
Deep Learning and Knowledge
Generalization

Guido Tascini

Abstract This work concerns the new studies related to the deep learning of
machines. In particular, it tries to see what lies behind the behavior of deep
neural networks, which have been very successful in various fields, such as image
recognition, interpretation of natural language and much more. The work analyzes
the deep networks and the behavior of the backpropagation algorithm. From this
it seems that the success of these networks, which amazed the authors of the
algorithms themselves, seems to lie in the processing of information and in the
ability of the algorithms to extract relevant knowledge, discarding that which
is not relevant for the purposes of the learning target. The bottleneck principle
(Tishby & Zaslavsky, 2015 IEEE Information Theory Workshop (ITW), Jerusalem,
pp. 1–5, 2015), in particular, appears to be a promising vision for the design of deep
artificial neural networks, based on a general principle related to the processing of
knowledge.

Keywords Autonomous knowledge learning · Backpropagation · Deep artificial
neural network · Deep learning · Input data compression · Output prediction ·
Knowledge generalization · Relevant knowledge extraction · Shallow artificial
neural network

1 Introduction

A Shallow Neural Network, has a single hidden layer, between an input layer and
an output layer. The algorithm that associates the set of input patterns to the set
of output patterns, named back-propagation algorithm, derives its name from the
backward propagation of the errors on the output units: difference between real
outputs and expected outputs. If the network has more than one hidden layers, we
are talking about deep networks.

G. Tascini (�)
ISAR-Lab, ITPI, Fermo, Italy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Minati (ed.), Multiplicity and Interdisciplinarity, Contemporary Systems
Thinking, https://doi.org/10.1007/978-3-030-71877-0_12

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71877-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-71877-0_12

168 G. Tascini

Fig. 1 Backpropagation
algorithm scheme

The scheme of the Backpropagation algorithm, for the shallow network, is
represented in Fig. 1. As it can be seen, the normal information flows forward,
while the errors flow backward and the errors derive from the comparison between
the output that the network must have (target) and the calculated output from
the network (actual). The algorithm tries to minimize these errors by varying the
weights of the links and stops when the target output substantially coincides with
the actual output (minimum of errors).

Weights Initialization Normally weights and thresholds are set, at the beginning,
equal to small random numbers. The activation level of the ‘entry unit’ is set by
the instance; as the activation level Oj of the hidden unit or the output unit, it is
determined by the expression:

Oj = F
(∑

wjiOi − θj

)

where

F(a) = 1

1 + e−a

Weight Training We start from the output layer and work backward on the hidden
layers by recursively updating the weights with the relation:

wji (t + 1) = wji(t) + �wji

where the variation of weights is given by the expression delta:

Deep Learning and Knowledge Generalization 169

�wji = ηδjOi

with η speed parameter. A term, called ‘moment’, is added to this variation to speed
up convergence:

wji (t + 1) = wji(t) + ηδjOi + α · ⌊
wji(t) − wji (t − 1)

⌋

where 0 < α < 1.
δj, gradient of the error, is calculated with the expression:

δj = Oj

(
1 − Oj

)∑
k

δkwkj

where δk is the gradient of the error corresponding to the unit k to which a
connection from unit j points.

The iterations are repeated until convergence. Then backpropagation algorithm
for shallow networks, with only one hidden layer, is the following:

1. Initialize the weights randomly
2. Do {
3. Initialize the global error E = 0;
4. For each (Xk, tk) ∈TS} {
5. Calculate yk and the Ek error;
6. Calculate the δj on the output layer:
7. Calculate the δi on the hidden layer:
8. Update the network weights: �w = ηδx:
9. Update the global error: E = E + Ek;}

10. } while (E < ε);

Training is carried out in the following three phases.

Learning In this phase the training set patterns set (Xk, ydk), k = 1, ... M} and
weights modified according to the Error-Backpropagation rule. It is important to
choose the patterns of the training set well so that they are as representative as
possible of the information that the network has to learn.

Such patterns can be presented:
In a Bach (or cumulative) mode. All the patterns are presented first, the error

committed on each one is calculated, the error is added up and then the connection
coefficients are modified;

In a on-line mode in which the connection coefficient values are updated after
the presentation of each single pattern of the training set. Convergence occurs when
it is reached a reduction of the global error, E = �kEk, so that the weights adapt to
the input pattern: in practice so that it becomes E < ε.

Generalization A well-trained network must be able to generalize information. In
the learning phase, after minimizing the errors committed at the exit, the weights are

170 G. Tascini

E

wji

Δw > 0 Δw < 0

Fig. 2 Gradient Descent method

frozen to proceed to the generalization phase in which the network responds well to
examples never seen before.

Convergence The ‘gradient descent’ method is universally adopted for the conver-
gence phase. Conceptually, the method consists in reducing the global error going
down towards the minimum, along the curve E = f (w), with the calculation of the
gradient.:

– if the gradient, ∂E/∂wji is positive, you must go towards the decrease of the
weights (�w <0),

– if the gradient, ∂E/∂wji is negative, you need to go towards weight gain (�w > 0).
See Fig. 2.

The error is calculated every time a training pattern is presented to the network
and then a descent towards the minimum is performed along the curve E = f (w)
following the decrease in the gradient. And there will be a gradient for each weight.

Extended Delta Rule y1 (actual output) is compared with y1 *(expected output)
and the coefficients are increased by �wij:

�wij = η∂E/∂wij, with η = learning parameter. If as a measure of the error we
have.

E = 1

2

∑
i

(
yi − y∗

i

)2

It leads to the explicit formula:

�wij = −η
(
yi − y∗

i

) ∂F (Pi)

∂Pi

xj

Deep Learning and Knowledge Generalization 171

While if we are dealing with a finite set of training patterns it is more convenient
to use the GLOBAL error:

E = 1

2

∑
k

∑
i

(
yik − y∗

ik

)2

That give the Extended delta rule.

�wij = −η
∑

k

[(
yik − y∗

ik

) ∂F (Pik)

∂Pik

xjk

]

In this last case, it is equivalent to the search for a local minimum of the value of
E moving in the direction of the maximum decrease (gradient method).

2 Deep Neural Networks

Deep Learning (DL) is a branch of Machine Learning. It allows you to extract
very complex information from a set of data, making it possible to carry out very
complicated tasks, such as those related to the perceptual sphere. Deep learning
models have the characteristic of being made up of different processing layers, each
of which extracts a representation of the previous layer.

In the context of supervised deep learning, the most used class of models is
the multi-layer neural network, or deep neural network (DNN). So it is a type of
network built model, the main components of which are nodes, or neurons. As
known, there are different classes of neural networks, depending on the type of
nodes, and how they are connected to each other. The neural networks, on the basis
of which the types of networks used in deep learning have been developed, are
feed-forward neural networks (FFNN), whose operation is normally based on the
“Back-Propagation” algorithm.

We can define the FFNN as follows: a network in which, if we number the
vertices, all the connections go from one vertex to another of greater number. In
practice the vertices are grouped into layers, and the connections go only from one
layer to the higher layers.

The layers of the nodes form a hierarchical structure: the lowest layer is the input
layer; the highest is the output layer. All the layers located inside are called hidden
layers; see Fig. 3.

The Deep Neural Networks, with multiple layers of neurons, of the type feed-
foreward, with many more then two hidden layers, and accelerated by the use of
GPUs, have recently seen enormous successes in many fields. They have passed the
previous state of the art in speech recognition, object recognition, images, linguistic
modeling and translation.

172 G. Tascini

i1

i3

i2

a1

a3

a2

a4

b1

b3

b2

b4

b5

o1

α4

α1

β 1

β5

θ2

θ1

o2

Fig. 3 Deep Neural Network, of the type feed-forward, described by the sequence 3–4–5-2, with
four layers: input layer, two hidden layers, output layer

The Fig. 3 illustrates a deep neural network with only two hidden layers. The
show nn has three inputs (i1, i2, i3), a first hidden layer (“A”) with four neurons, a
second hidden layer (“B”) with five neurons and two outputs (O1, O2), that may be
described by the sequence 3–4–5-2. This network requires a total of (3 * 4) weights
+4 bias + (4 * 5) weights +5 bias + (5 * 2) weights +2 bias = 42 weights and 11
bias.

The example use as activation function the hyperbolic tangent for the outputs
of the two hidden layers and the softmax for the output of the network. Then the
formulas that calculate the feed-forward are as follows:

Ai = tanh (i1p1i + i2p2i + i3p3i + αi)—first hidden layer,
Bi = tanh (A1p1i + A2p2i + A3p3i + αi)—second hidden layer,
Oi = softmax (B1p1i + B2p2i + B3p3i + B3p3i + β i)—outputs.

The training standard of deep NN uses back-propagation algorithm. The deep
neural network training, with multiple hidden layers, is more difficult than the
shallow neural network training with a single layer of hidden nodes. This factor

Deep Learning and Knowledge Generalization 173

is the main obstacle to overcome in order to process networks with many hidden
layers.

The connections, represented by arcs, are unidirectional and connect only nodes
of one layer with those of the next layer. Each arc is associated with a parameter,
called weight. In the initial modeling the arcs represented the synapses, that is,
nerve impulses that are transmitted from one neuron to another and the purpose of
these models was to identify which neurons were crossed by a sufficiently intense
signal, omitting neurons, whose signal was below a certain threshold. We present
the relationship between the layers of the network as a univariate relationship. For
this we define:

• L: number of layers of the network, consisting of an input layer, an output layer
and L—2 hidden layers;

• p1: number of input nodes;
• pl: number of nodes present in the l-th layer;
• xi: value of the i-th input node;
• •aj (l): value of the j-th node of the l-th layer;
• w (l)ij: coefficient associated with the arc that connects the i-th node of the l-th

layer with the j-th node of the (l + 1) -th layer;
• yk: value of the k-th output node.

The relationship between the input layer and the first hidden layer is:

z
(2)
j = w

(1)
0j +

p1∑
i=1

w
(1)
ij xi,

a
(2)
j = g(2)

(
z
(2)
j

)
.

Note how the j-th node of the first hidden layer takes on a value equal to
g(2)(z(2)), where g(2)(·) is a non-linear function, called activation function, while
z(2) is the linear combination of the input nodes and the parameters w(1). To this
linear combination is added the term:

w
(l)
0j

that is the parameter associated with the arc that connects a constant node equal to
1 with the j-th node of the (l + 1)-th layer.

This quantity acts as an intercept in the linear combination, and is introduced to
model any distortion.

The relationship between the (l–1)-th layer and the l-th layer is defined as:

z
(l)
j = w

(l−1)
0j +

pl−1∑
i=1

w
(l−1)
ij a

(l−1)
i ,

174 G. Tascini

a
(l)
j = g(l)

(
z
(l)
j

)
. (1)

The activation function g(l)(·) is specific for the l-th layer, although a single
activation function g (·) common in all layers is often used for the entire network.
Finally, the output layer is produced through the relationship between the (L-1) -th
layer and the following L-th layer:

z
(L)
k = w

(L−1)
0k +

pL−1∑
i=1

w
(L−1)
ik a

(L−1)
i ,

yk = g(L)
(
z
(L)
k

)
.

Both the number of output nodes K and the transformation function g (L) (·)
depend on the problem in question. For a unchanged regression problem, there
is typically only one output node, therefore K = 1, while, a suitable choice
of transformation function is the identity function, g (L) (z (L)) = z (L). For a
classification problem, the number of nodes K coincides with the number of
classes of the response variable that you want to model. Each node k indicates the
probability of belonging to the k-th class. As a transformation function, it is often
convenient to use the multinomial logistic function,

g(L)
(
z
(L)
k

)
= ez

(L)
k

∑K
j=1 e

z
(L)
j

which is called the softmax function. Now ask:

a(1) = x = [
1 x1 . . . xp1

]T ;

a(l) =
[
1 a

(l)
1 . . . a

(l)
pl

]T ;

w(l)
j =

[
w

(l)
0j w

(l)
1j . . . w

(l)
plj

]T ;

W(l) =
[

w(l)
0 w(l)

1 . . . w(l)
pl+1

]T ;

Deep Learning and Knowledge Generalization 175

W =
[
W(1)W(2) . . .W(L)

]
;

y = [y1 . . . yK]T .

Vector Notation Adopting vector notation makes it easier and more intuitive
formulate the relationship between two generic layers of the network:

z(l) = W(l−1)a(l−1), (2)

a(l) = g(l)
(

z(l)
)

, (3)

where the function g (l) (·) is applied element by element to the vector z(l).
Consequently, the complete relationship between the input vector x and the output
vector y is the following:

y = f (x; W) = g(L)
(
W (L−1)g(L−1)

(
· · · W(2)g(2)

(
W(1)x

)))
(4)

2.1 Calculation of Parameters Via Backpropagation

For regression problems, we generally have a quantitative response variable y = (y1,
..., yn) ∈ Rn, while for classification problems we use a qualitative response variable
y = (y1, ..., yn) ∈ T (y)n = {t1, ..., tK}n, where T (y) is the set of modalities that can
assume y. Consider a whole of data, consisting of n observations, for each of which
are detected p explanatory variables, xi = (xi1, ..., xip) ∈ Rp.

We want to adapt a neural network to the set of data, with the minimization of a
given loss function L[y, f (x; W)]. This is achieved by looking for those values of
the parameters Ŵ, such that

Loss function to be minimized is chosen from the following:

Ŵ = argmin
W

{
1

n

n∑
i=1

L [yi, f (xi; W)]

}
. (5)

For regression problems
Mean square error

MSE (W) = 1

n

∑n

i=1
(yi − f (xi; W))2;

176 G. Tascini

Root of the MSE

rMSE (W) =
√
1

n

∑n

i=1
(yi − f (xi; W))2;

Mean absolute error

MAE (W) = 1

n

∑n

i=1
|yi − f (xi; W)| .

For classification problems,
Misclassification rate

H (W) = −
∑n

i=1

∑K

k=1
yik log fk (xi; W)

where yik = 1 if yi = tk, 0 otherwise. Then minimizing cross-entropy corresponds
to maximizing the log-likelihood (Hastie et al., 2009). The algorithm most widely
used to estimate and calculate neural networks, is the backpropagation algorithm,
adapted to Deep Neural Networks (see Rumelhart et al. 1986).

2.2 Backpropagation Algorithm for Deep Neural Networks

1. Calculate the value of the node a(l) for each layer l = 2, ..., L, using the current
values of W,

2. For the output layer l = L, calculate

δ(L) =
∂L

[
yi, f̂ (xi; W)

]

∂f̂ (xi; W)
◦ ġ(L)

(
z(L)

)
; (6)

3. For the hidden layers (l = L—1, ...,2) obtain

δ(l) =
(
W(l)′δ(l+1)

)
◦ ġ(l)

(
z(l)

)
; (7)

4. Having δ2,...,δL it Is Possible to Derive the Partial Derivatives with

Deep Learning and Knowledge Generalization 177

∂L
[
yi, f̂ (xi; W)

]

∂W(l)
= δ(l+1)a(l)′ ; (8)

5. Update the W parameters using the gradient descent;
6. Start over with a new iteration from step 1, using the new values for the W

parameters.

This algorithm solve Eq. (8), with a low computational cost. Normally most of
the numerical optimization algorithms are iterative and require the calculation of
the gradient of the loss function with respect to the parameters, of first and second
order.

Keeping in mind that a multi-layered neural network has a very high number of
parameters, the computational cost of calculating the second order gradient becomes
excessive. If L are the layers, the network has L matrices of parameters W (l),
each of which contains pl × pl + 1 coefficients, where the number of nodes pl
can reach a few thousand. For each iteration of the algorithm, the calculation of the
first gradient requires a number of operations equal to the number of coefficients,
while the operations required for the calculation of the second degree gradient grow
quadratically as the number of parameters increases.

The advantage of the backpropagation algorithm is that, on the one hand, it does
not require the second order gradient, and on the other, it calculates the first gradient
only in the last layer, and then propagates it backwards in the other layers.

The algorithm alternates, for a given observation (xi, yi), with i = 1, ..., n, two
steps iteratively: with the step forward you get f^ (xì; W) through (4), keeping W
fixed, while with the step backwards you get the gradients and the parameters are
updated. In machine learning, each iteration is called an epoch.

In the step forward, the value of the nodes a (l) for each layer l = 2, ..., L is
calculated, using the current values of W (point 1 of algorithm backpropagation).
Through formula (4), it is possible to obtain all the values of the nodes, a (l), and
of the linear combinations, z (l), saving the intermediate quantities in progress. It is
therefore necessary to initialize the parameters with randomly chosen values, close
to 0.

Then the step backwards develops. This includes a propagation phase (points
2–4) and an update phase (point 5). The purpose of the propagation step is to
compute all the partial derivatives ∂L[yi, f^(xi; W)], with respect to the parameters.
In practice, the quantities δL, ..., δ2 are obtained, useful for calculating the partial
derivatives, in an iterative way. The generic δl must be calculated as ∂L[yi, f^(xi;
W)] with respect to z(l). The δL of the output layer can be calculated with the “chain
rule”; in substance δL is calculated as follows:

178 G. Tascini

δ(L) = ∂L
[
yi ,f̂ (xi ;W)

]

∂z(L)

= ∂L
[
yi ,f̂ (xi ;W)

]

∂f̂ (xi ;W)

∂f̂ (xi ;W)

∂z(L)

= ∂L
[
yi ,f̂ (xi ;W)

]

∂f̂ (xi ;W)
◦ ġ(L)

(
z(L)

)
,

whereġ(L) indicates the first derivative of g(L)(z(L)), and is easily obtained by
deriving the expression (3) for l = L; the symbol ◦ indicates the Hadamard product
(element by element product).

The δ (l) of the generic layer l is obtained as follows:

δ(l) = ∂L
[
yi ,f̂ (xi ;W)

]

∂z(L)

= ∂L
[
y,f̂ (xi ;W)

]

∂z(l+1)
∂z(l+1)

∂a(l)
∂a(l)

∂z(l)

= δ(l+1) ∂z(l+1)

∂a(l)
∂a(l)

∂z(l)

=
(
W(l)′δ(l+1)

)
◦ ġ(l)

(
z(l)

)
,

where

∂z(l+1)

∂a(l)
= W(l)′

is the first order gradient of (2). This expression correspond to (7) of the backprop-
agation algorithm and is named backpropagation equation.

Having δ2,...,δL it is possible to derive the partial derivatives with

∂L [yi, f (xi; W)]

∂W(l)
= ∂L [yi, f (xi; W)]

∂z(l+1)

∂z(l+1)

∂W(l)
= δ(l+1)a(l)′ ,

In the updating phase, the parameter values are modified by means of the
gradient descent, which uniquely uses the first-order partial derivatives, calculated
in the propagation phase. The descent of the gradient is a numerical optimization
technique that allows to find the minimum point of a function, using only the first
derivatives.

Then the algorithm is restarted with a new iteration, using the new values for the
W parameters.

3 The Gradient Descent

Let’s now see the updating of the parameters, carried out through the descent of
the gradient, which is what happens in point 5 of backpropagation algorithm. The

Deep Learning and Knowledge Generalization 179

gradient descent, based on the delta rule, is the most common and immediate method
for updating theW (l) parameters (point 5 of algorithm) (Bengio, 2012). In this case,
the updating of the parameters, at step t, takes place according to the Formula

W
(l)
t+1 = W

(l)
t − η · �L

(
W

(l)
t ; x, y

)
, per l = 1, . . . , L − 1

where

�L
(
W

(l)
t ; x, y

)

Is the gradient respect to Wt(i) of the argument of expression (5), that is gradient
of

1

n

n∑
i=1

L = [yi, f (xi;W)]

the

�L
(
W

(l)
t ; x, y

)

corresponds to

�L
(
W

(l)
t ; x, y

)
= 1

n

n∑
i=1

∂L [yi, f (xi;W)]

∂W
(l)
t

. (9)

Essentially, if the gradient is negative, the loss function at that point is decreasing,
which means that the parameter has to move towards larger values to reach a
minimum point. Conversely, if the gradient is positive, the parameters have to shift
towards smaller values to reach lower values of the loss function. The parameter
η ∈ (0, 1] is called the learning rate, and it determines the magnitude of the
displacement.

3.1 Mini Batch Gradient Descent

The previous method has several problems and limitations when applied to multi-
layered neural networks. The use of all data to perform a single update step
involves considerable computational costs and greatly slows down the estimation
procedure. Furthermore, it is not possible to estimate the model if the dataset is
too large and cannot be loaded entirely into memory. In this regard, the mini-batch
gradient descent technique is introduced. This consists in dividing the dataset into
subsamples of fixed number mxn, after a random permutation of the entire data set.

180 G. Tascini

The update is then implemented using each of these subsets, through the formula

W
(l)
t+1 = W

(l)
t − η · �L

(
W

(l)
t ; x(i:i+m), y(i:i+m)

)
,

where (i: i + m) is the index to refer the observation subset from i-th to (i + m)
th. Then, for each epoch, instead of a single updating (with all data) they are done
many updatings (mini-batch) by using the mini-batch data.

Advantages of this technique are:

• With little part of observations it is possible to meet better minima.
• The algorthm steps are so much faster and this fact guarantees a fastest

convergence towards the minimum point.

The learning rate problem: setting too small values can lead to a very slow
convergence, while large values can make the parameters fluctuate around the
minimum without bringing the algorithm to convergence. Furthermore, dealing
with this quantity with classic regularization methods (such as cross-validation)
can be computationally too expensive. Finally, it seems inappropriate to think
that all parameters need the same learning rate value to converge optimally. The
problem of entrapment in local minima far from the absolute minimum. Since the
models covered are highly parameterized, the loss functions previous discussed are
generally convex in f (x; W), but not in W. This means that L [y, f (x; W)] has a
single point of minimum for f (x; W), which is obviously the absolute minimum.
Conversely, L [y, f (x; W)] has several local minima for W, of which only one is
absolute. Then solve Eq. (5) and find the absolute minimum for W is somewhat
complex, due to the high risk of obtaining a local minimum (Hastie et al., 2009).
The attempt to solve the aforementioned problems allowed the development of
subsequent improvements with the mini-batch gradient descent (Duchi et al., 2014).

w
(l)
t+1,ij = w

(l)
t,ij − η√

Gt,ij + ε
· gt,ij ,

where Gt,ij is the sum of the squares of the gradients with respect to wt, ij
(l), up

to time t, that is Gt,ij = �1
T (gt,ij)2. ε instead is a is a smoothing term that serves

to avoid a null term in denominator, and is usually set to values of order of 10−8.
This allows to avoid the adjustment of the learning rate parameter, of which only an
initial value is set, usually equal to 0.01.

Since,Gij is a sum of positive terms, this quantity continues to increase with each
epoch, and the learning rate decreases until it tends to 0. This problem can be solved
by iteratively redefining Gij as an average exponential mobile (EWMA). The mean
at time t is then

E
[
g2

]
t,ij

= γ E
[
g2

]
t−1,ij

+ (1 − γ) g2
t,ij ,

where γ is normally updated around 0.9.

Deep Learning and Knowledge Generalization 181

The updating of the parameters therefore becomes

w
(l)
t+1,ij = w

(l)
t,ij − η√

E
[
g2

]
t,ij

+ ε
· gt,ij .

A further improvement is obtained by keeping in memory past values also
of the term gt,ij, and also applying an exponential moving average to the latter.
This innovative method of gradient descent is called Adam (Kingma & Lei, 2015;
Sebastian, 2016). It is determined with mt,ij = E[g]t,ij e vt,ij = E[g2]t,ij. The
quantities are then defined

mt,ij = β1mt−1,ij + (1 − β1) gt,ij ,

vt,ij = β2vt−1,ij + (1 − β2) g2
t,ij ,

where m0,ij and v0,ij are initialized to 0. and it is shown the correction:

m̃t,ij = mt,ij

1 − βt
1
, ṽt,ij = vt,ij

1 − βt
2
.

Then the parameter updated becomes:

w
(l)
t+,ij = w

(l)
t,ij = η√

m̃t,ij + ε
· ṽt,ij , (10)

with β1, β2 that must have values, respectively, 0.9 and 0.999. The method appears
very efficient.

4 Deep Neural Networks and Convolutional Neural
Networks

Deep neural networks are more difficult to train than shallow neural networks.
On the other hand, deep networks are much more powerful than flat networks
(Goodfellow et al., 2016). A widely used type of deep network is the convolutional
deep neural network (CDNN).

Starting from shallow networks, through many iterations, we can build ever
more powerful networks. The techniques to be inserted later are: convolutions,
pooling and GPU (LeCun et al., 2015; Ronen & Shamir, 2015). To this we add the
algorithmic expansion of data training to reduce overfitting, the use of the dropout
technique (Srivastava et al., 2014) and network composition. Let’s consider as an
example: Manuscript classification, using figures from the MNIST datase.

Starting with convolutional networks (Delalleau & Bengio, 2011) with shallow
networks, through successive iterations, we gradually build more complex networks:

182 G. Tascini

input layer
hidden layer 1 hidden layer 2 hidden layer 3

output layer

Fig. 4 Convolutional N N, with: one input layer, three hidden layers, one output layer

The result will be a system that offers performance close to human. We will use the
images not seen during training for the generalization test.

There have been spectacular recent advances in image recognition with convo-
lutional networks; and also with recurrent neural networks, long- and short-term
memory units, models that can be applied in speech recognition and natural
language processing (Nielsen, 2015).

4.1 Convolutional Networks

Here we have image recognition using networks with adjacent layers completely
connected to each other (Krizhevsky et al., 2012). That is, every neuron in the
network is connected to every neuron in the adjacent layers: Three basic ideas apply
in convolutional neural networks: local receptive fields, shared weights, and pools.
The input comes from squares of neurons, whose values correspond to the intensity
of the pixels we are using (Fig. 4).

These squares are located in regions of the input image. Basically each neuron
in the first hidden layer is connected to a small region of the input neurons, This
region in the input image is called the local receptive field. Let’s start with the top
left corner and by scrolling the local receptive field over the entire input image we
will have a different hidden neuron ‘i’ for each local receptive field (Fig. 5).

Steps greater than ‘1’ and a direction different from the horizontal can be used.
Shared weights and forecasts: each hidden neuron has a bias and weights connected
to its local receptive field. We will use the same weights and biases for each of
the hidden neurons. In practice, for the n.th hidden neuron, the output is: The
use of the receptive field does not alter the recognizability of the image. The

Deep Learning and Knowledge Generalization 183

input neurons
first hidden layer

Fig. 5 Receptive field connected to the first hidden layer

translation invariance of images also applies: the map from the input layer to the
hidden layer is the feature map. We call the weights that define the characteristics
in the map shared weights. The bias that defines the shared bias map file. The
network map just described concerns only a localized feature (functionality). Image
recognition requires multiple feature maps, so a full convolutional layer consists
of several feature maps. Each map is defined by a set of shared weights and a
single shared bias. The network can detect different types of feature-files, and each
feature is detectable on the whole image. The images correspond to different feature
maps (or filters). Each map is represented as a block image, corresponding to the
weights in the local receptive field. Feature map example (see Fig. 7): The lighter
blocks correspond to a smaller weight and the feature map responds less to the
corresponding input pixels. Darker corresponds to greater weight, and the feature
map responds more to corresponding input pixels.

Intuitively, it seems likely that the use of the translation invariance by the
convolutional layer will reduce the number of parameters required to obtain the
same performance as a fully connected model. This will also result in a faster
workout. Intuitively, it seems likely that the use of the translation invariance by the
convolutional layer reduces the number of parameters required to obtain the same
performance as a fully connected model. This will also result in a faster training
(Fig. 6).

Pooling Layers Pooling layers are placed immediately after the convolutional
layers. The pooling layers simplify the information file that exits the convolutional
layer: a pooling layer takes the output of each map of the characteristics of the
convolutional layer and creates another map of condensed features.

For example, it condenses a region in the previous layer. Common procedure for
pooling is max-pooling: the pooling unit takes only the maximum activation value
in the input region (Fig. 7).

Example: max-pooling applied to each of three feature maps (see Fig. 8). The
convolutional and max-pooling layers are similar to Neural Networks for Deep
Learning.

184 G. Tascini

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

Fig. 6 Input layer connected to three feature maps

Fig. 7 Feature map: block image, corresponding to the weights in the local receptive fields

Using Rectified Linear Units There are many ways to vary the network in an
attempt to improve results.

For instance we can change neurons: instead of using the sigmoid activation,
we use rectified linear units. In practice We’ll train for epochs. I also found soma
advamtage by uinge some regularization, with regularization parameter.

Expanding the Training Data Another way to improve the results is by algorith-
mically expanding the training data. A simple way of expanding the training data
is to displace each training image by a single pixel, either up one pixel, down one
pixel, left one pixel, or right one pixel. Using the expanded training data we can
obtain a better percent training accuracy.

Deep Learning and Knowledge Generalization 185

28 x 28 input neurons 3 x 24 x 24 neurons

3 x 12 x 12 neurons

Fig. 8 From Imput layer to 3 feature maps and then to 3 pooling maps

Fig. 9 DCNN of Krizhevsky, Sutskever and Hinton

Progress in Image Recognition A best paper of Krizhevsky, Sutskever and Hinton
appears in 2012 (Krizhevsky et al., 2012). They trained and tested a DCNN by a
restricted subset of the ImageNet data. They used the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC-2012). The used competition dataset gave them
the possibility of comparing their approach with others. The ILSVRC-2012 training
set contained about 1.2 million ImageNet images, from 1000 categories. From the
same 1000 categories performed validation and test sets containing, respectively,
50,000 and 150,000 images.

As an example of good architecture it is intresting to see the DCNN of
Krizhevsky, Sutskever and Hinton.

The DCNN of Krizhevsky, Sutskever and Hinton has layers of hidden neurons.
The first hidden layers are convolutional layers and some with max-pooling, the

next layers are fully-connected layers.
Note the layers split into 2 parts, corresponding to the 2 GPUs.
The input layer contains neurons, representing the RGB values for a image.

ImageNet contains images of varying resolution, while a neural network’s input

186 G. Tascini

layer is usually of a fixed size. The net dealt with this by rescaling each image so
the shorter side had length .

The first hidden layer is a convolutional layer, with a max-pooling step. It uses
11 × 11 local receptive fields, and a stride length of 4 pixels. There are 96 feature
maps, split into 48 feature maps on each GPU.

A max-pooling is in this and later layers, and done in 3 × 3 regions; pooling
regions may be overlapped.

The second hidden layer is also convolutional, with a max pooling step. It uses
5 × 5 local receptive fields. There are 256 feature maps, split into 128 on each GPU.

The input channels are used only by the feature maps. This is because any single
feature map only uses inputs from the same GPU.

The third, fourth and fifth hidden layers are also convolutional, but they do not
involve max-pooling; their parameters are respectively:

– (3) 384 feature maps, with 3 × 3 local receptive fields, and 256 input channels;
– (4) 384 feature maps, with 3 × 3 local receptive fields, and 192 input channels;
– (5) 256 feature maps, with 3 × 3 local receptive fields, and 192 input channels.

The third layer involves some inter-GPU communication (see figure) so the
feature maps use all 256 input channels.

The sixth and seventh hidden layers are fully-connected layers, with 4096
neurons in each layer.

The output layer is a 1000-unit softmax layer.

4.2 Deep Learning and Knowledge Relevance

The new era of Artificial Intelligence, linked to deep learning, was born with the
overcoming of Expert Systems and the difficulties encountered in defining all the
rules necessary to create a useful and efficient Expert System. In practice, the A.I.
has gone from trying to provide the machine with the necessary knowledge, to
making the machine learn this knowledge automatically. And this is how Machine
Learning was born, and Deep Learning in its field, with the successes we know in
the field of image recognition, speech, natural language, and in many other sectors
in which Machine Learning is applicable.

In practice, the turning point took place by abandoning the design of systems
that contained all the necessary knowledge for the intelligent machine, turning
to the design of systems that independently learned the necessary knowledge.
Machine Learning, after a period of interesting but not optimal results, has recently
accelerated, thanks to progress in computer technology on the one hand, and to
the development of decidedly efficient algorithms, based on innovative artificial
neural networks, and, in this context, of Deep Learning. The singular aspect of this
breakthrough is linked to the successes of these algorithms, whose dynamics and
founding principles possessed dark sides and all to be investigated.

Deep Learning and Knowledge Generalization 187

However, some glimmer is making its way. In particular by analyzing one of
the best known and most effective algorithms: the Backpropagation Algorithm
(Rumelhart et al., 1986; Shamir et al., 2010). The machine that learns to recognize
things never seen before selects the information it treats based on its importance.
The degree of importance of the information corresponds to its generalization. In
practice, the machine that learns to recognize objects does so by evaluating the
importance of the information that the object carries with it. In this regard, in the
behavior of the Backpropagation Algorithm, we have seen just what has just been
said. The algorithm in its iterations ends up filtering the unimportant information,
and preserving the broader one, that is, of a general type. And therefore, after the
training phase with the training set, the machine will be able to recognize objects
never seen before. That is, the machine is able to generalize its knowledge.

The phases observed by Tishby and Zaslavsky (2015) during the run of back-
propagation algorithm, in a deep network, can be summarized as follows:

Initial state: Layer 1 neurons encode everything about the input data including
all information on its labels. In the higher layers, in which neurons are located, they
are in almost random state, with little or no relationship to the data or their labels.

Adaptation phase. As the DL begins, neurons in the upper layers gain informa-
tion on the input and get the best of adapting labels to it.

Phase of change. The layers suddenly change their behavior and begin to forget
information about the input.

Compression Phase: the higher layers compress their representation of the input
data, taking what is relevant to the output label. They take the best to predict the
label.

Balance between security and compression. The last layer achieves a good
balance, retaining only what is necessary to predict the label.

Naftali Tishby and others have analyzed deep neural networks and defined the
‘Information Bottleneck Principle’ (Tishby et al., 1999; Tishby & Zaslavsky, 2015).

In practice, this principle allow to reach the theoretical limits of the optimal
information in the DNNs: that is, they say, obtain the generalization limits of finite
samples. This is quantifiable both by the constrained generalization and by the
simplicity of the network.

We can analise the compromise between the compression of input data (due to
bottlneck) and the output layer that preserves the prediction of supervised target.
Closely connected to this could be the optimal architecture of nn: layers number,
characteristics, connections.

In their experiments, Tishby and Shwartz-Ziv monitored the amount of informa-
tion each layer of a deep neural network held on the input data and the amount of
information each held on the output label. The networks appear to converge at the
theoretical limit of the information bottleneck: theoretical limit that represents the
optimal system for extracting relevant information: the network appears to compress
the input as much as possible without sacrificing the ability to accurately predict its
label.

We can argue that this trade-off between input compression and output prediction
can correspond to reducing (compressing) knowledge of the input, distinguishing

188 G. Tascini

what is not necessary, and is lost, and preserving what is relevant (general) for the
output.

If this can be seen as more then the behaviour of some algorithms, but will
become a general computational method, we would revolutionize the design of deep
learning systems by designing their optimal architecture.

References

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade (pp. 437–478). Springer.

Delalleau, O., & Bengio, Y. (2011). Shallow vs. deep sum-product networks. In Advances in neural
information processing systems (pp. 666–674).

Duchi, J. C., Jordan, M. I., Winwright, J., & Wibisono, A. (2014). Optimal rates for zero-order
convex optimization:the power of two function evaluations. arXiv:1312.2139v2.Mat oc.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hastie, T., Friedman, J., & Tibshirani, R. (2009). The elements of statistical learning: Data mining,

inference, and prediction. Springer.
Kingma, D. P., & Lei, J. (2015). Adam: A method for stochastic optimization. In Proceedings of

ICLR 2015.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems (NIPS) (pp.
1106–1114).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
Ronen E., Shamir O. (2015). The power of depth for feedforward neural networks. arXiv preprint.
Rumelhart, D., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536.
Sebastian, R. (2016). An overview of gradient descent optimization algorithms. arXiv preprint ar

Xiv:1609.04747.
Shamir, O., Sabato, S., & Thishby, N. (2010). Learning and generalization with the information

bottelneck. Theoretical Computer Science, 411(29–30), 2696–2711.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakutdinov, R. (2014). Dropout:

A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), 1929–1958.

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck method. In Proceeding
of the 37th Annual Allerton Conference on Communication, Control and Computing (pp. 368–
377).

Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), Jerusalem (pp. 1–5). https://doi.org/10.1109/
ITW.2015.7133169

http://dx.doi.org/10.1109/ITW.2015.7133169

	Deep Learning and Knowledge Generalization
	1 Introduction
	2 Deep Neural Networks
	2.1 Calculation of Parameters Via Backpropagation
	2.2 Backpropagation Algorithm for Deep Neural Networks

	3 The Gradient Descent
	3.1 Mini Batch Gradient Descent

	4 Deep Neural Networks and Convolutional Neural Networks
	4.1 Convolutional Networks
	4.2 Deep Learning and Knowledge Relevance

	References

