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Abstract The multi-level organization of nature is self-evident: proteins do interact
among them to give rise to an organized metabolism while in the same time
each protein (a single node of such interaction network) is itself a network of
interacting amino-acid residues allowing coordinated motion of the macromolecule
and systemic effect as allosteric behaviour.

Similar situations hold for ecology, anatomy, organ physiology. The most diffuse
approach to such situation is to give for granted that causally relevant events pertain
to the most fundamental level (the molecular one) in the form of regularities (or
perturbations in the case of pathological situations), that ‘climb up’ the hierarchy
reaching the ultimate layer of macroscopic behaviour.

Such causative model, is not the only one: we observe top-down, bottom-up as
well as middle-out perturbation/control trajectories.

The recent complex network studies allow to go further the pure qualitative
observation of the existence of both non-linear and non-bottom-up processes and
to uncover the deep nature of multi-level organization. Here, taking as paradigm
protein science, we will give an account of how the information travelling across
a network can create meaning so offering a more realistic frame of causation in
complex systems.

Keywords Allosteric effect · Biodynamic interfaces · Causative models ·
Complex networks · Complexity · Multi-level organization · Proteins

1 Introduction

The network formalism is probably the most natural way to represent biological
systems. Even if in the last decades the analysis of complex networks became a
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very widespread paradigm to face problems going from macromolecular structures
(Di Paola et al., 2013) to genetic regulation circuits (Demongeot et al., 2003),
neuroscience (Sporns, 2018) and ecological systems (Mendonça et al., 2018) this
is not a new idea. In 1948 Warren Weaver (1948) one of the fathers of mathematical
information theory sketched a very intriguing synthetic tripartite description of
science into problems of ‘organized simplicity’, ‘disorganized complexity’ and
‘organized complexity’ with biology located in the last class.

The first class (simplicity) refers to the case of very few elements interacting
among them with largely invariant relations, being its paradigm classical mechanics.
Class 1 problems allow for an extreme abstraction (e.g. a planet can be thought as
a dimensionless ‘material point’). The possibility to take into consideration only
very few basic features like mass and distance makes this approach largely object
independent (this is the basic reason of the use of examples of the same physical
law based upon cars, cannonballs or skiers).

Problems of Disorganized Complexity (class 2) have as paradigm classical
thermodynamics and reach a great generalization power by means of a very different
style of reasoning with respect to Class 1. In Class 2 problems, the predictive power
stems from giving up the analysis of system fundamental aggregation level (e.g. the
single molecules) preferring a statistical knowledge corresponding to gross averages
(like pressure, volume, temperature are) on a transfinite number of atomic elements.
Both the approaches must fulfil very stringent constraints. Class 1 approach asks
for few involved elements interacting in a stable way, class 2 style needs a very
large number of identical particles with only negligible (or very stable and invariant)
interactions among them. Biological systems, only in very few cases do satisfy
these constraints, so we step into Weaver’s third class (Organized Complexity).
Organized Complexity arises whenever many (even if not so many as in class 2)
non-identical elements each other interact by means of links endowed with time-
varying correlation strength.

The interaction of ‘non identical elements’ with ‘varying correlation strengths’
corresponds to a network of links (edges, correlations) with variable strength,
connecting different nodes that in turn are ‘non identical’ being themselves networks
with variable wiring structure.

Weaver (1948) commented that while science was at home (relying on the
usual repertoire of laws and boundary conditions deciding for their application) in
both Class 1 and Class 2 phenomena, the overwhelming importance of contextual
information with respect to lawful invariant behaviour, of Class 3 systems, makes
the situation much more uncomfortable. After more than 70 years from Weaver’s
paper, we made some steps ahead in Organized Complexity studies and the present
work deals with these advancements.

The paper is organized as follows: in the first chapter (biodynamic interfaces)
we will discuss the basic principles of the interaction between complex systems,
with an emphasis on the need of an intermediate layer shared by the two interacting
systems with a partially independent nature with respect to the two interactors. In
the second chapter (the middle way) we will introduce the concept of mesoscopic or
‘middle-out’ organization demonstrating why the ‘network representation’ allows
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for a natural, hypothesis free formalization of the meso-scale. The third chapter will
be devoted to the transit of information across a network system and the consequent
discrimination from noise of the relevant (signal) perturbations able to ‘climb-up’
or ‘stepping-down’ the multilevel organization using allosteric effect in proteins as
model system.

2 Biodynamic Interfaces

There is no interaction without information exchange and there is no information
exchange without an efficient communication channel. This ‘channel’ is exactly
what we call ‘Interface’. If Mary calls Peter by means of her smartphone, the
establishing of a contact strictly depends on the existence of an electromagnetic
field endowed with a band of frequencies devoted to cell phone communication.
Peter smartphone corresponds to a very specific frequency modulation of the field
that is elicited by the digits Mary composes on her phone and sends on the specific
band of frequencies, consequently Peter’s smartphone rings and the communication
begins. We do not enter into the actual content of communication (that only pertains
to Mary and Peter), instead we focus on two crucial points of the process:

1. The existence of a medium (the field) that cannot be considered as a discrete
entity with a specific location in both space and time but as a ‘global feature’
covering the space and assuming different values in different locations. The
interactors (here the Mary and Peter phones) are causally linked in both
directions only because they share the same field. From basic physics we
know that a point charge embedded into an electromagnetic field both ‘senses’
(i.e. is influenced by the field) and modifies (i.e. influences) the field. This is
exactly what happens in human-environment interaction in which environment
influences physiology (e.g. toxic effects, sensory information..) and is in turn
influenced by humans. Both human beings and environment are complex systems
and, for their interaction, they need a shared interface (Arora et al., 2020).

2. The interface (field) oscillates with a specific frequency, this implies it has both
a ‘spatial’ and a ‘temporal’ structure, it is a dynamic interface. The frequency
of oscillation is not independent from the spatial features of the interface, more
in general, any network system (even a field can be imagined as a grid with
some focal points, the ‘cells’ in the case of mobile phones) has characteristic
oscillation modes originating from its wiring structure. We will go back on this
point when dealing with protein structures ‘resonating’ with specific modes that
are the carriers of across levels information.

Both these issues are at work in multi-level organization and, more in general, in
biological regulation.
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3 The Middle Way

The most common style of explanation follows an IF-THEN style in which what
happens at a given level influences (or determines depending on the relative impor-
tance of stochasticity embedded in the link). These linear fluxes of implications give
for granted the existence of a fundamental ‘explanatory layer’ located at the most
microscopic level that, thanks to a sort of domino effect, ends up into a macroscopic
consequence.

This view is in sharp contrast with what we know about complex structured
systems, where a multi-layer (and bi-directional) causality is at work. One of
the most clear falsifications of the obliged ‘bottom-up’ character of biological
causation, comes from a 1945 paper (Fankhauser, 1945) by the German (but USA
based) embryologist Gerhard Fankhauser. He considered cell size in polyploid
triton larvae that have a doubled chromosome number with respect to their diploid
counterpart. The polyploid individuals have a doubled cell size with respect to the
diploid ones, on the contrary, they have exactly the same dimension of organs and
ducts. Arora et al. (2020) with respect to the diploid counterpart. This comes from
the fact that the polyploid organism uses half the number of cells, though each
cell was itself double in size, to build up its organs. This is crucial for life: the
optimization of the calibre of a biological structure (the duct) is fine tuned to fit
with the flow of biological fluids (a top-down constraint) and cannot be established
by more fundamental levels like its constituent cells or the genome. While this is
an intuitive tenet for a ‘designed’ or ‘teleological’ process (after all, we do not
decide the size of our house based solely on the size of the bricks!), the Fankhauser
finding was considered as a largely unexpected finding in a natural system. This is
why Albert Einstein (a colleague of Fankhauser at Princeton) told he was expecting
the double size cells should give rise to double size organs, concluding that the
Fankhauser observation pointed to still largely unknown principles. The brilliant
Fankhauser experiment was largely overlooked and obscured by the successes
of molecular biology in the years to come, but it is a clear example of a top-
down causative model in which a ‘high-level’ constraint ‘slaved’ the microscopic
cellular/genomic level.

It is important to stress that the ‘bottom-up only’ obsession is not shared by all
the biological fields of investigation, Ecologists recognized since many years that
the ‘most microscopic’ level of organization is not necessarily the place where ‘the
most relevant facts do happen’.

On the contrary, the most fruitful scale of investigation is where ‘non-trivial
determinism is maximal’ (Pascual & Levin, 1999). That is to say, the scale more
‘rich’ in meaningful correlations between features pertinent to micro and macroscale
that directly recalls the above sketched concept of ‘Interface’.

Non-trivial determinism can be defined in terms of prediction error as:

Prediction r2 = 1 − E2/S2
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In the above formula, E is the mean prediction error and S the standard deviation.
In the case of a simple linear regression in which a dependent variable Y must be

predicted by an independent variable X, the non-trivial determinism is nothing else
than the usual squared Pearson correlation between the two X and Y variables.

The formula can be extended to any other situation in which we wish to predict
a system feature Y, both X and Y do not need to represent single variables but any
suitable set of information at any definition scale.

The ‘non-trivial’ attribute of determinism stands for the need of ‘explaining the
variance’ of the system at hand (the statistic r2 corresponds to the proportion of
variance explained by a model) and not its ‘average’ pattern. The aim is to get rid
of the actual behaviour of the system in both space and time and not to describe a
‘frozen’ ideal configuration.

The individuation of ‘mesoscopic principles’ largely independent from the
material constitution of the studied system and only dependent from their relational
structure was faced by 1998 Nobel prize in Physics Robert Laughlin and colleagues.
A paper appeared in year 2000 (Laughlin et al., 2000) entitled ‘The Middle Way’
that aptly individuated in the discovery of universal mesoscopic principles the next
frontier of science.

As pointed out by Nicosia et al. (2014): ‘Networks are the fabric of complex
systems’ and this tells us that network formalism is probably the ideal instrument
in the search for such principles. The basic idea of complex network style of
reasoning is that shared organization rules (i.e. similar wiring patterns) give rise
to similar phenomenology, independently of the nature of the constituting elements.
In other words, complex network invariants promise to be the place where to look
for universal mesoscopic principles, for the simple fact that they have not different
regularities and laws for the different levels, this promises to be the viewpoint
that maximizes ‘non-trivial determinism’ (Pascual & Levin, 1999) favoring the
emergence of between-level correlations.

In Mickulecki (2001) paper, the author demonstrates the neat separation of the
laws governing the internal functioning of the nodes of a network (constitutive
laws) from the laws and regularities only dependent from the wiring structure of the
system (relational laws). This allows to build an electrical analogue of a mechanical
or physiological system only based on conservation principles of both potential and
flux across a network analogous to Kirchoff’s laws. The flux does not need to be
an electrical current and the same holds for the potential: a system represented
by a set of nodes linked by edges with a given topology has similar emerging
properties independently of the physical nature of nodes and edges. This opens the
way to a ‘network thermodynamics’, whose principles are strictly dependent from
wiring architecture while largely independent of the constitutive laws governing the
single elements. Still more important, this provokes a shift from the founding of the
unitary character of science from the consideration that ‘all the entities are made
of the same fundamental building blocks’ to the recognition that ‘all the entities
can be represented by a set of relations among their parts’. These relations can be
formalized in terms of graph (network) invariants catching different aspects of the
wiring structure of the system at hand.
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Fig. 1 The figure reports the adjacency matrix (left panel) correspondent to the wiring diagram
on the right. The presence of a direct link between two nodes corresponds to a unit value of
the corresponding element of the matrix on the left. Here all the links are supposed to have the
same strength, in other cases we can substitute the unit values with a quantitative estimate of the
correlation strength. The represented graph is bi-directional

Complex network invariants catch the essence of multi-level organization for the
simple fact their estimation merges different level of definition of the system at hand
without the need of any strong hypothesis.

Mathematically speaking, a network corresponds to a graph whose entire
information is caught by its adjacency matrix (see Fig. 1): a binary matrix having as
rows and columns the nodes and at each i, j position a unit value if the i and j nodes
have a direct link between them and 0 otherwise.

Graph invariants are relative to local (single nodes), global (entire network), and
mesoscopic (clusters of nodes, optimal paths) levels respectively. The “degree” (how
many links are attached to a given node) is a local descriptor, the “average shortest
path” (characteristic length) is the average length of minimal paths connecting
all the node pairs, and can be considered as a mesoscopic feature, while the
general connectivity of the network (density of links) is a global property (Giuliani,
2019). All these descriptors (and many others) are strictly intermingled across
different organization layers. Thus, characteristic length inherits from the ‘bottom’
the information of the single node degree (higher degree nodes have an higher
probability to enter into shortest paths). In turn, betweeness of a node (the number of
shortest paths passing by a node, thus a microscopic feature of the network) inherits
from the ‘top’ (mesoscopic level) the existence of clusters (modules) of nodes.

In this way, a node in between two different A, B clusters is traversed by all the
shortest paths linking the A, B node pairs so scoring an high betweeness (Fig. 2).

Describing a system by network formalism implies a multi-level structural
representation without the need of ‘imposing’ a particular bottom-up or top-down
causative pattern.
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modules
modular structure
modularity

hub nodes
betweenness centrality
other centralities

shortest path
characteristic path length
global efficiency
closeness centrality

triangle
clustering coefficient
transitivity

motif
anatomical motifs
functional motifs

degree
degree centrality
participation coefficient
degree distribution

Fig. 2 The figure reports schematically the most common graph invariants. Each index con-
centrates on a particular aspect of network wiring, shortest paths, participation coefficient and
betweeness centrality are particularly important for describing fluxes across the network, clustering
coefficient and modularity point to the existence of ‘structural domain’ within the network

4 Information Fluxes Within Networks

Proteins are the smallest objects that have all the features typical of complex
systems, it is not without reason that the title of a seminal work on protein structure
and dynamics (Frauenfelder & Wolynes, 1994) is ‘Biomolecules: where the physics
of complexity and simplicity meet’.

Proteins ‘sense’ the environment, can acquire different stable state configura-
tions, have an emergent behaviour not predictable from the accurate knowledge of
their composition and perform complex ‘actions’ relevant for the system that host
them. In addition the structural and compositional knowledge we have on protein
molecules is order of magnitudes mere detailed and reliable than for any other
complex system. This makes protein sciences a perfect playground for complexity
studies.

Probably the most straightforward paradigm of information transfer through
a network is the allosteric effect. Allostery is a neologism coming from Greek
language, which has to do with the ability of proteins to transmit a signal from one
site to another in response to environmental stimuli. The sensing (and consequent
adaptation) of relevant information from the microenvironment is crucial for protein
physiological role. This ability relates to the transmission of information across the
protein molecule from a sensor (allosteric) site to the effector (binding) site (Di
Paola & Giuliani, 2015). The protein molecule, hence, perceives ligand binding (or
any other micro-environmental perturbation) at distance from the active site (where
in turn the effective action takes place, e.g. where two small molecules are put
together in order to catalyse their chemical reaction), and adapts its configuration
accordingly. Thus, haemoglobin molecule senses at the allosteric site the partial
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Fig. 3 In this figure, the left panel the 3D structure of a small protein (recovering) follows the
usual ‘ribbon’ style: the polypeptidic chain is represented in terms of contiguous segments of
‘secondary structures’ namely helices, random coils, and beta sheets. The right panel represents
the same protein in terms of the adjacency matrix of the corresponding network (PCN = Protein
Contact Network) whose nodes are the constituent amino-acids while the darkened pixels mark the
relevant between amino-acid residues contacts (the unit values of Fig. 1)

pressure of oxygen (p[O2]): when p[O2] is high the affinity of haemoglobin for
oxygen increases and the protein binds oxygen molecules at active site, on the
contrary when p[O2] is low, affinity decreases and bound oxygen is released to cells.
This process is crucial for life: in lungs there is a very high oxygen pressure and the
haemoglobin present in red blood cells must catch oxygen molecules that in turn
must be released in peripheral tissues (low p[O2]) so to make oxidative metabolism
possible. How the protein molecule can discriminate such a relevant signal from the
continuous perturbations of its structure coming from thermal noise and transmit
the information at distance so to reach the active site.

To answer this question is useful to consider a protein molecule as a network
(Fig. 3) having as nodes the aminoacid residues and as edges the intermolecular
non-covalent bonds between residues generated by the 3D folding of the molecule.
These networks are called Protein Contact Network (PCN) (Di Paola et al., 2013).

In Fig. 3 the aminoacid residues are ordered along the protein sequence from
the left to the right in the X axis of the adjacency matrix and from the top to the
bottom on Y. The ‘trivial’ contacts between aminoacids adjacent along the chain are
not considered. This implies the scored contacts (links of the PCN) correspond to
non-covalent intermolecular bonds putting different parts of the molecule into close
contact (see Fig. 4, where a protein molecule is represented as a bracelet having
aminoacid residues as pearls and PCN relevant contacts as red dashed lines).

In PCNs the shortest paths passing by the network edges mediate concerted
motions and energy transmission upon stimulation of allosteric site (Di Paola &
Giuliani, 2015). The topological metrics of shortest paths (minimum number of
links separating two residues) is thus the actual metrics for signalling. Recently
it was demonstrated (Poudel et al., 2020) that this purely topological metrics is
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Fig. 4 The blue line
sequentially connecting the
different aminoacid residues
(pearls) corresponds to the
covalent bond that generates
the primary structure
(sequence) of the
macromolecule. In solution
the protein molecule acquires
its ‘native’ form by a folding
process that generates its 3D
structure responsible of its
physiological role. The
folding process puts aside
residues otherwise distant
along the sequence creating
contacts (dashed red lines)
among them. These contacts
allow for a direct
communication of the
interacting aminoacid
residues

coincident with the dynamical modes of protein molecule. This creates a spatio-
temporal link of ‘sustained modes’ fulfilling the stable oscillation constraint we set
for biodynamic interfaces. Thus we can say we are in presence of a ‘fine tuned’ grid
deciding of the fate of external stimuli across the system.

The discrimination between relevant signals to be transmitted at distance without
loss of information and non-informative perturbations to be dissipated without
relevant changes in the 3D structure, relies upon two very important mesoscopic
network descriptors: ‘Guimera and Amaral’ z and P indexes (Guimera & Amaral,
2005). The index z quantifies the number of contacts a given node (aminoacid
residue in this case) has with other nodes of its own cluster (local contacts), while P
scales with the number of edges linking the node to aminoacid residues pertaining
to different clusters.

A perturbation affecting specifically an ‘high P’ node travels a long distance
across the network passing by subsequent ‘high P’ nodes and arriving at destination
supporting allosteric effects, on the contrary generic (noisy) thermal motion rapidly
dissipates distributing across non-directional cycles thru intra-module motions.

High P nodes create a ‘fast lane’ for relevant information neatly separated by
noise. This is exactly the role of biodynamic interfaces: some proteins, called
multimeric, consist of distinct chains held together by intermolecular contacts. This
is the case of haemoglobin made of four distinct polypetidic chains: the allosteric
effect ends up into a different re-arrangement of the relative positions of the four
chains that go back and forth between two different patterns (R and T for Relaxed
and Tense) with high and low affinity for oxygen. The interface between these
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Fig. 5 The figure reports the adjacency matrix of haemoglobin described by a colour code. The
axes of the matrix reports the order of the residues along the chains (each chain corresponds to 150
residues), the dark blue corresponds to the lack of contacts, different colours correspond to the four
chains

four chains is made of high P aminoacid residues that allow for the among chains
concerted motions. Figure 5 gives a pictorial description of the situation.

From Fig. 5 it is evident the presence of ‘displaced contacts’ in the form of
residues that, while pertaining to a given chain (module of the network) have
the majority of their contacts with residues pertaining to different chains. These
‘displaced contacts’ are the long ‘whiskers’ contacting zones different from their
own cluster (e.g. the pale blue line pertaining to the first chain (1–150)) that is in
contact with the orange (second chain) module. These whiskers correspond to high
P nodes that generate ‘something in between’ the interacting systems with a ‘shared
ontology’ across the interacting systems (polypeptide chains).

Perturbations relevant for the allosteric effect (signals) enter the fast lane passing
by high P residues and arriving at destination, on the contrary, not relevant (noisy)
perturbations instead dissipate along futile within-module circuits. The presence
of both fast (directional low loss) and slow (no-directional high loss) lanes of
communication is shared by all natural networks (Kohestani et al., 2018) even if
in protein molecules is much more evident than in other natural networks.

The discrimination between relevant and irrelevant stimuli is a form of ‘meaning
creation’ by purely structural means that allow for a causative process embedded
(and not imposed from the external) in the relational structure of the system at
hand. This kind of causation makes obsolete the bottom-up top-down distinction and
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asks for a different explanation style in terms of ‘attractor-like’ dynamics spanning
different layers of organization.
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