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In memory of Professor Eliano Pessa
September 19, 1946–March 22, 2020

Eliano Pessa, Theoretical Physicist, was a
Full Professor of General Psychology and
Cognitive Modeling at the University of
Pavia, Italy. He has already been Dean of the
Department of Psychology and the
Inter-departmental Research Center on
Cognitive Science in the same university. He
was also previously Associate Professor of
Artificial Intelligence at the University of
Rome “La Sapienza” Faculty of Psychology.
He was the author or coauthor of ten books
and many papers in scientific journals,
books, and proceedings of international



conferences. His scientific research interests
included quantum theories describing the
human brain’s operation, computational
neuroscience, artificial neural networks,
modeling emergence processes, quantum
field theory, phase transitions in condensed
matter, human memory, visual perception,
decision-making, and statistical reasoning.
As an expert mountaineer, he has climbed
mountains on various continents.



Preface

This book has been somewhat unconventionally organized. Usually, edited books
are organized around a dominant, characterizing topic elaborated by the contribu-
tions from authors. This structure is the case for the proceedings of conferences. In
the case of this book, the dominant subject is the human, cultural, and scientific
contribution of a particularly extraordinary person, Professor Eliano Pessa, who
recently passed away. It is a kind of book of proceedings of a virtual conference
in his honor, the AIRS1 conference of which he was the fundamental contributor. A
limited part of the music that the orchestra of his life played is artificial intelligence,
bio-systemics, cognitive science and psychology, quantum physics, systems science,
and alpinism. These were never separate disciplinary issues, but rather, some of the
coherent dimensions of interest in his life.

It is a matter of ongoing mutual, reciprocal interpretations and representations
of approaches, concepts, problems, and solutions, considering shared contextual
meanings. It is a matter of multiple contextual meanings whose coherence is given
by the fact of being lived, in this case, being lived by Eliano. True interdisciplinarity
and usage of nonequivalences can be described, in our case, among Eliano’s
life’s interests. He lived and not only theorized interdisciplinarity and multiple
dimensions. We remember how he considered it unacceptable doing one only thing
in life, and we consider proudly the one that we have experienced with him. Indeed,
Eliano practiced different ways and inspired most of us to do the same.

The contributors to this work had a considerable challenge, to be inspired by,
rebuild, and retrace such networked interests lived by Eliano from a personal,
cultural, and scientific perspective. The contributors were challenged to consider,
discuss, interpret, and represent the multiplicity and interdisciplinarity experienced,
lived, and applied by Eliano. Most of the authors lived with Eliano, the scientific
story of the Italian Systems Society1 of which he was the foremost scientific
supporter, contributor, and mentor.

1Associazione Italiana per la Ricerca sui Sistemi, in English Italian Systems Society, see Post-
scriptum.
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viii Preface

This book tries to honor such richness of Eliano’s contributions. We abstain from
any celebration that he would certainly not have liked. His life, scientific production,
and mountaineer practice are common threads that authors elaborate upon, interpret,
understand, and rebuild memories. We are called upon to create novelty, take risks,
and not only to end up in contributions, the solidity of which has already been
confirmed in the literature, and is perhaps even a little out of date.

We are happy and honored to have walked with him.
Now, a posteriori, we must have deserved him.
In honor and in memory of Eliano.

Milan, Italy Gianfranco Minati
January 2021



Post-scriptum

I founded the Italian Systems Society (AIRS) http://www.airs.it in 1996. The AIRS
is a network of academicians, scientists, researchers, and professionals involved
with systems research. The list of disciplines involved includes Architecture, Biol-
ogy, Economics, Education, Engineering, Mathematics, Neurosciences, Medicine,
Music, Philosophy, Psychology, and Physics.

The AIRS conferences have had distinguished open lecturers, including profes-
sors Arecchi, Haken, Kauffman, Klir, and Longo. The list of volumes of proceedings
published includes:

Minati, G. (Ed.). (1998). Proceedings of the First Italian Conference on Sys-
temics, Apogeo scientifica, Milan, Italy.

Minati, G., Abram, M., & Pessa, E. (Eds.). (2009). Processes of emergence of
systems and systemic properties. Towards a general theory of emergence. World
Scientific.

Minati, G., Abram, M., & Pessa, E. (Eds.). (2012). Methods, models, simulations
and approaches—Towards a general theory of change. World Scientific.

Minati, G., Abram, M., & Pessa, E. (Eds.). (2016). Towards a post-Bertalanffy
systemics. Springer.

Minati, G., Abram, M, & Pessa, G. (Eds.). (2019). Systemics of incompleteness
and quasi systems. Springer.

Minati, G., & Pessa, E. (Eds.). (2002). Emergence in complex cognitive, social
and biological systems. Kluwer.

Minati, G., Pessa, E., & Abram, M. (Eds.). (2006). Systemics of emergence:
Research and applications. Springer.
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Eliano Pessa Tribute to Three Voices

Giordano Bruno, Franco Eugeni, and Alberto Trotta

Abstract A portrait of Eliano Pessa, in the form of thee voices tribute. Graduated in
Physics, with post-graduate training at the mythical group of Professor Caianello,
he became first Associate of Institutions of Mathematics, and then thanks to his
systemic studies in psychology he obtained the chair of General Psychology. We
briefly recall here its vast culture, its human characteristics, its propensity for
dialogue, its scientific production in the most varied fields of knowledge. Finally,
we like to emphasize his great love for the mountains, as soon as free from its
multiple commitments has climbed the highest ones in various places in the world,
demonstrating great preparation, resistance and passion.

Keywords Alpinism · Mathematics · Physics · Portrait · Psychology ·
Scientific interests · Teaching

1 Introduction

It is always difficult to draw a portrait of a person who is no longer there. Even more
so when it comes to a friend. So, we thought of uniting our feelings towards him,
in order to create a kind of three-voices singing, which would allow to describe, in
some ways, not only the scientist Eliano Pessa, but also the man in its facets.

G. Bruno (�)
Universitas Mercatorum, Rome, Italy
e-mail: giordano.bruno@unimercatorum.it

F. Eugeni
A.F.S.U., Giulianova, Italy

A. Trotta
I.I.S.S. “S. Caterina Amendola”, Salerno, Italy
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2 G. Bruno et al.

2 Contribution of Giordano Bruno

Warm, friendly and willing to listen, despite his countless commitments both as a
scientist and as a man. A man who was eager to reach new heights, not only those of
his beloved mountains but also in the fields of physics, mathematics and psychology.
This is how I like to remember Eliano.

When I first met him, through my good friends Bruno Rizzi and Franco Eugeni,
I was fascinated by his wide knowledge and his natural kindness.

It is always a very pleasure to think back to the meetings we held in Bruno Rizzi’s
office, together with Franco. We discussed number theory, relativity and quantum
theory, non-Euclidean geometry and several other scientific topics.

Teaching was also one of the interests we shared and valued significantly, and
Mathesis, an ancient and reputable Society for mathematical and physical sciences,
provided a space for it to thrive.

Indefatigable and at the same time cheerful, insatiably curious and extremely
energetic, Eliano was always willing to lend a hand when it came to organizing
conferences or seminars.

And then suddenly, out of the blue, whenever he could, he would vanish. “I
wonder where he ended up this time”, I thought and, invariably, a postcard would
come after a while, from the wonderful, distant places he travelled to.

Eliano later started a fruitful collaboration with Gianfranco Minati, founder
and president of the Italian Association for System Research (AIRS), contributing
significantly to the organization and sharing his knowledge, the key to the scientific
value of his research.

Meeting Eliano was a turning point in my life, both cultural and social, as well
as an enriching personal experience.

He had introduced Alberto Trotta, who had meanwhile become my friend, to
AIRS. Alberto had introduced me to Systemics and invited me to attend one of the
Conferences the Association holds every 3 years—the second, if my memory serves
me well. The title was “Emergence in complex cognitive, social and biological
systems” and it took place in Castel Ivano (TN) in 2001.

Almost 20 years have passed since my first AIRS Conference. Since then, I
have always made an effort to attend and to take part in the other initiatives the
Association promotes.

Each of them is an opportunity to learn and improve among friends, and it is
Eliano who I have to thank for this.

Although we saw each other rarely, our friendship and intellectual exchanges
were never affected, and for this, too, I owe him.

Thank you, my friend.
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3 Contribution of Franco Eugeni

I met Eliano in the early ‘70s, while he was still studying physics at university. He
was with one of my students—back then, I used to teach Complementary Math-
ematics in L’Aquila—who had come to talk about his thesis. I was immediately
impressed by his grasp on mathematics, a command so remarkable that we ended
up preparing his friend’s project together.

I met him again in the ‘80s, in Rome, teaching Mathematics at the Psychology
Faculty. At the time, he was collaborating both with Professor Caianello’s team
and with my good friend Bruno Rizzi. This latter partnership produced about 20
remarkable works on applied mathematics.

In 1986, Bruno Rizzi and I had both obtained a full professorship. Together with
Eliano and Luigia Berardi, we sought to broaden our intellectual and professional
horizons by exchanging ideas with mathematical economists.

I remember that one day Eliano visited me in L’Aquila and I gave him one of my
German shepherd’s puppies.

Shortly thereafter, he moved to Pavia, where he held the chair of Psychology, a
field where he excelled as much as he did in that of Mathematics.

It is quite hard to find something to say about Eliano. I remember his cheer-
fulness, which could sometimes puzzle those who didn’t know him well, and his
devotion to his many interests, which allowed him to stand out while still remaining
humble and spontaneous.

I only regret not having seen him in these last 10 years.

4 Contribution of Alberto Trotta

Eliano Pessa was born in Portogruaro (Venice) on 19th September 1946, but grew
up in Rieti, where his father, Professor Giuseppe Pessa, had accepted a job.

Eliano graduated in Physics at the University of L’Aquila and specialized in
Astrophysics and Theoretic Physics at the University of La Sapienza, in Rome, with
a thesis about “The theory of a quantized scalar field in a Bianchi I-type universe”.
He was associated with the FUCI (Federazione Universitaria Cattolica Italiana),
chaired by Don Lorenzo Chiarelli. It was during this time that he met his future
wife and started a family.

He then began teaching, first at the ITIS (State Industrial Technical Institute) in
Rieti and then at the University of La Sapienza.

Physics, however, was not the only field he excelled in: while working in Rieti
and Rome, he kept in touch with a local group of amateur alpinists like himself
and embarked on several climbing enterprises, reaching peaks such as Vulcan Pissis
(Argentine Andes, 6862 m), Vulcan Parinacota (Chilean Andes, 6342 m), Pik Lenin
(Kirgizistan Pamir, 7134) and Mount Muztaghata (Chinese Pamir, 7546).
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Eliano was a remarkable person, and a scientist most competent in various
fields. He took on several academic positions. Between 1977 and 1987, he taught
Mathematics at the University of La Sapienza, Rome, first at the “Magistero”
Faculty and then at the Psychology Faculty; after that and until 2000, he taught
Theory of Systems and Artificial Intelligence. Between 1992 and 2000 he was a
member of the Scientific Committee of the International Institute of High Scientific
Studies E.R. Caianiello, Vietri Sul Mare, Salerno. In 2000, he became Professor of
Psychology at the University of Pavia, Letters Faculty; that same year, he joined the
board of directors of AIRS (Italian Association for Systemic Research). Between
2002 and 2003 he taught “Modelli di Reti Neutrali” (Neural network models) at the
SAFI (Scuola Avanzata di Formazione Integrata). Between 2006 and 2009 he was
the Director of Interdepartmental Centre of Cognitive Science, at the University of
Pavia, where, in 2010, he started teaching Cognitive Processing Models.

He was also a referee for multiple scientific journals, such as the International
Journal of General Systemics and the International Journal of Theoretical Physics.

He received many acknowledgements throughout his career, such as the “Majo-
rana Field”, in 2008, awarding his work “Phase Transitions in Biological Matter”
(Pessa, 2007).

His research dealt with a large variety of topics, combining his competence in
physics and mathematics with his enthusiasm for cognitive sciences. With over
200 published works, Eliano explored the theory of quantum mechanics, neural
networks, robotics, artificial intelligence, theoretical and experimental studies on
long-term memory, analysis of global and local factors of visual perception,
focusing and categorization process models, quantum field theory, quantum com-
puting, quantum memory models, systemic and self-organization models in complex
systems.

He also collaborated with many colleagues, such as the president of AIRS,
Gianfranco Minati, former president of Mathesis Bruno Rizzi, Mario Abram and
M.P. Penna.

Among the many notable works he published, we particularly mention contribu-
tions such as (Pessa, 1985a, b, 1992, 1993, 2005). Among co-authored works we
mention (Minati & Pessa, 2018; Penna & Pessa, 1994; Pessa & Rizzi, 1987, 1988;
Pessa & Trotta, 2008). Among the edited proceedings we mention (Minati & Pessa,
2002; Minati et al., 2006, 2008, 2015, 2018).

A dedicated scholar, invested in his work, Eliano also lived a full life and passed
away on the 22nd March 2020, following a long illness.

His is greatly missed, as great is the feeling of emptiness his absence brings
along. In an article for the Italian newspaper Il Messaggero (26 March 2020),
Arnaldo Millesimi wrote: “Eliano always walked on the tip of his toes, in order
not to tread on others, and on the tip of his toes he went away”. This is, to me at
least, a most relevant trait of his personality.
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Eliano was a dear friend, cordial, considerate, forward-looking, determined and
remarkably competent. He was a mentor for entire generations of scholars, and a
scientist ahead of his time, exploring theories that are still in the forefront to this
day, such as the statistics of neural networks.

His legacy shall never be forgotten.

Acknowledgments We wish to thank Elisabetta Passavanti for her precious contribution to the
English translation.
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The Role of Information
and Communication Technologies
in Human Interactions

Mario R. Abram

Abstract The development and diffusion of Information and Communication
Technologies (ICT) increased the availability of a large number of communication
channels. Some big problems arise when these new tools operate pervasively in
our lives. The evolution of these technologies and their development, with the help
of uncountable applications, are influencing and modifying our behavior. Unfortu-
nately the respect of human rights is based again on the application of regulations
and laws that are formally structured around the human beings. The application
of laws is localized into the domain of the national law systems. Furthermore the
distance between the quick evolution of the new technical applications and the slow
update of the law systems increases constantly. The artificial tools that compose
ICT applications are now again out of any regulatory system. In particular the
experiences imposed by the diffusion of COVID-19 virus show the great help given
by the application of ICT to contrast and react the pandemic diffusion. At the same
time the risks to loss the respect of human rights emerge with great evidence.

Keywords Communication channel · Covid-19 · Human interactions · Human
rights · Information and communication technologies · Interacting systems ·
Pandemic · Regulations and laws

1 Introduction

Investigating the impact of new Information and Communication Technologies
(ICT) on human lives, we were attracted by the impact that the developments of
new technologies may have over the spectrum of the human lives.

In a previous work (Abram & Pessa, 2019) we examined some of the possible
consequences that arise developing and using the real applications of Information

M. R. Abram (�)
AIRS (Associazione Italiana per la Ricerca sui Sistemi), Milan, Italy
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8 M. R. Abram

and Communication Technologies (ICT). In particular it becomes important to
evaluate the impact of ICT on the application of the human rights. The connection
with regulations and laws appeared us as a crucial point.

We need to develop a lot of investigation work in order to set the problems, to
define priorities and to propose solutions. Additional researches are necessary in
order to deeply investigate all the implications of this approach.

Now this appears more evident because the pandemic COVID-19 is showing
its devastating impact on all our activities. Probably it is necessary to develop
new strategies, new models, for gaining the knowledge necessary to find an escape
path from this very serious situation. Many severe and rigid health protocols were
activated in order to protect people from the pandemic diffusion.

In the mean time the ICT technologies showed their great impact as a powerful
alternative path useful to overcome the loss of communications and physical
interactions between individuals and organizations.

In this paper we recall some considerations about ICT. In particular following the
steps previously investigated (Abram & Pessa, 2019), we will consider and discus
some interesting points.

The interactions between the development of Information and Communication
Technologies (ICT) and the problem to control their applications is recalled (Sect.
2). Then the developments of new technologies ask for the settlement of new
regulations and laws. Some implications are shortly investigated (Sect. 3).

Considering the importance of the natural and artificial contexts, we show how
the role of communications between humans may be exercised by means of natural
and artificial channels (Sect. 4).

The aspects previously investigated appear very actual. During this year of
COVID-19 pandemic, it emerged the real need to solve the new and critical
regulations aspects (Sect. 5).

Some remarks and open problems show the need for further investigations (Sect.
6). Finally some conclusive considerations close the paper (Sect. 7).

2 Information and Communication Technologies

In the actual pandemic context, the need to quickly gain useful results asks to
accelerate the development of new medical and biological treatments.

The emergency conditions determined a rapid deployment of confinement
strategies in order to reduce the physical interaction between people.

The contemporary need to reduce physical interactions between individuals
accelerated the development and the use of more pervasive and powerful instruments
based on ICT. In particular ICT services constitute the kernel of new recovery tools
with the goal to mitigate or substitute the strong reduction of physical interactions
between people.
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The urgency to save the life of human people and the need to move quickly ask
for reducing the response time of people, organizations, countries and governments.

The present situations recall the considerations we reported into our last contri-
bution (Abram & Pessa, 2019); many consequences are now valid again and often
are amplified.

3 The Role of Regulations and Laws

With Prof. Eliano Pessa we wrote the paper “Information, Communications Tech-
nologies and Regulations” (Abram & Pessa, 2019) with the goal to gain a better
position useful to investigate the great changes we are facing with.

It was a tentative to find a reference point from which the different approaches
to the problems may be evaluated. With the help of a systemic approach it is
possible to gain a point of view from which larger perspectives for evaluating the
real application of human rights become available.

Doing so we face with philosophy, history, power, economy, cultures, traditions,
and all the other numerous aspects that may affect and characterize the evolution of
mankind.

This is the ideal situation in which the constitutional guaranties and the deploy-
ment of human rights are sacrificed to collective and personal health needs. It is a
very serious situation in which the urgency to operate conflicts with the respect of
human rights.

The economic consequences of this situation may constitute further elements
that supply dangerous feedbacks that may degrade the mutual interactions between
the different elements of the societies. Then the basic human rights often are
dangerously at risk.

Following this approach the respect of human rights gained a particular attention.
In particular same documents became naturally the starting points to begin the
analysis and the building of regulations and laws. We consider very important the
following documents:

• United Nations, “Universal Chart of Human Rights” (United Nations, 1948);
• European Union, “Charter of Fundamental Rights of the European Union”

(European Union, 2016b).
• In particular for data protection the European Union published the document

“General Data Protection Regulation” (European Union, 2016a).

These documents constitute a reference guide for the building of future laws and
regulations. They constitute a reference by which it is possible to test the coherence
of declared human values and the effective application of human rights. With the
help of these documents we may start to test the coherence and the value of their
application to human relations.
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4 The Communication Environments

The communications between humans may develop into two contexts:

1. A natural context involving the direct relations between human beings, and
2. An artificial context in which the human communications are mediated with the

help of artificial tools.

4.1 The Natural Context

With natural context we define an environment in which the human elements
interact each other into the natural environment (in biological, chemical and physical
conditions). In that environment they may develop their investigations and increase
their knowledge.

In this context, with a very simple schema, two human elements H1 and H2

interact by means of action relations A12 and A21 (Fig. 1a). When an action A12

is incomplete the interaction is modified (Fig. 1b). When the actions A12 and A21

disappear the human elements H1 and H2 are isolated.
It is the context in which the human relations develop and find fulfillment. We all

interact with our fellows by speech, touch, smell and seeing according to numberless
modalities. On this basis the highest levels of interaction develop the possibility to
use languages, psychology, abstraction, theories, etc.

In this situations the social relations manifest themselves and develop on the
physical level contributing in great quantity to build the entire spectrum of interper-
sonal relations. At this level the communication channels operate the information
transfer by means of chemical, biological and physical interactions.

4.2 The Artificial Context

During the evolution of humankind the interactions between people took place
with the help of many media, opening so new types of channels that give the

(a)

H1 H2

A21

A12

(b)

H1 H2

A21

A12

Fig. 1 Simplified structure of interactions between two humans elements (H1 and H2): (a) two
connected human elements; (b) two partially connected human elements
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possibility to enlarge the range of human communications and activities. New tools
based on communication and information technologies enlarged greatly the range
of interactions between people.

We can consider an artificial context that is an extension of natural context with
the addition of interactions and tools that multiply the availability of communication
channels between the human elements. In this context the action domain of human
elements is drastically enlarged. Now the individuals may operate on the extended
range of a potentially worldwide space of operation.

The communications between H1 and H2 now can take place with the help of
artificial tools T1 and T2. Then the communications between H1 and H2 are possible
on the availability of redundant channels (Fig. 2a). Two paths are possible: (1) a
direct paths between H1 and H2 and (2) a composed path involving H1 and H2 with
T1 and T2.

The artificial context becomes the solution to maintain communications between
individuals H1 and H2 by means of a series of new channels implemented with
the help of ICT technologies. These channels can bypass the interruption of the
traditional communication channels between individuals.

When the direct relations between humans H1 and H2 disappear (Fig. 2b), the
communications between H1 and H2 are now possible. Using the tools T1 and T2 an
alternative and different path becomes possible.

In particular the communication between H1 and H2 is possible by means of the
following chains and relations (Fig. 2a):

1. A direct path: along the chains (H1H2) and (H2H1) respectively with the relations
(A12) and (A21).

2. A composed path: along the chains (H1T1T2H2) and (H2T2T1H1), respectively
with the relations (A11C12C22) and (A22C21C11).

T1 T2

C21

C12

(a)

H1 H2

A21

A12

C11 A11 C22 A22

T1 T2

C21

C12

(b)

H1 H2

C11 A11 C22 A22

Fig. 2 Simplified structure of the main interactions between two human elements (H1 and H2)
and two artificial tools (T1 and T2): (a) two human elements are connected directly and by means
of two tools; (b) two isolated human elements are connected by means of two tools
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4.3 Interactions Between Natural and Artificial Contexts

The artificial tools are used to increase the number of channels for exchanging
information between human elements and systems.

Now we can consider two separated spaces: (1) the space SH of human elements
and (2) the space ST of the artificial tools.

The communication paths between H1 and H2 are possible by means of multiple
channels (Fig. 3a). The space of tools ST may be composed by deep structures not
directly seen by T1 and T2. Instead the space SH is composed only by the human
elements H1 and H2 and their connections. We consider that the space SH is a natural
space, while ST is an artificial space and all its connections are artificial.

When the elements of space SH are not connected directly, they interact each
other only by means of the artificial elements of space ST (Fig. 3b). In particular
when the chain of artificial tools is the unique communication channel between
two human elements, the “owners” of communication tools can “control” the
information flow between the human elements H1 and H2.

If one controls the elements (artificial tools) in ST, he can effectively manage
the flow of information between the isolated elements of SH, especially when the
alternative communication channels are closed.

As a consequence it is important to encourage the building and maintenance of
communications between human elements and to perfect and optimize their use.

SH

ST

T1 T2

C21

C12

(a)

H1 H2

A21

A12

C11 A11 C22 A22

SH

ST

T1 T2

C21

C12

(b)

H1 H2

C11 A11 C22 A22

Fig. 3 Structure of the main interactions between the spaces SH and ST composed respectively
by two human elements (H1 and H2) and two artificial tools (T1 and T2): (a) two humans are
connected directly and by means of two tools; (b) two isolated humans are connected by means of
two tools
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Redundant channels, as additional communication paths, are useful to check the
correctness of transmitted and received information.

5 The Actual Pandemic Context

On the pandemic context we may develop some considerations.

• This is the situation people experienced in the past centuries. The physical
contact was the most important diffusion factor for epidemic.

• The constraints imposed by the pandemic involve the entire world. Apparently
no country appears free from these problems.

• The pandemic strongly reduced or interrupted the direct communication channels
between the individuals. All the activities based on personal and direct contacts
were reduced or interrupted.

In these situations it is important the availability of artificial communication
channels by which many alternative paths may be activated. Then the interactions
between human elements may continue with the help of artificial tools without
exposing people to dangerous physical contacts.

Now many multilevel artificial tools that operate on a worldwide scale are
available. It is possible to observe the emergence of the power of artificial tools
that, out of law, multiply the availability of communication channels and enlarge
the domain of the applications.

They furnish the solution to many communication problems, but effective
regulations and laws do not rule them. Regulations and laws are now applicable
only in a little set of countries, into their own domain of application that coincides
with the domain of sovereignty of each nation.

A possible alternative is to regain the role of human elements that find their role
of special relations between humans and gain the choice, ability and the courage to
be in front of the new technologies without submission. It is necessary to find the
courage to confront with new technologies and to identify their most appropriate
deployment. The application domain of regulations and laws is possible only at
human level.

Then the humans must gain again their role. Even in pandemic, during isolation,
the tools may help to “meet” other people at different levels.

It is necessary to evaluate the need to regain a path for rebuilding human
relations, enriching so role of human elements. It is as going back again from the
conditions of isolated human element connected only by artificial tools (Figs. 2b
and 3b) to a position in which the role of human elements returns to be central and
the original multiple connections are restored. In these cases the communications
between individuals return to be important, even if artificial tools are present into
the transmission chains (Figs. 2a and 3a).
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6 Remarks

The considerations developed into a previous paper (Abram & Pessa, 2019) are
now applicable to today situations. The COVID-19 pandemic changed drastically
the interactions between people. The dramatic consequences in terms of lost lives,
economic crisis, social constraints and urgency planning are evident. All human
activities were involved and stressed while the traditional strategies are showing
their limits.

Some key points appear important in order to identify the goals, to define the
priorities of the activities and to plan their realization.

• A chain of artificial tools may become the unique communication channel
between people. The need to use these communication channels push to develop
and standardize new communication protocols that progressively may drastically
reduce the possibility to communicate directly between the persons. The risk
to impose only an artificial communication may progressively reduce the direct
natural communications.

• Our way of life was forced to change in order to confront with the need to survive
this dramatic situation. The goal to reduce the risks of virus diffusion asks for
a strong limitation of personal freedom and moving. It is necessary to acquire a
strategy in order to reduce the risk of contagion and contemporary to develop and
support the human activities. How much time a “frozen” society can survive?

Information and Communication Technologies show how the new ICT tools
and instruments help to reduce the physical interactions between people.

• When the natural interactions between human beings are interrupted, the artificial
communication tools become the unique available channels interconnecting
people. These aspects became more evident when, as a reaction to the diffusion
of pandemic, the physical interactions between people were strongly reduced.

In many activities the availability of redundant and artificial communication
channels became the only possibility to interact each other. In the meanwhile the
traditional human communications progressively reduced and often they were
interrupted choosing to operate mainly with artificial channels.

Then the pandemic amplified and accelerated a trend just present in our
societies.

• A crucial point is that our law systems are built and evolved to regulate the human
interactions. The artificial tools operate into a worldwide space; their ranges
overcome the application domain of the human law systems. For this reason the
more critical aspect is the fact that the artificial tools often are not subject to
national norms or regulations because they operate outside the limited range of
application of that norms or regulations.

• Usually the artificial channels are not a one to one connection system but may
interact with a great variety of unidentified tolls interconnected with actors that
remain unknown to the users. As shown in Fig. 3b it means that two people
submitted to the constraints activated for reducing the effects of pandemic may
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interact “only” by mean of artificial tools that often are not subject to any law or
regulation because they can operate outside of the national borders.

If someone may control the artificial tools, he can control the information
flowing through those tools. The connections with “power” become evident.
Those that control the flow of information need to control the artificial com-
munication channels.

• The pandemic is an amplifying factor that accelerates the phenomena just present
in our societies. and may become dominant if we do not choice witch type of
relation we want to build. Using Communication and Information Technologies
(ICT) without adequate laws and regulations we may enter into a “risk space” in
which the “game rules” are not chosen by the users and remain unknown.

• In building relations it is useful to maintain a multiple path approach. So it
is convenient to maintain active some human paths, in order to develop a
control strategy of our relations. It should be useful to avoid we delegate our
communications only to artificial tools. It is necessary to avoid that human
elements become only a “terminal” or an “artificial element” connected only to
artificial tools.

• The experience of pandemic forced to emerge the recovery strategies inspired
and settled by our conception of human elements and of artificial tools. Two
possibilities may be considered: (1) the human elements maintain the control on
artificial tools; (2) the artificial tools drive the behavior of human elements.

• The choice of the approach defines the strategies that we want to apply. The
emergency strategies bound the role of human elements submitting them to the
algorithms of the artificial tolls. This must be limited in time in order to return to
more conscious choices. Humans should regain their degree of freedom.

• The availability of multiple communication paths develops the ability to evaluate
different possibilities and to operate the best choices. For this reason it is
necessary to develop the ability to collect information, to evaluate the available
data, to develop a communication strategy, to build a path to the goal and to
operate the best choices. In other words it is necessary to gain again the capability
to “operate a choice”.

7 Conclusion

In this period of pandemic many new problems appear and ask for a solution.
Between the available tools, the characteristics of Information and Communica-

tion Technologies (ICT) appear of crucial importance. With ICT we saw how many
alternative paths are available to overcome the difficulties that are present in all the
human activities.

Even in this situation it is important to evaluate the strategies that may conjugate
the need of urgency and quick reaction with the best inspiring principles and
operating actions.
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In any case we think it is necessary to gain a better position from which, as men,
we may evaluate the problems from the point of view of human rights.
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Interdisciplinary Systems Thinking for
a New Scientific Paradigm: Toward
a Re-founding of Human Values

Sergio Barile and Marialuisa Saviano

Abstract In the face of an emerging scenario characterized by multiple overlapping
trends that seriously question the future of mankind, this contribution envisions the
need for a re-founding of human values in which process scholars are required to
play a prominent role. Our focus is on the complexity of interdisciplinary thinking
required for the development of a new widely shared paradigm. In particular,
we believe that systems thinking can support interdisciplinarity as a common
denominator of generalizable knowledge useful to build a shared thinking space that
cross-cuts the boundaries of various disciplines. Within this context, the bases are
delineated of a potential approach, favouring interdisciplinary convergence toward
a shared vision of the future, via general systems thinking models developed within
the Viable Systems Approach strand of studies.

Keywords Complexity · Generalizable knowledge · Human values ·
Information variety model · Interdisciplinarity · Scientific paradigm · Systems
thinking · T-shaped model · Viable systems approach

1 Premise

Any analysis of the present time can only converge in noting various emerging
‘identity’ aspects of our era. First, a substantial alteration of existential rhythms:
technology, in its broader sense, has to a great extent, accelerated all socio-economic
processes. At the same time, compared to our predecessors of a mere few decades
ago, we explicate activities that then would have required on average, tenfold or
even 20 times more. Second, an extreme exaltation of specific knowledge: the
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development dynamics of knowledge have an exponential trend. A sentiment exists,
regardless of the field of commitment, relative to the intellectual potential, and the
cultural level, of being constantly in pursuit of new essential knowledge. Third,
a prevailing nihilism: in many social contexts there is a growing sense of despair
linked not to the contingent, but to the impossibility of imagining the near future.
The collapse of every reference, from the religious to the political, to the most
closely familiar, generates confusion and disorientation, producing the conditions
for serious psychophysical disturbances (an element that has been exacerbated by
the pandemic).

On the other hand, in some ways surprisingly, scientific and technological devel-
opment advances producing innovation, even radical, with unusual speed. Robotics
proceeds inexorably with a progressive replacement of human work, not only man-
ual but now also intellectual, proving itself able to produce goods and services more
efficiently at increasing quantitative and qualitative levels. Artificial Intelligence has
long been forging indecipherable algorithms that continually regenerate, placing
itself at the service of science and technology and of technique, with an unstoppable
progression that suggests unpredictability and difficulty in controlling ways of
using spaces and organizational and individual timelines. Augmented Intelligence,
a phenomenon not yet well understood even by various streams of professionals,
can be identified in the redefined concept of ‘contemporary’ individual, capable, by
virtue of ‘brain prostheses’ (thus we could also define a simple search engine on
the web), to qualify a sort of mens extensa generating a radical transformation of
the human race (Homo digitalis). Genetic engineering, extremely close to freeing
us from the imperfections that afflict Homo sapiens, seems to lead to a kind of
biological engineering that opens up new evolutionary outlooks for possible hybrid
life forms that will be able to populate our planet in the future.

It is difficult to comprehend the meaning of a potential temporal coincidence of
these trends. The only unifying perspective is the one that allows the identification of
a common underlying dimension: a sort of ‘guiding principle’ that leads to justifying
the simultaneous presence of social trends apparently not attributable to any known
interpretative scheme. This dimension must necessarily reconcile with that, due to
the above highlighted ‘identity’ aspects, which we are witnessing in terms of a
substantial dissolution of solid ‘points of reference’ that have always underpinned
the behavior of mankind during the eras of historical development along the
so-called ‘path of civilization’. Priorities considered unavoidable, principles that
appeared essential creak now under the pressure of legitimate expectations of greater
well-being and quality of life. The same abovementioned aspects of development are
beginning to question the ‘strong beliefs’ that typify the ethnic groups and human
aggregations that have been present on the planet for centuries.

Such concepts all seem to converge towards the need for a re-founding of human
values that takes into account the abovementioned trends in order to link them into
a rediscovered purpose distinguishing the contemporary individual.

The modern world now appears strongly characterized by the well-known
contrast and at the same time complementarity of two interacting tensions, the
dipole between science and humanism: on the one hand, the incontrovertible power
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of science and its growing successes; on the other, the understanding of life as an
experiential path, especially emotional, full of sentiment and value projections. A
sort of ‘yin and yang’ in which the cults of acting and experiencing mix, intertwine,
conditioning each other.

Thinking in terms of a new paradigm suitable for designing a possible evolu-
tionary path in which to find explanations and predictions of current and future
socio-economic scenarios appears urgent, no longer procrastinable. It is evident,
however, that to achieve such a goal requires a titanic but necessary intellectual
effort, in order to avoid the disintegration of founding principles that would lead to
the loss of the ultimate ends of mankind.

Such a commitment should inspire scholars interested in what we could
metaphorically define as the primary component of the ‘molecular’ fabric of civil
society: ‘finalized’ organizations. It is a truism that just as an aggregation of atoms
does not in itself qualify ‘bios’, given that cellular tissue is the basic element
to which life can be traced back, in the same way the individual as such does
not characterize sociality, because social being emerges when the aggregation of
elements becomes a system, when the tribe becomes a community. Therefore, the
desire for recovery of the values system cannot merely neglect the individual but
rather, has to focus on their potential forms of socio-organizational composition.

Certainly, the various scholars involved in both scientific and humanistic disci-
plines would recognize that the distinctive feature of the human species, compared
to other living species, consists in the fact that the former are a ‘collective’ species.
It is precisely in their ability to work together the distinctive element that has
enabled the survival of a species unsuited to the planet such as humans. As Harari
maintains,1 we are the only beings, compared to any other species, who need
to integrate the natural environment to resist the cold and heat, and who need
tools (artefacts) to build our ‘den’, to feed ourselves, to face enemies, etc. We
would obviously be losers in a ‘single fight’ against any specimen of ferocious
animal; conversely, by creating a community of a few dozen individuals, we become
unbeatable with respect to aggressive fauna (such as lions and tigers), not to mention
bacteria and viruses, by virtue of our ability to organize collective defence and
planning against attack.

In the belief that those who study organizations aimed at the production of value
in the broadest sense are most qualified to promote and coordinate debate directed at
recovering a new explanatory paradigm capable of summarizing the trends reported
above, we wonder:

How should scholars think together about the foundation of a new paradigm?
Are they equipped with the appropriate approaches to address such a challenging
task?

Promoting debate on the identification of constructs, schemes, categories, ele-
ments in short, which can be placed at the basis of a re-founding of valuesuseful

1Harari, Y.N., (2015). What explains the rise of humans? TED London, June 2015. https://www.
ted.com/talks/yuval_noah_harari_what_explains_the_rise_of_humans?language=it

https://www.ted.com/talks/yuval_noah_harari_what_explains_the_rise_of_humans?language=it
https://www.ted.com/talks/yuval_noah_harari_what_explains_the_rise_of_humans?language=it
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for recovering the ultimate meaning of life, is the aim of this essay. Accordingly, in
the following sections, we first reflect upon the need of collective interdisciplinary
thinking for such an innovative paradigm, focusing on the role of scholars and
the way they can approach complex interdisciplinary thinking; then, we discuss
the contribution of systems thinking as a common denominator for approaching
interdisciplinary knowledge sharing; subsequently, we illustrate the use of the
Information Variety and T-shaped knowledge models, developed within the Viable
Systems Approach strand of managerial studies of systems thinking. Our aim
is to approach and organize an interdisciplinary knowledge co-creation context,
highlighting how the proposed approach can result in promoting a re-founding of
values for the development of a shared paradigm.

2 Collective Interdisciplinary Thinking for a New Paradigm

As outlined in the introductory premise, nowadays human beings are facing trends
whose directions and arrival points are completely unknown. At the moment,
for example, we are living the context of the Covid-19 pandemic, a completely
unexpected crisis that, despite huge governance effort, appears still out of control,
dramatically impacting on all spheres of human life. Recovery plans are under
discussion and about to be defined to face not only the specific health problem but
also its serious social and economic consequences, envisioning a digitized and more
sustainable world as a priority. No one, however, is sure about the real outcomes of
such plans. No one is confident about the capability to make the right decisions.
There is no clear-cut vision about the future we want. The capability itself to project
our future is doubted. We do not really see where we want to go. Clearly, there is a
widespread lack of finalities.

In a powerful globalized and technologically advanced world, an invisible entity
has placed all human beings in the face of one of the toughest challenges ever.
Intensive debate crowds the media about prospects and solutions to the global crisis
in progress. In such a context, one apparently less relevant question hovers among
disoriented people: How will it be after Covid-19? There is no clear feeling about
whether and how mankind could eventually change after the pandemic. A pandemic,
as the Greek origin of the word suggests, implies a condition affecting all (or nearly
all) the people in the world. Never before has our generation had such an experience
of something really ‘global’. Never before, in the globally digitized world have we
experienced something that is really common to us all, that is, something that affects
us collectively.2 Paradoxically, neither globalization nor digitisation, so far, have

2The notion of collectivity has an interesting reference in the work of Minati and Pessa, entitled
Collective beings, which focuses on the complexity of collective systems, such as social ones
(Minati & Pessa, 2006).
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placed us in front of a truly collective experience, showing all the contradictions
that characterize the trends under focus.

What has led us to such a paradoxical condition of uncertainty in a world ever
more committed to solving human life problems, giving ever more ‘certainties’ to
people?

What is the role of scholars and science in such a scenario? Will progressing
technical, technological, scientific and practical knowledge still be enough or does
science have to have more responsibilities?

2.1 Scholars in Front of the Need of Complex Interdisciplinary
Thinking

As repeatedly highlighted since the beginning of the last decade, the growing
complexity experienced by decision makers requires the support of knowledge
capable of reflecting experienced complexity (Badinelli et al., 2012; Barile et al.,
2016a). The awareness of the need to rethink knowledge as a dynamic system,
instead of a linear one, has led to promote interdisciplinarity as an approach
expected to be more effective in the creation of knowledge useful to address complex
choices (Klein, 1990; Brewer, 1999; Moran, 2010; Klein et al., 2001; Newell et
al., 2001; Newell, 2007; Fadeeva et al., 2010; Frodeman et al., 2017; Bammer,
2017). The relationship between interdisciplinarity and complexity has become of
increasing interest among scholars that recognize that the two concepts are deeply
entwined (Klein et al., 2001; Newell, 2007).

Agreeing that mankind is facing trends difficult even to understand, science has
the responsibility to provide not only answers but also guidelines, i.e. directions for
thinking. All sciences, not only those ‘disciplinarily’ related, should feel involved
in a reflection about the future of mankind and our current planet. Accordingly, it
follows therefore, that one of the most urgent tasks for scholars is to promote and
support a necessary re-founding of human values.

During the progressive development of mankind, science has always played (and
claimed to play) a leading role. Indeed, science is at the core of the processes making
possible equitable and sustainable development for all populations. Therefore, it is
our belief that the time has come for a truly shared reflection about the future we
want, that is, the ends we want to pursue. Such a view can shed new light on the
meaning and role of interdisciplinarity.

Interdisciplinarity has long been practised producing important advancements of
knowledge (Lélé & Norgaard, 2005). Nevertheless, debate about the need of inter- as
well as transdisciplinary approaches is still in progress (Dube, 2021). In particular,
as recently highlighted by Bammer et al. with reference to interdisciplinarity largely
unrecognised is the need of expertise in (Bammer et al., 2020: 3), “(1) research
integration in order to develop a more comprehensive understanding of the problem
and potential ways to address it and (2) implementation of research to improve
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the situation.” Although it is commonly recognized that expertise in inter- and
transdisciplinary research is required to address complex societal and environmental
problems, “there still remains little formal recognition of what that expertise is or
the reward for contributing it to a research team’s efforts” (Bammer et al., 2020: 3).

Moreover, the implementation of inter- and transdisciplinarity implies to address
relevant requirements (Hadorn et al., 2008 : 19):

1. To grasp the complexity of the problems.
2. To take into account the diversity of scientific and societal views of the problems.
3. To link abstract and case specific knowledge.
4. To constitute knowledge with a focus on problem-solving for what is perceived

to be the common good.

As Bammer et al. affirm, interdisciplinary (and transdisciplinary) approaches are
necessary for developing “a more comprehensive understanding of the problem,
identifying possible ways to address it, by integrating disciplinary and stakeholder
perspectives, and for supporting implementation of that understanding into evident
informed government policy, professional and community practice, business and
social innovation and other measures.” In this context, the Authors identify five
particular challenges posed by complex problems (2020: 4):

1. Delimiting the problem.
2. Managing contested problem definitions.
3. Managing critical, unresolvable unknowns.
4. Managing real-world constraints on ameliorating the problem.
5. Appreciating and accommodating the partial and temporary nature of solutions.

While agreeing with Bammer et al. about both the need of inter- and trans-
disciplinary approaches for addressing complex issues and the recognition of a
still limited attention on the ways knowledge (disciplinary and beyond) can be
integrated and implemented, we return to and pinpoint a basic reflection with a
slightly different view of the kind of knowledge required to address inter- and
also transdisciplinarity: we believe that what is much needed is the capability
of more general thinking with holistic views of the observed phenomena. In
other words, a kind of meta-knowledge, i.e. knowledge a-specific and sufficiently
general to unitarily direct the use of the more specific available approaches to deal
with complexity (among the latters, for example, action research, complex project
management, critical thinking, systems dynamic, etc.) (Saviano & Di Nauta, 2011).
In this sense, although specific expertise and competences are not only useful but
also necessary, being well equipped with the techniques and tools for practicing
inter- and transdisciplinarity does not generally resolve the key issue.

Therefore, in our view, to support complex interdisciplinary (as well as trans-
disciplinary) thinking, specific approaches or techniques of research integration
and implementation are useful but a more practical level. We believe that a more
generalizable ‘horizontal’ type of knowledge is necessary to integrate, in turn,
practical approaches and guide their use. Our idea, in a certain sense, recalls the
“Dynamic Usage of Models” proposed by Minati and Pessa that is based on “the
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ability to systematically use the available models” (Minati & Pessa, 2006: x; see
also: Minati & Pessa, 2018). In this ability we see the role of a systems thinking
‘intelligence’ (Mella, 2012) that guides the use of existing knowledge.

To clarify our arguments about the development of such intelligence, in the
following sections, we highlight the distinction between generalizable and case-
specific knowledge, reaffirming the fundamental role of systems thinking as a
response to the need of sharable horizontal knowledge.

2.2 From Case Specific to Generalizable Knowledge: The Iter
for Complex Interdisciplinary Thinking

In the study entitled “Physical and biological emergence: Are they different?” in the
volume Systemics of Emergence: Research and Development (Minati et al., 2006a),
Eliano Pessa reasons that it is useful to recall ‘abstraction’ as an approach to shift
from specific to generalizable knowledge, valid to the aims or our reflection.

In the work, Pessa, comparing the features of models of emergence introduced
within theoretical physics with the requirements coming from observations of
biological self-organization, argues that “notwithstanding the deep differences
between biological and non-biological systems, the methods of theoretical physics
could, in principle, account even for the main features of biological emergence”
(Pessa, 2006: 355). In particular, interestingly to our aims, Pessa wonders: “can
we resort to suitable generalizations of models describing physical emergence to
account for observed features of biological emergence, or, on the contrary, to deal
with the latter we need an entirely new approach, incompatible with the one adopted
to model physical emergence?”

Pessa addresses the question by providing a formal demonstration of his claims,
verified under several circumstances. It is, of course, outside our aims the ‘specific’
aspects of the approach used by Pessa, which concern a problem common to physics
and biology disciplines, although implicitly recalling more general epistemological
aspects; rather, we are interested just in these ‘generalizable’ aspects.

We believe that systems thinking and related theory still represent one of the most
useful frameworks of reference for developing truly generalizable knowledge; the
kind of knowledge that is common to any discipline, hence a basis for a shared
dialogue. Indeed, systems theory remains one of the most effective attempts to
integrate the different claims or subject matter as constructed in separate disciplines
(Jansen, 2009). In this sense, overcoming the criticism toward the adoption of
systems theory in social sciences, we reaffirm the relevance of systems thinking
and systems theory as a common basis for all disciplines, in the same way it
was conceived to be when a general systems theory was elaborated by Ludwig
von Bertalanffy (1956, 1962, 1968, 1969) and subsequently developed (Buckley,
1967; Rapoport, 1986; Laszlo & Krippner, 1998; Luhmann et al., 2013; Minati et
al., 2016). The generalizability of systems thinking provides a way to finding the
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sought common denominator for bridging disciplines in an interdisciplinary space
of knowledge sharing that horizontally cross-cuts the boundaries of interacting
disciplines.

Therefore, we reverse here the original criticism against systems theory, when,
during the Seventies of the last century, many scholars gradually abandoned their
original interest toward systems theory, convinced that it was too abstract to
offer a reliable representation of the specificities of phenomena, and proposing
contingency views as approaches allowing less abstraction, more explicit patterns
of relationships, and more applicable theory (Kast & Rosenzweig, 1975). After
decades of developing ever more specific, explicit, applied knowledge, a contrasting
problem has emerged: scholars now seem to lack general references for shaping
their mindsets, and while their expertise provides excellent solutions to an ever
wider range of practical problems, they seem to become ever less able to even
comprehend and frame problems, which subsequently appear to them too complex.
Believing that complexity is not so much a character of the problem to solve as a
condition of the problem solver, clearly, they are the decision makers’ interpretative
and understanding capabilities that are questioned (Barile 2009a, b ). It seems that
the more knowledge developed is specific of defined problematic contexts, the more
the capability to look behind and beyond that specificity is weakening.

In our view, what appears is an incapability of decision makers to read the general
principles that govern all the specific manifestations of human as well as nature’s
behaviors, abstracting generalizable knowledge from the various problematic con-
texts to govern. In this sense, we think that also scientific thinkers, i.e. scholars, as
those mainly responsible for the progress of knowledge, need to recover and share a
more abstract knowledge, derived from very general principles that govern the world
in all its forms, so to reacquire the capability to see its irreducible unity (Capra &
Luisi, 2014).

Such intelligence is necessary to develop an interdisciplinary dialogue among
disciplines: a common language and shared mindsets that make communication
effective allowing reciprocal understanding. In other words, a meta-level knowl-
edge, which can guide the integration of more specific approaches through the
searching of their commonalities. For example, complex systems science and
sustainability science develop their own models and interpretative schemes useful
for facing specific problems; the two sciences, however, are characterized by similar
complexity and have both common roots in systems theory (Barile & Saviano,
2018; Saviano et al., 2019). Subsequently, to integrate them for facing complex
intertwined problems, generalizable systems thinking knowledge can be abstracted
from the specificity of the respective problematic contexts in order to create a shared
area of knowledge development.

Pessa provided a clear example of what we intend to highlight: to sustain his
interpretative proposal, he resorted to “suitable generalizations” for biological and
non-biological systems, which allowed him to use the same theoretical methods to
account for emergence in two different scientific fields. In other words, ‘general-
ization’ allowed shifting, under certain conditions, from one theoretical context to
another.
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More interestingly, the way the “suitability” of generalizations is verified by
Pessa refers to “two relevant features [ . . . ]: the first describing the role played by
general principles, and the second related to the existence of individual differences
between the single components of the system under study” (Pessa, 2006: 359). The
search for “general principles” and “individual differences” is relevant to distinguish
between “Ideal models” and “Non-ideal models”, where the attribute “ideal” is
used “to denote the model in which evolution laws, transition rules, constraints,
boundary conditions, as well as every other circumstance underlying the production
of system’s behaviors, are nothing but a consequence of general principles” (Ibid.).
Accordingly, Non-ideal models refer to “models in which behaviors (local or global)
are nothing but a consequence of the introduction of suitable local evolution rules,
supplemented by a fortunate choice of initial and boundary conditions, as well as of
right parameter values” (Ibid.).

Hence, the focus should be on finding or creating suitable generalizations, laws,
transition rules, constraints, etc., which are a consequence of general principles.

Moving among different theoretical fields is, however, still a challenge to address
in the creation of new knowledge, leveraging the existing; the goal to pursue is
still exploiting existing knowledge to explore its application in new problematic
contexts (March, 1991). More in general, as underlined, for addressing complex
issues, which are typically multi-dimensional, multi-perspective, multi-stakeholder,
hence requires the integration of inter- and transdisciplinary knowledge, whereby
the possibility to cross different knowledge domains to integrate their contribution
is fundamental.

If we recognize that under observed complex phenomena, common rules of
systemic functioning lie, following Pessa’s reasoning, it is possible to ‘see’ the
general systems principles (of which such rules are consequences) that underlie the
observed phenomena, looking behind and beyond the specificity of the “individual
differences” and making “suitable generalizations”. This generalizable systems
thought, by virtue of its high level of abstraction, can represent the sought common
denominator on which to base inter- and transdisciplinary sharing of knowledge for
the integration and implementation of multiple knowledge resources.

In the following sections, we illustrate our proposal of a systems thinking
reference for inter- and transdisciplinarity by briefly describing key reference
elements and schemes of the Viable Systems Approach (VSA).

3 Systems Thinking as a Common Denominator for
Approaching Interdisciplinarity: A Proposal That Stems
from VSA

Our introductory reasoning about the need of a re-founding of human values and the
role of scholars in the process has led us to recognize the opportunity of promoting
inter- and transdisciplinary knowledge sharing to face the complexity of decision-
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making in conditions of uncertainty. In effect, we believe that such collective sharing
can provide not only interdisciplinary knowledge useful to deal with complex issues
but also a way towards the proposed re-founding of human values.

We illustrate our view, in the next sub-section by means of:

1. The Viable Systems Approach (VSA), as an interpretative and governance
methodology for organizations developed within the field of managerial sciences
to integrate existing problem solving competences with more general decision
making capabilities necessary to address the emerging complexity (Barile, 2000,
2008, 2009a, b; Golinelli, 2000a, b, 2010, 2022; Barile et al., 2011, 2012b, 2014,
2016a, b; Barile & Saviano, 2011).

2. The Information Variety Model, as a general scheme of reference developed
within VSA to frame the representation of a system’s knowledge structure and
dynamic (Barile, 2009a, b).

3. A VSA revised version of the T-shaped Model, developed within the field of
Service Science to frame the increasing need of knowledge that integrates vertical
expertise in disciplines/systems with horizontal boundary-crossing capabilities,
necessary to address complex problems (Guest, 1991; Leonard, 1995; Hansen,
2001; Donofrio et al., 2010; Barile et al., 2012a, 2015; Barile & Saviano, 2013a,
b; Demirkan & Spohrer, 2015; Saviano et al., 2017a, b).

3.1 The Viable Systems Approach (VSA) as a Systems Thinking
Reference to Develop Interdisciplinary Knowledge

As highlighted, during recent decades, while experiencing a growing complex-
ity, decision makers of social and business organizations have had to recognize
the increasing inadequacy of current models and interpretative schemes in the
comprehending and governing of social, economic and environmental dynamics.
The highly specialized tools and models of management, focused on problem
solving, developed as an outcome of the vertical specialization of the industrial
era, appear increasingly inadequate to address complex decisions. It has long been
evident, in fact, “the inadequateness of concepts and language based on industrial
knowledge still used in current practices by managers to cope with problems of
the post-industrial societies characterised by non-linear process of emergence and
acquisition of properties” (Minati, 2012: 350).

In this context, a stream of management scholars started a deep rethinking of
consolidated management models, recognizing the need to recover more powerful
interpretative schemes. By building on the key principles of the von Bertalanffy’s
General Systems Theory (von Bertallanfy, 1962, 1968, 1969) and on an updated
version of Beer’s Viable System Model (1972; Espejo, 1990; Espejo & Reyes,
2011), the Viable Systems Approach (VSA) developed a unitary set of general
interpretative schemes as a reference for studying and governing social and, in
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particular, business organizations on the basis of five founding principles3 (Barile,
2009a, b; Barile et al., 2015).

Starting from the early works of Sergio Barile (2000, 2008, 2009a, b) and
Gaetano Golinelli (2000a, b, 2005, 2010), VSA has been developed over recent
decades providing generalizable models of individual and organizations viewed
as viable systems (Espejo & Harnden, 1989; Espejo & Gill, 1997; Yolles, 1999).
In Table 1, ten main groups of concepts and relative propositions are listed to
summarize key constructs of VSA.

Through ‘suitable generalizations’, VSA enables the reading of behavioral rules
underlying observed phenomena that are common to different problematic contexts
and fields. By overcoming the limits of a still dominant analytical-reductionist
approach which tends to focus on micro aspects that are specific to observed
phenomena, the systems approach helps to integrate different perspectives within
a unitary framework of generalizable knowledge. Therefore, a systems approach to
interdisciplinarity should be intended as a way to open up “space for thinking in a
non-reductionist way about multiple determinations without rejecting the value of
single disciplines” (Jansen, 2009: 172).

On these bases, VSA has developed multiple research trajectories both horizontal
(enrichment of the paradigm by deepening general level issues such as complexity,
sustainability, etc.) and vertical (application of VSA general interpretative schemes
to specific problematic contexts). In this sense, the systems approach allows
combining research by following both horizontal (dynamic capabilities) and vertical
(competences) trajectories in line with the view of “T-Shaped” knowledge (Barile
& Saviano 2013a, b; Barile et al., 2014).

The distinction between horizontal and vertical knowledge is useful to interpret
the process of generalization, as will be seen hereafter.

3.2 The Information Variety Model as a General Reference for
Representing a System’s Knowledge Variety

Among the main general schemes of VSA, listed in Table 1, Information Variety
(Barile, 2009a, b) represents one of the most useful advancements of VSA.

3The five principles of VSA (Barile et al., 2015): 1. Survival: A viable system, inserted in a
specific context, has the primary purpose of survival. 2. Eidos: The viable system, in its ontological
qualification, can be conceived from a double perspective: that of the structure and that of the
system. 3. Ethos: The viable system, in its behavioral qualification, is characterized by two
logically distinct areas: that of deciding and that of acting. 4. Isotropy: The viable system, in its
existential dynamics, is directed towards the pursuit of strategies and the achievement of objectives
in a daily life characterized by constant interaction with suprasystems and subsystems from which
and to which, respectively, it draws and provides guidelines and rules. 5. Exhaustiveness: For a
viable system, all entities external to itself or are also viable systems, or are components of higher-
level viable systems.
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Table 1 Key concepts and propositions derived from the five VSA principles

Key concepts Propositions

Survival A viable system aims at surviving in its context.
Context The viable system’s context is made up of other viable systems.
Viability and
sustainability

A system remains viable in its context if it is able to establish (sustainable)
relationships with other systems to gain access to resources necessary for its
own functioning.

Reductionism
and holism

A system can be studied by focusing both on its parts as components of the
structure and on its whole functioning directed at the achievement of a goal.

Structure-
system
perspective

Any viable system can be observed through a dual perspective: that of the
structure and that of the system. The system emerges from the structure when
relations are finalized to the achievement of a goal.

Boundaries A viable system has no boundaries. Only structural borders can be drawn
while the systemic configuration dynamically changes depending on the
changing relationship it develops in the context in the pursuing of its goals.

Complexity Complexity does not objectively characterize a phenomenon but subjectively
arises when the decision maker is not able to comprehend experienced
phenomena through consolidated interpretative schemes.

Information
variety

A viable system can be viewed as an information variety that qualifies its
cognitive endowment in terms of information units, interpretative schemes,
and categorical values.

Deciding and
acting

Viable systems are characterized by deciding and acting functions.

Consonance
and resonance

A viable system develops conditions of harmonic relationship with
(supra)systems (consonance) in order to create value through synergistic
interaction (resonance). Consonance can be diversely achieved by acting on
the three dimensions of the information variety.

Source: Barile et Saviano: www.asvsa.org

By integrating cognitivist and constructivist theories (Weick, 1979; Papert, 1986;
Meyrowitz, 1995; Hatch, 1999), VSA proposes an interpretation of the viable
systems’ knowledge processes that is based on their representation as Information
Varieties (Barile, 2009a). In this respect, the Information Variety Model (IVM)
frames a three-dimensional representation in which the viable systems’ knowledge
is viewed as articulated in information units, interpretative schemes and categorical
values. Such dimensions, however, are not intended to express ‘proportions’ of
information variety as in typical spatial representations of material entities; in fact,
they are not structural but ‘systemic’ dimensions, whose meaning depends on the
subjective perspective of the observer and on the specific context of reference (Barile
et al., 2012a). In the metaphorical representation of Fig. 1, Information Variety
is conceived as an atom in which the information units are the electrons, and the
interpretative schemes and categorical values are the nucleus: the information units
are ‘attracted’ by the nucleus and orbit around it at various distances.

The metaphorical recalling of the principles of physics into a context of study of
organizations allows the transposition of knowledge from the one field to the other.

http://www.asvsa.org
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Fig. 1 A metaphorical representation of the Information Variety Model (IVM). (Source: Barile,
2009a, b: 88. www.asvsa.org)

Here, however, we limit ourselves to provide essential elements useful to our aims,
starting from the definition of the three dimension of the model.

The information units are conceived as the ‘structural’ composition of knowl-
edge, which is the specification of the total amount of data held by the viable
system including all that it can perceive or can further determine by processing
and transforming the data into information significant to the knowledge process.

The interpretation schemes represent the knowledge patterns through which
information is organized within the viable system’s whole variety. The concept
of ‘scheme’ is that of an organizing structure of past and current experience
(Penna & Pessa, 1994). Without such logical interpretative schemes, every piece of
information would appear to us as new every time we perceive it, and consequently,
we would need to create a new interpretation model to explain and comprehend it
every time. It is through these interpretation schemes that we transform generic
data into contextualized information (Barile et al., 2012a; De Toni & Comello,
2005). VSA distinguishes two kinds of interpretation schemes: general and specific.
Whereas the former is compressed and potentially active, the latter is ‘in use’;
in other words, general schemes become specific schemes when they are used in
a specific context, enabling a generation of new knowledge through a process of
contextualization.

It is worth noting here that the reverse process of contextualization is abstraction:
general schemes are what we find when we abstract knowledge from the specific
problematic context on the basis of suitable generalizations that allow us to see
the principles of which the observed specificities are consequences. This is a
key process in an interdisciplinary knowledge co-creation context in which the
knowledge to integrate is disciplinary-specific. Searching for common rules of
systemic functioning should lead to sharable interpretative schemes that facilitate
interaction among different disciplines.

At the next level of IVM, an aspect is highlighted that is less usually included in
the practice of systems thinking, and which is a peculiar contribution of VSA: the

http://www.asvsa.org
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role of values. The so-called categorical values represent, in fact, the most relevant
dimension of the Information Variety. They characterize the viable system’s deep-
rooted strong beliefs that over time define the system’s unique identity. Categorical
values are responsible for accepting or refusing rational elaborations and for
directing the functioning of the interpretative schemes. They are strictly connected
to the emotional level of the interaction process. The role of the categorical values
sheds light on the core of our reflection: we believe, in fact, that interaction in
a multidisciplinary context, not limited to the exchange of information units but
extended to the sharing and integration of interpretative schemes, thanks to an
abstraction process that leverages the common systems thinking roots, not only
facilitate reciprocal understanding, hence the sharing of knowledge, but also the
alignment of values.

According to IVM, in fact, the process and outcomes of interaction between indi-
viduals or organizations as viable systems depend on their conditions of consonance
and resonance: the former qualifies a structural compatibility as a necessary (but
not sufficient) condition to render the intra- and inter-systemic interactions possible
and potentially effective; the latter qualifies the degree of ‘alignment’ between the
interacting varieties determined by the degree of consonance. As will be highlighted,
the concepts of consonance and resonance can be useful to analyse a knowledge co-
creation context such as that of interdisciplinarity.

In actual fact, interdisciplinarity has been studied mainly to comprehend whether
and how it can be more effective and successful compared to disciplinary knowl-
edge, often questioning the latter’s assumed superiority; in their critical assessment
of interdisciplinarity, Jacobs and Frickel (2009) call for more research on various
aspects and, interestingly, conclude by arguing that “many topics in this area
require serious conceptual advances as well as creative collection of new data.
For example, can general criteria be developed that would indicate the appropriate
level of communication between disciplines? Can general criteria be developed for
the evaluation of interdisciplinary research?” (Jacobs & Frickel, 2009: 61). The
development of “general criteria” recalls the need to recover a more general level
knowledge useful to govern the integration of the more specific.

In line with this view, in interdisciplinary interaction contexts, focus should be
placed on the sharing of not only knowledge from facts, i.e. data, information, solu-
tions etc., but also the approaches used to develop and interpret such information,
behind which there are general interpretative schemes used to process incoming
information.

Therefore, the abstraction process suggested by VSA leads bottom up from the
information units to general scheme sharing and creates a context for categorical
values to act determining the conditions of consonance and the result of resonance
in the interdisciplinary co-creation of knowledge (Wieland et al., 2012; Barile &
Saviano, 2013a, b; Polese et al., 2017, 2018; Polese, 2018).

A synthesis of our interpretative proposal will be discussed and illustrated in the
following section using the T-shaped Model.
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3.3 The T-Shaped Model as a General Reference for
Developing Horizontal Interdisciplinary Knowledge

The Information Variety Model (IVM) provides a general reference for discussing
interdisciplinarity in knowledge co-creation contexts. With respect to the aims of
this contribution, through IVM it is possible to highlight that:

1. Although disciplinary knowledge continues to be extremely important for
progress, there is increasingly the need of multi-, inter- and trans-disciplinary
approaches to co-create knowledge.

2. Interdisciplinarity requires co-creation of knowledge through sharing of not only
information units but also interpretative schemes and, above all, values.

3. Interdisciplinarity practised through systems thinking can become an iter for a
values alignment that is necessary for the re-founding we are seeking of a new
paradigm.

As highlighted, cross-cutting disciplinary boundaries for inter- but also transdis-
ciplinarity is no new problem in science (Klein, 1990). Despite numerous successful
experiences, interaction between sciences as well as disciplines is still practically
and also conceptually difficult; in fact, interdisciplinary institutes and research
groups struggle to survive and often fail (Lélé & Norgaard, 2005). Traditional
obstacles to interdisciplinarity were first of all of an institutional and even political
type, as “scientific disciplines constitute the modern social order of knowledge”
(Lélé & Norgaard, 2005: xi), which is difficult to change. On the other hand, it
has been recognized that many interdisciplinary projects do not per se make very
relevant gains while established academic disciplines show themselves to be ever
more dynamic centres of knowledge production “open to external developments
even while insisting on internal standards” (Jacobs & Frickel, 2009: 44). Moreover,
when interdisciplinary research is successful, it can tend to become established
giving rise to new fields of inquiry, from which new rounds of differentiation and
fragmentation can start. Somehow, interdisciplinarity itself can be viewed from a
‘disciplinary’ perspective.

Actually, to make interdisciplinarity successful not so relevant are the contents
of knowledge but rather the methods to develop them. As underlined, the kind of
knowledge required must support boundary crossing interaction, allowing effective
communication and reciprocal understanding between interacting disciplines so to
develop new knowledge starting from existing one.

Going up from specific and contextualized to more general knowledge, common
to various fields, is a way to identify the sought common denominator useful to
approach interdisciplinarity. Disciplinary knowledge, developed over time within
the ‘borders’ of the scientific communities, is ever more specifically conceived
to increase humans’ well-being and the quality of every day life; in this sense,
it follows a ‘vertical’ pathway. Conversely, interdisciplinary boundary-crossing
knowledge allows horizontally connecting multiple vertical knowledge expertise.
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Fig. 2 A VSA T-shaped Model of interdisciplinarity. (Source: Elaboration from Barile et al.,.
2012b. www.asvsa.org)

As discussed, the definition of horizontal knowledge can be based on the search
of generalizable commonalties that characterize the scientific fields to integrate. One
way is to recognize the common systemic behaviour of the various phenomena
investigated. Hence, this systemic nature can represent the sought generaliz-
able underlying principle, and systems thinking the sought common denominator
that provides models and tools useful to bridge different disciplinary knowledge
resources,

The way multiple vertical knowledge can be bridged, in our view, using systems
thinking and specifically the VSA general schemes is outlined in Fig. 2 in which the
Information Variety Model is used as an explicative tool to develop the horizontal
bar of a T-shaped Model of knowledge (Barile et al., 2012b).

In Fig. 2 a simplified representation is proposed of a potential dynamic of
interaction between different disciplines/systems and the possible interdisciplinary
outcome. As illustrated, effective interaction is at the same time made possible by
consonant categorical values and reinforced by the values alignment outcome. It is
in this sense that we believe that interdisciplinarity is, on the one hand, facilitated
by conditions of consonance between interacting entities, by virtue of the positive
role of converging (or at least compatible) categorical values and, on the other,

http://www.asvsa.org
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enhanced by the subsequent effect of consonant interaction, producing what VSA

calls resonance, an acceleration of consonance.
If such a process occurs, our hypothesis is that it can contribute to the creation of

the auspicated conditions for a re-founding of values necessary to a new paradigm.
In fact, while reducing the ‘cognitive distance’ (Nooteboom, 2006) between the
multiple interacting entities, interdisciplinary practice creates a context that can
favor a progressive alignment. Moreover, if we agree that the more “distant” the
interacting entities are, the greater is the potential of generating new knowledge
making effective interdisciplinarity, the threats connected to the initial distance, that
is to the extent that cognition differs, which make difficult reciprocal understanding
and collaboration (Nooteboom, 2006), can be attenuated by basing interaction
on elements of convergence, which should happen using systems thinking as a
common denominator. In this respect, Nooteboom’s reasoning appears to support
our view. As the Scholar affirms (2006: 14): “collaboration across (greater or
smaller) cognitive distance forces one to try and apply one’s knowledge in a novel
context, in this case the practice of the partner (generalization) process now is
reciprocal. Partners can help each other in fitting in elements from their practice
into hybridization of the partner’s practice. Next, they can try to jointly find novel
design principles for a synthesis, in a new form.”

In short, on the basis of IVM, we can assume that interaction between dif-
ferent knowledge varieties (disciplines/systems) can result in a variation of the
initial variety whose degree depends on the initial and progressive conditions of
consonance. When different but consonant ‘I-shaped’ knowledge varieties (vertical
expertise) interact, a cross-fertilization potential can emerge leading to a “hybridiza-
tion” of knowledge using sharable interpretative schemes, like those offered by
systems thinking schemes. In this sense, systems thinking acts as a bridging meta-
knowledge.

The envisioned abstraction up to the level of general schemes and even beyond to
the dimension of values that lie behind decisions, choices and behaviors of humans’
individual and organized systems, leads to a dimension that, metaphorically speak-
ing, is somehow ‘absolute’ because, at that level, the interacting ‘parts’ vanish
and become ‘indistinct’ within the whole, by virtue of a deep sharing. In effect,
information is ‘compressed’ in patterns, which can be traced to general schemes,
which in turn can be traced to categorical values.

In order to imagine how the different ‘dimensions’ of the knowledge variety
should be intended to act in a sharing context, in Fig. 3 we provide a potential
evolutionary representation of the VSA T-shaped Model of knowledge in which the
horizontal bar becomes a ‘sphere’ (e.g. a three-dimensional representation recalling
the representation of Fig. 1), in which it is compacted around a central ‘nucleus’
whose core is made up of deep-rooted values. From the ‘mass’ of such nucleus
an extremely wide range of knowledge potentialities arises thanks to the rich
endowment of general schemes that can support the development of contextualized
or case specific knowledge in many different contexts.

Of course, a similar representation may appear a ‘too abstract’ reinterpretation
of the T-shaped idea, compared to its common versions. Actually, we exalt and raise
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Fig. 3 A VSA T-shaped Model of knowledge sharing. (Source: Saviano et Barile. www.asvsa.org)

the idea of horizontality to the extent that, at a very high and general level, it is made
of a few very general schemes with a high knowledge potential.

The ‘I’, ‘T’ and ‘spherical’ interpretation of knowledge variety can be useful
also to distinguish different knowledge profiles, from informed, to smart, up to wise
people, as will be highlight in the concluding section of our reflection.

4 Concluding Remarks

In a knowledge society fast changing like the one we are living in now, whose
unpredictable evolution is posing many among the most critical challenges to
humans, as highlighted in the introductory premise, it seems that the kind of
knowledge most required is what we would call ‘smart knowledge’, characterized
by high technological skills and the use of advanced tools, such as Artificial
Intelligence (AI) (McCarthy, 2007). The role played by values in the knowledge
exchange process we auspicate, however, would remain highly humans-centered, as

http://www.asvsa.org
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highlighted by the Information Variety Model and also underlined in the T-shaped
version of the same.

The query we posit is: how will and should the values dimension evolve in the
future? This is where our preoccupation about the future mainly lies as it seems
that the space for values is progressively reducing. Values, however, are those that
make people, as well as organized systems, wise, not only smart (Herczeg, 2010;
Carayannis et al., 2018; Barile et al., 2018a, b, 2020).

Therefore, in our view, a re-founding of values necessary to a new paradigm
makes the abstraction process discussed above even more critical in that it allows
knowledge be characterized not only by technological elements but also human
ones. And human intelligence, compared to artificial, will always bring into
knowledge an irreducible values dimension (Mella, 2012).

Accordingly, we believe that intense human-centered knowledge exchange
interaction, such as that characterizing the role of scholars, can be the key for the
next paradigm shift, as to a certain extent also envisioned in the view of the emerging
Society 5.0 e.g. as a platform society (Van Dijck et al., 2018) in which the digitized
world should once again have humans at the core (Fukuyama, 2018).

Therefore, creating and developing conditions of consonance between interacting
knowledge varieties, such as scientific disciplines, can make the practice of interdis-
ciplinarity a way to recovering and recognizing the role of values in any context of
decision and choice in which the emerging of a collective consciousness can be the
key for the sharing of an innovative paradigm.
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Autonomous Systems and the Place
of Biology Among Sciences. Perspectives
for an Epistemology of Complex Systems

Leonardo Bich

Abstract This paper discusses the epistemic status of biology from the standpoint
of the systemic approach to living systems based on the notion of biological auton-
omy. This approach aims to provide an understanding of the distinctive character
of biological systems and this paper analyses its theoretical and epistemological
dimensions. The paper argues that, considered from this perspective, biological
systems are examples of emergent phenomena, that the biological domain exhibits
special features with respect to other domains, and that biology as a discipline
employs some core concepts, such as teleology, function, regulation among others,
that are irreducible to those employed in physics and chemistry. It addresses the
claim made by Jacques Monod that biology as a science is marginal. It argues that
biology is general insofar as it constitutes a paradigmatic example of complexity
science, both in terms of how it defines the theoretical object of study and of the
epistemology and heuristics employed. As such, biology may provide lessons that
can be applied more widely to develop an epistemology of complex systems.

Keywords Biological autonomy · Complex systems · Decomposition ·
Emergence · Explanation · Function · Integration · Organization · Teleology

1 Introduction

The question “what is life?”, the title of the seminal essay by Erwin Schrödinger
(1944), keeps raising several theoretical and epistemological issues. Theoretical
issues concern for example what types of systems living organisms are, the
identification of their distinctive features and their differences with respect to other
natural systems such as physical, chemical ones, or ecological and social ones, not to
mention hard questions such as how life originated. An example of the complexity
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of this question is the wide and intense debate on the definitions of life, characterized
by a lack of consensus and by the proliferation of definitions proposed (Popa, 2004;
Bich & Green, 2018).

Moreover, the question about life has important epistemological implications.
It raises the problem of how to characterize, describe and explain living systems
and biological phenomena in general. The study of living systems has shown
the inadequacies of the framework of deductive nomological explanation that
had dominated discussions of scientific explanation in the middle decades of
the twentieth century. The deductive nomological framework had emphasized the
importance of scientific laws, with physics as the science of reference. The study
of biological systems, instead, has given rise to an interest in notions such as
emergence, due to the difficulties or impossibilities of using one level such as that
of physical systems and its laws, to account for a different one, the biological,
or to understand a system on the basis of a description of its parts alone. In
the last decades an increasing attention has been paid to the specific types of
explanations used in biology. Recognizing that biologists seldom refer to laws
when advancing explanations, Bechtel and Richardson (1993/2010) focused on
the fact that biologists often explain a phenomenon by describing the responsible
mechanism, identifying the parts involved, their operations, and their organization
rather than identifying or referring to laws. This view has been at the origin of the
neo mechanistic approach in philosophy of science (see also Machamer et al., 2000;
Bechtel & Abrahamsen, 2005; Craver & Darden, 2013; Glennan, 2017).

The distinctiveness of biology and the complexity underlying the notion of life
may lead one to inquire into the epistemic status of biology. Among others, Jacques
Monod directly addressed this issue at the beginning of the preface to his book
“Chance and Necessity” (Monod, 1970). He did so by somehow acknowledging the
‘special’ character of biological system, and by identifying ‘special’ with ‘rare’.
Biological systems constitute only a minimal fraction of natural systems, and
therefore, according to Monod, the study of biology might not lead to the discovery
of general laws applicable outside the biosphere. In his view biology is marginal.

In this paper I address this issue and question Monod’s claim. I do so by starting
from a characterization of living systems in terms of autonomy (Sect. 2), to discuss
the general theoretical and epistemological implications of understanding biology
as (in a specific sense) special (Sect. 3). As suggested by Robert Rosen “perhaps the
first lesson to be learned from biology is that there are lessons to be learned from
biology” (2000: 275). I argue (Sect. 4) that biology is not marginal and provides
important lessons that may be applied more widely to develop an epistemology of
complex systems.

2 What Is Life? An Organizational View

When Erwin Schrödinger, as a physicist, addressed the basic question of biology,
“what is life?” (Schrödinger, 1944), he brought forth the idea that understanding
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biological systems might have required extending the framework of physics by
providing new laws and concepts. This idea of developing a new physics and intro-
ducing new laws was later pursued with a different approach by Stuart Kauffman
(2000), among others. This attitude is different from Monod’s. Acknowledging, as
Schrödinger and Kauffman did, that life cannot be accounted for by current physics,
leads to questioning the generality of physics and to expanding or renewing physics
itself.

Schrödinger tried to identify what is the invariant element that might allow
understanding the distinctive character of biological systems. He identified it with
a specific type of order. In opposition with the statistic order of physical systems
(“order from disorder”), that might give rise to macroscopic patterns, he identified
the invariant element of living systems in what he called “order from order”. The
basic idea is that of a positional order, embedded in a specific rigid molecular
structure, an order which is then propagated throughout the system. Positional order
is realized in terms of rigid spatial organization, found at the molecular level in an
aperiodic crystal and embedded in a specific sequence (see Bich & Damiano, 2008
for an analysis of different types of order and organizations). In Schrödinger’s view,
living processes are controlled by highly stable groups of atoms which transmit
their structural order to other molecular structures: in contemporary language, from
the sequence of bases in the DNA to the sequence of amino acids in proteins. The
constancy of positions and sequences and the regularity of the relationships between
parts (solid bodies whose form is maintained constant) is what allows organisms
and machines such as mechanical clocks to function. Both are characterized as
mechanisms and understood in terms of the relative positions of stable (ordered)
components, a form of organization.

This is not the only way to look at living systems in terms of organization.
Organization can be understood in terms of static spatial relationships such as in this
case, but also in terms of dynamic relationships between components and processes
that undergo continuous transformations. In fact, if one focuses on processes and on
the activities of components that realize living organisms, regularity and constancy
might be the exception rather than the rule, or even the sign of a pathology (Bich
et al., 2020). Organisms are adaptive systems whose internal dynamics and the fate
and behavior of parts depend on the state of the system and its environment (Bich
et al., 2016). Living systems constantly modify their components, and their internal
mechanisms are highly dynamic. They are continuously modulated, activated or
inhibited by regulatory mechanisms. From this point of view, which considers
living systems as dynamical, the invariant aspect cannot be found in some structural
regularity of sequence or positions at the level of parts but in a relational property
at the level of the organization of the system. It is a property of the whole living
system. It cannot be referred to any specific component of it; rather, it rests on the
peculiar and distinctive way the components—and the processes they are involved
in—are related.

A theoretical approach focused on this type of organization has been developed at
the crossroad between cybernetics and systems theory by the tradition of biological
autonomy. It considers organization between parts and processes as the invariant that
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captures the distinctive character of biological systems. Pioneering conceptual and
methodological intuitions in this respect can be found in Rashevsky’s work (1954),
specifically in his emphasis on relations as what allows identifying a system as a
living one, and on the thesis that there is a core set of relations that is common to all
living systems.

The autonomy approach has been developed with the aim of identifying and
understanding the nature and form of these relationships. This theoretical framework
was built upon pioneering work carried out by Jean Piaget (1967), Robert Rosen
(1972), Humberto Maturana and Francisco Varela (Varela et al., 1974), Howard
Pattee (1972), Tibor Gánti (1975), among others. Recently it was further developed
by Stuart Kauffman (2000) and by Alvaro Moreno and collaborators (Moreno &
Mossio, 2015). This approach characterizes a biological organism as an autonomous
system capable of producing its own components and maintaining itself far from
equilibrium with its environment. To explain this capacity, this tradition appeals
to the internal organization of the organism, which is maintained in spite of the
continuous transformations that an organism undergoes at the level of components.

The core feature of this approach is the focus on the organization of the
system. Organization refers to the way production and transformation processes are
connected so that they are able to synthesize the very components that realize them,
by using energy and matter from the environment. In this view, the fundamental
feature of the organization of (biological) self-maintaining systems is its circular
topology as a network of processes of production of components that in turn realize
and maintain the network itself. This distinctive type of generative circularity that
characterizes biological systems is known as ‘organizational closure’ (Piaget, 1967).

This tradition answers at a different level Schrödinger’s question on life and on
the invariant order that characterizes it: the abstract level of relationships between
parts and processes instead of the level of the intrinsic properties of parts. As argued
by Rosen, the idea of a circular invariant organization “looks very much like an
aperiodic solid, and indeed it possesses many of the properties Schrödinger ascribed
to that concept. The novel thing is that it is not a “real” solid. It is, rather, a pattern
of causal organization” (Rosen, 2000: 23).

These ideas have important epistemological implications. The first concerns what
level of description is considered as the more pertinent to understand a biological
system: material parts, and therefore a bottom-up approach, or relationships,
and therefore a top-down approach. While not excluding the first, the autonomy
approach focuses mainly on the second, and characterizes the constituents of a
biological system in terms of their dependence on and contribution to the system
that harbors them: as functional components rather than material parts (Bich, 2012).
I will come back to this point in the following sections.

Another more general epistemological implication concerns the descriptive
approach developed in the autonomy framework, which is based on organization.
The organization of a system is defined as the topology of relations which allows
scientific observers to identify a system as a unity belonging to a certain class,
that is, the class of living systems (Maturana, 1988). Such a definition entails
the impossibility of giving distinctions for granted and of considering scientific
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knowledge as independent from the activity of observation and categorization
performed by an observer. The underlying idea, which is of particular interest when
focusing on theoretical and formal modelling, is that an object studied by science
is co-construed: the observer gives it an objectual form through the categories she
resorts to, while the world, limiting the range of their applicability, defines the area
in which nature can be handled in terms of those objects categorized by the observer
(Damiano, 2012).

It is important to emphasize a couple of points. In the first place, this episte-
mological thesis does not mean that categorizations are arbitrary. It is the opposite;
they are constrained by interactions with the world and they need to be theoretically
coherent. The second is that when focusing on living organisms as self-producing
and self-maintaining systems, whose existence and activity coincide, one makes a
special type of distinction. An observer identifies a living system as autonomous in
the same domain where the system specifies it through its internal operations.

The theoretical and epistemological dimensions of biology are therefore distinc-
tive, or “special”, if life is addressed from the point of view of autonomy. In the next
sections I discuss the implications of these ideas.

3 Biological Emergence and the Autonomy of Biology

Looking at living systems from the perspective provided by the autonomy frame-
work has deep implications for an understanding of biology and its relationships
with other domains of scientific investigation. The first derives from the identifica-
tion of a causal regime that is distinctively biological: that of organizational closure,
according to which biological systems are capable of producing their own compo-
nents and maintain themselves, unlike other classes of natural and artificial systems
(Moreno & Mossio, 2015). The focus of the autonomy framework is primary on
the self-maintaining organization of the system and on the consequent idea that the
existence and activities of parts depend on such organization. This approach centers
on organization and activities of parts (i.e. interactions between parts, operations
of parts on processes). The starting point is not components themselves. More
specifically, organization refers to the way production and transformation processes
are connected so that they are able to synthesize the components that realize them
by using energy and matter from the environment. Components are characterized
functionally in terms of their activities within a given organization. Studying the
role of parts within the system, therefore, needs to take into account the type of
organization that harbors them.

This approach raises the problem of how to describe such a highly integrated
system and how to decompose it into its parts in order to understand its internal
functioning. Surely, a living organism is not an ‘aggregative system’ or ‘component
system’ (see Wimsatt, 1986; Bechtel & Richardson, 1993/2010). The parts that
contribute to biological phenomena of interest cannot be easily localized, and their
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activities cannot be considered as fully determined (once their triggering conditions
are met) by their intrinsic properties.

Instead, living systems can be considered as a type of ‘integrative system’
or ‘semi-decomposable’ system (Bechtel & Richardson, 1993/2010 ): a class of
systems in which the organization contributes to determine the activities of the
parts, and the actual results of such activities depend on how their functioning is
orchestrated. More precisely, living autonomous systems might be considered as
highly integrated systems, because not only the activities are ordered in such a way
as to achieve specific results, but: (1) the parts depend on one another and on the
system for their existence and (2) their activities are not regular and depend on the
operations of other regulatory components within the system, which modulate the
activities of parts on the basis of the state of the system and the environment (Bich et
al., 2016). Decomposing such systems and identifying the parts that are relevant to
understand a specific phenomenon or mechanism is a complex endeavor, as showed
for example by the history of the discovery of cell mechanisms, metabolic cycles,
etc. (see Bechtel, 2006).

For these reasons, in principle an approach based on autonomy privileges
decomposing strategies that proceed top-down from the system to the components
that contribute to its activities (Rosen, 1991). One way to do so is functionally:
to identify one or more activities that are necessary for the organisms to maintain
itself and establish which type of operations are necessary to carry it out, and then to
identify and characterize in terms of these operations the parts that realize them. It is
what Rosen calls ‘analysis’ (Rosen, 1991). The alternative would be to identify the
anatomic components of the system, to study them and to use them as the starting
point to conceptually reassemble the system. It is what Rosen calls ‘synthesis’
(Rosen, 1991).

The relationships between top-down and bottom-up descriptions—i.e. trying to
establish a correspondence between functional parts (identified and characterized
top down), and structural ones (anatomic or material parts characterized through
a bottom-up approach)—is highly problematic (Bich, 2012). Privileging either
approach may result in shortcomings. An exclusive focus on top-down approaches
might result in a functionalism characterized by an excessive degree of abstraction
and lack of relevant concrete details (Levy & Bechtel, 2013). The risk is to overlook
the importance of materiality and of physical aspects to understand how a living
system is actually realized. The other way around, a bottom-up approach might
lose sight of the causal regime that characterizes the system, with problems of
selecting which properties of components are pertinent or not, what components
are relevant to describe how a phenomenon is realized, how they behave in different
ways depending on the state of the system (Bich et al., 2016, 2020), and when
they are not working properly (Saborido & Moreno, 2015; Bechtel, 2018). While
irreducible, at least in practice, these two approaches need to proceed hand in hand.

Moreover, it is important to point out that some of the challenges faced in
describing biological autonomous systems is that some of the elements needed to
define the dynamics of the system are determined, at least in part, from within. By
interacting with the environment and establishing their own internal environment,
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living systems contribute to determine some of the boundary conditions that allow
them (and their internal processes) to exist; they also determine and modulate some
of the parameters of their internal dynamics, for example by activating or inhibiting
the activity of enzymes and regulatory proteins, and finally, the rules of interaction
between parts depend on what components are produced and how their operations
are modulated by regulatory mechanisms (Kampis, 1991; Bich & Bocchi, 2012;
Longo et al., 2012; Koutroufinis, 2017). One may also argue that the organization
of the system has a role in determining or constraining the behavior of the parts
(El-Hani & Queiroz, 2005; Mossio et al., 2013).

The idea of a distinctive causal regime of self-maintenance and the epistemic
implications it brings to surface with regards to the study of biological systems, have
often led to associating biological autonomy with emergence (Rosen, 1991; Varela,
1997; Kauffman, 2000; Bich, 2006; Mossio et al., 2013). The causal irreducibility of
the regime of organizational closure is paired with an epistemological irreducibility:
a number of limitations regarding the possibility of understanding, modelling and
formalizing these types of systems. Different types of descriptions (such as in term
of material and functional parts) coexist, and so do irreducible notions (such as
sequence and function).

In general, there is no preferential or more pertinent heuristics in general. What
types of heuristics one needs to adopt may depend on the specific phenomenon
under investigation. For example, let us think about the strategies employed in the
discovery of physiological processes such as fermentation and oxidative phospho-
rylation, which sought the opposition between reductionist and anti-reductionist
approaches, with competing agendas and heuristics (Bechtel & Richardson, 1992).
In the late nineteenth century, while reductionists associated fermentation with
independent chemical reactions, anti-reductionists such as Schwann and Pasteur
argued that fermentation required taking into consideration the circumstances found
in living cells instead of looking only to parts. The discovery of the mechanisms of
fermentation happened in several steps in a period spanning from the last decades of
the nineteenth and to the first ones of the twentieth centuries. It did not result in the
reduction of this phenomenon to a chain of reactions, although reactions had to be
identified. Looking also at the types of connections between the reactions involved
resulted in the discovery of an organized biochemical system characterized by
several causal loops: “a highly integrated, interlocking system of reactions” (Bechtel
& Richardson, 1992: 273).

Similarly, the discovery of oxidative phosphorylation also showed the difficulties
of identifying the pertinent levels for explaining the phenomenon under investi-
gation. It required considering not only individual reactions and their dynamical
organization, but also including structural aspects at a different scale than that of
chemical reactions, such as the macroscopic structure of the mitochondrion and in
particular of its systems of endomembranes, which were studied through electronic
microscopy. Moreover, as shown by Bechtel and Richardson (1992), techniques that
were relevant for one level of descriptions often concealed or even destroyed crucial
aspects of the phenomena investigated, which were only available, instead, at other
levels of description.
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Many of these considerations, apart from those derived from the notion of
organizational closure, are not exclusive of biological systems. Physics provides
examples and formal models of natural phenomena that can be considered as
emergent and that cannot be predicted or deduced from a description of their
constituents or from an initial state. These phenomena, therefore, are described by
employing models that are irreducible to one another (Pessa, 1998). From physics
itself comes a questioning of the very idea of a fundamental level of description and
of fundamental objects (Pessa, 2011; Bitbol, 2007).

However, focus here, from a systemic perspective, on a few elements which,
among others, are distinctively biological and ground some degree of autonomy
for this discipline. They are useful in order to discuss then the epistemic status
of biology. Among the differences between the domains of physics and biology,
Longo and Montévil (2013), have discussed what are the features of the objects
characteristic of either domain and how to describe their behaviors. Physical objects
are generic because different objects of the same category have the same intrinsic
features and behave in the same way. Their trajectories in phase space are instead
specific and defined by the relative equations. For biological objects, the opposite
is true: they are specific while their behavior is generic as they follow a possible
evolutionary trajectory in the phase space.

What about some core biological concepts such as teleology, function, integra-
tion, regulation, control, neither of which has a counterpart in physics nor has been
reduced to physical concepts? These concepts make biological explanation theoret-
ically independent from the physical and chemical ones. They enable explanations
that are directly grounded in the specificity of biological phenomenology rather than
derived from lower-level explanations. These concepts may constitute heuristic tools
that are useful to address biological phenomena in practice, but different attempts
have also been made to naturalize them and make them well-grounded theoretical
notions.

One interesting case is that of processes oriented towards a final state. In physics
one can find, among others, the Geodesic Principle, Le Chatelier’s principle and
the Second Law of Thermodynamic, which describe how the trajectories of certain
systems tend to proceed towards a final state such as for example, thermodynamic
equilibrium. Biological systems exhibit a similar yet qualitatively distinct feature:
they actively pursue certain states, which can be considered the goals of the system.
What for physical systems are end states, for biological ones become goals, aims,
purposes. All these notions, which belong to the category of teleology, are not just
ways of speaking or heuristic tools, useful to describe the behavior of a system, but
can be provided a naturalized grounding in the autonomous organization of living
systems (Mossio & Bich, 2017, see also Schlosser, 1998; Delancey, 2006). A living
system is characterized by the distinctive capability to produce, transform and repair
its components which realize and maintain the system through its interactions with
the environment. Its own activity and those of its parts are, in a fundamental sense,
oriented toward an end. The goal of the system is to maintain itself. It is true that
there are other systems, among artifacts, which are considered as goal-oriented in
their behavior. An example is a thermostat, which controls the temperature of a room
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to maintain it within a certain interval of temperature. Yet there is a fundamental
difference between this type of goal-oriented behavior and the teleological one
of biological systems. It amounts to the difference between following or having
a goal (Jonas, 1953). Artifacts follow a goal. The goal of artifacts is determined
extrinsically, by the designer or the user. Following this goal does not contribute
to the existence of the artifact. Biological systems “act on their own behalf”
(Kauffman, 2000). They have an intrinsic goal, which is their own existence.

Another fundamental concept for biology is that of function, which also has
a teleological dimension. Functional explanations are widespread in biology, and
parts and traits of living systems are often characterized in terms of what they
do. There are general accounts of functions, such as the dispositional one, which
are generic and can be applied to almost any class of system (Cummins, 1975).
The dispositional approach identifies the function of a part with its causal role in
a larger system. Yet the generality of this concept sacrifices other aspects which
are important in developing a scientific explanation. Ascribing functions to a part
in terms of causal role may be arbitrary and it may not provide a normative basis
for distinguishing which among many causal effects to count as the function of a
component.

Nevertheless, there are principled way to ascribe functions that are specifically
biological (i.e. capture the distinctive and irreducible character of biological func-
tions) and, unlike the dispositional account, justify claims such as that the function
of the heart is to pump blood (and not, for example, to make noise). The most
widespread account is based on evolutionary considerations, and characterizes a
function as a selected effect of a trait of an organism which contributed to the
survival of the ancestors of that organism (Millikan, 1989; Neander, 1991). The
autonomy framework, instead, characterizes functions in terms of contributions to
the maintenance of the organism. A function is understood as a contribution of a trait
to the maintenance of an autonomous organization (e.g., a living cell) that, in turn,
contributes to producing and maintaining the trait itself (Collier, 2000; McLaughlin,
2001; Christensen & Bickhard, 2002; Mossio et al., 2009). The way functional
ascriptions are justified and employed in biology does not have counterparts in
physics and chemistry.

4 Is Biology Marginal? Insights for an Epistemology
of Complex Systems

The previous sections have discussed the theoretical account of living systems based
on the notions of biological autonomy and organization. They showed how, if one
adopts this perspective, biological phenomena can be considered emergent from the
causal and epistemological points of view. In this scenario, the biological domain
can be considered as exhibiting distinctive phenomena and requiring concepts
that have no counterpart in other scientific domains that focus on lower levels of
organization.
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However, biological phenomena are rarer than physical and chemical ones, and
biology as a discipline concerns distinctive phenomena, exhibits a certain degree
of autonomy (although not self-sufficiency) with respect to other sciences, and
employs its own concepts. Does this mean that biology is marginal, as argued by
Monod (1970)? And is there a wider lesson to be learned from biology? These
questions can be addressed in multiple ways by either focusing on theoretical
aspects or epistemic ones. I argue that, from both points of view, the answer is that
biology is not marginal and there are lessons to be learned from it.

One way to approach these issues is theoretical. If the tools of sciences such
as physics and chemistry, although useful and unavoidable, are unable to provide
an understanding of what living systems are and how they function, one needs to
expand science. This answer is in line with claims such as the one made within
philosophy by Hans Jonas. When discussing life, he argued that “if life is not
within the competence of an alleged cosmic principle, though it is in every sense
within the cosmos, then that principle is inadequate for the cosmos as well” (Jonas,
1966: 65). The research projects carried out by Schrödinger (1944) and Kauffman
(2000)—aimed respectively at developing a new physics, or new laws, to make
sense of living systems as natural phenomena—constitute attempts to respond to
these questions within science. These attempts aim to extend a cohesive set of
theoretical tools. Another possibility, more in line with the autonomy framework,
is to complement the tools provided by physics and chemistry with new tools,
such as organizational closure, specifically developed for addressing living systems.
In the first case, biology would not be marginal because it would be part of an
extended, more general, physics; in the second case because it would be source of
new theoretical tools and principles applied in combination with those of physics
and chemistry: a more general science. In both cases, biology would be a source of
new lessons for science.

Acknowledging the distinctive character of biological systems implies on the one
hand the idea that the biological domain should not be considered as a particular case
of other domains considered as more fundamental, such as physics and chemistry.
Biological systems can be investigated in their specificity only by building new
types of theoretical and descriptive models. On the other hand, it makes it necessary
to consider the natural world as characterized by a range of phenomena much
wider and richer than what can be addressed through the tools of one discipline
or approach alone, be it biology or physics. This, according to Rosen, is one of the
meanings of Schrödinger’s insight on a new physics, which becomes the foundation
for a theoretical research program for biology and for complexity sciences in
general. According to Rosen, Monod’s thesis on the marginality of biology rests
on the idea that organisms are “just specializations of what is already on the shelf
provided by old physics, and that to claim otherwise is mere vitalism” (Rosen, 2000:
26). Organisms are indeed rare if compared to other material systems. Yet Rosen
argues that Monod’s argument builds upon an artifact of sampling: a confusion
between ‘rare’ and ‘special’ (in the sense of marginal).

In sum, from the theoretical point of view, organisms are more general, insofar
as they exhibit properties and phenomena that require the development of new con-
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ceptual categories, capable to capture also those aspects, such as closure, teleology,
functionality, regulation, control, that escape other conceptual frameworks. There is
something qualitatively different in biological systems, invisible to other sciences,
and that requires a conceptual rethinking and new categorizations to be employed
together with those derived from other sciences such as physics or chemistry. In this
sense the study of living systems and of their distinctive character carries a lesson
on nature and science in general.

The other way to address the questions is to focus on epistemic aspects, and
to consider biological systems as paradigmatic cases of complex systems. This
epistemological thesis is specifically connected to the problem of the relation-
ships between scientific disciplines and descriptive strategies. It supports a non-
reductionistic approach oriented towards establishing of communicative circuits
between disciplines and between different heuristics within a discipline: biology
as a model for an epistemology of complex systems characterized by different
irreducible approaches and descriptive tools which coexist and interact; a domain
characterized by multidirectional transfers of models, questions and theoretical
structures.

Let us consider some issues deriving from the difficulty of establishing connec-
tions between different types of observations, models, observables, etc. As discussed
in Sect. 2, the relationships between directions of observation is one of these
cases. In the autonomy approach the observables that are built bottom-up from the
observation of intrinsic properties of the parts and those built top-down in terms
of functional properties (identified with regards to the contribution of components
to the system) do not necessarily coincide (Rosen, 1991; Bich, 2012). Material
and functional components may not be one and the same thing. An example is
the case of enzymes. A bottom-up analysis in terms of sequence of amino acids
may not covey the same information as a structural analysis of the configuration
and functionality of the folded molecule. For the same sequence there might
be several configurations, depending on the boundary conditions present during
folding, the activity of chaperons, and of several regulatory interactions such as
phosphorylation and allosteric control. A mixed approach is often fruitful to predict
possible regulatory sites, and how interactions at these sites changes the probability
of having a given configuration (and functional capability) of the molecule.

Moreover, differences in the types and scales of observation may provide differ-
ent pictures of the biological phenomenon under investigation. Let us think again
of the discovery of phenomena such as fermentation and oxidative phosphorylation
(Bechtel & Richardson, 1992). Whereas a study of individual chemical reactions,
or sequences of reactions, was an important aspect, it proved to be insufficient to
provide an understanding of these two phenomena. Some gestalt switches were
needed. In the case of fermentation, a different type of perspective was needed,
focused on the topology of the relationships between the reactions, i.e. their
organization, which led to the discovery of chemical cycles. The case of oxidative
phosphorylation showed the importance of taking into account different irreducible
scales by complementing the investigation of chemical reactions with that of the
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role of macroscopic structures such as membranes, which constrain these reactions
and enable different types of processes.

Similar considerations can be made with respect to general strategies employed
to describe and model living autonomous systems. As argued by Moreno and Suárez
(2020), two irreducible strategies provide information on different aspects of the
system. One is network modelling: a holistic tool used to study and predict global
dynamical properties of large sets of interacting entities. It has often been employed
to investigate the dynamical properties (e.g. stability and robustness) of abstract
theoretical models of the organization of biological autonomous systems (Piedrafita
et al., 2010). The other strategy is the new mechanistic one, which aims to provide
a causal explanation of how the individual parts of the systems, or the parts of
one or several subsystems, functionally operate and interact within autonomous
systems to realize specific phenomena. This strategy has been recently applied to
model and analyze phenomena such as mammary organogenesis (Montévil et al.,
2016) and glycaemia regulation (Bich et al., 2020) from an autonomy perspective.
Network and mechanistic strategies provide different information on the system.
Although irreducible to each other, they can be combined. Network modeling,
for example can be used to support mechanistic descriptions. Identifying the
most connected nodes of a network may provide insight into what may be the
relevant functional components responsible for producing the phenomenon under
investigation (Bechtel, 2015).

These examples show both the importance of considering how the system
is organized in different layers—which instantiate distinct and complementary
descriptive domains—and to take into account the role of the observer who needs to
adopt different modalities of description in order to account for them. The common
aspect to these examples is that sets of models derived from different observational
operations or descriptive strategies provide different, though complementary, infor-
mation about the system under study. They show the failure or the inadequacy of
a single descriptive modality and the consequent necessity to include new ones.
Some modalities might be more relevant or pertinent than others depending on
the phenomenon to study and the aims of the scientist, but there seems to be no
privileged one so that best result are obtained when more strategies are used in
combination.

For these reasons it can be claimed that biological systems are emergent from an
epistemological standpoint. Emergence in this sense depends on the relationship
between different models that are needed in order to describe the system and
depends on the experiences performed by an observer who interacts with it. In this
framework it can be expressed as the lack of a direct relationship between different
descriptions made in distinct domains or different types of descriptions of the same
phenomenon (Bich, 2012).

These conclusions, drawn from the discussion of a systemic account of biological
systems, have a more general relevance. They are in line with Rosen’s epistemolog-
ical account of complexity, according to which “To say that a system is complex
[ . . . ] is to say that we can describe the same system in a variety of distinct ways
[ . . . ]. Complexity then ceases to be an intrinsic property of a system, but it is rather
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a function of the number of separate descriptions required [ . . . ]. Therefore, a system
is simple to the extent that a single description suffices to account for our interaction
with the system; it is complex to the extent that it fails to be true.” (Rosen, 1978:
112). This notion is focused on the relationship between classes of observables that
converge in different models. Complexity can be defined as the insufficiency of
a single model, and of the set of observables related to it, to describe a system.
Consequently, one model needs to be replaced or complemented by other ones,
because the system exhibits to the observer new characteristics which were not
present before or at a different level of description, and which are thus invisible
to the chosen observables that constitute the starting description.

This perspective is also in line with a heuristic of complex systems such as the
one proposed by Minati, Penna and Pessa (Minati et al., 1998; Minati & Pessa,
2006), based on the dynamical usage of models: the interaction between different,
and often complementary, models which work in the traditional way just inside
their limited domain of validity. This means not just that one needs to choose an
individual model as the more appropriate in order to address a specific issue, but
also that to investigate complex systems one may need to employ more than one
descriptive modality at the same time and multiple interacting models.

On this basis, one may argue that biology is general insofar as it constitutes
a paradigmatic example of complexity science, both in terms of how it defines
the theoretical object of study and of the epistemology and heuristics employed.
Addressing biological phenomena from an autonomy perspective brings to the
attention in a wider context the limitations of approaches based on simple systems
and the virtues of adopting ones based on complexity. Focusing on organization,
function, teleology and other biological notions, for example, shows how scientific
investigation needs to combine analytic and synthetic strategies. Understanding
what makes a system a living organism, which exhibits distinctive features with
respect to physical and chemical systems, has relevant consequences not just for
those “rare” phenomena pertaining to biology but for scientific explanation in
general, more so for the study of complex systems. It provides theoretical and
epistemological grounds to advocate a pluralist perspective combining different
points of view and descriptive and explanation strategies.

Therefore, addressing question “what is life?”, that is, the problem of defining
and characterizing living systems, does not consist only in responding to the needs
of one discipline. It has wider consequences, or lessons, and introduces more general
questions that cut across scientific domains. Focusing on biological systems and
their specificities shows how complex phenomena may escape individual strategies,
how general fundamental issues related to complex systems such as the notion of
system as an integrated organized entity, the relationship between wholes and parts
need to be addressed in more than one way and direction. The challenge, each
time, is to understand how to combine these different tools and strategies rather
than extend a given one or choosing one among many.
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5 Conclusions: A Practice of Complex Systems

The passage from a conceptual discussion of complex systems to their study and
modelling in practice, from theory to art one might say, is not direct and it may
be quite difficult. This is especially relevant for philosophers, whose goals are
often generality and abstraction, but who constantly face the risk of the excess
of idealization, of striving for clear-cut concepts and distinctions that as a result
may be too detached from scientific work. In the study of complex systems, where
the activity of scientists and its limitations play a crucial role, this might create
a gap between epistemological thought and actual modelling, and even lead to
naïve conclusions about the relation between theoretical science, modelling, and the
natural world. In particular, the study of theories and models of complex systems
requires tools and heuristics to identify and analyze their limitations and to discuss
how such limitations can be faced by employing multiple strategies.

In this context, virtuous examples are fundamental to develop epistemological
thinking. I consider myself honored and lucky for having had the opportunity to
know Eliano Pessa as teacher, supervisor and then colleague. He guided me through
my first steps into complex systems thinking from the point of view of science. Not
only he introduced me to the notion of emergence and to the theoretical work of
Rashevsky, Rosen and of Maturana and Varela, but with his generosity and honesty
he gave a virtuous example of the art of studying and modelling complex systems,
with all the difficulties and stimulating challenges that characterize this practice, and
he transmitted his enthusiasm to students and colleagues. In particular, I remember
his capability of making explicit the idealizations underlying models and discussing
their implications, of explaining with incredible clarity the ingenious models he
developed while at the same time always showing their limitations with irony,
precision and detail. With his example, Eliano Pessa demonstrated that striving
for honesty is a fundamental epistemic value in scientific research and showed the
importance of giving substance to epistemological and theoretical thinking.
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Information from Structure: How
Networks Face Biological Complexity

Alessandro Giuliani

Abstract The multi-level organization of nature is self-evident: proteins do interact
among them to give rise to an organized metabolism while in the same time
each protein (a single node of such interaction network) is itself a network of
interacting amino-acid residues allowing coordinated motion of the macromolecule
and systemic effect as allosteric behaviour.

Similar situations hold for ecology, anatomy, organ physiology. The most diffuse
approach to such situation is to give for granted that causally relevant events pertain
to the most fundamental level (the molecular one) in the form of regularities (or
perturbations in the case of pathological situations), that ‘climb up’ the hierarchy
reaching the ultimate layer of macroscopic behaviour.

Such causative model, is not the only one: we observe top-down, bottom-up as
well as middle-out perturbation/control trajectories.

The recent complex network studies allow to go further the pure qualitative
observation of the existence of both non-linear and non-bottom-up processes and
to uncover the deep nature of multi-level organization. Here, taking as paradigm
protein science, we will give an account of how the information travelling across
a network can create meaning so offering a more realistic frame of causation in
complex systems.

Keywords Allosteric effect · Biodynamic interfaces · Causative models ·
Complex networks · Complexity · Multi-level organization · Proteins

1 Introduction

The network formalism is probably the most natural way to represent biological
systems. Even if in the last decades the analysis of complex networks became a
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very widespread paradigm to face problems going from macromolecular structures
(Di Paola et al., 2013) to genetic regulation circuits (Demongeot et al., 2003),
neuroscience (Sporns, 2018) and ecological systems (Mendonça et al., 2018) this
is not a new idea. In 1948 Warren Weaver (1948) one of the fathers of mathematical
information theory sketched a very intriguing synthetic tripartite description of
science into problems of ‘organized simplicity’, ‘disorganized complexity’ and
‘organized complexity’ with biology located in the last class.

The first class (simplicity) refers to the case of very few elements interacting
among them with largely invariant relations, being its paradigm classical mechanics.
Class 1 problems allow for an extreme abstraction (e.g. a planet can be thought as
a dimensionless ‘material point’). The possibility to take into consideration only
very few basic features like mass and distance makes this approach largely object
independent (this is the basic reason of the use of examples of the same physical
law based upon cars, cannonballs or skiers).

Problems of Disorganized Complexity (class 2) have as paradigm classical
thermodynamics and reach a great generalization power by means of a very different
style of reasoning with respect to Class 1. In Class 2 problems, the predictive power
stems from giving up the analysis of system fundamental aggregation level (e.g. the
single molecules) preferring a statistical knowledge corresponding to gross averages
(like pressure, volume, temperature are) on a transfinite number of atomic elements.
Both the approaches must fulfil very stringent constraints. Class 1 approach asks
for few involved elements interacting in a stable way, class 2 style needs a very
large number of identical particles with only negligible (or very stable and invariant)
interactions among them. Biological systems, only in very few cases do satisfy
these constraints, so we step into Weaver’s third class (Organized Complexity).
Organized Complexity arises whenever many (even if not so many as in class 2)
non-identical elements each other interact by means of links endowed with time-
varying correlation strength.

The interaction of ‘non identical elements’ with ‘varying correlation strengths’
corresponds to a network of links (edges, correlations) with variable strength,
connecting different nodes that in turn are ‘non identical’ being themselves networks
with variable wiring structure.

Weaver (1948) commented that while science was at home (relying on the
usual repertoire of laws and boundary conditions deciding for their application) in
both Class 1 and Class 2 phenomena, the overwhelming importance of contextual
information with respect to lawful invariant behaviour, of Class 3 systems, makes
the situation much more uncomfortable. After more than 70 years from Weaver’s
paper, we made some steps ahead in Organized Complexity studies and the present
work deals with these advancements.

The paper is organized as follows: in the first chapter (biodynamic interfaces)
we will discuss the basic principles of the interaction between complex systems,
with an emphasis on the need of an intermediate layer shared by the two interacting
systems with a partially independent nature with respect to the two interactors. In
the second chapter (the middle way) we will introduce the concept of mesoscopic or
‘middle-out’ organization demonstrating why the ‘network representation’ allows
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for a natural, hypothesis free formalization of the meso-scale. The third chapter will
be devoted to the transit of information across a network system and the consequent
discrimination from noise of the relevant (signal) perturbations able to ‘climb-up’
or ‘stepping-down’ the multilevel organization using allosteric effect in proteins as
model system.

2 Biodynamic Interfaces

There is no interaction without information exchange and there is no information
exchange without an efficient communication channel. This ‘channel’ is exactly
what we call ‘Interface’. If Mary calls Peter by means of her smartphone, the
establishing of a contact strictly depends on the existence of an electromagnetic
field endowed with a band of frequencies devoted to cell phone communication.
Peter smartphone corresponds to a very specific frequency modulation of the field
that is elicited by the digits Mary composes on her phone and sends on the specific
band of frequencies, consequently Peter’s smartphone rings and the communication
begins. We do not enter into the actual content of communication (that only pertains
to Mary and Peter), instead we focus on two crucial points of the process:

1. The existence of a medium (the field) that cannot be considered as a discrete
entity with a specific location in both space and time but as a ‘global feature’
covering the space and assuming different values in different locations. The
interactors (here the Mary and Peter phones) are causally linked in both
directions only because they share the same field. From basic physics we
know that a point charge embedded into an electromagnetic field both ‘senses’
(i.e. is influenced by the field) and modifies (i.e. influences) the field. This is
exactly what happens in human-environment interaction in which environment
influences physiology (e.g. toxic effects, sensory information..) and is in turn
influenced by humans. Both human beings and environment are complex systems
and, for their interaction, they need a shared interface (Arora et al., 2020).

2. The interface (field) oscillates with a specific frequency, this implies it has both
a ‘spatial’ and a ‘temporal’ structure, it is a dynamic interface. The frequency
of oscillation is not independent from the spatial features of the interface, more
in general, any network system (even a field can be imagined as a grid with
some focal points, the ‘cells’ in the case of mobile phones) has characteristic
oscillation modes originating from its wiring structure. We will go back on this
point when dealing with protein structures ‘resonating’ with specific modes that
are the carriers of across levels information.

Both these issues are at work in multi-level organization and, more in general, in
biological regulation.
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3 The Middle Way

The most common style of explanation follows an IF-THEN style in which what
happens at a given level influences (or determines depending on the relative impor-
tance of stochasticity embedded in the link). These linear fluxes of implications give
for granted the existence of a fundamental ‘explanatory layer’ located at the most
microscopic level that, thanks to a sort of domino effect, ends up into a macroscopic
consequence.

This view is in sharp contrast with what we know about complex structured
systems, where a multi-layer (and bi-directional) causality is at work. One of
the most clear falsifications of the obliged ‘bottom-up’ character of biological
causation, comes from a 1945 paper (Fankhauser, 1945) by the German (but USA
based) embryologist Gerhard Fankhauser. He considered cell size in polyploid
triton larvae that have a doubled chromosome number with respect to their diploid
counterpart. The polyploid individuals have a doubled cell size with respect to the
diploid ones, on the contrary, they have exactly the same dimension of organs and
ducts. Arora et al. (2020) with respect to the diploid counterpart. This comes from
the fact that the polyploid organism uses half the number of cells, though each
cell was itself double in size, to build up its organs. This is crucial for life: the
optimization of the calibre of a biological structure (the duct) is fine tuned to fit
with the flow of biological fluids (a top-down constraint) and cannot be established
by more fundamental levels like its constituent cells or the genome. While this is
an intuitive tenet for a ‘designed’ or ‘teleological’ process (after all, we do not
decide the size of our house based solely on the size of the bricks!), the Fankhauser
finding was considered as a largely unexpected finding in a natural system. This is
why Albert Einstein (a colleague of Fankhauser at Princeton) told he was expecting
the double size cells should give rise to double size organs, concluding that the
Fankhauser observation pointed to still largely unknown principles. The brilliant
Fankhauser experiment was largely overlooked and obscured by the successes
of molecular biology in the years to come, but it is a clear example of a top-
down causative model in which a ‘high-level’ constraint ‘slaved’ the microscopic
cellular/genomic level.

It is important to stress that the ‘bottom-up only’ obsession is not shared by all
the biological fields of investigation, Ecologists recognized since many years that
the ‘most microscopic’ level of organization is not necessarily the place where ‘the
most relevant facts do happen’.

On the contrary, the most fruitful scale of investigation is where ‘non-trivial
determinism is maximal’ (Pascual & Levin, 1999). That is to say, the scale more
‘rich’ in meaningful correlations between features pertinent to micro and macroscale
that directly recalls the above sketched concept of ‘Interface’.

Non-trivial determinism can be defined in terms of prediction error as:

Prediction r2 = 1 − E2/S2
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In the above formula, E is the mean prediction error and S the standard deviation.
In the case of a simple linear regression in which a dependent variable Y must be

predicted by an independent variable X, the non-trivial determinism is nothing else
than the usual squared Pearson correlation between the two X and Y variables.

The formula can be extended to any other situation in which we wish to predict
a system feature Y, both X and Y do not need to represent single variables but any
suitable set of information at any definition scale.

The ‘non-trivial’ attribute of determinism stands for the need of ‘explaining the
variance’ of the system at hand (the statistic r2 corresponds to the proportion of
variance explained by a model) and not its ‘average’ pattern. The aim is to get rid
of the actual behaviour of the system in both space and time and not to describe a
‘frozen’ ideal configuration.

The individuation of ‘mesoscopic principles’ largely independent from the
material constitution of the studied system and only dependent from their relational
structure was faced by 1998 Nobel prize in Physics Robert Laughlin and colleagues.
A paper appeared in year 2000 (Laughlin et al., 2000) entitled ‘The Middle Way’
that aptly individuated in the discovery of universal mesoscopic principles the next
frontier of science.

As pointed out by Nicosia et al. (2014): ‘Networks are the fabric of complex
systems’ and this tells us that network formalism is probably the ideal instrument
in the search for such principles. The basic idea of complex network style of
reasoning is that shared organization rules (i.e. similar wiring patterns) give rise
to similar phenomenology, independently of the nature of the constituting elements.
In other words, complex network invariants promise to be the place where to look
for universal mesoscopic principles, for the simple fact that they have not different
regularities and laws for the different levels, this promises to be the viewpoint
that maximizes ‘non-trivial determinism’ (Pascual & Levin, 1999) favoring the
emergence of between-level correlations.

In Mickulecki (2001) paper, the author demonstrates the neat separation of the
laws governing the internal functioning of the nodes of a network (constitutive
laws) from the laws and regularities only dependent from the wiring structure of the
system (relational laws). This allows to build an electrical analogue of a mechanical
or physiological system only based on conservation principles of both potential and
flux across a network analogous to Kirchoff’s laws. The flux does not need to be
an electrical current and the same holds for the potential: a system represented
by a set of nodes linked by edges with a given topology has similar emerging
properties independently of the physical nature of nodes and edges. This opens the
way to a ‘network thermodynamics’, whose principles are strictly dependent from
wiring architecture while largely independent of the constitutive laws governing the
single elements. Still more important, this provokes a shift from the founding of the
unitary character of science from the consideration that ‘all the entities are made
of the same fundamental building blocks’ to the recognition that ‘all the entities
can be represented by a set of relations among their parts’. These relations can be
formalized in terms of graph (network) invariants catching different aspects of the
wiring structure of the system at hand.
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Fig. 1 The figure reports the adjacency matrix (left panel) correspondent to the wiring diagram
on the right. The presence of a direct link between two nodes corresponds to a unit value of
the corresponding element of the matrix on the left. Here all the links are supposed to have the
same strength, in other cases we can substitute the unit values with a quantitative estimate of the
correlation strength. The represented graph is bi-directional

Complex network invariants catch the essence of multi-level organization for the
simple fact their estimation merges different level of definition of the system at hand
without the need of any strong hypothesis.

Mathematically speaking, a network corresponds to a graph whose entire
information is caught by its adjacency matrix (see Fig. 1): a binary matrix having as
rows and columns the nodes and at each i, j position a unit value if the i and j nodes
have a direct link between them and 0 otherwise.

Graph invariants are relative to local (single nodes), global (entire network), and
mesoscopic (clusters of nodes, optimal paths) levels respectively. The “degree” (how
many links are attached to a given node) is a local descriptor, the “average shortest
path” (characteristic length) is the average length of minimal paths connecting
all the node pairs, and can be considered as a mesoscopic feature, while the
general connectivity of the network (density of links) is a global property (Giuliani,
2019). All these descriptors (and many others) are strictly intermingled across
different organization layers. Thus, characteristic length inherits from the ‘bottom’
the information of the single node degree (higher degree nodes have an higher
probability to enter into shortest paths). In turn, betweeness of a node (the number of
shortest paths passing by a node, thus a microscopic feature of the network) inherits
from the ‘top’ (mesoscopic level) the existence of clusters (modules) of nodes.

In this way, a node in between two different A, B clusters is traversed by all the
shortest paths linking the A, B node pairs so scoring an high betweeness (Fig. 2).

Describing a system by network formalism implies a multi-level structural
representation without the need of ‘imposing’ a particular bottom-up or top-down
causative pattern.
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modules
modular structure
modularity

hub nodes
betweenness centrality
other centralities

shortest path
characteristic path length
global efficiency
closeness centrality

triangle
clustering coefficient
transitivity

motif
anatomical motifs
functional motifs

degree
degree centrality
participation coefficient
degree distribution

Fig. 2 The figure reports schematically the most common graph invariants. Each index con-
centrates on a particular aspect of network wiring, shortest paths, participation coefficient and
betweeness centrality are particularly important for describing fluxes across the network, clustering
coefficient and modularity point to the existence of ‘structural domain’ within the network

4 Information Fluxes Within Networks

Proteins are the smallest objects that have all the features typical of complex
systems, it is not without reason that the title of a seminal work on protein structure
and dynamics (Frauenfelder & Wolynes, 1994) is ‘Biomolecules: where the physics
of complexity and simplicity meet’.

Proteins ‘sense’ the environment, can acquire different stable state configura-
tions, have an emergent behaviour not predictable from the accurate knowledge of
their composition and perform complex ‘actions’ relevant for the system that host
them. In addition the structural and compositional knowledge we have on protein
molecules is order of magnitudes mere detailed and reliable than for any other
complex system. This makes protein sciences a perfect playground for complexity
studies.

Probably the most straightforward paradigm of information transfer through
a network is the allosteric effect. Allostery is a neologism coming from Greek
language, which has to do with the ability of proteins to transmit a signal from one
site to another in response to environmental stimuli. The sensing (and consequent
adaptation) of relevant information from the microenvironment is crucial for protein
physiological role. This ability relates to the transmission of information across the
protein molecule from a sensor (allosteric) site to the effector (binding) site (Di
Paola & Giuliani, 2015). The protein molecule, hence, perceives ligand binding (or
any other micro-environmental perturbation) at distance from the active site (where
in turn the effective action takes place, e.g. where two small molecules are put
together in order to catalyse their chemical reaction), and adapts its configuration
accordingly. Thus, haemoglobin molecule senses at the allosteric site the partial
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Fig. 3 In this figure, the left panel the 3D structure of a small protein (recovering) follows the
usual ‘ribbon’ style: the polypeptidic chain is represented in terms of contiguous segments of
‘secondary structures’ namely helices, random coils, and beta sheets. The right panel represents
the same protein in terms of the adjacency matrix of the corresponding network (PCN = Protein
Contact Network) whose nodes are the constituent amino-acids while the darkened pixels mark the
relevant between amino-acid residues contacts (the unit values of Fig. 1)

pressure of oxygen (p[O2]): when p[O2] is high the affinity of haemoglobin for
oxygen increases and the protein binds oxygen molecules at active site, on the
contrary when p[O2] is low, affinity decreases and bound oxygen is released to cells.
This process is crucial for life: in lungs there is a very high oxygen pressure and the
haemoglobin present in red blood cells must catch oxygen molecules that in turn
must be released in peripheral tissues (low p[O2]) so to make oxidative metabolism
possible. How the protein molecule can discriminate such a relevant signal from the
continuous perturbations of its structure coming from thermal noise and transmit
the information at distance so to reach the active site.

To answer this question is useful to consider a protein molecule as a network
(Fig. 3) having as nodes the aminoacid residues and as edges the intermolecular
non-covalent bonds between residues generated by the 3D folding of the molecule.
These networks are called Protein Contact Network (PCN) (Di Paola et al., 2013).

In Fig. 3 the aminoacid residues are ordered along the protein sequence from
the left to the right in the X axis of the adjacency matrix and from the top to the
bottom on Y. The ‘trivial’ contacts between aminoacids adjacent along the chain are
not considered. This implies the scored contacts (links of the PCN) correspond to
non-covalent intermolecular bonds putting different parts of the molecule into close
contact (see Fig. 4, where a protein molecule is represented as a bracelet having
aminoacid residues as pearls and PCN relevant contacts as red dashed lines).

In PCNs the shortest paths passing by the network edges mediate concerted
motions and energy transmission upon stimulation of allosteric site (Di Paola &
Giuliani, 2015). The topological metrics of shortest paths (minimum number of
links separating two residues) is thus the actual metrics for signalling. Recently
it was demonstrated (Poudel et al., 2020) that this purely topological metrics is
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Fig. 4 The blue line
sequentially connecting the
different aminoacid residues
(pearls) corresponds to the
covalent bond that generates
the primary structure
(sequence) of the
macromolecule. In solution
the protein molecule acquires
its ‘native’ form by a folding
process that generates its 3D
structure responsible of its
physiological role. The
folding process puts aside
residues otherwise distant
along the sequence creating
contacts (dashed red lines)
among them. These contacts
allow for a direct
communication of the
interacting aminoacid
residues

coincident with the dynamical modes of protein molecule. This creates a spatio-
temporal link of ‘sustained modes’ fulfilling the stable oscillation constraint we set
for biodynamic interfaces. Thus we can say we are in presence of a ‘fine tuned’ grid
deciding of the fate of external stimuli across the system.

The discrimination between relevant signals to be transmitted at distance without
loss of information and non-informative perturbations to be dissipated without
relevant changes in the 3D structure, relies upon two very important mesoscopic
network descriptors: ‘Guimera and Amaral’ z and P indexes (Guimera & Amaral,
2005). The index z quantifies the number of contacts a given node (aminoacid
residue in this case) has with other nodes of its own cluster (local contacts), while P
scales with the number of edges linking the node to aminoacid residues pertaining
to different clusters.

A perturbation affecting specifically an ‘high P’ node travels a long distance
across the network passing by subsequent ‘high P’ nodes and arriving at destination
supporting allosteric effects, on the contrary generic (noisy) thermal motion rapidly
dissipates distributing across non-directional cycles thru intra-module motions.

High P nodes create a ‘fast lane’ for relevant information neatly separated by
noise. This is exactly the role of biodynamic interfaces: some proteins, called
multimeric, consist of distinct chains held together by intermolecular contacts. This
is the case of haemoglobin made of four distinct polypetidic chains: the allosteric
effect ends up into a different re-arrangement of the relative positions of the four
chains that go back and forth between two different patterns (R and T for Relaxed
and Tense) with high and low affinity for oxygen. The interface between these
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Fig. 5 The figure reports the adjacency matrix of haemoglobin described by a colour code. The
axes of the matrix reports the order of the residues along the chains (each chain corresponds to 150
residues), the dark blue corresponds to the lack of contacts, different colours correspond to the four
chains

four chains is made of high P aminoacid residues that allow for the among chains
concerted motions. Figure 5 gives a pictorial description of the situation.

From Fig. 5 it is evident the presence of ‘displaced contacts’ in the form of
residues that, while pertaining to a given chain (module of the network) have
the majority of their contacts with residues pertaining to different chains. These
‘displaced contacts’ are the long ‘whiskers’ contacting zones different from their
own cluster (e.g. the pale blue line pertaining to the first chain (1–150)) that is in
contact with the orange (second chain) module. These whiskers correspond to high
P nodes that generate ‘something in between’ the interacting systems with a ‘shared
ontology’ across the interacting systems (polypeptide chains).

Perturbations relevant for the allosteric effect (signals) enter the fast lane passing
by high P residues and arriving at destination, on the contrary, not relevant (noisy)
perturbations instead dissipate along futile within-module circuits. The presence
of both fast (directional low loss) and slow (no-directional high loss) lanes of
communication is shared by all natural networks (Kohestani et al., 2018) even if
in protein molecules is much more evident than in other natural networks.

The discrimination between relevant and irrelevant stimuli is a form of ‘meaning
creation’ by purely structural means that allow for a causative process embedded
(and not imposed from the external) in the relational structure of the system at
hand. This kind of causation makes obsolete the bottom-up top-down distinction and
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asks for a different explanation style in terms of ‘attractor-like’ dynamics spanning
different layers of organization.
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From Predictability to the Theories
of Change

Ignazio Licata

Abstract The study of processes and change in systems is a requirement for
Theoretical Physics after the development of complexity and emergence theories.
This matter is far beyond the ideal models—centered on predictability—that Math-
ematical Physics usually deals with. The strongly interdisciplinary and systemic
issue of a Theories of Change implies a careful reconsidering of the essential
features of the relationships between the observer/model-builder and the system
under consideration. We delineate here such relationship as the meta-theoretical step
wherein it is possible to give the first and partial collocation to the wide class of not
ideal models, and to evaluate the effective forecasting possibilities of Big Data.

Keywords Complexity · Emergence · Ideal and not-ideal models ·
Predictability · Change · Big Data

1 Introduction: The Climbing of Mount Epomeo

Mount Epomeo (789 m, as Wikipedia says) is the highest mount of the isle of Ischia.
The legend tells it is one of the four entrances to Agharta. As for me, it surely was
the occasion for an extraordinary encounter. It was a very hot end of May in 1991,
Giuseppe Arcidiacono—the great mathematician and cosmologist of Projective
Relativity I first met through an intense epistolary exchange and, later, during my
military service in L’Aquila—invited me to a Conference organized by University
of Perugia and the Istituto Filosofico of Naples. I had the chance to discuss with
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many interesting people there, such as J. Barbour and L. Kostro. Anyway, getting
acquainted with Eliano Pessa has modified and broadened enormously my Physics
and has endowed me with a vision for Systemics. I had recently published some
papers (I find them quite naive now) about lattice space-time on Plank scale. The
lattice worked as a constraint for a set of oscillators which produced the observable
particles . Just to give an idea to the contemporary reader, it was an idea similar
to what ‘t Hooft has been recently developing, far more elegantly than me, indeed
(Licata, 1991, 2003; ‘t Hooft, 2016). What he first said was: “I read your work.
That’s one of the best thing I have seen this year”. We had an intense conversation
and we keep on talking in the afternoon, in a quite unusual way for me. Eliano
was an expert alpinist who had already climbed the most challenging mountains on
the Planet, such as the Nanga Parabat, and yet he couldn’t resist to the temptation of
ascending, as short as it may be. So, he proposed me to climb Monte Epomeo, while
climbing each of us told about his life. Reaching to the top was not an event worthy
to be recorded in the Alpinism annals, but it was the celebration of our friendship
birth as well as an enduring collaboration made of meetings and periods at high
epistolary intensity. Eliano Pessa had his Ph.D. in Physics with Bruno Touschek,
had collaborated with the mathematician Bruno Rizzi for a long time, had found a
new interest in Cosmology with Giuseppe Arcidiacono, and, thanks to a formidable
series of works on neural nets, was going to became the first theoretical physicist
Full Professor in Psychology at The University of Pavia.

These few notes clearly give the idea of a vision far beyond the slightly narrow
horizons of a traditional physicist, usually connected to the rhetoric of infinitely
small or big.

In that period, Eliano was working on some problems related to the synergetic
approach (Haken, 2012). The Haken Theory, on the strength of the work on
collective behaviors in laser and on phase transitions, suggested that in many
different contexts—Biology, Sociology. Etc.—it was possible to find situations
where few parameters “took command” of all the other variables into play, which
thing provided a more elegant description and, if not (asymptotic) predictability, a
kind of understanding of the “possible destinies” of the system. It has to be said that
the Haken conjecture gets a strong and immediate meaning: if there weren’t exist the
variables that “mediate” between the components or the agents (microscopic level)
and the possible global outcomes (macroscopic), it would be nearly impossible
distinguish between information and entropy because the non-cooperative aspects
of the system would prevail. Actually, there wouldn’t be any authentic emergence.
That is just a well-founded conjecture. The real problem lies in questioning if it is
possible to classify systems depending on how they produce information. According
to Systemics general terms, there exists the Theorem of R. Shaw (1981), one of
the members of the legendary chaos collective, which establishes a relationship
between the phase space of a system—whose coordinates are the variables fixing
its behavior—and some features of the equations describing them (non-linearity
degree, constraints and so on). Accordingly, we can distinguish between: (a)
Information-conserving Systems where the principle of energy conservation is
valid; (b) Information-amplifying polynomial Systems, where information increases
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along time until a certain state of equilibrium. All the self-organizing models belong
to this category, such as the dissipative structure by I. Prigogine. It has long be
debated whether such models—and catastrophes, their geometrical counterpart—
could be the universal key of morphogenesis, but some fundamental theorems,
among which those by R. Landauer and R. Fox, and then the N. Koppell and
D. Ruelle, have shown that there are very precise limits to complexity for the
configurations that these systems can reach. Finally: (c) Information-exponential
amplifying Systems, which chaotic systems belong to. The Theorem of Shaw
is a very cornerstone because it introduces a way to look at systems no more
centered on non-linear complications, but as classes of complexity of systems. It
is patent that the “interesting” systems can be found in a narrow range between
the moderately ordered of systems (b) and the savage proceeding towards chaos of
systems (c). That poses extremely fascinating questions about the relationships—for
example—between Physics, Biology and Cognitive Sciences (Licata, 2018; Pessa,
2008; Vitiello, 2001; Freeman & Vitiello, 2008), and tips the epistemic scales from
the model as a mirror of an “objective” world to the specific conditions in which it is
actually possible to apply it to something we individuate as a system. The awareness
of a conditional and never banal correspondence between models and systems is the
basis of the recent intense interdisciplinary crossing—models can “migrate”!—, but
it is also a Copernican Revolution in the way we look at the constructive activity of
science.

2 The Scientific Explanation
and the Causality-Determinism-Predictability Triad

Predictability is still considered as a crucial ingredient in scientific explanations.
Likely, this close association depends on the historical fortunes of Determinism, a
peculiar trait for a lot of physical theories from Classical Mechanics to Relativity up
to Quantum Mechanics, anyway the predictability into play changed its features
and range at each step. As it is known, a physical system is described by
deterministic laws when, given the dynamic laws and the initial conditions, the
“mathematical crank” (differential equations) univocally fixes a state of the system
in a future or past instant. The successes of Rational Mechanics confirms the
philosophical triumph of the Laplace’s demon (Licata, 2015) and for a long time
the huge complications linked—for example—to the three-body general problem
were considered as computational problems or just a matter of inexact data. It
will be a 1887 work by Poincaré to clarify that the problem actually pertains to
a new typology, so prefiguring the modern theory of dynamical systems based on
chaos and non-linearity. In this case, the sensible depending on the initial conditions
limits very quickly the predictability in a range strictly connected to the system’s
non-linearity (Lyapunov time). In addition, it can be demonstrated that a non-linear
system is an information amplifier—it can, for example, “inglobate” a fluctuation—
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thus the connection between determinism and predictability completely falls down
(Cencini et al., 2009; Licata, 2008a). The qualitative theory of dynamical systems
has developed since the 30s in order to solve these situations by proposing a concept
of predictability no more based on the detail of the specific trajectories, but on
the global behavior of the system, i.e. stability and asymptotic states (Kutznetsov,
2004). We find this situation also in General Relativity, the difference—and some
subtler problems more, see the specialized bibliography—lies in the fact that there
is no background, but the space-time itself is generated by the initial data and the
evolutionary equations (Barrow, 1982).

The case of Quantum Mechanics is a completely different one. Actually, if the
evolutionary dynamics U (for example, the Schrödinger’s equation) are strictly
deterministic, any predictability on a single event (R, reduction of the state vector) is
impossible for principle reasons linked to the very nature of quantum systems. The
whole debate on foundations can be seen as the different attempts to find a synthesis
between U and R, or, at least, the “ontological” elimination of one of the two sides.

Despite its “erosion” within the hard fabric of theoretical physics, predictability
seems to maintain a special position. Actually, it is considered that determinism
distills the scientific features of causality, a long debated notion in philosophy.
Clearly such idea does not stand to a careful examination. The possibility to connect
two events in a temporal framework (for example in the light cone structure in
relativity) does not guarantee by itself a causal relation (Mumford & Anjum, 2014;
Illari & Russo, 2014). Moreover, the local features of Quantum Mechanics would
make the question much more problematic (Näger, 2016; Ringbauer et al., 2016;
Pegg, 2006; Popescu & Rohrlich, 1998).

Thus, it is more natural to connect the notion of “cause” with the global structure
of a scientific explanation, considered as the configuration of theories and models
providing a picture of how things work! Predictability is rather a feature of some
classes of models. We can easily realize they are different things by a simple
example. Just consider the classical double slit experiment for electrons by C. J.
Davisson and L.H. Germer in 1927, which R. Feynman correctly considered as the
archetypal QM experiment (Feynman, 1985). Let’s imagine we could collect all the
data of the electron impacts on the screen and process them statistically. In the end,
we can get a very good probabilistic evaluation of the areas where we can find an
electron, no more, no less than we use wave-function. Anyway, such prediction does
not explain the phenomenon. In order to have an exhaustive picture of the situation
we have to turn to Schrödinger equation; moreover, our statistics cannot be exported
to other phenomena, the Schrödinger equation, instead, is an explanation connecting
scales, objects and dynamics for non-relativistic quantum systems.

The separation between explanation and predictability becomes far more evident
in the study of complex and emergent systems. Without going into technical details,
we know that – in an emergent process – redefining the system’s internal structure
and modifying the relationship with the environment leads to the emerging of new
properties which, generally, cannot be ascribable to the level of its constituents,
in a way that remind us the universal aspects of phase transitions (Licata, 2008b,
c). It can imply different levels of description, and the manifestation of some
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forms of coherence on some levels and not in other ones. In general, intrinsic
emergence is connected to the appearing of properties or phenomena compatible
with the models which describe those phenomena, but—in principle—they are
unpredictable considering that the models, being conditions the same, admit more
different behaviors and the new properties or phenomena can modify irreversibly
the nature itself of the system (Licata 2010; Ryan 2007; Anderson & Stein, 1985;
Ronald et al., 1999; Goldstein, 1999; Pessa, 2006, 2008; Bedau & Humphreys,
2008). So, the problem is to understand the physical and mathematical reasons
why some classes of models admit a strong predictive apparatus as a consequence
of their descriptions and some other not, and—in this case—what evaluations and
interventions are possible.

3 Ideal Models, Phase Space and Boundary Conditions

Predictability is a mathematical feature of a model and corresponds, all in all, to a
series of physical conditions satisfied by the system under consideration. We will
focus here on these ones by taking into consideration some essential points that
constraint the building of the so-called ideal models, susceptible either of closed
analytical solutions or, anyway, of approximations that assure a broad predictability,
if not a local one, at least on its asymptotic states. Such wide class of models cover
a quite big theoretical range encompassing from Newton Mechanics to Quantum
Field Theory (QFT).

Differently from what is often stated, reductionism—i.e. the exclusive attention
for constituents and explicative downward arrows—is not an essential prerequisite
to have predictability. This idea derives from classical trajectories, but it is easy
to realize that it is not so just by thinking to a perfect gas in a jar. If we open
the jar, the gas will diffuse in the environment; this will fixes a time arrow
based on entropy. In spite of it, the level of gas particles is always ruled by a
reversible dynamics unchanging if we “rewind the film”: in fact, it is ruled by
the Boltzmann Stosszahlansatz. Anyway, the evolution of the system is possible by
using a diffusion equation applied to the whole statistic ensemble. This exemplary
case demonstrates that it is not so much the request of reductionism the key for
predictability as the particular connection interplay between different micro, meso
and macro levels. In this case, the physics and mathematics of the phenomenon is
fully fixed by the mirable bridging by statistical physics between Newton Mechanics
and Thermodynamics (Cercignani, 2006).

The case of molecular chaos is interesting because we can introduce some
important elements more. The “identity” of particles and forces into play is always
well defined and fixed, moreover, temporal reversibility at microscopic level is
conserved, and the environment is just a very elementary and “passive” scenario.
“The first” and “the after” of the phenomenon takes place by modifying the
boundary conditions of the gas when the jar is opened. One of the reasons which
contributed in creating a reductionist-deterministic mythology has been the fact of
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neglecting the decisive importance of the boundary conditions. If we forget them—
and the environment influence as well—, physical laws turn into good for all season
mere algorithms and, above all, indifferent to the level under consideration. That
is not so! Our example reminds us that a level of analysis does not guarantee its
portability to other levels. For molecular chaos, we can, at least, connect macro
and micro thanks to the statistical interpretation of thermodynamic quantities, it
is impossible for most of the real interesting complex systems. On the contrary,
emergence processes suggest that the creation of new models and the “convergence”
of different approaches into a “super-model” is not for sure. The complementary
between laws and conditions is well described by D. Bohm (1957) when he states
that a physical law is a frame of possibilities, it will be the chance (in etymological
sense) to decide which phenomenon will take place. It could sound obvious for
quantum systems and inappropriate for an aseptic world of Newtonian balls, but it is
not so for systems where noise, fluctuations, non-linearity and the strong variations
ruling the system-environment relations make that frame greatly sensible to chance
with modifications of boundary conditions. Complex systems can be defined as
systems where the variation of boundary conditions is more important than laws,
because they modify the role of the laws involved—by a drastic complexifying of
the phase space—and the nature itself of the “objects” into play (Licata, 2012, 2015;
Licata & Minati, 2016).

Let us now consider with a little more attention the powerful theorem on the
non-linear systems’ behavior from the informational viewpoint by Shaw (1981).
Suffice it to remind that the system’s volume in the phase space (i.e. the space
of the behaviors in relation to a set of observables) modify its information
content at a rate connected to the peculiar type of non-linearity of the system.
Such theorem can be thus considered as a non-linear filiation of the Liouville
Theorem. A critical notion to focus our attention on is the system’s volume. Even
without any mathematical lingo, it easy to see that it is closely connected to
boundary conditions. In other words, it is supposed that the system/environment
relationships can be clearly described by a handful of fixed parameters, it makes
possible monitoring the information exchange. In spite of its being a limiting
condition (just think to Maturana and Varela’s system/environment coupling for
living systems, Maturana & Varela, 1980), many interesting systems are included
in this classification. Information amplifying systems are particularly interesting for
the topic of predictability. A first category are the polynomial amplifiers, which
include the well-known dissipative structures (Nicolis & Prigogine, 1989); these
systems evolve towards self-organization states by means of a balancing feed-
back between outgoing entropy and ingoing energy. Such approaches has been
welcomed with great enthusiasm, at first they were considered able to provide a
general framework for the order out of chaos program, soon, many limiting theorems
(Kopell & Ruelle, 1986) have showed that the complexity of these structures is
rather poor. The expectations for H. Haken Synergetics (Haken, 2012) met the same
destiny. Synergetics treats the emergence of some order parameters on mesoscopic
regime that lead the system toward more organized states, by taking control of
the microscopic variables. In spite of the interesting analogies that such scenarios
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have stimulated for systems very far from physics or chemistry, their importance in
biology is limited and purely metaphoric in socioeconomic fields.

What is worthy noticing is that in all the above-mentioned cases, the hypotheses
on the system’s openness are such that there can be applied some mathematical
techniques corresponding to a careful mapping of information in the phase space.
With dissipative and synergetic systems, non-linearity allows a simplified situation
when passing from the microscopic to the mesoscopic, by merging many down
level disordered dynamics into an ordered scenario. All that guarantees high
predictability. Also in the case of exponential amplifier systems—the chaotic system
in strict sense—, there are many different techniques to monitor the transition to
chaos and the asymptotic states (at least for low dimensional systems). We are there
at the extreme borders of predictability, whose essential condition seems to be the
possibility to get models able to follow the system’s phase space. Such condition is
equivalent to apply a series of hypotheses related to symmetries, balancing laws
and constraints about the system-environment relationship to the system; these
hypotheses turn into the possibility to develop an analytical treatment with strong
predictive features (Vakulenko, 2013).

It has also been suggested to use the Quantum Field Theory (QFT) formalism as a
general framework to study formally the dynamics of phase transition with intrinsic
emergence. In these systems, emergence is introduced as symmetry breaking and
there new types of long-range correlations are created. Despite some interest-
worthy cases, such as the Quantum Brain by G. Vitiello, everyone agrees that these
approaches are quite far from the actual complexity of a biological system. (Pessa,
2002; Vitiello, 2002).

After having thoroughly explored the possible links between QFT as a framework
of complexity, in recent years Eliano Pessa strongly expressed the idea that QFT was
too “narrow” for the study of complex systems:

Unfortunately, the intense research activity on emergence has not yet produced a universally
agreed definition of what is meant by ‘emergence’. There is however a widespread
consensus regarding the general aspects that should characterize any form of emergence
(the Goldstein’s work, 1999 is very useful in this regard). A synthetic list of these aspects
includes:

a) dependence on an observer; this means that emergence is not an objective property or
event in Nature, but it is linked to the surprise an observer (equipped with tools concepts,
theories, beliefs, intentions, purposes and so on) feels when - placed in front of a system
- there sudden appear properties not attributable to any observable efficient cause in the
system itself;

b) the existence of different levels of description; this is equivalent to say that emergence
can reveal itself only by adopting an appropriate level of description.

c) the appearance (or disappearance) of some form of coherence; without going now
into the very difficult question of what exactly is meant by ‘coherence’, here we limit
ourselves to point out that in all emergence processes so far considered as such (not only in
the physical sphere, but also in biological and social one) we always managed to identify
some kind of consistency that was acquired (or lost).

(...)
a grounded- both philosophically and scientifically - theory of emergence processes -

is yet to come. The TTPT(Traditional Theory of Phase Transitions) certainly represented a
starting point to build such a theory. However, despite the mathematical sophistication of
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the tools employed, the TTTF remains too low a theory, inadequate not only to account for
the processes of emergence in the biological, psychological, social and economic fields, but
also to explain many processes in Physics. Among the possible remedies for this inadequacy,
we have tried to emphasize the introduction of adequate theories of system-environment
interactions.

These arguments have shown us how this path, still in the initial stages, is fraught with
both technical and conceptual difficulties. Moreover, it does not sound strange: for centuries
science and philosophy have just taken into consideration very simple systems where it was
not necessary, by hypothesis, to worry much about the environment they were immersed in.
Therefore, they never bothered to define what environment was, what it was like and how to
distinguish it from the systems immersed in it and how to model it (Pessa, 2012).

4 Recalcitrant Systems and Configurational Variables

There is thus a problem in fixing some common features to recalcitrant systems.
These ones resist to mathematical formalization and, anyway, do not offer a firm
anchorage for the traditional notion of predictability.

The concept itself of equilibrium state does not make sense for these phenomena.
Such systems are continuously evolving, often very fast, and cannot be “zipped”
within a model because their nature is essentially that of a process. In these cases,
neither the system’s nature nor the environment can be regarded as fixed and
characterized by few parameters; the attention, instead, has to be focused to the
kind of coupling in order to put into evidence what aspects can influence the
evolutionary characteristics which continuously undergo a multi-level plurality of
meta-stable situations of adaptation. Strictly speaking, we should not to speak about
a system-environment distinction, but about classes of events. In particular, lately,
there has been an intense activity on networks—a strategic architecture in nature
and artificial system too—that clearly shows another important difference: the one
between dynamics and history. In networks, the dynamic behaviors can lead to the
disappearing/creating or reinforcing of some hubs so modifying completely how
the system manages information (Barabasi, 2018; Boccaletti et al., 2006; Costa
et al., 2007). In this situation, some frozen components can come out; they mark the
system’s history in the form of stratified constraints which act on temporal scales
much longer than the ones of other nodes. In a much more radical way than the
case of the gas in the jar, the system’s global history develops on a different level
from the individual dynamics. Moreover, such transitions do not take place near a
critical point, as it happens in the traditional phase transition theory, and this makes
investigating these situations even farther from the ideal models. The changes linked
to complex structures of internal constraints tend to make the system autonomous
and its relation with environment is highly selective, so introducing a semantic
dimension in the informational flux; this is, maybe, the current strongest limit for
the mathematical modeling, which allow some sort of predictability. It is clear that
in these situations, such as the conservation of energy (as well as the microscopic
syntactic information) is naturally compatible, but it does not say anything about
the global semantic choices. Actually, it is merely true also in “simple” systems:
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a physical description of the energy dissipated by a computer hardware does not
indicate us anything about the characteristics and the complexity of its software.
A strong evidence of the global importance of semantics has came from the study
of biological neurons, it has been found out that the electrical activity of the same
neuron crucially depends on the global functions performed by the neuron network
it is immersed in (Sahasranamam et al., 2016).

We can realize, even from these few lines, that the majority of interesting
complex systems—for example, the socio-economic ones—are recalcitrant to ideal
modeling. This is the big challenge of the theories of change, which is not referred
to a formal structure such as the T theory and M model—axiomatic or semi-
axiomatic—of theoretical physics, but to a set of multi-model strategies focused
on the observative and computational inquiring of the events under consideration. It
is not as much predictability into play, but rather the understanding of the change
factors and—above all—the intervention on an actual process.

The good news is that the extremely recalcitrant systems—i.e. living within pure
disorder and perfect casualty—, are very rare and, anyway, are not so interesting
to study. An authentic casual sequence, according to Kolmogorov, is an infinite
sequence that cannot be zipped in a string shorter than the sequence itself, we
can only observe its evolution step by step. Actually, stating that for any finite
sequence it is always possible to find a rule or interpolation connecting them does
not solve any empiric problem. What is really interesting in a network of event
is to individuate information, at least, as meaningful configurations for an observer.
The 300-years-old implicit assumption of theoretical physics is that our descriptions
correspond to something in the World out there, it is surely true, but we have not
to forget we are the ones who build such descriptions. We can do it because the
systems ruled by ideal systems are simple. The challenge comes out for the systems
suspended between order and disorder, where “at the edge of chaos, the boundaries
of change fluctuate endlessly between a sluggish status quo and the anarchy of
perpetual destruction” (Cohen, 1997). In these systems, to bridge the microscopic
and the macroscopic levels in a simple way is almost always impossible, but there
emerge configurations always remodeling the system and make possible to identify
some mesoscopic variables which mediate between the two levels and characterize
the metastable state of the change. These are not “observables” in a traditional sense,
but a choice between the patterns an observer individuates as the expressions of the
change. Here, we will focus neither on the available analytical tools nor on the
formidable problems of quasi-ergodicity (Bertuglia & Vaio, 2005; Moore, 2015), in
the end, we will try instead to fix some conceptual aspects the study of these systems
offers.

5 Metastructures and Big Data Forecasting

Metastructures are a general framework for studying change. The question they
come from equally belongs to cognitive sciences (observer) and Physics (observed):
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how can a change in a process be detected? Since the very beginning an observer
is called to choice what to observe and how to do it, by trying to spot the
interesting characteristics which occur quite regularly. We are speaking about the
intuitive emergence according to the famous classification by Crutchfield (1994),
anyway, considering we are dealing with process that are quite far from ideal
models, it is the only emergence we can detect, because there are not any available
mathematical structures to study the dissipative forms or intrinsic emergence. So,
investigating meta-structures is a research not only focused on the emergence
features and the change in a system in “objective” sense, but also on the dynamic
relationship between an observer and an observed system. For the technical aspects,
see references (Licata & Minati, 2013; Minati & Licata, 2013).

The procedure is based on building one or more mesoscopic vectors whose values
are chosen by an observer. In the “pedagogic” flock example the typical values can
be: velocity, directions, habits, distance—maximum and minimum—between two
“constituents”, the instantaneous value in a time interval of the flock surface of
volume, and so on. In this way, it is possible to get information from the system to
individuate and detect change, its phases, sequences and modalities; for example,
what elements play the same role at different instants or different roles at the same
instant. In other words, the mesoscopic vector is an active “grid” that probes the
system by means of computational procedures in search of meaningful signals for
the observer/model builder. Such scenario offers some reflections about Big Data.

It is true that data did not become big overnight, in Jeff Jonas words (Jonas,
2012), and we can add that science has always strongly needed data not only to build
theories, but to correct them, delimit them and, finally, to make them operative. The
Navier Stokes equations would just be a conceptual scenario for meteorologists, if
it weren’t for a thick network of sensors, and it surely does not depend on their
mathematical status of Millennium Clay Problem! Anyway, the debate about Big
Data has become hot about epistemological and ethical problems just lately (Cardon,
2015; Mayer-Schönberger & Cukier, 2013). The Chris Anderson provocative paper
for Wired (Anderson, 2008) has triggered many relevant answers among which we
cannot avoid reminding the Calude and Longo one (Calude & Longo, 2017): in
general, and for very good mathematical reasons, data don’t speak for themselves,
most of the correlation are spurious. It happens only if we look at correlations as
“objective”, and—above all—if we limit our research to correlations! If we accept
that this is new brand field, and that data have to be investigated to speak then we
will be in a world of possibilities similar to what Ermanno Bencivenga described: So
there you have it. Big Data enthusiasts are (unwittingly) advocating a new definition
of what it is to know. Their agenda is (unwittingly) semantical. Except that it is not
worked out, and any attempt at developing it in the semantical terms that have been
current (and antagonistic) for the past two millennia is hopeless (Bencivenga, 2017).

If we try to look beyond the simple correlations and consider Big Data as
something more than a passive object of multivariate statistics, we can see an
extraordinary number of patterns with formidable theoretical implications, such
as the power law, non-Gaussian behaviors, scenery of criticality, fat fractals, and
so on (for a general textbook on these techniques: Sethna, 2006; for a class of
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exemplary problems: Buldyrev et al., 2010). It does not mean that the processes
under consideration cannot be included within the old theoretical boundaries; we
have, instead, to do theory in progress, to use the historical baggage within a
new style of work consisting in testing heuristic hypotheses following the process,
according to an abductive line.

The current classification of Big Data in the so-called 6Vs model (volume,
velocity, variety, veridicity, variability and value) is still too tied to the quantitative
data flux and an objectivist conception. It’s advisable, and greatly plausible, that
the structures analytics (descriptive/predicative) more and more point towards the
search of the secret life of Big Data, in order to do it we have to realize that analytics
directly express what meaning the process has for the agent observing it. It is not a
matter of building up a robot-scientist, dear to the old AI, but to get open to the idea
that in the same way as high speed and extremely small have changed theoretical
physics, the extreme complexity will modify our concept of Physics in an even more
radical way.

6 Conclusions

In the history of theoretical physics, predictability has established itself within
deterministic explanations, then it has extended, in its different forms, to the class of
ideal model, which allow an univocal description of a system. In complex systems
at high emergence, univocity breaks down and the descriptions become plural, that
is an extreme limit for predictability in strict sense. Many strategies and tools for
forecasting a process have been grown, they are connected to the meaning that a
class of events have for the observer or agent. In many complex systems it is not
just an abstract forecasting to solve the problem, but the actual awareness about
the possibilities to guess on. All that strengthens the Bruno de Finetti (1906–1985)
intuitions: Knowing how things will go, as if they were occurring on their own (...)It
is a problem of decision, not prevision ( . . . )...- Shouldn’t the exceptional dimension
of our empiric world lead to a completely new awareness? How can we expect that
logic chains end with certainties, just like a good ole syllogism? (de Finetti, 1968,
1972).
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Abstract The recent Covid-19 pandemic has proposed the issue about how to deal
with symmetry break down, by rare events. It is possible that humans have inner
skills to deal with such events. The emergence of consciousness may be linked to
such resilience and it could support the independence of humans by the determinism
of the past, while they are performing the present choices. Awareness may support
people to get the best occurrences in the present to reach future goals and to
purse their ethical values. However it may be useful, determining the best future
goals, to study the behavior of an integrated system when a macrosystem is on
failure. In this perspective a math model may be useful to develop. Observations got
from neurosciences suggest that wave integration, top down modulation and cross
frequency modulation could be all important features to be implemented in such a
model. More over the role of the information content and of the catalyst facilitation
of the emergent properties, as well as the importance of the integrated complexity,
are all very important issues to take into consideration. Wave interactions and
information integration are two further properties to be implemented. A multi level
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1 The Black Swan Challenge

Recent pandemic events have made two fundamental phenomena evident.
The first is the emergence of global reactions of biosocial systems to evolutionary

processes that modify their complexity.
The second is the effect on the deterministic laws that regulate the intrinsic

processes of psychosocial and economic systems determined by acute emergency
events.

This effect can reduce or cancel the previously active regularities and linearities,
generating singularities that make human predictive systems on failure, experienc-
ing perplexity and disorientation.

These phenomena, referred to as “Black Swan”, often occurred in finance, being
less pervasive at the psychosocial level, but not less impacting from an economic
point of view.

In reality, the appearance of Black Swans in human history is more a rule than
an exception, even if their frequency, as the name suggests, is very low, so much so
that often it escapes individual life-span observation.

From this it follows that the human mind has evolved in order to develop adequate
skills for the management of “Black Swan” conditions, both at the group level and
at the individual level.

The essence of the human reaction to the Black Swans consists in the inversion of
the cause-effect relationship, which turns from a deterministic condition (where the
cause precedes the effect, following a data-driven processing mode) to a finalistic
condition (where the cause follows the effect, following a goal-driven one).

This inversion is intrinsic to conscious decision making, where intuition and
reason find their integration. Differently it happens when unconscious, instinctive
and impulsive reactions occur, where deterministic rules and external conditionings
are acting. It is therefore the awareness that allows humans to manage their own
freedom from the determinism of the past, aquiring the possibility of reaching the
better conditions of adaptation; it is the awareness that support the humans to take
into account only the opportunities of the present and the desired values and goals
to reach in the future.

Can all these considerations be expressed through a mathematical model, based
on systems theory, which allows us to identify which future objectives are more
easily pursued in the enhancement of present conditions?

In other words, how can we free ourselves from the conditioning of the past, in
the definition of our creative goals, in order to identify them in an equally free and
sustainable way?
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2 The Back Ground of the Model

In this perspective, the possibility of developing a mathematical model based on
systems theory could be useful for evaluating which processes “suit” an autonomous
intelligent subsystem, if the macro system to which it belongs loses coherence in its
behavior.

On this regard, it is necessary to take into account three considerations derived
from neuroscience.

• As first, we have the evidence that the brain activity, underlying the mental
processes, is fundamentally characterized by modulations of cyclic rhythmic
activity, which can be described as wave interactions. Applying mathematical
techniques for inverse problem resolution, Steinke and Galán have reverse-
engineered network architectures that generate characteristic dynamics of actual
brains, including spindles and sharp waves, which appear in the power spectrum
as frequency bands superimposed on a non-oscillatory background dominated
by low frequencies (Steinke & Galán, 2011). All reconstructed networks display
similar topological features and dynamics. By this method the two authors were
able to simulate the EEG alteration found in disease. The complexity of the
network, quantified as proposed by Tononi, Sporns and Edelman (Sporns et al.,
2000; Tononi & Sporns, 2003), appears a good indicator of brain resilience, since
virtual brains modeling diseased states display lower complexity than virtual
brains modeling normal neural function.

• Secondly, we also have evidence that the activities of higher mental functions,
such as consciousness, can generate modifications at the lower levels of the
subsystems that underlie them, through a top-down influence. These can occur
both in somatic functions modulation and in the perception processing. Specific
fronto-temporal cortical regions play a role in the representation and control
of adverse conditions, which interact reciprocally with subcortical structures
involved in bodily homeostasis and responses to stress (Taylor et al., 2010).
Bidirectional autonomic and neuroendocrine pathways transmit information
between the central nervous system (CNS) and the periphery, facilitating the
expression of affective, autonomic, hormonal, and immune responses (Dum
et al., 2019). In perceptual learning, both the encoding and recall of learned
information involves a selection of the appropriate inputs that convey information
about the stimulus being discriminated (Gilbert & Sigman, 2007). Disruption of
this interactions may lead to behavioral disorders, including schizophrenia. Even
the brain states are determined by the interactions between multiple cortical areas
and by the modulation of multi level feedback connections.

• Finally, we have the evidence that the state of well-being and health tends to be
associated with a condition of greater systemic integration and harmonization
both at the sub systemic level (in the relationships between body systems and
organs) and at the macro systemic level (in the relationships with the surrounding
social and natural system). A measurement of the system integration present
in the brain may be done relating the phase of EEG band to the amplitude of
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a higher frequency band (Cross Frequency Modulation—CfM). The strength
of phase-amplitude CfM differs across brain areas in a task-relevant manner,
it changes quickly in response to sensory, motor and cognitive events, and
it correlates with performance in learning tasks (Canolty & Knight, 2010).
Whereas high-frequency brain activity reflects local domains of cortical pro-
cessing, low-frequency brain rhythms, instead, are dynamically entrained across
distributed brain regions by both external sensory input and internal cognitive
events. The CfM may be a mechanism to transfer information from large-scale
brain networks operating at behavioral timescales to the fast, local cortical
processing required for effective computation and synaptic modification, thus
integrating functional systems across multiple spatiotemporal scales (Canolty &
Knight, 2010). Alterations of CfM were observed to correlate with pathology,
in schizophrenia (Allen et al., 2011) and in people maltreated in infancy and
adolescence (Marconi et al., 2018).

From these considerations emerges the interest to focus the study of the behavior
of a complex system, composed of a set of subsystems and macro systems, each
characterized by specific wave functions. In particular, the integrations of larger
systems (in terms of spatial coordinates) can be modeled by wave functions with
a lower frequency but higher propagation speed, while the integrations of smaller
systems by waves with a higher frequency but also lower propagation speed. This
corresponds to what we observe at the cerebral level in the integration processes.
Von Stein and Sarnthein have found that local synchronization during visual
processing evolved in the gamma frequency range, while synchronization between
neighboring temporal and parietal cortex during multimodal semantic processing
evolved in a lower, the beta1 (12–18 Hz) frequency range, and long range fronto-
parietal interactions during working memory retention and mental imagery evolved
in the theta and alpha (4–8, 8–12 Hz) frequency range (von Stein & Sarnthein,
2000). The authors suggested that a relationship could exist between the extent
of functional integration and the frequency of synchronization. In particular, long-
range interactions in the alpha and theta ranges seem specifically involved in internal
mental processing and top-down processing.

These electrical activities integrate single cortical areas in more complex sys-
tems, called brain networks (Canolty & Knight, 2010), characterized by the same
macro function (DMN—default mode network, CEN—central executive network,
SN—salience network). In a paper published in 2018, Marconi, Penna e Pessa
matched real data got from maltreated people or control subject with a math model
of brain network integration. The external inputs influence both CEN (involved
in controlling reactions to external inputs) and DMN (involved in processing of
internal stimuli and memories) in an indirect way, mediated by the relationships
between them and the SN (involved in valence attribution of inputs and in the
activation of the related brain networks). This is concordant with the hypothesis
that, even in presence of dysfunctions regarding the latter two networks, the brain
could compensate for their faulting performances owing to the presence of collateral
contributions coming from the eventual inputs (Marconi et al., 2019).
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And this interpretation seems to be confirmed by the available experimental and
clinical data.

Particular (and extreme) values attributed to the numerical coefficients present in
the math formulae of the model were used to simulate two possible situations.

1. If both CEN (i.e. the conscious relationship with the external world) and DMN
(i.e. the relationship with memories and the inner world) networks are charac-
terized by extreme deficits of their activity, the brain activity is mainly ruled
by Salience network, stimulated by inner emotional states and /or influenced by
inputs contribution: a situation characterizing many psychiatric and neurological
disorders.

2. On the other hand, if both SN and DMN networks are characterized by extreme
deficits of their activity, the only non-zero value of equilibrium amplitudes is the
one of SN, if still a brain function could be identified.

Clinical and simulation data were confirming the hypothesis that for people with
personal history of child maltreatment the CEN is activated to force a top-down
effect which switch the valence attribution from the SN/DMN network interaction
to a more aware processing SN/CEN network interaction, the first one making
reference to previous memories and the second one to formal properties of inputs.

3 Preliminary Considerations for Modeling

It is very important to keep in mind the difference between basic physical phe-
nomenon and information management process.

In fact, the architectural and functioning of a resilient system is fundamentally
based on three aspects:

1. The presence of a relationship between components with the maximum proba-
bility of persistence over time

2. The emergence of a property (acting as an “organizational field”), which
increases, as a catalyst, the speed of all the subsystems to converge towards that
high probable functional organization (with top-down influence),

3. The complexity of a system, intended as information content (“integrated
information”).

The importance of information contained and managed by a system has already
been highlighted by Giulio Tononi, in his theoretical work that link the emergence
of consciousness to the quantity of integrated information, i.e. the greater quantity
of information contained in a system that can be derived from process of integration
of its components (Tononi, 2005).

Probability of persistence, facilitated states and complexity of a system are all
concepts that can be linked to the statistical perspective of the concept of entropy.

In spite of the fact, that entropy was originally defined by German physicist
Rudolph Clausius as the quotient of an amount of heat, in the dissipative use of
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energy during a transformation, a new definition was developed by Ludwig Boltz-
mann in the 1870s that proposed a statistical definition of entropy by analyzing the
statistical behavior of the microscopic system components. In statistical mechanics
the interpretation of entropy is the measure of uncertainty about a system, which still
exists after its observable macroscopic properties, such as temperature, pressure and
volume, have been taken into account. In such a perspective, entropy measures the
degree to which the probability of the system is spread out over different possible
microstates, given a set of macroscopic variables. Finally, when viewed in terms
of information theory, the entropy state function is the amount of information that
is needed to fully specify the microstate of the system. This is lacking in the
macroscopic description.

Thus the phenomenon of entropy, which characterizes the second law of ther-
modynamics and which seems to condemn us to an inevitable death, can actually
be seen, instead, as a process of increasing complexity of a system, a process that
correlates each other time, integration, persistence and information content increase
of a system.

The importance of dealing with information carried by waves can also be derived
from the paradox mathematically observable in the function that represent the
interference between waves of different phase, speed and frequency. It can be
easily seen how the information carried by the interference effect can be transferred
more quickly than the maximum speed of the original waves, which highlights
how the information transported by two waves can travel at a speed even faster
than light. The phenomenon of entanglement is also fundamentally based on the
transmission of information. The term was introduced by Erwin Schrödinger (1935).
Quantum entanglement, or quantum correlation, is a quantum phenomenon, not
reducible to classical mechanics, for which under certain conditions two or more
physical systems represent subsystems of a larger system whose quantum state
cannot be described individually, but only as a superposition of more states. From
this it follows that the measurement of an observable subsystem simultaneously
determines the value for the others as well. Since it is possible from an experimental
point of view that such systems (subsystems) are spatially separated, entanglement
implies in a counterintuitive way the presence of distant correlations, theoretically
without any limit, between their physical quantities, determining the non-local
character of the theory (Moreau et al., 2019).

4 The Proposed Model

All these considerations make very relevant to consider information content,
complexitity, facilitation (probability), wave functions and interference, simulating
a resilient multilayer system, integrated with larger systems. Based on these
considerations, it becomes possible to represent the complexity of an integrated
system as a multilevel set of systems, described by waves, as information carriers.
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• The proposed model, has five layers of integrated systems.
• The layers are integrated by wave interference functions and cross frequency

modulations, as well as they are activated by the resultant high frequency activity
of the lower layers and modulated by the low frequency activity of higher levels.

• The fourth and fifth layers represent the external environment, acting by an
entrainment like effect. Entrainment is the effect that external rhythms can have
on neural activity, leading a coherent internal rhythm with the external inputs.
Such a coherence can works as a CfM in the integration of individuals in a global
natural system.

• Interruptions or disruptions in the rhythm of the fourth layer simulate strong
external events as the Black Swan, as well as positive or negative occurrences.

• The persistence of the rhythm in the fifith layer simulate the persistence of
symmetries at higher systemic levels, to which the “four layer environment”
belongs.

This proposed model can allow us to evaluate theoretically the necessary
characteristics of a subsystem, to guarantee its possibility of finding new ways of
integration, when the meso system in which it is integrated finds a condition of
singularity and symmetry breaking.

In particular, this model could highlight which conditions increase the probability
of persistence (life) over time after a Black Shown, 1) or by bringing out new meso
systemic organizations with a bottom-up modality, 2) or by quickly responding to a
meso systemic reorganization induced by the higher macro system with a top down
mechanism, 3) or both.

The highlighting of the theoretical issues and constraints of this optimal reaction
will allow us to better identify, also on the rational level, as well as on the instinctive
reaction and/or behaviors derived from ancient cultural traditions, what is the best
goal and the best system of values to be used in the inversion of the cause-effect
relationship that characterizes the conscious response to events of the “Black Swan”
type.
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What Would I Propose to Eliano
to Continue Our Collaboration: Validity
Regimes, Edges, Interfaces, and Waves
of Complexity

Gianfranco Minati

Abstract The purpose of this contribution is to introduce and elaborate some
research topics that Eliano and I had in progress. They are the concepts of validity
regimes of symbolic, sub-symbolic, and quasi-rules, edges, transients, and waves of
complexity within the dynamics of complex systems. Such concepts are introduced
as possible approaches to model the irreducible, analytically non-zippable, and
theoretical incompleteness and quasi-ness of complexity. We consider the con-
tinuous trade-off between coherence—incoherence, incompleteness—quasi-ness,
levels of emergence, the infiniteness of betweenness, and collapsing mechanisms
of complexity. The complexity of emergence is considered as coherent dynamics
of edges, interfaces of validity regimes, and their transients. We mention an ele-
mentary example dealing with analytical representations with ordinary differential
equations—completeness context—rather than with sub-symbolic or network cases.
They are elaborated upon here as they had to be colloquially and informally
presented to Eliano for his consideration and further reflection.

Keywords Betweenness · Coherence · Edges · Incompleteness · Interfaces ·
Levels of emergence · Quasi-ness · Transients · Validity regimes · Waves of
complexity

1 Introduction

The AIRS1 experience and my dedication to research after a career as an executive
in a large Italian financial and industrial group started with my meeting Eliano

1Associazione Italiana per la Ricerca sui Sistemi, in English Italian Systems Society http://www.
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around 25 years ago. This part of my life started some years after losing my wife
and my multiple sclerosis diagnosis. I opened with Eliano the doors of this new
life, and from then on, we always traveled together. Eliano had different lives,
one in support of the others. Theoretical physicist, cognitive scientist, systems
scientist, and professional mountain climber. Interestingly my increasing disability
and reduced ability to walk, in some ways combined with his mountaineering
attitude. We both had climbed different mountains until now.

We dedicated ourselves to various issues, always of a systemic nature, sharing our
findings in articles, books, and conferences, covering various topics, including but
not limited to; collective beings, constructivism and cognitive operators, dynamic
use of models, emergence, incompleteness, logical openness, meta-structures,2

multiple-systems, post-Bertalanffy systemics, quasi-ness, and quasi-systems. Pur-
suing these ideas to some perceived frontier that I would like to, although certainly
inadequately, consider here in honor of Eliano, such as validity regimes, their edges,
interfaces, and transience; dynamics as transience among validity regimes, and
structural dynamics.

We were exploring respectful approaches to complex systems and not increas-
ingly sophisticated ways of prescribing them properties and behaviors, but rather
ways to orient and induce, in essence, proposals to be elaborated by the complex
systems. We realized the enormous inadequacy of the theoretical tools available
born based on completeness in the decision-making presumptuous scheme.

I outline, to my knowledge level, a related ecosystem of concepts and approaches.
It is a sort of task inherited from Eliano by the AIRS and myself. I will try to
present concepts and approaches such as stones that we meet on a climb. Knowledge
accrued, not in the invasive excavation of a mine, but as respectfully climbing,
through frequenting materiality and ideas.

It would be an impressionist, theoretical incomplete, logically open scenario
phenomenologically driven such as climbing unexpected mountain paths.

I will try to do it considering having him beside even if he is climbing other
unimaginable mountains.

1.1 About the Chapter

This book is dedicated to Eliano, to what we have done, particularly its recognizable
logical openness. I write this contribution as a fact, as far as I am concerned, of
dutiful specification of the theoretical unfinishable openness, unfinishable sequences
of non-equivalent models, as a matter of theoretical incompleteness (Minati, 2016a).

This contribution is a kind of tribute to our conceptual focus, from the content
in our recent publications on multiplicity, quasi-ness, and incompleteness where the

2Structures among clusters (Minati & Licata, 2012, 2013, 2015; Minati et al., 2013; Minati &
Pessa, 2018, pp. 102–129).
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phenomenological freedom of becoming (different from randomness) is intended
to be. It is a matter of logical openness when modeling may be only partial rather
than complete, and the strategy of being able to exhaust is ineffective rather than
just wrong. However, as a conceptual framework, the non-necessary homogeneous,
complete explicability of Nature, must first be understood. The coexistence and
overlapping of different, non-equivalent approaches are assumed to correspond to
its constitutive multiplicity, as in, climbing several different routes is possible. Such
considerations are reminiscent of the previously introduced concepts of logical
openness (Minati et al., 1998; Minati & Pessa, 2006, pp. 64–75) and the DYnamic
uSAge of Models (DYSAM) as in (Minati & Pessa, 2006, pp. 64–75; 2018, pp.
201–204).

The complex, inhomogeneous, and incomplete explicability of Nature, is coher-
ent with Eliano’s and my understanding. This is contrasted by the objectivistic
one, self-considered as external and presumptuously independent from it (Minati,
2019a), as it was not a natural fact of self-understanding.

I mention how most of the related co-authored articles and books have me as
the first author. Beyond the alphabetical order, Eliano’s natural tendency towards
modesty and confidentiality, undeservedly, these credits are attributed to me.

The purpose of this contribution is to present unfinished, conjectured approaches
based on previously introduced theoretical frameworks. To better understand the
irreducible, analytically non-zippable, theoretical incompleteness (Minati, 2016a;
Longo, 2011) and quasi-ness of the processes of emergence in complex systems. We
mention how this conceptual framework is entirely different when considering other
approaches, where incompleteness is not theoretical but conceptually completable,
phenomenological, e.g., due to measurements, rather than necessary for becoming,
for emergence. For example, the so-called grey systems theory is characterized by
incompleteness in information as one of the characteristics of uncertain systems,
such as when incomplete system information relates to the fact that the information
about the elements, the structure, the boundary, and the system’s behaviors is
incomplete (Javanmardi et al., 2020; Liu & Yang, 2012). Another well-known
case relates to fuzzy systems whose elements have membership degrees within the
continuous interval between 0 and 1 (Zadeh et al., 1996).

I dedicate this chapter to topics such as validity regimes of symbolic, sub-
symbolic, and quasi-rules (when irregularly and in different ways apply); edges and
transients as considered in our last book (Minati & Pessa, 2018). They are elaborated
upon here as they had to be colloquially and informally presented to Eliano for
his consideration and further reflection. Instead of Eliano, they are presented here
to the systemic scientific community for further developments, simulations, and
applications, but at least in honor of Eliano. The complexity of emergence is
considered here as coherent dynamics of edges, interfaces of validity regimes, and
their transients.

Domains wherein some properties are exclusive, unique, or almost prevalently
dominant are intended here as validity regimes (Minati & Pessa, 2018, p. 88, pp.
127–130, pp. 265–266). Examples are domains of entities collectively interacting
through specific or combinations of interaction mechanisms. Their interacting
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makes their behavior to assume properties, for instance, chaotic, ergodic, correlated,
networked, polarized, and scale-invariant.

Elementary cases of validity regimes’ edges occur when edges are constituted
by a single or few analytically well-composed predominant validity regimes where
there is adjacency, any partial combination, with other validity regimes of which
in turn constitutes the edge. Thus, edges can only be multiple unless they are
edges towards the rarefaction and the validity regime’s disappearance. The internal
predominance is only parametrically variable, allowing compatibility and may also
have the role of initial conditions for processes of transience converging towards a
new validity regime as in metastability (Slowik, 2012). In cases of turbulent regimes
when predominance is unstable and insignificant in percentage, edges are probably
undetectable and irrelevant.

A different case of interest here consists of considering the generic complex
behavior as having different levels and types of coherence and moving edges of
multiple validity regimes when considering their topological, predominant, and
mixing aspects establishing multiple, well- or quasi-ruled domains.

In conceptual correspondence with propagation phenomena in physics and to
the so-called moving boundary problems, describing, for example, the solid-liquid
interfacing during phase transitions, we consider edges of validity regimes of
interest because representing the internal, structural dynamics of complex systems
and their multiple natures.

Classic examples of edges are the frontiers of generic and volcanic eruptions,
studying how they spread, in case mix, in the environment, and seismic waves. In
complex systems, e.g., in flocks and swarms composing entities, variable in number
and with different topological properties, are considered constituting edges when
the predominant interaction mechanisms significantly change, e.g., increasing or
decreasing in intensity, replaced or combined with different ones, such as at the
boundaries, at the center, and due to environmental interferences. When there are
no replacements and combinations, the constitutive interactions may have reduced
validity and predominance, cease of validity temporarily, be in transforming (e.g.,
adaptive) phase, or degenerating towards disaggregation.

Dealing with collective phenomena, composing entities’ phenomenological
interaction mechanisms are usually neglected or, rather they are inferred, re-
engineered or replaced by considering simulation rules (Minati & Pessa, 2006,
pp. 104–105). Phenomenological interaction mechanisms are otherwise considered
represented by the validity of acquired, generalized global properties, such as
having chaotic, correlational, scale-invariant, and ergodic natures. We consider
here validity regimes and their edges where such multiple interaction mechanisms
and properties of different natures variably combine and coexist, have variable
predominance, diffusion, and overlapping, allowing the conjecture of waves of
complexity as dynamics of complexity. We may have validity regimes specified
by interaction mechanisms together with possible modalities of change, e.g.,
ergodically or networked, acquired by configurations of interacting entities;
modalities of change applied by configurations of entities; and interaction
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mechanisms with no specific modalities of change applied by configurations of
interacting entities.

We consider the dynamics of complex, multiple, quasi-systems having multiple
processes of emergence as dynamics of edges and transience between validity
regimes. A particular case of this view is the dynamics of radical, multiple emer-
gences occurring between multiple processes of the phase transition-like processes.
As a typical case, we mention ecosystems of multiple, simultaneous, interacting
transients among validity regimes inferring or representing their phenomenology.

In conceptual correspondence with physics, where the discovery of elec-
tromagnetism introduced the opportunity to consider the fields as primary
entities rather than objects, we try here to consider validity regimes and
their properties as primary entities of complex systems rather than their
phenomenologically interacting materiality (Minati, 2019a).

We mention in the following the contribution of the different sections.
In Sect. 2, we introduce the concept of a validity regime, initially intended

as the domain of admissible subsequent states, and then wherein multiple rules
of interaction (inferred interaction mechanisms) or specific acquired properties of
changing prevail. Cases of significant validity regimes (Minati & Pessa, 2018, pp.
127–130, pp. 265–266) are the inferred interaction mechanisms, e.g., simulations,
and the chaotic, dissipative, networked, and scale-invariant ones. They may be
combined and suitably parametrized.

In Sect. 3, we consider quasi-ness to deal with analytically intractable ecosystems
of properties, allowing the emergence of properties and coherence. The concept
of quasi-ness pertains to instabilities of properties, non-regular alternations of
degeneration and recovery of properties occurring when a system is not always
a system, not only a system, not always the same system, and considering levels
of similarities and equivalences (Minati, 2018, 2019a, b, c; Minati & Pessa, 2018;
Minati et al., 2019). We present an elementary case based on ordinary differential
equations as an example of quasi-systems and their related validity regime.

In Sect. 4, we consider the edges of validity regimes in conceptual correspon-
dence with the propagation phenomena known to physics. In systems science, the
edges are typically multiple systems3 subjected to multiple interaction regimes
that acquire emergent stabilities and roles, e.g., topological and energetic. We
consider the interfacing role of their edges, transience as on-going betweenness and
interfaces, and in Sect. 5, the dynamics of complex systems intended as transience
among validity regimes.

In Sect. 6, we introduce issues for further research.
In the conclusions, we present some possible consequent research approaches.

Specifying and reassuming the discussion that I wish I could have with Eliano.

3Multiple Systems are given by the multiple roles of their constituting interacting components; by
interchangeability among components which take on the same roles at different times and different
roles at the same time; by the occurrence of multiple partial mediated flows of information through
components; and by multiple interactions such as multiply linked nodes in Networks (Minati &
Pessa, 2018, pp. 42–45; pp. 166–170). A classic example is that of ecosystems.
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2 Validity Regimes

The concept of the domain considered here, and then constituting the one of
validity regime when related to predominant interaction mechanisms and potential
acquired properties of the resulting change in interacting entities, is different from
the one used in some disciplines such as in mathematics considering the domain
of a function, in Information Technology when dealing with web domains and
magnetic domains in physics intended as regions of a magnetic material in which
the magnetization is uniform.

The domain (Minati, 2019a) of an entity is initially considered, given by the
admissible subsequent interconnected values that variables representing the degrees
of freedom can assume in the following temporal configurations. In this case, the
basic concept of the domain considered relates to single entities, their possible
compositions such as configurations and systems when their admissible domains
may have the property to keep behavioral features, e.g., adaptability, consistency,
and functionalities.

A single entity or configurations of entities and their previous behaviors are
assumed to ‘generate’ their own admissible domains and use them during the
dynamical evolution. However, the domain should not be reduced to possible
deterministic changes, occurring when the dynamics of the evolutionary behaviors
are intended to be completely represented in a context of logical closedness.
Conversely, complex systems evolve in a context of logical openness when such
completeness is not possible, see Minati et al. (1996, 1998), Minati (2016a), and
Minati and Pessa (2018) and processes of emergence as the acquisition of new
(irreducible to the previous ones) configurations, occur in phase-transition ways.

The domain is then variable over time since entities and their configurations
at time tn ‘generate’ their domain valid for tn+1 allowing options even previously
inadmissible. The following options available may be non-linearly successive,
non-equivalent such as succeeding configurations of self-organization and emer-
gence processes. However, such non-complete domains are quasi-compatible when
acquired, and non-equivalent properties preserve and resume variable and coexisting
coherence levels. In case their predominance becomes convergent and unique for
second-order phase transitions.

On the other hand, we may consider potential domains without generating
reference entities but having characteristics corresponding to multiple, dynamic
environmental constrained behavioral rules. This is in conceptual correspondence
with considering environmental properties such as for ecosystems when “ . . . the
environment pervades the elements which produce, in their turn, an active environ-
ment. This environment, if we can still call it such, is active and not an amorphous,
abstract space hosting processes. It is interesting to consider eventual conceptual
correspondences with the quantum vacuum pervading everything.” (Minati & Pessa,
2018, p. 13).

The concept of a domain constitutes the one of validity regime when the reference
is not anymore to the admissible interconnected changes only, values that variables
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representing the system may acquire, but to modalities and properties of changing
for entities.

Validity regimes are intended as domains that constitute interaction mechanisms,
possible modalities, and properties of changing according to which configurations
of entities occur.

A simple example, is given by a validity regime where specific interaction
mechanisms4 apply and the evolution of dynamic configurations evolve with
properties, for instance, ergodically or in correlation. They are properties of any
or, more realistically, predominant changes or changing due to applying the rules
such as specific interaction mechanisms. Cases of such properties include the coex-
istence, variable predominance, and combinations of chaotic, ergodic, correlated,
networked, polarized, and scale-invariant regimes.

The domain of rules, that is, the validity regime, of an ecosystem is intended as
constituted by multitudes of properties of behavioral rules having compound, fuzzy,
missed origins; reproduced, iterated, combined, or modified for any reason.

We stress that we consider the term ‘rules’ in extended ways, such as archi-
tectural properties, e.g., levels and weights of Neural Networks; clusterizations,
networking parameters and properties; and combinations of multiple analytical
representations.

This is in conceptual correspondence with Quantum Field Theory (QFT), where
the void is not emptiness, absence of everything, but a pervasive, unavoidable source
of properties such as entanglement (Gühne & Toth, 2009). Furthermore, in the
quantum vacuum lacking any particles, there are fluctuating electromagnetic fields,
fluctuating about an expectation value of zero. The quantum vacuum is intended to
precede matter, and in such a way, it also must precede space and time (Preparata,
2002). Quantum properties, such as entanglement, may be considered to establish
validity regimes.

We conclude this section summarizing, see Table 1, that validity regimes are
intended as domains where inferred interaction mechanisms and properties of
multiple, combined rules of changing apply.

2.1 Validity Regimes of Populations of Interacting Entities

Considering a population of interacting entities (for a review, see Vicsek &
Zafeiris, 2012), a validity regime is deemed to be established when the interaction

4We mention, from Reynolds (1987), the very popular interaction mechanism used for flock
simulations constituted of: separation rules (individual boid must control their motion in order to
avoid collisions and the crowding of locally adjacent components); alignment rules (individual boid
must control their motion so as to point towards the average motion direction of locally adjacent
components); and cohesion rules (individual boid must control their motion so as to point towards
the average position of locally adjacent components) implemented in several simulators such at
http://sourceforge.net/projects/msp3dfbsimulator/?source=directory.

http://sourceforge.net/projects/msp3dfbsimulator/?source=directory
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Table 1 From domains to validity regimes

Domains of single entities: admissible states assumable over time. Domains changes over time
accordingly.
Domains of configurations of interconnected entities: admissible interconnected changes
assumable over time. Domains changes over time accordingly.
Domains of collective entities: validity regime as the occurring of inferred interaction
mechanisms possibly together with modalities and properties of change for configurations of
entities such as having chaotic, correlational, scale invariant, and ergodic natures.

mechanisms are supposed, inferred to occur through a single or composition of
rules, stable or variable in any way, and when occurring according to properties
and modalities such as correlation, ergodicity, and networking.

However, the concept of validity regime is spatially generic; it may apply
to disconnected spaces and sets of fibers depending on the representation level.
Furthermore, we may consider spaces of signals and economic transactions.

Validity regimes of rules and properties (since now only ‘validity regimes’ for
short) establish the interactional environment, characterizing the occupied space and
to which each new entity involved must adapt, similarly to enter the field’s validity
domain and that, even if partially, the entering entity must fulfill. However, as we
will see, validity regimes may be analytically completely well, multiple, or quasi-
defined when rules and properties apply irregularly, partially, and inhomogeneously.

The generic introductory concept of validity regime elementary starts by
considering a domain where a single or few interaction mechanisms are sup-
posed to apply homogeneously. Such validity regimes may be ideal and reversely
engineered, interpolated, or abductively5 inferred—a typical example is the
classical Reynolds model (Reynolds, 1987) introduced for graphic simulations
(see Footnote 4)—and in dependence of experimental properties detected
(Herbert-Read et al., 2011).

A very well-known ideal, simplified validity regime introduced by Ludwig von
Bertalanffy (1901–1972) is considered as the idealized prototype of the very concept
of a system. He considered a system as ideally specified by suitable state variables
Q1, Q2, . . . , Qn whose instantaneous values specify the system’s state (von Berta-
lanffy, 1968, p. 56). Examples of Qi are the temperature and pressure (representing,
for instance, thermodynamic systems like steam engines) and functional, depending
on the nature of the system. Also, the classical general analytical representation of
collective interactions establishing (in case, self-organized or emergent)6 system

5In logics abduction is the inference, the process of forming an explanatory hypothesis.
6Self-organization intended as sequence of properties acquired in a phase-transition-like manner
having regularities and synchronizations, e.g., whirlpools and tornados. Emergence when the
sequence of properties acquired in a phase-transition-like manner is coherent, e.g., flocks and
swarms (Minati & Pessa, 2018, pp. 65–86; pp. 255–260; Minati, 2019a). In this view regularities
and repetitiveness of self-organization are particular cases of the coherence of emergence (Minati,
2016a).
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characterized by suitable state variables Q1, Q2, . . . , Qn is given by their time
evolution ruled by a system of ordinary differential equations, such as:

⎧
⎪⎪⎨

⎪⎪⎩

dQ1/dt = f1 (Q1,Q2, . . . Qn)

dQ2/dt = f2 (Q1,Q2, . . . Qn)

. . .

dQn/dt = fn (Q1,Q2, . . . Qn)

(1)

In the case of collective systems, examples of Qi are density, levels of internal
correlation, volume, shape, and their ways to change (representing, for instance,
collective behaviors of flocks, swarms, and markets) depending on the nature of the
system. This system of ordinary differential equations specifies how a change in
the value of a given state variable Qn, is related to all other state variable changes
through fn, representing their collective simultaneous interdependence.

The validity regime coincides with the interaction mechanism when Qn specifies
features of a single entity’s behaviors, such as in flocking the distances between
boids, directions, and speeds of their motion, as in Footnote 4. We may consider
[Qn] as a vector representation of the population dynamics. In this case, the inferred
interaction mechanism is completely well defined, and the correspondent validity
regime as well. This is an idealistic, unrealistic, yet very illustrative approach.

Well-known examples of equations stating predominant, inferred interaction
mechanisms and their properties, suitable to identify corresponding validity regimes
and compatible with levels of complexity, are those of chaotic regimes, specified by
the equations of chaotic behavior (Lorenz equations); networking regimes specified
by properties such as the local clustering and small-world properties; scale-invariant
regimes; correlational regimes where changes are predominantly correlated, and
regimes having significant levels of ergodicity.

The previous are all examples of well-defined validity regimes which, how-
ever, could be composed in multiple and irregular ways. When the interaction
mechanisms and the properties of the complex, emergent behavior are completely
represented and well-defined, it is a matter of fortunate cases often considered,
however, as essential ideal generative mechanisms of which the phenomenological
ones are only to be understood as inaccurate and approximate variations.

A simple opposite case takes place when interaction occurs unruled, in apparent
disordered ways but acquiring some statistical properties, for instance, induced by
constraints. An example is given by the disordered interacting of gas molecules
having thermodynamic statistical properties. In this case, the validity regime is just
a list of on-going rules with no unifying properties.

However, instead of well-defined and stable ruling and properties, we may
infer the occurrence of their quasi-ness, i.e., irregular occurrence, super-
imposition, unstable coherence, different durations, and starting time. In
fortunate cases, it is a matter of continuous, oscillatory reductions, increasing in
coherence, loss, and recovery, not realistically constant, as it is instead predominant
in self-organization cases (see Footnote 5). An example is given by multiple
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interrelated, networked environments such as ecosystems, where external and
internally-generated inputs continuously apply.

In such cases and radical emergent complex systems, the representation of
the phenomenological interactional mechanisms is not analytical but adaptive, on-
going, like natural computation (Brabazon et al., 2015).

An interesting case takes place when the comply with the rules of the validity
regime by whatever entering entities makes in their turn a population of interacting
entities to acquire properties, for instance, induce a phase transition and break
metastability states (Slowik, 2012).

In sum, we may consider:

• Validity regimes as domains of possible available collective (e.g., density) and
global states (e.g., shape);

• Validity regimes as interaction mechanisms and properties of the evolutionary
paths of the behavior of the elements. Validity regimes:

– Idealized,
– Inferred from experience,
– Abductively, reversely engineered or interpolated, explanatory of the proper-

ties acquired,

Rarely experimentally detected.

3 Quasi-ness of Validity Regimes

The concept of validity regime we considered as suitable to deal with cases of radical
emergence related to the occurrence of unique multiple coherences, when numerous,
superimposed processes of emergence occur and nor rules neither properties are
completely, definitively defined or well separable and no significant predominance
characterizes the dynamics.

Detected properties may be supposed due to and according to applying some
composed interaction mechanisms establishing the validity regime.

The following considerations may be worthy of note:

– Validity regimes characterized by a significant temporal and spatial predomi-
nance of some rulings and some related global properties; if not, we may speak
of weak (Minati, 2016b) validity regimes.

– Validity regimes include the rulings of quasi-systems and multiple systems (see
Footnote 3).

– Validity regimes are trivial when rulings are entirely well-defined and fixed.
– Being a multiple system does not imply its quasi-ness. Anyway, we introduce

in the following some specifications about quasi-ness of validity regimes. Such
specifications are introductory to deal then with interfacing edges, waves of
edges, and their dynamics as transience among validity regimes considered in
Sects. 4 and 5 and allowing to consider the concept of waves of complexity.
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3.1 An Elementary Analytical Example of Quasi-ruled Validity
Regimes

The interest in quasi-ruled validity regimes is given by their compatibility, probably
necessity even not sufficiency to induce, to establish emergence processes. The
sufficiency may require the introduction of suitable constraints. The multiple
coherences of emergent systems are given and require multiple equivalences; their
trade-off; balance and unbalance; loss and recovery of property not reducible to a
single, iterated, specific coherence.

We present a generic elementary case however suitable to represent the general
idea of multiple roles, quasi-ness, and reduction of the number of degrees of
freedom.

We will take into count the original approach considered in Sect. 2.1. Consider
a population of interacting elements for which suitable state variables Q1, Q2, . . . ,
Qn instantaneous values specify the state of the complex collective system.

In simple cases, the system of ordinary differential equations (Eq. 1) fully
represents the population dynamics when behaving as a perfect, and as such weakly
complex, structure.

Quasi-systems relate to different possible variants when, for instance, the
interaction mechanism non-homogeneously applies; it applies in different ways,
with different parameters; different compatible interaction mechanisms irregularly,
but with predominant coherence, applies.

Generic versions of such variants may be considered.
As a first elementary case, however useful to give the idea of the approach, we

may consider two initially separated, i.e., not interacting and occupying spatially
separated areas, populations of the same kind of composing entities, such as swarms
of same insects and markets of same goods in different places or time.

We may start by considering, for example, their two well-defined system regimes,
that is, two systems such as:

⎧
⎪⎪⎨

⎪⎪⎩

dQ1/dt = f1 (Q1,Q2, . . . Qn)

dQ2/dt = f2 (Q1,Q2, . . . Qn)

· · ·
dQn/dt = fn (Q1,Q2, . . . Qn)

(2)

and

⎧
⎪⎪⎨

⎪⎪⎩

dQ1/dt = g1 (Q1,Q2, . . . Qn)

dQ2/dt = g2 (Q1,Q2, . . . Qn)

· · ·
dQn/dt = gn (Q1,Q2, . . . Qn)

(3)

The two systems (Eq. 2) and (Eq. 3) consider the same state variables Q1,
Q2, . . . , Qn. and differ for their structural interdependence, i.e., fn and gn, such
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as mechanical and electromagnetic, or interaction mechanisms, e.g., considering
spatial positions, distances and speeds of elements.

This simplified example may consider several variants, conceptually starting
from cases when fn in Eq. (2) and gn in Eq. (3) representing the single interaction
mechanisms of systems’ elements, apply in different ways when, for instance, they
play roles in the other interaction mechanism. For instance, they may irregularly
replace, due to overlap or preponderance, the other one or combine as in Eqs. (4)
and (5):

⎧
⎪⎪⎨

⎪⎪⎩

dQ1/dt = f1 (Q1,Q2, . . . Qn)

dQ2/dt = g2 (Q1,Q2, . . . Qn)

· · ·
dQn/dt = fn (Q1,Q2, . . . Qn)

(4)

⎧
⎪⎪⎨

⎪⎪⎩

dQ1/dt = g1 (Q1,Q2, . . . Qn)

dQ2/dt = f2 (Q1,Q2, . . . Qn)

· · ·
dQn/dt = gn (Q1,Q2, . . . Qn)

(5)

This may occur for any reason, such as environmental influences, energetic varia-
tions, and interferences7 between the two systems that find themselves overlapping,
crossing, and sharing the same environment and roles. Conceptually, it is the case
in physics when multiple fields variably apply and superimpose.

A further generalization can be introduced, considering the following systems,
S1, S2, and S3 and subsequent possible Sn as in Eqs. (6), (7), and (8). However,
different associations between the systems and their state variables represent
elementary multiplicity and quasi-ness of the validity regime under considera-
tion specified in Eq. (9) (Minati & Pessa, 2006, pp. 123–128).

S1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dQ1/dt = f1 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ2/dt = f2 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ3/dt = f3 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ5/dt = f5 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ6/dt = f6 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ7/dt = f7 (Q1,Q2,Q3,Q5,Q6,Q7)

(6)

7While the interaction changes the behavior of the individual entities, the interference changes the
influences of the interaction or the interaction itself.
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S2 :

⎧
⎪⎪⎨

⎪⎪⎩

dQ4/dt = f4 (Q4,Q5,Q6,Q8)

dQ5/dt = f ′
5 (Q4,Q5,Q6,Q8)

dQ6/dt = f ′
6 (Q4,Q5,Q6,Q8)

dQ8/dt = f8 (Q4,Q5,Q6,Q8)

(7)

S3 :
⎧
⎨

⎩

dQ6/dt = f ′′
6 (Q6,Q7,Q9)

dQ7/dt = f ′
7 (Q6,Q7,Q9)

dQ9/dt = f9 (Q6,Q7,Q9)

(8)

The associations between the systems and their state variables are then:

⎧
⎨

⎩

S1 : (Q1,Q2,Q3,Q5,Q6,Q7)

S2 : (Q4,Q5,Q6,Q8)

S3 : (Q6,Q7,Q9)

(9)

Because of their simultaneous occurrence in different systems, the common state
variables must simultaneously behave as components of different systems due to the
constraints as in Eqs. (10), (11), and (12).

{
dQ5/dt = f5 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ5/dt = f ′
5 (Q4,Q5,Q6,Q8)

(10)

⎧
⎨

⎩

dQ6/dt = f6 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ6/dt = f ′
6 (Q4,Q5,Q6,Q8)

dQ6/dt = f ′′
6 (Q6,Q7,Q9)

(11)

{
dQ7/dt = f7 (Q1,Q2,Q3,Q5,Q6,Q7)

dQ7/dt = f ′
7 (Q6,Q7,Q9)

(12)

The validity regime is quasi-ruled by the irregular and partial simultaneous
occurring of validity of equations of the type (6), (7), (8). We notice that the
equations ruling simultaneous variables introduce constraints that lower the number
of degrees of freedom of the original description. The reduction of the number of
degrees of freedom has significant implications on the stability of the combined
motions of collective systems. The increasing of the dimensionality of the phase
space also increases the number of ways in which an equilibrium state can
become unstable. On the contrary, the reduction in the number of degrees of
freedom increases stability. In general, a collective system is, in principle, more
stable than its local constituent parts, and this stability is, in turn, granted only
by the defining constraints. The reduction of the number of degrees of freedom
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should be intended to maintain coherence by the collective behavior when some
more suitable constraints are active, such as ergodicity.

In this regard, we may consider why some collective systems, such as two-
dimensional flocks, seem to violate well-known theorems of physics, such as
the Mermin-Wagner theorem, stating that a stable two-dimensional configuration
cannot exist (Mermin & Wagner, 1966). This is also related to consider order
parameters in Synergetics, an approach that reduces the number of degrees of
freedom to only a few parameters (Haken, 1987, p. 425). Furthermore, more
sophisticated versions of the previous mechanism relate to considering crossed mul-
tiplicities of validity regimes not expressible as above with systems of structurally,
functionally crossed ordinary differential equations. For example, when different
validity regimes give quasi-ness interesting, in variable ways, different domains
of entities, cross or superimpose in any way. This is also the case, for instance,
when behavioral paths of elements display chaotic, ergodic, correlated, networked
features identifying related corresponding validity regimes. However, it is possible
to have cases of multiple regimes because, for instance, of the multiple roles of
components, e.g., ecosystems, inferable as multiple interaction mechanisms, and
displaying multiple properties.

The case considered in this section should be intended as an elementary example
of validity regimes establishing complex systems where various superimposed
processes of emergence occur, allowing dynamics of acquisition, losing, and
resumption of coherences in various percentages elaborated in the following Sects.
4 and 5.

Dealing with complexity, we face the limited power of analytical formalizations
finalized to completeness in representations (Minati & Pessa, 2018, pp. 192–198).
It is necessary to represent incompleteness, quasi-ness, and levels of coherence
(coherence of local, sub-coherences, see Fig. 1) as properties of validity regimes
and not intended as a detrimental pernicious inaccuracy.

It is matter to use approaches, methods, and tools based, for instance, on (deep)
learning in neural networks, profiling techniques, networks, and the mathematics
of the so-called naturally-inspired computations such as ant algorithms, artificial
immune system algorithms, bacterial foraging algorithms, chemically inspired
algorithms, developmental and grammatical computing, evolutionary computing,
genetic algorithms, genetic programming, genetic regulatory networks, grammar
and genetic programming, grammar-based genetic programming, grammatical
evolution, neuro-evolution algorithms, particle swarm algorithms, plant-inspired
algorithms, and quantum-inspired evolutionary algorithms (Brabazon et al., 2015;
Mac Lennan, 2004; Liu et al., 2020).
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Fig. 1 A coherent flock of multiple, variable coherent multiple intersecting and interfering sub-
flocks

4 The Nature of Edges, Interfaces, and Transience

In this section, we consider the dynamics of validity regimes, particularly their
edging, interfacing, and transience processes representing the dynamics of the
complexity of collective systems.

4.1 Edges

In conceptual correspondence with propagation phenomena in physics and the so-
called moving boundary problems (Chakrabarti & Brebbia, 2007), we consider
edges of validity regimes having multiple natures. Examples of related problems
considered in physics are the so-called Stefan problem (Meirmanov, 1992), describ-
ing the melting of a semi-infinite sheet of ice when the surface maintained at a
temperature greater than the melting temperature (Minati & Pessa, 2018, pp. 50
and 71), processes of phase separation occurring within a binary fluid (the two
components separate and give rise to two spatial domains), and general complex
models of phase change.



108 G. Minati

A general understanding of the concept of edge and its topological content,
relates to the role of separating, demarcating, distinguishing absolutely or more
probably, in increasing—decreasing, oscillatory or fuzzy ways. Generic examples
of edges are frontiers of generic and volcanic eruptions, studying how they spread,
in case mix in the environment, such as seismic waves. The related fuzziness is
considered, for instance, in approaches for image processing and classification
(Liang & Looney, 2003).

We consider here the edges of validity regimes.
We consider the cases where edging is between validity regimes of processes

of emergence involving the same components, such as populations of interacting
clocks (Mikhailov & Calenbuhr, 2002, p. 127) and logistic maps (Mikhailov &
Calenbuhr, 2002, p. 155; Minati & Licata, 2012); multiple local coherences in
collective behaviors such as in multiple flocks (see Fig. 1) and between levels of
emergence (Ballerini et al., 2007; Minati & Pessa, 2018, pp. 253 and 286).

Edges are understandable as topological places where changes between
almost two validity regimes occur, where one can be the empty validity regime.
Edges suppose some, probably irregular, multiple occurrences of properties,
interactions, and interferences between non-equivalent validity regimes.

Edges are supposed provided with shading, a fuzzy temporary predominance
of single or more validity regimes, environmental compositions, and propagations
from the single or multiple validity regimes of the corresponding complex system.
We consider the edges of interaction mechanisms and properties.

Predominance is supposed to be dynamic when considering the evolution of
the edges’ spatial dimensions, the number of affected components, and topological
properties. It is then possible to consider the dynamics of edges. Edges may also
be intended to occur inside (different topologies are possible) complex systems,
separating validity regimes, such as the different emergence processes when edges
act as (fuzzy) borders of the different processes of emergence. The interest is
in the dynamics of edges establishing waves complexity corresponding to the
expansion, retreat, and combinations of the different validity regimes for processes
of emergence.

Edges are intended as topological places where different validity regimes
exist, for instance, situations of simultaneity, superposition, composition up to the
increasing formations of predominance, reduction of validity, or their variable
combination.

We think of extreme cases where the dimensionalities and temporalities are such
that there are only edges when no significant temporal and dimensional domains
are established, having some stability and predominance. In such cases, we may
say that there are only waves of complexity. Waves of complexity are supposed to
occur in multiple, subsequent processes of emergence, specifying radical emergence
understandable, from this point of view as a turbulent emergence of waves of
complexity (see Sect. 4.3). Turbulent regimes may be intended, constituted of
instable, having low-recurrent and an irrelevant subsequent irregular multitude of
edges.
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When dealing with the ‘constant’ homogeneity of validity regimes and zones
valid for the entire system, we may say that no edges and transformation processes
are diluted over the whole validity regime. We underlie how it is, however,
matter of simplification, reversely engineered or abductively inferred models
of interacting elements’ phenomenological behavioral properties of which
different representations can be given, in a non-univocal way.With the multiple
roles of interacting elements, the latter establishes the logical openness and
multiplicity of the complexity of collective behaviors and edges.

4.2 Interfaces

Interfacing (Hookway, 2014; Longo, 2019) is intended as an activity and edging
role. It is supposed active when the intermediated flux of information through edges
is flowing, in some way, processed and supervised. Examples are active selection
processes (not just filtering), progressive replacement, regulations, acquisition of
oscillatory balances, and weighting.

Edges are the places where the interfacing occurs, whose elements operate
by interfacing. However, we should consider how spatial and temporal adjacency
of boundaries, not absolute edges (closedness is partial), often makes interfacing
inescapable or even unwilled role. On the other side, we may ask what is not an
interface? No interfacing may be considered coincident with total isolation (when
edges are reduced to impermeable barriers) or total equivalence, homogeneity. Fur-
thermore, interfacing may be unidirectional, bidirectional, and their combinations.

An interface should be not intended reduced to separation, such as for the
properties of materials, e.g., immiscible water—oil, where clear boundaries are
distinguished. An interface is considered empty when there are no intermediate
values between belonging—non-belonging to validity regimes, e.g., second-order
phase transitions.

Interfaces of this kind may be supposed to exist where there is no complexity,
no emergence. More specifically, where there is a single all—comprehensive homo-
geneity, a single structural regime, cardinality, and where interfaces are vanishing
as in cases of continuous dilution or in the case of processes of aggregation. On
the other hand, we may have no or temporary interfaces in case of dilution, fading
(vanishing until to pass the Avogadro number), or aggregation processes, concen-
tration leading to the subsequent creation of separations or interfaces. However, the
interfaces should be understood as an active between influencing interaction or even
exchanging energy and information. We should notice that interfacing is not given
by introducing deformations or noise in processes of interaction.

Cases of interfacing include transformation and adaptation, conversion, and
negotiations between macro and micro in processes of emergence, as in the ‘middle
way’ (Laughlin et al., 2000). Interfaces and interfacing, widely used in several
disciplines and applications; in some cases, interfacing may be considered reduced,
degenerated to active bordering for protection and defense, intended as sheltering,
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regulation, and generate antagonistic vanquishing reactions. Furthermore, interfaces
may be supposed to have active roles. They can be considered, for instance,
as transforming a representation into other ones eventually non-one-to-one cor-
respondent, and non-equivalent. The process of translating is a related example
of interfacing. Interfacing occurs in computer science, telecommunications, and
engineering (Artemiadis, 2014). Other cases relate to interfacing as ordering,
selecting information, and transforming signals, for instance, from acoustic to
electrical.

Interfaces should be intended as variable and multiple, eventually combined and
occurring in various ways, such as adaptive or context-sensitive, having learning
features, and predictive. This is the case for human-machine interfaces that adapt,
for example, through machine learning, themselves to their user’s characteristics.

A more general systemic understanding of the interface concept may relate
to considering them as the place where processes of balancing, negotiation,
reformulation, representation, selection, transformation, transition, and translation
occur among non-equivalences. Interfacing is a typical property of most complex
systems relating to single collectively interacting entities and their temporal sub-
communities having specific temporal dynamics, establishing waves of complexity
(see Sect. 4.3), such as in collective behaviors and within ecosystems.

Interfacing is performed by active edging when having not the only purpose
to actively close, separate (usually performed passively as a closed border).
However, the interface may decide to close.

Interfaces may not necessarily be active in some cases. Still, they can
be performed in other ways, by insertion of diffusive processing through
artificial devices, partial barriers, and parallel information processing imposed
artificially, such as external classification, ordering, and selection. In such
cases, we may speak, however, of virtual edging.

In sum, edges and interfaces have a dual nature: active edges perform roles of
interfaces, and interfaces perform roles of edges, having, however, both variable,
often context-sensitive predominance.

In the following, with such double nature in mind, the terms ‘edge’ and
‘interface’ are considered essentially equivalent and used separately when one role
is considered more predominant.

4.3 Transience

Conceptually, interfacing, an active role of edges, occurs between validity regimes.
Transience may be intended as interfacing, performing the on-going establishment
of one regime’s predominance over the other until its substantial replacement. It
may occur in different ways, be inversed, oscillatory, or unstable.

Transience is supposed to also occur inside a validity regime when internal tran-
sience is activated by external perturbations inducing, for instance, meta-stability or
by internal processes of acquisition of properties, e.g., multiple emergence and self-
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organization. Transience from a validity regime to another one may occur in several
ways, context-dependent. Transience between regimes of validity may be intended,
as a mechanism of complex systems dynamics, dynamics having multiple, as far as
possible to distinguish aspects, e.g., altitudes, density, distances, energy, and speed.

Transience may be intended as a process consisting of establishing (local,
multiple, temporary, or unique) convergences and possibly re-establishing the
previous predominance in interfacing.

We will consider in the following how transience is intended performed by
interfaces. While interfacing has no privileged dynamics and directions, transience
is intended mostly as unidirectional, however, convergent interfacing. In non-
elementary cases, the change of a validity regime occurs through multiple interfaces
corresponding to particular dynamics of edges. e.g., constitutive, expansive, reces-
sive, combinative dynamics for specifying edging.

Examples of transience with no interfacing, i.e., the simultaneous variation of
the validity regime, include metastability and second-order phase transitions such
as paramagnetic to magnetic, and the acquisition of properties, such as superfluidity
and superconductivity. However, the process of transience is interesting as it consists
of the change in the predominance of properties.

It is a matter of predominance of properties, characterizing the ‘transformation’
from a validity regime into another. We may consider the modalities with infor-
mation and materiality flow through the interfaces, e.g., intermediated by active
selections, processing, parasitic absorption of energy, reducing degrees of freedom,
transformations, and weighing. In this regard, we mention the concept of structural
dynamics (see Sect. 4.3.1) in complex systems intended as change and multiplicity
of roles of elements, structures between them (Minati & Pessa, 2018, pp. 87–90,
102–130), and as dynamics of edges and validity regimes.

Examples of processes of the transience of interest here are between generic
validity regimes such as:

• Order-disorder with variable predominance and homogeneity;
• Different processes of emergence (the system is acquiring multiple or losing

emergent properties);
• Openness and closedness (when a system is closing or opening, with variable

predominance and homogeneity);
• Remote synchronization acquisition. (the system acquires or loses synchroniza-

tion) (Minati, 2015).

and

• Establishing multiple emergences inside the validity regime of a specific process
of emergence, as in collective behaviors acquiring multiple different properties,
e.g., topological in highly dynamical flocks or waves of complexity. For instance,
as manifested by giant honeybees’ social waves (Kastberger et al., 2010) and in
flocks of starlings, see Fig. 1 and Ballerini et al. (2007).
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4.3.1 Transience as Converging Structural Dynamics

It is possible to consider continuous partial converging interfacing cases, with a
significant increase in a validity regime’s predominance. In such cases, transience
occurs. Otherwise, it is possible to consider instances of continuous partial non-
convergent interfacing, with non-significative increasing of a validity regime’s
predominance. In such cases, processes of transience are continuously in progress
and have no definitive transient consolidation.

When considering transience in system structural dynamics processes, such a
dynamic converges, as the acquisition of synchronicity and coherence, starting from
the incomplete, tentative initial conditions of a self-establishing, quasi-convergent
process. This describes spontaneous synchronizations such as in applauding, for
objects on vibrating surfaces, and the emissions initially unsynchronized of flashes
of light (bioluminescence) by communities of fireflies until a specific synchroniza-
tion becomes predominant and iterated. However, such convergences are rarely a
transformation process with the character of regularity, continuity, but rather an
irregular sequence as for quasi-ness. Structural dynamics are represented ideally
by structural interactions, such as fn and gn in Eqs. (10), (11), and (12), specified
by processes of acquisition, change, combination, and loss of structures such as
occurring for phase transitions and networks.

Examples of complex structural dynamics are given by the cytoskeleton dynam-
ics, consisting, within the cell cytoplasm, of a network of protein fibers and
characterized by structural dynamics, as its parts are continuously destroyed,
renewed or newly created; self-organized and emergent collective behaviors (see
Footnote 5), and social networks.

This opens the possibility to consider the structural dynamics of complex
systems as dynamics of the transience of interfacing edges having correspon-
dence with the dynamics of multiple, embedded processes of emergence (see
Sect. 5).

Interesting variables to be considered are the delay in spreading through of the
edges, their interfacing time, and the related structural dynamics. Furthermore, in
mathematics the whatever transience of the structural dynamics may be related to the
acquisition, intended as the transition from computation to acquired computational
properties of computations in progress (emergent computation), such as for Artifi-
cial Neural Networks and Cellular Automata, rather than to formal properties of the
representative equations such as for classic mathematics (Licata & Minati, 2016).
In such cases the computed is not deducible from the computing mechanism.

Correspondingly, in mathematics, the end of the so-called Bourbaki program
(1935–1998) relying on abstract definitions and axioms and finalized to a completely
self-contained treatment of the core areas of mathematics was a manifestation of
the decreasing effectiveness and role of classical formalist mathematics relying on
abstract definitions and axioms.

It is a matter to consider the autonomy (in acquiring properties) of compu-
tational processing in progress and devices suitable to represent and constitute
per se the structural autonomy of complex systems continuously acquiring
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Table 2 Edges, interfaces, transience, structural dynamics, waves of complexity

Edges
understandable as topological places where changes between almost two validity regimes occur,
where one can be the empty validity regime. Same or few interaction mechanisms and ergodic or
network properties predominate.
Interfaces
interfacing is intended as activity, role of edges as intermediating between validity regimes.
Active edges and interfaces are mostly equivalent terms distinguished when one role prevails.

Transience
from a validity regime to another one, is supposed to occur as predominant directional
interfacing and inside a validity regime, e.g., the establishing of multiple emergences inside the
validity regime of a specific process of emergence.
Structural dynamics
changes of structure among elements, e. g. sequences of phase-transitions-like changes as in
coherent sequences of local, sub-emergences and the cytoplasm.
Waves of complexity
intended as sequences of interfacing edges, transience, and structural changes having significant
local coherences, e.g., sequences of processes of emergence involving same components such as
highly dynamic multiple flocks acquiring topologically different forms.

properties. For example, we mention the sub-symbolic processing of artificial
neural networks (ANNs) and their deep machine learning through recurrent neural
networks (RNNs) (Bianchi et al., 2017).

The autonomy of computational approaches and devices should be intended
as suitable for modeling complexity, for example, in physics and chemistry,
and respectful and appropriate for social, medical, environmental, and even eco-
nomic phenomenological processes. The consideration of only complete formal
approaches and general characterizing formal properties. e.g., chaoticity and ergod-
icity, are effective when considering only specific aspects and assuming their
sufficiency to explain and model the global structural dynamics.

We conclude this section by summarizing (see Table 2) how in highly complex
systems, i.e., systems in which multiple processes emergence occur, the corre-
sponding dynamic interfacing edges of validity regimes and transience should be
considered as waves of complexity, representing their complexity dynamics.

The fields of Statistical Physics and Thermodynamics are concerned with
physical systems containing a large number of particles. Examples include gases,
liquids, solids, and photon gases. In fact, most systems are large; isolated particles
rarely occur.
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5 Dynamics of Complex Systems as Transience Among
Validity Regimes

In this section, we further elaborate on the dynamics of change between validity
regimes. In this regard, we mention how several researches deal with transition
processes between phases such as non-system and system, disorder and order, non-
chaos and chaos, living and non-living, and in general between different phases
of matter studied in the physics of phase transitions. For instance, this relates to
emergence processes, which is understood as the occurrence of possibly multiple
simultaneous sequences of self-organization processes or local emergence (for their
distinction, see Footnote 5). When the corresponding acquired dynamic structures
are globally coherent (see, for instance, the theory of ‘dual evolution’ for adaptive
systems, as in Paperin et al., 2011).

We may relate to the processes of emergence, like in physics, as associated with
sequences of phase transitions (Sachdev, 2011; Solé, 2011) and the dynamics of self-
organization and emergence (Minati & Pessa, 2018, pp. 80–87). Such sequences
require the occurrence of at least two phases, such as one following the other after
the transition, physically not equivalent. It means that it is impossible to find a
transformation that reduces one phase’s physical description to one of the other.

Properties of the transience may specify the nature of a systems’ complexity when
having multiple regimes, like given by chaos, correlation, ergodicity, networking,
and, of interest here, by their eventual combinations. A related example case
takes place when considering multiple dynamical attractors and properties of their
dynamics (Kauffman, 2011; Scarpetta et al., 2008) in superimposed abstract spaces
of multiple attractors. Each space, considered as corresponding to different regimes.

We may also consider cases of phases, fractals, and symmetries:

– Multiple phases describe elements of the system involved in different phases. In
such a case, the dynamics related to the changes of phases involving in multiple
ways the elements and then establishing eventual multiple roles of same elements
(Brovchenko et al., 2005; Brovchenko & Oleinikova, 2008).

– Multiple fractals when multiple fractal rules occur and the same segments or
surfaces belong to multiple, different fractals. Dynamics relates to the changes in
rules and eventual multiple roles of segments and surfaces (Chen, 2014; Harte,
2001).

– General multiple symmetries describe when multiple symmetries are established
in connected networks of nodes. Same nodes may belong to different networks
(Nicosia et al., 2013) having different symmetries. Dynamics relates to the
change in structures and multiple roles of the elements-nodes establishing
multiple symmetries (McClain, 2008; Pessa, 1988). “A way of looking at this
situation is to reinterpret the observed deviation from the exact symmetry as
a phenomenological distortion or rearrangement of the basic symmetry ... The
crucial problem one has to face in the recognition of a symmetry is, then, the
intrinsic two-level description of Nature . . . This two-level description of Nature
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was soon recognized in Quantum Field Theory (QFT) as the duality between
fields and particles.” (Blasone et al., 2011, p. 1).

We conclude by stressing how transience of complex systems is intended as
consistent, on-going betweenness, interfacing, and waves of complexity, mentioning
two related issues:

1. Topology of complexity
The study of validity regimes, interfacing edges, and transience may be

approached in the conceptual framework of the topology of complexity, consid-
ering compatibilities and incompatibilities of configurations and their eligible
compositions and transformations. Such topology of complexity, should not
be considered as an exhausted topic by properties of complex networks in
network science. The validity regimes’ topologies and interfacing edges should
be considered as constituting the admissible topologies of transience.

2. Meta-structural transience
The roles and dynamics of equivalences should be considered for the validity

regimes, representable by setting meta-structural representation levels. Here we
may mention two cases:

(a) Meta-structural transience intended to occur when the transience relates to
the acquisition, change, or loss of a specific meta-structural property,8 in
short, properties of clusters;

(b) Transient between meta-structural regimes of validity when meta-structural
properties are still maintained, but in different ways, through different
clustering and parameterizations.

6 Further Research

First of all, further research should focus on suitable new approaches to formalize
(Minati & Pessa, 2018, pp. 187–219), models and simulations of the approaches
proposed above, particularly in Sect. 3.1 and related to the concepts of validity
regime, edge, interface, transience, and waves of complexity in complex systems.

We mention in the following some topics of further research such as:

• Topological dynamics of validity regimes and edges;
• Superimpositions of validity regimes and edges;
• Intra-dynamics of validity regimes, their losing of validity and resumption of

validity;

8Structures among cluster properties are considered meta because of the incompleteness and
variability of clusters, e.g., in number of components over time; in their non-regular, non-iterative
occurrence; and in number of shared elements belonging to them over time (Minati & Licata, 2012,
2013, 2015; Minati et al., 2013; Minati & Pessa, 2018, pp. 102–129).
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• Validity regimes in ecosystems and social systems;
• Validity regimes vs. fields.

7 Conclusions

This section’s title sounds bitter since the chapter concentrated most on the
uncompleted common scientific and cultural journey I have had in progress with
Eliano. I naively presented only a small percentage of ideas, conjectures, and
proposals that I would have liked to submit to him.

I never wanted to be here to write this chapter. I am experiencing the shame
of survivors. We must live the time available and ensure we deserve it, to play our
current role with the utmost dedication; this is our duty. How did we deserve to have
Eliano as a friend, companion, and colleague?

We delineated in several publications the continuous trade-off between
coherence—incoherence, incompleteness—quasi-ness, levels of emergence, the
infiniteness of betweenness, and collapsing mechanisms. The essence is that it is
a matter to acquire open approaches suitable to induce and orient the complexity,
theoretically irreducible, non-zippable into analytical complete or completable
representations.

This chapter’s conclusions may bring to the attention of the systemic and
scientific community the need to acquire a new and extended understanding of
the complexity. Suitable to overcome the approach based on the searching for
appropriated representations and rules assumed theoretically able to represent
and illustrate complex phenomena exhaustively. The usual assumption is that
incompleteness is incompatible, at the most momentarily tolerable, with scientific
approaches (exceptions are, for example, so-called grey systems, fuzzy logic,
probabilistic and statistic approaches). Eliano and I introduced in the literature
contributions, even mentioned in this chapter, where incompleteness, we considered
theoretically necessary for radical emergence processes. This theoretically changes
the approaches to be considered for modeling, representing, and dealing with
complexity. The related key-concepts introduced here are the ones of validity
regimes and their quasi-ness. We mentioned an elementary example, however,
possibly significant since dealing with analytical representations with ordinary
differential equations—completeness context—rather than with sub-symbolic or
network cases.

From physics, we have extrapolated to the validity regimes the concepts of
edges, fields, interfaces, transience, allowing us to consider transience as converg-
ing structural dynamics and dynamics of complex systems as transience among
validity regimes. In this conceptual framework, we introduced the idea of waves
of complexity corresponding to the expansion, retreat, and combinations of the
different validity regimes for processes of emergence. This may allow future, more
appropriate models and representations of the dynamics of complexity, models
in which aspects of autonomy and incompleteness are theoretically essential and
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ethically respected without assuming complete prescribability and full theoretical
decidability for granted.

Thank you, Eliano, for all that you taught me, with the simplicity of who has
climbed the highest peaks of humanity, science, and of course mountaineering. We
have all certainly lost a lot.
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The Use of tDCS Combined with CET
Training for the Treatment
of Pathological Dependence

Natale Salvatore Bonfiglio, Roberta Renati, and Maria Pietronilla Penna

Abstract Studies on pathological addictions have shown how the need and the
search for the substance are stimulated by environmental situations linked to the
substance (trigger). This condition is determinant for the state of craving (Bonfiglio
et al., Addict Behav Rep 9:100172, 2019). Craving is considered as a conditioning
response linked to the search for the substance and determined by the subject’s
impulsiveness and inability to control himself. Several studies have shown how it
is possible to reduce the need for craving and impulsivity through neurostimulation
with tDCS (Transcranial direct-current stimulation). Other studies have obtained
promising results in this area through the cue exposure paradigm (CET), which
consists of presenting the subject with a series of trigger stimuli, which recall the
substance, desensitizing its effect and increasing self-control. This work presents
an example of a treatment that uses neurostimulation with tDCS together with the
cue exposure paradigm on 10 subjects with sham tDCS and 10 with active tDCS,
compared with 20 control subjects. After 10 sessions of neurostimulation with active
tDCS and sham and cue exposure, the results seem to confirm the hypothesis of a
reduction in craving levels and ability to resist for the condition with active tDCS
and partially for the condition with sham tDCS. There were no improvements in
impulsivity levels. The proposed treatment, despite the partial results, shows many
potential, above all due to the possibility of a certain autonomy of use—in the
absence of an operator—which goes against the current progress in the field of
telemedicine and treatment through a remotely planned and supervised program.

N. S. Bonfiglio (�) · R. Renati
University of Pavia, Pavia, Italy

Noah srl, Pavia, Italy
e-mail: salvo.bonfiglio@unipv.it; s.bonfiglio@noahealth.it; roberta.renati@unipv.it;
r.renati@noahealth.it

M. P. Penna
Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
e-mail: penna@unica.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Minati (ed.), Multiplicity and Interdisciplinarity, Contemporary Systems
Thinking, https://doi.org/10.1007/978-3-030-71877-0_9

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71877-0_9&domain=pdf
mailto:salvo.bonfiglio@unipv.it
mailto:s.bonfiglio@noahealth.it
mailto:roberta.renati@unipv.it
mailto:r.renati@noahealth.it
mailto:penna@unica.it
https://doi.org/10.1007/978-3-030-71877-0_9


122 N. S. Bonfiglio et al.

Keywords Addiction · Craving · Cue exposure · Dependence · Impulsivity ·
Neurostimultation · Self-control · tDCS · Training

1 Introduction

Pathological dependence is a challenge for the World Health Organisation as it
tends to become a chronic problem for addicted people and results in high costs for
society. Pathological addiction is difficult to treat, especially because it very often
involves chronic relapse, despite acute detox and withdrawal.

Many treatments are based on managing the patient’s craving (which is chiefly to
blame for relapse) and impulsivity by focusing on the direct effect that gratification
has in this sense (Johnson, 2008; Addolorato et al., 2006; De Mulder & Dom, 2012).

Impulsivity is directly linked to a craving response and it is one of the main
factors responsible for relapse (Wrase et al., 2008; Koob & Volkow, 2010);
additionally, being aware of their own craving and the other causes that lead to
relapse do not deter addicts from maintaining abstinence (Tiffany et al., 2000). This
is likely to happen because the process leading to relapse is essentially automatic
and uncontrollable in each individual, as explained by George and Koob (2011)
via his three-stage cycle of addiction. As a matter of fact, pathological dependence
refers to the final stage of a process that starts with an (often recreational) usage of a
substance leading to dependant behaviour that is driven by impulsivity and obsessive
compulsivity towards that substance (e.g. alcohol, cocaine, etc.) or the object of
addiction (e.g. gambling, work, etc.). Usage becomes pathological when a person
“loses control” over their drug-seeking and intake (Koob & Le Moal, 2008). From
this standpoint, addiction is characterised by (a) compulsive drug-seeking and drug-
taking; (b) loss of control over drug-taking leading to (c) negative emotional state
(e.g. dysphoria, anxiety, irritability, etc.) because obtaining drugs becomes difficult
or it is impaired (Koob & Le Moal, 2008).

An important aspect of experimental research is that it attempts to understand
how individuals move from controlled drug use to the compulsive uncontrolled state
that characterises addiction (Koob & Le Moal, 2008), which also includes neural
and neurobiological mechanisms connected to dependence itself. The hypothesis
that has been exhaustively verified suggests addiction results from a process that
activates natural motivational systems and their related neural circuitry, such as the
reward/gratification system (Koob & Le Moal, 2008); also, the dopamine system
seems to be responsible for addiction (Kienast et al., 2013). Individuals suffering
from pathological dependence display a dysregulation of the dopamine system,
which leads to an increasing loss of motivation for natural rewards (such as food)
and an increased interest in the drug as a the main and most important source of
strength (Heinz et al., 2009).

Many brain regions are involved in the gratification/reward system and dopamine
circuit, such as the dorsolateral-pre-frontal-cortex (DLPCF), the nucleus accumbens
and the ventral tegmental area (VTA) (Bechara, 2005). Besides, compulsivity seems
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to be a type of behaviour deriving from the dysregulation of the dopamine system
caused by the activation of the hypothalamic-pituitary-adrenal (HPA) axis as a stress
response.

Recent neuroimaging studies have shown that the left dorsolateral-pre-frontal-
cortex (DLPC) is where craving, as a pathology, is activated; this brain region
also plays an essential role in craving regulation and its related resisting response
(Hartwell et al., 2011), meaning the ability and willingness to resist the urge to use
a substance. It has been hypothesised that this region is also responsible for desire
regulation and the gratification deriving from pleasure (Hartwell et al., 2011).

Over the last few years, several studies have demonstrated that neurostimulation
techniques such as transcranial direct current stimulation (tDCS), which target the
dorsolateral prefrontal cortex, can reduce carving (Boggio et al., 2008) as well as
its related dysfunctional behaviour (Rachid, 2016). Furthermore, such techniques
appear to have long-term effects. This means that even if the treatment is normally
concluded within a limited number of therapy sessions, it can still have long-term
effects.

In particular, tDCS is a non-invasive and painless technique with only mild
adverse effects, which, if they appear, are limited to a slight itchy sensation over
the stimulation site. It is simple and easy to perform. It is a procedure that entails
modulated brain excitability by placing electrodes over the scalp; these electrodes
release a low-intensity current flow for a few minutes. It has also been shown that
tDCS can modify cognitive processes by combining neural activity and impulsive
behaviour (Fecteau et al., 2004).

As far as behaviour is concerned, several studies have proven the efficacy of
cue-exposure therapy (CET) in reducing the stimulus reaction associated with the
addictive substance and craving (Tiffany & Conklin, 2002).

For this study, the Pavlovian conditioning model has been used. Some contexts,
situations and objects (e.g. a bottle, glass, the bar for an alcoholic) are repeatedly
associated with the addictive substance (which is an unconditioned stimulus, US);
the context, situations and objects are instead conditioned stimuli (CS). Conse-
quently, these factors elicit an impulse to seek and take the substance (conditioned
response, CR) as if it were an unconditioned response (UR). Due to this conditioned
context, the addicted person feels the craving when they face a conditioned stimulus.
Hence, the craving stimulus becomes a trigger for the dependent behaviour (Lee et
al., 2007).

CET aims to completely erase the response associated with the stimulus con-
nected to the addictive substance. In order to do this, it is necessary to repeatedly
expose the dependent person to signals connected to the substance (i.e. conditioned
response) that causes dependence (Lee et al., 2007); however, this is done by
precluding consumption, which could otherwise be a unconditioned stimulus.

As a consequence, CET involves a conditioned response such as craving, physi-
ological activation (e.g. heartbeat, skin conductance, etc.), attention and behaviour
biases that are connected to seeking the substance and activated by stimuli that have
been previously associated with that substance (Ferreri et al., 2018).
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Research on the application of CET (using scripts, photographs, videos, and
objects related to drug consumption) has also helped to better understand those
situations that lead to continuous substance use, as well as those factors that produce
relapse (Conklin and Tiffany, 2002).

In addition, many studies have focused on salient stimuli, meaning videos and
images that are offered via tablets and computers to patients during a neurostim-
ulation session. This approach has proven to significantly reduce the outcome
connected to dependence among addicts (Li et al., 2020; Carl et al., 2020). It
may be possible that combining training and cognitive-behavioural therapy with
neural stimulation can boost the therapeutic effects; this approach can also result in
significant improvement in maintaining abstinence and reducing craving.

In light of the above, the main objective of this study is to evaluate the efficacy
of neural stimulation in subjects who agreed to undertake CET training. This CET
training and neural stimulation is expected to reduce craving and impulsivity levels
(Bonfiglio et al., 2020), thus also reducing the impulse to use substances and
reinforcing coping mechanisms such as the ability to resist substance consumption.
By doing so, it is hoped that this approach will prove that these two techniques have
to be applied together in order to obtain significant behavioural and neural changes.

2 Methodology

2.1 Instruments

Barratt Impulsiveness Scale. BIS-11 is one of the most commonly used tests to
measure impulsiveness (Patton et al., 1995). It comprises 30 items, which can yield
total impulsivity as well as three related subscales: (a) attentive impulsiveness; (b)
motor impulsiveness and (c) non-planning impulsiveness (Fossati et al., 2001). It
has a four-point scale (0-not at all, 4-a lot).

Symptom Checklist-90. SCL-90 is a self-reporting instrument including 90 items
where the subjects are asked to report on whether or not they have experienced
specific symptoms in the 15 days prior to taking the test (Derogatis & Savitz,
1999). It consists of 9 primary symptoms dimensions: somatisation, obsessive-
compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety,
paranoid ideation, psychoticism. It has a four-point scale (0-not at all, 4-a lot).

Self-efficacy and desire scale (SAD). SAD comprises 27 items that describe
several situations. Each situation includes two sets of options presented in two
columns on which the subjects have to respectively choose their craving for the
substance and their perceived ability to resist its usage (Minervini et al., 2011). It
is possible to generate the total score and three subtotals resulting from the three
related subscales: positive emotions and social situations, negative emotions and
potentially critical situations, habits and abstinence. It makes use of a 10-point
scale (substance desire: × from 0 “minimal desire” to 10 “maximum desire”; resist
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substance use perceived ability: from 0 “minimal ability to resist” to 10 “maximum
ability to resist”).

ASI (Addiction Severity Index). ASI is based on a semi-structured multidimen-
sional interview that aims to rate the severity index of substance addiction. Its 55
questions were designed to establish the intensity and frequency of the problems
connected to drug-use within the previous 30 days. Patients are also asked to provide
a self-assessment of their physical and mental condition and their relationship with
their family. In particular, ASI seeks to investigate these general areas: alcohol
and drug abuse, emotional and physical health, employment, family relations and
illegal activity. It is extensively employed and has been translated into more than 20
languages (McLellan et al., 1992).

2.2 Cue Eliciting Training

The training session involved presenting 30 stimulating visual prompts and 10
neutral visual prompts. The former had been previously agreed upon with the
individual subject and selected from a database of images that recalled several
addictive substances. The latter were the same for all subjects.

Each image appeared on the screen moving from left to right, right to left or
toward the subject scrolling from the bottom up. Each image remained on screen for
5 s.

At the end of the training session, each subject was asked to relax for a while
in order to allow them to decompress if viewing the stimulating visual prompts
had caused them any physiological stress. During this phase, the subjects were
shown a series of 20 relaxing photographs they had selected beforehand; these
visual prompts did not recall any addictive substances and were in contrast with the
stimulating visual prompts already reviewed. These relaxing prompts were shown
twice for 5 s each, for a total of 40 sequences and were accompanied by background
music or songs previously selected by the subject to help them to relax.

2.3 tDCS Neurostimulation

For this experiment, tDCS was applied by using BrainStim stimulation devices
(EMS, Italy), with pairs of silicone-coated electrodes (35 cm2) that were inserted
into sponges soaked in saline solution for EEG.

The anode was placed on a stimulation site on the scalp corresponding to the
left dorsolateral prefrontal cortex (F3 location in the EEG 10–20 international
system). These brain placement sites were chosen because, according to the existing
literature, the left prefrontal cortex is responsible for controlling craving, while the
anterior cingulate cortex is responsible for impulsive reactions and craving control
(Hayashi et al., 2013). A 2 mA current intensity was applied for 20 min.
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The control group was subject to a sham tDCS wherein the electrodes were
placed on the same sites on the scalp, but the current intensity of the stimulator was
gradually reduced to zero after a 20-min treatment. By doing so, the subjects did
not know which procedure they were undergoing, since the typical tactile sensation
associated with tDCS was experienced only at the beginning of the stimulation
process (Brunoni et al., 2014).

2.4 Subjects and Procedures

A total of 40 subjects were selected for this experiment and all were patients
that had been hospitalised for their pathological dependence in a rehabilitation
centre in Lombardy, Italy. The subjects were recruited on a voluntary basis and
according to specific including and excluding criteria that were used during a
preliminary interview. The including criteria were: (1) being 18 years old or older;
(2) having been diagnosed with substance addiction according to the DSM 5; (3)
stable clinical conditions; (4) having abstained from substances for at least 50 days.
The excluding criteria were: (1) suffering from epilepsy; (2) displaying severe
clinical symptoms connected to abstinence; (3) severe psychiatric comorbidity; (4)
convulsions and delirium tremens during periods of abstinence; (5) being already
involved in other training experiments or other neuromodulation treatments; (6) any
other contraindication to non-invasive brain electric stimulation, e.g. patients with
intracranial metallic implants. All subjects signed a form providing written consent
to the processing of their personal data for research purposes. This research project
was approved by the Ethics Committee of the Department of Brain and Behavioural
Science at the University of Pavia.

The treatment programme comprised 10 sessions. Each subject underwent two
treatment sessions every week. Each session lasted 20–30 min. Each session
included: (a) tDCS (active or sham); (b) cue eliciting; (c) cue relaxing.

This trial was designed with three experimental conditions:

(a) condition 1: the subjects were trained using an active tDCS;
(b) condition 2: the subjects were trained using a sham tDCS;
(c) condition 3: the subjects did not have any treatment.

Self-evaluation questionnaires were administered before starting the treatment
programme (T0), after finishing the training programme (T1) and 1 month after the
end of the treatment (T2). The experimental group was given the questionnaires the
day after their interview during which their demographic data were collected and
the stimuli were agreed upon. This was a blind trial for the experimental group, but
not for the research team involved in administering the trial.

Table 1 reports on the frequency distribution, the mean values and standard
deviation for the collected demographic data and diagnoses under scrutiny.

According to the Symptoms Checklist (SCL), the data shows no significant
differences across the three groups in terms of their symptoms (all p > 0.05). This
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Table 1 Frequency distribution, mean and standard deviation for demographic data

Subjects of
condition 1

Subjects of
condition 2

Subjects of
condition 3

Variables n = 10 n = 10 n = 20

Demographic data Age 33 41.6 40.5
± 11.6 ± 16.6 ± 9.1

Education 10.9 11.7 11.5
± 3.4 ± 4.5 ± 3.5

Sex 7 M 6 M 17 M
3 F 4 F 3 F

Therapy Pharmacological 10 8 11
Substitutive 5 3 1

Clinical data Poly-
substance
abusers

4 7 12

First cocaine 2 3 8
First alcohol 4 4 4
First heroin 4 3 8
Age first use
primary
substance

22.7 28.1 22.2

± 8.1 ± 17.3 ± 8.7
Days of
abstinence

95.4 121.9 121.5

± 46.6 ± 171.5 ± 154.9

therefore shows that there was no difference between the three groups in psychiatric
terms. Furthermore, no values above 1 were detected, which demonstrates that none
of the subjects displayed severe psychiatric symptoms.

3 Data Analysis

The outcome measures were analysed using a Linear Generalised Model (ANOVA).
For each outcome, the within-groups factor results from the three administration
steps (Time: T0, T1 and T2; meaning pre, post e follow-up) and the between-groups
factor results from the data obtained by analysing the three groups of subjects under
the three conditions (Condition: condition 1, condition 2, condition 3). The mean-
square error term was used to conduct Tukey’s honestly significant difference (HSD)
post-hoc tests to determine potential differences between conditions. Post-hoc tests
were considered significant at P ≤ 0.05, with Cohen’s d effect sizes reported for all
post-hoc comparisons.
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4 Results

With regard to impulsiveness, a significant relation between condition vs. time
(F4,58 = 11.4, p < 0.001, age-square = 0.99) was detected. Table 2 below presents
the mean values of the “impulsiveness” variable under all three conditions (see
Table 2).

As may be noticed, the level of impulsiveness tends to remain constant under all
three conditions during T0, T1 and T2. The only exception is condition 2, where the
level of impulsiveness increases during T1 and T2.

As for the desire to take the substance again, a significant effect in the relation
condition vs. time was also detected (F4,58 = 2.49, p < 0.05, age-square = 0.67).
Table 3 below includes the mean values regarding the “desire” variable under all
three conditions (see Table 3).

The level of desire to use the substance tends to decrease between the pre-
and post-treatment period under condition1. Conversely, it remains stable under

Table 2 Mean and standard
deviation of impulsiveness for
the three condition at time
T0, T1 and T2

Time Conditions Means Standard deviations N

T0 Condition 1 68.89 12.966 9
Condition 2 71.10 8.212 10
Condition 3 65.54 11.370 13
Total 68.22 10.901 32

T1 Condition 1 69.22 14.158 9
Condition 2 71.10 8.212 10
Condition 3 65.54 11.370 13
Total 68.31 11.284 32

T2 Condition 1 67.33 14.586 9
Condition 2 81.20 10.293 10
Condition 3 62.85 7.777 13
Total 69.84 13.154 32

Table 3 Mean and standard
deviation of desire value for
the three condition at time
T0, T1 and T2

Time Conditions Means Standard deviations N

T0 Condition 1 171.11 26.521 9
Condition 2 178.97 31.152 10
Condition 3 171.97 19.906 13
Total 173.92 25.075 32

T1 Condition 1 154.56 21.431 9
Condition 2 178.97 31.152 10
Condition 3 171.97 19.906 13
Total 169.26 25.494 32

T2 Condition 1 165.27 36.830 9
Condition 2 180.67 21.810 10
Condition 3 189.54 9.588 13
Total 179.94 25.001 32
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Table 4 Mean and standard
deviation for ability to resist
for the three condition at time
T0, T1 and T2

Time Conditions Means Standard deviations N

T0 Condition 1 171.86 20.24 9
Condition 2 178.48 34.95 10
Condition 3 178.25 23.93 13
Total 176.53 26.28 32

T1 Condition 1 176.20 16.85 9
Condition 2 178.48 34.95 10
Condition 3 178.25 23.93 13
Total 177.74 25.51 32

T2 Condition 1 176.06 33.65 9
Condition 2 184.18 20.20 10
Condition 3 146.85 11.39 13
Total 166.73 27.39 32

Table 5 Mean and standard
deviation for severity of
addiction for the three
condition at time T0, T1 and
T2

Time Conditions Means Standard deviations N

T0 Condition 1 1.49 .61 9
Condition 2 1.25 .34 10
Condition 3 1.33 .39 13
Total 1.35 .44 32

T1 Condition 1 .94 .72 9
Condition 2 1.25 .34 10
Condition 3 1.33 .39 13
Total 1.19 .50 32

T2 Condition 1 .98 .62 9
Condition 2 .84 .56 10
Condition 3 1.23 .45 13
Total 1.04 .54 32

condition 2 and condition 3. The craving for the substance tends to increase under
all three conditions.

As for the ability to resist substance-taking, a key role seems to be played by
the condition vs. time interaction (F4,58 = 6.30, p < 0.001, age-square = 0.98).
Table 4 below includes all the mean values of this variable under all three conditions
(Table 4).

The ability to resist substance-taking tends to remain stable within the T0 and
T1 period under all three conditions. Under condition 3, it decreases considerably
between T1 and T2, while it remains stable under the other conditions.

As regards the severity of the subjects’ addiction, a significant factor seems to
be the condition vs. time interaction (F4,58 = 4.75, p < 0.001, age-square = 0.93).
Table 5 below presents the mean values detected under all three conditions (see
Table 5).

As may be noted, the level of severity of the subjects’ dependence tends to
decrease under condition 1 between T0 and T1, while it remains stable under the
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other two conditions. This variable instead tends to decrease under condition 1 and
condition 2 between T1 and T2, while it remains stable under condition 3.

5 Discussion

This experimental project has returned results that in part confirm the research
hypotheses laid out here. Firstly, it appears clear that the increase in the impul-
siveness level between T1 and T2 among subjects under condition 2 does not tend
to decrease. This may depend on the fact that subjects under this condition did not
undertake a tDCS procedure that, as demonstrated, can reduce impulsiveness and
craving.

It may be noted that the level of craving decreases for all the subjects under
condition1 while it remains stable for those under conditions 1 and 3 between T0
and T1. Conversely, craving tends to increase between T1 and T2 for the subjects
under conditions 2 and 3, meaning during the period when none of the subjects
were undergoing treatment; nevertheless, it remains stable for the subjects under
condition 1. The latter result confirms the hypothesis that tDCS does have an
effect on reducing craving and consequently, the desire and impulsiveness linked to
seeking and taking a substance. This effect is due to the subjects’ neurostimulation
and continues even after the treatment is concluded, thus proving its long-term
efficacy. The subjects under conditions 2 and 3 did not undertake any treatment that
was directly targeting craving reduction between T1 and T2. Even if these subjects’
craving level between T0 and T1 remained stable, it increased between T1 and T2,
probably due to prolonged abstinence from the substance.

It is interesting to note that the ability to resist craving remains stable under all
three conditions, despite the fact that under conditions 2 and 3 craving tends to
increase progressively between one stage and another. It seems therefore safe to
suggest that the CET training might have had an effect on subjects’ ability to resist
and find coping strategies to avoid relapse, even if it did not help reduce craving.
Consequently, in the long-term and due to prolonged abstinence, only the subjects
in group 3 experienced a decrease in their ability to resist craving.

What is more, the results obtained through ASI testing have shown that the
treatment used for this project was successful in the subjects under conditions 1
and 2. The ASI test measures several aspects connected to addiction but craving
and resistance to substance-taking are only two factors that have an indirect impact
on the severity index. ASI testing yields data resulting from personal interviews
that assess a wider range of variables, including legal aspects. The resulting data
can therefore be considered as a reliable outcome in terms of the subject’s general
dependence condition, but it says very little about outcomes for specific symptoms
such as craving and impulsiveness. That said, the results obtained regarding the
group under scrutiny confirm the hypothesis that tDCS treatment in conjunction
with CET training can effectively impact the severity of subjects’ dependence,
reducing it and contributing to progressive symptom remission.
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All in all, this study has aimed to verify the efficacy of a neurostimulator
tDCS treatment, coupled with CET training on a group of patients with addiction
problems. This hypothesis appears to be partially confirmed. Neurostimulation has
proved to be effective in reducing craving levels and dependence among the subjects
under condition 1; it also contributes to reducing impulsiveness (monitored via a
specific procedure) and increasing the ability to resist substance-taking. The CET
training, on the other hand, does not seem to help reduce craving and impulsiveness
levels, thus defying our expectations and hypotheses. However, it seems to help
control the urge to take a substance. This data refers to the subjects under condition
2 and seems to be confirmed for the treatment period between T0 and T1, but it
could not be confirmed for the following period between T1 and T2.

Interestingly, the subjects under condition 3, who can be defined as the control
group, seem to confirm our hypothesis regarding the possible outcome in the
treatment period between T0 and T1; however, they did not confirm our hypothesis
for the T1 to T2 treatment period, when these subjects display the same outcome
obtained by group 2. This is likely to depend on the fact that the CET training added
a partial effect that was limited to the treatment period, while the tDCS treatment
had long-term effects.

This study clearly has some limitations, which need to be taken into consid-
eration. Firstly, the subjects who partook in this experiment were hospitalised in
a rehabilitation centre where contingent factors can be very difficult to control. In
addition, the criteria for choosing these subjects were that they be involved in similar
group or individual activities (e.g. psychotherapy meetings), undergoing similar
treatments and more or less experiencing similar conditions (e.g. being allowed out
of the centre the same number of times or receiving an equal number of family
visits). Nevertheless, it was impossible to control all these variables throughout
the treatment period; therefore, the fact that such variables may have indirectly
influenced the treatment outcome cannot be discounted.

In addition, the gender percentage is significantly unbalanced with a much higher
number of male participants; also, the selection process was not random, and a
double-blind experimental procedure could not be undertaken due to organization
issues within the rehabilitation centre. That said, all the subjects were part of a reha-
bilitation programme and helped by a team of operators that actively collaborated
on a daily basis with the research team involved in this experiment.

It is proposed that these limits be overcome to the extent possible in future
research and that another condition be added with subjects solely treated using
tDCS. In addition, we aim to conduct another experiment with subjects that will
be solely treated with tDCS without training.
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Representing Behavior, Consciousness,
Learning: Will a Purely Classical
Artificial Intelligence Be Enough?

Mario Rasetti

Abstract The question of whether or not the most advanced methods of Artificial
Intelligence may be sufficient to implement a faithful representation of Behavior,
Consciousness, Learning at classical level, with no need to resort to quantum
information techniques.

Keywords Artificial intelligence · Behavior · Behavioral economics ·
Constructor theory · Learning · Topological data analysis

1 Introduction: A Quest for Intelligence, Human Behavior,
Machines That Learn

Understanding behavior is hard without a preliminary rigorous discussion of intelli-
gence: this is a long story. Let’s try to summarize it, guided by Peter Kugel (2004). It
all starts in 1950, when Alan Turing famously wrote a paper (Turing, 1950) devoted
to the relationship between, say, computing machinery and intelligence. He indeed
already had a precise definition of ‘computing machinery’, in the form that today
we refer to as the ‘Turing machine’ (TM) (Turing, 1936); what he lacked was a
precise definition of intelligence. This is why, instead of discussing intelligence as
an abstract notion (Kugel, 2002), he created what he called the imitation game.

If we try to adopt the imitation game as a definition of ‘intelligence’, we realize
right away that it is not only imprecise, but incomplete and even misleading.
Indeed, Turing’s purpose in suggesting it, however, was not to give a definition of
intelligence but, in his words “to draw a line as sharp as possible between what was
relevant to understand intelligence and what was not”; namely he intended primarily
to establish what intelligence is not, rather than what it is. In those times, this was
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apparently the best he could do; however, he made a few claims about what he
thought intelligence might be and how it might be related to computing machinery.
Particularly intriguing are: (1) that in his view the machinery of the computer should
be powerful enough to produce intelligent behavior, with no new more powerful
hardware being necessary.

Several years later Jack Copeland and Diane Proudfoot (1999) have claimed
that what they define as ‘hypercomputation’ would instead be necessary; (2) that
the machinery of the computer would have to be able to do much more than
computation before it might be made to behave intelligently. Turing stated that
intelligent behavior presumably implies a departure from the behavior necessary for
computation, but not a severe one, that would not give rise to random behavior, or to
repetitive loops. This sort of behavior has been later identified with super-recursive
algorithms (Burgin, 1999); (3) the deviation required might imply allowing the
computer to make mistakes (Turing, 1986), because “if a machine is expected to
be infallible, it cannot also be intelligent”.

Mathematical models of the mind in terms of which one could try to develop a
characterization of intelligence that is more precise and, hopefully, more accurate
than the imitation game were proposed in time, which pave the way to what we
call today ‘machine intelligence’ (or artificial intelligence). Psychologists define
intelligence roughly as the ability to ‘acquire and apply knowledge’. This hints to the
fact that potentially intelligent machines should have two basic components: one, the
‘learner’, able to acquire knowledge; the other, the ‘doer’ to transform in concrete
applications the knowledge that the learner acquired. Assuming that knowledge can
be somehow represented by computer programs, the learner can be thought of as
a system that generates programs, and the doer as a system that runs the programs
generated by the learner to do useful things. It is clearly not enough for a machine
to be defined as intelligent merely to have these two components; however, it would
qualify as an expert system.

The ability of learning is the ancestor of modern notion of ‘machine learning’—
on which we shall return extensively. But in order for a learner/doer system to be
considered intelligent, those components will have to perform at a certain level and
the crucial question remains open: what is this level? No doubt the level reached
by much of today’s Artificial Intelligence (AI) is not high enough. The learner
contribution is still inadequate to the intelligence of the whole system. Intelligence
requires a learner that can get along with instructions that provide fewer details than
those required for a detailed description of the system’s behavior: even in everyday
life we tend to consider a person who has to be told exactly what to do as not very
intelligent.

Humans appear to learn to do things from a variety of sources; from examples,
from vague instructions, from analogies and the like, from examples. One can think
of a learner-from-examples as a system which succeeds in developing programs that
can simulate the behavior of devices whose inner workings it cannot examine. All it
is allowed to work with is the behavior (inputs ↔ outputs) of the device. Of course,
there are situations in which people simply cannot be told what the algorithm is
(when they begin learning their native language, there seems to be no language in
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terms of which they can be told) and situations in which learning from examples
is easier. Even if children could learn from detailed instructions, very few parents
could produce them. Most don’t even try; they just point to a few examples and
let the child’s mind do the rest. They can do that, presumably, because the child is
intelligent; because it can learn from examples.

A learner that tries to develop programs from examples can be thought of as a
system that strives to solve a ‘black box identification problem’; namely, given the
behavior of a device inside of which (a black box) it cannot look, generate a program
that exactly duplicates the system’s behavior. The problem is not too difficult to
tackle (at least in principle) if the behavior is finite and the learner has access to
all of it; it becomes however very difficult or even unhandily hard if the behavior
is (at least potentially) infinite, as it has seen only a finite part of that behavior,
and this means that it must go beyond the information given in a way that Turing
computations cannot do, because it implies to be able to turn the infinite behavior of
the sample-device into a finite program.

It is in the of the Theory of Behavioral Economics (TBE) (Frank, 1991; Thaler,
1994; Diamond & Vartiainen, 2007) that the notion of behavior has become a crucial
keystone. The reason is that in economics this elusive feature bears on all sorts
of proxies: social networks (emergence of opinions, preferences, beliefs); personal
digital census (education, ethnicity, age group, sexual orientation); lifestyle; health;
use of e-commerce channels, etc. Thus, behavior has added a new boundary and
created a novel challenge to (AI).

In an ideal definition of consumers’ behavior, things such as failures in repaying
debts, framing perspectives or price anchors should not have any bearing on
choices, and decisions would be merely the result of a careful weighing of the
deterministic balance of costs and benefits; informed exclusively by concrete,
well-defined needs and preferences, with every decision rational. Herbert Simons’
concept of ‘bounded rationality’ (Simon, 1955, 1957, 1969; Klaes & Sent, 2005)
dismantles such ideal, bringing into play the notion that consumers’ minds (just
behavior) must be understood in the framework of the environment in which they
evolved. Thus, decisions are not always and not necessarily optimal, and not only
because human information processing has other severe restrictions, due both to
incomplete information or knowledge and limits to computational as well as logical
capacities. The ‘behavioral’ approach to Economics Theory postulates that people
(consumers) are boundedly rational agents, with a limited ability to retrieve or
elaborate information.

Exploring just how available information affects the quality and outcome of deci-
sions, and what happens in situations where people avoid information altogether,
Richard Thaler coined the concept of ‘mental accounting’ (Thaler, 1999): people
think of value in relative rather than absolute terms, deriving their fulfillment not
just from an object’s value, but from the quality of the deal as well: its transaction
utility. Consumers tend to work with the totality of their mental accounts: personal
experience, information that they consider reliable, prompt response are the key
factors that enable them to make good decisions; yet aware information avoidance
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takes place, circumstances in which people choose not to secure knowledge, even if
freely available.

On the other hand, more and more, much of the decisions in our society are
data-based; made either by humans with the assistance of machine intelligence or
wholly by AI machines. It is reasonable to assume that AI may reduce the impact
of bounded rationality, as AI processes reduce societal information asymmetry and
improve decision-making, thus also driving economy to more calculative rationality.
The open question is whether the intervention of AI in applications such as online
trading and decision-making may change economic theories, having on them an
impact bearing on issues such as rational choice and expectations, computational
thinking, portfolio optimization, counterfactual reasoning.

One basic issue to understand is that behavioral economics is not alternative with
respect to other ongoing models of economics; it concerns instead understanding
how such models account for the realities of human decision making, and can adjust
to them. There are several actions that behavioral economics should strive to be able
to do: (1) help proving that presently available models of fully rational, selfish,
utility maximizing behavior can do a pretty good job in predicting behavior only
provided one endows the utility function with a number of non-standard ‘behavioral’
features, such as regret, envy, desires for fairness, reciprocity or conformity; (2)
show that the limited reasoning capabilities of humans leads to fundamental biases
that simply cannot be modeled within the standard framework of economics;
(3) help resolve those ambiguities in economic theory that show up when there
are multiple equilibria, so as to recover the theory predictive power. Behavioral
economics is expected to be instrumental to find out the most likely equilibrium
that may occur when inserting in the models observed and perhaps machine-assisted
people’s reasoning.

Behavioral economists also resort to ‘process measures’, namely methods pro-
viding quantitative hints about the cognitive and emotional processes underlying
decision making. The limitations of verbal accounts of the causes of one’s own
behavior are clearly understandable, however AI may relatively easily provide
‘process tracing’ tools to assess what information economic agents use in making
decisions (Sanfey et al., 2003) as well as about how the considered information is
processed.

The most advanced (and difficult to perform on large scale) process measures
used are brain scans, typically by functional Magnetic Resonance Imaging (fMRI)
(Camerer & Loewenstein, 2003; Camerer et al., 2005). Though data collection on
this is still in its infancy, this method allows scientists to determine which parts of
an individual’s brain are activated in response to a task or decision. The ‘semantic
map of the brain’, recently elaborated (Huth et al., 2016), provides here an very
promising interpretation tool. These imaging methods have been indeed applied to
a diversity of economic tasks, including decision making under risk and uncertainty,
inter-temporal choice, buying and selling behavior and strategic behavior in games.
Of course, severe ambiguities still underlay the interpretation of neural data in such
a complex context as behavioral economics, and a great deal of care must be exerted
moving on these slippery grounds. However, the recent success of methods of
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Topological Data Analysis (TDA) of fMRI data in defining behavioral equivalence
classes in the brain action (Petri et al., 2014) make us confident that precious
information may be gathered along these lines of thought.

The new issue is here is that we are faced with the challenge of acquiring
intelligence of an economical system in which the agents are not simply human
beings but human beings each equipped with one or more electronic prostheses,
able to augment almost arbitrarily their mutual connectivity, to provide them com-
munication channels and access to knowledge in a measure that has no precedents in
history, to let them put to effect their decision or play out their role on scales (time
and space), with a speed, with an extension that human beings alone up to a few
years ago could not even imagine to reach. Once more ‘behavior’ is the key-word.

George Graham’s incipit to his contribution to the Stanford Encyclopedia of
Philosophy devoted to behaviorism (Graham, 2019), reads “It has sometimes been
said that ‘behave is what organisms do.’“ Yet, the notion of ‘machine behavior’,
which extends to machines the capacity to behave, is by now a ‘piece of the
furniture’ of the jargon of Machine Intelligence science (i.e., AI). These two naïve
observations imply a chain of effects. One cannot fully understand human behavior
if it is decoupled from the context in which it occurs, and similarly one cannot really
talk about machine behavior without the integrated considerations of the algorithms
it operates with and the social environment in which such algorithms operate.

2 Artificial Intelligence and Machine Learning

Whenever studying behavior, in whatever context it may be interesting to study it,
one needs to take into account at the agent level, where behavior is typically meant
to refer to the outcome of human-human interactions, other forms of interaction:
machine with machine and, above all, augmented human (namely humans equipped
with some ‘intelligent’ prosthesis) with augmented humans. And this both in the
passive sense: augmented humans’ behavior as object of study in itself, and in
the active sense: the analysis of any social dynamics generated by interacting
augmented humans, such as in the framework of behavioral economics.

In a somewhat simplified way, we can ascribe behavior to the combined and inte-
grated effect of several features, which interact in non-linear way and give therefore
rise to ‘emergent’ effects (in the sense of complexity science): (1) perception—the
property of being endowed with appropriate ‘sensors’ and to be able to elaborate the
signals thus received; (2) learning—the capacity to ‘learn’, namely to acquire from
the perceived signals understanding, knowledge, skills, values, preferences (one
could add ‘behavior’, with a curious circular, self-referential twist!); (3) reasoning—
the ability to rationally elaborate what has been learnt, generating coherent, optimal,
interactive feedback, and build, through: (4) predictivity—the capacity to extract
from such extended expertise future scenarios; and (5) operative decisions—be they
conceptual (models, strategies, interpretations, comprehension) or practical (action).
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We argue that Machine Learning and its various ‘layered’ declinations, Deep
Learning, Deep Reinforcement Learning, etc., in its present formulation is not
sufficient for the task of dealing with phenomena based on or implying the use of a
coherent, rigorous notion of behavior. The reasons for this are manifold. Fueled
as they are by increasing computer power and new algorithms, ML techniques
have become powerful tools for finding patterns in data. On the other hand, since
quantum systems are able to produce counter-intuitive patterns believed not to be
efficiently producible by classical systems, one can reasonably envisage a future in
which quantum computers will outperform classical machines in ML tasks. For this
reason, in the past few years plenty of research in Quantum Computation (QC) was
focused on finding whether or not QC can help to improve classical ML algorithms.
Ideas range from running computationally costly algorithms or their subroutines
efficiently on a quantum computer to translating stochastic methods characteristic
of data science into the language of quantum theory. The discussion bears in
particular on the potential of a potential theory of quantum learning. Preliminary
supervised and unsupervised quantum ML algorithms have been proposed for
cluster assignment and cluster finding which provide an exponential speed-up over
classical algorithms.

The road to understand and represent behavior in a complete way goes deep
through the concept of mind, and this is a ‘no go’ constraint in itself, espe-
cially as a number of human mental capacities or some of their characteristics—
such as the limits to learning or self-consciousness—are believed to outstrip
Turing-computability \footnote{The discussion about the possibility of computation
‘beyond Turing’ is quite extended: see, e.g., (Siegelmann, 1995; Cabessa &
Siegelmann, 2012)}, in other words to be ‘non Turing computable’ (Copeland, 2002;
Rescorla, 2020). The complexity here stems out of the difficulty of defining the
‘states of mind’, a problem that the theory of Integrated Information Theory (IIT)
tries to deal with (Tononi et al., 2016).

Let’s focus first on a set of specific directions along which essential progress
can and must be done. The first, crucial, is turning ML into a true theory. A hard
task, which implies to be able to get rid of the dependence of ML from both
structure and content of the training set and from the ontology that characterizes its
strategy-defining tools. In principle, any procedure ultimately based on data mining,
if efficient, should allow us to get what we look for (information and eventually
knowledge) from any given data set—namely, irrespective of what is the subject
matter data refer to—and lead us to get from data inspection not only answers
consistent with what data in the set represent but the very questions to be asked.
Also, we should be able to estimate a priori the level of learnability of the reference
data set and to disentangle, with the highest possible precision, correlation from
causation.

From all of this a novel, well defined, difficult challenge emerges for AI: that
of representing the dynamics and evolution of (economic but not only) processes
in which the new agents take part, i.e., including (intelligent) machines in the
landscape, namely accounting as well for machine behavior (Rahwan et al.,
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2019). This requires to understand and then describe, represent, and measure an
unprecedented form of self-referential intelligence.

The question we want to address is: does AI have the tools necessary to face
this difficult task? And if not, or not yet, what does science need to do? The
scientific approach to AI so far has never been called to tackle the subtleties and
the rigor required to successfully attack such multi-faceted, complex, hard (both
algorithmically and in the sense of complexity science) scenario; however, ongoing
research is doing breathtaking steps forward, though in a cultural landscape that is an
apparently inextricable (but we argue that it is not) mixture of lights and shadows. In
what follows we want to review the state of the art of both methods and instruments
that AI relies on and describe the most promising perspectives of the most advanced
sectors of machine intelligence and data science we may expect.

Machine Learning (ML) (Bishop, 2006) deals with problems that are difficult
to address with traditional programming techniques, such as classify a document
according to some given criterion (e.g., spam) with sentiment analysis, estimate the
probability that a credit card transaction is fraudulent or recognize an object in some
given image. Typically, the result is a weighted combination of a large number of
parameters, each contributing to the solution to some (perhaps small) degree.

As for Information Theory (IT), the processes taking place when ML operates
can be pretty well represented, as we shall discuss, in the frame of Constructor
Theory (CT), as they do share a common physical frame: neural networks, be they
natural (human), NN, or artificial, ANN. ANNs, brick circuits of AI machines, aim
to mimic the human brain connectome based on the concept that one way to think
about the rational brain is that it works by accreting smaller abstractions into larger
ones.

The CT approach is based on the assumption that the nature and properties of,
say, ‘information’ (that we shall assume as example metaphor) follow entirely from
the laws of physics. One must first express in exact terms the ‘regularities’ required
in the laws of physics for the process (or procedure, or theoretical frame—in our
example, information—as informally conceived, with its characteristic properties
(like interoperability), to be instantiated in physical objects. Such regularities, thus
expressed, have the status of new, though possibly only conjectured laws (principles)
of physics. The theory (in our example of information) consists of those (assumed)
principles of physics that explain the regularities in physical systems associated
with the considered subject. A theory of this sort constitutes as well a framework,
in which structure and features of a broad range of theories could be understood,
provided that they obey these principles. The point is that the conceptual scheme
considered does resemble some of the entities that appear in laws of physics, without
regard to the specific media in which it is instantiated. This is referred to as the
substrate independence of the theory, which therefore can also be moved from
one type of medium to another while retaining all its properties (interoperability
property). Interoperability is what makes human capabilities such as language and
structured knowledge possible, as well as the possibility of biological adaptations
that use symbolic codes, such as the genetic code. The theory focus has a counter-
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factual character: an object in a particular physical state cannot be said to carry it
unless it might have been in a different state.

All these properties involve abstraction whereby one entity is represented
symbolically by another. In the example of information, this implies that its rep-
resentation in this form is no longer abstract, for it only exists when it is physically
instantiated. In other words, the laws governing information are laws of physics.
The attempt to incorporate ML into physics at a fundamental level, is absolutely
innovative. All previous approaches have regarded it as an a priori mathematical or
logical process. The approach suggested here is just the opposite, namely that the
nature and properties of ML follow entirely from the laws of physics. For example,
CT theory of information rests on first understanding computation in constructor-
theoretic terms. This implies expressing information in terms of computation, not
vice versa as it is usually done. Note again that here computation is not taken
as an a priori concept and one seeks necessary and sufficient conditions for a
physical process to instantiate it. Moreover, the conjecture is adopted that objective
regularities exist in nature: the principles of physics. These can be conveniently
expressed in terms of ‘computations’ and the property called ‘information’. The
intuitive concept of information is associated with that of copying. An information
variable is a clonable computation variable. Note that the constructor-theoretic mode
of explanation has allowed this to be expressed as an exact, intrinsic property of the
substrate. This provides the purely CT notion of information emancipated from its
dependence on physics.

ML is the branch of AI concerning the construction and study of systems that
can ‘learn’ from data. Its core capacity is that of representing data instances and
functions evaluated on these instances in such a way as to allow for the recognition
and then construction of the method the system will perform with on different
sets of data instances. Keynote is the algorithm’s ability to perform accurately on
new, previously unseen examples after having trained on a well-known learning
data set. In other words, the core goal of a learner machine is to generalize from
its experience. The training results are probability distributions obtained from a
reduced scale experience on the data set, while the learner’s task is to extract
something more general, so as to produce useful predictions in new cases. One
can say that ML focuses on the discovery of previously unknown properties of
the dataset. It should be kept in mind, however, that current ML systems operate
almost exclusively in a model-blind (i.e., purely statistical) mode, namely not even
incorporating very general assumptions or models of reality, such as the capacity
of reasoning about retrospection or the outcome of interventions based on causal
inference. This entails severe theoretical limits on their power and performance as
well as, above all, their possibility of achieving a level intelligence in some way
closer to humans’. A major endeavor, which will require to scientists to focus
their efforts towards the construction of a new, more general and far-reaching
mathematical architecture (the natural tool appears to be category theory) to make
of AI and ML true pieces of science.
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An intriguing question, talking about ‘learner machines’ is its connection with
human mind—on which we shall return when introducing a possible quantum
implementation of Integrated Information Theory—with human mind. A crucial
problem is that for a computer (be it classical or quantum) one needs an enormous
data-base to catch the basic structure whereas, on the contrary, in a human mind
the necessary reference data-set does not need to store all training combinations,
because apparently human mind can act in parallel on several ‘training states’. We
conjecture that this is most probably due to the role played by topological invariants,
which—as we shall discuss in the sequel—allow us to classify efficiently data
into equivalence classes that may include a variety of spatial and thought entities.
In a broader sense, this technique aims to ‘learning something useful’ about the
environment within which the system operates as well as about how the system
itself works. How gathered information is processed leads to the development
of algorithms reflecting how to process high dimensional data and to deal with
uncertainty.

Judea Pearl (Pearl & Mackenzie, 2018) argued that AI has been handicapped by
such an incomplete understanding of what intelligence really is, and he figured out
how to do a crucial step forward, devising a scheme called ‘Bayesian network’.
Indeed, prime challenge in AI research is to program machines to associate a
potential cause to a set of observable conditions.

For a vision for how truly intelligent machines would think, a key step is to
replace reasoning by association with causal reasoning. The language of conven-
tional process algebra is, so to speak, symmetric: if X tells us about Y, then Y tells us
about X: deterministic relationships. Writing in mathematical form a simple fact—
for example, that the upcoming storm causes the barometer to go down, and not
the other way around—requires resorting to a form of asymmetric language able
to capture our understanding that if X causes Y that does not mean that Y causes
X. There is here a strong hint to ‘non-commutative algebra’, and since the latter is
typical of quantum physics (and of course of quantum computation), to the need of
adopting the tools of quantum information.

Language is one of the tools whereby human intelligence expresses itself.
The most recent discoveries of computational linguistics have evidenced how
the central question in cognitive science is whether natural language provides
essential combinatorial operations that are shared between diverse domains of
thought. fMRI experiments on the role of linguistic mechanisms in forging the
hierarchical structures of algebra, have shown how processing of the syntax-like
operations of algebra does not rely on the neural mechanisms of natural language.
Conversely, therefore, processing the syntax of language elicits the known substrate
of linguistic competence, whereas algebraic operations involve bilateral parietal
brain regions implicated, e.g., in the representation of magnitude. Natural Language
Processing (NLP) techniques, on the other hand are mostly based on a direct
approach, aimed exclusively to finding qualitative rules, not the underlying algebras
or their manifestations. More powerful tools are needed for prediction and diagnosis,
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knowing as we do that this is merely the tip of human intelligence. If we want
machines to reason about interventions and introspection, we must invoke more
than interventions and introspection: causal models.

If we want automatic systems operate as expert systems able to replace the
professionals, obviously we cannot approach the question but probabilistically.
For long time this was believed not to be viable, as for a task like this standard
probability calculations require exponential space and exponential time; but Pearl’s
Bayesian networks require polynomial time and moreover they are also quite
transparent. The tools developed so far along these lines can enable machines
to reason with uncertainty. What we need to pursue is however an even more
challenging task than reasoning with cause and effect. This is only the intermediate
step on the road to equip machines with a model of its environment. If a machine
does not have a ‘model of reality’, it cannot be expected to behave intelligently
in that reality. Eventually, machines will have to postulate such models on their
own, and verify and refine them based on empirical evidence. In other words, AI
must go across the same evolution road that always happened to science. In this
way machines may perhaps 1 day acquire some sort of free will; we simply have
to understand how to program them and what we gain out of it. Humans have
the ‘sensation’ of free will. Evolution has equipped us with this sensation; thus,
evidently, it serves some desirable computational function, whose first evidence is
that we are able to communicate with each other counterfactually. Shall we succeed
in equipping a machine with some capacity similar to this?

Whilst not all ML techniques have a natural description in terms of probability
theory (as we said, typically Bayesian, because the notion of ‘causation’ plays a
crucial role), many do, as it is the case for the framework of Graphical Models
(the entanglement between graph theory and probability theory) that has enabled
the unique efficient understanding and transference of ideas from statistical physics;
essentially the notion of correlations, statistics, and entropy (as lack of information)
(Jakulin, 2005; Skotarczak et al., 2018).

The circular chain

Behavior ↔ Mind ↔ Intelligence ↔ Behavior

touches also on the subtle, delicate question of ‘Turing computability’: there is
a mathematical obstruction to reaching complete Turing computability of intel-
ligence; an obstruction which can be circumvented only assuming that human
reasoning is fundamentally unsound. Or, more precisely, the inferential scheme that
Turing’s computation provides us with is not adequate to the task of describing
human mind. The most compelling original argument for the existence of such an
obstruction was proposed by John Lucas (1961) and successively by Roger Penrose
(1989, 1994), reviving questions originally proposed by Gödel and Turing himself.
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3 Topology of Data in the Frame of Constructor Theory

3.1 Beyond Machine Learning

ML (Bishop, 2006) is very heuristic, this implies that its processes, in particular
the construction of ontologies, are very much operator-dependent and even though
improvements were devised to make the learning process more effective, such
as deep reinforcement, it has at the moment little or no way to approach the
questions of self-referentiality (machine behavior) and causation. TDA (Carlsson,
2009; Edelsbrunner & Harer, 2010; Zomorodian, 2009), in particular its far reaching
version known as Topological Data Field Theory (TDFT) (Rasetti & Merelli, 2016),
which can be fully unsupervised and can help to find questions before looking for
answers, appear more promising. It is true that TDA is pretty hard computationally:
it can however be efficiently used in conjunction with deep reinforcement learning,
with the advantage of having a more rational approach to provide to the analysis
a hierarchy of values. TDA naturally may naturally lead to classifying behavior in
equivalence classes.

Coupling TDA with DL, is but a first approximation of some still unknown
architecture, simpler and more elegant, as Nature is. In its TDFT formulation TDA
leads us to understand that not only topological invariants are relevant—which
provide a natural partition of data sets in equivalence classes—but the theory has
an intrinsic algebra (related with the gauge group) which represents the process in a
very rigorous way, of which the deep network is nothing but a layered, deeper black
box. The deep force approach of the deep network requires enormous elaboration
times (typically exponential, possibly reduced—by a clever, difficult use of Babai’s
method (2016)—to pseudo-polynomial). This as opposed to TDA, that coupled with
simpler algorithms like k–nn,1 requires polynomial time.

It is interesting to notice that ML and TDA (in particular in view of its TDFT ver-
sion) may be thought of as having a common “physical” reference frame, provided
by their implementation in terms of (A)NNs.2 This is what makes the construction

1In statistics, the k–nearest neighbors algorithm (k–nn) is a non-parametric method used for both
classification and regression. In these two cases, the input consists of the k (k ∈ N) closest training
examples in the feature space. The output depends on whether k–nn is used for the former or
the latter: (1) in k–nn classification, the output is a class membership, meaning that an object is
classified by a vote of its neighbors, and the object is assigned to the class most common among
its $k$ nearest neighbors. If k = 1, then the object is simply assigned to the class of that single
nearest neighbor; (2) in k–nn regression, the output is the ‘property value’ for the object, namely the
average of the values of $k$ nearest neighbors. k–nn is a type of instance-based learning, in which
the function is only approximated locally and all computation is deferred to function evaluation.
Since for classification this algorithm relies on distance, normalizing the training data can strongly
improve its accuracy.
2ANNs have a long history, from the early 40s, through the 70s: (McCulloch & Pitts, 1943; Hebb,
1949; Farley & Clark, 1954; Kleene, 1956; Rosenblatt, 1958; Minsky & Papert, 1969; Werbos,
1975); to the successive uptakes: (Dominic et al., 1991; Zell et al., 1993); to the recent successes:
(Hinton, 2010; Lapuschkin et al., 2019).
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of a more general theoretical framework possible, simply embedding both in a
common scheme of CT. CT represents the fundamental laws of anything based on
a physical support in terms of “possible vs. impossible” transformations and of the
reasons for (im)possibilities. What we envisage is a TDAML representation in terms
of a unifying theory expressed in the language of CT. This would lead to the capacity
of including the task to face the intrinsic limits that the AI approach could possibly
exhibit, including ‘decidability of learnability’, in the scheme. This in turn would
allow us to represent decision-making processes through what is learnable or not,
and why.

With TDA, algebraic topology methods integrated within the idea of treating data
sets as spaces whose key property is that they are not vector spaces but topological
spaces, whose ‘shape’ is relevant, have progressively earned pivotal interest in data
analytics. In TDA the foresight is that appropriate mathematical tools, grounded on
the subtle and profound notion of ‘space of data’—geometrical representation of
large data sets as spaces—may enable us to incorporate data in a geometrical setting
(topological) that leads to identify and control the hidden information patterns in an
ever more effective way. Thus, data science is endowed with the capacity of playing
its role in the most efficient way along its fundamental process:

Data → Information → Knowledge → Practical → Wisdom.

It is worth here to recall a few features of these crucial steps: (1) DATA: the
method/design of data is not neutral collection; (2) INFO: also information can be
processed in non-unique ways, however resorting to the analysis of the shape of data
space to extract information as a pattern of correlations (as TDA does) amends this
limitation; (3) KNOWLEDGE: it is intended here as the set of correlation patterns
of information patterns, namely ‘knoledge’ ≡ ‘correlated information’, and as such
candidates itself as the natural framework for action; (4) WISDOM: it comes from
the collection of scenarios emerging from the mathematical (algorithmic) models
of the system generated by its representation—virtual yet faithful knowledge, as
reached at step (3)—and implies the possibility of making rational, evidence-
based decisions accounting for different possible actions. Causation plays here a
fundamental role.

TDA is a theoretical framework allowing for an extremely efficient exploration
of large amounts of data because it provides an innovative data mining method
based on a self-consistent, non-linear topological field theory of the space of data.
It may greatly improve the efficiency of ML techniques in exploring data sets, as it
does not need a training set but only a full knowledge of the data space topology.
The approach is rooted in the inference of information from global rather than
local data space features. It stems out of the integration of the deep mathematical
tools of analysis of the data space provided by combinatorial (algebraic) topology,
with those of formal language theory and theoretical computer science. TDA goes
beyond the conventional complex networks theory because it replaces the notion of
network, where all ‘interactions’ are ‘two-body’, with that of simplicial complex—
a hypergraph with a very rich combinatorial structure, where interactions involve
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arbitrary numbers of vertices—which is what allows us to overcome efficiently the
limitations of conventional data mining methods.

Why is topology the natural tool to handle large, high-dimensional, complex
spaces of data? Because: (1) ‘Qualitative information is what is relevant: data users
aim to build knowledge, namely to understand how data is organized on large
scale, hence global, though qualitative, information is what matters; and topology
is the branch of mathematics that deals with qualitative rather than quantitative
geometric information about a space (connectivity, classification of loops and higher
dimensional manifolds, invariants, ...); (2) ‘Metrics’ are not theoretically justified:
whereas in the physical sciences phenomena support self-contained theories which
tell us exactly what metric to use, in life or social sciences this is not the
case; topology, contrary to metric geometry, studies geometric properties in a
way insensitive to metrics: it ignores distance function and replaces it with some
measurable notion of ‘connective nearness’ (proximity); (3) ‘Coordinates’ are not
natural: data is typically conveyed and received in the form of vector-like strings of
symbols, yet the ‘components’ or linear combinations or norm of these ‘pseudo-
vectors’ are not natural in any sense: the space of data is not a vector space.
Properties of the data space depending on some choice of coordinates are therefore
not relevant. Topology deals just with those properties of geometric objects that do
not depend on coordinates but only on intrinsic geometric features. It is coordinate-
free. And, last but certainly not least, (4) ‘Summaries’ are what has value: ‘typical’
(or ‘characteristic’) trends are what provides the information one is looking for;
topology gives a global representation of the data space, as—through its inherent
combinatorial structure—it captures at once the summary of all relevant features.

In other words, what topology does is to provide us with an explicit representa-
tion of the data space shape, irrespective of what the data are concerned with. This
allows us to include the cases when one doesn’t know what to look for, as the data
space shape embeds (and hence is able to suggest) all plausible possible answers,
and therefore the way to figure out which are the right questions to ask, consistent
with those answers.

3.2 The Topology of Data

As for the latter point, the conventional method of handling data is by a graph
(indeed a ‘network’, say W) whose vertex set is the set of points of data space and
two points are connected by an edge if and only if their ‘proximity measure’ (in the
sense of Grothendieck topology (Artin, 1962)) is below some given value, say ε. On
W one determines then the optimal choice of ε. Such an approach is, however, too
local to extract in a reliable way (i.e., to be able to classify in equivalence classes) the
hidden correlation patterns: in other words, it is not sufficient to obtain dependable,
global summaries. Topology allows us instead to resort to the representation of the
space of data by a new object, a � simplicial complex �, say �. W is a graph
designed to capture very well data local connectivity, however it ignores a wealth
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of higher order global features, which are instead well discerned by its natural
completion �, the higher-dimensional object of which W is the 1-dimensional
“skeleton”. � is a piece-wise-linear space built out of simple pieces (simplices)
identified combinatorially along their faces. The interesting feature referred to above
is that this accounts not only for two-body interactions (in a network between two
nodes there is either one link or nothing), but for arbitrary n-body relations (higher
dimensional simplices, of dimension up to n).

Deep reason of the success of TDA is that topological measures and observables
are by construction very robust, and that moreover they permit to capture explicitly
interactions between more than pairs of agents (the nodes), thus providing a
framework to describe, quantify, and compare the ‘global shape’ of arbitrarily com-
plex (data) spaces (Weaver, 1948). This is crucial because virtually all interesting
complex systems can be thought of as living in either ‘configuration’ or ‘phase’
spaces, including those that can be approximately described using finite datasets,
and can therefore be faithfully represented embedding the corresponding data set
into a simplicial complex. The two main concepts used to achieve this are ‘persistent
homology’ and ‘topological simplification’ (Battiston et al., 2020; Torres et al.,
2020).

Persistent homology groups encode the shape of topological spaces by progres-
sively finer and finer approximations, calling into play higher order analogs of links
between nodes, in a relational structure able to describe explicitly interactions of
more than two agents at the same time. Moreover, they allow us to identify noise vs.
signal and reduce it. The process emphasizes those topological features in increasing
dimensions (one-dimensional cycles, three-dimensional cavities, etc.) that survive
through the sequence and hence characterize the shape of the dataset, letting us
compare in a principled way arbitrary spaces with different ‘measures’: number of
points, shape (invariants), etc. We can thus study the shape of correlation spaces
between data space regions and how such shape changes. Functional, global, and
localized homological information can all be used to track the system evolution in
time, and thus fingerprint individual subjects.

Topological simplification (known as ‘Mapper’, from the name of the most
famous algorithm which implements it) is a topological dimensionality reduction
scheme, aimed to extract low-dimensional simplicial-complex backbones from
high-dimensional datasets. We can then resort to the possibility of using this topo-
logical information to build a topological skeleton able to highlight dissimilarities
both in structure and function of different behavioral pathways. Such structure can
be further leveraged to build a ‘topologically informed’ map of feature spaces, thus
improving and stream-lining the selection of features important for classifications
(e.g., equivalence classes of correlation patterns).

It is crucial to notice that the topological descriptions of data evolution, namely
the characterization of spaces in terms of their topological invariants as well as
their variations in the presence of external interventions, are equally useful in
understanding and modeling the ANNs representing them, and their capacity to
learn (react to) new tasks. Topological approaches have been realized to allow
NNs (artificial or natural, i.e., human) to take advantage of homological descriptors
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to better detect or craft adversarial attacks by exploiting the topology of learned
manifolds, and to improve the interpretability of what actually happens inside the
NNs as they learn to perform complex tasks.

The crossover between topology, neuroscience and artificial intelligence occurs
as the capacities of neural networks, like those of the human connectome (Sporns,
2012), reside in how they represent data spaces internally. Just because brain
functions are encoded in functional patterns, detecting which is a well-defined
problem of comparison of spaces, topological invariants provide a common thread
and a robust tool to understand both cognitive and behavioral processes and AI, in
its physical implementation through neural nets.

3.3 Neural Networks

A neural network (be it a natural NN, i.e. the brain cortex or a part thereof, or
AN artificial ANN, namely a circuit designed to reproduce the functions of some
natural net) is a graph G—possibly, an hypergraph—represented as such by a triple
{N,A, ϕ}, where N is the set of vertices, the ‘neurons’; A a set of directed or
undirected n-neuron connections s over G, 1 ≤ n ≤ N, for some given N, A =
{s|s ∈ � (N)}, whose elementary constituting elements are the ‘axons’, pairs (i, j),
i, j ∈ N, while s are the many-body ‘connections’ among neurons associated with
the corresponding simplices s of all allowed dimensions n up to N, in � = � (N);
ϕ is a function over A, ϕ : A �→ R that attributes ‘weights’ ws to all connections
s. ws is zero for connections that do not exist in the network. Typically, a single
neuron j is connected to a (large) number of other neurons, through a set of gates,
the ‘synapses’. The tensor W collecting all elements ws, properly distributed among
the simplices s of �, generalization of the Hinton diagram adopted for conventional
network W, describes all allowed interactions among neurons. W can be designed
as a circuit in ANNs, in such a way as to be able to represent any behavior of
the network G. In some way, giving W is equivalent to providing the equations
of motion in a physical system; it generates the response of the network to any
given input. Notice that if is a hypergraph, then the neural interactions are no longer
exclusively two-body but in general many-body, as TDA permits. Complexity of
thought, in this view, is measured by the range of smaller abstractions one can draw
on (reduction of W to lower-dimensional blocks), as well as by the number of times
one can combine lower-level abstractions into higher-level abstractions.

As already mentioned, ML is rather heuristic. Suppose we have a set of input-
output pairs (the training set) : the problem of ML consists in guessing (and
validating) first the map T : in �→ out, and then implementing a procedure that
leads to describing such problem’s guessed solution with a model M. Typically, M
depends (or, to be more precise, is assumed to depend) on a set of parameters, �

(i.e., one chooses a parametric class of functions). Further steps are the definition
of a ‘loss function’ to compare the results of the model with the experimental
values and the ‘optimization’, namely the individuation of the parameters in �
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which reduce the loss to minimum. Thus, Machine Learning problems are in fact
optimization problems. Why then do we talk about learning? The point is that the
solution to the optimization problem is not given in an analytical form; indeed, often
there exists no closed form solution. For this reason, one has to resort to iterative
techniques, typically ‘gradient descent’, to approximate the result progressively. It is
this form of iteration over data that is understood as a way of progressive learning of
the objective function based on the experience of past observations. The important
feature here is that physical circuits (real pieces of the connectome or electronic
circuits) can reproduce, to almost any desired level of approximation, neural nets—
generalized or not—and hence the processes of ML that these can perform.

4 Constructor Theory Meets Learnability

The other crucial ingredient necessary to pursue progress along this ambitious,
hard pathway comes from an apparently extraneous front: Constructor Theory.
Modern Constructor Theory (CT) is a quite visionary extension of the John von
Neumann’s far-reaching idea of ‘universal constructor’3 (Burks, 1971), a self-
replicating machine in a cellular automata environment, designed in the ‘40s, and
conceived with no notion yet of a computer.

Revived and fully (and rigorously) reformulated by David Deutsch (2013),
Deutsch & Marletto (2015), and Chiara Marletto (2016), CT was recently used
to construct IT completely and solely in terms of which transformations of the
ground physical systems may occur and which may not. This is indeed, in a nutshell,
what constructor theory does in general: the basic principle of CT being that “All
subsidiary theories are expressible entirely in terms of ‘statements’ about which
physical transformations are possible and which are impossible, and why”. The
point is that CT regards science—even IT—not merely as an enterprise for the
purpose of making predictions, but as an endeavor for discovering what the world is
really like, how it behaves the way it does and why.

Like for information, nature and properties of ML follow entirely from the laws
of physics. As in the CT theory of information, we expect that ML consists of
proposed principles of physics that explain the regularities in physical systems
that are associated with it. In other words, like information resembles entities that
appear in laws of physics for a certain ‘substrate’, and this gives it a counter-factual
character (an object in a particular physical state cannot be said to carry information
unless it has been in a different state), analogously ML can be formulated on an
ANN circuit, and this provides it of a substrate, and a counterfactual character.
This representation of ML involves of course abstractions in that one entity is
represented symbolically by another. Thus, the laws governing ML can be thought

3The details of the theory were published in von Neumann’s book (von Neumann, 1966),
completed by Arthur Burks after von Neumann’s death.
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of as laws of physics. This will allow us to express it in terms of computation.
This is the key to providing the base for the recursive definition of ‘learning’
that we described (notice the strict analogy with the concept information, which
is associated with that of copying). That’s why the representation of TDA∪ML in
terms of a unifying framework expressed in the language of CT may lead to be able
to deal with the hardest intrinsic limits that the AI approach could possibly exhibit,
such as decidability of learnability. The latter refers to the possibility of representing
decision-making processes through what is learnable or not and why; a crucial
property related also to the fact that CT embodies naturally the feature of being able
to implement an autopoietic (etymologically: self-producing) behavior (Maturana &
Varela, 1980, 1987). This means to operate as a network of component-producing
processes, with the property that the interaction among such components generates
the very same sort of network of processes that produced them, yet constituting it as
a distinct (autonomous) entity in the space in which it exists.

A decisive issue to complete the framework discussed is that of Learnability in
ML. A sound mathematical foundation for ML through CT (once again the natural
mathematical tool here is category theory (Spivak, 2014) quite general, powerful
and far-reaching; combined, of course, with the more conventional formal logic and
the theory of formal languages) will progressively improve our understanding and
provide us with novel principles and frameworks to design new learning paradigms;
in particular no go theorems. This bears on the fact that also ML cannot escape
the curse that any advancement in mathematics must have a cost. In 1931, Kurt
Gödel (1931) showed that in any system of axioms that is expressive enough to
model arithmetic, the truth or falsehood of certain statements is not provable (it
is undecidable). In the successive applications of this taxing notion, it was shown
(Cohen, 1963) that Georg Cantor’s Continuum Hypothesis (CH)—which states that
no set of distinct objects has a size (cardinality) larger than that of the integers
but smaller than that of the real numbers—cannot be proved nor refuted using the
standard axioms of mathematics.

It is now known that also ML does not escape the fate of Gödel’s incompleteness
theorems. Recently Shai Ben-David et al. (2019), resorting to the formal equivalence
between machine learnability and data compression (the process of encoding
information using fewer bits than the original representation) were able to show
that the solution to the respective optimization problems may be isomorphic to the
proof of CH, and thus succeeded in constructing scenarios proving that learnability
in ML may be undecidable in the sense of Gödel.

Of course, identifying the learnable is (it must be) a fundamental goal of ML:
but to achieve it, one needs a robust mathematical framework, supporting the
formal treatment of learnability. Conventional paradigms of ML fail to do this, as
learnability cannot always be decided by standard axioms of mathematics, which,
for example, are unable to provide any dimension-like quantity characterizing
learnability in full generality. We argue that redefining such paradigms within
the boundaries, rules and constraints of CT∪TDA may lead as well to defining
efficiently such quantity.
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5 Is ‘Quantum’ Necessary? The Integrated Information
Theory Issue

5.1 Quantum Information and Consciousness

In the quantum domain, the question of whether or not a quantum algorithm could
successfully deal with classically non-computable functions has been long debated
and remains essentially controversial. It has been shown that some problems, such
as the halting problem for Turing machines, can be in some way successfully
approached in a quantum perspective, but it is in fact widely believed that
quantum computation cannot say anything general about computability. Contrary
to this, quantum strategies have been suggested that define computability and
its limits through a mixture of mathematical and physical principles, and in this
perspective it was shown that quantum computation may be able to compute the
non-computable provided suitable Hamiltonians could be constructed whose ground
state represented the solution to classically incomputable problems. For example,
a quantum algorithm for the classically non computable Hilbert’s tenth problem—
whose challenge is to construct a general algorithm able to decide whether any given
Diophantine equation (a polynomial equation with integer coefficients and a finite
number of unknowns) has a solution with all unknowns taking integer values—
the various formulations of which can be made isomorphic to the halting problem
for Turing machines. Turing halting problem is known to be mathematically non
computable, yet if quantum continuous variables and quantum adiabatic evolution
could be physically implemented, classical computability constraints as posed by
the Church-Turing thesis could be overcome.

Talking about human behavior, implies being able to say something viable about
consciousness, which touches, as we shall see, on computability. The conceptual
scheme that best fits the scheme we designed—including the possibility of reformu-
lating it in terms of CT—is no doubt Tononi’s IIT (Tononi et al., 2016). Over the last
decade IIT has emerged as one of the relevant tools in computational neuroscience
of human mind. IIT aims indeed at providing a mechanistic, mathematically well-
defined description of the neural correlates of consciousness. Its basic idea is
to identify consciousness with the amount, suitably quantified, of cause/effect
generation power in the neural network. The latter is assumed to be holistic, in
the sense that it goes beyond and above the sum of its parts, which interact non-
linearly. In order to implement this feature, one needs to quantify how certain
(arbitrary) parts of the network, referred to as ‘mechanisms’, in a given state,
irreducibly influence the future and constrain the past of other (arbitrary parts called
(‘purviews’). Irreducibly means that the process cannot be represented (‘reduced’)
as the separate and independent actions of parts of the mechanism over parts
of the purview. Iterated at the global network level such process gives rise to a
conceptual structure, which comprises a family of mechanisms and purviews, the
latter representing the integrated core causes/effects of the former (Tononi, 2004,
2015; Tononi et al., 2015; Oizumi et al., 2014; Albantakis & Tononi, 2015).
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What one looks for is a viable measure of the distance between this conceptual
structure with the closest one obtainable from the set of all network partitions in all
ways needed to quantitatively determine how much of the cause/effect dynamical
network structure fails to be reducible to the sum of its parts. The minimal distance
obtained in this way is, by definition, the Integrated Information (denoted by �) of
the network. IIT boldly postulates that the larger $\Phi$, the higher is the ‘degree of
consciousness’ of the network in a particular given state. It should be remarked that
the causal information-processing structure irreducibility of the network measured
by is independent of the specific implementation of the brain circuitry; be it the
connectome (real neurons, synapses and axons) or suitably complex ANN circuits.
Quantum extensions of IIT have been proposed (Tegmark, 2015, 2016), however
they refer to more abstract and general systems.

It is in view of the (algorithmic) complexity of the processes represented by IIT
that the necessity emerges of paying special attention to its possible reformulation
in a general and consistent version for interacting networks of finite-dimensional
quantum systems. This because only the computational efficiency made available by
the features of quantum information can make the conceptual model we are talking
about—assuming the computability question is overcome—viable for a manageable
theory. Most promising in the quantum information-theoretic framework is the
approach due to Paolo Zanardi et al. (2018). It considers as neural system a network
� of qu-dits, the probability distributions being represented by non-commutative
density matrices �, constrained by Bayes’ rules, and the related Markov processes
identified with trace preserving completely positive maps U . In this approach the
irreducible cause/effect structure of the global network of IIT turns out to be
encoded into a ‘conceptual structure operator’, quantum version of the classical
counterpart. The minimal distance in norm of such operator from those obtained by
all factorized versions of the network defines the quantum Integrated Information
�̂q .

5.2 The Quantum Approach: Necessary But Not Sufficient

Here is a concise outline of the idea. Within the set of all mechanisms in �, consider
pairs M,P ∈ � (where the mechanism set P is referred to as the ‘purview’
of M ; we denote by M̌, P̌ the complements of M and P in �, respectively).
As mentioned, the network dynamical evolution is identified with the action of a
(complete, positive) unital map U . One wants to measure how the state—i.e., the
probability distribution described quantum mechanically by a density matrix �—of
M at time t (while M̌ is in a maximally random state) conditions the state of P at
time t ± 1 (with also P maximally randomized). For any M we call a concept

the triple {�(c), �(e), ϕ(M )}, where we denote by �(c), �(e), the density matrices
(probability distributions) associated, respectively, with cause and effect, whereas
ϕ(M ) is the maximum over all possible P ’s of the effect (e) and cause (c), in
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the repertoire of M , over the purview P , formally (and manifestly, in quantum
mechanical language) defined, for x = c, e, by:

�(x) (P|M)
.= TrP̌U

(x)

(

	M ⊗ IM̌

d

∣
∣
∣M̌
∣
∣
∣

)

;	M
.= TrM̌	�,

where 	� is the network quantum state, while U (c) ≡ U , U (e) = U∗ (the Hilbert-
Schmidt dual of U ). The totality of concepts is our conceptual structure operator
C. It is worth pointing out that the collection of triplescan be interpreted as the
quantum version of the notion of the ‘space of qualia’ of the neurosciences. Given
two conceptual structures C1,C2, we define the conceptual distance D (C1,C2)

.=
1
2 ‖ C1−C2 ‖. The measure of the Integrated Information of � can finally be defined
in this way: for P the set of all 2|�| − 1 − 1 possible bi-partitions of �,

�(U) = min
P

D
(
C (U) ,C

(
UP
))

,

where, for P (�) = {�1,�2}, UP = U�1 ⊗ U�2 .
As the algorithmic complexity of the computation of � is forbidding, the

conclusion appears really to be that ‘quantum’ is necessary but possibly not
sufficient to deal with the wide class of behaviors, in which the components of a
complex system of concurrently executing agents interact with each other to achieve
some global effect. Indeed, on a “macro” scale, this description fits well today’s
distributed transactions across the Internet; but on a “micro” scale, it is equally true
for how functional computations are ultimately realized. All computations can be
resolved into the interactions of large numbers of very simple agents: the complex
behavior of the overall system is an “emergent property” of these interactions. Thus,
the models of computation needed, which take interaction as their basic ingredient,
yet combine sufficient expressive power to yield faithful descriptions of information,
with sufficient mathematical structure and tractability to provide a basis for the
formal analysis easily face the obstructions of excessive algorithmic complexity.
The real question is computability, which can be unreachable because of the lack of
learnability.

6 Conclusions

The approach presented tries to figure out the answerability in parallel of a
number of hard questions: humans augmented by electronic prostheses (AI, for
short), considered in the frame of TBE are quite different from the agents that
economical sciences are used to deal with. It is this that implies a new strain on
the analysis of their behavior and that requires better defined and farther reaching
tools, enlarging as it does the domain these need to provide answers to. Indeed,
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besides human/human we have machine/machine interactions and human/machine
interactions, namely augmented phase spaces of cognitive functions, more complex
classification of behaviors, a novel role of mind (in the deep sense of self-
consciousness) and of the living vs. inert quality of the physical support. For sure
an unprecedented challenge for data science.
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On Randomness and Origin of Life

Roberto Serra

Abstract It is argued that, in order to understand how life might have been
originated under abiotic conditions, it is necessary to describe the appearance of
both primitive cells and self-replicating sets of molecules. It is observed that, under
quite general assumptions, the fluctuations in the internal composition of small
protocells may be an important factor, which allows self-replication to take place
by limiting the number of different types of molecular species and of reactions. The
notion of a shadow biosphere is also briefly discussed.

Keywords Binary polymer · Diffusion · Membrane · Protocell · Random
fluctuation · Replication · Reproduction · Shadow biosphere · Vesicle

1 Introduction

When Gianfranco Minati asked me to contribute a paper to honour the memory of
Eliano Pessa, I readily accepted. I really liked Eliano as a person and as a scientist,
and I admired his efforts to build an Italian community in what might be called “non-
orhodox systems science”. Eliano was a daring and non-conventional scientist, two
features worth of great praise.

After much thinking, and a couple of false starts, I decided to describe and to
comment a property which my colleague and friend Marco Villani and I observed
in our recent studies of protocells, and which may be related to some deep aspects
of the emergence of life in an abiotic environment.
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I have been working on several kinds of complex systems for a long time,
and in 2004 I started to develop models of the dynamics of protocells, i.e. cell-
like structures which are much simpler than biological cells, yet share some of
their key properties, including growth and reproduction. There is some confusion
in the popular press, but also in the scientific literature, since the term protocell
is sometimes used to denote any kind of “simplified” cell, including those which
are obtained starting from material of biological origin (e.g. by removing part
of the genes of a bacterium). Here I will consider only those protocells that are
synthesized, either by spontaneous or engineered processes, using only abiotic
material. Let me also remark that the synthesis of this kind of true protocells, able
to go through a series of replication cycles, has not yet been achieved.

It is clear that protocells have close connections with the problem of the origin
of life. However, one can also look at them as a promising new technology, which
may be interesting for theoretical reasons as well as for possible applications (like
synthesis of new drugs, removal of contaminants, etc). I have so far followed this
prudential approach, avoiding to publish speculations about the problem of the
origin of life. However, it is crystal clear that this is actually the main reason of
scientific interest for doing research on protocells, so I will deal with it in this paper.
I hope Eliano would have liked this choice.

Of course, I have no aim at completeness, but I will try to point out some aspects
that seem to me really interesting. There are very many scientific papers about
protocells, and even more about the origin of life. I will avoid filling this paper with
too many references, addressing the interested reader to those contained in a book
I wrote a few years ago (Serra & Villani, 2017) and limiting to explicitly mention
further references where strictly necessary.

Most books and papers deal with the problem of identifying possible places
where life appeared on Earth. Warm ponds (primeval soups), mineral surfaces,
underwater hydrothermal vents, volcanic lakes are only some among several
proposals that have been put forth. As it is well known, in the middle of the last
century Stanley Miller was able to synthesize aminoacids in a reactor simulating
physical conditions which were believed to resemble those of the primitive earth.
After this breakthrough, the interest of the scientific community focused on trying
to identify different chemicals and chemical reaction sets which might be able to
collectively self-reproduce, the main candidates being polypeptides and nucleic
acids (mostly RNA). The importance of catalysis was stressed, and the candidate
catalysts have been (and still are) polypeptides, RNAs, metal ions and others.
Note also that the old proposal by Svante Arrhenius, that (at least some of) the
important chemicals have come to the earth from space, has been supported by
recent discoveries of many organic compounds in meteorites, asteroids and comets.

These researches are very important, and it would be wonderful to be able to
precisely identify where and how life appeared on earth. However, one should be
prepared to the probable failure of this effort, since the first living forms date back
to more than 3.5 billion years ago, so the traces of those first progenitors might have
been lost. Think for example of how difficult it is to reconstruct the migrations of
the predecessors of homo sapiens, which were macroscopic organisms who lived
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a few millions, or a few hundred thousands years ago. Yet, the discovery of a new
fragment of a bone in Asia or Europe may strongly affect the whole picture and
its timing. If we think of small creatures, without bones that can become fossils,
which lived three billion years ago, it is difficult to bet on the chances to follow their
detailed pathways.

Moreover, even if we knew what the right molecules were, we might still be
far from grasping what is life and how it came into existence. The point is that
a set of chemicals is not yet a form of life, even if it is able to collectively self-
replicate. You can take all the chemicals which are found in a bacterium, put them
in a (very small) bottle—and nothing happens. The key point is that life requires
a quite peculiar form of organization of its materials (mostly, organic molecules)
and of their interactions. All the existing life forms are made of cells so, in order to
understand how life emerged, we need to understand how cells appeared, and how
they developed the ability to orchestrate the interactions which led to growth and to
duplication with inheritance.

Surprisingly enough, there are some spontaneous physical phenomena which
provide suggestions as to how this might have happened. It is well known that,
under some suitable conditions, lipids in water spontaneously form vesicles, where
an approximately spherical surface, composed by a lipid bilayer, surrounds a portion
of the water phase. The structure of the bilayer resembles cell membranes, and it
has sometimes been observed that these vesicles can undergo fission, a process that
is at least superficially reminiscent of biological reproduction. The true picture is
more complicated, and duplication of the vesicle does not guarantee duplication
of its “genetic material”. However in a series of papers (see Serra & Villani, 2017
for a comprehensive synthesis) we have been able to show that the two processes
can spontaneously synchronize in a large number of cases (i.e. under different
hypotheses concerning the type of chemical reactions and the architecture of the
protocell). I will not discuss these quite technical aspects here but I will stress that
synchronization is a condition which allows sustainable growth of a population
of protocells, and that it allows Darwinian selection to take place. Note also that
without membranes, without protocells, there are no individuals, no elementary
units of selection for nature to operate on.

2 Protocells

Let us then take protocells seriously. While different and more sophisticated settings
might be examined, we will consider here (one of) the simplest scenario(s) we can
envisage, by simply supposing that

1. protocells are composed by lipid vesicles in an aqueous environment which
contains some polymers and other chemicals
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2. they form spontaneously by surrounding a portion of the fluid environment with a
lipid bilayer; the chemical composition in the internal water phase is, on average,
the same as that of the corresponding portion of the aqueous environment

3. the polymers in the water phases (either internal or external) can undergo several
chemical reactions, using other polymers or simpler molecules available in the
external environment (the “food”)

4. some reactions may allow the self-replication of a set of polymers
5. the protocell membranes are selectively semi-permeable, i.e. they allow the

passage of some types molecules from the internal water phase to the external
aqueous environment, and vice versa—while they cannot be crossed by other
types of molecules

6. food molecules can freely cross the membranes (this hypothesis is not necessary,
but it simplifies the description of the phenomena)

Let us first look at the external environment. The spontaneous formation of self-
reproducing sets of molecules in the bulk of a reaction vessel is a highly unlikely
event, which has been sometimes observed in experiments carefully engineered
by smart chemists. But in the primitive earth there was some shortage of smart
chemists, so we will consider the case where such spontaneous self-reproduction is
not observed in external water phase.

On the other hand, the chemistry (i.e. the set of chemical species which are
present, and the set of their reactions) must in principle allow for self-replication,
otherwise we would never have life (and of course we know that life eventually
emerged). There may be at least two main reasons why it is not observed in the
large external environment: (1) the concentrations of the relevant chemicals may be
too low, so that the relevant reactions are too slow, or (2) some species which are
present inhibit some reactions which are necessary for self-replication to occur (e.g.
by degrading some reactants).

It is often claimed, without further discussion, that cells (or other compartments)
are necessary to avoid the diffusion of the reaction products in the external
environment. However, this is not a convincing argument: since we have assumed
that the internal and external aqueous environments are the same, it follows that the
same reactions which take place inside the protocell do take place also in the bulk
environment, and viceversa.

So, we may wander what is the actual role of protocells in this case. One
important possibility is that membranes affect the rates of some reactions, playing
a role similar to catalysts. They do not need to be true catalysts like enzymes,
but they might create a local physico-chemical environment, where some reactions
are favoured e.g. by the alignment of some reactants. Thanks to their symmetries,
membranes should equally favour reactions both on the internal and external side,
but the results would be different, since in the latter case diffusion would quickly
dilute newborn species. The possibility that membranes play such an active role
is important, however it is overlooked in most scenarios. We will develop our
reasoning without assuming any help from of this kind.
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Table 1 Number of
molecules in a protocell

1 M 1 mM 0.1 mM 1 μM 1 nM

Typical (1 μ3) 108 105 104 102 0.1
Small (10−3 μ3) 105 102 10 0.1 10−4

Expected number N of molecules of a given species in a single
protocell; two different volumes are considered (10−18 and
10−21 m3), and five different concentrations (1 M meaning
1 mole per L). Reprinted from (Serra & Villani, 2017), with
permission

Other possibilities might be taken into account (like e.g. the idea that the rates of
some, but not all, reactions are modified in the interior of a very small protocell) but
there is no convincing evidence that this would favour collective self-replication.

There is however a familiar phenomenon which must necessarily take place.
If protocells are formed by surrounding a portion of the aqueous medium, then
different protocells may have different internal chemical compositions, due to
random fluctuations from one point in space to another one. These fluctuations take
place also in the bulk liquid, where however diffusion counteracts their effects,
so they are very short-lived. However, semipermeable barriers prevent outside
diffusion of some polymers, so the chemical mix inside a protocell may well differ
from that of a neighboring one, and from that of the average external environment.

So, the fact that self-replication does not take place in the bulk of the external
environment does not prevent it from taking place inside a protocell, where some
molecules may be present at an unusually high concentration, or some may be
absent.

In a sense, it’s all a matter of size. The relative importance of fluctuations is a
decreasing function of the number of molecules, i.e. (given macroscopically uniform
density) of the protocell volume. Linear dimensions of lipid vesicles typically range
from 100 nm (0.1 μm) to 10 μm. It is difficult to estimate the concentrations of
primitive molecules, but we can look at a range of alternatives (see Table 1).

Remembering that the relative effect of fluctuations scales (in the simplest
Gaussian estimates) as 1/

√
N, it is easy to ascertain that there may be relevant

differences in the case of small molecules and dilute concentrations of chemicals.
Think for example that, in the case of small protocells and a 1 μM concentration,
only one protocell out of ten will contain on average (a single molecule of) a given
species.

It is therefore clear that small protocells allow a great number of different
“experiments” to take place simultaneously. The protocells that host the most
successful sets of molecules (i.e. those which self-reproduce and stimulate the
replication of the hosting vesicles at the highest rate) will come to dominate the
population. The stage for Darwinian evolution will be set.

This is a very simple reasoning, which looks convincing but which might be
flawed by the fact that the set of chemical species and reactions may change in time.
The complete reaction network comprises all the possible chemicals and all their
reactions. Starting from a given initial condition, new species can be synthesized,
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starting from existing species and from the food, which can freely cross the cell
membrane. The synthesis of new species may in turn lead to the disappearance
of other species, therefore the internal composition of a protocell can change in
time. If the processes were such that all the initial conditions would lead to the
same composition (or to very similar compositions) the initial differences would be
substantially irrelevant.

To tackle this issue, one needs to model the possible molecular types and their
reactions. In order to do so, we have chosen a well-known case, the so-called binary
polymer model (Farmer et al., 1986, see also Serra & Villani, 2017), where the
molecules are linear strings (polymers) of binary symbols (monomers), and where
the reactions are either condensations, where two strings are concatenated to form
a larger one, or cleavages, where one string is cut into its two parts, choosing
an arbitrary cut point. Only catalyzed reactions are assumed to take place at an
appreciable rate, and polymers are chosen at random as catalysts of a given reaction.
By extensive simulations it has been possible to show (Serra & Villani, 2019) that
protocells which start from different initial compositions can lead to very different
final compositions and, by coupling the concentration of some chemical species to
the rate of reproduction of the protocells, to observe how some protocells can grow
faster than others, thus allowing Darwinian dynamics.

While these results have been proven using a specific model of chemicals and
reactions, it seems plausible that they can be generalized. This kind of studies
indicates that the differential reproduction rates can be rooted in the random initial
compositional differences among the primitive protocells (and of course in the
nonlinear dynamics which amplifies such differences), thus hypothesizing that this
type of randomness might be fundamental to the emergence of life.

3 A Shadow Biosphere?

The protocell models which we have considered belong to a broad class of math-
ematical or computational models which suggest that the emergence of some form
of lifelike properties may be highly likely, under different assumptions concerning
the chemical species which are involved and the physical environments where it is
supposed to have taken place. It would be extremely satisfactory to be able to claim
that life is an almost unavoidable outcome of this overall self-organizing activity,
and to say, with Stuart Kauffman, that “we were expected”, and we are not an
accident in history (Kauffman, 1995). However, other authors, including (Monod,
1970) claim that life is an extremely unlikely event, so it is possible that it has
happened only once in the universe. If this were the case, exobiology would be a
useless waste of time.

However, we know that our earth can host life, as it actually does, so why should
we not look for the existence of different life forms just here? If there is a high
probability for life to emerge, it might have appeared several times on earth, and we



On Randomness and Origin of Life 165

should therefore be able to find the descendants of different predecessors. However,
all known life forms are actually very similar to each other.

This may seem a surprising statement, since on a macroscopic scale we find
“endless forms most beautiful”, according to the famous quote by Charles Darwin
(1859). However, when one looks at the microscopic level, the situation looks much
more uniform. All living beings are composed of cells, where genetic information
is stored in DNA (with the very peculiar exception of RNA viruses), proteins are
synthesized in ribosomes using messenger RNA (obtained by transcription of DNA)
and transfer RNA, and energy storage is mainly based on ATP. While L-forms and
D-forms of optically active polymers are chemically equivalent, the chirality of
nucleic acids and proteins is the same in all organisms. What is perhaps even more
surprising, they also share the same genetic code: only 20 aminoacids are used in
life, among the many more which exist, and the genetic code, i.e. the correspondence
between bases in DNA or RNA and aminoacids, is always the same. The need for
(at least) three bases per aminoacid can be inferred by the fact that the DNA code
uses 4 different letters, so a code whose “words” used 2 bases might have coded
at most 16 different aminoacids. But the correspondence of a specific triplet to
an aminoacid seems quite arbitrary (although different hypotheses have been put
forth), so it is startling that all organisms share the same code. The observation of
this a priori unlikely homogeneity has led to the notion of LUCA (Last Universal
Common Ancestor), i.e. a unique ancestor for all existing life forms.

But, if the emergence of life is “reasonably likely”, and different types of life have
been generated on earth, where have all the others gone? One frequent answer is
that there has been worldwide competition, and the winner has destroyed the losers
(either by “eating” them or by eating their food with higher efficiency). However,
there are several niches on Earth, so it is conceivable that some different life forms
might have survived somewhere, shielded from competition with “our” life.

Macroscopic organisms are probably unlikely to have passed unnoticed, but in
the last decades very many single-cell organisms have been discovered, which can
inhabit environments which were believed to be hostile to life, including those which
can be found deep beneath the earth surface, or the ocean floor, or inside very hot
or very acidic springs, or even inside higher animals and plants. According to some
estimates, most biomass might reside in unicellular beings, which are very poorly
known and understood (even the notion of species is not well-defined in bacteria).

These observations led to the hypothesis of the possible existence of a “shadow
biosphere” on earth (see Davies, 2018), inhabited by these unconventional organ-
isms, which are sometimes considered as “aliens”, not because of their origin in
outer space, but because of their belonging to a different genealogy. It is not entirely
clear how to distinguish these aliens (say, a suspect microbial population) from still
unknown forms of usual life, and there has been so far no proof of their existence,
but their search opens interesting perspectives.
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Deep Learning and Knowledge
Generalization

Guido Tascini

Abstract This work concerns the new studies related to the deep learning of
machines. In particular, it tries to see what lies behind the behavior of deep
neural networks, which have been very successful in various fields, such as image
recognition, interpretation of natural language and much more. The work analyzes
the deep networks and the behavior of the backpropagation algorithm. From this
it seems that the success of these networks, which amazed the authors of the
algorithms themselves, seems to lie in the processing of information and in the
ability of the algorithms to extract relevant knowledge, discarding that which
is not relevant for the purposes of the learning target. The bottleneck principle
(Tishby & Zaslavsky, 2015 IEEE Information Theory Workshop (ITW), Jerusalem,
pp. 1–5, 2015), in particular, appears to be a promising vision for the design of deep
artificial neural networks, based on a general principle related to the processing of
knowledge.

Keywords Autonomous knowledge learning · Backpropagation · Deep artificial
neural network · Deep learning · Input data compression · Output prediction ·
Knowledge generalization · Relevant knowledge extraction · Shallow artificial
neural network

1 Introduction

A Shallow Neural Network, has a single hidden layer, between an input layer and
an output layer. The algorithm that associates the set of input patterns to the set
of output patterns, named back-propagation algorithm, derives its name from the
backward propagation of the errors on the output units: difference between real
outputs and expected outputs. If the network has more than one hidden layers, we
are talking about deep networks.
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Fig. 1 Backpropagation
algorithm scheme

The scheme of the Backpropagation algorithm, for the shallow network, is
represented in Fig. 1. As it can be seen, the normal information flows forward,
while the errors flow backward and the errors derive from the comparison between
the output that the network must have (target) and the calculated output from
the network (actual). The algorithm tries to minimize these errors by varying the
weights of the links and stops when the target output substantially coincides with
the actual output (minimum of errors).

Weights Initialization Normally weights and thresholds are set, at the beginning,
equal to small random numbers. The activation level of the ‘entry unit’ is set by
the instance; as the activation level Oj of the hidden unit or the output unit, it is
determined by the expression:

Oj = F
(∑

wjiOi − θj

)

where

F(a) = 1

1 + e−a

Weight Training We start from the output layer and work backward on the hidden
layers by recursively updating the weights with the relation:

wji (t + 1) = wji(t) + �wji

where the variation of weights is given by the expression delta:
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�wji = ηδjOi

with η speed parameter. A term, called ‘moment’, is added to this variation to speed
up convergence:

wji (t + 1) = wji(t) + ηδjOi + α · ⌊wji(t) − wji (t − 1)
⌋

where 0 < α < 1.
δj, gradient of the error, is calculated with the expression:

δj = Oj

(
1 − Oj

)∑

k

δkwkj

where δk is the gradient of the error corresponding to the unit k to which a
connection from unit j points.

The iterations are repeated until convergence. Then backpropagation algorithm
for shallow networks, with only one hidden layer, is the following:

1. Initialize the weights randomly
2. Do {
3. Initialize the global error E = 0;
4. For each (Xk, tk) ∈TS} {
5. Calculate yk and the Ek error;
6. Calculate the δj on the output layer:
7. Calculate the δi on the hidden layer:
8. Update the network weights: �w = ηδx:
9. Update the global error: E = E + Ek;}

10. } while (E < ε);

Training is carried out in the following three phases.

Learning In this phase the training set patterns set (Xk, ydk), k = 1, ... M} and
weights modified according to the Error-Backpropagation rule. It is important to
choose the patterns of the training set well so that they are as representative as
possible of the information that the network has to learn.

Such patterns can be presented:
In a Bach (or cumulative) mode. All the patterns are presented first, the error

committed on each one is calculated, the error is added up and then the connection
coefficients are modified;

In a on-line mode in which the connection coefficient values are updated after
the presentation of each single pattern of the training set. Convergence occurs when
it is reached a reduction of the global error, E = �kEk, so that the weights adapt to
the input pattern: in practice so that it becomes E < ε.

Generalization A well-trained network must be able to generalize information. In
the learning phase, after minimizing the errors committed at the exit, the weights are



170 G. Tascini

E

wji

Δw > 0 Δw < 0

Fig. 2 Gradient Descent method

frozen to proceed to the generalization phase in which the network responds well to
examples never seen before.

Convergence The ‘gradient descent’ method is universally adopted for the conver-
gence phase. Conceptually, the method consists in reducing the global error going
down towards the minimum, along the curve E = f (w), with the calculation of the
gradient.:

– if the gradient, ∂E/∂wji is positive, you must go towards the decrease of the
weights (�w <0),

– if the gradient, ∂E/∂wji is negative, you need to go towards weight gain (�w > 0).
See Fig. 2.

The error is calculated every time a training pattern is presented to the network
and then a descent towards the minimum is performed along the curve E = f (w)
following the decrease in the gradient. And there will be a gradient for each weight.

Extended Delta Rule y1 (actual output) is compared with y1 *(expected output)
and the coefficients are increased by �wij:

�wij = η∂E/∂wij, with η = learning parameter. If as a measure of the error we
have.

E = 1

2

∑

i

(
yi − y∗

i

)2

It leads to the explicit formula:

�wij = −η
(
yi − y∗

i

) ∂F (Pi)

∂Pi

xj
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While if we are dealing with a finite set of training patterns it is more convenient
to use the GLOBAL error:

E = 1

2

∑

k

∑

i

(
yik − y∗

ik

)2

That give the Extended delta rule.

�wij = −η
∑

k

[
(
yik − y∗

ik

) ∂F (Pik)

∂Pik

xjk

]

In this last case, it is equivalent to the search for a local minimum of the value of
E moving in the direction of the maximum decrease (gradient method).

2 Deep Neural Networks

Deep Learning (DL) is a branch of Machine Learning. It allows you to extract
very complex information from a set of data, making it possible to carry out very
complicated tasks, such as those related to the perceptual sphere. Deep learning
models have the characteristic of being made up of different processing layers, each
of which extracts a representation of the previous layer.

In the context of supervised deep learning, the most used class of models is
the multi-layer neural network, or deep neural network (DNN). So it is a type of
network built model, the main components of which are nodes, or neurons. As
known, there are different classes of neural networks, depending on the type of
nodes, and how they are connected to each other. The neural networks, on the basis
of which the types of networks used in deep learning have been developed, are
feed-forward neural networks (FFNN), whose operation is normally based on the
“Back-Propagation” algorithm.

We can define the FFNN as follows: a network in which, if we number the
vertices, all the connections go from one vertex to another of greater number. In
practice the vertices are grouped into layers, and the connections go only from one
layer to the higher layers.

The layers of the nodes form a hierarchical structure: the lowest layer is the input
layer; the highest is the output layer. All the layers located inside are called hidden
layers; see Fig. 3.

The Deep Neural Networks, with multiple layers of neurons, of the type feed-
foreward, with many more then two hidden layers, and accelerated by the use of
GPUs, have recently seen enormous successes in many fields. They have passed the
previous state of the art in speech recognition, object recognition, images, linguistic
modeling and translation.
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Fig. 3 Deep Neural Network, of the type feed-forward, described by the sequence 3–4–5-2, with
four layers: input layer, two hidden layers, output layer

The Fig. 3 illustrates a deep neural network with only two hidden layers. The
show nn has three inputs (i1, i2, i3), a first hidden layer (“A”) with four neurons, a
second hidden layer (“B”) with five neurons and two outputs (O1, O2), that may be
described by the sequence 3–4–5-2. This network requires a total of (3 * 4) weights
+4 bias + (4 * 5) weights +5 bias + (5 * 2) weights +2 bias = 42 weights and 11
bias.

The example use as activation function the hyperbolic tangent for the outputs
of the two hidden layers and the softmax for the output of the network. Then the
formulas that calculate the feed-forward are as follows:

Ai = tanh (i1p1i + i2p2i + i3p3i + αi)—first hidden layer,
Bi = tanh (A1p1i + A2p2i + A3p3i + αi)—second hidden layer,
Oi = softmax (B1p1i + B2p2i + B3p3i + B3p3i + β i)—outputs.

The training standard of deep NN uses back-propagation algorithm. The deep
neural network training, with multiple hidden layers, is more difficult than the
shallow neural network training with a single layer of hidden nodes. This factor
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is the main obstacle to overcome in order to process networks with many hidden
layers.

The connections, represented by arcs, are unidirectional and connect only nodes
of one layer with those of the next layer. Each arc is associated with a parameter,
called weight. In the initial modeling the arcs represented the synapses, that is,
nerve impulses that are transmitted from one neuron to another and the purpose of
these models was to identify which neurons were crossed by a sufficiently intense
signal, omitting neurons, whose signal was below a certain threshold. We present
the relationship between the layers of the network as a univariate relationship. For
this we define:

• L: number of layers of the network, consisting of an input layer, an output layer
and L—2 hidden layers;

• p1: number of input nodes;
• pl: number of nodes present in the l-th layer;
• xi: value of the i-th input node;
• •aj (l): value of the j-th node of the l-th layer;
• w (l)ij: coefficient associated with the arc that connects the i-th node of the l-th

layer with the j-th node of the (l + 1) -th layer;
• yk: value of the k-th output node.

The relationship between the input layer and the first hidden layer is:

z
(2)
j = w

(1)
0j +

p1∑

i=1

w
(1)
ij xi,

a
(2)
j = g(2)

(
z
(2)
j

)
.

Note how the j-th node of the first hidden layer takes on a value equal to
g(2)(z(2)), where g(2)(·) is a non-linear function, called activation function, while
z(2) is the linear combination of the input nodes and the parameters w(1). To this
linear combination is added the term:

w
(l)
0j

that is the parameter associated with the arc that connects a constant node equal to
1 with the j-th node of the (l + 1)-th layer.

This quantity acts as an intercept in the linear combination, and is introduced to
model any distortion.

The relationship between the (l–1)-th layer and the l-th layer is defined as:

z
(l)
j = w

(l−1)
0j +

pl−1∑

i=1

w
(l−1)
ij a

(l−1)
i ,
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a
(l)
j = g(l)

(
z
(l)
j

)
. (1)

The activation function g(l)(·) is specific for the l-th layer, although a single
activation function g (·) common in all layers is often used for the entire network.
Finally, the output layer is produced through the relationship between the (L-1) -th
layer and the following L-th layer:

z
(L)
k = w

(L−1)
0k +

pL−1∑

i=1

w
(L−1)
ik a

(L−1)
i ,

yk = g(L)
(
z
(L)
k

)
.

Both the number of output nodes K and the transformation function g (L) (·)
depend on the problem in question. For a unchanged regression problem, there
is typically only one output node, therefore K = 1, while, a suitable choice
of transformation function is the identity function, g (L) (z (L)) = z (L). For a
classification problem, the number of nodes K coincides with the number of
classes of the response variable that you want to model. Each node k indicates the
probability of belonging to the k-th class. As a transformation function, it is often
convenient to use the multinomial logistic function,

g(L)
(
z
(L)
k

)
= ez

(L)
k

∑K
j=1 e

z
(L)
j

which is called the softmax function. Now ask:

a(1) = x = [1 x1 . . . xp1

]T ;

a(l) =
[

1 a
(l)
1 . . . a

(l)
pl

]T ;

w(l)
j =
[
w

(l)
0j w

(l)
1j . . . w

(l)
plj

]T ;

W(l) =
[

w(l)
0 w(l)

1 . . .w(l)
pl+1

]T ;
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W =
[
W(1)W(2) . . . W(L)

]
;

y = [y1 . . . yK ]T .

Vector Notation Adopting vector notation makes it easier and more intuitive
formulate the relationship between two generic layers of the network:

z(l) = W(l−1)a(l−1), (2)

a(l) = g(l)
(
z(l)
)

, (3)

where the function g (l) (·) is applied element by element to the vector z(l).
Consequently, the complete relationship between the input vector x and the output
vector y is the following:

y = f (x;W) = g(L)
(
W (L−1)g(L−1)

(
· · · W(2)g(2)

(
W(1)x
)))

(4)

2.1 Calculation of Parameters Via Backpropagation

For regression problems, we generally have a quantitative response variable y = (y1,
..., yn) ∈ Rn, while for classification problems we use a qualitative response variable
y = (y1, ..., yn) ∈ T (y)n = {t1, ..., tK}n, where T (y) is the set of modalities that can
assume y. Consider a whole of data, consisting of n observations, for each of which
are detected p explanatory variables, xi = (xi1, ..., xip) ∈ Rp.

We want to adapt a neural network to the set of data, with the minimization of a
given loss function L[y, f (x; W)]. This is achieved by looking for those values of
the parameters Ŵ, such that

Loss function to be minimized is chosen from the following:

Ŵ = arg min
W

{
1

n

n∑

i=1

L [yi, f (xi;W)]

}

. (5)

For regression problems
Mean square error

MSE (W) = 1

n

∑n

i=1
(yi − f (xi;W))2;
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Root of the MSE

rMSE (W) =
√

1

n

∑n

i=1
(yi − f (xi;W))2;

Mean absolute error

MAE (W) = 1

n

∑n

i=1
|yi − f (xi;W)| .

For classification problems,
Misclassification rate

H (W) = −
∑n

i=1

∑K

k=1
yik log fk (xi;W)

where yik = 1 if yi = tk, 0 otherwise. Then minimizing cross-entropy corresponds
to maximizing the log-likelihood (Hastie et al., 2009). The algorithm most widely
used to estimate and calculate neural networks, is the backpropagation algorithm,
adapted to Deep Neural Networks (see Rumelhart et al. 1986).

2.2 Backpropagation Algorithm for Deep Neural Networks

1. Calculate the value of the node a(l) for each layer l = 2, ..., L, using the current
values of W,

2. For the output layer l = L, calculate

δ(L) =
∂L
[
yi, f̂ (xi;W)

]

∂f̂ (xi;W)
◦ ġ(L)

(
z(L)
)

; (6)

3. For the hidden layers (l = L—1, ...,2) obtain

δ(l) =
(
W(l)′δ(l+1)

)
◦ ġ(l)
(
z(l)
)

; (7)

4. Having δ2,...,δL it Is Possible to Derive the Partial Derivatives with
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∂L
[
yi, f̂ (xi;W)

]

∂W(l)
= δ(l+1)a(l)′ ; (8)

5. Update the W parameters using the gradient descent;
6. Start over with a new iteration from step 1, using the new values for the W

parameters.

This algorithm solve Eq. (8), with a low computational cost. Normally most of
the numerical optimization algorithms are iterative and require the calculation of
the gradient of the loss function with respect to the parameters, of first and second
order.

Keeping in mind that a multi-layered neural network has a very high number of
parameters, the computational cost of calculating the second order gradient becomes
excessive. If L are the layers, the network has L matrices of parameters W (l),
each of which contains pl × pl + 1 coefficients, where the number of nodes pl
can reach a few thousand. For each iteration of the algorithm, the calculation of the
first gradient requires a number of operations equal to the number of coefficients,
while the operations required for the calculation of the second degree gradient grow
quadratically as the number of parameters increases.

The advantage of the backpropagation algorithm is that, on the one hand, it does
not require the second order gradient, and on the other, it calculates the first gradient
only in the last layer, and then propagates it backwards in the other layers.

The algorithm alternates, for a given observation (xi, yi), with i = 1, ..., n, two
steps iteratively: with the step forward you get f^ (xì; W) through (4), keeping W
fixed, while with the step backwards you get the gradients and the parameters are
updated. In machine learning, each iteration is called an epoch.

In the step forward, the value of the nodes a (l) for each layer l = 2, ..., L is
calculated, using the current values of W (point 1 of algorithm backpropagation).
Through formula (4), it is possible to obtain all the values of the nodes, a (l), and
of the linear combinations, z (l), saving the intermediate quantities in progress. It is
therefore necessary to initialize the parameters with randomly chosen values, close
to 0.

Then the step backwards develops. This includes a propagation phase (points
2–4) and an update phase (point 5). The purpose of the propagation step is to
compute all the partial derivatives ∂L[yi, f^(xi; W)], with respect to the parameters.
In practice, the quantities δL, ..., δ2 are obtained, useful for calculating the partial
derivatives, in an iterative way. The generic δl must be calculated as ∂L[yi, f^(xi;
W)] with respect to z(l). The δL of the output layer can be calculated with the “chain
rule”; in substance δL is calculated as follows:
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δ(L) = ∂L
[
yi ,f̂ (xi ;W)

]

∂z(L)

= ∂L
[
yi ,f̂ (xi ;W)

]

∂f̂ (xi ;W)

∂f̂ (xi ;W)

∂z(L)

= ∂L
[
yi ,f̂ (xi ;W)

]

∂f̂ (xi ;W)
◦ ġ(L)

(
z(L)
)
,

whereġ(L) indicates the first derivative of g(L)(z(L)), and is easily obtained by
deriving the expression (3) for l = L; the symbol ◦ indicates the Hadamard product
(element by element product).

The δ (l) of the generic layer l is obtained as follows:

δ(l) = ∂L
[
yi ,f̂ (xi ;W)

]

∂z(L)

= ∂L
[
y,f̂ (xi ;W)

]

∂z(l+1)
∂z(l+1)

∂a(l)
∂a(l)

∂z(l)

= δ(l+1) ∂z(l+1)

∂a(l)
∂a(l)

∂z(l)

=
(
W(l)′δ(l+1)

)
◦ ġ(l)
(
z(l)
)
,

where

∂z(l+1)

∂a(l)
= W(l)′

is the first order gradient of (2). This expression correspond to (7) of the backprop-
agation algorithm and is named backpropagation equation.

Having δ2,...,δL it is possible to derive the partial derivatives with

∂L [yi, f (xi;W)]

∂W(l)
= ∂L [yi, f (xi;W)]

∂z(l+1)

∂z(l+1)

∂W(l)
= δ(l+1)a(l)′ ,

In the updating phase, the parameter values are modified by means of the
gradient descent, which uniquely uses the first-order partial derivatives, calculated
in the propagation phase. The descent of the gradient is a numerical optimization
technique that allows to find the minimum point of a function, using only the first
derivatives.

Then the algorithm is restarted with a new iteration, using the new values for the
W parameters.

3 The Gradient Descent

Let’s now see the updating of the parameters, carried out through the descent of
the gradient, which is what happens in point 5 of backpropagation algorithm. The
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gradient descent, based on the delta rule, is the most common and immediate method
for updating the W (l) parameters (point 5 of algorithm) (Bengio, 2012). In this case,
the updating of the parameters, at step t, takes place according to the Formula

W
(l)
t+1 = W

(l)
t − η · �L

(
W

(l)
t ; x, y

)
, per l = 1, . . . , L − 1

where

�L
(
W

(l)
t ; x, y

)

Is the gradient respect to Wt(i) of the argument of expression (5), that is gradient
of

1

n

n∑

i=1

L = [yi, f (xi;W)]

the

�L
(
W

(l)
t ; x, y

)

corresponds to

�L
(
W

(l)
t ; x, y

)
= 1

n

n∑

i=1

∂L [yi, f (xi;W)]

∂W
(l)
t

. (9)

Essentially, if the gradient is negative, the loss function at that point is decreasing,
which means that the parameter has to move towards larger values to reach a
minimum point. Conversely, if the gradient is positive, the parameters have to shift
towards smaller values to reach lower values of the loss function. The parameter
η ∈ (0, 1] is called the learning rate, and it determines the magnitude of the
displacement.

3.1 Mini Batch Gradient Descent

The previous method has several problems and limitations when applied to multi-
layered neural networks. The use of all data to perform a single update step
involves considerable computational costs and greatly slows down the estimation
procedure. Furthermore, it is not possible to estimate the model if the dataset is
too large and cannot be loaded entirely into memory. In this regard, the mini-batch
gradient descent technique is introduced. This consists in dividing the dataset into
subsamples of fixed number mxn, after a random permutation of the entire data set.
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The update is then implemented using each of these subsets, through the formula

W
(l)
t+1 = W

(l)
t − η · �L

(
W

(l)
t ; x(i:i+m), y(i:i+m)

)
,

where (i: i + m) is the index to refer the observation subset from i-th to (i + m)
th. Then, for each epoch, instead of a single updating (with all data) they are done
many updatings (mini-batch) by using the mini-batch data.

Advantages of this technique are:

• With little part of observations it is possible to meet better minima.
• The algorthm steps are so much faster and this fact guarantees a fastest

convergence towards the minimum point.

The learning rate problem: setting too small values can lead to a very slow
convergence, while large values can make the parameters fluctuate around the
minimum without bringing the algorithm to convergence. Furthermore, dealing
with this quantity with classic regularization methods (such as cross-validation)
can be computationally too expensive. Finally, it seems inappropriate to think
that all parameters need the same learning rate value to converge optimally. The
problem of entrapment in local minima far from the absolute minimum. Since the
models covered are highly parameterized, the loss functions previous discussed are
generally convex in f (x; W), but not in W. This means that L [y, f (x; W)] has a
single point of minimum for f (x; W), which is obviously the absolute minimum.
Conversely, L [y, f (x; W)] has several local minima for W, of which only one is
absolute. Then solve Eq. (5) and find the absolute minimum for W is somewhat
complex, due to the high risk of obtaining a local minimum (Hastie et al., 2009).
The attempt to solve the aforementioned problems allowed the development of
subsequent improvements with the mini-batch gradient descent (Duchi et al., 2014).

w
(l)
t+1,ij = w

(l)
t,ij − η
√

Gt,ij + ε
· gt,ij ,

where Gt,ij is the sum of the squares of the gradients with respect to wt, ij
(l), up

to time t, that is Gt,ij = �1
T (gt,ij)2. ε instead is a is a smoothing term that serves

to avoid a null term in denominator, and is usually set to values of order of 10−8.
This allows to avoid the adjustment of the learning rate parameter, of which only an
initial value is set, usually equal to 0.01.

Since, Gij is a sum of positive terms, this quantity continues to increase with each
epoch, and the learning rate decreases until it tends to 0. This problem can be solved
by iteratively redefining Gij as an average exponential mobile (EWMA). The mean
at time t is then

E
[
g2
]

t,ij
= γE
[
g2
]

t−1,ij
+ (1 − γ ) g2

t,ij ,

where γ is normally updated around 0.9.
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The updating of the parameters therefore becomes

w
(l)
t+1,ij = w

(l)
t,ij − η
√
E
[
g2
]

t,ij
+ ε

· gt,ij .

A further improvement is obtained by keeping in memory past values also
of the term gt,ij, and also applying an exponential moving average to the latter.
This innovative method of gradient descent is called Adam (Kingma & Lei, 2015;
Sebastian, 2016). It is determined with mt,ij = E[g]t,ij e vt,ij = E[g2]t,ij. The
quantities are then defined

mt,ij = β1mt−1,ij + (1 − β1) gt,ij ,

vt,ij = β2vt−1,ij + (1 − β2) g2
t,ij ,

where m0,ij and v0,ij are initialized to 0. and it is shown the correction:

m̃t,ij = mt,ij

1 − βt
1
, ṽt,ij = vt,ij

1 − βt
2
.

Then the parameter updated becomes:

w
(l)
t+,ij = w

(l)
t,ij = η

√
m̃t,ij + ε

· ṽt,ij , (10)

with β1, β2 that must have values, respectively, 0.9 and 0.999. The method appears
very efficient.

4 Deep Neural Networks and Convolutional Neural
Networks

Deep neural networks are more difficult to train than shallow neural networks.
On the other hand, deep networks are much more powerful than flat networks
(Goodfellow et al., 2016). A widely used type of deep network is the convolutional
deep neural network (CDNN).

Starting from shallow networks, through many iterations, we can build ever
more powerful networks. The techniques to be inserted later are: convolutions,
pooling and GPU (LeCun et al., 2015; Ronen & Shamir, 2015). To this we add the
algorithmic expansion of data training to reduce overfitting, the use of the dropout
technique (Srivastava et al., 2014) and network composition. Let’s consider as an
example: Manuscript classification, using figures from the MNIST datase.

Starting with convolutional networks (Delalleau & Bengio, 2011) with shallow
networks, through successive iterations, we gradually build more complex networks:
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input layer
hidden layer 1 hidden layer 2 hidden layer 3

output layer

Fig. 4 Convolutional N N, with: one input layer, three hidden layers, one output layer

The result will be a system that offers performance close to human. We will use the
images not seen during training for the generalization test.

There have been spectacular recent advances in image recognition with convo-
lutional networks; and also with recurrent neural networks, long- and short-term
memory units, models that can be applied in speech recognition and natural
language processing (Nielsen, 2015).

4.1 Convolutional Networks

Here we have image recognition using networks with adjacent layers completely
connected to each other (Krizhevsky et al., 2012). That is, every neuron in the
network is connected to every neuron in the adjacent layers: Three basic ideas apply
in convolutional neural networks: local receptive fields, shared weights, and pools.
The input comes from squares of neurons, whose values correspond to the intensity
of the pixels we are using (Fig. 4).

These squares are located in regions of the input image. Basically each neuron
in the first hidden layer is connected to a small region of the input neurons, This
region in the input image is called the local receptive field. Let’s start with the top
left corner and by scrolling the local receptive field over the entire input image we
will have a different hidden neuron ‘i’ for each local receptive field (Fig. 5).

Steps greater than ‘1’ and a direction different from the horizontal can be used.
Shared weights and forecasts: each hidden neuron has a bias and weights connected
to its local receptive field. We will use the same weights and biases for each of
the hidden neurons. In practice, for the n.th hidden neuron, the output is: The
use of the receptive field does not alter the recognizability of the image. The
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input neurons
first hidden layer

Fig. 5 Receptive field connected to the first hidden layer

translation invariance of images also applies: the map from the input layer to the
hidden layer is the feature map. We call the weights that define the characteristics
in the map shared weights. The bias that defines the shared bias map file. The
network map just described concerns only a localized feature (functionality). Image
recognition requires multiple feature maps, so a full convolutional layer consists
of several feature maps. Each map is defined by a set of shared weights and a
single shared bias. The network can detect different types of feature-files, and each
feature is detectable on the whole image. The images correspond to different feature
maps (or filters). Each map is represented as a block image, corresponding to the
weights in the local receptive field. Feature map example (see Fig. 7): The lighter
blocks correspond to a smaller weight and the feature map responds less to the
corresponding input pixels. Darker corresponds to greater weight, and the feature
map responds more to corresponding input pixels.

Intuitively, it seems likely that the use of the translation invariance by the
convolutional layer will reduce the number of parameters required to obtain the
same performance as a fully connected model. This will also result in a faster
workout. Intuitively, it seems likely that the use of the translation invariance by the
convolutional layer reduces the number of parameters required to obtain the same
performance as a fully connected model. This will also result in a faster training
(Fig. 6).

Pooling Layers Pooling layers are placed immediately after the convolutional
layers. The pooling layers simplify the information file that exits the convolutional
layer: a pooling layer takes the output of each map of the characteristics of the
convolutional layer and creates another map of condensed features.

For example, it condenses a region in the previous layer. Common procedure for
pooling is max-pooling: the pooling unit takes only the maximum activation value
in the input region (Fig. 7).

Example: max-pooling applied to each of three feature maps (see Fig. 8). The
convolutional and max-pooling layers are similar to Neural Networks for Deep
Learning.
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28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

Fig. 6 Input layer connected to three feature maps

Fig. 7 Feature map: block image, corresponding to the weights in the local receptive fields

Using Rectified Linear Units There are many ways to vary the network in an
attempt to improve results.

For instance we can change neurons: instead of using the sigmoid activation,
we use rectified linear units. In practice We’ll train for epochs. I also found soma
advamtage by uinge some regularization, with regularization parameter.

Expanding the Training Data Another way to improve the results is by algorith-
mically expanding the training data. A simple way of expanding the training data
is to displace each training image by a single pixel, either up one pixel, down one
pixel, left one pixel, or right one pixel. Using the expanded training data we can
obtain a better percent training accuracy.
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28 x 28 input neurons 3 x 24 x 24 neurons

3 x 12 x 12 neurons

Fig. 8 From Imput layer to 3 feature maps and then to 3 pooling maps

Fig. 9 DCNN of Krizhevsky, Sutskever and Hinton

Progress in Image Recognition A best paper of Krizhevsky, Sutskever and Hinton
appears in 2012 (Krizhevsky et al., 2012). They trained and tested a DCNN by a
restricted subset of the ImageNet data. They used the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC-2012). The used competition dataset gave them
the possibility of comparing their approach with others. The ILSVRC-2012 training
set contained about 1.2 million ImageNet images, from 1000 categories. From the
same 1000 categories performed validation and test sets containing, respectively,
50,000 and 150,000 images.

As an example of good architecture it is intresting to see the DCNN of
Krizhevsky, Sutskever and Hinton.

The DCNN of Krizhevsky, Sutskever and Hinton has layers of hidden neurons.
The first hidden layers are convolutional layers and some with max-pooling, the

next layers are fully-connected layers.
Note the layers split into 2 parts, corresponding to the 2 GPUs.
The input layer contains neurons, representing the RGB values for a image.

ImageNet contains images of varying resolution, while a neural network’s input
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layer is usually of a fixed size. The net dealt with this by rescaling each image so
the shorter side had length .

The first hidden layer is a convolutional layer, with a max-pooling step. It uses
11 × 11 local receptive fields, and a stride length of 4 pixels. There are 96 feature
maps, split into 48 feature maps on each GPU.

A max-pooling is in this and later layers, and done in 3 × 3 regions; pooling
regions may be overlapped.

The second hidden layer is also convolutional, with a max pooling step. It uses
5 × 5 local receptive fields. There are 256 feature maps, split into 128 on each GPU.

The input channels are used only by the feature maps. This is because any single
feature map only uses inputs from the same GPU.

The third, fourth and fifth hidden layers are also convolutional, but they do not
involve max-pooling; their parameters are respectively:

– (3) 384 feature maps, with 3 × 3 local receptive fields, and 256 input channels;
– (4) 384 feature maps, with 3 × 3 local receptive fields, and 192 input channels;
– (5) 256 feature maps, with 3 × 3 local receptive fields, and 192 input channels.

The third layer involves some inter-GPU communication (see figure) so the
feature maps use all 256 input channels.

The sixth and seventh hidden layers are fully-connected layers, with 4096
neurons in each layer.

The output layer is a 1000-unit softmax layer.

4.2 Deep Learning and Knowledge Relevance

The new era of Artificial Intelligence, linked to deep learning, was born with the
overcoming of Expert Systems and the difficulties encountered in defining all the
rules necessary to create a useful and efficient Expert System. In practice, the A.I.
has gone from trying to provide the machine with the necessary knowledge, to
making the machine learn this knowledge automatically. And this is how Machine
Learning was born, and Deep Learning in its field, with the successes we know in
the field of image recognition, speech, natural language, and in many other sectors
in which Machine Learning is applicable.

In practice, the turning point took place by abandoning the design of systems
that contained all the necessary knowledge for the intelligent machine, turning
to the design of systems that independently learned the necessary knowledge.
Machine Learning, after a period of interesting but not optimal results, has recently
accelerated, thanks to progress in computer technology on the one hand, and to
the development of decidedly efficient algorithms, based on innovative artificial
neural networks, and, in this context, of Deep Learning. The singular aspect of this
breakthrough is linked to the successes of these algorithms, whose dynamics and
founding principles possessed dark sides and all to be investigated.
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However, some glimmer is making its way. In particular by analyzing one of
the best known and most effective algorithms: the Backpropagation Algorithm
(Rumelhart et al., 1986; Shamir et al., 2010). The machine that learns to recognize
things never seen before selects the information it treats based on its importance.
The degree of importance of the information corresponds to its generalization. In
practice, the machine that learns to recognize objects does so by evaluating the
importance of the information that the object carries with it. In this regard, in the
behavior of the Backpropagation Algorithm, we have seen just what has just been
said. The algorithm in its iterations ends up filtering the unimportant information,
and preserving the broader one, that is, of a general type. And therefore, after the
training phase with the training set, the machine will be able to recognize objects
never seen before. That is, the machine is able to generalize its knowledge.

The phases observed by Tishby and Zaslavsky (2015) during the run of back-
propagation algorithm, in a deep network, can be summarized as follows:

Initial state: Layer 1 neurons encode everything about the input data including
all information on its labels. In the higher layers, in which neurons are located, they
are in almost random state, with little or no relationship to the data or their labels.

Adaptation phase. As the DL begins, neurons in the upper layers gain informa-
tion on the input and get the best of adapting labels to it.

Phase of change. The layers suddenly change their behavior and begin to forget
information about the input.

Compression Phase: the higher layers compress their representation of the input
data, taking what is relevant to the output label. They take the best to predict the
label.

Balance between security and compression. The last layer achieves a good
balance, retaining only what is necessary to predict the label.

Naftali Tishby and others have analyzed deep neural networks and defined the
‘Information Bottleneck Principle’ (Tishby et al., 1999; Tishby & Zaslavsky, 2015).

In practice, this principle allow to reach the theoretical limits of the optimal
information in the DNNs: that is, they say, obtain the generalization limits of finite
samples. This is quantifiable both by the constrained generalization and by the
simplicity of the network.

We can analise the compromise between the compression of input data (due to
bottlneck) and the output layer that preserves the prediction of supervised target.
Closely connected to this could be the optimal architecture of nn: layers number,
characteristics, connections.

In their experiments, Tishby and Shwartz-Ziv monitored the amount of informa-
tion each layer of a deep neural network held on the input data and the amount of
information each held on the output label. The networks appear to converge at the
theoretical limit of the information bottleneck: theoretical limit that represents the
optimal system for extracting relevant information: the network appears to compress
the input as much as possible without sacrificing the ability to accurately predict its
label.

We can argue that this trade-off between input compression and output prediction
can correspond to reducing (compressing) knowledge of the input, distinguishing
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what is not necessary, and is lost, and preserving what is relevant (general) for the
output.

If this can be seen as more then the behaviour of some algorithms, but will
become a general computational method, we would revolutionize the design of deep
learning systems by designing their optimal architecture.
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Reasoning About Reason: Why
Philosophy Should Now Abandon
Monism in Favor of Pluralism

Lucia Urbani Ulivi and Primavera Fisogni

Abstract The term reason is used in a widespread and recurring way to indicate
one of the traits that characterize human beings in a non-negotiable way. While this
or that human behavior can be considered “irrational”, no human individual can be
qualified as “irrational” per se, whereas a person can be “immoral” or “amoral”,
devoid of aesthetic sense or incapable of linguistic expression, etc. Unlike other
aspects, reason is always coextensive with humanity: as long as there is one, there is
also the other. And this consideration already raises questions; it opens to reflections
and calls for clarifications and explanations.

A classic starting move to dig into the theme is to look at the past, to the history of
the term “reason”, and to proceed with a philological recognition. Such an approach
is often useful in recovering not only the semantic outline, but also the conceptual
groove through which the current meaning of a term has stabilized. This shift
into the investigation of reason is a good point of departure, but honestly it does
not suffice by itself. “Ratio”, the etymological antecedent of “reason”, provides
chameleonic mutations over time, it intertwines and overlaps with “intellect”,
“logic”, from which in different eras it sometimes diverges or converges, without
a linear genealogical transmission. This historical complexity has still a lot to teach
us, and it must be kept in mind, but it is also necessary to exploit contemporary
cognitive resources to elaborate a concept of reason that is current and suitable for
today’s world.

The aim of this essay is to make a contribution to philosophical research by
making a proposal that does not operate by simplifying the problem and reducing it
to a few components, but rather intercepts its richness and complexity, in order to
achieve a contemporary concept of reason for our world, philosophical as well as
cultural, making available to scientists and philosophers, sophisticated intellectuals
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and men of good will, a reference and a debating platform within which to interact
with critical attention and intellectual honesty.

Keywords Abduction · Logic · Monism · Pluralism · Reason · System

1 The Meaning of “Reason”

1.1 A Brief: Though Almost Impossible—History

A tangled term of the philosophical repertoire, the word “reason” presents
chameleonic mutations over time. It intertwines and overlaps its meaning with
“intellect” and “logic”, from which in different times it sometimes diverges or
converges, without maintaining a prevailing or stable semantic line.

Given all this, any effort of tracing the philological etymology of “reason”
(which probably derives from the Latin ratus) is expected to be almost zero interest
for philosophy. By trying to advance in such a complex subject matter, it may
be promising the search for its conceptual antecedents, which can be found in a
cluster of related terms provided by the classical Greek thought: logos, noesis,
dianoia. Precisely logos displays the semantic density that characterizes every
ancient utterance. In logos (from legein, to connect, to link) we face the very idea of
a profound connection that binds things together, which can be grasped by human
beings according to an immediate mental act, the noesis, which organizes the world
scenario without any mediators. It becomes dianoia when the noesis is expressed in
discursive or propositional form and eventually regimented in logical arguments.

If the story of “reason” is impossible to sketch in a very linear way, being
destined to disperse itself in several semantic streams, the one that concerns
its conceptual antecedents opens a broader perspective: it includes not only the
discursive knowledge (dianoia), but also a wide number of references (noesis)
starting from which the discourse is structured. The concept of logos also contains—
at least in some classical authors among which Aristotle stands out—also an implicit
but undeniable ontological commitment: human understanding, the subjective logos,
can effectively perform its capacity to understand the world because the world
consists of a rational structure, an objective logos, which makes it understandable.

If logos is the most plausible conceptual antecedent of “reason”, it possesses,
with respect to “reason”, a semantic density that the latter no longer has. As if,
we could otherwise say, in the historical path that led from logos to “reason” the
concept has undergone a process that emptied it out by reducing it to a few traits.
Do we have reasons that allow us to check this hypothesis? What has ever happened
in the historical-semantic evolution that led from logos to ratio? What idea do we
have today of reason, in philosophy and in common sense?
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1.2 The Current Use of “Reason” in Philosophy
and in Common Sense

Even if we are looking for the prevailing current use of the term “reason”, it is
necessary to immediately exclude that any current use exists absolutely, or that it
can be traced without geographical, cultural, historical, personal, and many other
limitations.

In contemporary European culture, among populations that share wide cultural
spectra and a sufficiently homogeneous cultural past in which a semantics in good
approximation uniform has settled, the utterance “current use” corresponds to the
ordinary meaning provided by a good dictionary.

In this context, and within these semantic limitations, reason is primarily
understood in term of reasoning, as the ability to correctly argue or “any process of
drawing a conclusion from a set of premises” Blackburn 1994 (Oxford Dictionary
of Philosophy, 1994: 320). Despite its precision, this definition does not allow
to distinguish reason from the realm of logic, which is notoriously the discipline
that specifies the conditions of correct inferences. The prevalent philosophical
use follows the meaning ascribed by common sense; a rather extensive literature
expresses with sophisticated specialist discourses (see, among many, Putnam, 1981;
Simon, 1983; Rescher, 1988; Stich, 1991; Nozick, 1993) the basic idea that there
are some universal standards of rationality. Such reduction of rationality to logic is
sometimes tempered by modest concessions to inevitable but tolerable pragmatic
deviations from the logical standards.

In short, not only for common sense, but also for philosophers, reason is mainly
logical, and the deviations from formal correctness that are frequently found in the
vast sea of human reasoning should be attributed to human irrationality, or to the
particular circumstances that limit and distort the correct application of inference
rules. (Piattelli Palmarini, 1994).

If we describe “reason” in terms of “logic”, limiting the concept of reason within
the boundaries of logic, we offer an easy conceptualization, simple to manage
and apparently not problematic, of the term “reason”. But have we answered the
question posed before (“What the reason is?”), or do we have just ignored in what
reason exceeds logic or is not superimposable to it? It is well known that simplifying
ideas tend to successfully substitute more complex ones, but to better understand
how such depletion took place, it is worth asking when this simplifying scheme
was founded and established, given that not even Aristotle, the inventor of logic,
would have probably subscribed to it. The turning point came in the seventeenth
century, due to the New Mathematized Science that reinforced the objectivity and
the certainty of its observations by expressing them in mathematical, formal or
formalizable language.

Descartes (1641) took on the task of transforming the scientific method into a
metaphysical scenario by codifying and transmitting many forms of philosophical
reductionism such as mechanism, materialism, reductionism, mind-body separation
to future generations. The Cartesian intellectual legacy imposes strict constraints
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on the subsequent research and orients its development through some powerful
suggestions: the reason is univocal, it is nothing but formally correct reasoning,
all the sciences use the same “rational” method, the errors of reasoning depend on
the interference of the “irrational”, generated in the heterogeneous spheres of will,
passions, obstinate and rebellious unjustified beliefs. The identification of reason
with logic became a paradigm, so pervasive to be implicitly accepted also by its
opponents, who could escape the motto “Reason is nothing more than logic” only
devoting themselves to “irrational” theories.

The conceptual constraints imposed by Descartes are, de facto, accepted and
considered non-reviewable in many areas of philosophical thought up to the
contemporary age (see the Philosophy of mind, and especially the debate on A.I.,
Scientism, Physicalism). The shared conceptual inheritance provided us with the
idea that reason consists of correct argumentation and that the term “reason” is
univocally referential. Furthermore, it is given for granted that philosophy and the
sciences are qualified for common use of reason; any deviation from this use is to
be considered as a sort of weakening. As a consequence of it, history, psychology,
medicine, and all the arts that cannot satisfy the universal criteria valid for reason
are rejected in those uncertain and cognitively opaque domains that we can only
qualify as irrational.

Common sense and philosophy converge in identifying reason with logic despite
the impossibility of proving the co-extension of the two domains and despite the
innumerable corrections that are necessary to exclude logical incorrectness from
the realm of reason as well as to exclude that logically correct arguments must be
included in the domain of the non-rational (Devlin, 1997).

1.3 Reason and Logic

Contemporary Anglophone thought has questioned the epistemological status of
reason by asking whether rational standards of argumentation exist (Stich, 1991:
49).

A positive answer has two implications: first, the standards of rationality are
specified in detail. Secondarily, reason is co-extended with logic because, if such
standards exist, they correspond to universal criteria of logical correctness.

Putnam (1981: 104) wonders whether there is an ideal theory of rationality, which
establishes the necessary and sufficient conditions for a belief to be considered
rational in current circumstances and in all possible worlds. The problem is whether
a criterial theory of rationality might exist. The answer can only be negative; Putnam
shows that looking for such a criterial theory is a consequence of implicit scientism
and reductionism but also, one might suggest, of a logicist assumption.

The search for universal standards of rationality has not provided valuable results
and has forced many authors towards a pragmatism which by renouncing that
claim, obtains in exchange the legitimacy of behaviors, decisions and choices,
which are dominant and successful in our life, even though they cannot satisfy the
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requirements of any logical correctness. Pragmatism recognizes the appropriateness
of the pragma, but it eludes the underlying problem because it does not address
the twofold question: “in what relationship are logic and reason? Is it possible that
reason can deviate from logic while maintaining the truth value?”

Piattelli Palmarini (1994) proves the logical inaccuracy of everyday reasoning
and concludes for the unreliability of ordinary reason, which does not stand up to the
logical test. He too seems to regret the formal inappropriateness of reason, without
further pursuing the investigation.

Damasio (1994, 2010) and Devlin (1997) are the scientists who subjected the
problem of the relationship between logic and reason to a drastic revision. Precisely
they demolished the rationalist equivalence that, from Plato onwards, through
Descartes to Turing (1992), Minsky (1986) and Winograd and Flores (1986) was
unable to perceive the profound difference between describing human behavior in
terms of rules or mathematical formalizations—a perfectly legitimate description in
terms of the science that carries it out—and reducing the human behavior to such
rules, neglecting the fact that actions are performed according to abilities, skills,
moral constraints, preferences that escape formalization.

Thanks to Damasio and Devlin, philosophers have now the tools to get out of the
logicist dilemma: either the reason is logical, or we are consigned to skepticism.

Damasio proves the embodiment of reason in opposition to the disembodied
formality of logic and describes perfectly rational though illogical behaviors and
completely irrational, but perfectly logical, behaviors. In the same line, Devlin
criticizes logicism, that is to say the extension of logic to a univocal and unitary
reference for human behavior and reasoning, and emphasizes how the context
influences the standards of rationality—which undergo notable changes according
to circumstances—and demonstrates the irreducibility of human actions to a
repertoire of formal rules. Devlin also points out how much the meaning of the
same term is influenced by the circumstances in which it is used and how much
communication depends on the structure of conversation and culture.

In the light of Damasio’s and Devlin’s discoveries—just to name the most
influential ones—it is necessary to reverse the logicist relationship between logic
and reason: reason is the vast field that dominates human activity, of which logic
is a subspecies; in some cases we use logic because we deem it appropriate and
useful in a given context, in other cases we neglect or violate it openly without the
rationality of what we do, say or think being weakened. If at the entrance to Macy’s
store we read: “on the escalator it is mandatory to carry dogs in your arms”, an
extremist logicist will go in search of a dog to carry in his arms, sacrificing context,
circumstances and reason, where a human being who intends to keep in line with
reason, even at the cost of sacrificing logic, will easily be riding on an escalator
without a dog in his arms (the example is from Devlin, 1997: 270). As Devlin
clearly remarks in his passionate investigation at the edges of logical thinking, it
is not the logic and semantics of the sentences alone that can make their meaning
fairly understood. In all the discourses the meaning is determined also by reference
to the context given.
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Here is an example: “A bachelor is an unmarried man”; this guy is a bachelor,
so this guy is unmarried. An unmarried man can get married. But this guy can get
married because although he already has three wives, he can get a fourth because he
is Muslim, so it is not true that this guy is both bachelor and unmarried. Furthermore,
this guy is a bachelor because he can get married, but he is not a bachelor because
he is married. This guy is both a bachelor and a non-bachelor. In this case the
problem is generated by the very meaning of “bachelor” which is understood as
having a univocally referential meaning, that is, as a logical-linguistic symbol, while
it undergoes important changes that depend on the context and circumstances of the
utterance.

If the Platonic line has historically been dominant, the time has come to re-
evaluate Aristotle’s philosophical attitude, according to whom logic is one of the
ways of expressing the logos, but it is not the only one nor the best.

It is beyond the scope of this investigation to discuss the historical debate about
reason and logic, we have simply limited to sketch some lines in order to introduce
our theoretical claim.

2 A Philosophical Proposal

The etymological and semantic history of the term “reason” can supply useful
insights, however, as we have seen before, it does not convey a concept capable
of adequately supporting the many facets and features that belong to reason. It
is necessary to venture into a new path and identify a definition that also takes
into account the new horizons of knowledge opened by the sciences. Here is a
first proposal, a deliberately broad one, therefore marked by a necessary level of
vagueness and openness.

Reason is the ontological principle underlying the structuring of reality and at the same
time the epistemological counterpart that guides us in its understanding. It is the interface
between the subject and the world.

We can try to better specify the meaning of reason and to deepen its under-
standing. Taken with reference to the human subject, reason is the ability to
implement strategies for understanding the world and ourselves; it guides behaviors,
it uses arguments, and it knows how to orient itself amid different hypotheses and
scenarios. Rooted in the body and in contact with the emotional experience, with
which it intertwines a silent and continuous confrontation, reason gives rise to
different scenarios, evaluating the consequences and orienting towards choices and
decisions.

Its action goes beyond what is present to conscious awareness and also includes
subliminal levels in which it shows its activity by generating effective and efficient
behaviors which remain unknown or ignorable to consciousness. Thanks to the bond
that connects it in a profound and continuous way with the body, reason is embodied
in a very full sense, as it moves within bodily constraints and limits. The body
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anchors it to the world of things, making it unrealistic to believe that the subject can
disregard of the object and vice versa.

Epistemology and ontology cannot do without each other. Reason is the interface
between the human subject and the world, it connects and puts them in com-
munication for the aspects in which they diverge, and at the same time it makes
them partakers of converging and common traits. Human beings can exercise their
understanding of the world because both human beings and the world have a
structure of reason which structures their configuration.

We therefore consider reason as the ontological principle that structures and orga-
nizes reality and as the epistemological counterpart that guides us in understanding
ourselves and the world.

Reason is principle (arché), in the Aristotelian sense: “Ontological foundation
of entities and gnoseological foundation of knowledge”. Translated into a philo-
sophical language for the contemporary context, reason is irreducible to another
concept, in the sense that the notion of reason cannot be expressed in terms of other
conceptualizations. It follows that one could speak of reason as a “primitive”, a term
dear to logicians, or even, in a classical way, as a “principle”, in the sense of “what
structures the constitution of an entity”.

If we apply to reason the meaning of “principle” as seen above, we achieve
a more articulated and less generic understanding of the trait that so typically
identifies the human: reason constitutes an internal criterion that structures the
ontology of the human world, gives shape and character to all its values and
manifestations, and it is expressed in its phenomena. Used as a knowledge tool, it
allows and supports cognitive activity. If we wish now to move from the maximum
degree of the conceptual extension of “reason”—which inevitably involves the
minimum level of intension—to its specifications, we will trace different relevant
aspects according to the fields and interests of investigation. In this way, reason’s
specifications will gain in terms of intension what they lose in terms of extension.

3 One Reason, Many Viewpoints

3.1 From an Ontological Point of View Reason Can Be
Subjective and Objective

From an ontological point of view, there is an objective reason that structures reality,
organizes it into distinct phenomena and objects, activates a processual activity that
consists of the arising and the decaying of phenomena. The world, by being made
up of separate entities—even if not isolated ones—is imbued with reason. From
the ontological point of view, the peculiar structure of reason is inherent to the
world, and would persist even in the absence of rational observers. This is not an
epistemological hazard, but a condition rooted into ontological processuality.



196 L. U. Ulivi and P. Fisogni

In the world we are acquainted with, symmetries and symmetry breaks are
dominating. In this scenario, phenomena endowed with properties and character-
istics emerge. They do not only hold a certain degree of stability, but also changes
according to dynamics specific to each domain.

With human beings, reason also acquires a subjective value: it becomes the tool
that grasps and understands the rational structure of the world and its objects. We
open a bracket: the failure of the enterprise of knowing that the skeptic declares is
not very credible because, even to sanction the failure, reason is needed and even
filing for bankruptcy is a rational declaration.

In reference to the human subject, reason is the ability to implement strategies
for understanding the world and ourselves, it uses arguments. It therefore knows
how to orient itself between different hypotheses and scenarios, thanks also to the
contribution of emotions and the body with whose needs it intertwines its path.

Between objective reason and subjective reason there is a fundamental asymme-
try that inevitably derives from their different structure, but “pure” objectivity, that
is to say objectivity without a subject that catches it, is unattainable, as idealism has
well noticed: there is no object except for a subject who knows it (Calogero, 1927),
while the reverse (no subject without object) is at least an unexplored field. The
dynamics between subject and object is a continuous flow of mutual transformations
and the attempt to know the object regardless its interplay with the subject is a rather
dangerous myth, which drives us to seek the unobtainable.

Today the vital trace of idealism can be found in the “sourcentist” positions,
(Maturana & Varela, 1980) which affirm that the subject makes the world arise in the
act and in the way of knowing. Unlike the idealist, the “sourcentist” is not obliged
to conclude for the mental existence of the world, but he can argue that reality is
a domain of reference external to the subject, the identification and description of
which pertains to the subject, to its objectives and capabilities.

3.2 From an Epistemological Point of View Reason Can Be
Implicit and Explicit

While the “explicit” reason is well known to philosophers and also to the on-going
experience of human subjectivity, which always talks to and with itself in ways
that can be related, remembered and even traced, a meaningful part of the rational
activity that does not reach the conscience has been largely ignored or denied.
We refer to the “implicit” reason, whose effectiveness is revealed in what we do,
that governs our behaviors and also acts without our knowledge, with motivations
and orientations not being necessarily present to the consciousness. Aristotle calls
it noesis and attributes to it a regulating force much wider than that recognized
to dianoetic reason, which translates the dictation of noesis into the propositional
discourse, subjected to the constraints of syntax and logic.
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Vitiello (2019) expresses a not dissimilar concept in the field of theoretical
physics when he states that the microscopic phenomena that support macroscopic
manifestations are intrinsically opaque to knowledge: reason admits them and
identifies them at least in part, even though it cannot provide their description, if
not indirectly.

It is easier to recognize the explicit reason, which exercises its action in a
traceable way. Its path can be followed in the areas in which it is active and does
not require the use of abduction to pass from the visible to the invisible: it can be
expressed through the classic tools of logic, which organize knowledge data in a
formal structure.

3.3 From the Point of View of the Knowing Subject Reason
Can Be Conscious and Unconscious

The Freudian discovery of unconscious processes has not weakened reason by
handing it over to a dark and unknown region, but it has extended its breadth: even
the unconscious with its proper dynamics, traceable only through interpretation of
universally shared phenomena—the well-known dreams, slip acts, discomforts and
psychic pathologies—can be understood thanks to the guidance of reason.

A guideline which in this case prepares and uses observation, access and control
tools built in order to investigate a field that can be intellectually grasped only
indirectly. Also in this domain there is no lack of anchoring to the empirical,
which is the therapeutic capacity of the different psychoanalytic approach to interact
with the hidden world of the patient, bringing about improvements or remission of
pathologies at least in the cases where they are successful.

It would be interesting and worthy of a discussion the problem about the violation
of the principle of contradiction observed in several interpersonal conflicts: I can
love and hate the same person at the same time, I wish to meet someone and I can’t
stand to see him. One could suggest the hypothesis that the violation of the principle
of contradiction experienced at an unconscious level is at the origin of mental illness.

To verify this hypothesis it would be necessary to build an interdisciplinary
research project, with the collaboration of philosophers and psychoanalysts. If such
conjecture were proved, we would confirm furthermore the divergence between
logic and rationality: the contradiction is a violation of logic—which only possesses
tools for reporting the violation, but would not know how to exploit and understand
it. But it does not violate rationality that even in this case would pervade any
human action: pathology expresses and denounces an “impossible” experience
because it is contradictory in the only language available to it, that of suffering. In
fact, as it is well known, the unconscious does not have access to the discursive
and propositional language of consciousness and is expressed through images,
metaphors, and symptoms.
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According to Libet (2004), a neuroscientist well known for his experiments in
the field of brain and the mental timing, alongside the conscious mind, there is the
unconscious mind, which governs many human actions, including the complex and
intertwined operations of physiology, aimed at the organism’s survival. It solves
many problems, even theoretical ones, silently, providing the conscience with the
result of its work. We are talking about an unconscious mind which, Dupré might
add (1995, 2003), in an imaginary remote dialogue with the sciences, is action-
oriented (“I press the brake so that I don’t kill a cyclist crossing the roadway”),
introjects cultural imperatives and models.

A further insight about this topic comes from Stern’s (2004) distinction between
unconscious and nonconscious mind, which provides a more comprehensive set of
the dynamics of the Ego.

From these and other researches, the profound unity of the human emerges
with even more solid evidence: psychic states influence choices, reason is imbued
with endogenous and exogenous relationships, the unconscious mind interacts with
the conscious mind. The weft of the human is woven by intertwining all these
threads and each of us expresses and lets himself/herself be seen in its intertwining.
Hence we face a fundamental challenge that consists of refuting the idea that
mind primarily and exclusively follows logical rules. To provide some valuable
motivations to support this criticism, it is useful to begin by exploring the possibility
of a more extensive feature of reasoning. New lenses are required to adequately
support this task.

3.4 From a Logical Point of View Reason Can Be Abductive
(Creative) and Deductive (Tautological)

Reason, in particular in its explicit value, applies different inferential modalities
to achieve the cognitive objectives it has set for itself. In a very general way,
inference consists of the necessary or at least possibly provisional connection
between a proposition that is deemed true and a subsequent and dependent one. The
inferential modalities traditionally studied in logic and epistemology are deduction
and induction; the deduction that is drawn from true premises leads to necessarily
true conclusions, while induction obtains, at most, a cognitive result of high
probability as it generates laws or rules starting from a limited number of cases.
Due to the necessity and certainty of its conclusions, deduction remains the leading
tool for logic, with the well-known limit of producing tautologies.

Yet human knowledge is not only tautological or anchored to observational data:
on the contrary it is often innovative and capable of progress (very different from
accumulation). On closer inspection, human beings mostly use another inferential
modality—abduction—the results of which are not certain, and often not even
probable. Abduction is widely and successfully used not only in daily practice,
but also in many areas of the greatest relevance, such as medical diagnoses, police
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investigations. More widely this inferential modality is applied in all occasions in
which a “new”, “creative”, “unexpected” theoretical or practical result is reached;
this is the case with scientific theories. It is due to systemic thinking that we have
brought attention back to this kind of inference, already known to Aristotle 1924,
(Prior Analytics: 2, 26, 69 a, 20–38) and Peirce (1931–1958), and which is now
beginning to enter the logic manuals (Frixione, 2007). But what is abduction?
(Urbani Ulivi, 2016).

Just to have a reference platform, we suggest two definitions for “abduction” and
for “creativity”.

By abduction we mean an inference that, by operating in an incomplete information context,
over-determines the available data and identifies either a universal hypothesis (a law or a
theory) or even a particular object in response to the question posed by the investigation.

By creativity we can mean, at least in a useful approximation in this context, the outcome
of a procedure that cannot be formalized through given rules.

Abduction can be of various types, but at this point of the paper we aim to
underline the creative abduction as the discovery of the hypothesis that organizes
the entire cognitive landscape in a new way and that cannot be prescribed through
a formal procedure; it follows that it is impossible to bring creative abduction
back into the context of formal logic, for which abduction is nothing more than
an incorrigible anomaly. Obviously, the investigation on abduction remains open to
further philosophical investigations, which require to widen the context of reference.
In other terms, we should answer a main question that can be formulated as such:

How knowledge must be re-thought so that it can also include abduction, creativity, infor-
mation incompleteness, variable contexts, non-deductive and not even inductive inferences?

There is but one answer: once we recognize that the formal rules of logic
characterize a part of the knowledge activity, but do not exhaust it or even complete
it, we must admit that thought processes draw on many and different resources that
go beyond any formal procedures. They root knowledge in a real world and, first and
foremost, in a subject embodied in the personal and affective relationships: all these
aspects are part of the individual’s personal history, in the social, political, religious
bonds, which enter into the argumentative procedures, orient them, support them,
being only partially recognized and explicitly recognizable.

At this point of the investigation we have reached the intermediate result to focus
an enlarged view of reason, embedded in structural, dynamic relationships with the
environment of which human beings are included. This path, by shaking all the
current paradigms, invite us to turn on a systemic perspective.
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3.5 From an Anthropological Point of View Reason Is
a Second Level Property of the Human System

We generally say, through the lenses of the system thinking, that a property is a
“second level property” when it depends on the entire constitution of an entity. In
the case of humans, reason operates taking into account all those factors whose
intertwining qualifies and identifies each subject.

We talk about body, emotions, personal history, preferences, moral, family,
social constraints, freedom, and much more that is typical of the human being.
Reductionist simplifications cannot be followed: such a thesis cannot be sustained,
at large, because offering a simplified explanation of a multi-faceted phenomenon it
misrepresents the phenomenon as a whole, only describing some of its constituents.

To provide some intuitive motivation for this remark, it could be useful to recall
some examples. “It is rational to eat if you are hungry, to drink if you are thirsty”—
this is the deceptively persuasive example used by many philosophers to suggest the
universality and sharing of the criteria of rationality, but it is an example, precisely,
deceptive: I’m hungry, there is food, it is not always rational to eat it. Indeed, it is
rational that I do not eat it if I’m waiting for the guests for whom the food has been
prepared (cultural constraints) if I want to lose weight (wishes to which hunger is
subordinated), if by eating that food I steal it from my child if the ongoing famine
does not allow further supplies, etc.

Human action, of any type, from the most corporeal to the emotional, sensitive,
deliberative ones, is as rational as it is capable of prefiguring different scenarios
with the results of the various actions undertaken. And it is as rational as it
is able to choose which scenario to give course, but reason does not oblige us
to make a specific choice, nor it does make the same scenarios available for
everyone. It is not a universal criterion, it is a principle that activates scenarios
and strategies of orientation—practical and theoretical—that we use to understand
different situations and to behave in different circumstances.

The “ways”, in the sense of paths, of reason are neither homogeneous nor
even equal, despite having in common the achievement of a goal. The battles are
different, but while you need an enemy to make a battle, for there to be “reason”
you need a purpose. Purposes are not rational—nor irrational—they are pursued
with rationality.

Some might prefer to the term “way”—which remains very approximate and
vague, similar in this to the term “manner”—the term “procedure”, more precise.
However, we suspect that, by procedure, we inevitably mean a coordinated series
of passages formally codified by logic. Of course, reason is also this: logical-formal
procedure, but it does not only reduce to this, being a complex texture of a variety
of threads. It is also choice, decision, preference, appreciation of some aspects,
carelessness of others, it is tears, it is laughs. For none of these traits we would ever
use the term “procedure”, while we could speak of “mode”, recalling the Cartesian
sense of mode as a “variable or transient quality”, or Aristotelian pluralism (the
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modes of being), to arrive at the grandiose Spinozian construction, which saw in the
modes the necessary “affections” of the substance.

To the “mode”, even if differently declined in different eras and authors, the plu-
rality of expressions appears intrinsic, very suitable to reflect the operative plurality
of reason, and its unpredictable, different, surprising, yet rational outcomes.

3.6 From a Topological Point of View Reason Can Be Local
and General

Once the dangerous illusion of a universal reasoning criterion that governs every
cognitive domain in the same way has been abandoned and the simple recognition
of a plurality of philosophical visions à la Rescher (1985) is considered insufficient,
one cannot but accept and put forward a pluralist perspective (very different from
perspectivism). Declined on a topological horizon, pluralism affirms that reason
governs each domain of knowledge with local criteria, within which the conditions
of acceptance or rejection of hypotheses and theories are established, and that in
addition to local criteria there are validity criteria that going beyond the local ones
we can perhaps call “general” (we speak of “general” with some caution, because
it is a generality connected to the different “localities”). It should be recognized
that the general criteria by increasing the extension, fatally decrease the intension,
whereas the local ones by increasing the intension lose in extension.

In this perspective, general and local criteria interact and are linked by rela-
tionships of interaction and interference; they are mutually open to changes and
developments that transform them over time. To the various characteristics of
reason, another one should be added: it is processuality, which makes it flexible
and adaptable to the different needs of its presence in history.

3.7 Pluralism Versus Monism

There are no formal and universal criteria for rationality, valid in any circumstance,
for any subject, in any environment. Reason adopts different validity criteria
according to the domains intended. What is rational—or inspired by reason—
here and now is not exportable—or it is not always exportable, nor should it be
expected to be—elsewhere and in another time. Therefore monism and universalism
of criterial reason and logic should be replaced with a pluralistic view of reason.

Rescher in his The Strife of Systems (1985), observing the coexistence of philo-
sophical systems on the scenario of thought, each of which claims to be universally
valid, to avoid the easy skeptical drift, proposes the “pluralism of orientations”,
which affirms that in philosophy coexist acceptable alternatives, although they
may have very different merits, therefore many different orientations in terms of



202 L. U. Ulivi and P. Fisogni

setting and results are admissible on the philosophical scenario. Rescher’s position,
by recognizing that there are different competing philosophies on the scenario of
thought, does express a fact, but does not explain why these differences exist.
In order to explain this wide range of perspectives (hence perspectivism), reason
should no longer be considered as an universal tool that exercises its activity
according to universal procedures and rules, but in an authentically pluralistic way,
as an activity of understanding that changes according to the historical moment,
of the circumstances, of the problematic area to which it refers, of the objectives
to which it is addressed, of the implicit but powerfully influential assumptions that
it adopts, of the own and individual sensibilities of each philosopher, of his moral
structure, of his aesthetic sensibility, and of much even more.

Philosophical systems are not ahistorical, disembodied, absolute, they do not
express a criterial reason independent of the circumstances, but they represent the
effort with which each generation and each individual tries to understand the world
with the tools of knowledge available at a certain time and with different capacity
and sensitivity of each. A pluralistic position—very different from the obvious
admission that different systems coexist and struggle, à la Rescher—explains the
plurality of positions by introducing not only, but also logical reasons as forces that
structure and define different positions.

4 What About “Irrational” and “Unreasonable”?

“Irrational” is not a term predicable of “man”. Losing one’s reason—understood in
the extended sense proposed here—means losing humanity. The subjective reason
may be missing, but the unconscious reason or even only the objective reason will
remain to structure the human, even if only in the organization of corporeality. The
human subject can carry out actions whose ratio remains opaque to the observer
and also to the one who performs them, but the embodied, hidden, inspiring ratio is
always there: the mentally ill person, the immoral, the criminal, behave following
questionable criteria, or not shared by others, but they follow reason. Their reason.
Which can be misused, superficially, erroneously, counterproductive, but it is still
followed. Of course, there are “irrational” or “unreasonable” actions, but they
are precisely single actions that do not undermine the general structure of reason
characteristic of human behavior.

This passage is highly relevant because it is expected to reshape the dominant
paradigm about the human agency and to have consequences in several fields of the
human sciences, from psychology and psychiatry to law. It’s interesting to underline
that, regarding reason, contemporary researches in psychotherapy are moving
towards the same path traced by the systemic thinking approach. We could not
understand why therapy brings about a change in the psychological discomfort if we
would not consider that sui generis rationality. The possibility of any psychological
treatment passes by the capacity of the therapist to become acquainted with the
mental world of the patient, both cognitive and emotional: therapeutic approaches
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like the EMDR (Eye Movement Desensitization and Reprocessing), which works
with the opaque dimension of the mind, proves that any presumed “irrational”
content is highly “rational”. Worth noting that not the logic but a processual
approach—the EMDR counts 8 different phases—both cognitive, emotional and
sensitive (the therapist’s hand tapping) is the very key to enter the intimate ground
of the patient. A logic approach is taken on by the two actors of the process, the
patient and the therapist, only in the “assessment” (phase 3) and, at the end of the
therapeutic path, in the “closure” (7) and “evaluation” step (8) (Fisogni & Fisogni,
2020).

Furthermore, in the last two decades the phenomenon of global terrorism has
deeply put in question what “reason” is and how reason works in evildoing.

There is a wide consensus among scholars that global terrorists are not irrational,
although their acts seem to be completely out of reason. It is questioned whether they
perform their attacks according to a limited critical capacity, due to the ideological
desensitization, or their acts are the result, on the cognitive ground, of a lack of
empathy (Fisogni, 2010) that is amplified by the turn from the offline to the digital
domain. Finally, exploring the opaque dimension of the reason also means to re-
open the ethical debate about the major phenomena of evildoing, like the death of
millions of innocent persons in the Nazi’s extermination camps.

4.1 Skepticism Towards Reason Defeats itself

The procedures and outcomes of reason are the thread that guides us into the
investigation of reality: every attempt at understanding is radically antisceptic; the
outcome can be uncertain and provisional—or even, as for the skeptic, negative—
but trying to understand is an activity imbued with optimism, animated by a
fundamental trust in rational activity and by the constant and continuous use of
reason.

We are well aware of the fact that many authoritative voices of philosophi-
cal thought have risen against this statement (Pascal, 1901; Kierkegaard, 1944;
Schopenhauer, 2014; to a certain extent also Hegel, 1807; Bergson, 1907). These
authors deserve the credit for having grasped and denounced the limits of reason
understood only as logic, which is criticized for the impossibility of understanding
those areas in which logic has no place to proceed. The defect of these “irrationalist”
positions has been to adhere to a reductive and limited concept of reason, which
has not been able to see how much reason goes beyond logic and impregnates
every human activity. Their denunciation is not valid against the expanded and
pluralistic concept of reason that we have proposed, while it remains very effective
in demonstrating the limits of a restricted reason within the bed of logic.
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5 Conclusion, Knowingly Open and Provisional

This inquiry took as its starting point the question: why do we return once again to a
subject so widely discussed, plowed up and debated? The answer could be this one:
for an unshakable confidence in the progress of knowledge. We think that although
knowledge does not progress in a linear way or even by accumulation, it is necessary
to exploit the undoubted cognitive advantages offered by the contemporary world
and by the tools that have been discovered, developed and made available by it.
We are thinking in particular of systemic thinking and its theoretical strength that
is starting to be exploited. It has been proved capable of expanding our capacity for
understanding in several areas, and of replacing worn-out tools that have frequently
proved insufficient or unsuitable to solve many theoretical or practical problems.

We find different terms in Greek: logos, nous, dianoia, and non-corresponding
other terms in Latin: ratio, intuitus, mens, intellectus. All these terms belong to a
conceptual family in which there are notable similarities and divergences. For the
differences, a brief historical investigation is sufficient; but where do they converge?
What is the platform of reference which is inclusive of the different expressions
of reason? As we have noticed before, reason is not reducible to dianoia, to any
judgment argued in a logical form, but it is also not reducible to nous, nor to the rich
and deep logos.

Every dianoia takes place starting from a noetic basis, from a nous understood as
the ability to intellectually grasp the elements that will subsequently constitute the
judgment: that too is the business of reason. It is dianoia, the connection of separate
parts, but it cannot be reduced just to dianoia; it is explicit and conscious, but its
foundations are rooted in the unconscious mind and bodily activity. It is subjective,
but it acts by tracing the reason that objectively structures the world of phenomena.

Reason therefore is a principle of organization and order of both reality and
knowledge. We talk about “principle” in the sense of “what regulates”; for example
it regulates the dynamic of a process and allows it to be distinguished from the
environment in which it is immersed, while the order is mainly the result of an
organization of objects (both concrete, theoretical or even mental) between which
relationships are established. It follows rules, laws, prescriptions, constraints. It
results from negentropy, from symmetry breaking, from self-organization.

Reason has many aspects and shows different faces depending on the focus
of each investigation: it is, and can be, subjective and objective, conscious and
unconscious, explicit and implicit, pragmatic and theoretical, argumentative and
apprehensive, and much more.

It is necessary to abandon any illusory ideals of reduction, it is necessary to admit
more than what contemporary logicisms have accustomed us to recognize: reason
is not only the procedure that guarantees scientific knowledge, but it is, within
the sciences, also that ability to formulate hypotheses that precedes the control
procedures.

In a word, it is creative.
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It favors vagueness and incompleteness: it renounces misleading claims of accu-
racy, completeness, which have remained unrealized announcements and procla-
mations. It investigates the asymmetries that govern the transformation of chaos—
where everything is interchangeable because it lacks identity characters—into
cosmos, rich of order and of orderly processes, distinguishable because they are
equipped with emergencies that make them identifiable. If we want to use a
metaphor that makes our idea clearer, the reason is similar to the road for those
who walk. To make any walk possible, there must be a road, and it can be flat
or uphill, well defined or barely outlined, smooth or coarsely cobbled. It must
be accepted and recognized that not all roads are the same—there are 10-lane
highways and mountain paths—and one cannot give a universal description, which
is suitable and appropriate for all roads. What is good for everyone is minimal: a
road establishes a limit with respect to the environment (external limit) and allows
different movements within it: the pace can be fast, slow, depending on who takes
it, why it is accomplishes.

We reached the end of the paper, not of the investigation, which is expected to
be developed through further interdisciplinary suggestions and criticism. The scope
of our proposal is intended to be a preliminary, however well-argued step addressed
to rethinking what reason is, what it does, how it acts, what results it can veritably
achieve. In search of a more comprehensive understanding of such a challenging
subject matter, we are perfectly aware that the shifts of reason are different and often
unexpected: they must be followed carefully, with patience and with optimism.
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Readers do not find any bibliography, and this choice ought to be at least clarified. We gave up
on it because a bibliography, while not complete or at least reliable, would have been probably
manageable with difficulty because of its immense extension. We could adopt selective criteria,
one could say; yes, we could, however even this hypothesis was discarded because any selected
criterion would have been tailored to personal interests and sensibilities. We therefore leave to
the reader to pick up his/her personal choice of reference texts. We would like to suggest—in
particular to the less experienced—to let themselves be guided by the entries “reason”, “intellect”,
“intuition”, “argumentation”, “inference”, “logic”, “mind”, of the Stanford Encyclopedia of
Philosophy and the Oxford Dictionary of Philosophy.



Neural Networks and Many-Body
Systems

Giuseppe Vitiello

Abstract I review one of the papers by Eliano Pessa and myself where we model
neural networks as many-body systems. The mathematical formalism underlying the
model is here presented. The information input induces the spontaneous breakdown
of the SU(2) symmetry of the units of the neural net. The order parameter describes
the collective correlation modes propagating over the net and represents the code
of the recorded information. The dissipative character of the dynamics allows large
memory capacity. Free energy minimization leads to the sigmoid activation function
for the neural net units. Entropy and free energy play a crucial role in characterizing
the net functional properties.

1 Introduction

It is very sad to write a contribution for a book in memory of Eliano, a companion
on the road in the search of some thing that could satisfy our common passionate
“desire to know”. The memory of the excitement created by the fact that such
“thing”, appearing first as an intuition, could be then expressed in mathematical
language, makes it all the more sad, since emotions cannot be cut, left without
who shared them with you. With Eliano there was a tacit understanding, the silent
friendship that binds the seekers in a common adventure. Perhaps the same one that
united him with his teammates in climbing the mountains he loved so much.

I then thought that summarizing and commenting here one of the articles (Pessa
& Vitiello, 1999) we wrote together could somehow alleviate my sadness.

In few words, the underlying attempt of our search was complementing the
“atomistic” view prevailing in science in those years, and still dominating today,
with the understanding of the collective dynamics responsible of the behavior of
the elementary components as a unified system. Naturalism, namely the list of the
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elementary components and all their properties in all possible details, is necessary,
but yet not sufficient to knowledge. Naturalism is not yet science. One needs in
fact to know also the dynamics ruling the elementary components so to reach the
understanding of their collective behavior.

Eliano was an expert in neural networks and our effort was to model the states
of such nets in terms of collective modes, a description which we thought to be
possible to formulate in terms of quantum field theory (QFT).

Actually, from one side Haken and collaborators (Haken, 1991) proposed to
model artificial neural nets by studying collective modes in classical and quasi-
classical formalism. On the other hand, Ricciardi and Umezawa (1967) pointed to
the possibility to describe neuronal activity in natural brains by use of collective
modes in QFT. Their model and subsequent developments (Stuart et al., 1978,
1979; Sivakami & Srinivasan, 1983) led to the inclusion of dissipative dynamics
in the study of brain modeling (Vitiello, 1995, 2001, 2004a; Freeman & Vitiello,
2006). These studies were realized also on the basis of the role played by coherent
dynamics, such as the one of holograms in laser physics (Pribram, 1971, 1991; Jibu
& Yasue, 1995; Jibu et al., 1996). Of course, an enormous amount of successful
work in the study of (artificial) neural nets was already done and was still in full
development in the frame of statistical mechanics and spin glass theory (Mézard
et al., 1993; Amit, 1989). Moreover, the studies of computational tools based on
quantum mechanics (quantum computing) were also rapidly developing (Nielsen &
Chuang, 2000).

The results of Pessa and Vitiello (1999) are summarized in Sect. 2. The proof of
the dynamical formation of long range correlations and of the coherent condensation
of the associated Nambu-Goldstone (NG) quanta is presented in Sect. 3. Some
mathematical details are given in the Appendix. The dissipative structure of the
dynamics is discussed in Sect. 4. Entropy and free energy minimization and the
relation with the sigmoid activation function are presented in Sect. 5. Section 6 is
devoted to the conclusions.

2 Neural Nets and Field Description

In Pessa and Vitiello (1999) the activity of a neural unit is assumed to be
characterized by the amplitude of the emitted pulse and by its phase determined
by the emission time. Thus, in a set of N neural units at the space-time sites
xn ≡ (xn, tn), with n = 1, 2, ..N , each one of them may be described by an SU(2)

complex doublet field

ψ(xn) =
(

ψu(xn)

ψd(xn)

)

. (1)

The suffixes u and d of the complex components ψu(xn) and ψd(xn) denote the
inner degrees of freedom corresponding to the on (1) and off (0) states of the unit,
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respectively, analogous to spin degrees of freedom in fermion fields. The state of
each unit depends on its interaction with the other units, which, at this stage of our
discussion, does not need to be specified. In full generality, it is only assumed that
such an interaction is symmetric under SU(2) transformations of the ψ(xn) fields
in the u − d space.

In our picture, the functional state of the net, also denoted as its macroscopic
state, does not correspond to a single, uniquely defined microscopic configuration of
values u and d at the sites xn. Therefore, many distinct microscopic configurations
may in principle correspond to the same macroscopic state of the net. Which,
said differently, means that one specific macroscopic net state does not depend
specifically on the activity of one single unit, neither on the fluctuations of each
unit between its u and d states. We call them microscopic fluctuations and refer
to such a property of the net as its plasticity (rigidity denotes the opposite case
of strict dependence of the net functional activity on the definite state of each
of its N units). Although our discussion refers to artificial net, the assumption of
the plasticity property is suggested by the observation of the natural brain, whose
functional activity does not depend on the activity of each single neuron (Ricciardi
& Umezawa, 1967; Freeman, 2000).

The independence from the (microscopic) fluctuations allows us to associate to
the macroscopic state of the net a “classical” field, called “order parameter” in
analogy to condensed matter physics, where the order parameter is independent of
quantum fluctuations. The word ‘classical’ is used to mean, indeed, ‘independent of
microscopic fluctuations’.

The order parameter is related to the symmetry properties of the interactions of
the units (Umezawa et al., 1982; Takahashi & Umezawa, 1975; Umezawa, 1993;
Itzykson & Zuber, 1980; Anderson, 1984; Blasone et al., 2011a) and acts as a code
labeling the least energy state (the vacuum or ground state) of the net (Ricciardi &
Umezawa, 1967; Vitiello, 1995), i.e. the information content of the net.

In Sect. 6, I will comment on the use of the quantum, or quantum-like, formalism
in the description of neural nets, also in connection with ’t Hooft works on
dissipative systems appearing as quantum systems (’t Hooft, 1999; Blasone et al.,
2001b).

By using the same notations of Pessa and Vitiello (1999),M denotes the order
parameter of the net. It is defined by

M ≡ 1

2
|(Nu − Nd)| , (2)

with very large N (infinite in the infinite volume limit):

N = Nu + Nd . (3)

Nu and Nd denote the number of units on and off, respectively.
The state characterized byM = 0 is said the “normal” state and it is assumed to

be void of information content. States withM > 0 are “information states”, with
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different non-vanishing values of M associated to different information contents.
These states are also called “memory” states. Since for any M we have a zero-
energy state, infinitely many degenerate (vacuum) states exist in the continuum or
infinite volume limit, each one corresponding to a different information content
(a different value of the memory code M). In the following sections, it is shown
that there is no unitary transformation connecting these vacua. They are unitarily
inequivalent states.

As said above, the dynamics controlling the interactions among the units is
assumed to be invariant under SU(2) transformations. The normal state, however,
is not invariant under such transformations. They change it into a state with a given
non-zero M. One then says that spontaneous symmetry breakdown (SBS) occurs.
The external input carrying information acts as a trigger inducing SBS. The coupling
of the net with the environment thus plays a crucial role in selecting a specific
vacuum state among the many unitarily inequivalent vacua available to the net. In
Sect. 3 it is shown that SBS generates long range correlations among the units of
the net.

A given value ofM, i.e. of the difference |(Nu −Nd)|, does not fixes the specific
value of Nu, or of Nd , which means that the “observed” value ofM is compatible
with many distributions of the states of the units determined by the microscopic
configurations of the ψ(xn) fields. In this sense M appears to be a macroscopic
variable.

The conclusion is that, as observed above, from the net functional activity
standpoint, it is not relevant which one is the state, u or d, of a specific unit. Indeed,
units may be excited or de-excited by pulses (signals) traveling over the net. On
the other hand, any observation of the state of the units may interfere with the
traveling pulse. This means that the states of the units should be considered as non-
observable, unless to perturb them in a way to drastically deform the dynamical
distribution of pulses on the net and thus its functionality. Only the output of the
dynamics of the units is observable, namely the state of the net at a time t at which
the (quasi-)equilibrium state has been generated; it is called the asymptotic state at
time tn → ±∞ for each n. Corresponding to the ψ(xn) fields, complex doublet
fields φ(xn) may be introduced describing the units in their asymptotic state.

In this description the fields ψ(xn) (and φ(xn)) can be assumed to be quantum,
or quantum-like, fields. The neural units, however, are not considered to be quantum
objects, rather the fields describing their dynamical behavior are assumed to admit
formal quantum-like description.

In the following section, the memory states will be recognized to be coherent
states (Klauder & Sudarshan, 1968) arising from the condensation of quanta of
long range correlations among the units and such a coherence is the source of the
independence from microscopic fluctuations of the order parameterM.
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3 Generation of Long Range Correlations

Let me now present some of the formal aspects behind the description presented in
the previous section (and in Pessa and Vitiello (1999)). This formalism is similar
to the one describing ferromagnets with localized spin components, where the
symmetry is the SU(2) continuous rotation group in the spin space (Umezawa et al.,
1982; Blasone et al., 2011a; Shah et al., 1974).

The interaction among the ψ(xn) fields associated to the units of the net is given
in terms of a Lagrangian whose explicit form is not necessary to specify. It is only
assumed that it is invariant under the SU(2) group of continuous rotations in the
(u − d)-space.

In the following, by adopting the same notation used in Umezawa et al. (1982),
Blasone et al. (2011a), Shah et al. (1974), let S(i)(xn), i = 1, 2, 3, n = 1, 2, ..N ,
denote the generators whose SU(2) algebra is:

[S(i)(xn), S
(j)(xl)] = iεijkS

(k)(xn)δn,l . (4)

Their explicit form in terms of the anticommuting fields ψ(xn) is given for
example by S

(i)
ψ (xn) = ψ†(xn)(σi/2)ψ(xn), with σi the Pauli matrices. Our

discussion and conclusions will be however independent of the specific form of
S(i)(xn).

The (total) SU(2) generators are

S(i) =
∑

n
S(i)(xn), i = 1, 2, 3, (5)

[S(i), S(j)] = iεijkS
(k). (6)

Under SU(2) ψ(xn) transforms as

ψ(xn) → ψ
′
(xn) = exp(iθiλi)ψ(xn), i = 1, 2, 3, (7)

with λi = σi/2 and θi a triplet of continuous group parameters (the rotation angles
in the (u − d)-space). For θi infinitesimal S(i)(xn) transforms as as

S(i)(xn) → S(i)′(xn) = S(i)(xn) − θj εijkS
(k)(xn). (8)

Invariance of the Lagrangian implies: L[ψ(x)] = L[ψ ′
(x)]; the ground state |0 >

is however assumed to be not invariant under the full SU(2) group but only under
the subgroup U(1) of rotations around the 3rd axis in the (u − d)-space. We have
thus SBS. This last assumption describes the fact that an external stimulus, due to
an information source and acting on the neural net, may modify the ground state of
the neural net by producing a non-zero expectation value of the S(3) generator:
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< 0|S(3)|0 >≡M, (9)

where M is indeed the “memory” order parameter introduced in the previous
section. The information carried by the input is thus recorded in the state |0 >

and labeled byM. This is made explicit by writing: |0 >≡ |0 >M.
According to a general, experimentally well verified, theorem of QFT (the

Goldstone theorem) (Umezawa et al., 1982; Itzykson & Zuber, 1980; Blasone et al.,
2011a), the SBS implies the dynamical formation of long range correlations among
the system elementary constituents (the units of the net in our case). The boson
quanta associated to such correlation waves spanning the system are called Nambu-
Goldstone (NG) quanta and denoted B(xn) and B†(xn), maintaining the notation of
Blasone et al. (2011a), Shah et al. (1974). These boson quanta are massless since
they span the whole system and, at their zero momentum, do not add energy to
the ground state |0 >M. Their associate correlation waves propagate over the net
without destructive interference, namely in a coherent way. In other words, the
coherent condensation of NG boson modes (the B-modes) in |0 >M is obtained.

It is useful for our discussion to recall briefly the proof of the Goldstone theorem.
I will adopt the model independent functional integration formalism (see Umezawa
et al. (1982), Blasone et al. (2011a), Shah et al. (1974)).

In a standard notation, the Green’s function generating functional is

W [J, j, n] = 1

N

∫

[dψ][dψ†]exp{i
∑

n

∫

dtL[ψ(xn)]+J (xn)ψ(xn) (10)

+ψ†(xn)J (xn) + j†(xn)S
(−)(xn)+S(+)(xn)j (xn) + S(3)(xn)n(xn) − iεS(3)(xn)},

where N is a convenient normalization factor, J , j and n denote the source fields,
S(±)(xn) = S(1)(xn) ± iS(2)(xn). The ε-term represents the coupling with the
environment. It describes the informational input inducing SBS. Its action is limited
in time and does not change the internal dynamics of the units described by the
Lagrangian L. It affects however the state of the system. The limit ε → 0 has thus
to be taken at the end of the computation.

Consider now the Ward-Takahashi relation (Shah et al., 1974) derived from (10):

< S(3)(xm) >ε = ε
∑

n

∫

dt< S(i)(xn)S
(i)(xm) >ε , i = 1, 2. (11)

It shows that, in order to obtain a non-zero expectation value for < S(3)(xm) >ε in
the ε → 0 limit, < S(i)(xn)S

(i)(xm) >ε must present a pole singularity in that limit,
i.e. it represents a long range correlation whose quanta are the NG fields B(xn)

and B†(xn). These are asymptotic fields corresponding to S(i)(xn), i = ± (or i =
1, 2) and describe the two collective modes dynamically generated by the symmetry
breakdown.

The asymptotic state |0 >M of the net is thus described in terms of the irreducible
set of asymptotic fields {φ(xn), B(xn)} and their hermitian conjugates.
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It can also be proven (Umezawa et al., 1982; Shah et al., 1974) that when the
basic field ψ(xn) (or S(i)(xn)) undergoes the SU(2) transformations (7) (or (8)) the
asymptotic fields φ(xn), B(xn) and B†(xn) are transformed as

φ(xn) → φ′(xn) = φ(xn)

B(xn) → B ′(xn) = B(xn) + iθ1(
M

2
)

1
2

B†(xn) → B ′†(xn) = B†(xn) − iθ1(
M

2
)

1
2 (12)

for θ2 = θ3 = 0,

φ(xn) → φ
′
(xn) = φ(xn)

B(xn) → B
′
(xn) = B(xn) − θ2(

M

2
)

1
2

B†(xn) → B
′†(xn) = B†(xn) − θ2(

M

2
)

1
2 (13)

for θ1 = θ3 = 0, and

φ(xn) → φ
′
(xn) = eiθ3λ3φ(xn)

B(xn) → B
′
(xn) = e−iθ3B(xn)

B†(xn) → B
′†(xn) = eiθ3B†(xn) (14)

for θ1 = θ2 = 0. The transformations (12)–(14) belong to the E(2) group which
is the group contraction of SU(2) (Inönü & Wigner, 1953; De Concini & Vitiello,
1976). It can be shown (Shah et al., 1974) that the field equations for the asymptotic
fields φ(xn), B(xn) and B†(xn) are invariant under (12–14).

The B(xn) and B†(xn) field translations in Eqs. (12) and (13) describe coherent
condensation of these modes in the ground state of the neural net (Umezawa et al.,
1982; Klauder & Sudarshan, 1968; Perelomov, 1986). In the infinite volume limit
they cannot be induced by any unitary operator, thus these transformations are not
unitarily implementable in that limit. States (and the spaces to which they belong)
labeled by different values ofM are therefore unitarily inequivalent states (spaces).
For more details see the Appendix.

Note that there are no B-modes condensed in the normal vacuum state |0 >, i.e.
before the coming of the information input of codeM: < 0|B†(xn)B(xn)|0 >= 0
for any n, since B(xn)|0 >= 0.

Equations (12) and (13) show that after the input: < 0|B ′†(xn)B
′
(xn)|0 >=

θ2
1 M/2, with θ2 = θ3 = 0, and similar one for θ1 = θ3 = 0; so that, writing in

terms of the transformed state |0 >M, M < 0|B†(xn)B(xn)|0 >M= θ2
1 M/2, for

θ2 = θ3 = 0, and M < 0|B†(xn)B(xn)|0 >M= θ2
2 M/2, for θ1 = θ3 = 0. These

relations show thatM provides a measure of the number of B-modes condensed in
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the state of the net once the information carried by the input has been printed there,
which corresponds to dynamical spanning of the net by the coherent correlation
waves.

Equation (14) show that the state of the net is invariant under rotations around
the 3rd axis, in fact < 0|B ′†(xn)B

′
(xn)|0 >= 0 = M < 0|B†(xn)B(xn)|0 >M for

θ1 = θ2 = 0.
The physical meaning of the dynamical rearrangement of the symmetry

SU(2) → E(2) expressed by Eqs. (12)–(14) is the following. The “flip” u/d

(or on/off ) of the neural unit field ψ(xn) is induced at each site by the SU(2)

generators S(i)(xn), i = 1, 2; when however the neural net is acted upon by an
external information input of code M, the neural units get correlated over long
range and the SU(2) symmetry is broken. The flipping of the unit is then described
not as an SU(2) rotation but in terms of boson condensation (translation) of B and
B† (Eqs. (12) and (13)). In other words, under the external input the neural net is
involved as a whole dynamical system and thus local site flipping and fluctuations
sum up into collective modes of the net (the B-modes): from the point of view
of the “memory state” of the net, the dynamically interesting objects are not the
local flipping or fluctuations but the (long range) dynamical correlations among the
neural units.

4 Dissipation and Thermal Properties

I remark that once an information has been stored in the net, the state in which the
net was before the storage of the information cannot be recovered anymore unless
an external operator resets the system, which is a quite “dramatic” event for the net,
indeed.

The dynamics of information storage is thus an irreversible one (Vitiello, 1995);
in other words, the net dynamics is not invariant under inversion of time: time-
reversal symmetry is broken by the information storage process. This means that
our modeling has to be extended to dissipative dynamics.

The canonical formalism can only describe closed systems. The study of
dissipative systems requires that not only the system of interest has to be considered,
but also the environment (or thermal bath) with which the system exchanges energy,
particles, etc.. By extending the dynamics so to include also the environment, the
open system under study and the environment in which it is embedded form together
a global closed system.

Since the only requirement to be satisfied at the equilibrium is the in/out-energy
balance (for simplicity we may assume no particles are exchanged), the environment
needs not to be represented in its details except for what concerns the energy
fluxes (Vitiello, 1995; Celeghini et al., 1992). Then, in a standard fashion, the
environment may be described as the double or “time-reversed” copy of the given
system (Vitiello, 1995; Celeghini et al., 1992), so that damping solutions for the
system correspond to growing solutions for the environment, and vice-versa. In
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formal terms, the doubling of the degrees of freedom of the system is introduced
in a way that the total {system-environment} energy is represented by the difference
between the respective energies (Vitiello, 1995; Celeghini et al., 1992).

Actually, one should start since the beginning with doubling the basic fields ψ

and work out the full dynamical problem. However, for simplicity it is enough to
consider here the doubling of the asymptotic fields, say B̃, B̃† and φ̃. The tilde-
fields (the “mirror” modes) B̃ and B̃† commute with B and B†; φ̃ and φ are
anticommuting fields.

Let me first consider the B-modes since their coherent boson condensation
describes the information storage in the net. Later I will discuss the φ-fields. In
the following, the notation and the formalism developed in Vitiello (1995) and
Celeghini et al. (1992) is closely followed.

Let Bk (B̃k) and B
†
k (B̃†

k) denote the annihilator and the creation operators of

the B (B̃) field (see the Appendix). The set of simultaneous eigenvectors of N̂Bk ≡
B

†
kBk and N̂

B̃k
≡ B̃

†
kB̃k is denoted by {|NBk,NB̃k

>}, with NBk and N
B̃k

non-
negative integers, and |0 >0≡ |NBk = 0,N

B̃k
= 0 > so that B|0 >0= 0 =

B̃k|0 >0.
The Hamiltonian ruling the dynamics of an (infinite) collection of damped

harmonic oscillators is given by

H = H0 + HI , (15)

H0 =
∑

k

h̄�k
(
B

†
kBk − B̃

†
kB̃k
)
, (16)

HI = i
∑

k

h̄�k
(
B

†
kB̃

†
k − BkB̃k

)
, (17)

where �k is the frequency (including also the chemical potential) and �k is the
coupling constant.

The neural net memory state is defined to be a zero energy eigenstate of H0 (the
vacuum or ground state). At a given initial time t0 = 0, it is therefore a condensate
of equal number of modes Bk and mirror modes B̃k for any k.

Since the codeM is given by the condensate modes,M is actually determined
by the set of integers {NBk = N

B̃k
,∀k, at t0 = 0} defining the “initial value” of

the condensate at time t0 = 0 (in the following such a set will be simply denoted by
M). Infinitely many memory states at t0 = 0, each one corresponding to a different
number NBk of Bk modes, for all k, thus exist, provided NBk −N

B̃k
= 0 for all k.

At finite volume V , the neural net memory state |0 >M can be then represented
as a generalized SU(1, 1) coherent state (Vitiello, 1995; Celeghini et al., 1992):

|0 >M =
∏

k

1

cosh θk
exp
(

tanh(−θk)J
(k)
+
)
|0 >0 , (18)
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with J
(k)
+ ≡ B

†
kB̃

†
k . Note that |0 >M is normalized to 1 for all M. The modes Bk

and B̃k are entangled modes (Vitiello, 1995, 2001, 2004a; Freeman & Vitiello, 2006;
Pessa & Vitiello, 2004, 2003; Sabbadini & Vitiello, 2019).

In Eq. (18) the set θ ≡ {θk} is related to the M-set, M ≡ {NBk =
N

B̃k
,∀k, at t0 = 0}, by

NBk = M < 0|B†
kBk|0 >M = sinh2 θk , (19)

and the notation NBk(θ) ≡ NBk is also used. A condition on the θ -set is that B and
B̃ modes satisfy the Bose distribution at time t0 = 0:

NBk(θ) = sinh2 θk = 1

eβEk − 1
, (20)

where β≡1/kBT denotes the inverse temperature at time t0 = 0 and kB is the
Boltzmann constant. Equation (20) shows that the set θ = θ(β), with θk =
θk(β), ∀k .

Equation (20) shows that the neural net memory state |0 >M is a finite
temperature state (Vitiello, 1995). Moreover, we will see in the next section that
(20) is implied by the minimization of the free energy (and vice-versa).

In other words, the QFT dissipative dynamical formalism naturally leads us to the
study of thermodynamic properties for the memory recording process. Moreover,
inspection of Eq. (18) leads us to recognize that the net memory state is equivalent
to the Thermo Field Dynamics representation {|0(θ(β)) >} for QFT at finite
temperature (Umezawa et al., 1982; Takahashi & Umezawa, 1975; Umezawa,
1993).

As already observed, in the infinite volume limit {|0 >M} and {|0 >M′ }, with
M �= M′, are Hilbert spaces (representations of the canonical commutation
relations (CCR)) each other unitarily inequivalent, which means that it does not
exist any unitary transformation which maps {|0 >M} to {|0 >M′ }.

Also note that [ H0,HI ] = 0, which ensures that the number (NBk −N
B̃k

) is a
constant of motion for any k. Thus, althoughNBk andN

B̃k
are allowed to separately

change in time, their difference is kept constantly zero during time evolution.
We thus have infinitely many degenerate vacua |0 >M, for all M, and corre-

spondingly the space of states of the net at t0 = 0 splits into infinitely many
unitarily inequivalent representations of the CCR’s (“replicas” of the system). A
large number of sequentially recorded information may coexist without destructive
interference since infinitely many vacua |0 >M are independently accessible.
Storage of information of code M′ does not necessarily produce destruction of
previously stored information of code M �= M′. The existence of the degenerate
vacua due to dissipativity thus guaranties a huge memory capacity.

The neural net state may then be represented as the superposition of the full set
of memory states |0 >M, for allM.
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The effect of finite (realistic) size of the net (finite number of neural units) may
however destroy or reduce unitary inequivalence and may lead to “dirty” or “noisy”
information storage (interference or overlap among information).

Formally, at finite volume V , the time evolution of the memory state |0 >M,
denoted by |0(t) >M and specified by the initial value M of the condensate, is
given by

|0(t) >M= exp

(

−it
H

h̄

)

|0 >M . (21)

Here the notation is |0(t) >M≡ |0(θ(β), t) >M and its explicit expression is the
same as the one in Eq. (18) with (−θk) replaced by (�kt − θk).

The state |0(t) >M can be shown to decay according to the law

lim
t→∞M < 0(t)|0 >M∝ lim

t→∞ exp

(

−t
∑

k

�k

)

= 0 , (22)

provided
∑

k �k > 0. In the infinite volume limit, for
∫

d3k�k > 0 and finite, we
have

M < 0(t)|0 >M −→
V →∞0 ∀ t , (23)

M < 0(t)|0(t ′) >M −→
V →∞0 ∀ t , t ′ , t �= t ′ . (24)

This means that in the infinite volume limit, time evolution of |0 >M is
rigorously frozen (the states |0(t) >M, |0(t) >M and the associated Hilbert spaces
are each other unitarily inequivalent for different time values t �= t ′ in the infinite
volume limit); however, a finite life-time may be possible due to effects of the
system finiteness (finite number of neural units).

Time evolution of the memory state |0 >M is thus represented as the trajectory
of “initial condition” specified by the M-set in the space of the representations
{|0(t) >M} of the CCR’s. The non-unitary character of time-evolution implied
by dissipation is recovered in the unitary inequivalence among representations at
different times in the infinite-volume limit. Note also that

M < 0(t)|0 >0= exp

(

−
∑

k

ln cosh (�kt − θk)

)

. (25)

Thus at time t = τ , with τ the largest of the values τk ≡ θk/�k, the memory state
|0 >M is reduced (decayed) to the “empty” vacuum |0 >0: the information has been
forgotten.

At each instant t the number of modes Bk is given by

NBk(θ, t) ≡ M < 0(t)|B†
kBk|0(t) >M= sinh2(�kt − θk

)
(26)
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and a similar expression holds for the modes B̃k. It is remarkable that in computing
the number of the Bk modes, the only contributions come from the mirror modes
B̃k (the same holds for Eq. (19)).

Equation (26) confirms that the information code is lost after a time t = τ .

5 Entropy and Free Energy

In this section, some more details of the thermal properties of the neural net are
presented. The state |0(t) >M can be written as (Vitiello, 1995; Umezawa et al.,
1982)

|0(t) >M= exp

(

−1

2
SB

)

|I >= exp

(

−1

2
S

B̃

)

|I > , (27)

with |I >≡ exp
(∑

k B
†
kB̃

†
k

)
|0 >0 and

SB ≡ −
∑

k

{
B

†
kBk ln sinh2(�kt − θk

)− BkB
†
k ln cosh2(�kt − θk

)}
. (28)

A similar expression is obtained for S
B̃

with B̃k and B̃
†
k replacing Bk and B

†
k ,

respectively. I shall simply write S for either SB or S
B̃

. S represent the entropy
operator for the dissipative system (Umezawa et al., 1982; Celeghini et al., 1992).

The variation of |0(t) >M in time, at finite volume V , is given by

∂

∂t
|0(t) >M= −

(
1

2

∂S

∂t

)

|0(t) >M . (29)

Thus, ih̄ (1/2)(∂S/∂t) acts as the generator of time-translations: time-evolution is
controlled by the entropy variations; the operator S that controls time evolution also
defines the system entropy. This indeed reflects the irreversibility of time evolution
(breakdown of time-reversal symmetry); namely, the choice of a privileged direction
in time evolution (arrow of time). The free energy functional is

FB ≡ M < 0(t)|
(
HB − 1

β
SB

)
|0(t) >M . (30)

β is the inverse temperature: β(t) = 1/kBT (t); HB is the Hamiltonian for the B-
modes only, HB =∑k h̄�kB

†
kBk. Let �k ≡ �kt − θk and Ek ≡ h̄�k. The

condition

∂FB

∂�k
= 0 , ∀ k , (31)
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gives β(t)Ek = − ln tanh2(�k), i.e

NBk(θ, t) = sinh2(�kt − θk
) = 1

eβ(t)Ek − 1
, (32)

which is the Bose distribution for Bk at time t .
The entropy S(t) = M < 0(t)|S|0(t) >M, for B and B̃ modes grows

monotonically with t from value 0 at t = τ to infinity at t = ∞ . The difference
(SB − S

B̃
) however is constant in time, as expected since the role of B̃-modes is in

fact the one of closing the (open) system of B-modes.
S(t) is a decreasing function of time in the interval (t0 = 0, τ ). This ensures

that the memory state, is protected from cancellation, although not conserved in
time. In this process, of course, the energy exchange with the environment is
crucial and finite volume effects are also assumed. In the infinite volume limit, as
already noticed, stability is rigorously ensured due to unitary inequivalence between
memory states withM �=M′.

When changes in temperature are negligible, ∂β/∂t = −(1/kBT 2)(∂T /∂t) ≈ 0,
the change in the energy EB ≡∑k EkNBk and in the entropy is given by

dEB =
∑

k

EkṄBkdt = 1

β
dSB , (33)

i.e.

dEB − 1

β
dSB = 0 , (34)

which expresses the first principle of thermodynamics for a system coupled with
environment at constant temperature and in absence of mechanical work. As usual
heat is defined by dQ = (1/β)dS and thus Eq. (33) shows that the change in time
of condensate turns out into heat dissipation dQ.

Let us now consider the φ and the φ̃ fields. They behave as anticommuting
(fermion) fields and also for them the total Hamiltonian is the difference between
the respective ones for φ and for φ̃ (Umezawa et al., 1982; Takahashi & Umezawa,
1975; Umezawa, 1993).

Let ai,k, ãi,k, and a
†
i,k, ã

†
i,k, i = u, d, be the respective annihilation and creation

operators. In a way similar to the case of the boson modes B and B̃, one may
construct the set {|Nai,k,Nãi,k >} of simultaneous eigenvectors of N̂ai,k ≡ a

†
i,kai,k

and N̂ãi,k ≡ ã
†
i,kãi,k, with Nai,k and Nãi,k equal to zero or to one.

The state |0 >0 is defined as |0 >0≡ |Nai,k = 0,Nãi,k = 0,NBk = 0,N
B̃k

=
0; ∀k > such that Bk|0 >0= 0 = B̃k|0 >0 and ai,k|0 >0= 0 = ãi,k|0 >0.

The neural net memory state is then the zero energy eigenstate (the vacuum or
ground state) such that at a given initial time t0 = 0, it is a condensate of equal
number of modes ai,k, Bk and mirror modes ãi,k, B̃k for any k, respectively.
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Infinitely many memory states thus exist at t0 = 0, each one corresponding to a
different number NBk of Bk modes, for all k, and Nai,k of ai,k modes, for all k and
for all i, provided NBk −N

B̃k
= 0 for all k and Nai,k −Nãi,k = 0 for all k and for

all i.
Let M ≡ {Nai,k = Nãi,k,NBk = N

B̃k
,∀k,∀i, at t0 = 0} denote the set

of integers defining the “initial value” of the condensate. At finite volume V , the
neural net memory state |0 >M can be then represented as the tensor product of a
SU(2) generalized coherent state for φ-modes and a SU(1, 1) generalized coherent
state for B-modes. For sake of shortness I do not report here its explicit form (but
see, e.g. (Umezawa et al., 1982; Perelomov, 1986)). For such a state it is possible to
repeat the analysis of time evolution done for the B-modes and also in such a case
the finite temperature state, both for φ and for B fields, is obtained.

As seen in Sect. 3, the φ (and the φ̃) fields do not transform under the asymptotic
field transformations Eqs. (12) and (13). This shows that the process of memory
storage is taken in care solely by the condensation (translation) of the B (and B̃)
fields. The on/off or u/d state of the φ fields contributes however to the asymptotic
(observable) state of the neural net. The expectation value of their number operator
in the net memory state is given by the free energy stationary condition:

Nai,k(θ, t) = M < 0(t)|a†
i,kai,k|0(t) >M= 1

eβ(t)Ei,k + 1
, (35)

which is of course the Fermi distribution for ai,k at time t . Here Ei,k is understood
to include the “threshold” of the chemical potential μ (Ei,k ≡ εi,k − μ).

The change due to thermal effect on the expectation of findingNai,k(θ, t) modes
at time t , assuming it is equal to one at zero temperature and energy εi,k < μ is

�Nai,k(θ, t) = 1 − 1

eβ(t)Ei,k + 1
= 1

e−β(t)Ei,k + 1
, (36)

which gives the sigmoid activation function often adopted in neural nets modeling,
also showing its relation with the dissipative dynamics.

6 Conclusion

In this article, the mathematical formalism underlying the many-body model of
neural networks has been reported. The model and related computer simulations
confirming the theoretical scheme have been originally discussed in Pessa and
Vitiello (1999).

In the model, the on/off switching pulse of the units of the net is characterized
by an amplitude and by a phase determined by the emission time and is described
by a complex doublet field ψ(xn), treated as a fermion field.
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The fully random distribution of the u and d (on and off ) states of the units
is described by the SU(2) symmetry. The information input presented to the net
induces spontaneous breakdown of such a symmetry with consequent dynamical
generation of long range correlations among the units, according to the Goldstone
theorem of QFT.

The state of the net at the level of its units (the microscopic state of the net) can
be determined only up to fluctuations between the states u and d of the single units.
The macroscopic state (the memory state) of the net is specified by the value of the
order parameterM, which describes the long range correlations among the net units
(collective modes or coherent condensation of the Nambu-Goldstone boson quanta
associated to the correlation waves). M is the code specifying the information
carried by the input originating the whole process.

The evolution in time t of the macroscopic state of the system is controlled
by the entropy, which in turn, at each t enters in the minimization of the free
energy and accounts for the changes of the degree of correlations of the units. The
time-evolution of the macroscopic states of the net is thus an irreversible time-
evolution, which can be shown to be described by classical chaotic trajectories
in the memory space {|0(t) >M} (Pessa & Vitiello, 2004, 2003; Sabbadini &
Vitiello, 2019; Vitiello, 2004b). The net is indeed a dissipative system, open to the
environment from which it receives information inputs and to which it addresses
its responses. Remarkably, ’t Hooft has proposed that the formalism describing
classical deterministic dissipative systems manifests itself as a quantum formalism
(’t Hooft, 1999; Blasone et al., 2001b). This supports the quantum character of
the formalism adopted in the previous sections (Pessa & Vitiello, 1999) and in the
theoretical computer science (TCS) analysis discussed in Basti et al. (2017).

One remarkable feature of the QFT formalism is the existence of infinitely many
unitarily inequivalent representations of the commutation relations. This implies
that in the many-body model of the net different memories may be recorded
in different (unitarily inequivalent) states. The dissipative dynamics then allows
the access to each of these representation without “memory overprinting”, i.e.
cancellation of an already recorded memory by a supervening new one.

One further aspect of the model is that recalling a memory is obtained by
“reading” its mirror modes (the tilde modes in the notation of Sects. 4 and 5). In
this sense, the model uses the free energy minimization as a sort of “truth evaluation
function”, namely the matching with the mirror modes (replication signal) ensures
the reading of the stored information.

Another important role played by the free energy minimization is that it leads to
the Bose-Einstein distribution function for the correlation wave modes and to the
Fermi-Dirac one for the fermion fields of the units. The sigmoid activation function
for neural net units is in this way also obtained.

A final remark is that the memory state of the neural net constructed in this paper
may be related to coherent squeezed states of quantum optics (Yuen, 1976; Stoler,
1970), the squeezing parameter being related to the memory codeM (Vitiello, 1995,
2001, 2004a; Freeman & Vitiello, 2006).



222 G. Vitiello

Appendix: The Generators of Eqs. (12)–(13)

The generators of the field translations of B(xn) and B†(xn) in Eqs. (12)–(13) are
mathematically not well defined (they give diverging quantities) (Shah et al., 1974);
however, these translations can be understood as limits of unitary transformations
as

B(xn) → lim
f (xn)→1

(B(xn) + f (xn) · const), (37)

with f (xn) any summable function which satisfies the asymptotic field equation for
B(xn) and B†(xn). The role of f (xn) is to make mathematically well definite the
generators of (12) and (13), where θ1 and θ2 are replaced by θ1f (xn) and θ2f (xn),
respectively. Thus the generators are:

S
(1)
f = (

M

2
)

1
2
∑

n
[B(xn)f (xn) + B†(xn)f

∗(xn)], (38)

S
(2)
f = −i(

M

2
)

1
2
∑

n
[B(xn)f (xn) − B†(xn)f

∗(xn)], (39)

S(3) =
∑

n
[φ†(xn)λ3φ(xn) − B†(xn)B(xn)], (40)

and they are time-independent since f (xn) satisfies the field equation for B-modes.
They close the e(2) algebra (cf. with (4)):

[S(1)
f , S

(2)
f ] = iM

∑

n
|f (xn)|2 = const · 1

[S(3), S
(1)
f ] = iS

(2)
f , [S(3), S

(2)
f ] = −iS

(1)
f . (41)

Equation (41) have been derived by using

[B(xn), B
†(xm)]txn=txm

= δ3
xn,xm

, (42)

with

[Bk, B
†
q] = δ(k − q). (43)

Bk and B
†
k are the annihilation and creation operators:

B(xn) =
∫

d3k

(2π)
3
2

Bke
ik·xn−iωktn , (44)
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B†(xn) =
∫

d3k

(2π)
3
2

B
†
ke

−ik·xn+iωktn . (45)

The integration is confined to the domain −π
d

< ki < π
d

, i = 1, 2, 3, with d the
spacing between sites.

Equations (38)–(40) express the dynamical rearrangement of symmetry
SU(2) → E(2) (Shah et al., 1974; De Concini & Vitiello, 1976). When expressed
in terms of basic fields ψ(xn) the generators S(i) satisfy the su(2) algebra (6); when
the same generators S(i) are expressed in terms of asymptotic fields φ, B and B†,
as in Eqs. (38)–(40), the satisfy the e(2) algebra (41).

When the limit f (xn) → 1 is taken, the state space where the field is translated
is unitary inequivalent (Shah et al., 1974) to the one where the field is not translated
or is translated by a different constant. This confirms that different, i.e. unitarily
inequivalent, spaces of the neural net states correspond to different values of the
order parameterM (different translations constants of the Goldstone modes B and
B†).

In conclusion, as a consequence of the spontaneous breakdown of the SU(2)

symmetry, induced by the external input, the corresponding information is recorded
in the neural net state as a coherent condensation of NG gapless modes. They are
dynamically generated massless quanta associated to the long range correlations
among the net units and are thus collective modes (propagating over long range
distances they span the whole system).
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Minds and Robots: An Impassable
Border

Paola Zizzi and Massimo Pregnolato

Abstract We present a distinction between the human mind and a robot, mainly
based on the presence or absence of a metalanguage. The human mind possesses
both metalanguage and formal language (object language), which is a logic, while
the robot possesses only the latter, which is provided as a program. The robot
cannot use a metalanguage because the latter, devoid of logical rules, is not Turing-
computable, and a computer cannot calculate what is incomputable. Metalanguage,
which can be seen as the formal language of meta-thought (the thought that thinks
of ordinary thought) allows the human mind to overcome the limits of purely
mechanical reasoning. This is why a human mind can never be completely reduced
to a Turing machine, and instead always will be a robot. Nevertheless, in the
quantum case the hypothesis is made that during the programming phase, the
programmers mind can become entangled with the quantum robot.

Keywords Metalanguage · Meta-thought · Object language · Robots

1 Introduction

In memory of Eliano Pessa

We humans who hold metalanguage can program a computer/robot that does not
have one. A machine uses only the program it is given (the object language).

The reason a computer cannot have its own metalanguage is because it is not
algorithmic (it is not Turing-computable). So what did Turing mean by saying that
a computer can “think”? He was probably referring to ordinary thinking, which
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humans also have, and which is essentially logical and formal. But humans also
have meta-thinking, formalized by metalanguage, while computers have only formal
ordinary thinking, the program that has been assigned to them.

Eventually Turing realized that to have “complete” intelligence the machine
would have to have a human body, and some senses, to be able to interact with
the outside world, and hence the idea of artificial intelligence (AI) was born.

We don’t know when and if Turing’s dream will come true. Certainly, these
human-machine interfaces appear to us extremely complicated and difficult to
implement right now, but perhaps in a distant future that will be possible ... who
knows.

At the moment, we devote ourselves to a purely theoretical and certainly simpler
problem, which however is in the field of AI.

We know that Turing treated his machine, the “bombe”, created to decode
Enigma, as his own creature, and always tried to protect it.

We therefore ask ourselves the following question: is it simply our desire to
humanize machines, as we sometimes do with our pets, or is there something more?
If we think about it, our animals have become pets because somehow, living with
them we have trained them (programmed) and a strong bond has been created. We
think that this link can also be established with the machines we program, but how?

Can our metalanguage affect a machine more profoundly than we believe?
The answer is yes in the quantum case. In fact, a quantum metalanguage is the

meta-logical description of QFT, essentially restricted to the moment of interaction
(in this case man-quantum computer) and therefore, seen by an external observer,
it results as a black box. This means that a bond is created during quantum
programming but remains hidden. In any case, hidden does not mean non-existent.
We cannot observe the influence of this meta-link once the programming has taken
place, but in the meantime man and machine have bonded to each other.

This link can be described as entanglement between the statements of the human
metalanguage reduced to quantum logical formulas, and the qubits of the machine.

This mechanism is physically described in the context of QFT in a recent paper
(Zizzi, 2020b).

In this way the machine has assimilated some of the humanity of those who
have programmed it. For this reason, as already highlighted in (Zizzi, 2020d), we
believe that an ethics towards machines is necessary, and perhaps Turing had already
guessed it.

The Church-Turing Thesis addresses what kinds of numbers humans, or any
machine that uses similar logic, can compute. It is a hypothesis about the nature
of computable functions. It states that a function on the natural numbers can be
calculated by an effective method if and only if it is computable by a Turing
machine.

The Turing Test, in which a user having a conversation through a computer tries
to determine whether the correspondent on the other end is a person or a program.

In “Intelligent Machinery” (Turing, 1948) Turing asks “whether it is possible
for machinery to show intelligent behaviour,” and confronts the challenges of
“educating” a machine.
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It does not seem to us that Turing ever spoke explicitly of artificial consciousness,
but only of artificial intelligence, and not quite in the sense of strong AI. For Turing,
a machine could be as intelligent as an organized machine can be (that is, well
programmed/trained to execute the program correctly).

This is what you understand by reading his original works.
It looks quite strange to us that Turing did not mention metalanguage of Tarski

approach to semantic theory of truth (Tarski, 1944).
The Turing test could be much more efficient if it were based on metalanguage,

as Searle also did with his “Chinese chamber” test (Searle, 1980), where Searle
provides an argument intended to disprove the position of what he named “strong
AI”.

In our opinion, a new possible test could be conceived as follows. If you tell a
joke, where metalanguage is always used, and you test two people, you are sure that
the one laughing is a human and the one that doesn’t is a robot. If both don’t laugh, it
means that the human is stupid (he can’t use the metalanguage he is provided with)
and the test fails. Since this was a joke then, you should have laughed. But even if
you’re just laughing now, it’s still okay.

In this paper, we conjecture that the impassable border between a human mind
and a robot, is just metalanguage. Our belief is based, a part from our personal
investigations, see for example (Zizzi, 2008, 2020c, d), mainly on Sambin lectures
(Sambin, 2007). On this basis, in (Pessa & Zizzi, 2009) it was also conjectured
a possible brain-computer interface as a Quantum Cyborg in which a human
mind controls, through a quantum metalanguage, the operations of a quantum
computer. The reason why computers cannot use a metalanguage is because it is
not algorithmic (not Turing-computable) as it has no logical rules. And a computer
cannot calculate what is incomputable.

Roger Penrose (1989) was the first to speculate on the non-computational aspects
of the mind, based on Gödel’s first incompleteness theorem (Gödel, 1931).

Hence, the non-algorithmic side of the human mind has been explored in the
depths of quantum logic by one of us (PZ) (Zizzi, 2011a).

The paper is organized as follows.
In Sect. 2 We give a definition of the mind in terms of logical/metalogical modal-

ities, namely classical/quantum logic for ordinary thinking and classical/quantum
metalanguage for meta-thought.

In Sect. 3 We introduce the concepts of metalanguage and object language, their
relationships and differences.

In Sect. 4 We show that the axiom of identity belongs to the metalanguage, unlike
the law of identity, which belongs to the object language. We therefore argue that a
robot will never be able to gain self-awareness.

Furthermore, we show that while in a classical metalanguage the axiom of
identity is absolute, in a quantum metalanguage it is probabilistic.

In Sect. 5 We discuss, especially in the quantum case, the non-algorithmic aspects
of the human mind, where the boundary is found that for a robot is impassable.
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In Sect. 6 We present what we call the “pillars” of the human mind, which
distinguish it from a robot, which are: Tarski’s truth predicate, the axiom of identity
and the cut rule, all three belonging to the metalanguage.

In Sect. 7 We guess that, in the quantum case, during the programming process,
the programmer’s mind and the quantum robot get entangled.

In Sect. 8 We review some recent findings in quantum epigenetics and relate them
to a novel approach to the non-invasive brain-computer interface based on quantum
metalanguage and a theoretical architecture of quantum cyborgs.

Section 9 is a tribute to our friendship with Eliano Pessa, we describe him as a
man and as a scientist mainly in the context of AI.

Section 10 is devoted to the conclusions.

2 The Mind

In this Section, we will talk about the mind, or rather, how it is understood by us
from a formal point of view. We will investigate what the mind is in this sense,
and what its modes and patterns of action are. We will ask ourselves if the mind is
real, concrete or abstract, and what is the interpretive physical theory of our formal
description.

2.1 What Is the Mind?

A totally logical mind.
it’s like an all-blade knife.

It makes the hand that uses it bleed.
(Rabindranath Tagore)

We define Mind as the “Formal Language of Thought”. It is purely abstract.
Our mind can be in two different modes of language: Logic or Meta-logic.
In Logic mode, the mind generally follows a “classical” logic but sometimes it

follows a quantum logic, and in such cases we speak of Quantum Mind.
In both cases of Logic mode the mind is algorithmic (Turing-computable)

because a logic has logical rules that can be used by a computer. In particular, in
the quantum case, the mind has the same logic as quantum computers.

The Meta-logic mode, which controls the logical mode of thinking, has as its
formal language a metalanguage, which is not algorithmic because it has no logical
rules.

Therefore a computer, both classical and quantum, cannot have a metalanguage
because it cannot compute what is not computable. This is the fine line between the
mind and computers and it is impassable.
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2.2 Is the Mind Real?

“We are the dreams
of which the void is made”

The concept of reality, as well as that of truth, when referred to the mind,
are “misleading” if they are considered in an “absolute” sense. We should rather
associate them with information, through Wheeler’s concept of “it from bit”
(Wheeler, 1962) or, in the quantum reformulation, “it from qubit” (Zizzi, 2001).

The mind is not the brain: it could be said that brain is the hardware and the
mind is the software, but it would fall into a dangerous mind-body, or spirit-matter
dualism.

It is more complicated and subtle than that.
It is true that we can think that the hardware consists of some neuronal processes

(classical and quantum) which then translate as logical (classical and quantum) gates
of the logic (classical and quantum) of the mind (the software).

But it doesn’t stop there, these are only the purely computational aspects.
Thought also has a non-algorithmic aspect. Where does the latter come from?

(a) From the dissipative quantum field theory (DQFT) of the brain (Vitiello, 1995).
(b) A bosonic QFT can be described as a quantum metalanguage (QML) (Zizzi,

2011a, 2020a).
As a metalanguage has no logical rules and therefore is not Turing-

computable, it follows that QFT cannot be completely simulated. In particular,
the non-computable sector regards the interaction (Zizzi, 2020b).

(c) In the reduction of QFT to quantum mechanics (QM) (Zizzi, 2020b), one can
think that this QML is reflected in the quantum logic of the mind.

(d) “Principle of Reflection” (Sambin et al., 2000):

• The statements of the meta-language (ML) are reflected in the propositions
of Logic, the language-object (OL).

• The metalinguistic links between ML assertions are reflected in the logical
connectives between propositions in the OL.

So in the end, by putting together “(a), (b), (c) and (d)” we have the following
scheme in Fig. 1:

An important thing to note in the diagram in Fig. 1, exactly in the red arrow,
is that what assigns a “status” of (quantum) metalanguage to QFT is precisely the
set of non equivalent vacua (Zizzi, 2020b) for the existence in QFT of unitarily
inequivalent representations of the canonical commutation relations (CCR).

2.3 The Three Modalities of the Mind: A Deeper Insight

Let’s make the formal distinction between ordinary thinking and meta-thinking:
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Fig. 1 QFT quantum field theory, QML quantum metalanguage, QM quantum mechanics, QOL
quantum object language; On the LHS: the physical theories. On the RHS: the formal languages
of the physical theories. The horizontal arrows associate the physical theories to their respective
languages. The vertical arrow on the LHS is the reduction mechanism from QFT to QM. The
vertical arrow on the RHS is the reflection principle from QML to QOL

Ordinary thinking:

1. conscious—classical calculus, classical formal language. We call it “Mind”.
2. unconscious-quantum computation, quantum formal language. We call it “Quan-

tum Mind”.

Meta-thinking:

3. Metalanguage (classical and quantum), non-algorithmic.

We have then three patterns or modalities (Zizzi & Pregnolato, 2012a, 2020):

(a) The quantum modality
(b) The classic modality
(c) The non-algorithmic modality.

Let us start with the quantum modality.
Ordinary unconscious thinking: driven by mental processes that are extremely

fast, much more so than those involving conscious thinking. This already suggests
that the above processes are quantum-computational (a quantum computer is expo-
nentially faster than its classical counterpart). Sudden decision or understanding,
creativity, imagination and discoveries, born from an unconscious state of mind,
are only the results of a quantum mental process, the intermediate steps of which,
however, remain unknowable.

(a) In quantum modality: the result of a quantum computation with a given
probability can be obtained, but the intermediate steps are not available. Thus,
these two characteristics seem to indicate that the unconscious mind is indeed
quantum-computational: the Quantum Mind.
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(b) Now, let us consider the classic modality: the unconscious mind calculates in
quantum mode and “prepares”, at maximum speed, what we then recognize
as conscious thought. Conscious thinking derives from a choice (a measure)
made on the quantum computational state, and then uses a classical modality.
We don’t have much time to process the outputs of the unconscious mind
(half a second), therefore, our conscious thought looks more like a succession
of flashes of consciousness rather than a continuous flow. We use partial
information obtained from quantum measurements. But in fact, we don’t
calculate anything new. Humans calculate quantum, and they don’t have time to
realize it.

(c) Finally, we illustrate the non-algorithmic modality. Meta-thinking is the process
of thinking about our own thinking. It has no method of calculation, neither
classical nor quantum. Quantum meta-thinking, which thinks unconscious
quantum thinking, can be seen as the roots of the unconscious mind (the roots
of the Quantum Mind). It is the aspect of thought most closely related to matter
(physical processes in the brain). The latter should be described by DQFT.
Quantum meta-thinking coordinates intuition, intentions and (quantum) control.
Meta-thought processes could be interpreted as aiming to maintain a kind of
coherence of ordinary thinking (coherent states in DQFT).

3 Object Language and Metalanguage: So Closely Related
and Yet So Different

The philosophical approach to this chapter, and the reproduction of Figs. 3 and 4
were borrowed from Sambin’s lectures (2007) where you learn logic by teaching it
to a robot.

A metalanguage is a language that speaks of another language, called “object
language”. When the object language is a formal language such as a logic or a
computer program, we say that the corresponding metalanguage is formal.

The distinction between metalanguage and object language is fundamental not
only in logic, but also in everyday life. We are constantly at play between the two
levels, and we should realize this in order to better understand our own way of
thinking.

To get to the metalanguage, which is the most abstract level of reference of
thought, we have to go through two lower levels:

In the first place, recognize the expressions (logical formulas in the case of a
formal system) that is the most concrete and basic level, which is the one that robots
are also equipped with.

Second, give meaning to those expressions and make them propositions (on
a more abstract level). This is interpretation: an assignment of meanings to the
symbols and words of a language. These two levels are both in the object language,
the first is peculiar to machines, which deal only with expressions and formulas, the
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OBJECT LANGUAGE

Formula A

Interpretation

Proposition A

Fig. 2 Two levels in the object language: the robot “recognizes” the formula (expression) A and,
through an interpretation, the man makes it the proposition A

second is the interpretation of these expressions as logical propositions by man. See
Fig. 2.

Finally, by declaring (asserting) propositions, we make them assertions, and we
enter the even more abstract world of metalanguage.

While we humans have both levels of object language and metalanguage
available, a robot has only that of object language at its disposal and is stuck there.
See Fig. 3.

The basic elements of a metalanguage are the assertions (asserted propositions)
and the metalinguistic links between assertions, which are the metalinguistic “and”
denoted by and, and the “yields” (or “entails”) denoted by. In the formalism of
sequent calculus (Gentzen, 1969) an assertion Aass. will be indicated with a sequent
having the antecedent empty .

Other elements of the metalanguage, always in the framework of sequent
calculus, are the axiom of identity and the cut rule. Moreover Tarski truth predicate
also stands, together with Tarski Convention T (Tarski, 1944), in the metalanguage.
The axiom of identity, the cut rule (Gentzen, 1969), and Tarski convention T will be
discussed in the next sections.

To conclude this section, it might be worth discussing compound assertions.
Given two propositions A and B in the object language, they correspond to the

assertions A ass. and B ass. in the metalanguage respectively. If we say” A ass” the
robot understands “A”, if we say “B ass” the robot understand “B”. But if we say
“A ass and B ass” what does the robot understand? We should give him a logical
connective & (the logical conjunction, most often denoted by) such that applied to
the two propositions A&B produces a new proposition A&B such that:
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Fig. 3 Assertions stand in the metalanguage. They are asserted propositions. Propositions stand in
the object language. Human beings (US) can reach both levels, robots only that of object language.
The subscript “ass” in Aass stands for “A asserted”

A&B ass is equivalent to A ass and B ass.
The above relation produces the “definitional equation” (Sambin et al., 2000) for

the logical connective &:

| − A & B iff | − A and | − B

where iff stands for “if and only if”.
There exists a definitional equation for every logical connective. Note that what

happens is the reflection of the metalinguistic links between assertions into the
logical connectives between propositions.

This is called the “reflection principle” (Sambin et al., 2000).
In summary:
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A metalanguage (ML) is a language which talks about another language, called
object language (OL).

A formal ML consists of assertions, and meta-linguistic links among them. It
consists of:

1. Atomic assertions: |−A (A declared, or asserted), where A is a proposition of the
OL.

2. Meta-linguistic links: |− (“yelds”, or “entails”), and (metalinguistic “and”).
3. Compound assertions. Example: |−A and |−B.

Let us consider the introduction of the logical connective & in Basic logic
(Sambin et al., 2000).

In the OL, let A, B be propositions.
In the ML, I read: A decl., B decl, that is: |−A· · · , · · · |−B respectively (where

“decl.” is the abbreviation of “declared”, which also can mean “asserted”). Let us
introduce a new proposition A&B in the OL. In the ML, we will read: A&B decl.,
that is: |−A & B. The question is: From A &B decl., can we understand A decl. and
B decl.? More formally, from |−A & B can we understand |−A and |−B? To be able
to understand A decl. and B decl. From A&B decl, we should solve the definitional
equation of the connective & in Basic logic. See Fig. 4.

4 The Disintegrated Self

“You are me
And I am you

One is one
And one are two”.

I am you. Milonga triste.

The classical laws of thought are:
Law of identity: A → A (states that an object is equal to itself).
Law of the excluded third: (A∨ ¬A) =1 (A or not A is true).
Law of non-contradiction: (A∧¬A) = 0 (A and not A is false).
It should be emphasized that the law of identity belongs to logic (the object

language). Instead, the axiom of identity:

A |−A

belongs to the metalanguage, and it is its reduction (Zizzi, 2020d) to object language
which gives rise to the law of identity. We will limit ourselves to the study of
the axiom of identity and its psychological interpretation as self-awareness. The
derivation of the law of identity in the object language from the identity axiom in
the metalanguage was demonstrated in (Zizzi, 2020d).

Here we give only a qualitative explanation in Fig. 5.
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Fig. 4 The two assertions A ass. and B ass. of the metalanguage correspond to the two propositions
A and B of the object language. The metalinguistic link and between the two assertions corresponds
to the logical connective & between the two propositions

As we will see, in the case of a quantum metalanguage, the axiom of identity is
no longer absolute. In the corresponding quantum logic, it follows that an object is
only partially equal to itself, the law of non-contradiction is violated, and by duality,
also the law of the third excluded is violated.

The classic axiom of identity, which reduces to the classical law of identity in
the object language, divides the Universe (U) into two parts: the Self and the Other
(Zizzi, 2018). See Fig. 6.

It is a dichotomy: a division of the whole into two parts which are:
Mutually exhaustive S ∪ O = U (third party excluded).
Mutually exclusive S ∩ O = � (non-contradiction).
The Other is the complement of the Self in U.
In quantum metalanguage, the (classical) axiom of identity is replaced by the

quantum one (Zizzi, 2010):

A

∣
∣
∣−|λ|2 A, α ∈ C
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Fig. 5 The identity axiom stands in the metalanguage, at the level of meta-thought. It represents
self-awareness. The law of identity stands in the object language, at the level of ordinary thought

Fig. 6 Partition of Universe (U) in two parts: The Self and the Other

with partial truth value vp = |λ|2 ∈ [0, 1], where α is the degree of the quantum
assertion |−λA, and corresponds, in quantum mechanics, to a probability amplitude.
Therefore the partial truth value vp corresponds to a probability p. This means that
a (quantum) object is probabilistically equal to itself.
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If that object refers to the Self, the conclusion is that the Quantum Self is
“disintegrated” (Zizzi, 2018).

The quantum mental state of a disintegrated self (DS) can be assimilated to a
qubit state |	 〉DS in which the Self is identified with the bit |1 〉 and the Other is
identified with the bit |0 〉:

|	 〉DS = λ0 |0 〉 + λ1 |1
〉
, λ0, λ1 ∈ C, |λ0|2 + |λ1|2 = 1.

This situation should occur in states of unconsciousness, dreams and schizophre-
nia (Zizzi & Pregnolato, 2012b).

5 The Non-Algorithmic Side of the Mind

“There are thoughts
that are not such”

Penrose’s original conjecture (Penrose, 1989) on the existence of non-
algorithmic aspects of the mind was primarily concerned with consciousness.
However, (Zizzi & Pregnolato, 2012a) conscious and rational human thought
consists of a very rapid sequence of decoherence processes from the quantum to the
classical computational mode.

More specifically, in Penrose-Hameroff’s Orch-Or theory (Hameroff & Penrose,
1996), overlapping tubulins/qubits decohere and alternate with classical bits at a
high rate. According to this theory, it seems that consciousness is made up of
“flashes” of classical computation.

The statements of the QML are physically interpreted (Zizzi, 2020b) as quantum
fields, in the context of the dissipative quantum field theory (DQFT) of the brain
(Vitiello, 1995).

The atomic propositions of the quantum object language (QOL) (Zizzi, 2010) are
affirmed, in the quantum metalanguage (QML) with a degree of assertion, which is
a complex number.

QML is the language of meta-thought. The very importance of meta-thought,
which deals with intuition, intention and control, lies in the fact that it distin-
guishes man from machines. Indeed, the language of meta-thought, which is non-
algorithmic, being described by a metalanguage, cannot be acquired independently
by a machine, which is endowed only with an object language.

As is well known, in 1950 A. M. Turing (Turing, 1950) adopted a purely
behavioural criterion (instantiated through his famous test) to establish whether a
machine could be considered intelligent.

Within this approach, a machine was recognized as having a mind when its
behaviour was indistinguishable from that of a human being performing mental
operations.
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In the 1980s the philosophical considerations already made by Searle (Searle,
1980) and others began to raise serious doubts about the validity of this definition
of the mind.

Proper reasoning logic should take into account that humans have basic logical
rules and, in general, structural rules are ignored. This requires sub-structural logic,
which can be seen as the general platform for any other logic. All these requirements
were met in BL (Sambin et al., 2000) in the classical case (or classical way).

A quantum version of BL, called Lq, was introduced in (Zizzi, 2010).
In Lq two new logical connectives have been introduced, the logical connectives

“quantum superposition” (the quantum version of the classical conjunction), and
“entanglement”.

Finally, the probabilistic character of any quantum theory is also present in Lq,
since the partial truth values, whose interval is the real interval [0,1], are interpreted
as probabilities.

This takes into account the fuzzy and probabilistic character of some non-
formalized aspects of thinking. In this context, we will try to clarify the Penrose
conjecture (Penrose, 1989) on the non-computational aspects of the mind in relation
to Gödel’s first incompleteness theorem (Gödel, 1931).

Penrose states that a mathematician can recognize the truth of a Gödel proposi-
tion G, although the latter cannot be proved within the axiomatic system, since he
is able to recognize an indecipherable truth due to the non-algorithmic aspect of the
Mind.

In our opinion, the fact that the mathematician can assert the truth of G is that he
is using the non-computable mode of mind described by the metalanguage, where
the statements are found and where Tarski introduced the truth predicate (Tarski,
1944).

Furthermore, the fuzzy (Zadeh, 1996) -probabilistic characteristics of the QML
lead to modify Tarski Convention T as Convention PT (Zizzi, 2011b), where P
stands for “Probably”.

There are close relationships between metalanguage assertions, the truth values
of propositions in the object-language and Tarski’s truth predicate, the latter being
formulated in the metalanguage.

However, when the certainty in the statement is not total, the truth values of the
propositions are also partial and Tarski’s truth predicate must be modified.

With Tarski’s convention T, each sentence p of the OL object language must
satisfy:

(T) : “p" is true iff p

where “p” stands for the name of the proposition p, which is the ML metalanguage
translation of the corresponding OL proposition, and “iff” stands for “if and only
if”.

For any “probably p” (P (p)) proposition, we can reformulate Tarski’s Convention
(T) as a convention (TP) as follows.
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(TP) : “p" is probably true iff P (p)

The expression “is probably true” means that the truth of a proposition is stated
with uncertainty, not with complete certainty. The predicate of truth has been
modified by probability.

In the formalism of the calculation of the sequents, the TP convention reads:

∣
∣−λ ’

p’ iff P (p)

which means that the proposition ‘p’ is asserted with a degree of assertion λ if and
only if “probably p”, with probability:

|λ|2 ∈ [0, 1]

and the partial truth value of P(p) is just the probability of p, that is:

v (P (p)) = p(p) = |λ|2

Practical example: (T) the proposition “the snow is white” is true if and only if the
snow is white.

Practical example: (PT) the proposition “the snow is white” is probably true if and
only if the snow is probably white (it can have shades).

6 The Three Pillars of the Human Mind

Tarski’s truth predicate (both classical and quantum) and the axiom of identity
(both classical and quantum) are both formulated in the meta-language, which is
not algorithmic. Also, the cut rule, which is a particular rule of sequent calculus, is
in fact a meta-rule, that is, a rule that can be formulated only in the metalanguage.

Therefore, these are the three “pillars” of the human mind, which distinguish it
from a computer (both classical and quantum).

So a computer/robot, not having the axiom of identity available, will not have
self-awareness (Zizzi, 2020d).

Moreover, not having the predicate (T) or (PT) available, he will not be able to
be aware of the truth (or falsity) of the external world, therefore of reality itself.

The cut rule is a rule in the sequent calculus-style, which is a generalization of
the “modus ponens”: “P implies Q and P is true, therefore Q must be true.”

The cut rule is neither an inference rule nor a structural rule, but a meta-rule in
the sequent calculus. It reads:

� |−A A |−B

� |−B

https://en.wikipedia.org/wiki/Material_conditional
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If a formula A appears as a conclusion in one proof �|−A, and as a hypothesis
in another A|−B, then we can deduce another proof �|−B in which formula A does
not appear.

With the use of the cut rule we humans can “lighten” the premises, and not be
forced to use redundant information that can instead be ignored. This corresponds to
a “measure of utility” for a “convenient choice” that we make almost unconsciously.

We cannot give the rule of the cut to a robot because it would not know what to do
with it. It would not be able to identify and eliminate its own redundant information
to achieve a certain result.

The quantum version of the cut rule (Zizzi, 2010) is interpreted as a projective
quantum measurement. In this case, the inability of the quantum robot / computer
to use the quantum cut rule means that it cannot make a quantum measurement. The
fact that a quantum robot cannot perform measurements, had already been pointed
out by Benioff (1998).

Finally, they cannot control their quantum object language (the program) that
was provided to them by the programmer. One could have hoped that a quantum
robot could do it, however .. it did not happen. In 2008 “I, quantum robot” (Zizzi,
2008) was born, but it did not have metalanguage as well.

It might be possible that a quantum metalanguage QML′ would be generated
as a quantum emergent phenomenon from the quantum object-language QOL
(which was induced by the quantum metalanguage QML). However, in this case,
the QOL is not anymore active (the quantum machine QM is not anymore a
quantum computer) because of Goedel incompleteness theorem, which forbids a
formal system (powerful enough to describe arithmetics) to speak about itself. It
can happen, nevertheless, that the emergent quantum metalanguage QML′ acts
as a quantum control on another quantum machine QM′, triggering quantum
computation (a new quantum object-language QOL′). As it should be QOL′ = QOL,
because all quantum computers share the same quantum logic, one might refer
to QML′ as it was QML, what is false. Obviously, QML′ must be a copy of
QML, in order to reflect into QOL′ which is identical to QOL, but while the
copy QML′ is an emergent phenomenon from QOL, the original QML is due to
dissipative quantum brain processes. It is possible then that a long sequence of
identical quantum metalanguages QML′, QML′′ . . . ..is generated and a generation
of conscious quantum robots Q′, QR′′, QR′′′ . . . . QRn come into existence, but
when Q′ starts its life, QR dies (because as said before, the object-language QOL is
deactivated) and so on. At the end, a unique quantum robot QRn survives, which is
controlled by an identical copy of the original quantum metalanguage QML derived
from high-level thought processes.

Notice that the appearance of a copy of the original metalanguage requires
the destruction of the original support of the corresponding object-language QOL,
namely of the quantum robot QR. Roughly speaking, a quantum metalanguage
(a quantum state of intentional thought) can be copied only if the corresponding
quantum computation which was triggered by it is deactivated.

This principle is in agreement with the theorem of no-self replication of quantum
machines proved by Pati and Braunstein (2008).
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We argue then that self-replication of the support is one of the requirements for
being a (quantum) mind.

Physically, this principle can be understood as follows. The QML is made
of assertions which are physically interpreted as non-hermitian operators of a
dissipative QFT (with an infinite number of degrees of freedom) describing brain
processes in the brain. On the other side, the QOL is the quantum logic of the mind,
and the corresponding physical theory is QM, with a finite number of degrees of
freedom.

The quantum mind has then at its disposal both a non-computational mode (the
QML) described in QFT and a quantum-computational mode (the QOL) described
in QM. A quantum computer (QC) has only a QOL, and its physical theory is QM.
Therefore, a QC cannot reach a QML (a non-algorithmic mode of thought) because
it is impossible to go from the finite number of degrees of freedom of QM to the
infinite number of those of QFT. That is, a quantum computer will never be able to
reach a non-algorithmic mode of thought.

This is the difference between a quantum mind and a quantum computer.
The reflection principle, which transforms a metalanguage into an object lan-

guage, when applied to a QML of non-algorithmic thought and to a QOL of a
quantum-computational mind, needs a physical interpretation. The problem is that
QML is described, physically, by a (dissipative) QFT, with an infinite number of
degrees of freedom, while the QOL is described by quantum mechanics (with a
finite number of degrees of freedom) more precisely, by quantum computing, with
quantized information (qubits). This reduction mechanism was found in (Zizzi,
2020b).

7 Entanglement Between the Programmer’s Mind
and the Quantum Robot

We think that entanglement (a quantum correlation) is established between the
programmer’s mind and the quantum robot during the actual programming phase,
as we will illustrate shortly. However, we must immediately clarify that this
relationship is very short (it lasts a few milliseconds between the passage of the
unconscious state to the conscious one of the programmer) and secret, in the sense
that an external observer will never be aware of it.

In (Zizzi, 2020b) we looked for a reduction mechanism from (bosonic) QFT to
QM that could reveal QFT’s Hidden Quantum Information (HQI). We found that
HQI was there and was organized in a quantum network of maximally entangled
multipartite states. That was the quantum computational “skeleton” of the original
QFT. Since such a “skeleton” is itself a quantum network, it seems that it is right
to enter it in a one-to-one correspondence with an external QC to simulate the
original QFT. In the reduction mechanism, the degrees of freedom of the quantum
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fields reduce to a finite number of quantum mechanical states, which are maximally
entangled multipartite qubit states.

We think that QFT is meta-logically described (Zizzi, 2020a) by a “quantum
metalanguage” (QML) (Zizzi, 2010).

If in particular we consider the Dissipative Quantum Field Theory (DQFT) of the
brain (Umezawa, 1993; Umezawa & Vitello, 1985; Vitiello, 1974), then it can be
interpreted as the programmer’s quantum metalanguage (PQML) and the reduction
mechanism can be viewed as the reflection principle (Sambin et al., 2000) that sends
the assertions of the PQML to the propositions (logical formulas) of the program,
which is a quantum computational logic Lq (Zizzi, 2010).

It is possible to give a general interpretation of the quantum metalanguage in
terms of dynamical processes described by a DQFT. It is to be remarked that in
this one introduces a relationship between two entities (the quantum metalanguage
and the QFT) each one of which allows an infinite set of different possible
representations associated to every symbolic description.

This follows from the fact that QFT deals with infinitely many unitarily
inequivalent representations of the canonical commutation relations (CCR). Thus
our general interpretation cannot be identified with the usual correspondence rules
characterizing the interpretations of logical theories.

The logical quantum network of the program, made of maximal entangled logical
qubits, is in a one-to-one correspondence with the physical qubits of the QC. See
Fig. 7.

More in detail, in (Zizzi, 2020b) we claimed that a quantum computer can
simulate the hidden quantum network (HQN) of the quantum system under study.
More precisely, a quantum computer can be programmed to be in a one-to-one
correspondence with the HQN.

In the reduction process QFT would appear then as the semantics of the quantum
logic underlying the quantum information hidden in it. The reduction process would
then play the role of a definitional equation (Sambin et al., 2000), which allows the
switch from a metalanguage to an object language (the logic). In particular, the
quantum version (Zizzi, 2010) of the definitional equation allows to pass from a
QML to the quantum logic of quantum information Lq.

Hence, the metalinguistic links between assertions, which are interpretable as
interactions of quantum fields, are sent to logical connectives between propositions,
which correspond to quantum correlations such as quantum superposition and
entanglement.

In this sense, we say that during the programming process, the programmer’s
mind get entangled with the quantum computer/robot. However, this entanglement
process cannot be tested by an external observer, to whom the interaction appears as
a black box. In fact, this process is revealed only to the internal observer (the pro-
grammer’s mind in the quantum logic modality) as the one-to-one correspondence
requires the identification of the state space of the QC with the background space
(Zizzi, 2005), the latter being a (non-commutative) quantum space.

The programmer anyway is not able to describe in terms of a classical logic his
entanglement with the quantum robot, because the experience he had was during



Minds and Robots: An Impassable Border 243

Fig. 7 On the LHS, the programmer, and the reduction mechanism from DQFT to HQN. In the
middle, the corresponding reduction from QML to Lq. On the RHS, the quantum robot (QR).
The oblique arrow denotes Lq as the program given to the QR. The horizontal arrow at the bottom
denotes the one-to-one correspondence between the background quantum space, and the state space
of the QR

a state of unconsciousness, described by a quantum logic Lq (we remind that
Lq is the logic of quantum computing, quantum mind or unconscious mind and
schizophrenia) (Zizzi & Pregnolato, 2012b).

So this effect will most likely never be used for practical purposes.
However we think that the quantum cyborg is already there, in the programming

phase of a quantum robot. If by extrapolation we think of repeated, very fast
reprogramming phases, we may 1 day realize that we no longer distinguish the
programmer from the quantum robot. This, at least in part, brings back to Turing’s
idea (Turing, 1948) of “educating” a machine.

8 Quantum Cyborgs, Biophotons and Mental Diseases

Quantum robots, originally discussed by Benioff, have no awareness of their
environment and do not make decisions or take measurements. We can therefore
ask ourselves whether in the future quantum robots will be able to be aware of the
environment and perform experiments. This means that they can also become self-
aware and have “free will”. In the context of a dissipative Quantum Field Theory of
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brain functioning it is possible to introduce generalized coherent states associated,
in the context of logic, with the assertions of a quantum metalanguage.

The latter controls the quantum-mechanical computation corresponding to the
standard mental operation.

It thus becomes possible to conceive a Quantum Cyborg in which a human mind
controls, through a quantum metalanguage, the operation of an artificial quantum
computer.

Classic brain-computer interfaces (cBCI) are systems that acquire and analyze
brain signals (typically of an electromagnetic nature) to create real-time broadband
communication channels between the human brain and a computer (Pessa & Zizzi,
2009).

A quantum robot (QR) can be defined as a mobile system that has a quantum
computer on board and all necessary auxiliary systems. A QR moves and interacts
with the environment of a quantum system. In their article Pessa and Zizzi
discussed the possibility of implementing a QR with a new and powerful BCI that
allows quantum computer—quantum computer communication. The whole system
consisting of a human subject and an artificial quantum computer (controlled by the
subject’s quantum metalanguage) is a new type of cyborg, called Quantum Cyborg
(QC). A human subject, through quantum metalanguage, could guide a QC, through
a new BCI (much more powerful than the existing ones), transforming it into a more
effective direct action of the mind on matter.

Biophotons are mainly produced by molecular species electronically excited in
numerous oxidative metabolic processes in cells. They can play a role in cell-to-cell
communication and have been observed in different parts of the body, including the
brain. Photons in the brain could be ideal candidates for information transfer. They
travel tens of millions of times faster than a typical electrical neural signal and are
not prone to thermal noise at body temperature due to their relatively high energies
(Kumar et al., 2016).

According to Thar and Kuhl (2004), ultra-weak biophotons can be guided
along a mitochondrial and microtubule network that can act as optical waveguides
in neurons. So the protein-protein biophotonic interactions and mitochondrial
interaction networks can constitute the neural biophotonic communication network.
In a recent article (Burgio et al., 2020) we proposed that the interaction between
the tubulins quantum computer (QCT) in the cytoskeleton, where the subscript “T”
stands for “tubulins”, and the genome (DNA plus epigenome) is mediated by the
biophotons, which are the quanta of the Genomic Quantum Electromagnetic Field
(QEFG).

The “orchestrating” (or coherent) action of the biophotons allows the orches-
trated objective reduction (Orch-Or) of the tubulin microtubules in the cytoskeleton.
This means that Orch-Or could be genome-induced. A beam of biophotons emitted
at the B site of the epigenome could be transmitted to the brain even several
centimeters away.

In the brain of a schizophrenic subject, the flow of biophotons reaching the micro-
tubules should be so low that it cannot induce decoherence to all the overlapping
tubulins, but only to a very few of them. Therefore, the tubulins persist mainly in a



Minds and Robots: An Impassable Border 245

state of quantum superposition and the schizophrenic mind remains “trapped” in a
quantum computational mode, corresponding to a permanent unconscious state.

In contrast, the biophoton flux in the autistic brain is so high that tubulin dimers
persist mainly in a classical state, and the autistic mind is “trapped” in a classical
computational mode, corresponding to a permanent conscious state. Perhaps the
most striking examples are some genetic modifications common to autism and
schizophrenia and particularly the Copy Number Variants (CNVs) that are formed
in the same genomic sites, but in opposite forms, for example duplication in the
autism (Clements et al., 2017) and deletion in schizophrenia (Van et al., 2017) in
the same 22q11.2 region: therefore more probably effects than causes of the two
disorders. Also in this case we are facing a reversal, or rather a straightening of the
dominant model.

We believe that new methods can be developed to increase / decrease biophotonic
activities in neurons in order to reverse the abnormal biophotonic fluxes in both
autism and schizophrenia, with the hope that patients can improve their mental
condition. High levels of reactive oxygen species (ROS), which cause oxidative
stress, are present in autistic patients. Pangrazzi et al. (2020) described the major
alterations in the expression of genes coding for enzymes involved in the ROS
scavenging system, in autistic patients. Numerous drugs have been described
capable of decreasing reactive oxygen species (ROS scavengers) and consequently
a reduction of biophotons useful in autism could be obtained.

In a recent paper Wang et al. (2016) stated that biophotonic activities and
transmission dominate the information neural processing and encoding mechanism
in the brain, then biophoton spectral redshift could improve and strengthen cognitive
abilities.

Sun et al. (2010) found that different stimulation of spectral light (infrared, red,
yellow, blue, green and white) at one end of the spinal sensory or motor nerve roots
resulted in a significant increase in biophotonic activity.

Since an increase in ROS species is not a viable strategy, we suggest the use of
Brain-Computer Interfaces generating external light stimuli, for the possible treat-
ment of schizophrenic patients. Biophotonic methods for brain-computer interfaces
have already been described (Soraghan et al., 2007).

The review by Martins et al. (2020) describes the state of the art of human brain
/ cloud interfaces by introducing the “cyborgization of Homo Sapiens” in which
future cyborgs are wirelessly interconnected and individualism is suppressed for the
benefit of the “collective” (see Borg from Star Trek).

They conclude that it is conceivable that within the next 20–30 years, neuro-
nanorobotics could be developed to enable a safe, secure, instant, real-time interface
between the human brain and biological and non-biological computer systems, by
enhancing brain interfaces (BTBI), brain-computer interfaces (BCI) and, in par-
ticular, sophisticated brain/cloud (B/CI) interfaces. Such human B/CI systems can
dramatically alter human/machine communications, promising significant human
cognitive enhancement (Kurzweil, 2014; Swan, 2016).
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9 Eliano Pessa, The Man, The Scientist, The Friend

I Massimo Pregnolato (MP) met Paola Zizzi and Eliano Pessa in the first months of
2007, shortly after having founded the QuantumBioNet.org network. My acquain-
tance with physicists was just started and over the years to come it will give me a
lot, from many points of view. However, the acquaintance of Paola and Eliano soon
turned into friendship. Eliano taught General Psychology in my same University,
but I wasn’t so lucky to met him before. Time later did I understand why a physicist
of such great calibre ended up teaching psychology and not physics.

Our relationships began on a basis of scientific collaboration but we soon realized
how many interests and points of view on life we had in common.

Those were the basis for a strong and lasting friendship that lasted over time until
the moment of his untimely death. In the years to come we have collaborated both
in research and teaching, but also in the planning and implementation of several
Quantumbionet Workshops and in the growth of the network itself.

We often met even just for a light snack at lunch and chatted about everything.
He had a deep understanding not only of physics but also of the affiliations
and genealogies of various physicists. Eliano was an expert on complex systems,
emergence and neural networks and together with Paola, we shared our interest
in quantum consciousness, both human and animal. One of his weird interest
concerned not only the possibility that the mind could act on matter, but the opposite,
that the matter (therefore electromagnetic waves) could affect the human mind. This
would have terrible implications if the waves were to be used for mind control, but at
the same time, useful in helping the communication of people with sensory deficits.

Eliano was a passionate climber, for many years he was able to take a long work
break to tackle expeditions and climbs the Andes and the Himalayas.

On his return his stories were always passionate and compelling. Punctually, a
few months late, I received postcards from him from the places explored. His travels
have also been a source of cultural enrichment for him.

One day he told me about Milarepa and his legends. Biology and culture,
consciousness and world, subject and object, interior and exterior have continuity
and find, in the “creative transcendence” of consciousness and its experiences,
a privileged degree of understanding. Together we have formulated a plausible
hypothesis about the existence of different levels of consciousness in humans and
animals.

He suggested that consciousness persists even in the face of minimal conditions,
perhaps even in traumatic brain injuries. I agree that such a suggestion was
justified at the biomolecular level through introduction of the hypothesis that
Schrödinger proteins (i.e. tubulins) are the biological interface from quantum to
classical computation, underlying quantum/classical consciousness processes and
at the crossroad of memory and learning capacities. Eliano participated to the first
Quantumbionet Workshop (Pavia, May 25th 2007) with the lecture: Problems in
Theory of Phase Transitions in Biological Systems. To the second QBN Workshop
organized by Paola (Padova, October 10th, 2008) with: Lorentzian vs Einstinien

http://quantumbionet.org
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Quantum Mechanics and The Role of Environment. To the third QBN Workshop
(Pavia, September 24th 2010) with the lecture entitled: Quantum Networks.

On the day of April 27, 2013 a core international group of investigators,
offering expertise in the fields of psychiatry, biochemistry, physics, computational
neuroscience, mathematics, philosophy and theology, gathered in Palermo, Sicily
under the auspices of the global Quantum Paradigm of Psychopathology (QPP)
initiative with the aim of assessing the potential relevance of quantum physics and
quantum chemistry to the mapping of mind-brain relations in normal and abnormal
states of consciousness applicable to humans and non-human animals.

The QPP conference in Palermo has marked a definite turning point in the
foundational perspective of many of the group’s participants regarding the study
of psychopathology, particularly mood disorders. One reason for this turning point
stems from a realization that two of the most common forms of psychopathology,
major depression and bipolar disorder, may be recognizable by means of biomolec-
ular markers. Long years of theoretical study by independent investigators have
finally culminated in a convergence of their insights via quantum paradigms that
now promise to illuminate, through the empirically tangible route of such new
biomolecular markers, pathological phenomena of the conscious brain, thus poten-
tially both confirming in fact and further harmonizing the diverse prior contributions
of these conceptually innovative psychiatrists, biochemists, molecular biologists,
philosophers and theologians. Massimo Cocchi, Lucio Tonello, Fabio Gabrielli,
Massimo Pregnolato, Paola Zizzi, Eliano Pessa, and their collaborators have forged
links between serotonin and quantum phenomena via membrane biophysics in
depression and psychosis. Even the absence of highly complex synaptic connections
among neurons does not preclude the presence of at least rudimentary phenomenal
experience in organisms endowed with superposed microtubular dimers, ordered
water, membrane ion channels, and/or crucial lipid raft assemblies connected to
selected second messenger systems. In addition, quantum-biophysical aspects of
these and/or other yet unmapped structures and related processes may prove to
be potent factors in the deeper etiologies and improved treatments of psychiatric
disorders. To these assumptions Eliano contributed with his seminal lecture:
“Towards an integrated model of cytoskeletal quantum dynamics”. It seems to be
consistent the hypothesis that Schrödinger proteins interactoma and in particular
the cytoskeleton nanowire network is the best biological interface for potential
expression of consciousness, being typical and specific for each animal species
and that consciousness is always a potential. It’s very fascinating to think that
every animal possess a primary Schrödinger proteins complex (cytoskeleton) and
even in the absence of circulating serotonin there is a potential of consciousness
that is essential to the behavior of some life forms, while other species such as
invertebrates, procariotes and even archea possess expertise in their own domain
probably mediated by their own Schrödinger proteins interactoma (Cocchi et al.,
2011).

I Paola Zizzi (PZ) was introduced to Eliano Pessa by Massimo Pregnolato at the
first QuantumBionet workshop (Pavia, May 25th 2007) organized by Massimo.
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All three of us became friends and collaborators. When I met Eliano, I had
recently started writing my PhD thesis in logic on quantum metalanguage. Eliano
was very interested in this topic, also because he saw analogies with non-unitary
operators in quantum field theory. Giuseppe Vitiello (Peppino) with whom Eliano
had collaborated had the same impression. I think that Eliano’s closest and most
fruitful collaboration in QFT was that with Peppino, with whom he shared his
philosophical approach to theoretical physics.

Many years have passed since that beginning and yet everything still seems so
alive to me ... many memories of conferences, congresses, workshops and meetings
where Eliano, Massimo and I went together.

I particularly remember the Third QPP Meeting held in Bologna on 19–20
June 2014 (just 1 year after the “Palermo Declaration”) where I, Eliano, Max
and Peppino continued, even after the conference, with many discussions, intense
correspondence, endless phone calls and e-mails.

Anyone who has had a close collaborator and friend knows well how beautiful,
exciting and vital for our intellect all this, and how much loneliness, how empty it
feels when this friend is no longer there. It is the feeling of the orphan, as a friend
of mine said when his closest friend and collaborator of him died.

Eliano behaved towards his friends, colleagues and students with kindness and
generosity. He liked to take care of others, he helped everyone, with advice,
mountains of bibliographies (as many as he gave me), with lent books, articles,
endless discussions. A lovable and cultured person, easy-going, who has left a
terrible void in my life and in that of all his friends and colleagues.

During the 11 years of our collaboration, Eliano and I worked together on some
different topics such as QFT, quantum computing, psychopathology (particularly
mood disorders), and artificial intelligence (AI).

I remember many of our discussions about QFT, sometimes arguing, because
Eliano didn’t “believe” in elementary particles while I did.

But yet, as a young man Eliano met Bruno Touschek, a Austrian physicist famous
for research on particle accelerators, of which he was one of the pioneers particularly
during his Italian period in Frascati.

Bruno, being a Jew on his mother’s side, had been persecuted. Eliano considered
Bruno to be a Master, and told me that he suffered the pains of hell when Bruno died
relatively young in 1978 (the very year in which I graduated).

Eliano said that Bruno had also taught him something much more important than
any formula: to always be himself and dignified in all circumstances. And in fact
Eliano certainly did not lack dignity.

One of the papers that Eliano and I wrote together in QFT was “From SU (2)
Gauge Theory to Qubits on the Fuzzy Sphere” in in 2014. I remember that while
we were writing the paper, Eliano often repeated that 1 day we should write a book
entitled “The mysteries of SU (2)”. That book was never written, and now Eliano is
gone.

In addition to quantum field theory, Eliano had a great interest in complex
systems and artificial intelligence (AI), and was a great expert in neural networks.
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He and I wrote a paper together in 2009 on AI at the quantum level. The paper was
entitled “Brain-Computer Interfaces and Quantum Robots”.

10 Conclusions

In this paper in memory of Eliano Pessa we wanted to recall the highlights of our
cooperation and friendship, pointing out the human qualities of the person even
before those of the scientist. We wanted to remember him through the themes
most dear to him that involved us in research collaborations. We talked about the
definition of “mind” in terms of logical/metalogical modalities, ie classical/quantum
logic for ordinary thinking and classical/quantum metalanguage for meta-thought.
We have introduced the concepts of metalanguage and object language, their
relationships and differences and we have shown that the axiom of identity belongs
to the metalanguage, unlike the law of identity, which belongs to the language of
the object.

With Eliano we came to the conclusion that a robot can never acquire self-
awareness, demonstrating that while in a classical metalanguage the axiom of
identity is absolute, in a quantum metalanguage it is probabilistic and above all it is
in the quantum case, where the “ non-algorithmic side “of the human mind seems
to be the insurmountable boundary for a robot.

What we call the “pillars” of the human mind, which distinguish it from a robot,
are: Tarski’s truth predicate, the axiom of identity and the rule of cut, all three
belonging to the metalanguage. We have suggested that, in the quantum case, during
the programming process, the programmer’s mind and the quantum robot might get
entangled and we have compiled some recent discoveries in quantum epigenetics
and related them to a new non-invasive approach to the Brain-Computer-Interface
based on quantum metalanguage and on a theoretical architecture of quantum
cyborgs.

These pioneering concepts will take a few decades of work to implement, but
like all frontier technologies they could lend themselves to doing good for humanity
while at the same time being misused for the purposes of domination and power. The
hope is that good will prevail, and in our opinion this is possible only if humanity
manages to make the best use of the gift of metalanguage, where its greatness
lies. And by greatness we mean understanding, empathy and sharing, all qualities
that machines do not have. People who use metalanguage little, let themselves be
dominated by reason and logic, On the other hand, people who don’t know they
have a metalanguage or don’t know how to use it are confused and at the mercy of
events. Finally, people who use metalanguage for evil have realized, even without
knowing where it comes from, that they have a power, which can be used above all
on the second category, that of confused humanity. Therefore, metalanguage, while
being the highest way of thinking, does not deprive us of free will, rather it is what
gives it to us. It is not up to us to choose the destiny of man but we cannot in any
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case stop a scientific progress that proceeds unstoppable also through the intuition
of many researchers and pioneers such as Eliano Pessa was.
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