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2.1  The Molecular Biology 
of CML

2.1.1  The t(9;22) Translocation 
and the BCR-ABL1 Gene

The Philadelphia (Ph) chromosome is formed by a 
reciprocal t(9;22)(q34;q11) translocation between 
the long arms of chromosomes 9 and 22, causing 
the juxtaposition of the BCR (breakpoint cluster 
region) and ABL1 (Abelson) genes. The BCR-
ABL1 fusion gene consists of the 5′ end of the BCR 
gene and the 3′ end of the ABL1 gene (Fig. 2.1a). 
The location of the BCR and ABL1 genomic 
breakpoints is highly variable, but the recombina-

tion usually involves fusion of intron 13 or 14 of 
BCR with a 140-kilobase (kb) region of ABL1 sur-
rounding exons 1b and 2 (Fig.  2.1a) [1, 2]. 
Regardless of the breakpoint location on the ABL1 
gene, mRNA splicing gives rise to major BCR-
ABL1 transcripts with e13a2 (BCR exon 13 and 
ABL1 exon 2) or e14a2 junctions, originally 
referred to as b2a2 and b3a2, respectively. Both 
transcripts result in the expression of a 210  kDa 
BCR-ABL1 protein with a 75-amino acid differ-
ence. In <2% of chronic phase (CP)-CML, ‘atypi-
cal’ transcripts can form when the breakpoint 
occurs between exons 1 and 2 (e1a2 transcript) or 
exons 19 and 20 (e19a2) of BCR. Alternative atyp-
ical transcripts have also been described although 
even less frequently [3, 4].

There has been much debate regarding the 
consequence of a patient expressing either the 
e13a2 or e14a2 transcripts [2]. Before the tyro-
sine kinase inhibitor (TKI) era, most reports on 
large series refuted the importance of the BCR 
breakpoint [5–8]. However, a recent revival of 
this debate has found consistent evidence that 
patients with either the e14a2 transcript or both 
the e14a2 and e13a2 transcripts exhibit a higher 
platelet count, approximating 1.5 times higher 
than that in the e13a2 group [3, 9, 10]. Several 
laboratories have also found that patients with 
e14a2 transcripts achieve optimal ELN-defined 
responses more rapidly, including the deep 
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molecular response which is mandated for con-
sideration of a treatment-free remission attempt 
[3, 11–13]. Patients expressing both transcripts 

tend to track with the e14a2 group [3, 10]. More 
recently, the transcript type has been demon-
strated to influence long-term treatment-free 
remission outcomes with e14a2 expression cor-
relating with higher treatment-free remission 
success [13, 14]. Furthermore, despite the rarity, 
atypical BCR-ABL1 transcripts are generally 
associated with inferior outcomes [15, 16].

BCR-ABL1 has also been detected in healthy 
individuals with neither clinical nor laboratory 
evidence of CML [17–21]. With limited follow-
up, these patients do not develop CML, likely due 
to these events being detected in terminally dif-
ferentiated leukocytes as opposed to the leukae-
mic stem cell [19]. The absence of BCR-ABL1 in 
the pluripotent stem cell explains the lack of pro-
liferative potential, corroborating that this genetic 
event must develop in the leukaemic stem cell for 
CML to develop.

2.1.2  Protein Structure

The 210  kDa BCR-ABL1 protein observed in 
CML contains more than ten protein domains 
(Fig. 2.1b). The SH1 tyrosine kinase region is 
the most studied due to its inherent role in CML 
pathogenesis and, consequently, the target for 
TKIs [22]. However other important regions 
include the SH2, SH3 and the N-terminal cap 
[23]. Myristoyl modification of the N-terminal 
cap permits the regulation of the kinase domain 
by SH2 and SH3 [24]. The fusion of BCR to 
ABL1 eventuates in loss of the N-terminal cap 
which results in constitutive activation of the 
SH1 kinase domain, inducing uncontrolled sig-
nal transduction and abnormal cellular prolif-
eration [22]. TKIs, such as imatinib, compete 
with ATP for binding at the catalytic domain, 
inhibiting the phosphorylation of the tyrosine 
residues on substrates and impeding the down-
stream signalling effects of the oncogenic pro-
tein [22, 24]. In contrast, asciminib mimics the 
actions of the myristoyl site of the N-terminal 
cap, leading to the allosteric inhibition of BCR-
ABL1 [25].
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Fig. 2.1 The gene and protein structure of BCR-
ABL1. (a) The BCR-ABL1 fusion gene consists of the 
5′ end of the BCR gene and the 3’end of ABL1. The 
location of the translocation usually involves fusion 
of intron 13 or 14 of BCR with a 140-kilobase (kb) 
region of ABL1 surrounding exons 1b and 2. Examples 
of the two BCR-ABL1 major mRNA isoforms are 
shown to highlight the BCR breakpoint variants. 
Depending on the breakpoint on the ABL1 gene, exons 
1a and/or 1b may be included in the primary transcript 
but are always excluded from the mRNA because they 
lack a splice acceptor sequence. (b) The BCR-ABL1 
protein contains the dimerisation or coiled-coil (C-C), 
the Ser-Thr kinase and the Rho/GEF domains of BCR, 
as well as the SH-domains, Proline-rich (PxxP) 
nuclear localisation signal (NLS), DNA-binding 
nuclear export signal (NES) and Actin-binding 
domains from ABL. The ATP-binding site in the SH1 
domain is indicated, highlighting the site of tradi-
tional tyrosine kinase inhibitor binding. The tyrosine 
residues in the Ser/Thr and SH1 kinase domains have 
been highlighted with a Y. The diagrams in A and B 
are not to scale
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2.1.3  The Consequence 
of BCR-ABL1

The BCR-ABL1 protein gives rise to aberrant 
activation of cell signalling pathways and a shift 
to a micro-environment that is optimal for the 
development of leukaemia. For example, CML 
cells exhibit changes in growth-factor depen-
dence, apoptosis, proliferation and cell adhesion 
[24]. These changes result in excessive prolifera-
tion of granulocytes, leading to the clinical fea-
tures observed in CP-CML [26, 27]. The 
importance of BCR-ABL1 signalling (particularly 
via the tyrosine kinase domain) is ultimately cor-
roborated by the efficacy of TKI therapy.

BCR-ABL1 is a multi-faceted fusion gene with 
a marked effect on downstream signalling path-
ways, all of which promote the leukaemic pheno-
type observed in CML. Early work involving the 
transplantation of murine bone marrow trans-
fected with BCR-ABL1 induced a CML-like dis-
ease in transplanted mice [26, 28, 29]. Additional 
experiments confirmed the oncogenic potential 
of BCR-ABL1 through gradual disruption of cel-
lular differentiation, dysregulated proliferation, 
growth factor independence and interference of 
apoptosis through downstream signalling path-
ways [30–32]. Moreover, studies targeting BCR-
ABL1 by antisense oligonucleotides [33–36] 
demonstrated that BCR-ABL1 was crucial for 
maintenance of the leukaemic process. These 
early observations underpinned the function of 
BCR-ABL1 and provided affirmation that this 
fusion oncogene is the sole driver of 
CP-CML. However evolution to the more aggres-
sive stages of CML is likely dependent on the 
cooperation of BCR-ABL1 with other genetic 
events implicated in malignancy [37].

2.2  Important Pathways 
Affected by BCR-ABL1 
Activity

2.2.1  JAK/STAT

The JAK/STAT signalling pathway has been 
heavily implicated in leukaemogenesis, includ-

ing the pathogenesis of CML [38]. BCR-ABL1 
augments activation of JAK2 through enhanced 
efficiency of JAK2 phosphorylation, promoting 
cell growth/survival while numerous STAT pro-
teins are activated by the JAK receptor [39, 40]. 
Furthermore, murine models have illustrated the 
pivotal role of STAT5 signalling in the develop-
ment and maintenance of CML. One experiment 
utilizing retroviral transduction of BCR-ABL1 in 
STAT5-knockout bone marrow failed to induce 
CML in recipient mice after both primary and 
secondary transplantation [41]. In a second 
model, STAT5 deletion resulted in marked deple-
tion of BCR-ABL1-expressing leukaemic cells, 
demonstrating the importance of STAT5  in the 
maintenance of CML [42]. Furthermore, 
enhanced STAT5 expression reduced imatinib-
mediated cytotoxicity in BCR-ABL1-positive 
cells, potentially linked to marked anti-apoptotic 
activity mediated by increased STAT5 down-
stream signalling [43]. Increased STAT3 levels 
have also correlated with imatinib resistance 
[44]. Regardless of the mechanism, JAK inhibi-
tors have exhibited efficacy against BCR-ABL1-
positive cells, overcoming TKI resistance [45]. 
Furthermore, the combination of the JAK-
inhibitor, ruxolitinib, and nilotinib has been dem-
onstrated to induce undetectable BCR-ABL1 
levels in patients with low-level disease [46].

2.2.2  PI3K/AKT and Autophagy

PI3K proteins communicate extra-cellular sig-
nals to modulate transcription factor activation 
and programming that favour cell growth/sur-
vival and inhibition of cell death. AKT is a down-
stream effector of PI3K and plays a major role in 
its signalling [47]. BCR-ABL1 can stimulate 
PI3K signalling through the adapter proteins 
Grb2/Gab2 [48] and CBL [49] but also through 
loss of function of the tumour suppressor gene 
PTEN, which is frequently silenced in malig-
nancy [50]. Several reports indicate that the 
PI3K/AKT pathway is critical for BCR-ABL1-
induced leukaemogenesis and for CML mainte-
nance [51] and that its interruption can circumvent 
BCR-ABL1 oncogenesis [52, 53]. Another 
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consequence of PI3K activation is stimulation of 
the mTOR pathway [54], which is responsible for 
controlling protein synthesis, cell growth/size 
and autophagy.

Autophagy can occur following cell stress (i.e. 
loss of BCR-ABL1 signalling) to promote cell 
hibernation as opposed to apoptosis, and can be 
reversed with restoration of the optimal environ-
ment. Recent studies have observed that whilst 
BCR-ABL1 inhibits autophagy, TKI treatment 
restores this pathway and may contribute to 
molecular relapse in failed treatment-free remis-
sion attempts, despite undetectable BCR-ABL1 
levels prior to TKI discontinuation [55]. 
Moreover, BCR-ABL1-positive stem cells with 
knockdown of genes vital for the autophagy pro-
cess failed to proliferate in an optimized environ-
ment [56]. Therefore, autophagy may be an 
appropriate mechanism to target for the future.

2.2.3  Ras/MEK Pathway

Activation of Ras GTPases/MEK kinases stimu-
lates cell growth via a membrane receptor-bind-
ing cascade to activate transcription of a number 
of growth factor genes and is a key pathway 
deregulated in cancer [57]. BCR-ABL1 activates 
Ras via Grb2/Gab2 phosphorylation to promote 
cell growth [58, 59], and persistence of Ras activ-
ity has been demonstrated in TKI-resistant CML 
cells [60]. Disruption of Ras signalling impairs 
development of BCR-ABL1-induced CML-like 
disease in mice [49, 61]. In addition, MEK inhib-
itors can induce apoptosis in blast crisis (BC)- 
and drug-resistant CML cells with targeting of 
CML progenitors [60, 62]. Further work is 
required to investigate the true potential of inhi-
bition of this pathway in CML.

2.2.4  Src Kinases

The Src-family kinases (SFKs) are another group 
of widely studied downstream targets of BCR-
ABL1. Their role is to coordinate cell growth, dif-
ferentiation and motility in response to 
extracellular signals [63]. Initial CML cell line 

models showed that BCR-ABL1 expression sig-
nificantly activated the Hck and Lyn SFKs [64]. 
Subsequent studies demonstrated that Hck, Lyn 
and Fyn were required for BCR-ABL1 cell line 
transformation as well as functionally phosphor-
ylating several BCR-ABL1 tyrosines [65, 66]. 
One mechanism by which SFKs contribute to 
disease is in assisting BCR-ABL1 in its activation 
of STAT5 and AKT [67, 68]. In addition, knock-
down of Lyn exhibited impressive killing of BC 
cells, and its upregulation in BC-CML suggested 
a potential role for promoting disease progres-
sion [69, 70]. However, the importance of SFKs 
in CML remains unclear because mouse models 
show that SFKs are not required for initiation of 
CML but, rather, support the generation of acute 
lymphoid leukaemia [71, 72]. The second gener-
ation TKIs, dasatinib and bosutinib, are dual Src/
Abl1 inhibitors, so defining the role of SFKs in 
CML could have an impact on both understand-
ing its biology and treatment [73].

2.2.5  Crkl

The adaptor protein Crkl is constitutively acti-
vated by BCR-ABL1 [74]. Protein networks 
involving BCR-ABL1 and Crkl include Cbl, 
STAT, PI3K, paxillin and Ras [75]. Indeed, loss 
of the interaction between Ckrl and BCR-ABL1 
impaired BCR-ABL1-induced transformation in 
mice [76]. The potent phosphorylation of Crkl by 
BCR-ABL1 allows the measurement of the per-
centage of phospho-Crkl as a surrogate to BCR-
ABL1 phosphorylation levels (which are more 
difficult to measure) in order to experimentally 
examine the patient’s response to TKI therapy 
and to predict outcome [77].

2.2.6  Long Non-coding (lnc) RNA

LncRNAs are heavily involved in normal haema-
topoiesis and have increasingly been implicated 
in haematological malignancies [78]. In CML 
cell line models, lncRNA-BGL3 sensitizes BCR-
ABL1-positive cells to imatinib-induced apopto-
sis [79]. It also acts as a decoy for several 
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microRNAs that target the tumour suppressor 
gene PTEN, leading to its stabilisation and asso-
ciated inhibition of leukaemogenesis [79]. In 
contrast, lncRNA-H19 facilitates leukaemogene-
sis in CML through upregulation of MYC, and its 
knockdown perturbs the pathogenicity of BCR-
ABL1 in CML cell lines [80]. Further work is 
required to understand the full mechanisms and 
impact of these lncRNAs in CML.

2.2.7  Apoptosis Deregulation

In addition to promoting cell proliferation, BCR-
ABL1 can disrupt cell death. An example of this 
involves a BCR-ABL1, Bad, BCL2 and BCL-XL 
circuit (Fig. 2.2). Expression of BCR-ABL1 can 
inhibit apoptosis by increasing expression of the 
anti-apoptotic proteins BCL2 and BCL-XL [81]. 
Both STAT5 and PI3K signalling are important 
mediators of BCR-ABL1’s anti-apoptotic func-
tion. STAT5 activation by BCR-ABL1 causes 
increased BCL-XL expression [82, 83]. 
Furthermore, phosphorylation of the pro-
apoptotic protein Bad by PI3K/Akt facilitates the 
interaction between the chaperone protein 14–3-3 
and Bad, which restricts Bad to the cytoplasm 

[84]. This prevents Bad opposing BCL2 and 
BCL-XL inhibition of apoptosis in the 
mitochondrion.

2.3  CML Stem Cells

2.3.1  Leukaemic Stem Cells (LSCs) 
Are Refractory to TKIs

A seminal paper from the Holyoake laboratory 
showed that BCR-ABL1 inhibition reduced LSC 
proliferation but failed to deplete quiescent LSCs 
[85]. Furthermore, LSCs have also been shown to 
be insensitive to more potent second-generation 
TKIs, despite complete silencing of BCR-ABL1 
activity [86, 87]. These studies raised the possi-
bility of early relapse despite TKI therapy, but 
long-term TKI usage has rebuffed this theory 
[88]. Subsequent studies have strengthened the 
notion that survival of the LSC is independent of 
BCR-ABL1 activity [89, 90]. It has also been 
reported that therapy-refractory LSCs exhibit a 
bias for low BCR-ABL1 expression [91, 92]. 
Persistence of the LSCs have been postulated to 
be the primary causes of molecular relapse fol-
lowing a treatment-free remission attempt despite 
long-term BCR-ABL1 negativity [88]. Several 
pathways have been shown to play key roles in 
stem cell biology (Fig. 2.3), and targeting them 
could lead to a promising strategy to eliminate 
the LSC in CML.

2.3.2  Wnt/β-Catenin Pathway

The Wnt signalling pathway has been demon-
strated to be crucial for LSC self-renewal [93], 
and β-catenin is one of its components [94, 95]. 
Binding of Wnt to its receptor, Frizzled, causes 
disruption of ubiquitin-mediated degradation of 
β-catenin, freeing the molecule for nuclear trans-
location to activate the transcription of target 
genes such as the cyclin D1 and MYC oncogenes 
[96]. BCR-ABL1 induces aberrant PI3K/AKT 
signalling, resulting in upregulated β-catenin 
activity [53], which has also been implicated in 
risk of progression to BC [97]. Enhanced 
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Fig. 2.2 An example of apoptotic circuitry controlled by 
BCR-ABL1. BCR-ABL1 promotes the expression of anti- 
apoptotic genes BCL2 and BCL-XL and inhibits the func-
tion of pro-apoptotic protein Bad via phosphorylation 
(grey circle) and cytoplasmic sequestration
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β-catenin signalling in BC-CML confers stem-
cell-like characteristics to progenitor cells lead-
ing to cellular expansion [98]. Future strategies 
may be to target both β-catenin and BCR-ABL1, 
as murine models have demonstrated that this 
approach is synergistic, delaying disease pro-
gression while depleting CML-LSCs [99] 
(Fig. 2.4).

2.3.3  Hedgehog (Hh) Pathway

Signalling in the Hh pathway is critical for LSC 
self-renewal and contributes to tissue homeosta-
sis, regeneration and healing [100]. In BCR-
ABL1-positive progenitor cells, increased Hh 
signalling is observed with marked upregulation 
in BC-CML [101, 102]. It also induces malignant 
expansions of LSCs in murine models [103]. 
Upregulation of Smoothened (Smo), a membrane 
receptor for the hedgehog ligand, has been found 
to augment LSCs and to drive disease progres-
sion [104]. Activation of Smo, in turn, activates 
Gli transcription factors, which drive expression 

of their downstream transcriptional targets [105]. 
Studies on primary CML cells found that Smo/
Gli2 promoted LSC dormancy via cell cycle 
arrest, and an enhanced hedgehog pathway signa-
ture is observed in BC patients. Inhibition of Gli2 
was able to restore LSC cycling and sensitise 
LSCs to TKI eradication [106]. Dual targeting 
with Smo inhibitors and TKIs may be a future 
therapeutic strategy to target both stem and pro-
genitor cells as in  vitro data suggest a reduced 
rate of leukaemic progression [100].

2.3.4  Notch Pathway

The Notch pathway has been demonstrated to be 
vital for cellular signalling and is dysregulated in 
multiple malignancies, including haematological 
cancers [107]. A member of the Notch family, 
Hairy enhancer of split 1 (Hes1), cooperates with 
BCR-ABL1 to induce BC-CML in murine models 
[108]. Furthermore, over-expression of Hes1 has 
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Fig. 2.3 LSC circuitry of genes discussed in this chapter. 
STAT5, JAK2 and PI3K all feature to control LSC-effector 
genes. However, quiescent stem cells have intrinsic coun-
ters to prevent potent BCR-ABL1 signalling depleting the 
LSC population, such as MSI2/TGF-β, PTEN, FOXO 
transcription factors and Fbw7. In the context of BC-CML, 
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due to the incapacity of leukaemic progenitor cells to dif-
ferentiate. This may explain how enhanced pathway acti-
vation (JAK2 / β-catenin) is compatible with expansion of 
the stem/progenitor compartment in BC.  Hes1 activity 
enhances that of PI3K while the Hh pathway via the trans-
membrane receptors of PTCH and Smo regulate Gli sig-
nalling, also important for LSC maintenance
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Fig. 2.4 Complex control of β-catenin in CML. BCR- 
ABL1 stabilises β-catenin signalling via PI3K, JAK2 and 
inhibition of IRF8. Canonical stability of β-catenin is con-
trolled by protein ubiquitination (grey circles). Thus, in 
CML, this pathway is activated to promote a stem-cell like 
environment. However, inhibition of, e.g. PP2A activa-
tion, can reverse pathogenic β-catenin signalling and syn-
ergise with BCR-ABL1 inhibition to enhance treatment 
efficacy
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been shown in BC but not CP, while dominant-
negative Hes1 deterred growth of Hes1-
expressing cell lines [108]. Interfering with the 
cross-talk between Notch signalling and BCR-
ABL1 may be achievable with combined target-
ing of both pathways and may be a treatment 
option for future exploration [109].

2.3.5  FoxO Family

BCR-ABL1 promotes deregulation of several 
transcription factors, including forkhead box 
class O (FoxO), through activation of the PI3K/
Akt pathway [94]. Members of the FoxO family, 
in particular FoxO3a, are vital to the mainte-
nance of LSCs [110]. BCR-ABL1 promotes 
nuclear export and deactivation of these tran-
scription factors via PI3K/Akt [111]. In mature 
cells, Akt signalling is strong and assists propa-
gation of BCR-ABL1’s proliferative advantage. 
However, in LSCs, Akt signalling is inhibited by 
PTEN [112] and TGF-β [113]. This reverses 
BCR-ABL1 inactivation of FoxO3a and allows 
for BCL6 transcription, which favours quies-
cence and self-renewal [112]. Targeting this 
mechanism with BCL6 or TGF-β inhibitors 
together with TKIs perturbed CML develop-
ment and induced cell death/turnover of primi-
tive CML cells [112, 113].

2.3.6  BCL2 Family

The proteins in the BCL2 family are key regula-
tors of apoptosis and crucial for LSC survival 
[114]. BCL2 anti-apoptotic protein expression is 
increased in CML and is further increased in 
CML-BC. BCR-ABL1 signalling also promotes 
CML cell survival by upregulation of anti-
apoptotic BCL2 proteins, including BCL-XL 
[115]. Furthermore, BCL2 acts synergistically 
with BCR-ABL1 to induce BC-CML [116]. 
Another member of the BCL2 family, the BH3-
only pro-apoptotic protein (BIM), is also down-
regulated in CML, supporting LSC survival 
[116]. TKI therapy leads to upregulation of pro-
apoptotic proteins, including BIM [117]. The 

presence of a common synonymous variant in the 
BH3 functional domain of BIM has been associ-
ated with imatinib resistance and inferior molec-
ular target achievement [118]. Selective inhibition 
of BCL-2 through combined therapy with vene-
toclax (a novel BCL2 inhibitor primarily utilized 
in chronic lymphocytic leukaemia) and TKI has 
been demonstrated to target the LSC in a BCR-
ABL1 transgenic mouse model, potentially offer-
ing a long-term cure in CML [114].

2.3.7  PP2A-JAK2-SET

BCR-ABL1 was reported to circumvent the 
requirement for JAK2 in its activation of STAT5 
[119], but there are data demonstrating a role for 
JAK2 within the LSC compartment. A network 
involving PP2A/JAK2/Set/GSK-3β was shown to 
play a critical role in LSC survival [120]. Central 
to this pathway is PP2A, a tyrosine phosphatase 
whose activity is impaired in CML. ‘Active’ 
PP2A has the ability to silence key pathways 
which are activated by BCR-ABL1, including 
BCR-ABL1 itself [121]. In CML-LSCs, BCR-
ABL1/JAK2 signalling overcomes PP2A activity 
by enhancing the activity of SET, a PP2A-
inhibitor. Blocking the PP2A inhibitory role of 
SET restores PP2A function and impairs the self-
renewal and survival of CML-LSCs but not nor-
mal haematopoietic stem cells (HSCs) [120]. A 
major mechanism by which PP2A activation 
affects LSC maintenance is thought to be the loss 
of β-catenin signalling via GSK-3β mediated 
ubiquitination. This is coupled with PP2A silenc-
ing of BCR-ABL1 to allow for LSC turnover and 
reduced leukaemic potential.

2.3.8  Bone Marrow 
Microenvironment

HSCs reside in the bone marrow, which provides 
an environment that controls haemopoiesis by 
coordinating HSC renewal and differentiation 
into functional blood cells. The bone marrow 
supportive environment comprises the osteoblast 
and vascular niches [122, 123]. The former 
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promotes self-renewal and quiescence, while the 
vascular niche is permissive of differentiation 
into progenitor and subsequent functional cells. 
In CML, it is thought that the osteoblast niche 
nurtures LSCs, which may explain why LSCs do 
not require BCR-ABL1 kinase activity to survive 
TKI exposure [124, 125]. This may also contrib-
ute to BC. Since progenitor cells attain stem cell 
like properties, a progenitor-contingent may 
retreat towards the osteoblast niche for protection 
against TKIs, whilst retaining cycling properties 
that allow for faster accumulation of mutations 
(compared to LSCs) required for transformation.

2.4  Biology of Blast Crisis

The mechanism of disease evolution to BC-CML 
is still incompletely understood. This stage of the 
disease is characterised by the expansion of hae-
mopoietic progenitors that fail to differentiate 
and interfere with normal haematopoiesis. These 
progenitor cells gain self-renewal capacity, dif-
ferentiation arrest and survival properties that 
lead to uncontrolled proliferation, [98] exhibiting 
more stem-cell like characteristics compared to 
CP-progenitors. This is partially attributed to 
increased β-catenin activity [98] but also marked 
genomic and genetic instability [126, 127]. Extra 
chromosomal abnormalities are observed in 
approximately 80% of BC patients (e.g. Ph dupli-
cation, trisomy 8 or 19, loss of 17p) [128]. 
Pathogenic mutations in tumour suppressor and 
oncogenes have also been detected in BC-CML 
[129], and it is hypothesised that these additional 
hits contribute to the transition into BC [127, 
129]. The rapid recent technological advances in 
next-generation sequencing has not only enabled 
attempts at unmasking the genomic landscape 
involved in BC-CML but has further highlighted 
the vast gaps of knowledge which yet remain.

2.4.1  BCR-ABL1 and CML-BC

Inhibition of BCR-ABL1 kinase activity effec-
tively delays the onset of BC but does not elimi-
nate the primitive population that establishes 

advanced disease. One interpretation is that BCR-
ABL1 signalling is required for transition to BC, 
especially since progression is rare in TKI 
responsive patients. A number of studies have 
found increased expression of BCR-ABL1 in BC 
compared to CP. This was observed when com-
paring matched CP and BC samples (from the 
same patient) at both the mRNA [130–133] and 
protein levels [121, 130, 134]. Additionally, it has 
been shown that cells expressing higher amounts 
of BCR-ABL1 have an increase in genomic insta-
bility as well as perturbed differentiation, which 
are intrinsic properties of BC-CML [127, 135]. 
These findings imply more than a passenger role 
for BCR-ABL1 in BC-transformation.

2.4.2  DNA Damage/Repair

BCR-ABL1 has been shown to facilitate genomic 
instability via disrupting DNA repair pathways, 
generating reactive oxygen species and inhibiting 
DNA-damage-induced apoptosis, all of which 
may lead to retention of genomic mutations 
[136–140]. These events are in part tied to the 
level of BCR-ABL1 expression [141]. CML 
CD34+ cells express high levels of BCR-ABL1 as 
compared to mature cells [132], and they are 
highly susceptible to genomic instability com-
pared to their healthy counterparts [89]. Although 
not formally shown, it is reasonable to suggest 
that BCR-ABL1 provides progenitor cells with 
the genomic plasticity required for malignant 
transformation [127, 142, 143].

2.4.3  C/EBPα and hnRNP-E2

Required for myeloid differentiation [144], C/
EBPα expression is reduced in cell lines express-
ing BCR-ABL1 [145]. These lines responded 
poorly to growth-factor-induced differentiation 
[135], but ectopic expression of C/EBPα and 
BCR-ABL1 kinase inhibition were able to reverse 
this differentiation block [145]. Further experi-
ments revealed that BCR-ABL1 negatively regu-
lates the expression of C/EBPα via upregulation 
of hnRNP-E2, an RNA-binding protein which 
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inhibits C/EBPα expression [135]. Interestingly, 
analysis of CML-patient cells found that loss of 
C/EBPα and expression of hnRNP-E2 was 
restricted to BC [135]. In addition, hnRNP-E2 
upregulation and C/EBPα downregulation were 
directly proportional to increasing levels of BCR-
ABL1 [135]. To add extra complexity to this path-
way, it was recently shown that the microRNA 
miR-328 acts in a non-canonical way to block 
hnRNP-E2 regulation of C/EBPα and promotes 
myeloid differentiation [146]. The expression of 
miR-328 negatively correlates with BCR-ABL1 
expression levels and is thus downregulated in 
BC [146]. These experiments provide evidence 
of a sophisticated circuit by which enhanced 
BCR-ABL1 expression can facilitate a switch to 
BC by disrupting myeloid differentiation.

2.4.4  Important Pathways Involved 
in BC-CML

2.4.4.1  MYC
The MYC proto-oncogene was one of the first 
genes implicated in CML disease progression. 
MYC is a transcription factor which governs the 
expression of genes enabling cell growth and 
proliferation and, thus, commonly activated in 
cancer [147]. It was originally observed that 
patients with BC exhibited higher levels of MYC 
compared to CP patients [148]. This was fol-
lowed by reports that ABL1 expression enhances 
MYC expression and that MYC is required for 
BCR-ABL1-induced transformation [149, 150]. 
Although excess MYC can induce apoptosis 
[151], early cell line models show that BCR-
ABL1 activation of BCL2 can inhibit MYC apop-
totic activity whilst retaining its proliferative 
advantage [152]. This is one of many examples 
by which BCR-ABL1 creates ‘a perfect storm’ to 
promote leukaemogenesis.

BCR-ABL1 can control MYC expression via 
PI3K, JAK2 and the transcription factor E2F1 
[51, 153–155], while maintaining protein stabil-
ity via MEK and hnRNP-K [156]. A CML mouse 
model demonstrated that MYC expression is 
required for CML maintenance and progression. 
It also showed that high levels of MYC are harm-

ful for LSCs, and ubiquitination (degradation) of 
MYC by ubiquitin ligase Fbw7 keeps MYC lev-
els in check in LSCs [157]. This provides a ratio-
nale for the constrained BCR-ABL1 kinase 
activity observed in quiescent LSCs [120] and 
selection of low BCR-ABL1 expression in TKI-
refractive LSCs [91, 92] (suggesting that 
enhanced BCR-ABL1 signalling is toxic for qui-
escent cells). These findings, coupled with 
MYC’s established role in myeloid differentia-
tion [158], present MYC deregulation as a strong 
candidate for driving BC-transformation in CML.

2.4.4.2  p53
The normal function of p53 is to respond to cell 
stress events, where it becomes activated and 
drives transcription of genes that decide cell fate 
(apoptosis, DNA repair, cell cycle arrest or senes-
cence) [159]. Early genetic studies observed 
inactivating mutations of p53  in approximately 
20% of CML patients who progressed to BC 
[160, 161]. Regulation of p53 by BCR-ABL1 is 
complex and unclear, with both p53 activation 
[162, 163] and inactivation [164, 165] being 
reported. However, loss or inhibition of p53 pro-
motes BC-like disease in mice [165–167], and 
stabilisation of p53 in BC cells induces apoptosis 
[167, 168]. It has also been shown that MYC 
over-expression is only toxic to LSCs if p53 is 
present [157].

2.4.4.3  XPO1
The nuclear export protein, XPO1, is another 
novel candidate for the regulation of BC.  Its 
expression is enhanced in BC patients, and phar-
macological blockade of its function was shown 
as sufficient to kill both CP and BC-primary 
CD34+ cells [169]. Inhibition of XPO1 in BCR-
ABL1-positive cell lines demonstrated that 
impaired nuclear transport could explain XPO1-
inhibition lethality. For example, both SET and 
p53 were abnormally enriched in the nucleus 
leading to their inactivation [169]. Additional 
experiments revealed that long-term XPO1 inhi-
bition caused BCR-ABL1 degradation (via loss of 
SET control of PP2A activity) whereas short-
term inhibition shutdown STAT5, AKT and MEK 
signalling prior to affecting BCR-ABL1 activity 
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[169]. This suggests that both BCR-ABL1-
dependent and -independent cell death results 
through XPO1 inhibition. Remarkably, an XPO1 
inhibitor reversed CML symptoms (WBC count/
splenomegaly) in a patient with disease progres-
sion and who was resistant to TKI therapy, high-
lighting a potential strategy to treat advanced 
disease [169].

2.4.4.4  SIRT1
Expression of SIRT1 is enhanced in CML and is, 
in part, regulated by BCR-ABL1/STAT5 [170]. 
This protein-deacetylase has been linked to CML 
BC due to its disruption of LSC turnover and 
DNA repair. SIRT1 suppression of p53/FoxO-
controlled LSC maintenance is believed to pro-
long the survival of CML LSCs [170, 171]. In 
contrast, knockout or inhibition of SIRT1 impairs 
CML development and disease progression in 
mice by reducing proliferative and self-renewal 
capacity of LSCs [170, 171]. SIRT1 regulation of 
the DNA repair protein Ku70 in CML cell lines 
causes enhancement of less faithful non-
homologous end joining DNA repair, which 
enhances mutations [172]. The knowledge that 
SIRT1 provides a route for LSC survival and 
genomic instability—the key drivers of 
BC-CML—offers strong evidence that SIRT1 
has a major role in BC development.

2.4.4.5  ADAR1
ADAR1 is an RNA editor whose enzymatic 
activity converts adenosine to inosine in RNA, 
resulting in these nucleotides being interpreted as 
guanine in the ribosome, thus altering RNA 
behaviour and protein amino acid composition. 
Analysis of ADAR1 expression in CML patients 
showed a marked increase in expression from CP 
to BC, and was correlated with BCR-ABL1 levels 
[173]. The BC samples also had enhanced A to I 
editing and altered expression of RNA-edited 
genes, providing evidence that the increased 
expression of ADAR1  in BC had a functional 
effect on its downstream targets [173]. Two 
mouse models have been developed which suc-
cessfully demonstrate the important role that 
ADAR1 plays in CML stem cells. Following dis-
ruption of ADAR1 expression in CML mouse 

models, leukaemia development, maintenance 
and BC onset were all impaired due to the loss of 
primitive leukaemic cells [174]. In contrast, 
ADAR1 over-expression caused myeloid progen-
itor expansion [173]. Moreover, specific deletion 
of the ADAR1’s RNA-editing moiety demon-
strated that RNA editing is vital for CML pro-
genitor self-renewal [174]. It is known that the 
RNA-editing activity of ADAR1 is required for 
HSC survival [175], so it is speculated that the 
enhanced activity of ADAR1  in BC locks the 
LSCs in a primitive state.

2.4.4.6  Polycomb Repressive 
Complexes (PRCs) 
and Epigenetic Regulation

Dysregulation of PRCs have been implicated in a 
number of haematological malignancies, includ-
ing CML [176]. Early data indicated that overex-
pression of BMI1, a member of PRC1, correlated 
with inferior survival and higher risk of BC trans-
formation [177]. Enhanced EZH2 activity, a cata-
lytic subunit of PRC2, has also been demonstrated 
as necessary for the propagation of CML [178]. 
More recent exploration of the BC genome indi-
cates substantial enrichment for mutations affect-
ing the PRCs: transcriptomic interrogation of BC 
progenitors demonstrated both upregulation and 
depletion of PRC1- and PRC2-related gene sets, 
respectively [179].

The impact of epigenetic reprogramming is 
still an emerging area of research in CML. The 
PRCs are heavily involved with epigenetic repro-
gramming in BC-CML with PRC2-driven DNA 
hypermethylation being responsible for arrested 
myeloid differentiation and loss of tumour sup-
pressor function [179]. However, DNA methyla-
tion inhibitors have failed to produce durable 
responses in BC-CML [179]. Gene expression 
analysis of BC-cells treated with hypomethylat-
ing agents revealed failure to normalize the 
majority of the gene expression changes associ-
ated with DNA-methylation, indicating addi-
tional layers of unidentified epigenetic regulation 
[179]. However, in  vitro combinatorial therapy 
with directed inhibition of BMI1 and hypometh-
ylating agents reduced colony formation in 
BC-CML cell lines by approximately 90% [179].
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2.4.4.7  Mutational Landscape
While BCR-ABL1 alone is sufficient to induce 
CP-CML, it is unlikely to be the sole event in 
more advanced stages of the disease. BCR-ABL1 
has been associated with substantial genetic 
instability [180], assisting in the acquisition of 
additional mutational events that could trigger 
progression to BC.  In order to identify putative 
BC driver genes, Giotopoulos et  al. utilised an 
impressive mouse model. The experiment cen-
tred on a transposable cassette array in the pres-
ence or absence of BCR-ABL1 [181]. 
Transposition of the cassettes can either activate 
or deactivate the genes in proximity to the 
genomic insertion site. Gene activation is 
achieved by a transposition event within the 5′ 
region of the gene due to enhancer/promoter 
sequences in the cassette [181]. Conversely, 
intragenic transposition can disrupt genes caus-
ing loss-of-function. Mice with a BCR-ABL1 
only genetic background succumbed to a 
CML-CP phenotype, whilst 85% of the BCR-
ABL1/transposon mice exhibited CML-BC, 5% 
CP and 10% AP-like disease [181]. Microarray 
gene expression analysis of the mice showed 
clustering within disease type and inter-type sep-
aration, identifying several genes known to be 
involved in in the development of 
BC. Transposition events within the BC sample 
cohort included STAT5, XPO1, PTEN, MYC-
target genes and JAK1 [181].

The current era has been characterized by dra-
matic technological advances in next-generation 
sequencing which have enabled the identification 
of somatic mutational profiles that characterize 
various haematological malignancies, influenc-
ing diagnosis, treatment and prognosis [182–
184]. In BC-CML, most patients have been 
identified to harbour additional mutational events 
in known cancer genes [185, 186] seen in up to 
95% of patients in one study [185]. Mutations in 
RUNX1, ASXL1 and IKZF1 exon deletions are 
the most frequently observed events [187] while 
single nucleotides, insertions, deletions, fusions 
and aberrant splicing in multiple different cancer-
related genes have all been described in 
BC-CML.  Aberrant RAG-mediated recombina-
tion has also been demonstrated to contribute to 

structural rearrangements in lymphoid BC [188]. 
A novel class of variant, termed ‘Ph-associated 
rearrangements’, involving gene rearrangements 
and novel fusions on the chromosome arms 
involved with the inciting Ph-translocation, has 
also been observed in poor outcome patients at 
the time of diagnosis, including those progress-
ing to BC-CML [185]. Moreover, the 
Ph-associated rearrangements were more fre-
quently identified in patients progressing to lym-
phoid BC [185]. While there are minimal data 
regarding this novel group of mutations, their 
presence may highlight a cohort of patients with 
increased genetic instability and, therefore, 
increased propensity for adverse outcomes. 
Kinase domain mutations can be identified in 
approximately 50% of patients in BC-CML 
[185], more frequently in lymphoid BC [185]. 
However, these are rarely the sole event [185], 
frequently co-occurring with IKZF1 variants. 
Additionally, cancer-gene variants often pre-date 
the development of kinase domain mutations in 
approximately 60% of patients, emphasizing the 
genomic instability associated with the acquisi-
tion of cancer-gene mutations [185].

2.5  Concluding Remarks

The biology of CML is centred on BCR-ABL1’s 
constitutive kinase activity, which is sufficient to 
cause the clinical features of CP. The ability to 
readily model CML in both cell lines and mice 
has allowed for a large accumulation of knowl-
edge regarding the molecular network of 
CML. These studies have shown that BCR-ABL1 
is implicated in altering almost every process 
within the cell to drive CML pathogenesis. This 
extends to dampening its own excessive signal-
ling in LSCs, which would be otherwise unfa-
vourable. Current literature has shown that 
STAT5 stands out as a vital component of BCR-
ABL1’s induction of CML as demonstrated by 
two conditional knockout models [41, 189]. The 
investigation of primitive CML-cell biology has 
benefitted from the utilisation of new and power-
ful techniques to identify a number of important 
genes within this compartment. The best studied 
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are p53, MYC and β-catenin, which have promi-
nent roles in both stem cell biology and BC 
transformation.

The link between LSCs and BC and treat-
ment response has put the LSC and progenitor 
populations at the forefront of CML biology. Of 
particular interest is the finding that LSCs do 
not rely on BCR-ABL1 kinase activity for sur-
vival. It is unknown if another protein domain 
of BCR-ABL1 confers LSC survival properties. 
Another possibility is that BCR-ABL1 can pro-
gram LSCs in such a way that its kinase activity 
is no longer required. It is unknown whether the 
HSC or progenitor compartment gives rise to 
the clones responsible for BC-CML. Pinpointing 
the latter is important because each of these 
compartments has discrete biological proper-
ties and, thus, requires alternative therapeutic 
strategies.

Next-generation sequencing and powerful 
experimental modelling tools will no doubt pro-
vide a flood of information regarding CML biol-
ogy as well as highlight the potential drivers of 
disease progression. These advances are likely to 
generate evidence of recurrent mutations and epi-
genetic marks that favour or hinder CML patho-
genesis or response to treatment.

In the proteomics field, improved methods to 
study proteins and more powerful mass spec-
trometers have the potential to uncover post-
translational modifications and protein 
interactomes. The study of proteome networks is 
relatively untapped in CML (although elegant 
examples do exist [190, 191]), making this an 
attractive area of interest to improve the knowl-
edge of CML biology. The same can be said of 
non-coding RNA (ncRNA). It is known that 
deregulation of these molecules occurs in CML, 
for example in CP versus BC, and in primitive 
cells versus granulocytes [192, 193]. However, 
most functional work is limited to a single 
microRNA and target. Further work is required to 
understand the global ncRNA circuitry in key 
areas within this disease. These fields of interest 
are bolstered with the emerging accessibility to 
high-powered fluorescence microscopy, which 
can monitor the spatiotemporal behaviour of pro-
teins and RNA.

Finally, availability of pathway inhibitors and 
genome editing (including crispR) systems [194] 
are powerful options to functionally validate 
pathways identified by genomic and proteomic 
studies in both cell lines and mouse models. 
These technologies will make for an exciting 
time to uncover novel mechanisms behind CML 
pathogenesis and the potential for translation to 
other diseases.
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