
Christian Zirpins
Iraklis Paraskakis et al. (Eds.)

International Workshops of ESOCC 2020
Heraklion, Crete, Greece, September 28–30, 2020
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 1360

Communications
in Computer and Information Science 1360

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Christian Zirpins • Iraklis Paraskakis et al. (Eds.)

Advances in
Service-Oriented
and Cloud Computing
International Workshops of ESOCC 2020
Heraklion, Crete, Greece, September 28–30, 2020
Revised Selected Papers

123

Editors
Christian Zirpins
Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Iraklis Paraskakis
CITY College
Thessaloniki, Greece

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-71905-0 ISBN 978-3-030-71906-7 (eBook)
https://doi.org/10.1007/978-3-030-71906-7

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Workshop Editors see next page

https://orcid.org/0000-0002-0838-2846
https://doi.org/10.1007/978-3-030-71906-7

Workshop Editors

EdgeWays

Vasilios Andrikopoulos
University of Groningen
Groningen, The Netherlands

Nane Kratzke
University of Applied Sciences Lübeck
Lübeck, Germany

Claus Pahl
Free University of Bolzano
Bolzano, Italy

Nabil El Ioini
Free University of Bolzano
Bolzano, Italy

WESOACS

Andreas S. Andreou
Cyprus University of Technology
Limassol, Cyprus

George Feuerlicht
Unicorn University
Prague, Czech Republic

Winfried Lamersdorf
University of Hamburg
Hamburg, Germany

Guadalupe Ortiz
University of Cádiz
Cádiz, Spain

Willem-Jan Van den Heuvel
Tilburg University
Tilburg, The Netherlands

Christian Zirpins
Karlsruhe University of Applied Sciences
Karlsruhe, Germany

PhD Symposium

Jacopo Soldani
University of Pisa
Pisa, Italy

Massimo Villari
University of Messina
Messina, Italy

EU Projects Track

Giuliano Casale
Imperial College London
London, UK

Pierluigi Plebani
Politecnico di Milano
Milano, Italy

http://orcid.org/0000-0001-7937-0247
http://orcid.org/0000-0001-5130-4969
http://orcid.org/0000-0002-9049-212X
http://orcid.org/0000-0002-1288-1082
https://orcid.org/0000-0001-7104-2097
http://orcid.org/0000-0001-9333-5050
http://orcid.org/0000-0001-5055-9732
http://orcid.org/0000-0002-5121-6341
http://orcid.org/0000-0002-0838-2846
http://orcid.org/0000-0002-2435-3543
http://orcid.org/0000-0001-9457-0677
http://orcid.org/0000-0003-4548-7951
http://orcid.org/0000-0001-8245-226X

Preface

The European Conference on Service-Oriented and Cloud Computing (ESOCC) is
among the leading events on advancing the state of the art in services and cloud
technologies. It serves as an important venue for scientists as well as practitioners from
academia and industry. The main objective of the event is to provide a broad forum for
the exchange of ideas. In this respect, workshops are an important part of the con-
ference. They contribute to an intensive exchange in special fields of service-oriented
and cloud computing. In addition, ESOCC includes a PhD symposium where PhD
students can present their ideas and results, ranging from early ideas to
almost-completed work. Another part of ESOCC is the EU projects track, which dis-
cusses recent developments from European Projects. The workshop proceedings of
ESOCC 2020 contains contributions from the following workshops and events:

• First International Workshop on Edge Migration and Architecture
(EdgeWays 2020)

• Sixteenth International Workshop on Engineering Service-Oriented
Applications and Cloud Services (WESOACS 2020)

• ESOCC 2020 PhD Symposium
• EU Projects Track of ESOCC 2020

We are grateful to Kyriakos Kritikos and his team for the excellent organization.
They made it possible to successfully hold the conference in a virtual form despite all
worries and restrictions of the 2020 pandemic situation. We also thank the organizers
and program committee members of the workshops. Their efforts enabled an attractive
program. Finally, we thank the authors who submitted their contributions to the
workshops, the presenters, and the attendees. Without their support, active and fruitful
workshops would not be possible.

January 2021 Christian Zirpins
Iraklis Paraskakis

Organization

General Chair

Kyriakos Kritikos FORTH-ICS and University of the Aegean, Greece

Program Chairs

Antonio Brogi University of Pisa, Italy
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Workshop Chairs

Christian Zirpins University of Applied Sciences Karlsruhe, Germany
Iraklis Paraskakis CITY College, Greece

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Flavio De Paoli University of Milano-Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Ulf Schreier Hochschule Furtwangen University, Germany
Massimo Villari University of Messina, Italy
John Erik Wittern IBM T.J. Watson Research Center, USA
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Contents

1st International Workshop on Edge Migration and Architecture
(EdgeWays 2020)

Finding Feasible Application Deployments in Edge Clusters,
with Limited Resources . 5

Jacopo Soldani

Edge Computing Simulation Platforms: A Technology Survey 18
Thanh Van Le, Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar

Platforms for Serverless at the Edge: A Review . 29
Nabil El Ioini, David Hästbacka, Claus Pahl, and Davide Taibi

Formal Modeling and Simulation of Collaborative Intelligent Robots. 41
Abdelhakim Baouya, Salim Chehida, Miquel Cantero, Marta Millet,
Saddek Bensalem, and Marius Bozga

Virtual Machine Placement for Edge and Cloud Computing 53
Behdad Partovi, Alireza Bagheri, Maryam Haddad Kazarji, Claus Pahl,
and Hamid R. Barzegar

Cloud-Edge Microservice Architecture for DNN-based Distributed
Multimedia Event Processing . 65

Felipe Arruda Pontes and Edward Curry

16th International Workshop on Engineering Service-Oriented
Applications and Cloud Services (WESOACS 2020)

Modelling Service-Oriented Systems and Cloud Services with HERAKLIT 77
Peter Fettke and Wolfgang Reisig

An Evaluation of Frameworks for Microservices Development 90
Isabell Sailer, Robin Lichtenthäler, and Guido Wirtz

Mining the Architecture of Microservice-Based Applications
from their Kubernetes Deployment . 103

Giuseppe Muntoni, Jacopo Soldani, and Antonio Brogi

ESOCC 2020 PhD Symposium

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 121
Van Thanh Le

Towards Resolving Security Smells in Microservice-Based Applications 133
Francisco Ponce

Towards Citizen-Centric Marketplaces for Urban Sensed Data 140
Heiko Bornholdt

ESOCC 2020 EU Projects Track

DevOps and Quality Management in Serverless Computing:
The RADON Approach . 155

Stefano Dalla Palma, Martin Garriga, Dario Di Nucci,
Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel

5G-CARMEN: Service Continuity in 5G-Enabled Edge Clouds 161
Hamid R. Barzegar, Nabil El Ioini, Van Thanh Le, and Claus Pahl

Services Computing for Cyber-Threat Intelligence: The ANITA Approach . . . 166
Daniel De Pascale, Giuseppe Cascavilla, Damian A. Tamburri,
and Willem-Jan van den Heuvel

Quality Assurance of Heterogeneous Applications:
The SODALITE Approach. 173

Indika Kumara, Giovanni Quattrocchi, Damian Tamburri,
and Willem-Jan Van Den Heuvel

FogProtect: Protecting Sensitive Data in the Computing Continuum 179
Dhouha Ayed, Eva Jaho, Clemens Lachner, Zoltán Ádám Mann,
Robert Seidl, and Mike Surridge

Intelligent Monitoring of Virtualized Services . 185
Thanasis Tziouvaras and Kostas Kolomvatsos

Author Index . 191

x Contents

1st International Workshop
on Edge Migration and Architecture

(EdgeWays 2020)

Preface to the First International Workshop
on Edge Migration and Architecture

The first International Workshop on Edge Migration and Architecture (EdgeWays
2020) aimed to bring together cloud and edge computing experts from academia and
industry from different IT communities, e.g., edge computing, cloud computing, IoT,
software engineering, services computing, big data, information systems, etc. Its main
goals were to promote discussions and collaboration amongst participants, to help
disseminate novel edge computing practices and solutions, and to identify future edge
computing challenges and dimensions.

The first edition of the workshop focused on edge adoption and applications. Edge
computing introduces a new architecture and deployment model that extends the cloud
infrastructure. It has huge potential in scenarios where the traditional cloud fails to meet
certain quality requirements. Many of the major IT companies and start-ups envision
edge computing as i) a key enabler for IoT infrastructures and services, by providing
the needed processing and storage capacities often limited in IoT devices ii) allowing
cloud resources to be closer to data sources, which allows higher performance and
context aware services, iii) increasing security and privacy by placing security checks
closer to the data sources. From a business point of view, organizations can benefit
from the distributed nature of edge computing to deploy dedicated services on a context
or time basis to serve certain areas. From a technological perspective, the scalability,
interoperability, and efficient (de-)allocation of resources at the edge can enable a
whole new set of scenarios in the context of IoT.

Six papers were presented in the workshop dealing with different aspects of Edge
computing, including applications architecture, deployment, modeling, and simulation.
The participants had the chance to share their research and results as well as receive
feedback from experts from different research areas. All the participants were given the
possibility to include additional content based on the received comments to improve
the quality of their papers.

November 2020 Vasilios Andrikopoulos
Nane Kratzke

Claus Pahl
Nabil El Ioini

Organization

Program Committee Chairs

Vasilios Andrikopoulos University of Groningen, the Netherlands
Nane Kratzke Technical University of Applied Sciences

Lübeck, Germany
Claus Pahl Free University of Bozen-Bolzano, Italy
Nabil El Ioini Free University of Bozen-Bolzano, Italy

Program Committee

Paulo Henrique Maia Ceará State University, Brazil
Dana Petcu West University of Timisoara, Romania
Américo Sampaio University of Fortaleza, Brazil
Claudio Ardagna University of Milan, Italy
Hamid Reza Barzegar Free University of Bozen-Bolzano, Italy
Mohammad Al-Zinati Jordan University of Science and Technology,

Jordan
Sören Frey Daimler TSS, Germany
Wilhelm Hasselbring Kiel University, Germany
Ali Khajeh-Hosseini Infracost, UK
Xiaodong Liu Edinburgh Napier University, UK
Lylia Alouache CY Cergy Paris University, France

Finding Feasible Application Deployments
in Edge Clusters, with Limited Resources

Jacopo Soldani(B)

University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. Edge computing brings the service and utilities of cloud
computing closer to end users. At the same time, the devices forming
edge clusters are limited in featured computing resources, e.g., mem-
ory and storage. Running multi-component applications on edge clusters
hence requires suitably selecting the nodes where to deploy the soft-
ware stacks forming an application, so that they get actually hosted on
cluster nodes featuring enough computing resources. In this paper, we
illustrate a solution allowing to automatically determine feasible appli-
cation deployments in edge clusters, i.e., automatically associating the
software stacks forming an application to the nodes in a cluster that fea-
ture enough memory and storage for running them. Our solution is based
on an existing graph transformation-based algorithm, with the main aim
of demonstrating its potentials when applied to edge-related problems.
Finally, we also illustrate an open-source prototype implementation of
our solution.

Keywords: Application topology · Deployment · Edge cluster

1 Introduction

Edge computing brings the service and utilities of cloud computing closer to
end users, by providing low latency, mobility and location awareness to support
delay-sensitive applications [9]. At the same time, edge clusters are built up
by physical devices, which are limited in available computing resources, hence
differing from the elastic, virtual computing environments characterising cloud
infrastructures and platforms [11,13].

Being limited in available computing resources (e.g., featured memory and
storage), the nodes in an edge cluster cannot be used for running any possible
software stack. It is rather needed to suitably distribute the various components
forming an application across the nodes forming an edge cluster, so that each
component or software stack is placed in a cluster node featuring enough com-
puting resources for allowing to run the components it hosts [9,12].

Consider, for instance, the application deployment modelled in Fig. 1(a),
which we shall exploit as running example in this paper. The figure displays
the topology (i.e., the structure) of a web-based application, given as a typed
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 5–17, 2021.
https://doi.org/10.1007/978-3-030-71906-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_1

6 J. Soldani

Mem. Stor.
Component (MB) (MB)

db 56.9 500.0
heartbeat-b 1.9 8.9
heartbeat-f 1.9 8.9

java 1.5 178.0
maven 128.0 20.9
mongo 39.4 381.0

php-module 64.0 131.1
tomcat 5.9 643.0
volume 0.1 0.4
web-api 139.2 15.4
web-gui 19.8 2.1

)b()a(

Node Memory (MB) Storage (MB)
n1 128 256
n2 256 256
n3 256 512
n4 256 512
n5 512 512

Node Memory (MB) Storage (MB)
n6 512 1024
n7 1024 1024
n8 1024 2048
n9 1024 2048
n10 2048 1024

(c)

Fig. 1. Example of multi-component application to be deployed on a edge cluster, with
(a) depicting the application topology according to the TOSCA graphical notation
[10], (b) listing the memory and storage consumption of the components forming the
application, and (c) listing the nodes forming the edge cluster, i.e., their labels n1...n10
and the amounts of memory and storage they feature.

directed graph. Topology nodes model application components, while arcs model
horizontal and vertical dependencies occurring among components (i.e., which
components a component connects to, and which component is used to host
another component). As per Fig. 1(a), the components forming the considered
application have to be deployed on two different compute nodes, i.e., two different
nodes in the target edge cluster. Suppose now that the application components
experience memory and storage consumption listed in Fig. 1(b), and that the
considered edge cluster is formed by the nodes in Fig. 1(c). A question naturally
arises: Which are the “feasible” deployments for such application on the target
edge cluster? More precisely, which nodes in the cluster feature enough memory
and storage for actually being used as compute nodes in our application?

Even if simple, the application in our running example makes it not easy
to come to an answer to the above question. This holds especially since, when
composing the memory and storage consumption of application components, we
should consider the inter-dependencies occurring among them [5]. If project-
ing the same question to realistic scenaria involving more complex applications
and clusters, it becomes clearer that we need some machinery for automatically

Finding Feasible Application Deployments in Edge Clusters 7

determining the cluster nodes featuring enough computing resources for running
the components forming a to-be-deployed software stack, as also outlined in [9].

The first contribution of this paper is precisely to propose one such machin-
ery, by illustrating a solution enabling to automatically determine feasible appli-
cation deployments in edge clusters. Our solution first determines the overall
resource requirements of the various stacks forming an application (such as those
rooted on f-node and b-node in Fig. 1(a)), and it then identifies the nodes in a
cluster that can be used to host such software stacks. We also illustrate a pro-
totype implementation of our solution, called ShipTo. With our solution (and
ShipTo), application administrators are only required to indicate deployment-
specific information, i.e., the topology of the application to be deployed, the
memory and storage consumption of application components, and the list of
nodes forming the edge cluster, together with the memory and storage they fea-
ture. Our solution then automatically associates the root of each software stack
in an application with the cluster nodes featuring enough memory and storage
to host the application components forming the software stack.

Our solution is based on an existing graph transformation-based algorithm
for solving general purpose estimation problems on application topologies, i.e.,
EvalTo [5]. We indeed show how a suitable configuration of EvalTo allows us to
solve the aforementioned placement problem by taking into account memory and
storage. Changing or refining the placement problem to solve (e.g., for taking into
account also network consumption and bandwidth) just requires to accordingly
change the illustrated configuration of EvalTo. The main contribution of this
paper is indeed to demonstrate the potentials and applicability of EvalTo (and,
in general, of graph transformation-based algorithms) to support the deployment
of multi-component application topologies on edge infrastructures.

The rest of the paper is organised as follows. Section 2 sets the stage for
presenting our solution. Sections 3 and 4 illustrate our solution and its prototype
implementation. Finally, Sects. 5 and 6 discuss related work and draw concluding
remarks.

2 Setting the Stage

EvalTo [5] is a graph transformation algorithm for solving general purpose cost
estimation problems on multi-component applications. Given the topology of an
application, and the costs associated to the nodes forming such application, Eval-
To can automatically compose the costs of the nodes forming the application to
estimate the overall cost of the application. Notably, different types of costs can
be associated with different types of nodes, and costs associated with two nodes
can be composed differently based on whether they horizontally or vertically
depend one on the other. This gives room for solving various different problems,
from checking installation conflicts in multi-component application to estimating
the minimum and maximum costs that would be paid if distributing a multi-
component application across various heterogeneous cloud offerings.

8 J. Soldani

Fig. 2. Graph transformation rules iteratively employed by EvalTo.

We hereafter sketch the EvalTo algorithm1, by providing the necessary back-
ground for setting our solution for automatically determining feasible deploy-
ments for multi-component applications on edge clusters. In this perspective, we
first retake the definition of topology for a multi-component application, which
is formalised as a typed directed graph in [5]. The nodes of the graph repre-
sent the components forming an application, and node sorts are used to distin-
guish component types, e.g., to distinguish a container from a web application.
Arcs instead represent inter-component dependencies, and their types allow dis-
tinguishing vertical and horizontal dependencies. A vertical dependency from a
node u to a node v indicates that u is contained in v (e.g., because u is hosted on
v). A horizontal dependency from u to v instead means that u uses (at run-time)
functionalities provided by v, hence requiring u and v to run simultaneously.

Definition 1 (Topology). The topology of an application is a typed and
directed graph T = 〈N,S, s,Dh,Dv〉, where
– N is a finite set of nodes, representing the application components,
– S is a set of node sorts, i.e., the possible types of components,
– s : N → S is a function associating each node with its sort,
– Dh ⊆ N × N is the set of arcs representing horizontal dependencies, and
– Dv ⊆ N × N is the set of arcs representing vertical dependencies.

EvalTo [5] estimates of the overall cost of a topology T = 〈N,S, s,Dh,Dv〉,
by suitably composing the costs associated with its components. Note that the
overall cost of a topology is unclear when looking at it, as the costs of the nodes
forming a topology must be composed by properly taking into account all vertical
and horizontal dependencies occurring among them. Instead, when looking at
the two simple sub-cases shown in Fig. 2 the cost composition is much clearer.

In the lefthand case, we can directly compose the cost of u with that of v
for obtaining their overall cost. This intuitively means that u and v can be seen
as a collapsed node w, which cost is obtained by composing those of u and v,
and which ingoing/outgoing dependencies are obtained by preserving those of
u and v. In the righthand case, we instead first compose the cost of u and v,
and we then compose the resulting cost with that of z. Intuitively, this also
means that u and v can be seen as a collapsed node w, which cost is obtained
by composing those of u and v, and which ingoing/outgoing dependencies are
obtained by preserving those of u and v. The overall cost can then be obtained
by composing that of w and z by re-applying case the lefthand case.
1 Interested readers can find a detailed, self-contained presentation of EvalTo in [5].

Finding Feasible Application Deployments in Edge Clusters 9

The algorithm EvalTo precisely realises the above explained intuition, by
realising the machinery for automatically deriving the cost of an overall appli-
cation, by iteratively applying the collapsing rules in Fig. 2. The machinery of
EvalTo is proved to be terminating and confluent, and to result in reducing the
initial topology to a single node, which associated cost is unique and corresponds
to the composition of the costs of the initial nodes in the application topology
[5]. To do so, EvalTo needs to be provided with the topology T of an application,
and with the cost estimation problem P to be solved on T .

Definition 2 (Cost estimation problem). Let T = 〈N,S, s,Dh,Dv〉 be a
topology, and let Ns denote the nodes of sort s, i.e., Ns = {u ∈ N | s(u) = s}. A
cost estimation problem on T is defined by a tuple P = 〈T,C,U, c, v, h〉, where:
– C = {Cs | s ∈ S} contains the sets of admissible costs for each sort (i.e., Cs

is the set of all possible costs that can be associated with nodes of a sort s),
– U = {Us | s ∈ S} contains the set of admissible upper costs for each sort

(i.e., Us is the set of all possible costs that can be associated with nodes directly
contained in a node of sort s),

– c = {cs : Ns → Cs | s ∈ S} is the set of functions associating the nodes in
N with a cost,

– v = {vs : Us × Cs → Cs | s ∈ S} is the set of vertical cost compositors, and
– h = {hs : Us × Us → Us | s ∈ S} is the set of horizontal cost compositors.

An example of cost estimation problem is available in Sect. 3, while the rationale
of its definition is the following. As different types of costs may be associated with
different sorts of nodes, the admissible costs for nodes of sort s are constrained
by defining a set Cs. A function cs then associates each node of sort s with its
actual cost, and the set of all such functions is denoted by c.

The costs associated with the nodes forming a topology must then be com-
posed to derive the overall cost of the application. The composition of the costs
of two nodes u and v connected by a vertical dependency is represented by a set
v of vertical cost compositors. Each function vs ∈ v indicates how to combine
the cost of a node v of sort s with that of a node u contained in v (such as those
in Fig. 2(a)). Each function hs ∈ h instead indicates how to combine the cost of
a node v with that of a node u horizontally depending on v, in the context given
by the node w of sort s in which both u and v are contained (such as those in
Fig. 2(b)). In both v and h, the set Us constrains the admissible “upper” costs
for nodes of sort s, i.e., the type of costs that can be associated with the nodes
directly contained in a node of sort s.

Finally, to succeed in reducing an application topology to a single node, Eval-
To needs the initial topology to be “rooted”, i.e., to contain only one node with
no outgoing vertical dependencies. As shown in [5], this can be easily obtained
on any topology T , by simply adding a new “bottom” node ⊥, and by adding a
vertical dependency targeting ⊥ from each node in T with no outgoing vertical
dependency. In our running example, this would mean adding a new node ⊥,
and two vertical dependencies from f-node and b-node to ⊥. To avoid changing
the overall cost of the topology, the cost compositors associated with ⊥ have to

10 J. Soldani

be functions suitably aggregating the costs of each original stack (e.g., with set
unions), and the cost associated with ⊥ should be the neutral element for such
functions (e.g., the empty set).

3 Computing Feasible Deployments, with EvalTo

Following our main aim of demonstrating the potentials and applicability of Eval-
To (and of graph transformation-based algorithms) to support the deployment of
multi-component applications on edge infrastructures, we hereby show how Eval-
To can be used to automatically solve the problem of finding feasible application
deployments in an edge cluster, i.e., determining the nodes of the edge cluster
that can actually be used to host each software stack forming the application.
More precisely, given that the graph transformation machinery is fully automated
by EvalTo, what we hereafter show is how to set up a class of cost estimation
problems, which enables EvalTo to solve the aforementioned problem.

Firstly, the topology T = 〈N,S, s,Dh,Dv〉 of an application is constrained
by setting its nodes to be either software components or compute resources,
i.e., S = {sw, com}. In accordance with the TOSCA standard [1], this enables
to distinguish the topology nodes forming the multiple software stacks in an
application from those representing the compute nodes in edge clusters used to
host such stacks. To set up cost estimation problems on such a kind of topologies,
we hereafter suitably set costs and cost compositors. We also show the rationale
behind our setting, by showing it applied to our running example.

Cost and Cost Compositors for Software Components. We set the pos-
sible costs for software components to be pairs of real numbers, which elements
represent the memory and storage consumption of a node, and we set their cost
function accordingly, i.e., Csw = R×RandUsw = R×R. To enable the composi-
tion of the costs of software components interconnected by vertical or horizontal
dependencies, we define the cost compositors vsw and hsw to pairwise sums, i.e.,
vsw(〈m, s〉, 〈m′, s′〉) = 〈m+m′, s+s′〉 and hsw(〈m, s〉, 〈m′, s′〉) = 〈m+m′, s+s′〉
(where m,m′ denote values of memory consumption, while s, s′ denote values of
storage consumption). The rationale behind this choice is the following: If two
software components u and v are connected by a vertical or horizontal depen-
dency, they must run simultaneously since u is actually exploiting v to run (either
as hosting node, or by consuming some of its functionalities). This means that
the memory and storage required by u and v are consumed simultaneously, hence
somehow requiring to “pay both”.

The above setting already allows to partly run EvalTo. As EvalTo starts
from “topmost” nodes (i.e., nodes without ingoing vertical dependencies), it can
already be used to reduce stacked software component to single nodes, which
associated costs are stacks’ overall memory and storage consumption.
Example. Consider the application in our running example, and the memory
and storage consumption of its components (Fig. 1). By applying all possible
initial iterations of EvalTo, i.e., all iterations involving the cost compositors vsw

Finding Feasible Application Deployments in Edge Clusters 11

csw(api-coll) = 〈268.7, 214.3〉
csw(db-coll) = 〈96.3, 881.4〉
csw(gui-coll) = 〈89.7, 776.2〉

Fig. 3. Application topology and costs obtained after collapsing software components.

and hsw, the corresponding cost estimation problem is reduced to that in Fig. 3.
Beyond observing the addition of the bottom node, we can observe that software
stacks have been reduced to single nodes, which associated memory and storage
consumption are obtained by summing those of the components forming the
stacks. For instance, the nodes php-module, web-gui and tomcat in the original
application have been collapsed into the node gui-coll, which associated memory
and storage consumption is given by the sum of those of the collapsed nodes.

To allow EvalTo further reducing the topology and progress solving the
desired cost estimation problem, we need to define how costs of nodes directly
hosted in compute nodes have to be composed together (if horizontally inter-
depending), or with that of the compute node hosting them. �	
Cost and Cost Compositors for Compute Nodes. Our aim is to compute
the memory and storage requirements needed by the (possibly multiple) software
stacks hosted on each compute node, and to determine cluster nodes offering
enough memory and storage to satisfy such requirements. We hence set the
possible costs for compute nodes to tuples, each including a reference to the
compute node itself, the maximum memory and total storage needed to run the
software stacks it hosts, and the set of cluster nodes providing enough memory
and storage for hosting the above software stacks. For compositionality reasons
(which will become clear after discussing cost and cost compositors associated
with ⊥), we actually set the costs for compute nodes to set of tuples. Upper
costs are instead obviously those of software components.

Formally, let E be the labels of available cluster nodes (e.g., n1...n10 in our
running example), and let Ê ⊆ E × R × R be the triples associating each e ∈ E
to the memory and storage featured by the corresponding cluster node. We set
Ccom = P(N × R × R × P(Ê)), where P(X) is used to denote the power set of
a set X, and Ucom = R×R. The function ccom then takes each compute node u
and associates it with the initial cost ccom(u) = {〈u, 0, 0, Ê〉}. The latter models
that u may be on any cluster nodes, as initially requiring no memory or storage.

Memory and storage requirements of the software stacks hosted on a com-
pute node are derived only after suitably composing their memory and storage
consumption. Our idea is to exploit the initial cost of each compute node (given
by ccom) as starting point. We then increase memory and storage requirements
of each compute node by composing its initial cost with the memory and storage
consumption of hosted software stacks, and we restrict the set of cluster nodes
where such component can be hosted accordingly. We indeed define the vertical

12 J. Soldani

csw(f-collapsed) = {〈f-node, 89.7, 785.1, {n6, n7, n8, n9, n10}〉}
csw(b-collapsed) = {〈b-node, 365.1, 1105.0, {n7, n8, n9}〉}

Fig. 4. Application topology and costs obtained after collapsing compute nodes with
the software stacks they host.

cost compositor vcom to keep the maximum memory required by hosted software
stacks, to sum all storage requirements of such stacks, and to accordingly keep
only those cluster nodes featuring enough memory and storage, i.e.,

vcom(〈m, s〉, {〈n,mm, ts,A〉})
= {〈n,max(m,mm), s+ ts, {〈e,me, se〉 ∈ A | me ≥ m ∧ se ≥ s+ ts}〉},

(where mm and ts are used to denote the required maximum memory and total
storage, and A denotes the set of available cluster nodes satisfying such require-
ments). We instead define the cost compositor for combining the costs of two
horizontally inter-dependent software stacks hosted on the same compute node as
the sum of their memory and storage consumption. Being horizontally depend-
ing one another indeed inherently means that they must simultaneously run
(Sect. 2), i.e., hcom(〈m, s〉, 〈m′, s′〉) = 〈m + m′, s + s′〉.

The above allows to continue iterating with EvalTo to collapse nodes repre-
senting software stacks and compute nodes. This allows associating each compute
node with its overall memory and storage requirements, and with the cluster
nodes satisfying such requirements. The following example shows this, by also
clarifying the rationale of using max to compute overall memory requirements.

Example (cont.). Consider the situation shown in Fig. 3, and suppose we pro-
ceed with the iterations of EvalTo, by applying the iterations collapsing nodes
and composing costs with the newly introduced vcom and hcom. The resulting
situation would be that all software stacks are collapsed with their hosting com-
pute nodes. Figure 4 shows this, with f-coll and b-coll obtained by collapsing the
software stacks originally hosted on f-node and b-node, respectively.

The figure also shows the costs associated with f-stack and b-stack, com-
puted by EvalTo and denoting the overall memory and storage consumption of
the stacks originally hosted on f-node and b-node, together with the cluster nodes
featuring enough memory to satisfy such memory and storage requirements. For
instance, the memory requirements associated with f-coll are obtained as the
maximum among the memory consumed by hearbeat-f and gui-coll, since (accord-
ing to the application specification) the corresponding software components do
not depend one on the other, hence not necessarily needing to simultaneously
run. In this way, we keep only those compute nodes that can run hearbeat-f and
gui-coll, at least alternatively. The storage requirements associated with f-coll are
instead obtained by summing the storage consumption of such nodes. Finally, f-
coll is also associated with the set of nodes in the cluster satisfying such memory
and storage requirements. �	

Finding Feasible Application Deployments in Edge Clusters 13

Cost and Cost Compositors for ⊥. The bottom node is finally used for
collecting all tuples associating compute nodes with their memory and storage
requirements, and with the cluster nodes satisfying such requirements. Given
that costs associated to compute nodes are singleton sets of tuples, it is enough to
set the cost compositors for ⊥ to be set unions, and to associate the node ⊥ with a
cost being the neutral element for such compositors, i.e., the empty set. Formally,
this corresponds to setting C⊥ = P(N×R×R×P(Ê)), U⊥ = P(N×R×R×P(Ê))
and c⊥(⊥) = ∅, as well as to set both v⊥ and h⊥ to be the set union ∪.

The above allows completing the iterations of EvalTo. Remaining nodes can
indeed be reduced to a single node, which associated cost represents the feasible
deployments for the original application. The obtained cost is a set of tuples,
each associating a compute node in the original application with the memory
and storage required to host its above software stacks, and with the cluster nodes
featuring enough memory and storage to satisfy such requirements.

Example (cont.). The above introduced cost and cost compositors allows
to collapse all nodes in Fig. 4 into a single node (app-coll), which associ-
ated cost is the union of the costs of f-coll and b-coll, i.e., c⊥(app-coll) =
{〈f-node, 89.7, 785.1, {n6, n7, n8, n9, n10}〉, 〈b-node, 365.1, 1105.0, {n7, n8, n9}〉}.
Please note that the obtained “overall cost” indicates the memory and stor-
age requirements for both compute nodes of the original application (i.e., f-node
and b-node), and the cluster nodes that can actually implement them. �	
Discussion. The outcomes produced by our solution can be exploited to develop
ad-hoc policies for placing software stacks on cluster nodes. The output produced
by EvalTo indeed associates the software stacks to be hosted on a compute node
with their memory and storage requirements, and with the cluster nodes that
can satisfy such requirements. Such information can then be combined with the
memory and storage featured by cluster nodes to devise placement policies, e.g.,
for shipping/migrating software stacks to/across cluster nodes.

It is also worth noting that our setting of EvalTo defines a class of placement
problems, which can be instantiated into a concrete problem by only requiring
application administrators to provide application- and cluster-specific informa-
tion. Everything needed by EvalTo to solve placement problems is indeed already
set, but for (i) the application topology, (ii) the memory and storage consump-
tion of software components, and (iii) the set of physical entities forming the
edge/fog cluster where to deploy the application should not be considered a
restriction. This is obviously not a restriction of our solution, but rather defining
the deployment-specific information, which is known only by the administrator
of an application, hence defining the input she has to provide to our solution.

Changing the problem to solve, or including additional metrics for refining
that illustrated in this section (e.g., for taking into account also network con-
sumption and bandwidth) only requires to update the illustrated configuration
of EvalTo. It can indeed be obtained by changing/extending the tuples defin-
ing the resources required by software components and those featured by edge
nodes, and to update the cost compositors accordingly. A guiding example on
how to do this (even if for a different application domain) can be found in [5].

14 J. Soldani

4 Open-Source Prototype Toolchain

We developed an open-source prototype implementation of our approach, called
ShipTo. ShipTo is implemented in Python 3.7, and it provides a command-line
interface allowing to run an instance of the existing EvalTo prototype, which is
pre-configured to solve the class of cost estimation problems described in Sect. 3.

Application administrators only need to provide ShipTo with the TOSCA
specification of an application and a YAML file composed by two objects, i.e.,
consumption, which associates each application component with its memory
and storage consumption, and clusterNodes, which lists the nodes forming the
cluster where to deploy the application together with the memory and storage
they feature. ShipTo then exploits its first module (i.e., Loader) to process the
given input and generate the input file needed to instantiate EvalTo to solve
the desired estimation problem, i.e., to return a file listing the actual memory
and storage requirements for each compute node, and the cluster nodes that can
satisfy such requirements (Fig. 5). The output of EvalTo is then processed by
the Exporter module, which serialises it in a human-readable YAML file2.

Fig. 5. Architecture of the prototype implementation of our approach, i.e., ShipTo.

5 Related Work

Despite there already exist applications that can be deployed on edge clusters
(e.g., for big data stream processing [15]), the problem of planning their actual
deployment over edge cluster is still open [9]. Solution tackling such a planning
problem have been proposed, with FogTorch [3] and FogTorchPi [4] perhaps
being the closest approaches to ours. They both indeed determine feasible appli-
cation deployments in infrastructures with limited computing resources, by map-
ping the components forming an application to nodes satisfying their deployment
requirements (including needed memory and storage), while at the same trying
to optimise the QoS of the overall application. FogTorch and FogTorchPi do
so by considering flattened application topologies, i.e., only modelling horizontal
“connects to” relationships. We instead also enable modelling vertical dependen-
cies for stacking application components, and we differently process vertical and
horizontal dependencies to derive the overall memory and storage consumption
for the software stacks forming an application.

2 Further details on the implementation of ShipTo can be found in its GitHub repos-
itory (i.e., https://github.com/jsoldani/ship-to). The repository also provide a con-
crete example of input to be provided to ShipTo, based on our running example.

https://github.com/jsoldani/ship-to

Finding Feasible Application Deployments in Edge Clusters 15

Similar considerations apply to other approaches for enacting QoS-optimal
edge application deployments, e.g., [8,14,16,17]. Our approach could serve as
a pre-processing step for all such approaches, as it allows deriving the resource
required by each software stack, and the cluster nodes that can satisfy such
requirements. Software stacks could then be considered as singleton components
to flatten the topology, and mappings to cluster nodes could be used to reduce
the search space where to look for QoS-optimal (feasible) deployments.

Other approaches worth mentioning are Zephyrus [2,7] and TosKeriser [6],
both allowing to plan the deployment of multi-component applications in cloud-
based virtual environments, so that each component is deployed in an environ-
ment offering what the component needs to run. Zephyrus consider comput-
ing resources actually available in cloud offerings, and computes cost-optimal,
feasible application deployments. Similarly to the other approaches discussed
above, it does so by relying on flat description of application topologies, involving
only horizontal inter-component dependencies. TosKeriser instead also considers
stacked topologies, as we do in our approach, but it focus on finding runtime
environments offering needed software support, rather than on determining the
overall computing resources required by each stack in an application and on
identifying environments satisfying such requirements.

In summary, to the best of our knowledge, ours is the first approach for
computing feasible application deployments in edge clusters that enables dealing
with stacked application topologies, and which determine the overall amount of
computing resources needed by the stacks forming an application by suitably
combining those needed by the components forming such stacks (based on the
horizontal/vertical dependencies occurring among components). It is also the
first work showing potentials of EvalTo [5] (and of graph transformations, in
general) to support the planning of application deployments.

6 Conclusions

We presented a solution for automatically determining feasible deployments for
multi-component applications in edge clusters, for which we also provided an
open source prototype implementation. With our solution, application admin-
istrators are only required to provide deployment-specific information, i.e., the
application topology, the memory and storage consumption of application com-
ponents, and the nodes forming the target edge cluster. Our solution then auto-
matically computes the overall memory and storage requirements of each soft-
ware stack forming the application, and it associates such stacks with the cluster
nodes featuring enough memory and storage for running them. It does so by rely-
ing on the automated machinery provided by EvalTo [5], hence demonstrating
its potentials and applicability to tackle problems related to edge deployment.

For future work, we plan to extend the set of considered metrics (e.g., by
including network consumption and bandwidth), to refine our approach for find-
ing suitable deployments of multi-component applications on edge cluster. We

16 J. Soldani

also plan to integrate our approach with existing solutions for planning QoS-
optimal application deployments in edge/fog infrastructures (such as [3,4]), e.g.,
as a pre-processing step enabling them to also consider stacked topologies.

References

1. TOSCA Simple Profile in YAML, Version 1.2. OASIS Standard (2019)
2. Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on

the fly deployment optimization using SMT and CP technologies. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 229–245. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 15

3. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017)

4. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, prob-
ably. In: Proceedings of the IEEE 1st International Conference on Fog and Edge
Computing (ICFEC 2017), pp. 105–114 (2017)

5. Brogi, A., Corradini, A., Soldani, J.: Estimating costs of multi-component enter-
prise applications. Formal Aspects Comput. 31(4), 421–451 (2019)

6. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: Orchestrating incomplete TOSCA
applications with Docker. Sci. Comput. Program. 166, 194–213 (2018)

7. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche,
A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE), pp. 211–222. ACM (2014)

8. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw. Pract. Experience 47(9),
1275–1296 (2017)

9. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a
survey. Future Gener. Comput. Syst. 97, 219–235 (2019)

10. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

11. von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer, S., Pahl, C.: A lightweight
container middleware for edge cloud architectures. In: Fog and Edge Computing,
pp. 145–170. John Wiley & Sons, Ltd. (2019)

12. Pahl, C., Helmer, S., Miori, L., Sanin, J., Lee, B.: A container-based edge cloud
PaaS architecture based on Raspberry Pi clusters. In: Proceedings of the IEEE
4th International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW 2016), pp. 117–124 (2016)

13. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: Proceedings of the 3rd International Conference on Future Internet of
Things and Cloud (FiCloud 2015), pp. 379–386 (2015)

14. Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B.: Incremen-
tal deployment and migration of geo-distributed situation awareness applications in
the fog. In: Proceedings of the 10th ACM International Conference on Distributed
and Event-Based Systems (DEBS), pp. 258–269. ACM (2016)

https://doi.org/10.1007/978-3-319-47677-3_15
https://doi.org/10.1007/978-3-642-45005-1_64

Finding Feasible Application Deployments in Edge Clusters 17

15. Scolati, R., Fronza, I., Ioini, N.E., Samir, A., Pahl, C.: A containerized big data
streaming architecture for edge cloud computing on clustered single-board devices.
In: Proceedings of the 9th International Conference on Cloud Computing and Ser-
vices Science (CLOSER), pp. 68–80. SciTePress (2019)

16. Shahid, H.F., Pahl, C.: Enhanced particle swarm optimisation and multi objective
optimization for the orchestration of edge cloud clusters. In: Proceedings of the
11th International Joint Conference on Computational Intelligence (IJCCI), pp.
155–162. ScitePress (2019)

17. Wöbker, C., Seitz, A., Mueller, H., Bruegge, B.: Fogernetes: deployment and man-
agement of fog computing applications. In: IEEE/IFIP Network Operations and
Management Symposium (NOMS 2018), pp. 1–7 (2018)

Edge Computing Simulation Platforms:
A Technology Survey

Thanh Van Le(B), Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar

Free University of Bolzano, Piazza Domenicani 3, Bolzano, Italy
{vanle,nabil.elioini,claus.pahl,hamid.barzegar}@unibz.it

Abstract. As the interest in Edge Computing (EC) increases, the need
for platforms to support building and evaluating EC based systems
becomes more evident. EC has been defined as an extension of the cloud,
an architecture that consists of moving part of the cloud resources to the
edge of the network. EC does not pose any technological limitations on
how it needs to be implemented, however, to be considered EC, a set
of features need to be supported. Given the scale, heterogeneity, and
complexity of the EC environment (e.g., hardware and software), being
able to perform real experiments would require substantial investments,
without being able to capture all the possible scenarios. In the cloud
space, simulation has been used extensively to study and evaluate archi-
tectural and quality variations. Simulation platforms have been devel-
oped to reduce costs and speed up the design and evaluation phases.
However, in many cases, they can be limited to specific properties or
application domains. In this paper, we provide an overview of EC simu-
lation platforms, looking first at the main EC features, then comparing
the platforms in terms of the features they support.

Keywords: Edge computing · Internet of Things · Simulation
platforms · Technology review

1 Introduction

Edge Computing (EC) has been defined as a model for supporting cloud
resources (e.g., computing, storage, networking) at the edge of the network,
at close proximity to data sources [12]. While the European Telecommunica-
tions Standards Institute (ETSI) provides a reference architecture for EC sys-
tems, there are still many conflicting views on how to implement them [10].
The heterogeneity of EC technologies makes it hard to offer commercial off-the-
shelf solutions that fit all use cases. In the EC space, different platforms are
being developed, some of them have a clear focus on specific features (e.g., Vir-
tual Machine (VM)/container migration), while others target specific use cases
(e.g., IoT devices, moving devices). Recently, as the demand for ultra-Reliable
and Low-Latency (uRLLC) systems to serve mission-critical systems such as
autonomous and assisted driving increases, the need for flexible environments
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 18–28, 2021.
https://doi.org/10.1007/978-3-030-71906-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_2

Edge Computing Simulation Platforms: A Technology Survey 19

that allow fast and highly configurable settings become of paramount impor-
tance. Simulation environments have played for decades an important role in
modeling complex systems by providing full control over all experiment vari-
ables, in order to evaluate an EC simulation platform, we will first define the
requirements that make any given simulator interesting for the community.

As part of our effort to identify the main EC requirements that simulators
need to support, we have considered the requirements of the different flavors
of EC implementations, namely fog computing, mobile edge computing, and
cloudlet computing [9]. Based on a literature review done on existing applications
and approaches using these implementations, eight technical requirements have
emerged.

The remainder of this paper is organized as follows. Section 2 describes related
works which review EC simulators, Sect. 3 demonstrates technical requirements
for EC platforms, Sect. 4 shows nine simulator tools studied, and the last section
is about our conclusion and future work.

2 Related Work

The close connection between the cloud and the edge makes it relevant to dis-
cuss some of the predominant cloud simulators. CloudSim [8] is one of the most
used simulation environments for the cloud, it provides a rich environment with
more than 30 extensions. CloudSim toolkit supports both system and behav-
ior modeling of cloud system components like data centers, VMs, and resource
provisioning policies.

Since this paper focuses on EC simulator requirements, we investigated sur-
veys related to both EC platforms and EC simulators. We found that there are
many studies comparing EC architectures and platforms, however, only a few
of them touch EC simulation platforms. Abreu et al. [20] analyses EC simula-
tor architectures such as IFogSim [11], CloudSimSDN [22], YAFS [15], EmuFog
[18], FoxTorch [7], EdgeCloudSim [23]. They compare these tools with diverse
metrics including CPU and memory usage, network consumption as bandwidth,
and latency. Their work is comprehensive with comparative diversity, only with
metrics but also application models and other in-depth analysis. Their work
was used as a starting point for our analysis. Mach et al. [16] present several
usage cases and examples of comparison where the EC is relevant. Addition-
ally, they have identified emerging concepts that integrate EC functionalities
into mobile networks and discussed current progress in EC standardization. [1]
presents a comprehensive survey of EC, concentrating on its general overview
and its advantages, architectures, security and privacy issues, as well as appli-
cation areas. Comparison among other implementations of edge computing such
as fog computing, cloudlet, and EC has been studied in [9].

Sonmez et al. in [24] studied one of the new simulators called Edge-CloudSim.
EdgeCloudSim builds on CloudSim to meet the specific requirements of edge
computing research and supports the required features. Modeling and simulation
of fog and edge computing environments based on iFogSim toolkit with different
examples, configuration and installation of this simulator are presented in [17].

20 T. Van Le et al.

3 EC Key Characteristics

In this section, we list the main EC characteristics that simulators need to imple-
ment. We have identified 11 requirements.

3.1 Visualization Support

Visualization is an essential requirement for EC, which allows building an iso-
lated environment for applications. Hypervisors and containers are the two com-
mon techniques [6] to implement virtualization. Hypervisors provide the guest
operating systems with a virtual operating platform while still sharing the same
physical hardware, containers provide only the basic services to all containerized
applications using virtual-memory support for isolation. Containers are a better
fit for EC with limited resources. Visualization is essential for an EC simulators
since we can evaluate nodes performance when we run multiple services and
examine the flexibility of the system.

3.2 Network Support

This characteristic is mainly related to simulation platforms, since we assume
that network generation could affect the design of EC simulation (1G to 5G,
2.4 Kbps to 10 Gbps [13]). In the case of 1G or 2G, we do not need an EC
platform since mostly these are radio based generations and do not support high
data rate links, but with 4G and later, an EC node can control flows of big data
[3]. Particularly, in 5G network, it should support low latency edge servers close
to the towers to 10–20 ms. Besides this, a network controller also enables route
tracking, so we can evaluate how requests are allocated in the network. Roaming
is a clear example of the demand for network simulator when the requests do not
go to EC, rather, they are re-routed to their home network. Moreover, bandwidth
consumption also should be considered, similar traffic aggregation will reduce
bandwidth between EC and the main server [4], so instead of sending requests
one by one to the cloud, channels will be created for similar routes.

3.3 Orchestrator Support

Orchestrator [19] is a controller of EC, it takes a responsibility to collaborate
with local controller based on its metric status as CPU or RAM, and decides
when EC needs to offload or join its computation with other ECs.

3.4 Local Controller

Since EC is closer to the user, it needs to manage data locally as well as imple-
ment a level of smart behaviour. In particular, three main requirements are
considered:

Edge Computing Simulation Platforms: A Technology Survey 21

Local Analysis. EC needs to pre-process the data locally before sending it to
the main cloud, for example, data from IoT devices or wearable devices should
be analyzed and cleaned in advance and only send reports to the cloud or make
local decisions (e.g., gas consumption alert to clients).

Edge Content Delivery. Shifting computation resources including service con-
tents from the main cloud to edge will reduce a massive amount of requests to
the remote servers. EC could respond to requested content to user applications
with low latency. Content moving to EC can be executed using content caching
techniques [29] for instance.

Machine State. EC nodes need to control their resources by themselves to
report power consumption, CPU, and RAM utilization. Since the deployment of
VM or containers could lead to an overload condition of EC, so these metrics
should be under the control of both EC and the orchestrator.

3.5 Offloading

Offloading is the process of moving the computationally intensive tasks to a
dedicated processing unit. In EC offloading has two main purposes:

Offloading from User Equipment. EC could reduce power intensive tasks
executed by users’ applications by moving them to EC (e.g., data encryption).

Offloading to Cloud System. Another goal for offloading is to increase the
response time of services, which are deployed in EC, not in remote servers, so
requests from users’ applications are not routed to the main server.

3.6 Mobility Support

Mobility support concerns mainly two aspects, i) mobility simulation, and ii)
mobility management. Mobility simulation refers to the ability to create simula-
tions where users can communicate with EC nodes while they are on the move.
For mobility management, EC can only access a coverage range of its deployed
Base Transceiver Station (BTS), when user requests arrive, EC has to follow
and response in time, but the traffic could be affected by distance from users or
even when users move out of the coverage range. Mobility management should
be set to estimate users’ movements and make decisions to support other tasks.

3.7 Migration Support

Service migration [2] is one of the main requirements of mobility management
which is a process that occurs during handover events, services are deployed in
a visualized and encapsulated environment with virtual machines or containers.

22 T. Van Le et al.

The migration process will transfer the states of the service (i.e. file system,
RAM, CPU) from the current EC node to the next, and redirect network traffic
to reconnect with it.

3.8 Security

Moving a part of resources and computation from cloud to edge could lead to
security issues. Cloud servers are generally protected by the cloud perimeter, fire-
walls and IDSs, while EC nodes might not meet the computational requirements
to run any malicious detection software, thus, each EC device can represent a
potentially vulnerable endpoint. A simulation platform that allows the defini-
tion and enforcement of security policies could help avert many of the security
threats before real deployment.

4 EC Simulator Platforms

In this section, we will describe each of the EC simulation platforms. In total
nine platforms have been identified.

4.1 IoTSim-Edge

IoTSim-Edge1 is an IoT and edge computing testbed, which allows users to test
IoT infrastructure and framework in an easy and configurable manner, this simu-
lator is based on CloudSim [8]. IoTSim-Edge architecture inherits from CloudSim
with additional edge controller modules as edge data center, edge broker, edge
device. EdgeDataCenter manages the core edge infrastructure, intercepts all
incoming events to submit mobile edge let (MEL) requests, this module also
model location-awareness mechanism for IoT and edge devices, support power-
awareness technique to track battery lifetime of EC. EdgeBroker generates user
requests and sends them to MEL and EC. EdgeDevice presents for a real edge
device, hosts MEL, and facilitates state control policies. This platform also sim-
ulates IoT devices to generate, send data and perform specific sensors like light,
voice, etc.

4.2 EdgeCloudSim

EdgeCloudSim2 is also built on top of CloudSim. The platform addresses specific
demands of edge computing and supports the functionality in terms of compu-
tation and networking abilities. EdgeCloudSim provides a modular architecture
for modules. The core simulator module loads scenarios from a configuration file
and logs results into CSV file format. The network module solves transmission
delay of Wireless LAN(WLAN) and WAN in both up/download link. The edge
orchestrator module is a decision-maker that decides when and how a request
should be handled. The mobility module only offers simple coordination with x
and y of clients and edge nodes.
1 https://github.com/DNJha/IoTSim-Edge.
2 https://github.com/CagataySonmez/EdgeCloudSi.

https://github.com/DNJha/IoTSim-Edge
https://github.com/CagataySonmez/EdgeCloudSi

Edge Computing Simulation Platforms: A Technology Survey 23

4.3 ECSim++

ECSim++3 is a fork from OMNetpp simulator [26] version 5.1.1, the tool is
designed to simulate edge services, edge devices. ECSim++ framework is also
based on INET [25] with extensions to build an edge cloud computing (ECC)
environment. EdgeNode is the main module of ECC, extends from module
Router of INET to present an EC node. Service table stores all current cloud
services which are run on EdgeNode, each cloud service is presented by an IPv4
address. ServiceAware manages incoming requests and decides which services
from the service table could handle them. EdgeService simulates a running ser-
vice, the developers only focus on User Datagram Protocol (UDP) applications.
Edge Node Management (Enoma) is located in the cloud core and control ser-
vices on all edge nodes. The power module instead, is a simple power control for
the edge, which calculates energy consumption on each network node to manage
data caching at the edge.

4.4 IFogSim

IFogSim4 is a toolkit that models IoT and Fog environments and measures cloud
and network metrics. This tool is also inherited from CloudSim. IFogSim archi-
tecture starts with IoT sensors and actuators, which receive and response data
to the real world, respectively, received data will be analyzed in upper layers.
Fog devices act as gateways for a parent-child pair communication in the hierar-
chy topology. Resource management manages resources in the fog device layer,
its policies allow component migration, dynamic changes in device resources.
The application model simulates data processing components used for transfer-
ring data among dependent modules. Besides that, this tool also supports cost,
energy model, and VM resource migration that is reused from CloudSim.

4.5 CloudSimSDN

CloudSimSDN5 is another simulation framework based on CloudSim but focuses
mainly on Software Defined Network (SDN). This platform has some additional
components to control SDN behavior. The framework design is closer to telecom-
munication infrastructure, which contains cloud resources (host, switch, link),
workload control (request, processing, transmission), and also virtual channel.
The virtual channel is created to separate dataflows, their idea is to allow prior-
ity traffic to consume more bandwidth than normal traffic, and enables common
routes to use the same channel.

3 https://github.com/LarryNguyen/ECSimpp.
4 https://github.com/Cloudslab/iFogSim.
5 https://github.com/Cloudslab/cloudsimsdn.

https://github.com/LarryNguyen/ECSimpp
https://github.com/Cloudslab/iFogSim
https://github.com/Cloudslab/cloudsimsdn

24 T. Van Le et al.

4.6 YAFS

YAFS6 stands for Yet Another Fog Simulator. The goal of YAFS is to analyze the
design and deployment of applications via customized and dynamical strategies.
Metrics reported by YAFS are network utilization, network delay, response time,
waiting time, which are all stored in CSV format. The YAFS architecture is
defined by six main classes: Topology, Core, Application, Selection, Placement,
and Population. Core integrates other components, while topology prepares a
set of note graph interconnected via network links. The other classes provide
orchestration and allocation of resources in entities of the structure. Dynamic
movement is described as a scenario for YAFS evaluation, but mainly focus on
resource allocation, and service migration is not mentioned.

4.7 EmuFog

EmuFog7 is an emulation framework for fog computing that enables researchers
to design different network topologies and run Docker-based applications on
nodes connected by a simulated network. It is an extensible emulation frame-
work built on top of MaxiNet [30], which is also an extension of the popular
network emulator Mininet [14]. The architecture of EmuFog is presented by a
four-step workflow. 1) topology generation: generates a network topology or load
configuration from files. 2) topology transformation: translates an undirected
graph of a network to topology model by EmuFog. 3) topology enhancement:
identifies and combines edge and fog configuration policies to build a fog node
placement, which shows fog nodes and their computational power. 4) deploy-
ment and execution: emulates fog nodes from step 3, where services running in
Docker containers are being deployed on the nodes to test their performance. A
new contribution of EmuFog is to load and deploy configurations with real appli-
cations in Docker. Nevertheless, all services have to run in a physical machine
so performances could be limited because of restricted hardware and mobility
support is not mentioned.

4.8 FogTorch

FogTorch8 exploits Monte Carlo simulations to deploy applications and com-
ponents in a fog infrastructure. The simulator uses an agriculture scenario to
investigate remote monitoring and irrigation of crops.

FogTorch contains three main components. ThingsController interacts with
IoT sensors and actuators such as fire sensors, electronic water valves, or video
cameras. DataStorage stores all collected information from IoT devices. The
Dashboard takes the responsibility of visualizing, monitoring, and controlling
data from the sensors, along with historical data and machine learning engine
rules.
6 https://github.com/acsicuib/YAFS.
7 https://github.com/emufog/emufog.
8 https://github.com/di-unipi-socc/FogTorch.

https://github.com/acsicuib/YAFS
https://github.com/emufog/emufog
https://github.com/di-unipi-socc/FogTorch

Edge Computing Simulation Platforms: A Technology Survey 25

Monte Carlo simulators are used to account for probabilities when assigning
QoS profiles to communication hyperlinks. With each communication link, Fog-
Torch generates and runs with input for fog infrastructure. In the end, a result
shows two aggregated metrics of QoS-assurance (percentage of runs for gener-
ated deployment) and fog resource consumption (aggregated average percentage
of consumed RAM and storage in fog nodes).

4.9 BEC

We proposed a blockchain-based EC management system (BEC) [28] with the
goal to efficiently guarantee service continuity. Our work is built on top of the
OMNetpp simulator [26] version 5.1.1, and mobility simulator inherits from
SimuLTE [27], Veins [21], and Sumo [5]. The system architecture contains three
main modules which are the mobility module, orchestrator module, and authenti-
cation module. Mobility module is built on Sumo and Veins and runs a simulated
TCP application to forwards requests. The orchestrator receives requests and
makes decisions to deploy a suitable Docker-based application into the nearest
node, nodes are deployed in independent physical machines to enable a scal-
ability and flexibility of testing environment. The authentication module is a
standout component in our system which controls requests and decision flows of
all modules, service information is stored in a blockchain network and requires
access rights to receive. Blockchain also builds a secure channel for services and
infrastructure vendors communication. However, the system does not support
resource control in the edge node and the simulated network is outdated, only
support 3GPP.

5 Simulator Tool Comparisons

A general overview of the identified platforms is shown in Table 1. A more
detailed comparison is described in regard to the different requirements.

Visualization Support: Since EC is an extension of cloud computing, when it
comes to simulators we have found that many projects are essentially forks come
from CloudSim, which means that they inherit some of its core features such as
virtualization simulation. Only EmuFog and BEC support real services packed
in Docker. All nodes and Docker containers have to run in a single physical
machine in EmuFog, which leads to a lack of scalability, while BEC separates
EC nodes in different computers.

Network Support: when it comes to networking support, almost all platforms do
not specify possible network generation, CloudSim extensions provide network
environments as WAN, LAN, 3g, 4G and Bluetooth. Only ClouSimSDN offers
traffic aggregation to build channels for common routes.

26 T. Van Le et al.

Table 1. Platforms comparison in terms of EC requirements.

Requirement/

Simulator

Visualization Network Orches-

trator

Local

controller

Offload Mobility Security

IoTSim-Edge Yes, simulated VM Up to 4G No Basic Basic Yes No

EdgeCloudSim Yes, simulated VM Up to 4G Yes Basic Basic Yes No

ECSim++ No No Yes Basic Basic No No

iFogSim Yes, simulated VM Up to 4G No Basic Basic No No

CloudSimSDN Yes, simulated VM Up to 4G No Basic Basic No No

YAFS No No No Basic Basic Yes No

EmuFog Yes, Docker Common No Basic Basic No No

FogTorch No Common No Basic Basic No No

BEC Yes, Docker Up to 3G Yes Basic, no

machine

state

Basic Yes With

block-

chain

Orchestrator Support: EdgeCloudSim, ECSim++ and BEC include an orches-
trator module (EdgeOrchestror, Enoma, Orchestrator respectively). while in the
other platforms, orchestration needs to be managed by external modules (e.g.,
add-ons or third party orchestrator).

Local Controller: Only BEC does not control machine states as CPU or RAM,
all other platforms on the other hand include some level of support to manage
the local analysis.

Offloading: since it is considered one of the most important features for EC, all
platforms support basic controls and try to reduce bandwidth to the main cloud,
however regarding the computation merging with other EC to support the entire
system, no simulation environment supports this feature by default.

Mobility Support: the network topology is given as an input and then the
platform configures the network as in the case of FogTourchPi, EmuFog.
CloudSimSDN focuses more on network infrastructure and ECSim++ works
mainly on resource usages, does do not support mobility or service migration.
Only BEC proposes a service migration but solely for stateless services.

Security Support: BEC supports secure authentication using EChanism based
blockchain. All the other platforms instead rely on external components to han-
dle security.

6 Conclusion and Future Work

In this survey, we investigated the importance of simulation platforms to support
the design and evaluation of EC based systems. We looked at the features and
characteristics of the major EC simulation platforms and compare them based
on a set of requirements we collected from the existing literature. Our research

Edge Computing Simulation Platforms: A Technology Survey 27

has reviled that most of the platforms have focused primarily on the main func-
tionality of EC, which is computation offloading and virtualization, while they
support the other requirements at different degrees. One of the main reasons
is to allow simulation environments to support multiple scenarios and be easily
extendable. As future work, we intend to implement different scenarios using
the different simulation environments to assess the maturity and non-functional
properties of each platform.

Acknowledgment. This work has been performed in the framework of the EU Hori-
zon 2020 project 5G-CARMEN co-funded by the EU under grant agreement No.
825012. The views expressed are those of the authors and do not necessarily repre-
sent the project.

References

1. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE Internet Things J. 5(1), 450–465 (2017)

2. Abdah, H., Barraca, J.P., Aguiar, R.L.: QoS-aware service continuity in the virtu-
alized edge. IEEE Access 7, 51570–51588 (2019)

3. Barzegar, H.R., Le, V.T., Pahl, C., Ioini, N.E.: Service continuity for CCAM plat-
form in 5G-CARMEN. In: 16th International Wireless Communications and Mobile
Computing Conference (IWCMC 2020) (2020)

4. Beck, M.T., Werner, M., Feld, S., Schimper, S.: Mobile edge computing: a taxon-
omy. In: Proceedings of the Sixth International Conference on Advances in Future
Internet, pp. 48–55. Citeseer (2014)

5. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - simulation of
urban mobility - an overview. In: Proceedings of the 3rd International Conference
on Advances in System Simulation (SIMUL 2011), pp. 63–68, October 2011

6. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

7. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, prob-
ably. In: 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pp. 105–114, May 2017

8. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50
(2011)

9. Dolui, K., Datta, S.K.: Comparison of edge computing implementations: fog com-
puting, cloudlet and mobile edge computing. In: 2017 Global Internet of Things
Summit (GIoTS), pp. 1–6. IEEE (2017)

10. ETSI. Multi-access Edge Computing (MEC) (2018). https://www.etsi.org/
technologies/multi-access-edge-computing. Accessed 17 Feb 2020

11. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017)

12. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing–a
key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing

28 T. Van Le et al.

13. Javed, M., Siddiqui, A.T.: Transformation of mobile communication network from
1G to 4G and 5G. Int. J. Adv. Res. Comput. Sci. 8(3), 193–197 (2017)

14. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, Hotnets-IX, New York. Association for Computing
Machinery (2010)

15. Lera, I., Guerrero, C., Juiz, C.: YAFS: a simulator for IoT scenarios in fog com-
puting. IEEE Access 7, 91745–91758 (2019)

16. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and com-
putation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

17. Mahmud, R., Buyya, R: Modelling and simulation of fog and edge computing
environments using iFogSim toolkit. In: Fog Edge Computing: Principles and
Paradigms, pp. 1–35 (2019)

18. Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: EmuFog: exten-
sible and scalable emulation of large-scale fog computing infrastructures. In: 2017
IEEE Fog World Congress (FWC), pp. 1–6, October 2017

19. Pahl, C., Ioini, N.E., Helmer, S., Lee, B.: An architecture pattern for trusted orches-
tration in IoT edge clouds. In: 2018 Third International Conference on Fog and
Mobile Edge Computing (FMEC), pp. 63–70, April 2018

20. Perez Abreu, D., Velasquez, K., Curado, M., Monteiro, E.: A comparative analysis
of simulators for the cloud to fog continuum. Simul. Model. Pract. Theory 101,
102029 (2019)

21. Sommer, C., Yao, Z., German, R., Dressler, F.: Simulating the influence of IVC
on road traffic using bidirectionally coupled simulators. In: Proceedings - IEEE
INFOCOM (2008). 00(c)

22. Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R.:
CloudSimSDN: modeling and simulation of software-defined cloud data centers.
In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 475–484, May 2015

23. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. In: 2017 Second International Con-
ference on Fog and Mobile Edge Computing (FMEC), pp. 39–44, May 2017

24. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol.
29(11), e3493 (2018)

25. Varga, A.: INETFramework - GitHub Repository (2020). https://github.com/inet-
framework/inet. Accessed 22 Feb 2020

26. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems & Workshops, ICST, p. 60
(2008)

27. Virdis, A., Stea, G., Nardini, G.: SimuLTE - a modular system-level simulator for
LTE/LTE-A networks based on OMNeT++, pp. 59–70 (2014)

28. Le, V.T., Pahl, C., Ioini, N.E.: Blockchain based service continuity in mobile edge
computing. In: 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), pp. 136–141, October 2019

29. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on
mobile edge networks: convergence of computing, caching and communications.
IEEE Access PP, 1 (2017)

30. Wette, P., Draxler, M., Schwabe, A., Wallaschek, F., Zahraee, M., Karl, H.: Max-
iNet: distributed emulation of software-defined networks, pp. 1–9 (2014)

https://github.com/inet-framework/inet
https://github.com/inet-framework/inet

Platforms for Serverless at the Edge:
A Review

Nabil El Ioini1(B), David Hästbacka2, Claus Pahl1, and Davide Taibi2

1 Free University of Bozen-Bolzano, Bolzano, Italy
{nabil.elioini,claus.pahl}@unibz.it
2 Tampere University, Tampere, Finland

{david.hastbacka,davide.taibi}@tuni.fi

Abstract. The continuous demand for low latency, high reliability, and
context-aware content has pushed the existing computational models to
their limit. The cloud with its infinite resources can accommodate many
of the existing scenarios, however, as new scenarios emerge in the IoT
area, the cloud falls short. In this context, the Edge Computing model
emerged as an extension to the cloud in support of low latency and high-
performance applications, by placing part of cloud resources at the edge
of the network, in close proximity to the data sources and applications.
The goal of Edge Computing is to provide the same level of abstrac-
tion at the cloud but in a local context. However, since Edge Comput-
ing inherits many of the benefits provided by the cloud, it also inherits
some of its drawbacks. One such limitation is the management overhead
needed to set-up and continuously configure the Edge Computing appli-
cations. In the cloud space, this problem has been addressed using a new
paradigm called serverless technology. Similarly, in the Edge Comput-
ing, few attempts are being developed to bring the concept of Serverless
Computing at the edge. In this paper, we survey the main edge comput-
ing platforms that provide support for serverless computing comparing
their characteristics and identifying issues and research directions.

Keywords: Serverless · Edge computing · FaaS ·
Function-as-a-Service · Technology review

1 Introduction

Edge computing, the new buzzword, has been gaining a lot of traction from
developers and the industry. Companies are mainly interested in improving the
performance of their systems and reducing the operational costs, by moving
part of the cloud resources closer to the data sources. One major use case of
edge computing is IoT applications [5,9]. In industrial settings, there are many
scenarios such as condition monitoring and general production monitoring that
would benefit from processing the often huge amounts of sensor data closer to the
source [6]. Similarly in multi media applications, receiving data from nearby edge
computing units [7] can have a huge impact on latency and the user experience.
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 29–40, 2021.
https://doi.org/10.1007/978-3-030-71906-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_3

30 N. El Ioini et al.

Together with Edge computing, serverless computing (also known as Function-
as-a-Service or FaaS) is now gaining more and more interest from companies.
Cloud vendors such as AWS and Microsoft have hyped serverless almost every-
where, from practitioners’ conferences to local events, to blog posts. They are
promoting the idea of allowing companies to focus only on their business logic,
while delegating all the operational tasks to the cloud provider. However, server-
less is not just about the hype but has several benefits that enable companies
to reduce costs and to focus more on the business logic of applications. Since
the main goal of edge computing is to locate cloud resources closer to the end
user, and serverless technology is one of these resources, it is legitimate to inves-
tigate how these two technologies can be combined and what are the benefits
and limitations of such integration.

Different companies have started already combining the power of edge
with the operational easiness of serverless providing edge platforms for deploy-
ing serverless functions. The adoption of serverless computing on edge nodes
might help to reduce the computational time, and reduce network-related
costs [2,3,8,11,13]. However, in this fast-growing market, it is still not clear
how to benefit from the serverless capabilities on edge platforms, and especially
how the available solutions on the market allow us to abstract from the hardware
used at the edge using containers or serverless functions at the edge.

In order to help practitioners, and stimulate the discussion on this topic, we
aim at comparing the most common edge platforms that provide serverless sup-
port, discussing pros, cons and highlighting open issues and research directions.
Therefore, the main contributions of this work are:

– A list of the most common edge platforms that support serverless functions
– Comparison of the main characteristics of the platforms
– Identification of open issues and research directions

The results can be useful to the research community and to practitioners
that can easily compare the different features of the platforms and understand
how to better select edge platforms that support serverless.

The remainder of this paper is structured as follows. Section 2 introduces
the background of Serverless and Edge Computing. Section 3 describes and com-
pares the selected edge-computing platforms. Section 4 discusses the results and
identify open issues and research directions. Finally, Sect. 5 draws conclusions
and highlight future works.

2 Background

In this section, we introduce the two main technologies subject of this review,
namely Serverless technology and Edge Computing.

2.1 Serverless

A few years ago, most companies were entirely responsible for the operations
of their server-side applications, then the cloud enabled companies to outsource

Platforms for Serverless at the Edge: A Review 31

part of the operations, renting virtual machines by the hour and paying as much
concern to how much electricity our systems require as to how to use a mobile
phone. However, the software systems remain as servers–discrete components
that require allocation, provisioning, setting up, deploying, shutting down, ... In
2012 [10], developers started thinking about operating their systems instead of
operating their servers, considering applications as workflows, distributed logic,
and externally managed data stores. This way of working can be considered
“serverless”, not because no servers are running, but because developers do not
need to think about them anymore.

In serverless, the cloud provider dynamically allocates and provisions servers.
The code is executed in almost-stateless containers that are event-triggered,
and ephemeral (may last for one invocation), and fully managed by the cloud
provider [10].

However, the term serverless can be misleading. Serverless covers a wide range
of technologies, that can be grouped into two categories: Backend-as-a-Service
(BaaS) and Functions-as-a-Service (FaaS).

Backend-as-a-Service enables to replace server-side components with off-
the-shelf services. BaaS enables developers to outsource all the aspects behind a
scene of an application so that developers can choose to write and maintain all
application logic in the frontend. Examples are remote authentication systems,
database management, cloud storage, and hosting.

An example of BaaS can be Google Firebase, a fully managed database that
can be directly used from an application. In this case, Firebase (the BaaS ser-
vices) manages data components on our behalf.

Function-as-a-Service is an environment within which is possible to run
the software. Serverless applications are event-driven cloud-based systems where
application development relies solely on a combination of third-party services,
client-side logic, and cloud-hosted remote procedure calls [1].

FaaS allows developers to deploy code that, upon being triggered, is executed
in an isolated environment. Each function typically describes a small part of
an entire application. The execution time of functions is typically limited (e.g.
15 min for AWS Lambda). Functions are not constantly active. Instead, the FaaS
platforms listen for events that instantiate the functions. Therefore, functions
must be triggered by events, such as client requests, events produced by any
external systems, data streams, or others. The FaaS provider is then responsible
to horizontally scale function executions in response to the number of incoming
events.

Serverless applications can be developed in several contexts while, because
of its limitations, it might have some issues in other contexts. As an exam-
ple, long-running functions, such as machine learning training or long-running
algorithms might have timeout problems, while constant workloads might result
in higher costs compared to indefinitely running on-demand compute services
like virtual machines or container run-times. Even if serverless is a very recent
topic, researchers already investigated several aspects, such as patterns [12] anti-
patterns [10], problems and issues [1].

32 N. El Ioini et al.

2.2 Edge Computing

The increasing demand for computation, storage, and network resources are some
of the most evident challenges for cloud providers and mobile network operators.
Optimizing data traffic has a direct effect on the reliability and quality of services.
The cloud has served this purpose for years, however, when it comes to IoT, the
cloud falls short. The high number of IoT devices plugged in day induces a
high traffic load, which can have a negative effect on the whole network. As a
result, Edge Computing has emerged to address these issues, by placing part
of the cloud resources (e.g., computation, storage, logic) closer to the edge of
the network, which allows faster and more context-dependent data analysis and
storage.

In terms of implementation, Edge Computing is composed of a set of nodes,
each supports different computation, storage, and network requirements. Differ-
ent flavors of Edge Computing networks exist, which are similar to what the
cloud provides already. Private Edge Computing consists of a private network of
Edge Computing nodes managed by a single organization. Public Edge Comput-
ing, allows customers to deploy their services on top of a managed infrastructure,
and Hybrid Edge Computing, which combines the two previous types.

3 The Serverless Edge Computing Platform

As of today, several edge computing platforms have emerged. Some platforms
have been developed for specific purposes, such as increasing the performance
of HTTP requests and web content delivery, while others are generic and can
be used in different context. In our survey, two main groups of platforms have
been identified (Fig. 1). The first group focuses on using serverless functions to
customize content at the edge before delivering it to the user, while the second
group focuses on executing serverless functions on the data collected at the edge,
before either pushing it to the cloud or sending the result back to the user. We
have named the first group of platforms Content Delivery Network platforms,
since they deal mostly with content delivery, while we named the second group
IoT platforms, since they fit mostly IoT scenarios.

3.1 Content Delivery Network Platforms

Content Delivery Network or Content Distribution Network (CDN) is a network
of servers geographically distributed, with the goal of providing high availabil-
ity and performance by distributing the service closer to the users. CDNs is a
very old approach, introduced in the late 1990s to reduce internet bottlenecks
[4]. CDN is now frequently adopted by media companies and e-commerce to
increase the performances of different services such as video streaming, software
downloads, web, and many other systems. Several CDN providers recently saw
the potential benefits of providing serverless support in their nodes, enabling not
only the caching of the web content on their nodes, but also providing computa-
tional capabilities in their nodes, with the serverless technology. In this Section,

Platforms for Serverless at the Edge: A Review 33

Content

Cloud

Edge

format function

Content Services

GUI function Filter function

Data

Cloud

Edge

Pre-process function

IoT Services

Encryption function

 Content Delivery Networks Edge Services IoT Edge Services

Fig. 1. Serverless at edge platforms categorization

we compare six CDN platforms that allow developing serverless functions on
their edge nodes (Table 1).

Akamai Edge

Akamai1 is one of the leading content delivery network (CDN) providers world-
wide. Akamai provides a distributed platform consisting of more than 60,000
servers deployed over 70 countries. Akamai manages more than 15% of the web
content. As part of the provided services, a dedicated edge platform called Edge-
workers has been developed. The main goal of edge workers is to allow cloud plat-
forms to provide personalized business logic at the edge to support context aware
services and at the same time reduce services latency. In this context, serverless
functions can be customized and deployed closer to the customer infrastructure.
Developers can take advantage of the wide network managed by Akamai to have
control over where the functions are needed and what type of customization is
needed to improve user experience in terms of performance and content.

IBM Edge Functions
Edge Functions on IBM Cloud Internet Services (CIS)2 supports serverless com-
puting at the edge closer to end-users across 180+ global network points of
presence. As an example, it is designed to be able to pre-process HTTP requests
and post-process responses e.g. for personalized user experience or improved API
responsiveness. It is based on “isolates” that run on the V8 engine thus limiting
the development to JavaScript.

Cloudflare
Cloudflare3 is a CDN provider, with the main focus on performances. Cloudflare
handles nearly 10% of the Internet HTTP requests, with peaks of more than 25
1 https://www.akamai.com/us/en/products/performance/serverless-computing-
edgeworkers.jsp.

2 https://cloud.ibm.com/docs/infrastructure/cis?topic=cis-edge-functions.
3 https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing.

https://www.akamai.com/us/en/products/performance/serverless-computing-edgeworkers.jsp
https://www.akamai.com/us/en/products/performance/serverless-computing-edgeworkers.jsp
https://cloud.ibm.com/docs/infrastructure/cis?topic=cis-edge-functions
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing

34 N. El Ioini et al.

trillion monthly requests through their network. Cloudflare provides servers in
154 locations around the world.

Similarly to Akamai, it provides workers (Cloudflare workers) that enable
developers to run JavaScript code as serverless functions on the edge nodes, while
it controls the location of the edge nodes depending on the request locations.

Cloudfront
Cloudfront4 is a CDN that acts as a distributed cache for web applications, part
of the Amazon Web Services (AWS) offer. Cloudfront fetches files from their
source location (“origin” in CloudFront terms) and places the copies of the files
in different edge locations across the Americas, Europe, Asia, Africa, and Ocea-
nia. It enables to deploy serverless functions in its edge nodes, using the AWS
“Lambda@Edge” functions enabling to run business logic, implemented in the
functions. Differently from Akamai and Cloudflare, it supports the deployment
of functions in several languages.

Edjx
Edjx5 is a distributed edge computing platform. Combining packed as small
microservers, container technology, and blockchain, Edjx can deliver a rich envi-
ronment for developers to write, test and deploy serverless functions at the
edge. The main target of Edjx is IoT applications with high bandwidth and low
latency requirements. Using blockchain, Edjx provides a Pay as you go model for
resources provisioning. Two main components make up the Edjx infrastructure:

– EDJX Nanoserver Infrastructure: it represents the hardware back-end of the
system. It is composed of a set of lightweight servers that can be deployed
as edge nodes. The servers are packed as small form factor with an Intel i7
CPU, 16 GB of RAM and 1 TB of storage.

– EDJX Serverless Edge: it represents the software component to manage the
serverless functions lifecycle and orchestration. Since Edge Computing nodes
need to collaborate in order to deliver services, the platform creates a peer-
to-peer network among all the participating nodes.

Edjx promise is to make the deployment process transparent to the develop-
ers. The platform handles the process of locating the closest node to the user and
deploy the serverless functions. To securely access services and data records, Edjx
relies on Chainyard6 to deliver blockchain based distributed serverless applica-
tions.

4 https://aws.amazon.com/cloudfront/.
5 https://edjx.io.
6 https://chainyard.com/.

https://aws.amazon.com/cloudfront/
https://edjx.io
https://chainyard.com/

Platforms for Serverless at the Edge: A Review 35

Stackpath
Stackpath7 is a general-purpose cloud-based CDN with edge nodes in the whole
world except Canada, Russia and Africa. The Stackpath serverless scripting
engine is built on the Chrome V8 JavaScript Engine providing support for
JavaScript. However, it enables also us to use WebAssembly supporting addi-
tional language support such as PHP, C, C++, Go, Python, Perl, Rust, and
more.

Table 1. Comparison of the CDN platforms

Features CDN platforms with serverless support

Akamai Cloudflare Stackpath CloudFrontEdjx IBM edge

functions

Nuclio

Support of AI

on the edge

� � �

Availability Globally Globally Limited Globally Limited Globally Limited

Supported

platforms

(edge

hardware)

Akamai nodesCloudflare

nodes

Stackpath

nodes

AWS nodesNanoserversIBM centers Portable

across

constrained

devices

Supported

languages

JavaScript JavaScript Multi-lang Multi-lang Multi-lang JavaScript Multi-lang

Cost model Pay as you go Hosting cost

License Proprietary Open source

3.2 IoT Platforms

Internet of Things (IoT) platforms include connectivity, management, and pro-
gramming mean for running various devices or things as part of Internet appli-
cations. In their simplest form, IoT devices transmit some sensor readings but as
more advanced they include various functionalities such as preprocessing of sen-
sor data or actuating with the physical world. These advanced IoT devices can
thus be seen as an extension of the Internet-based application system including
application software connecting with both cloud and edge components.

AWS IoT Greengrass
AWS IoT Greengrass8 is Amazon’s extension of the cloud to the edge of the
network and physical devices. Greengrass has been designed from the beginning
for use in the user’s own hardware while using the same cloud management
mechanisms, analytics, and durable storage. Regarding serverless Greengrass is
well known for its capability to execute AWS Lambda functions and in most
cases, they can be the same as those run in the cloud. The Lambdas that can
be run on Greengrass edge devices can be implemented in several programming
languages and the edge software platform can be installed on platforms including
x86-64, ARMv8, ARMv7 and also as Docker containers.
7 https://www.stackpath.com/products/edge-computing/serverless-scripting/.
8 https://aws.amazon.com/greengrass/.

https://www.stackpath.com/products/edge-computing/serverless-scripting/
https://aws.amazon.com/greengrass/

36 N. El Ioini et al.

Azure IoT Edge
Azure IoT Edge9 is Microsoft’s edge computing and IoT Hub cloud extension for
the physical devices of the user. IoT Edge supports several Linux versions and
Windows 10 or Windows Server 2019 on their Tier 1 level and multiple other
operating systems including virtual machines as Tier 2 level supported. X86-64
as well as 32-bit and 64-bit ARM architectures are supported. In terms of server-
less functionality, it allows the containerization of Azure Functions developed in
multiple programming languages to be deployed on IoT Edge devices. It is worth
noting that IoT Edge software is free and open source.

Fogflow
Fogflow10 is an edge computing framework designed to automate and optimize
IoT services orchestration. It leverages three types of context to provide unique
context-driven feature, i) System context: it relies on geo-distributed services
to make sure that resources are available where needed, ii) Data context: it
uses a unified data model to detect relations between tasks in order to opti-
mize task flows, and iii) Usage context: orchestration decisions can be based
on user-specific rules and thresholds. In Fogflow, the flow of execution can span
across multiple Edge Computing nodes depending on the different combinations
of aforementioned types of context (e.g., two services located in different areas
and the second service relies on the first service output). To facilitate services
migration, Docker containers are used to package services logic and all its depen-
dencies. On top of Fogflow, serverless functions can be deployed. Fogflow support
serverless function by:

– invoking serverless function once the input data are available
– automatically managing scalability of instances (e.g., create new instances)
– automatically locating the best Edge Computing node (i.e., closer to the data

producer or data consumer) to deploy serverless functions.

Nuclio
Nuclio11 is a serverless framework focusing on high data, I/O and compute inten-
sive workloads. The framework supports a wide range of data sources and sup-
ports CPU and GPU execution modes. One of the main goals of Nuclio is to
provide an open environment that allows easy portability and rapid deployment
time. It supports most popular data science tools such as Jupyter and kubeflow,
which increases deployment automation. Nuclio has been used predominantly in
IoT scenarios where IoT data can be analysed closer to the data sources.

9 https://docs.microsoft.com/en-us/azure/iot-edge/.
10 https://github.com/smartfog/fogflow.
11 https://nuclio.io.

https://docs.microsoft.com/en-us/azure/iot-edge/
https://github.com/smartfog/fogflow
https://nuclio.io

Platforms for Serverless at the Edge: A Review 37

OpenWhisk-Light
The standard OpenWhisk12 is an open-source initiative for distributed server-
less execution of functions in response to various events. OpenWhisk-Light13 is a
runtime with the standard OpenWhisk API for local or edge execution also sup-
porting resource-constrained devices while maintaining a centralized OpenWhisk
cloud instance as a master repository and catalog of its actions (i.e. functions).
It supports the execution of OpenWhisk actions developed using multiple pro-
gramming languages and can be deployed on the edge as Docker containers. It
has also been demonstrated working on devices as constrained as a Raspberry Pi
which makes it a candidate for IoT edge devices. It is based on an open source
licensing similar to the original OpenWhisk (Table 2).

Table 2. Comparison of the IoT platforms

Features IoT platforms with serverless support

AWS GreenGrass Azure IoT FogFlow OpenWhisk-Light Nuclio

Support of

AI on the

edge

� � � � �

Availability Globally Globally Limited Limited Limited

Edge

hardware

Docker support Tier 1: containers

support. Tier 2:

Virtual machines

support

Docker support containers support.

Demonstrated for

limited operation also

in Raspberry Pi

Portable

across con-

strained

devices

Supported

languages

Multi-lang Multi-lang Multi-lang Multi-lang Multi-lang

Cost model Pay as you go Private setting Private or

hosting

cost

License Proprietary Open source

4 Discussion

The initial comparison suggests that the existing platforms in the two categories
have clearly specific goals. While the CDN category focuses more on taking
advantage of serverless technology to increase availability and reduce costs, the
IoT category points more towards portability, AI and multi-language support
(Fig. 2).

Even-though serverless on the edge is still at its infancy, the first proofs of its
potential usage can already be seen in the proposed solutions and platforms. On
one side, existing Edge providers are extending their offers providing serverless
support on their edge nodes. On the other side, new serverless-specific edge
platforms have been introduced in the last years.

12 https://openwhisk.apache.org.
13 https://github.com/kpavel/openwhisk-light.

https://openwhisk.apache.org
https://github.com/kpavel/openwhisk-light

38 N. El Ioini et al.

Fig. 2. Serverless at edge categories comparison

Existing edge platforms often enable only to deploy functions written with a
limited set of languages. As an example, the traditional CDN platforms enable to
write Javascript code on their edge nodes, while new platforms enable developers
to use different languages.

IoT applications with more advanced processing on the edge device or edge
of the network could significantly benefit from the serverless paradigm and espe-
cially the management and deployment of versions across fleets of devices. In
addition to traditional sensor data processing, video or image-based processing
as well as distributed AI-based inference are expected to be application areas of
interest.

For IoT targeted solutions it seems that Microsoft with its IoT Edge is striv-
ing for a more open platform compared to AWS Greengrass. Both platforms
support different hardware and installation on own equipment but the biggest
difference is in Microsoft IoT Edge open source licensing that enables companies
to use and extend their open source components on local hardware. Microsoft
also supports an open ecosystem through the Azure Marketplace, e.g. acquiring
solutions developed by others and deploying on the edge. Both of the platforms,
however, rely heavily on their cloud service counterparts increasing the vendor
lock-in. The OpenWhisk-Light is a fully open source alternative that offers sim-
ilar features but with less tooling and support. As a consequence, however, it
requires management of the OpenWhisk cloud counterpart to which the edge
component is an extension of.

Platforms for Serverless at the Edge: A Review 39

4.1 Open Issues

This work enabled us to identify a set of open issues:

– Vendor Lock-In. Commercial serverless platforms require to write functions
that use the infrastructure provided, increasing vendor lock-in. As an exam-
ple, an application developed with Greengrass would require a major effort to
be deployed in Azure IoT. Currently, no frameworks allow to use hybrid clouds
and to write generic functions that could be deployed in different ecosystems.

– Lack of decision frameworks to understand when is beneficial or not to use
serverless on edge

– Lack of best practices, patterns and anti-patterns for creating serverless appli-
cations on the edge.

We believe that the research community should help practitioners to under-
stand how to create serverless functions on the edge that could be deployed every-
where, and provide guidelines, including validated patterns and anti-patterns for
creating serverless applications on the edge.

5 Conclusion

In this paper, we described the most common platforms for Serverless in Mobile
Edge Computing.

Some of the selected platforms are targeted to specific purposes such as IoT,
while others are specifically targeting Content Delivery Network (CDN). More-
over, it is interesting to note that several CDN providers that offered edge sup-
port for increasing the performances of web systems recently introduced the
possibility to deploy code as serverless functions, enabling to compose dynamic
web pages on the edge, but also to run part of the business logic.

As future work, we are planning to investigate the usefulness of serverless on
edge computing, with a special focus on the identification of benefits and issues
in this context and supporting companies to understand when it is beneficial to
adopt it, and when it would be better to use different solutions.

References

1. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

2. Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing.
In: Proceedings of the IEEE International Conference on Fog Computing (ICFC
2019), pp. 1–10. IEEE (2019)

3. Cheng, B., Fuerst, J., Solmaz, G., Sanada, T.: Fog function: serverless fog com-
puting for data intensive IoT services. In: Proceedings of the IEEE International
Conference on Services Computing (SCC 2019). pp. 28–35. IEEE (2019)

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1

40 N. El Ioini et al.

4. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally
distributed content delivery. IEEE Internet Comput. 6(5), 50–58 (2002). https://
doi.org/10.1109/MIC.2002.1036038

5. Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., Imran, M.: The role of edge com-
puting in internet of things. IEEE Commun. Mag. 56(11), 110–115 (2018). https://
doi.org/10.1109/MCOM.2018.1700906

6. Hästbacka, D., et al.: Dynamic and flexible data acquisition and data analytics
system software architecture. In: 2019 IEEE SENSORS, pp. 1–4 (2019). https://
doi.org/10.1109/SENSORS43011.2019.8956662

7. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Distributed resource allo-
cation in blockchain-based video streaming systems with mobile edge computing.
IEEE Trans. Wirel. Commun. 18(1), 695–708 (2019). https://doi.org/10.1109/
TWC.2018.2885266

8. Nastic, S., et al.: A serverless real-time data analytics platform for edge computing.
IEEE Internet Comput. 21(4), 64–71 (2017). https://doi.org/10.1109/MIC.2017.
2911430

9. Ning, H., Li, Y., Shi, F., Yang, L.T.: Heterogeneous edge computing open platforms
and tools for internet of things. Future Gener. Comput. Syst. 106, 67–76 (2020).
https://doi.org/10.1016/j.future.2019.12.036

10. Nupponen, J., Taibi, D.: Serverless: what it is, what to do and what not to do. In:
IEEE International Conference on Software Architecture (ICSA 2020) (2020)

11. Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless comput-
ing frameworks support at the edge. In: Proceedings of the IEEE World Congress
on Services (SERVICES 2019), vol. 2642–939X, pp. 206–211 (2019). https://doi.
org/10.1109/SERVICES.2019.00057

12. Taibi, D., El Ioini, N., Pahl, C., Schmid Niederklfler, J.R.: Serverless cloud com-
puting (function-as-a-service) patterns: a multivocal literature review. In: Inter-
national Conference on Cloud Computing and Services Science (CLOSER 2020)
(2020)

13. White, G., Cabrera, C., Palade, A., Clarke, S.: Augmented reality in IoT. In: Liu,
X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 149–160. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17642-6 13

https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/MCOM.2018.1700906
https://doi.org/10.1109/MCOM.2018.1700906
https://doi.org/10.1109/SENSORS43011.2019.8956662
https://doi.org/10.1109/SENSORS43011.2019.8956662
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/TWC.2018.2885266
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1016/j.future.2019.12.036
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1007/978-3-030-17642-6_13

Formal Modeling and Simulation
of Collaborative Intelligent Robots

Abdelhakim Baouya1(B), Salim Chehida1, Miquel Cantero2, Marta Millet2,
Saddek Bensalem1, and Marius Bozga1

1 Verimag Lab, CNRS, University Grenoble Alpes, Grenoble, France
{abdelhakim.baouya,salim.chehida,saddek.bensalem,

marius.bozga}@univ-grenoble-alpes.fr
2 Robotnik Automation S.L.L, Valencia, Spain

{mcantero,mmillet}@robotnik.es

Abstract. Internet of Things consists of several interconnected physical
devices through the internet, whereas fog and cloud technologies are
hosting tasks responsible for device controlling and management. Such
an environment is significantly scalable, and its capacity to handle a large
volume of data is proven. For this reason, we propose an IoT architecture
featuring necessary technologies to cope with robot orchestration and
monitoring. At the fog level, an IoT platform is deployed with all required
features to monitor robots remotely. The modeled system in BIP has been
wholly instantiated in a real infrastructure after formally checking and
simulation against requirements by applying classical code simulation
and statistical model checking.

Keywords: Robotics · IoT · Fog computing · Statistical model
checking

1 Introduction

New trends in robotic systems seek quasi-optimal parameters that industrials
in delivery and electronic commerce need to improve performance. There is an
increasing interest in autonomous systems that do not require human interven-
tion, which can manage the robots locally or remotely. In literature, the use
of autonomous robots leads to three issues: smart management, locating, and
evolution.

In terms of location and navigation, Global Positioning Systems (GPS) [23]
are widely used. Although GPS has a reasonable degree of precision, it is more
efficient in an outside environment. In warehouses, the robot movement surface
is represented by a grid, and each square of the grid has two coordinates in 2D
space. Some other solutions have a drawback at the level of computation, such
as image recognition [14].

Deploying fog computing may represent a solution that handles a dynamic
growing or diminishing number of robots on the surface [27] and also when the
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 41–52, 2021.
https://doi.org/10.1007/978-3-030-71906-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_4

42 A. Baouya et al.

latency is the main challenge that must be addressed since such environment
is mostly delay-sensitive. Experiences stemming from some technology leaders
that provide services over the internet, such as Google, Amazon, and Microsoft,
indicate that application infrastructures in the cloud context should be highly
scalable. The need to host scalable systems has necessitated the emergence of
large scale data centers comprising hundreds of thousands of compute nodes [17].
So, technology leaders provide frameworks such as Amazin’s AWS, Google’s
AppEngine, and Microsoft Azure for hosting third-party applications in their
data-center infrastructures.

In terms of smart management, the software orchestrating the robot’s move-
ment shall be efficient in managing the load fluctuations occurring daily, weekly,
and over longer periods. Researchers have focused on two types of orchestration:
centralized and decentralized orchestration [8]. In decentralized orchestration
[9,31], robots are collaborating through an orchestrator distributed over differ-
ent servers within fog nodes, whereas activity and misbehavior log is recorded
over the cloud as efficiency is proven in [18] to handle scalability. In the case
of centralized orchestration [22], robots communicate among themselves directly
through a master controller. The advantages and drawbacks of both configura-
tions are detailed in [18]. The paper mainly relies on decentralized architecture
based on a fog model in charge of robot orchestration.

This paper describes the use of a master controller deployed over fog nodes
that performs robot orchestration, whereas data storage and analysis are per-
formed over the cloud. First, required IoT concepts and reference architecture
are highlighted to model the system accurately. Second, classical code simula-
tion and statistical model checking tools like SMC-BIP [20] are used to check
whether the modeled system satisfies requirements expressing collision avoid-
ance and service delivery. The results will lead designers to judge the quality of
deployment.

This paper is organized as follows: Sect. 2 presents the architecture highlight-
ing the main concepts related to the IoT system with a projection into the cloud
infrastructure. Section 3 describes the use case related to the robotic system.
The analysis is portrayed in Sect. 4. To sum up, Sect. 5 identifies the existing
work in the area of a cloud-based IoT system, and we draw our conclusions and
also perspectives in Sect. 6.

2 IoT Concepts and Architecture

The definition of IoT concepts and relationships are made available for stake-
holders by refining models found in the literature [5,6]. Virtual entities are syn-
chronized representations of a given set of aspects of the device entity. Resources
are executable code for accessing and storing information. Resources are made
available on the cloud, the fog, or the end devices depending on the partition-
ing guide. A service provides a standardized interface for interacting with such
devices. Figure 1 depicts the relationship between services, resources, and devices
for a specific deployment option. Network-based resources are not shown, as they

Formal Modeling and Simulation of Collaborative Intelligent Robots 43

can be regarded as being hidden behind fog/cloud-based entity. In this kind of
architecture, a fog smart gateway (FSG) [1] is a gateway made smarter with
functionalities related to robots orchestration.

Fig. 1. Fog/Cloud-based IoT system.

Fig. 2. IoT reference architecture.

Starting from the concepts defined
earlier, the IoT reference architecture
is depicted in Fig. 2 based on [10,16].
Five layers are highlighted for the IoT
architecture: Application, Orchestra-
tion and virtual entity, services, com-
munication, and devices. The appli-
cation layer describes the functionali-
ties provided by the applications that
are built on the top of the implemen-
tation of the IoT in the Fog/Cloud.
Orchestration resolves the appropri-
ate services that are capable of han-
dling the IoT user’s request. Virtual
entity searches for services, exposing
resources related to the virtual entity
by means of REST API. Communica-
tion component provides connectivity
for the transport of IoT service and
application-specific data. In the paper, we highlight sensinact controller [12] as
a smart gateway endowed with southbound and northbound connectors. The
northbound allows the software/software interaction, whereas the southbound
allows communication with the outside world based on different protocols such
as MQTT and CoAP.

3 Robots Orchestration: A Case Study

A private company owns a warehouse containing thousands of carts filled with
two or three products. Robots manufactured by Robotnik1 are programmed to
1 Robotnik is a company specialized in robot product development and commercial-

ization (mobile robots, robot arms, robotic hands, and humanoids).

44 A. Baouya et al.

travel in four cardinal directions to reach their destination (See Fig. 3). Once
at the desired cart, the devices make a corkscrew motion to lift the cart off the
ground and transport the entire unit to the storage area 2© as depicted in Fig. 3
where humans pack the appropriate items. The robot then travels back into the
unload area 3© and finds a new cart in an area with densely filled shelves. A
brain controller within a fog is in charge of orchestrating the robot’s movements
within the 2D surface.

Every 0.5 s, the controller sends position requests, and the robots will send
back a structured response in JSON. The JSON scripts related to robots inter-
actions is available in [3]. The robots read their positions from the QR-code
tag placed on the square grid (see Fig. 3). Also, the response contains the
actual robot state, such as “stopped” or “running”. The robots are endowed
with motion sensors in the front to switch to “stopped” state if obstacles were
detected, so the robot response includes, also, an integer attribute “detect” tak-
ing values from 0 to 2. If it is 0, then no obstacle is detected else, the obstacle
could be a door or robot. When the robot detects a door, the orchestrator will
send a request to the automatic door to open, and then the robot could enter
the unload area. In case of collision shall be avoided, the controller will execute
a “collision resolve” that orders the robots to update their positions. When the
robots collect the required carts and drop them in the storage area, they return
to their initial positions in the docking area.

Fig. 3. 2D map surface of the warehouse.

The company in charge of the deployment of such a system would ensure
that the operation of loading and unloading are correctly working and collision
avoidance is also correctly executed. So, two requirements shall be satisfied by
the orchestrator deployed over the fog:

– REQ-1: If a cart is detected with densely filled shelves, then, the robot does
a corkscrew motion to lift the cart off the ground and transport the entire
unit to the storage area.

– REQ-2: If a robot in front is detected then the collision avoidance shall be
resolved and the robot continues until its destination.

Formal Modeling and Simulation of Collaborative Intelligent Robots 45

To satisfy such requirements we have to build a corresponding model in a
formal language called BIP to apply statistical model checking by using tools
developed around it.

4 Modeling and Verification Environment

4.1 Modeling in BIP

We have chosen to use the BIP (Behavior, interaction, priorities) framework
for its component-based formalism and its statistical model checking engine for
systems verification [20].

BIP [4] allows building systems in the hierarchy structure starting from
atomic components characterised by a behaviour expressed in automaton fashion
and their interfaces (i.e. ports) to convey data to/from components. Moreover,
BIP has a stochastic semantics and efficient tools for analysis based on statistical
model checking techniques.

The architectural assembly of our system is pictured in Fig. 4, where the
internal behavior is portrayed in the form of automata for robots 5©, door 6©
and orchestrator 7©. Robots and door are considered as virtual entities since
we try to extract precisely the behavior of the system based on the services
exposed on the cloud. These services are functions used to build automata. The
orchestrator 7© is developed to manage the robots on the surface. We have to
note that the “orchestration” service is abstracted from the BIP model.

Ports are action names that can be associated with data and used for interac-
tions with other components. For instance, component 1© notifies the component
7© by sending the robot ID through the port “stop”. So, the orchestrator could
proceed to the identification of the obstacle if it is a door or another robot. This
decision is made by the orchestrator based on the incoming notifications from
component 2©.

States denote control locations where components wait for interactions. A
transition is an execution step, labeled by a port, from one control location to
another. Each transition has an associated guard (i.e. object detection function
in component 2©) and action. If the robot is detected, then a collision resolve is
initiated by the same robot discovering that obstacle and transition in component
3© is triggered. In case of door detected then, a transition in component 6©
labeled “open” is triggered. Transition steaming from S1 triggers the door closing
operation after 5 s. In the case where the orchestrator detects that the robot is in
the docking area, then it triggers successive transitions from S3 to S0 based on
the load charge. So, if the unloading area is not empty, then the orchestrator asks
the robot to move that area (i.e., transition from S5 to S0). Also, the resulting
action is the update of the variable load (i.e., load := load-1).

Moreover, in BIP, complex data and their transformation are written in
C/C++. Composite components called Compound are defined by assembling
constituent components using connectors or by exporting their atomic internal
ports (i.e., delegation) such as component 5©.

46 A. Baouya et al.

Fig. 4. Virtual entities and orchestrator in BIP.

Connectors define relationships between ports of interacting components. For
instance, we identify eight connectors in Fig. 4 linking the atomic/composite
components. The involved ports in the connectors are ready to participate (i.e.,
strong synchronization). It means that connectors fulfill their roles only if the
involved ports are available.

Formal Modeling and Simulation of Collaborative Intelligent Robots 47

4.2 Verification Using SMC-BIP

SMC-BIP tool2 checks the stochastic BIP models, it takes as input the exe-
cutable model of the system of interest and a requirement given in some logic
to verify. Using the tool, it is possible to estimate qualitatively and quantita-
tively the probability that the system satisfies the requirement. To check such
requirements, the SMC engine relies on probability estimation techniques [15]
and hypothesis testing [30] algorithms to determine the number of simulations
to reach a verdict. Also, the tool offers an integrated development environment
including a graphical user-interface permitting to edit, compile, simulate models,
and plotting graphs for parametric requirements.

The properties specification language over stochastic systems is a probabilis-
tic variant bounded Linear-time Temporal Logic (LTL). Using this language, it
is possible to formulate two kinds of queries on the given system:

– Qualitative queries: P≥θ[ϕ], where θ ∈ [0, 1] is a probability threshold and ϕ
is a bounded LTL formula.

– Quantitative queries: P=?[ϕ] where ϕ is a bounded LTL formula.

Table 1. Requirements expressed in LTL

ID LTL property

REQ-1 P=?[(c7.load = 5 & c7.RobotID = 1 & c4.x = docx & c4.y = docy) ∪100

(c7.load < 5 & c7.robotID = 1 & c4.x = storx & c4.y = story)];

REQ-2 P=?[F
100 (c2.obj = Z0 & c7.RobotID = 1 & c1.state = z1)]; z0 = 0 : 2 :

1 z1 = 1 : 2 : 1;

Table 2. Symbols used in Table 1

Symbol Definition

docX The x coordinate in Cartesian coordinates of docking area;

docY The y coordinate in Cartesian coordinates of docking area;

storX The x coordinate in Cartesian coordinates of storage area;

storY The y coordinate in Cartesian coordinates of storage area;

c1... c7 The id of the component in Fig. 4;

Path formulas are defined using four bounded temporal operators namely,
Next (Nψ1), Until (ψ1 ∪k ψ2), Eventually (F kψ1), and Always (Gkψ1), where
k is an integer value that specifies the length of the considered system execution
2 https://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?

lang=en.

https://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en
https://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en

48 A. Baouya et al.

trace and ψ1,ψ2 are called state formulas, which is a Boolean predicate evaluated
on the system states. Interpretation of requirements in Sect. 3 are reported in
Table 1 and related abbreviation are detailed in Table 2. For instance, the first
query REQ-1 in Table 1 checks if the robot lifts the cart or not from the docking
area and put it in the storage area. The query is satisfied, and the returned
probability is 0.95. So, considering this probability, the robot cart movement is
ensured.

Concerning the second requirement REQ-2, the property returns a probabil-
ity on the state of the robot (running or stopping). Moreover, we encode the
values in a graphical chart as in Fig. 5, and we could identify manually from the
simulation traces the case where possible collision is detected. We highlighted the
collision resolve with a red box and door detection with a green box. As observed,
one collision is detected on the trace since we simulate only two robots. The time
elapsed between the door and robot detection is approximately 10 time units.

Fig. 5. Graphical interpretation of the LTL requirement REQ-2.

4.3 Validation

Although our proposed approach based on statistical model checking can provide
an estimation while satisfying requirements, the behavior could also be radically
different at a low level. So, we generate a code from the BIP model (i.e., the
code generator and source code are available in [3]) and we deployed it over
fog clusters with Ubuntu-16.04 desktop Intel core i7-950@3.07 GHz and ROS
Kinetic with STAGE [25] and “rviz GUI” [24]. Also, we use sensinact controllers
[12] that implements the mechanic to communicate with the simulation platform
called ROS-REST API. We use “rviz” to plan the intelligent robot’s movement
within a 3D movement area and STAGE to capture a robot’s movement into a
2D plan. This simulation is done to validate the requirement REQ-2.

The sequence of robots movements is portrayed in Fig. 6, Fig. 7 and Fig. 8.
Figure 6 represents the initial state of the robots in the docking area. Figure 7
represents the state of the blue robot in front of the door, so the door is not visible
on the figure. Figure 8 portrays the carts and robots in the unload area. Through

Formal Modeling and Simulation of Collaborative Intelligent Robots 49

the simulation, no collision was observed; this is due to the random execution
of the scenario and competitive access to the unload area. However, we could
observe that the door reacts to the robot’s demand to open it. These observations
help the designer to place judgment on the correctness of the modeled system.

Moreover, we update the fog architecture (i.e., managed by virtual machines)
by orchestrating three clusters loading three robots within the fog entity. The
simulation is done by computing the time elapsed from the event triggering
the robots until the last cluster response to the cloud entity. As observed in
Fig. 9, the time differences between the number of orchestrated robots are not
significant, and it is only counted in terms of seconds, thanks to the architecture
deployed in [18].

Fig. 6. Robots in docking area Fig. 7. Robots in front of the door

5 Related Works

In this section, we provide an overview of different existing solutions for cloud
computing and IoT integration. These solutions cover research projects, com-
mercial and open source products. OpenIoT [21] is an open-source middleware,
co-funded by European Union Programme for getting information about devices
over a cloud platform. Also, it provides interoperability between external sys-
tems based on a semantic structure using ontologies. Moreover, it includes visu-
alization, monitoring, and configuration over the connected devices. Xively [29]
is considered as “IoT platform as a service” for the management of connected
things through a Web UI using different communication methods, like REST
API or MQTT supporting different data formats such as JSON and XML. Now,
Xively is part of the Google Cloud Platform product family. SensorCloud [26]
leverages the cloud computing technologies for data storage and management
platform. To link the platform to the IoT devices, a specific gateway provided
by MicroStrain [19], which collects data from different sources based on REST
API. Besides, a collection of tools is provided for plotting graphs and analyzing
data. thethings.io [28] provides a back end solution for IoT application developers

50 A. Baouya et al.

Fig. 8. Robots in storage area Fig. 9. Response time/robots

through an easy and flexible API. The platform is hardware agnostic and could
connect any device through any protocol MQTT, CoAP, HTTP. The develop-
ment of the cloud is presently made on top of AWS. A detailed survey on the
existing platforms is provided by [7] and [11]. Current projects such as Seriot
project [13] draws great attention. It focuses on security aspects of the IoT sys-
tems by providing a means to understand the existing and emerging threats at
the communication and device layers.

In the literature, a few papers shine a spotlight over the IoT concepts to
give a comprehensive view of the IoT architecture and how it is deployed on a
local or a distributed environment. Authors in [6] give the main IoT concepts
and their relationships serving as a common lexicon and taxonomy and thus as
a basis for the development of IoT. So, inspiring by that document, we build
our architecture based on the technologies supported by our industrial partners.
Our contribution leverages the verification based statistical model checking to
improve the quality of the Fog/Cloud-based IoT system with complex behavior.
Using SMC than the traditional model checker is mainly due to its advantages
related to scalability. BIP SMC is known to be far less memory and time-intensive
than exhaustive ones [2].

6 Conclusion

A part of the IoT concepts is presented in this paper to highlight the IoT’s
formal terms. These terms are used to define the reference architecture and
a projection over the fog/cloud where communication and devices are hidden
from users. Also, we were able to build a formal model of the robotic system
in BIP language and then to check if the functional requirements expressed in
LTL format are satisfied. Meanwhile, fog and cloud infrastructure are sensitive
to external attacks, and failures may have a negative impact on the robot’s
movement and company business sustainability. Thus, in the future works, we
intend to integrate this transversal concern mainly at orchestration service of
the reference architecture to manage the network transactions.

Formal Modeling and Simulation of Collaborative Intelligent Robots 51

Acknowledgement. The research leading to the presented results has been under-
taken within the research profile Brain-IoT - model-Based fRamework for dependable
sensing and Actuation in INtelligent decentralized IoT systems, funded by the Euro-
pean Union, grant number: 780089.

References

1. Aazam, M., Huh, E.: Fog computing and smart gateway based communication for
cloud of things, pp. 464–470 (2014)

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

3. Baouya, A.: Code generator - JSON files (2020). https://github.com/hakimuga/
Resulted Robots Orchestration Bundles

4. Basu, A.: Rigorous component-based system design using the BIP framework.
IEEE Softw. 28(3), 41–48 (2011)

5. Bauer, M., et al.: IoT reference model. In: Bassi, A., et al. (eds.) Enabling Things
to Talk, pp. 113–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40403-0 7

6. Ben Hassine, T., Khayati, O., Ben Ghezala, H.: An IoT domain meta-model and an
approach to software development of IoT solutions. In: 2017 International Confer-
ence on Internet of Things, Embedded Systems and Communications (IINTEC),
pp. 32–37 (2017)

7. Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing
and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

8. Chowdhary, R.R., Chattopadhyay, M.K., Kamal, R.: Comparative study of orches-
trated, centralised and decentralised approaches for orchestrator based task allo-
cation and collision avoidance using network controlled robots. J. King Saud Univ.
Comput. Inf. Sci. (2018)

9. Correll, N., Bachrach, J., Vickery, D., Rus, D.: Ad-hoc wireless network coverage
with networked robots that cannot localize. In: Proceedings of the 2009 IEEE
International Conference on Robotics and Automation. ICRA’09, pp. 3554–3561.
IEEE Press, Piscataway, NJ, USA (2009)

10. da Cruz, M.A.A., Rodrigues, J.J.P.C., Al-Muhtadi, J., Korotaev, V.V., de Albu-
querque, V.H.C.: A reference model for internet of things middleware. IEEE Inter-
net Things J. 5(2), 871–883 (2018)

11. Dı́az, M., Mart́ın, C., Rubio, B.: State-of-the-art, challenges, and open issues in
the integration of internet of things and cloud computing. J. Netw. Comput. Appl.
67, 99–117 (2016)

12. Gandrille, E.: CEA LIST: sensinact gateway. Accessed on Jan 17 2020 (2019).
https://wiki.eclipse.org/SensiNact

13. Gelenbe, E., Domanska, J., Czàchorski, T., Drosou, A., Tzovaras, D.: Security
for internet of things: The seriot project. In: 2018 International Symposium on
Networks, Computers and Communications (ISNCC), pp. 1–5 (2018). https://doi.
org/10.1109/ISNCC.2018.8531004

14. Gomes, S., et al.: Embedded real-time speed limit sign recognition using image
processing and machine learning techniques. Neural Comput. Appl. 28, 573–584
(2017)

15. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

https://doi.org/10.1145/3158668
https://github.com/hakimuga/Resulted_Robots_Orchestration_Bundles
https://github.com/hakimuga/Resulted_Robots_Orchestration_Bundles
https://doi.org/10.1007/978-3-642-40403-0_7
https://doi.org/10.1007/978-3-642-40403-0_7
https://wiki.eclipse.org/SensiNact
https://doi.org/10.1109/ISNCC.2018.8531004
https://doi.org/10.1109/ISNCC.2018.8531004
https://doi.org/10.1007/978-3-540-24622-0_8

52 A. Baouya et al.

16. International Telecommunication Union: Y.2060: Overview of the internet of
things. Recommendation y.4000/y.2060. Accessed on Jan 17 2020 (2012)

17. Li, X., Liu, Y., Kang, R., Xiao, L.: Service reliability modeling and evaluation
of active-active cloud data center based on the it infrastructure. Microelectron.
Reliab. 75, 271–282 (2017)

18. Maiti, P., Apat, H.K., Sahoo, B., Turuk, A.K.: An effective approach of latency-
aware fog smart gateways deployment for IoT services. Internet of Things 8, 100091
(2019)

19. MicrosStrain: Accessed Jan 17 2020. https://www.microstrain.com/
20. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Per-

formance evaluation of stochastic real-time systems with the SBIP framework. Int.
J. Crit. Comput. Based Syst. 1–33 (2018)

21. OpenIoT. Accessed on Jan 17 2020.https://github.com/OpenIotOrg/openiot
22. Petković, T., Puljiz, D., Marković, I., Hein, B.: Human intention estimation based

on hidden Markov model motion validation for safe flexible robotized warehouses.
Robot. Comput. Integr. Manuf. 57, 182–196 (2019)

23. Raskaliyev, A., Patel, S., Sobh, T.: A dynamic model for GPS based attitude
determination and testing using a serial robotic manipulator. J. Adv. Res. 8(4),
333–341 (2017)

24. ROS.org: ROS - rviz (2012). http://wiki.ros.org/rviz
25. ROS.org: ROS - stage (2012). http://wiki.ros.org/stage
26. Sensorcloud: Accessed on Jan 17 2020. http://www.sensorcloud.com
27. Simic, V., Stojanovic, B., Ivanovic, M.: Optimizing the performance of optimiza-

tion in the cloud environment-an intelligent auto-scaling approach. Futur. Gener.
Comput. Syst. 101, 909–920 (2019)

28. thethings.io: Accessed on Jan 17 2020. https://thethings.io/
29. Xively.: Accessed on Jan 17 2020. https://xively.com/
30. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems

using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided
Verification. LNCS, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45657-0 17

31. Zhou, Y., Hu, H., Liu, Y., Lin, S.W., Ding, Z.: A distributed approach to robust
control of multi-robot systems. Automatica 98, 1–13 (2018)

https://www.microstrain.com/
https://github.com/OpenIotOrg/openiot
http://wiki.ros.org/rviz
http://wiki.ros.org/stage
http://www.sensorcloud.com
https://thethings.io/
https://xively.com/
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Virtual Machine Placement for Edge
and Cloud Computing

Behdad Partovi1, Alireza Bagheri2, Maryam Haddad Kazarji1(B), Claus Pahl3,
and Hamid R. Barzegar3

1 Faculty of Computer Science and Engineering,
Shahid Beheshti University, Tehran, Iran

b.partovi@gmail.com, mhaddad.gozarji@gmail.com
2 Faculty of Computer Engineering, Amirkabir University of Technology,

Hafez, Tehran, Iran
ar bagheri@aut.ac.ir

3 Department of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{hamid.barzegar,claus.pahl}@unibz.it

Abstract. So far, the genetic algorithm has been presented for the
energy-aware scheduling of virtual machines to minimize the total busy
time of servers. However, this algorithm does not consider the criteria for
service-level policies on real-time applications. The convergence speed of
the genetic algorithm is quite low in solving many of the large hybrid opti-
mization problems. In other similar studies, heuristic algorithms were used
to solve the interval scheduling problem. Such algorithms are not able to
find nearly optimal solutions to hard problems. Since the optimization of
scheduling is part of the hard problems, it is wise to use meta-heuristic
algorithms to find nearly optimal solutions. Accordingly, an energy-aware
meta-heuristic scheduling algorithm is presented in this paper for real-
time virtual machines. The main goal of this algorithm is to minimize
the total busy time of the physical machines in an interval without violat-
ing the deadline for virtual machines. The results were collected from the
genetic algorithm, the smart water drop algorithm, the optimization of the
ant colony, and the first possible downward algorithm for comparison and
evaluation. The optimization of the ant colony and the smart algorithm
of water drops showed better results than did the other two algorithms.

Keywords: Cloud computing · Edge computing · Real-time virtual
machines · Meta heuristic algorithms · Interval scheduling

1 Introduction

The use of energy-efficient resource allocation creates green edge and cloud com-
puting data centers to meet the demands of applications for computational ser-
vices and save energy. The infrastructures of cloud systems are made up of vir-
tualized data centers with thousands of highly efficient computational servers.
A method of reducing energy loss in data centers is the server consolidation
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 53–64, 2021.
https://doi.org/10.1007/978-3-030-71906-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_5

54 B. Partovi et al.

technique in which the Virtual Machines (VM)s of a data center are placed on
a fewer number of physical machines [1]; therefore, the exploitation of server
increases. In resource allocation problems, a constant portion of one resource is
allocated to a number of competing activities when objective functions are opti-
mized [2]. In [3], interval scheduling was investigated with the purpose of min-
imizing the busy time of machines. In fact, the busy time means the power-on
time of machines. In [4] this problem is enquired by meta-heuristic method, the
deadline constraint is not included, as well as this algorithm due to the speed of
slow convergence and the long run time, is not appropriate for dynamic program-
ming applications. User requests for services are mapped onto VMs characterized
by the necessary intervals and resource capacity. They should be scheduled with-
out violating the deadline and by considering the constraints on the resources
of physical machines. This type of schedule should be energy-aware. In other
words, the busy time of physical servers should be minimized in a certain period
of time so that more idle servers can be turned off. Since this problem is nat-
urally considered a hard problem, energy-aware meta heuristic algorithms are
necessary for solving it. Therefore, the ant colony optimization and intelligent
water drops meta-heuristic algorithms were used in this study.

The aim of this study is to find a method for optimizing energy consumption
for the allocation and scheduling of resources in cloud computing but it can
consider in edge computing respectively. It is worth mentioning other alternative
approaches such as edge computing drastically can reduce energy consumption
due to their nature. For this reason, VMs are considered to be allocable resources
in data centers. The allocation of VMs is considered very necessary in such a way
that the energy usage of the data center can be controlled over time. The main
contribution of this study in comparison to similar studies is to investigate the
methods for the energy-aware scheduling of VMs by considering the constraints
on resources and deadlines.

The rest of this paper has been organized in the following sections: Section 2
presented a review of the related works. The system model explained in Sect. 3.
Section 4 is given the numerical results and system evaluation. Finally, the con-
clusion is presented in Sect. 5.

2 Related Works

In this section, relevant studies are compared to point out their advantages
and disadvantages. In [5–7], the Dynamic Frequency-Voltage Scaling (DVFS)
method was used to reduce energy consumption. In this method, the run time
may become longer, and efficiency may decrease. Moreover, this method is too
hardware-dependent. As a result, turning off additional servers for exploitation
improvement is the only method decreasing the operational costs of data centers
significantly [8]. In [9], proposed a heuristic method for packaging with a mul-
tidimensional box to consolidate the workloads of tasks, although the proposed
method depends on the type of workload and application. It is appropriate for
an entire edge and cloud environment. The concept of real-time requests for
resources (virtual machines) was not taken into account in [9]. In [10–12] the

Virtual Machine Placement for Edge and Cloud Computing 55

requests for resources were not considered in the intervals. Furthermore, the
migration technique was employed for the allocation of VMs. This technique
imposes a considerable overhead on the efficiency of allocation. In [13], formu-
lated the energy-aware placement of applications as a continuous optimization in
heterogeneous virtualized systems. In every temporal framework, virtual machine
placement is optimized to minimize energy consumption and maximize efficiency.
The proposed algorithms do not support the Service Level Agreement (SLA)
such as the deadline, therefore, the efficiency of applications may decrease with
changes in the workload. In [14], no starting points of time were considered for
requests for the allocation of VMs. Furthermore, the hill-climbing algorithm was
used to solve optimization problems. The convergence speed of this algorithm
is quite low in high-dimensional problems. It is also more likely to get trapped
in the local optimum in comparison with meta-heuristic methods such as t ant
colony optimization which is considered in this study as well.

In [15], the concept of the deadline was not discussed, and the starting points
of VMs were considered constant. The greedy heuristic algorithms were used to
solve the energy-aware scheduling of VMs with the purpose of reducing the
total busy time of servers which might not find the optimal solution. In [3,
16–18], approximate heuristic methods were presented to solve the problem of
minimizing the total busy time in the real-time scheduling of tasks by considering
the constraints on resources. In [3] a 3-approximation heuristic method named
Modified First Fit Decreasing Earliest (MFFDE) has been introduced to schedule
VMs in edge and cloud data centers to minimize energy consumption. In [19],
the ant colony optimization was used to optimize virtual machine placement
with the purpose of consolidating VMs and minimizing the number of physical
servers. In this method, the dimension of time was not taken into account. When
this dimension is considered, the optimization does not always bear the desired
result only with the purpose of minimizing the number of physical servers and
solving the problem regarded as a packaging problem with boxes.

In [20], the proposed algorithm was named Self-Adapting Particle Swarm
Optimization (SAPSO). It is an algorithm used for the dynamic allocation of
VMs based on Particle Swarm Optimization (PSO). It tries to allocate the arriv-
ing VMs to physical machines in alternative temporal windows. This algorithm
is mainly intended to maximize the appropriate allocation of VMs and reduce
energy consumption. PSO adapts to new conditions of the environment dynam-
ically in every temporal window for the sake of optimization. It also uses the
migration of VMs to optimize allocation. In the model presented in [21], VMs
do not include the starting points of time or deadlines. In [20], the proposed
method may reject some requests for the allocation of VMs and VM may not be
allocated. In [4], a VM allocation model resembling the proposed VM model was
described. It is meant for the energy-aware scheduling problem of VMs w.r.t the
total busy time of physical servers. This problem was solved by using the genetic
algorithm. The difference between this model and the model presented in this
study is that the starting point of time of VMs is a constant value. However, the
starting point of each VM can range in a span of integers with respect to the
deadline in the algorithms proposed in this study.

56 B. Partovi et al.

3 System Model

In this study, for the first contribution, guaranteeing the deadline was regarded
as a condition for the service level policies, and the next contribution was the
minimization of the total busy time of servers for the reduction of energy con-
sumption (the total busy time an abstract thing and it can be used in everywhere,
in all data centers (cloud, edge)). The innovation of the article is that for the first
time we used meta-heuristic algorithms to achieve our goal, decrease the total
number of turned-on physical servers over time. Previously, there was only one
article that did this just with a genetic algorithm, which was a kind of schedule.
We considered the quality of service (QoS) criterion because we have a deadline
factor. Given the proposed algorithm, it is done without violating the deadline,
it causes the required service to be met in the deadline intended by the end-user,
so the quality of experience (QoE) for end-user is also maintained. The proposed
algorithms are described in this section.

3.1 Colony Optimization

There are different versions of ant colony optimization. In this paper, the two
main versions of this algorithm were used for implementation: Ant System (AS)
and Ant Colony System (ACS). The ant colony optimization algorithms use a
graph to provide a solution. They put pheromone on the nodes and edges of
the graph which is considered to be multilevel. Each level indicates one VM
of the VMs list which is set to be allocated. A Load matrix is defined to save
the workload status of physical machines. This matrix shows which machine
is occupied at that time. The optimization objective function is defined as the
total number of servers, the capacities of which have partially been occupied
in scheduling. This function is equivalent to the total busy time of physical
machines. Load(ti, pmi) = the total capacities of VMs allocated to pmi at ti.

3.2 Heuristic Information

The heuristic method used to solve this problem has increased the parallelism
degree of jobs (VMs) in the proposed ant colony algorithm. It has also decreased
the space wasted over time and increased the productivity of physical machines.
The gray area of running VMs and the hachured area indicate the empty space
and resource/time wastage, respectively Fig. 1A. Two different allocations of the
new VM were highlighted bold. Figure 1B shows that the resource/time wastage
is lower; therefore, the heuristic method takes a better value.

3.3 Intelligent Water Drops Algorithm

Here this algorithm is implemented to solve the optimization problem of schedul-
ing VMs with the purpose of minimizing the total busy time of servers. Like the
ant colony optimization, a multilevel graph is used to solve the problem. The

Virtual Machine Placement for Edge and Cloud Computing 57

Fig. 1. The heuristic method in the Ant Colony optimization and the Intelligent Water
Drops algorithm.

classic Intelligent Water Drop (IWD) algorithm puts the soil on the edges of the
graph. In fact, the accumulation of soil or pheromone on edges or nodes indicates
that they are weighted. If each node as a specific weight in a weighted graph
when the weights of edges are zero, then it can turn into a weighted graph in
which the weights are placed on edges. Therefore, the weight of the destination
node of each edge can be regarded as the weight of that edge. In the implementa-
tion of the proposed IWD algorithm, an amount of soil has been considered to be
on the graph nodes, also can be used to measure the soil on the edges. Now the
steps of the proposed IWD algorithm: First, all of the static and dynamic param-
eters are initialized. The static parameters are those which remain constant in
the implementation of the IWD algorithm; however, the dynamic parameters
are those which are reinitialized in each iteration. Second, the solution graph is
a multilevel structure, in which each level represents one VM, and each node
shows a pair like (starting point, physical machine) on each level. The VM is
allowed to be scheduled on that physical machine at that time. In other words,
these pairs include different points of time when a VM can start operating in
a way that the VM interval is not violated. To select a pair for the creation of
the tour on the path, each water drop selects the nodes which do not violate
the resource constraint. Therefore, only valid solutions are created in the graph.
After each IWD has completed a tour, the offered solution is evaluated. Accord-
ing to the solution provided by the ant colony optimization, an auxiliary load
matrix was used to evaluate the solution in the proposed IWD algorithm. This
matrix shows the capacity of every physical machine at any given time. If the
physical machine is not working in each time slice, a zero is inserted in the ele-
ment of the matrix. The total number of non-zero elements show the number of
busy physical machines in the scheduling interval. This quantity is equivalent to
the total number of time slices in which physical machines are operating. In the
classic IWD algorithm, the best solution is selected after providing all solutions
in each iteration.

3.4 Utilization of Proposed Algorithm in Dynamic Scheduling

In the proposed dynamic algorithm, VMs enter the system at different time
intervals, then they are scheduled. For instance, the VMs arriving in recent

58 B. Partovi et al.

time slices are scheduled in each interval (10 min). In other words, scheduling
repeatedly occurs (18 times) during the entire period (3 h for instance). In the
proposed dynamic algorithm, the ACO or IWD algorithms are used to schedule
the arriving VMs every 10 min in compliance with the full capacity of physical
machines according to previous scheduling processes. Furthermore, the history
of previous scheduling processes is kept in a matrix to determine how limited
the resource capacity was and how full the physical machines were over time. It
is also important to determine the current busy time, therefore, scheduling can
be done in the current interval in a way that the lesser total busy time increases
as much as possible.

3.5 Implementing the Basic Genetic Algorithm in Comparison with
the Proposed Methods

In the implementation of the genetic algorithm, the problem was regarded as
a permutation problem. In other words, the chromosome structure includes the
genes indicating a sorted pair (t, pm) or a VM. The different placements of
genes of VMs and (t, pm) create the different modes of scheduling. For instance,
if there are four times like t1, t2, t3, and t4 with two physical machines like p1
and p2 when we want to schedule three VMs like vm1, vm2 and vm3 then once
solution can be like Fig. 2 which shows the allocation genes. Different solutions
are generated by combining these two types of genes Fig. 2A and B and creating
different placements. For instance, Fig. 2C shows one possible chromosome of
the solution:

Fig. 2. The chromosome structure (solution) and genes in the Genetic Algorithm.

4 Numerical Results and System Evaluation

This section provides the numerical result and proof of concept for the afore-
mentioned algorithms. In fact, here is a comparative evaluation that looks at
the time, percentage productivity of resources, cost functions and etc. Our con-
tribution is in the form of AS, ACS, IWD algorithms, which we compared with
MFFDE and GA algorithms. As we can see in the diagrams, we have improved
the scheduling and minimization of the total busy time.

Virtual Machine Placement for Edge and Cloud Computing 59

4.1 Initializing and Generating the Input Parameters of Algorithms

An application was written to generate virtual machines at random. The num-
bers of ants and water drops were 20 in 100 iterations to run the ant colony
optimization and IWD algorithm. The number of population was 40 in 2000
iterations of the genetic algorithm. MFFDE was used to generate the initial
solution to the genetic algorithm. There were also 40–45 slices of time, each of
which lasted for 5 min. In the tests, each algorithm ran 10 times on average. One
of the tests is described in this section.

4.2 Sample Test

There were 100 Virtual Machines (VMs), and Physical Machine (PM) was type
2 in accordance with [22] with 40 compute units. The proposed algorithms were
used to solve the problem. Then the charts of PM quantity per time and total
resource productivity per PM were drawn. It should be noted that in all figures
the total number of necessary PMs were 475 for scheduling by using the AS
algorithm. This number is equal to the number of time slices in which physical
machines were busy working when scheduling was done.

Comparing the proposed AS algorithm with MFFDE and GA:
According to Figs. 3 and 4, the Ant System algorithm has a smaller cost func-
tion and operates better than the other two algorithms. Moreover, the maximum
number of physical machines for scheduling is smaller in this algorithm compared
with the other two. It improved the scheduling by 25.7% and 13.3% compared
with the heuristic and genetic algorithms, respectively.

Fig. 3. Comparing the percentage productivity of resources in AS, GA, and MFFDE.

Comparing the Proposed ACS with MFFDE and GA: According
to Figs. 5, 6 the Ant Colony System algorithm has a smaller cost function and
operates better than the other two algorithms. Moreover, the maximum number
of physical machines for scheduling is smaller in this algorithm compared with

60 B. Partovi et al.

Fig. 4. Comparing the cost6unctions of AS, GA, and MFFDE.

Fig. 5. Comparing the percentage productivity of resources in ACS, GA, and MFFDE.

the other two. It improved the scheduling by 26.9% and 14.8% compared with
the heuristic and genetic algorithms, respectively.

Comparing the IWD algorithm with MFFDE and GA: According to
Figs. 7 and 8, the Intelligent Water Drop algorithm has a smaller cost function
and operates better than the other two algorithms. Moreover, the maximum
number of physical machines for scheduling is smaller in this algorithm compared
with the other two. It improved the scheduling by 26.3%and 14.1% compared
with the heuristic and genetic algorithms, respectively.

Virtual Machine Placement for Edge and Cloud Computing 61

Fig. 6. Comparing the cost functions of ACS, GA, and MFFDE.

Fig. 7. Comparing the percentage productivity of resources in IWD, GA, and MFFDE.

Table 1. The results of the sample test

62 B. Partovi et al.

Fig. 8. Comparing the charts of PM per time and cost functions in IWD, GA, and
MFFDE.

4.3 Summarizing the Sample Test Results

For a better comparison, the following table shows the outputs of the tested
algorithms: According to Table 1, the proposed algorithms minimized the total

Table 2. The improvement percentages of the proposed algorithms compared with the
basic algorithms.

busy time of servers (cost function) and improved the productivity of entire
servers in the scheduling intervals. Table 2 shows the improvement percentages
of the proposed algorithms in comparison with the basic algorithms.

4.4 System Evaluation

MFFDE tries to schedule on each PM in the first slices of time when the problem
constraints allow scheduling. If it cannot do the scheduling on the current PM
by meeting the constraints, it adds a new PM and schedules the VM in the first

Virtual Machine Placement for Edge and Cloud Computing 63

allowed slice of time. Therefore, the number of necessary PMs increases quickly
at the beginning of scheduling. Accordingly, the proposed algorithm tries to
compress the intervals as much as possible and increase the parallelism degree
by delaying the beginning of intervals. As a result, the total busy time of servers
decreases, and resource productivity increases. Thus, the density of time intervals
increases in the middle of scheduling.

5 Conclusion

In this study, the ant colony optimization and intelligent water drop algorithms
were implemented to obtain better results in comparison with the genetic algo-
rithm. Furthermore, the only acceptable ways were the ones in which no inter-
vals of VMs were violated. The deadlines were regarded as a constraint on the
problem. In comparison with the basic algorithms, the cost function of schedul-
ing improved. Some methods were proposed to optimize the scheduling of VMs
at edge and cloud data centers. The main advantages of these methods were
improvements in the minimization of the busy time of servers by 15% and 27%
compared with the basic genetic algorithm and the basic heuristic algorithm,
respectively, on average. Moreover, resource productivity was improved on aver-
age by 16% and 26% in comparison with the basic genetic algorithm and the
basic heuristic algorithm, respectively. The proposed algorithms also can be used
in the dynamic mode because they run at an appropriate convergence speed
and generate nearly optimal solutions. For prospective works, use the proposed
algorithm for heterogeneous environments with different resource capacities, col-
lection, and analysis of energy consumption in real data centers, Include server
boot time, shutdown time and other real-time overhead are suggested.

References

1. Varasteh, A., Goudarzi, M., Server consolidation techniques in virtualized data
centers: a survey. IEEE Syst. J. (2015) (in press)

2. Quang-Hung, N., Son, N.T., Thoai, N.: Energy-saving virtual machine scheduling
in cloud computing with fixed interval constraints. In: Hameurlain, A., Küng, J.,
Wagner, R., Dang, T.K., Thoai, N. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XXXI. LNCS, vol. 10140, pp. 124–145. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54173-9 6

3. Tian , W., Yeo, C.S.: Minimizing total busy time in offline parallel scheduling
with application to energy efficiency in cloud computing. Concurr. Comput. Pract.
Exper. 27, 2470–2488 (2015)

4. Quang-Hung, N., Nien, P.D., Nam, N.H., Huynh Tuong, N., Thoai, N.: A genetic
algorithm for power-aware virtual machine allocation in private cloud. In: Mustofa,
K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS,
vol. 7804, pp. 183–191. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36818-9 19

5. Safari, M., Khorsand, R.: PL-DVFS: combining Power-aware List-based schedul-
ing algorithm with DVFS technique for real-time tasks in Cloud Computing. J.
Supercomput. 74(3), 5578–5600 (2018)

https://doi.org/10.1007/978-3-662-54173-9_6
https://doi.org/10.1007/978-3-642-36818-9_19
https://doi.org/10.1007/978-3-642-36818-9_19

64 B. Partovi et al.

6. Nam, S.A., Bahn, H.: Real-time task scheduling methods to incorporate low-power
techniques of processors and memory in IoT environments. J. Inst. Internet Broad-
cast. Commun. 17, 1–6 (2017)

7. Mishra, S.K., Puthal, D., Sahoo, B., et al.: Energy-efficient VM placement in cloud
data center. Sustain. Comput.: Inform. Syst. 20, 48–55 (2018)

8. Barzegar, B., Motameni, H., Movaghar, A.: EATSDCD: a green energy-aware
scheduling algorithm for parallel task-based application using clustering, duplica-
tion and DVFS technique in cloud data centers. J. Intell. Fuzzy Syst. 1–18 (2019)
(IOS Press)

9. Carrega, A., Repetto, M.: Energy-aware consolidation scheme for data center cloud
applications. In: 2017 29th International Teletraffic Congress (ITC 29), vol. 2, pp.
24–29, IEEE (2017)

10. Zheng, H., Feng, Y., Tan, J.: A hybrid energy-aware resource allocation approach
in cloud manufacturing environment. IEEE Access 5, 12648–12656 (2017)

11. Ranjbari, M., Torkestani, J.A.: A learning automata-based algorithm for energy
and SLA efficient consolidation of virtual machines in cloud data centers. J. Parallel
Distrib. Comput. 113, 55–62 (2018)

12. Rahimi, A., Khanl, L.M., Pashazadeh, S.: Energy efficient virtual machine place-
ment algorithm with balanced resource utilization based on priority of resources.
Comput. Eng. Appl. J. 4, 107–118 (2015)

13. Yousefipour, A., Rahmani, A.M.: Energy and cost-aware virtual machine consoli-
dation in cloud computing. Softw.: Pract. Exp. 48, 1758–1774 (2018)

14. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., Wan, J.: Energy aware virtual machine
scheduling in data centers. Energi. Multi. Digit. Publ. Inst. 12, 646 (2019)

15. Askarizade Haghighi, M., Maeen, M., Haghparast, M.: An energy-efficient dynamic
resource management approach based on clustering and meta-heuristic algorithms
in cloud computing IaaS platforms. Wireless Pers. Commun. 104(4), 1367–1391
(2018). https://doi.org/10.1007/s11277-018-6089-3

16. Qin, Y., Wang, H., Zhu, F., Zhai, L.: A multi-objective ant colony system algorithm
for virtual machine placement in traffic intense data centers. IEEE Access 6, 58912–
58923 (2018)

17. Chau, V., Li, M.: Active and Busy Time Scheduling Problem: A Survey, Complex-
ity and Approximation, pp. 219–229. Springer (2020)

18. Mertzios, G.B., Shalom, M., Voloshin, A., Wong, P.W., Zaks, S.: Optimizing busy
time on parallel machines. Theor. Comput. Sci. 562, 524–541 (2015)

19. Zhao, D.M., Zhou, J.T., Li, K.: An energy-aware algorithm for virtual machine
placement in cloud computing. IEEE Access 7, 55659–55668 (2019)

20. Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.: BULLET: particle swarm
optimization based scheduling technique for provisioned cloud resources. J. Netw.
Syst. Manage. 26(2), 361–400 (2018)

21. Witanto, J.N., Lim, H., Atiquzzaman, M.: Adaptive selection of dynamic VM con-
solidation algorithm using neural network for cloud resource management. Future
Gener. Comput. Syst. 87, 35–42 (2018)

22. Tian, W.D., Zhao, Y.D.: Optimized cloud resource management and scheduling:
theories and practices. Morgan Kaufmann (2014)

https://doi.org/10.1007/s11277-018-6089-3

Cloud-Edge Microservice Architecture
for DNN-based Distributed Multimedia

Event Processing

Felipe Arruda Pontes(B) and Edward Curry

Insight SFI Research Centre for Data Analytics, Data Science Institute,
National University of Ireland, Galway, Ireland

{felipe.arruda.pontes,edward.curry}@insight-centre.org
https://dsi.nuigalway.ie

Abstract. The rise of Big Data, Internet of Multimedia Things (IoMT),
and Deep Neural Network (DNN) enabled the growth of DNN-based
Computer Vision solutions to Multimedia Event Processing (MEP)
applications. When these are applied to a real-world scenario we notice
the importance of having a system with a satisfactory speed that can
fit in the limited resources of most IoMT devices. However, most solu-
tions for distributed MEP are dependent on a Cloud architecture, which
makes these applications migration to the Edge more challenging. As
a response to this, we present a microservice architecture for DNN-
based distributed MEP over heterogeneous Cloud-Edge environments.
We describe our solution that allows for an easier deployment both on
the Edge and on the Cloud. We show that choosing the proper tools for
an Edge-Friendly solution can lead to 100 times less resource utilisation.
Our preliminary investigation shows promising results, with a reduction
in energy consumption by 8% with a minor drawback of 15% in through-
put in the Edge and a negligible increase in energy consumption on the
Cloud.

Keywords: Cloud-Independent · Edge-Friendly · Distributed
computing · Multimedia Event Processing · Deep Neural Networks

1 Introduction

Alongside the increase of Big Data and Internet of Multimedia Things (IoMT),
we can observe the rise of Multimedia Event Processing (MEP) applications. This
is mostly because MEP is useful for handling continuous streams of data that
are present in a Big Data scenario, and it provides a framework for the constant
multimedia event streams generated from IoMT devices. Another common char-
acteristic of Big Data and IoMT is the fact that they work well with distributed
computing architecture, and since both are highly connected to the concepts of
Cloud and Edge computing respectively, combining them also presents an inter-
esting scenario where it is common to see this mixed Cloud-Edge environment.
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 65–72, 2021.
https://doi.org/10.1007/978-3-030-71906-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_6

66 F. A. Pontes and E. Curry

The general decision of having Deep Neural Network (DNN)-based Computer
Vision (CV) solutions as part of MEP applications for Big Data with IoMT
accompanies the consolidation of using DNN models for most CV problems. On
one side, DNN models are known to require many resources, on the other side,
many Edge devices are resource-constrained, with restrictions in energy con-
sumption, CPU/GPU, and memory. Thus, Cloud-Edge Heterogeneity becomes
another important characteristic for distributed MEP applications because it is
essential to take into consideration the different aspects and limitations of both
Cloud and Edge devices.

However, migrating the available distributed MEP solutions to the Edge
brings many challenges since they are mostly made with a focus on specific Cloud
infrastructures (e.g.: Amazon AWS or Microsoft Azure) [2,10]. As a response
to this, we propose a microservices architecture for distributed MEP over het-
erogeneous Cloud-Edge environments, which is both Edge-Friendly and Cloud-
Independent at the same time. Microservices architecture (MSA) is one of the
new trends in distributed systems architecture, and have been used by several
prominent companies such as Netflix, Amazon, and Uber, in addition, they are
accepted as a reliable solution for the overall problems of distributed systems.

In this work, we detail our architecture design and its impact in terms of
energy and speed. We describe our tooling decisions and show that choosing
the appropriate tools for an Edge-Friendly solution can lead to 100 times less
resource utilisation than a non-optimal tool. Our architecture shows promis-
ing preliminary results of 8% of energy reduction with only a minor reduc-
tion of 15% on the overall speed.

2 Motivation and Related Works

The basic required components in a MEP application are sources, stream
manager, stream processor and sinks. An example of the dataflow is depicted
in Fig. 1. The use of Computer Vision (CV) techniques to help with Occupational
Health and Safety (OHS) in construction sites has been recently explored [6].
The use of a mixed Edge-Cloud is important when we consider that construction
sites may be located in isolated regions without access to infrastructure. Some
of the problems in this area range from accidents prediction and prevention to
safety rule violation alerts. In this case, it is possible to identify the lack of safety
helmets or hi-viz vest in dangerous locations by using cameras, Object Detection
(OD) models to analyse the video stream from the cameras, and generate an alert
to the OHS supervisor, as shown in Fig. 1.

On the use of bandwidth-efficient MEP for drones, Wang et al. [9] uses similar
DNN models to ours. However, they focus on the weight of the devices and
the models’ speed, without taking into account the energy consumption. The
EdgeWise system [5] gives stream processing optimisations for mixed Cloud-
Edge environments, but it differs from our work since it does not take into
consideration Cloud-Edge environment heterogeneity.

Microservice architecture (MSA) is a system architecture style where an
application is decomposed into small and autonomous parts that work together

Cloud-Edge MSA for DNN-based MEP 67

Fig. 1. Multimedia Event Processing on OHS for Construction Sites Safety Rules alerts
using OD

Fig. 2. Microservice architecture for DNN-based Distributed Multimedia Event Pro-
cessing.

and around business capabilities, with decentralised control of languages and
data [4]. Sprocket [1] implements MSA for MEP and takes advantage of well-
defined patterns from Amazon AWS. The approach is highly dependent on a
single cloud infrastructure, making it harder to apply it to the Edge.

3 MEP Framework Design

Microservices Decomposition: Our approach for defining the boundaries of
our MSA is to use a Domain-Driven Design (DDD) decomposition [4] and to
improve it over multiple development iterations. This process supported us on
avoiding common MSA anti-patterns, such as having the wrong cuts in our
architecture. We ended up producing five main sub-domains (see Table 1 and
Fig. 2), each containing multiple sub-domains with their respective microservices
(19 in total).

Underlying Tooling. Below there is a summary of the selected tools for our
MEP framework together with the reason for each choice.

– Docker: To get the most of MSA, and to have a Cloud/Edge-Friendly solu-
tion, we are using Docker as our containerisation. Docker allows us to have

68 F. A. Pontes and E. Curry

Table 1. Our main sub-domains details

Sub-domain Purpose

API gateway Connection of external entities, such as publishers and subscribers.

Query manager Parsing, maintaining, optimising, and planning the user queries.

Stream manager Pre-processing of publisher streams, scheduling and dispatching events.

Content extraction DNN models for extracting features from the video streams.

Matching engine Manages the matching of the extracted features with the users queries.

Adaptation engine Incorporates self-adaptive behaviour into the system

a compartmentalised, independent, scalable, and reproducible development
and deployment process. It can be used in both Cloud and Edge devices with
a small footprint in resource usage.

– Streaming: We selected Redis rather than Kafka because in addition to
Redis providing most of the stream functionality as Kafka, when comparing
their docker images, Redis uses 100 times less memory, 10 times less
disk space and 5 times less CPU than Kafka when the systems are idle.

– JSON: We decided to use JSON to serialise our internal messages. This
schemaless format fits our unstructured data from the video streams, it is
simple to use, and it is part of Python default libraries.

– CV: We selected Python and Tensorflow to work with the DNN models.
They are widely used both in the academia and in the industry, and there are
versions built especially for common Edge device, with the option of easily
setting the amount of GPU allocated for each model. To represent the video
streams, we are using Video Event Knowledge Graphs (VEKG) [10].

– Microservice Monitoring: We chose Jaeger for the distributed event trac-
ing. It provides a unified front for analysing the path and time of each event
on the system. And to monitor the Quality of Service metrics of our MSA
we use Prometheus. It also provides a centralised view of each microservice
(MS) current metrics. Both tools are used by our Adaptive Engine to ensure
that the framework adaptation plans are more precise.

4 Framework Evaluation

4.1 Study Requirements

We selected energy and speed as our study metrics. Speed is essential in scenar-
ios where there is a need for a quick response to events identified in the system
[9]. Energy’s importance comes in three-fold, first in its economical impact,
especially for big companies that manage massive cloud infrastructures in their
data-centres. Second, for its ecological significance, since recent studies show that
14% of the worldwide energy consumption is for data-centres alone [3]. Being
especially true regarding DNN-based models since the carbon footprint of DNN
models can produce as much C02 as five cars would produce in a lifetime [7].
And third, for the context of resource-constrained Edge devices, where energy is
often a limited resource.

Cloud-Edge MSA for DNN-based MEP 69

Table 2. Device specifications

Device CPU Memory RAM GPU Disk

Jetson

TX2

Dual-core Denver 2 64-bit,

quad-core ARM A57

complex

8 GB 128-bit LPDDR4

1866MHz - 59.7 GB/s

NVIDIA Pascal 256

CUDA cores(FP16)

32 GB

eMMC 5.1

Dedicated

server

Intel i9-9900K 8 Cores 32 GB Corsair 163301

2× 16 GB DDR4

3200MHz

MSI GeForce RTX 2080

TI GAMING X TRIO 11

GB

500 GB

SSD &

4 TB HD

4.2 Methodology

To measure the impact of Energy and Speed that our framework adds to a
DNN-based OD operation on a mixed Cloud-Edge environment, we needed first
to execute different state-of-the-art DNN-based OD models with the images from
our chosen dataset and calculate their energy consumption and speed in different
Edge and Cloud scenarios, and then choose the model that had the best speed
in the Edge environment.

Next, we tested our MEP framework architecture in a mixed Cloud-Edge
environment. We started a single node of our framework in our Dedicated
Server (Cloud environment) without a content extraction microservice. Then,
we started a single Object Detection MS in the Jetson (Edge environment) with
GPU enabled, using the previously selected DNN model, and had the MS con-
nected to the Cloud node. This way, we get a network of microservices which is
composed of a mixed Cloud-Edge environment. Once these services were ready,
a publisher was connected to the framework, where each event published rep-
resents an image from the dataset. Finally, we compare the framework results
against the baseline values of the DDN model execution without our framework.

4.3 Execution Environments

We selected two devices (see Table 2). The first is a Jetson TX as the Edge
device. The second, for the Cloud environment, is a Dedicated Server. This
setup presents different environments for exploration, encompassing both Edge
and Cloud. These environments are: i) Cloud-Baseline: Cloud environment at
stand-by; ii) Edge-Baseline: Edge environment at stand-by; iii) Edge-SSD-
Model: Edge with GPU enabled with only the DNN model running; iv) Edge-
OD-Service: Edge with GPU enabled with the DNN model running inside
our solution’s MS; v) Cloud-MEP: Cloud environment running the rest of our
architecture.

4.4 Evaluation Method

For our evaluation we followed the same protocol on all experiments, with the
method for measuring each one of the targeted metrics as follows:

Speed: We analyse the models’ prediction speed for each image and calculate
their averages. This is converted to the models’ throughput in Frames Per Sec-
onds (FPS), which is a measure of quantity per unit time (Seconds). For our

70 F. A. Pontes and E. Curry

baseline speed, we are using the stand-alone DNN models running without our
framework. In this case, the metric is exported to each experiment output. For
our framework results, the speed is gathered from the event tracing service and
exported to a JSON file once the experiments are done.

Energy Consumption: For energy consumption measurement, we follow on
the work of Walker et al. [8]. We are connecting our devices into two smart
power plugs monitors that can estimate the energy usage every 10 s, and send it
via radio frequency to a smart home gateway device that will save it.

During the experiments’ execution, we record the starting and ending times-
tamps. Later, during the evaluation, we get the energy consumption records
that match the experiments start/end timestamps and calculate the average of
the energy consumption value for the experiment as a whole. We also analysed
both Cloud and Edge devices at stand-by, that is, without running anything on
them, to get the baseline energy consumption that these machines consumed by
being on. To do that, we gathered the energy consumption of the Jetson and the
Dedicated Server for 5 min and calculated the average and standard deviation of
them. The results were: 2W (standard deviation of 0) and 72.1W (standard
deviation of 0.3) for the Jetson and the Dedicated Server respectively.

4.5 Object Detection Models and Dataset

We started with three state-of-the-art OD DNN models for our initial com-
parison: SSD-MobilenetV1, Faster RCNN-InceptionV2, Faster RCNN-Inception-
ResnetV2-Atrous. The models are pre-trained on the COCO 2017 image dataset1

and were gathered from the official Tensorflow model collection. The configura-
tions for the DNN models were: The batch size of 1, GPU memory limit of 70%
(except for Faster RCNN-Atrous which was 18%), image input size of 300× 300
pixels and detection threshold of 0.5. After analysing the results from the mod-
els, we selected the SSD DNN model to test our framework against, since it
had the best speed in the Edge device. Curiously, this model showed some non-
intuitive behaviour, with its usage on the GPU being more economic in terms
of energy and with a lower throughput than when running only on the CPU.
This only reiterates how heterogeneous Cloud-Edge environments can affect the
performance of an application.

Since these models were pre-trained on the COCO 2017 Training dataset,
we decided to use the COCO 2017 Validation as our OD dataset. This way, we
would not need to implement class label mappings. In COCO 2017 Validation
dataset, there are 80 classes and 5000 images.

4.6 Framework Impact on Speed and Energy

By analysing the event traces from the OD service running on the Jetson, we
could calculate their average time on different processes. In this case, the “Pro-
cess Data Event” process represents the full process of extracting content in the
1 COCO dataset: https://cocodataset.org/.

https://cocodataset.org/

Cloud-Edge MSA for DNN-based MEP 71

Table 3. Comparison of Energy and Speed from the different environments studied

Environment Energy Throughput Process Speed

Edge-baseline 2.0 watts – – –

Edge-SSD-model 6.6 watts 1.3 FPS Model execution 0.7692 s

Edge-OD-service 6.1 watts 1.1 FPS Process data event 0.9027 s

Serialise and write event 0.0166 s

Tracer injection 0.0001 s

Cloud-baseline 72.1 watts – – –

Cloud-MEP 72.3 watts – Rest of MEP 1.3030 s

OD MS, starting from the moment that each imaging event is read and finishing
after the event is sent to the next service in the data-flow. This process is broken
into, first, Serialise and Write Event, where the current event is serialised into
JSON format and written to the next service stream in the dataflow; and second,
Tracer Injection, where the last event trace from the service is added to an event
before it leaves the service. This way the next service can retrieve the last event
trace id, making the event trace flow in Jaeger clearer to follow.

Table 3 shows that the OD service in this setup had a lower throughput
than the bare model, losing 15% of the throughput the model originally
had. This is expected since we are using a lazy load approach for retrieving
the images to reduce the size of the event messages through the system. Our
imaging events that are read by the service in the Edge only contains the ID of
the image stored in the Cloud Redis server, thus the service needs to retrieve
each image from the Cloud before it can load it up into the model, which incurs
some latency due to the network communication. We also observe that the use
of JSON, Redis and Jaeger did not add much overhead in terms of latency on
the resource-constrained Edge device.

We can see that adding our framework shell around the DNN model did
not increase the amount of energy usage in the Edge. With an average of 6.1
Watts, it indicates that our solution leads to 8% of reduction in energy
consumption when compared to running the model on its own in the Edge, as
can be seen on Table 3. This is probably caused by the network communications
while retrieving the image from the Cloud to the Edge device. This leaves the
CPU and GPU idle, thus reducing the amount of energy consumed. And for
the Cloud environment, this was also negligible when compared to the stand-by
baseline.

5 Conclusion

This paper has discussed the importance of a Cloud/Edge-Friendly architec-
ture for DNN-based distributed MEP applications over heterogeneous Cloud-
Edge environments; tooling decision can have a direct impact on the usability of

72 F. A. Pontes and E. Curry

resource-constrained Edge devices, greatly benefiting real-world scenarios such
as when implementing OHS for construction sites.

The paper proposes an MSA for distributed MEP over heterogeneous Cloud-
Edge environments; this system is both Edge-Friendly and Cloud-Independent at
the same time. Some preliminary results of the proposed system were presented,
starting with an analysis of how different OD models perform in heterogeneous
Cloud and Edge scenarios. Initial exploration shows promising results on the
impact that the proposed architecture solution impact has in a mixed Cloud-
Edge deployment. The solution reduces the energy consumption by 8%
with only a minor drawback of 15% in throughput in the Edge environment,
while the energy usage in the Cloud is negligible. At the same time, the overhead
for deployment in the different scenarios is very small, requiring only specific
changes in the node configuration file.

Further testing of this solution is planned in a broader range of scenarios,
such as a complete Edge node that can run independently from any Cloud node,
as well as with a varying range of workloads with multiple publishers and sub-
scribers. A self-adaptive scheduler for the DNN-based tasks is being developed
which will take into account the different characteristics of the DNN models and
the deployment environments. This scheduler will then be applied in a real-world
case study for OHS in construction sites.

Acknowledgement. This work was supported by Science Foundation Ireland under
grant SFI/12/RC/2289 P2, co-funded by the European Regional Development Fund.

References

1. Ao, L., Izhikevich, L., Voelker, G.M., Porter, G.: Sprocket: a serverless video pro-
cessing framework. In: ACM Symposium on Cloud Computing. ACM (2018)

2. Aslam, A., Curry, E.: Towards a generalized approach for deep neural network
based event processing for the internet of multimedia things. IEEE Access6, 25573–
25587 (2018)

3. Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: trends to 2040
& recommendations. J. Cleaner Prod. 177, 448–463 (2018)

4. Fowler, M., Lewis, J.: Microservices a definition of this new architectural
term.http://martinfowler.com/articles/microservices.html (2014)

5. Fu, X., Ghaffar, T., Davis, J.C., Lee, D.: Edgewise: a better stream processing
engine for the edge. In: 2019 USENIX Annual Technical Conference (2019)

6. Seo, J., Han, S., Lee, S., Kim, H.: Computer vision techniques for construction
safety and health monitoring. Adv. Eng. Inform. 29(2), 239–251 (2015)

7. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. arXiv preprint arXiv:1906.02243 (2019)

8. Walker, G., et al.: A practical review of energy saving technology for ageing pop-
ulations. Appl. Ergon. 62, 247–258 (2017)

9. Wang, J., et al.: Bandwidth-efficient live video analytics for drones via edge com-
puting. In: 2018 ACM Symposium on Edge Computing, pp. 159–173. IEEE (2018)

10. Yadav, P., Curry, E.: VidCEP: complex event processing framework to detect spa-
tiotemporal patterns in video streams. In: 2019 IEEE International Conference on
Big Data (Big Data), pp. 2513–2522. IEEE (2019)

http://martinfowler.com/articles/microservices.html
http://arxiv.org/abs/1906.02243

16th International Workshop on
Engineering Service-Oriented

Applications and Cloud Services
(WESOACS 2020)

Introduction to the 16th International
Workshop on Engineering Service-Oriented

Applications and Cloud Services
(WESOACS 2020)

Andreas S. Andreou1, George Feuerlicht2, Willem-Jan van den Heuvel3,
Winfried Lamersdorf 4, Guadalupe Ortiz5, and Christian Zirpins6

1 Cyprus University of Technology
andreas.andreou@cut.ac.cy

2 Unicorn University
george.feuerlicht@unicornuniversity.net

3 Tilburg University
wjheuvel@uvt.nl

4 University of Hamburg
lamersdorf@informatik.unihamburg.de

5 University of Cádiz
guadalupe.ortiz@uca.es

6 Karlsruhe University of Applied Sciences
christian.zirpins@hs-karlsruhe.de

The International Workshop on Engineering Service-Oriented Applications and Cloud
Services (WESOACS), formerly known as WESOA, was established in 2005 in
Amsterdam with the aim to promote innovative ideas in research and practice of
engineering of service-oriented applications. This year, WESOACS 2020 took place
online on 28 September 2020 in conjunction with the 8th European Conference on
Service-Oriented and Cloud Computing (ESOCC).

Service-oriented applications and cloud computing play an increasingly important
role in enterprise computing today. While there is a good agreement about the main
principles for designing and developing application systems based on the principles of
distributed software services, there is still intense interest in this research area; in
particular, in software service life cycle methodologies, service-oriented enterprise
architectures and, more recently, in engineering methods for cloud computing envi-
ronments. The recent shift towards DevOps and microservices and the extensive use of
container-based technologies and architectures necessitates revision of current
approaches for developing service-oriented applications. The WESOACS 2020 tech-
nical program included three research papers focusing on cloud services and
microservices development: “Modelling service-oriented systems and cloud services
with Heraklit” authored by Peter Fettke and Wolfgang Reisig, “An Evaluation of
Frameworks for Microservices Development” authored by Isabell Sailer, Robin
Lichtenthäler and Guido Wirtz, and “Mining the Architecture of Microservice-Based
Applications from their Kubernetes Deployment” authored by Giuseppe Muntoni,
Jacopo Soldani and Antonio Brogi.

Even though the online format of this year’s event made the networking that
characterizes WESOACS workshops more challenging, we regard the 16th edition of
the workshop as highly successful.

Introduction to the 16th International Workshop 75

Organization

Workshop Organizers

Andreas S. Andreou Cyprus University of Technology, Cyprus
George Feuerlicht Unicorn University, Czech Republic
Willem-Jan van den Heuvel Tilburg University, Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cádiz, Spain
Christian Zirpins Karlsruhe University of Applied Sciences,

Germany

Program Committee

Marco Aiello University of Stuttgart, Germany
David Bermbach TU Berlin, Germany
Javier Berrocal Universidad de Extremadura, Spain
Juan Boubeta-Puig University of Cádiz, Spain
Alena Buchalcevova Prague University of Economics and Business,

Czech Republic
Javier Criado University of Almería, Spain
Marcelo Medeiros Eler University of São Paulo, Brazil
Efstratios Georgopoulos TEI Peloponnese, Greece
Laura González Universidad de la República, Uruguay
Herodotos Herodotou Cyprus University of Technology
Massimo Mecella Sapienza University of Rome, Italy
Pierluigi Plebani Politecnico di Milano, Italy
Wolfgang Reisig Humboldt University of Berlin, Germany
Norbert Ritter University of Hamburg, Germany
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Eric Wilde UC Berkeley School of Information, USA

Acknowledgements

We wish to thank all the authors for their contributions and the program committee
members whose expert input made this workshop possible. Special thanks to the
ESOCC 2020 workshop chairs Christian Zirpins and Iraklis Paraskakis.

Modelling Service-Oriented Systems
and Cloud Services with Heraklit

Peter Fettke1,2(B) and Wolfgang Reisig3

1 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
peter.fettke@dfki.de

2 Saarland University, Saarbrücken, Germany
3 Humboldt-Universität zu Berlin, Berlin, Germany

reisig@informatik.hu-berlin.de

Abstract. Modern and next generation digital infrastructures are tech-
nically based on service oriented structures, cloud services, and other
architectures that compose large systems from smaller subsystems. The
composition of subsystems is particularly challenging, as the subsys-
tems themselves may be represented in different languages, modelling
methods, etc. It is quite challenging to precisely conceive, understand,
and represent this kind of technology, in particular for a given level of
abstraction. To capture refinement and abstraction principles, various
forms of “technology stacks” and other semi-formal or natural language
based on presentations have been suggested. Generally, useful concepts
to compose such systems in a systematic way are even more rare. Her-
aklit provides means, principles, and unifying techniques to model and
to analyze digital infrastructures. Heraklit integrates composition and
hierarchies of subsystems, concrete and abstract data structures, as well
as descriptions of behaviour. A distinguished set of means supports the
modeler to express their ideas. The modeller is free to choose the level
of abstraction, as well as the kind of composition. Heraklit integrates
new concepts with tried and tested ones. Such a framework provides the
foundation for a comprehensive Systems Mining as the next step after
Process Mining.

Keywords: Systems composition · Data modelling · Behaviour
modelling · Composition calculus · Algebraic specification · Petri nets ·
Systems mining

1 Introduction

The development of big service-oriented systems is challenging. Traditionally,
models have been a central tool for designing such systems. Currently used
modelling methods reach their limits and should be replaced by better concepts.

Presented at the 16th International Workshop on Engineering Service-Oriented Appli-
cations and Cloud Services, Heraklion, Greece, September 28–30, 2020.

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 77–89, 2021.
https://doi.org/10.1007/978-3-030-71906-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_7&domain=pdf
http://orcid.org/0000-0002-0624-4431
http://orcid.org/0000-0002-7026-2810
https://doi.org/10.1007/978-3-030-71906-7_7

78 P. Fettke and W. Reisig

The currently prevailing way of developing service-oriented systems is unsatis-
factory in many aspects. The development process and its result must be: (a)
more manageable for the developer, (b) easy to understand for the user, (c) less
error-prone and verifiable, (d) easier to change, faster reachable and cheaper
especially for really large systems. These and similar requirements have long
been discussed in the relevant literature.

The development of a complex service-oriented system is always preceded
by a planning process in which models are used to formulate the structure,
function, intended effects etc. of the intended product. In comparison to other
engineering disciplines, models are generally not used very often in computer
science and business informatics. This is mainly due to the fact that up to
now not much benefit can be derived from models. In the practice of system
design nowadays mainly diagrams using the Business Process Modeling Notation
(BPMN) are propagated for describing the business logic. Such diagrams are
limited to the identification of elementary activities and the representation of the
control flow. More comprehensive models that take more aspects into account
and are more intuitive would be extremely helpful for computer science and
business informatics.

We argue for a modelling method whose models are suitable for much more
than just the representation of elementary activities and control flows. In partic-
ular, a good modelling method should meet the requirements mentioned above.
From a more technical point of view, such a method should:

– support the structuring of a large service-oriented systems into modules;
– technically simple, but expressive to compose modules to large service-

oriented systems;
– describe the discrete steps in large systems only locally in individual modules;
– represent modules intended for implementation and modules not intended for

implementation integrated with the same concepts;
– represent data and consider data dependencies in the control flow;
– abstract from concrete data in order to create instantiations with the same

behavior in a schematic way;
– add under-specified data aspects in the later design process or in the event

of changes of the system systematically;
– describe activities and events at any level of abstraction and hierarchy levels;
– generate models that are scalable, changeable and expandable;
– support the proof that a model has desired properties;
– extend the proven techniques of Data Mining and Process Mining to general

Systems Mining.

In this paper we propose Heraklit as a modelling method that meets these
requirements. It combines proven mathematically based and intuitively easy to
understand concepts that are already used for system specification; we recom-
bine them and complement them with concepts for composition and hierarchical
refinement of local components, making this technique suitable for modeling
large operational systems.

Modelling Service-Oriented Systems and Cloud Services with Heraklit 79

The objective of this paper is to present an overview on Heraklit. Therefore
we shortly introduce the central modelling principles in Sect. 2. Section 3 presents
a concise case study using Heraklit. The paper closes with a discussion of
related work (Sect. 4) and some conclusions (Sect. 5).

2 Principles of Heraklit

2.1 Big Systems

What are the implications of the statement that a system is “big”? Firstly, some
concepts that suit “small” systems do not suit large systems. One of the most
obvious of these concepts is the assumption of global states and steps that update
global states [17]. Global states and steps adequately describe, for example, the
behaviour of s small digital circuit. To describe the behaviour of stakeholders of
a business as a sequence of global steps, is, however, conceptually not adequate.
In a big system, e.g. a business, cause and effect of a step are locally confined;
and this confinement is essential to understand behaviour. As another specific
concept, a big system requires conventions to confine validity of names, i.e. to
avoid globally valid names, with a few exceptions such as URLs.

In Heraklit, single behaviours (runs, executions) of a subsystem can be rep-
resented by means of states and steps that are global only within the subsystem.
Upon composing two such systems, those local states and steps are not necessar-
ily embedded into global states and steps of the composed system. Instead, sin-
gle behaviours of the composed system are represented without assuming global
states and steps. Local names of a subsystem are confined to the subsystem and
its direct neighboring subsystems.

2.2 Composition of Systems

Every “big” real life system is composed from subsystems that are mutually
related: they may exchange messages or jointly execute activities. The composi-
tion of subsystems is particularly challenging, as the subsystems themselves may
be represented in different languages, modelling methods, etc [6]. Modelling tech-
niques for such systems must provide means to compose models of subsystems.
Many modelling techniques provide such means; they all come with specific, fre-
quently parameterized composition operators, concentrating on special ways to
exchange data, e.g. synchronously or asynchronously. A “big” system, composed
from many systems S1, . . . , Sn, is favorably written

S = S1 • · · · • Sn, (1)

with “•” being any version of a composition operator. This bracket free nota-
tion requires that the composition operator is associative, i.e. that for any three
models R, S, T hold: (R • S) • T = R • (S • T). Typical examples for the nota-
tion (1) include supply chains, sequences of production machines in a factory,

80 P. Fettke and W. Reisig

etc. Associativity of composition is rarely discussed explicitly, but frequently
assumed without saying [16].

Heraklit offers a simple, universally employable and associative composi-
tion operator. In Heraklit, the diversity of specific, parameterized composition
operators is expressed by help of adapters: Specific aspects and properties of the
composition R • S of two models R and S are formulated in an adapter A, such
that R•A•S expresses the wanted properties. The advantages of this concept are
obvious: One technical composition operator fits all content-wise requirements,
adapters can themselves be composed, etc.

2.3 Abstraction and Refinement

A number of general principles has been proposed in literature, to adequately
cover the abstraction and refinement of systems. In particular, it is most useful
to start out with an abstract specification and to refine it systematically, such
that properties of the refined system imply the relevant properties of the abstract
system. Vice versa, a given system may be abstracted, yielding a more compact
version.

Abstraction and refinement should harmonize with the composition. To refine
a part T of a system S, one would partition S into T and the environment of
T , and then refine T . The remaining subsystems in the environment of T should
not be affected by this procedure. Systems on different refinement levels should
be composable; an overall concept of hierarchy levels for subsystems should not
be required. Heraklit suggests concepts for refinement and abstraction that
respect these requirements.

2.4 Modelling of Data and Things Equally

In a big system, data, physical items, algorithms, activities of persons, steps of
organizations, etc., are entangled. They must be modelled by similar means that
differentiate between them only in pragmatical aspects: data can be generated,
deleted, transformed into different representations, manipulated by computers,
copied, updated, composed, etc. Physical items behave differently: A physical
item always occupies a distinguished place in space. In models, one frequently
does not want to distinguish “equal” items explicitly; their number matters.

2.5 Behaviour

The behaviour of a large system is composed of single actions. An action updates
some local state components. It is up to the modeler to embed local state com-
ponents into more global views, if wanted. For a really large system, a single
execution (run) should not be represented as a sequence of actions (though one
may argue that all behaviour occurs along a global time scale). Independence of
actions should explicitly be represented and not be spoiled by representing them
in an arbitrary order.

Heraklit suggests to base the description of behaviour on Petri nets with
data carrying tokens [15]. This choice is motivated by multiple aspects:

Modelling Service-Oriented Systems and Cloud Services with Heraklit 81

– Petri nets can easily be specialized to include interfaces: Just select some
places, transitions, and even arcs to serve as interface elements.

– The composition of Petri nets with interfaces is again a Petri net with inter-
faces.

– Petri nets suggest the notion of concurrent runs that partially order actions
of a run, thus, avoiding them to be mapped onto a global time scale.

2.6 Describing Systems on a Schematic Level

Data, real life items, as well as entire systems must be describable on an abstract,
schematic level. In particular, it must be possible to describe just the existence
of data, items, functions, etc., without any concrete description of how they
look like, how many of them there are, etc. On this schematic level, it should
be possible to describe activities in systems, e.g. the principles of executing a
client’s order of an enterprise. A concrete enterprise is then an instantiation of
the schema.

Heraklit provides techniques to model such schemata, and to characterize
concrete enterprises as instantiations of such a schema. Here, we adapt notions
such as structures, signatures and instantiations of signatures, that are well-
known from first order logic and algebraic specifications. (Technically, a signature
is just a set of sorted symbols for sets, constants, and functions. An instantiation
interprets these symbols consistently). We extend signatures by requirements to
exclude “unwanted” instantiations, in the spirit of specification languages such
as the Z language.

Signatures and their instantiations can naturally be transferred to define
Petri net schemata – we call them Heraklit schemata. Such a schema can be
instantiated in different ways; each instantiation results in a concrete Petri net.
This concept is useful to model, for example, not just a distinguished business,
but a class of businesses that all follow the same business rules. Hence, Herak-
lit strongly supports the idea of reference modelling, a core topic of business
informatics [13].

2.7 Verification

The notion of correctness has many implications for big systems. Some ideal
properties of a big system can be composed of corresponding properties of the
component systems. Not all relevant properties can formally be captured, yet
they deserve a proper framework to reason about them. Particularly interesting
are methods to prove properties at run-time.

Heraklit integrates a number of formal and semi-formal verification tech-
niques to support structured arguments about the correct behaviour of modules.

3 Modules and Their Composition

3.1 Modules

In Sect. 1 we discussed a number of principles that are inevitable for modelling
big systems: no globally effective structures, associative composition of models

82 P. Fettke and W. Reisig

of any two systems, composition must be compatible with abstraction, modelling
of data and real items, modelling of behaviour, parameterized models. Now we
must model systems in such a way that all these principles are met.

We start out with the obvious observation that a real system in general
consists of interdependent subsystems. This paves the way for the central notion
of Heraklit-modules: A Heraklit module is a model, graphically depicted as
a rectangle, with two decisive components:

– Its inner: this may be any kind of graph or text. Three variants are frequent:
(a) the inner consists only of the name of the module, (b) it consists of
(connected) submodules, (c) it describes dynamic behaviour.

– Its surface: this consists of gates, each gate is labelled, i.e. inscribed by a
symbol. The gates of the surface are arranged on the surface of the mod-
ule’s rectangle. Alternatively, each gate is represented as a line, linking the
module’s rectangle with the gate’s label.

The following Fig. 2 shows typical Heraklit modules.

3.2 Composition of Modules

Composing two modules A and B follows a simple idea: two equally labelled
gates of A and B are “glued” and turned into an inner element of the module
A•B. However, in this simple version, the composition is fundamentally flawed:
Upon composing three or more modules, the order of composition matters: for
three modules A, B, and C, the two modules (A•B)•C and A•(B•C) differ from
one another. In technical terms: this version of composition is not associative.
But associativity is a central requirement, as discussed in Sect. 2.2.

To solve this problem, we return to modules shaped S = S1 • · · · • Sn. As
discussed in Sect. 2.2: each module Si generally has a left and a right neighbor
(S0 has no left, Sn has no right neighbor). S is composed by composing Si−1

with Si (for i = 2, . . . , n). In the real world, systems frequently exhibit this kind
of structure, physically or conceptually.

Therefore, Heraklit partitions the surface of a module L into its left and
right interface, written ∗L and L∗, resp. To compose two modules L and M ,
equally labelled gates of L∗ and ∗M are glued and turn into inner elements of
L•M . The remaining elements of L∗ go to (L•M)∗ (together with M∗), and the
remaining elements of ∗M go to ∗(L •M) (together with ∗L). Most important:
A general theorem guarantees that this kind of composition is associative [16].

4 Case Study: A Service System

4.1 The Different Modules of the System

Today, many organizations offer a complex service portfolio for their customers
or clients [3,4]. Typical examples are banking or financial services, insurance
services, legal services, and the medical or health services offered by a hospital
or a medical center.

Modelling Service-Oriented Systems and Cloud Services with Heraklit 83

Fig. 1. Signature of the service system

Here, we model the organization of such a service system, serving clients, cus-
tomers, or patients that want confidential consultation about particular services
or a particular treatment, provided by experts.

Figure 1 shows the signature of the system: there are five sorts of elements
in a service system, indicated by C, E, R, A, and S. Their intuitive meaning
is indicated in italic. In a concrete service system, there are sets of experts,
available consulting rooms, and admins, symbolically represented by EX, RO
and AD. Their type is P (E), P (R), and P (A), resp., with P (·) standing for
“powerset”. Furthermore, we need a function symbol f and five variables, one
for each basic sort. An instantiation assigns each basic sort an arbitrarily chosen
concrete set, each constant symbol a set of elements of the indicated sort, and
f a function that assigns each service the set of experts that offer consultations
for this service.

Figure 2a shows a module that represents the behaviour of clients: For every
instantiation of the variables c and s by a client and a service, resp., transition
a is enabled. Transition a represents the policy that any client may enter the
service system with any kind of wish for consultation for a service s. Hence,
place A may eventually hold any number of tokens, with each token consisting
of a client and a service. Transition b indicates the service systems’s help desk,
accepting each client’s wishes and asking them to wait at place B. There, a client
will eventually receive a message either at place C or at place D. A message at
place C indicates that no expert is available; so the client leaves the service
system along transition c. A message at place D indicates that the client should
proceed to the consulting room named or numbered r. The client will do so along
transition d and arrow E. He will later on return along arrow F and leave the
service system by transition e.

The module in Fig. 2b represents the behaviour of the service system’s
experts. There is a set of experts, depicted as EX, fixed when the schema
is instantiated, and initially represented as unengaged at place G. One might
expect this to be expressed by the symbol EX at place G. However, this would
indicate one token at place G. This is not what we want: we want each single
expert to be represented as a token. This is achieved by means of the function
elm: Applied to a token that represents a set M , elm(M) returns each element

84 P. Fettke and W. Reisig

(a) clients (b) experts

(c) admin

(d) consulting rooms

Fig. 2. The four modules of the system

Modelling Service-Oriented Systems and Cloud Services with Heraklit 85

F
ig
.
3
.
O

v
er

a
ll

m
o
d
el

o
f
a

se
rv

ic
e

sy
st

em

86 P. Fettke and W. Reisig

of M as a token. For an expert e, the message (e, r) arriving at place H indi-
cates that e must go to consulting room r, due to transition f and arc I. He will
eventually return along arc J , release room r, and will be again unengaged at
place G.

The module in Fig. 2d shows the consulting rooms: A client c and an expert
e arriving at room r along the arcs E and I, resp., start their consultation by
transition h, end it by i, and leave the room by arcs F and J .

The behaviour of clients, experts, and the consulting rooms must be properly
synchronized. The admin module of Fig. 2c organizes this. Place P initially
contains each admin as a token (we employ again the function elm as explained
above for the experts). An admin a engages with a client c and their request
for an expert for service s, along transition b. A token (a, c, s) on place Q then
continues either along transition k or transition j. Transition j requires an expert
e on place R, such that e offers the service s. The inscription of j indicates this
requirement. R always contains a “digital twin” for each expert that is not
engaged with a client. The place S always contains a digital twin of each empty
consulting room. Hence, transition j is enabled with proper instantiations of
all five variables a, c, s, e, and r. The occurrence of j then renders the admin a
available in P for new clients, sends messages to the client c, and the expert e
to proceed to room r, and moves the digital twin of e to place T . This way, the
digital twin of each expert e is either a token in R or in T . With e in T , the
expert e eventually indicates by transition g that they finished their consultation
and they release the room r. Finally, transition k manages the case where for a
token (a, c, s) no expert for service s is available in R. As discussed above, the
digital twin of each such expert is a token in T . Hence, all tokens in the set f(s)
of experts for s are in T . This is “tested” by means of the loop between k and
T . Occurrence of k then renders the admin a available in P for new clients and
sends a corresponding message to the client c. Notice the subtle treatment of
experts and rooms as a scarce resource: If no corresponding expert is available,
a client is turned away, as it may take too long until an expert for s is available.
But if no room is available, the client is just waiting as long as one room will be
available.

4.2 Overall Model and Abstract Composition

Figure 3 finally “glues” the four modules into one big module. In Heraklit,
this can just be written as: clients • admin • consulting rooms • experts.

Similarly, it is possible to construct an abstract composition of the system.
Figure 4 depicts such a composition of the four abstract modules by using the
abstraction operator [·], which deletes the inner structure of a module. Formally
written as: [clients] • [admin] • [consulting rooms] • [experts].

5 Related Work

Modelling is typically understood as an interdisciplinary field that is used in
many different disciplines as a method or instrument to capture knowledge or

Modelling Service-Oriented Systems and Cloud Services with Heraklit 87

Fig. 4. Abstract composition of the overall model

to assist other (research) actions [2,6]. As we discuss above, Heraklit mainly
does not invent new modeling concepts but integrates proven and well-known
modelling approaches. Compared to other integrated approaches which currently
dominate the modelling practice, e.g. BPMN, Heraklit provides integrated
means to descrive model structure, data, and behaviour. In the central concept
of a module, Heraklit combines three proven, intuitively easy to understand,
and mathematically sound concepts that have been used for the specification of
systems in the past:

1. Abstract data types and algebraic specifications for the formulation of con-
crete and abstract data: since the 1970s such specifications have been used,
built into specification languages, and often used for (domain-specific) mod-
elling. The book [18] presents systematically the theoretical foundations and
some applications of algebraic specifications. Abstract state machines [8] also
belong to this context.

2. Petri nets for formulating dynamic behaviour: Heraklit uses the central
ideas of Petri nets. A step of a system, especially a large system, has locally
limited causes and effects. This allows processes to be described without hav-
ing to use global states and globally effective steps. This concept from the
early 1960s [12] was generalized at the beginning of the 1980s with predicate
logic and colored marks [7,10]. The connection with algebraic specifications
is established by [14]. Heraklit adds two decisive aspects to this view: unin-
terpreted constant symbols for sets in places that use the elm function to
hold instantiations with many possible initial marks, and the elm function as
an inscription for an arrow to describe flexible mark flow.

3. The composition calculus for structuring large systems: this calculus with its
widely applicable associative composition operator is the most recent contri-
bution to the foundations of Heraklit. The obvious idea, often discussed in
the literature, of modeling composition as a fusion of the interface elements
of modules is supplemented by the distinction of left and right interface ele-
ments, and composition A • B as a fusion of right interface elements of A
with left interface elements of B. According to [16,17], this composition is

88 P. Fettke and W. Reisig

associative (as opposed to the naive fusion of interface elements); it also has
a number of other useful properties. In particular, this composition is com-
patible with refinement/coarseness and with individual (distributed) runs.

These three theoretical principles harmonize with each other and generate fur-
ther best practice concepts that contribute to a methodical approach to mod-
eling with Heraklit, and which will only be touched upon in this paper. On
the down-side, industrially mature modelling tools for Heraklit are still under
development.

6 Conclusions

The presented case study clearly demonstrates how Heraklit provides an inte-
grated view on structure, data, and locally defined behaviour. Hence, Heraklit
covers all central aspects of every computer-integrated system. Such a descrip-
tion can be used for different purposes, e.g. business process management, service
engineering, software analysis, design, verification, and development. The used
techniques are well-known but combined in a novel and innovative way.

By providing such an integrated method for system specification, Heraklit
paves the way for many important innovations which are currently so much in
need [2,9]. In particular, we like to introduce the idea of Systems Mining. While
Data Mining and Process Mining [1] exploit the knowledge implicitly represented
in data tuples and event sequences, respectively, Systems Mining is able to ana-
lyze the structure, data, and behaviour of a system. For such analysis, Heraklit
provides the necessary techniques to specify all essential characteristics of a sys-
tem. The observed structure of the system can be represented as modules, the
observed data is captured by both concrete and abstract data structures, and the
observed behaviour is specified as (distributed) runs. Based on such a powerful
framework, Systems Mining provide a much richer picture of and deeper insights
into big systems.

The presented case study of a service system illustrates powerful possibilities.
Based on these Heraklit models, Systems Mining can answer a wide spectrum
of interesting questions: (1) Do typical communications patterns between the
modules of the system exist? (2) Which services are often requested by cus-
tomers? (3) Do customers follow particular patterns for requesting services? (4)
Which particular service requests and assignments of experts and rooms typi-
cally cause long waiting times for a customer? (5) Are there particular behaviour
patterns and service requests which typically cause customers to leave the service
system without getting a service or treatment?

Such questions and many more can easily be specified with Heraklit. Addi-
tionally, Heraklit provides a richer foundation for predictive and prescriptive
process management as well as deeper insights for explaining process behaviour
[5,11]. Hence, Heraklit lays the foundation for the next step after Process
Mining.

Modelling Service-Oriented Systems and Cloud Services with Heraklit 89

References

1. van der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)
2. Beverungen, D., et al.: Seven paradoxes of business process management in a hyper-

connected world. Business & Information Systems Engineering Online-First (2020)
3. Böhmann, T., Leimeister, J., Möslein, K.: Service systems engineering. Bus. Inform.

Syst. Eng. 6, 73–79 (2014)
4. Chesbroug, H., Spohrer, J.: A research manifesto for service science. Commun.

ACM 49(7), 35–39 (2006)
5. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learn-

ing. Decis. Support Syst. 100, 129–140 (2017)
6. Frank, U., et al.: The research field “modeling business information systems” -

current challenges and elements of a future research agenda. Bus. Inform. Syst.
Eng. 6(1), 39–43 (2014)

7. Genrich, Hartmann J., Lautenbach, Kurt: The analysis of distributed systems by
means of predicate/transition-nets. In: Kahn, Gilles (ed.) Semantics of Concurrent
Computation. LNCS, vol. 70, pp. 123–146. Springer, Heidelberg (1979). https://
doi.org/10.1007/BFb0022467

8. Gurevich, Y.: Evolving algebras: the lipari guide. In: Borger, E. (ed.) Specification
and Validation Methods. pp. 9–36. Oxford University (2012)

9. Houy, Constantin., Fettke, Peter., Loos, Peter., van der Aalst, Wil M.P., Krogstie,
John: BPM-in-the-large – towards a higher level of abstraction in business process
management. In: Janssen, Marijn, Lamersdorf, Winfried, Pries-Heje, Jan, Rose-
mann, Michael (eds.) EGES/GISP -2010. IAICT, vol. 334, pp. 233–244. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15346-4 19

10. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical
Use. Springer, New York (1982). https://doi.org/10.1007/978-3-662-03241-1

11. Mehdiyev, N., Fettke, P.: Prescriptive process analytics with deep learning and
explainable artificial intelligence. In: Rowe, F., et al. (eds.) 28th European Con-
ference on Information Systems - Liberty, Equality, and Fraternity in a Digitizing
World, ECIS 2020, pp. 15–17. Morocco, June, Marrakech (2020)

12. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instru-
mentelle Mathematik der Universität Bonn (1962)

13. Rehse, J., Fettke, P.: A procedure model for situational reference model mining.
Enterprise Model. Inform. Syst. Archit. Int. J. Conceptual Model. 14, 3:1–3:42
(2018)

14. Reisig, W.: Petri nets and algebraic specifications. Theor. Comput. Sci. 80, 1–34
(1991)

15. Reisig, W.: Understanding Petri Nets. Springer, New York (2013). https://doi.org/
10.1007/978-3-642-33278-4

16. Reisig, W.: Associative composition of components with double-sided interfaces.
Acta Informatica 56(3), 229–253 (2018). https://doi.org/10.1007/s00236-018-
0328-7

17. Reisig, W.: Composition of component models - a key to construct big systems
(2020)

18. Sanella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, New York (2012). https://doi.org/10.1007/978-3-
642-17336-3

https://doi.org/10.1007/BFb0022467
https://doi.org/10.1007/BFb0022467
https://doi.org/10.1007/978-3-642-15346-4_19
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/s00236-018-0328-7
https://doi.org/10.1007/s00236-018-0328-7
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1007/978-3-642-17336-3

An Evaluation of Frameworks
for Microservices Development

Isabell Sailer, Robin Lichtenthäler(B), and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
isabell.sailer@stud.uni-bamberg.de,

{robin.lichtenthaeler,guido.wirtz}@uni-bamberg.de

Abstract. Accompanying the popularity of the microservices architec-
tural style, frameworks have been released which claim to specifically
support the development of microservices-based applications. We inves-
tigate how well such frameworks support microservices characteristics
both theoretically by a documentation analysis and practically by exem-
plary implementations. Our findings are that the frameworks cover most
of the characteristics, but differ significantly in the way how. Therefore
such frameworks can facilitate the development of microservices-based
applications, but combining different frameworks can be a challenge.

Keywords: Microservices · Microservices development · Framework
comparison

1 Introduction

The microservices architectural style has become a popular trend in software
engineering for web- and cloud-based applications [7,10]. According to a recent
survey among Java developers, 63% of their respondents were “either working
in, or actively transitioning to, microservices” [14]. However, developing applica-
tions with a microservices architectural style is difficult. The main reason is that
microservices-based applications are distributed over the network and function-
ality is split over several services [7]. While the complexity decreases for a single
microservice, because of its limited functional scope, developing and operating
numerous interconnected microservices is a challenge. There is no standardized
definition of the microservices architectural style [11], instead it is described by
a set of characteristics and practices which should be followed, leaving room for
interpretations how exactly these characteristics should be realized. Neverthe-
less, several frameworks have emerged which claim to support the development
of microservices-based systems and therefore for software engineers the question
arises whether using such frameworks is beneficial. However, this is difficult to
assess due to the broad range of aspects to consider on the one hand and the
unclear definition of microservices on the other. This work presents a catalog of
characteristics derived from the literature to compare existing frameworks with
regard to their supported functionality. Selected frameworks are also assessed
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 90–102, 2021.
https://doi.org/10.1007/978-3-030-71906-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_8

An Evaluation of Frameworks for Microservices Development 91

practically by implementing an exemplary microservices-based application. We
aim at answering the following research questions:

RQ1: Which microservices-specific characteristics are supported in which
way by existing frameworks for microservices development?

RQ2: How easily and efficiently can microservices-specific characteristics be
implemented with existing frameworks for microservices development?

In the following, Sect. 2 presents microservices-specific characteristics. In
Sect. 3 we describe our approach for the framework comparison. The comparison
is presented in Sect. 4, followed by the practical assessment in Sect. 5. In Sect. 6
we discuss our main findings and derive implications for practice and further
research. We review related work in Sect. 7 and finish with a final conclusion in
Sect. 8.

2 Microserivces Characteristics

Even though there is no standardized definition for the microservices architec-
tural style, certain common characteristics can be identified. We considered a
set of works which are commonly referred to when introducing microservices to
derive common characteristics: The influential blog post by Fowler and Lewis
[9], a survey paper by Dragoni et al. [7], an influential book by Newman [19]
and a definition from The Open Group [1]. We unified equivalent but differently
named characteristics and defined subcategories to account for different levels of
granularity. For this work we only considered technical characteristics, although
organizational aspects are equally important. To enable a comparison targeted
at specific features of the frameworks, we then enriched the characteristics with
subcategories identified from additional literature. In the following, the resulting
eight characteristics with their additional subcategories are described.

1. Service Independence. A microservice should be developable and
deployable independently from other microservices [1]. To form a larger sys-
tem, microservices communicate with each other exclusively via interfaces [7],
without an update or replacement of a single microservice affecting the entire
system [1]. The number of running service instances and their network locations
are dynamic. Service discovery mechanisms enable determining the up-to-
date location of services at runtime independent of specific pre-defined locations
[22,24]. Furthermore, distributed configuration should be used, which means
that the configuration is stored independently from the microservices in a cen-
tral, external memory [19,23]. Microservices load the configuration at startup
and reload it at runtime. This is important to keep microservices independent
from differing environment-specific configurations and to avoid redeployments
because of changing configurations. General access control mechanisms, such
as authentication and authorization to secure interfaces and regulate the access
to resources, should also be implemented [25] and be customizable per service.

2. Size. Compared to other service-oriented approaches, the size of a
microservice should be rather small [7]. However, the size is difficult to specify
and impossible to accurately measure, making technical support from a frame-
work difficult. A common approach is to state that a microservice should be

92 I. Sailer et al.

concerned only with a single business activity and bounded contexts (originat-
ing from Domain-Driven Design (DDD)) [1] can be used to define such business
activities. Apart from bounded contexts as a concept to define service scopes,
another concept called Command Query Responsibility Segregation (CQRS)
can be used which aims at separating query functionalities from command func-
tionalities into separate components [6,19]. It is applied in the context of event-
based systems and can also guide the decomposition of functionalities into ser-
vices.

3. Well-Defined Interface. Because Microservices are independent pro-
cesses and communicate by remote calls via interfaces, these interfaces must
be well-defined and published, i.e. accessible to others. For an interface to be
well-defined, it must be suited for the functionalities it offers, predictable, which
means that it provides consistent semantics, and adhere to standards and best
practices. Documenting an interface with a standardized interface specifica-
tion, also referred to as API description [18], supports developing a well-designed
interface, enables the sharing of interface documentations and helps to achieve
consistency across entire microservices-based applications [1,9].

4. Smart Endpoints and Dumb Pipes. For the communication between
services, simple mechanism are preferred, such as Representational State Trans-
fer (REST) over HTTP [9,12,26] to keep complexity in the services and out of
the communication channels [1,9]. Another common approach to also enable asyn-
chronous communication is lightweightmessaging via a message bus [12]. To pro-
vide routing logic and shared functionalities like authentication or rate-limiting,
which have traditionally been provided by the infrastructure, specialized services,
so-called API Gateways, are commonly used [11,22]. API Gateways also decou-
ple microservices from clients and enable the aggregation of multiple service calls.
Cases of complex service workflows involving multiple services need special
attention, because the loose coupling of services should be preserved while still
guaranteeing a certain level of (eventual) consistency. Specializedmechanisms such
as the Saga Pattern [20] have been proposed for this.

5. Decentralized Data Management. To ensure loose coupling and inde-
pendence, the data management is decentralized among microservices as in the
case of the database-per-service pattern [22]. This decentralization also enables
polyglot persistence which means that different services can use different
database technologies depending on which technology is suited best [9,26]. How-
ever, data consistency is constrained, because transactions across services should
be avoided. Data requiring strict consistency should be contained within one ser-
vice, otherwise eventual consistency across services should be embraced [1,9].

6. Design for Failure. Because microservices are distributed over the net-
work, communication failures and node crashes have to be expected. The impact
of failures on the whole system, however, should be minimized [1,9] by employing
certain mechanisms. Timeouts must be chosen appropriately and bulkheads
can be used to reduce the impact of failures. The circuit breaker pattern can
be applied [11,19] to avoid cascading failures and enable services to recover. To
ensure availability, microservices should be replicated across different servers.

An Evaluation of Frameworks for Microservices Development 93

To efficiently distribute the network traffic among the service instances, load
balancing is essential. By autonomously and dynamically adjusting the num-
ber of service replicas, it can be ensured that enough replicas are available, even
in the case of node failures [1], and if replicas are no longer needed resources can
be freed [23]. To detect errors and failures at an early stage, microservices-based
applications attach great importance to real-time monitoring [9]. To enable
a consistent monitoring even for requests which span multiple services, dis-
tributed tracing should be used [5]. Requests can then be tracked across the
individual microservices in order to find the cause in the event of a failure [20].
Furthermore, a thorough monitoring should support different types of metrics
for each service, such as host-level metrics and application-level metrics [19].

7. Automation. Operating and evolving a complex microservices architec-
ture while guaranteeing stability requires high levels of automation. To ensure
correctness even with frequent updates, automated unit-, integration- and perfor-
mance testing during deployment is necessary [9,19]. To run multiple isolated
services in a resource-efficient way, containerization is typically used. Con-
tainers also improve automated scalability, because of their fast start-up times
[2,26]. Automated testing and containerization are the basis for Continuous
Deployment which enables fast evolution of services in a safe way by employ-
ing specialized continuous deployment tools [4,26].

8. Evolutionary Design. Microservices-based systems should be designed
to encourage evolution. This can for example be achieved by implementing parts
that change simultaneously in the same microservice. Ideally, consumers of a
microservice should not be affected by its evolution. One approach to achieve
this is to use versioning [9] which means having different versions of service
endpoints coexist to allow consumers to adapt over time [19]. However, versioning
should only be used as a last resort. It is preferable for each microservice to be
as tolerant as possible so that versioning is not necessary at all [9].

3 Methodology

To select frameworks for our comparison we focused on those claiming to be
specifically designed for developing microservices-based applications, although
general purpose web frameworks are also frequently used in practice. We con-
sidered Go, Java, Node.JS and Python as currently popular languages for
developing microservices [3] and because polyglot programming is core to the
microservices architectural style [26]. In addition, we included the language
Jolie, which is specifically designed for the development of microservices. An
overview of the frameworks with the version we considered is presented in
Table 1.

For the theoretical evaluation of which features are supported by the frame-
works, we reviewed their documentations as well as the source code repositories.
We rated characteristics as supported, not supported or no information and noted
how exactly, e.g. by which technology or tools, a characteristic is supported. If
few information could be found, but not enough to clearly mark the aspect as
supported, it was rated as no information.

94 I. Sailer et al.

Table 1. Selected microservices frameworks

Language Name Released Version Link

Go Kit 2016 0.9.0 https://gokit.io/

Micro 2017 2.2.0 https://micro.mu/

Java Axon 2010 4.2 https://axoniq.io/

Eventuate 2017 0.2.0 https://eventuate.io/

Helidon 2018 1.4.1 https://helidon.io/

Lagom 2016 1.6.0 https://www.lagomframework.com/

Micronaut 2018 1.2.8 https://micronaut.io/

MicroProfile 2018 3.2 https://microprofile.io/

Spring Cloud 2014 2.2.1 https://spring.io/cloud

Jolie - 2006 1.8.2 https://www.jolie-lang.org/

Node.JS Moleculer 2017 0.14.5 https://moleculer.services/

Python Falcon 2013 2.0.0 https://falconframework.org/

Nameko 2013 3.0.0-rc8 https://www.nameko.io/

Subsequently, we selected one framework of each programming language for
the practical assessment, based on how well the frameworks scored in the the-
oretical evaluation. We then developed the same application with each selected
framework and examined whether, and if so how efficiently, the functionalities
could be implemented with the respective frameworks. In addition we added
aspects specific to the development perspective to the assessment.

4 Frameworks Feature Comparison

The result of our theoretical evaluation is the comparison of features offered by
the frameworks for the characteristics of the microservices architectural style.
Table 2 shows a summary of the evaluation while the detailed comparison can
be found online.1 If characteristics are supported, this is marked with ✓, if not
with ✗. When no information could be found, this is marked with ❙.

Overall, the frameworks offer many features to support the characteristics
of a microservices-based architecture. For Java, we not only found the most
frameworks but also the more comprehensive documentations on how to use the
offered features. Spring Cloud and Micronaut have the most supported char-
acteristics which is probably the result of Spring Cloud being one of the most
mature frameworks with a longer history as a popular general web framework.
Micronaut is comparably newer, but has adopted successful concepts from Spring
Cloud. A somewhat special case is Eventuate because it does not offer a broad
range of features, but has a special focus on service workflows with support for
the implementation of the Saga pattern [20]. In a similar way, Axon and Lagom
have a focus on event-driven concepts and therefore other characteristics are less

1 https://github.com/IsabellSailer/ms-framework-comparison.

https://gokit.io/
https://micro.mu/
https://axoniq.io/
https://eventuate.io/
https://helidon.io/
https://www.lagomframework.com/
https://micronaut.io/
https://microprofile.io/
https://spring.io/cloud
https://www.jolie-lang.org/
https://moleculer.services/
https://falconframework.org/
https://www.nameko.io/
https://github.com/IsabellSailer/ms-framework-comparison

An Evaluation of Frameworks for Microservices Development 95

Table 2. Feature comparison of microservices development frameworks

Go Java Jolie Node.JS Python

Characteristic

K
it

M
ic
ro

A
x
o
n

E
v
e
n
tu

a
te

H
e
li
d
o
n

L
a
g
o
m

M
ic
ro

n
a
u
t

M
ic
ro

P
ro

fi
le

S
p
ri
n
g
C
lo
u
d

M
o
le
c
u
le
r

F
a
lc
o
n

N
a
m
e
k
o

1. Service

Independence

1.1 Distributed

Configuration

❙ ✓ ❙ ❙ ✓ ❙ ✓ ✓ ✓ ❙ ✓ ❙ ✓

1.2 Service Discovery ✓ ✓ ✓ ❙ ❙ ✓ ✓ ❙ ✓ ✗ ✓ ✗ ✗

1.3 Access Control ❙ ❙ ❙ ❙ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ❙

2. Size

2.1 CQRS ❙ ❙ ✓ ✓ ❙ ✓ ❙ ❙ ❙ ❙ ✓ ❙ ❙

3. Well-Defined

Interface

3.1 Interface

Specification

❙ ❙ ✓ ❙ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

4. Smart Endpoints

and Dumb Pipes

4.1 API Gateway ❙ ✓ ✓ ❙ ✓ ✓ ✓ ❙ ✓ ✓ ✓ ✓ ❙

4.2 REST ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.3 Messaging ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

4.4 Service workflows ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

5. Decentralized

Data Management

5.1 Polyglot

Persistence
✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6. Design

for Failure

6.1 Circuit Breaker ✓ ✓ ✗ ❙ ✓ ✓ ✓ ✓ ✓ ❙ ✓ ✗ ❙

6.2 Load Balancing ✓ ✓ ✓ ❙ ❙ ✗ ✓ ❙ ✓ ✓ ✓ ✗ ✗

6.3 Bulkheads ✗ ✗ ✗ ❙ ✓ ✓ ✓ ✓ ✓ ❙ ✓ ✗ ✗

6.4 Timeouts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❙ ❙
6.5 Monitoring ✓ ✓ ✓ ❙ ❙ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ❙

6.6 Metrics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❙ ✓ ✓ ✓

6.7 Distributed

Tracing
✓ ✓ ✓ ❙ ✓ ✓ ✓ ✓ ✓ ❙ ✓ ✗ ✓

7. Automation

7.1 Containerization ✓ ✓ ❙ ✓ ❙ ✓ ✓ ✓ ✓ ✓ ✓ ❙ ❙

7.2 Testing ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

7.3 Continuous

Deployment
✓ ✓ ❙ ❙ ❙ ✓ ✓ ❙ ✓ ✓ ✓ ❙ ❙

8. Evolutionary

Design

8.1 Versioning ❙ ❙ ✓ ❙ ❙ ❙ ✓ ❙ ❙ ❙ ✗ ❙ ❙

supported 11 13 14 6 11 17 19 14 18 10 18 7 8

no information 6 4 4 12 7 2 1 6 2 7 0 6 9

not supported 4 4 3 3 3 2 1 1 1 4 3 8 4

relevant. For example, Axon explicitly has no circuit breaker feature, because
this is only useful for synchronous service invocations, not for asynchronous
event-based messaging. MicroProfile, with its origin in the JavaEE ecosystem,
differs from the others, as its focus is on specifications for how certain features

96 I. Sailer et al.

should be provided leaving room for vendors to provide actual implementations.
For many characteristics, the frameworks rely on other software which has proven
its worth. For example, the frameworks include adapters for object-relational
mappers to access databases, for messaging systems like RabbitMQ,2 for mon-
itoring solutions like Prometheus,3 for service discovery with services like Con-
sul,4 or for distributed tracing with tools like Zipkin5 or Jaeger.

The two Python frameworks offer less comprehensive features, especially
regarding design for failure. Instead, they have a narrow focus on certain aspects.
Nameko focuses on asynchronous interactions based on the Advanced Message
Queuing Protocol (AMQP), explicitly stating that it is not a general web frame-
work. The documentation of Falcon describes it as a lightweight framework focus-
ing on HTTP to build REST APIs. Kit and Micro, as frameworks for Go, offer a
comparably large set of features, although some characteristics are insufficiently
supported, such as extensive support for polyglot persistence or interface spec-
ifications. Micro stands out, because it includes a service runtime at its core
which runs along the individual services and internally provides features such
as distributed configuration, service discovery and messaging. Moleculer, which
is based on Node.JS, follows a similar approach and offers a so-called Ser-
viceBroker which provides features such as service discovery, load balancing and
monitoring. Overall Moleculer also offers a comprehensive set of features with an
extensive documentation. Jolie, as the only specific language for microservices
development, has a clear academic background and lacks some of the features
which are provided by the other frameworks. Its focus is on how to structure
the communications between services by making service interfaces a core part of
the language. Nevertheless, it is a mature language and has already been used
in productive deployments. A feature that is common across many of the frame-
works is the support for the OpenAPI6 specification, if an interface specification
is supported.

5 Implementation-Based Comparison

For the practical assessment we investigated how well the different characteristics
could be implemented. In addition, we also assessed the general development
perspective. To represent each language, we selected Micronaut, Micro, Nameko,
Moleculer and Jolie. The use case of our exemplary application is a Beauty Salon
with three different services. The high-level architecture is shown in Fig. 1 and
highlights the main characteristics based on the numbering from Table 2. Briefly,
the intended use case is that a customer could get information about the available
treatments from the treatment service (TrS) and then book an appointment via
the appointments service (ApS). Upon a request to book an appointment, the

2 https://www.rabbitmq.com/.
3 https://prometheus.io.
4 https://www.consul.io/.
5 https://zipkin.io.
6 https://www.openapis.org/.

https://www.rabbitmq.com/
https://prometheus.io
https://www.consul.io/
https://zipkin.io
https://www.openapis.org/

An Evaluation of Frameworks for Microservices Development 97

Treatments Microservice

Appointments Microservice

createTreatment()

getTreatment() returns Treatment

getTreatments() returns List[Treatment]

createAppointment()

getAppointment() returns Appointment

getAppointments() returns List[App.]

NoSQL DB

SQL DB

Confirma on Microservice

confirmAppointment()
Message Queue

1.1

1.1

1.2 1.3

3.1

3.1

4.2

4.2

4.2
4.3

5.1

5.1

6.1 6.26.4

6.5

6.5

6.7

7.1

7.1

7.11.1

8.1

Fig. 1. Architecture of the beautysalon application

ApS queries the TrS via a REST API to validate the request. Then it stores
the appointment in its database and sends a message to the confirmation service
(CoS) via a message queue. The CoS can then send out a confirmation to the
customer. It has to be noted, that the purpose of this application is to show
exemplary implementations of microservices characteristics. It is not an example
of how to split functionalities into services, because the scope is reduced to a
minimum. In the following we describe the implementations, which can be found
online (see footnote 1). Due to the limited scope of the sample application,
we omitted the characteristics: CQRS, API gateway, Bulkheads, Testing and
Continuous deployment.

While for all implementations the configuration is separated from the ser-
vices, only with Micronaut, true Distributed configuration with a configu-
ration service (Consul) could be used. Service discovery for the interaction
between the ApS and the TrS is implemented with Consul (see footnote 4) for
Micronaut, an internal mechanism for Micro and Moleculer and not implemented
with Nameko and Jolie. Access control is implemented for the API of the treat-
ments service. Direct support is only offered by Micronaut and Moleculer while
for the other frameworks it would have been necessary to implement access con-
trol manually. Creating and publishing an OpenAPI (see footnote 6) specification
is only possible with Jolie and Micronaut. Micro and Moleculer don’t offer sup-
port for any interface specification format and while for Nameko a plugin is
available, it was not integrable due to errors. Implementing a REST API works
equally well for all frameworks, only for Jolie it is not possible to differentiate
between HTTP verbs for the same URI or include path parameters. Also imple-
menting messaging-based communication works equally well for all frameworks,
although the mechanisms differ significantly. Micronaut offers adapters for inde-
pendent messaging services. Jolie, Micro, Nameko, and Moleculer have internal
messaging solutions which work well as long as all services are implemented with
the same framework.

98 I. Sailer et al.

To realize polyglot persistence, the TrS uses a NoSQL database (Redis in
the case of Micronaut, Micro and Nameko; MongoDB in the case of Jolie and
Moleculer) and the ApS uses a SQL database (PostgreSQL). The MongoDB con-
nector for Jolie is only in a beta version and has some drawbacks. Micro offers
no plugin for database access, therefore general Go libraries are used. Although
Nameko offers a plugin to integrate SQLAlchemy,7 the setup requires significant
additional effort using alembic.8 With Micronaut and Moleculer the desired mod-
els could be created in the services and then the framework takes care of creating
and handling the required database schemas. The circuit breaker pattern is
only implemented with Micronaut and Moleculer. For Moleculer however, it can
only be used within the Moleculer runtime, not with other external services. For
Micro the circuit breaker pattern cannot be used with the module for REST-
based communication. Load balancing is enabled for Micronaut via the Consul
service discovery mechanism. Micro and Moleculer offer load balancing via the
internal service discovery. Timeouts are set together with retry mechanisms per
service or per service call in Micronaut and Moleculer. Monitoring and met-
rics are supported by Micronaut via configuring a health and a metrics endpoint
respectively. For Moleculer, a combined endpoint can be activated, but without
separate monitoring via a health endpoint. Micro offers a wrapper to export
basic metrics to Prometheus3. Nameko supports exporting metrics to StatsD9

with a tracer endpoint. However, combining them leads to problems. Micronaut
and Moleculer support the OpenTracing API and distributed tracing is there-
fore implemented with Zipkin5. All implementations are available in the form of
Docker containers. Moleculer includes prepared Dockerfiles and for the others
it is possible to write Dockerfiles based on the documentations with Jolie also
offering a Jolie base image. Versioning as an explicit concept is only supported
and implemented with Micronaut.

Finally, we considered additional characteristics adopted from Rieger et al.
[21] covering the general development perspective. Regarding the develop-
ment environment, frameworks should support integrated development envi-
ronments (IDE) to facilitate the usage of the framework. For all frameworks the
existing language support in IDEs could be used and also Jolie offers extensions
enabling the usage of IDEs. In addition, Micronaut and Moleculer offer com-
mand line tools to generate pre-configured project templates which enhances
the development perspective. The preparation time is influenced by the time
and effort to install and setup a framework, the quality of the documentation and
accompanying tutorials, and the amount and quality of examples. Setup time
was equally small for all frameworks, only for Jolie artifacts were initially miss-
ing in the installer. For Micronaut, Moleculer and Jolie extensive documentation
and helpful guides are available. For Micro and Nameko the provided documen-
tation is sufficient, but could provide more details and examples. Regarding
extensibility, meaning the possibility to include and use additional third-party

7 https://www.sqlalchemy.org/.
8 https://alembic.sqlalchemy.org.
9 https://github.com/statsd.

https://www.sqlalchemy.org/
https://alembic.sqlalchemy.org
https://github.com/statsd

An Evaluation of Frameworks for Microservices Development 99

libraries or other components, all frameworks perform well, because they rely on
existing tools for their respective languages. Micro uses Go modules, Micronaut
uses Gradle or Maven, Moleculer uses npm, and Nameko uses pip. For Jolie it is
possible to include Java or JavaScript libraries, but without proper dependency
management,

All in all, regarding the implementations we found Micronaut and Moleculer
to be most comprehensive, followed by Micro, Jolie and Nameko.

6 Discussion

To explain the differences in the number of supported characteristics, the con-
text of each framework needs to be considered. For example, Eventuate focuses
on service workflows or Nameko focuses on asynchronous communication. Both
therefore neglect other characteristics, which could be covered by combining
them with others. Hence, the suitability of frameworks cannot be assessed in
general, but depends on the development context. Nevertheless, frameworks like
Micronaut, Spring Cloud or Moleculer are comprehensive in nearly all aspects
This is in accordance to the results of Baresi and Garriga [3] who found Java to
be the most used language for microservices-based projects on Github.

Regarding RQ1 we can state that the characteristics are supported to a
large extent, but for the ways how, there are significant differences. For example,
Micro, Nameko and Moleculer have specialized service runtimes which provide
communication and capabilities such as the circuit breaker pattern. However,
that means services based on other frameworks are difficult to integrate. For
other aspects in turn the support is similar. For example, if an interface spec-
ification is supported, it is the popular OpenAPI specification. For Distributed
Tracing, there is the OpenTracing API which most of the frameworks support.
That means, if an independent and broadly used specification for a characteristic
is available, the integration of services built with different frameworks is a lot
easier.

Considering RQ2, we can similarly state that the characteristics can be
implemented efficiently when the same framework is used for all services, but
an implementation using the different frameworks in combination, although not
covered in this work, would be more challenging.

The emerging questions are then what aspects are the most important to
be supported by a framework and which aspects can be realized in another
way. From our point of view, frameworks should provide flexibility regarding the
integration with other services and other technologies. For example messaging
should be flexible by supporting different messaging systems like RabbitMQ or
Kafka. The strength of a framework then is if it can combine characteristics,
meaning for example that monitoring can be configured easily for messaging or
the interaction mechanism used independent of specific technologies.

For some characteristics a shift towards other technologies can be observed.
For example, Service Discovery or Distributed Configuration are also features of
container orchestration systems such as Kubernetes [15]. Access Control or the

100 I. Sailer et al.

Circuit Breaker pattern are now available from so-called services meshes [17].
If a framework shows flexibility to integrate with other components for such
characteristics, it can be adapted more easily and provide long-term value.

7 Related Work

Most of the previous work on Microservices covers architectural foundations
[11] or studies on migrations from monolithic architectures to a microservices
architecture [2]. Specific microservices development frameworks have been less
in focus so far. For Jolie and the development of microservices with Jolie, there
is various work, mainly by the developers of Jolie themselves [13]. The only work
on a comparison of different microservices frameworks is a thesis [8] by Edling
and Östergren. However, their comparison considered only Java and was based
on a specific use case rather than general microservices characteristics.

Using an exemplary application for research has been done also by von
Kistowski et al. [16]. However, their research focus is on performance bench-
marking and therefore significantly different from ours. Nevertheless, their work
includes a review of existing exemplary applications which can be compared
to our approach, although none exemplary microservices-based application has
been presented so far which shows the same application built with different
technologies.

To the best of our knowledge an analysis of microservices development frame-
works based on characteristics derived from the literature is not yet available.

8 Conclusion

Our comparison of frameworks for developing microservices-based applications
shows that overall many of the characteristics important for the microservices
architectural style are covered by the frameworks. Because of the broad range
of aspects, however, no framework can cover everything. Therefore we found
that (1) some frameworks have a strong focus only on certain characteristics,
(2) all frameworks rely on and integrate with existing solutions for a substantial
part of the characteristics and (3) if a framework shows flexibility, it is overall
better suited for the technological heterogeneity inherent to the microservices
architectural style. Using a microservices framework can facilitate the develop-
ment process, but requires a developer to be already familiar with this archi-
tectural style to use the features in their intended way. Furthermore, within
each framework microservices can be built effectively, but combining frameworks,
especially across languages, would be challenging due to the different ways how
microservices-specific characteristics are supported.

There are some limitations to our work: We do not cover general web frame-
works which are used for microservices in practice, such as Django or Flask. For
our theoretical investigation we relied on the accurateness of the documentations
and it is a snapshot based on the framework versions at the time of our study.
As frameworks evolve, the number of supported characteristics change.

An Evaluation of Frameworks for Microservices Development 101

If a software engineer has to choose a microservices framework, this work can
serve as a decision support to some extent, but there are additional aspects to
consider such as the previous experience with a language. In addition, frame-
works offer only technical solutions to the microservices architectural style. To
successfully apply the microservices architectural style, however, also organiza-
tional aspects have to be taken into consideration, which cannot be covered by
the frameworks. Finally, the business context and how to scope and split func-
tionalities between services is an aspect which can hardly be covered by technical
solutions like frameworks, although it is a deciding factor for the success of a
microservices development project.

References

1. Balakrushnan, S., et al.: Microservices architecture. Technical report W169, The
Open Group (2016)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps. IEEE Softw. 33(3), 42–52 (2016)

3. Baresi, L., Garriga, M.: Microservices: the evolution and extinction of web services?
In: Bucchiarone, A., et al. (eds.) Microservices, pp. 3–28. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31646-4 1

4. Chen, L.: Microservices: architecting for continuous delivery and DevOps. In:
ICSA, pp. 39–397. IEEE (2018)

5. Cinque, M., Corte, R.D., Pecchia, A.: Microservices monitoring with event logs
and black box execution tracing. IEEE Trans. Serv. Comput. p. 1 (2019)

6. Debski, A., Szczepanik, B., Malawski, M., Spahr, S., Muthig, D.: A scalable, reac-
tive architecture for cloud applications. IEEE Softw. 35(2), 62–71 (2018)

7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

8. Edling, E., Östergren, E.: An analysis of microservice frameworks (2017)
9. Fowler, M., Lewis, J.: Microservices (2014). https://martinfowler.com/articles/

microservices.html. Accessed 03 July 2020
10. Francesco, P.D., Lago, P., Malavolta, I.: Migrating towards microservice architec-

tures: an industrial survey. In: ICSA, pp. 29–2909. IEEE (2018)
11. Francesco, P.D., Lago, P., Malavolta, I.: Architecting with microservices: a system-

atic mapping study. J. Syst. Softw. 150, 77–97 (2019)
12. Garriga, M.: Towards a taxonomy of microservices architectures. In: Cerone, A.,

Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 203–218. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74781-1 15

13. Guidi, C., Lanese, I., Mazzara, M., Montesi, F.: Microservices: a language-based
approach. Present and Ulterior Software Engineering, pp. 217–225. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67425-4 13

14. JRebel: 2020 java developer report. Technical report, Perforce Software, Inc. (2020)
15. Khan, A.: Key characteristics of a container orchestration platform to enable a

modern application. IEEE Cloud Comput. 4(5), 42–48 (2017)
16. von Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J., Kounev,

S.: TeaStore: a micro-service reference application. In: (MASCOTS), pp. 223–236.
IEEE (2018)

https://doi.org/10.1007/978-3-030-31646-4_1
https://doi.org/10.1007/978-3-319-67425-4_12
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-67425-4_13

102 I. Sailer et al.

17. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of
the art, and future research opportunities. In: (SOSE), pp. 122–1225. IEEE (2019)

18. Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-
lution patterns. In: EuroPLop 2019, pp. 1–24. ACM Press (2019)

19. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)
20. Richardson, C.: Microservices Patterns. Manning Publications, Shelter Island

(2019)
21. Rieger, C., Majchrzak, T.A.: Towards the definitive evaluation framework for cross-

platform app development. Syst. Softw. 153, 175–199 (2019)
22. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a

systematic mapping study. In: CLOSER, pp. 221–232. SciTePress (2018)
23. Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., Edmonds, A.: An archi-

tecture for self-managing microservices. In: AIMC 2015, pp. 19–24. ACM Press
(2015)

24. Wolff, E.: Microservices: Grundlagen flexibler Softwarearchitekturen. dpunkt.
(2018)

25. Zdun, U., Wittern, E., Leitner, P.: Emerging trends, challenges, and experiences
in DevOps and microservice APIs. IEEE Softw. 37(1), 87–91 (2020)

26. Zimmermann, O.: Microservices tenets. CSRD 32(3–4), 301–310 (2016)

Mining the Architecture
of Microservice-Based Applications
from their Kubernetes Deployment

Giuseppe Muntoni, Jacopo Soldani(B), and Antonio Brogi

University of Pisa, Pisa, Italy
jacopo.soldani@unipi.it

Abstract. Microservice-based applications can include hundreds of
interacting software components. This makes their design, implemen-
tation, and operation complex, costly, and error-prone. While the avail-
ability of a description of the software architecture of microservice-based
applications can help to analyse and maintain them, manually gener-
ating an architectural description of microservice-based applications is
costly because of the number of services and of service interactions. In
this paper, we propose a solution for automatically mining the architec-
ture of a microservice-based application starting from its deployment in
Kubernetes, and for generating the corresponding architecture descrip-
tion with the OASIS standard TOSCA. Our solution extracts informa-
tion both statically, from the manifest files specifying the application
deployment in Kubernetes, and dynamically, by deploying and moni-
toring the application on Kubernetes. We also present a first proof-of-
concept implementation of our solution.

Keywords: Microservices · Microservices architectures · Software
architecture mining

1 Introduction

Microservices are gaining momentum in enterprise IT, with major IT com-
panies (e.g., Amazon, Facebook, Google, Netflix, and Spotify) adopting them
to deliver their businesses [22]. Microservice-based architectures are service-
oriented architectures satisfying some additional key principles, e.g., shaping
services around business concepts, ensuring their independent deployability and
horizontal scalability, and isolating failures [23]. As exploiting microservices to
architect enterprise applications is becoming commonplace, checking whether
an application adheres to the main design principles of microservices, and—if
not—understanding how to refactor it, are two key issues [19].

µTOSCA and µFreshener [12] enable modelling, analysing, and refactor-
ing the architecture of microservice-based applications to enhance their adher-
ence to the key design principles of microservices. µTOSCA enables represent-
ing the architecture of microservice-based applications with the OASIS standard
TOSCA [9]. A microservice-based application is represented by a topology graph,
whose nodes model the services, integration components (e.g., API gateways,
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 103–115, 2021.
https://doi.org/10.1007/978-3-030-71906-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_9

104 G. Muntoni et al.

message queues, or load balancers), and databases forming the application, and
whose arcs indicate the runtime interactions occurring among them. Given the
µTOSCA specification of a microservice-based application, µFreshener enables
automatically checking whether an application contains architectural smells that
may violate some key design principle of microservices, as well as reasoning on
how to refactor an application to resolve the occurrence of smells.

In order to use µFreshener, application administrators were required to
manually specify the architecture of their microservice-based applications in
µTOSCA, i.e., to describe all the components forming the application and all the
interactions occurring among them. Even if µFreshener supports application
administrators in graphically editing such µTOSCA specifications, microservice-
based applications can include hundreds of interacting components [22]. This
obviously was making the specification of the architecture of microservice-based
applications complex, time-consuming, and error-prone [12].

To further support application administrators, in this paper we pro-
pose a solution for automatically deriving the architecture of a “black-box”
microservice-based application. Our solution indeed works without needing to
access the sources of the components in an application, but it rather enables
deriving the architecture of a microservice-based application only from the
declarative specification of its deployment in Kubernetes. This is done by per-
forming three subsequent steps, i.e., (i) by statically mining information from
the manifest files specifying the application deployment in Kubernetes, (ii) by
dinamically mining information by monitoring the interactions among applica-
tion components in a running application deployment, and (iii) by refining the
information mined statically and dinamically to identify components implement-
ing well-known integration patterns.

The static mining step enables eliciting the services and databases forming
a microservice-based application, while the dynamic mining step complements
the mining of the application architecture by monitoring the interactions that
occur among such services and databases at runtime. The information monitored
during the dynamic mining step is then also used by the final refinement step,
which refines the mined architecture by distinguishing services from integration
components implementing well-known message-based integration patterns, e.g.,
message queues or load balancers [16]. The refined architecture can then be
automatically marshalled to µTOSCA, to obtain a specification that can be fed
to µFreshener to check whether the application adheres to the key design
principles of microservices and to refactor it, if this is not the case.

We also present a proof-of-concept implementation of our solution, realising
the three aforementioned steps (i.e., static mining, dynamic mining, and refine-
ment) to automatically derive the µTOSCA specification of the architecture of
a microservice-based application, starting from its deployment in Kubernetes.
The implementation is designed to support additional plugins that can enable
both deriving the architecture of microservice-based applications from the appli-
cation deployment with other technologies (e.g., Chef or Docker) and exporting
its representation in other specification languages (e.g., UML).

The rest of this paper is organised as follows. Section 2 provides some back-
ground on µTOSCA. Section 3 illustrates our microservice-based architecture

Mining the Architecture of Microservice-Based Applications 105

mining solution, while Sect. 4 presents our proof-of-concept implementation. Sec-
tions 5 and 6 discuss related work and draw some concluding remarks, respectively.

2 Background: µTOSCA

TOSCA [9] is a standard for representing multi-component applications as typed
topology graphs, where nodes represent software components, and oriented arcs
represent the interactions occurring among such components. µTOSCA [12] pro-
vides the building blocks for exploiting TOSCA to model the architecture of
microservice-based applications (Fig. 1).

micro.nodes.Root

DataStoreService CommunicationPattern

micro.relationships.Root

InteractsWith

micro.groups.Root

Edge

MessageRouter MessageBrokerMessageRouter MessageBroker

Fig. 1. The node types, relationship types and group types defining µTOSCA.

Topology nodes can be services, communication patterns, or data stores. A
Service is a component running some business logic, e.g., a service managing
users’ orders in an e-commerce application. A CommunicationPattern is an inte-
gration component implementing a messaging pattern for decoupling the com-
munication among two or more components. µTOSCA includes two communi-
cation patterns from [16]: MessageRouter (e.g., load balancers, API gateways)
and MessageBroker (e.g., message queues). Finally, a DataStore is a component
storing the data pertaining to a certain domain, e.g., a database of orders in an
e-commerce application.

Topology nodes can be interconnected via InteractsWith relationships, to
model that a source node invokes functionalities offered by a target node. Such
relationships can be enriched by setting the boolean properties circuit breaker,
timeout and dynamic discovery. The first two properties indicate whether the
source node is interacting with the target node via a circuit breaker or by set-
ting timeouts, to avoid that the source fails/gets stuck waiting for an answer from
the target when the latter is unresponsive. Property dynamic discovery specifies
whether the endpoint of the target of the interaction is dynamically discovered,
e.g., through client-side service discovery [21].

Finally, topology nodes can be placed in an Edge group, to define the subset
of application components directly accessed from outside of the application.

3 Mining Microservice-Based Architectures

We hereafter illustrate our solution to automatically determine the µTOSCA
topology graph modelling the architecture of a microservice-based application,
given its Kubernetes deployment. As shown in Fig. 2, our solution incremen-
tally builds such topology graph by first mining information from the static
description of the application deployment (Sect. 3.1). It then dinamically mines

106 G. Muntoni et al.

Fig. 2. Our three-steps approach for mining the architecture of a microservice-based
application from its Kuberenetes deployment.

component-to-component interactions to be included in the topology graph by
sniffing the network packets exchanged among the components of a running
instance of the application (Sect. 3.2). Finally, the topology graph is refined by
analysing the sniffed network packets to automatically identify integration pat-
terns exploited to structure the application (Sect. 3.3).

3.1 Step 1: Static Mining

The manifest files specifying the deployment of an application in Kubernetes are
first used to elicit the topology nodes modelling the software components forming
an application. As each pod defines the deployment unit for the container hosting
one application component1, a topology node is added to the topology graph for
each pod in the application deployment. If the pod runs a container from the
official Docker image of some database component, the topology node is assigned
the type DataStore. Otherwise, the component is assumed to implement some
business logic and its corresponding topology node is typed Service.

The set of topology nodes is completed by including the message routers that
can be added when specifying the deployment of an application in Kubernetes,
i.e., Kubernetes services and ingress resources. A Kubernetes service is a mes-
sage routing component that allows forwarding and balancing the requests sent
to the multiple replicas of a pod [10]. Hence, for each Kubernetes service defined
in an application deployment, a MessageRouter node is added to the topology
graph, together with InteractsWith relationships outgoing from the newly added
topology node and targeting the topology nodes corresponding to the pods han-
dled by the Kubernetes Service. In addition, if a Kubernetes service is specified

1 Following the guidelines in Kubernetes documentation [10], our solution assumes
each pod in a Kubernetes deployment to form a single cohesive unit of service, i.e.,
that a single container is deployed to host a service, integration component, or data
store. We hence abstract from “sidecar” containers accompanying such container in
a pod (e.g., for monitoring and logging purposes), since they are not to be included
architectural representation of a microservice-based application.

Mining the Architecture of Microservice-Based Applications 107

to be a NodePort or LoadBalancer, then it is publicly accessible from outside of
the Kubernetes cluster where the application is deployed [10]. If this is the case,
a MessageRouter node modelling the Kubernetes service is placed in the Edge
group of the µTOSCA topology graph (to reflect the fact that such component
can be accessed from external clients).

Kubernetes ingress resources are instead message routing components allow-
ing to define API gateways managing the access of external clients to the services
and pods running in the Kubernetes cluster where an application is deployed [10].
Ingress resources are associated with ingress controllers, i.e., a pod actually
implementing the message routing defined by the corresponding ingress resource.
For each ingress controller associated with an ingress resource in the manifest
files specifying the Kubernetes deployment of an application, a MessageRouter
node is added to the topology graph and included in the Edge group.

3.2 Step 2: Dynamic Mining

The dynamic mining step enriches the topology graph statically obtained from
the manifest files specifying the deployment of an application in Kubernetes.
In particular, after configuring the application deployment to enable sniffing the
network packets containing the messages exchanged in component-to-component
interactions, the application deployment is actually enacted and monitored in a
Kubernetes cluster. The monitored information (i.e., the sniffed network packets)
is then used to elicit the interactions occurring among application components,
as well as to identify the possible usage of ingress controllers already existing in
the cluster to implement ingress resources, if any.

Configuring the Deployment of an Application. To enable monitoring
the interactions occurring among the pods in the Kubernetes deployment of an
application, a monitoring container is included within each of such pods. The
specification of each pod is extended by including a container running a packet
sniffer (e.g., WireShark [8]), which is configured to sniff all network packets sent
to/from the container running in the pod. In addition, to uniquely identify the
source and destination of each network packet, each pod is assigned with an
unique hostname, either being the pod hostname (if specified in the original
Kubernetes deployment) or automatically generated.

It is worth noting that Kubernetes also allows application deployments to
specify an ingress resource (e.g., providing the message routes for implementing
an API gateway for the application), without associating it with an ingress con-
troller actually implementing the specified message routing. In this case, ingress
controllers already available in a Kubernetes cluster are by default exploited to
implement the message routing defined by ingress resources defined the applica-
tion and not associated with any controller [10]. To capture this case as well, each
ingress controller already available in the cluster is also equipped with a sidecar
packet sniffer, to monitor the network packets sent to/from such ingress con-
troller as well (to enable checking whether such controller is used by Kubernetes
to implement some ingress resource of the application).

108 G. Muntoni et al.

Enacting and Monitoring the Application Deployment. After automati-
cally configuring the Kubernetes deployment as described above, the deployment
is enacted to start monitoring the packets exchanged between the containers
running the application components. The application is kept running for a given
amount of time, which can be customised by the application administrator. In
addition, to make application components interact, a load test is executed. The
latter can be provided in the Kubernetes deployment of the application (e.g., in
a pod running a service that invokes functionalities offered by the application
component), or it can be given in the form of a script invoking the application
components that are accessible from outside of the Kubernetes cluster where
the application is running. The application is then undeployed by also ensur-
ing that all containers or artifacts pertaining to the application deployment are
removed from the Kubernetes cluster where it was running (e.g., to avoid that
WireShark containers continue to sniff the network packets exchanged by the
ingress controllers installed in the cluster).

While the deployed application is running, the injected WireShark contain-
ers sniff the network packets exchanged between the containers running in the
deployed pods. Such packets are stored to enable determining the interactions
occurred among components, as shown hereafter.

Determining Interactions Among Components. A component interacts
with another if the former invokes some functionality offered by the latter at
runtime. This is modelled in µTOSCA by a InteractsWith relationship, whose
source and target nodes correspond to the source and target components of
an interaction. To grasp this information from the network packets sniffed by
the WireShark instances accompanying application components, the source and
target of component-to-component interactions are identified. This is done by
analysing the TCP segments of sniffed packets: If a segment specifies SYN equal
to 1 and ACK equal to 0, this means that a connection is being opened for allowing
the component sending the packet to interact with the component receiving the
packet. Starting from this observation, our solution is to include an InteractsWith
relationship connecting a component to another if there exist a network packet
sent by the former to the latter with SYN and ACK set to 1 and 0, respectively.

Each of the newly introduced InteractsWith relationships is also temporar-
ily associated with all network packets concerning the corresponding interac-
tions. The information contained in such packets will then be exploited in the
refinement step, to understand whether a topology node is implementing some
well-known integration pattern (Sect. 3.3).

Identifying the Exploitation of Ingress Controllers. As already noticed,
Kubernetes exploits the ingress controllers already existing in a cluster to imple-
ment ingress resources in an application deployment, if no ingress controller is
associated with them in the manifest files specifying the application deployment
itself [10]. Our solution analyses the network packets sent by already existing
ingress controllers to check whether they were actually exploited to implement
the message routing defined by some ingress resource in the Kubernetes deploy-
ment of the application. For each such ingress controller, a MessageRouter node

Mining the Architecture of Microservice-Based Applications 109

is added to the topology graph and included in the Edge group. The network
packets sent by such ingress controller are further analysed to identify the inter-
actions starting from the controller and targeting the components of the deployed
application. Each identified interaction is represented in the topology graph by
including a corresponding InteractsWith relationships, with the same approach
as described above.

3.3 Step 3: Refinement

Given the topology graph obtained after the static and dynamic mining steps,
and given the network packets associated with the InteractsWith relationships in
the graph, the topology graph is refined by identifying the nodes in the graph that
implement well-known integration patterns, i.e., message-routing or message-
brokering. Each of such nodes is then assigned with the corresponding type in
µTOSCA, i.e., MessageRouter and MessageBroker. In addition, the network pack-
ets associated with the InteractsWith relationships in the graph are analysed to
determine whether the corresponding interaction is exploiting client-side service
discovery, i.e., whether the source of the interaction has dynamically discovered
the endpoint of the target [21]. If this is the case, the property dynamic discovery
of the corresponding InteractsWith relationship is set to true.

Identifying Message Routers. Microservices mostly rely on HTTP to inter-
communicate [13], which means that components implementing message routing
can set the HTTP header X-Forwarded-For. The latter is the standard app-
roach for identifying the IP address of the client that sent a message, when such
message passed through one or more HTTP proxies or load balancers. Hence, if
the messages sent by a component contain the HTTP header X-Forwarded-For,
the component is implementing some sort of message routing. This can be eas-
ily checked by looking at the network packets associated with the InteractsWith
relationships outgoing from a node in the topology graph. If they contain the
HTTP header X-Forwarded-For, the node is typed MessageRouter.

Identifying Message Brokers. Message brokers use standard messaging pro-
tocols [17], e.g., AMQP (Advanced Message Queuing Protocol), MQTT (Mes-
sage Queuing Telemetry Transport), or STOMP (Simple Text Oriented Message
Protocol). A component is hence identified as implementing the message broker
integration pattern if all communications ingoing and outgoing from such compo-
nent are done throughout one among such messaging protocols. The correspond-
ing check is done by looking at the messages contained in the network packets
associated with the InteractsWith relationships ingoing and outgoing from the
topology node modelling a component: The messages in such network packets
must be structured according to either AMQP, MQTT, or STOMP.

The above check is however not enough: A service only communicating with
a message broker would be wrongly identified as being itself a message broker.
AMQP, MQTT, and STOMP are however client-server messaging protocols, all
distinguishing in the header of their messages whether a message is sent from a
client to the server or vice versa. The additional conditions to check is that the

110 G. Muntoni et al.

network packets received by a component include messages sent to the message
broker by its clients, and that the network packets sent by a component include
messages sent by the message broker to its clients. If this is the case, then the
corresponding node in the topology graph is typed MessageBroker.

Identifying Client-Side Discovery. Client-side service discovery occurs when-
ever a component dynamically resolves the IP address of another component,
with which the former wishes to interact [21]. To recognise whether this happened
in the deployed application, our solutions looks at the network packets associated
with each InteractsWith relationship in the topology graph. If the IP address of
the target of the interaction varies among such network packets, this means that
client-side service discovery occurred, with the source component connecting to
different instances of the target component. The property dynamic discovery of
the considered InteractsWith relationship is hence set to true.

4 Proof-of-Concept Implementation

To assess the feasibility of our approach, we have developed an open-source proof-
of-concept implementation, called µMiner2, where we exploited the tshark
command-line version of WireShark to enact packet sniffing. Figure 3 illustrates
the modular architecture of µMiner: The main module offers a command-line
interface enabling application administrators to provide the manifest files speci-
fying the application deployment in Kubernetes. Given such files, the main mod-
ule starts orchestrating the other modules to enact the architecture mining, i.e.,
(i) it first invokes the miner to enact the static and dynamic mining steps in our
approach, (ii) it then invokes the refiner to refine the mined topology as described
in the refinement step in our approach, and (iii) it finally invokes the exporter to
marshal the mined architecture to µTOSCA.

Steps (i) and (ii) incrementally build and refine the architecture of the anal-
ysed microservice-based application by relying on the topology module, which
enables instantiating and updating topology graphs. Step (iii) then picks the
mined topology graph from the topology module and marshals it to µTOSCA.

Fig. 3. Architecture of the proof-of-concept implementation of our solution.

2 https://github.com/di-unipi-socc/microMiner (MIT License).

https://github.com/di-unipi-socc/microMiner

Mining the Architecture of Microservice-Based Applications 111

µMiner enables application administrators to mine the architecture of their
microservice-based applications by issuing the following command:

$ sudo python3.8 -m microMiner generate kubernetes \
source target [time] [test] [name]

where source and path are mandatory and enable to specify the path to the
folder containing the Kubernetes manifest files and the path where to store the
generated µTOSCA specification, respectively. The optional parameters time,
test, and name instead allow to indicate how long the application deployment
is to be run, the Python module containing the load test to run, and the name
to be assigned to the application in the µTOSCA specification, respectively.

It is finally worth noting that µMiner must run with sudo privileges on
the master node of the Kubernetes cluster where to deploy and monitor the
application. This allows µMiner to interact with the Kubernetes engine running
on the master node to suitably configure, enact, and manage the deployment of
the given applications on the cluster.

5 Related Work

Several recent contributions allow to elicit the architecture of microservice-based
applications. For instance, [18] presents a solution for determining the service
dependency graph modelling the interactions occurring among the services in a
microservice-based application, based on the static analysis of their Java sources.
[11] proposes a methodology for modelling the architecture of microservice-based
applications by statically analysing their source code, based on a set of rules for
mapping source code to modelling constructs. [20] illustrates a solution to recon-
struct the architecture of microservice-based applications by statically analysing
their source code under the different perspectives of domain experts, developers,
and operators. [11], [18], and [20] however differ from our approach since they
all follow a “white-box” approach, by requiring the source code of the software
components forming an application to be available. Our solution can instead
work also in “black-box” scenarios where such sources are not available, as it
only requires the Kubernetes deployment of a microservice-based application to
automatically determine its architecture. In addition, while our solution is fully
automated, both [11] and [20] require application administrators to manually
intervene for completing the mining of a microservice-based architecture.

Similar considerations apply to MicroART [14,15], a semi-automatic app-
roach for determining the architecture of a microservice-based application.
MicroART can however be considered closer to our solution, as it statically
analyses the source code to determine the services forming an application, and
it dynamically runs and monitors the services to grasp the interactions occurring
among them. MicroART then requires the application administrator to manu-
ally refine the obtained architecture by removing the infrastructure components
used by the services forming an application (e.g., service discovery components)
and the corresponding interactions. Our approach hence differs from MicroART

112 G. Muntoni et al.

since it fully automates the mining of architectures, and since it can be applied
also to microservice-based applications whose source code is not available. In
addition, our approach automatically distinguishes services and databases in an
application from integration components implementing well-known integration
patterns (e.g., message queues or load balancers), which is something not fea-
tured by neither MicroART nor by [11], [18], or [20].

It is also worth relating our approach with existing tooling for visualis-
ing and monitoring Kubernetes-based application deployments. Kiali [2], Kube-
View [3], and WeaveScope [7] are three different tools displaying the structure
of applications deployed in Kubernetes. Being developed for monitoring the
Kubernetes-based deployment of generic applications, they only visualise the
deployed Kubernetes objects (e.g., pods and services) and how they are intercon-
nected. Our solution instead enables distinguishing among services, integration
components, and data stores forming the architecture of a microservice-based

Fig. 4. Visualisation in µFreshener of the architecture of Sock Shop [6].

Mining the Architecture of Microservice-Based Applications 113

application, as well as to recognise whether component-to-component interac-
tions involve some form of client-side service discovery.

Instana [1] makes a step further in this direction, by enabling to visualise
services and data stores forming a microservice-based application deployed in
Kubernetes, together with service-to-service and service-to-database interac-
tions. Our approach however differs from Instana as we not only enable visualing
service and data stores, but also recognising whether some software component is
implementing message-based integration patterns, as well as whether client-side
service discovery is enacted in some service-to-service interaction. In addition,
while Instana is a commercial and subscription-based tool, our approach is pub-
licly available in a free open-source implementation.

6 Conclusions and Future Work

We have presented a solution to automatically determine the architecture of a
microservice-based application. Given the manifest files specifying the deploy-
ment of an application in Kubernetes, our solution first statically analyses such
files to start drafting the partial topology graph modeling the architecture of
the application. Our solution then configures, enact, and monitors a deployment
of the application to automatically extract the information needed to complete
the topology graph, which is then refined by automatically identifying whether
some application component is implementing well-known integration patterns.

We have also presented a first proof-of-concept implementation of our solu-
tion, which enables automatically obtaining a specification of the mined archi-
tecture in µTOSCA. To experiment our solution, we have exploited our proof-of-
concept implementation to generate the architecture description of three exist-
ing open-source microservice-based applications (i.e., Online Boutique [4], Robot
shop [5], and Sock Shop [6]), successfully obtaining the representation of their
architecture in µTOSCA in all the three cases. The obtained µTOSCA were then
fed as-is to µFreshener, which enabled us to graphically visualise the mined
architecture of their microservice-based applications, as shown in Fig. 4.

At the same, the proof-of-concept implementation of our solution works under
some assumptions, e.g., requiring to run it in the master node of a Kuber-
netes cluster or that in-cluster component-to-component communications are not
encrypted. We plan to engineer our implementation into a working prototype
releasing such assumptions (e.g., by remotely interacting with the master node of
a Kubernetes cluster and enabling to configure secrets so that in-cluster communi-
cation can be encrypted) and enforcing security to mitigate the risks deriving from
executing potentially malicious applications in a Kubernetes cluster.

We also plan to extend our solution to work also with other container-based
orchestration systems (e.g., Docker Swarm, OpenShift). The current implemen-
tation of our solution already features a pluggable architecture, based on the
strategy design pattern, with the Kubernetes-based architecture mining plugged
as a strategy supported by the implementation itself. Adding support for other
existing container-based orchestration systems hence just requires to implement
the corresponding strategy and to plug it into the current implementation.

114 G. Muntoni et al.

References

1. Instana. https://www.instana.com
2. Kiali. https://kiali.io
3. KubeView. https://github.com/benc-uk/kubeview
4. Online Boutique: A Cloud-native Microservices Demo Application. https://github.

com/GoogleCloudPlatform/microservices-demo
5. Robot Shop: Sample Microservice Application. https://github.com/instana/robot-

shop
6. Sock Shop: A Microservices Demo Application. https://microservices-demo.

github.io
7. WeaveScope. https://www.weave.works/oss/scope
8. WireShark. https://www.wireshark.org
9. TOSCA Simple Profile in YAML, version 1.2. OASIS Standard (2019)

10. Kubernetes documentation (2020). https://kubernetes.io/docs
11. Alshuqayran, N., Ali, N., Evans, R.: Towards micro service architecture recovery:

an empirical study. In: 2018 IEEE International Conference on Software Architec-
ture (ICSA), pp. 47–4709 (2018)

12. Brogi, A., Neri, D., Soldani, J.: Freshening the air in microservices: resolving archi-
tectural smells via refactoring. In: Yangui, S., et al. (eds.) ICSOC 2019. LNCS,
vol. 12019, pp. 17–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45989-5 2

13. Fowler, M., Lewis, J.: Microservices (2014). http://martinfowler.com/articles/
microservices.html. Accessed 7 Aug 2020

14. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle,
A.: MicroART: a software architecture recovery tool for maintaining microservice-
based systems. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 298–302 (2017)

15. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di
Salle, A.: Towards recovering the software architecture of microservice-based sys-
tems. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 46–53 (2017)

16. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston (2003)

17. Korab, J.: Understanding Message Brokers. O’Reilly Media Inc., Sebastopol (2017)
18. Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., Hsueh, N.: Using service dependency

graph to analyze and test microservices. In: 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), vol. 02, pp. 81–86 (2018)

19. Neri, D., Soldani, J., Zimmermann, O., Brogi, A.: Design principles, architectural
smells and refactorings for microservices: a multivocal review. SICS Softw. Inensiv.
Cyber Phys. Syst. 35, 3–15 (2020). https://doi.org/10.1007/s00450-019-00407-8

20. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic
architecture reconstruction of microservice-based software systems. In: Nurcan, S.,
Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020.
LNBIP, vol. 387, pp. 311–326. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-49418-6 21

21. Richardson, C.: Microservices Patterns. Manning Publications, Shelter Island
(2018)

https://www.instana.com
https://kiali.io
https://github.com/benc-uk/kubeview
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop
https://microservices-demo.github.io
https://microservices-demo.github.io
https://www.weave.works/oss/scope
https://www.wireshark.org
https://kubernetes.io/docs
https://doi.org/10.1007/978-3-030-45989-5_2
https://doi.org/10.1007/978-3-030-45989-5_2
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21

Mining the Architecture of Microservice-Based Applications 115

22. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

23. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Develop. 32(3–4), 301–
310 (2016)

ESOCC 2020 PhD Symposium

Preface to the PhD Symposium

The PhD Symposium at ESOCC is an international forum for PhD students to present
and discuss their work with senior scientists and other PhD students working on related
topics. As for the main conference, the topics welcomed by the PhD Symposium span
all aspects of service-oriented and cloud computing, e.g., service and cloud computing
models, service and cloud computing engineering, technologies, and business and
social aspects of service and cloud computing. In contrast to the main conference, the
research reports presented and discussed at the PhD symposium typically present
unfinished research work or “just started” PhD research projects.

The program committee of the 2020 edition of the ESOCC PhD Symposium
carefully selected three contributions, based on the review reports on the submissions,
each of which was reviewed by at least two PC members. In addition to the precise
description of the problem to be solved, preliminary results, and first ideas for solving
the main problem, the selected contributions also included a work plan. All these issues
were discussed at the symposium between selected senior scientists and the PhD
students. After the symposium, the PhD students were invited to incorporate all
feedback from reviewers and from the live discussion at the PhD symposium into their
papers, to make such papers mature for a scientific publication. This post-symposium
proceedings include such revised selected papers.

We wish to thank all the PhD students who contributed to the PhD symposium for
their submissions and careful revisions of their papers, as well as the PC members and
symposium attendees for their detailed and constructive feedback suggesting valuable
improvements. We are also grateful to Kyriakos Kritikos (General Chair of ESOCC
2020), to Antonio Brogi and Wolf Zimmermann (Program Chairs of ESOCC 2020),
and to Christian Zirpins and Iraklis Paraskakis (Workshop Chairs of ESOCC 2020) for
their organizational support, even in these trouble times. Without all these people, such
an enjoyable, virtual, and successful 2020 edition of the ESOCC PhD Symposium
would not have been possible.

November 2020 Jacopo Soldani
Massimo Villari

Organization

Program Committee Chairs

Jacopo Soldani University of Pisa, Italy
Massimo Villari University of Messina, Italy

Program Committee

Uwe Breitenbücher University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology,

Netherlands
Kung-Kiu Lau University of Manchester, UK
Zoltán Ádám Mann University of Duisburg-Essen, Germany
Ulf Schreier Hochschule Furtwangen University, Germany

Trusted Orchestrator Architecture
in Mobile Edge Cloud Computing

Van Thanh Le(B)

Department of Computer Science, Free University of Bozen/Bolzano,
Bolzano, Italy

vanle@unibz.it

Abstract. In recent years, shifting part of the computation and data
management from the center of the cloud to its edges has brought huge
benefits for end-users. Mobile Edge Computing (MEC) represents a huge
step towards high preferment cloud services. MEC can deploy dedicated
services dynamically based on the request types and the specific context.
In the transportation context, services need not only to be installed in
the closest MEC but also be able to follow the vehicles as they move
to keep providing the same service. This scenario raises different chal-
lenges in terms of service migration and security. This paper presents a
MEC based trusted orchestrator architecture to address these issues with
the target to enable migrating services transparently and guaranteeing
requests with high-security levels.

Keywords: MEC · Blockchain · Service continuity · Orchestration

1 Introduction

Cloud Computing technology plays an essential role in computer system resource
management, especially with data storage and computing power. Resources can
be accessed from anywhere followed by the distributed user demand, and appli-
cations are preferable to be deployed into cloud since its flexibility and high
availability. However, these computation resources traditionally are located in a
centralized data-center, which leads to high latency in handling user requests.
The new concept of Mobile Edge Computing (MEC) [1,11] is presented to build
a micro-cloud which can be set up in close proximity to the users. A part of com-
putations and resources is moved from the main cloud to the edge node, which
allows low data latency and context-aware services. With MEC, we do not have
to send data to the main cloud for analysis, instead, it can be pre-processed
before transferring it to the cloud, thus MEC will reduce a massive amount of
bandwidth usage to the main cloud and boost the user connection speed.

MEC is mainly deployed on top of low cost resource constrained devices
which makes it affordable, nevertheless, these devices may suffer from security

Supervisors: Claus Pahl (cpahl@unibz.it), Nabil El Ioini (nelioini@unibz.it).

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 121–132, 2021.
https://doi.org/10.1007/978-3-030-71906-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_10

122 V. T. Le

issues [28] since the used hardware platform lack robust security mechanisms.
Therefore, we need a robust and secure network to control MEC, which is also
our purpose to build a trusted orchestrator architecture for MEC.

The remainder of the paper is structured as follows, the next section presents
the problem statement and reference scenario, Sect. 3 shows our methodology,
the orchestrator architecture is demonstrated in Sect. 4, and then simulator envi-
ronment is discussed in Sect. 5, Sect. 6 presents our current work and future plan,
then Sect. 7 discusses related studies. The last section describes our conclusion
and future work.

2 Problem Statement and Reference Scenario

A reference scenario is defined in this section to show the problems we are
addressing. Transportation is one of the cases where MEC could bring benefits.
In 4G network (LTE - Long-Term Evolution), vehicles need to connect with
eNodeB (Evode Node B) as a gate for user equipment (UE) to the Internet, in
our scope, MEC is also set up in eNodeB and work as an RSU (Road Side Unit)
to response with specific services (e.g., mapping, gaming).

In our scenario, we choose the example of video streaming that depends
mainly on the Vehicle to Infrastructure (V2I) architecture for real time services.
In order to watch a video in a car, customers have to pay a subscription fee to the
service provider (MEC infrastructure provider and multimedia service provider),
after that, a video will be streamed from a hosting service to the customer vehicle.
When the car is moving, the streaming service will send requests to do buffering
the video resources. In general, the following Research Challenges motivates
through the video streaming use case:

– Low latency: which reflects user experience when watching a video, when the
video streaming service is deployed into the nearest MEC, we can have lower
end-to-end latency.

– High availability: to watch any films from anywhere, the service has to fol-
low the car to maintain the connection, in other words, it always has to be
deployed into the closest MEC. The behavior for transferring service from a
MEC to another MEC is called service migration and maintaining service
sessions without interruption is called service continuity. Therefore keeping
service continuity will guarantee high availability.

– High security: since it is related to the customer payment, so we need to have
a secure channel for the user payment and to be sure the customer rights to
access media resources.

MEC nodes or service applications could belong to different providers, so
their communication and collaboration could be a challenge when they do not
trust each other but still want to get customer information from others or share
the market. Moreover, in case of providers do not make any agreement for service
migration, requests have to follow roaming routes to the home network which
reduces user experiences and can not get any benefits of MEC. We will define
methodologies to overcome these problems in the next section.

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 123

3 Methodology

We focus on MEC to MEC communication without the need to access the core
network, localizing handover process could speed up the context transfer. The
direct connection among MECs facilitates reducing latency because the car does
not have to send requests to the main cloud and wait for the acceptance, instead,
MEC will control procedures. Context transferring includes moving current ses-
sions and service migration, while session data is sent via point-to-point connec-
tion of MECs, which is already executed by mobile operators, migrating services
is still a challenge, which mainly comes from service provider collaborations,
different policies or infrastructure, and low level of security in MECs.

To address the challenges set in the reference scenario, three main areas are
being investigated:

3.1 Mobility Simulator

Device-to-device communication in the transportation model is complicated with
multiple participants, in other words, while handover process belongs to LTE
infrastructure, service migration is executed in the cloud layer and belongs to
MEC providers, these services should be run in parallel in the demand of service
continuity. However, testing new strategies in the real LTE devices is cumber-
some and time wasting in deployment, thus, a simulator running LTE environ-
ment and supporting MEC devices could be a solution that will be discussed in
Sect. 5.

3.2 Containerization

Services are packed and built a flexible environment, it is a lightweight alternative
for a full machine visualization, it encapsulates applications in a container with
its own environment isolated from the host. D. Bernstein in [7] explained the
container concept which presented a need for an isolated and multi-tenancy
layer, dependencies and resources are separated from the host. Docker1 is the
most common application of container now, in our scope, we apply Docker to
deploy a stateful video streaming service.

Considering service migration, H.Abdah et al. in [2] presented three main
kinds of service migration as follow, services are packed in Docker containers or
VM (Virtual machine):

– Cold migration: the running process will be paused or terminated white the
service state is transferring.

– Pre-copy live migration: will move the memory of the service through several
iterations before the VM is restarted, the service still runs while migration
process is executing.

– Post-copy live migration: similar to pre-copy one, but this type only sends
the virtual CPU and device state at the initial step.

1 https://www.docker.com.

https://www.docker.com

124 V. T. Le

CRIU2 is currently the well-known technique to support migration tech-
niques, however, it now does not support live-migration in Docker container
so we need to investigate other techniques in the future work.

3.3 Blockchain and Trust Mechanism

MEC is built on top of constrained devices and container is a lightweight
machine, they are all vulnerable and easy to be attacked while full firewall
mechanization becomes overload for these technologies, blockchain could be a
solution to build a secure channel and security gate. It is a distributed, decen-
tralized database composed of a growing list of records, called blocks. In the
blockchain network, a consensus among maintaining nodes strengthens security
and prevent tampering. In our scenario, some platforms as Bitcoin3 or Etherum4

could support customer payments or Hyperledger could build an environment
for vendors to exchange information.

In the environment of MEC, service migration requires multiple actions and
participants, among them, authentication is crucial while reconnecting to the
next MEC, which also takes a huge amount of time if users have to transfer
via various intersection regions. A trust mechanism could contribute here to
build a trust network among MECs based on specific attributes, when the next
MEC is trust-able, authorization process will not be skipped that speeds up the
migration process.

3.4 Prediction Mechanization

Prediction mechanization will forecast the car status to decide which strategies
are used for service migration, this will answer the question when and where to
migrate. Migrating services lead to service interruption while not migrating, in
other words, roaming results in the transmission delay when the user gets far
from the current host and requests have to be sent via many layers to come back
the host.

A survey [25] showed the three most updated service migration optimization
strategies as follow me cloud [21], dynamic service migration [27] and time win-
dow based service migration [26]. This work will be the baseline for our prediction
model.

4 Trusted Orchestrator Architecture

We propose an architecture to orchestrate containers based on blockchain which
enables service continuity on the MEC (Fig. 1). Each MEC node can serve
vehicles within its range by downloading and instantiating the needed services.

2 https://criu.org.
3 https://bitcoin.org.
4 https://ethereum.org.

https://criu.org
https://bitcoin.org
https://ethereum.org

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 125

Fig. 1. Trust orchestrator infrastructure

MEC nodes can work independently or collaboration can be established between
MEC nodes even belongs to different providers when exchanging information is
required. When users move, the vehicle will communicate with MEC for the
movement and inform when the migration process is needed, the MEC after
that will notify the main cloud for the service transfer. Blockchain joins as a
verification gate for service payment and user authentication, in other words,
any requests from users as creating, migrating or stopping services should be
verified to guarantee the network security.

The orchestrator will decide credential checking and migration activities fol-
lowed by sub-scenarios below, to simplify the scenario, we suppose that all service
providers share the same blockchain platform, once a user pays a subscription
fee, he has a right to access all services of all providers. We have identified three
flavors of MEC models.

4.1 MEC Models

Single MEC. Each MEC node works independently with the others and
they orchestrate by themselves, it is similar to the case of independent

126 V. T. Le

service providers. In our scenario of video streaming, the user credentials must be
verified at any time of accessing video resources, after that a service is deployed
on the nearest MEC (Fig. 1(A)).

MEC Cluster. The cluster allows multiple MEC nodes to collaborate to
increase service availability and reduce the service migration (Fig. 1(B)), MEC
nodes that could belong to different providers can join a cluster in order to facili-
tate service deployment and continuity. Nodes will share UE common data, once
a MEC node verifies a user, other nodes can skip the step and trust in the UE.

MEC Swarm. MEC nodes are controlled by an orchestrator (Fig. 1(C)) which
will manage requests to and from MEC nodes, the orchestrator will decide which
node will execute the task and communicate with blockchain on behalf of MEC
nodes. The sub scenarios are different from MEC Cluster that all MEC nodes are
under the control of an orchestrator, all information is shared and the authenti-
cation step only has to be triggered once.

Based on these MEC models, MEC-to-MEC communication also depends on
trust score for each MEC which will be accumulated by trust aspects. In our
scenario, before starting the migration process, the MEC source has to verify
the trust-ability of the next MEC, if the next one is not reliable, other solutions
could be proposed based on the kind of trust shortage of the next.

4.2 Trust Aspects

MEC is deployed in IoT devices, so we will demonstrate trust aspects for IoT
devices here, these aspects already are discussed in [9,12], since we would con-
centrate on scenarios of MEC, thus there are three aspects will be considered:

Capacity Based Trust. Capacity based Trust (CBT) refers to the reliability of
resources in a MEC, since IoT devices only have a constrained resource and can
run limited number of services. Therefore, the resources should be under control
to guarantee the device does not run any unreliable or untrusted services, it
also checks the sufficient of resources when deploying new service after receiving
migration requests.

To be detailed, the capacity trust score is computed based on three resource
values, (i) before-deployment resource capacity (BDR), (ii) after-deployment
resource capacity (ADR), and (iii) service usage resource (SUR). Each of the
resource values considers three parameters, namely CPU, RAM, DISK usage.

CBT = BDR + SUR/ADR (1)

Considering the resource sufficient for service migration, the values of ADR
will be used to do a comparison with the service resource requirement.

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 127

Security Based Trust. Security in cloud computing has been discussed in
many papers [4,13,19] and it is a wide concept and covers various aspects as
authentication, authorization, integration. In our scope, an IoT device will deploy
Docker containers to build services for users which could lead to two security
levels, one comes from security in containers and another one is from IoT system.

Docker security is analyzed in [8], the author states that hypervisor-based
virtualization techniques (VM) are more secure as they added an extra layer of
isolation between the applications and the host. An application running inside a
VM is only able to communicate with the VM kernel, not the host kernel while
containers can directly communicate with the host kernel that enables hackers
to break the host system easily.

The most common OS used for cloud servers is Ubuntu because of its security,
versatility, and stability however incident activity involving outdated certificates
or the unchanged default passwords could make the system more vulnerable.
Thus, for both containers and system security, we will investigate related aspects
and score the Security based Trust (SBT) values.

We use Lynis5 to perform an automated audit of an OS based on a secu-
rity benchmark and propose the system hardening suggestions, from reports by
Lynis, we can score the security of the OS (SOOS). For the security score of
Docker container (SOD), security benchmark for Docker6 could support to ver-
ify the security of both Docker environment as volumes, containers and images.
In summarize, the MEC security score (SBT) will be the average of SOD and
SOOD.

SBT = Average(SOOS, SOD) (2)

Behavior Based Trust. Behavior based Trust (BBT) refers to the outcomes
of MEC nodes since its quality also affects the trust of MEC, if the reports from
MEC is unreliable or users suffer from slow responses, the MEC behavior score
will be decreased. There are three behavior aspects we would consider:

– Live time: followed [29], the live time of a MEC will be evaluated by direct-
connected MECs and forwarded to other MECs to synchronize trust values.
MECs have to respond to any communication requests to maintain the net-
work status.

– Success rate of service deployment: if service deployment fails, users will have
to wait a lot of time and also to find another solution which reduces the quality
of experience (QoE) of the users. The rate is only scored as the number of
successful deployment per total number of requests.

– Success rate of service migration: Service continuity requires multiple actions
and communication as [16], network instability or missing system files could
break the migrated service. In the scope of trust, we only consider the success
rate of migration in the received migrated MEC.

5 https://cisofy.com/lynis/.
6 https://github.com/docker/docker-bench-security.

https://cisofy.com/lynis/
https://github.com/docker/docker-bench-security

128 V. T. Le

In summarize, BBT, SBT and CBT will be merged and used to decide the
next MEC is reliable or not, in case of untrust, alternative solutions will be made
to maintain the user QoE, for example, reduce the quality of services in term of
capacity or redirect service requests to the previous MEC in cases of low security
score.

BBT = Average(TLT, SSD, SSM) (3)

5 Simulation Environment

Node

Docker

eth0

UE Real Device

eth0

OS

veth

Tap

veth pair

veth

Tap

veth pair

Server Tap Node

Tap-Bridge

M
ob

ili
ty

 S
im

ul
at

io
n

M
od

ul
e

LTE-EPC UE

O
rc

he
st

ra
to

r
M

od
ul

e
A

ut
he

nt
ifi

ca
tio

n
M

od
ul

e

BC
Gate

Orchestrator

Server Tap Node

Tap-Bridge

B
lockchain

Fig. 2. MEC trusted orchestrator architecture

We have developed a simulation environment relying on existing open source
projects. Our architecture contains three main modules as mobility simulation
module, orchestrator module, and authentication module (see Fig. 2).

The mobility module is based on NS3 [20] which stands for network simu-
lator, it is a discrete-event network simulator for Internet systems. The core of
NS3 is written in C++ to facilitate library reusing and executing standalone
application, besides that, the core is wrapped by Python application to set up
simulation scenarios. NS3 supports the LTE-EPC module [5] that includes com-
mon components for the LTE infrastructure as Packet Gateway (PGW), Serving
Gateway (SGW), Mobility Management Entity (MME). NS3 communicates with

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 129

the real world via tap bridge, tap devices from the simulator will connect with
the port eth0 of the corresponding nodes of the orchestrator module.

The authentication module is built from blockchain which creates a secure
channel for participants, the module will verify requests, execute transactions or
log behaviors from the orchestrator via blockchain gateway, the gateway provides
a restful API for the MEC node access.

The Orchestrator module is designed to manage MEC nodes, any requests
from UEs will be sent to the nearest node, and then verified by the authenti-
cation module before forwarding to the orchestrator, it will decide the working
flow of MEC nodes. The UE status is collected and analyzed by the prediction
engine that will trigger the migration process. The orchestrator also controls the
load balancer to allocate tasks for suitable nodes. Our main architecture is also
deployed in this module, a MEC controller will be setup in MEC Node to man-
age requests, it will act as the orchestrator for Single MEC and MEC Cluster,
in MEC Swarm, we need a separated orchestrator to manipulate requests to the
MEC controller.

6 Our Current Work and Future Research Plan

Currently, I am in my second year PhD and we are part of an EU project7 where
we are investigating solutions for smart mobility in the scenario of crossing border
and context transfer. We have investigated research papers related to blockchain,
MEC, IoT, service continuity and trust management, which gave us an overview
of the research topic. Trust orchestrator architecture and service continuity are
still new concepts that need to be studied in various aspects.

For the future work, we will implement the entire architecture with three
modules and follow three scenarios, evaluate end-to-end latency and prediction
results for service migration. The work will follow 5G-CARMEN project require-
ments to get closer to real infrastructure, data from the project partners will be
used for the prediction process.

7 Related Work

Our previous work [15] proposed a blockchain based architecture for MEC, is
deployed by SimuLTE [24] and OMNetpp [23] however SimuLTE is no longer
supported by developers from 2016, so now it is almost outdated. Moreover,
OMNetpp environment only works on its simulation time, so real-world commu-
nication from the simulator is limited and does not perform the real connection,
this study is still a baseline for our architecture and is our first approach to deal
with migration overheads.

Follow me cloud (FMC) concept has been first introduced in [21] to solve the
problem of using services when changing access points. Taleb et al. show that
a service migration decision mainly depends on network operator policies, and

7 http://5gcarmen.eu.

http://5gcarmen.eu

130 V. T. Le

particularly on the P-GW relocation procedure. A. Aissioui et al. [3] proposed the
Follow Me edge-Cloud (FMEC) concept and implement a demonstration based
on MEC, their experiments showed migration approaches in detail and are close
to our mobility simulation. However, their work does not show fully connections
among LTE devices, for example, PGW connects SGW via S5 socket, so their
experience can not present fully the LTE communication.

Migration strategies for service continuity is also proposed by Abdullaziz
et al. via [14], instead of controlling user mobility in MME as current LTE
architecture, the task is moved to edge with a vMME module, the module will
interact with the target MME in the core network. For the service migration
in edge, authors applied CRIU to do pre-copy migration to reduce end-to-end
latency after changing APs. Their simulation is built on top of NextEPC8 and
all edge node belongs to an LTE network, but they have not solved the problem
with roaming when a node moves to a new network.

Related to blockchain-based architecture for MEC, Pahl et al. in [17] pro-
posed an architecture pattern which is namely trusted orchestration manage-
ment (TOM) for IoT edge cloud. TOM will verify activities and requests from
IoT devices, the idea of TOM comes from the W3C Provenance framework9 that
logs behaviors from IoT to enable the trust. N.El Ioini in [10] implements a TOM
system based on permissioned blockchain Hyperledger Fabric10, the orchestrator
verify the identity provenances before grant access to IoT devices. We will also
follow the similar ideas to track requests from users, and reports from MEC.

Trust management systems (TMS) for IoT devices are presented in [22,28].
Capacity of IoT is one of the most common concerns which is also its limitation.
Zahariadis et al. in [22] calculates the trust value of nodes from the success rate
of requests with the weighted factors from nodes. In the model, nodes are in
wireless sensor network (WSN), thus, the node connection and communication
is also taken into account to increase the battery lifetime. Ben et al. [6] proposed
a TMS model for multi-services based on a cognitive learning algorithm which
will analyze the service capacity and the changes of IoT device resources from
historical data. Pirzada et al. [18] focused on trust communication in IoT, a
central trust authority is developed to build a trusted based communication in
ad-hoc network. Each node will be a trust agent and assist other nodes by sending
data and control packets to others, after that it will summarize the trust value
also with each weighted factor. In our architecture, IoT devices are supposed to
deploy in eNodeB and work as MECs to receive requests from the main cloud
and deploy services, trust factors are inherited from these papers to calculate
trust values, historical data and resource capacity also can be used to support
the process.

8 https://nextepc.org.
9 https://www.w3.org/TR/prov-overview/.

10 https://www.hyperledger.org/use/fabric.

https://nextepc.org
https://www.w3.org/TR/prov-overview/
https://www.hyperledger.org/use/fabric

Trusted Orchestrator Architecture in Mobile Edge Cloud Computing 131

8 Conclusion and Future Work

In this paper, we proposed an architecture to enable service continuity in MEC.
Ns3 facilitates a comprehensive LTE network which provides an ideal environ-
ment to build on top services, our design can get advantages of both MEC
and containerization for service continuity but still maintain security levels by
blockchain. Sub-scenarios could cover almost cases that separate each level of
sharing UE information for each level of trust among nodes. Trust aspects will
reduce the migration downtime, in other words, increase the QoE of users.

For the future work, we will implement each component of the architecture,
evaluate end-to-end latency and prediction results for service migration.

References

1. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE IOT J. 5(1), 450–465 (2018)

2. Abdah, H., Paulo Barraca, J., Aguiar, R.L.: QoS-aware service continuity in the
virtualized edge. IEEE Access 7, 51570–51588 (2019)

3. Aissioui, A., Ksentini, A., Gueroui, A.M., Taleb, T.: On enabling 5G automotive
systems using follow me edge-cloud concept. IEEE Trans. Veh. Technol. 67(6),
5302–5316 (2018)

4. Grundy, J., AlMorsy, M., Müller, I.: An analysis of the cloud computing security
problem. In: Proceedings of the APSEC 2010 Cloud Workshop (2010)

5. Baldo, N.: The NS-3 LTE module by the LENA project. Center Tecnologic de
Telecomunicacions de Catalunya (2011)

6. Saied, Y.B., Olivereau, A., Zeghlache, D., Laurent, M.: Trust management system
design for the Internet of Things: a context-aware and multi-service approach.
Comput. Secur. 39(PART B), 351–365 (2013)

7. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

8. Bui, T.: Analysis of docker security (2015). arXiv preprint: arXiv:1501.02967
9. Chahal, R.K., Kumar, N., Batra, S.: Trust management in social Internet of Things:

a taxonomy, open issues, and challenges. Comput. Commun. 150(2019), 13–46
(2020)

10. El Ioini, N., Pahl, C.: Trustworthy orchestration of container based edge computing
using permissioned blockchain. In: The Fifth International Conference on Internet
of Things: Systems, Management and Security (IoTSMS), Oct 2018

11. ETSI. Mobile Edge Computing - A key technology towards 5G (2015). https://
www.etsi.org/images/files/ETSIWhitePapers/etsi wp11 mec a key technology
towards 5g.pdf. Accessed 2020

12. Guo, J., Chen, I.R., Tsai, J.J.P.: A survey of trust computation models for service
management in Internet of Things systems. Comput. Commun. 97, 1–14 (2017)

13. Iankoulova, I., Daneva, M.: Cloud computing security requirements: a systematic
review. In: Proceedings - International Conference on Research Challenges in Infor-
mation Science, pp. 1–7 (2012)

14. Ibrahiem, O., Talat, S., Chiu, C.-H.: Mobile service continuity for edge train net-
works. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), pp. 1–6, September 2019

http://arxiv.org/abs/1501.02967
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf

132 V. T. Le

15. Van Le, T., El Ioini, N., Pahl, C.: Blockchain based service continuity in mobile
edge computing. In: 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IoTSMS), pp. 136–141, October 2019

16. Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration
in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2018)

17. Pahl, C., El Ioini, N., Helmer, S., Lee, B.: An architecture pattern for trusted
orchestration in IoT edge clouds. In: 2018 3rd International Conference on Fog
and Mobile Edge Computing, FMEC 2018, pp. 63–70 (2018)

18. Pirzada, A.A., McDonald, C.: Establishing trust in pure ad-hoc networks. In: Pro-
ceedings of the 27th Australasian Conference on Computer Science, vol. 26(c), pp.
47–54 (2004)

19. Ramachandra, G., Iftikhar, M., Aslam Khan, F.: A comprehensive survey on secu-
rity in cloud computing. Procedia Comput. Sci. 110(2012), 465–472 (2017)

20. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Gross,
J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Berlin
(2010). https://doi.org/10.1007/978-3-642-12331-3 2

21. Taleb, T., Ksentini, A.: Follow me cloud: interworking federated clouds and dis-
tributed mobile networks. IEEE Network 27(5), 12–19 (2013)

22. Zahariadis, S.V.T., Leligou, H.C., Trakadas, P.: Trust management in wireless
sensor networks. Trans. Emerg. Telecommun. Technol. 25(3), 294–307 (2014)

23. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques For Communications, Networks and Systems & Workshops, p. 60. ICST
(2008)

24. Virdis, A., Stea, G., Nardini, G.: SimuLTE - a modular system-level simulator for
LTE/LTE-A networks based on OMNeT++. In: 4th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications (SIMUL-
TECH), pp. 59–70 (2014)

25. Wang, S., Jinliang, X., Zhang, N., Liu, Y.: A survey on service migration in mobile
edge computing. IEEE Access 6, 23511–23528 (2018)

26. Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., Leung, K.K.: Dynamic
service placement for mobile micro-clouds with predicted future costs. IEEE Trans.
Parallel Distrib. Syst. 28(4), 1002–1016 (2017)

27. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic
service migration in mobile edge computing based on Markov decision process.
IEEE/ACM Trans. Netw. 27(3), 1272–1288 (2019)

28. Zhang, Z.-K., Cho, M., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In 2014 IEEE 7th Interna-
tional Conference on Service-Oriented Computing and Applications, pp. 230–234,
November 2014

29. Zhao, H., Li, X.: VectorTrust: trust vector aggregation scheme for trust manage-
ment in peer-to-peer networks. J. Supercomput. 64(3), 805–829 (2013)

https://doi.org/10.1007/978-3-642-12331-3_2

Towards Resolving Security Smells
in Microservice-Based Applications

Francisco Ponce(B)

Universidad Técnica Federico Santa Maŕıa,Valparáıso, Chile
francisco.ponceme@usm.cl

Abstract. Microservices architecture has become enormously popular
because traditional monolithic architectures no longer meet the needs of
scalability and rapid development cycle, and the success of some large
companies in building and deploying services is a strong motivation for
others to consider making the change. Microservices bring new security
challenges that were not present in traditional monolithic applications
due to the nature of these systems and the way they are deployed. Some of
these challenges are associated with decisions that can negatively impact
system quality. These decisions are known as architectural smells and
directly affect lifecycle properties. In this research work, we want to focus
on detecting architectural smells associate with security in microservices-
based applications. So we have generated a taxonomy of microservice
security smells and the refactoring’s to resolve them, and we plan to
define a set of strategies for detecting the security smells of our taxonomy
and develop a software tool that will allow practitioners to automatically
detect these security smells in their system.

Keywords: Microservices security · Architectural smells · Security
smells · Microservice architecture.

1 Introduction

Microservices architecture has become enormously popular because traditional
monolithic architectures no longer meet the needs of scalability and rapid devel-
opment cycle [10], and the success of some large companies in building and
deploying services is a strong motivation for others to consider making the
change. Typical issues associated with monolithic architecture are technical (e.g.,
the system becomes highly coupled, hard to maintain, presents side effects) or
business-related (e.g., long time to release new features, low productivity of
developers). In some cases, migrating towards microservices architecture repre-
sents the best option for resolving existing issues and at the same time improving
the system maintainability and the frequency of product releases [3].

Microservices bring new security challenges, and opportunities, that were
not present in traditional monolithic applications [13]. Some of these challenges

PhD Advisor: Hernán Astudillo[0000-0002-6487-5813].

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 133–139, 2021.
https://doi.org/10.1007/978-3-030-71906-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_11&domain=pdf
http://orcid.org/0000-0002-6411-0511
http://orcid.org/0000-0002-6487-5813
https://doi.org/10.1007/978-3-030-71906-7_11

134 F. Ponce

are associated with the decisions made in the project, in this context are the
architectural decisions and architectural smells.

An architectural smell is a common (although not always intentionally)
used architectural decision that negatively impacts system quality. Architectural
smells may be caused by applying a design solution in an inappropriate context,
mixing design fragments that have undesirable emergent behaviors, or applying
design abstractions at the wrong level of granularity. Architectural smells most
directly affect lifecycle properties [5].

Although there is already research associate with architectural smells in the
context of microservice-based applications [1,2,9,11,12], to the best of our knowl-
edge, there is not currently work done in microservice security smells.

So in this research work, we want to focus on detecting security smells in
microservices-based applications and propose the necessary refactoring to correct
them (in most cases an architectural refactoring will improve the system quality).

The remainder of the article is structured as follows: Sect. 2 describes the
fundamental concepts; Sect. 3 describe the context of the problem that will be
addressed in this investigation; Sect. 4 describes the research plan, the associated
challenges and the expected results.

2 Background

2.1 Microservices Architecture

The microservices architecture (MSA) style is an approach to developing a sin-
gle application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms (e.g. HTTP API’s) [7]. Microser-
vices are built around business capabilities and independently deployable by
fully automated deployment machinery. Because of their size, they are easier to
maintain and more fault-tolerant since the failure of one service will not break
the whole system, which could happen with a monolithic architecture. There-
fore, this style allows designing architectures that should be flexible, modular
and easy to evolve [7].

In recent years, many large systems evolve from self-contained monolithic
applications built of interconnected, interdependent components to a collections
of small, autonomous, lightweight-connected services. The market’s high pace of
demand for new application features requires changes both in the applications
themselves (loose coupling and high scalability) and in the way they are built
(loose team dependencies and fast deployment). Microservices address both con-
cerns since small services can be built and deployed by independent development
teams; the concomitant freedom allows teams to focus on improving each service
and increase business value. Hence, in practice, DevOps (Development and Oper-
ations) and Continuous Delivery are a close fit for microservice architectures [4].

Towards Resolving Security Smells in Microservice-Based Applications 135

2.2 Architectural Smells

Besides smells on the code level, smells can also be identified on a higher level,
e.g. if the defined interface of a subsystem has been circumvented. Since this
higher design level is known as the architecture of a system, these smells are
known as architecture smells. Both kinds of smell refer to the design of the
software, but on different levels [8].

An architectural smell is a common (although not always intentionally)
used architectural decision that negatively impacts system quality. Architectural
smells may be caused by applying a design solution in an inappropriate context,
mixing design fragments that have undesirable emergent behaviors, or applying
design abstractions at the wrong level of granularity [5].

Architectural smells most directly affect lifecycle properties, such as under-
standability, testability, extensibility, and reusability, but they may have harmful
side effects on other quality properties like performance and reliability. Architec-
tural smells are remedied by altering the internal structure of the system and the
behaviors of internal system elements without changing the external behavior of
the system [5].

Architectural smells always involve a trade-off between different properties,
and the system architects must determine whether an action to correct the smell
will result in a net benefit. Furthermore, refactoring to reduce or eliminate an
architectural smell may involve risk and almost always requires an investment
of developer effort. Architectural smells do, however, indicate that in most cases
an architectural refactoring will improve the system quality [5].

3 Problem Statement

3.1 Microservices Security

Microservices bring new security challenges, and opportunities, that were not
present in traditional monolithic applications. These challenges include estab-
lishing trust between individual microservices and distributed secret manage-
ment; concerns that are of much less interest in traditional web services, or in
highly modular software that only runs locally [13].

Microservices needs more complex communication because of its fined granu-
larity. Therefore, there is not only a risk that message data could be intercepted
but also the threat that competitors might be able to infer business operations
from message data [14].

Since Microservices are often deployed into cloud environments, Microser-
vices also suffers from privacy issues in addition to message transfer and cloud
consumers also have the concern that their stored information could be compro-
mised or used inappropriately [14].

3.2 Microservices Smells

In [2] we can find 5 architectural smells proposed by the authors that they
found after analyzing 58 different sources of information from academia and

136 F. Ponce

gray literature, which are: Single Layer Teams, Greedy Service Container, Single
DevOps Toolchain, Dismiss Documentation, Grinding Dusty or Coarse Services.
In this work, we can find a description of each smell and how they affect the
system design. We haven’t found an extension for this work.

In [9] the authors carried a multivocal review of white and grey literature in
order to identify the most recognized architectural smells for microservices and
to discuss the architectural refactorings allowing to resolve them. They identi-
fied 7 smells which are: Multiple services in one container, No API Gateway,
Endpoint-based service interactions, Wobbly service interactions, ESB misuse,
Shared persistence, Single-layer teams. In [1] we can find the extension of this
work. Here the authors present a methodology to systematically identify the
architectural smells that possibly violate the main design principles of microser-
vices. They also present a prototype implementing the methodology, based on a
representation of microservices using TOSCA.

In [11] the authors extended an existing tool (Arcan) developed for the detec-
tion of architectural smells to explore microservices architecture through the
detection of three microservice smells (identified by them): Cyclic Dependencies,
Hard-Coded Endpoints, and Shared Persistence. In this work, we can find some
preliminary results obtained with Arcan for the analysis of 5 open-source projects
with a microservices nature and reported a total of 8 instances of microservices
smells. It is not yet possible to find an extension of this work because it is a
recent publication.

In [12] to identifymicroservice-specific bad smells, the researchers collected evi-
dence of bad practices by interviewing developers experienced with microservice-
based systems. They then classified the bad practices into 11 microservice bad
smells frequently considered harmful by practitioners. The authors provide a cata-
log of microservice smells, that contains a brief description of each smell, the prob-
lem that it may cause, and the possible solutions to each one.

3.3 Proposal

Although there is already research associate with architectural smells in the con-
text of microservice-based applications [1,2,9,11,12], to the best of our knowl-
edge, there is not currently work done in microservice security smells.

The main focus of this research work is the development of a software tool
that allows practitioners to automatically detect the security smells in their
system design and offer them the possible solutions that they could consider in
order to improve the quality of their current system.

4 Research Plan

This research consists of several stages that are summarized in Fig. 1, and which
are described below.

First, as recommended in [6] to capture both the state of the art and the state
of practice in the field, we conducted a Multivocal Literature Review (MLR) of

Towards Resolving Security Smells in Microservice-Based Applications 137

Fig. 1. Proposed research plan

the existing literature, including both white literature and grey literature. We
have analyzed blog posts, videos, white papers, book chapters, conference papers,
and journals. After applied our inclusion and exclusion criteria, we ended with
57 selected candidates.

We have classified and analyzed the data captured from the 57 selected can-
didates, and with this information, we have generated a taxonomy that includes
security smells and the refactorings needed to resolve them. Currently, our tax-
onomy is composed of 14 smells, and we have associated at least one refactoring
with each one.

Based on the taxonomy generated in the second stage, we plan to develop a
set of strategies that will allow us to identify when one of the security smells is
present in a determined system. Here we can take as a basis the works carried
out in [1,9,11].

Using the result of the third stage, we will develop a software tool that allows
practitioners to automatically detect the security smells in their system design.

We plan to test the software tool with open source projects, As was done in
[11], and then we will try to find an industry partner to validate our software
tool in an industry context.

4.1 Research Challenges

The current research challenges that we are facing are associated with the devel-
opment of the strategies to detect the security smells. That is because the 14
security smells that we have found belong to 3 different levels. We have smells
that are associated with the development process, we have smells associated with
the design process, and we have smells that are transversal.

Also one of the main challenges of this work is to correctly define the infor-
mation that will be processed by the tool developed to be able to automatically
detect the security smells. This means that we must determine whether to use a
custom system description or to rely on the current information of the system.

138 F. Ponce

4.2 Expected Results

As a summary, the expected results of this research work are mentioned below:

– A taxonomy of microservice security smells and refactoring’s.
– A set of strategies for detecting the security smells of our taxonomy.
– A software tool that allows automatically scan for the security smells defined

in the taxonomy and recommends the solutions to those smells.

Acknowledgements. Supported by Comisión Nacional de Investigación Cient́ıfica
(CONICYT) through grants PCHA/Doctorado Nacional/2019-21191132 and Dirección
de Postgrado y Programas Universidad Técnica Federico Santa Maŕıa.

References

1. Brogi, A., Neri, D., Soldani, J.: Freshening the air in microservices: resolving archi-
tectural smells via refactoring. In: Yangui, S., et al. (eds.) ICSOC 2019. LNCS,
vol. 12019, pp. 17–29. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45989-5 2

2. Carrasco, A., Bladel, B.v., Demeyer, S.: Migrating towards microservices: Migra-
tion and architecture smells. In: Proceedings of the 2nd International Workshop
on Refactoring, pp. 1–6. IWoR 2018, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3242163.3242164

3. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: an industrial survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA), pp. 29–2909, April 2018. https://doi.org/10.1109/ICSA.2018.
00012

4. Fowler, S.J.: Production-ready Microservices: Building Standardized Systems
Across an Engineering Organization. O’Reilly Media Inc., Sebastopol (2016)

5. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 2009 13th European Conference on Software Maintenance and Reengi-
neering, pp. 255–258 (2009). https://doi.org/10.1109/CSMR.2009.59

6. Garousi, V., Felderer, M., Mäntylä, M.V.: The need for multivocal literature
reviews in software engineering: complementing systematic literature reviews with
grey literature. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering. EASE 2016. Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2915970.2916008

7. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html. Accessed 27 Dec 2019

8. Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Com-
plex Restructurings Successfully. Wiley, New York (2006)

9. Neri, D., Soldani, J., Zimmermann, O., Brogi, A.: Design principles, architec-
tural smells and refactorings for microservices: a multivocal review. SICS Softw.-
Intens. Cyber-Phys. Syst. 35(1–2), 3–15 (2019). https://doi.org/10.1007/s00450-
019-00407-8

10. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly
Media Inc., Sebastopol (2015)

https://doi.org/10.1007/978-3-030-45989-5_2
https://doi.org/10.1007/978-3-030-45989-5_2
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.1145/2915970.2916008
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/s00450-019-00407-8

Towards Resolving Security Smells in Microservice-Based Applications 139

11. Pigazzini, I., Fontana, F.A., Lenarduzzi, V., Taibi, D.: Towards microservice smells
detection. In: Proceedings of the 3rd International Conference on Technical Debt,
pp. 92–97. TechDebt 2020, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3387906.3388625

12. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Soft-
ware 35(3), 56–62 (2018). https://doi.org/10.1109/MS.2018.2141031

13. Yarygina, T., Bagge, A.H.: Overcoming security challenges in microservice architec-
tures. In: 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE),
pp. 11–20 (2018). https://doi.org/10.1109/SOSE.2018.00011

14. Yu, D., Jin, Y., Zhang, Y., Zheng, X.: A survey on security issues in services
communication of microservices-enabled fog applications. Concurr. Comput. Pract.
Exp. 31(22), e4436 (2019). https://doi.org/10.1002/cpe.4436

https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/SOSE.2018.00011
https://doi.org/10.1002/cpe.4436

Towards Citizen-Centric Marketplaces
for Urban Sensed Data

Heiko Bornholdt(B)

Department of Informatics, University of Hamburg,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

bornholdt@informatik.uni-hamburg.de

Abstract. Due to increasing urbanization, the competition for cities’
finite resources is intensifying. To maintain a high quality of life for cit-
izens, more efficient use of these resources can be targeted. One way to
achieve this goal is to use sensor networks that collect real-time informa-
tion about the conditions in a city and improve citizens’ understanding
of their environment. Nevertheless, many existing sensor networks make
their data available only locally, are not interconnected, and target com-
panies and experts instead of average citizens.

Many citizens already operate sensors on several devices but cannot
share their sensor data with other citizens in a secure manner. Therefore,
we describe building blocks to construct a fully distributed city-wide mar-
ketplace for urban sensor data. By this, citizens can be offered a secure
possibility to share their data by keeping their data sovereignty.

Keywords: Smart city · Distributed marketplace · Urban sensing ·
Participatory sensing · Urban participation · Data space

1 Introduction

In 2018, 4.2 billion people lived in urban areas. The UN expects that this number
will rise to 6.7 billion people by 2050 [14]. Through such growing urbanization,
cities and their citizens will be confronted with ecological, economic, and social
challenges as well as an increasing competition for the city’s finite resources. Such
a competition must be solved to maintain the citizens’ quality of life, welfare,
health, and productivity. To allow cities to optimize resource usage, a compre-
hensive understanding of their environment and the city’s context is necessary.
There is an increasing number of sensor networks deployed in cities to gather
this information. These networks are usually closed systems operated centrally
by business organizations, governments, or other central authorities, which make
their data only locally available - if at all.

However, a city consists of citizens - some of them already measure sensor
data for private use. Sensor networks should be designed open to enable citizen

H. Bornholdt—Supervised by: Winfried Lamersdorf, University of Hamburg,
Department of Informatics, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany,
lamersdorf@informatik.uni-hamburg.de.

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 140–150, 2021.
https://doi.org/10.1007/978-3-030-71906-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_12

Towards Citizen-Centric Marketplaces for Urban Sensed Data 141

participation in collecting sensor data. By interconnecting the individual sensor
networks, a city-wide data space of urban information can be generated. This
data space can be seen as the city’s digital twin, which can serve as a founda-
tion for an urban data marketplace. On such a marketplace, citizens should be
able to offer the data generated by their sensors as well as request data, e.g.,
two neighbors with different outdoor sensors can exchange weather and environ-
mental data in real-time, or a crowd of citizens measures particulate matter to
generate a detailed overview of a city’s air quality.

The increasing number of data breaches has led to a negative connotation of
sharing data. Therefore, the marketplace must be designed to ensure sovereignty
and incentives have to be created to motivate citizens to participate and share
data.

The research project presented in this article is dedicated to designing a
distributed marketplace for the exchange of urban sensor data between citi-
zens under previously negotiated terms and conditions. The envisioned market-
place should enable every citizen to share privately collected sensor data with
other citizens while maintaining data sovereignty. Since the marketplace runs
on already existing citizens’ hardware, no special hardware is required to par-
ticipate. Thereby, the search for data on the marketplace should be as easy as
surfing the WWW. The project’s target is presenting a requirements catalog and
a reference architecture for an event-based smart city middleware to exchange
information in an entirely distributed system between technically diversified cit-
izens. These different marketplace components are divided into individual build-
ing blocks, which simplifies reusing our research results. Insights gained from
this work should provide information on how and with which limitations such a
middleware can be realized.

This paper’s remainder is composed as follows: First, in Sect. 2, related work
is outlined. Then, in Sect. 3, the challenges of this research project are stated.
Section 4 lists and describes the targeted research objectives. Section 5 presents
preliminary results, and Sect. 6 presents the remaining research plan.

2 Related Work

This section’s related work inspired the research project and revealed open issues
in the research field.

Civitas, SmartCityWare,VITAL,CityHub, andGAMBAS present approaches
to create a smart city middleware allowing cities to connect heterogeneous sen-
sors from different sources [1,7,8,10,15]. Such a middleware can be used to create
services and applications. Each approach uses a two-layer architecture: The first
layer is responsible for connecting sensors using special adapters, which have to
be provided for each sensor to allow a uniform sensor interaction. Based on this,
the second layer consists of a centralized/distributed platform running on cen-
trally/independently operated server-grade devices. This platform interacts with
the sensors to offer services and applications. Additionally, Filipponi et al. intro-
duce a distributed event-driven architecture for sensor data [5]. By using Complex

142 H. Bornholdt

Event Processing, they can obtain higher-quality information from simple events
emitted by each sensor. Via distributed publish-subscribe, cities can react in real-
time to changes in the city’s context. The approach is used to monitor public spaces
on a large scale. Furthermore, CrowdSC is a crowdsourcing framework for smart
cities to connect citizens with local governments [2]. By installing an application
on the citizen’s smartphone, the government can request and collect data (such
as damage to public properties caused by vandalism). A multi-step process with a
feedback loop is used during data collection to achieve high data quality. Besides,
the Machine eXchange Protocol presents a concept for operating a city-wide low-
power wide-area network [6]. Privately owned gateway nodes are used to connect
nearby sensors to the internet. Such gateways are open for other people and can
be used for a small fee. Payments provide incentives to set up gateways and are
processed via an own blockchain-based cryptocurrency. Based on this network,
the presentation of a marketplace for the sensor data is planned for 2021. In con-
trast, Streamr already offers a working centralized marketplace to exchange data
streams [13]. Users can browse and subscribe to data sources offered on a website.
The individual data sources are provided by other participants free of charge or for
an hourly fee. Users can then use flow-based programming via a web-based WYSI-
WYG editor to process the data streams.

Nevertheless, every work covered in this section represents a single building
block required to create the marketplace envisioned for this research project. The
mentioned work mostly presents rough visions and does not offer concrete solu-
tions or running examples for outlined problems. Furthermore, citizens’ needs
are not addressed as citizen-to-citizen interaction without the need of a central
platform is often not considered. Besides, the central storage and processing
of data planned by some approaches are likely to lead to additional privacy-
concerns among citizens. This data collection outside the citizen’s sphere will
decrease the envisaged marketplace’s acceptance rate.

3 Problem Statement

This section describes several problems that need to be addressed when creating
a distributed marketplace to exchange urban sensor data between citizens.

First, the marketplace should be open and accessible to a broad range of
citizens. Therefore, it has to be ensured that publishing, requesting, and receiv-
ing data is easy and does not require above-average technical knowledge, e.g., it
should be possible to access the marketplace via a mobile or web-based appli-
cation installed on citizen’s existing devices. Integrating existing sensors should
also be supported since many citizens already collect data about their environ-
ment via smartphones, fitness trackers, or smart home devices. Furthermore,
citizens should be able to participate without having to purchase expensive
special-purpose hardware.

Second, data sovereignty is one of the crucial pillars of the envisaged mar-
ketplace: Omnipotent central parties should be avoided to meet citizens’ privacy
concerns. Therefore, an entirely distributed system is preferable, in which all

Towards Citizen-Centric Marketplaces for Urban Sensed Data 143

citizens are equal and share responsibilities. The citizen should be seen as the
sole owner of the data generated by their sensors and should exclusively be
able to decide which data they want to share with whom, for how long, under
what conditions of use, and at what price. These usage policies must be guaran-
teed either technically or through control mechanisms on the marketplace. Since
there will be no central supervisory authority, these “rules of the game” must be
clear to all participants in advance and respected by them. The price must be
either a monetary or non-monetary payment. Compared to centralized storage,
distributed data storage on citizens’ devices would further increase their data
control. Furthermore, the digital footprint of every citizen on the marketplace
should be as small as possible. Such design decisions support the citizen’s data
sovereignty and ensure that users are more willing to provide data.

Third, incentives must be created to improve not only the quantity of shared
data but also its quality: Due to the use of sensors of different quality, poor
maintenance, or incorrect usage, the data collected from citizens is of varying
quality. On the one hand, the sharing of highly requested data or high-quality
data should be rewarded to promote a sharing society. On the other hand, it
can not be excluded that participants intentionally publish bad or wrong data.
Therefore, a mechanism is needed to determine the data quality and to detect
and punish malicious users.

Fourth, to enable a fast, efficient, and scalable searching for data on the
marketplace, a distributed data structure is needed. Since each sensor and data
value could potentially be unique, the search must be complete. In addition,
as the various nodes are operated by citizens, heterogeneous computing power,
network connectivity, and availability must be taken into account. The structure
must be resilient to this.

Finally, all market components should be open source and—if available—use
open standards. The city’s citizens should manage the future development of the
marketplace.

Overall, these problems can be seen as single building blocks within a pre-
ferred marketplace design. In this research project, the mentioned building blocks
will be further discussed. Crucial parts are planned to be implemented as pro-
totypes to show the feasibility.

4 Research Objectives

The following research challenges have been identified. They must be suitably
addressed to overcome the problems mentioned in the previous section.

1. Design of a Reference Architecture Model: According to Otto et al.,
the following four architectures should help to outline the planned market-
place [9]:

The business architecture describes the roles, rights, and duties of each
participant. Typical business processes are explained, e.g., posting data,
searching for data, negotiating trades, transferring data, and billing.

144 H. Bornholdt

The data and service architecture describes necessary functions for the
operation of the marketplace and the resulting services that must run on the
individual nodes of the P2P network. Thus, the node’s various tasks (e.g.,
sensor data integration, storage of sensor data, data exchange, visual inter-
face) are described. They should be encapsulated in individual services and be
(de)activatable individually, allowing the nodes to take different roles. This
architecture does not make decisions on the use of specific technologies.

The concrete implementation of the data and service architecture is
described in the software architecture. This architecture describes the tech-
nical implementation of the functions of the previous architectures. Further-
more, the different components of the marketplace are described (e.g., proto-
col bindings for the various sensor protocols, event bus for processing received
sensor data, blackboard for matching data offers, and requests).

The security architecture deals with various aspects of security: partici-
pants must be uniquely identifiable, communication channels have to be con-
fidential and provide integrity. The overall system must be designed to be
resilient to attacks by harmful users. The previously negotiated terms and
conditions of exchanged data must be applied by design.

2. Data Integration: In a city, sensors from different manufacturers are
deployed. As the sensors are using different protocols, data formats, and
interface semantics, their heterogeneity must be abstracted using a descrip-
tion language for higher-level marketplace components. Smooth integration
of existing smart homes’ sensors must be provided to fill the marketplace
with data quickly right from the start. Additionally, it should be possible to
integrate other existing smart city data spaces/other repositories in the form
of so-called virtual sensors.

3. Overcoming Network Heterogeneity and Barriers: The envisaged mar-
ketplace should be structured in an entirely distributed manner. For this
purpose, a city-wide P2P network should connect citizens as well as all sen-
sors. Furthermore, citizens’ should be able to run their nodes on smart-
phones or other devices in the citizens’ PAN or LAN. As these networks
are restricted (e.g., firewalls, NATs, unreliable connections), a bidirectional
connection between different peers is not always possible. A transport overlay
can overcome such barriers with different techniques (e.g., rendezvous-servers,
relays, or hole punching). It provides secure and reliable communication chan-
nels for higher-level marketplace components.

4. Distributed Data Structure: After integrating sensors and solving com-
munication restrictions by providing a transport overlay (challenges 2 and
3), an additional data overlay is required that acts as a distributed stor-
age system. This overlay is used to structure the data in the P2P network
and enables effective searches. The data structure should also support com-
plex search queries to allow sensor data to be found by different criteria (e.g.,
location, timespan, type of data, or usage policies). Existing approaches (e.g.,
distributed hash tables) are not sufficient because privacy-concerned citizens
cannot control their data’s locality. Once the desired data has been found

Towards Citizen-Centric Marketplaces for Urban Sensed Data 145

using the data overlay, the previously mentioned transport overlay can han-
dle the actual data transfer.

5. Incentives for Active Participation: Like security, incentives are an
aspect that must be considered by the overall system design. For the success
of the marketplace, a broad variety of high-quality data and a high degree
of citizen participation is necessary. Therefore, incentives must be created to
encourage citizens to provide data. On the one hand, the technical, mone-
tary, and privacy-concerned barriers for posting data should be kept as low
as possible. On the other hand, citizens should be rewarded for providing
data (e.g., provide monetary or non-monetary, reputation-based, score-based,
advantages). Malicious or non-contributing participants (known as Free Rid-
ing [3]) should be incentivized to provide their data on the marketplace (e.g.,
by restricting access to the marketplace). Not only the quantity of shared
data is important, but also the quality. Therefore, the provided data qual-
ity should be assessed by comparing them with nearby located sensors. The
reward should be based on the demand and quality of the shared data.

6. Data Governance: Citizens offer their sensor data on the marketplace under
pre-defined usage rules (e.g., for private use only, for users above a certain
reputation value). As these “rules of the game” are only defined by the cre-
ator, the data owner must be “pinned” to each data set. The marketplace is
intended to support or guarantee compliance with these rules of use.

5 Preliminary Results

In this section, we present preliminary results as well as our current work in
progress. First, we summarize the vision about a distributed citizen-centric
marketplace called Incorum that we have already published [4]. Afterward, we
present our work in progress for the research objectives (see Sect. 4).

In 2019, we already described and published some requirements and system
architecture of a citizen-centric marketplace in an envisioned marketplace app-
roach called Incorum [4]. The marketplace is based on a completely distributed
P2P application consisting of so-called Incorum Nodes. These nodes are repre-
sented by software that can be installed on internet-enabled devices (such as
citizens’ smartphones or Raspberry Pi-alike single-board computers located in
citizen’s smart home). Every citizen participating in the marketplace is repre-
sented by a unique cryptographic identity and can operate any number of nodes.
These nodes’ main task is to collect and (temporarily) store all sensor data of
the citizen. Furthermore, the node can offer these sensor data under restrictions
previously defined by the citizen and request sensor data of other citizen’s Inco-
rum Nodes. Thereby, the node should allow intuitive operation by offering a
graphical (web-based) user interface.

Ideally, citizens will just need to install the Incorum Node software as a
mobile application on their smartphones or purchase single-board computers
with pre-installed Incorum Node software. Once the Incorum Node software is
started, it automatically searches for the citizen’s sensors. If the node runs on a

146 H. Bornholdt

smartphone, the software will search for locally installed or accessible sensors via
Bluetooth and Wi-Fi. If it is running on a single-board computer in citizens home
instead, it can be used as a Wi-Fi access point, proxy, VPN server, MQTT broker,
ZigBee coordinator, etc., to detect additional sensors. All detected sensors are
displayed as so-called Internal Data Source (IDSs) and represent a source of
a continuous flow of data sets consisting of the type of sensor, location of the
sensor, time of measurement, and additional metadata. The citizen is now free
to (temporarily) store this data, use it exclusively for his own needs, or share
it with other citizens in the form of so-called External Data Source (EDSs).
However, IDSs do not necessarily have to be mapped 1:1 to EDSs (Fig. 1).

Internal
Data SourceL

eg
en

d

Temperature

Humidity

Heart Rate

Data
Processing

Combine Aggregate

Anonymize

External
Data Source

Daily
Weather

Heart
Rate

Fig. 1. The raw data received from citizen’s sensors (so-called Interenal Data Source)
are processed on a workflow basis before being shared with other citizens as so-called
External Data Source.

Citizens can define workflows for data processing and control which data
emitted by an IDS is published via an EDS. In this way, citizens can apply
several data processing tasks on the data (e.g., anonymize, aggregate, delay, or
combine data) before it is getting published. In addition, citizens can specify with
whom they want to share the data, at what price, and under what conditions of
use.

In parallel, the Incorum Node connects to other citizen’s nodes and exchanges
the available EDSs. Now, the user may request specific data about the city via
their Incorum Node. To receive this data, they have to specify which data is
needed for what purpose, whether it is a one-time request, temporary, or a per-
manent request, and what maximum price they are willing to pay. Then, the
Incorum Node searches the marketplace for the desired data and uses a reverse
auction to find the data’s cheapest provider. The purchase will then be recorded
in a distributed ledger. Only the seller, buyer, and some validator nodes have
access to the recorded data. As soon as both sides have accepted the trade, the
data transfer between their Incorum Nodes begins. Thereby the buyer subscribes
to the EDS of the seller. As soon as the sensor pushes or pulls new data to the
Incorum Nodes of the seller, the data is emitted by the corresponding IDS, pro-
cessed by the previously mentioned workflow, and emitted by the corresponding

Towards Citizen-Centric Marketplaces for Urban Sensed Data 147

EDS. The data is transferred from the EDS to the buyer and the buyer’s node
can then process the data. The buyer can now also define the further process-
ing of the data using his workflows (e.g., to combine the purchased data with
his sensor data). Figure 2 (taken from [4]) exemplarily shows how data retrieval
happens between two citizens and Incorum Nodes.

Incorum
Node

Health
Data Weather

Misc. Data

Temperature

Misc. Data

Misc. Data

2. Announce Request

3. Sent Data ‚C‘

Incorum
Node

Fig. 2. Process of requesting and transferring sensor data between two citizens, each
deployed an Incorum Node at their smart home.

Next, we want to present the work in progress for research objectives 2, 3, and
4. We present concrete additions to the previously described Incorum approach:

In this paragraph, we will take a closer look at data integration. As described
in the previous chapter, the sensors and the communication is heterogeneous.
For the integration of sensor data, the W3C Web of Things Thing Description is
used to provide a uniform description of the sensors, interaction interfaces, and
used data formats [17]. This description divides the interfaces of a sensor into
Properties, Events, and Actions. The Properties are attribute-based parameters,
that can be read and, if supported, written to in a pull or push manner (e.g., sense
current temperature, control overheating alarm status). Subscriptions to Events
can be set up to receive information about certain notifications in a push-based
mode (e.g., smoke detected). Actions are used for physical (and therefore time-
consuming) processes (e.g., switch sensor on or off). The description is based on
JSON documents for each sensor and the different data formats are described
via ontologies. Moreover, we have used the W3C Web of Things Architecture.
That architecture describes how a unified program interface for sensor interac-
tion derived from each Thing Description has to be designed to create a Web
of Things [16]. We have evaluated these two W3C Recommendations’ feasibil-
ity with a prototype receiving information from sensors via HTTP, WebSocket,
MQTT, and CoAP. We have successfully established integration with various
smart home, LPWAN, and virtual sensors with this prototype. The prototype

148 H. Bornholdt

can be found on GitHub1. This prototype will be integrated into the above
mentioned Incorum Node and will handle the interaction between the node and
different local sensors owned by the citizen.

In addition to data integration, the networks’ heterogeneities and barriers
must also be overcome so that the Incorum Nodes can connect with each other.
For this, we have developed a lightweight, extensible general-purpose transport
overlay network framework. In contrast to existing bloated transport overlays,
our approach focuses on providing a single feature: Enabling secure communica-
tion - independent of the peer’s network restrictions/deployment - between any
two devices in a world. Thereby, our overlay uses a multitude of mechanisms to
discover other peers (e.g., shared local memory, local filesystem, local network
broadcast, distributed registries) by acting as a global ethernet switch inter-
connecting all devices. Using techniques like UPnP-IGD, NAT-PMP, PCP, hole
punching, and other rendezvous protocols, our overlay framework can overcome
most barriers. The network was developed with privacy and data minimization
in mind. The communication is end-to-end encrypted, and as little individual
information as possible is shared. In addition, the overlay does not rely on a
single central component. As the overlay network follows the zero-configuration
principle, it works out of the box. This framework as an intermediate layer placed
between the application (in our case, the Incorum Node) and internet-enabled
network interfaces, thus serving as a transport middleware. In addition, the over-
lay is extensible to provide additional network capabilities to the application
(e.g., membership management or a distributed data structure). The presenta-
tion of the overlay’s architecture and the framework is planned for a paper later
this year, but the current work-in-progress prototype can be viewed on GitHub2.
This prototype will be integrated into the above mentioned Incorum Node and
will handle the interaction between the nodes.

We are currently evaluating the SkipNet approach [15] to create a distributed
data structure containing all sensor data available on the envisioned Incorum
marketplace. Unlike other overlays like Chord [12], CAN [11], Pastry [11], and
Tapestry [18], SkipNet allows us to control the stored data’s location. Since
the amount of data shared with other citizens is minimized, such a control is
desirable to protect citizens’ privacy. Also, the routing of searches can be limited
locally to strengthen the searching citizen’s privacy. We plan to build the SkipNet
approach on our previously mentioned overlay network to create a city-wide data
space with all urban sensor data.

6 Research Plan

In this section, we will describe our next steps. For better understanding, we
have put these steps in a sequence. We have chosen an iterative development
approach, so this order does not necessarily reflect our development order.

1 https://github.com/sane-city/wot-servient/.
2 https://github.com/drasyl-overlay/drasyl.

https://github.com/sane-city/wot-servient/
https://github.com/drasyl-overlay/drasyl

Towards Citizen-Centric Marketplaces for Urban Sensed Data 149

Step 1 Further concretization of the reference architecture: The refer-
ence architecture will be concretized to understand better the problems
that need to be solved. The insights gained through the other steps will
help in this process.

Step 2 Work on missing building blocks: Until now, the focus has been on
creating the reference architecture, integrating sensor data, and elim-
inating the network barriers by creating a transport overlay network
(objectives 1, 2, and 3). Next, we will focus on creating a distributed
data structure, an incentive model to increase participation in the mar-
ketplace, and mechanisms to support data governance (objectives 4, 5,
and 6).

Step 3 Integration of the building blocks into one marketplace system:
To ensure that the individual building blocks work individually and with
each other, they will be integrated into an overall system. The system
shall be partially implemented to get a running prototype.

Step 4 Evaluation of the envisioned middleware approach: Finally, the
architecture and the prototype will be evaluated according to the pre-
viously defined requirements. The results will be discussed.

Acknowledgment. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design for Future –
Managed Software Evolution.

References

1. Apolinarski, W., Iqbal, U., Parreira, J.X.: The GAMBAS middleware and SDK
for smart city applications. In: 2014 IEEE International Conference on Pervasive
Computing and Communication Workshops, PERCOM WORKSHOPS 2014, pp.
117–122. IEEE (2014). https://doi.org/10.1109/PerComW.2014.6815176

2. Benouaret, K., Valliyur-Ramalingam, R., Charoy, F.: CrowdSC: building smart
cities with large-scale citizen participation. IEEE Internet Comput. 17(6), 57–63
(2013). https://doi.org/10.1109/MIC.2013.88

3. Bhakuni, A., Sharma, P., Kaushal, R.: Free-rider detection and punishment in Bit-
Torrent based P2P networks. In: Souvenir of the 2014 IEEE International Advance
Computing Conference, IACC 2014, February 2014, pp. 155–159 (2014). https://
doi.org/10.1109/IAdCC.2014.6779311

4. Bornholdt, H., Bade, D., Posdorfer, W.: Incorum: a citizen-centric sensor data mar-
ketplace for urban participation. In: Bhatia, S.K., Tiwari, S., Ruidan, S., Trivedi,
M.C., Mishra, K.K. (eds.) Advances in Computer, Communication and Computa-
tional Sciences. AISC, vol. 1158, pp. 659–669. Springer, Singapore (2021). https://
doi.org/10.1007/978-981-15-4409-5 59

5. Filipponi, L., Vitaletti, A., Landi, G., Memeo, V., Laura, G., Pucci, P.: Smart
city: an event driven architecture for monitoring public spaces with heterogeneous
sensors. In: Proceedings of the 4th International Conference on Sensor Technologies
and Applications, SENSORCOMM 2010, July 2010, pp. 281–286 (2010). https://
doi.org/10.1109/SENSORCOMM.2010.50

6. MXC Foundation: machine exchange protocol: premium network infrastructure,
infinite data stream commisioned (2018)

https://doi.org/10.1109/PerComW.2014.6815176
https://doi.org/10.1109/MIC.2013.88
https://doi.org/10.1109/IAdCC.2014.6779311
https://doi.org/10.1109/IAdCC.2014.6779311
https://doi.org/10.1007/978-981-15-4409-5_59
https://doi.org/10.1007/978-981-15-4409-5_59
https://doi.org/10.1109/SENSORCOMM.2010.50
https://doi.org/10.1109/SENSORCOMM.2010.50

150 H. Bornholdt

7. Lea, R., Blackstock, M.: City hub: a cloud-based IoT platform for smart cities. In:
Proceedings of the International Conference on Cloud Computing Technology and
Science, CloudCom 2015, February 2015, pp. 799–804 (2015). https://doi.org/10.
1109/CloudCom.2014.65

8. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Lazarova-Molnar, S., Mahmoud, S.:
SmartCityWare: a service-oriented middleware for cloud and fog enabled smart city
services. IEEE Access 5, 17576–17588 (2017). https://doi.org/10.1109/ACCESS.
2017.2731382

9. Otto, B., et al.: Industrial data space white paper. Fraunhofer-Gesellschaft, Munich
(2016)

10. Petrolo, R., Loscr̀ı, V., Mitton, N.: Towards a smart city based on cloud of things.
In: WiMobCity 2014 - Proceedings of the 2014 ACM International Workshop on
Wireless and Mobile Technologies for Smart Cities, Co-Located with MobiHoc
2014, pp. 61–65 (2014). https://doi.org/10.1145/2633661.2633667

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network (CAN). Comput. Commun. Rev. 31(4), 161–172 (2001).
https://doi.org/10.1145/964723.383072

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. Comput. Commun.
Rev. 31(4), 149–160 (2001). https://doi.org/10.1145/964723.383071

13. Streamr: unstoppable data for unstoppable apps: datacoin by streamr (2017)
14. United Nations: world urbanization prospects: the 2018 revision, key facts. Tech-

nical report (2018)
15. Villanueva, F.J., Santofimia, M.J., Villa, D., Barba, J., Lopez, J.C.: Civitas: the

smart city middleware, from sensors to big data. In: Proceedings of the 7th Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiquitous Com-
puting, IMIS 2013, No. 3, pp. 445–450. IEEE (2013). https://doi.org/10.1109/
IMIS.2013.80

16. World Wide Web Consortium: Web of Things (WoT) architecture. https://www.
w3.org/TR/wot-architecture/. Accessed 31 July 2020

17. World Wide Web Consortium: Web of Things (WoT) thing description. https://
www.w3.org/TR/wot-thing-description/. Accessed 31 July 2020

18. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas
Commun. 22(1), 41–53 (2004). https://doi.org/10.1109/JSAC.2003.818784

https://doi.org/10.1109/CloudCom.2014.65
https://doi.org/10.1109/CloudCom.2014.65
https://doi.org/10.1109/ACCESS.2017.2731382
https://doi.org/10.1109/ACCESS.2017.2731382
https://doi.org/10.1145/2633661.2633667
https://doi.org/10.1145/964723.383072
https://doi.org/10.1145/964723.383071
https://doi.org/10.1109/IMIS.2013.80
https://doi.org/10.1109/IMIS.2013.80
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://doi.org/10.1109/JSAC.2003.818784

ESOCC 2020 EU Projects Track

EU Projects Track

ESOCC traditionally includes a special track, named the European Projects track,
entirely devoted to presenting recent results and research perspectives of EU-funded
projects on Service-Oriented and Cloud Computing. This track offers an opportunity
both for the project consortia to disseminate the results of their activities and for the
track participants to get an updated view of the ongoing research at the European level.

In this edition of ESOCC, six main EU projects took advantage of this opportunity
to show and report the results of their work touching upon different research challenges
arising in Cloud, Fog and Edge environments. In more detail, the RADON project
shows the advantages of adopting machine learning techniques to evolve the
Infrastructure-as-Code in Cloud environments. Machine Learning techniques are also
involved in the ANITA project to propose solutions for revealing and fighting criminal
activities on the web. 5G-CARMEN focuses on the need to ensure service continuity in
mobile settings while using 5G as communication infrastructure. SODALITE proposes
a quality assurance framework for applications deployed on heterogeneous environ-
ments combining HPC and Cloud. A recently started project, FogProtect, discusses the
importance of ensuring end-to-end protection when considering the data flow along the
continuum between edge and cloud. Finally, ENFORCE introduces a framework to
monitor virtualized services for interactive TV applications, where huge volumes of
data are transferred.

We thank all the authors that submitted and presented their work in the EU project
track. Their work significantly contributed to make this track a relevant venue to those
who are interested in disseminating their results as well as keeping informed about how
the European Projects in the Cloud and Service domain are running. We are also
grateful to all the members of the Program Committee, who have given us great support
in reviewing and organizing the track.

December 2020 Giuliano Casale
Pierluigi Plebani

Organization

Program Committee Chairs

Giuliano Casale Imperial College London, UK
Pierluigi Plebani Politecnico di Milano, Italy

Program Committee

Cristina Chesta Concept Reply, Italy
Elisabetta Di Nitto Politecnico di Milano, Italy
Nicolas Ferry Université Côte d’Azur, France
José Merseguer Universidad de Zaragoza, Spain
Dana Petcu West University of Timisoara, Romania
Dimitris Plexousakis ICS-FORTH, Greece
Vlado Stankovski University of Ljubljana, Slovenia
Damian A. Tamburri Eindhoven University of Technology,

The Netherlands
Stefan Wesner Ulm University, Germany

Additional Reviewers

Kostas Magoutis ICS-FORTH, Greece
Indika Weerasingha Dewage Tilburg University, The Netherlands
Giuseppe Cascavilla Eindhoven University of Technology,

The Netherlands

DevOps and Quality Management
in Serverless Computing: The RADON

Approach

Stefano Dalla Palma1(B), Martin Garriga1, Dario Di Nucci1,
Damian Andrew Tamburri2, and Willem-Jan Van Den Heuvel1

1 Jheronimus Academy of Data Science, Tilburg University,
Tilburg, The Netherlands

{s.dallapalma,m.garriga,d.dinucci,W.J.A.M.vdnHeuvel}@uvt.nl
2 Jheronimus Academy of Data Science, Technical University of Eindhoven,

Eindhoven, The Netherlands
d.a.tamburri@tue.nl

Abstract. The onset of microservices and serverless computer solu-
tions has forced an ever-increasing demand for tools and techniques to
establish and maintain the quality of infrastructure code, the blueprint
that drives the operationalization of large-scale software systems. In the
EU H2020 project RADON, we propose a machine-learning approach
to elaborate and evolve Infrastructure-as-Code as part of a full-fledged
industrial-strength DevOps pipeline. This paper illustrates RADON and
shows our research roadmap.

Keywords: Infrastructure code · Serverless computing · Microservices
computing · Software Quality · DevOps · Machine-Learning for
Software Quality · DataOps

1 Introduction

Not so long ago, companies and individuals used to provision and manage their
software on their in-house server and computing infrastructure. This behavior
implied several costs, such as the costs involved in buying and maintain machines
or hiring IT personnel. Therefore, those companies started outsourcing some
responsibilities (for example, the management and maintenance of the infrastruc-
ture). The cloud has come, which, combined with virtualization and container-
ization, laid the ground for Infrastructure-as-a-Service, Platform-as-a-Service,
and Software-as-a-Service. These technologies allow for more outsourcing and,
as a result, a more focus on the business logic while delegating the management
of the infrastructure to those having great expertise in the field. Therefore, the
lead time has shortened, and the creation of software and its deployment has
become relatively easier, cheaper, and quicker. Serverless Function-as-a-Service
(FaaS) is a step forward in this evolution.

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 155–160, 2021.
https://doi.org/10.1007/978-3-030-71906-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_13

156 S. Dalla Palma et al.

Function-as-a-service is a serverless way to execute modular pieces of code
on the edge. FaaS lets developers write and update a piece of code on the fly,
which can then be executed in response to an event, such as a user clicking on an
element in a web application. It allows for code scalability and is a cost-efficient
way to implement microservices. Serverless FaaS came with several advantages,
among them:

– the business logic is deployed to the host in the cloud as code units in forms
of functions, which are fully managed by the provider (e.g., Amazon AWS,
Azure Lambda, Google Cloud Functions);

– the lead time, that is, the latency between the initiation and completion of
the development process, has shortened;

– less server-side work is needed: the provider is responsible for managing the
host machine. Thus, developers can focus on building the business logic.

In general, there are reduced costs and risks. However, serverless FaaS is not
a silver bullet, and new challenges arise.

From a survey conducted with serverless adopters, recurrent problems in
adopting serverless have emerged [2]. First, serverless is still relatively in its
infancy, and hence only a bunch of best practices for its adoption and operations
are available. Second, there are few design principles and patterns for composing
and triggering serverless functions. Third, few definitions of bad practices exist
in the digital-native technical domain, which should be amended.

Furthermore, the rising of serverless solutions, combined with microservices,
has forced an ever-increase demand for tools and techniques to establish and
maintain them across the entire DevOps lifecycle [1]. With those challenges in
mind, the RADON approach for serverless computing comes to play.

2 Objectives

RADON stands for “rational decomposition and orchestration for serverless
computing”, and is a project funded by the Horizon-2020 European program. It
aims to unlock the benefits of serverless computing and Function-as-a-Service
(FaaS), and broaden their adoption within the European software industry
by developing a model-driven DevOps framework and methodology to create
and manage applications based on fine-grained and independently deployable
microservices exploiting the serverless paradigm through FaaS and container
technologies.

In particular, this work introduces the key tools on the RADON methodol-
ogy, the user workflow, and their integration and cooperation in the context of
DevOps. The methodology strives to tackle complexity, harmonize the abstrac-
tion, enforce action-trigger rules, avoid Faas lock-in, and optimize decomposition
and reuse through model-based FaaS-enabled development and orchestration.

The RADON Framework for Quality Infrastructure Code 157

3 Early Results

We have currently defined the RADON Architecture, including (i) several
workflows to organize and display the possible interactions between the tools
of the RADON framework and the identified actors and (ii) a tool-chain
to define microservices-based serverless applications with focusing on design-,
development-, and run-time.

In particular, RADON envisions a model-based approach to manage and
orchestrate modern, distributed, cloud-native application systems that will typ-
ically apply a microservice architecture and exploit the FaaS model. The overall
RADON framework features rotate around the RADON modeling environment.
The other tools are responsible for the correctness and quality of the generated
artifacts, such as the Verification, Continuous Testing, and Defect Prediction
tools. The framework uses the Topology and Orchestration Specification for
Cloud Applications (i.e., OASIS TOSCA) [3] as a baseline to define the RADON
models. TOSCA describes the topology generated via the Graphical Modeling
tool and the orchestration of cloud applications in a declarative manner. The
orchestration process takes place through the Orchestration tool, making it pos-
sible to integrate changes and deploy and monitor the application. An overview
of the architecture is depicted in Fig. 1.

RADON
IDE

Graphical Modelling Tool

Decomposition Tool

Defect Prediction Tool

Verification Tool

Continuous Testing Tool

TOSCA
blueprint

Orchestrator

CI/CD

Function-Hub

Monitoring

Data pipeline

Fig. 1. A broad overview of the RADON framework architecture

3.1 Graphical Modeling Tool

Rather than modeling the environment by manually define TOSCA blueprints,
the graphical modeling tool (GMT) enables the creation, development, and
modeling of TOSCA applications through a web-based software solution. Its
main goal is combing TOSCA service templates that represent the applications

158 S. Dalla Palma et al.

deployed using the RADON Orchestrator. RADON users can then package
their applications as a CSAR (i.e., Cloud Service Archive) before it is deployed
into production by using the RADON Orchestrator.

In the first year of the project, the main achievements provided the foun-
dation to graphically maintain RADON applications using the TOSCA Simple
Profile standard in version 1.3. Relying on Eclipse Winery as a baseline and by
extending it with the respective YAML-based modeling features, allowed a com-
prehensive modeling tool to graphically (i) create and adapt reusable modeling
entities, such as TOSCA Node Types and Policy Types; (ii) compose RADON
application structures in the form of TOSCA Service Templates; (iii) enrich exist-
ing RADON applications with test-related and performance-specific attributes
using TOSCA Policies; and(iv) export a portable archive containing all informa-
tion to execute the deployment by using the RADON Orchestrator.

3.2 Decomposition Tool

The topology generated by the GMT, or anyone imported into the tool, can
be passed as input to the decomposition tool to find the optimal decomposition
solution for an application based on the microservices architectural style and the
serverless FaaS paradigm, taking into account those constraints.

The tool provides suggestions to map abstract components to concrete tech-
nologies and adjust the topology itself. For example, to split a monolithic appli-
cation into microservices or microservices into serverless functions. The feedback
from the tool is sent back to the GMT, containing decomposition suggestions
and/or the revised TOSCA model.

In the first year of the project, we introduced several modularized approaches
to model the performance of applications based on microservices or server-
less functions. This tool enables to extend standard languages for IaC, such as
TOSCA, with a modeling formalism that describes the behavior of a RADON
application and predicts its performance. Such an aspect is essential to obtain
optimal deployment schemes.

3.3 Defect Prediction Tool

The same topology can be used by the Defect Prediction tool to analyze the
correctness of the delivered infrastructure code.

Indeed, like any other source code artifacts, infrastructure files (such as
TOSCA topology definitions or Ansible configuration files) may contain defects
that can preclude their correct functioning. The quality of these files should
evolve and be maintained through the entire system’s life-cycle. The defect pre-
diction tool supports the correctness of the infrastructure code developed using
the RADON framework and allows DevOps engineers to focus on critical files
that may be failure-prone while skipping the others. Thus, allocating resources
more efficiently, for example, for testing or code audit.

In the first year of the project, we designed and implemented its architec-
ture to automatically gather meaningful data to improve model performance.

The RADON Framework for Quality Infrastructure Code 159

More specifically, we developed a set of tools and framework to (i) automatically
crawl and mine projects from Github and Gitlab; (ii) extract code and process
metrics from Ansible playbooks and TOSCA blueprints; (iii) support DevOps
engineers in training defect-prediction models and identifying snapshots of files
containing defects. The tool exposes RESTful APIs that can be used locally or
deployed online to interact with the defect prediction tool. The APIs and the
MongoDB database will be publicly accessible to retrieve the models trained
during our in-vitro experimentations and those added by the community in the
future. However, organizations that do not want to expose their data/models
can deploy the APIs starting from an empty DB on-premises and grant access
to specific users. A command-line client was also developed to use the defect
prediction tool in a CI/CD pipeline. It provides functionalities to (i) train a
model from scratch using different configurations in terms of data balancing,
normalization, feature selection, and classifiers; (ii) download a model from the
online APIs; (iii) predict unseen instances based on the model trained with (i)
or collected with (ii).

3.4 Verification Tool

The verification tool enables a user to verify that a RADON model conforms
to a set of constraints (e.g., privacy, security, design pattern violations) before
deployment. While modeling the application via the GMT, the Software Designer
can set desired properties and constraints (e.g., security/privacy requirements)
using a Constraint Definition Language (CDL). The Software Designer can pro-
vide examples of the desired behavior through the RADON IDE or manually.
Upon the generated models, the software designer or the DevOps engineer can
use this tool to perform static checking upon their validity. When a violation
is encountered (e.g., circular calls, or privacy violations), the engineer can open
the corresponding artifact(s) in the RADON IDE for debugging.

During the first year of the project, the CDL and the command-line version
of the verification tool have been developed. It currently supports the verification
and the correction of a RADON model and can detect inconsistencies with the
constraints expressed in the CDL.

3.5 Continuous Testing Tool

The testing tool comprises several modules for microservices/FaaS testing and
a data pipeline that will support the continuous testing workflow of RADON.
It will provide a set of functionalities to support three main usage scenarios: (i)
test case definition, (ii) test execution, and (iii) test maintenance. Such scenarios
will help RADON users correctly test their application by creating, executing,
inspecting, and removing test cases. In the first year of the project, we specified
the requirements of the tool, designed its architecture, envisioned its integration
with the other tools of the framework, implemented a prototype, and showcased
a proof-of-concept based on two sample applications.

160 S. Dalla Palma et al.

4 Conclusions and Research Roadmap

The RADON project aims to define a decision-making toolkit to optimize micro-
services in terms of size, dependencies, and costs by leveraging a reference set
of architectural patterns and service templates [1]. To support this goal, the
RADON methodology will integrate a workflow that enables decision making
on architecture optimization through the decomposition tool. To avoid defective
infrastructures, it will detect defects through the defect prediction tool. To test
the application, the framework will check the application invariants against the
changes through the testing tool. Furthermore, the methodology will define the
operations and workflows to use the tools and how they should be integrated
and should cooperate. Finally, RADON aims at organizing and accelerating the
micro-services evolution in a team-based fashion. Security and privacy policies
will be automatically enforced in the run-time environment of the framework to
ensure protection for sensitive data and services.

References

1. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and
challenges of infrastructure-as-code: insights from industry. In: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 580–589.
IEEE (2019)

2. Lenarduzzi, V., Daly, J., Martini, A., Panichella, S., Tamburri, D.: Towards a tech-
nical debt conceptualization for serverless computing. IEEE Softw. 38, 40–47 (2020)

3. Matt Rutkowski, C.N., Lauwers, C., Curescu, C.: TOSCA simple profile
in YAML version 1.3 (2019). http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

5G-CARMEN: Service Continuity
in 5G-Enabled Edge Clouds

Hamid R. Barzegar(B), Nabil El Ioini, Van Thanh Le, and Claus Pahl

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
Hbarzegar@unibz.it

Abstract. Mobile Edge Computing (MEC) places part of the cloud
resources to the edge of the network to increase performance and pro-
vide context-aware services. In combination with the expected high per-
formance 5G, many of the limitations for today’s infrastructure could
be solved. In the context of the EU 5G-CARMEN project, one of the
main challenges is service continuity across organisational and territo-
rial boundaries in a road, motorway and railway settings. The project
addresses this challenge by designing and implementing MEC-based ser-
vices that act as bridges between the different domains, while taking
advantage of the high performance and reliability of 5G. Four uses cases
have been defined to capture to potential uses of this new paradigm in
the mobility domain. In this paper, we present the on going development
of service continuity mechanisms within the 5G-CARMEN project.

Keywords: 5G-CARMEN · 5G mobile communication · Edge
computing · Cloud computing · Service continuity · CCAM ·
EU-project · MEC

1 Introduction

Cooperative, connected and automated mobility (CCAM) platform is one of
the EU-supported infrastructure initiatives, that investigates advanced cloud
and communications solutions. Since the introduction of wireless communication
and consequently introduction of mobile internet connection, demands created
by connected mobility have increased drastically. Over time, many solutions
have been discussed and developed to improve quality-of-experience (QoE) as
well as quality-of-service (QoS). Currently, the fifth generation (5G) of mobile
communication and the advancement of edge computing represent a huge step
toward bringing cloud capabilities closer to the actual applications at the edge
of the network [7].

The European Union (EU) supports projects in this context such as 5G-
CARMEN, which aims to develop a new platform (CCAM) that supports safer,
greener and more intelligent transport system across European countries. The
goal of this project is to maintain service continuity in a cross-border scenario.
However, to have a seamless connection while users cross the boarders is a big
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 161–165, 2021.
https://doi.org/10.1007/978-3-030-71906-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_14

162 H. R. Barzegar et al.

challenge that goes beyond simple technique such as network re-selection between
different Mobile Network Operators (MNOs), requiring MEC-coordinated sup-
port.

The 5G-CARMEN1 (“5G for Connected and Automated Road Mobility
in the European unioN” project goal is to build a 5G infrastructure corridor
from Bologna to Munich to implement different scenarios that improve cross-
border mobility use cases. One of the major challenges in the proposed use
cases is service continuity across organisational and territorial boundaries in
a motorway setting i.e., when vehicles or mobile users cross boarders there is
a tangible latency while network re-selection tacks place. This latency has a
significant impact on the overall performance of the services in the 5G and MEC
space. Therefore, the main objective of 5G-CARMEN is to increase services
reliability and reduce latency across European boarders to improve the QoE.

For this project several techniques have been considered. In [1], a MANage-
ment and Orchestration (MANO) system for physical and virtualized resources is
proposed. Exploiting Key Performance Indicators (KPIs) in recent 5G networks
and next-generation MANO architectures in multi-domain settings has been
studied in [2]. The utilization of mobile (also called multi-access) edge clouds
(MEC) close to the road side to improve the reliability and low-latency-aware
requires a management platform for virtual network function (VNF) placement
and service migration [3]. In [4,5], an evaluation of Vehicle to Vehicle (V2V)
infrastructure and 5G is carried out, considering a network not being able to
cover the entire roadway. The authors in [6] propose a monitoring architecture
which enables tracking of the location and current status of distributed and
virtualized service functions, for both physical and virtual resources.

The rest of this paper is organised as follows. Main use cases of 5G-CARMEN
are discussed in Sect. 2, then followed by the proposed 5G-CARMEN architecture
in Sect. 3. In order to illustrate the project, selected contributions around service
continuity are explained in Sect. 4. Section 5 concludes the paper.

2 5G-CARMEN Use Cases

In order to investigate SC from different perspectives, four main use cases have
been considered in 5G-CARMEN as follows:

– Cooperative Maneuvering: to have a safe, secure and efficient navigation
between drivers, the highly important aspect is cooperation among them
through in situations like intersections, lane changing, overtaking, enter-
ing/exiting motorways.

– Situation Awareness: both human drivers as well as automated vehicles are
limited in their ability to ensure safe and efficient travels only based on their
perception of the road traffic situation. Here, the utilization of local sensors
for human drivers and automated vehicles are important. Two main key sce-
nario for situations awareness are i) back-situation awareness of an emergency
vehicle arrival and ii) vehicle sensors and state sharing.

1 https://5gcarmen.eu/.

https://5gcarmen.eu/

5G-CARMEN: Service Continuity in 5G-Enabled Edge Clouds 163

– Video Streaming: the on-demand streaming of videos is one of the passenger
expectation for autonomous vehicles which increases the QoE no matter where
they are. Two important factors are the prediction of the expected network
QoS and the avoidance of interruptions in the service whenever possible. It
is important to guarantee high-quality services, even in cross-country and
inter-operator scenarios.

– Green Driving: European road operators and authorities have extended their
management capabilities to air quality and air pollution in addition to
safety and traffic efficiency. Nevertheless, 5G-CARMEN investigates solutions
towards the promotion of greener driving.

3 Proposed System Architecture

SC is a complex undertaking, sensitive to different factors and spans across mul-
tiple dimensions. The heterogeneity of the supporting cloud and communications
infrastructures and the variability in the different handover scenarios call for a
reliable architecture. The introduction of 5G definitely plays an important role.
However, challenges in the service and resource management still need to be
addressed in order to provide reliable end-to-end solutions. The first challenges
concerns the services placement awareness, where services practically follow the
moving vehicles by having them deployed at the closest MEC nodes. The second
challenge concerns cross organizational boundaries awareness, that is the ability
to provide services independently from the underlying provider or technology
used. The goal is to build an abstraction layer that isolates the provided services
from all the involved parties. Figure 1 represents the system architecture for ser-
vice migration in mobile edge computing between two countries while users are
faced with network re-selection.

4 Service Continuity Solutions

This section explains some contribution in the project of the authors in order
to illustrate specific concerns. Our contributions are i) develop and setup a new
simulator environment, ii) propose an AI prediction algorithm, iii) investigating
data protection for SC where we propose blockchains to provide accountability,
and iv) develop and setup a lab environment based on the Raspberry Pi2 IV to
test the proposed algorithms in a lightweight MEC setting.

4.1 Simulation Environment Setup

To simulate a cross-provider MEC scenario, we implemented a prototype, which
integrates a number of simulation frameworks that combines components such
as, OMNet++, INET-Framework, SimuLte, Veins and Sumo on top of Ubuntu

2 https://www.raspberrypi.org/.

https://www.raspberrypi.org/

164 H. R. Barzegar et al.

Fig. 1. System architecture of service migration in mobile edge computing between
two countries.

16.04 LTS. The combination with Vein, Sumo, SimuLte enable us to demon-
strate TCP message flow and smart mobility behaviors, especially the service
handover event when changing scenarios. Also, feasibility of NS3 simulation is
under investigation.

4.2 AI Algorithm for Prediction Algorithm

There are two algorithm proposed for this part. The first is gNB based, which
acts based on the signal strength of UE and gNB. In this algorithm, two thresh-
olds have been defined. When UE crosses the first threshold, then the migration
application or services will be triggered. The second one is GPS based that in
this case from the beginning of the journey the network is aware of cross bor-
dering. Therefore, the network is able to estimate when a car is going to cross
the boarder and the MEC has sufficient time to establish the requirements on
the other side of the border.

4.3 Blockchain-Based Service Continuity

The CCAM platform requires a huge amount of data to be exchanged between
different parties (e.g., vehicles, road operators, mobile and MEC providers). This
results in users losing physical control over their data. To maintain data confi-
dentiality, encryption has been the predominant mechanism used over the years.
However, many of the strong encryption schemes require heavy computation,
which might be an obstacle for some CCAM components such as IoT sensors
and low computational power MECs. Exploiting data protection for SC which
here possibility of blockchain has been taken into account.

5G-CARMEN: Service Continuity in 5G-Enabled Edge Clouds 165

4.4 Emulation Environment Setup

In order to test the proposed algorithms, we set up a cluster of Raspberry Pi as
a lightweight edge cloud test-bed. The Raspberry Pi is a type of small single-
board computers. We are expanding our work on container-based lightweight
edge clusters here.

5 Conclusions

The main goal is to enable large scale SC cross organizational boundaries is
to maximize service availability and reliability with the highest level of trans-
parency to the user. The recent advancements in cloud and edge computing in
combination with 5G could bring here a radical change by providing the proper
infrastructure for delivering the needed mechanisms for service continuity. In this
paper, we have presented the current status of 5G-CARMEN and our proposed
solution for SC, laying down the main open challenges that need to be addressed
in the coming next years.

Acknowledgement. This work has been performed in the framework of the EU
Horizon 2020 project 5G-CARMEN co-funded by the EU under grant agreement No.
825012.

References

1. Yousaf, F.Z., Sciancalepore, V., Liebsch, M., Costa-Perez, X.: MANOaaS: a multi-
tenant NFV MANO for 5G network slices. IEEE Commun. Mag. 57(5), 103–9 (2019)

2. Sciancalepore, V., et al.: A future-proof architecture for management and orches-
tration of multi-domain NextGen networks. IEEE Access 7, 79216–32 (2019)

3. Slamnik-Kriještorac, N., de Resende, H.C.C., Donato, C., Latré, S., Riggio, R.,
Marquez-Barja, J.: Leveraging mobile edge computing to improve vehicular com-
munications (2019)

4. Elia, G., et al.: Connected transports, V2X and 5G: standard, services and the
TIM-telecom Italia experiences. In: AEIT International Conference of Electrical
and Electronic Technologies for Automotive, pp. 1–6 (2019). IEEE

5. Garcia-Roger, D., et al.: 5G functional architecture and signaling enhancements to
support path management for eV2X. IEEE Access 7, 20484–20498 (2019)

6. Femminella, M., Reali, G.: Gossip-based monitoring of virtualized resources in 5G
networks. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pp. 378–384. IEEE (2019)

7. Barzegar, H.R., El Ioini, N., Pahl, C.: Service continuity for CCAM platform in 5G-
CARMEN. In: 2020 International Wireless Communications and Mobile Computing
(IWCMC), pp. 1764–1769. IEEE, 15 June 2020

Services Computing for Cyber-Threat
Intelligence: The ANITA Approach

Daniel De Pascale1(B), Giuseppe Cascavilla2, Damian A. Tamburri2,
and Willem-Jan van den Heuvel1

1 JADS, University of Tilburg, Tilburg, The Netherlands
d.de.pascale@tue.nl

2 JADS, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Major cybersecurity and threat intelligence analysts agree
that online criminal activity is increasing exponentially. Technologies,
newspapers, the internet, and social media made the dark web an acces-
sible place to almost everyone. The ease of accessing the dark side of
the web makes the problem more critical than ever. For this reason,
the European Union financed the ANITA project, consisting of different
tools for monitoring and fighting illegal criminal activities on the Dark
Web. In the ANITA project, we propose different Big Data analytic tools
for the analysis of all data extracted from illegal marketplaces. In this
survey paper we present our developed tools for detecting trends and ana-
lyzing the incoming information with respect to illegal trafficking. The
tool extracts information about specific trends, analytics and produces
actionable insight on buying and transaction habits and user behaviors.
The tool extracts statistics in order to support and guide investigators
and law enforcement agencies for the detection of criminal activities.

1 Introduction

Over the recent years, online illegal trafficking activities have hugely elabo-
rated and expanded so that to operate at global level with worldwide supply
chains, production facilities and administrative offices, while their legal, eco-
nomic and sustainability state is optimised [1]. For tackling these emerging chal-
lenges, a significant part of LEAs’ (Law Enforcement Agencies) efforts has been
invested on training activities to equip officers and practitioners with the nec-
essary knowledge and skills related to this emerging and continuously/rapidly
evolving scenery [2].

Accordingly, the European Union financed the EU H2020 ANITA project,
consisting of different services for monitoring and fighting online criminal activ-
ities. ANITA’s primary goal is twofold: a) to boost the LEA’s investigation pro-
cess and to significantly increase their operational capabilities, by introducing
a set of innovative tools for efficiently addressing online illegal trafficking chal-
lenges (namely online data source analysis, blockchain analysis, Big Data ana-
lytics, knowledge modelling, incorporation of human cognitive function in the

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 166–172, 2021.
https://doi.org/10.1007/978-3-030-71906-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_15

Services Computing for Cyber-Threat Intelligence 167

Fig. 1. Graphical representation of the ANITA action.

analysis pipelines, user-oriented intelligence applications), and b) to significantly
facilitate the novice officers training process and to optimize the learning curve
(by collecting, integrating and re-using knowledge from multiple expert officers
and through the development of a recommendation functionality to transfer
the acquired ‘know-how’ to the new officers). This paper discusses the different
approaches part of the ANITA action.

2 Concept and Approach Overview

ANITA, as explained in the graphical representation in Fig. 1, is divided into
five different steps:

1. Source Analysis toolbox;
2. Big Data NN-based analysis;
3. Knowledge management and reasoning box;
4. Investigation application box;
5. Integration of human factor in the analysis loop.

Source Analysis Box: The first necessary steps in the analysis chain comprise
the detection, assessment and analysis of potentially interesting sources that
can be found on Surface/Deep/Dark Web. In particular, a new generation of
data collection tools is developed, specific to LEAs needs. Specifically, dedicated
services are responsible for: a) Anonymous identification of new relevant content

168 D. De Pascale et al.

with a balance between speed and precision; b) High performance download
and storing in a secure repository; and c) Assessing the importance (i.e. level
of relevance and dangerousness) of the examined Web sources, the discovery of
black markets, block chain analysis for revealing cues about illegal transactions
tracking and the construction of a source network (that includes multi-level
information for every source as well as the interconnections/interrelations among
the identified sources).

Big Data NN-Based Analysis Box : Having identified and collected vast amounts
of multimedia material related to illegal trafficking, ANITA applies a set of
sophisticated Big Data analytic services for efficiently manipulating the acquired
information and robustly detecting meaningful events. Below the list of the pro-
vided set of analysis.

– Text analysis services, delivered through the usage of a semantic based engine
and capable of automatic categorization and entity extraction of the contents
coming from Social, Surface/Deep/Dark Web, and other sources.

– Visual content analysis in order to identify potentially interesting pieces of
information or evidence in the formed databases. For addressing the partic-
ular challenge deep hashing approaches are developed to recognise semantic
entities at multiple scales.

– For supporting the processing of documents written in different languages
a multilingual translation service is developed in order to automatic trans-
late segments of speech to another language, audio streams, speech-to-text
methodologies to perform the transformation of a speech segment to the form
of a written document.

– Illegal trafficking trend analysis in order to extract information about spe-
cific trends, analytics and actionable insights on buying habits and user
behaviours.

Knowledge Management and Reasoning Box: Apart from the inevitable large-
scale data-driven analysis, the ANITA system is grounded on appropriate seman-
tic knowledge structures that summarize explicit domain expert knowledge
regarding the application field and which enable the realization of high-level
semantic inference tasks (e.g. inconsistency checking, reasoning, outlier detec-
tion, etc.). The collected knowledge (i.e. application domain expertise) renders
feasible the realization of complex and highly demanding tasks, like criminal
network construction, illegal shops tracking and knowledge-based search and
retrieval that are of vital for analysing different aspects of the illegal trafficking
incidents.

Investigation Application Box: all the above-mentioned system functionalities
drive the design and support the operation of a set of novel investigative appli-
cations to be delivered to the project stakeholders. In particular, the ANITA
system is based on the design and implementation of a scalable and Big Data
oriented infrastructure, able to analyse large volumes of data in near real time
and to summarize analysis results to provide LEAs with relevant insights on
illegal trafficking related phenomena.

Services Computing for Cyber-Threat Intelligence 169

Fig. 2. Trend analysis on orders done in the Berlusconi market by different vendors in
two different snapshots.

Integration of Human Factor in the Analysis Loop Box: overall, the fundamental
consideration of the ANITA system to integrate the human user in the analysis
pipeline serves the following two fundamental project goals (and simultaneously
main outputs of the system): a) To significantly boost the efficiency of the inves-
tigation process, by continuously improving the robustness of the feature detec-
tors through the incorporation of the explicit and implicit user feedback, while
also updating and expanding the knowledge infrastructure for the selected appli-
cation domain. b) To remarkably speed up the training process of new/novice
investigators, practitioners and officers for the application domain at hand, by
re-using and transferring knowledge that has been collected and combined from
multiple expert users.

3 Big Data Services and Analytics

As described in Fig. 1 in the box of Big Data NN-based analysis the services
computing part reflects mostly the large scale trend analysis. Our research app-
roach in this direction focuses on developing services, methods, techniques, and
approaches to extract useful information from Social, Surface, Deep, and Dark
Web in order to develop a classification tool and a trend analysis tool.

170 D. De Pascale et al.

On the one hand, the following text summarises the approach we followed to
classify any given web page from the Surface, Deep, and Dark Web to give a clear
insight of its content and being independent from the language constraint. First,
using a random forest machine learning approach we were able to predict with
an accuracy 81.664%, whether a web page contains illegal activities, making use
of the 3 activity classes (Suspicious, Unknown, Normal) as dependent variable.
Second, our proposed approach showed an accuracy of 66.251% on 26 different
classes of a specific activity type (i.e., Drugs, Hacking, Forum, Social-Network,
Violence, Fraud, Counterfeit-Money, etc.). Finally, we rank recommendations to
provide the best approach to predict the content of a web page is to use both
website appearance and software quality parameters.

On the other hand, in order to classify different web sites we developed an
architecture to collect, preprocess and model data. On top of that, we conducted
a trend analysis on the classifications, in order to see if there are relations between
observable factors (e.g., if more cocaine is being sold, there is less hash being
sold). The process starts from the information gathering from different pages, in
order to extract all possible information about vendors and products of different
markets. This process is executed on the same pages in different interval of time.
In this way, it is possible to analyze the trend of different variable, as price or
number of visualization. The Fig. 2 shows the trend analysis applied on the order
finalized by different vendors. The figure shows two snapshots: one related to the
order finalized in 2019-09-11 and the other the order finalized in 2019-09-18; even
from this single datapoint a trend in the time-series is evident.

3.1 Trend Analysis Module Architecture

The scraping tool consists of four consecutive steps. These steps will globally be
discussed to give an overview of the design of the tool. In the next chapter will
discuss each part in a little more depth. The overview is given in Fig. 3.

Fig. 3. General overview of the scraping part of the tool.

The goal of the complete tool is to extract features from darknet market and
to structurally store this information to be able to find changes and trends in

Services Computing for Cyber-Threat Intelligence 171

the pages about vendors or products on these markets. This can be done by
manually looking at the information for specific vendors or products or using
the accompanying visualization tool.

The input of the tool consists of a dump of a market to be scraped in a ZIP
format or as a simple folder. The tool can take the information of the market by
the user himself or it can automatically extract the information inside the web
pages included in the ZIP file.

1. Import. The first phase imports and filters the useful files out of the provided
dump of the market. The tool takes the HTML files and checks whether the
HTML file is a page about a vendor or product. At the end of the entire
process, all pages analyzed are removed from the server, except for the ZIP
file, that is stored in the system for security purpose.

2. Scrape. The second phase is focused on retrieving the features out of the
HTML files. While every market is different, every market has a separate file
that includes the information what to scrape from the page. In this phase the
file simply scrapes this information to save in the database.

3. Merge. The third phase focuses on merging the scraped information. While
markets usually contain out of different pages that might contain the same
information, there will be duplicate values in the data. For example, the
profile page of a vendor might have information about the score of the vendor,
while the page about feedback also contains this information. The merge step
merges the information per page into information per vendor or product.

4. Export into database. The last phase saves the information extracted in
the scraping step and merged in the merge step into the database.

At the end of the process, the information extracted are saved into the db.
In order to give access of those information to the end user, we provide some
API services.

4 Conclusion

The ANITA project aims to define a tool for monitoring and fighting illegal
trafficking activities on the Dark Web. To support this goal, ANITA provides
a pipeline that, after having analyzed the Dark Web to discover different black
markets and extract information from them, it applies different approaches to
analyse them, from Big Data analysis to Knowledge management, allowing the
interaction from all these components to improve results. In our case, we are
focusing on the Big Data risks and trends analysis services experimentation and
implementation. We implemented two different approaches, one based on the
analysis of web pages using software quality, making the entire process language-
independent. The other approach, starting from many product and vendor pages,
provides a trend analysis among all variables extracted from these pages (e.g.
price, order finalized, and trends).

172 D. De Pascale et al.

References

1. Lewis, J., Baker, S.: The economic impact of cybercrime and cyber espionage. Tech-
nical report, Centre for Strategic and International Studies (2013)

2. Miller, C.H., et al.: Training law enforcement officers to identify reliable deception
cues with a serious digital game. IJGBL 9(3), 1–22 (2019)

Quality Assurance of Heterogeneous
Applications: The SODALITE Approach

Indika Kumara1,2(B), Giovanni Quattrocchi3, Damian Tamburri1,2,
and Willem-Jan Van Den Heuvel1,2

1 Jheronimus Academy of Data Science (JADS), ’s-Hertogenbosch, Netherlands
2 Eindhoven University of Technology (TUe), Eindhoven, Netherlands

{i.p.k.weerasingha.dewage,d.a.tamburri,W.J.A.M.vdnHeuvel}@tue.nl
3 Politecnico di Milano, Milan, Italy
giovanni.quattrocchi@polimi.it

Abstract. A key focus of the SODALITE project is to assure the quality
and performance of the deployments of applications over heterogeneous
Cloud and HPC environments. It offers a set of tools to detect and cor-
rect errors, smells, and bugs in the deployment models and their provi-
sioning workflows, and a framework to monitor and refactor deployment
model instances at runtime. This paper presents objectives, designs, early
results of the quality assurance framework and the refactoring frame-
work.

Keywords: IaC · Cloud · HPC · Quality · Defects · Refactoring

1 Introduction

In recent years the global market has seen a tremendous rise in utility computing,
which serves as the back-end for practically any new technology, methodology
or advancement from healthcare to aerospace. We are entering a new era of het-
erogeneous, software-defined, high-performance computing environments. In this
context, modern distributed applications should be able to utilize heterogeneous
Cloud and HPC (High Performance Computing) infrastructures.

The SODALITE (SOftware Defined AppLication Infrastructures manage-
menT and Engineering) project aims to support development and operation
teams in exploiting heterogeneity. It provides application developers and infras-
tructure operators with tools that abstract their application and infrastructure
requirements to enable simpler and faster development, deployment, operation,
and execution of heterogeneous applications.

The SODALITE consortium consists of four academic partners CERTH
(Centre for Research and Technology), Jheronimus Academy of Data Science,
Polytechnic University of Milan, University of Stuttgart, and five industrial part-
ners ADPT, ATOS, CRAY, XLAB, and IBM. The website and the Github repos-
itory of the SODALITE can be found at sodalite.eu and github.com/SODALITE-
EU. The project runs from February 2019 to February 2022.
c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 173–178, 2021.
https://doi.org/10.1007/978-3-030-71906-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_16

174 I. Kumara et al.

A key objective of the SODALITE is to assure quality and performance
of heterogeneous applications. To this end, the project builds a taxonomy of
errors, bugs, smells, and their resolutions, all pertaining to the deployment of
heterogeneous applications (Sect. 3). Based on this taxonomy, the project builds
the tools for verifying and validating deployment models, and predicting smells
and bugs in them (Sect. 4). Continuously changing workload and infrastructure
resources can make a given deployment suboptimal. Thus, the SODALITE also
includes a framework that can monitor the application and its infrastructure,
and refactor the deployment as appropriate (Sect. 5). This paper presents goals,
designs, and early results of the aforementioned project outcomes.

2 The SODALITE Framework: Overview

Figure 1 shows the high level architecture of the SODALITE framework. The
heterogeneous target infrastructures are highlighted at the bottom. Currently,
we offer support for Openstack, Edge clusters managed by Kubernetes, and
HPC clusters managed by the Torque workload manager. All components in the
framework rely on the presence of a Knowledgebase, which consists of knowledge
graphs defining the concepts and the constraints that are relevant to heteroge-
neous applications as well as the information about the deployed application and
the available resources. The IDE and Domain Specific Language (DSL) enable
the DevOps teams to model their applications in terms of the components to be
deployed and executed. The model-to-model transformation is applied to trans-
late the models defined in the DSL into infrastructural codes in TOSCA (Topol-
ogy and Orchestration Specification for Cloud Applications) [5] and IaC (Infras-
tructure as Code) languages [3] such as Ansible, Chef, and Puppet. Orchestrator
executes the generated infrastructural codes to deploy the application in its oper-
ational environment on multiple infrastructural resources. To enable defect-free,
optimized of deployment of applications, SODALITE also offers a set of appli-
cation and infrastructural code optimizers, which is the focus of this paper.

Fig. 1. Overview of the SODALITE Framework

The SODALITE Framework for Heterogeneous Applications 175

3 Taxonomy of Smells, Bugs, Errors, and Resolutions

A software engineer can inadvertently introduce bugs/smells/errors to the
deployment models. A specific result of the SODALITE project is a taxonomy of
bugs/smells/errors, and their resolutions for TOSCA and IaC. The taxonomy is
to support the development and evaluation of the tools that can predict bugs/s-
mells/errors in heterogeneous application deployments and recommend fixes (see
Sect. 4).

– IaC and TOSCA Smells and Resolutions. We have identified and cate-
gorized the smells and their fixes from a multivocal literature review on the
best and bad practices for IaC and TOSCA.

– IaC and TOSCA Bugs and Resolutions. A qualitative analysis of commit
messages and issue reports is used to derive a taxonomy and data set for IaC
bugs and fixes. We are in the latter stages of this study.

– Cloud and HPC Application Bugs/Errors and Resolutions. We have
started a literature review on the bugs and errors pertaining to deployment,
operation, and execution of Cloud and HPC applications.

– IaC and TOSCA Errors and Resolutions. We have identified an initial
set of IaC and TOSCA errors and their resolutions from the literature. We
will create a complete taxonomy of errors and resolutions based on the results
of the above three studies.

4 The SODALITE Quality Assurance Framework

We provide the developers with a QA framework to find and correct (verification)
errors (e.g., inconsistencies), smells, and bugs in a deployment model and its
provisioning workflow/plan specified in TOSCA and IaC (the initial focus is on

Fig. 2. The SODALITE Quality Assurance Framework

176 I. Kumara et al.

Ansible). The developers can also analyze and validate the performance of an
application deployment with our QA framework.

We use the ontological reasoning to verify the constraints over the structures
of TOSCA blueprints and IaC scripts. To verify the constraints over the provi-
sioning workflow (e.g., deadlock detection), we use Petri Net models. To detect
smells/bugs, we use three main approaches: informal rules, semantic rules, and
data-driven approaches. The informal rules are the detection rules supported by
the existing linter tools for IaC (e.g., Ansible-Lint). The semantic rules are rea-
soning rules over the SODALITE ontologies. The data-driven approaches adopt
and further extend the existing machine learning based bug prediction methods
developed for general purpose languages. The performance modeling employs a
combination of benchmarking/profiling and simulation.

Figure 2 provides an overview of our QA framework. Knowledgebase consists
of TOSCA ontology, IaC ontology, errors and resolutions ontology, and smell-
s/bugs and resolutions ontology. We create the first two ontologies based on the
TOSCA standard and IaC specifications, and the last two ontologies using the
above taxonomies. We use the taxonomies also for defining verification rules and
smells/bugs detection rules. QualityAssurer takes as input a CSAR (Cloud Ser-
vice Archive) file consisting of TOSCA, IaC scripts, and performance goals, and
uses Predictive Model Builder to build the required prediction models. Predictive
Model Builder can build different types of models: knowledge-based and data-
driven models for smells/bugs prediction, knowledge-based models and Petri net
models for verification, and statistical models for performance estimation. Qual-
ityAssurer uses the created models to predict smells/bugs and identify errors
and performance violations. It also queries the Knowledgebase to recommend
the potential fixes. A software engineer can select the desired fixes from the rec-
ommendations, and apply the selected fixes to correct the defective artifacts. To
ensure consistency and reduce errors, we use model transformations to automate
the correction of defective artifacts. Using a template-based approach, Transfor-
mation Generator generates the required model transformation scripts.

The early results include the verification of the deployment topologies using
semantic reasoning, and the performance modeling of HPC applications using the
data collected from running HPC benchmarks (e.g., LINPACK and STREAM
Benchmark) and applying regression analysis on the collected data. The initial
support for transforming an Ansible workflow into a Petri Net model has been
developed. We extended the Ansible-Lint tool by adding rules for detecting smells
(implementation, design, and security) in Ansible. We developed the semantic
reasoning for detecting security smells in TOSCA [4]. A curated dataset of Ansi-
ble has been created to develop and evaluate data-driven models. We have also
developed deep learning and NLP based techniques for detecting linguistic smells
and module usage issues in IaC [2]. We are extending the CloudSim framework
(cloudbus.org/cloudsim) for simulating heterogeneous applications.

The SODALITE Framework for Heterogeneous Applications 177

5 The SODALITE Refactoring Framework

The main objective of the predictive deployment refactoring is to refactor or
adapt the deployment model of an application at runtime to prevent the violation
of the performance goals of the application. The components of an application
can be deployed in different ways using heterogeneous resources (e.g., a small VM
and a large VM) and deployment patterns (single node, cluster, with or without
cache, with or without firewall), resulting alternative deployment options. A valid
selection of deployment options results in a valid deployment model variant for
the application. The deployment refactoring requires a model that can estimate
the impacts of a given deployment option selection on the performance metrics
under different contexts such as different workloads.

Figure 3 provides an overview of the SODALITE refactoring support. At the
design time, we profile deployment variants to collect the data required to build
the machine-learning based predictive model. At runtime, the Refactorer mon-
itors the deployed application to collect the data and to update the learned
model. The predictive model enables the Refactorer to predict the potential vio-
lations of the application goals, and consequently to find alternative deployment
model variants. As the deployment environment evolves, the new resources will
be added and the existing resources will be removed or updated. The Refactorer
discovers new deployment options, the changes to the currently used deploy-
ment options, and the bugs introduced by the changes (e.g., performance anti-
patterns).

Given the performance goals and the deployment model variant selected
at runtime by the Refactorer, the SODALITE framework employs distributed
control-theoretical planners to further refine the resource allocation of running
heterogeneous applications [1]. For each component deployed in each node of the
deployment model, a dedicated controller oversees its execution and reallocates
CPU and GPU cores without restarting the actual software (i.e., vertical scala-
bility). In addition to the controllers, a supervisor is deployed on each node to
manage resource contention scenarios that could occur among components run-
ning on the same machine. The supervisor governs the allocation of resources

Fig. 3. The SODALITE refactoring framework

178 I. Kumara et al.

according to the actual resources requested (by the controllers), the priority of
each component and monitored performance.

We have so far completed the design time part of our framework and imple-
mented the control-theoretical layer. We have developed the methodology to
model the deployment variability of heterogeneous applications using the vari-
ability modeling techniques. Furthermore, We have developed the approach
to profile the different development option selections under different workload
ranges, and to use the profiled data to build the machine learning based pre-
diction model. The initial support for semantic matchmaking of deployment
options (for discovering new deployment options) also has been developed. The
control-theoretical planner can re-configure Kubernetes containers dynamically
to maintain response time targets. It currently supports TensorFlow applications
that can use both GPUs and CPUs.

6 Conclusion

This paper presented an overview of three key tasks of the SODALITE project.
During the second year of the project, we plan to complete the taxonomies and
the verification support, and to develop data-driven approaches for predicting
IaC bugs and for supporting deployment refactoring. During the last year, we
plan to complete the rest of the defect prediction tool and the refactorer, and to
validate the project outcomes with the industrial case studies.

Acknowledgement. This paper has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement no. 825480,
SODALITE. We thank all members of the SODALITE consortium for their inputs
and feedbacks to the development of this paper.

References

1. Baresi, L., Leva, A., Quattrocchi, G.: Fine-grained dynamic resource allocation for
big-data applications. IEEE Trans. Softw. Eng. 1 (2019). https://doi.org/10.1109/
TSE.2019.2931537

2. Borovits, N., et al.: DeepiaC: deep learning-based linguistic anti-pattern detection
in IaC. In: Proceedings of the 4th ACM SIGSOFT International Workshop on
Machine-Learning Techniques for Software-Quality Evaluation, MaLTeSQuE 2020,
pp. 7–12. Association for Computing Machinery, New York (2020). https://doi.org/
10.1145/3416505.3423564

3. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and
challenges of infrastructure-as-code: insights from industry. In: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 580–589.
IEEE (2019)

4. Kumara, I., et al.: Towards semantic detection of smells in cloud infrastructure code.
In: Proceedings of the 10th International Conference on Web Intelligence, Mining
and Semantics, WIMS 2020, pp. 63–67. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3405962.3405979

5. Lipton, P., Lauwers, C., Rutkowski, M., Lauwers, C., Noshpitz, C., Curescu, C.:
Tosca simple profile in YAML version 1.3. OASIS Committee Specification 1 (2020)

https://doi.org/10.1109/TSE.2019.2931537
https://doi.org/10.1109/TSE.2019.2931537
https://doi.org/10.1145/3416505.3423564
https://doi.org/10.1145/3416505.3423564
https://doi.org/10.1145/3405962.3405979

FogProtect: Protecting Sensitive Data
in the Computing Continuum

Dhouha Ayed1, Eva Jaho2, Clemens Lachner3(B), Zoltán Ádám Mann4,
Robert Seidl5, and Mike Surridge6

1 Thales, Paris, France
2 Athens Technology Center, Athens, Greece

3 TU Wien, Wien, Austria
c.lachner@dsg.tuwien.ac.at

4 University of Duisburg-Essen, Essen, Germany
5 Nokia Bell Labs, Munich, Germany

6 University of Southampton, Southampton, UK

Abstract. Computing resources are being moved towards the edge of
the network, in the form of so-called fog nodes, providing benefits in
terms of reduced latency, increased processing speed, data locality, and
energy savings. Data produced in end devices like smartphones, sensors
or IoT devices can be stored, processed and analysed across a continuum
of computing resources, from end devices via fog nodes to cloud services.
Data related to critical domains, such as healthcare, public surveillance
or home automation, requires tailored data protection mechanisms, span-
ning the whole computing continuum.

The FogProtect project aims to provide novel advanced technologies
and methodologies to ensure end-to-end protection of such sensitive data.
Our generic solutions facilitate the provisioning and usage of applications
and services in the computing continuum, by combining four technology
innovations: (1) secure data container technology for data portability and
mobility, (2) data-protection-aware adaptive service and resource man-
agement, (3) advanced data protection policy management, (4) dynamic
data protection risk management models and tools.

The applicability and impact of those solutions is evaluated and
demonstrated on three complementary real-world use cases in the area
of (1) smart cities, (2) smart manufacturing, and (3) smart media.

Keywords: Fog computing · Edge computing · Data protection ·
Privacy · Computing continuum · Adaptive systems · Policy
management

1 Basic Project Information

The project “FogProtect: Protecting Sensitive Data in the Computing Contin-
uum” is a research and innovation action funded by the European Union’s Hori-
zon 2020 programme. The project runs from January 2020 to December 2022.
The project website is at https://fogprotect.eu/.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 871525 (FogProtect).

c© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 179–184, 2021.
https://doi.org/10.1007/978-3-030-71906-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_17&domain=pdf
https://fogprotect.eu/
https://doi.org/10.1007/978-3-030-71906-7_17

180 D. Ayed et al.

The project consortium is led by Ubiwhere LDA (Portugal) and further
comprises the following organizations: Athens Technology Center SA (Greece),
IBM Israel Science and Technology LTD (Israel), University of Southampton
(UK), Nokia Solutions and Networks GmbH & Co. KG (Germany), Thales SIX
GTS France SAS (France), Technische Universität Wien (Austria), University of
Duisburg-Essen (Germany), De Vlaamse Radio- en Televisieomroeporganisatie
nv (Belgium).

2 Project Objectives

Cloud computing is transitioning from few large data centres to a truly decen-
tralized paradigm, where resources are increasingly provided near the network
edge, in the form of so-called fog nodes. Data produced in end devices (e.g.,
smartphones, sensors or other IoT devices) can be processed across a continuum
of computing resources, comprising cloud services, fog nodes, and end devices [2].
By distributing data processing functionalities over this computing continuum,
an optimal trade-off between conflicting goals – such as low network latency
between data sources and data processors, high processing speed and low energy
consumption – can be achieved [1].
However, this widely distributed processing of data also introduces new chal-
lenges concerning the protection of sensitive data [5,9,10]. During our research
we identified the following major problems of data protection in the computing
continuum [6]:

– Resource limitations of fog nodes and end devices constrain data protection
methods

– Heterogeneity of fog nodes and end devices hampers consistent security
– Node connectivity meta-data can leak sensitive information, such as users’

location
– Mobility of devices requires compliance with changing data protection policies
– Frequent changes at the edge imply highly dynamic changes of data protection

risks
– Lack of transparency about stakeholders may lead to unauthorized data

access

To tackle these issues, FogProtect will deliver new and advanced generic tech-
nologies, mechanisms, and solutions to ensure end-to-end data protection across
the computing continuum. This also involves securing the whole life-cycle of data,
taking into account the rights and obligations of data subjects, data controllers,
data processors, and data users. In particular, FogProtect will make it easier
for data controllers to comply with relevant data protection regulation, such as
the EU General Data Protection Regulation (GDPR), and for data subjects to
exercise the rights stipulated by the regulation.

As shown in Fig. 1, FogProtect combines four innovation areas to deliver
increased management capabilities towards end-to-end data protection. A brief
introduction of each innovation area is given in the next subsections.

FogProtect: Protecting Sensitive Data in the Computing Continuum 181

Fig. 1. An overview of FogProtects’s four innovation areas.

2.1 Secure Data Portability

Dynamically composable, logical data encapsulation will provide data protection
guarantees not only for the storage of data, but also for processing and egress
to other sources in conformance with policies regulating the usage of data. To
achieve that, FogProtect will create a layered framework, where different plug-
gable tools and technologies can be used at each layer in accordance with both
the nature of the data and purpose of the data processing.

2.2 Data-Protection-Aware Adaptive Service and Resource
Management

Based on continuous monitoring and analysis of data protection risks, appropri-
ate adaptations will be carried out automatically. These adaptations will ensure
the continued assurance of data protection in spite of changes [6]. For this pur-
pose, FogProtect will create a model-based approach, in which the current sys-
tem configuration is explicitly modeled in a machine-readable format, and kept
up-to-date using monitoring.

For reasoning on possible adaptations to mitigate data protection risks, meth-
ods from artificial intelligence (optimization, planning, machine learning) will be
used. Adaptations may relate to both the infrastructure of the computing con-
tinuum and applications running on that infrastructure. If multiple adaptations
are possible to mitigate the found data protection risks, FogProtect will aim to
select the best adaptations concerning their impact on other goals like perfor-
mance and costs.

182 D. Ayed et al.

Also, services in the computing continuum may initiate self-adaptations with
the aim of improving performance or costs. FogProtect will ensure that the data
protection implications of such adaptations are analyzed, and the adaptations
are only performed if they do not lead to increased data protection risks.

2.3 Data Protection Policy Management

A data protection policy management solution requires being flexible and robust
to support the orchestration layer of the fog architecture and support the big vol-
ume of interaction and data transfer between end-user devices, fog environment
and cloud computing data centres. Therefore, we provide an end-to-end data pro-
tection policy management framework dealing with the distrusted, multi-tenant,
and dynamic nature of fog nodes and instances.

The framework is based on a data protection policy definition formalism
supporting the specification of security requirements related to fog nodes and
instances and a system to orchestrate and chain data protection functions accord-
ing to smart decision process based on dynamically interpreted security policies
and data protection regulation.

The data protection policy formalism offers the administrators the flexibility
to bound data of various subjects to a given application while having the ability
to migrate across multiple fog nodes during the data lifecycle with a smart
reasoning on policies and a refinement of the implication of data protection
policies on various fog nodes and end-user devices.

The orchestrated data protection functions take into account the distributed
nature of the environment and could be virtualized enforcement points, enforce-
ment points for constrained environment, attack detection functions, etc. For
instance, the best practice for devices that deliver data on demand is to position
a Policy Enforcement Point (PEP) closest to the data to protect. Consequently,
various PEPs need to be deployed at several devices and nodes of the fog. How-
ever, such enforcement requires the knowledge of the current protection policy
in force that is generally managed in a centralized point. The services running
on constrained devices might not have a constant connectivity to a centralized
decision point to enforce the policy. In this case, a lightweight enforcement pro-
cess is needed. It can for example be based on a standalone access token without
permanently relying on a central decision point.

2.4 Data Protection Risk Management

We identify, analyse and control sources of cyber-security risks (i.e., threats) over
the lifecycle of applications in the computing continuum. This involves (i) the
development of knowledge and inference methods to construct predictive models
of potential risks prior to deployment and (ii) the use of information acquired
(and mostly only available) after deployment, to diagnose run-time threats and
trigger adaptations or policy changes to manage the associated risks. The goal
is to use an automated ISO 27005 risk assessment procedure [3,4], embedding it
into the autonomic management loop so risk levels can be taken into account.

FogProtect: Protecting Sensitive Data in the Computing Continuum 183

This will allow trading risk factors near the edge (such as limited physical pro-
tection) and near the data centre (such as the aggregation of data), as well as
using data protection risk levels to constrain other autonomic management of
factors such as cost, performance, energy use, etc.

3 Use Cases

Three complementary real-world use cases evaluate and demonstrate the applica-
bility and impact of the FogProtect solutions introduced in the previous chapter.
The use cases are focusing on different industrial sectors spanning multiple con-
texts: (1) smart cities, (2) smart manufacturing, and (3) smart media. Each use
case entails different, specific data protection challenges from these sectors. This
will enable being the ideal platform to reflect the whole life-cycle of data, taking
into account the rights and obligations of data subjects, data controllers, data
processors, and data users by ensuring end-to-end data protection across the
computing continuum.

On the one hand, the use cases help the project team to identify requirements
and constraints that the solutions developed in the project need to address. On
the other hand, the demonstration and validation of the solutions developed in
the project will also be carried out in the context of the use cases.

4 Current Project Status

The project has started recently. The focus of the first project phase has been
on the elicitation of requirements from different sources (the project’s use cases,
the relevant literature, relevant standardization activities etc.) and on defining
the architectural and technological foundations of the project, based on well
established formalization methods, standards and processes [7]. Additionally,
the state of the art is analyzed, regarding cutting-edge technology, concepts,
and architectures in the area of application and infrastructure orchestration as
well as data protection, risk management, and policy management.

The next step is the detailed specification of the technical components of
FogProtect and their interfaces. A first prototype – integrated, tested, and vali-
dated on the use cases – will be available at month 18 of the project (June 2021).
In the second half of the project, the FogProtect solutions will be refined and
extended in a second iteration, taking into account the experience with the first
prototype as well as new technical developments.

FogProtect leverages knowledge and experience gathered in previous work
of project partners in the recently finished RestAssured project [8]. Therefore,
we expect to be able to quickly resolve the architectural questions and to start
working on the specific innovation areas.

184 D. Ayed et al.

References

1. Bellendorf, J., Mann, Z.Á.: Classification of optimization problems in fog comput-
ing. Future Gener. Comput. Syst. 107, 158–176 (2020)

2. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16 (2012)

3. Chakravarthy, A., Wiegand, S., Chen, W., Nasser, B., Surridge, M.: Trustworthy
systems design using semantic risk modelling. In: Proceedings of 1st International
Conference on Cyber Security for Sustainable Society, pp. 49–81 (2015)

4. Goeke, L., Heisel, M., Mohammadi, N., Surridge, M.: Systematic risk assessment
of cloud computing systems using a combined model-based approach. In: 22nd
International Conference on Enterprise Information Systems, Prague, May 2020.
to appear (2020)

5. He, T., Ciftcioglu, E.N., Wang, S., Chan, K.S.: Location privacy in mobile edge
clouds: a chaff-based approach. IEEE J. Sel. Areas Commun. 35(11), 2625–2636
(2017)

6. Mann, Z.Á.: Data protection in fog computing through monitoring and adaptation.
KuVS-Fachgespräch Fog Comput. 2018, 25–28 (2018)

7. Mann, Z.Á.: Notions of architecture in fog computing. Computing. 103, 51–73
(2021). https://doi.org/10.1007/s00607-020-00848-z

8. Mann, Z.Á., et al.: Secure data processing in the cloud. In: Mann, Z.Á., Stolz, V.
(eds.) Advances in Service-Oriented and Cloud Computing: Workshops of ESOCC
2017. CCIS, vol. 824, pp. 149–153. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79090-9 10

9. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey
and analysis of security threats and challenges. Future Gener. Comput. Syst. 78,
680–698 (2018)

10. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and
its security issues. Concurrency Comput. Pract. Experience 28(10), 2991–3005
(2016)

https://doi.org/10.1007/s00607-020-00848-z
https://doi.org/10.1007/978-3-319-79090-9_10
https://doi.org/10.1007/978-3-319-79090-9_10

Intelligent Monitoring of Virtualized Services

Thanasis Tziouvaras1 and Kostas Kolomvatsos2(B)

1 Department of Electrical and Computer Engineering, University of Thessaly, Volos, Greece
attziouv@uth.gr

2 Department of Informatics and Telecommunications, University of Thessaly, Lamia, Greece
kostasks@uth.gr

Abstract. Interactive TV applications impose novel requirements in future net-
works due to the huge volumes of data transferred through the network. ENFORCE
provides a framework for themanagement of such applications targeting to support
the real time adaptation on end users needs. The project offers a set of function-
alities over virtualized resources as provided by the SoftFIRE platform. Apart
from the envisioned functionalities, ENFORCE acts as a benchmarking tool and
an extension to the SoftFIRE framework enhancing its monitoring capabilities for
the provided virtualized resources and services. Our aim is to pro-actively respond
to changes in iTV demand, thus, making the platform fully aligned with the real
needs of end users. In ENFORCE, virtual resources are defined for realizing Set
top Boxes (STBs) functionalities to be transformed to virtual STBs (vSTBs).

Keywords: Interactive TV services · Intelligent monitoring · Virtualized
services

1 Introduction

Future networks are expected to involve numerous heterogeneous devices interconnected
to support a variety of applications. Among them, interactive TV (iTV) applications are
of great importance. Such applications are characterized by increased traffic and con-
tinuous changes in the service demand. In this respect, intelligent approaches should
be investigated to improve efficiency. ENFORCE proposes the adoption of an intelligent
framework for the continuous fulfillment of iTV application requirements. We deploy
a real time intelligent monitoring module capable of proactively detecting changes in
demand and performance of iTV services. Reconfiguration, Virtualized Network Func-
tions (VNFs) processing and proactive response to demand changes are subjects where
ENFORCE provides solutions in direct combination with the SoftFIRE platform. The
proposed monitoring mechanism is combined with the VNFs controller to reconfigure
the virtualized resources performing scaling up/down actions on demand. ENFORCE
also offers a benchmarking tool that reveals the strengths and weaknesses of the afore-
mentioned solution. In this sense, the evaluation of the monitoring mechanism and the

Project: Intelligent Monitoring of Networking Services (ENFORCE).
Call: SoftFIRE Project Open Call II (June–October 2017).

© Springer Nature Switzerland AG 2021
C. Zirpins et al. (Eds.): ESOCC 2020 Workshops, CCIS 1360, pp. 185–189, 2021.
https://doi.org/10.1007/978-3-030-71906-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71906-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-71906-7_18

186 T. Tziouvaras and K. Kolomvatsos

platform is conducted over multiple test scenarios where the demand for iTV services
and their performance requirements varies.

The following list depicts ENFORCE’s contributions:

• The provision of an extension of the SoftFIRE platform (monitoring of iTV services
demand) that will issue the adaptation on demand changes through the adoption of
forecasting techniques. The extension will be capable of reacting in the case where
changes in the demand are identified, thus, the automated scalability could be secured.

• The provision of a tool that enables benchmarking of the platform. ENFORCE sim-
ulates iTV services demand and tests the performance of the platform to reveal any
possible problems in the management mechanism of the virtualized resources as well
as possible pitfalls in the VNF infrastructure manager.

• Support of iTV Services. ENFORCE provides experimentation for two parts of a
virtual Set top Box (vSTB), i.e., the vPVR (virtual Personal Video Recorder) and the
aggregation of video streams defined inmultiple formats. ENFORCE defines a service
for manipulating the incoming requests from clients concerning the aforementioned
functionalities.

2 Related Work

5G technology is in its infancy, thus, only a few frameworks are already present in the
field. In short, some important research projects in the domain are as follows: ACTORS
[1] aims to design amethodology that combines virtualization, feedback and actors-based
dataflow programming in resource-constrained software-intensive embedded systems.
EVANS [2] focuses on the management aspects of the virtualized network resources
rather than the virtualization techniques of physical network resources. NUBOMEDIA
[3] tries to minimize the complexity of infrastructures by creating a specific purpose
Cloud platform bringing all the Cloud advantages to the arena of real-time interactive
multimedia. VIDA [4] proposes data virtualization as the basis of design of a query
engine and is used to efficiently access, query, and integrate raw data.

3 The ENFORCE Solution

3.1 High Level Description

ENFORCE provides the definition of virtualized STB functions for supporting iTV
services. Our solution employs virtualized resources to create the respective services
due to the unique opportunity they provide for shifting certain functionalities to the
Cloud. The planned activity within ENFORCE implements a part of a vSTB which
relies on open technologies for delivering improved customer experience applications.
Such technologies include but are not limited to personal video recording, WWW-based
content enrichment, parental control services and personalized content delivery. The
virtualized resources are defined with the adoption of the SoftFIRE components and are
fully aligned with the platform’s specifications and needs.

Intelligent Monitoring of Virtualized Services 187

The ENFORCE solution provides VNFs and service function chains required to
support two parts of a vSTB i.e., the vPVR (virtual Personal Video Recorder) and
the aggregation of video streams defined in multiple formats. For the first functionality,
ENFORCE defines a service for storing the available data for future reference while
for the second functionality we employ a decoding, an aggregation and an encoding
scheme for multiple resource combination and service provisioning in the final video
stream.We also deploy a monitoring mechanism that oversees the demand for the afore-
mentioned functionalities and triggers the re-configuration process of the services in the
form of scaling up / down the available resources. Specifically, for the first function-
ality, ENFORCE upgrades / downgrades the storage of resources while for the second
functionality upgrades / downgrades the VNF chains for handling increased / decreased
input streams. The input streams adopted for testing are those that are available on the
Web (e.g., Youtube streaming TV service).

The monitoring mechanism amounts to a set of performance metrics that can be
considered appropriate for evaluating an invoked VNF in terms of ‘quality’. This con-
textual information, aggregated and stored by ENFORCE, forms the pattern behavior
of a VNF. ENFORCE further provides efficient mechanisms for supporting intelligent
analytics tasks, such as statistical queries over the performancemetrics that providemore
useful and historical information about VNFs. The historical analysis of behavioral pat-
terns of a service in terms of its performance metrics results to a rich knowledge on the
pattern a service is running. In order to encompass the aforementioned functionalities,
we design and deploy an intelligent monitoring module as described below.

3.2 Intelligent Monitoring

This module enables ENFORCE to monitor a large number of iTV services and trigger
the appropriate modules to take actions related to the services life cycle. This process is
performed in real time as the discussed scenario involves a dynamic environment where
demand changes continually while ENFORCE aims at maintaining the performance of
the system at high levels. To accomplish this, an intelligent monitoring component gath-
ers data related to the performance of services. Such information is then utilized to take
actions related to service scaling. To this end, a number of Key Performance Indicators
(KPI) is defined which are gathered by a monitoring probe that is configured with the
endpoint of the monitoring service. A scaling action is initiated when: (a) the system
deduces that the application requirements require higher or lower service performance
levels compared to the current setting, or (b) the system observes the performance of
services and decides when the application requirements are not fulfilled. We have also
deployed forecasting algorithms that are able to cope with the temporal nature of the
traffic data. Briefly, we consider a hierarchical structured network in which users issue
requests for iTV services. These requests require the reservation of application and net-
work resources as they generate network and application traffic respectively. In terms
of abstract modeling approaches, we consider such traffic equivalent. In this sense, we
treat them as traffic prediction problems and use the same type of learning tools and
ideas to address them. In order to evaluate the efficiency of our solution we utilize a
benchmarking scheme capable of covering the required scenarios.

188 T. Tziouvaras and K. Kolomvatsos

4 ENFORCE Implementation Details and KPIs

The setup of our experiment is centered on a client-server scheme in which we are
monitoring each node’s behavior while also obtaining the necessary metrics during the
experiment execution. SoftFIRE uses VNFs to provide the functionality required by
the experimenter. In order to reserve, deploy and use the provided VNFs, we adopt
Topology and Orchestration Specification for Cloud Applications (TOSCA) files
which are uploaded directly to the reservation system. We deploy a client and a server
VM which are be able to communicate with each other exchange information such as
vSTbs requests and video streams. Our aim is to identify whether the involved VMs can
efficiently support a highnumber of clientswhile serving their requests in parallel.Hence,
we use a custom VNF which houses the client-server connection and we instantiate it by
having a 16.04 Ubuntu-clean image installed. Moreover, we specify the connection of
those two services and we designate each one’s flavor key template. Flavor key template
is a predetermined hardware profile which is loaded to the VM during the reservation
stage. The performance of the platform is evaluated based on three KPIs:

• Latency. This KPI aims to provide insights on the latency of invoking the iTV services
implemented in the ENFORCE project. The latencywas recorded just after the request
for invocation of the offered services. Our aim is to maintain the latency values below
a pre-defined threshold. When the latency is below the designated threshold (e.g.,
5–8 s), the Latency KPI will be fulfilled. For verifying the KPI, ENFORCE created
multiple services requests and measured the observed aggregated latency.

• Service availability. This KPI deals with the availability of the implemented ser-
vices. Services should be always available to the requests for iTV functionalities.
Service availability was verified by creating multiple requests to the provided ser-
vices and measuring the number of the correct invocations. After the execution of the
experiment, the percentage of the correct invocations was calculated.

• Storage demand fulfilment. This KPI deals with the fulfilment percentage of the
requests concerning the storage requirements (for streams that are not recorded) as
users demand. ENFORCEmeasures the fulfilment rate based on a number of requests
for iPVR functionalities. This KPI was verified by creatingmultiple requests for iPVR
services and measuring the number of the fulfilled requests. After the execution of
the experiment, the percentage of the fulfilled requests is calculated.

All the selected KPIs were evaluated in parallel during the experiment execution
in order to obtain cumulative insights for the performance achieved by the ENFORCE
solution.

5 Conclusions

ENFORCE experiment contributes to the understanding of the minimum requirements
that efficiently support video streaming services. Our results exhibit the appropriate
characteristics of the hardware required to efficiently support the desired services. The
proposed monitoring mechanism can easily assist in scale in / out actions to upgrade

Intelligent Monitoring of Virtualized Services 189

/ downgrade the resources involved in the virtualized environment. In this way, the
management of the available physical resources is efficiently handled to maximize the
performance and secure the quality of service.

Acknowledgment. This research received funding from the European’s Union Horizon 2020
research and innovation programme under the project ENFORCE accepted in the 2nd SoftFIRE
Open Call.

References

1. ACTORS: Adaptivity and Control of Resources in Embedded Systems (2008). https://www.
actors-project.eu/. Accessed 10 Nov 2014

2. EVANS: End-to-end Virtual Resource Management across Heterogeneous Networks and Ser-
vices (2011). https://www.fp7-evans.eu/. Accessed 10 Nov 2014

3. NUBOMEDIA: an elastic Platform as a Service (PaaS) Cloud for interactive social multimedia
(2013). https://www.nubomedia.eu/. Accessed 10 Nov 2014

4. VIDA: Transforming Raw Data into Information through Virtualization (2014). https://cordis.
europa.eu/project/rcn/189848_en.html. Accessed 10 Nov 2014

https://www.actors-project.eu/
https://www.fp7-evans.eu/
https://www.nubomedia.eu/
https://cordis.europa.eu/project/rcn/189848_en.html

Author Index

Ayed, Dhouha 179

Bagheri, Alireza 53
Baouya, Abdelhakim 41
Barzegar, Hamid R. 18, 53, 161
Bensalem, Saddek 41
Bornholdt, Heiko 140
Bozga, Marius 41
Brogi, Antonio 103

Cantero, Miquel 41
Cascavilla, Giuseppe 166
Chehida, Salim 41
Curry, Edward 65

Dalla Palma, Stefano 155
De Pascale, Daniel 166
Di Nucci, Dario 155

El Ioini, Nabil 29

Fettke, Peter 77

Garriga, Martin 155

Hästbacka, David 29

Ioini, Nabil El 18, 161

Jaho, Eva 179

Kazarji, Maryam Haddad 53
Kolomvatsos, Kostas 185
Kumara, Indika 173

Lachner, Clemens 179
Le, Van Thanh 121, 161
Lichtenthäler, Robin 90

Mann, Zoltán Ádám 179
Millet, Marta 41
Muntoni, Giuseppe 103

Pahl, Claus 18, 29, 53, 161
Partovi, Behdad 53
Ponce, Francisco 133
Pontes, Felipe Arruda 65

Quattrocchi, Giovanni 173

Reisig, Wolfgang 77

Sailer, Isabell 90
Seidl, Robert 179
Soldani, Jacopo 5, 103
Surridge, Mike 179

Taibi, Davide 29
Tamburri, Damian Andrew 155, 166, 173
Tziouvaras, Thanasis 185

Van Den Heuvel, Willem-Jan 155, 166, 173
Van Le, Thanh 18

Wirtz, Guido 90

	Workshop Editors
	Preface
	Organization
	Contents
	1st International Workshop on Edge Migration and Architecture (EdgeWays 2020)
	Preface to the First International Workshop on Edge Migration and Architecture
	Organization
	Program Committee Chairs
	Program Committee

	Finding Feasible Application Deployments in Edge Clusters, with Limited Resources
	1 Introduction
	2 Setting the Stage
	3 Computing Feasible Deployments, with EvalTo
	4 Open-Source Prototype Toolchain
	5 Related Work
	6 Conclusions
	References

	Edge Computing Simulation Platforms: A Technology Survey
	1 Introduction
	2 Related Work
	3 EC Key Characteristics
	3.1 Visualization Support
	3.2 Network Support
	3.3 Orchestrator Support
	3.4 Local Controller
	3.5 Offloading
	3.6 Mobility Support
	3.7 Migration Support
	3.8 Security

	4 EC Simulator Platforms
	4.1 IoTSim-Edge
	4.2 EdgeCloudSim
	4.3 ECSim++
	4.4 IFogSim
	4.5 CloudSimSDN
	4.6 YAFS
	4.7 EmuFog
	4.8 FogTorch
	4.9 BEC

	5 Simulator Tool Comparisons
	6 Conclusion and Future Work
	References

	Platforms for Serverless at the Edge: A Review
	1 Introduction
	2 Background
	2.1 Serverless
	2.2 Edge Computing

	3 The Serverless Edge Computing Platform
	3.1 Content Delivery Network Platforms
	3.2 IoT Platforms

	4 Discussion
	4.1 Open Issues

	5 Conclusion
	References

	Formal Modeling and Simulation of Collaborative Intelligent Robots
	1 Introduction
	2 IoT Concepts and Architecture
	3 Robots Orchestration: A Case Study
	4 Modeling and Verification Environment
	4.1 Modeling in BIP
	4.2 Verification Using SMC-BIP
	4.3 Validation

	5 Related Works
	6 Conclusion
	References

	Virtual Machine Placement for Edge and Cloud Computing
	1 Introduction
	2 Related Works
	3 System Model
	3.1 Colony Optimization
	3.2 Heuristic Information
	3.3 Intelligent Water Drops Algorithm
	3.4 Utilization of Proposed Algorithm in Dynamic Scheduling
	3.5 Implementing the Basic Genetic Algorithm in Comparison with the Proposed Methods

	4 Numerical Results and System Evaluation
	4.1 Initializing and Generating the Input Parameters of Algorithms
	4.2 Sample Test
	4.3 Summarizing the Sample Test Results
	4.4 System Evaluation

	5 Conclusion
	References

	Cloud-Edge Microservice Architecture for DNN-based Distributed Multimedia Event Processing
	1 Introduction
	2 Motivation and Related Works
	3 MEP Framework Design
	4 Framework Evaluation
	4.1 Study Requirements
	4.2 Methodology
	4.3 Execution Environments
	4.4 Evaluation Method
	4.5 Object Detection Models and Dataset
	4.6 Framework Impact on Speed and Energy

	5 Conclusion
	References

	16th International Workshop on Engineering Service-Oriented Applications and Cloud Services (WESOACS 2020)
	Introduction to the 16th International Workshop on Engineering Service-Oriented Applications and Cloud Services (WESOACS 2020)
	Organization
	Workshop Organizers
	Program Committee
	Acknowledgements

	Modelling Service-Oriented Systems and Cloud Services with Heraklit
	1 Introduction
	2 Principles of Heraklit
	2.1 Big Systems
	2.2 Composition of Systems
	2.3 Abstraction and Refinement
	2.4 Modelling of Data and Things Equally
	2.5 Behaviour
	2.6 Describing Systems on a Schematic Level
	2.7 Verification

	3 Modules and Their Composition
	3.1 Modules
	3.2 Composition of Modules

	4 Case Study: A Service System
	4.1 The Different Modules of the System
	4.2 Overall Model and Abstract Composition

	5 Related Work
	6 Conclusions
	References

	An Evaluation of Frameworks for Microservices Development
	1 Introduction
	2 Microserivces Characteristics
	3 Methodology
	4 Frameworks Feature Comparison
	5 Implementation-Based Comparison
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Mining the Architecture of Microservice-Based Applications from their Kubernetes Deployment
	1 Introduction
	2 Background: TOSCA
	3 Mining Microservice-Based Architectures
	3.1 Step 1: Static Mining
	3.2 Step 2: Dynamic Mining
	3.3 Step 3: Refinement

	4 Proof-of-Concept Implementation
	5 Related Work
	6 Conclusions and Future Work
	References

	ESOCC 2020 PhD Symposium
	Preface to the PhD Symposium
	Organization
	Program Committee Chairs
	Program Committee

	Trusted Orchestrator Architecture in Mobile Edge Cloud Computing
	1 Introduction
	2 Problem Statement and Reference Scenario
	3 Methodology
	3.1 Mobility Simulator
	3.2 Containerization
	3.3 Blockchain and Trust Mechanism
	3.4 Prediction Mechanization

	4 Trusted Orchestrator Architecture
	4.1 MEC Models
	4.2 Trust Aspects

	5 Simulation Environment
	6 Our Current Work and Future Research Plan
	7 Related Work
	8 Conclusion and Future Work
	References

	Towards Resolving Security Smells in Microservice-Based Applications
	1 Introduction
	2 Background
	2.1 Microservices Architecture
	2.2 Architectural Smells

	3 Problem Statement
	3.1 Microservices Security
	3.2 Microservices Smells
	3.3 Proposal

	4 Research Plan
	4.1 Research Challenges
	4.2 Expected Results

	References

	Towards Citizen-Centric Marketplaces for Urban Sensed Data
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Research Objectives
	5 Preliminary Results
	6 Research Plan
	References

	ESOCC 2020 EU Projects Track
	EU Projects Track
	Organization
	Program Committee Chairs
	Program Committee
	Additional Reviewers

	DevOps and Quality Management in Serverless Computing: The RADON Approach
	1 Introduction
	2 Objectives
	3 Early Results
	3.1 Graphical Modeling Tool
	3.2 Decomposition Tool
	3.3 Defect Prediction Tool
	3.4 Verification Tool
	3.5 Continuous Testing Tool

	4 Conclusions and Research Roadmap
	References

	5G-CARMEN: Service Continuity in 5G-Enabled Edge Clouds
	1 Introduction
	2 5G-CARMEN Use Cases
	3 Proposed System Architecture
	4 Service Continuity Solutions
	4.1 Simulation Environment Setup
	4.2 AI Algorithm for Prediction Algorithm
	4.3 Blockchain-Based Service Continuity
	4.4 Emulation Environment Setup

	5 Conclusions
	References

	Services Computing for Cyber-Threat Intelligence: The ANITA Approach
	1 Introduction
	2 Concept and Approach Overview
	3 Big Data Services and Analytics
	3.1 Trend Analysis Module Architecture

	4 Conclusion
	References

	Quality Assurance of Heterogeneous Applications: The SODALITE Approach
	1 Introduction
	2 The SODALITE Framework: Overview
	3 Taxonomy of Smells, Bugs, Errors, and Resolutions
	4 The SODALITE Quality Assurance Framework
	5 The SODALITE Refactoring Framework
	6 Conclusion
	References

	FogProtect: Protecting Sensitive Data in the Computing Continuum
	1 Basic Project Information
	2 Project Objectives
	2.1 Secure Data Portability
	2.2 Data-Protection-Aware Adaptive Service and Resource Management
	2.3 Data Protection Policy Management
	2.4 Data Protection Risk Management

	3 Use Cases
	4 Current Project Status
	References

	Intelligent Monitoring of Virtualized Services
	1 Introduction
	2 Related Work
	3 The ENFORCE Solution
	3.1 High Level Description
	3.2 Intelligent Monitoring

	4 ENFORCE Implementation Details and KPIs
	5 Conclusions
	References

	Author Index

