
Platforms for Serverless at the Edge:
A Review

Nabil El Ioini1(B), David Hästbacka2, Claus Pahl1, and Davide Taibi2

1 Free University of Bozen-Bolzano, Bolzano, Italy
{nabil.elioini,claus.pahl}@unibz.it
2 Tampere University, Tampere, Finland

{david.hastbacka,davide.taibi}@tuni.fi

Abstract. The continuous demand for low latency, high reliability, and
context-aware content has pushed the existing computational models to
their limit. The cloud with its infinite resources can accommodate many
of the existing scenarios, however, as new scenarios emerge in the IoT
area, the cloud falls short. In this context, the Edge Computing model
emerged as an extension to the cloud in support of low latency and high-
performance applications, by placing part of cloud resources at the edge
of the network, in close proximity to the data sources and applications.
The goal of Edge Computing is to provide the same level of abstrac-
tion at the cloud but in a local context. However, since Edge Comput-
ing inherits many of the benefits provided by the cloud, it also inherits
some of its drawbacks. One such limitation is the management overhead
needed to set-up and continuously configure the Edge Computing appli-
cations. In the cloud space, this problem has been addressed using a new
paradigm called serverless technology. Similarly, in the Edge Comput-
ing, few attempts are being developed to bring the concept of Serverless
Computing at the edge. In this paper, we survey the main edge comput-
ing platforms that provide support for serverless computing comparing
their characteristics and identifying issues and research directions.

Keywords: Serverless · Edge computing · FaaS ·
Function-as-a-Service · Technology review

1 Introduction

Edge computing, the new buzzword, has been gaining a lot of traction from
developers and the industry. Companies are mainly interested in improving the
performance of their systems and reducing the operational costs, by moving
part of the cloud resources closer to the data sources. One major use case of
edge computing is IoT applications [5,9]. In industrial settings, there are many
scenarios such as condition monitoring and general production monitoring that
would benefit from processing the often huge amounts of sensor data closer to the
source [6]. Similarly in multi media applications, receiving data from nearby edge
computing units [7] can have a huge impact on latency and the user experience.
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 29–40, 2021.
https://doi.org/10.1007/978-3-030-71906-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_3

30 N. El Ioini et al.

Together with Edge computing, serverless computing (also known as Function-
as-a-Service or FaaS) is now gaining more and more interest from companies.
Cloud vendors such as AWS and Microsoft have hyped serverless almost every-
where, from practitioners’ conferences to local events, to blog posts. They are
promoting the idea of allowing companies to focus only on their business logic,
while delegating all the operational tasks to the cloud provider. However, server-
less is not just about the hype but has several benefits that enable companies
to reduce costs and to focus more on the business logic of applications. Since
the main goal of edge computing is to locate cloud resources closer to the end
user, and serverless technology is one of these resources, it is legitimate to inves-
tigate how these two technologies can be combined and what are the benefits
and limitations of such integration.

Different companies have started already combining the power of edge
with the operational easiness of serverless providing edge platforms for deploy-
ing serverless functions. The adoption of serverless computing on edge nodes
might help to reduce the computational time, and reduce network-related
costs [2,3,8,11,13]. However, in this fast-growing market, it is still not clear
how to benefit from the serverless capabilities on edge platforms, and especially
how the available solutions on the market allow us to abstract from the hardware
used at the edge using containers or serverless functions at the edge.

In order to help practitioners, and stimulate the discussion on this topic, we
aim at comparing the most common edge platforms that provide serverless sup-
port, discussing pros, cons and highlighting open issues and research directions.
Therefore, the main contributions of this work are:

– A list of the most common edge platforms that support serverless functions
– Comparison of the main characteristics of the platforms
– Identification of open issues and research directions

The results can be useful to the research community and to practitioners
that can easily compare the different features of the platforms and understand
how to better select edge platforms that support serverless.

The remainder of this paper is structured as follows. Section 2 introduces
the background of Serverless and Edge Computing. Section 3 describes and com-
pares the selected edge-computing platforms. Section 4 discusses the results and
identify open issues and research directions. Finally, Sect. 5 draws conclusions
and highlight future works.

2 Background

In this section, we introduce the two main technologies subject of this review,
namely Serverless technology and Edge Computing.

2.1 Serverless

A few years ago, most companies were entirely responsible for the operations
of their server-side applications, then the cloud enabled companies to outsource

Platforms for Serverless at the Edge: A Review 31

part of the operations, renting virtual machines by the hour and paying as much
concern to how much electricity our systems require as to how to use a mobile
phone. However, the software systems remain as servers–discrete components
that require allocation, provisioning, setting up, deploying, shutting down, ... In
2012 [10], developers started thinking about operating their systems instead of
operating their servers, considering applications as workflows, distributed logic,
and externally managed data stores. This way of working can be considered
“serverless”, not because no servers are running, but because developers do not
need to think about them anymore.

In serverless, the cloud provider dynamically allocates and provisions servers.
The code is executed in almost-stateless containers that are event-triggered,
and ephemeral (may last for one invocation), and fully managed by the cloud
provider [10].

However, the term serverless can be misleading. Serverless covers a wide range
of technologies, that can be grouped into two categories: Backend-as-a-Service
(BaaS) and Functions-as-a-Service (FaaS).

Backend-as-a-Service enables to replace server-side components with off-
the-shelf services. BaaS enables developers to outsource all the aspects behind a
scene of an application so that developers can choose to write and maintain all
application logic in the frontend. Examples are remote authentication systems,
database management, cloud storage, and hosting.

An example of BaaS can be Google Firebase, a fully managed database that
can be directly used from an application. In this case, Firebase (the BaaS ser-
vices) manages data components on our behalf.

Function-as-a-Service is an environment within which is possible to run
the software. Serverless applications are event-driven cloud-based systems where
application development relies solely on a combination of third-party services,
client-side logic, and cloud-hosted remote procedure calls [1].

FaaS allows developers to deploy code that, upon being triggered, is executed
in an isolated environment. Each function typically describes a small part of
an entire application. The execution time of functions is typically limited (e.g.
15 min for AWS Lambda). Functions are not constantly active. Instead, the FaaS
platforms listen for events that instantiate the functions. Therefore, functions
must be triggered by events, such as client requests, events produced by any
external systems, data streams, or others. The FaaS provider is then responsible
to horizontally scale function executions in response to the number of incoming
events.

Serverless applications can be developed in several contexts while, because
of its limitations, it might have some issues in other contexts. As an exam-
ple, long-running functions, such as machine learning training or long-running
algorithms might have timeout problems, while constant workloads might result
in higher costs compared to indefinitely running on-demand compute services
like virtual machines or container run-times. Even if serverless is a very recent
topic, researchers already investigated several aspects, such as patterns [12] anti-
patterns [10], problems and issues [1].

32 N. El Ioini et al.

2.2 Edge Computing

The increasing demand for computation, storage, and network resources are some
of the most evident challenges for cloud providers and mobile network operators.
Optimizing data traffic has a direct effect on the reliability and quality of services.
The cloud has served this purpose for years, however, when it comes to IoT, the
cloud falls short. The high number of IoT devices plugged in day induces a
high traffic load, which can have a negative effect on the whole network. As a
result, Edge Computing has emerged to address these issues, by placing part
of the cloud resources (e.g., computation, storage, logic) closer to the edge of
the network, which allows faster and more context-dependent data analysis and
storage.

In terms of implementation, Edge Computing is composed of a set of nodes,
each supports different computation, storage, and network requirements. Differ-
ent flavors of Edge Computing networks exist, which are similar to what the
cloud provides already. Private Edge Computing consists of a private network of
Edge Computing nodes managed by a single organization. Public Edge Comput-
ing, allows customers to deploy their services on top of a managed infrastructure,
and Hybrid Edge Computing, which combines the two previous types.

3 The Serverless Edge Computing Platform

As of today, several edge computing platforms have emerged. Some platforms
have been developed for specific purposes, such as increasing the performance
of HTTP requests and web content delivery, while others are generic and can
be used in different context. In our survey, two main groups of platforms have
been identified (Fig. 1). The first group focuses on using serverless functions to
customize content at the edge before delivering it to the user, while the second
group focuses on executing serverless functions on the data collected at the edge,
before either pushing it to the cloud or sending the result back to the user. We
have named the first group of platforms Content Delivery Network platforms,
since they deal mostly with content delivery, while we named the second group
IoT platforms, since they fit mostly IoT scenarios.

3.1 Content Delivery Network Platforms

Content Delivery Network or Content Distribution Network (CDN) is a network
of servers geographically distributed, with the goal of providing high availabil-
ity and performance by distributing the service closer to the users. CDNs is a
very old approach, introduced in the late 1990s to reduce internet bottlenecks
[4]. CDN is now frequently adopted by media companies and e-commerce to
increase the performances of different services such as video streaming, software
downloads, web, and many other systems. Several CDN providers recently saw
the potential benefits of providing serverless support in their nodes, enabling not
only the caching of the web content on their nodes, but also providing computa-
tional capabilities in their nodes, with the serverless technology. In this Section,

Platforms for Serverless at the Edge: A Review 33

Content

Cloud

Edge

format function

Content Services

GUI function Filter function

Data

Cloud

Edge

Pre-process function

IoT Services

Encryption function

 Content Delivery Networks Edge Services IoT Edge Services

Fig. 1. Serverless at edge platforms categorization

we compare six CDN platforms that allow developing serverless functions on
their edge nodes (Table 1).

Akamai Edge

Akamai1 is one of the leading content delivery network (CDN) providers world-
wide. Akamai provides a distributed platform consisting of more than 60,000
servers deployed over 70 countries. Akamai manages more than 15% of the web
content. As part of the provided services, a dedicated edge platform called Edge-
workers has been developed. The main goal of edge workers is to allow cloud plat-
forms to provide personalized business logic at the edge to support context aware
services and at the same time reduce services latency. In this context, serverless
functions can be customized and deployed closer to the customer infrastructure.
Developers can take advantage of the wide network managed by Akamai to have
control over where the functions are needed and what type of customization is
needed to improve user experience in terms of performance and content.

IBM Edge Functions
Edge Functions on IBM Cloud Internet Services (CIS)2 supports serverless com-
puting at the edge closer to end-users across 180+ global network points of
presence. As an example, it is designed to be able to pre-process HTTP requests
and post-process responses e.g. for personalized user experience or improved API
responsiveness. It is based on “isolates” that run on the V8 engine thus limiting
the development to JavaScript.

Cloudflare
Cloudflare3 is a CDN provider, with the main focus on performances. Cloudflare
handles nearly 10% of the Internet HTTP requests, with peaks of more than 25
1 https://www.akamai.com/us/en/products/performance/serverless-computing-
edgeworkers.jsp.

2 https://cloud.ibm.com/docs/infrastructure/cis?topic=cis-edge-functions.
3 https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing.

https://www.akamai.com/us/en/products/performance/serverless-computing-edgeworkers.jsp
https://www.akamai.com/us/en/products/performance/serverless-computing-edgeworkers.jsp
https://cloud.ibm.com/docs/infrastructure/cis?topic=cis-edge-functions
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing

34 N. El Ioini et al.

trillion monthly requests through their network. Cloudflare provides servers in
154 locations around the world.

Similarly to Akamai, it provides workers (Cloudflare workers) that enable
developers to run JavaScript code as serverless functions on the edge nodes, while
it controls the location of the edge nodes depending on the request locations.

Cloudfront
Cloudfront4 is a CDN that acts as a distributed cache for web applications, part
of the Amazon Web Services (AWS) offer. Cloudfront fetches files from their
source location (“origin” in CloudFront terms) and places the copies of the files
in different edge locations across the Americas, Europe, Asia, Africa, and Ocea-
nia. It enables to deploy serverless functions in its edge nodes, using the AWS
“Lambda@Edge” functions enabling to run business logic, implemented in the
functions. Differently from Akamai and Cloudflare, it supports the deployment
of functions in several languages.

Edjx
Edjx5 is a distributed edge computing platform. Combining packed as small
microservers, container technology, and blockchain, Edjx can deliver a rich envi-
ronment for developers to write, test and deploy serverless functions at the
edge. The main target of Edjx is IoT applications with high bandwidth and low
latency requirements. Using blockchain, Edjx provides a Pay as you go model for
resources provisioning. Two main components make up the Edjx infrastructure:

– EDJX Nanoserver Infrastructure: it represents the hardware back-end of the
system. It is composed of a set of lightweight servers that can be deployed
as edge nodes. The servers are packed as small form factor with an Intel i7
CPU, 16 GB of RAM and 1 TB of storage.

– EDJX Serverless Edge: it represents the software component to manage the
serverless functions lifecycle and orchestration. Since Edge Computing nodes
need to collaborate in order to deliver services, the platform creates a peer-
to-peer network among all the participating nodes.

Edjx promise is to make the deployment process transparent to the develop-
ers. The platform handles the process of locating the closest node to the user and
deploy the serverless functions. To securely access services and data records, Edjx
relies on Chainyard6 to deliver blockchain based distributed serverless applica-
tions.

4 https://aws.amazon.com/cloudfront/.
5 https://edjx.io.
6 https://chainyard.com/.

https://aws.amazon.com/cloudfront/
https://edjx.io
https://chainyard.com/

Platforms for Serverless at the Edge: A Review 35

Stackpath
Stackpath7 is a general-purpose cloud-based CDN with edge nodes in the whole
world except Canada, Russia and Africa. The Stackpath serverless scripting
engine is built on the Chrome V8 JavaScript Engine providing support for
JavaScript. However, it enables also us to use WebAssembly supporting addi-
tional language support such as PHP, C, C++, Go, Python, Perl, Rust, and
more.

Table 1. Comparison of the CDN platforms

Features CDN platforms with serverless support

Akamai Cloudflare Stackpath CloudFrontEdjx IBM edge

functions

Nuclio

Support of AI

on the edge

� � �

Availability Globally Globally Limited Globally Limited Globally Limited

Supported

platforms

(edge

hardware)

Akamai nodesCloudflare

nodes

Stackpath

nodes

AWS nodesNanoserversIBM centers Portable

across

constrained

devices

Supported

languages

JavaScript JavaScript Multi-lang Multi-lang Multi-lang JavaScript Multi-lang

Cost model Pay as you go Hosting cost

License Proprietary Open source

3.2 IoT Platforms

Internet of Things (IoT) platforms include connectivity, management, and pro-
gramming mean for running various devices or things as part of Internet appli-
cations. In their simplest form, IoT devices transmit some sensor readings but as
more advanced they include various functionalities such as preprocessing of sen-
sor data or actuating with the physical world. These advanced IoT devices can
thus be seen as an extension of the Internet-based application system including
application software connecting with both cloud and edge components.

AWS IoT Greengrass
AWS IoT Greengrass8 is Amazon’s extension of the cloud to the edge of the
network and physical devices. Greengrass has been designed from the beginning
for use in the user’s own hardware while using the same cloud management
mechanisms, analytics, and durable storage. Regarding serverless Greengrass is
well known for its capability to execute AWS Lambda functions and in most
cases, they can be the same as those run in the cloud. The Lambdas that can
be run on Greengrass edge devices can be implemented in several programming
languages and the edge software platform can be installed on platforms including
x86-64, ARMv8, ARMv7 and also as Docker containers.
7 https://www.stackpath.com/products/edge-computing/serverless-scripting/.
8 https://aws.amazon.com/greengrass/.

https://www.stackpath.com/products/edge-computing/serverless-scripting/
https://aws.amazon.com/greengrass/

36 N. El Ioini et al.

Azure IoT Edge
Azure IoT Edge9 is Microsoft’s edge computing and IoT Hub cloud extension for
the physical devices of the user. IoT Edge supports several Linux versions and
Windows 10 or Windows Server 2019 on their Tier 1 level and multiple other
operating systems including virtual machines as Tier 2 level supported. X86-64
as well as 32-bit and 64-bit ARM architectures are supported. In terms of server-
less functionality, it allows the containerization of Azure Functions developed in
multiple programming languages to be deployed on IoT Edge devices. It is worth
noting that IoT Edge software is free and open source.

Fogflow
Fogflow10 is an edge computing framework designed to automate and optimize
IoT services orchestration. It leverages three types of context to provide unique
context-driven feature, i) System context: it relies on geo-distributed services
to make sure that resources are available where needed, ii) Data context: it
uses a unified data model to detect relations between tasks in order to opti-
mize task flows, and iii) Usage context: orchestration decisions can be based
on user-specific rules and thresholds. In Fogflow, the flow of execution can span
across multiple Edge Computing nodes depending on the different combinations
of aforementioned types of context (e.g., two services located in different areas
and the second service relies on the first service output). To facilitate services
migration, Docker containers are used to package services logic and all its depen-
dencies. On top of Fogflow, serverless functions can be deployed. Fogflow support
serverless function by:

– invoking serverless function once the input data are available
– automatically managing scalability of instances (e.g., create new instances)
– automatically locating the best Edge Computing node (i.e., closer to the data

producer or data consumer) to deploy serverless functions.

Nuclio
Nuclio11 is a serverless framework focusing on high data, I/O and compute inten-
sive workloads. The framework supports a wide range of data sources and sup-
ports CPU and GPU execution modes. One of the main goals of Nuclio is to
provide an open environment that allows easy portability and rapid deployment
time. It supports most popular data science tools such as Jupyter and kubeflow,
which increases deployment automation. Nuclio has been used predominantly in
IoT scenarios where IoT data can be analysed closer to the data sources.

9 https://docs.microsoft.com/en-us/azure/iot-edge/.
10 https://github.com/smartfog/fogflow.
11 https://nuclio.io.

https://docs.microsoft.com/en-us/azure/iot-edge/
https://github.com/smartfog/fogflow
https://nuclio.io

Platforms for Serverless at the Edge: A Review 37

OpenWhisk-Light
The standard OpenWhisk12 is an open-source initiative for distributed server-
less execution of functions in response to various events. OpenWhisk-Light13 is a
runtime with the standard OpenWhisk API for local or edge execution also sup-
porting resource-constrained devices while maintaining a centralized OpenWhisk
cloud instance as a master repository and catalog of its actions (i.e. functions).
It supports the execution of OpenWhisk actions developed using multiple pro-
gramming languages and can be deployed on the edge as Docker containers. It
has also been demonstrated working on devices as constrained as a Raspberry Pi
which makes it a candidate for IoT edge devices. It is based on an open source
licensing similar to the original OpenWhisk (Table 2).

Table 2. Comparison of the IoT platforms

Features IoT platforms with serverless support

AWS GreenGrass Azure IoT FogFlow OpenWhisk-Light Nuclio

Support of

AI on the

edge

� � � � �

Availability Globally Globally Limited Limited Limited

Edge

hardware

Docker support Tier 1: containers

support. Tier 2:

Virtual machines

support

Docker support containers support.

Demonstrated for

limited operation also

in Raspberry Pi

Portable

across con-

strained

devices

Supported

languages

Multi-lang Multi-lang Multi-lang Multi-lang Multi-lang

Cost model Pay as you go Private setting Private or

hosting

cost

License Proprietary Open source

4 Discussion

The initial comparison suggests that the existing platforms in the two categories
have clearly specific goals. While the CDN category focuses more on taking
advantage of serverless technology to increase availability and reduce costs, the
IoT category points more towards portability, AI and multi-language support
(Fig. 2).

Even-though serverless on the edge is still at its infancy, the first proofs of its
potential usage can already be seen in the proposed solutions and platforms. On
one side, existing Edge providers are extending their offers providing serverless
support on their edge nodes. On the other side, new serverless-specific edge
platforms have been introduced in the last years.

12 https://openwhisk.apache.org.
13 https://github.com/kpavel/openwhisk-light.

https://openwhisk.apache.org
https://github.com/kpavel/openwhisk-light

38 N. El Ioini et al.

Fig. 2. Serverless at edge categories comparison

Existing edge platforms often enable only to deploy functions written with a
limited set of languages. As an example, the traditional CDN platforms enable to
write Javascript code on their edge nodes, while new platforms enable developers
to use different languages.

IoT applications with more advanced processing on the edge device or edge
of the network could significantly benefit from the serverless paradigm and espe-
cially the management and deployment of versions across fleets of devices. In
addition to traditional sensor data processing, video or image-based processing
as well as distributed AI-based inference are expected to be application areas of
interest.

For IoT targeted solutions it seems that Microsoft with its IoT Edge is striv-
ing for a more open platform compared to AWS Greengrass. Both platforms
support different hardware and installation on own equipment but the biggest
difference is in Microsoft IoT Edge open source licensing that enables companies
to use and extend their open source components on local hardware. Microsoft
also supports an open ecosystem through the Azure Marketplace, e.g. acquiring
solutions developed by others and deploying on the edge. Both of the platforms,
however, rely heavily on their cloud service counterparts increasing the vendor
lock-in. The OpenWhisk-Light is a fully open source alternative that offers sim-
ilar features but with less tooling and support. As a consequence, however, it
requires management of the OpenWhisk cloud counterpart to which the edge
component is an extension of.

Platforms for Serverless at the Edge: A Review 39

4.1 Open Issues

This work enabled us to identify a set of open issues:

– Vendor Lock-In. Commercial serverless platforms require to write functions
that use the infrastructure provided, increasing vendor lock-in. As an exam-
ple, an application developed with Greengrass would require a major effort to
be deployed in Azure IoT. Currently, no frameworks allow to use hybrid clouds
and to write generic functions that could be deployed in different ecosystems.

– Lack of decision frameworks to understand when is beneficial or not to use
serverless on edge

– Lack of best practices, patterns and anti-patterns for creating serverless appli-
cations on the edge.

We believe that the research community should help practitioners to under-
stand how to create serverless functions on the edge that could be deployed every-
where, and provide guidelines, including validated patterns and anti-patterns for
creating serverless applications on the edge.

5 Conclusion

In this paper, we described the most common platforms for Serverless in Mobile
Edge Computing.

Some of the selected platforms are targeted to specific purposes such as IoT,
while others are specifically targeting Content Delivery Network (CDN). More-
over, it is interesting to note that several CDN providers that offered edge sup-
port for increasing the performances of web systems recently introduced the
possibility to deploy code as serverless functions, enabling to compose dynamic
web pages on the edge, but also to run part of the business logic.

As future work, we are planning to investigate the usefulness of serverless on
edge computing, with a special focus on the identification of benefits and issues
in this context and supporting companies to understand when it is beneficial to
adopt it, and when it would be better to use different solutions.

References

1. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

2. Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing.
In: Proceedings of the IEEE International Conference on Fog Computing (ICFC
2019), pp. 1–10. IEEE (2019)

3. Cheng, B., Fuerst, J., Solmaz, G., Sanada, T.: Fog function: serverless fog com-
puting for data intensive IoT services. In: Proceedings of the IEEE International
Conference on Services Computing (SCC 2019). pp. 28–35. IEEE (2019)

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1

40 N. El Ioini et al.

4. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally
distributed content delivery. IEEE Internet Comput. 6(5), 50–58 (2002). https://
doi.org/10.1109/MIC.2002.1036038

5. Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., Imran, M.: The role of edge com-
puting in internet of things. IEEE Commun. Mag. 56(11), 110–115 (2018). https://
doi.org/10.1109/MCOM.2018.1700906

6. Hästbacka, D., et al.: Dynamic and flexible data acquisition and data analytics
system software architecture. In: 2019 IEEE SENSORS, pp. 1–4 (2019). https://
doi.org/10.1109/SENSORS43011.2019.8956662

7. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Distributed resource allo-
cation in blockchain-based video streaming systems with mobile edge computing.
IEEE Trans. Wirel. Commun. 18(1), 695–708 (2019). https://doi.org/10.1109/
TWC.2018.2885266

8. Nastic, S., et al.: A serverless real-time data analytics platform for edge computing.
IEEE Internet Comput. 21(4), 64–71 (2017). https://doi.org/10.1109/MIC.2017.
2911430

9. Ning, H., Li, Y., Shi, F., Yang, L.T.: Heterogeneous edge computing open platforms
and tools for internet of things. Future Gener. Comput. Syst. 106, 67–76 (2020).
https://doi.org/10.1016/j.future.2019.12.036

10. Nupponen, J., Taibi, D.: Serverless: what it is, what to do and what not to do. In:
IEEE International Conference on Software Architecture (ICSA 2020) (2020)

11. Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless comput-
ing frameworks support at the edge. In: Proceedings of the IEEE World Congress
on Services (SERVICES 2019), vol. 2642–939X, pp. 206–211 (2019). https://doi.
org/10.1109/SERVICES.2019.00057

12. Taibi, D., El Ioini, N., Pahl, C., Schmid Niederklfler, J.R.: Serverless cloud com-
puting (function-as-a-service) patterns: a multivocal literature review. In: Inter-
national Conference on Cloud Computing and Services Science (CLOSER 2020)
(2020)

13. White, G., Cabrera, C., Palade, A., Clarke, S.: Augmented reality in IoT. In: Liu,
X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 149–160. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17642-6 13

https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MCOM.2018.1700906
https://doi.org/10.1109/MCOM.2018.1700906
https://doi.org/10.1109/SENSORS43011.2019.8956662
https://doi.org/10.1109/SENSORS43011.2019.8956662
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1007/978-3-030-17642-6_13

	Platforms for Serverless at the Edge: A Review
	1 Introduction
	2 Background
	2.1 Serverless
	2.2 Edge Computing

	3 The Serverless Edge Computing Platform
	3.1 Content Delivery Network Platforms
	3.2 IoT Platforms

	4 Discussion
	4.1 Open Issues

	5 Conclusion
	References

