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Abstract. Identity-Based Cryptography (IBC) is a useful tool for the
security of IoT devices, but securely deploying this cryptographic tech-
nique to the IoT systems is quite challenging. For instance, a leakage of
the master secret key will result in the leakage of all IoT devices’ pri-
vate keys. SM9 is the only approved IBC algorithm standard in China.
It is critical to have mechanisms to protect the SM9 master secret keys.
In this work, to reduce the risk of the master secret key leakage, we
propose a (t, n)-threshold distributed private key generation scheme for
SM9 with some techniques from multiparty computation. Our scheme is
compatible with all the three SM9 sub-algorithms (i.e., the encryption,
signature and key agreement). It is also provably secure and completely
eliminates the single point of failures in SM9 that is concerned by the
industry. The experimental analysis indicates that the proposed scheme
is efficient, e.g., up to 1 million private key generation requests can be
handled per day.

Keywords: Identity-Based Cryptography · SM9 · Distributed Key
Generation · Threshold cryptography

1 Introduction

Identity-Based Cryptography (IBC) where user’s public key is an arbitrary
string, is a promising tool for securing the Internet of Things (IoT). In IBCs, all
users’ private keys are generated from a master secret key msk being privately
held by a trusted third party—the Private Key Generator (PKG). Such central-
ized key generation nature, however, inevitably makes the PKG a single point of
failures that is harmful to both system robustness and security: once the single
PKG crashes, the user private key generation service halts immediately; once the
single PKG is corrupted, the master secret key msk is leaked as a consequence.
In fact, the msk leakage problem is of big concern when integrating IBCs to a
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deployed IoT system. Usually, a user device private key SID is generated from
msk, burned into the device and never changed. It is always more profitable to
attack msk than each single device private key. But keeping msk safe seems to
be a difficult task. For instance, the master secret key leakage of PlayStation 31

has caused tremendous losses.
In general, there are two approaches known in the literature to deal with

the msk leakage problem of IBCs. The first approach, such as the certificate-
based cryptography [13,15] and certificate-less public key cryptography [3,5,17],
lets users contribute to their own private keys with the help of a PKG. Even if
the PKG’s msk is compromised, the user’s private key remains safe as long as
the user’s secret kept confidential. But this type of solution generally loses in
transmission efficiency, since the receiver’s certificate or self-generated public key
has to be pre-published. Considering IoT networks are often multi-hop routing
based, poor transmission efficiency makes this approach less attractive and for
most low-cost IoT devices this approach is actually impractical.

The second approach to deal with the msk leakage problem is to adopt the
Distributed Key Generation (DKG), by distributing the power of user private
key generation among multiple parties rather than a single PKG. The n Key Pri-
vacy Authorities (KPAs) based scheme [18] and the n Trusted Authorities (TAs)
based scheme [9] allow the n trusted parties to pick their secret keys freely. Both
schemes are general methods applicable to all IBC schemes, but they are not
compatible with the IBC algorithms after user private key generation (e.g., the
encryption, signature and key agreement). In contrast, within schemes following
a t-out-of-n DKG fashion, the n PKGs must ensure that their secret keys are
sharing one msk. These schemes [7,14,19,20,23] are often based on the Shamir
secret sharing or homomorphic Paillier encryption primitive: the former which
we refer to as (t, n)-threshold distributed key generation [7,14,23] focuses on the
general t-out-of-n case; the latter which we refer to as two-party distributed key
generation [19,20] generally focuses on the 2-out-of-2 case specifically. Since the
distributedly generated user public/private key keep their original forms, the
resulting schemes have good compatibility but heavily rely on concrete mathe-
matical structures. For some IBC schemes with poor homomorphic properties,
these schemes could be particularly complicated and inefficient.

SM9 is a Chinese standard for IBC [1,2] that consists of three sub-algorithms:
a digital signature scheme, a key agreement scheme and an encryption scheme.
Table 1 compares four DKG solutions feasible for SM9. The (t, n)-threshold DKG
seems to be the most desirable one, since only it completely eliminates the single
point of failures in SM9 where both the security and robustness are achieved.

Difficulties of (t, n)-Threshold DKG for SM9. As stated before, the con-
struction of (t, n)-threshold DKG heavily relies on concrete IBC schemes’ math-
ematical structures. Earlier techniques based on the IBC scheme proposed by
Boneh and Franklin [7] (BF-IBC), and proposed by Sakai and Kasahara [14] (SK-
IBC) cannot be directly adopted to SM9. For schemes enjoying fully homomor-

1 The Sony PS3 and Bitcoin crypto hacks. https://tinyurl.com/udg5tyg.
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Table 1. Distributed user private key generation schemes for SM9

Construction Round
need a
Secure
channel

eliminate
Key

escrow
Compatible Robust

n KPAs based Generic N/A × √ × ×
n TAs based Generic N/A

√ √ × ×
Two party based Specific 2 × √ √ ×
(t, n)-threshold

based (this work)
Specific 1

√ √ √ √

† Since no negotiation happens among key generation authorities, the “Round” item
for the KPA and TA based schemes are listed as not applicable (N/A). A scheme
is compatible if it doesn’t modify the IBC algorithms after private key generation,
and is robust if key generation authorities can go offline without interrupting the
private key generation. Key escrow refers to the situation that a single PKG can
generate all users’ private keys.

phic property like BF-IBC [7], where the user private key SID = [msk]hID with
[·] denoting the elliptic curve scalar multiplication operation and hID denoting an
elliptic curve point hashing from a user’s identity string, it is quite straightfor-
ward to generate a t-privately Shamir share of SID = [msk]hID from a t-privately
msk share. Whereas in SM9 [10], the user private key SID = [ msk

msk+F (ID) ]P2 with
F (ID) denoting the hash value of a user’s identity string and P2 denoting the
generator of an additive elliptic curve point group. It is hard for a PKG holding
a t-privately Shamir share of msk to generate a t-privately Shamir share of the
user private key SID = [ msk

msk+F (ID) ]P2, since msk appears both in the numerator
and denominator. This further positions challenges for constructing an efficient
(t, n)-threshold DKG for SM9.

Our Contributions. In this paper, we investigate the problem of distributed
key generation for SM9 and propose a scheme where both the master secret key
msk and user private key SID are generated in a (t, n)-threshold way. To the best
of our knowledge, the proposed (t, n)-threshold Distributed Private Key Gener-
ation ((t, n)-DPKG)2 is the first work that completely eliminates the single point
of failures in SM9. Besides security and robustness, our scheme also presents an
efficient distributed extraction protocol for the exponent inversion IBE family,
an open challenge in [14]. By removing one semi-honest BGW distributed mul-
tiplication protocol [4,16], the round complexity of our protocol is only 1-round,
while the best known solution [14] was with 3-rounds.

Related Work. To reduce the risk of msk leakage, (t, n)-DPKG divides msk
into n shares. Each PKG privately holds a share and generates a private key
fragment for the user. t PKGs or less cannot derive any information about the

2 DKG vs. DPKG: DPKG is a branch of DKG. Within IBCs, DPKG captures the
property of distributedly generating user private keys more precisely. Besides user
private keys, our scheme also generates the master secret key distributedly.
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msk, and the complete user private key SID can only be extracted from at least
t + 1 SID fragments. Thus (t, n)-DPKG relies heavily on concrete mathemati-
cal structures of IBE schemes. Boneh and Franklin [7] came up with the first
(t, n)-DPKG scheme based on BF-IBE. As BF-IBE user private key enjoys fully
homomorphic property, their scheme allows non-interactive partial private key
generation. In comparison, designing such schemes for the exponent inversion
IBE family [8] (e.g., SK-IBE [21] and SM9-IBE [10]) is not that straightforward.
Facilitated by the sharing the inverse of a shared secret multiparty computation
protocol [6], Smart and Geisler developed a (t, n)-DPKG scheme for SK-IBE [14].
Their scheme requires 3-rounds interaction between PKGs during the partial pri-
vate key generation phase and a more efficient protocol remains open. Kate and
Goldberg then revisited above schemes in [14], and extended them to malicious
PKG case with non-interactive proofs of knowledge.

In particular, we notice Xu et al. [23] have presented a similar (t, n)-threshold
distributed private key generation solution for SM9. But some insufficiencies
exist in Xu et al.’s solution: (1) correctness. By distributing 1

msk among n PKGs,
Xu et al.’s scheme successfully extracts the user private key, but it seems very
hard to extract the master public key Ppub = [msk]P1 from the shares of 1

msk to
further extract the user public key. Our scheme shares msk instead, and facili-
tated by multiparty computation techniques, our scheme can efficiently extract
both the user public/private keys from the shares of msk; (2) completeness.
Xu et al.’s solution didn’t describe how to share 1

msk among n PKGs in the
setup phase. Whereas, we present a completely distributed master key genera-
tion protocol which removes the need of pre-distributing msk; (3) efficiency. In
Xu et al.’s scheme, the distributed extraction phase requires 3-rounds interaction
of PKGs. Whereas, only 1-round is needed in our scheme.

2 Preliminaries

Notations. For an integer n, [n] denotes the set {1, 2, . . . , n}. For a real number
n, �n� denotes the greatest integer less than or equal to n. Given a set I, |I|
denotes the cardinality of I. Vector v having n components is denoted as vn with
n being a non-negative integer. The set of all finite binary strings as {0, 1}∗. If
A is an algorithm, then A(x) → y means that running the algorithm A with x
as its input gets the output y. Furthermore, we let y ← A(x) denote the output
y of running the algorithm A with x as its input. The term PPT is abbreviated
for probabilistic polynomial-time. A function negl(·) is called negligible, if for
any polynomial p(·), there exists some λ0 such that negl(λ) ≤ 1/p(λ) for every
λ > λ0. Throughout the paper, λ will denote the security parameter.

2.1 (t, n)-Secret Sharing

Definition 1 ((t, n)-Secret Sharing). A (t, n)-secret sharing in the finite field
Fp is a pair of algorithms (Share,Reconstruct):



Distributed Key Generation for SM9-Based Systems 117

– Share(s, 1λ): A probabilistic algorithm takes as input the security parameter
1λ and a secret s ∈ Fp. It returns n shares {s1, . . . , sn} of s.

– Reconstruct(si1 , . . . , sit+1): A deterministic algorithm takes as input at least
t + 1 shares {si1 , . . . , sit+1} of some secret. It returns the secret s, that is,
Reconstruct(si1 , . . . , sit+1) → s.

Definition 2 (Perfect Security of (t, n)-Secret Sharing). A (t, n)-secret
sharing scheme (Share,Reconstruct) in finite field Fp is of perfect security if the
following properties hold:

– Correctness: ∀s ∈ Fp,∀I ⊂ [n] s.t. |I| > t,Pr[Reconstruct(si : i ∈
I, s1, . . . , sn ← Share(s)) = s] = 1

– Security: ∀s, s′ ∈ Fp,∀I ⊂ [n] s.t. |I| ≤ t, the two distributions are the same:
{{si}i∈I : {s1, . . . , sn} ← Share(s)}
{{s′

i}i∈I : {s′
1, . . . , s

′
n} ← Share(s′)}.

2.2 Identity-Based Encryption with a Single PKG

Boneh and Franklin [7] formalized an Identity-Based Encryption (IBE) scheme
as four algorithms:

– Setup(1λ) → (msk,mpk): The setup algorithm takes 1λ as its input. It returns
a master public key mpk and a master secret key msk.

– Extract(mpk,msk, ID) → SID: The private key extraction algorithm takes as
input a key pair (mpk,msk) and an identity ID ∈ {0, 1}∗. It returns a user
private key SID for identity ID.

– Enc(mpk, ID,m) → c: The encryption algorithm takes as input the master
public key mpk, an identity ID, and a message m. It returns a ciphertext c.

– Dec(mpk, SID, c) → m or ⊥: The decryption algorithm takes as input the
master public key mpk, a user private key SID, and a ciphertext c. It returns
a message m or ⊥ denoting a failure.

Boneh and Franklin [7] also formalized the security notion of an IBE scheme
as IND-ID-CCA secure, by defining the following two-stage game between an
adversary A and a challenger C:

– Setup. C runs the setup algorithm and obtains (mpk,msk). Then C sends
mpk to A and keeps msk to respond A’s queries.

– Phase 1. A adaptively makes private key extraction queries and decryption
queries. For a private key extraction query 〈ID〉, C returns SID to A by running
Extract(mpk,msk, ID); For a decryption query 〈ID, c〉, C sends decrypted c
to A by running Dec(mpk,Extract(mpk,msk, ID), c).

– Challenge. A outputs a tuple {m0,m1, ID∗} where m0 and m1 are two
distinct messages with the same length, ID∗ is an identity for which A never
issues a private key extraction query in Phase 1. Then C picks a random bit
b ∈ {0, 1}, and sends c∗

b to A by computing c∗
b = Enc(mpk, ID∗,mb).
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– Phase 2. A continues to make private key extraction queries and decryption
queries. C responds just as Phase 1 except for the private key extraction query
〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
– Guess. A outputs a guess b′ ∈ {0, 1} of b and wins the game if b′ = b.

Definition 3 (IND-ID-CCA Security of IBE Scheme). An IBE scheme
is secure in the IND-ID-CCA model if for any PPT adversary A, there exists a
negligible function ngel(·) satisfying:

AdvIND-ID-CCAIBE

A = 2|Pr[b′ = b] − 1
2
| ≤ negl(λ).

2.3 The SM9 Private Key Generation

There are 3 sub-algorithms, namely encryption, signature, key agreement in
SM9; their key generation is essentially the same. Besides, our proposal will only
affect the key generation phase. Due to space limitation, here we only introduce
some necessary notions used in the SM9 private key generation. For complete
SM9 schemes, one can redirect to [10] for more details.

Let a bilinear pairing mapping define as ê : G1×G2 → GT , where G1, G2 are
additive groups and GT is a multiplicative group. All three groups have prime
order p. G1 and G2 are generated by P1 ∈ G1, P2 ∈ G2, respectively. Assume a
random s ∈ Z

∗
p is chosen as a global master secret key and the master public key

for SM9 encryption scheme can be defined as Ppub = [s]P1. Then the private key
extraction algorithm computes the user’s public key as QID = [F (ID)] P1 + Ppub

and the user’s private key as SID =
[

s
s+F (ID)

]
P2,

2.4 Dealerless Replicated Secret Sharing Protocol Pσ
rep

Pσ
rep is a protocol that allows n players to jointly determine a random secret σ

of a t-privately replicated secret sharing scheme, without a trusted dealer:

Pσ
rep(G, . . . ,G) = (σ1, . . . , σn)

The input for each player is the public system parameters G = {t, n, p}, where t
is the threshold, n is the number of players and p is a prime number. The output
for each player Pi is a t-privately replicated share σi of secret σ. The protocol
proceeds as follows: each player Pi,i∈[n] chooses a random secret μi ∈ Zp and
shares μi to player Pj,j∈[n] according to the replicated secret sharing scheme [22].
The share that Pi sends to Pj is denoted as Rμi

(t,n)(j). Then Pi,i∈[n] outputs σi =∑n
j=1 Rμj

(t,n)(i). Finally, the shares {σ1, . . . , σn} determine a random replicated
secret scheme Rσ

(t,n) where σ = μ1 + . . . + μn and σi = Rσ
(t,n)(i).
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Fig. 1. Architecture of the distributed private key generation scheme

2.5 Share Conversion Algorithm

Conv∗
(t,n) is a share conversion algorithm used in the Pseudo-Random Secret

Sharing (PRSS) protocol [12,22] that locally converts player Pi,i∈[n]’s t-privately
replicated share Rσ

(t,n)(i) to a t-privately pseudo-random Shamir share Sz
(t,n)(i)

sharing a pseudo-random secret z. st is a common input for all n players.

Conv∗
(t,n)(Rσ

(t,n)(i), st) → Sz
(t,n)(i)

Conv0(2t,n) is a share conversion algorithm used in the Pseudo-Random Zero
Sharing (PRZS) protocol [12,22] that locally converts player Pi,i∈[n]’s t-privately
replicated share Rσ

(t,n)(i) to a 2t-privately pseudo-random Shamir share S0
(2t,n)(i)

sharing secret 0. st is a common input for all n players.

Conv0(2t,n)(Rσ
(t,n)(i), st) → S0

(2t,n)(i)

3 Threshold Distributed Private Key Generation for IBE

In this section, we introduce the system model, formal definition and properties
of (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) for IBE.

3.1 System Model and Security

The proposed distributed private key generation scheme involves 3 entities shown
in Figure 1. Their characteristics and functionalities are introduced as follows:

– Private Key Generator (PKG): It is a powerful entity holding a master
secret key share, who generates private key fragments for IoT devices.

– Combine Center (CC): It is a stateless entity, whose major task is to
perform some complex cryptographic computation. CC collects private key
fragments S

(i)
ID from PKGs, extracts the complete private key SID by combing

the S
(i)
ID fragments then installs SID into the IoT device. Once the SID has

been successfully installed, CC immediately erases the memory related to
SID.
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– IoT Device (DID): It is a resource-constrained entity. DID wants to get its
private key SID installed before leaving the factory.

Since key generation takes place inside the factory, not exposed in an open
environment. We assume all communications shown in Fig. 1 are done via secure
channels under synchronous network setting.

For the security goals, the proposed scheme should prevent two types of adver-
saries – one residing in the private key generation centers, and the other residing
in the private key combine center.

– Corrupted PKG Coalition. We assume the adversary can control up to
t PKGs, learning at most t master secret key shares. Specifically, we assume
the adversary is static – the corrupted PKG set is fixed before the game.
Since behaviors deviating the predefined rules will be quickly detected, the
corrupted PKG coalition is assumed to be semi-honest – they will fulfill faith-
fully promised tasks. The security goal is that this corrupted PKG coalition
learns no more information than its members’ master secret key shares.

– Corrupted CC. The adversary residing at the combine center is assumed
to be active. It is able to generate arbitrary legal identities representing IoT
devices and normally interact with PKGs. The security goal is to ensure that
this adversary learns no more information than SID for which it has queried.

3.2 Security Definition

In this part, we revisit the security definition of (t, n)-DPKG for IBE proposed
by Kate and Goldberg [14]. For comprehension, these schemes are described
within the background of the proposed system model. An IBE scheme with
(t, n)-threshold distributed private key generation consists of four components:

– The distributed setup: DSetup(t, n,G) → (mski,mpkn+1). Each PKGi,i∈[n]

takes in a threshold t, the number of PKGs n and public system parame-
ters G. It returns a t-privately share mski of msk and a vector mpkn+1 =
{mpk1, . . . ,mpkn,mpk}, where mpki denotes the ith share of mpk.

– The distributed extraction: it involves a distributed extraction protocol
DExtract ran by PKGs and a Combine algorithm locally ran by the CC.

DExtract(ID,mski,mpk) → S
(i)
ID

Combine(S(1)
ID , S

(2)
ID , . . . , S

(m)
ID ) → SID

In DExtract, each PKGi,i∈[n] takes in an identity ID, a t-privately share mski

of msk and mpk. It will output a t-privately share S
(i)
ID of the device private

key SID. Having received m ≥ t + 1 shares of SID, CC will run the Combine
algorithm to compute SID.

– The encryption: Enc(mpk, ID,m) → c. It is the same as the single PKG.
– The decryption: Dec(mpk, SID, c) → m or ⊥. It is the same as the single

PKG.
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Kate and Goldberg [14] formalized the security notion of (t, n)-DPKG for IBE
as IND-ID-CCA secure, by defining an IND-ID game that a challenger C plays
against a Byzantine adversary who can control up to t PKGs and make them
behave arbitrarily. In this work, we assume the corrupted PKGs are semi-honest
instead of malicious, so we have made two modifications to Kate and Goldberg’s
IND-ID game definition [14]: (1) proofs for private key shares are not required,
since the semi-honest assumption implies that all PKGs will fulfill their tasks
faithfully and will always generate correct shares as required; (2) only n ≥ t is
required, instead of n ≥ 2t + 1 required by the malicious PKG assumption. The
IND-ID game under the semi-honest PKG assumption is defined as:

Before the game, the adversary A(t,n) fixes a set of corrupted PKGs denoted
as A with |A| ≤ t (for general purpose, we assume |A| = t), and the challenger
C will simulate the rest n − t honest PKGs denoted as B with |B| = n − t.

– Setup. C simulates PKGi,i∈B and runs the distributed setup protocol with
A(t,n). In the end, A(t,n) will receive mskt = {mski}i∈A contains t shares of
msk for PKGi,i∈A, and mpkn+1 = {mpk1, . . . ,mpkn,mpk} contains n shares
of mpk generated by PKGi,i∈A∪B and mpk.

– Phase 1. A(t,n) adaptively makes private key extraction 〈ID〉 queries and
decryption 〈ID, c〉 queries. For a 〈ID, c〉 query, C decrypts c using its msk then
sends decrypted c to A(t,n). For a 〈ID〉 query, C simulates PKGi,i∈B running
the distributed private key extraction protocol with A(t,n), and sends Sn−t

ID

to A(t,n) where Sn−t
ID = {S

(i)
ID}i∈B are shares of SID generated by PKGi,i∈B .

– Challenge. A(t,n) outputs a tuple {m0,m1, ID∗} where m0 and m1 are two
distinct messages with the same length, an identity ID∗ for which A(t,n) never
issues a private key extraction query in Phase 1. Then C picks a random bit
b ∈ {0, 1}, and sends c∗

b to A(t,n) by computing c∗
b = Enc(mpk, ID∗,mb).

– Phase 2. A(t,n) continues to make private key extraction queries and decryp-
tion queries. C responds just as Phase 1 except for the private key extraction
query 〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
– Guess. A(t,n) outputs a guess b′ ∈ {0, 1} of b and wins the game if b′ = b.

Definition 4 (IND-ID-CCA Security of IBE Scheme With (t, n)-DPKG).
With (t, n)-threshold distributed private key generation, an IBE scheme is secure
in the IND-ID-CCA model if for any PPT adversary A(t,n), there exists a neg-
ligible function ngel(·) satisfying:

Adv
IND-ID-CCA(t,n)-IBE

A(t,n)
= 2|Pr[b′ = b] − 1

2
| ≤ negl(λ).

In fact, A(t,n) depicted in the above IND-ID-CCA game models an attacker
A′ who corrupts t PKGs as well as the CC. A(t,n)’s failure in the IND-ID-CCA
game also indicates that attacker A′ learns no more information than t corrupted
PKGs’ msk shares and the device private keys SID for IDs it has queried for.



122 R. Zhang et al.

4 Construction of (t, n)-DPKG for SM9

As the (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) won’t
change the original forms of user public/private key, it is compatible with the
original SM9 algorithms after user private key extraction. Hence we only focus
on the first two phases – distributed setup and extraction. Construction of
(t, n)-DPKG for SM9 relies on (t, n)-Shamir secret sharing, and the challeng-
ing task is to let PKGi,i∈[n] holding a t-privately Shamir share mski to generate
a t-privately Shamir share of SID = [ msk

msk+F (ID) ]P2. To do this, we first rewrite

SID as [1 − F (ID)
msk+F (ID) ]P2, and employ a sharing the inverse of a shared secret

protocol [6] enabling PKGi holding a msk share mski to obtain a t-privately
Shamir share θi of 1

msk+F (ID) . Then PKGi can locally convert θi to a t-privately
Shamir share of SID = [ msk

msk+F (ID) ]P2 by computing [1−F (ID)·θi]P2. Besides, to
reduce interactions between PKGs, an auxiliary variable σ and share conversion
algorithms Conv∗

(t,n) and Conv0(2t,n) are introduced to provide Shamir shares.

A. System Bootstrapping
In this phase, n PKGs are supposed to collaboratively determine the following
public system parameters:

(1) Determine PKG group size n and threshold t such that n ≥ 2t + 1.3 If
unsatisfied, decline to proceed.

(2) Agree on parameters G = {1λ,G1,G2,GT , p, ê, P1, P2,Hv, hid} required by
the SM9-IBE scheme [10].

B. Distributed Setup
In this phase, n PKGs jointly determine a secret msk where PKGi,i∈[n] obtains
a t-privately msk share mski.

- DSetup(t, n,G) → (mski,mpkn+1): is a protocol jointly ran by n PKGs.

(1) PKGi,i∈[n] jointly runs the Pσ
rep protocol defined in Sect. 2.4, that is,

Pσ
rep({t, n, p}) → σi. At the end of Pσ

rep execution, n PKGs will collabo-
ratively determine a global secret σ and PKGi,i∈[n] will privately output σi,
which represents a t-privately replicated share Rσ

(t,n)(i) sharing the secret σ.
(2) PKGi,i∈[n] locally runs the PRSS share conversion algorithm Conv∗

(t,n)(σi,
st0) → si, where st0 is a string representing an agreed-upon initial global
state (e.g. Lamport timestamp). The private output si is a t-privately
pseudo-random Shamir share, sharing the master secret key s.

(3) PKGi,i∈[n] publicly outputs a t-privately Shamir share mpki of mpk by com-
puting mpki = [si]P1.

3 n ≥ 2t+1 is required because the distributed extraction phase of SM9 involves secret
reconstruction from 2t-privately Shamir shares.
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(4) PKGi,i∈[n] reconstructs the master public key mpk by performing Lagrange
polynomial interpolation on received m ≥ t+1 mpk shares. That is, mpk =∑m

i=1[ci]mpki where ci =
∏m

j=1,j �=i
−j
i−j .

(5) PKGi,i∈[n] privately outputs mski = {σi, si} and publicly outputs
mpkn+1 = {mpk1, . . . ,mpkn,mpk}. Here, si is a t-privately Shamir share
of the master secret key of SM9 and σi is an auxiliary variable to generate
Shamir shares (all Shamir shares can be re-computed from σi including si).
To avoid confusion, the master secret key of SM9 is denoted as s instead of
msk in the following discussions.

C. Distributed Private Key Extraction
This phase includes a DExtract protocol jointly ran by n PKGs where PKGi,i∈[n]

will generate a private key fragment S
(i)
ID for the IoT device DID, and a Combine

algorithm locally ran by the CC where the CC will extract the complete private
key SID from the received private key fragments.

- DExtract(ID,mski,mpk) → S
(i)
ID : is a protocol collaboratively ran by n PKGs.

(1) PKGi,i∈[n] locally computes xi = si + F (ID), which is a t-privately Shamir
share sharing secret x = s + F (ID).

(2) PKGi,i∈[n] locally invokes Conv∗
(t,n)(σi, st) → ri, where ri is a pseudo-random

t-privately Shamir share sharing some pseudo-random secret r. Here, st
denotes the current agreed-upon global state.

(3) PKGi,i∈[n] locally invokes Conv0(2t,n)(σi, st) → yi, where yi is a 2t-privately
pseudo-random Shamir share sharing secret 0.

(4) PKGi,i∈[n] locally computes zi = xi · ri + yi, which is a 2t-privately pseudo-
random Shamir share sharing secret z = x · r, with x = s + F (ID).

(5) PKGi,i∈[n] first reveals zi to the rest n − 1 PKGs, then reconstructs the
2t-privately secret z. This step requires at least 2t + 1 PKGs to be online,
that is, n ≥ 2t + 1.

(6) PKGi,i∈[n] locally computes ωi = 1 − F (ID) · θi, where θi = ri

z is a t-
privately pseudo-random Shamir share of 1

s+F (ID) . Therefore, ωi is a t-
privately pseudo-random Shamir share of s

s+F (ID) .

(7) PKGi,i∈[n] sends S
(i)
ID = [ωi]P2 to CC.

In [14], Geisler and Smart reconstructed the product of x and r based on
t-privately Shamir shares of x · r. However, to obtain this t-privately share,
PKGi,i∈[n] has to run a semi-honest BGW distributed multiplication protocol [4]
with the remaining n − 1 PKGs. We reconstruct x · r from 2t-privately Shamir
shares instead, where PKGi,i∈[n] can locally obtain its 2t-privately Shamir share
of x · r. In this way, we avoid invoking one distributed multiplication protocol
and only 1 round interaction between PKGs are needed to recover the secret x ·r
from its 2t-privately Shamir shares.

Having received m ≥ t + 1 private key fragments from PKGs, CC invokes the
Lagrange polynomial interpolation algorithm to obtain the complete private key.
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- Combine(S
(1)
ID , . . . , S

(m)
ID ) → SID: is an algorithm locally ran by the CC.

CC derives the complete key via:

SID =
m∑

i=1

[c′
i]S

(i)
ID , where c′

i =
m∏

j=1,j �=i

−j

i − j
.

Correctness Analysis. To show above construction is correct, we only need to
show that the device public/private key generated in a (t, n)-threshold way is
the same as the one generated in a centralized way. For the device public key,
we only need to show that the master public key mpk = [s]P1 is correctly
extracted from mpki = [si]P1 fragments. Namely, the equation mpk = [s]P1 =∑m

i=1[ci]mpki should hold where ci denotes the Lagrange coefficient. Guaranteed
by the correctness of (t, n)-threshold Shamir secret sharing, mpk = [s]P1 =
[
∑m

i=1 cisi]P1 =
∑m

i=1[cisi]P1 =
∑m

i=1[ci]mpki where mpki = [si]P1. Therefore,
the device public key can be correctly extracted. Similarly, we can verify that
the device private key can be correctly extracted too.

5 Security Analysis

In this section, we prove that the distributed form of PKGs won’t downgrade
the security level of SM9 schemes by reducing the multiple PKG scenario to a
single PKG scenario. Specifically, we choose SM9-IBE as an illustration. In [11],
Cheng gave a rigorous proof of SM9-IBE as IND-ID-CCA secure, so we have:

Theorem 1. If SM9-IBE scheme is secure in the IND-ID-CCA model, then
SM9-IBE scheme with (t, n)-DPKG is secure in the IND-ID-CCA model.

Proof. The central idea of the proof is that, if there exists an adversary A(t,n)

that wins the IND-ID-CCA game under the (t, n)-DPKG setting with advantage
ε, then we are able to construct a simulator S to win the IND-ID-CCA game
under the single PKG setting with the same advantage ε. The key step in this
reduction is to create a simulator S which can perfectly simulate a view for A(t,n)

in a real attack. Specifically, we denote the pre-fixed corrupted PKG set chosen
by A(t,n) as A with |A| = t, and the remaining honest PKG set simulated by S
as B with |B| = n − t.
� Setup. S simulates PKGi,i∈B and runs the distributed setup protocol with
A(t,n). In the end, A(t,n) receives (mskt, mpkn+1) where mskt = {mski}i∈A

contains t shares of msk for PKGi,i∈A, and mpkn+1 = {mpk1, . . . ,mpkn,mpk}
contains n shares of mpk generated by PKGi,i∈A∪B and the mpk.

As S wants to leverage A(t,n) to help it answer the challenge proposed by the
challenger C under the single PKG setting, S should convince A(t,n) that: 1)
A(t,n)’s output mskt are t shares of the msk chosen by the challenger C even if
S has no idea about the msk chosen by C; 2) A(t,n)’s output mpkn generated
by PKGi,i∈A∪B are n shares of the mpk chosen by C. Concretely, S works as:

(1) S gets mpk from C, by running a setup algorithm with C.
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(2) S runs the Pσ
rep protocol (defined in Sect. 2.4) with A(t,n) by simulat-

ing PKGi,i∈B , where S randomly chooses secret μi for PKGi,i∈B . At the
end of the Pσ

rep protocol execution, A(t,n) will obtain t shares σt of σ
for PKGi,i∈A. Then A(t,n) can compute the t master secret key shares
st ← Conv∗

(t,n)(σ
t, st0), and the t master public key shares mpkt ← [st]P1.

Since the simulator S chooses secrets for n− t honest PKG nodes randomly,
S can perfectly simulate the view for A(t,n) in a Pσ

rep protocol. After run-
ning the Pσ

rep protocol with S, A(t,n) obtains ({σt, st},mpkt) for PKGi,i∈A.
Since (t, n)-DPKG for SM9 requires n − t ≥ t + 1, S holding n − t shares of
σ is able to derive all the outputs of A(t,n).

(3) S computes the mpkn−t generated by PKGi,i∈B, by performing Lagrange
polynomial interpolation with mpkt generated by PKGi,i∈A and mpk. This
ensures the n shares mpkn generated by PKGi,i∈A∪B are sharing the secret
mpk. Then S sends mpkn−t and mpk to A(t,n).

(4) A(t,n) outputs ({σt, st},mpkn+1), where mskt is denoted as {σt, st}.

Guaranteed by the perfect security of (t, n)-Shamir secret sharing, A(t,n) hold-
ing only t shares st of some master secret key s′ (s′ is the master secret key deter-
mined by S and A(t,n) running the Pσ

rep protocol), cannot tell if st is sharing
the secret s′ or the secret msk chosen by C. Hence the simulation is correct.
� Phase 1. A(t,n) adaptively makes private key extraction 〈ID〉 queries and
decryption 〈ID, c〉 queries. For a 〈ID, c〉 query, S passes the query and decrypted
c back and forth between A(t,n) and C. For a 〈ID〉 query, S simulates PKGi,i∈B

running the distributed private key extraction protocol with A(t,n), and sends
Sn−t

ID = {S
(i)
ID}i∈B generated by PKGi,i∈B to A(t,n). Concretely, S works as:

(1) S gets SID from C, by forwarding A(t,n)’s 〈 ID 〉 query to C.
(2) S runs the DExtract protocol with A(t,n) by simulating PKGi,i∈B , where

S needs to simulate zi,i∈B for A(t,n). To simulate zi,i∈B, S first computes
zi,i∈A. Then S chooses a random z. Next, S computes zi,i∈B with zi,i∈A and
z, ensuring that the 2t-privately Shamir shares {zi}i∈A∪B are sharing the
secret z. Finally, S sends zi,i∈B to A(t,n).

(3) S computes Sn−t
ID generated by PKGi,i∈B . First, S computes St

ID =
{S

(i)
ID}i∈A. Then S computes Sn−t

ID = {S
(i)
ID}i∈B , by performing Lagrange

polynomial interpolation with St
ID and the SID. This ensures the t-privately

Shamir shares {S
(i)
ID}i∈A∪B are sharing the secret SID returned by the chal-

lenger C.
(4) S sends SID

n−t to A(t,n).

In the simulation, Sn
ID = {S

(i)
ID}i∈A∪B are random shares to A(t,n), since z are

randomly chosen by S. The view is consistent with what A(t,n) has seen in a real
distributed private key extraction protocol. A(t,n) holding only t shares of z and
without any prior-knowledge of z, views z as completely random distribution
(guaranteed by perfect security of (t, n)-Shamir secret sharing), which means
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the ith key fragment S
(i)
ID = [1 − F (ID) · ri

z ]P2 is actually a random share to
A(t,n). Thus the simulation is correct.
� Challenge. A(t,n) sends a tuple {m0,m1, ID∗} to S, where m0 and m1 are two
distinct messages with the same length, an identity ID∗ which has never been
queried in Phase 1. S forwards the tuple to C. C picks a random bit b ∈ {0, 1},
and sends c∗

b to S by computing c∗
b = Enc(mpk, ID∗,mb). S passes c∗

b to A(t,n).
� Phase 2. A(t,n) continues to make private key extraction queries and decryp-
tion queries. S responds just as Phase 1 except for the private key extraction
query 〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
� Guess. A(t,n) outputs a guess b′ ∈ {0, 1} of b. Then S outputs b′ as its guess.

Obviously, the advantage of S is the same as A(t,n)’s, because A(t,n)’s guess
is exactly what S needs to attack the IBE scheme under the single PKG setting:

AdvIND-ID-CCAIBE
S = 2|Pr[b′ = b : S → b′] − 1

2
| = 2|Pr[b′ = b : A(t,n) → b′] − 1

2
|

= Adv
IND-ID-CCA(t,n)-IBE

A(t,n)
= ε (1)

Since the SM9-IBE scheme under the single PKG setting is IND-ID-CCA secure,
we have ε ≤ negl(λ) for some negligible function negl(·). Combing with (1), we
come to the conclusion that the SM9-IBE scheme under the (t, n)-DPKG setting
is IND-ID-CCA secure, too.

6 Performance Evaluation

In this section, we first present implementation details of the proposed
(t, n)-DPKG. Then we focus on the tradeoff between the system security, robust-
ness and efficiency that inherently existed in the threshold key generation.
Finally, we justify the feasibility of integrating (t, n)-DPKG to a deployed system,
by comparing a (2, 6)-DPKG instance with the centralized private key genera-
tion.

A. Implementation Details
We construct our code in C and C++, based on the MIRACL library for elliptic
curve cryptography. Benchmark tests are done with google benchmark. We have
six PKGs deployed on three Alibaba Cloud simple application servers having 1
CPU core with 2 GB RAM, each running two PKG instances. The round-trip
latencies among them are 3 ms∼17 ms. We implement CC as a relatively resource-
constrained virtual machine on Virturalbox, which is assigned to only 400 MB
RAM, 1 CPU core and the CPU frequency is set to 360 MHz. The operating
system for PKG/CC is Ubuntu Server 18.04/14.04 LTS.

B. The Tradeoff Between the Security, Robustness and Efficiency
Although (t, n)-DPKG tackles the inherent single point of failures problem of
IBC schemes, the system security and robustness come at a price. There is
an inherent tradeoff between the system security, robustness and efficiency in
(t, n)-DPKG , which can be adjusted via the (t, n)-threshold. Table 2 presents
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Table 2. (t, n)-threshold’s impact on various overheads

Communication

(sent bytes)
Computation Time

Storage

(bytes)

PKG at setup 32(n − 1) (n−1
t ) (n−1

t ) Th + Tpm
32 (n−1

t ) + nLaddr

PKG at extract 32(n − 1) (t − 1) (n−1
t ) Th + Tpm

CC at setup 0 (t + 1)Tpm
nLaddr

CC at extract nLid (t + 1)Tpm

† Lid and Laddr are the byte-length of the IoT device’s identity and the ip address
of the PKG respectively. Th and Tpm stand for the time complexity of hashing and
elliptic curve scalar multiplication operation respectively.

how the storage overhead, communication overhead and computation overhead
change with the (t, n)-threshold. Due to space limitation, Table 2 only lists the
most significant item that affects the overhead. In conjunction with Table 2, we
can get the following conclusions:

– Small (t, n)-threshold values are preferable in terms of efficiency, as the over-
heads on PKG/CC will increase exponentially/linearly with increasing (t, n).

– Large (t, n)-threshold values are preferable in terms of security and robustness.
Since in the proposed (t, n)-DPKG scheme for SM9, the security connotation is
that at most t PKGs can be corrupted without exposing the master secret key ;
the robustness connotation is that at most n − 2t − 1 PKGs can go offline half
the way without interrupting the user private key generation service.

– To strike a good tradeoff between the system security, robustness and efficiency,
a recommended range for the number of private key generators n is between 3
and 10. On the one hand, (t, n)-DPKG for SM9 requires n ≥ 2t + 1 and t > 0
which implies n ≥ 3. On the other hand, according to the experiment we find
out that after n has climbed to a certain value (roughly around n = 10), a
slight increase in t will result in the boom of overheads on the PKG side. One
can choose the t value on the need, but increasing t will result in increasing
system security while decreasing system robustness, and vice versa.

C. Comparison to the Centralized Private Key Generation
A major concern of the proposed (t, n)-DPKG scheme for SM9 is about efficiency,
that is, if (t, n)-DPKG is too slow to be integrated into a deployed system. Indeed,
efficiency is a practical concern since the key generation centers may need to gen-
erate substantial private keys for distinct IDs. To inspect efficiency, we instanti-
ate a (2, 6)-DPKG instance and compare it with the centralized key generation
setting. We can tell from the outcome presented in Table 3 that when the (t, n)-
threshold is small (t = 2 and n = 6 in our case), the proposed (t, n)-DPKG
for SM9 can easily handle up to 1 million private key generation requests per
day (only 21ms is required handling per request in (2, 6)-DPKG). For IoT device
manufactories equipped with much more productive settings, they can trade
efficiency for security and robustness by working with larger (t, n) values.
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Table 3. Comparison between the centralized key generation and (2, 6)-DPKG

Communi-
cation Traffic

Computation Time Key Genera-
tion Time

Secure Robust
on PKG on CC

Centralized 43 Bytes 1.54 ms N/A 1.54 ms × ×
(2, 6)-DPKG 1218 Bytes 2.11 ms 33.49 ms 21.32 ms

√ √

† We assume the IoT device identity’s byte-length Lid = 10. The key generation
time refers to the time that the PKGs deal with a private key generation request,
which excludes the time of combining private key fragments.

7 Conclusion

In this paper, to deal with the master secret key leakage problem in SM9, we pro-
pose a (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) solu-
tion with some techniques from multiparty computation. The proposed scheme
achieves better master secret key protection, and doesn’t require any modifica-
tion of original SM9 algorithms after the user private key generation. Besides
enhanced security and robustness, we conduct experiments and the results show
that with a small (t, n)-threshold value, the proposed scheme can achieve a good
balance between the system security, robustness and efficiency.
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