T). They are tied closely to meta-analyses, i.e. a
statistical method for combining the data from the previous studies. A systematic
review may or may not contain a meta-analysis depending on whether the data from
previous studies addressing the desired question can or cannot be combined. When
meta-analysis is possible, it’s a systematic review with meta-analysis’ (i.e. quan-
titative systematic review); otherwise, it is only a systematic review. When

Table 1 Characteristics of a
systematic review*

∙ T: Transparency at each step
∙ R: Reproducible and robust methodology
∙ U: Unbiased (Best precautions at each step to minimise bias)
∙ E: Explicit objective criteria for each step (e.g. inclusion)
*Systematic reviews have to be 'truly' systematic

Table 2 Practical approach
to a systematic review

∙ Ask a useful and answerable question
∙ Before you start, check if it has been answered already!
∙ Be specific in deciding the type of studies (PICOS) you wish
to search for

∙ Be comprehensive in the literature search
∙ Get help (Subject experts, Methodologist)
∙ Avoid the temptation to conduct a ‘Meta-analysis’ just to
impress!

∙ Don’t combine apples with oranges unless assessing ‘fruits in
general’

∙ Keep the mindset of a judge and jury (Fair judgement), rather
than a lawyer (Make the best case for one side (Baumeister
2013))

6 S. Patole



meta-analysis is not done for various reasons, the reviewers take a structured
descriptive/narrative approach to discuss various aspects of the included studies.
Such a systematic review without meta-analysis is called as a qualitative systematic
review.

There no reason why data from different’ more or less similar’ studies answering
the desired question cannot be combined using the technique of meta-analysis,
however, the evidence from such a meta-analysis will not be reliable if the included
studies are not derived by a systematic review. Appreciating the importance of a
systematic review for identifying the studies included in a meta-analysis is critical.

It is important to know that meta-analysis can be used to synthesise results from
RCTs, as well as non-RCTs (‘Observational studies’) and epidemiological studies.

A Brief History of Meta-Analyses

The 17th-century French mathematician Blaise Pascal developed methods to
determine the value of possible gambles and to compare and combine observations
by different astronomers (https://www.biography.com/people/blaise-pascal-
9434176) (Table 3). Later, the 18th and 19th-century astronomers and mathe-
maticians such as Gauss and Laplace dealt with the concept of summarising the
results from different studies (https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss;
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace). These were presented in a
book published by the British Royal Astronomer George Biddell Airy (Wright
1988). The British statistician Karl Pearson (1904) is considered to be the first
person to combine observations from different studies using special methods (http://
adsabs.harvard.edu/full/; Shannon 2008; Pearson 1900). Pearson compared infec-
tion and mortality among soldiers who had volunteered for vaccination against
typhoid fever with those who had not volunteered. It is remarkable that he com-
mented not only on the ‘significance’ of results, irregularity of correlation (i.e.
heterogeneity) between vaccination and mortality, and the ‘lowness’ of the values
(poor efficacy) reflecting the need for a better vaccine but also on the need for a
better method (direction for further research) to get unbiased results (http://adsabs.
harvard.edu/full/; Shannon 2008; Pearson 1900). Sir Ronald Aylmer Fisher (1890–
1962), the famous English statistician and biologist who used mathematics to
combine Mendelian genetics and natural selection, developed the combined prob-
ability test for combining data the, i.e. conducting “meta-analysis” (analysis of
analyses) (Pearson 1904; Ronald Fisher 2017; Fisher 1925). The test is used to
combine the results from several independent tests bearing upon the same overall
hypothesis (H0). The credit for coining the term ‘meta-analysis’ is given to Gene
Glass, an American statistician and researcher in educational psychology and
social sciences (Mosteller and Fisher 1948; Gene 2017; Glass 1976). It is said that
he used the term for the first time in his presidential address to the American
Educational Research Association in San Francisco in April, 1976 (Mosteller and
Fisher 1948).

Systematic Reviews, Meta-Analysis, and Evidence-Based Medicine 7
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One of the earliest books on meta-analysis is said to have been published in
1981. Subsequent statisticians have contributed to further development of the
methods for meta-analysis. The most recent milestone in the journey of EBM is the
development of the Cochrane Collaboration devoted to systematic reviews and
meta-analyses of clinical studies to guide clinical practice and research.

The next chapters in this book are devoted to the various steps in systematic
reviews and meta-analysis of RCTs. Except for a few differences, the principles for
systematic reviews and meta-analysis of non-RCTs, diagnostic studies, and animal
studies are similar to those for RCTs. We have covered the essentials of the
methodology for systematic reviews of these three different types of studies as a
detailed discussion on them is beyond the scope of this book.
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Literature Search for Systematic
Reviews
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Abstract A thorough literature search is an essential step in the conduct of sys-
tematic reviews. Inadequate literature search can adversely influence the results and
conclusions of a systematic review. Important databases to be searched are
Medline, EMBASE, Cumulative Index to Nursing and Allied Health Literature
(CINAHL), EmCare (Nursing and Allied Health), Cochrane Library, Clinical Trial
Registries, conference proceedings and Grey Literature. Majority of the databases
can be accessed freely via the internet except for EMBASE, CINAHL and Emcare,
which are subscription-based. Boolean operators AND, OR and NOT are used to
identify relevant articles for systematic reviews. Searching of at least two major
databases is the minimum prerequisite. However, it is better to search as many
databases as possible. At least two reviewers should independently perform the
literature search. Citation managers such as Endnote, Mendeley, Zotero and
Reference Manager are useful in searching, organising, and sharing the literature.
This chapter covers the strategy for a comprehensive literature search with optimal
transparency and reproducibility.
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Introduction

A thorough literature search is an essential step in systematic reviews. Inadequate
literature search can adversely influence the results and conclusions of a systematic
review. Important databases that need to be searched are Medline, EMBASE,
Cumulative Index to Nursing and Allied Health Literature (CINAHL), EmCare
(Nursing and Allied Health), Cochrane Library, Clinical Trial Registries and Grey
Literature.

MEDLINE

MEDLINE is the most widely used database and contains over 24 million citations
from more than 5600 biomedical journals dating back to 1946. Since 1996,
MEDLINE is made freely available via PubMed from the National Library of
Medicine, USA. While many people use the terms Medline and PubMed inter-
changeably, it is essential to know that they are not the same. PubMed is the
gateway to Medline, i.e. Medline can be searched via PubMed. MEDLINE can also
be accessed via commercial platforms such as Ovid.

MEDLINE uses a controlled vocabulary called The Medical Subject Headings
(MeSH®) for indexing journal articles. The MeSH terms are arranged in a hier-
archical categorised manner called MeSH Tree Structures and updated annually.
Familiarity with this vocabulary will enable optimal searching of PubMed.

Searching MEDLINE Through PubMed

PubMed can be searched using basic search strategy by typing in simple terms in
the search box and clicking the ‘search’ icon (Fatehi et al. 2013). While typing the
search term in the search box, an autocomplete feature will suggest relevant terms,
which appear as a list from which one could select, instead of typing the complete
term (Fig. 1). By default, the results are sorted by the date added to PubMed and
displayed with 20 citations on each page (Fatehi et al. 2013). It could be changed to
up to 200 citations per page (Fig. 2). In addition to showing the author/s, institution,
journal, date and year of publication and the abstract, the left-hand side of the
results page will show filters that can be applied to narrow the search based on the
type of study (i.e. study design), year of publication, human vs animal studies and
many other options (Fig. 3).

On the left-hand side of the results page also shows a histogram showing the
trend of articles during the past years (Figs. 2 and 3). Once the “Advanced” link is
clicked, it takes you to the “History and Search details”. If you click on “details”, it
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shows how PubMed has translated the search query, and reviewing this information
will enable the searcher to modify a query to include or exclude specific terms, if
required (Fig. 4).

Searching PubMed using Boolean operators: PubMed accepts Boolean
operators AND, OR and NOT. They could be typed directly in the search box on
the main screen or in the advanced search builder. For example, if you want to
search articles on probiotics in preterm infants, you need to type Probiotics AND
Preterm Infant, so that articles, where both terms are present, will be retrieved
(Figs. 5and 6). If you want to search for articles about Vitamin D, you need to type
Vitamin D OR Cholecalciferol OR Ergocalciferol to ensure all articles on this topic
are retrieved (Fig. 7). If you want to search for articles on Hypertension, but not
interested in Pulmonary Hypertension, you could type Hypertension NOT
Pulmonary Hypertension.

Incorrect use of the Boolean operator results in the retrieval of irrelevant cita-
tions. For example, while searching for articles on probiotics in preterm infants, if

Fig. 1 While searching PubMed with simple terms, the auto-search feature provides options to
select relevant terms/phrases

Fig. 2 Up to 200 citations can be displayed per page on PubMed
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Fig. 3 Various filters can be applied while searching PubMed

Fig. 4 History and search details: Shows how PubMed has translated the search query
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you type in Probiotics OR Preterm infant instead of Probiotics AND Preterm infant,
you will end up with more than 100000 non-relevant citations instead of the correct
411 citations.

Searching PubMed using singular vs plural words: Some publications use
singular words, some plural, and hence it is essential to search with both terms. For
example, the phrase Drug retrieved 5,760,287 citations (Fig. 8a), whereas the plural
phrase Drugs retrieved only 1,543,528 citations (Fig. 8b). A search using both
terms with an OR in between yielded 6254560 citations.

Searching using “PubMed Advanced Search Builder”: The advanced search
builder is used for highly focussed searches. For example, you may want to search

Fig. 5 Search using the Boolean operator AND

Fig. 6 Search using the Boolean operator OR

Fig. 7 Use of the Boolean Operator OR
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for articles on Omeprazole, where the name Omeprazole is present in the title of the
article. There are at least 41 fields that can be utilised to build a search strategy. For
example, one could search for articles on probiotics Sanjay Patole from Australia by
using the advanced search builder, which will yield 39 relevant citations (Fig. 9).

Searching PubMed for articles with keywords that are present in title only,
title/abstract or all fields: Through advanced search builder one could search for
articles that have the keyword in the title or title/abstract or any area in the
manuscript (Fig. 10). As one would expect, searching for articles where the key-
word is present in the title itself will yield less number of citations and miss relevant
citations, but the ones identified are expected to be highly relevant. On the other
hand, searching for the keyword in any field would result in the maximum number
of retrievals, many of which may not be relevant. Hence the systematic reviewers
need to be aware of the trade-off between high sensitivity vs high specificity
between these strategies.

Searching using MeSH terms: Since different authors use different termi-
nologies for the same concept (e.g. “preterm infant” and “premature infant” are
often used interchangeably), a standard vocabulary system is needed to enable
retrieval of articles that have used either of these terminologies. The MeSH database
provides a controlled vocabulary and index terms (Lowe and Barnett 1994). MeSH
database can be searched from PubMed by clicking the MeSH database at the
bottom right-hand corner of the PubMed screen (Fig. 11). For example, you will
notice that the MeSH term for a preterm infant is “Infant, Premature” OR “Infant,
Extremely Premature”. It means, by using these MeSH terms, you will be able to
retrieve articles that have used the term “Preterm Infant”.

Searching PubMed using MeSH terms may not reveal the latest articles because
they have not yet been indexed using those terms. This is because skilled subject
analysts at the National Library of Medicine (NLM) regularly examine journal

Fig. 8 a Singular versus plural word while searching PubMed. b Singular versus plural word
while searching PubMed
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articles and assign to each the most specific MeSH terms applicable - typically ten
to twelve. Until such allocation, searching using MeSH term will not pick up those
articles. It is better to search PubMed using both keywords and MeSH terms to
ensure optimal results.

Use of double quotes on PubMed search: If you enclose a search term using
double quotes, e.g. “Heart Attack” while searching PubMed, only 3895 citations are
retrieved, whereas a search without the double quotes yields 233902 citations
(Fig. 12). This is because enclosing a search term or phrase in double-quotes turns
off automatic term mapping (ATM) capability of PubMed to search for other rel-
evant terms (e.g. Myocardial Infarction). Hence PubMed does not recommend the
use of double-quotes.

Finding related citations: Once a highly relevant article is found, one could
click on the “similar articles” (Fig. 13) link to identify them. PubMed uses a robust
word-weighted algorithm to compare words from the Title and Abstract of each
citation, as well as the MeSH headings assigned. The best matches for each citation
are pre-calculated and stored as a set (https://www.nlm.nih.gov/bsd/disted/
pubmedtutorial/020_190.html).

Fig. 9 Searching PubMed using Advanced Search builder
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Fig. 10 Searching all fields vs Title/Abstract vs Title

Fig. 11 Searching PubMed through MeSH database
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Searching using truncations/wildcards: Asterisk (*) is the wildcard symbol for
PubMed.

To search for all terms that begin with a word, enter the word followed by an
asterisk (*): the wildcard character. For example, if the truncated search term gene*
is used, PubMed will search for articles containing any of the terms such as gene,
genetics, gene therapy and many more. The use of truncation and wild card inhibits
the efficient automatic mapping capability of PubMed for that particular search.
Moreover, truncations result in the search strategy becoming unmanageable; for
example, a search using Gene* results nearly 7.5 million articles instead of 2.8
million (Fig. 14).

Applying filters: While searching PubMed, you could apply filters to retrieve
highly relevant citations. The available filters are article types (e.g. clinical trials,

Fig. 12 Searching PubMed using terms with and without double quotes

Fig. 13 Finding similar
articles
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systematic reviews, letters to the editor, meta-analyses), availability of free full
texts, age of the study population in the paper, studies in humans, animal studies,
publication dates and many other options (Fig. 3).

Obtaining full-text articles: PubMed does not store full-text articles but pro-
vides a link to the publisher’s website through which one could purchase the article
for a fee. Articles are often provided free of cost by the publisher or have already
been deposited in the PMC. Institutional libraries may have subscriptions to those
journals, and hence full texts may be available to download free of cost to the
searcher.

Saving PubMed searches: There are various options for saving the searches:
(a). While searching, if articles of interest are identified, they could be added to the
clipboard (Fig. 15a), where they will be available for eight hours. A maximum of
500 citations can be temporarily saved here; (b). The citations could be saved as
text-files or to endnote by clicking on the “save” icon or send to “citation manager”
button respectively (Fig. 15b). The citations could be e-mailed to self or anyone, by
clicking on the “E-mail” icon (Fig. 15a and b). A handy approach is to send to
“collections” and create a cost-free NCBI account and save them as “my collec-
tions” or my bibliography on the NCBI account. Follow the simple steps on this
website to create your own NCBI account (https://www.ncbi.nlm.nih.gov/account/?
back_url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed) (Fig. 16). Once
created, the search terms and results will be stored for the long term and can be
re-run in the future (Fig. 17). The advantages of having an NCBI account are
described in Table 1.

PubMed Central® (PMC): It is a free archive of biomedical and life sciences
PubMed Central journal literature at the US (Fig. 18) National Institutes of Health’s
National Library of Medicine (NIH-NLM). In keeping with NLM’s legislative
mandate to collect and preserve the biomedical literature, PMC serves as a digital
counterpart to NLM’s extensive print journal collection. Launched in February
2000, PMC was developed and is managed by NLM’s National Center for
Biotechnology Information (NCBI). PMC contains 6.3 million free full-text articles,
most of which have a corresponding entry in PubMed. PMC is a repository for
journal literature deposited by participating publishers, as well as for author
manuscripts that have been submitted in compliance with the NIH Public Access
Policy and similar policies of other research-funding agencies. Some PMC journals
are also MEDLINE journals (Shashikiran 2016).

Fig. 14 Searching PubMed with truncations and wildcards
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Embase (Excerpta Medica Database)

Excerpta Medica Database is a biomedical database published by Elsevier (https://
www.elsevier.com/solutions/embase-biomedical-research). It covers the most
important international biomedical literature from 1947 to the present day. All
articles are indexed in-depth using Elsevier’s Life Science thesaurus Embase
Indexing and Emtree®. The entire database is also available on platforms such as
Ovid. Through Embase, one could search over 32 million records, including
MEDLINE titles, over 8,500 journals from over 95 countries, including MEDLINE
titles, over 2,900 indexed journals unique to Embase, over 1.5 million records

Fig. 15 a Saving PubMed search results. b Saving PubMed search results
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added yearly, with an average of over 6,000 each day, and over 2.3 million con-
ference abstracts indexed from more than 7,000 conferences dating from 2009.
Embase has full-text indexing of drug, disease and medical device data. The
comparison between Medline and Embase is described in Table 2.

Many Universities and hospitals have a subscription to Ovid, through which
Embase can be searched (Fig. 19). Once a keyword or concept is written in the search
box, the database will provide a list of potentially relevant search terms, of which the
relevant ones can be selected and combined with the Boolean operator OR (Fig. 20).

Fig. 16 Creating a free NCBI account

Fig. 17 Saving searches in My NCBI account
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While searching Embase, select the “Explode” box if you wish to retrieve results
using the selected term and all of its more specific terms. Select the “Focus” box if
you wish to limit your search to those documents in which your subject heading is
considered the major point of the article (Fig. 20).

Search terms could be combined using the Boolean operator AND, OR
(Fig. 21). Similar to Medline, various filters (limits) can be applied based on the
design of the study (e.g. clinical trials), age group (children, infants, or adults),
animal studies, human studies, year of publication, and many others (Fig. 22).
A free Ovid account could be created to enable storage of the search terms and
strategy for the long run (Fig. 23). Once the Embase search for the systematic
review is completed, it is important to save the search date, terms used, limits
applied and the yield by selecting the “export” option on the screen and ticking the
“search history” box and pressing “export”.

Table 1 Advantages of PubMed search with NCBI account

PubMed search without NCBI account PubMed search with NCBI account

Search history is stored only for 8 h Search history is stored for six
months

Saving search strategy for the long-term duration not
possible

Search strategy can be saved for
many years

Creating alerts not possible Alerts can be created to receive
regular e-mails when
new relevant studies are published

Since the search strategy is not saved re-running of the
search is not possible after 8 h

Since the search strategy is saved
re-running of
the search can be done even after
many years

Fig. 18 PubMed Central
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Emcare (Nursing and Allied Health)

Emcare was launched in 2005 by Elsevier to improve the search related to nursing
and allied health literature (http://www.ovid.com/site/catalog/databases/14007.jsp;
Ulincy 2006). It contains over 3,700 international journals and nearly 5 million
records dating back to 1995. 50% of journals from North America, 40% from
Europe; 10% from other regions; 9% of all records reference non-English articles,
though most have English-language abstracts—70% of records contain online
abstracts. It can be accessed via the Ovid platform. The search methodology is
similar to searching Embase via Ovid.

Table 2 Comparison between Medline and Embase

Database
features

Medline Embase

Focus Biomedicine and health Biomedicine and health; drugs and
pharmacology

Produced by US National Library of
Medicine

Elsevier

Content Journal articles Journal articles plus conference abstracts

# of records 27 million dating back to
1946

32 million records, dating back to 1947

# of journals 5600 8500 journals

Journal origins
(2012)

41% North America 49%
Europe

34% North America 50% Europe

Conference
abstracts

Does not contain
conference abstracts

Gives access to some conference abstracts
dating back from 2009

Price Free via PubMed Needs paid subscription

Fig. 19 Searching Embase through Ovid platform
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Subject coverage Emcare (%) CINAHL

Allied Health 35 20

Biomedicine 49 47

Nursing 13 27

Other 3 3

Source Table 1 from Ref. (Ulincy 2006)

Fig. 20 Suggested words for the term “Hypertension” in Embase

Fig. 21 Searching Embase using Boolean operators

Fig. 22 Applying filters in Embase
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Cumulative Index to Nursing and Allied Health Literature
(CINAHL)

CINAHL is an important database for searching nursing and allied health literature.
It contains 3115 journals dating back to 1981 and has various subscription options
such as CINAHL, CINAHL Plus, and CINAHL Plus with full text and CINAHL
complete. It is published by Ebsco Health (https://www.ebscohost.com/nursing/
products/cinahl-databases/cinahl-complete).

Cochrane Library

The Cochrane Library (ISSN 1465–1858) is a collection of six databases that
contain different types of high-quality, independent evidence to inform healthcare
decision-making and a seventh database that provides information about Cochrane
groups. The contents of the Cochrane library are given in the table below (Source:
Cochrane Library, Accessed 15 August 2020).

Fig. 23 Creating an Ovid account
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Contents of the Cochrane Library

Cochrane Reviews 8365

Cochrane Protocols 2416

Trials 1663083

Editorials 133

Special collections 37

Clinical answers 2544

Systematic reviewers who are interested in only randomised controlled trials can
directly search the Cochrane Central Register of Controlled Trials (CENTRAL) to
identify the relevant trials (Fig. 24).

Grey Literature

Despite advances in the dissemination of study information, nearly half of
health-related studies go unpublished (Song et al. 2010). Searching such grey lit-
erature is important to enhance the reliability of results of systematic reviews. Grey
literature is defined as a literature that is produced on all levels of government,
academics, business and industry in print and electronic formats, but which is not
controlled by commercial publishers (Canadian Agency for Drugs Technologies in
Health 2015). They are inaccessible via conventional bibliographic databases.
Published articles, when compared with grey literature, yield significantly larger
estimates of the intervention effect by nearly 15% (McAuley et al. 2000).
A Cochrane review on this subject showed similar results and concluded that
published trials tend to show an overall greater treatment effect than grey trials
(Hopewell et al. 2007). Hence, the exclusion of grey literature can lead to spuri-
ously exaggerated benefits/harms of an intervention. The Canadian Agency for

Fig. 24 Searching through the Cochrane Central Register of Controlled Trials (CENTRAL)
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Drugs and Technologies in Health has published an excellent guide and resources
for searching medical grey literature (Canadian Agency for Drugs Technologies in
Health 2015) (https://www.cadth.ca/resources/finding-evidence/grey-matters;
accessed on 15 August 2020). It provides details of such databases from each
country and also checklists that could be used by systematic reviewers.

Some of the important portals for searching the grey literature are Mednar
(https://mednar.com/mednar/desktop/en/search.html), Trove (http://trove.nla.gov.
au/; accessed on 15 August 2020) and OAIster (http://oaister.worldcat.org/;
accessed on 15 August 2020). The AACODS checklist developed by the
researchers from Flinders University is a precious tool while assessing the quality of
the identified grey literature (https://dspace.flinders.edu.au/xmlui/bitstream/handle/
2328/3326/AACODS_Checklist.pdf;jsessionid=49D97F7AACC861E2BB731E22
27025CC5?sequence=4; accessed on 23 September 2020).

Non-english Literature

The Chinese biomedical literature has been rapidly growing over the recent years.
China’s share in the world’s total published scientific papers was less than 1% in
1980 whereas it was about 12% in 2011 and is currently ranking second behind the
US. Hence systematic reviewers need to search Chinese literature diligently (Cohen
et al. 2015). The important Chinese biomedical databases are Chinese Biomedicine
Literature Database (CBM), Chinese Medical Current Content CMCC, China
National Knowledge Infrastructure (CNKI, http://www.cnki.net), VIP information
and WANFANG (Xia et al. 2008). Unfortunately, it is difficult to gain access to
these databases.

LILACS is the Latin American and Caribbean health sciences database. It has
interfaces in Portuguese, Spanish and English language and hence relatively easy to
navigate. Most of the journals are not indexed in other databases can be accessed
at www.bireme.br.free of charge. A free tutorial on how to search LILACS is
available on http://bvsalud.org/en/howtosearch/.

It is important to enlist the help of professional language translators to translate
Non-English articles to English; however, financial limitations and the limited
availability of expert translators are significant barriers.

Google Translate, a free Web-based resource for translation, has the potential to
assist systematic reviewers in translating information from non-English literature.
A recent study evaluated the utility of Google translate in extracting information
from 10 randomised controlled trials in five languages (Chinese, French, German,
Japanese, and Spanish) (Balk et al. 2013). The average length of time required to
translate articles was 30 min (range 5 min to 1 h). Data extraction from translated
articles was less accurate than from English language articles. Extraction was most
accurate from translated Spanish articles and least accurate from translated Chinese
articles. They concluded that the use of Google Translate has the potential of being
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an approach to reduce language bias; however, reviewers need to be cautious about
using data from such translated articles.

Google Scholar

Recently, Google scholar has gained popularity among clinicians and researchers.
While it cannot be considered as a principal search system by the systematic
reviewers (Gusenbauer and Haddaway 2020; Bohannon 2014, Younger 1987), it
could be an addition to other traditional search methods (Haddaway et al. 2015).

Clinical Trial Registries

Researchers (and journal editors) are generally interested in the publication of trials
that show either a large effect of a new treatment (positive trials) or equivalence of
two approaches to treatment (non-inferiority trials) (Gusenbauer and Haddaway
2020). They may be less enthusiastic about trials that show that a new treatment is
inferior to the conventional treatment (negative trials) and even less interested in
trials that are neither clearly positive nor negative, since inconclusive trials will not
influence change in clinical practice. Trial results that place financial interests at risk
are especially likely to remain unpublished and hidden from public view (De
Angelis et al. 2004). Such selective reporting of trials can lead to publication bias
and erroneous conclusions of a systematic review (de Vries et al. 2016; Hart et al.
2012; Turner et al. 2008). If all trials are registered in a public repository, all
stakeholders can explore the full range of clinical evidence.

In 2004, the International Committee of Medical Journal Editors (ICMJE)
proposed that the ICMJE member journals will require, as a condition of consid-
eration for publication, registration in a public trials registry, and that trials must
register at or before the onset of patient enrolment (De Angelis et al. 2004). Since
then, many countries have established their country-specific trial registries.

ClinicalTrials.gov provides access to summary information on clinical studies on
a wide range of diseases and conditions. It was established in 1999 and is main-
tained by the National Library of Medicine (USA). It consists of a clinical study
registry and results’ database (Tse et al. 2018).

Researchers are responsible for submitting information about their studies to
ClinicalTrials.gov at the start of the study and update it regularly during the project.
The summary results are reported on the same website once the study is completed.

As of October 2016, ClinicalTrials.gov contained information on over 227,000
studies (Zarin et al. 2017). By 2018, it had information for nearly 270 000 studies
from over 200 countries and summary results of over 30 000 studies (Tse et al. 2018).
Currently, it has 348,891 research studies from 216 countries (accessed on 15 August
2020).
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The World Health Organization International Clinical Trials Registry Platform
(WHO-ICTRP) was established in 2006 (Gülmezoglu et al. 2005), and it continues
to coordinate a global network of trial registries. It is important to note that the
WHO-ICTRP is not a trial registry, but a platform which accesses other registries
from various countries including Australia and New Zealand (ANZCTR), China
(ChiCTR), South Korea (CRiS), India (CTRI), European Union (EU-CTR), Iran
(ISRCTN), Japan (JPRN), Thailand (TCTR), Africa PACTR and Srilanka (SLCTR)
(de Vries et al. 2016). While there are limitations to it, The ICTRP represents a
concentrated effort towards data accessibility from various trials. Systematic
reviewers should include the trial registries while searching the literature.

In summary, for increasing the reliability of the results, systematic reviewers
should search as many databases as possible to ensure all relevant studies are
identified. The importance of a pre-planned, explicit, and robust strategy for
comprehensive literature search with optimal transparency and reproducibility
cannot be overemphasised.
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Assessing and Exploring Heterogeneity

Sven Schulzke

Abstract Meta-analysis is a statistical method for combining the results of studies
included in the systematic review. It is justified only when the potentially eligible
studies are similar enough. However, some differences in their clinical or
methodological characteristics are inevitable as no two studies are expected to be
identical in the true sense. Clinical heterogeneity is caused by diversity in important
characteristics such as participants, interventions, comparators, or outcomes (in
extreme cases, ‘apples vs. oranges’). Methodological heterogeneity involves dif-
ferences in the design (e.g., randomised vs. quasi-randomised) and methodological
quality of studies (e.g., masked vs. non-masked allocation) included in a systematic
review. A fair amount of clinical judgement is thus necessary to decide whether or
not studies are similar enough to be combined in a meta-analysis. Statistical
heterogeneity in a meta-analysis means that the between-study variation in the
effect of intervention varies beyond the extent expected by chance alone. This
chapter is focussed on understanding, assessing and handling heterogeneity from
various sources in meta-analysis.

Keywords Clinical heterogeneity � Chi-squared test � I-squared statistic �
Methodological heterogeneity � Statistical heterogeneity � Sensitivity analysis �
Subgroup analysis

Introduction

Meta-analysis involves a statistical method for combining the results of studies that
are included in the systematic review. It is only reasonable to conduct meta-analysis
when patient populations, interventions, outcomes, and follow-up of the considered
studies are similar enough (‘only compare apples to apples’). On the other hand,
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there is always some difference in the clinical or methodological characteristics of
studies given that no two studies are entirely identical (‘all apples are different’).
Thus, a fair amount of clinical judgement is necessary to decide whether or not
studies are similar enough to be combined in a meta-analysis.

Clinical Heterogeneity

Clinical heterogeneity (Table 1) is caused by clinical diversity in important study
characteristics such as participants, interventions, or outcomes (in extreme cases,
‘apples vs. oranges’) (Cochrane 2017). However, even comparing apples with
oranges may be adequate if we are indeed interested in evaluating the ‘effects of
fruits’ in general.

Methodological Heterogeneity

In addition to clinical heterogeneity, study design (e.g., randomised vs.
quasi-randomised) and methodological quality of studies (e.g., masking vs.
non-masking of allocation) included in a systematic review may vary creating
another important level of heterogeneity between studies. Such variability in the
design and quality of the study is typically termed methodological heterogeneity
(Table 2) (Cochrane 2017).

Table 1 Examples of clinical heterogeneity

Clinical
characteristics

Examples of diversity

P: Patients Age, sex, type of disease, the severity of the disease, stage of the disease

I: Intervention Dose, duration, timing, frequency of treatment; different personnel
administering the intervention

C: Control
intervention

Placebo, standard care, no control treatment

O: Outcome Type and definition of the event, duration of follow-up, different
instruments to measure the outcome

T: Timing Study setting, e.g., time of year, geographic setting, local setting (where
were data collected)
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Conceptual Heterogeneity

Clinical and methodological heterogeneity is summarised with the term conceptual
heterogeneity (Fletcher 2007). Some degree of conceptual heterogeneity is inevi-
table (Higgins 2008), however, it can be reduced pre-emptively by asking a focused
question (PICO) and by considering only specific trial/study designs at protocol
stage of the systematic review (Gagnier et al. 2012).

Statistical Heterogeneity

‘Statistical heterogeneity’ in a meta-analysis means that the between-study variation
in the effect of intervention varies beyond the extent expected by chance alone
(Cochrane 2017). Statistical heterogeneity is a result of clinical or methodological
heterogeneity or the combination of two heterogeneities among the studies (Fig. 1).
Methods of exploring statistical heterogeneity are outlined below.

Exploring the presence and sources of statistical heterogeneity are important to
understand differences in treatment effects between studies (Fletcher 2007).
Moreover, creatively exploring the sources of statistical heterogeneity may enable
us to identify subgroups of patients who benefit most from interventions or those
who are particularly vulnerable to adverse events. Additionally, recognising
heterogeneity is important when applying evidence from a systematic review to
individual patients. For example, if a meta-analysis demonstrates the beneficial
effects of an intervention across several studies in the presence of heterogeneity, our
confidence in the applicability of the study results to a given patient may be
increased. In other words, if a treatment has beneficial effects across different
patient populations, at different dosages, and different treatment durations, the
observed treatment effect is likely to occur in a given patient under the circum-
stances similar but not identical to those considered in the studies. In this case, the
presence of heterogeneity may be advantageous when applying evidence to indi-
vidual patients. Finally, assessing inconsistency of effect estimates is important
when grading the quality of evidence and the strength of recommendations.
Depending on the severity of inconsistencies, our confidence in the effect estimates

Table 2 Examples of methodological heterogeneity

Methodological
characteristic

Examples of diversity

Design Randomised/non-randomised, parallel/crossover

Allocation Concealed/non-concealed

Masking Intervention masked/non-masked, outcome assessment masked/
non-masked

Analysis and reporting Intention-to-treat vs. per protocol
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of a meta-analysis might decrease considerably. In severe cases, this leads to the
downgrading of the quality of evidence and strength of recommendation (Andrews
et al. 2013). The approach to the assessment of the quality of evidence and strength
of recommendations has been covered elsewhere in this book.

Measuring Statistical Heterogeneity

Investigating the sources of heterogeneity in meta-analysis is by nature exploratory,
and therefore should always be interpreted with caution. However, careful assess-
ment of heterogeneity may provide critical insight into the results and interpretation
of a meta-analysis and lead to evidence that can be useful in suggesting the
direction of future research (Song et al. 2001). Heterogeneity can be assessed using
the ‘eyeball’ test or more formally with statistical tests such as the Cochran
chi-squared (Cochran Q) test or the I-squared statistic (Centre for Evidence-Based
Medicine 2014; Higgins and Thompson 2002; Patsopoulos et al. 2008a; b).

The ‘eyeball’ test involves visually assessing the confidence intervals of studies
in a forest plot (Fig. 2). Heterogeneity is likely when confidence intervals of
included studies in a forest plot do not overlap with the confidence interval of the
summary effect estimate (Fig. 2a). Exploring the reasons for non-overlapping
confidence intervals in a forest plot might reveal important differences in clinical or
methodological characteristics of included trials. For example, the three studies
favouring treatment over control in Fig. 2a might assess patients who are

Fig. 1 Associations between clinical, methodological, conceptual and statistical heterogeneity
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considerably younger (or less diseased) than those from the other studies, resulting
in more beneficial effect estimates in the former and heterogeneity among all
studies. The ‘eyeball’ test indicates the presence of homogeneity, i.e., no hetero-
geneity when confidence intervals of all included trials in a forest plot overlap with
the summary effect estimate (Fig. 2b).

Panel a: Visual inspection (‘eyeball’ test) indicates that there is heterogeneity
among studies as the confidence intervals of some of the six included trials are not
overlapping with the confidence interval of the summary relative risk estimate.
Further, there are three studies favouring treatment, one very large study (as indi-
cated by the large square) at the ‘no effect’ line, and two other studies favouring the
control intervention. In this example, heterogeneity does influence the summary
relative risk estimate; the latter is tending towards a benefit of the intervention,
although the studies are unlikely to assess the same true effect.

Panel b: Confidence intervals of all trials overlap indicating that there is no
heterogeneity between the five included studies. In other words, study results are
homogeneous.

The Cochran chi-squared (Cochran Q) test: This is a non-parametric statistical
test assuming the null hypothesis of homogeneity among all studies in a
meta-analysis. The test considers the differences between observed effects in the
individual studies and the pooled effect estimate. It squares those differences, then
divides by variance, and sums up. This gives the chi-squared test statistic T with the
degrees of freedom (df) equal to the number of studies -1. The expected chi-squared
test statistic T if the null hypothesis is true equals the degrees of freedom. A very

Fig. 2 The forest plots display the relative risk of an outcome in treatment vs. control group
among studies included in the meta-analysis. The squares represent the point estimate of the
treatment effect of each study with a horizontal line extending on either side of the square
representing the 95% confidence interval. The size of the squares reflects the sample size and
weight of each study in the meta-analysis, given that larger studies result in more precise point
estimates and narrower confidence intervals. The diamonds represent the overall relative risk
estimate of the studies presented in the meta-analysis. The widths of the diamonds represent the
95% confidence interval of the relative risk. The vertical midline of the forest plot corresponding to
a relative risk of 1 represents a ‘no effect’ line
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low p-value in the Cochran chi-squared test indicates heterogeneity among studies.
Unfortunately, the reliability of the Cochran chi-squared test is poor. The sensitivity
of the Cochran chi-squared test to detect heterogeneity is low if there are few
studies included in the meta-analysis (which often is the case), i.e., the p-value of
the Cochran chi-squared test may not be very low although there is considerable
heterogeneity among trials. In order to alleviate this issue, a p-value of 0.1 (rather
than 0.05) is typically used as a cut-off to indicate statistically significant hetero-
geneity in the Cochran chi-squared test. For example, the Cochran chi-squared test
of the meta-analysis in Fig. 2a results in a p-value of 0.02, indicating significant
heterogeneity. If Cochran chi-squared is not statistically significant, but the ratio of
T and the degrees of freedom (T/df) is > 1, there is potential heterogeneity. If the
test is not statistically significant, but T/df is < 1 then heterogeneity is unlikely
(Centre for Evidence-Based Medicine 2014). For example, the p-value of the
Cochrane chi-squared test of the meta-analysis in Fig. 2b is 1.00. With df = 4, T/df
is 0.25; thus, heterogeneity is unlikely based on the Cochran chi-squared test.
However, It is important to know that the absence of heterogeneity does not equate
with evidence of homogeneity given the low sensitivity of the Cochran chi-squared
test (see above). On the other hand, a single outlying study with confidence interval
not overlapping with those from all other studies in a meta-analysis may cause a
significant test result in the Cochran chi-squared test but may not be important in
the overall interpretation of the results. Therefore, even a positive test result may
not be beneficial. Lastly, it is probably too simplistic to answer the question about
the presence of heterogeneity with a simple yes/no answer based on a single
statistical test.

The I-squared statistic: This statistic is an index of the degree of heterogeneity
among the included studies. Rather than providing a simple yes/no answer as in the
Cochrane chi-squared test, the I-squared statistic expresses the degree of incon-
sistency between study results as a percentage. I-squared can be anywhere between
0 and 99% with low values indicating no or little heterogeneity and high values
indicating a high probability of heterogeneity (Patsopoulos et al. 2008a). There is
no definitive cut-off to prove heterogeneity, and like any test statistic, I-squared has
a level of uncertainty. I-squared thresholds can be misleading as the importance of
inconsistency among trials depends on several factors such as the magnitude of the
effect, the direction of effect, and strength of evidence for heterogeneity (e.g., a
p-value of chi-squared test or confidence interval of I-squared statistic) (Higgins
and Green 2011). In order to address this, overlapping I-squared thresholds for
interpretation of the importance of heterogeneity may be given. As a rough guide,
I-squared values below 30–40% may represent low heterogeneity, 30–60% might
reflect moderate heterogeneity, 50–90% might represent considerable heterogene-
ity, and 75–100% might represent high heterogeneity (Higgins and Green 2011).
For example, the I-squared statistic of the meta-analysis in Fig. 2A is 63%, indi-
cating moderate to considerable heterogeneity. The I-squared statistic of the
meta-analysis shown in Fig. 2b is 0%, indicating no statistical heterogeneity.
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Dealing with Statistical Heterogeneity

Several options and strategies for addressing statistical heterogeneity are available
(Higgins and Green 2011).

(1) Check accuracy of data

As a first step, one should always re-check the accuracy of the data entered into the
software used for generating the forest plots in order to rule out simple coding
errors causing invalid effect estimates.

(2) Do not combine studies in a meta-analysis

In the presence of substantial heterogeneity, especially if the direction of effect
varies between studies, it may be misleading to conduct a meta-analysis and to
provide an average effect estimate. In these cases, a narrative description of the
results of the included studies might be preferable. Reviewers repeatedly face the
question of whether to describe study results only narratively or to combine them
mathematically in a meta-analysis. This question needs to be answered for each
comparison and each outcome of each study in the systematic review. E.g., some
outcomes of some studies assessing a specific comparison may be judged to be
amenable to meta-analysis while others maybe not. In other cases, all outcomes of a
comparison of intervention vs. control may be reported narratively because con-
ceptual heterogeneity between studies may be deemed too severe to combine results
in a meta-analysis. It is often possible to answer those questions by using clinical
judgement and assessing the degree of conceptual heterogeneity (comparability of
patients, interventions, control interventions, outcomes and follow-up, and study
settings/methods). This solution, however, implies that the reviewers have the
necessary clinical and methodological knowledge to provide a sensible judgement.
Therefore it is recommended to assemble reviewer teams with members who
complement each other in these qualifications.

(3) Explore the reasons for heterogeneity

Exploring heterogeneity can be formally accomplished by subgroup analysis,
sensitivity analysis, and meta-regression.

Subgroup analysis: Heterogeneity frequently can be anticipated at protocol
stage of a systematic review, allowing for pre-emptive declaration of subgroups in
order to assess the influence of heterogeneity once the studies have been selected
for inclusion in the review (Higgins and Green 2011). For example, cooling of
asphyxiated neonates with hypoxic-ischaemic encephalopathy can be carried out
using selective head-cooling or whole-body cooling devices. Studies considered for
a meta-analysis of cooling for neonates with this condition could thus be analysed
both in prestated subgroups based on the type of cooling device and by pooling of
results from all studies.

Sensitivity analysis: Given that the methodology of included studies might
influence the results of a systematic review, sensitivity analysis may be useful
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(Higgins and Green 2011; Thabane et al. 2013). Sensitivity analysis assesses the
robustness of effects of interventions towards changes in methodology, models, or
assumptions of included trials. For example, one might carry out a sensitivity
analysis by comparing the effect of interventions in truly randomised vs.
quasi-randomised trials included in a systematic review. Ideally, sensitivity analysis
should be declared at the protocol stage.

Meta-regression: Statistical heterogeneity can further be explored by quantita-
tive techniques such as meta-regression (Baker et al. 2009; Thompson and Higgins
2002).This involves mathematically assessing the impact of interactions between
covariates and treatment effects using regression techniques. Meta-regression typ-
ically has low statistical power and requires at least 5–10 studies in a meta-analysis
to detect relationships between covariates and treatment effects reliably. Caution is
warranted in conduction and interpretation of results, as relationships are purely
observational, potentially affected by bias originating from the aggregation of data,
and can be confounded by other variables not considered in the analysis (Baker e al.
2009; Thompson and Higgins 2002). Preferably, a limited set of scientifically
well-founded covariates is chosen at the protocol stage, and a permutation test be
carried out in order to reduce the risk of false-positive findings of a meta-regression
(Higgins and Thompson 2004).

(4) Mathematically allow for heterogeneity

Effects of studies can be mathematically combined in a meta-analysis using either
fixed-effects or random-effects models (Higgins and Green 2011). A fixed-effects
model ignores heterogeneity by assuming that all included studies measure the
same effect. This assumption implies that the observed differences among study
results are entirely due to chance, i.e. that there is no statistical heterogeneity. If
there is no heterogeneity, the summary effect estimate is interpreted as being the
best estimation of the treatment effect. Fixed-effects models are powerful and
provide narrow confidence intervals. In the presence of statistical heterogeneity that
cannot be readily explained or explored, using a fixed-effects model might be
inadequate because studies might assess different effects (e.g., differences in the
population). In such circumstances, using a random-effects model allows for
heterogeneity among results of included studies. A random-effects model assumes
that the effects in the different studies are not identical but follow a distribution
(Higgins and Green 2011). The typical choice of distribution is a normal distri-
bution; however, it is difficult to show that this choice is adequate (which is a
common criticism of random-effects meta-analyses). A random-effects model does
not adjust for statistical heterogeneity in the sense that it is no longer an issue. It
instead incorporates heterogeneity between studies as the confidence interval.
A random-effects meta-analysis reflects both between and within study variations of
effect estimates. Consequently, random-effects meta-analysis has less statistical
power and wider confidence intervals compared to fixed-effects meta-analysis. It is
essential to realise that in the presence of heterogeneity, a random-effects
meta-analysis weights the studies more equally than a fixed-effect analysis, i.e.,
small studies receive a higher weight in random-effects meta-analysis. Therefore, if
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an intervention is more beneficial in the smaller studies of a meta-analysis, the
overall random-effects estimate of the intervention effect will be more beneficial
than the fixed-effect estimate (Higgins and Green 2011).
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Assessment of the Risk of Bias

Kwi Moon and Shripada Rao

Abstract Biases (systematic errors or deviations from the truth) can result in
under-estimation or over-estimation of results. If the studies included in the sys-
tematic review have a low risk of bias (ROB), the evidence is more likely to be
reliable, and vice versa. Hence, systematic reviewers should carefully assess and
report the ROB in the included studies and explore its impact on meta-analyses.
Biases in randomised controlled trials (RCTs) include inadequate randomisation
process, deviations from intended interventions, missing outcome data, the bias in
measuring outcomes, and selective reporting of results. ROB-2 is the currently
recommended tool for assessing ROB in RCTs. At least two reviewers should
assess the ROB independently and resolve differences of opinion by discussion or
by consulting a third reviewer. ROB assessment should be performed separately for
each outcome. Robust processes for generating random sequence numbers, ade-
quate allocation concealment, blinding of participants, clinicians, researchers and
outcome assessors, and maximising follow up rates will minimise the ROB in
RCTs.
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Introduction

The Cochrane Handbook defines bias as a systematic error, or deviation from the
truth, in results (Higgins et al. 2019). Biases can lead to under-estimation or
over-estimation of the true intervention effect and can vary in magnitude (Higgins
et al. 2019). Risk of bias (ROB) assessment is an essential step while conducting
systematic reviews. If the randomised controlled trials (RCTs) included in the
systematic review have low ROB, the evidence is more likely to be reliable.
Conversely, if the majority of the included RCTs have a high ROB, the evidence
will become less reliable (da Costa et al. 2017). The major types of biases in RCTs
that need to be assessed by systematic reviewers include the following: (1) Bias
arising from the randomisation process, (2) Bias due to deviations from intended
interventions, (3) Bias due to missing outcome data, (4) Bias in measurement of the
outcome and (5) Bias due to selective reporting of results (Higgins et al. 2019;
Sterne et al. 2019).

1. Bias arising due to inadequacy in the randomisation process (Previously
known as “Selection bias”)

This type of bias occurs when recruiters selectively enrol participants into the trial
based on the knowledge about what the next treatment allocation is likely to be
(Kahan et al. 2015). It can result in systematic differences in baseline characteristics
of the groups that are compared, which then impact on the results of the study.

a. Bias may occur if appropriate methods are not used for random sequence
generation. Take the example of a hypothetical RCT in which intensive care
unit (ICU) patients with low systolic blood pressure (<95mmHg) are ran-
domised to receive adrenaline infusion or the new drug.

The hypothesis is that the new drug can reduce the duration of ICU stay when
compared to adrenaline, and mortality will be similar. As per the study protocol,
allocation of the study drug is to be done alternatively, i.e. the first patient receives
adrenaline, and the next patient receives the new drug and so on. If the treating
clinician doesn’t believe in the new drug, he/she might be reluctant to recruit a
patient with severe hypotension (e.g. systolic BP=70 mmHg), being aware that the
patient will be allocated to the new drug. On the other hand, the clinician may be
happy to recruit the next patient who has mild hypotension (e.g. systolic BP= 90
mmHg), to receive the new drug knowing that the patient is not too ill. If the next
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patient has severe hypotension (e.g. systolic BP=70 mmHg), the clinician will be
happy to recruit knowing that the patient will be allocated to receive adrenaline
infusion.

If this process of selection is repeated throughout the trial, the majority of
patients with milder hypotension will end up receiving the new drug, and those with
severe hypotension will receive adrenaline. When data is analysed after full
recruitment of 100 patients, the results might favour the new drug as shown below.

New drug Adrenaline P-value

Duration of ICU stay 3 days (SD 1.2) 6 days (SD 1.9) 0.003

However, upon closer inspection of the baseline characters, it is evident that the
real reason for the difference in results is that the patients in the new drug group had
milder hypotension compared to those who received adrenaline.

New drug Adrenaline P-value

Mean BP on entry into the trial 93 mm Hg (SD 9) 75 mm Hg (SD 8) 0.001

This is an example of selection bias, which occurred because the sequence of
allocation was alternate and hence predictable. Therefore, allocations based on
alternate patients, or other similar methods such as odd/ even day of admission, the
month of the year, and date of birth are not ideal. This type of bias could have been
minimised if the sequence generation was random. The robust methods include the
use of computer-generated random sequence numbers or random number tables
where the generated sequences are unpredictable. Manual methods of achieving
random allocation such as coin tossing or throwing dice may become non-random,
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are challenging to implement and do not leave an audit trail and hence not rec-
ommended (Dettori 2010).

Simple randomisation is the simplest and most effective method to prevent
selection bias (Kahan et al. 2015). It works by assigning each patient to one of the
treatment groups with a certain probability (usually 50%). This probability is the
same for every patient, regardless of previous allocations. For example, consider a
trial where 35 of the first 50 patients are assigned to the intervention and only 15 to
the control. When the 36th patient presents for randomisation, he/she would still
have an equal chance of being assigned to either treatment group, regardless of the
imbalance in numbers. Because the probability is always the same, recruiters will
not be able to guess with any accuracy which treatment the patient will be assigned
to. Thus selection bias cannot occur in such a scenario. The main disadvantage of
simple randomisation is that it could lead to an unequal number of participants in
the two groups. However, if the overall sample size is large, this imbalance has only
a small impact on power and should not be used as a reason to avoid simple
randomisation. Experts recommend that simple randomisation should be used more
frequently in practice (Kahan et al. 2015). Methods such as block randomisation
and stratified randomisation may be used to ensure balance in size and important
prognostic factors (Setia 2016; Randomization 2011), but have the potential to
increase the ability of the recruiter to guess the sequence.

b. The second type of bias at the stage of the randomisation process occurs if
allocation concealment is not adequate.

In an RCT, even though robust methods have been used to generate random
numbers, selection bias would still occur if the recruiter has access to the ran-
domisation list. That means even before approaching for consent; the recruiter will
be aware of the group, the participant will be randomised to if consent is obtained. It
can introduce selection bias similar to the previous example.

Allocation concealment is a technique used to prevent selection bias by con-
cealing the allocation sequence from those assigning participants to intervention
groups, until the moment of assignment. It prevents researchers from influencing
(unconsciously or otherwise) which participants are assigned to a given intervention
group.

Inadequate allocation concealment may produce an exaggerated estimate of
treatment effects (Schulz and Grimes 2002; Kjaergard et al. 2001; Odgaard-Jensen
et al. 2011) by up to 30–40% (Moher et al. 1998; Nunan et al. 2018). Pindal et al.
examined the impact of allocation concealment in RCTs on the conclusion of
meta-analyses by reviewing 38 Cochrane reviews. They found that 2/3rd of con-
clusions that favoured interventions no longer did so when studies with inadequate
or unclear allocation concealment were excluded (Pildal et al. 2007). For this
reason, allocation concealment has been recommended as an essential tool (Schulz
and Grimes 2002; Nuesch et al. 2009).

The following methods of concealing the allocation sequence are considered
appropriate:
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a. Centralised telephone system administered by the trial co-ordination cen-
tre: In this method, the recruiter telephones the trial administration centre after
obtaining the participant’s consent. As per the protocol, basic clinical details of
the participant are then entered by the receiver into a customised database to
generate the allocation, which is then given to the recruiter (Kennedy et al.
2017).

b. Web-based allocation: In this method, all random sequence numbers that have
been generated are stored on a secure trial-specific website. Once the trial
participant gives consent, the investigator logs into that website and enters
participant details. Inbuilt algorithms in the software take into consideration the
baseline characters of the trial participant and select the intervention to which
the participant/patient should be allocated. Various online tools are available for
this purpose; with many having an open access (Morice 2012; Cai et al. 2010).

c. Sequentially numbered, opaque, sealed envelopes (SNOSE): The generated
random sequence numbers stored in SNOSE are usually considered adequate.
However, they may not be completely free of bias (Kennedy et al. 2017).
Unsealed or transparent envelops are not ideal for concealing the allocation
sequence.

d. Pharmacy controlled: Another frequently used method of allocation conceal-
ment, common in drug trials, is to get the allocation done by a pharmacy
(Altman and Schulz 2001). The trial drugs are provided in containers of iden-
tical appearance and weight according to the allocation sequence.

In summary, randomising trial participants into a treatment group is a two‐step
process. The first step is to generate an unpredictable randomisation sequence, and
the next step is to conceal this sequence from everyone involved in the recruitment
process to prevent selection bias (Clark et al. 2013). It is important to note that
allocation concealment refers to the technique used to implement the sequence, not
to generate it (Schulz and Grimes 2002).

2. Bias due to deviations from intended interventions (Previously known as
“Performance bias”)

This type of bias occurs in an RCT when there are systematic differences in the care
provided to the participants between the groups other than the intervention(s) being
evaluated (McCambridge et al. 2014). It occurs especially if investigators and
participants are not blinded to the interventions.

Take the example of a hypothetical RCT in which a new drug is being evaluated
to treat obesity.
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As per the trial design, the new drug is being compared with the standard care
(i.e. advice on diet and exercise). The outcome of interest is weight loss at the end
of 6 months. Patients randomised to the new drug might become complacent and
stop regular exercises and good dietary habits, comfortable in the knowledge that
the new drug would help them lose weight. On the other hand, patients randomised
to standard care might spur into action and take better control of their weight issues.
The clinician might also inadvertently provide additional support to those not
receiving the new drug (e.g. referral to a dietician and an exercise therapist). In
effect, systematic differences between the two groups have been introduced, other
than the new drug being tested. The final results of the study may look as below:

Weight loss: New drug group Weight loss: Standard group P-value

5% 10% 0.03

Hence one could incorrectly conclude that the new drug is worse than standard
therapy in obesity. The erroneous conclusion was reached because bias was
introduced that affected the performance of the new drug because the recruiter and
the participant were not blinded to the intervention. This bias could have been
avoided by giving placebo tablets to the control group. The placebo tablet should be
identical (or very similar) in colour, taste and texture to the new drug. This would
have ensured that patients in both groups did not realise what they were receiving,
and even the investigators were unaware of what group any patient was in. In
controlled trials the term blinding, and in particular “double-blind,” usually refers to
keeping the study participants, their caretakers, and those collecting and analysing
data unaware of the assigned treatment, to avoid getting influenced/biased by that
knowledge (Day and Altman 2000). Overall, randomised trials that do not use the
appropriate level of blinding tend to show larger treatment effects than blinded
studies (Hrobjartsson et al. 2014, 2012; Savovic et al. 2012). For subjective out-
comes, ROB with non-blinding is even greater such that intervention effects may be
exaggerated by as much as 36% (Hrobjartsson et al. 2012).

Blinded participants are less likely to have biased responses to intervention,
more likely to comply with trial regimens, less likely to seek additional adjunct
interventions and less likely to leave trial (Schulz and Grimes 2002). Blinded
investigators are less likely to transfer their inclinations to participants, and less
likely to differentially adjust the dose, withdraw participants and encourage or
discourage participants from continuing in the trial (Schulz and Grimes 2002).

Overall, blinding of the caregivers and patients/participants makes it difficult to
bias results intentionally or unintentionally and increases the internal validity of the
trial and credibility of conclusions (Day and Altman 2000). Hence every effort
should be made to achieve adequate blinding in RCTs. However, in many RCTs, it
is not possible to blind the clinicians and the participants. For example, in a trial
comparing conventional ventilation versus high-frequency oscillator, it is impos-
sible to achieve blinding. Similarly, it is difficult to achieve blinding in surgical
RCTs (McCulloch et al. 2002). In the past, such open trials were always considered
as carrying a high ROB. However, open trials can be at low ROB if there are no
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deviations from the intended intervention that arose because of the trial context.
When patients/participants or clinicians cannot be blinded, trialists should ensure
that, apart from the intervention, the allocation groups are treated as equally as
possible. This may involve standardising the care of participants, including
co-interventions, frequency of follow-up and management of complications
(Karanicolas et al. 2010). Blinding of other team members and outcome assessors
helps in minimising bias in such situations (McCulloch et al. 2002; Karanicolas
et al. 2010).

3. Bias due to missing outcome data

This type of bias occurs due to systematic differences between the study groups in
the number of participants lost from a study and the reasons (Nunan et al. 2018). In
many trials, participant data are missing because of loss to follow-up or incomplete
data collection (Hewitt et al. 2010). Data could be missing because the subjects
were unable to provide it (e.g., dead, severely impaired), withdrew from the study
voluntarily or because of an adverse event, or were lost to follow-up (e.g., moved
away from the study area). The situation most likely to lead to bias is when reasons
for the missing outcome data differ between the two groups. For example, if the
study subjects who became seriously unwell withdrew from the comparator group
while those who recovered withdrew from the experimental intervention group
(https://training.cochrane.org/handbook/current/chapter-08#section-8-5-2). Results
of a trial become less reliable, especially if outcome data is missing from greater
than 20% of participants (Schulz and Grimes 2002). Unfortunately, there is no
threshold for defining ‘small enough’ in relation to the proportion of missing
outcome data.

In addition to ‘complete-case analyses’ wherein the statistical analysis is done
for all patients where full information is available, trial authors may need to conduct
analyses to address bias caused by missing outcome data. Approaches include
single imputation (e.g. assuming the participant had no event; last observation
carried forward), multiple imputation (Sullivan et al. 2016) and likelihood-based
methods. However, such an approach may lead to spurious conclusions. Trialists
should hence consider other strategies to minimise attrition bias (e.g. attempt to
follow up all participants and sensitivity analyses) (White et al. 2011).

4. Bias in measurement of outcomes

Some circumstances when this type of bias occurs include the following:

a. When an inappropriate method is used for measuring the outcome. For
example, in a randomised trial comparing conventional antihypertensive med-
ication versus new medication, low-quality home blood pressure monitors may
not correctly measure blood pressure levels above 200 mm Hg. The true inci-
dence of severe hypertension will hence be unreliable.

b. When ascertainment of the outcome differs between intervention groups.
For example, in a randomised trial comparing aspirin versus new drug for
migraine, patients in the new drug group may have more headaches and undergo
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more MRI scans leading to the detection of more number of benign asymp-
tomatic brain tumours. The conclusion that patients in the new drug have a
higher incidence of benign brain tumours is biased and hence incorrect.

c. If the blinding of outcome assessors is inadequate. Take the example of a
hypothetical open-label trial comparing the effect of a new drug versus the con-
ventional drug morphine for postoperative pain relief in newborn infants. The
outcome of interest is pain-score as assessed by the nurses caring for the infants.
Higher scores are considered to indicate severe pain. These scores are subjective
and hence dependent on the opinion of the nurse looking after the infant. Since it
is an open-label trial, the nurse will be aware of whether the infant is receiving
morphine or the new drug. If the infant was randomised to the new drug, she
might consciously or subconsciously give higher pain scores because of personal
belief that the new drug is not good. On the other hand, if she is caring for an
infant who has been randomised to morphine, she may allocate lower pain scores
because she believes that morphine is a better analgesic. Hence a bias has been
introduced due to the personal opinion of the nurse. Blinding of outcome
assessors (nurses, in this case) could have prevented this type of bias.

In summary, blinded assessors are less likely to have a bias that can affect their
assessments of the outcomes (Schulz and Grimes 2002). Hence every effort should
be made to blind the outcome assessors in an RCT.

Trials Where Blinding Is Difficult

In some trials, it may be difficult to blind the participants and investigators (e.g.
trials involving surgical procedure). An extra effort should be placed on blinding the
outcome assessors in such studies. Additionally, novel strategies to maintain
blinding for participants and investigators should be considered. (e.g. simulation of
interventional procedures, imitation of incision/surgical access point, standardisa-
tion of interventions and care) (Wartolowska et al. 2017).

Difference Between Blinding and Allocation Concealment

One should not confuse “blinding” with “allocation concealment”. Allocation
concealment is aimed to protect allocation sequence before and until assignment
whereas blinding is a process undertaken to conceal group identity after assignment
(Schulz et al. 2002). Blinding seeks to prevent performance and detection bias.
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5. Bias in selecting the results for reporting

Reporting bias occurs if trial investigators selectively report the results of their trial
(Kirkham et al. 2010, 2018).

There are various types of selective reporting in RCTs (Higgins et al. 2019):

a. Not analysing as per the pre-specified plan.

Systematic reviewers should attempt to retrieve the pre-specified analysis plans for
each trial. It allows identification of outcome measures or analyses that have been
omitted from or added to the reported results, post hoc.

Take the example of a hypothetical RCT that tested a new drug for the treatment
of influenza in a community setting. The intervention group is to receive the new
drug and control group is to receive the current standard (symptomatic therapy).
Pre-specified outcomes of interest are “duration of illness” and “side effects of the
drug”. The trial finds that the new drug decreases the duration of illness by two days
compared to symptomatic therapy, and patients receiving the new drug develop
transient hepatic dysfunction. The trial investigators publish information on the
duration of illness but withhold the information regarding the abnormal liver
functions.

b. Selective reporting of particular outcome measurement.

For example, in a trial comparing new drug versus morphine for postoperative
analgesia in neonates, the pain scores are measured using two scales: Scale A and
Scale B. The results show a new drug is superior to morphine on Scale A but no
different on Scale B. The results for scale A scale are reported, whereas Scale B
results are not.

c. Selective reporting of particular analysis (based on results) from multiple
analyses.

For example, in the above scenario, the investigators analysed the difference in pain
scores between the new drug and morphine at six hours after commencing the
medication but found no difference between the groups. They also compared the
change in pain scores from baseline and found that infants in the new drug group
had a significant drop in pain scores from baseline. Hence, they decided to report
only the latter result.

In summary, reporting bias is a common phenomenon (Page et al. 2014) of
concern (Ioannidis et al. 2017; Jones et al. 2015). To avoid the potentially harmful
effects due to reporting bias, all trials should be registered, and provide the explicit
list of pre-specified outcomes before starting recruitment. The investigators should
provide a transparent description of all changes that occur afterwards from during
the trial until publication (Ioannidis et al. 2017). In addition, editors should
implement better quality control measures to prevent selective reporting of outcome
(Ioannidis et al. 2017).
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Areas of Debate

Industry sponsorship and conflict of interest: A recent Cochrane review and
other systematic reviews have found that sponsorship of drug and device studies by
the manufacturing company leads to more favourable results and conclusions than
sponsorship by other sources (Lundh et al. 2012, 2017, 2018). Hence they proposed
that the Cochrane ROB tool should include funding source as a standard item (Bero
2013). However, other experts argue that there is little evidence that trial methods
are more likely to be flawed in industry-funded trials (Sterne 2013). They also raise
the concern that adding a source of funding as a bias domain in the ROB tool would
send an extremely negative message to the pharmaceutical industry, and it might
have the unintended consequence of labelling high‐quality trials as biased while
diverting attention from appropriate solutions to problems associated with phar-
maceutical industry-sponsored trials (Sterne 2013). Currently, the Cochrane hand-
book recommends this information to be included in the “Characteristics of
included studies” table, rather than the ROB table (Higgins et al. 2019).

Early stopping of trials due to benefit: Another area of debate is whether to
include information regarding “early stopping of trials due to benefit” as a ROB
domain. It is well known that RCTs ceased early for the benefit is associated with
greater effect size than RCTs not stopped early (Bassler et al. 2010; Montori et al.
2005). Researchers have shown that about half of the trials stopped early for benefit
were followed by subsequent trials addressing a similar question, suggesting that
future trialists may have been sceptical about the premature termination of the prior
trials (Murad et al. 2017). Other experts argue that early termination of clinical
trials, for either apparent efficacy or harm, is a cornerstone of efficient and ethical
trial design, and it does not lead to substantive bias in the estimation of treatment
effects (Berry et al. 2010). The current Cochrane handbook does not comment on
this issue (Higgins et al. 2019).

Guidelines for Systematic Reviewers to Assess ROB
in the Included Studies

The Cochrane handbook’s guidelines are a useful tool for systematic reviewers.
The ROB is classified as low risk, some concerns, or high risk, based on the
information available from the RCTs. The recently updated RoB-2 tool includes
algorithms that map responses to signalling questions to a proposed ROB judge-
ment for each domain (Sterne et al. 2019). Systematic reviewers should make an
effort to contact the authors of RCTs if relevant information is not available or is
unclear in the published articles.

The ROB assessment should include a minimum of two independent reviewers
with an unbiased reconciliation method such as a third-person serving as arbitrator
(Research 2011). Systematic reviewers should present the “ROB graph” adjacent to
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the forest plot in the review (Figure 1). Stern et al. (2019) provide a useful template
for systematic reviewers for judging the ROB in the included studies.

In summary, bias is defined as a systematic error, or deviation from the truth, in
results (Higgins 2019). Biases can result in under-estimation or over-estimation of
the true intervention effect. Therefore, systematic reviewers should carefully assess
and report the ROB in the RCTs included in the review and explore its impact on
the meta-analysis.
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Assessment of Publication Bias

Sven Schulzke

Abstract Ideally, all methodologically sound clinical studies should be published
and be included in a systematic review if they adequately address the question at
hand. In reality, only a proportion of all initiated studies are completed, and only a
proportion of these are published within a reasonable time. Some of the completed
studies are never published, and their results tend to systematically differ from those
that are published. The reporting bias arising from this phenomenon is termed
publication bias. Systematic reviewers predominantly rely on data from published
studies. Meta-epidemiological studies have shown publication bias as a significant
issue in meta-analyses of clinical trials. Publication bias may lead to an over- or
under-estimation of the effects of intervention because completed, but unpublished
studies are not included in the analysis. This chapter covers the reasons for pub-
lication bias and its influence on effect estimates, and the methods (e.g. funnel plot,
statistical tests) for assessing and handling this risk.

Keywords Effect estimates � Over-estimation � Funnel plot � Publication bias �
Statistical tests � Under-estimation � Visual assessment

Introduction

Ideally, all methodologically sound studies should be published and be included in a
systematic review if they adequately address the question at hand. In reality, only a
proportion of all initiated studies are completed, and only a proportion of these are
published within a reasonable time. Some of the completed studies are never pub-
lished, and their results tend to systematically differ from those that are published.
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The reporting bias arising from this phenomenon is termed publication bias
(Dickersin et al. 1987; Easterbrook et al. 1991). Systematic reviewers predominantly
rely on data from published studies. A recent study investigating the frequency of
publication bias in meta-analyses published in four major general medical journals
(BMJ, JAMA, Lancet, and PLOSMedicine) indicates strong evidence of publication
bias in 36% (10/28) of meta-analyses of clinical trials (Kicinski 2013). Further,
meta-epidemiological studies demonstrate that publication bias is not assessed in
31% (36/116) of systematic reviews published in the top 10 high-impact factor
journals of the general medical literature (Onishi and Furukawa 2014).

Publication bias in meta-analysis of studies assessing treatment effects may lead
to an over- or under-estimation of the effects of intervention because completed, but
unpublished studies are not included in the analysis (Easterbrook et al. 1991;
Kicinski et al. 2015). Typically, published studies are more likely to report bene-
ficial effects of treatment. In contrast, unpublished studies are more likely to confer
negative, i.e., non-beneficial or even harmful effects of an intervention (Dickersin
et al. 1987; Easterbrook et al. 1991; Kicinski et al. 2015). Current data suggest that
in meta-analyses from the Cochrane Database of Systematic Reviews outcomes
favouring treatment were 27% more likely to be included than those not favouring
treatment and outcomes showing no evidence of adverse effects of intervention
were 78% more likely to be included than those reporting adverse effects (Kicinski
et al. 2015). This issue is called ‘the file drawer problem’, symbolically describing
that studies with negative results remain in ‘the file drawer’, or, at least, stay there
for longer while those with positive results are being published fast (Rosenthal
1979). The main reason for this is that investigators tend to refrain from submitting
negative studies to scientific journals (Dickersin et al. 1987). To a smaller extent,
some journal editors may be less likely to publish negative studies because those
studies may not appear to be interesting enough to attract readers (Dickersin 1990).

Another reason for publication bias relates to the funding source of clinical trials.
Published industry-sponsored trials tend to more frequently report beneficial effects
of treatment compared to studies not funded by industry sponsors (Dickersin 1990).
In other words, they are more likely to report efficacy or lack of adverse effects of
an intervention –with the intervention typically being a product of the sponsor.

Several instruments related to the conduct and reporting of clinical trials have
been developed to reduce the impact of publication bias; for example, numerous
international study registries have been established, policies of academic journals
have changed to accept reports of clinical trials only if they were registered before
enrolling patients and with public access to the study protocol, some journals and
authors accept industry-sponsoring only if the sponsor agrees not to have a role in
analysis and reporting of results, and data sharing procedures aiming at public
access to raw data from clinical trials are currently being discussed.
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How to Assess Publication Bias

Funnel Plot

Funnel plots are used to visually detect publication bias (Figs. 1 and 2) (Egger et al.
1997). A funnel plot is a scatter plot displaying the effect estimates of each of the
studies included in a meta-analysis. As a rule of thumb, at least 5-10 studies are
required in a funnel plot to investigate publication bias (Sedgwick and Marston
2015). The x-axis shows the sample effect estimate of each study. In Figs. 1 and 2,
this is given as the risk ratio (RR) of an outcome in treatment vs. control group. The
y-axis shows the standard error (SE) of the effect estimate. The SE is a measure of
the precision of the RR as an estimate of the population parameter. Typically, small
trials with small sample size result in imprecise effect estimates. With increasing
sample size, the precision of the effect estimate increases and the size of the SE
decreases. The y-axis in the funnel plot is inverted, i.e., smaller studies with less
precise effect estimates typically scatter closer to the bottom of the plot. The vertical
dotted line represents the summary effect estimate of the meta-analysis. As sample
size and precision of effect estimates increase, the horizontal distance of the effect
estimates from the summary effect estimate decreases. In the absence of publication
bias, we expect the effect estimates of included studies to scatter symmetrically
around the overall effect estimate of the meta-analysis due to sampling error, cre-
ating a funnel-like shape (Fig. 1). Asymmetrical scattering of studies in the funnel
plot indicates potential publication bias (Fig. 2). However, it is impossible to dis-
criminate between publication bias and other types of reporting bias, causing
asymmetry of the funnel plot (Sedgwick and Marston 2015). Furthermore, sub-
stantial heterogeneity between small and large trials in a meta-analysis may also
lead to asymmetry of a funnel plot as studies may measure different effects and,
consequently, may scatter in different regions of the plot. When SE is used as a
measure of precision, the dotted lines limiting the funnel define the area where 95%
of studies are expected to scatter. Alternative measures of precision are in use, e.g.,
the inverse variance of the effect estimate or sample size, however, using SE is the
preferred measure as the expected shape of the plot in the absence of bias is a
symmetrical funnel, the plot emphasizes smaller studies which are more prone to
bias, and, as mentioned above, the limits of the funnel correspond to the 95%
confidence interval (Sterne and Egger 2001).

In Fig. 1, the x-axis shows the risk ratio (RR) of the effect estimate in the
treatment vs. control group. The inverted y-axis displays the standard error (SE) of
the effect estimate. The 11 studies included in this meta-analysis scatter symmet-
rically around the vertical dotted line representing the overall effect estimate. Thus,
publication bias or other types of reporting bias are not apparent from the funnel
plot.

Please note that in Fig. 2, the x-axis shows the risk ratio (RR) of the effect
estimate in the treatment vs. control group. The inverted y-axis displays the stan-
dard error (SE) of the effect estimate. The ten studies included in this meta-analysis
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scatter asymmetrically around the vertical dotted line representing the overall effect
estimate. Thus, the funnel plot indicates potential publication bias.

Formal statistical tests exist for detecting asymmetry in a funnel plot. Most tests
statistically determine if there is an association between effect estimate and trial
size. Major disadvantages of most statistical tests for detection of publication bias
include their low statistical power, and, in the case of regression-based methods,

Fig. 1 Funnel plot

Fig. 2 Funnel plot indicating potential publication bias
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that they mainly assess the impact of small studies rather than publication bias per
se. Thus, statistical tests for funnel plot asymmetry should be used with caution and
should not be overinterpreted (Mavridis and Salanti 2014).

Egger’s Test

The most commonly cited test is the Egger’s test (Egger et al. 1997). Egger’s test is
based on a weighted regression of the effect estimate on its SE with weights
inversely proportional to the variance of the effect. The null hypothesis for Egger’s
test is that the funnel plot is symmetrical in shape. The p-value of Egger’s test for
the example shown in Fig. 2 is 0.042, i.e., we reject the null hypothesis that the
funnel plot is symmetrical at the 5% significance level. We conclude that due to
asymmetry in the funnel plot, there is apparent bias in the studies included in this
meta-analysis. Simulation studies have challenged the performance of Egger’s test,
particularly when the summary effect estimate is expressed as the natural logarithm
of the odds ratio (lnOR) (Peters et al. 2006). In these cases, alternative regression
tests based on a modified Macaskill’s test may be more appropriate; details on such
alternatives are given in Peters et al. (Peters et al. 2006).

Begg and Mazumdar Rank Correlation Test

The rank correlation test introduced by Begg and Mazumdar is frequently used in
meta-analysis (Begg and Mazumdar 1994). This test is a direct statistical analogue
of the funnel plot and based on the fact that publication bias will tend to induce a
correlation between observed treatment effects and their variances. The test corre-
lates standardized treatment effect with the variance of the treatment effect using
Kendall’s tau as the measure of association. It is powerful for large meta-analyses
(� 75 studies) and has moderate power for meta-analyses with 25 studies (Begg
and Mazumdar 1994). The test should be interpreted with caution as sensitivity is
low, particularly in meta-analysis with few studies. Bias cannot be ruled out if the
test is not significant. It is thus considered as a formal, exploratory tool comple-
menting funnel plot inspection for assessment of publication bias. Modified rank
correlation tests with improved sensitivity are available and may be particularly
helpful in fixed-effects meta-analysis (Gjerdevik and Heuch 2014). When con-
ducting a meta-analysis of observational studies, modified regression methods using
a smoothed variance to estimate the precision of a study seem to offer a more robust
performance compared to other statistical tests assessing publication bias (Jin et al.
2014).
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Dealing with Publication Bias

A variety of approaches exist for dealing with publication bias.

(1) Ignore publication bias

One could consider ignoring publication bias. This is not recommended as such an
approach may influence the overall effect estimate and, consequently, interpretation
of a meta-analysis.

(2) Do not pool studies for meta-analysis

Denoting the other extreme, authors might consider not conducting a meta-analysis
due to potential publication bias. While this option may be reasonable in cases of an
extraordinary level of publication bias, it is too radical in many other circumstances.

(3) Explore and potentially adjust for publication bias

Recommended approaches include describing potential reasons and impact of
publication bias in the results and interpretation of a meta-analysis and, potentially,
adjusting the results of a meta-analysis to quantify the effects of publication bias
(Mavridis and Salanti 2014).

The trim and fill method is an approach that attempts to identify and adjust the
results of a meta-analysis for publication bias (Duval and Tweedie 2000). In the first
step, it omits small studies (trimming) until the funnel plot becomes symmetrical.
Thereby, an adjusted overall effect estimate is produced from the remaining studies.
Then, the funnel plot is redrawn with the omitted studies replaced and their
‘missing’ equivalents added on the opposite side of the plot (filling). The funnel
plot is now symmetrical around the adjusted overall effect estimate. Appealingly,
the trim-and-fill method provides a summary effect adjusted for publication bias and
also estimates the number of unpublished studies. However, it is based on the
potentially incorrect assumption that asymmetry in the funnel plot is solely caused
by publication bias and performs poorly in the presence of substantial heterogeneity
(Mavridis and Salanti 2014; Terrin et al. 2003). Furthermore, the mechanism
causing publication bias is unknown, and we do not know whether the ‘filled’
studies really exist. More complex techniques for exploring publication bias are
available. For example, selection models attempt to simulate the publication pro-
cess and produce observed effect sizes acknowledging that the overall effect is
conditional to the observed studies being published (Mavridis and Salanti 2014).
Afterwards, they calculate the so-called marginal effect size, which is the effect size
unconditional to the publication status. Thus, they provide adjusted estimates via
sensitivity analysis (Copas and Shi 2000; Copas and Shi 2001). However, their
theoretical background and practical applications are not easily accessible to
non-statisticians.
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Data Extraction from Included Studies

Kwi Moon and Shripada Rao

Abstract Accurate data extraction and their synthesis form the basis of appropriate
conclusions of a systematic review. Systematic reviewers should extract ALL data
relevant to the review question, not just the outcome data. Data to be extracted
include baseline characteristics of study participants, information related to study
methodology and outcomes and other relevant information. If published articles
have given the results using figures instead of actual numbers, specialised software
that convert images to pixel values may be utilised to obtain the actual data values.
Tools such as Plot Digitizer, WebPlotDigitizer, Engauge, Dexter, Ycasd and
GetData Graph Digitizer can be used for this purpose. When unable to extract data
from available reports or to seek clarifications, the reviewers could contact the
original investigators. Data extraction should be performed using pre-piloted forms
independently by at least two reviewers to ensure accuracy. A high level of dili-
gence is required to minimise errors during the stage of data extraction.

Keywords Comparisons � Covidence � Descriptive � Entry � Error �
Interventions � Outcomes � Participant � Source
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Introduction

Data extraction is an important aspect of a systematic review because accurate data
and their synthesis form the basis of appropriate conclusions (Li et al. 2015). Data
collected for systematic reviews should be accurate, complete, and accessible for
future updates of the review and data sharing (https://training.cochrane.org/
handbook/current/chapter-05#section-5-1). It is essential to pilot the data collection
form before beginning data entry. The completed data collection forms should be
provided to the editors of journals or the Cochrane review group upon request.

Which Data to Extract

Systematic reviewers should extract ALL data relevant to the review question, and
not just the outcome data.

a. Descriptive data of individual included studies: Information on authors, settings,
study design, characteristics of participants, details of the intervention, out-
comes, sample size, funding source and the reason for inclusion or exclusion
should be collected. Such detailed extraction and reporting of the descriptive
data will enable clinicians to establish the generalizability of the results.
Descriptive data are also important to the reviewer and enables them to
understand and explore heterogeneity (Munn et al. 2014).

b. Outcome data: The outcome data should be collected separately for each out-
come. The details should include the raw numbers (numerator and denomina-
tor), statistical measures such as relative risks, odds ratios, weighted means,
standard deviations and confidence intervals. A standardised approach should be
used while extracting data. Examples of data collection templates are available
from organisations such as Cochrane Collaboration, Joanna Briggs Institute
(JBI) and BMJ group.

c. Data to assess the risk of bias: It is vital to collect information to assess the risk
of bias in the included studies. For example, while conducting a systematic
review of RCTs, it is essential to gather information on methods used for
generation of random sequences, allocation concealment, blinding, complete-
ness of follow up and any other sources of bias. Studies with a high risk of bias
decrease their internal validity leading to erroneous conclusions. The details
have been covered in the chapter titled “Assessment of Risk of Bias”.
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How to Minimise Errors in Data Extraction

Errors in data extraction can alter the results and conclusions of the review, and
hence utmost diligence is required during this stage.

Jones et al. retrospectively repeated the data extraction in all systematic reviews
conducted by the Cochrane Cystic Fibrosis and Genetic Disorders Group using the
same articles that were used by the original Cochrane reviewers (Jones et al. 2005).
They reported that errors were found in 20 of 34 reviews, including incorrect
calculations made when converting data in primary articles into data required for
the review and misinterpretation of data that were reported in the primary article
(Jones et al. 2005). In another study, Carroll et al. (2013) evaluated differences in
the data extracted by three different systematic reviews comparing total hip
arthroplasty versus hemiarthroplasty in osteoarthritis. The authors reported that 8–
42% of the data differences between the reviews resulted from the selection of
alternative reported data, while 8–17% of the differences resulted from data errors.
They concluded that systematic reviewers should use double-data extraction to
minimise error and make every effort to clarify or explain their choice of data
(Carroll et al. 2013). Buscemi et al. found that single data extraction resulted in
more errors than double data extraction (relative difference: 21.7%, P = .019)
(2006). Mathes et al. identified six studies that had addressed the issue of errors in
data extraction (2017). They found a high rate of extraction errors (up to 50%), and
often the errors influenced effect estimates.

The Institute of Medicine (IOM) recommends that review authors should, “at a
minimum, use two or more independent researchers to extract quantitative and
other critical data from each study” (Eden et al. 2011). The Cochrane Handbook
also makes similar recommendations (Higgins et al. 2019). Any disagreements
between authors are to be resolved by discussion among all authors or by consulting
a senior author.

Sources to Obtain Data

Reports from included studies are the major source of data for systematic reviews.
Such reports may be published or unpublished (e.g. Journal articles, conference
abstracts, dissertation, and online clinical trial registries). It is important to be aware
that conference abstracts may have preliminary findings only. Sometimes outcome
data may be given only as figures in the published manuscripts. Specialised soft-
ware that converts images to pixel values may be utilised to obtain more accurate
data values (Vucic et al. 2015). Tools such as Plot Digitizer, WebPlotDigitizer,
Engauge, Dexter, ycasd and GetData Graph Digitizer can be used for this purpose.
The software takes an image of a figure and then digitising the data points off the
figure using the axes and scales set by the users (https://training.cochrane.org/
handbook/current/chapter-05#section-5-5-8).
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When unable to extract information from available reports or to seek clarifica-
tions, the reviewers need to contact the original investigators. Young and Hopewell
(2011) reported that email correspondence with authors resulted in the greatest
response (Young and Hopewell 2011). The Cochrane handbook recommends that
obtaining unpublished data is highly desirable and potentially increases precision
and minimises the impact of reporting biases (https://training.cochrane.org/
handbook/current/chapter-05#section-5-2-3). It is vital to pay special attention
to ‘errata’ from published studies. Hauptman et al. reviewed the frequency and
significance of published errata in 20 general medicine and cardiovascular journals
(median impact factor 5.52) over 18 months. They found that 557 articles were
associated with errata reports (overall errata report rate 4.2 per 100). At least one
significant error that materially altered data interpretation was present in 24.2% of
articles with errata (Hauptman et al. 2014).

Where to Enter the Data

Data collection forms promote standardised approach for data extraction and
address the review question/assessment criteria directly, providing a clear summary.
Furthermore, the forms create a historical record of data collection and decisions
made throughout the review process, including the final statistical data for
meta-analyses. Depending on the author’s preferences, data collection forms can be
electronic (e.g. Microsoft Excel) or paper-based. A generic template may be used at
the beginning for testing and then updated by reviewers to ensure that the form
meets their needs. Covidence is primary screening and data extraction tool rec-
ommended by Cochrane for Cochrane authors (https://www.covidence.org/home).
It allows authors to upload search results, screen abstracts and full text, complete
data collection, conduct risk of bias assessment and export data into Revman or
Excel. For complex systematic reviews, EPPI-Reviewer is useful for data collec-
tion and other aspects of a systematic review. The Covidence and EPPI-Reviewer
can be accessed free of cost by the Cochrane reviewers. For independent systematic
reviewers, they are subscription-based. Example of data collection items to be
included in the systematic review is shown in Table 1.

Automating Data Extraction

Manual extraction of the data is slow, costly and subject to human error (Bui et al.
2016). Automating or semi-automating this step has the potential to decrease the time
taken to complete systematic reviews and thus decrease the time lag for research
evidence to be translated into clinical practice (Jonnalagadda et al. 2015). Natural
language processing (NLP), including text mining, involves information extraction,
which is the discovery by computer of information by automatically extracting
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information from different written resources (Hearst 1999). NLP techniques have
been used to automate the extraction of genomic and clinical information from
biomedical literature. Similarly, automation of the data extraction step of the sys-
tematic review process through NLP may decrease the time necessary to complete a
systematic review (Jonnalagadda et al. 2015). In a recent study, Bui et al. developed a
computer system that used machine learning and natural language processing
approaches to generate summaries of full-text scientific publications (Bui et al. 2016)
automatically. The summaries at the sentence and fragment levels were evaluated in
finding common clinical SR data elements such as sample size, group size, and PICO

Table 1 Data collection
items for studies included in
the systematic review

∙ Name of data extractor/s, date of data extraction
∙ Source: Journal name, year of publication; Conference name,
year
∙ Setting, Country
∙ Title of the article
∙ Inclusion and exclusion criteria
∙ Study design: RCT, cluster RCT, case-control, cohort, others
∙ Years of conduct
∙ Duration of follow up
Methods
∙ For a generation of random sequence numbers; concealment of
allocation sequence, blinding
∙ For statistical analysis
Participants: Baseline characteristics (e.g. age, sex, weight,
comorbidity, socioeconomic status)
Intervention: Details of intervention (e.g. drug dose, frequency,
route, and duration)
Control: Details (e.g. no intervention, placebo, standard care)
Description of co-interventions
Outcomes
For each pre-specified outcome (e.g. mortality, morbidity) in the
systematic review:
∙ Definition, Timing of measurements
∙ Adverse outcomes
Results
For each group, and for each outcome at each time point:
∙ Number of participants assigned
∙ Number of participants included in the analysis
∙ Number of participants who withdrew or excluded
∙ Number who were lost to follow-up
∙ Summary data for each group (e.g. 2 � 2 table for
dichotomous data; means and standard deviations for
continuous data)
∙ Between-group effect size estimates (e.g. risk ratio, odds ratio,
mean difference)
Miscellaneous
∙ Study authors’ conclusions
∙ Correspondence required for clarification
∙ Comments from the study authors or by the review authors
∙ Funding source
∙ Authors’ potential conflicts of interest
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values. They compared the computer-generated summaries with human-written
summaries (title and abstract) in terms of the presence of necessary information for
the data extraction as presented in the Cochrane review’s study characteristics tables.
They found that at the sentence level, the computer-generated summaries covered
more information than humans do for systematic reviews. They concluded that
machine learning and natural language processing are promising approaches to the
development of such an extractive summarisation system (Bui et al. 2016). In the
long run, these new approaches to evidence synthesis, which use human effort and
machine automation in mutually reinforcing ways, can enhance the feasibility and
sustainability of “living systematic reviews” (Thomas et al. 2017).

Conclusions

Data extraction is a critical step while conducting a systematic review. A high level
of diligence is required to minimise errors during this stage.
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Fixed and Random-Effects Models
for Meta-Analysis

Ravisha Srinivasjois

Abstract Results of a randomised controlled trial (RCT) may differ from other
similar RCTs despite best efforts in study design and conduct. This is because some
heterogeneity is inevitable as no two individuals are identical, and responses to
interventions vary. A meta-analysis of ‘more or less similar’ studies generates a
more reliable summary estimate to better predict the true population effect because
of the improved power and precision. Meta-analysis involves assigning ‘weight’ to
each included study based on various factors, including the sample size, and
observed variance. The weight assigned to each study differs based on the model
chosen to generate the pooled effect estimate. Judging the effect of heterogeneity on
the results of included studies is crucial for selecting the right model for
meta-analysis. The choice of the model affects the outcomes of the summary
estimate. This chapter covers the key assumptions, characteristics and rationale for
selection of the fixed effect and random effects model for analysis.

Keywords Meta-analysis � Fixed effect � Random effects � Heterogeneity � Pooled
estimate � Forest plot

Introduction

The next step after finalising the studies eligible for pooling the data is
meta-analysis to obtain the summary estimate. Selection of the model for
meta-analysis is important in this context (Deeks et al. 2008). Thorough under-
standing of this process is necessary before discussing the models available for
meta-analysis.

Randomised controlled trials (RCTs) are considered as the gold standard for
clinical research (Sibbald and Roland 1998). RCTs evaluate the effect of an
intervention in the selected study population and analyse how it differs from the true
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effect observed in the entire population (Sibbald and Roland 1998). Explicit and
rigid inclusion and exclusion criteria, and the process of randomisation try to ensure
that the characteristics of participants are similar and the distribution of known as
well as unknown confounders are balanced between the intervention and control
arms of the trial. Despite this, the observed results of one RCT may be different
from other similar RCTs (Kendall 2003). This is because some heterogeneity is
inevitable as no two individuals are identical, and responses to interventions vary.
Factors such as differences in participant characteristics (e.g. severity of illness, age,
and gender), mode of delivery of the intervention, and unique aspects of the settings
result in clinical heterogeneity (Deeks et al. 2008). On the statistical side, small
RCTs do not have an adequate power to estimate the clinically significant minimum
true effect of the intervention in the study population if an effect does exist. Large
RCTs are hence expected to provide an estimate that is closer to the truth - ‘the true
population estimate’. Conducting large adequately powered RCTs is challenging;
the reason they are less frequent compared to small trials. A meta-analysis of ‘more
or less similar’ studies helps in generating a more reliable summary estimate to
predict the true population effect because of the improved power and precision
(Schmidt et al. 2009; Zwahlen et al. 2008).

Meta-analysis involves assigning ‘weight’ to each included study based on
various factors including the sample size, standard error of the mean, and observed
variance. The weight assigned to each study differs based on the model chosen to
generate the pooled effect estimate (Borenstein et al. 2010). Judging the effect of
clinical and statistical heterogeneity on the results of studies included in the sys-
tematic review is crucial for selecting the model for meta-analysis. The choice of
the model affects the outcomes of the summary estimate. This chapter covers the
key assumptions, characteristics and rationale for the selection of the fixed-effect
model and random-effects model for meta-analysis (Table 1).

Fixed Effect Model

The fixed-effect model assumes that the true effect size is identical for all included
studies (Borenstein et al. 2010). Under this model (Nikolakopoulou et al. 2014),
any differences in individual study results are assumed to be due to a random error
or sampling error (Schmidt et al. 2009). The model suggests that differences in
participant characteristics and intervention have minimal or no effect on the
observed result. Hence, during meta-analysis, larger studies are assigned higher
weight because they are possibly closer to the true effect than the smaller studies.
Thus large studies have a stronger influence on the summary effect using the fixed
effect model (Schmidt et al. 2009).
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Random Effects Model

In this model, each individual study is considered different from other studies. In
addition to the random error, the differences in observed effect sizes are considered
to be due to variation in true effect (Nikolakopoulou et al. 2014). Each study is
different because of the differences in the study population, intervention (e.g.
timing, mode of delivery), and outcomes. This means that the studies are considered
‘heterogeneous’. Under this model, the pooled effect estimate assesses the mean of
the distribution of effects observed in individual studies. Hence, even if the study is
small, it contributes to the summary effect in a way that no other study can con-
tribute. Thus, smaller studies receive a higher weight in a meta-analysis using the
random effects model (Schmidt et al. 2009; Nikolakopoulou et al. 2014).

The summary estimates computed in the random-effects model vs. the
fixed-effect model differ partly because of the differences in the weight given to the
small studies. Because the random-effects model assumes that the individual studies
are heterogeneous, the variance, standard error and confidence intervals for the
summary estimate are wider compared with those generated by the fixed effect
model. The summary estimate generated by the random-effects model is more
generalisable to other similar populations than the fixed-effect model. The two
models also differ with regards to two other aspects of meta-analysis as follows:

Table 1 Models for meta-analysis

Fixed effect model Random effects model

Assumption True effect size is identical for all
studies

True effect is different for each
study

Weighting Larger studies are assigned higher
weightage, and smaller studies are
assigned lower weightage

Large studies are assigned
relatively lower weight, and small
studies are assigned a relatively
higher weight

Null hypothesis Tests for the null effect in each
included study

Tests for the ‘mean effect’ derived
from the observed results

Choice Choose if the included studies are
homogeneous (i.e. no significant
clinical or statistical heterogeneity)

Choose if included studies are
heterogeneous

Pooling method Mantel-Haenszel, Peto or inverse
variance method

DerSimonian and Laird inverse
variance method

Confidence
intervals of the
summary
estimate

Usually tight Usually wide
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(1) The null hypothesis on the summary estimate: The random-effects model
tests the hypothesis that the ‘mean effect’ derived from the observed results is
null, whereas the fixed effect model tests for the null effect in each study.
Although this is not routinely considered while choosing the model for
meta-analysis, it is important to know these differences in computation.

(2) The method used for combining the dichotomous outcomes: The fixed effect
model uses the Mantel-Haenszel (Mantel and Haenszel 1959), Peto (Yusuf
et al. 1985) or inverse variance method (Cochrane Handbook for Systematic
Reviews of Interventions version 6.0 (updated July 2019; Fleiss 1993) for
meta-analysis whereas the random-effects model uses the DerSimonian and
Laird inverse variance method (DerSimonian and Laird 1986) for this purpose.
Each of these methods has specific advantages and disadvantages. The Peto
method (Yusuf et al. 1985) can only combine odds ratios while the other three
methods can combine odds ratios, risk ratios or risk differences.
Mantel-Haenszel method is the most commonly used method in fixed-effect
(Mantel and Haenszel 1959).

As mentioned earlier, selecting the appropriate model for summary estimates is a
critical decision. Aiming to choose the ‘best’ model is not the correct strategy. It is
crucial to decide which model best suits the question being addressed in the sys-
tematic review. If the studies included in the meta-analysis are essentially similar,
the fixed-effect model is appropriate for deriving the summary estimate. If the
studies are considered to be heterogeneous, the random-effects model is preferred
(Deeks et al. 2008). If the included studies are ‘too dissimilar’ temptation for a
meta-analysis should be avoided.

In general, if the studies have statistical (significant values for Chi-square test
and I2 statistic) and clinical (as discussed above) heterogeneity, the random-effects
model should be the appropriate choice. Some researchers first analyse the data
using the fixed-effect model and then cross-check the results with a random-effects
model. This provides the readers with information from both models, helping to
derive their conclusions. However, experts have discouraged this practice
(Borenstein et al. 2010). At times, the summary estimates can be statistically sig-
nificant under one model but remain non-significant in the other model. In such
situations, the reviewer needs to decide which model is appropriate for the question
and discuss this in the paper. The difference in the summary effects of the two
models is demonstrated below using an example.

Example: Investigators assessed the risk of admission to the neonatal intensive
care unit (NICU) of infants born by an elective caesarean after antenatal gluco-
corticoid exposure at or beyond 37 weeks of gestation.
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a. Fixed effect model

b. Random effects model

The three studies included in the meta-analysis are RCTs. Participants were
full-term pregnant mothers with gestation above 37+0 weeks. The study group
received two doses of antenatal corticosteroids. The interval from completing the
corticosteroids to the time of delivery was not available. Clinical information on
maternal comorbidities (e.g. gestational diabetes, preeclampsia), and reasons for the
infant’s admission to the NICU was not available in all included studies, resulting
in clinical heterogeneity. Statistical heterogeneity assessed by I2 statistic was high
(59%).

The two models resulted in different weightage for the included trials (Fig. a, b).
In the random-effects model, the study by Donna et al. received lower, and Odumbe
et al. received higher weightage compared with the fixed effect model. The
fixed-effect model meta-analysis, which does not account for heterogeneity,
resulted in an overall summary estimate (Risk ratio) of 0.60, demonstrating a
reduction in the risk of infant’s admission to NICU. Statistical significance was
achieved with a 95% confidence interval of 0.41–0.86. The random-effects model
showed marginally better-pooled effect estimate for the antenatal corticosteroid
exposed group. However, the confidence interval was wider (0.29 to 1.08), ren-
dering the summary estimate non-significant compared with the statistically sig-
nificant results of the fixed-effect model.

In summary, judgement about heterogeneity (participants, intervention, control,
outcome, design, and setting) of the studies selected for pooling the data is
important in selecting the model for meta-analysis. A random-effects model is
preferred in the presence of clinical heterogeneity. The temptation of choosing the
model based on the statistical significance of the summary effect is best avoided as
it can provide a wrong estimate of the effect size, its confidence intervals, and
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significance. Experts have pointed out that understanding the caveats of both, the
fixed effect model and the random-effects model is important for conducting
meta-analysis (Borenstein et al. 2010). Pending further research for developing a
suitable alternative, presenting results of both, the random effects and fixed-effect
model meta-analysis and letting the readers be the judge may be an appropriate
strategy (Sera et al. 2019; Bakbergenuly and Kulinskaya 2018).
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Forest Plots in a Meta-Analysis

Sanjay Patole

Abstract Generating forest plots is the next step after extracting data from studies
eligible for meta-analysis. A forest plot displays the effect estimates and confidence
intervals of individual studies and their meta-analysis. The key feature of the forest
plot is the pooled effect estimate represented by the much sought after’diamond’.
However, it is important to note thatmeta-analysis is not justified unless all potentially
eligible studies have comparable clinical and methodological characteristics, and are
addressing the question at the core of the systematic review. Failure to pay attention to
this vital consideration leads to what is commonly called “garbage in and garbage
out”. Assuring that the extracted data are in a suitable format and choosing the
appropriate model (fixed effect vs random effects) for meta-analysis are other
important considerations. This chapter is focussed on forest plots in a meta-analysis
and provides a 10-point checklist for their assessment and interpretation.

Keywords Pooled effect estimate � Confidence intervals � Fixed effect model �
Random-effects model � Meta-analysis � Checklist

Introduction

Having extracted the data from studies eligible for meta-analysis, the next step is to
generate the forest plots for deriving the pooled estimates of the outcome of interest
using meta-analysis software such as the Review manager (RevMan, Cochrane
Collaboration, Nordic Cochrane Centre). For dichotomous outcomes, the extracted
data will be the number of participants with the event and the number analysed in
each treatment group of each study. For continuous outcomes, it will be the mean
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and the standard deviation. If required, the mean and the standard deviation could
be derived from median and range or the median and interquartile range by using
the Hozo and Wan formula respectively (Hozo et al. 2005; Wan et al. 2014).

As discussed elsewhere in this book, selecting the model for meta-analysis
(Fixed effect vs Random effects) is an important decision. Careful consideration of
the pre-stated criteria for study selection, and characteristics (PICOS) of the
included studies helps in this process. Meta-analysis of the data from studies
included in the systematic review is not justified unless all have comparable PICOS
characteristics, and are addressing the question at the core of the systematic review.
Failure to pay attention to this vital consideration leads to what is commonly called
“garbage in and garbage out”.

Generating the Forest Plot

The technical aspects of entering the data to generate a forest plot are not difficult.
However, it is important to check for transcription errors and avoid transposition
errors (i.e. correct data entered in the wrong column!)

What Is a Forest Plot?

A forest plot displays the effect estimates and confidence intervals (CI) of individual
studies and their meta-analysis (Lewis and Clarke 2001) (Figs. 1, 2, 3 and 4) Each
study is represented by a square block at the point estimate of the effect of the
intervention with a horizontal line extending on either side. The size of the block
indicates the weight assigned to that study in the meta-analysis while the horizontal
line represents the uncertainty (95% CI) around the effect estimate. The length of
the horizontal lines reflects whether the CI is tight or wide. The result of each of the
included studies is thus a ‘whisker plot’ in the forest plot. The pooled effect estimate
is represented by a diamond. The centre of the diamond shows the point estimate,
and its tips show the 95% CI around the summary estimate.

Fig. 1 Forest plot for a categorical outcome (FEM)*. (FEM: Fixed effect model) Note M-H:
Mantel-Haenszel, df: Degree of freedom
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The studies included in the meta-analysis are arranged on the left side of the
forest plot in alphabetical or chronological order or by the weight assigned to them.
The type of model used for meta-analysis is mentioned on the top right-hand corner
of the forest plot, just under the type of outcomes such as the risk ratio (RR), odds
ratio (OR), or the mean difference (MD).

Important to note is the “line of no effect” in the middle of the forest plot. The
whisker plots of included studies are spread on either side of this line. Any study
whose CI touches this line (=1 on the x-axis) is where the intervention is interpreted
as having no significant effect. This could also be interpreted as ‘no significant

Fig. 2 Forest plot for a continuous outcome using (FEM)* (FEM: Fixed effect model) Note IV:
Inverse variance, df: Degree of freedom

Fig. 3 Forest plot for a categorical outcome using (REM)* (REM: Random-effects model) Note
M-H: Mantel-Haenszel, df: Degree of freedom

Fig. 4 Forest plot for a continuous outcome using (REM)* (REM: Random-effects model) Note
IV: Inverse variance, df: Degree of freedom
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difference’ (ratio = 1) in the outcome in participants who received the intervention
under study vs those in the control group.

Noting on which side of the ‘line of no effect’ the results favour the intervention
vs control, and considering the expected effect of the intervention (Benefits vs
Reduced harm) is important for correct interpretation of the forest plot. Depending
on the type of outcome (Categorical vs continuous), the forest plot will display the
number of events (numerator) and the number analysed (denominator) or the mean
and standard deviation for each study included in the meta-analysis.

At the bottom of the left side where the description of included studies ends, the
forest plot for categorical outcomes will display the total number of events and the
total denominator in the intervention vs control group. For continuous outcomes, it
will display the total denominator in the intervention vs control group. Opposite
this data will be the ‘pooled effect estimate” (e.g. RR and 95% CI for categorical
outcomes or the MD and 95% CI for continuous outcomes) represented by a
‘Diamond’ as the net output of the meta-analysis. As mentioned earlier, the size of
the diamond reflects the pooled effect size and its boundaries represent its 95% CI
[51]. If the boundaries of the diamond touch the line of no effect, overall, the
intervention is interpreted as having no significant effect on the condition under
study. The “weight” given to each of the included studies will differ depending on
whether a fixed effect model (FEM) or random effects model (REM) was used.

At the bottom of the left side, under the pooled effect estimates will be the data
on heterogeneity (i.e. Tau2, Chi2, degree of freedom, I2 value) and the test for
overall effect (i.e. Z). Figures 1 and 2 display the forest plots for categorical
(RR) and continuous outcomes (MD) using the FEM, respectively. Figures 3 and 4
display the forest plots for categorical (RR) and continuous outcomes (MD)
respectively using the REM.

It is important not to confuse between the p-value for the test of heterogeneity
and that for the test for overall effect (pooled effect estimate).

FEM Vs REM for Meta-Analysis

The methods for meta-analysis, and importantly, the assumptions are different in
FEM vs REM. The FEM uses the Mantel-Haenszel, Peto or inverse variance
method for meta-analysis, whereas the REM uses the DerSimonian and Laird
inverse variance method for this purpose. The Peto method can only combine ORs.
The other three can combine ORs, RRs or risk differences. The inverse variance
method minimises the uncertainty of the pooled effect estimate by assigning weight
to each included study as the inverse of the variance of the effect estimate (i.e. one
divided by the square of its standard error). Compared with smaller studies which
have large standard errors, the larger studies are assigned more weight.

The FEM assumes that the intervention is equally effective across all studies, and
the only reason that the effect size varies between studies is the within-studies error
in estimating the effect size. Hence it gives a confident assumption. When assigning

82 S. Patole



weights to the different studies, it ignores the information provided by the smaller
studies because better information about the effect size is available from larger
studies (Borenstein et al. 2010). In contrast, the REM allows for inter-study vari-
ability in effectiveness, giving a conservative assumption. Being less confident, it
usually has wider CIs with due consideration to smaller studies. It is important to
appreciate that the REM estimates the ‘mean of a distribution of effects’ and not the
‘true effect’. It does so by ensuring that small studies are not ignored while the large
ones are not given undue weightage (Borenstein et al. 2010). Borenstein et al.
recommend that the only criteria for model selection should be whether it fits the
distribution of effect sizes (Borenstein et al. 2010). They suggest that REM is
suitable for published studies, and discourage the strategy of starting with a FEM
and moving to a REM due to significant heterogeneity (Borenstein et al. 2010).

It is preferable to compare the FEM and REM estimates of the treatment effect.
If REM estimate appears more beneficial, treatment was more effective in smaller
studies because the weight given to each study by REM is less influenced by
sample size. If there is no evidence of heterogeneity between studies, the FEM and
REM estimates will be identical. Knowing there would always be some hetero-
geneity (e.g. PICOS characteristics, baseline severity of illness, mode of delivery of
the intervention) in included studies, many investigators in the field of medicine
prefer the REM for meta-analysis (Higgins et al. 2003).

The Chi-squared Statistic

The Chi-squared statistics (Cochrane’s Q test) is the conventional test for assessing
heterogeneity in meta-analyses. It tests the null hypothesis that the true effect of the
intervention is the same across studies and variations are simply due to chance (West
et al. 2010). It is calculated as the weighted sum of squared differences between
individual study effects and the pooled effect across studies, with k (number of
studies) minus 1 degrees of freedom (df) and study weights as per the meta-analysis
model (https://www.statsdirect.com/help/meta_analysis/heterogeneity.htm.

A low P-value suggests variation in effect estimates beyond chance. Considering
that the test has low power with a small number or small sample sizes of included
studies, a non-significant result should not be interpreted as evidence of no
heterogeneity. This is the reason why, instead of the conventional 0.05, a P-value of
0.10 is used to assess statistical significance in such situations. In contrast, the test
has a high power to detect a small, perhaps clinically non-significant heterogeneity,
when there are many studies in a meta-analysis (Deeks et al. 2019).
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The I-Squared Statistic

The I2 is not a statistical test but an estimate of the percentage of variation in results
across the included studies that is due to real differences and not simply due to
chance. For example, an I2 value >50% suggests that more than half of the
heterogeneity from between-study variance cannot be explained by chance alone. It
is important to note that I2 does not provide information on the causes of hetero-
geneity. Exploring the reasons for significant heterogeneity (e.g. by meta-regression
or subgroup analyses), and questioning the rationale for meta-analysis is important
when the I2 is > 50%. The importance given to I2 depends on the magnitude and
direction of effects, and the strength of evidence for heterogeneity (e.g. P-value
from the Chi2 test, or the 95% CI for I2) (Higgins et al. 2002, 2003). It is calculated
as follows:

I2= [(Q minus df) divided by Q] � 100 where Q is the Chi2 statistic and df is its
degrees of freedom.

The rough interpretation of I2 values is as follows: 0 to 40%: might not be
important; 30 to 60%: may represent moderate heterogeneity; 50 to 90%: may
represent substantial heterogeneity; 75 to 100%: considerable heterogeneity
(Higgins et al. 2002, 2003).

What is Tau2?

Tau squared (s2 or Tau2) is an estimate of the between-study variance in REM
meta-analysis. The square root of Tau2 (i.e. tau) is the estimated standard deviation
of underlying effects across studies (Aromataris and Munn 2020).

Assessment and Interpretation of the Forest Plot

For a detailed discussion on the assessment and interpretation of the forest plot,
please refer to Chap. 10. Briefly, the process involves scrutiny of the following
issues:

(1) Number of studies, sample sizes of individual studies, and total sample size

Inclusion of at least a few thousand participants in a randomised controlled trial
(RCT) is considered essential for the results to have optimal validity and certainty
for guiding clinical practice and research (Guyatt et al. 2011). Based on this
assumption, the cumulative sample size of the studies included in a meta-analysis
should be at least a few thousand. Considering the strengths and weakness of the
study design (e.g. RCTs vs. non-RCTs) is important in judging the risk of bias
affecting the pooled estimate provided by the meta-analysis.
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(2) Check the weightage given to different studies; is any study driving the results?
Are there any outliers?

(3) Check the number of events in the intervention vs control group

The event rates affect the ability of included studies to influence the pooled estimate
of the effect under evaluation. In FEM meta-analysis, the weightage given to
individual studies depends on their sample size as well as the event rates (Werre
et al. 2005; Deeks et al. 2019; Xu et al. 2020). A study with a large sample size will
not influence the results significantly if the event rate is low.

(4) Assessment of heterogeneity: Overlap of CIs
(5) Tests for heterogeneity: Chi2 (Q statistics) and its P-value, I2: (%)

Visual inspection of the forest plot to check for overlap of the CIs is useful to assess
heterogeneity (Mohan and Adler 2019; Viechtbauer 2007; Coulson et al. 2010).
reasons for significant heterogeneity should be explored (Higgins and Thompson
2002; Higgins et al. 2002; Melson et al. 2014; IntHout et al. 2015; Ioannidis 2008;
Evangelou et al. 2007; von Hippel 2015; Rücker et al. 2008; Huedo-Medina et al.
2006; Bowden et al. 2011). The rationale for meta-analysis could be questioned if
there is significant clinical heterogeneity.

(6) Pooled effect (Z) size, P-value, and statistical vs. clinical significance

It is vital to assess the pooled effect size as well as the certainty around it. Clinical
significance is more important than statistical significance (Ranganathan et al.
2015).

(7) RR vs. OR, absolute risk ratio (ARR) or difference (ARD) and the numbers
needed to treat (NNT)

The correct interpretation of RR and OR and the clinical significance of ARR and
ARD is vital to avoid misinterpretation of results (Balasubramanian et al. 2015).
NNT is the reciprocal of the ARD between treatment and control groups in an RCT.
It is sensitive to PICOS characteristics and other factors that can affect the baseline
risk. Consideration of the baseline risk and severity of illness is essential for optimal
interpretation of NNTs (Ebrahim 2001).

(8) Models used for meta-analysis, and concordance/discordance of results

As discussed earlier, revisiting the key assumptions and characteristics of FEM vs
REM is important when interpreting the forest plot (Nikolakopoulou et al. 2014;
Borenstein et al. 2010; Schmidt et al. 2009; Sanchez-Meca and Marin-Martinez
2008; Hunter and Schmidt 2000; Jackson and Turner 2017; Shuster 2010; Stanley
and Doucouliagos 2015). Discordance between FEM vs REM results indicates the
need for exploring heterogeneity.

(9) The strength of evidence for the pooled estimates

Check the number of studies as well as their design, sample size, and risk of bias,
contributing to the pooled estimate. The CI helps in assessing the precision of the
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estimate based on the total sample size available for assessing the outcome of
interest. Other elements such as event rates, baseline severity of the underlying
condition, setting, duration of follow up, and adverse effects are also important for
judging the strength and external validity of an intervention.

(10) Human errors in data extraction, entry and interpretation

Check for errors in sample sizes, event rates (numerator and denominator) from
included studies and their allocation to the intervention vs. control
group. Transposition errors can have severe consequences for results and their
interpretation. Standard error can be confused with standard deviation, and a ‘mi-
nus’ sign can be missing or confused with a hyphen. Be careful in the interpretation
of RR vs OR.

In summary, a forest plot displays the effect estimates and confidence intervals of
individual studies and their meta-analysis. Assuring that the studies selected for
meta-analysis are reasonably similar to each other with regards to the PICOS
characteristics is a critical step before generating forest plots. Explicit pre-stated
eligibility and exclusion criteria are essential in this context. Skills in assessment
and interpretation of forest plot are essential for critical appraisal of systematic
reviews and meta-analysis.
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Sensitivity and Subgroup Analyses

Mangesh Deshmukh

Abstract Systematic reviews involve a sequence of decisions and assumptions
ranging from the definition of a particular variable and use of statistical methods to
the type of model chosen for meta-analysis. If incorrect, these decisions and
assumptions can influence the conclusions of the systematic review. Sensitivity and
subgroup analyses play an important role in addressing these issues in
meta-analysis. Sensitivity analysis helps in checking the sensitivity of the overall
conclusions to various limitations of the data, assumptions, and approach to anal-
ysis. Consistency between the results of primary analysis and sensitivity analysis
strengthens the conclusions and credibility of the findings. Effects of an intervention
may not be homogeneous across all participants in a clinical trial. They may vary
based on participant characteristics such as age, gender, and severity of illness.
Subgroup analyses help in identifying subgroups of participants with most benefits
(or adverse effects) of the intervention compared with others. This chapter covers
the principles, practice, and pitfalls, of sensitivity and subgroup analyses in sys-
tematic reviews and meta-analysis.

Keywords Sensitivity � Subgroup � Analysis � Heterogeneity � Systematic
review � Meta-analysis

Introduction

Sensitivity and subgroup analyses play an important role in systematic reviews and
meta-analysis. Understanding the principles, practice and pitfalls of sensitivity and
subgroup analyses in systematic reviews and meta-analysis is hence necessary.
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Sensitivity Analysis

Systematic reviews involve a sequence of assumptions and decisions during the
process of deriving the primary results. Many of these assumptions and decisions
are objective and non-controversial, but some could be subjective and debatable
(Jonathan et al. 2020). The assumptions or decisions can range from the definition
of a particular variable and use of statistical methods to the type of model chosen
for meta-analysis. It is essential to check if the results of the systematic review are
not dependent on subjective, arbitrary, unclear, or changed assumptions or
decisions.

Sensitivity analysis is a repetition of the primary analysis with an altered dataset
or statistical method to check if altering any of the assumptions changes the pooled
effect estimate, and hence the final conclusions (Viel et al. 1995). To put it simply,
sensitivity analysis checks the sensitivity of the overall findings to limitations of the
data, assumptions, and the approach to analysis.

The results of a systematic review are considered robust if they remain
unchanged despite changes in the assumptions. On the other hand, their robustness
is questionable if variations in assumptions significantly change the findings.
Consistency between the results of primary analysis and sensitivity analysis
enhances the credibility of the findings (Thabane et al. 2013)

Sensitivity analysis is a widely used technique to support decision-makers.
The US Food and Drug Administration (FDA), European Medicines Association
(EMEA), National Institute of Health and Clinical Excellence (NICE) recommend
its use for checking the robustness of results, exploring alternative scenarios and
assessing the uncertainty in cost-effectiveness (Thabane et al. 2013)

Scope for Sensitivity Analysis in a Systematic Review
and Meta-analysis

Ideally, all meta-analyses should include a sensitivity analysis. It can be
pre-specified, but often many issues suitable for sensitivity analysis are identified
only during the review process. Decisions are generally based on the quality of the
included studies, heterogeneity, and publication bias. Results of a survey of major
medical and health economics journals by Thabane et al. showed that the point
prevalent use of sensitivity analysis was very low at 26.7% (36/135) (Thabane et al.
2013). Compared with medical journals, a higher percentage of publications in
health economics journals (20.3 vs 30.8%) reported some sensitivity analysis.
Assessing the robustness of findings to different methods of analysis was the most
common type of sensitivity analysis (Thabane et al. 2013).
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Conducting Sensitivity Analysis

Sensitivity analysis can be conducted at different stages of a systematic review as
follows:

1. Literature search

Sensitivity analysis can be conducted at literature search level, based on the deci-
sion to include studies published only as an abstract. The primary analysis can be
conducted using the data from the abstracts. However, a sensitivity analysis can be
performed to check the robustness of the results by excluding the studies published
only as abstracts.

2. Study design

Sensitivity analysis can be conducted by various approaches at this stage. In the
case of randomised controlled trials (RCTs), sensitivity analysis can be performed
based on the risk of bias (ROB) of included studies. The ROB is typically assessed
in the domains of random sequence generation, allocation concealment, blinding of
participants and investigators, incomplete outcome data, selective reporting and
other biases (Julian et al. 2020). Sensitivity analysis can be conducted by per-
forming reanalysis at every domain. In the case of non-RCTs, sensitivity analysis
can be conducted by excluding studies that have not used regression analysis to
adjust for confounders. In cluster-RCTs, the intra-class correlation coefficient val-
ues can be used when analyses are not adjusted for clustering (Jonathan et al. 2020).
In cross-over trials, the within-subject correlation coefficient values can be used
when this is not available in primary reports (Jonathan et al. 2020).

3. Eligibility criteria

Sensitivity analysis can be conducted based on the characteristics of participants
(e.g. age, gender), intervention (e.g. dose, duration, and route), control (e.g. stan-
dard treatment, placebo), outcomes (e.g. primary or secondary), and time (e.g. old
vs. new studies).

4. Type of data

Sensitivity analysis can be conducted based on assumptions of the distribution of
censored data in the case of time-to-event studies. In the case of continuous data, it
can be based on whether standard deviations are missing, and when and how should
they be imputed (Jonathan et al. 2020). It is also important to consider whether
sensitivity analyses should be based on a change in scores from baseline or on final
scores. In case of ordinal scales, such analyses can be conducted depending on the
cut-off points used to dichotomise short ordinal scales into two groups (Jonathan
et al. 2020).
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5. Type and method of analysis

One of the common methods to conduct sensitivity analysis depends on the
approach to analysis in the included studies (e.g. intention to treat vs. per-protocol
analysis). Sensitivity analysis can be based on the model used for meta-analysis
(e.g. fixed-effect vs. random-effects model). It can be based on the parameters for
reporting the effect estimates such as the odds ratio (OR), risk ratio (RR) or risk
difference (RD) in case of dichotomous outcomes. In the case of continuous out-
comes, it can be done based on the standardised mean difference (SMD) across all
scales or as the mean differences (MD) individually for each scale.

6. Other issues

Sensitivity analysis can be conducted based on the variation in inclusion criteria
involving a numerical value (e.g. age at enrolment). The choice of value could be
arbitrary (e.g. defining old age as >60, >70 or >75 years). They can also be con-
ducted if an included study does not provide or did not obtain the required data (e.g.
loss to follow-up).

Issues After Sensitivity Analysis

Specific assumptions or missing data may significantly influence the results of the
systematic review. Reviewers are expected to address this issue by contacting
authors for additional and/or individual patient data. Results must be interpreted
with caution if this is not possible. Such findings may generate proposals for further
investigations and research.

Reporting of Sensitivity Analysis

A sensitivity analysis is generally reported in a summary table. Individual forest
plots for each sensitivity analysis are usually unnecessary.

Example of a Sensitivity Analysis

Chou et al. evaluated the efficacy and safety of statins for prevention of cardio-
vascular disease in adults. (Chou et al. 2016) A meta-analysis of all ten studies
showed that statins significantly reduced cardiovascular mortality (RR: 0.69(95%
CI: 0.54 to 0.88). The authors noted that two of the large trials (JUPITER and
ASCOT-LLA) were terminated prematurely at two years of follow up as per the
recommendations of the data and safety monitoring committee based on the
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significantly lower mortality in the statin group. It is well known that trials ter-
minated prematurely can result in erroneous conclusions. The authors hence con-
ducted a sensitivity analysis by excluding those two trials. The results remain
significant (RR: 0.70 (95% CI: 0.52 to 0.94) after excluding the JUPITER and
ASCOT-LLA trials. The authors also observed that 5/10 included trials were of low
quality (i.e. carried a high ROB). Hence, they conducted a sensitivity analysis by
excluding those five trials. The results remained significant after excluding five
studies with high ROB; (RR: 0.64(95% CI: 0.44 to 0.93). Three of the studies had
included patients with pre-existing cardiovascular disease. Sensitivity analysis
excluding these studies showed no difference from the primary analysis (RR: 0.62
(95% CI: 0.46 to 0.85). Four studies had a relatively short duration of follow up for
less than three years. Results of the sensitivity analysis performed by excluding
these four studies remained robust (RR: 0.71 (95% CI: 0.53 to 0.96). Overall, these
sensitivity analyses showed that the primary results were robust (Chou et al. 2016).

Subgroup Analysis

Significant resources are involved in conducting clinical trials to assess if an
intervention works. However, it is essential to appreciate that the intervention may
not work homogeneously across all participants in a trial. Effects of the intervention
under study may vary based on patient characteristics such as age, gender, geo-
graphic location, the severity of illness, and comorbidities. Hence, there may be
subgroups of participants with greater benefits following the intervention. Subgroup
analyses are helpful in identifying the subgroup of participants with more beneficial
effects (or adverse effects) related to the intervention (Tanniou et al. 2016).

What Is Involved In Subgroup Analyses?

Subgroup analysis involves splitting data from all participants into groups and
analysing it separately to make comparisons to obtain further information regarding
the efficacy of the intervention under study (Jonathan et al. 2020). Similar to
sensitivity analysis, a subgroup analysis attempts to pick out lost information.
Conducting a subgroup analysis is vital if a specific group of participants in the
study is expected to respond differently to an intervention based on biologic
plausibility.

Subgroup analysis can be conducted based on the study design (RCT,
Non-RCT), subsets of participants (e.g. males and females), and intervention (e.g.
mode, route, type, dose), or subsets of studies (e.g. different geographical loca-
tions). It helps in investigating heterogeneous results or answering specific ques-
tions about particular participant groups, and the intervention or study type
(Jonathan et al. 2020).
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Subgroup analysis involves reanalysis after dividing the entire dataset according
to some factor/characteristic of interest. This is a different approach compared with
sensitivity analysis, which requires reanalysis after adding or removing studies. It
is important to note that subgroup analysis is not for searching a group showing
benefit in the study population when the overall results are negative. Conducting a
subgroup analysis under such circumstances is inappropriate.

What are the Types of Subgroup Analyses?

Subgroups can be pre-planned or post hoc. Pre-planned subgroups, as the name
suggests, are planned a priory during the design phase of the study. They generally
include analysis based on biological plausibility or, as mentioned before, some
relevant factor such as gender, age, and comorbidities. On the contrary, a post hoc
analysis is undertaken after the results of the study are known. Pre-planned sub-
group analysis is considered superior to post hoc analysis if it is based on stratified
randomisation.

What is Data Mining and Data Dredging in Subgroup
Analyses?

Data mining and data dredging are two specific terms used in the context of sub-
group analysis. Data mining implies appropriate use of subgroup analysis where the
study has achieved the primary outcome, and the data is further scrutinised to find
the subset of study population where the intervention works the best (Martin 1984).
Data dredging means trying to stretch the data by inappropriate use of subgroup
analysis to find the subgroup which showed beneficial effects when the study had
not achieved the primary endpoint. To put it simply, this means creating many
subgroups until the significant effect is detected. Data dredging is associated with a
higher risk of getting false-positive results (Jonathan et al. 2020; Martin 1984;
Gebski and Keech 2003; Lee 2004)

Subgroup Analysis in Clinical Trials and Meta-analysis

Subgroup analysis has become an integral part of the analysis of clinical trials. It
attempts to provide more information from the available dataset of the trial. As
discussed above, pre-planned and post hoc subgroup analyses can be conducted
using the entire dataset of a trial based on baseline characteristics of included
participants or the outcome. Outcome-based subgroup analyses frequently involve
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specific outcomes such as the severity as against the occurrence of the condition and
quality of life as against survival. Subgroup analyses based on participant charac-
teristics are generally prefixed and carry more weightage than the outcome-based
subgroup analysis, which are usually post hoc (Hirji 2009).

Strategies for Optimising Subgroups

Experts suggest that (1) subgroups should be based on participant characteristics
(e.g. young vs old, male vs female, the severity of illness) which may be associated
with different response to the intervention, (2) the level of significance should be
stringent, with p < 0.01 or <0.005, (3) post hoc subgroups should be supported by
biological plausibility, and prior evidence, (4) and methodology for analysis (e.g.
test of interaction) should be reported in detail (Jonathan et al. 2020; Gebski and
Keech 2003; Dijkman et al. 2009; Lagakos 2006).

Interpreting the Results of Subgroup Analyses

Results of subgroup analyses should be interpreted with caution given the risk of
bias because the subgroup population is different from the one that was initially
randomised. Furthermore, reduction in sample size is an inherent major drawback
of subgroup analyses. The power to detect clinically meaningful effects, especially
when the study has a moderate or small sample size to start with, is reduced
considerably (Fagerland 2009). The probability of obtaining positive results by
chance alone is high when too much emphasis is put on subgroup analysis (Lagakos
2006) At best, the results of subgroup analyses can only help generate hypothesis
for future clinical trials when the original study has not reached the primary
endpoint.

Examples of a Subgroup Analysis

(1) Dermyshi et al. conducted a meta-analysis of RCTs evaluating the effects of
probiotic supplementation in preterm neonates (gestation < 34 weeks and birth
weight < 1500 g). (Dermyshi et al. 2017) Pooled estimate from 30 RCTs
showed a significant reduction in necrotising enterocolitis (NEC Stage � II) in
the probiotic supplemented group. However, subgroup analysis in ELBW
(extremely low birth weight: Birth weight � 1000gms) neonates showed no
such benefit (Table 1). The pre-stated subgroup was justified considering that
the incidence, mortality and morbidity related to NEC Stage � II are signifi-
cantly higher in ELBW neonates
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(2) Roberge et al. conducted a systematic review of RCT’s evaluating the efficacy
of Aspirin to reduce pre-eclampsia in women at risk (Roberge et al. 2017).
Based on the biological plausibility (i.e. placentation occurs within first
16 weeks of gestation and disorders of placentation lead to pre-eclampsia, a
subgroup analysis was conducted based on the timing (before and after
16 weeks gestation) of commencement of Aspirin. Results of the subgroup
analysis suggested that Aspirin was more beneficial if commenced early
(Table 2).

Sensitivity Versus Subgroup Analyses

Sensitivity and subgroup analyses involve exploring the nuances of the dataset.
Understanding the key differences between the two is essential (Table 3). The
former does not estimate the effect in the group of studies removed from the
analysis, whereas the latter estimates the effect in the subgroup of interest.
Sensitivity analyses compare the effect of different methods of estimation on the
same outcome of interest. In contrast, subgroup analyses involve comparisons
across the subgroups. The limitation common to both analyses is the reduction in
sample size (Jonathan et al. 2020).

Table 1 Probiotics for preventing necrotising enterocolitis in preterm neonates*

Probiotics Placebo RR (95%
CI)

P-value

Preterm neonates:
Gestation < 34 weeks and
BW < 1500gms

146/4304 253/
4231

0.57,
(0.47,
0.70)

<0.00001

ELBW neonates (BW < 1000 g) 62/599 69/617 0.93
(0.67,1.27)

0.64

*Dermyshi et al. (2017)
RR: Relative risk, CI: Confidence interval, BW: Birth weight, ELBW: Extremely low birth weight

Table 2 Meta-analysis of randomised trials assessing the effect of Aspirin on pre-eclampsia*

Aspirin Placebo RR (95% CI) P-value

Commenced at � 16 weeks’
gestation

221/
2564

354/
2549

0.57, (0.43,
0.75)

<0.001

Commenced at > 16 weeks’
gestation

517/
7701

586/
7669

0.81 (0.66,0.99) 0.04

*Roberge et al. (2017)
RR: Relative risk, CI: Confidence interval
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Rating Certainty of the Evidence
Using GRADE Guidelines

Abhijeet Rakshasbhuvankar

Abstract Systematic reviews in healthcare should review and synthesise all
available evidence, and provide information regarding certainty (quality) of evi-
dence to inform readers about the amount of confidence they can place in the
evidence. Many international organisations, such as the World Health Organisation,
National Institute for Health and Care Excellence (NICE) and the Cochrane
Collaboration have recommended GRADE (The Grading of Recommendations
Assessment, Development, and Evaluation) guidelines to rate the certainty of (a
body of) evidence in systematic reviews. These guidelines provide a structured and
transparent process to rate the certainty of evidence considering critical factors
which may decrease (risk of bias, inconsistency, indirectness, imprecision, and
reporting bias) or increase (a very large effect, dose-response relation, and bias that
would decrease effect estimate) our confidence in effect estimates. The process of
rating certainty of the evidence is presented as a Summary of Findings table in a
systematic review. This chapter covers the use of GRADE guidelines for rating
certainty of evidence in a systematic review.

Keywords Certainty � Evidence � GRADE � Imprecision � Inconsistency �
Indirectness � Publication bias � Quality � Reporting bias

Introduction

Systematic reviews aim to synthesise the available evidence to help clinicians,
guideline developers, and researchers make evidence-based decisions, develop
clinical care guidelines, and identify the gaps in knowledge, respectively. The
synthesis should include not only the effect estimates but also the level of confi-
dence in them. The level of confidence in the effect estimate decides its usefulness
and is determined by the certainty (quality) of evidence (Guyatt et al. 2008). The

A. Rakshasbhuvankar (&)
School of Medicine, University of Western Australia, Perth, WA 6008, Australia
e-mail: Abhijeet.rakshasbhuvankar@health.wa.gov.au

© Springer Nature Switzerland AG 2021
S. Patole (ed.), Principles and Practice of Systematic Reviews and Meta-Analysis,
https://doi.org/10.1007/978-3-030-71921-0_10

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71921-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71921-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71921-0_10&amp;domain=pdf
mailto:Abhijeet.rakshasbhuvankar@health.wa.gov.au
https://doi.org/10.1007/978-3-030-71921-0_10


certainty of the evidence is defined as the extent to which one can be confident that
an estimate of effect is correct (Atkins et al. 2004). Various systems have been used
to grade the certainty of evidence.

The Grading of Recommendations Assessment, Development, and Evaluation
(GRADE) guidelines were developed by the GRADE Working Group and are
recommended by the Cochrane collaboration to rate the certainty of evidence
(Puhan et al. 2014; Schunemann et al. 2019). The GRADE system has an advantage
over other systems. It explicitly considers multiple vital components that determine
the evidence’s certainty, provides a structured and explicit approach for reviews to
make their judgments, and enables readers to understand the reasoning behind the
decisions.

In addition to rating the certainty of the evidence, GRADE guidelines are also
used for rating strength of recommendations. The strength of recommendation
indicates the extent to which one can be confident that adherence to the recom-
mendation will do more good than harm (Atkins et al. 2004). The judgment
regarding the strength of recommendation in addition to the certainty of the evi-
dence requires careful consideration of the balance between beneficial versus
harmful effects, baseline risk, and available resources. This chapter covers the
approach to the judgment about the certainty of evidence using the GRADE system.

GRADE Levels of Evidence

GRADE classifies certainty of evidence in four levels: high, moderate, low, and
very low (Puhan et al. 2014). The level of confidence progressively decreases as we
move stepwise from “high” to “very low” category (Fig. 1) (Guyatt et al. 2008). In
general, the certainty of evidence generated from randomised controlled trials
(RCTs) is considered as “High,” and that from observational studies is regarded as
“low.” However, significant concerns regarding any of the following factors may
downgrade certainty of evidence: risk of bias (ROB), inconsistency, indirectness,
imprecision, and publication bias. The certainty of evidence may be upgraded,
although rarely, in observational studies in the presence of large effect size,
dose-response gradient, or plausible confounders or biases that increase the confi-
dence in the estimated effect (Guyatt et al. 2008; Balshem et al. 2011). The details
regarding the factors which can downgrade or upgrade certainty of evidence in a
systematic review are described below.

Risk of Bias (ROB)

Bias is a systematic error in results and arises from methodological flaws in a study
(Higgins et al. 2019). The reliability of RCT results depends on the extent to which
potential sources of biases have been avoided. Bias may arise from the
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randomisation process, deviations from intended interventions, missing outcome
data, measurement of the outcome, and selection of the reported result. Risk of bias
(ROB) assessment is an integral part of the systematic review methodology.
GRADE requires the systematic reviewers to decide the (overall) ROB for each
outcome across all studies and all domains. The judgment demands careful con-
sideration of ROB in the individual studies for the outcome under consideration and
the extent to which the study contributes to the effect estimate (weightage).

(1) ROB assessment: Each outcome under consideration is assessed for five sources
(domains) of ROB. The risk in each domain is judged as Low risk, Some
concerns, or High risk. The details of evaluating an individual study for the
ROB are provided elsewhere in this book.

(2) Contribution (weightage) of the study to the effect estimate: The contribution of
a study for the ROB in a systematic review is proportional to the contribution
the study makes for the effect estimate. For example, Fig. 2 shows a forest plot
and ROB for a hypothetical systematic review of drug A for pancreatic cancer
for the outcome of five-year survival. Studies A, C, and F have high ROB from
multiple sources; however, the forest plot indicates that the studies contribute to
a negligible extent to the pooled effect estimate. In contrast, Studies B and E,
which add the most to the pooled estimate, have low ROB. Hence the reviewers
may judge ROB for drug A in pancreatic cancer for the outcome of five-year
survival as “Low”.

*Limited mainly to observational studies

Fig. 1 Levels of certainty of evidence and the factors which downgrade and upgrade it
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Suggestions for downgrading for ROB: (1) If most information is from studies at
low ROB: Do not downgrade; (2) If most information is from studies with some
concerns: Downgrade by one level, (3) If most information is from studies at high
ROB: Downgrade by one or two levels based on the seriousness of limitations.

Reviewers need to apply judgement while deciding overall ROB. In close-call
situations, reviewers should be conservative in the decisions of rating down the
evidence, should consider ROB judgement in the context of other limitations, and
make explicit statements regarding the reasoning behind their judgement (Guyatt
et al. 2011).

Inconsistency (Heterogeneity)

Consistency in a systematic review refers to the similarity in the magnitude of effect
estimates of the studies. The study results are inconsistent when the variations in the
effect estimates between the studies cannot be explained based on chance alone.
Inconsistency which cannot be explained by a priori hypotheses may decrease our
confidence in the results. Inconsistency is important only when it reduces our
confidence in the effect estimates. Assessment of inconsistency of effects across the
studies is an integral part of a meta-analysis and grading of evidence (Higgins et al.
2003).

Judgement regarding inconsistency is based on visual inspection of forest plot
and statistical tests (Guyatt et al. 2011).

(1) Forest plot. The direction of effect and overlap of confidence intervals between
the trials are two critical factors in the forest plot, which help in the judgement
regarding inconsistency. The impact of these two factors on the judgment of
inconsistency is explained with the help of hypothetical forest plots in Fig. 3. In
the forest plot A, the directions of effects in the first two studies are different
from those in the second two studies. However, the magnitude of the difference
is small, and the confidence intervals of the trials overlap. Therefore, the forest
plot does not show inconsistency, and our confidence in the pooled effect

Fig. 2 Hypothetical forest plot and risk of bias—judgement regarding overall risk of bias
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estimate remains intact; hence, we should not downgrade for inconsistency. In
the forest plot B, all the four trials have the same direction of effect; however,
the magnitudes of effect estimates vary, and there is little overlap between the
confidence intervals between first and second two studies. Therefore, the forest
plot shows inconsistency. However, the inconsistency probably does not
decrease our confidence in the pooled estimate. Hence, we may not downgrade
for inconsistency. In the forest plot C, the magnitude of difference in the effect
estimates between the first two and second two studies is similar to that in the
forest plot B, but the direction of effects are opposite. The first two studies
favour intervention while the latter two studies favour control. Therefore, the

Fig. 3 Hypothetical forest
plots—judgement regarding
inconsistency
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forest plot shows inconsistency. Does the inconsistency decrease the confidence
in the pooled estimate? Probably yes, and hence, we should downgrade cer-
tainty of the evidence for inconsistency.

(2) Statistical tests. The two commonly used statistical tests for inconsistency
(heterogeneity) are the Chi-squared test (test for heterogeneity) and the I2 test.
The Chi-squared test examines the null hypothesis that all studies evaluate the
same effect. A p-value of < 0.05 for Chi-squared test indicates heterogeneity. I2

test quantifies heterogeneity and can be used to compare heterogeneity across
meta-analyses of different sizes, of different types of studies, and different types
of outcome data (Higgins et al. 2003). I2 value of < 40, 30–60, 50–90, 75–
100% indicate low, moderate, substantial, and considerable heterogeneity
respectively. The disadvantage of the I2 test is that the cut-off values are not
established, and judgement is required when the values fall in the overlapping
zone. Chi-squared test and I2 values are calculated in RevMan 5.4 software, and
the values are displayed at the bottom of the forest plot (Review Manager.
Version 5.4. Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, 2020).

Suggestions for downgrading: The judgement regarding inconsistency requires
careful evaluation of the forest plot and statistical tests. Downgrade for inconsis-
tency only if it decreases our confidence in the pooled effect estimate.

Indirectness

Direct evidence comes from research that directly compares the interventions in
which we are interested when applied to the populations in which we are interested,
and measures outcomes important to patients (Guyatt et al. 2011). Indirectness
refers to the extent to which the people, interventions, and outcome measures are
different from those of interest. The fourth cause of indirectness results when there
is no direct comparison between the two interventions of interest.

(1) Indirectness resulting from differences in the population of interest:
Systematic reviews will include only those studies which fulfil criteria with
regards to population. However, indirectness can still result in some situations.
For example, systematic review plans to investigate the effect of drug A in a
patient population of individuals > 60 years. After performing a literature
search, the reviewers notice that many studies examining drug A had 70 years
or more eligibility criteria. In this case, the studies recruiting patients exclu-
sively above 70 years of age still satisfy the inclusion criteria for the systematic
review. Still, the age criteria of the included studies and the systematic review
are not identical. Therefore, the effect of indirectness must be considered when
concluding such situations. In this example, the reviewers may consider
downgrading the level of evidence by one level if (a) there is a physiological
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basis to assume that the effect of drug A in population >60 years is likely to be
significantly different from the effect in a population exclusively >70 years of
age, and (b) the studies with population exclusively >70 years’ of age con-
tribute a significant amount (weightage) of information to the pooled effect
estimate.

(2) Indirectness resulting from differences in intervention: Indirectness results
when reviewers want to compare drug A to drug B; however, there is no direct
comparison of drug A to drug B. Instead, the studies have compared drug A to
drug C, and drug C to drug B. This type of indirectness is uncommon in
systematic reviews. A more common reason for indirectness maybe when the
studies have used only a part of rather than whole intervention. For example, a
systematic review aims to investigate the effect of a group of interventions
A-B-C-D for expediting post-operative recovery. The reviewers find that many
studies have used only interventions A-C-D. The reviewers must consider the
effect of indirectness if they include the studies with intervention A-C-D in the
systematic review. The decision regarding downgrading certainty of evidence
depends on whether the difference in the interventions (A-B-C-D versus
A-C-D) is likely to have a significant effect on the outcome of interest
(post-operative recovery) and amount of information (weightage) contributed
by the studies with A-C-D intervention.

(3) Indirectness resulting from differences in the outcome: This is a common
reason for indirectness in systematic reviews. It may result for two reasons:

(i) Differences in the time frame: For example, if the reviewers are interested
in the intervention effect at 12 months but include studies that have
reported effect only at six months. Suppose there is evidence that for other
similar interventions, the effect decreases significantly from 6 months to
12 months, and a significant amount of information comes from the
studies which have reported effect only until six months. In that case, the
reviewers may decrease the level of certainty for indirectness.

(ii) Use of surrogate outcome: Indirectness results when studies report only
surrogate markers of the clinically meaningful outcomes; for example,
HbA1c for symptoms of diabetes, C-reactive protein for sepsis. In such
scenarios, reviewers should consider indirectness resulting from the dif-
ference in the outcome while grading the level of evidence

(4) Indirectness when there is no direct comparison between two interventions of
interest: This type of indirectness results when reviewers want to compare
intervention A versus intervention B; however, the studies have compared
intervention A versus intervention C and Intervention B versus intervention C.
The indirect comparison requires assumption to be made that the population
characteristics, co-interventions, outcome measurement, and the methodologi-
cal qualities are not significantly different between the studies to result in
different effects (Song et al. 2009). Because this assumption is always in some
doubt, indirect comparisons always warrant rating down the quality of evidence
by one level.
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Suggestions for downgrading: The reviewers should consider rating down the
certainty of evidence if indirectness is likely to influence the outcome of interest,
and the significant amount of information comes from the studies with indirectness.
Reviewers may rate down by one level when indirectness comes from a single
factor, and by two if it comes from multiple factors. The decision requires judge-
ment and consideration of the overall impact of the indirectness on the effect
estimate.

Imprecision

Precision refers to the degree of agreement between repeated measurements. If
repeated measures are close together, our confidence in the results increases as they
are more likely to be close to the real population value. Thus precision is a surrogate
marker of accuracy. The judgement regarding precision is based on 95% confidence
intervals and sample size.

(1) Confidence intervals: Confidence intervals represent a range of values based on
sample data, in which the population value is likely to lie. Confidence intervals
are the measure of the precision of a mean. In general, for systematic reviews,
precision is adequate if 95% confidence intervals exclude no effect.

In hypothetical forest plots (Fig. 4) of two systematic reviews A and B, the
confidence interval does not cross the line of no effect in the forest plot A indicating
“no imprecision”. In contrast, it crosses the line of no effect in systematic review B,
indicating “imprecision”.

(2) Optimal information size: The results of a systematic review are reliable only
when the confounding factors which influence the outcome are balanced
between the intervention and control groups. The confounding factors to be
balanced between the two groups require a minimal number of patients, often
referred to as “Optimal information size”, randomised to either intervention or
control group. Optimal information size equals to the number of patients
required to conduct an adequately powered RCT.

The importance of fulfilling criteria for optimal information size is evident from
the following example: A systematic review and meta-analysis compared intra-
venous magnesium versus placebo in patients with suspected myocardial infarction
for prevention of death (Fig. 5) (Teo et al. 1991; Guyatt et al. 2011). The
meta-analysis showed a significant beneficial effect of the intervention with an odds
ratio of 0.44 and confidence intervals 0.27 to 0.71. Even though the effect esti-
mate’s confidence interval did not cross the line of no effect, one may not be
confident in the results because of the small sample size and fewer events. In such
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situations, it may be reasonable to downgrade the certainty of the evidence for
imprecision because of small information size.

Suggestions for downgrading: Do not downgrade for imprecision if optimal
information size criterion is met, and confidence interval excludes no effect (i.e.,
relative risk (RR) of 1.0). Downgrade by one level if optimal information size
criterion is not met or if the confidence interval fails to exclude significant benefit or
harm (e.g., overlaps RR of 1.0). Reviewers may consider rating down by two if
both the criteria (Confidence interval and optimal information size) are not met or
when the confidence interval is very wide (Guyatt et al. 2011).

Fig. 4 Hypothetical forest plots—judgement regarding imprecision

Fig. 5 Forrest plot comparing intravenous magnesium versus placebo in patients with suspected
myocardial infarction for prevention of death (Teo 1991)
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Publication/Reporting Bias

Publication bias is a reporting bias that results from failure to identify all relevant
trials. Publication bias occurs from the publication or non-publication of relevant
trials, depending on the nature and direction of the results (Sedgwick 2015). Trials
with positive findings are more likely to be published than trials with negative or
null findings (RR 1.78, CI 1.58 to 1.95) (Hopewell et al. 2009). Therefore, a
meta-analysis in the presence of publication bias is likely to over-estimate the
treatment effect. If a systematic review contains studies predominantly with small
sample sizes or studies sponsored by the pharmaceutical industry, it increases
publication bias. The pharmaceutical sector discourages publication of trials they
supported, which have negative findings (Egger and Smith 1998).

The other sources of reporting bias include time-lag bias (delay in the publi-
cation of trials with negative findings), language bias (not including studies pub-
lished in languages other than English), and bias arising from publication of trial in
“grey literature” (e.g., theses, conference abstracts, un-indexed journals). These
sources of bias prevent an eligible study from being identified and included in the
systematic review.

The presence of reporting bias in a systematic review is assessed by visual
inspection of the funnel plot for symmetry and Egger’s test. Funnel plots are
scatter-plots of the studies in a meta-analysis, with the treatment effect on the
horizontal axis and some measure of weight, such as the inverse variance, the
standard error, or the sample size, on the vertical axis (Lau et al. 2006). Generally,
effect estimates from large studies will be more precise and will be near the apex of
an imaginary funnel. In contrast, results from smaller studies will be less precise
and would lie towards the funnel base evenly distributed around the vertical axis.
Asymmetric distribution of the studies around the vertical axis raises the possibility
of publication bias. However, apart from publication bias, a skewed funnel plot may
result from other causes: by chance, true heterogeneity in the intervention effect,
and statistics used to measure effect size.

Suggestions for downgrading: Consider rating down the evidence if the evi-
dence is based mainly on multiple small trials, especially when industry-sponsored
or investigators have conflicts of interest. Consider rating down the evidence when
publication bias is strongly suspected based on funnel plot asymmetry. As there is
no full-proof method to prove or rule out publication bias or to determine a
threshold for publication bias, GRADE suggests systematic reviewers to decide
whether publication bias was “undetected” or “strongly suspected” in a systematic
review. Because of the uncertainty in assessing the likelihood of publication bias,
GRADE suggests rating down by a maximum of one level when publication bias is
strongly suspected (Guyatt et al. 2011).

Factors that can improve the certainty of evidence in systematic reviews of
observational studies: Generally, evidence generated from observational studies is
considered as “Low” certainty. However, in the following rare circumstances,
observational studies can produce moderate or high certainty evidence.
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(1) When methodologically robust observational studies show large or very large
and consistent treatment effect, the treatment and effect relationship is likely to
be stronger. In these situations, the reviewers may consider upgrading the
certainty of evidence by one level.

(2) When studies show a dose-response effect, the effect is more likely related to
the intervention. Hence the reviewers may consider upgrading certainty of
evidence by one level.

(3) When plausible biases or confounding factors are likely to decrease the effects
of an intervention, reviewers may consider upgrading the certainty of evidence
by one level.

Summary of Findings Table

A Summary of Findings (SoF) table summarises the critical results of a systematic
review. It also informs the readers about the level of reviewer’s confidence in the
results based on the GRADE approach. The SoF table allows reviewers to make
explicit judgements regarding the certainty of evidence and readers to understand
the reasoning behind the judgements. The GRADEpro Guideline Development
Tool (GRADEpro GDT) is online software (available at https://gradepro.org/) used
to create a summary of findings table for systematic reviews.

Summary

GRADE offers a system for rating certainty of evidence in systematic reviews. In
this chapter, we have discussed the critical aspects that systematic review authors
need to consider while grading the certainty of evidence. The GRADE process
requires judgement and is not objective, but it does provide a transparent and
well-defined method for developing and presenting evidence summaries for sys-
tematic reviews.
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Reporting of Meta-Analysis (PRISMA)

Sam Athikarisamy and Sanjay Patole

Abstract Reporting is the final step of the systematic review process. An accurate
and reliable reporting of systematic reviews assists the end-users (clinicians, poli-
cymakers, funding agencies, guideline developers) in making informed and
evidence-based decisions. Poor quality of reporting of systematic reviews was
recognised as an issue as far back as the late’80s. An international group hence
drafted the QUOROM statement (Quality of Reporting of Meta-analyses) in 1996 to
provide guidelines for improving the quality of reporting. These guidelines were
updated after addressing the conceptual and methodological issues and renamed as
PRISMA (Preferred Reporting Items of Systematic reviews and Meta-Analyses) by
a group of authors. PRISMA is an evidence-based minimum set of items for
reporting systematic reviews and meta-analyses of randomised controlled trials
(RCTs). However, it can also be used for reporting systematic reviews of
non-RCTs. PRISMA guidelines help to convey the information transparently. This
chapter is focussed on PRSMA checklist and its 27 items under seven domains.
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Introduction

Reporting is the final step of the systematic review process. An accurate and reliable
reporting of a systematic review assists the end-users (clinicians, policymakers,
funding agencies, guideline developers) in making informed and evidence-based
decisions (Moher et al. 2007a) Based on the inconsistent quality of reporting of the
300 systematic reviews evaluated, Moher et al. reiterated their call for adhering to
the PRISMA guidelines for reporting systematic reviews and the supporting doc-
ument with explanation and elaboration (Moher et al. 2007a, 2009; Liberati et al.
2009).

History of PRISMA

Poor quality of reporting of systematic reviews was recognised as an issue in the
late’80 s (Mulrow 1987; Sacks et al. 1987). An international group drafted the
QUOROM statement (Quality of Reporting of Meta-analyses) to provide guidelines
for improving the quality of reporting and published it in 1999(Moher et al. 1999).
It was updated after addressing the conceptual and methodological issues and
renamed as PRISMA (Preferred Reporting Items of Systematic reviews and
Meta-Analyses) by a group of 29 review authors (Liberati et al. 2009; Moher et al.
2000). PRISMA is an evidence-based minimum set of items for reporting sys-
tematic reviews and meta-analyses of randomised controlled trials (RCTs).
However, it can also be used for reporting systematic reviews of other types of
research such as non-RCTs. PRISMA guidelines help to covey the information
transparently. Most peer-reviewed journals have made their use mandatory for
manuscripts to be considered for publication. PRISMA guidelines can also be used
for critical appraisal of systematic reviews.

PRISMA Checklist

The application of PRISMA guidelines involves going through the checklist con-
taining 27 items under the seven domains (Liberati et al. 2009). Six of the seven
domains relate to the standard sections of the manuscript (title, abstract, introduc-
tion, methods, results, discussion) whereas the seventh relates to funding. The other
important component of the PRISMA statement is the four-phase flow diagram
(Fig. 1). The PRISMA statement gives a clear explanation of the checklist and the
rationale for each of the item listed. The statement and its extensions are available
free of cost (http://prisma-statement.org/)

This chapter briefly discusses the various items under the seven domains of the
PRISMA guidelines.
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Sections/Topics and Checklist Items

As mentioned earlier, there are seven standard sections when writing a research
manuscript. Under the PRISMA guidelines, each of these sections is assessed for
accuracy of reporting using a checklist. For example, under the section ‘Title’ there
is only one item to be checked, whereas for the section ‘Methods’ there are 12 items
to be checked.

1. Title

Titles are important as they make the first impression of the article. Authors should
identify their article by stating it as a ‘systematic review’ or ‘meta-analysis’ in the
title itself (Moher et al. 2000). Moher et al. showed that only 50% of the reviews
(n = 300) used the term “systematic review” or “meta-analysis” in the title or
abstract (Moher et al. 2007b). As far as possible, the title should also reflect the
PICOS approach (participants, intervention, comparators, outcomes and study
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Fig. 1 Template for the study selection process
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design). Titles can be ‘indicative’ or ‘declarative’. An indicative title discloses the
topic matter (e.g. “Probiotics versus placebo for prevention of necrotising ente-
rocolitis in preterm infants—a meta-analysis of randomised controlled trials”). In
contrast, the declarative title discloses the main conclusion of the review (e.g.
“Probiotics prevent necrotising enterocolitis in preterm infants—A meta-analysis
of randomised controlled trials”) (Deshpande et al. 2007). Evidence suggests that
the style of the title (indicative vs declarative) influences the number of citations,
probably because of the way electronic search of the literature is conducted
(Jacques and Sebire 2010).

2. Structured Summary

A structured summary covering the rationale and objective of the review should be
provided. The details of data sources (e.g. major databases, grey literature, trial
registries, language restriction), study selection criteria (e.g. RCT vs non RCT) and
method of data extraction (e.g. pre-defined data fields) need to be clarified. Results
are a vital section in the abstract as readers often read only the results to draw a
conclusion. The abstract should include whether the study results were pooled or
not, and if pooled, the type of model used (Random effects vs fixed effect) for
meta-analysis should be reported. The conclusion should link the study objective to
the results. Despite the world limit, it is always possible to get the readers attracted
towards reading the full article by a well written abstract. The abstract should
provide a standalone summary, including the validity and applicability and should
be easily identifiable in the literature search (Beller et al. 2013).

Introduction

The introduction section sets the stage for what is going to come and covers the
rationale and the objective of the study.

3. Rationale

Every research proposal should start or end with a systematic review (Mulrow
1994). The rationale provides the reason for conducting the systematic review and
clarifies how it will add information to what is already known in the field. It is
important to clarify if it is the first review or update. In the case of the later, the
reason for the update should be provided.

4. Objectives

The objective of the review should be based on the PICOS framework, and be
simple enough to explain the scope of the review. It helps to determine other
aspects of the review, namely the eligibility criteria and searching for relevant
literature. Depending on the questions being asked the review can be further
classified based on whether the focus is narrow or broad. Examples of such types
would be (e.g. Narrow focus: Aspirin for prevention of myocardial infarction in
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elderly patients (>70y), with diabetes; Broad focus: Aspirin for prevention of
myocardial infarction in adults). The advantage of the broad focus question is that it
increases the generalizability of the results. But it may not answer an
‘individual-specific’ question.

Methods

This is the most important section of a manuscript and contains the maximum
number (12) of checklist items. It should be presented in detail and with clarity so
that readers are able to reproduce the results.

5. Protocol and Registration

Writing a protocol is an important part of a systematic review to pre-specify the
objectives and methods for search. PRISMA-P provides a method for writing a
protocol which can be registered with the PROSPERO (International Prospective
Register of Ongoing Systematic Reviews) registry (Gallucci et al. 2018; PRISMA
statement 2020). This critical step reduces the risk of duplication and publication
bias (PRISMA statement 2020; Moher et al. 2015; PROSPERO 2020; Straus and
Moher 2010). If applicable, the protocol details (registration number and registry)
should be provided (Liberati et al. 2009).

6. Eligibility Criteria

Predetermined eligibility criteria are fundamental for assessing the validity of a
systematic review (Moher et al. 2000; McCrae et al. 2015). The details of the
included studies include the study type, years considered, language restrictions,
type of patients (e.g. age restriction), and details of the intervention and outcomes.

7. Describe the Information Sources

Description of the databases (e.g. Embase, PsycINFO, Web of Science), platforms,
provider (PubMed, MEDLINE), and the date of starting and ending the search
should be mentioned. The number of authors who conducted the search and their
role needs to be clarified. It is important to specify if any of the study authors were
contacted for additional data or clarifications. Other sources of information like a
non-English database (e.g. LILACS), (http://lilacs.bvsalud.org/en) trial registries
(e.g. Cochrane Central, www.clinicaltrials.gov, WHO Trial registry), (http://apps.
who.int/trialsearch) proceedings of conferences, and grey literature need to be
reported.

8. Search Methodology

It is important to report whether the search strategy was peer-reviewed. A detailed
description of the full search strategy should be provided for at least one major
database to facilitate reproducibility. The search terms (keywords and Mesh ter-
minology) (https://learn.nlm.nih.gov/documentation/training-packets.T0042010P/)
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and any constraints in the search (e.g. limited access, expertise, resources) should
be disclosed. Some journals allow the full strategy to be uploaded as a supplement.
It is important to save the search output for future updates.

Here is an example of search strategy: “With consultation from a professional
research librarian …., we developed a search strategy to identify RA RCTs that
were published in MEDLINE between January 1, 2008, and January 1, 2018. We
used “Rheumatoid Arthritis” and “humans” as Medical Subject Headings (MeSH)
terms and “randomised controlled trial” as a publication type to generate the
following search phrase: “arthritis, rheumatoid” (MeSH) AND (“2008/01/01”
[PDAT]: “2018/01/01” [PDAT] AND “humans” [MeSH Terms]) AND (“ran-
domised controlled trial” [ptyp] AND “humans” [MeSH Term]). Filters were
applied to identify English-language studies in adults 19 years and older. Our
search was limited to RCTs published within ten years, since there was a
tremendous and unprecedented increase in RA RCTs during this period, allowing
us to examine a very large sample size. The English-language filter was applied to
increase the likelihood that studies would have at least 1 US-based site” (Strait
et al. 2019).

9. Description of Study Selection

Screening Determining 
eligibility

Inclusion in 
the 

systema c 
review

Inclusion in 
the meta-
analysis 

The final report should include how the reviewers selected studies as per the pro-
tocol. Authors choose from a large number of studies according to the eligibility
criteria. Hence it is important to report the screening process, i.e. how many authors
selected the articles, and how often it was necessary to go to full-text articles. The
reviewers may disagree about the inclusion or exclusion of the studies at the
screening stage. In such cases, the process for resolving the disagreement needs to
be stated, including the level of inter-rater agreement, and how often arbitration
about selection was required. The commonly reported methods for this purpose
include the percent agreement and Cohen’s kappa (� 0 = no agreement, 0.01–
0.20 = none to slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = sub-
stantial, and 0.81–1.00 = perfect agreement) (Park and Kim 2015; McHugh 2012;
Chow et al. 2019).

10. Data collection process

Reporting the details of data extraction (e.g. pre-piloted data extraction form,
number of authors who independently retrieved the data, criteria for selecting
studies for data extraction, type of data collected) is important. The data extraction
form can be provided as supplemental material (https://bmjopen.bmj.com/content/
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bmjopen/7/6/e01562). It is important to report how discrepancies about data
extraction were handled, and whether the authors of included studies were con-
tacted for additional data or clarifications.

11. Data items

All individual data items extracted from each included study should be reported in
the manuscript. The reasons for the unavailability of data should be reported to
minimise bias and optimise transparency.

12. Describe methods used for assessing the risk of bias in individual studies

Assessing the risk of bias in included studies is a critical component of a systematic
review as it gives strength to the body of evidence. The number of reviewers who
independently assessed the adequacy of randomisation, concealment of allocation,
and blinding of participants, health care providers and outcome assessors should be
reported in the manuscript. The commonly used methods include the “components
approach” which involves assessing individual items that reflect the methodolog-
ical risk of bias, or other relevant considerations in the body of literature under
study (e.g. whether randomisation sequence was concealed or not). The second
method uses a composite approach that combines different components related to
the risk of bias or reporting into a single overall score (Viswanathan et al. 2012).

13. Summary measures

Authors should clearly state the summary measures (e.g. risk ratio, the difference in
means) and their 95% confidence intervals, and the model (fixed effect vs random
effects) used for meta-analysis. Deriving summary measures by meta-analysis may
not be possible if the units of measurements for the outcomes of interest are
different in the included studies. The inability to do so should be clearly stated
(Tripepi et al. 2007; Elwenspoek et al. 2019).

14. Planned methods of analysis

The methods for handling the data and pooling the results from the included studies
and measures of consistency for each meta-analysis need to be described. Reporting
the method for addressing/exploring heterogeneity between the included studies is
important. The issue of heterogeneity has been covered in other chapters of this
book.

15. Risk of bias across studies

Describing the methods used for assessment of publication bias, and statistical
heterogeneity is important as it may affect the cumulative evidence. This includes
describing the funnel plot if it was used and how it was assessed (informally by
visual inspection and formally with a statistical test such as the Egger’s test). The
reasons for the risk of bias include missing studies (publication bias) and missing
data from the included studies (selective reporting bias (van Enst et al. 2014; Oberoi
et al. 2020)).
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16. Additional analysis

Additional analyses such as sensitivity analysis, subgroup analysis and
meta-regression may be required to increase the quality of the review. It is essential
to report the rationale for additional analyses and whether they were pre-specified or
not.

Results

17. Study selection

The study selection process should be reported using a flow diagram (Fig. 1). The
four-phase flow diagram gives information on the total search output, removal of
duplicates, number of excluded and included studies. The reasons for exclusion can
be explained in a tabular form if the numbers are small. It may be preferable to use a
different flow diagram for each outcome if multiple outcomes are assessed in a
systematic review (Moher et al. 2007a).

18. Study characteristics

The characteristics of the included studies (e.g. author, year, site, sample size,
PICOS, follow up) should be reported in detail, preferably in a tabular form
(Table 1). Ideally, study level data should be summarised to compare the main
characteristics of the included studies. Adequate details should be provided to assist
the readers in judging the relevance of included studies. The reviewers are expected
to contact the individual study authors for missing data or clarifications to assure
that there are no missing data in this table. Reviewers must not assume anything
about the missing data and acknowledge the facts clearly.

19. Risk of bias within studies

The risk of bias within included studies should be reported using a standard
approach, as explained in item 12. The manuscript should contain the results of the
risk of bias assessment for each outcome in every study. The methodological

Table 1 Characteristics of included studies

Author/
year/
Country

Sample
size

Participants Intervention Comparator Outcomes Follow
up

Author
comments

XY
2020,
Italy

1200
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limitations should be acknowledged. The limitations of each study should be pre-
sented in the tabular form in addition to a narrative summary in the text. The
following markers measure the validity of the studies: (1) Concealment of ran-
domisation (2) Whether the trial stopped early (3) Patients blinded or not (4) Health
care providers blinded or not (5) Data collectors blinded or not (6) Outcome
assessors blinded or not. The Cochrane collaboration has recently updated the ROB
tool (Sterne et al. 2019).

20. Results of individual studies

The results sections should include all outcomes, including safety. For each study,
the summary data for effect estimates and their confidence intervals, ideally with a
forest plot (Fig. 2), should be provided.

21. Synthesis of results

The synthesis of results should be reported systematically. Multiple outcomes
should be presented with different forest plots. The main results of the review are
presented using effect estimates and their confidence intervals. A qualitative nar-
rative is useful when data on a particular outcome may not have been reported by
all studies.

22. Risk of bias across studies

Presenting the results of risk of bias assessments across studies which can affect the
cumulative evidence is important (e.g. publication bias, selective reporting). The
number of studies should be adequate (>10) to generate a funnel plot (Sterne et al.
2011; Dwan et al. 2008).

23. Additional analysis

The results of all additional analyses, (e.g. sensitivity or subgroup analyses,
meta-regression) should be provided to avoid selective reporting bias (Nelson et al.
2020; Bhangu et al. 2012).

Fig. 2 Forest plot with summary data
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Discussion

The section should include the summary of evidence, limitations and the conclu-
sions of the review.

24. Summary of evidence

The summary should include the main findings and key messages. The strengths of
the evidence should be stated clearly for all important outcomes, including safety.
The evidence should be clearly directed to different stakeholders.

Example: “Compared with vaginal delivery, cesarean delivery was associated
with increased risk of dysbiosis in preterm infants.”

“The strengths of our review include the robust methodology and comprehensive
literature search with no restriction on language and set up, and with a low
probability of publication bias.”

“Future studies should carefully assess the long term implications of dysbiosis
associated with cesarean delivery” (Zhang et al. 2019).

25. Limitations

Addressing the limitations of the review is an integral part of the discussion. Future
trials and reviewers should take these into consideration. The limitations can occur
at a study and outcome level (e.g. risk of bias) or review level (e.g. publication bias,
reporting bias). This part of the discussion should address the validity and limita-
tions of the review process, including the limitations of search and applicability of
the findings.

Example: Authors of a systematic review assessing the prevalence of zinc
deficiency and associated factors among pregnant women and children in Ethiopia
reported the following limitations which could have impacted their finding: Small
number of included studies, studies non-representative of all regions in Ethiopia,
study design (cross-sectional), lack of information regarding the processing of
specimens, inability to perform sub-group analysis due to the small number of
studies, and non-compliance with recommendations in included studies (Berhe
et al. 2019).

26. Conclusions

The conclusions should include the general interpretation of results in the context of
the review. Negative conclusions are as important as positive conclusions. The
reviewers should clearly acknowledge if the findings are inconclusive. Gaps in
knowledge should be identified to guide further research. A study assessing the
ability of doctors and medical students to derive independent and appropriate
conclusions from systematic reviews showed that the majority of the participants
lacked this skill. The investigators concluded that authors, editors and reviewers
should make an effort that the conclusions of a paper accurately reflect the results
(Lai et al. 2011).
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27. Funding

Reporting the source of funding or any other support (e.g. using the data from the
manufacturing company) is essential to avoid any perception of conflict of interest.
Funding should be acknowledged even if it is by a health care agency or an
academic institution. The review by Moher et al. showed that at least 0% reviews
did not mention the funding source Moher et al. (2007a). Bes-Rastrollo et al. have
reported that systematic reviews with sponsorship or conflicts of interest with food
or beverage companies were five times more likely to conclude no positive asso-
ciation between sugars sweetened beverages consumption and weight gain or
obesity compared to reviews without sponsorship (Bes-Rastrollo et al. 2013).

In summary, reporting a systematic review based on the PRISMA guidelines
allows the readers to understand the process and finding of the review systemati-
cally and transparently. While the PRISMA statement has improved the quality
of the reporting, there is still scope for improvement. Adherence to PRISMA
guidelines (Updated in 2020) by authors and journals is essential to enhance the
transparency in reporting of a systematic review (Page et al. 2020).
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Critical Appraisal of Systematic Reviews
and Meta-Analyses

Sanjay Patole

Abstract Systematic reviews are the most reliable and comprehensive statement about
what works. They focus on a specific question and use clearly stated, prespecified
scientific methods to identify, select, assess, and summarise the findings of similar but
separate studies. A systematic review may or may not contain a meta-analysis for
various reasons. Given the hierarchy of evidence-based medicine, a systematic review
and meta-analysis are expected to provide robust evidence to guide clinical practice and
research. However, the methodological rigour (design, conduct, analysis, interpretation,
and reporting) of both, the systematic review and meta-analysis and the included
studies deserve equal attention for judging the validity of the findings of a systematic
review. Reproducibility is a critical aspect of science. Without transparency about what
was done, and how it was done, it is difficult to reproduce the results, questioning the
validity of any study. This chapter focuses on the critical appraisal of a systematic
review and meta-analysis based on their principles and practice.

Keywords Systematic reviews � Meta-analysis � Critical appraisal � Validity �
Reproducibility

Introduction

Before we proceed to discuss the critical appraisal of a systematic review and
meta-analysis, a quick recap of their principles is necessary. As discussed before,
systematic reviews are ‘the most reliable and comprehensive statement about what
works (van der Knaap et al. 2008). They focus on a specific question and use clearly
stated, prespecified scientific methods to identify, select, assess, and summarise the
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findings of similar but separate studies. A systematic review may or may not
contain a meta-analysis for two reasons, either the data from available studies are
not possible to be combined or, it does not make sense to combine the data from
different studies together due to significant heterogeneity. The phrase, ‘combining
apples with oranges’ is often used when faced with the latter scenario (Esteves et al.
2017; Purgato and Adams 2012). Following on to this principle, combining good
apples with bad or rotten apples is also not appropriate.

It is essential to appreciate that a systematic review and meta-analysis can be
conducted for various types of study, including randomised, non-randomised (co-
hort and case-control) and diagnostic accuracy studies. Even case reports prepared
using a comprehensive, robust and transparent methodology, can be reviewed
systematically (Jeong et al. 2019). Given the hierarchy of evidence-based medicine,
a systematic review and meta-analysis of data from of randomised controlled trials
(RCTs)—the gold standard of clinical research, is thus expected to provide robust
data to guide clinical practice and further research. However, the methodological
rigour (design, conduct, analysis, interpretation, and reporting) of both, the sys-
tematic review and meta-analysis and the included RCTs deserve equal attention for
judging the validity of the findings of a systematic review (Smith and Hing 2011;
Ioannidis 2016). Similar argument can be made in the interpretation of a systematic
review of studies of other designs.

As for its characteristics, a ‘TRUE’ systematic review has transparent (T) and
robust methodology for reproducibility (R) and is unbiased (U) with best precau-
tions to minimise the risk of bias, with explicit (E) objective criteria for each
step. Reproducibility is a critical aspect of science. Without transparency about
what was done, and how it was done, it is difficult to reproduce the results,
questioning the validity of any study (Lakens et al. 2016; Shokraneh 2019).

This chapter focuses on critical appraisal of a systematic review and
meta-analysis based on their principles and methodology (Egger et al. 1997; da
Costa and Juni 2014; Phan et al. 2015; Brown et al. 2012; Jones et al. 2008; Roever
and Zoccai 2015).

Step 1: Does the systematic review ask a focused, well defined, clinically useful,
and importantly, an answerable question?

Based on the conventional ‘PICO’ format, the title of a systematic review should
clarify the four critical aspects of the question being asked (P: Patients/participants,
I: Intervention, C: Control/Comparison, O: Outcome of interest, apart from the type
of included studies (e.g. RCTs, non-RCTs) addressing the question (i.e. study
design: S) (Richardson et al. 1995). The titles of some reviews will also convey the
time frame (T) or the setting to which the results will be applicable, i.e. reflect the
external validity of the effects of the intervention under study.

Step 2: Have the reviewers justified the need for a systematic review?
The number of systematic reviews published every year has been on the rise

(Bastian et al. 2010; Fuhr and Hellmich 2015). It is essential to check if the
systematic review was really needed. Every systematic review should clarify
whether the question has not been addressed before or there are valid reasons for an
update (Garner et al. 2016; Bashir et al. 2018).

126 S. Patole



Step 3: Assessing the methodology for literature search

(1) Was the search strategy robust, comprehensive, and transparent? In order to
provide the best available evidence and assure reproducibility, every systematic
review should have a clearly documented and comprehensive search strategy
for tracing all relevant studies-published as well as unpublished (Cooper et al.
2018).

(2) What type of studies were searched? A detailed description of the type of
studies (e.g. RCTs, non-RCTs, diagnostic accuracy studies) that will be sear-
ched is required.

(3) Which databases were searched? The comprehensiveness of any systematic
review is limited only by human resources. It is possible that what is difficult to
find may not be of good quality (van Driel et al. 2009). However, this may not
be true. The obsession for significant ‘p’ values and the bias against studies
with ‘negative’ findings mean many potentially valuable studies may not find a
place in the conventional domain for academic publications (Simonsohn et al.
2014). At the minimum, at least four major databases (MEDLINE, Embase,
Web of Science, Google Scholar) need to be searched for the optimal search of
the literature (Bramer et al. 2017). However, it is important to note that liter-
ature goes way beyond conventional databases (Cooper et al. 2018). In the
context of neonatology, the search commonly involves Medline, Embase,
Emcare, Cochrane Central library, Google Scholar, and grey literature.
Contacting experts in the field and crosschecking cross-references from
reviews, and proceedings of relevant conferences are also necessary.

(4) What were the search terms?

Systematic reviews must provide details of the search strategy for at least one major
database allowing readers to crosscheck/reproduce search output. Availability of
open access makes it possible to submit the complete search strategy as online
supplementary material.

(5) Who conducted the literature search, and how?

To avoid bias and human errors, it is essential that at least two reviewers inde-
pendently search the literature and crosscheck with each other. Differences of
opinion in the assessment of various aspects of the studies including simple issues
such as deciding whether a study is a duplicate or has significant overlap with
another publication needs robust discussion amongst the entire team, and if
required, contact the authors of the studies in question. A clear description of these
issues and processes is vital to assure the validity of a systematic review.

(6) Do the numbers tally

A robust, and comprehensive literature search and transparent decisions based on
prespecified inclusion-exclusion criteria, finally leads to the number of studies
included in the review. The PRISMA flow chart should provide the details of initial
search output (potentially eligible studies) from each source, the number of studies
excluded, the reasons for their exclusion, ending with the final number of studies
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included in the systematic review, and if applicable, meta-analysis (Liberati et al.
2009). The numbers in the PRISMA flow chart should tally and match those quoted
in the core manuscript.

(7) How was the risk of bias (ROB) assessed in the included studies?

There should be a clear pre-stated strategy for ROB assessment appropriate for the
study type included in the systematic review. For example, this will be the ROB
tool recommended by the Cochrane Collaboration for Systematic Reviews of
RCTs, and the New Castle Ottawa Scale or ROBINS-I tool for assessing ROB in
non-RCTs (Wells et al. 2000; Sterne et al. 2016). Clear description of the reasons
for judging the ROB is critical. For example, in a systematic review of RCTs
judging the four crucial aspects of an RCT, i.e. randomisation, allocation con-
cealment, blinding and completeness of follow up, requires meticulous attention. It
is important to check if the reviewers have made every possible effort, including
contacting the authors of the included trials, for accurate assessment of various
domains of ROB tool.

Step 4: Is the rationale for quantitative (i.e. meta-analysis) vs. qualitative
synthesis of results provided?

Deciding whether a meta-analysis is justified or not, is perhaps the most crucial
step in systematic reviews. The markers of clinical heterogeneity such as PICO
characteristics, study design, settings, and period, as well as the results of ROB
assessment, are taken in consideration to make a clinical judgement whether it is
sensible to pool the results from different studies for a meta-analysis. The reviewers
should provide clear information in this context (Melson et al. 2014; Chess and
Gagnier 2016; Kriston 2013; Gagnier et al. 2012; Malone et al. 2014).

A meta-analysis is possible if it is judged that the studies included in the sys-
tematic review are ‘more or less similar’. However, it can be conducted only if the
data on the outcome/s of interest are available in a format suitable for pooling.
Therefore the methodology should pre-specify the format of the data required for
meta-analysis for different types of outcomes (Categorical and continuous) and
whether a reliable method of conversion was required to enable pooling (e.g.
Hozo’s formula for deriving the mean and standard deviation from median and
range) (Hozo et al. 2005).

Step 5: If the systematic review includes a meta-analysis, make an independent
assessment of the rationale for pooling of data. As mentioned earlier, crosscheck
the PICO characteristics, study design, setting and period, and ROB assessment as a
pooling of data is not appropriate if significant clinical heterogeneity is present.

Step 6: Assessment and interpretation of the forest plot- the 10-point checklist
A critical assessment of the forest plot showing results of the meta-analysis is

essential. A 10-point checklist can be provided to make this process less
complicated.
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(1) Number of studies, sample sizes of individual studies, and total sample size

Inclusion of at least a few thousand participants in an RCT is considered essential
for the results to have optimal validity and certainty for guiding clinical practice and
research in the field (Guyatt et al. 2011). Based on this assumption, the cumulative
sample size of the studies included in a meta-analysis should be at least a few
thousand. Considering the strengths and weakness of the study design (e.g. RCTs
vs. non-RCTs) is also important in judging the ROB affecting the evidence gen-
erated by the meta-analysis.

(2) Check the weightage given to different studies; is any study driving the results?
Any outliers?

(3) Check the number of events (numerator) and denominators in the intervention
versus control group

Based on the choice of the model selected for meta-analysis, the sample size of the
included studies may or may not influence the pooled estimates. The event rates
affect the ability of included studies to influence the pooled estimate of the effect
under evaluation. In a meta-analysis using the fixed-effect model, the weightage
given to individual studies depends on their sample size as well as the event rates
(Werre SR et al. 2005; Deeks et al. 2019; Xu et al. 2020). A study may have a large
sample size but will not influence the results significantly if the event rate is low.
The duration of follow up is thus important in this context. Subject expertise, i.e.
knowledge of the normal range of baseline/control group event rate, is essential for
interpreting results in this context. An unexpectedly high or low baseline risk
indicates the need for exploring the underlying reasons. It is also important to check
for outliers, i.e. studies reporting unusual/conflicting results. Exploring the reasons
for such significant heterogeneity is important. A post hoc sensitivity analysis can
be helpful to judge the influence of outliers on the results (Baker and Jackson
2008). However, caution is required in interpreting the results of such analyses.

(4) Assessment of heterogeneity: Overlap of confidence intervals
(5) Tests for heterogeneity: Chi2 (Q statistics) and its P-value, I2: (%)

Visual inspection of the forest plot to check for overlap of the confidence intervals
is a useful method to assess heterogeneity (Mohan and Adler 2019; Viechtbauer
2007; Coulson et al. 2010). As discussed above the potential reasons for the
heterogeneity of outliers need to be explored. The results of the tests for hetero-
geneity need to be checked. Significant p-value (<0.05) of the Chi2 (Q statistics) test
and I2 > 50% indicate significant heterogeneity that should be explored (Melson
et al. 2014; Higgins and Thompson 2002; Higgins et al. 2002; IntHout et al. 2015;
Ioannidis 2008; Evangelou et al. 2007; von Hippel 2015; Rücker et al. 2008;
Huedo-Medina et al. 2006; Bowden et al. 2011). A meta-analysis is not justified if
there is significant clinical heterogeneity. We will discuss the models used for
meta-analysis under point 8 of this checklist.
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(6) Pooled effect (Z) size, P-value, and statistical vs. clinical significance

The size of the diamond reflects the pooled effect size and its boundaries represent
its 95% confidence intervals (Lewis and Clarke 2001). It is important to assess not
only the effect size but also its ‘certainty’ (i.e. ‘what are the results’ and ‘how
confident/certain we are about them’). Considering the clinical significance (actual
treatment effect and its certainty) is more important than focussing only on the “P”
values and statistical significance (Ranganathan et al. 2015). A 10% reduction in
mortality is more important than a 30% improvement in an outcome that has
questionable importance in clinical practice.

(7) Risk vs. odds ratio (RR vs. OR), absolute risk ratio (ARR) or difference
(ARD) and the numbers needed to treat (NNT)

Correct understanding and interpretation of RR and OR and the clinical significance
of ARR and ARD is essential to avoid misinterpretation of results
(Balasubramanian et al. 2015). NNT is the reciprocal of the ARD between treat-
ment and control groups in an RCT. It is sensitive to PICO characteristics, setting
and other factors that affect the baseline risk. Significant heterogeneity between
included trials can result in misinterpretation of NNT in a meta-analysis.
Consideration of the baseline risk/severity of illness is vital for optimal interpre-
tation of NNTs (Ebrahim 2001).

(8) Models used for meta-analysis, and concordance/discordance of results

A quick recap of the critical assumptions and characteristics of the two models is
important at this stage (Nikolakopoulou et al. 2014; Borenstein et al. 2010; Schmidt
et al. 2009; Sanchez-Meca and Marin-Martinez 2008; Hunter and Schmidt 2000;
Jackson and Turner 2017; Shuster 2010; Stanley and Doucouliagos 2015). The
fixed effect model makes a confident assumption that intervention is equally
effective across all studies, ignores “between studies” variation, and provides the
best estimate of the effect. It gives weightage to the included studies based on their
sample size (size of the square), and event rate. On the other hand, the
random-effects model allows for ‘within’ as well as ‘between-study’ variability in
effectiveness based on a conservative assumption. Being less confident, it usually
has wider confidence intervals, gives adequate emphasis on smaller studies, and
provides the estimated average effect. The validity of the results is supported well if
the results of the meta-analysis by the two models are similar. Discordance indi-
cates the need for exploring heterogeneity.

Check if the choice of model for meta-analysis (fixed effect vs. random effects
model) was appropriate. It is important to appreciate that no two participants in any
study are identical. Hence every individual’s biologic response to an exposure/
intervention is expected to be different even if everything else seems to be com-
parable. It is not uncommon to see the line differentiating between ‘more or less
similar’, and ‘significantly different’ get blurred due to pre-existing conscious or
subconscious biases. This is the reason the random-effects model is often advocated
as the default model for meta-analysis. Others believe that starting with a
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fixed-effect model is acceptable if the studies are more or less similar. To safeguard
from biased results, especially when significant statistical heterogeneity (indicated
by the I2 value) is noted, it is essential to compare the results of meta-analysis using
both models.

(9) The strength of evidence for the pooled estimates

As discussed earlier, it is vital to check the number of studies as well as their design,
sample size, and ROB, contributing to the meta-analysis to derive the pooled
estimate of an effect/outcome. The confidence interval helps in assessing the pre-
cision of the estimate based on the total sample size available for assessing the
outcome of interest. Other elements such as event rates, baseline severity of the
underlying condition, setting, duration of follow up, and adverse effects are also
crucial for judging the strength and external validity of an intervention.

(10) Human errors in data extraction, entry, and interpretation

Last but not least, it is essential to check for errors in sample sizes, event rates
(numerator and denominator) from included studies and their correct allocation to
the intervention vs. control group. Transposition errors can have severe conse-
quences for results and their interpretation. Check if the selection and interpretation
of labels (Favours intervention vs. Favours control) on both sides of the central line
of no effect, is correct. Consideration of whether the outcome assessed is beneficial
or adverse is important in this context. Standard error can be confused with standard
deviation, and a ‘minus’ sign can be missing or confused with a hyphen!

Step 7: Assessment of the funnel plot–checking for publication bias
Publication bias occurs when published studies differ systematically from all

conducted studies on a topic (Dickersin 1990). It arises when studies with statis-
tically significant or positive results in a specific direction are more likely to be
published compared to those without statistically significant or negative results.
Careful visual inspection of the funnel plot is important as publication bias can
seriously compromise the validity of systematic reviews (Sedgwick 2015). It is
important to note that publication bias can never be ruled out. When it is less likely,
the largest studies lie closest to the true value, and the smaller studies are spread on
either side, creating the shape of a funnel. Check if the ‘funnel’ is challenging to
visualise or incomplete with an area with missing studies.

Caution is required in the interpretation of a funnel plot as it is affected by many
factors, including alternative explanations for the asymmetrical distribution of
studies and inaccurate visual interpretation (Lau et al. 2006; Sterne et al. 2011).
Potential reasons for funnel plot asymmetry other than publication bias include poor
methodological quality leading to exaggerated effects in smaller studies, true
heterogeneity, artefacts and chance (Sterne et al. 2011). As a general rule, at least
ten studies are required for proper visual assessment of a funnel plot (Lau et al.
2006). Check if the reviewers have reported results of statistical tests for funnel plot
asymmetry (publication bias) such as the Egger test, Begg test, and Harbord test.
A statistically non-significant P-value for the asymmetry test does not exclude bias.
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These tests are known to have low power (Sterne et al. 2011; Jin et al. 2015). The
commonly used Egger’s test has “inappropriate” type I error rate when hetero-
geneity is present, and the number of included studies is large (Jin et al. 2015). The
Harbord Test has a better error rate compared to Egger’s test in balanced trials with
little or no heterogeneity (Jin et al. 2015). Considering there is no gold standard test
for confirming publication bias, experts have cautioned about the risk of discred-
iting valid evidence following decisions based solely on asymmetrical funnel plots
and positive statistical tests (Lau et al. 2006).

Step 8: Is the interpretation of results appropriate?
Check if the reviewers have provided a credible, unbiased, balanced interpre-

tation of the results being as subjective as possible (Shrier et al. 2008; Liberati
1995; Tricco et al. 2011). Industry influence is a matter of concern in the inter-
pretation of results of industry-sponsored studies (Jørgensen et al. 2008). The
Cochrane collaboration includes industry involvement as one of the potential rea-
sons for bias. It is hence essential to check for this possibility. Check if the
reviewers have put research into context. Ideally, a systematic review should not tell
what should be done for an individual patient. That process is left to the healthcare
provider and the patient as a shared responsibility. Try not to be biased by the
reviewer’s conclusions!

Step 9: Importance of safety as an outcome, and pitfalls related to subgroups,
post hoc analyses, multiplicity, and ‘trends’.

Clinical trials often do not address/report safety as an important, or perhaps the
most important outcome (Huang et al. 2011; Ioannidis and Lau 2001). Systematic
reviews are therefore expected to address this issue. Subgroups in a systematic
review and meta-analysis should be evidence-based and prespecified (Richardson
et al. 2018; https://wiki.joannabriggs.org/display/MANUAL/3.3.7+Subgroups+in
+meta-analysis). They are usually based on unique characteristics of participants
(e.g. age, gender, the severity of illness), intervention (e.g. mode of delivery),
comparisons (e.g. probiotics with vs without lactoferrin vs placebo) or outcomes in
unique groups (e.g. extremely preterm infants). It is important to check if the
reviewers have been careful in interpreting the results of subgroups and post hoc
analyses. Systematic reviews are also not immune from the problem of multiplicity
(Bender et al. 2008). Finally, it is important to avoid getting biased by ‘trends’
presented as positive findings (Gibbs and Gibbs 2015).

Step 10: Is the method of reporting appropriate?
Finally, every systematic review (and meta-analysis) should have a recom-

mended structured format for reporting for the wide dissemination of results with
clarity. Some of the standard reporting guidelines include the PRISMA statement
(Checklist and a flow diagram) for Preferred Reporting Items for Systematic
Reviews and Meta-Analyses, MOOSE guidelines for reporting meta-analysis of
observational studies in epidemiology, and STROBE statement for the reporting of
observational studies in epidemiology (Stroup et al. 2000; von Elm et al. 2008).

In summary, critical assessment of a systematic review and meta-analysis
requires thorough knowledge of their principles, procedures, strengths and limita-
tions and importantly, scientific expertise in the field of investigation. This is critical

132 S. Patole

https://wiki.joannabriggs.org/display/MANUAL/3.3.7%2bSubgroups%2bin%2bmeta-analysis
https://wiki.joannabriggs.org/display/MANUAL/3.3.7%2bSubgroups%2bin%2bmeta-analysis


because their findings are expected to guide clinical practice and research.
Systematic reviews and meta-analyses may not be an exact science and hence
untrustworthy due to their dependence on the clinical judgement at every step
(Haddaway and Rytwinski 2018; Thompson and Pocock 1991). However, when
conducted and reported using a rigorous methodology, they remain the best
available evidence. As for the validity of results of a meta-analysis of many small
studies vs. those of a single adequately powered large RCT, the debate will con-
tinue (Glasziou et al. 2010; Scifres et al. 2009; Ioannidis et al. 1998). The fact is
that systematic reviews and meta-analyses are critical components of the cycle of
knowledge. The least they could do is to help design robust RCTs to know what
works (Cooper et al. 2005; Clarke et al. 2010; Mahtani 2016).
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Systematic Reviews and Meta-Analyses
of Non-randomised Studies

Sanjay Patole

Abstract Randomised controlled trials (RCTs) are considered as the gold standard
for clinical research because unlike other study designs, they control for known, and
importantly, unknown confounders by randomisation. Evaluation of interventions
should hence be ideally done by RCTs. However, RCTs are not always possible or
feasible for various reasons, including ethical concerns and the need for time, effort,
and funding. Difficulty in the generalisation of the findings of RCTs is also an issue
given their rigid design. Non-randomised studies (non-RCTs) provide an alternative
to RCTs in such situations. These include cohort, case-control and cross-sectional
studies. Non-RCTs have the advantage of providing data from the real-life situation
rather than that from the rigid framework of RCTs. The limitations of non-RCTs
include selection bias and lack of randomisation that allow confounders to influence
the results. At best, non-RCTs can only generate hypotheses for testing in RCTs.
This chapter covers the methodology for conducting, reporting and interpreting
systematic reviews and meta-analysis of non-RCTs.

Keywords Confounding � MOOSE guidelines � New castle ottawa scale �
Non-randomised studies � Randomised controlled trials � Risk of bias �
ROBINS-1 tool

Introduction

Randomised controlled trials (RCTs) are considered as the gold standard for clinical
research because unlike other study designs, they control for known, and impor-
tantly, unknown confounders by randomisation. Allocation concealment protects
randomisation. The core elements of the RCT (randomisation, allocation conceal-
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ment and blinding) minimise bias and optimise the internal validity of the results.
Evaluation of interventions should hence be ideally done by RCTs. However, RCTs
are not always possible or feasible for various reasons, including ethical issues, and
importantly, the need for time, effort, and funding. Definitive trials particularly need
significant resources considering their large sample sizes, complexity, logistics and
the need for expertise in various aspects of the trial. Difficulty in generalisation (i.e.
external validity) of the findings of RCTs with rigid designs is also an issue.
Non-randomised studies (non-RCTs) provide an alternative to RCTs in such situ-
ations (Mariani and Pego-Fernandes 2014; Gershon et al. 2018; Gilmartin Thomas
and Liew 2018; Heikinheimo et al. 2017; Ligthelm et al. 2007; Jepsen et al. 2004).
These include cohort (Prospective or retrospective), case-control and
cross-sectional studies. Non-RCTs have the advantage of providing data from the
real-life situation rather than that from the rigid framework of RCTs.

Cohort studies allow estimation of the relative risk as well as the incidence and
natural history of the condition under study. They can differentiate cause from an
effect as they measure events in temporal sequence. When designed well, adequately
powered prospective cohort studies provide the second-best option after RCT (Mann
2003). Both designs include two groups of participants and assess desired outcomes
after exposure to intervention over a specified time in a setting (The PICOS
approach). However, the critical difference is that unlike the RCT, the two groups
(exposed vs not exposed) are not selected randomly in a cohort study. Retrospective
cohorts are quick and cheaper to conduct, but the validity of their results is ques-
tionable considering the unreliable and often, inadequate retrospective data.

Unlike cohort studies that can assess common conditions and common exposures,
case-control studies help in studying rare conditions/diseases and rare exposures (e.g.
lung cancer after asbestos exposure). To put it simply, case-control studies assess the
frequency of exposure in those with vs those without the condition/disease of interest. If
the frequency of exposure is higher in those with the condition of interest than those
without the condition; thus establishing an ‘association’. Hill’s criteria for associations
are important in this context. Case-control studies estimate odds ratios (OR) rather than
relative risk (RR). The difficulties in matching control groups for known confounders
and a higher risk of bias are limitations of case-control studies. Cross-sectional studies
are also relatively quick and cheap, can be used to estimate prevalence, and study
multiple outcomes. However, they also cannot differentiate between cause and effect.

Overall, the major limitations of non-randomised studies include selection bias
and lack of randomisation that allow confounders to influence the results (Gueyffier
and Cucherat 2019; Gerstein et al. 2019). A confounder is any factor related to the
intervention as well as the outcome and could affect both. Therefore, at best,
non-randomised studies can only generate hypotheses that need to be tested in
RCTs. They are useful for identifying associations that can then be more rigorously
studied using a cohort study or ideally in an RCT. One of the commonly used
statistical tools to address the issue of confounding is regression analysis which
‘adjusts/controls’ the results for known confounders. This is the reason why access
to both, unadjusted as well as adjusted results (e.g. ORs), is important for inter-
preting the results of non-RCTs. Other techniques such as propensity scores and
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sensitivity analysis can reduce bias caused by the lack of randomisation in
non-RCTs (Joffe and Rosenbaum 1999). Non-RCTs are known to overestimate the
effects of an intervention. However, adequately powered, and well designed and
conducted non-RCTs can provide effects estimates that are relatively close to those
provided by RCT (Concato et al. 2000).

Despite their limitations, non-RCTs have a substantial and well-defined role in
evidence-based practice. They are a crucial part of the knowledge cycle and
complement RCTs (Faraoni and Schaefer 2016; Schillaci et al. 2013; Norris et al.
2010). Systematic reviews and meta-analyses of non-RCTs are hence common in
all faculties of medicine. This section briefly covers the critical aspects of the
process of systematic review and meta-analysis of non-RCTs compared with RCTs.

Conducting a Systematic Review of Non-RCTs

The initial steps in conducting a systematic review of non-RCTs are similar to those
for a systematic review of RCTs. These include framing a clinically useful and
answerable question using the PICO approach, deciding the type of studies to be
searched (e.g. non-RCTs of an intervention), and conducting a comprehensive
literature search for the best available evidence. The search is much broader
compared to that for RCTs given the different study designs that come under the
term “non-RCTs”. To avoid wastage of resources and duplication, it is essential to
check whether the question has already been answered.

The search strategy includes the following terms for the publication type: ob-
servational, cohort, case-control, cross-sectional studies, retrospective, prospective
studies, non-randomised controlled trial. Searching major databases, grey litera-
ture, proceedings of the relevant conference proceedings, registries, checking
cross-references of important publications including reviews, and contacting
experts in the field is as important as in any other systematic review.

Having a team of subject experts and methodologists optimises the validity of
the results. A transparent and unbiased approach, and use robust methods, and
explicit criteria are critical to assure that the review is ‘truly’ systematic
(Transparent, Robust, Reproducible, Unbiased, Explicit).

The Cochrane methodology and MOOSE guidelines (Meta-analysis of
Observational Studies in Epidemiology) are commonly followed for conducting
and reporting systematic reviews of non-RCTs (Lefebvre et al. 2008; Stroup et al.
2000; Lefebvre et al. 2013).

Data Extraction

Data extraction is done independently by at least two reviewers, using the data
collection form designed for the review. For dichotomous outcomes, the number of
participants with the event and the number analysed in each intervention group of
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each study are recorded. Availability of these data helps in creating forest plots of
unadjusted ORs.

For continuous outcomes, the mean and standard deviation are entered. Authors
of the included studies may need to be contacted to verify the study design and
outcomes. The mean and standard deviation could be derived from median and
range and from median and interquartile range by using the Hozo and Wan formula
respectively (Gueyffier and Cucherat 2019; Hozo et al. 2005; Wan et al. 2014).

Assessment of Risk of Bias in Non-RCTs

The key difference between RCTs vs non-RCTs is the risk of bias due to con-
founding in the later. Assessment of the risk of bias is hence a critical step in
systematic reviews of non-RCTs. The standard tools for this purpose are discussed
briefly below.

(1) The Newcastle Ottawa Scale (NOS)

The Newcastle-Ottawa Scale (NOS) was developed by a collaboration between
the University of Newcastle, Australia, and the University of Ottawa, Canada, to
assess the quality of non-randomised studies (http://www.ohri.ca/programs/
clinical_epidemiology/oxford.asp).

The NOS scale contains three major domains: a selection of subjects, compa-
rability between groups and outcome measures. The maximum score for each
domain is four, two and three points, respectively. Thus, the maximum possible
score for each study is 9. A total score � 3 indicates low methodological quality,
i.e. high risk of bias.

The NOS is a validated and an easy and convenient tool for assessing the quality
of non-RCTs included in a systematic review. It can be used for cohort and
case-control studies. A modified version can be used for prevalence studies. The
scale has been refined based on the experience of using it in several projects.
Because it gives a score between 0 and 9, it is possible to use NOS as a potential
moderator in meta-regression analyses (Luchini et al. 2017; Wells et al. 2012;
Veronese et al. 2016). The NOS is not without limitations. These include some of
the domains that are not univocal, difficulties in adapting it to case-control and
cross-sectional studies and the low agreement between two independent reviewers
in scoring using NOS (Hartling et al. 2013). Training and expertise are essential for
proper use of NOS (Oremus et al. 2012).

(2) ROBINS-1 tool

The NOS scale and the Downs-Black checklist are commonly used for assessing the
risk of bias in non-RCTs. However, both include items relating to external and
internal validity (Downs and Black 1998). Furthermore, lack of comprehensive
manuals increases the risk of differences in interpretation by different users (Deeks
et al. 2003). The ROBINS-I (“Risk Of Bias In Non-randomised Studies—of
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Interventions”), is a new tool for evaluating the risk of bias in non-RCTs (Sterne
et al. 2016).

Briefly, the ROBINS-1 tool considers each study as an attempt to mimic a
hypothetical pragmatic RCT and covers seven distinct domains through which bias
might be introduced. It uses ‘signalling questions’ to help in judging the risk of bias
within each domain. The judgements within each domain carry forward to an
overall risk of bias judgement across bias domains for the outcome being assessed.
For details, the readers are referred to the publication by Sterne et al. (2016).

Data Synthesis

The random effects (REM) model is preferred for meta-analysis assuming hetero-
geneity. A categorical measure of effect size is expressed as the odds ratio (Mantel
Haenszel method). Statistical heterogeneity is assessed by Chi-Squared test, I2

statistic, and visual inspection of the forest plot (overlap of confidence intervals).
The validity of REM results can be crosschecked by comparing them with the
fixed-effect model (FEM) meta-analysis. Comparability of results by both models is
reassuring.

While conducting meta-analysis of non-RCTs, it is important to pool adjusted
and unadjusted effect size estimates separately. Pooled adjusted values must be
given more importance to minimise the influence of confounders. It is important to
note the type of confounders adjusted for in different studies. When synthesising
results, consideration of the risk of bias in included studies is more important than
the hierarchy of study design.

Publication bias: This is assessed by a funnel plot unless the number of studies
is <10. Statistical tests are used if required, but their limitations need to be taken
into account. It is important to note that there is no gold standard against which the
funnel plot test results can be compared (Lau et al. 2006). Publication bias is not the
only reason for an asymmetrical funnel plot. True heterogeneity also contributes to
the small study effect (Lau et al. 2006).

Summary of findings: The data on quality of evidence, the magnitude of
intervention effect, and the sum of available data on main outcomes are presented in
the ‘Summary of findings table’ as per GRADE (Grading of Recommendations
Assessment, Development and Evaluation) guidelines (Guyatt et al. 2013). To start
with, the evidence is graded as ‘low’ given the limitations of the design of
non-RCTs. It could then be upgraded based on the effect size, dose-response, and
effect of all plausible confounding factors.
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Important Issues in Presentation and Interpretation
of Results

Understanding the properties of odds ratios (McHugh 2009; Szumilas 2010; Bland
and Altman 2000; Cummings 2009; Balasubramanian et al. 2015) compared with
risk ratios, the significance of unadjusted vs adjusted results, and caveats of dif-
ferent study designs (e.g. cohort vs case-control) is critical in presenting and
interpreting the results of systematic reviews and meta-analysis of non-RCTs. It is
important to note the type and number of confounders adjusted for in the included
studies. Subject expertise is essential in this context. If possible, it is preferable to
contact the authors of the included study for individual participant data to conduct
analyses controlling for confounders. It is not unusual for the pooled effect esti-
mates to differ based on the design of the non-RCTs. For example, pooled estimates
from cohort studies have shown that red cell transfusions were associated with a
lower risk of transfusion-associated necrotising enterocolitis (TA-NEC) in preterm
infants. In contrast, those from case-control studies showed no association of
TA-NEC with red cell transfusions (Saroha et al. 2019).

Evidence from non-RCTs, considering their higher risk of bias, can only be used
to generate hypotheses to be tested in RCTs. However, when there are no RCTs in
the field of interest, non-RCTs can provide the ‘best available’ evidence for deci-
sion making. The current focus of the Cochrane collaboration on systematic reviews
of non-RCTs supports this philosophy (Reeves et al. 2019).

Critical Appraisal of Systematic Reviews of Non-rCTs

AMSTAR 2 is a critical appraisal tool for systematic reviews that include ran-
domised or non-randomised studies of healthcare interventions or both (Shea et al.
2017).

In summary, systematic reviews of non-RCTs are an essential part of the evi-
dence in totality, considering RCTs may not always be available or possible for
various reasons. Suppose a comprehensive literature search reveals no RCTs. In
that case, a systematic review of non-RCTs is justified as long as they directly
address the framed question (PICOS), and are well designed, and conducted with
minimal risk of bias (Faber et al. 2016). Whether systematic reviews of non-RCTs
overestimate or underestimate the effects of the intervention compared to RCTs,
continues to be a controversial issue (Abrahama et al. 2010).
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Individual Participant Data
(IPD) Meta-Analysis

Abhijeet Rakshasbhuvankar

Abstract Individual participant data (IPD) meta-analyses are relatively new
compared with the traditional aggregate data meta-analyses. IPD meta-analyses
involve the collection, checking, and re-analysis of the original data for each par-
ticipant in each study. IPD meta-analyses have many advantages over traditional
meta-analyses using aggregate data such as better assessment of the integrity of
studies, and the ability to perform additional analyses at the participant level.
Results of IPD meta-analyses can substantially differ from aggregate data
meta-analyses. Systematic reviews and meta-analyses based on IPD are considered
as the gold standard. However, there are multiple challenges in the way to perform
IPD meta-analyses, such as obtaining individual participant data from the studies
and a considerable amount of time and financial requirements. This chapter covers
the differences in individual participant and aggregate data and the steps, models,
advantages and challenges involved in IPD meta-analysis.

Keywords IPD meta-analysis � Individual participant data � Patient-level data �
Aggregate data � Data sharing � One-stage model � Two-stage model

Background

Meta-analysis is a statistical combination of results from two or more separate
studies (Deeks and Altman 2019). Meta-analyses are commonly based on aggregate
data extracted from published results or obtained from investigators. Hence they are
also called aggregate data (AD) meta-analyses. Individual participant data
(IPD) meta-analyses involve the collection, checking, and re-analysis of the original
data for each participant in each study (Tierney and Clarke 2019). Systematic
reviews and meta-analyses based on IPD are considered as the gold standard (Riley
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et al. 2010; Stewart and Parmar 1993). IPD meta-analysis should ideally include
data from all studies identified by a thorough systematic literature search as a part of
a systematic review. However, IPD may be performed occasionally in
non-systematic reviews by including studies in which data is readily available
without performing a systematic search (de Weerd et al. 2010) or collaborative
reviews where data only from collaborative studies are included (Askie et al. 2018).
Apart from interventional studies, IPD meta-analyses can also be performed for
diagnostic and prognostic prediction modelling studies (Debray et al. 2015).

IPD meta-analyses are relatively an innovation compared with AD
meta-analyses. The first AD meta-analysis in the medical field was performed by
Karl Pearson in 1904 to assess the effectiveness of inoculation for enteric fever
using data from six observational studies (Report on Certain Enteric Fever
Inoculation Statistics 1904; O’Rourke 2007). IPD meta-analyses first appeared in
the late 1980s following the development of collaborative trial groups (e.g., Early
Breast Cancer Trialists’ Collaborative Group, 1987). The number of IPD
meta-analyses has increased over the last two decades. However, it remains only a
small percentage of all meta-analyses performed (Riley et al. 2010; Simmonds et al.
2015; Huang et al. 2014). Experts have emphasised the need for more IPD
meta-analyses (Oxman et al. 1995).

Individual Participant Data (IPD)

IPD refers to the raw data recorded for each participant and includes the patient
characteristics and effects of an intervention. On the other hand, AD represents a
summary of IPD in the form of average patient characteristics and estimates of the
intervention effect (Tierney et al. 2015). IPD is the source of AD (Riley et al. 2010).
AD is generally published in the reports as they are easy to interpret and require less
space than IPD. As IPD is not published and not peer-reviewed, it may be more
liable to error and bias than the published AD, which is peer-reviewed (Chalmers
1987). Hence, checking the data and trial protocol of the studies is critical while
dealing with IPD (Stewart and Parmar 1993).

The process of data collection for IPD review can be retrospective or prospective
(Kawahara et al. 2018). In the retrospective process, the already collected IPD data
is sought either by contacting investigators of the studies or through a repository
(Tudur Smith et al. 2014). Such data collection needs collaboration between
reviewers and study investigators. Inviting study investigators as co-authors for
meta-analysis may help the process. In the prospective data collection process, the
data is collected prospectively through a collaborative research group established by
the researchers in the field (e.g., Early Breast Cancer Trialists’ Collaborative Group)
(Riley et al. 2010).
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Limitations of AD Meta-Analyses

The availability of only summary statistics (AD) limits the possible analyses and
may reduce the power in AD meta-analysis. Moreover, the availability and quality
of such data may vary across studies, and reporting of data is often influenced by
publication and reporting bias (Riley et al. 2010), affecting the reliability of AD
meta-analysis (Tierney et al. 2015). AD meta-analyses are prone to ecological bias,
which results when observed across-study relationships do not accurately reflect the
individual-level relationship within a trial (Hua et al. 2017). AD meta-analyses are
inadequate to study interactions between covariates and treatment effects as they
investigate across-studies interactions between aggregated treatment effects and
covariates at study levels without due consideration of within-study interactions at
the individual level (Hua et al. 2017).

Advantages of IPD Meta-Analysis

IPD meta-analyses have many advantages over AD meta-analyses. Some advan-
tages are inherent to IPD analysis, while others are a byproduct of the time and
effort devoted to the collaboration between researchers required for IPD
meta-analysis.

1. Less reporting bias: IPD meta-analysis does not rely on published information
but includes all available trial data (Stewart and Parmar 1993). Besides, the
availability of the raw data helps in analysing outcomes that are not reported in
the published articles because of space limitations, perceived less relevance, or
statistical insignificance.

2. Better assessment of the integrity of trials: For example, adequacy of ran-
domisation can be assessed by comparing randomisation protocol with the order
of recruited patients in IPD. The availability of the raw data enables thorough
data checks to identify any inaccuracies and errors and ensures the appropri-
ateness of analyses.

3. Improved consistency across trials: IPD enables the use of standard definitions
for patient characteristics (e.g., age groups, eligibility criteria, comorbidities),
interventions (e.g., the specific dose from a range of drug doses) or outcomes
(e.g., cut-off points, criteria for positivity) (Lyman and Kuderer 2005).

4. Enables additional analyses: IPD helps in addressing questions that are not
addressed in the original publication, studying interactions between covariates
and treatment effects, adjusting for the same variables across studies, exploring
heterogeneity at the patient level, subgroup analyses of patient-level data, and
survival and other time-to-event analyses (Davey Smith et al. 1997).

5. Enables updating outcome-related data: For example, follow-up data or time to
event data to the latest one if it has been collected. Therefore, IPD meta-analyses
are very useful in reviews addressing long-term outcomes.
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6. Encourages collaboration between researchers: The cooperation of multiple
researchers in IPD review may help in complete identification of relevant trials,
better compliance with providing missing data, more balanced interpretation of
the results, broader endorsement and dissemination of the results, better clari-
fication of the further research, and collaboration on further research (Oxman
et al. 1995; Tierney et al. 2015).

Methods

Table 1 shows the important steps while undertaking an IPD systematic review and
meta-analysis (Tierney and Clarke 2019). The statistical methods for IPD analysis
can be complicated, require advanced statistical software, and are less well
developed as compared with “conventional” AD meta-analysis.

It is important to note that IPD from different studies cannot be pooled together
as if it was derived from a single large RCT. We must account for the clustering
resulting from the data derived from different studies using either One-stage or
Two-stage model (Simmonds et al. 2005).

1. The two-stage model: It resembles AD meta-analysis, and involves the pooling
of data within an individual study to derive aggregate data in the first stage
followed by meta-analysis to derive effect estimate in the second stage. In the
two-stage model, while investigating the association between covariates and
treatment effect, ecological or aggregation bias should be avoided by estimating
within-trial association and then pooling the association estimates across trials
using conventional meta-analysis (Stewart et al. 2012). The two-stage model is
less complicated, easier to interpret, and enables the generation of forest plots.
However, it is less efficient for studying interactions between covariates and
treatment effects, especially in the presence of small trials and clinical hetero-
geneity. It may be adequate for IPD meta-analysis involving large and
homogenous trials.

2. The one-stage model: It is a regression analysis stratified for studies to estimate
the intervention effect. It improves power to detect interactions between
covariates and treatment effects (Lambert et al. 2002; Simmonds and Higgins
2007). It is flexible as it allows the inclusion of multiple covariates in a single
model and avoids ecological bias. However, it is more complex, requires a
higher degree of statistical expertise, increases the potential for data dredging,
does not generate forest plots, and challenging to interpret (Stewart et al. 2012;
Turner et al. 2000; Higgins et al. 2001). It is essential when an IPD
meta-analysis contains small trials and clinically heterogeneous populations
(Stewart et al. 2012).
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Reporting

Optimum reporting of systematic reviews is essential to make it easier to under-
stand, and critique, and for implementing the findings. Standardised reporting
checklist for AD meta-analyses was first developed in 1996 (QUOROM: QUality
Of Reporting Of Meta-analyses) (Moher et al. 1999). It was revised in 2009 and
included systematic reviews (PRISMA: Prefered Reporting Items for Systematic
Reviews and Meta-Analyses) (Moher et al. 2009). Subsequently, the PRISMA
guidelines were modified for systematic reviews and meta-analyses of IPD to allow
the reviewers to address important IPD-specific issues: e.g., whether eligibility
criteria were applied at study level or individual level (item 6), how IPD were

Table 1 Checklist when undertaking a new IPD review (Tierney and Clarke 2019)

Step Details

Decide if IPD review is
appropriate for the topic.

∙ Aggregate data does not permit good quality review
∙ The aim is to explore subpopulation
∙ The aim is to optimise the analysis of time-to-event
outcomes

Assess if IPD review is
possible.

∙ Sufficient IPD available
∙ Sufficient time, resources, skills and expertise available

Collect IPD ∙ Contact and establish rapport with authors, encourage them
to join as co-authors
∙ Generic data sharing platforms: e.g. Clinical Study Data
Request
∙ International collaborative clinical trials
∙ Data from a topic-based repository, e.g. Early Breast
Cancer Trialists’ Group
∙ Ethics approval is generally not required if reviewers are
addressing the same question as to the original investigators
∙ Obtain sufficient data

Data management ∙ Data may need to be redefined or recoded to make it
homogenous to allow pooling
∙ Check for completeness and integrity of data
∙ Check for risk of bias in included studies
∙ Check data for appropriateness of randomisation,
allocation sequence concealment, and attrition

Analysis ∙ Important to account for clustering of participants in an
IPD
(a) Two-stage model
(b) One-stage model
(c) Combination of One and Two-stage models
∙ Exploring the effect of trial and participant characteristics:
This must be limited in numbers, prespecified in the
protocol and based on biological plausibility
(a) Subgroup analysis
(b) Meta-regression

Reporting ∙ PRISMA-IPD guideline
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requested and collected, what information was sought and what could or could not
be obtained and from how many studies (item 10), details of data integration (item
A1) and risk of bias checking (item 12), data synthesis model used (item 14),
methods used to study participant-level characteristics and whether these were
prespecified (item A2), results with inclusion and exclusion of studies for which
IPD were not available (item 23) (Stewart et al. 2015).

Results of IPD Versus AD Meta-Analysis

IPD and AD meta-analyses results correlate in the majority of cases (Tudur Smith
et al. 2016; Huang et al. 2016). However, they may also defer substantially. The
Cochrane review comparing meta-analyses of RCTs based on IPD versus AD
showed disagreement in the statistical significance in 20% of the comparisons. IPD
comparisons were more likely to yield significant results than those based on AD
because of more number of participants and longer length of follow-up in IPD
meta-analyses (Tudur Smith et al. 2016). The disagreement may be at the level of
significance or the direction of effect. For example, in meta-analyses comparing
laparoscopic versus open hernia repair, AD meta-analysis showed persistent pain to
be more common in the laparoscopic group (OR: 2.03; 95% CI: 1.03 to 4.01, 3
trials) while IPD meta-analysis showed persistent pain to be less common in the
laparoscopic group (OR: 0.54, 95% CI: 0.46 to 0.64, 20 trials) (Collaboration 2000;
McCormack et al. 2004, 2003). The disagreement between IPD and AD
meta-analyses may happen even when analyses are based on identical trials and
participants (Tudur Smith et al. 2016). In a comparison of AD and IPD
meta-analyses the effect of paternal cell immunisation for preventing recurrent
miscarriages leading to live birth was significant in AD meta-analysis (RR: 1.29;
95% CI 1.03 to 1.60) but insignificant in IPD meta-analysis of the same studies
(RR: 1.17; 95% CI: 0.97 to1.37) (Jeng et al. 1995).

Limitations and Challenges

Obtaining IPD from eligible studies is one of the most challenging steps in the
process of IPD meta-analysis. IPD may not be obtained because of various reasons,
including difficulties in contacting authors, or their unwillingness to share data or
loss of the data (Clarke 2005). Unavailability of a small proportion of IPD (prob-
ably < 5–10%) may not need any additional analyses (Rogozińska et al. 2017).
However, if a significant proportion of IPD is not available, AD may be included in
the meta-analysis, and sensitivity analysis excluding AD should be performed to
test the robustness of the results. In a systematic review of 760 published IPD
meta-analyses, only 25% of the IPD meta-analyses could retrieve 100% IPD from
the eligible studies (Nevitt et al. 2017). To improve access to IPD, the International
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Committee of Medical Journal Editors (ICMJE) mandated all clinical trials that start
recruitment on or after 1st January 2019 to include a data sharing plan in trial’s
registration as a condition for consideration for publication of the trial’s report in
member journals (Taichman et al. 2017).

IPD allows exploring differences in the treatment effects based on the subgroup
of patients. However, caution is required in interpreting the results of subgroup
analyses if they were not prespecified, many subgroups were tested, the difference
was suggested by comparisons between rather than within the studies, the difference
was not consistent across studies, and no indirect evidence that supports the
hypothesised difference (Oxman and Guyatt 1992; Yusuf et al. 1991). Such sub-
group analyses may lead to erroneous conclusions because of bias (systematic
error) and the play of chance (random error).

IPD meta-analysis requires a considerable amount of time, personnel, financial
resources, and international cooperation of all individuals and groups who have
conducted relevant original research (Oxman et al. 1995).

Summary

Results of a meta-analysis using AD and IPD correlate in the majority of cases
(Tudur Smith et al. 2016; Huang et al. 2016). However, IPD meta-analyses can
produce critical results that might not have been obtainable in any other way
(Clarke and Stewart 1998). IPD offers the advantage of a more thorough analysis
and investigation of subgroup differences to go “beyond the grand mean” and help
in choosing the treatment most suitable for an individual patient, i.e., “individu-
alised medicine” (Davey Smith et al. 1997). The main obstacles in performing IPD
meta-analyses include difficulties in procuring data, and the need for statistical
expertise, financial resources, and considerable time.

References

Askie LM, Darlow BA, Finer N, et al. Association between oxygen saturation targeting and death
or disability in extremely preterm infants in the neonatal oxygenation prospective
meta-analysis collaboration. JAMA. 2018;319(21):2190–201.

Chalmers TC. Meta-analysis. Lancet. 1987;1(8548):1492.
Clarke MJ. Individual patient data meta-analyses. Best Pract Res Clin Obstet Gynaecol. 2005;19

(1):47–55.
Clarke M, Stewart L. Re: “Comparison of effect estimates from a meta-analysis of summary data

from published studies and from a meta-analysis using individual patient data for ovarian
cancer studies”. Am J Epidemiol. 1998;148(1):102–3.

Davey Smith G, Egger M, Phillips AN. Meta-analysis. Beyond the grand mean? BMJ. 1997;315
(7122):1610–1614.

deWeerd M, Greving JP, Hedblad B, et al. Prevalence of asymptomatic carotid artery stenosis in the
general population: an individual participant data meta-analysis. Stroke. 2010;41(6):1294–7.

Individual Participant Data (IPD) Meta-Analysis 153



Debray TP, Riley RD, Rovers MM, Reitsma JB, Moons KG. Individual participant data
(IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use.
PLoS Med. 2015;12(10):e1001886.

Deeks JJ HJ, Altman DG (editors). Analysing data and understanding meta-anlyses. In:
Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor. Cochrane
handbook for systematic reviews of interventions, 2nd ed. Chichester (UK): John Wiley and
Sons; 2019. p. 241–284.

Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous
outcome data from individual patients. Stat Med. 2001;20(15):2219–41.

Hua H, Burke DL, Crowther MJ, Ensor J, Tudur Smith C, Riley RD. One-stage individual
participant data meta-analysis models: estimation of treatment-covariate interactions must
avoid ecological bias by separating out within-trial and across-trial information. Stat Med.
2017;36(5):772–89.

Huang Y, Mao C, Yuan J, et al. Distribution and epidemiological characteristics of published
individual patient data meta-analyses. PLoS ONE. 2014;9(6):e100151.

Huang Y, Tang J, Tam WW, et al. Comparing the overall result and interaction in aggregate data
meta-analysis and individual patient data meta-analysis. Medicine (Baltimore). 2016;95(14):
e3312.

Jeng GT, Scott JR, Burmeister LF. A comparison of meta-analytic results using literature vs
individual patient data. Paternal cell immunisation for recurrent miscarriage. JAMA. 1995;274
(10):830–836.

Kawahara T, Fukuda M, Oba K, Sakamoto J, Buyse M. Meta-analysis of randomised clinical trials
in the era of individual patient data sharing. Int J Clin Oncol. 2018;23(3):403–9.

Lambert PC, Sutton AJ, Abrams KR, Jones DR. A comparison of summary patient-level
covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol.
2002;55(1):86–94.

Collaboration EH. Laparoscopic compared with open methods of groin hernia repair: systematic
review of randomised controlled trials. Br J Surg. 2000;87(7):860–867.

Lyman GH, Kuderer NM. The strengths and limitations of meta-analyses based on aggregate data.
BMC Med Res Methodol. 2005;5:14.

McCormack K, Scott NW, Go PM, Ross S, Grant AM. Laparoscopic techniques versus open
techniques for inguinal hernia repair. Cochrane Database Syst Rev. 2003(1):Cd001785.

McCormack K, Grant A, Scott N. Value of updating a systematic review in surgery using
individual patient data. Br J Surg. 2004;91(4):495–9.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and
meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269, w264.

Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of
meta-analyses of randomised controlled trials: the QUOROM statement Quality of Reporting
of Meta-analyses. Lancet. 1999;354(9193):1896–900.

Nevitt SJ, Marson AG, Davie B, Reynolds S, Williams L, Smith CT. Exploring changes over time
and characteristics associated with data retrieval across individual participant data
meta-analyses: systematic review. BMJ. 2017;357:j1390.

O’Rourke K. An historical perspective on meta-analysis: dealing quantitatively with varying study
results. J R Soc Med. 2007;100(12):579–82.

Oxman AD, Clarke MJ, Stewart LA. From science to practice: meta-analyses using individual
patient data are needed. JAMA. 1995;274(10):845–846.

Oxman AD, Guyatt GH. A consumer’s guide to subgroup analyses. Ann Intern Med. 1992;116
(1):78–84.

Report on certain enteric fever inoculation statistics. Br Med J. 1904;2(2288):1243–6.
Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale,

conduct, and reporting. BMJ. 2010;340:c221.
Rogozińska E, Marlin N, Thangaratinam S, Khan KS, Zamora J. Meta-analysis using individual

participant data from randomised trials: opportunities and limitations created by access to raw
data. Evid Based Med. 2017;22(5):157–62.

154 A. Rakshasbhuvankar



Simmonds MC, Higgins JP. Covariate heterogeneity in meta-analysis: criteria for deciding
between meta-regression and individual patient data. Stat Med. 2007;26(15):2982–99.

Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of
individual patient data from randomised trials: a review of methods used in practice. Clin
Trials. 2005;2(3):209–17.

Simmonds M, Stewart G, Stewart L. A decade of individual participant data meta-analyses: a
review of current practice. Contemp Clin Trials. 2015;45(Pt A):76–83.

Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there a
difference? Lancet. 1993;341(8842):418–22.

Stewart GB, Altman DG, Askie LM, Duley L, Simmonds MC, Stewart LA. Statistical analysis of
individual participant data meta-analyses: a comparison of methods and recommendations for
practice. PLoS ONE. 2012;7(10):e46042.

Stewart LA, Clarke M, Rovers M, et al. Preferred Reporting Items for Systematic Review and
Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA. 2015;313
(16):1657–65.

Taichman DB, Sahni P, Pinborg A, et al. Data sharing statements for clinical trials: a requirement
of the International Committee of Medical Journal Editors. Lancet. 2017;389(10086):e12–4.

Tierney JFSL, Clarke M. Individual participant data. In: Higgins JPTTJ, Chandler J, Cumpston M,
Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of
interventions. Chichester (UK): John Wiley and Sons; 2019. p. 643–58.

Tierney JF, Vale C, Riley R, et al. Individual Participant Data (IPD) meta-analyses of randomised
controlled trials: guidance on their use. PLoS Med. 2015a;12(7):e1001855.

Tierney JF, Pignon JP, Gueffyier F, et al. How individual participant data meta-analyses have
influenced trial design, conduct, and analysis. J Clin Epidemiol. 2015;68(11):1325–35.

Tudur Smith C, Dwan K, Altman DG, Clarke M, Riley R, Williamson PR. Sharing individual
participant data from clinical trials: an opinion survey regarding the establishment of a central
repository. PLoS ONE. 2014;9(5):e97886.

Tudur Smith C, Marcucci M, Nolan SJ, et al. Individual participant data meta-analyses compared
with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9(9):
Mr000007.

Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for
meta-analysis of clinical trials with binary outcomes. Stat Med. 2000;19(24):3417–32.

Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpretation of treatment effects in
subgroups of patients in randomised clinical trials. JAMA. 1991;266(1):93–8.

Individual Participant Data (IPD) Meta-Analysis 155



Systematic Reviews of Diagnostic Test
Accuracy

Mohan Pammi and Yemisi Takwoingi

Abstract Systematic reviews of diagnostic test accuracy (DTA) are increasingly
being published. Diagnostic accuracy is the ability of a test to discriminate between
those who have or do not have a target condition. The accuracy of a test is
determined by assessing the results of an index test against a reference standard,
sometimes known as the ‘gold’ standard. The reference standard is the best
available way to verify the presence or absence of the target condition. DTA
systematic reviews summarise evidence on the accuracy of a single index test or
compare the accuracy of two or more tests, including an investigation of the reasons
for heterogeneity. Heterogeneity in DTA systematic reviews may be due to char-
acteristics of the population, index test and reference standard, as well as the design
and conduct characteristics of the studies. Systematic reviews of DTA present
greater challenges than those of randomised controlled trials of interventions. This
chapter briefly covers the principles and practice of systematic reviews of DTA.

Keywords Diagnostic accuracy � Likelihood ratio � Predictive value � Receiver
operating characteristic (ROC) plot � Systematic review � Sensitivity � Specificity

Introduction

Medical literature has exploded in the past few decades, and it has become essential
to synthesise evidence into summaries and synopses. Properly conducted systematic
reviews of primary research studies use a scientific process, which limits bias in the
identification and selection of studies and enables critical appraisal and synthesis of
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relevant studies that address a specific clinical question (Cook et al. 1997).
Systematic reviews can help establish whether findings are consistent and gener-
alisable, or whether findings vary between studies (i.e. heterogeneity). A systematic
review may include at least one meta-analysis. Meta-analysis is a scientific tech-
nique for pooling the results of multiple studies to obtain more precise estimates
and to quantify the extent of heterogeneity.

Systematic reviews of diagnostic test accuracy (DTA) are increasingly being
published. Diagnostic accuracy is the ability of a test to discriminate between those
who have or do not have a target condition. The accuracy of a test is determined by
assessing the results of an index test (a new or existing test of interest) against a
reference standard, sometimes known as a ‘gold’ standard (Table 1). The reference
standard is the best available way to verify the presence or absence of the target
condition. DTA systematic reviews summarise evidence on the accuracy of a single
index test or compare the accuracy of two or more tests, including an investigation
of reasons for heterogeneity (Leeflang 2014). Heterogeneity is common in DTA
systematic reviews and may be due to characteristics of the population, index test
and reference standard, as well as features related to the design and conduct of
studies (Macaskill 2013).

The methods used for systematic reviews have an impact on their validity. Several
stages in the conduct of DTA systematic reviews present greater challenges than those
of systematic reviews of randomised controlled trials (RCTs) of interventions.
Recognising the complexity of DTA reviews, the Cochrane Collaboration, the world’s
largest producer of systematic reviews, delayed introducing this review type into the
Cochrane Library until there were sufficient development and understanding of
methodology to support their implementation and production. The first Cochrane DTA
review was published in 2008, 12 years after the formal registration of the Cochrane
Screening and Diagnostic Test Methods Group (2). Many Cochrane DTA reviews
have since been published (https://www.cochranelibrary.com).

Table 1 Classification of index test results against reference standard results (2 � 2 table)

Reference
standard + ve

Reference standard-
ve

Total

Index
test + ve

a (true positives) b (false positives) a + b (test positive)

Index test -
ve

c (false negatives) d (true negative) c + d (test negative)

Total a + c (disease
positive)

b + d (disease
negative)

a + b+c + d total
analyzed

Adapted from Takwoingi et al. (2015)
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Introduction to Diagnostic Accuracy Studies

The ideal study design to assess the clinical performance of a test is a study of a
consecutive series of patients. These patients should be prospectively recruited from
the target population in whom the test will be applied in practice. For example,
neonates clinically suspected of having sepsis or infection should be recruited from
a neonatal intensive care unit where an index test, a molecular assay, for the
diagnosis of sepsis will be applied.

Most test evaluations focus on the accuracy of a single test without making
comparisons with alternative tests that can be used at the same point in the diag-
nostic pathway (Takwoingi et al. 2013). However, for clinical decision making,
evaluations of a single test are of limited value when alternative tests are available.
Well-designed comparative (head-to-head) studies of two or more tests enable
evaluation of new tests against existing testing pathways and guide test selection,
thereby facilitating decision making.

The common measures used to describe the accuracy of a test are sensitivity,
specificity, positive and negative predictive values, and positive and negative
likelihood ratios (Table 2). The results of a diagnostic test can be a binary outcome
(e.g. positive or negative blood culture), continuous outcome (e.g. BNP for diag-
nosis of hemodynamically significant patent ductus arteriosus (Kulkarni et al.
2015)) or an outcome with an ordered set of categories (e.g. intraventricular
hemorrhage from grade I to grade IV).

If the test result is a continuous or an ordinal outcome, plotting sensitivity and
specificity at different thresholds for defining the positivity of the test result is useful
for exploring the relationship between sensitivity and specificity across thresholds.
The visual graphical representation of the relationship between sensitivity and
specificity is known as a receiver operating characteristic (ROC) plot (Akobeng
1992). Traditionally, the ROC plot is a plot of sensitivity against 1-specificity. The
line joining the points of sensitivity and 1-specificity of a test at different thresholds
is called the ROC curve. The diagonal line on the ROC plot joining the lower
left-hand corner (0, 0) and the upper right-hand corner (1, 1) depicts the charac-
teristics of a test which is not useful in clinical practice. This line indicates that the
test detects an equal proportion of true and false positives and cannot discriminate
between those with disease and those without the disease. The position of the ROC
curve depends on the accuracy of the test, with a more accurate test having a curve
that is closer to the upper left corner of the ROC plot. The ROC curve is useful: to
determine the threshold, which optimises either sensitivity or specificity or both,
assess the diagnostic accuracy of a test and to compare two or more diagnostic tests.
Measures such as the diagnostic odds ratio (DOR) and the area under the curve
(AUC) can be used to describe the ROC curve as they summarise the accuracy of a
test across all possible thresholds.
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Roadmap for Performing a DTA Systematic Review

Step 1: Define the review question

Like any systematic review, the first and crucial step is to formulate and refine the
question to be answered by the systematic review. The main items of a DTA review
question are.

(i) Patients or population in whom the test will be used
(ii) Index test: the new test or test of interest.
(iii) Comparator test: applies to reviews which compare the accuracy of two or

more tests (comparative accuracy reviews). The comparator may be an
existing test or current practice, or other index tests.

(iv) Target condition or the disease that is defined by the reference standard
(v) Reference standard or the gold standard that defines the target condition

The review question determines the search strategy and eligibility criteria for
selecting studies for inclusion in the review, and the interpretation of the review
findings (Leeflang 2014). It is good practice to spend time defining and refining the
review question to ensure the appropriate clinical question is addressed. The other
major aspect to consider in the review question is where the test fits in the

Table 2 Measures of test accuracy

Measure Estimation Definition

Sensitivity
(sens)

a/a + c The proportion of those with the target condition
correctly identified as having the condition

Specificity
(spec)

d/b + d The proportion of those without the target condition
correctly identified by the test as not having the
condition

Positive
predictive value
PPV

a/a + b The proportion of those with the target condition out
of the test positives

Negative
predictive value
NPV

d/c + d The proportion of those without the target condition
out of the test negatives

Positive
likelihood ratio
LR+

a/(a + c)/b/
(b + d) or sens/
1-spec

The ratio of the proportion who tested positive out
of those with the target condition to the proportion
who tested positive out of those without the target
condition

Negative
likelihood ratio
LR-

c/(a + c)/d/
(b + d) or 1-sens/
spec

The ratio of the proportion who tested negative out
of those with the target condition to the proportion
who tested negative out of those without the target
condition

Diagnostic odds
ratio

ad/bc or LR +/
LR-

The ratio of the odds of positivity in those with the
target condition relative to the odds of positivity in
those without the condition

Adapted from Takwoingi et al. (2015)
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diagnostic pathway. New diagnostic tests may replace an existing test, be used as a
triage test before an existing test, or as an ‘add on’ to an existing test in the pathway
(Bossuyt et al. 2006).

Step 2: Search for relevant literature

The search should be comprehensive to avoid missing relevant studies. As a
minimum, at least two bibliographic databases such as MEDLINE and EMBASE
should be searched (Preston et al. 2015). Conference proceedings using BIOSIS or
other topic relevant conference abstracts are also useful data sources. Search terms
should include terms related to the key elements of the review question; these
should be used as keywords or medical subject headings (MESH). Methodological
search filters based on terms such as sensitivity, specificity or diagnostic accuracy
may not decrease the number of irrelevant articles retrieved and may miss relevant
ones. Therefore, such filters are not recommended (Beynon et al. 2013). It is highly
recommended that a librarian assists with the development of the search strategy.
For transparency and replication purposes, the search strategy and databases used
should be reported in the systematic review.

Step 3: Study selection and data extraction

Ideally, two authors should independently assess studies for inclusion and discuss
any discrepancies. The titles and abstracts of the articles identified are screened for
relevance, followed by the screening of the full text of all potentially relevant titles.
Studies that meet the eligibility criteria are selected for inclusion in the review. For
the studies excluded, reasons for exclusion should be documented. The flow of
studies through the screening and selection process should be illustrated using a
PRISMA flow diagram (http://prisma-statement.org/PRISMAStatement/
FlowDiagram.aspx). Characteristics of the population, index test, reference stan-
dard, and target condition, study design features and test accuracy data should be
extracted using a piloted data extraction form. The data should be extracted by two
authors independently and any discrepancies resolved by discussion.

Step 4: Assessment of methodological quality

Assessment of the methodological quality of the included studies is essential. The
QUADAS-2 tool (available at www.quadas.org) is the checklist recommended by
Cochrane (Macaskill 2013; Whiting et al. 2011). The tool comprises four domains,
namely patient selection, index test, reference standard, and flow and timing. The
domains are assessed in terms of risk of bias (i.e. internal validity) and applicability
concern (i.e. external validity), except for the flow and timing domain, which only
addresses the risk of bias. Each domain has signalling questions, which aid the
assessor in making an overall risk of bias judgement (high risk, low risk or unclear
risk) for the domain. The results of the QUADAS-2 assessment are typically
summarised graphically (Fig. 1).
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Step 5: Data analysis and synthesis

Sensitivities and specificities from the included studies should be plotted on forest
plots (e.g. Fig. 2) and in ROC space for preliminary investigation of the data. If
there is adequate data, meta-analysis is used for data synthesis. Hierarchical (mixed)
models are recommended for meta-analysis of DTA studies. These models account
for both within- and between-study variability, as well as the correlation between
sensitivity and specificity across studies (Takwoingi et al. 2015; Macaskill et al.
2010). The two most commonly used hierarchical models are the bivariate model
(Reitsma et al. 2005; Chu and Cole 2006) and the hierarchical summary ROC
(HSROC) model (Rutter and Gatsonis 2001). The bivariate model focuses on
estimating a summary point (summary sensitivity and specificity) while the
HSROC model focuses on estimating a summary curve. Both models are mathe-
matically equivalent when covariates for test comparisons or investigations of
heterogeneity are not included (Harbord et al. 2007). A covariate is a variable that
may affect test performance, e.g. type of assay kit in measurements of BNP in a
neonate with patent ductus arteriosus.

The summary sensitivity and specificity of a test should only be estimated if the
test has a binary outcome (e.g. abnormal versus normal), or if studies report
accuracy at the same threshold for an ordinal or continuous outcome. Confidence
and prediction regions can be drawn around this summary point on an SROC plot to
illustrate uncertainty around the summary estimates and the extent of heterogeneity,
respectively (Fig. 3). The 95% confidence region can be regarded as a
two-dimensional 95% confidence interval around the summary point that also
reflects the correlation between sensitivity and specificity. A 95% confidence region
denotes an area, based on the available data, within which we would expect the
‘real value’ to be 95% of the time. The 95% prediction region around the summary
point indicates the region where we would expect the results from a new study in
the future to lie 95% of the time and is, therefore, wider than the confidence region
as it goes beyond the uncertainty in the available data. If studies report different
thresholds, then the estimation of a summary curve is more appropriate (Fig. 4).
However, if a study reports 2 � 2 data at multiple thresholds, a threshold needs to
be selected as only one 2 � 2 table for a test can be included per the study in an
analysis using the HSROC model. Methods that extend hierarchical models to

Fig. 1 Assessment of methodological quality of included studies. (Adapted from (Pammi et al.
2017))
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allow for the inclusion of multiple 2 � 2 tables from each included study exist and
two of the methods are particularly promising (Steinhauser et al. 2016; Jones et al.
2019).

Risk of bias and applicability concerns graph: Review authors’ judjements
about each domain are presented as percentages across included studies. The
numbers shown on each bar represent the number of studies that were scored as
high, unclear or low in terms of risk of bias or applicability concern for that domain.

To assess the relative accuracy of two or more tests, two strategies are typically
used; use all available studies that have evaluated at least of one the tests (indirect
test comparison, Fig. 4) or restrict the analysis to only studies that have compared
the tests head-to-head (direct test comparison) (Macaskill et al. 2010; Leeflang et al.
2008). Direct comparisons are less prone to bias due to confounding because the
tests have been compared in the same study population. However, the availability of
such comparative studies is often limited (Takwoingi et al. 2013). If an indirect
comparison is a primary analysis, a direct comparison should also be performed as a
secondary analysis if comparative studies are available. A meta-regression approach

Fig. 2 Forest plot of molecular tests for diagnosis of neonatal sepsis. FN: false negative; FP: false
positive; TN: true negative; TP: true positive. The forest plot shows estimates of sensitivity and
specificity with 95% confidence intervals (CIs) for each included study. The studies are sorted on
the plot by specificity. Cochrane Database of Systematic Reviews25 Feb 2017 https://doi.org/10.
1002/14651858.cd011926.pub2 (Adapted from (Pammi et al. 2017))
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is typically used for comparative meta-analysis by adding a covariate for test type to
a hierarchical model. The choice of model (bivariate or HSROC model) depends on
whether summary points or curves are appropriate given the research question and
the available data.

Visual inspection of forest and SROC plots are useful for exploring variability
between studies. For the molecular assay example, the forest plot (Fig. 2) show that
sensitivity estimates are more variable between studies than specificity. This may be
due to the small number of cases in many studies as well as other factors.
The SROC plot (Fig. 3) also show considerable scatter of the studies in ROC space.
To formally investigate heterogeneity, meta-regression can be performed by adding
a potential source of heterogeneity as a covariate to a hierarchical model. The
selection of covariates should be justified and pre-specified in the review protocol.
Further details on methods for meta-analysis and examples are available in the
Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy
(Macaskill et al. 2010). Software programs, tutorials and online learning modules
are available on the Cochrane Screening and Diagnostic Tests Methods Group
website (https://methods.cochrane.org/sdt/).

Fig. 3 Studies reporting accuracy of molecular assays in neonatal sepsis are plotted in ROC space
as clear circles. The summary estimate is depicted by the black filled circle and is surrounded by
95% confidence and 95% prediction regions. Cochrane Database of Systematic Reviews 25 Feb
2017 https://doi.org/10.1002/14651858.cd011926.pub2. (Adapted from (Pammi et al. 2017))
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Step 6: Interpretation and drawing conclusions

The results of the meta-analysis should be interpreted within the context of the sys-
tematic review question. In addition, the implications of the results in clinical practice
and the consequences of a false positive or a false negative test result should be
explained. Expressing summary sensitivity and specificity using natural frequencies
will aid understanding of the review findings and the consequences of inaccurate test
results. The meta-analysis of molecular assays for neonatal sepsis gave a mean sensi-
tivity of 0.90 (95%CI 0.82 to 0.95) and amean specificity of 0.93 (95%CI 0.89 to 0.96)
(Pammi et al. 2017). If we apply the summary estimates of this review to a theoretical
cohort of 1000 very low birth weight neonates screened for late-onset sepsis (sepsis
after the first 72 h of life, prevalence 10%), ten culture-positive cases will be missed,
and 63 neonates without sepsis will be treated unnecessarily. Ideally, we do not want to
miss any case of neonatal sepsis as the consequences are severe and overtreatment is not
a huge issue. Therefore, the review concluded that currently available molecular assays
do not have sufficient diagnostic accuracy to replace microbial cultures. The limitations
of a review, including issues related to heterogeneity, risk of bias and applicability
concerns should be considered when drawing conclusions.

Fig. 4 Summary curves for BNP (black line) and NT-proBNP (red line) for diagnosis of
hemodynamically significant PDA in preterm neonates (Adapted from (Kulkarni et al. 2015))
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Summary and Conclusions

Systematic reviews of diagnostic accuracy are challenging and should be under-
taken by a review team with adequate clinical and methodological expertise.
Table 3 summarises key differences between systematic reviews of diagnostic
accuracy and those of RCTs of interventions.
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Network Meta-Analysis

Sanjay Patole

Abstract Clinicians are often faced with results of randomised controlled trials
comparing different interventions for a condition. However, selecting from a range
of interventions is difficult when no head-to-head trials are comparing their safety
and efficacy. Network meta-analysis (NMA) extends the principles of conventional
meta-analysis to allow assessment of multiple treatments in a single analysis. Hence
it is also called as multiple treatment meta-analysis or mixed treatment compar-
isons. Importantly NMA can provide evidence on ‘relative ranking’ of multiple
interventions. The ability to synthesise indirect evidence and evaluate multiple
interventions with a common comparator in one analysis separates NMA from
conventional pairwise meta-analyses. NMA is vital for evidence-based
decision-making because it allows assessment of direct as well as indirect evi-
dence. Given its complexity compared with conventional meta-analyses, the
involvement of both subject experts and experienced biostatistician is necessary
when planning an NMA. This is particularly important because crucial judgements
and assumptions are involved. This chapter briefly covers the principles of NMA.

Keywords Network � Meta-analysis � Transitivity � Coherence � Equivalence �
League table � Rankogram

Introduction

Network meta-analysis (NMA) extends the principles of conventional
meta-analysis to allow assessment of multiple treatments in a single analysis (Dias
and Caldwell 2019; Rouse et al. 2017; Dias et al. 2018; ter Veer et al. 2019; Dobler
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et al. 2018; Tonin et al. 2017). Hence it is also called as multiple treatment
meta-analysis or mixed treatment comparisons. Importantly, NMA can provide
evidence on ‘relative ranking’ of multiple interventions.

Considering its complexity compared with conventional meta-analyses, the
involvement of both subject experts and experienced biostatistician is necessary
when planning an NMA (Cipriani et al. 2013). This is particularly important
because crucial judgements and assumptions are involved (Mills et al. 2012;
Faltinsen et al. 2018). The principles of NMA are covered briefly considering that a
detailed discussion on its methodology and interpretation is beyond the scope of
this chapter.

Clinicians are often faced with results of randomised controlled trials
(RCT) comparing different interventions for a condition. However, selecting from a
range of interventions is difficult when no head-to-head trials are comparing their
safety and efficacy. NMA is vital for evidence-based decision-making because it
allows assessment of both, direct as well as indirect evidence (Quan et al. 2017;
Chaimani et al. 2019).

The ability to synthesise indirect evidence and evaluate multiple interventions
with a common comparator in one analysis separates NMA from conventional
pairwise meta-analyses (Kiefer et al. 2015; Hoaglin et al. 2011; Jansen et al. 2011).
The direct evidence is the estimate of relative effects of the interventions provided
by RCTs. In contrast, the indirect evidence is inferred by observing the results of
direct comparisons. Indirect evidence, being observational, is subject to bias due to
confounders. In its simplest form, the principle of deriving indirect evidence could
be explained as follows: In a head-to-head RCT, intervention A is better than B. In
another head-to-head RCT, intervention B is equal to C, assuming everything else
is similar between the studies, the conclusion derived is that intervention A is better
than C, when in fact there has been no RCT directly comparing A against C.
Intervention C is the common comparator in this case. This is an example of an

*Head to head comparisons (represented by solid lines) provide ‘Direct’ evidence on the 
effect of intervention A vs. B, and B vs. C. There is no trial directly comparing A vs. C. 
However, everything else being similar, the effect of such a comparison can be ’indirectly’
derived (represented by dotted lines) by effect estimates of A vs. B, and B vs. C. 

Fig. 1 Network of evidence (Open-loop) from clinical trials*
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‘open loop’ or ‘network’ (A-B-C) of evidence (Fig. 1 (Dias and Caldwell 2019;
Rouse et al. 2017; Chaimani et al. 2019). An example of a ‘closed’ loop of (direct)
evidence can be provided by an RCT comparing three interventions (A, B, C)
against each other (Fig. 2). A typical network diagram in a network meta-analysis
of RCTs comparing various interventions for a condition is shown in Fig. 3.

An important benefit of NMA is that it preserves within-trial randomisation by
pooling the relative treatment effects estimated across RCTs. As long as the
interventions assessed to form a connected network of comparisons, the relative

*Three-arm clinical trial providing ‘direct’ evidence for head to head comparison of 
interventions A, B, and C. 

Fig. 2 Network of evidence (Closed loop) from a clinical trial*

*Hypothetical example: Head to head comparisons of trials of probiotic supplementation in 
the perinatal or neonatal period to prevent allergy in childhood. Interventions compared 
against each other or a placebo/control.

Note: The size of the circle (“Node”) is proportional to the sample size, and the width of the 
connecting line is proportional to the number of trials involved in the comparison. 

Fig. 3 Network diagram in a meta-analysis of clinical trials*
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effects and 95% confidence intervals of each intervention compared with every
other can be obtained (Dias and Caldwell 2019; Rouse et al. 2017; Chaimani et al.
2019).

Similar to a conventional systematic review, development of a clear focussed
question and the PICO framework (patient, intervention, comparator, and outcome)
are important initial steps in NMA (Dias and Caldwell 2019; ter Veer et al. 2019;
Dobler et al. 2018; Tonin et al. 2017; Chaimani et al. 2019). It is important to
consider whether the selected outcomes are clinically important, and the surrogate
outcomes are valid for interpretation of the results of NMA. Defining the ‘treatment
network’ is critical (Sturtz and Bender 2012). This includes decisions on the size of
the network, nature of interventions, and their clinical relevance. Literature search
must be comprehensive, considering the much broader context of an NMA com-
pared with conventional systematic reviews. An effect modifier is a clinical or
methodological characteristic of the included trials that has the potential to modify
the effect. Subject expertise is important in this context as effect modifiers can be a
source of significant heterogeneity influencing the entire network. Pre-stating effect
modifiers as well as an assessment of their presence and distribution between
studies, is thus important (Dias and Caldwell 2019; Rouse et al. 2017; Dobler et al.
2018; Tonin et al. 2017; Chaimani et al. 2019).

Key Assumptions and Concepts in NMA

The findings of an NMA are valid only if the assumption that except for the inter-
ventions being evaluated, there are no systematic differences between the trials
included in the analysis, is correct (Dias and Caldwell 2019; Rouse et al. 2017;
Dobler et al. 2018; Tonin et al. 2017; Chaimani et al. 2019). Transitivity (also called
as similarity) refers to this key assumption in NMA (Fig. 4). It reflects an equal
probability that any patient in the network could have received any of the inter-
ventions included in the network. Transitivity concerns the validity of making
indirect comparisons by assuming a balanced distribution of clinical and

• Transitivity (similarity): All trials included in the NMA are comparable in terms of 
potential effect modifiers.

• Homogeneity: There is no significant heterogeneity between trial results in 
pairwise comparisons. 

• Consistency: There is no significant discrepancy or inconsistency between direct 
and indirect evidence.

Fig. 4 Basic assumptions for indirect comparisons (Kiefer et al. 2015)
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methodological characteristics of the included trials with direct comparisons.
Intransitivity occurs when effect modifiers are not balanced between comparisons.
Transitivity relates to the statistical term ‘coherence’ (Chaimani et al. 2019). It
requires that intervention B is similar when it is used in trials comparing B vs. A, and
B vs. C with respect to effect modifiers. Coherence equations provide mathematical
links between effects of the interventions assessed so that some effects can be
estimated from others provided the assumption of transitivity is correct (Dias and
Caldwell 2019; Rouse et al. 2017; Dobler et al. 2018; Tonin et al. 2017; Chaimani
et al. 2019).

Homogeneity refers to the comparability of trials within each pairwise com-
parison in the network (Dias and Caldwell 2019; Rouse et al. 2017; Dobler et al.
2018; Tonin et al. 2017; Chaimani et al. 2019). The degree of heterogeneity for
each comparison can be assessed qualitatively (e.g. participant and trial design
characteristics) and quantitatively (e.g. I-squared statistic) (Donegan et al. 2013).
Unlike homogeneity, transitivity cannot be evaluated quantitatively. Transitivity
must be evaluated by careful review of the characteristics of the trials (Chaimani
et al. 2019; Donegan et al. 2013).

Consistency refers to the statistical agreement (equivalence) between direct and
indirect evidence (Higgins et al. 2012; Dias et al. 2013, 2010; Krahn et al. 2014).
Similar to the assessment of heterogeneity, inconsistency can be assessed both
qualitatively and quantitatively. Transitivity requires that all interventions included
in an NMA should be jointly randomisable. Transitivity must be considered at each
step of NMA. Intransitivity (inconsistency) indicates substantial variation in the
distribution of effect modifiers between studies included in the network.
A quantitative analysis is not appropriate in the presence of intransitivity. Only a
qualitative synthesis is justified under such circumstances (Dias and Caldwell 2019;
Rouse et al. 2017; Dobler et al. 2018; Tonin et al. 2017; Chaimani et al. 2019).

Decision versus supplementary set: Decision set is the set of interventions in a
network that clinicians would be willing to choose for the desired outcome.
Supplementary set (e.g. placebo) includes interventions included in the network to
improve inference among decision set interventions. Synthesis set includes inter-
ventions in the decision as well as the supplementary set (Chaimani et al. 2019).

Important aspects of analysis: Selection of a ‘reference’ treatment against
which all interventions will be compared, and pre-stating the approach to hetero-
geneity and consistency are important steps (Rouse et al. 2017; Chaimani et al.
2019). The reference treatment can be a placebo, no treatment, or a commonly used
treatment. It is important to note that heterogeneity can be comparison-specific or
common across comparisons. The approach to consistency can be global (assessed
in the entire network) or local (only where the problem is evident). Assessment of
effect modifiers in the loops with inconsistency is important in this context once
errors in data extraction are ruled out (Rouse et al. 2017). Just as the approach to
significant unexplained heterogeneity in a conventional pairwise meta-analysis, it is
not appropriate to conduct NMA if there is unexplained significant inconsistency
(Rouse et al. 2017; Chaimani et al. 2019).
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The commonly used NMA models include the multivariate model or hierarchical
model (Rouse et al. 2017). The fixed-effect model or random-effects model can be
used for NMA. The random-effects model assumes that the between-study
heterogeneity is the same across all comparisons, i.e. a single measure of hetero-
geneity is calculated across the whole network (Rouse et al. 2017). However, it is
possible to fit models allowing for different heterogeneity for each comparison (Lu
and Ades 2009). Meta-regression or sensitivity analyses could be used to explore
the reasons for significant heterogeneity (Cooper et al. 2009). The results of such
analyses are beneficial in guiding further research rather than a clinical practice
because at best, they can only generate hypotheses.

As a statistical model, NMA can be fitted using a frequentist or Bayesian
approach (Spiegelhalter 2004; Spiegelhalter et al. 2004). Bayesian NMAs are
commonly used as they provide ranking and probability outputs for
decision-making and allow for greater flexibility in the fitted models (Spiegelhalter
2004; Spiegelhalter et al. 2004). For a detailed discussion on these issues, the reader
is referred to the recommended publications for further reading (Dias et al. 2018;
Senn et al. 2013).

Presenting results and rankings: A league table is used to show the compar-
isons of relative effects between pair of interventions for up to two outcomes (Dias
and Caldwell 2019; Chaimani et al. 2019; Salanti et al. 2011). The probability of
each intervention taking a particular rank is also presented. It is recommended to
present rankings using the mean rank, or the cumulative ranking probabilities given
the uncertainty in relative effect estimates and relative ranking. The ‘rankogram’ or
the surface under the cumulative ranking curve (SUCRA) values, which take into
account the estimated effect sizes and their accompanying uncertainty are used for
this purpose (Dias and Caldwell 2019; Chaimani et al. 2019; Salanti et al. 2011). It
is important to consider the effect of treatment while interpreting its rank. A high
rank alone does not guarantee significant benefits or for that matter, any benefit for
a given patient (Dias and Caldwell 2019; Chaimani et al. 2019; Salanti et al. 2011).

Quality of evidence from NMA: The quality of evidence from an NMA is
evaluated by the Grading of Recommendations Assessment, Development, and
Evaluation (GRADE) approach based on six domains. There are two approaches for
applying GRADE to NMA. Both start with evaluating each domain for each direct
comparison. For details, the reader is referred to the publications by Salanti et al.
(2014), and Puhan et al. (2014).

Reporting: An extension of the PRISMA statement is recommended for
reporting NMA (Hutton et al. 2015).

In summary, NMA is a relatively newer and complex technique that allows the
synthesis of direct as well as indirect evidence from RCTs that have compared more
than two interventions (Dias and Caldwell 2019; Quan et al. 2017; Chaimani et al.
2019; Salanti 2012; Li et al. 2011). Considering that it provides the evidence in
totality, NMA improves the efficiency of decision making and the precision of
estimates) (Dias and Caldwell 2019; Chaimani et al. 2019). Furthermore, NMA
results are more robust as multiple sources of evidence are used (Quan et al. 2017).
Critical assessment of the plausibility of the assumption of consistency is critical for
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assessing the validity and optimal interpretation of NMA (Dias and Caldwell 2019;
Chaimani et al. 2019). The risk of bias is higher in NMA compared with con-
ventional pairwise meta-analyses as it combines studies with a higher degree of
variability. The influence of factors such as the number of trials in the network,
number of trials with more than two comparisons, heterogeneity (variability
between direct and indirect comparisons), inconsistency (discrepancy between
direct and indirect comparisons), and bias must be explored adequately for optimal
interpretation of NMA (Chaimani et al. 2019; Jansen et al. 2011; Li et al. 2011;
Mills et al. 2013).
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Systematic Reviews of Animal Studies

Gayatri Athalye-Jape

Abstract Systematic reviews (SRs) and meta-analysis of clinical studies are well
established as the highest level of evidence-based medicine. The concept of sum-
marising evidence from preclinical or animal studies has evolved over the past
decade. This process is important for providing animal researchers with a unique
framework to study, collate, plan, design and report preclinical research, thereby
adding to its translational potential. Furthermore, the concept of preclinical SRs is
important to consolidate a humane and cost-effective approach to animal experi-
ments. This chapter highlights the evolution, establishment of preclinical systematic
review centre (SYRCLE), importance of the 3Rs, limitations of animal research,
benefits of preclinical SRs, method of conducting and reporting the SR, interpreting
results and evaluating the level of evidence using GRADE and finally optimising
the ‘laboratory benchtop’ research to reach its highest translational potential at the
‘patient’s bedside.’

Keywords Animal studies � ARRIVE guidelines � Funding � Systematic reviews �
SYRCLE � GRADE � 3Rs � Reproducibility

Introduction

The use of systematic reviews (SR) and meta-analysis is well established in the field
of medicine mainly due to the Cochrane Collaboration, which has established a
unique framework to assist healthcare providers and policymakers in making
evidence-based decisions. However, SRs of preclinical or animal studies is a rela-
tively newer and novel concept (Korevaar et al. 2011; Peters et al. 2006; van Luijk
et al. 2014). Millions of animals are used annually for the scientific and educational
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purpose all over the world including in Australia, and several millions of dollars are
spent on these experiments (Humane Society International data; www.hsi.org,
accessed August 2020). In March 2019, the Australian government passed legisla-
tion to end animal testing for new cosmetic ingredients given the fact that more than
20,000 chemical ingredients met the safety and availability standards for use in the
cosmetic industry. However, healthcare professionals and the common public
strongly believe that animal experiments have significantly contributed to the
understanding of human diseases, although this belief is not supported by adequate
evidence. Estimating the real contribution of animal studies to healthcare for humans
is difficult, given the limitations of the current methods for adequate evaluation of the
clinical and translational relevance of such studies. Furthermore, it has recently been
argued that completing animal studies before clinical studies may be challenging and
not always feasible or achievable (Pound and Ritskes-Hoitinga 2020).

The Need for Systematic Reviews of Animal Research

An emphatic statement on the Animal Experimentation Fact Sheet on the “Animals
Australia” website highlights the limitations of animal research: “Such research
continues with little broad and independent evaluation because funding bodies and
research institutions are reluctant to embrace the possibility that existing animal
models and methods have largely failed. To do so would ruin careers, break the
ever-present promises to health charities and the community, and knock out
existing ‘high tech’ animal breeding (and facilities) supply businesses.” (https://
www.animalsaustralia.org/factsheets/animal_experimentation.php).

Pound et al. have emphasised the importance of conducting SRs of animal
studies (2004). SRs of animal studies help assess the validity of preclinical evi-
dence, raising awareness of poor study design and encouraging improvements in
scientific reporting whilst providing transparency and preventing unnecessary
duplication of studies (Pound and Ritskes-Hoitinga 2020) De Vries et al. have
illustrated the optimum design, conduct and analysis of animal and human exper-
iments through systematic reviews to generate reliable results and address moral
concerns around animal research (de Vries et al. 2014). Van Luijk et al. have
conducted a review that included 91 SRs of animal studies. Their results showed
that while systematic reviews were worthwhile, there was scope for improvement in
their internal validity (2014) (Fig. 1).

Sandercock and Roberts were the first to indicate the importance of SRs of
animal experiments as a prerequisite for designing clinical trials (2002). The
Collaborative Approach to Meta-Analysis and Review of Animal Data from
Experimental Studies (CAMARADES) collaboration was established in 2004 at the
University of Edinburgh, UK. It provided a framework for SRs and meta-analysis
of experimental animal data reflecting on the translational failure of ‘stroke’ related
animal experiments (http://www.dcn.ed.ac.uk/camarades/). Sy-RF (http://syrf.org.
uk/) is the CAMARADES in vivo systematic reviews and meta-analysis facility. It
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provides an online easily accessible free resource of methodological support,
mentoring, guidance, educational materials and practical assistance to preclinical
researchers. CAMARADES now has five global, national coordinating centres:
University of Edinburgh, Florey Institute of Neuroscience and Mental health,
Radboud University Nijmegen Medical Centre, University of California San
Francisco and Ottawa Hospital Research Institute.

The Concept of 3Rs: Replacement, Reduction
and Refinement

In 2005, the Nuffield Council on Bioethics urged funders of animal research to
support SRs (http://nuffieldbioethics.org/wp-content/uploads/The-ethics-of-
research-involving-animals-full-report.pdf.). The American Council on Science
and Health urged the US government agencies to adopt non-animal-based research
methods to test carcinogens. Following this, an improvised version of the concept
of the 3R’s (Replacement, Reduction and Refinement of animal use) was used to
implement principles of humane science in animal research (Russell and Burch
1959). This was the principal theme of the Montréal declaration (25th August 2011)
at the Eighth World Congress on Alternatives and Animal Use in the Life Sciences,

Fig. 1 Timeline summarising evolution of evidence based animal research
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which aimed to change the culture of planning, executing, reporting, reviewing and
translating animal research. It reinforced the importance of SR of animal studies to
produce a scientifically sound and transparent summary of all available evidence
(https://3rs.ccac.ca/documents/en/WC8_Declaration_of_Montreal_FINAL.pdf 2020).

(a) Replacement: This is defined as accelerating the development and use of
models and tools based on the latest science and technologies, for addressing
important scientific questions without the use of animals.

Types of replacement: (i) Full: Use of tissues and cells, cell lines, mathematical
and computer models and human volunteers; (ii) Partial: Use of animals not
considered capable of suffering such as invertebrates (Drosophila, nematode
worms, and social amoebae)

(b) Refinement: Methods which minimise animal suffering and improve welfare
such as the use of anaesthesia and analgesia, use of humane endpoints when
death is an expected outcome, controlling the size and growth of tumours,
provision of an enriched spacious environment encouraging normal behaviour,
withdrawal of water and food for restricted periods, and housing social animals
such as mice and rats with other animals.

(c) Reduction: Methods which minimise the number of animals per experiment.
The reduction also involves robust, reproducible experiments which are
appropriately designed and analysed and add to the knowledge.

Cumulative Meta-Analysis for Achieving ‘Reduction’
Component of the 3Rs

A cumulative meta-analysis may be considered to achieve the ‘Reduction’ com-
ponent of the 3Rs (Lau et al. 1992). It consists of a series of meta-analyses where
each successive meta-analysis incorporates one additional study. A chronological
placement of the meta-analyses displays current evidence and the shift of conclu-
sions over a specified time. Sena et al. conducted a cumulative meta-analysis on
experimental studies on stroke and effects of recombinant tissue plasminogen
activator (rtPA). Their results showed that the estimate of efficacy was already
stable in 2001 (n = 1500 animals). However, another 1888 animals were unnec-
essarily used after 2001 to establish the effects of rtPA for stroke (Sena et al.
2010a). Using a cumulative meta-analysis graph, a stable treatment effect can be
observed at a pre-defined cut off using sufficient data indicating that further animal
studies may not be needed.
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Establishment of SYRCLE, ARRIVE Guidelines,
and the GSPC

The SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE)
was established in 2008 in Nijmegen, The Netherlands, for evidence-based research
in animals as per the guidelines of the Cochrane Collaboration. In 2012, the Dutch
parliament recommended compulsory education and training in SRs of animal
studies for animal researchers. Ritskes-Hoitinga et al. suggested a collaboration
between BSc and MSc curricula designers in Europe and the Cochrane review
groups and the routine use of SRs (2014). The 2009 survey (Kilkenny et al. 2009) of
reporting of the quality, design and statistical analysis in animal studies led to the
publication of the Animal Research: Reporting In Vivo Experiments (ARRIVE)
guidelines, (Kilkenny et al. 2010) which have recently been updated as ARRIVE
guidelines 2.0 (Percie du Sert et al. 2020). These guidelines are a checklist of
information included in preclinical research publications. They are aimed at
researchers, reviewers, journals publishing preclinical research, ethical review
boards, funders and institutions. They provide a framework for planning, and con-
ducting animal studies and also for writing and reviewing manuscripts on animal
research. The CONSORT guidelines for reporting clinical trials prompted the
publication of the Gold Standard Publication Checklist (GSPC) for improved
reporting of animal research (Hooijmans et al. 2010).

Reducing the Number of Animals Needed for a Study

3Rs-REDUCTION is an online educational program to improve the design of
animal research (http://www.3rs-reduction.co.uk/). Fund for the Replacement of
Animals in Medical Experiments (FRAME) conducts workshops complementary
to the 3Rs-REDUCTION program to enhance the use of a minimum number of
animals for achieving the primary outcome of a study. The Reproducibility
Initiative by organisations such as the Science Exchange, PLOS ONE, Figshare
and Mendeley helps in identifying and acknowledging good quality experimental
studies which have good reproducibility. (https://www.scienceexchange.com/
reproducibility) (Hooijmans and Ritskes-Hoitinga 2013).

Funding agencies such as the Dutch ZonMw provide funding for scientists to
publish negative or neutral results whereas initiatives such as REACH (The
European Community regulation on chemicals and their safe use) facilitate data
sharing and adherence to the moral principle of ‘More knowledge with fewer
animals.’ Figshare, an online digital repository, enables researchers to preserve and
share research output in various forms including figures, datasets, images and
videos. The launch of F1000Research, an open-access scientific journal in 2012
offers an opportunity to publish, receive peer review and share datasets with other
peer groups (Hooijmans and Ritskes-Hoitinga 2013). SYRCLE has a registry for
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systematic reviews of animal studies and has reported a 35% reduction in the
number of animals used since commencing SRs of animal studies (Cochrane 2017).

Current Issues with Animal Studies

Without prior SRs for guidance, selecting the most appropriate animal model is
challenging. Practical issues (e.g. cost, ease of handling) often override the decision
making in determining the optimum model. Rigorous assessment of animal species
and the process of disease induction is often not given due consideration. Other
issues include the suboptimal and non-standardised methodology including poor
internal validity, inherent differences between the designs of clinical and animal
studies, insufficient reporting of animal experiments and publication bias
(Hooijmans and Ritskes-Hoitinga 2013; Sena et al. 2010b, 2014).

Benefits of Systematic Reviews in Animal Models

SR and meta-analyses of animal studies increase the sample size by pooling the data
from included studies, improving the precision and power for assessing the out-
comes evaluated. They help in designing future animal studies, selecting animal
models, and most importantly, in designing clinical trials. For example, the sys-
tematic review of animal studies by van Drongelen et al. showed that the ‘Sprague
Dawley’ rat was the most suitable model to assess changes in the mesenteric arteries
in pregnancy-induced hypertension (2012). As discussed earlier, SRs of animal
studies improve the quality of future studies by enforcing clear and transparent
reporting, and data sharing to optimise the reproducibility of results. Furthermore,
they assist in the implementation of the 3Rs (Pound and Ritskes-Hoitinga 2020;
Hooijmans and Ritskes-Hoitinga 2013; Sena et al. 2014).

Methods

The essential steps involved in a systematic review of animal studies are shown in
Fig. 2.

Table 1 shows the differences in the systematic reviews of clinical versus animal
studies.
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Accurate Sample Size Calculation

Calculating an accurate sample size is crucial as a small sample can miss the real
effect, and an exceedingly large sample can interfere with 3Rs by wasting resources
and animals. ‘Power analysis’ is the recommended method for calculating sample
size for animal experiments (Charan and Kantharia 2013).

Reporting

The ARRIVE guidelines 2.0 are a checklist of information to include in publica-
tions describing animal research and ensure transparent and thorough reporting
(Kilkenny et al. 2010; Percie du Sert et al. 2020). Since their inception in 2010, the
ARRIVE guidelines and associated resources have been used at several steps during
the course of a study including the following: (i) Study planning: the guidelines
and accompanying Explanation and Elaboration document provide advice on
experimental design, minimisation of bias, sample size and statistical analyses,
helping researchers to design rigorous and reliable in vivo experiments, (ii) Study

Table 1 Comparison of the process of a systematic review

Clinical studies Animal studies

Registration of
protocol

PROSPERO SYRCLE, PROSPERO

Literature Search MEDLINE,
Embase,
Cochrane, etc.

SYRCLE’s step by step guide; Databases:
MEDLINE, Embase, ISI Web of Science, Google
Scholar, Grey literature

Study
characteristics,
data extraction

PICOS/PICOT SYRCLE’s method

ROB assessment Cochrane ROB.2
tool

SYRCLE ROB tool

Publication bias Funnel plot,
Egger’s test

Funnel plot

Data synthesis and
meta-analysis

Revman-5 Revman-5

Quality of
Evidence 40

GRADE GRADE

Reporting the
review

PRISMA PRISMA

Abbreviations PROSPERO: The International Prospective Register of Systematic Reviews (www.
crd.york.ac.uk); SYRCLE: SYstematic Review Centre for Laboratory animal
Experimentation; PICOS (T): Participant, Intervention, Comparison, Outcome, Study Design, T
(time); ROB: Risk of Bias; GRADE: Grading of Recommendation, Assessment, Development and
Evaluation; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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Conduct: this allows researchers to record important information about study
methods for manuscript preparation, (iii) Manuscript writing: guidelines used as a
memory-aid to ensure inclusion of all relevant information, and (iv) Manuscript
review: to ensure transparency for evaluation and reproducibility of the research
(Percie du Sert et al. 2020).

Assessing the Quality of Evidence Using GRADE

Wei et al. explored the use of GRADE (Guyatt et al. 2011) in preclinical SRs and
concluded that it was suitable (2016). The principles of considerations on impre-
cision (95% CI narrow or wide and show minimal or no overlap, optimal infor-
mation size), inconsistency (point estimates, 95% CI, I2 statistic, p-value) and
publication bias (comprehensive assessment) are similar to those in SRs of clinical
interventions. Indirectness should be judged by assessing the differences between
the PICO (Participant, Intervention, Comparison, Outcome) characteristics and the
question of interest. Furthermore, the translational potential of preclinical SRs on
clinical trial design or decisions or health policy-related impact should be consid-
ered while assessing indirectness (Wei et al. 2016).

A subgroup for GRADE in preclinical SRs was set up by the GRADE working
group (https://www.gradeworkinggroup.org/) during the 23rd Cochrane
Colloquium (October 2015).

Overcoming Limitations of Preclinical Studies

Leenaars et al. have reported that despite their increased number and quality, the
agreement between animal and clinical studies was anywhere between 0 to 100%
(2019). Following factors make it difficult to translate research from ‘bench to
bedside’:

Unavoidable factors: There are fundamental differences between humans and
other species, and within animal species, strains and cell lines. Biological differ-
ences should be taken into consideration to improve study design, generate reliable
outcomes, reduce expenditure, and implement the 3Rs. For example, antioxidants
were shown to be beneficial in animal models of acute ischemic stroke but were
harmful in a clinical trial (Macleod et al. 2008). This was attributed to multiple
baseline differences in the biological set up of animals and humans and the absence
of co-morbidities associated with stroke (e.g. hypertension and diabetes) in animals
(O’Collins et al. 2006). Similar contradictory findings have been reported for
various conditions (Lucas et al. 2002; Kalra et al. 2002; Lee et al. 2003; Roberts
et al. 2002; Mapstone et al. 2003; Tameris et al. 2013; Kashangura et al. 2015).

Avoidable factors: These include poor methodology (neglect of randomisation
and blinding, flawed statistical methods, minimal use of sample size calculation),
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publication bias (overestimation of intervention effects as negative or neutral results
are often not published), (Pound and Ritskes-Hoitinga 2020, 2018; Perel et al.
2007) and differences between animal and clinical trial designs (animal studies are
usually conducted as a phase one or two projects and use different protocols)
(Hyman 2012).

In summary, ensuring robust design, rigorous methodology, transparent report-
ing, and humane approach is critical for improving the contribution of animal
studies to clinical research (Ferreira et al. 2020). SRs of animal studies thus have an
important role in designing clinical research (van Luijk et al. 2014; Ritskes‐
Hoitinga et al. 2014; Symonds and Budge 2018; Bahadoran et al. 2020).

Key Messages

Optimising animal studies
∙ Systematic review before undertaking an animal study
∙ Selecting evidence-based and most appropriate animal model
∙ Protocol finalisation including sample size and power
∙ Protocol registration (SYRCLE, PROSPERO)
∙ Conduct-Reporting (GSPC and ARRIVE guidelines)
∙ Result interpretation using GRADE guidelines
∙ Think of ‘Cumulative meta-analyses’
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