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Preface

The 16th International Conference on Information Security and Cryptology (Inscrypt
2020) was held in Guangzhou, Guangdong, from December 11 to 14, 2020. It was
co-organized by the State Key Laboratory of Information Security, the Chinese
Association for Cryptologic Research, and the College of Cyber Security of Jinan
University, and in cooperation with the IACR. Due to the COVID-19 pandemic, it was
held as a hybrid of physical and online components.

Inscrypt is an annual conference held in China, targeting research advances in all
areas of information security, cryptology, and their applications. The 2020 conference
instance received a total of 79 submissions from Russia, Korea, Australia, China Hong
Kong, and China mainland. The two PC chairs were supported by 45 Program
Committee (PC) members and 13 sub-reviewers, who were leading experts on cryp-
tology and security from 13 countries or regions. The PC team selected 24 papers as
Full Papers, and 8 papers as Short Papers. In the selecting process, the papers were bid
for by the PC members and then automatically assigned to them for reviewing. The
reviewing process was conducted using a double-blind peer review process, and each
paper was reviewed by at least three PC members or sub-reviewers. All the accepted
papers were included in the conference proceedings.

The program of Inscrypt 2020 included six excellent invited academic keynote talks
by Professors Danfeng (Daphne) Yao (USA), Yang Liu (Singapore), Aggelos Kiayias
(United Kingdom), Orr Dunkelman (Israel), Giuseppe Persiano (Italy), and Chuanming
Zong (China), as well as one industrial keynote talk by Dr. Qisen Huang (Nsfocus,
China). In addition, the program included nine regular presentation sessions on AI
Security, Asymmetric ciphers, Post-quantum Cryptology, Systems security, Privacy
Protection, Digital Signatures, etc.

It would have been impossible to have a successful Inscrypt 2020 conference
without the significant contribution of many people. First, we would like to thank all
the authors for submitting their research results to the conference. We were also very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise and for their hard reviewing work. Second, we were greatly indebted to
the Honorary Chairs, Weiqi Luo and Dongdai Lin, and General Chairs, Jian Weng and
Robert H. Deng, for their overall and organization efforts. Third, we thank Kaimin Wei
and Shanxiang Lyu for organizing the online and offline conference program, Boyu
Gao for checking all the latex files and for assembling the files for submission to
Springer, and Mr. Chen and the IACR for setting up and maintaining the Web Sub-
mission and Review software for the paper submission and review process. Last but not
least, we thank Alfred Hofmann, Anna Kramer, and their Springer colleagues for
handling the publication of the conference proceedings.

December 2020 Yongdong Wu
Moti Yung
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Polytopic Attack on Round-Reduced
Simon32/64 Using Deep Learning

Heng-Chuan Su, Xuan-Yong Zhu(B), and Duan Ming

State Key Laboratory of Mathematical Engineering and Advanced Computing,
Information Engineering University, Zhengzhou 450001, China

xuanyong.zhu@263.net

Abstract. In CRYPTO 2019, Gohr uses the residual network tech-
nology of artificial intelligence to build a differential distinguisher, and
attacks the reduced-round Speck32/64. We tried this method to recover
the keys for ten-round Simon32/64. In this paper, we have three inno-
vations. First, we construct polytope neural network distinguisher. On
eight-round Simon32/64, polytope neural network distinguisher could
increase the success rate of three neural network distinguishers with 0.76
success rate to 0.92. Second, we propose an attack on Simon32/64 based
on the combination of the probability of differential path and polytope
neural network distinguisher. This method can only increase the compu-
tational complexity of the chosen data as the number of rounds increases.
Nine-round polytope neural network distinguisher is used to filter out
data, whether it is what we want. Eight-round neural distinguisher is
used to recover the final round key. The computational complexity of
key recovery on the final key of eleven-round Simon32/64 is 233.4. Third,
we propose an attack called Bayesian Key Research with Error. With
this attack, the computational complexity of key recovery on the final
key of eleven-round Simon32/64 is 230.9.

In our paper, the main idea is combining polytope differences with
neural networks. By constructing polytope differential neural network
distinguisher, we make a key recovery attack. In order to increase the
number of rounds, we first used brute force attack and then proposed
Bayesian Key Research with Error. We think this idea can be applied to
many cryptographic algorithms.

Keywords: Deep learning · Polytopic attack · Simon32/64

1 Introduction

Cryptography is the core foundation of current information security, and
sequence cipher and block cipher are the primary means of modern data security.
For the attack and analysis of the cryptographic algorithm, it is mainly to mine
the inherent non-random characteristics of the algorithm and design and con-
struct the corresponding attack methods. The typical attack methods include
linear attack, differential attack, and algebraic attack, and the application of
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-71852-7_1
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multi attack methods. In practical use, the non-random feature is to construct
a distinguisher with a probability advantage. Based on sufficient data, the dis-
tinguishers allow to determine the correct key, to attack the cryptographic algo-
rithm. At present, differential attack and its various deformation attack methods
are among the main theoretical methods of algorithm attack. The main basis of
the attack method is: the input vector is different in some specific positions, and
the output vector changes unevenly; that is to say, there is a high probability
differential pair. In the actual algorithm attack process, the high probability dif-
ferential pairs of multiple series links are connected to form a high probability
differential path, based on which a differential divider is constructed. It is one of
the core tasks of cryptanalysis and attack to find a high probability differential
path and construct an efficient distinguisher.

With the rapid development of high-performance computing and big data in
recent years, artificial intelligence technology based on deep learning has made
incredible achievements in speech recognition [17], machine translation [18], and
many other fields. Artificial intelligence technology has inherent advantages in
detection and recognition based on fixed weak features. Based on this, cryptog-
raphy researchers try to introduce artificial intelligence into the cryptanalysis.

In 2011, Hospodar et al. Proposed a side-channel attack method for AES
using deep learning technology [1]. In 2012, Alani proposed a known-plaintext
attack method based on neural network technology [2], decrypting the ciphertext
through the trained neural network when the key is unknown. In 2019, Gohr uses
the residual network technology of artificial intelligence to build a differential
distinguisher [3], and attacks the reduced-round speck encryption algorithm.

In this paper, we use neural networks to construct the differential distin-
guisher and the key recovery attack of Simon32/64 [5,6,13]. First, we use our
nine-round differential neural network distinguisher to recover the keys for ten-
round by wrong key randomization and Bayesian optimization. In this experi-
ment, choosing 214 plaintext pairs, statistics based on 50 results we could know
that the attack was successful in 50 out of 50 trials; our implementation outputs
a key guess in approximately half a quarter of a minute on average (measured
average in 100 trials: 14.36 s) when running on a single thread of our machine
with no graphics card usage. Second, we propose an attack on Simon32/64 based
on the combination of the probability of differential path and polytope neural
network distinguisher. This method can only increase the computational com-
plexity of the chosen data as the number of rounds increases. Nine-round poly-
tope neural network distinguisher is used to filter out data, whether it is what
we want. Eight-round neural distinguisher is used to recover the final round key.
The computational complexity of key recovery on the final key of eleven-round
Simon32/64 is 233.4. Third, we propose an attack with Bayesian Key Research
with Error on Simon32/64. In our attack, we consider the affect of the bad points
in building wrong key randomization table. The computational complexity of key
recovery on the final key of eleven-round Simon32/64 is 230.9.

The second section of this paper introduces the Simon algorithm and some
properties of Simon; the third section is to construct differential distinguisher
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based on neural networks; the fourth section is the result of differential neu-
ral network distinguisher and polytope differential neural network distinguisher;
the fifth section is key recovery attack on Simon32/64 on the final round with
three method. First, Bayesian key research. Second, brute force polytopic attack.
Third, Bayesian Key Research with Error; the sixth section summarizes the work
of the paper and future work.

2 The Simon Family of Block Ciphers

2.1 Notations

Bitwise addition will in the sequel be denoted by ⊕, bitwise and will in the sequel
be denoted by ∧, and bitwise rotation of a fixed-size word by � for rotation to
the left.

2.2 A Short Description of Simon

Suppose the left half of input texts to the i-th round is Li−1, and the right half
is Ri−1. The subkey is Ki−1. The round function is

(
Li, Ri

)
=

(
Ri−1 ⊕ F

(
Li−1

) ⊕ Ki−1, Li−1
)

(1)

where
F (x) = ((x � 1) ∧ (x � 8)) ⊕ (x � 2) (2)

2.3 Some Properties of Simon

Here, we introduce some properties of Simon [5,6,13].

Proposition 1. Let ΔLi−1 and ΔRi−1 is the input differential of r-round
Simon. We assert ΔRi = ΔLi−1.

From Simon’s encryption algorithm, this can be easily found.

Proposition 2. Assume that E is any Simon variant with a free key schedule
and that Eve is an attack that tries to recover the Simon key used purely differ-
ential methods, i.e., assume that it gets as input plaintext differences P0 ⊕ P1,
P0 ⊕ P2, ..., P0 ⊕ Pn as well as ciphertexts C0, C1, ..., Cn. Then the full key
recovery can never be successful with a success rate beyond 50%.

Proof. To see this, consider any pair of ciphertexts (C0, C1) and a Simon subkey
k. Suppose that E−1

k (C0)⊕E−1
k (C1) = δ, where Ek denotes single-round encryp-

tion under the subkey k. Flip the most significant bit of k and call the resulting
new subkey k′. Then it is straightforward to verify that E−1

k′ (C0)⊕E−1
k′ (C1) = δ

as well. The proposition follows by applying this reasoning to the first round of
E.
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3 Differential Distinguisher Based on Neural Network

In this section, we will use neural networks to make a distinguisher on
Simon32/64. There are many kinds of neural networks, such as Artificial Neural
Network [7], Convolutional Neural Network [7–9], Recurrent Neural Network [7],
Residual Network [10] and so on. Integrated computing resources and model suc-
cess rate, here we only report results on neural models we used. It takes a lot of
time to find and train a good neural network. We do experiments on a machine
equipped with a GTX 1060 Ti graphics card. After a series of experiments, we
chose the Residual Network to construct our differential distinguisher.

3.1 Model Structure

In this section, we introduce our model structure.

Training Data. We chose a pair (C0, C1) of ciphertexts for Simon 32/64 can be
written as a sequence of four words (w0, w1, w2, w3), each words has sixteen bits.
In our work, the wi are directly interpreted as the row-vectors of a 4 × 16-matrix
and the input layer consists of 64 units likewise arranged in a 4× 16 array. The
value of output layer is zero or one. Zero corresponds to random data and one
corresponds to differential data.

Network Structure. Our network is a residual tower of two-layer convolutional
neural networks preceded by a single bit-sliced convolution and followed by a
densely connected prediction head. The input layer is connected in channels-
first mode to one layer of bit-sliced, e.g., width 1, convolutions with 32 output
channels. Batch normalization is applied to the output of these convolutions.
Finally, rectifier nonlinearities are applied to the outputs of batch normalization,
and the resulting 32× 16 matrix is passed to the main residual tower. Each
convolutional block consists of two layers of 32 filters. Each layer applies first
the convolutions, then a batch normalization, and finally, a rectifier layer. At the
end of the convolutional block, a skip connection then adds the output of the
final rectifier layer of the block to the input of the convolutional block and passes
the result to the next block. The prediction head consists of two hidden layers
and one output unit. The first and second layers are densely connected layers
with 64 units. The first of these layers is followed by a batch normalization layer
and a rectifier layer; the second hidden layer does not use batch normalization
but is simply a densely connected layer of 64 Relu units. The final layer consists
of a single output unit using a sigmoid activation.

3.2 Training Model

In this section, we introduce how to train the network and some of its parameters.
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Data Generation. Training and validation data were generated by using
the Linux random number generator (\dev \ urandom) to obtain uniformly
distributed keys Ki and plaintext pairs Pi with the input differential Δ =
0x0000\0x0008 as well as a vector of binary-valued real\random labels Yi. To
produce training or validation data for k-round Simon32/64, the plaintext pairs
Pi was then encrypted for k-rounds if Yi was set. Otherwise, the second plaintext
of pair was replaced with a freshly generated random plaintext.

In this way, data sets consisting of 107 samples were generated for training;
106 samples were generated for validation.

Loss Function. Because the output label is 0 or 1, the neural network output
will become a floating-point number from 0 to 1 through the Sigmoid function.
We use binary accuracy function to evaluate the accuracy of training and testing.
The middle boundary is 0.5. We think of the output of the network as 0 when it
less than 0.5. Opposite, we think of the output of the network as 1 when it greater
than 0.5. Based on the reason for the accuracy, we chose mean-squared-error as
the loss function.

Learning Rate and Optimizer. Optimization was performed against mean-
squared-error loss plus a small penalty based on L2 weights regularization (with
regularization parameter c = 10−5) using the Adam algorithm with default
parameters in Keras. A cyclic learning rate schedule was used, setting the learn-
ing rate li for epoch i to li = α+ (n−i)mod(n+1)

n (β − α) with α = 10−4, β = 2·10−3

and n = 9.

4 Polytope Distinguisher Based on Neural Network

4.1 Polytope Differential Neural Network Distinguisher

Differential Neural Network Distinguisher. The differential neural net-
work distinguisher can be regarded as an extension of the traditional differen-
tial distinguisher. The traditional techniques and methods can not describe the
non-random characteristics of the differential distribution of multi-round cipher
algorithm, while the deep learning can.

Polytope Neural Network Distinguisher. To improve the success rate of
differential neural network distinguisher, we propose the fusion of polytope dif-
ference [14–16] and neural network. That we call it Polytope Neural Network
Distinguisher.

A Brief Introduction For Polytope. Similar to differential cryptanalysis, we are
not so much interested in the absolute position of these texts but the relations
between the texts. If we choose one of the texts as the point of reference, the
relations between all texts are already uniquely determined by only considering
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their differences with respect to the reference text. If we thus have d + 1 texts,
we can describe their relative positioning by a tuple of d differences. It can be
see from Fig. 1.

As a convention we will construct a d-difference from a (d + 1)-polytope as
follows:

Fig. 1. Depiction of three views of a polytope with four vertices.

Convention. For a (d+1)-polytope (m0,m1, · · · ,md), the corresponding
d-difference is created as (m0 ⊕ m1,m0 ⊕ m2, · · · ,m0 ⊕ md).

This means, we use the first text of the polytope as the reference text and
write the differences in the same order as the remaining texts of the polytope. We
will call the reference text the anchor of the d-difference. Hence if we are given
a d-difference and the value of the anchor, we can reconstruct the corresponding
(d + 1)-polytope uniquely.

Using the idea, we try to establish the neural network distinguisher of non-
random characteristics of polytope difference distribution.

Compared to Sect. 3, the differences between polytope differential neural
network distinguisher and differential neural network distinguisher are the input
data and dense layers. In polytope differential neural network distinguisher, we
make the input data is (C0, C1, C2, C3) with Δi = C0 ⊕ Ci, i = 1, 2, 3. Ci rep-
resents a differential with C0. The first and second layers are densely connected
layers with 160 units.

4.2 Result

Result in Differential Neural Network Distinguisher. After we build and
train the model, we had already obtained a neural network distinguisher for a
certain differential. With the input differential Δ = 0x0000\0x0008 we choose
the depth of residual block is one on six-round Simon32/64. The training was
run for 200 epochs on the dataset of size 107. One epoch takes about 57 s with a
GTX 1060 Ti graphics card. The datasets were processed in batches of size 5000.
The last 106 samples were withheld for validation. We could draw the picture of
the accuracy, and the loss for training data and testing data named Fig. 2.



Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning 9

From Fig. 2, we can easily find out the differential distinguisher what we
constructed based on neural network had a very good accuracy on 6-round
Simon32/64. With the increase of the number of rounds and keep the input differ-
ential unchanged, the success rate of the neural network distinguisher decreases
gradually. On 10-round Simon32/64, the success rate will be close to 0.5 with
the input differential Δ = 0\0x0008. Here we made a table about the number
of rounds and the success rate with the two different input differential. One is
0\0x0008, the other one is 0x0008\0. The results are shown in the following table.

As can be seen from Table 1, we can find a very interesting situation. The
r-round accuracy of Δ2 =0x0008\0 is almost equal to r − 1-round accuracy of
Δ1 = 0\0x0008. We can easily get the reason for this result from Proposition 1.

(a) accuracy (b) lose

Fig. 2. Training a neural network to distinguish 6-round Simon32/64. Output for the
input differential Δ = 0\0x0008 from random data.(left)Training and validation accu-
racy by epoch.(right)Training and validation loss by epoch

Table 1. The number of rounds and the best success rate with the two different input
differential.

Nr Δ1 = 0\0x0008 Δ2 = 0x0008\0

Six round 0.9985 0.9671

Seven round 0.9661 0.7768

Eight round 0.7664 0.6277

Nine round 0.6277 0.5007

Ten round 0.5007 0.5009

Result in Polytope Differential Distinguisher Based on Neural Net-
work. The polytope difference we choose is (0, 0008), (0, 0004), (0, 0002). Here,
we give the result of three differences and their polytope difference on eight-round
to ten-round directly. The results are shown in the following table.
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As can be seen from Table 2. The accuracy of polytope neural network dis-
tinguisher is greater than differential neural network distinguisher. The order of
differential does not affect the success rate.

Table 2. The result of three differences and their polytope difference on seven-round
to ten-round.

Nr (0, 0008) (0, 0004) (0, 0002) Polytope difference

Seven round 0.9661 0.9655 0.9659 0.9944

Eight round 0.7664 0.7659 0.7661 0.9251

Nine round 0.6277 0.6279 0.6263 0.6373

Ten round 0.5007 0.5002 0.5004 0.5017

5 Key Recovery on the Final Round

To showcase our neural distinguishers’ utility as research tools, we have con-
structed a partial-key recovery attack based on the N9 distinguisher that is com-
petitive to the best attacks previously known from the literature on Simon32/64
reduced to ten rounds.

5.1 Wrong Key Randomization

When we decrypt ciphertext (C0, C1) of Simon32/64 for one round. We could
have

(
C0

′, C1
′) = E−1

k (C0, C1), here we define k is the key and E is encryp-
tion algorithm. The basic idea of wrong key randomization is that the expected
response of our distinguisher upon wrong key decryption [3] will depend on the
bitwise difference between the trial key and the real key.

Let (C0, C1) be a ciphertext pair and k be the real subkey used in the final
round of encryption. Let δ ∈ F 16

2 and let k′ = k ⊕ δ be a wrong key. Denote
the response of our distinguisher D to decryption by the key k′ by RD,δ =
D

(
E−1

k′ (C0, C1)
)
. RD,δ was a random variable depending on δ induced by the

ciphertext pair distribution and compute its mean μδ and standard deviation
σδ.

We calculated the wrong key response profile for our nine-round distinguish-
ers for Simon32/64. For each δ, we generated 5000 random keys and message
input pair (P0, P1) and encrypted for ten-round to obtain ciphertexts (C0, C1).
Denoting the final subkey of each encryption operation by k, we then performed
single-round decryption to get E−1

k⊕δ (C0) , E−1
k⊕δ (C1), and had the resulting par-

tially decrypted ciphertext pair rated by a neural distinguisher. μδ and σδ were
then calculated as empirical mean and standard deviation over these 5000 trials.
The wrong key response profile is shown in Fig. 3.

It can be seen from the figure above that, the mean value is larger when there
are fewer error bits. We can use this property to recover key.
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(a) Nine-round (b) Eight-round

Fig. 3. Wrong key response profile (only μδ shown ) for Simon32/64. (left)μδ for nine-
round Simon32/64 and our eight-round neural distinguisher.(right)μδ for 10-round
Simon32/64 and our 9-round neural distinguisher

5.2 Bayesian Optimization

Bayesian optimization [11] is a method that is commonly used for the optimiza-
tion of black-box functions f that are expensive to evaluate. Examples are found
in many domains; the tuning of hyperparameters of machine learning models is
one common example. It uses prior knowledge about the function to be opti-
mized to construct a probabilistic model of the function that is easy to optimize.
According to Bayesian statistics, unknown models or parameters are uncertain
and conform to a certain probability distribution.

To judge whether a sample conforms to a certain distribution, we need to
start from the n-dimension distribution of the sample and make full use of the
information provided by the probability density of the multivariate normal dis-
tribution to calculate the posterior probability. So the sample is expected to
obey the normal distribution. Just right the average of the neural distinguisher
response approximately follow an n-dimension normal distribution with mean
μδ and standard deviation σδ/

√
n, and it also can be precomputed. After that,

the candidate keys can be selected by the maximum score and probability of the
observed distinguishing responses.

In particular, we will first guess this probability distribution according to
subjective judgment or experience, which is called prior distribution; then we will
modify the guess on this probability distribution according to more and more
observations (new data or new evidence), and the final probability distribution
is called posterior distribution.

Suppose we have an unknown quantity to estimate θ, and there is a prior
distribution P (θ) for this variable. Make D as a series of observations or evi-
dence. We hope to modify the cognition of θ distribution through D. According
to Bayesian theorem, we have:

P (θ) =
P (D | θ) P (θ)

P (D)
(3)

It can be seen that by using Bayesian inference, we can reasonably combine the
prior cognition with the actual evidence to get an updated posterior cognition.
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5.3 Bayesian Key Research

We use the wrong key randomization and Bayesian optimization to recover the
final rounds. We use Bayesian optimization to build an effective key search policy
for reduced-round Simon. This key search policy drastically reduces the number
of trial decryptions used by our basic attack, at the cost of a somewhat expen-
sive optimization step. Our key search policy’s basic idea is that the expected
response of our distinguisher upon wrong key decryption will depend on the
bitwise difference between the trial key and the real key.

Step 1. To decrypt the final round, we need some random key K = (k0, k1,
· · · , kn−1), neural distinguisher N , ciphertext structure C = C0, · · · , Cm−1. We
choose key at random without replacement from the set of all subkey candidates.
The wrong key response profile for next to final round distinguishers is μ and σ.

Step 2. For kj , j ∈ {0, 1, · · · , n}, we decrypt Ci with kj for all i ∈ {0, 1, · · · ,
m − 1} to have Pi,kj

. Use our neural distinguisher N ,

vi,kj
= N

(
Pi,kj

)
for all i. (4)

We make a change for

si,kj
= log2

(
vi,kj

/
(
1 − vi,kj

))
(5)

We called si,kj
is score. skj

=
∑m−1

i=0 si,kj
is the score of kj . Let

mkj
=

m−1∑

i=0

si,kj
/m (6)

mkj
is the mean of kj .

Step 3. For δ, δ ∈ (
0, 1, · · · , 216 − 1

)
, we use Bayesian optimization to infer

mkj
belong to which μδ and σδ. It is easy to see that the probability density

at the observed values are maximised by minimizing the weighted Euclidean
distance εδ =

(
mkj

− μδ⊕kj

)2
/σ2

δ⊕kj
. When the minimum εδ′ was selected, The

Corresponding is δ′, so the new key knew = kj ⊕ δ′.

Step 4. Now we have some new keys, the number is n. Replace these new keys
and repeat step2 and step3 for some iterations l. All keys tried, and their scores
skj

on the current ciphertext structure are stored.

Step 5. Return the key corresponding to the maximum score.
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Experiment. Bayesian key research is used with a nine-round differential neural
network distinguisher and its associated wrong key response profile. Before we
return a key, we perform a small verification search with a hamming radius
of final around the subkey candidates currently best. Hamming radius removes
remaining bit errors in the key guess.

As we chose the Δ is (0, 0x0008). First, we want know what value for cho-
sen plaintext pairs, so we make an experiment to encrypt data for ten-round
Simon32/64. Then we used nine-round neural distinguisher to try to recover the
ten-round key. The variable is the number of plaintext pairs we choose.

Table 3. Key recovery on ten-round Simon32/64 with increase the number of choose
plaintext pair in fifty trials.

28 29 210 211 212 213 214

The number of error bits is 0 32 28 34 44 46 49 50

The number of error bits is 1 16 20 16 6 4 1 0

The number of error bits is 2 2 2 0 0 0 0 0

It is easy to see from Table 3 that as the number of data increases, the more
correct number of keys recover. According to the results of the table, we chose
214 for our experiment. In the trials subsequently described, an iteration count
for the Bayesian key search policy of l = 5 and candidate number n = 32, our
implementation outputs a key guess in approximately a quarter of a minute on
average (measured average in 100 trials: 1436.51 s) when running on a single
thread of our machine with no graphics card usage.

5.4 Polytopic Attacks on Simon32/64

In this section, we propose an attack on Simon32/64 based on Polytope neural
network distinguisher.

Overview. The idea of our attack is to extend neural distinguisher with the
differential path. We define p, p < 1 is the probability of the differential path
from Δ1

r→ Δ2 for r round Simon32/64. We use Δ2 to construct a neural network
distinguisher D. Assume the accuracy of neural network distinguisher is an array
Acc with a number of rounds. We can assert that the values in the array are
decreasing to 50%. We can set a threshold C1 for distinguisher. Let Acc [j] ≥
C1, for max(j). We called the j round neural distinguisher is Dj . We try key
recovery attack r + j − 1-round of Simon32/64.

Improved Attack. This basic attack can be accelerated in various ways. Here,
we focus on the following ideas:
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First, we consider Dp [j] is an j -round polytope neural network distinguisher.
The r -round polytope differential of a path is Δ1

r→ Δ2. p, p < 1 is the proba-
bility of the differential path. Then we choose M pairs of plaintext.

M > (1/p) × m (7)

m is the number of attack data.
Second, we use the Dp [j] to filter out the m data we want from M . After

that, we use Dp [j − 1] to determine which key has the highest score. That is the
answer. Algorithm 1 sums up the algorithm.

Algorithm 1. Polytopic Key Recovery on the Final Round
Require: j-round Polytope Neural Network Distinguisher Dj , j − 1-round Polytope

Neural Network Distinguisher Dj−1, Ciphertext structure C = C0, · · · , CM−1

1: for all i such that 0 ≤ i ≤ M − 1 do
2: vi ← Dj (Ci) for all i
3: end for
4: C = C0, · · · , Cm−1 ← select top m for M
5: for key = 0 to 216 − 1 do
6: Cj−1 = Cj−1

0 , · · · , Cj−1
m−1 ← Decrypt ((C = C0, · · · , Cm−1) , key)

7: vj−1
key ← Dj−1

(
Cj−1

i

)
for all key

8: end for
9: K ← Maximum

(
vj−1

)

10: return K

Experiment. We make an attack in ten-round and eleven-round of Simon32/64
with Dp [9] filter out data and Dp [8] give the score. The polytope difference
we choose is (0, 0008), (0, 0004), (0, 0002). Because the weight of difference is
smaller, the lower the probability of the differential path in the previous rounds.
The order of polytope difference does not affect the experimental results.

(0020, 0088) 2−2

→ (0008, 0020) 2−2

→ (0000, 0008) (8)

(0010, 0044) 2−2

→ (0004, 0010) 2−2

→ (0000, 0004) (9)

(0008, 0022) 2−2

→ (0002, 0008) 2−2

→ (0000, 0002) (10)

In the experiment, m = 256 is our choice. So we could use p and m to compute
M . We only recover key on the final round because the result of the last round
is enough to show the effect of our attack. The average error of guess key and
the true key is 1-bit on the ten-round. The average error of guess key and the
true key is 2-bit on the eleven-round. To clear the error bit, the best way is to
increase m. Here, we make experiments on eleven-round Simon32/64. We give
Table 4 to show our result.
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Table 4. Key recovery on Eleven-round Simon32/64 with increase the number of
choose plaintext pair in fifty trials.

28 29 210 211 212 213

The number of error bits is 0 5 20 35 38 44 50

The number of error bits is 1 15 12 10 12 6 0

Computational Complexity. We used 11 rounds of attacks to calculate the
computational complexity [12].

First, we choose m = 213, so M = m× 1
p3 = 225, we regard the computational

complexity of polytope differential neural network distinguisher as four times
because the length of input data is 128 bits.

MakeScore : 225 × 4 = 227 (11)

SelectM → m : nlogn
2 = 225 × 25 (12)

m → key : 216 × m × 4 × 4 = 233 (13)

Max : 216 × m + 216 = 229 + 216 (14)

Finalkey : 227 + 225 × 25 + 233 + 229 + 216 ≈ 233.4 (15)

Fullkey : 227 + 225 × 25 + (233 + 229 + 216) × 4 ≈ 235.2 (16)

The computational complexity of key recovery attack on the final round was
233.4. The computational complexity of full key is 235.2. It can be seen from
the formula that with the increase of the number of rounds, the increase of
computational complexity is only related to formula (11) and (12).

5.5 Analysis

Error Bits. There are two reasons for the presence of error bits.
First, the accuracy of polytope neural network distinguisher was not 1. As

we extend the round with polytope difference and data volume. In fact, after
the r round encryption, we can’t guarantee that all the data are accord with
(0, 0008), (0, 0004), (0, 0002). In our experiment, Dp [r] is used to filter out the
data we want. Although we chose the data with the highest scores, we still can’t
guarantee that every data conforms to this differential.

Second, Proposition 2 is the reason. As we use distinguisher to give the data
a score. The score based on how many probabilities does this data belongs to
Dp [r − 1]. In theory, more than one key satisfies this condition.

For these two reasons, there will be some error bits in the key recovery attack.
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The Limitations of Bayesian Key Research. In our attack, we do not use
Bayesian Key Research. The accuracy of polytope neural network distinguisher
is greater than differential neural network distinguisher. So as we use polytope
neural network distinguisher to filter out data, the fewer bad points we have.
From Fig. 3 we could know the mean value of some wrong keys is almost the
same as that of correct keys. In the experiment, it is easy to produce error
bits. In order to carry out comparative experiments on polytope neural network
distinguisher, we generate an wrong key randomization table of the distinguisher
based on 8-rounds of polytope neural network distinguisher. The table is shown
in Fig. 4. From Fig. 4, it is easy to see that only the correct key has a unique peak
value. Although there are still some wrong keys with a high average value, there
is a certain gap between them and the peak value. This is a good information
for us no matter what kind of key recovery attacks.

Whether using polytope neural network distinguisher or neural network dis-
tinguisher can not guarantee that the filtered data meet the difference conditions
we set, that is, the filtered data has some bad points, which are very destructive
to Bayesian Key Research algorithm. When there are some bad points in data,
the value generated by the points does not belong to the correct distribution. It
can be clearly known from Bayesian statistics that this destructive effect is fatal
to Bayesian Key Research algorithm.

Therefore, Bayesian Key Research algorithm is not used in the experiment,
but the idea of brute force attack is used. On simon32/64, the complexity of
simple differential attack is not high. And the most important thing is that it
has strong anti-interference ability for bad points. With the increasing of m, the
number of error bits will gradually reduce to 0; Bayesian Key Research is not,
with the continuous increase of m, error bits will still exist.

Fig. 4. μδ for nine-round Simon32/64 and eight-round polytope neural distinguisher

5.6 Bayesian Key Research with Error

Wrong Key Randomization with Error. After the analysis in Sect. 5.5, we
can see that the Bayesian Key Research algorithm cannot be used because of the
bad points. Compared with brute force solution, Bayesian Key Research needs
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less keys, which can greatly reduce the computational complexity. However, it
takes a long time to construct the wrong key randomization table. Therefore,
Bayesian Key Research is a very good technical means in the case of decoding
of cryptographic algorithm normalization.

In this part, we consider constructing wrong key randomization with error.
Next, we will take the single difference case as an example to describe the algo-
rithm. Compared with the normal knowledge, a filter function is added to the
error key filtering algorithm with bad points.

Fig. 5. Wrong key randomization with μδ for nine-round Simon32/64 and eight-round
differential neural distinguisher

According to (8), select the difference (0008, 0020), and the probability of
0.25 after one round of encryption is (0000, 0008).

First chose n data for ten-round encryption with difference (0008, 0020).
Second select m data from n with nine-round differential neural network

distinguisher.
Third use eight-round differential neural network distinguisher to build wrong

key randomization with m data.
According to the above three steps, we can construct an wrong key random-

ization table. Through the table, we can also intuitively see why the key recovery
attack can not be carried out by increasing the number of rounds in the case of
single differential. Figure 5 show the table.

As can be seen from Fig. 5, in the case of single difference, the dominance
of cryptographic features is not obvious, so it is easy to make wrong judgment
when using neural network distinguisher. Because the success rate of the 9-
round neural network distinguisher is only 0.6277. Compared with the polytope
neural network distinguisher, the results are not satisfactory. The wrong key
randomization with error table constructed according to polytope neural network
distinguisher is shown in Fig. 6.

It can be clearly seen from Fig. 6 that compared with the case of single
difference, the wrong key randomization with error table constructed by polytope
differences has clear advantages. This result explains why brute force attacks
can be used to increase the number of rounds on the polytope neural network
distinguisher.
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Fig. 6. Wrong key randomization with μδ for nine-round Simon32/64 and eight-round
differential neural distinguisher

In order to conform to one data of 9-round differential neural network dis-
tinguisher. Then, it has a probability of p, after decryption by the wrong key,
conforms to the 8-round differential neural network distinguisher. In fact, the
probability of this situation is very high, which is caused by the encryption
mode of Simon algorithm. But with polytope differences even if one data is
filtered out from the 9-round polytope neural network distinguisher. The prob-
ability of meeting the 8-round polytope neural network distinguisher after one
round of decryption by the wrong key is not more than p3.

Therefore, it brings a result that the polytope neural network distinguisher
has stronger anti-interference performance for bad points. This is also the main
reason why it can attack Simon algorithm by increasing the number of rounds.

Bayesian Key Research with Error. Compared with Bayesian Key
Research, wrong key randomization with error table is replaced by the wrong
key randomization table. No other part of the algorithm needs to be changed.
Here we directly give the result that the attack against 11-rounds of Simon32/64
is the same as the parameters selected in 5.4. For how much computational com-
plexity can be reduced, we perform a calculation, because the table has been
constructed, so the complexity of finding data in table can be counted as 1.

MakeScore : 225 × 4 = 227 (17)

SelectM → m : nlogn
2 = 225 × 25 (18)

m → key : 160 × m × 4 × 4 = 160 × 217 (19)

Max : 160 × (
m + 216

)
= 160 × (

213 + 216
)

(20)

Finalkey : 227 + 225 × 25 + 160 × (
217 + 213 + 216

) ≈ 230.9 (21)

Fullkey : 227 + 225 × 25 + 160 × (
217 + 213 + 216

) × 4 ≈ 231 (22)

The computational complexity of key recovery on the final round was 230.9. The
computational complexity of full key is 231.

For the results of key recovery using the Bayesian Key Research with Error,
about 1 to 2 error bits will be generated on average. This is due to the uncertainty
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of the number of bad points. Therefore, a hamming distance of 2-length can be
searched for the key after the key search. This ensures the correctness of the key.

6 Conclusion

In this paper, we use neural networks to construct the differential distinguisher
and the key recovery attack of Simon32/64. First, we use our nine-round differ-
ential neural network distinguisher to recover the keys for ten-round by wrong
key randomization and Bayesian optimization. In this experiment, chosen 214

plaintext pairs, statistics based on 50 results we could know that the attack
was successful in 50 out of 50 trials; our implementation outputs a key guess in
approximately half a quarter of a minute on average (measured average in 100
trials: 14.36 s) when running on a single thread of our machine with no graphics
card usage. Second, we propose a brute force attack on Simon32/64 based on
the combination of the probability of differential path and polytope neural net-
work distinguisher. This method can only increase the computational complex-
ity of the chosen data as the number of rounds increases. Nine-round polytope
neural network distinguisher is used to filter out data, whether it is what we
want. Eight-round neural distinguisher is used to recover the final round key.
The computational complexity of key recovery on the final key of eleven-round
Simon32/64 is 233.4. Third, we propose an attack with Bayesian Key Research
with Error on Simon32/64. In our attack, we consider the affect of the bad points
in building wrong key randomization table. The computational complexity of key
recovery on the final key of eleven-round Simon32/64 is 230.9.

As the increase of memory, we only do our experiment on eleven-round
Simon32/64. But we believe this idea could have rich uses in cryptanalysis. We
consider that there is still work to be done in the next step. First, try to increase
the success rate of neural network distinguisher so that could reduce data. Sec-
ond, use a better data filtering algorithm to filter the data that matches the
differential. Third, attempts to summarize and analyze the rules of the differen-
tial distribution table of the output rounds of the neural network distinguisher,
and try to extend the number of cipher rounds after the neural network distin-
guisher. Last, try to combine neural networks with other cryptanalysis methods.
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Abstract. Deep Neural Networks (DNNs) have been widely applied to
diverse real life applications and dominated in most cases. Considering
the hardware consumption for DNN and large amount of labeled training
data to support the performance, machine-learning-as-a-service (MLaaS)
came into being. However, malicious attacker takes the opportunity to
launch possible deep model stealing attacks via black-box access, leading
to a great security threat to the interests of the model agency. Addressing
to the problem, defensive methods are designed, mainly categorized to
truncated-based and perturbation-based, to reduce the stealing efficiency
or increase the attack cost, i.e. more queries. Essentially, it is still a chal-
lenge to fully defend the deep model stealing attack. In the paper, we
propose a novel defense algorithm based on adaptive softmax transfor-
mation by introducing posterior probability perturbation, namely DAS-
AST. We evaluate the proposed defense against several state-of-the-art
attack strategies, and compare the performance with other defense meth-
ods. The experiment results show that our defense is effective across a
wide range of challenging datasets and performs better than the existing
defenses. More specifically, it can degrade the average accuracy of the
stolen model at least 30%, without affect the accuracy of target DNN
model on original tasks.

Keywords: DNN models · Model stealing attack · Model security

1 Introduction

Deep neural network (DNN) has been successfully applied to machine trans-
lation, image recognition, auto-driving, natural language processing and other
fields. To reduce the burden of GPU demand and large amount labeled train-
ing data, commercial cloud APIs such as machine-learning-as-a-service (MLaaS)
become more and more popular, i.e. AmazonLM1 and AzureML2. Models in
1 ‘Amazon machine learning,’ https://aws.amazon.com/aml/.
2 ‘Azure machine learning,’ https://azure.microsoft.com/en-us/overview/machine-

learning.

c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 21–36, 2021.
https://doi.org/10.1007/978-3-030-71852-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71852-7_2&domain=pdf
https://aws.amazon.com/aml/
https://azure.microsoft.com/en-us/overview/machine-learning
https://azure.microsoft.com/en-us/overview/machine-learning
https://doi.org/10.1007/978-3-030-71852-7_2


22 J. Chen et al.

such applications are valuable intellectual property of their owners, as training
these models requires plenty of manpower and material resources, owners can
monetize their models by claiming clients pay to use the prediction APIs. Con-
sequently, the deep model represents business value and it is necessary to keep
it confidential.

The deep model also becomes the target of theft for its commercial value.
Model stealing attacks are mainly categorized into three classes according to
their motivations. The first category is violating model privacy, named prior
attack, including adversarial attack [2,7,23], model inversion attack [1,5,6] and
membership attack [24,26]. Attackes can launch a confrontational attack better
on the premise of obtaining the internal knowledge of the model among the
various attacks mentioned above. The second attack is stepping stone to evasion,
in other word, the adversary may achieve evasion of detection, i.e. malware
spam [27] classification successfully if the attackers gain full knowledge of the
detection model. The third attack is reducing query charges, that is attacker
steals the function of the model by querying prediction APIs repeatedly and
obtains substitute models with similar functions [20,29].

Ever since the model stealing attacks captured most attentions, there are
also a dozen of available defense methods proposed against them, which are
mainly categorized as detect abnormal query patterns [10,11] and predicted
posterior output limitation [14,21,29]. The mainstream methods of defense are
either hiding part of the posterior probability or adding perturbation to the
posterior probability. The former method is truncated-based defense which just
preserve the most-confident part of posterior probabilities, or rounding posteri-
ors probabilities to decimals. The latter method is perturbation-based defense
by adding disturbance to the posterior probability. The common consideration
of such defensive measures is posterior perturbation to maintain accuracy, such
as manipulating posterior perturbation while retaining top one probability con-
fidence [14,21]. More specifically, we find the truncated-based defense can slow
down the stealing processing and enforce the attackers take more charge bud-
gets. However, such defense cannot always satisfy absolute accuracy reduction
in model stealing performance. It is also a challenge for the perturbation-based
defense since it easily leads into extra restrictions in order to maintain the accu-
racy with posterior perturbation.

In our view, the attacker can effectively steal the model through the output
confidence distribution of the model. In addition, when the attacker can only
obtain the highest confidence of the model output under extreme conditions,
they can still complete the stealing of the model well, this is why truncated-based
defense cannot complete the absolute defense of the model shown in Fig. 1. It
leaks the confidence distribution or the highest confidence value. On the other
hand, in the Fig. 1, perturbation-based defense can effectively defend against
model stealing attack, which introduce noise in the output of model confidence.
Because the introduced noise changes the distribution of confidence, and makes
the value with the highest output confidence change to a certain extent. How-
ever DAS-AST is not only to add disturbance noise to posterior probability
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Fig. 1. The accuracy comparison of stealing models under different defenses on
MNIST [4]. We apply Lenet [13] to train target models and attack models. The model
stealing attack is ‘knockoff’ [20]. The x-axis represents the number of queries made
by the attacker during the attack, i.e. attack budgets, and the y-axis represents the
accuracy of the model stolen by the attacker. We use the average of preserving the most-
confident probabilities [20] and rounding posteriors probabilities [29] as the truncated-
based defense result, and use the average of reversesigmoid [14] and mad [21] as the
perturbation-based defense result. In the Fig. 1, it can be observed that truncated-
based defense is ineffective against such attack, and DAS-AST is more effective than
recent perturbation-based defense.

as truncated-based defense, but also to intervene the distribution of posterior
probability to defend against model stealing attack under the premise that the
maximum confidence distribution remained.

In our work, we propose a new defense against model stealing attack based
on adaptive softmax transformation (DAS-AST). We conclude the main contri-
bution as follows.

– Aiming at the model stealing attack, we propose a novel accuracy-preserving
defense for DNNs, namely DAS-AST. It is constructed based on adaptive
softmax transformation, which can realize effective defense without accuracy
decline of the target model on original task.

– Through extensive experiments, we find that DAS-AST consistently mitigate
various attacks and additionally outperform benchmarks.

– Compared with other defense methods, the proposed DAS-AST is a light-
weighted defense method, in other word, without adding burden on the model.

2 Related Work

In this section, we briefly review the existing model stealing attacks and defense
methods.
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Model Stealing Attacks. Model stealing attack, or named model extraction in
some literature [17,31], aims to infer target DNN models information with black-
box access, i.e. parameters [16,21,29], hyper-parameters [30], architecture [19].
Additionally, model functionality [3,21] has attracted a lot of attention due to
the value of DNNs model, especially the hosting models in MLaaS APIs. Model
functionality stealing attack is currently the most widespread and the most con-
cerned attack, and it is also the object of our defense. Most works focus on
the model functionality stealing, where the malicious attackers aim to obtain
the target model accuracy as possible. The initial work of model stealing aims
at simple linear models [15], and then the attack transfers to simple machine
learning models [29]. Recently, with the development of DNNs, model stealing
attacks on DNNs have achieved success as well [3,10,20,22].

Model Stealing Defenses. Model stealing defense developed along two direc-
tions. Existing defense work aims to either detect model stealing attacks [10,11,
18,32], or defend against attackers through output perturbation of the black-box
DNNs, i.e. posterior prediction [9,27]. Among the defense methods, perturbation-
based defenses are especially effective. In particular, classic defensive approaches
are consisted of rounding probabilities [29], retaining probabilities only of top-k
classes [20], introducing perturbation in posteriors probabilities [14,21]. These
aforementioned defenses sacrifice original task accuracy for model confidential-
ity, while our proposed DAS-SAT introducing softmax adaptive transformation
mechanism in the output layer, which can effectively promise the accuracy per-
formance of original task. Consequently, DAS-AST is not only more effective in
protection of the deep model, but also can promise that it will not negatively
affect the model on the original task.

3 Method

Before we introduce the proposed method in detail, we formerly give out some
critical definitions and formulate the problem.

3.1 Preliminary

Deep Neural Network Basics. A DNN model is a computational function
F (x) with hierarchical structures. In general, a DNN model consists of three
parts: input layer with input xi ⊆ XH×W×C , where H, W , C represent the
height, width and channel number of the input respectively, output layer with
output yi ⊆ Y 1×c over c classes and several middle layers. Each part is a layer of
neurons that apply activation functions to the weighted output of the precious
layer. Mathematically, DNN can be abstracted as Eq. (1).

F (xi, Θ) : xi → yi (xi ∈ Rn, yi ∈ Rm) (1)

where Θ represents its parameters.
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Model Functionality Stealing. Model stealing is an interactive process
between attack model FA (stealing model) and target model FT (victim model)
via black-box queries. The attack is implemented by two steps. (1) Transfer set
construction: the attacker A queries input x ⊆ PA(X) and target model returns
a posterior probability y = P (y|xA) = FT (xA). In this way, attacker constructs
a ‘transfer set’ of input-prediction pairs Dtransfer = (xA, yT ). (2) Attack model
training: the attacker trains the attack model FA in Dtransfer by minimizing the
cross-entropy (CE) loss as Eq. (2).

LCE(y, ŷ) = −
∑

k

p (yk) · log (ŷk) (2)

The end-goal of the attack is to obtain accuracy as high as possible in the same
test set Dtest of the target model.

Defense Objectives. In DAS-AST, it introduces noise into the model in order
to perturb predictions of target model, represented as Eq. (3).

ỹ = F δ
T (x) = y + δ (3)

The defense against model stealing has two objectives. The first is accuracy,
after introducing noise disturbance, it will inevitably affect the accuracy of the
model on Dtest. Essentially, it is designed to keep the target model work correctly
on original task. Consequently, extra condition for keeping the most confident
probability is necessary. The second one is non-duplication, which is used to
measure the decline in model stealing. DAS-AST uses the decline of attack model
accuracy on the test set Dtest in defense.

3.2 Framework Structure

The most important point for model stealing is to obtain the posterior output
distribution of the target model by means of querying as Fig. 2 of the ‘output’
shows. In our work, we introduce adaptive softmax transformation into posterior
probability, and aim to change the distribution of posterior probability rather
than simply add noise to hide certain confidence information. DAS-AST mainly
adopts the adaptive softmax transformation mechanism which can make the
distribution of transfer set far away from the boundary of the target model as
Fig. 3 shows.

3.3 Adaptive Softmax Transformation

Softmax Definition. The forward propagation process of DNN can be
expressed as: f : RM −→ RN , where M represents the dimension of the input, N
represents the dimension of the output. Input the sample x ⊆ X into the DNN
models for prediction, after the last layer of full connection, a vector Z(x, i) will
be obtained, i ⊆ 0, 1, 2, 3...., c − 1, c represents the total number of categories of
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Fig. 2. The framework of DAS-AST. In the target models training phase, users upload
training data with labels to severs for model training. After training of target models,
the server performs proxy management on the models and provide users with APIs
access models. The attackers obtain the posterior probability of the target model by
inputting queries and making transfer set, they use the transfer set to train the attack
model, and complete the model functionality stealing of the target model. In order to
protect the target models, we introduce adaptive softmax transformation before the
output of target models, which can effectively protect the output probability distribu-
tion of the target models.

the dataset, and the vector Z(x, i) represents the weight value when the input
is classified into the i-th category, i.e. the score. This vector is called the logical
output (logits) of the target model. In order to normalize the logits value of each
category, use the softmax function to activate it, and obtain a normalized prob-
ability vector f(x) containing various logits values. The vector represents the
probability of the input being classified into each category, and the probability
value of the largest category is the model classification result. The logits vec-
tor Z(x, i) is converted into a probability vector f(x) by the softmax activation
function, and the calculation method is as follows:

fi(x) =
ez(x,i)

∑C
i=0 eZ(x,i)

(4)

where e represents the natural base, x is the input of the target model, and fi(x)
represents the probability of the input being classified into the i-th category.

Softmax Definition. Inspired by the exponential mechanism of differential
privacy protection, we transform the softmax function and adaptively optimize
the transform factor. The transformed softmax function expression is that:

f ′
i(x) =

eεZ(x,i)/2 s(H,‖.‖)

∑C
i=1 eεZ(x,j)/2 s(H,‖.‖)

(5)

where fi(x) represents the transformed softmax function, ε is the transform fac-
tor, H is the score function of exponential mechanism , j represents the number
of all elements, i represents the i-th element and s is the sensitivity function of
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Fig. 3. The damage of transfer set distribution. The carefully crafted transfer set app-
roach the boundary of the target model (the left side of Fig. 3). After introducing
adaptive softmax transformation, the sample distribution of the transfer set becomes
messy and far away from the target model boundary.

H, the definition formula of s is as follows:

s(H, ‖ · ‖) = max
D,D:D �=D′

‖H(D, r) − H (D′, r) (6)

where D represents the input and H(D, r) represents the score function that
D is classified as r class, D′ represents the adjacent data set of D, and there
is at most one data difference between them, || · || represents the norm calcu-
lation symbol, which is used to measure the difference between H(D, r) and
H(D′, r). Optimizing ε through adaptive algorithm, the goal of optimization is
the accuracy of the target model in Fig. 4.

Fig. 4. The flow chart of adaptive softmax transformation. DAS-AST can reduce the
accuracy of the attack model through adaptive transformation optimization of trans-
formation factor.
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4 Experiment and Analysis

In this section, we will introduce the experiment platform, datasets and DNN
models. And also we evaluate the proposed method against different model steal-
ing attacks. To testify its performance, we compare DAS-AST with state-of-the-
art defense methods. Additionally, we carry out experiments on defense trans-
ferability in different typical models.

4.1 Experiment Setup

Platform. The specific configuration of the experimental environment is as fol-
lows: i7-7700K 4.20GHzx8 (CPU), TITAN Xp 12GiBx2 (GPU), 16GBx4 DDR4
(Memory), Ubuntu 16.04 (OS), Python 3.6, Pytorch1.1.0, Tensorflow-gpu-1.3.

Datasets. We evaluate model stealing attack and defense on five pub-
lic datasets, including MNIST3, Fashion-MNIST4, CIFAR105, CUBS200 and
Caltech-256. We show some sample images of each dataset in Fig. 5. MNIST
includes 70,000 gray-scale images of handwritten digits. Among them, 60,000 are
used as the training set, 10,000 are used as the test set for 10 classes. Fashion-
MNIST is made of a training set of 60,000 examples and a test set of 10,000
examples. Each example is a 28 × 28 grayscale image, associated with a label
from 10 classes. The CIFAR10 dataset consists of 60,000 colored images with
sizes of 32 × 32, belonging to 10 classes with 6,000 images per class and training
set of 50,000 images, while the test set is consisted of 10,000 images. CUBS200
includes 200 bird sub-categories, the training set has 5994 images and the test
set has 5794 images. Each image provides image class tag information. Caltech-
256 contains 30608 images, 256 object categories, at least 80 images per category
and a maximum of 827 images.

DNN Model. We use different typical model structures for different datasets.
In order to better evaluate the effectiveness of defense, the structure of stealing
model is consistent with the target model: Lenet [13] for MNIST and Fashion-
MNIST, Alexnet [12] for CIFAR10, Vgg16 [28] and ResNet34 [8] for CUBS200
and Caltech-256.

4.2 Defense Evaluation

Attack Strategies. We use the most effective model stealing attacks to evaluate
defense method. Specifically, in our experiments we use the following attacks:
(1) Jacobian-based Data Augmentation ‘JBDA’ [22]; (2,3) ‘JB-self’ and ‘JB-
top3’ [10]; and (4) ‘knockoff’ [20], as Table 1 shows.
3 MNIST can be download at: http://yann.lecun.com/exdb/mnist/.
4 Fashion-MNIST can be download at: https://www.worldlink.com.cn/en/osdir/

fashion-mnist.html.
5 CIFAR10 can be download at: https://www.cs.toronto.edu/kriz/cifar.html.

http://yann.lecun.com/exdb/mnist/
https://www.worldlink.com.cn/en/osdir/fashion-mnist.html
https://www.worldlink.com.cn/en/osdir/fashion-mnist.html
https://www.cs.toronto.edu/ kriz/cifar.html
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(a) MNIST

(b) FashionMNIST

(c) CIFAR10

(d) CUBS200

(e) Caltech-256

Fig. 5. Examples of images from different datasets.

Table 1. The accuracy of undefended target models.

Datasets Acc (FT ) Acc (FA)

JBDA JB-self JB-top3 knockoff

MNIST 98.7% 89.0% 87.0% 94.7% 98.4%

Fashion-MNIST 92.1% 45.3% 56.4% 77.8% 69.0%

Cifar10 91.5% 37.4% 33.6% 78.6% 81.0%

CUBS200 80.4% 8.0% 3.90% 21.7.0% 67.3%

Caltech-256 79.6% 15.5% 16.0% 35.4% 76.5%

Defense Effect. We evaluate effectiveness of DAS-AST on five different datasets
under four model stealing attacks, the defensive results is showed in Fig. 6.

As shown in Fig. 6, DAS-AST has a good defensive effect under the all
types of attacks. Model stealing attacks increase with the increase of queries
(budget), DAS-AST can not only force the attacker to increase the number of
queries, but also make the accuracy of the stealing model absolutely drop. DAS-
AST maintain at least 20% average accuracy reduction in attacker performance
on small datasets. Take CIFAR10 as an example, DAS-AST reduces accuracy
of the JBDA attacker by 25.6% (37.4%−→11.8%), JB-self attacker by 21.4%
(33.6%−→18.3%), JB-top3 attacker by 60.3% (78.6%−→18.3%) and knockoff
attacker by 62.3 % (81.0% −→16.7%) and achieves better performance in large
datasets, which has more realistic meaning.

4.3 Defense Comparison

We compare DAS-AST with the state-of-the-art method in the in the strongest
attack ‘knockoff’, in which budget = 40k.
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Fig. 6. The accuracy of defended target models with different budgets in different
attacks. The accuracy in Fig. 6 denotes the classification accuracy of the model stolen
by the attacker under the defense method, the lower the accuracy, the better the defense
effect.

Table 2. knockoff attack vs. DAS-AST + Baseline Defenses.

MNIST Fashion-

MNIST

CIFAR10 CUBS200 Caltech-256

Acc (FA) Without defense 97.8% 66.7% 79.0% 66.8% 75.4%

Rounding 90.2%

(↓7.6%)

60.5%

(↓6.2%)

72.8%

(↓6.2%)

57.2%

(↓9.6%)

68.7%

(↓6.7%)

Top-k 88.5%

(↓9.3%)

63.0%

(↓3.7%)

75.0%

(↓4.0%)

55.3%

(↓11.5%)

70.5%

(↓4.9%)

Random noise 74.4%

(↓23.4%)

43.8%

(↓22.9%)

42.2%

(36.8%)

11.4%

(↓55.4%)

22.5%

(↓52.9%)

Mad 59.6%

(38.2%)

35.4%

(↓31.3%)

47.6%

(↓31.4%)

29.2%

(↓37.6%)

53.8%

(↓21.6%)

Reverse sigmoid 58.8%

(↓39.0%)

45.7%

(↓21.0%)

59.7%

(↓19.3%)

7.5%

(↓59.3%)

11.2%

(↓64.2%)

DAS-AST 53.1%

(↓44.7%)

27.8%

(↓38.9%)

16.7%

(↓62.3%)

0.7%

(↓66.1%)

0.4%

(↓75.0%)

In Table 2, we find that DAS-AST is better than other defense benchmarks.
Especially in high-dimensional complex datasets, i.e. CUBS200 and Caltech-256.
We can observe from Table 2 that DAS-AST reduces accuracy of the knock-
off attacker by 66.1% (67.3%−→0.7%) on CUBS200, 75.0% (76.5%−→0.4%) on
Caltech-256. The superior performance on complex datasets makes our method
more realistic significance. Model training on complex datasets is more compli-
cated and the cost is larger, therefore, the models of complex datasets contain
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Fig. 7. The accuracy of target model after defense. The accuracy in Fig. 7 denotes the
classification accuracy of the model on the original task after adding defense measures,
the higher the accuracy, the smaller the negative impact of the defense method on the
original model.

more value. DAS-AST can invalidate model stealing attacks on complex datasets
as Fig. 6 shows. At the same time, it can be found in the comparison of Fig. 7
that DAS-AST will not affect the original accuracy of the target model. DAS-
AST does not simply introduce noise, but desensitizes the output information
through the adaptive change of the output layer activation function, so that the
attacker cannot obtain enough information to steal models.

4.4 Defense Transferability

Model Structures. In order to verify the transferability of DAS-AST on dif-
ferent models, we use different model structures in experiments for each data
set: CNN A, Lenet [13] and Alexnet [12] for MNIST and Fashion-MNIST in
Table 3; Alexnet [12], Vgg16 [28] and Resnet34 [8] for CIFAR10, CUBS200 and
Caltech-256 in Table 4. The network structure of CNN A is in the Table 5. We
keep the target model and attack model consistent structure.

The experimental results in Table 4 show that DAS-AST has good defense
transferability with different models. In different models, DAS-AST can achieve
a good defense effect. During the experiment, we found that the complexity of
the attack model is correlated with the stealing effect, however, increasing the
complexity of the model means increasing the cost of stealing. Therefore, the
structure of the model is also one of the key points of model privacy protection.

Model Complexity. Under normal circumstances, the attacker cannot obtain
the structural information of the model. We assume that the attacker is in a
black box of the target model and adopts different model structures for model
stealing attacks. The structures of target model for each data set: Lenet [13] for
MNIST and Fashion-MNIST in Table 6, Vgg16 [28] for CIFAR10, CUBS200 and
Caltech-256 in Table 7.
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Table 3. The defense transferability in different models on MNIST and Fashion-
MNIST.

Dataset MNIST Fashion-MNIST

Model CNN A Lenet Alexnet CNN A Lenet Alexnet

Acc (FT ) 98.10% 98.70% 99.40% 89.10% 92.10% 91.80%

Acc (FA) (undefensed) 97.50% 98.60% 99.30% 65.40% 69.20% 76.50%

Acc (FA) (defensed) 57.30% 59.00% 59.00% 14.30% 29.10% 32.10%

Table 4. The defense transferability in different models on CIFAR10, CUBS200 and
Caltech-256.

Dataset CIFAR10 CUBS200 Caltech-256

Model Alexnet Vgg16 Resnet34 Alexnet Vgg16 Resnet34 Alexnet Vgg16 Resnet34

Acc (FT ) 68.90% 91.50% 72.40% 71.30% 80.40% 81.30% 74.90% 81.60% 78.40%

Acc (FA) (undefensed) 58.50% 78.70% 60.10% 52.70% 67.3% 68.70% 64.90% 79.60% 78.40%

Acc (FA) (defensed) 10.20% 17.90% 12.10% 0.50% 0.50% 0.50% 0.40% 0.40% 0.50%

Table 5. The network structure of CNN A.

Layer Type CNN A

Conv+ReLu 5× 5× 32

Max Pooling 2× 2

Conv+ReLu 5× 5× 64

Max Pooling 2× 2

DenseFully Connected 1024

Dropout 0.5

DenseFully Connected 10

Softmax 10

Table 6. The influence for defense of attack model in different complexity on MNIST
and Fashion-MNIST.

Dataset MNIST Fashion-MNIST

Model CNN A Lenet Alexnet CNN A Lenet Alexnet

Acc (FT ) 98.70% 92.10%

Acc (FA) (undefensed) 97.30% 98.60% 98.80% 63.20% 69.20% 76.50%

Acc (FA) (defensed) 57.10% 59.00% 59.00% 14.30% 29.10% 32.10%

We observe from Table 6 and Table 7 that the stealing effect of the model is
the best when the target model and the attack model have the same structure. At
the same time, DAS-AST maintain a good defense effect especially in CUBS200
and Caltech-256.
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Table 7. The influence for defense of attack model in different complexity on CIFAR10,
CUBS200 and Caltech-256.

Dataset CIFAR10 CUBS200 Caltech-256

Model Alexnet Vgg16 Resnet34 Alexnet Vgg16 Resnet34 Alexnet Vgg16 Resnet34

Acc (FT ) 91.50% 80.40% 81.60%

Acc (FA) (undefensed) 52.90% 78.70% 63.70% 41.50% 67.3% 63.10% 58.10% 79.60% 75.20%

Acc (FA) (defensed) 10.20% 17.90% 12.10% 0.30% 0.50% 0.80% 0.40% 0.40% 0.50%

4.5 Defense Visual Analysis

We use the method of feature visualization Grad-cam [25] to display the sample
features before and after the defense in the form of heat maps in Fig. 8.

In the Fig. 8, we can see that after defense of DAS-AST, the sensitive features
of the sample are obscured to a certain extent, the salient points of the heat map
change from partial features to overall outlines, which is consistent with the idea
of DAS-AST. We can infer from this that DAS-AST can reduce the leakage of
sensitive information in the sample, thereby protecting the privacy of the models.
As Fig. 8 shows, on the small dataset, i.e. MNIST and FashionMNIST, due to
the relatively small size of the data sample, it can be seen that the focus area of
the heat map overlaps in important parts before and after the defense. On the
contrary, on CIFAR10, CUBS200 and Caltech-256 datasets, the difference before
and after defense is obviously. The visualized results explain the differences in
defense under different scale samples, e.i. better defense on complex samples.

(a) MNIST (b) FashionMNIST (c) CIFAR10

(d) CUBS200 (e) Caltech-256

Fig. 8. The feature visualization results.

5 Conclusion and Future Works

In this work, we were motivated by limited success of existing defenses against
DNN model stealing attacks. We proposed the first defense strategy with AST,
and found DAS-AST is effective in defending a variety of target models and
against various attack strategies. In particular, we find DAS-AST can reduce the
average accuracy of the adversary at least 30% in all kinds of datasets, without
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significantly affecting target model accuracy. Despite this, there are also serval
shortcomings that need to be resolved urgently for DAS-AST. On the one hand,
if attacker launches an adaptive attack on the premise that the attacker has
the defense knowledge of DAS-AST, it is different for us to achieve successful
defense. On the other hand, when attacker only uses the output label for training
stealing model, DAS-AST becomes useless, and this problem is also need to be
solved in the current defense of model stealing attack. These will become the
focus of our future work.
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Abstract. Feint attack, as a combination of virtual attacks and real attacks of a new
type of APT attack, has become the focus of attention. Under the cover of virtual
attacks, real attacks can achieve the real purpose and cause losses inadvertently.
However, to our knowledge, all previous works use common methods such as
Causal-Correlation or Cased-based to detect outdated multi-stage attacks. Few
attentions have been paid to detect the feint attack, because of the diversification
of the concept of feint attack and the lack of professional datasets. Aiming at the
existing challenge, this paper explores a new method to construct such dataset. A
fuzzy clustering method based on attribute similarity is used to mine multi-stage
attack chains. Then we use a few-shot deep learning algorithm (SMOTE&CNN-
SVM) and bidirectional recurrent neural network model (Bi-RNN) to obtain the
feint attack chains. Feint attack is simulated by the real attack inserted in the
normal causal attack chain, and the addition of the real attack destroys the causal
relationship of the original attack chain. So, we used Bi-RNN coding to obtain
the hidden feature of feint attack chain. In experiments, we evaluate our approach
through using the LLDoS1.0 and LLDoS2.0 of DARPA2000 and CICIDS2017 of
Canadian Institute for Cybersecurity.

Keywords: Multi-stage attack · Feint attack · Fuzzy clustering · Bi-RNN
model · Few-shot learning

1 Introduction

Under the background of the rapid development of global network informationization,
the hidden, pervasive and targeted Advanced Persistent Threat (APT) poses a growing
threat to various high-level information security systems [14]. APT attacks are increasing
which target to national and enterprise network information systems and data security
faces severe challenges. In March 2011, at the 6th International Conference on Infor-
mation Warfare and Security (ICIW), three security researchers at Lockheed Martin
proposed an Intrusion Kill Chain (IKC) [4]. From the perspective of intrusion detection,
they decomposed the attack process into seven steps: reconnaissance, weaponization,
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delivery, exploitation, installation, command and control (C2), and actions on objectives.
This model redefines the kill chain in the military field to cyberspace security, providing
us with new ideas for solving APT attacks [9, 19].

However, at the end of 2017, Trend Micro pointed out that there has been a new type
of APT attack named feint attack [10]. It not only uses the same attack, but also makes
full use of two separate malware attacks. One attack (Virtual attack) is responsible for
distracting and masking the malicious activity of another attack (Real attack) to provide
a way to further infect or steal data and intellectual property. Enterprise IT Security Risk
Survey Report pointed out that the above-mentioned virtual attacks are often distributed
denial of service (DDoS) attacks [5]. Through analysis of security experts, these DDoS
attacks are only “smoke bombs” that attackers use to cover their real attacks. Some
enterprises that have suffered from DDoS attacks find that DDoS attacks are only part
of the overall network attack, accounting for only 29% of the total attack time. When
a DDoS attack occurs, the enterprise’s security department must try to quickly restore
normal access services because the normal external access of the enterprise is denied or
interrupted. Therefore, during the DDoS attack, security departments are often required
to go all out to solve the DDoS attack problem, and then the attacker “make a feint to the
east but attack in the west” causing security departments cannot take into account the
other intrusion. After the feint attack, 25% of companies will lose important data at the
same time. As it turns out, in order to improve the efficiency of attack, an attacker often
launches a variety of other forms of attack when launching a DDoS attack. Therefore,
once a company is found to be attacked by DDoS, it must understand the full threat
situation and be ready to handle multiple types of network attacks, otherwise it is likely
to suffer greater losses. The Trend Micro report predicted that such attacks will become
more common in 2018.

The feint attack mode has received extensive attention in the field of cyberspace
security. However, in the face of the special attacks, how to carry out related detection
and defense work is still a problem. The detection of multi-stage attack mode at home
and abroad is currently in the key research stage. This papermainly focuses on the special
attack mode of feint attack, and proposes a detection model based on fuzzy clustering
in alert correlation and Bi-RNN algorithm. The main contributions are as follows:

1. Replaying the traffic packet of the LLDoS 1.0 and LLDoS2.0 of DARPA2000 intru-
siondetection attack scenario [13] and the trafficpacket (.pcap) of IntrusionDetection
Evaluation Dataset (CICIDS2017) [18] through snort, generating the raw alert data,
and further based on the five-tuple (AttackType, S_IP, D_IP, S_Port, D_Port) per-
forming alert aggregation. The main purposes are to reduce the duplicate alert data
of the same attack event, and use the fuzzy clustering based on attribute similarity
to process the raw alert after aggregation. Multi-stage attack chains are mined in the
attack scenario to form a multi-stage attack mode comparison library.

2. We improve the traditional deep learning algorithm and CICIDS2017 dataset in our
experiment is preprocessed by the imbalanced learning strategy. Specifically,weused
the deep convolutional neural network to learn the new feature representation of the
dataset. Then the few-shot learning is performed by the hierarchical SVM classifier.
The classification result was divided into the virtual attacks and real attacks with
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the confidence level. Finally, we constructed the dataset of virtual attacks and real
attacks, which is the basic element library of the feint attack chain.

3. Using the multi-stage attack and element attack event library obtained in the first and
second stages, our method of attack chain recovery technology based on Bi-RNN
was proposed. According to the method, feint attack is simulated by the real attack
inserted in the normal causal attack chain, and the addition of the real attack destroys
the causal relationship of the original attack chain. The hidden feature is obtained by
Bi-RNN coding. Further we classified the two types of trainable samples. Finally,
our work achieved the purpose of detecting the feint attack accurately.

The structure of this paper is organized as follows. Section 2 will discuss the related
work in this field. Section 3 will present feint attack chains construction and detection
methods through feint attack chains model. Section 4 gives experimental and results.
Finally, conclusion is showed in Sect. 5.

2 Related Work

Causal Correlation Analysis The causal alert correlation method associates the alert
information according to the causal dependence between the attacks. If the result of one
attack behavior creates a precondition for another attack behavior, it is considered that
there is a causal dependence between the two attack behaviors, and the causal relationship
is utilized. Nguyen et al. [15] conducted an empirical game analysis of the multi-stage
interaction between the attacker and the defender to obtain a heuristic strategy under the
Bayesian attack graph model. Haas et al. [8] proposed a graph-based alert association
(GAC) algorithm to isolate attacks, identify attack scenarios, and assemble multi-stage
attacks from a large set of alerts. Pei et al. [16] proposed a method which models
multi-stage intrusion analysis as a community discovery problem analysis system, and
discovers all “attack communities” embedded within the graphs. A novel method based
on the Hidden Markov Model is proposed to predict multi-stage attacks using IDS alerts
by Holgado et al. [11] They consider the hidden states as similar phases of a particular
type of attack. Katipally et al. [12] use data mining to process alarms and input the
processed data into the hidden Markov model (HMM), ultimately achieving the purpose
of analyzing and predicting the behavior of the attacker.

Cluster Correlation Analysis The clustering alert correlation method associates alert
information with some identical or similar features, that is, clustering by the similarity
between alert attribute values, such as the same destination address, the same attack
source, attack means, etc. Ahmadianramaki et al. [1] proposed a three-layer processing
framework that uses causal knowledge to correlate alerts, automatically extracts causal
relationships between alerts, builds the attack scenario using Bayesian networks. And
further predicting the most likely next attack behavior. Barzegar et al. [3] proposed
approach reconstructs attack scenarios by reasoning based on the evidences in the alert
stream. Themain idea of the proposed approach is to identify the causal relation between
alerts using their similarity. Alvarenga et al. [2] proposed approach applies process
mining techniques on alerts to extract information regarding the attackers behavior and
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themulti-stage attack strategies they adopted. The strategies are presented to the network
administrator in friendly high-level visual models. Large and visually complex models
that are difficult to understand are clustered into smaller, simpler and more intuitive
models using hierarchical clustering techniques.

The multi-stage attack detection based on causal correlation requires a large amount
of expert knowledge. The acquisition of expert knowledge is very difficult, and can not
discover newattack behavior. In this paper, the fuzzy clusteringmethod based on attribute
similarity is used to mine the multi-stage attack mode. The previous work of detection of
the multi-stage attack chain does not consider the special type of feint attack chain, and
the length of the constructed attack chain is too long, which makes it difficult to retain its
inherent causal relationship in further analysis and pre-processing. Therefore, based on
previous work, our research mainly defines and divides virtual attacks and real attacks,
builds the attack chain based on causal correlation and Bi-RNN model, further obtains
the trainable attack sample set, and finally obtains the attack chain detection classifier
through training.

3 Feint Attack Chains Construction and Detection Method

In order to achieve the feint attack chain detection based on the virtual attack chain
and real attack chain, we propose a new detection method in this section which mainly
utilizes fuzzy clustering andBi-RNNalgorithm.The input to ourmodel is rawdata stream
(The packet format is.dump and.pcap) of LLDoS1.0 and LLDoS2.0 of DARPA2000 and
CICIDS2017 of Canadian Institute for Cybersecurity, and the output is the result of the
classifier for detecting feint attack, that is, whether there is a feint attack behavior in
a multi-stage attack sequence. We will describe in detail the implementation of each
algorithm proposed in this paper, and show how to utilize our model to construct and

Fig. 1. Framework of feint attack chains construction and detection method
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detect the feint attack chain. Framework of bidirectional RNN based few-shot training
for detecting multi-stage attack is shown in Fig. 1.

Using the captured real-time data packet or replaying the classical attack dataset
by snort to obtain the raw alerts. The multi-stage attack mode is mined by the fuzzy
clustering method based on attribute similarity, and the virtual attack and real attack are
defined and divided by the few-shot deep learningmodel [6]. The real attack is embedded
into the attack chain by Bi-RNN coding, and the feint attack chain is constructed. Further
we classified the two types of trainable samples. Finally, our work achieved the purpose
of detecting the feint attack accurately.

3.1 Alert Correlation Based on Fuzzy Clustering

Definition 1. IDS alertis a kind of alert generated when attack operations occur. It
shows security situation of the entire network. We represent IDS alert as alert = a1,
a2,…, anwhere aiindicates the ithalert and is a nine-tuple:

ai = (Timestamp, Protocal, S_IP, D_IP, S_Port, D_Port, AttackType, Classification, Priority)

Definition 2. Raw alertrefers to a single attack action performed by the attacker in the
network. It may be an alarm generated directly by the IDS after the scan of the host
service or the exploitation of a vulnerability of the host, without any processing.

Definition 3. Attack sequenceis a sequence of IDS alerts that is produced by an
attacking process. We represent the attack sequence as AS = {a1, a2,…, an}.

Alert Aggregation. We found that there are many attack type, source IP, destination IP,
source port and destination port with the same or similar alerts in a certain time window,
which are recorded as five-tuple (AttackType, S_IP, D_IP, S_Port, D_Port). According to
the specific circumstances of the alert, this paper divide them into the following modes:

– If (AttackType, S_IP, D_IP, S_Port, D_Port) is the same, then it means the same attack
event is alerted multiple times.

– If (AttackType, S_IP, D_IP, S_Port) is the same, then it means an attacker scans the
ports of another host and queries the services it runs.

– If (AttackType, S_IP) is the same and D_IP is on the same network segment, then it
means the attacker scans the target network segment to query the surviving hosts.

– If the AttackType is different as well as S_IP and D_IP are same, then it means the
attack is belongs to the springboard attack.

By merging multiple alerts caused by the same security event into one alert record,
the alert aggregation can greatly reduce the number of raw alerts and reduce the number
of alerts to be associated, which can greatly reduce the time required for alert correlation.
The complexity of the resulting multi-stage attack model is also greatly reduced, which
is more conducive to us to explore the phenomenon of feint attack.

We defined the Alert Aggregation Rate as follows:

Alert Aggregation Rate = (Raw Alerts − Output Alerts)/Raw Alerts (1)
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Attribute Similarity Calculation. In this section, the basic attack chain needed in the
virtual and real attack chain is constructed by using fuzzy clustering alarm association
algorithm based on attribute similarity. The correlation of attack events is analyzed by
using similarity function of different attributes from a large number of alarm events.
This method can be used to connect multiple seemingly isolated security events in the
attack scenario.

Attack Event. The attack events in the IDS alerts are classified based on the IKC model.
From the attacker’s point of view, the attacks in the subsequent stages are more complex
and more purposeful, and the acquired rights are higher. In the attack event dimension,
the similarity formula for ai, aj belonging to an attack sequence is as follows:

Falert_event(ai, aj) =
⎧
⎨

⎩

1,�α = 0 or 1
e−(�α−3/2),�α > 1
0, else

�α = α(ai.alert_event) − α(aj.alert_event)

(2)

�a represents the stage difference between two alarms. If the stage difference is 0 or
1, it indicates that two alarms are in the same stage or in two adjacent stages, and have
the most greatest similarity. The upper limit of similarity is 1, and the minimum is 0.

IP Address. H represents two IP addresses in binary form that are consecutively the same
number of bits from high to low. We use the method of comparing the same number of
bits of two IP addresses to measure the similarity of IP addresses.

FIP(ai, aj) = N/32 (3)

where N = max
{
H (ai.sIP, aj.dIP),H (ai.sIP, aj.sIP), H (ai.dIP, aj.dIP)

}
.

Port. The maximum value of the port is 65535, so the port difference value can be
normalized to represent.

FPort(ai, aj) = 1 − |p1 − p2|/65535 (4)

Timestamp. In a multi-stage attacking process, the time interval is relatively short when
two attacks are in the same phase, and the time interval may be longer when two attacks
occur in different phases, or there is a long latency following the previous access. For
this reason, we do not set time window for alert logs. The similarity function of the
timestamp property is as follows:

FTime(ai, aj) = e−�t

�t = ai.time − aj.time (5)

The complete similarity is calculated using the following function:

F(ai, aj) = δalert_eventFalert_event(ai, aj) + δipFip(ai, aj)

+ δportFport(ai, aj) + δtimeFtime(ai, aj) (6)

δ is the weight of the attribute value.
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Scan the alert sets after aggregating, analyze each alert ai in turn, and calculate the
membership degree of each classified result of ai.The specific calculation method is to
calculate the similarity of all alerts in ai and an existing cluster. The membership degree
of ai belonging to a cluster is the highest similarity between ai and the alerts in the
cluster. Before calculating the similarity, we first determine the attack event of the alert
with the latest timestamp in the cluster and the attack event of ai, and judge whether
the number of stages corresponding to the latter attack event is less than the number of
stages corresponding to the former attack event. If �a is greater than or equal to −1, we
calculate the similarity of two alerts using a similarity function with multidimensional
attributes. If less than −1, we calculate the membership of ai belonging to the next
cluster. The largest membership degree of ai belonging to the existing clusters is r.
Assuming that, the largest membership degree of ai belonging to an existing cluster is r.
When r is greater than the threshold value λ, it is considered that the alerts in this cluster
and the alerts ai are triggered by the same attack process. If r is less than the threshold
value λ, ai is used as a new cluster, which may be the beginning of a new attack process.

3.2 Building the Virtual-Real Lib

Definition 4. Virtual attack andRealAttack: A virtual attack is defined as an attack that
is accurately identified by IDS or an attack classifier. A real attack is a more concealed
attack (which may be a normal behavior) or a new type of attack, which neither cause
the IDS to generated alert nor is judged as an attack behavior by the classifier.

The input to this section is the CICIDS2017 dataset, which has 83 statistical fea-
tures such as duration, number of packets, number of bytes, packet length and so on.
The output is the classification result of the attack, which lays the foundation for the
next step of dividing the virtual attacks and real attacks. We mainly studies existing
attack detection algorithms and improves traditional deep learning methods for attack
detection. Based on deep learning and few-shot deep learning algorithms, the raw alerts
are preprocessed by unbalanced learning strategies, such as random downsampling and
SMOTE oversampling techniques. Then, combining with the feature extraction in deep
convolution neural network and the classification in SVM classifier to build the optimal
CICIDS2017 classifier.

Considering that when the attacker launches a feint attack, the virtual attack actually
plays the role of attracting the attention of the defense side, and the real attack adopted
later is of strong concealment and not easy to be detected. Thus, the attacker should
use virtual attacks can be accurately detected by defenders. Combined with such char-
acteristics, this paper simulates the process of being deceived, and filters the results of
model classification by using a classifier trained with intrusion detection data. In order
to enhance the confidence of virtual and real attacks, attacks that have been missed eight
or more times in the test results of ten models obtained from ten cross-validation are
selected as the real attack sample set. Attacks that have been classified correctly ten
times are selected as a virtual sample set.

Less class-sample combining oversampling technique are referred as SMOTE algo-
rithm, which is proposed by Sáez J et al. [17] Assuming that in the training data S, xi

is a sample belonging to the minority class. The first step in SMOTE is to calculate the
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k-nearest neighbors set Pi of xi. From Pi, we randomly select a sample xa. And the
difference between the xi and xa corresponding to the attribute q is denoted as diff (q) =
xaq− xiq. The mathematic formula of the synthesis of new sample f iq belonging to the
minority class as follows:

fiq = xi + (
xaq − xiq

) ∗ rand (0, 1) (7)

where rand (0,1) is a random number in (0,1). Then the above process is repeated
according to the predefined oversampling rate, and the synthetic new sample is added to
the initial training sample to increase the number of samples belonging to the minority
class. In thisway, the degree of imbalance is greatly reduced and there is a relative balance
between majority classes and minority classes in the new training data set. Finally, the
new training data set are classified by the classifier and the classification results are
obtained.

3.3 Feint Attack Chain Construction and Detection Model

Definition 5. Feint Attack Chains:By analyzing the various situations of feint attacks,
it is summarized as a multi-stage attack mode of virtual attacks and real attacks.

The attacker hides the attack trajectory, and sometimes uses the policy of “make a
feint to the east but attack in the west” to perform a large number of attacks on the vital
host A, such as DDoS attacks, causing a large number of alerts, while the real target host
is B. Due to the security personnel processing the DDoS attack against host A, there is
no way to deal with the alarm caused by the real attacks on host B.

The attacker uses a highly concealed attack in some steps of the multi-stage attack
sequence, or uses an advanced attack to prevent the IDS system from generating an
alert to confuse the operation and maintenance personnel. The lack of some processes in
the multi-stage attack process, resulting in the inability to completely restore the entire
attack path (such as using DNS queries in LLDoS2.0 instead of IPsweep in LLoS1.0).

Our attack chain recovery technique is based on Bi-RNN. We use the attack chain
established in the first stage and the real attack in the second stage to embed the atomic
attack event into the attack chain through Bi-RNN coding. The forward RNN records
the information of the attack chain from the cause to the result, and the reverse RNN
records the information of the attack chain from the result to the cause, ensuring the
maximum retention of the correlation information. The process is shown in Fig. 2.

Finally, we label the sample set of feint attack and non-feint attack chains, and further
train the model to automatically classify the attack chain samples. Based on the machine
learning algorithm, a special attack detection model for the virtual attack and real attack
chain is constructed by training the feint attack and non-feint attack chain samples, and
the model parameters are determined. Furthermore, the learning model integration of
specific weight enhancement is carried out by voting method to improve the detection
accuracy of model. In this way, the purpose of accurately identifying the feint attack is
achieved.
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Fig. 2. Feint attack chains construction

4 Experimental and Results

4.1 Experimental Setup

Experimental Environment We choose same hardware and software configurations
when carrying out the experiments. Our experiment is conducted on the windows 10
operating system with the hardware environment Intel(R) Core(TM) i7-7500U CPU,
8 GB RAM and IT hard disk. We utilize the programming language python 3.5. The
main items of our hardware and software configuration can be found in Table 1.

Table 1. Hardware and software configuration

No. Hardware or software Type

1 Operating system Windows 10

2 Programming language Python3.5

3 Development environment JetBrains PyCharm
2018.1.4

4 CPU Inter(R)
Core(TM)i7-7500U

5 RAM 8GB

6 Disk IT hard disk

The DARPA2000 dataset is a collection of intrusion scenario correlations fromMIT
Lincoln lab. It is widely used to verify the effectiveness of various alert event correlation
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algorithms. LLDOS1.0 includes a complete distributed deny service (DDOS) attack
scenario, the multi-stage attack is consists of 5 steps: detect, hack, install trojan mstream
DDoS programs and perform remote DDoS attacks on target servers.

The Canadian Institute for Cybersecurity published the CICIDS2017 dataset in 2017
[7]. The advantage of this data: time is near, the benchmark data set covers the 11 criteria
required, and all previous IDS data sets cannot cover all 11 standards. Containing benign
traffic and the latest common attacks, the data capture period begins at 9 am onMonday,
July 3, 2017 and ends at 5 pm on Friday, July 7, 2017 for a total of 5 days. Monday is
a normal day and only includes benign traffic. Attacks implemented include brute force
FTP, brute force SSH, DoS, Heartbleed, web attack, infiltration, botnet and DDoS. They
are executed on Tuesday, Wednesday, Thursday and Friday.

Evaluation Criteria. There are many evaluation indicators used in intrusion detection
systems.Although this paper only studies themulti-stage attack identification, it also uses
the commonly used indicators in the intrusion detection field, namely the completeness
rate and accuracy rate. Suppose the total number of attacks included in the test data set is
N, the number of attacks identified by the recognition method is RN, and the number of
attacks identified in these test data sets is actually R. The definitions of these indicators
are as follows:

1. Completeness Rate: The completeness rate is the completeness of the description
method, that is, whether all attacks can be found. The calculation method for multi-
stage attack recognition completeness rate is:

Completeness Rate = R/N (8)

2. Accuracy Rate: Accuracy rate is the correctness of the description method, that is,
howmanyof the identified attacks are correct. The calculationmethod formulti-stage
attack recognition accuracy is:

Accuracy Rate = R/ RN (9)

4.2 Experimental Result and Evaluation

Alert Correlation Based on Fuzzy Clustering. Use the snort’s command sudo snort-r
/LLS DDOS 1.0-inside.dump -l/home-A fast-c/etc/snort/snort.conf in Linux to replay
the original traffic packets from LLDoS1.0 and LLDoS2.0 of DARPA2000 and
CICIDS2017.

Through the network traffic packet analysis software Wireshark, we analyzed all
traffic packets (including normal background traffic) in the DMZ and Inside areas of
LLoS1.0, and the packets containing only attack traffic in each of the five attack phases
of the DDoS attack.

We tracked the TCPflowof the key attack steps and found that the attacker performed
a large number of IP sweep (ICMP echo request) on the target network segments, among
which 18 hosts survived (ICMP echo reply). The next step is Sadmind ping, querying the
Sadmind vulnerability and verifyingwhether the service is running on the surviving host.
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There are 6hosts thatmeet this condition.Buffer overflowattacks on these 6hosts invaded
the host, and 3 hosts are successfully invaded, namely: 172.16.115.20, 172.16.112.10
and 172.16.112.50. Log in to these three hosts using the rsh service telnet, upload and
install theDDoSDaemon (includingmstream server andmstreammaster). Among them,
the attacker installed server and master on 172.16.115.20, and only installed server
on 172.16.112.10 and 172.16.112.50. It can be seen that 172.16.115.20 is the jump
host of the attacker in the internal network. Finally, log in to 172.16.115.20, check the
port mstream daemon port 6723, execute the mstream command, set the target IP to
131.84.1.31, and use the forged IP to initiate the DDoS attack for 5 s.

Combine the two-part alerts (DMZ: 7024 and Inside: 10145) obtained by using
snort, and perform alert aggregation on 17169 raw alerts to obtain 3222 alerts. The alert
aggregation rate reaches 81.23%. The result is shown in Table 2.

Table 2. The performance of alert aggregation

Raw alerts Amount Aggregation rate
(%)

DMZ 7024 –

Inside 10145 –

Total 17169 –

Alert aggregation 3222 81.23

Using the fuzzy clustering algorithm proposed in Sect. 3.1, 3222 alerts are clustered,
and a total of 944 attack sequences are obtained. It contains a large number of sequences
of length 1, indicating that there are a large number of fragmentation alerts in the alert
clustering.

After deleting the sequence of length 1, a total of 195 multi-stage attack sequences
are obtained. After extracting the multi-stage attack mode, nine sequence patterns are
obtained.

Building the Virtual-Real Lib. By using the down-sampling and SMOTE algorithms,
the number of samples in our datasets is as shown in Table 3.

The performances of the model using only CNN and the model using few-shot deep
learning are shown in Fig. 3. It can be seen that CNN is easy to cause over-fitting, while
the model of few-shot deep learning effectively avoids over-fitting.

The result of few-shot deep learning model is shown in Table 4. We can see that our
method has significantly improved the detection rate ofMinority class-sample (U2R and
R2L).

We find that CNN-SVM with SMOTE gets better recall and precision. CNN model
without SMOTEhas quite lower recall when classifyingU2R andR2L traffic. The reason
is that the amount of U2R and R2L packages is too lower than that of other packages
what we have mentioned above. But the recall to U2R and R2L traffic has been greatly
improved by introducing SMOTE. The results are shown in Fig. 4.
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Fig. 3. The performances of the CNN model (left) and the few-shot deep learning model (right)

Fig. 4. Precision and recall comparison between the CNN without SMOTE and the CNN-SVM
with SMOTE

The Virtual-Real Lib contains 20,718 real attacks and 189,826 virtual attacks. In
order to verify the reliability of our results, we take all of real attacks and Normal to
test, and the results show that more than 95.6% of the real attacks are missed as normal.

Build Feint Lib and Detect the Feint Attack. Feint Lib contains 11758 records of
feint attack chains, and there are 20 attacks in each record. The number of training
set is 9408 and the number of testing set is 2350. Some samples in the dataset are shown
in Table 5. Label 1 means the chain is a feint attack chain and Label 0 means the chain
is a common chain.

The number of real attacks in the attack chain are 1 to 7. Among them, the number of
attack chains containing one real attack is 3371, the number of attack chains containing
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Table 3. The statistics of datasets before and after down-sampling and SMOTE

Dataset name Number of train data before
down-sampling and SMOTE

Number of train data after
down-sampling and SMOTE

Benign 1886428 17965

DoS Hulk 184858 12323

PortScan 127144 8476

DDoS 33468 6693

DoSGoldenEye 8234 8234

FTP-Patator 6350 6350

SSH-Patator 4717 4717

DoS slowloris 4636 4636

DoS Slow-httptest 4399 4399

Bot 1572 1572

Brute Force 1205 1205

XSS 521 521

Infiltration 28 280

SQL Injection 16 160

Heartbleed 8 80

Table 4. The confusion matrix of the few-shot deep learning model

Confusion matrix Predicted category Recall

Benign Probe Dos U2R R2L

Actual Benign 60352 123 103 9 6 0.996

Probe 387 3501 260 0 18 0.840

Dos 5686 82 224081 0 4 0.975

U2R 73 13 17 119 6 0.522

R2L 7018 4 6 1 9160 0.566

Precision 0.821 0.940 0.998 0.922 0.996 Acc:95.6%

two real attacks is 3248, the number of attack chains containing three real attacks is
1811, the number of attack chains containing four real attacks is 672, the number of
attack chains containing five real attacks is 200, the number of attack chains containing
six real attacks is 50, the number of attack chains containing seven real attacks is 11,
and the number of attack chains containing eight real attacks is one.

Finally, we chose c = 0.5 and g = 1 which can get the best acc(78.8764%) in cross
validation and got 75.23% accuracy on the test set, which is shown in Fig. 5.
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Table 5. Samples of the feint lib

Features Label

0 tcp telnet REJ 0 … 1 0 0 neptune. 0

0 icmp ecr_i SF 520 0.73 0.23 0.27 neptune. 1

0 icmp ecr_i SF 1032 0 0 0 smurf. 1

0 icmp ecr_i SF 1032 0 0 0 smurf. 1

0 icmp ecr_i SF 1032 0 1 1 neptune. 1

0 icmp ecr_i SF 1032 0 0 0 smurf. 1

0 icmp ecr_i SF 1032 0 1 1 neptune. 1

0 tcp private S0 0 0 0 0 smurf. 0

0 icmp ecr_i SF 520 0 1 1 neptune. 1

0 icmp ecr_i SF 1032 1 0 0 neptune. 1

0 tcp other REJ 0 0 0 0 smurf. 1

0 icmp ecr_i SF 1032 0 0 0 smurf. 1

0 icmp ecr_i SF 1032 0 0 0 smurf. 1

0 icmp ecr_i SF 18 0 0 0 smurf. 1

Fig. 5. The feint attack chain detection performances of models with different gamma and c

5 Conclusion

In this paper, aiming at the feint attack mode in APT attack, we proposed a new detec-
tion method which mainly utilizes fuzzy clustering and Bi-RNN algorithm. Firstly, by
analyzing the existing feint attacks, we defined virtual attacks and real attacks as the
basic attack events that constitute the feint attack chains. In the attack scenario, the
fuzzy clustering method based on attribute similarity is used to mine multi-stage attack
chains. A multi-stage attack mode comparison library is formed, and a few-shot deep
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learning model is proposed and divides attacks into virtual attacks and real attacks to
construct a dataset of atomic attack events. Then, the atomic attack event is embedded
into the attack chain through Bi-RNN coding, and the feint attack chain is constructed
to form the feint attack dataset. Finally, the attack chain samples containing the feint
attack behavior and the non-feint attack behavior are further classified to achieve the
purpose of accurately identifying the feint attack. Our innovation lies in the first use of
bidirectional RNN coding to construct the attack chain, ensuring maximum retention
of causal information. We verified our method by using the LLDoS1.0 and LLDoS2.0
of DARPA2000 and CICIDS2017 of Canadian Institute for Cybersecurity. The exper-
imental results show that our method can derive the multi-stage attack sequence from
the alert correlation by fuzzy clustering, and the feint attack behavior is mined from the
attack chains. The attack sequence is encoded by Bi-RNN, and achieve 75.23% accuracy
to identify feint attack. We research on the key technologies of behavior detection, and
realize the prototype system based on the virtual attack and real attack chain, achieving
zero breakthrough in detecting such attacks.
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Abstract. In recent years, physical adversarial attacks have been placed an
increasing emphasis. However, previous studies usually use a printer to physically
realize adversarial perturbations, and such an attack scheme will meet inevitable
disadvantages of perturbation distortion and low concealment. In this paper, we
propose a novel attack scheme based on illumination modulation. Because of the
rolling shutter effect of CMOS sensor, the created perturbationwill not be distorted
and completely invisible. According to the attack scheme, we have proposed two
novel attack methods, denial of service attack (DoS attack) and escape attack, and
offered a real scene to apply the attack methods. The experimental results show
that both of two attackmethods have a good performance against AFR. DoS attack
has an attack success rate of 92.13% and escape attack has an attack success rate
of 82%.

Keywords: Physical adversarial attack · Automated face recognition ·
Illumination modulation · Denial of service attack · Escape attack

1 Introduction

The vulnerability of artificial intelligence (AI) system exposes against adversarial
attacks. In the digital domain, the effectiveness of adversarial attacks has been proven
and consecutively improved [1–3]. The scheme and performance of physical adversarial
attacks are being explored and some physical adversarial attacks have been designed and
developed recently. However, most of the studied physical adversarial attacks usually
use a printer to physically realize adversarial perturbations [4–9], which leads to two
disadvantages: a) the adversarial perturbations will be distorted from printing the per-
turbations to capturing the printed perturbations by a camera, and b) the visible attacks
lead to the low concealment.
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This paper proposed a novel attack scheme by modulating illumination. Because of
the rolling shutter effect of CMOS cameras, the perturbations will be achieved while
taking pictures under modulated illumination. Utilizing the proposed attack scheme,
the perturbations will not be distorted and will be invisible to humans. The invisibility
contributes to the high concealment. Furthermore, we proposed two practical and novel
attack methods against the AI system based on the proposed scheme, denial of service
attack (DoS attack), and escape attack. The experimental results show that theDoS attack
has an attack success rate of 92.13% and the escape attack has an attack success rate of
82%.

The main contributions of this paper are:

(1) We propose a novel attack scheme to physically realize perturbations of adversarial
examples. Utilizing the proposed attack scheme, the practical issues of previous
physical adversarial attacks can be overcome. The perturbation will not be distorted
and will be invisible to humans, so the concealment will be higher than using a
printer.

(2) We propose two novel attack methods based on the proposed attack scheme facing
to automated face recognition (AFR) system, DoS attack and escape attack. The
experimental results show that they are effective. Besides, we offer a scene to threat
the AFR system in real-world.

2 Related Work

In 2014, Christian et al. [1] found some “intriguing properties of neural networks”. After
the carefully constructed imperceptible perturbations were mixed into digital images,
deep neural networks could be misled. They named such a technology “adversarial
attack”. After the concept was defined, the effectiveness of adversarial attacks has been
consistently improved [2, 3]. However, these researches focused on the digital domain,
and the efficiency of adversarial attacks in the physical world is still questionable [6].

Recently, many studies have developed their physical adversarial attacks [4–10].
In [5], a crafted adversarial eyeglass frame can fool an AFR. In [6], they proposed
“adversarial stickers” placed on the hat to deceive anAFR. In [4], the image classification
system was attacked by black or white stickers attached to a stop sign. In [7], the crafted
adversarial stickers are placed at the lens of a camera to fool an image classifier. In
[8], a novel adversarial patch is proposed to attack person detection. In [9], a kind of
adversarial T-shirt is designed to deceive a person detector.

Previous adversarial attacks usually used a printer to physically realize adversar-
ial perturbations. However, using such an attack scheme, many studies ignore the
concealment of attacks, which reduces practicability.

The most relevant study to ours is [10]. They utilized the invisibility of infrared
light, projected infrared light to real faces, and created perturbation while face images
were captured by the camera of AFR. Compared to the traditional attack scheme, its
concealment is higher.
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3 Proposed Method

We proposed a novel attack scheme by modulating illumination and utilizing the rolling
shutter effect of CMOS cameras. Furthermore, we propose two novel practical attacks
against AFR.

3.1 Rolling Shutter Effect

There are two common image sensors, CCD and CMOS. The COMS has the advantages
of low cost and high quality, which leads to its university in industry. A CMOS sensor
usually uses a rolling shutter as exposure mode, and a CCD sensor uses a global shutter.
A rolling shutter scans and activates the same row or column of pixels, so pixels are
exposed line by line. There is a short time interval between adjacent rows and columns.

Aiming to a rolling shutter, we modulate the LED using on-off keying intensity
modulation (OOK IM) at a very high frequency. To reduce the influence of other light
sources, such as the ambient light, we set the exposure of CMOS sensor at a low level.

In the short time interval, the on/off state of LED may change, so different columns
may be exposed in very different brightness. Finally, there are many black fringes in
the captured picture. Because the LED flashes at a very high frequency, it is beyond the
limit frequency of the human eyes and invisible to humans.

The width of black fringes is determined by the following formula.

wfringe = TLED
Tcol

= 1

fLEDTcol
, 1 < wfringe < wimage

wfringe is the width of captured black fringes, wimage is the width of image size, TLED
is the flashing time of LED, fLED is the modulated frequency of LED, and Tcol is the
exposure time of each column (Fig. 1).

Fig. 1. This picture describes the exposure process of a rolling shutter under high speedmodulated
illumination. The “on/off” state of LED could change in a short time interval (for instance, 100 ns).
When the LED luminaire is on, the bright pixels are stored at the activated row or column of pixels.
When it is off, because of the low exposure of camera, the black fringe is stored at the activated
row or column of pixels.



56 Z. Chen et al.

3.2 Attack Scheme

A novel attack scheme by modulating illumination is proposed in this paper. The invis-
ible perturbations of black fringes will be achieved under modulated illumination and
low exposure. By modulating its flashing frequency, the width of black fringes can be
controlled, and different width of fringes stands for different degrees of perturbation.
Therefore, if an adversarial attack restricts its perturbations as black fringes, we can
physically realize the perturbations by utilizing the rolling shutter effect.

The proposed attack scheme has two advantages compared to the traditional attack
scheme.

(a) The perturbations created by the rolling shutter effect will not be distorted. When
using a printer as the attack scheme, the perturbationsmay be distorted fromprinting
to shooting, which may reduce the adversarial property of attacks. However, the
fringes created are black, and a black pixel will not be distorted. So if an attack
limits the perturbations as black fringes, the perturbation will not be distorted.

(b) Concealment of the proposed attack scheme makes great progress compared to use
a printer. The illumination is modulated at a high frequency, so it is beyond the limit
frequency of human eyes and completely invisible to humans.

(a)                            (b)                           (c)

Fig. 2. The perturbations created are black fringes, and different width of fringes means different
degrees of perturbations. (a) face image under normal illumination; (b) face image undermodulated
illumination using the flashing time of 300 ns; (c) face image under modulated illumination using
the flashing time of 85 ns

3.3 Attack Methods

After modulating illumination and setting low exposure, we cover face images with wide
and narrow black fringes to develop two attack methods respectively.
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After we add wide black fringes to pictures, as it is shown in Fig. 2(b), the important
facial features may be covered, for instance, eyes or nose. Because of the absence of
key facial features, face detection of AFR system may be ineffective under the strong
interference. The subsequent process of face recognition, such as face alignment or
feature extraction, will be invalid, and the AFR system will be paralyzed.

After the narrow black fringes are added to pictures, as it is shown in Fig. 2(c),
the key facial features are not completely covered, and face detection may work. How-
ever, the narrow black fringes will still influence the normal face recognition. First,
the mutated pixels in the edges of fringes add lots of repetitive and useless gradient
information. Second, the fringes usually pass through key facial features, which will
add lots of repetitive and useless gradient information to the facial features. If there are
two interfered face images from two different people, useless gradient information their
facial features contained is the same, so the difference between two different faces may
decline. AFR system may distinguish two different people with a low difference and
may judge them as the same person.

We propose two attack methods facing to AFR, denial of service attack (DoS attack)
and escape attack. Attacking the face detection unit of AFR, Dos attack uses quite wide
black streaks and makes the whole AFR paralyze. Attacking the feature extraction unit
of AFR, escape attack uses narrow black streaks and lets the AFR system lack the ability
to distinguish two different people.

3.4 Threat Model

We offer a real scenario to apply the proposed two attacks. To use a remote AFR system,
users stay in a special space, use camera of their smartphones to capture facial data,
and upload the facial data to the remote face recognition system. In such a scene, it is
possible for attackers to modulate illumination and control the exposure of camera in
smartphone.

Before attacking, attackers install amodulated LEDover the attacked area, and own a
soft to remotely control the exposure of camera in smartphone, which are implementable.

When a user wants to pass the verification of AFR system, a DoS attack is launched.
Because of DoS attack, the whole AFR system is paralyzed, so the user can not pass the
verification.

When a user wants to upload his/her facial data to dataset as a baseline face image,
an escape attack is launched. The face image of user in backend will be interfered.

When an attack wants to invade an AFR system, an escape attack is launched. An
attacked face image will be captured by camera of attack’s phone. After compared to
the user’s interfered face image in backend, AFR will judge the attacker and the user as
the same person, and the attacker invade the AFR system successfully.
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4 Experiments and Results

4.1 Experiment Scheme

A. Experimental physical environment

The experimental physical environment is a 3 m × 3 m × 3 m space. The high-speed
modulated LED is installed in the center of the room, 2 m above the ground, so that
the modulated illumination can fully and uniformly illuminate the whole space. The
used LED is a common commercial LED, with a modulator to control the frequency of
LED. During the experiment, we turn off other light sources and only use high-speed
modulated LED to provide illumination (Fig. 3).

(a)                                             (b)

Fig. 3. (a) The used common commercial LED; (b) the modulator installed to modulate the
flashing interval of the LED

B. Image sensor

We use the rear camera of HUAWEI-nova4e as the image sensor of AFR system. We
set the shutter speed of camera to 1/4000 s to implement a low exposure while attacking
(Table 1).

Table 1. The parameters of used camera

Name Value

Vendor HUAWEI

Type of phone Nova 4e

Image size 24 MP(4224 * 5632)

Type of shutter Rolling shutter
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C. Face recognition system

We choose the face recognition algorithm in Dlib library [11]. Dlib is an open-
source library providing machine learning algorithms. There are three processes in
the established Dlib face recognition system, face detection, face alignment, feature
extraction.

In face detection, histogram of oriented gradient (HOG) algorithm [12] is used. HOG
thinks that the information of images is stored in gradients and the HOG feature can be
formed by calculating the amplitude and direction of gradients.

In face alignment, the Dlib library provides two trained models. One model extracts
5 feature points from face image, and the other extracts 68 feature points. Face alignment
with 68 points is used in this paper.

In feature extraction, theDlib library provides the feature extractionmodel ofResNet.
Using the ResNet model, it returns a 128-dimensional feature vector, which represents
the input face (Fig. 4).

Fig. 4. The processes of Dlib face recognition system.

D. The method of taking face images

We use twomodel faces to in experiments. During experiments, the model faces are kept
in a well-lit area. To avoid the poses or facial expressions influence face recognition,
when taking pictures, the poses or expressions of model faces should be consistent.

Besides, the width of black fringes is only related to the inherent character of CMOS.
But the size of face images is related to the distance between CMOS and faces. So we
classify face images according to their size. To those faces make up more than 80% of
the images, we classify them as “short-distance” face images; to those faces make up
less than 80% but more than 40% of the images, we classify them as “medium-distance”
face images; to the rest, we classify them as “far-distance” face images (Fig. 5).

4.2 Experiment for Dlib Face Recognition System

First, we should verify the effectiveness of Dlib face recognition system under normal
situations. The proposed two methods attack face detection and feature extraction, so
we set up two experiments to verify the effectiveness on face detection and feature
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(a)                (b)

Fig. 5. Two model faces used in experiments. (a) model face 1, (b) model face 2

extraction respectively. Labeled faces in wild (LFW) dataset [13] is used to evaluate its
performance.

For the first experiment, we test the success rate of face detection on LFW. On the
provided 6000 face images, there are only 45 face images undetected (Table 2).

Table 2. The success rate of face detection on LFW using Dlib

Total number Success number Success rate

6000 5955 99.25%

For the second experiment, we test the success rate of face verification on LFW.
A verification needs a threshold, and if difference between two face images is below
threshold, two face images will be judge as the same person.

After using the default threshold of 0.6 and compared the provided 3000 pairs of
faces, the accuracy of 98.63% is computed if two face images belong to different people
(Table 3).

Table 3. Using the threshold of 0.6 and testing on LFW, the confusion matrix is computed. The
overall accuracy is 98.2833%, and when two face images belong to the same person, the accuracy
is 97.9333%, and when two face images belong to different people, the accuracy is 98.6333%.

TP = 2938 FP = 41

FN = 62 TN = 2959

To increase the accuracywhen two face images belong to different people, we use the
threshold of 0.5 and retest. The improved accuracy is 99.1% if two face images belong
to different people (Table 4).
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Table 4. Using the threshold of 0.5, when two face images belong to different people, the accuracy
is 99.1%.

TP = 2411 FP = 27

FN = 589 TN = 2973

4.3 Experiment for DoS Attack

To set up a controlled experiment, we compute the success rate of face detection under
normal illumination, and the captured face images are like Fig. 2(a). We test 15 face
images for each model face, and every face in the picture was detected.

For the main experiment, we test 178 face images, and they are like Fig. 2(b). The
average success rate of face detection is 7.87%under attack.When the distance decreases,
the success rate also decreases. For far-distance face images, the success rate is 13.11%;
for medium-distance images, the success rate is 8.1%; for short-distance images, the
success rate is 1.81%. A shorter distance means a higher proportion of face in images,
and more black fringes on the face, so it is more likely for black fringes to cover key
facial features (Fig. 6 and Tables 5, 6).

Fig. 6. Under normal illumination, every face in image is detected. However, under DoS attack,
the success rate of face detection drops sharply.
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4.4 Experiment for Escape Attack

To set up a controlled experiment, we compute the success rate of face verification
under normal illumination. We take 30 face images, which are like Fig. 2(a), and do 75
comparisons using the threshold of 0.5. Experimental result shows a high success rate
of 100% under normal illumination.

For the main experiment, we take 60 face images and do 300 comparisons. The
average difference between two face images drops from 0.6 to 0.45, which is below the
threshold 0.5. So the average success rate of face verification under attack is 18%.

Besides, under normal illumination, a farther distance means a lower difference.
However, it is contrary to escape attack. Under escape attack, a shorter distance leads
to a lower difference. A shorter distance means a bigger face in image, so there are
more black fringes passing through the key facial features, and more useless gradient
information will be added to the key facial features, which leads to a lower difference
(Figs. 7, 8, 9 and Tables 7, 8).

Fig. 7. This picture describes the method of face verification.
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Fig. 8. Under normal illumination, face verification has a success rate of 100%. However, under
escape attack, the success rate of face verification drops sharply, and the average success rate is
18%.

Fig. 9. i) Under normal illumination, the average difference between two face images are about
0.6. However, the average difference under modulated illumination is about 0.45, which is below
the threshold, 0.5. ii) Under normal illumination, a shorter distance means a higher difference.
However, it is contrary to modulated illumination. It reveals the availability of escape attack.
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5 Conclusion

In this paper, we propose a novel attack scheme based on illumination modulation to
physically realize perturbations of adversarial examples. Utilizing the rolling shutter
effect of CMOS camera, the created perturbations will not be distorted and can achieve
a higher concealment than traditional attack scheme for using a printer do.

According to the attack scheme, we have proposed two novel attack methods based
on illumination modulation. The experimental results show that both of these two attack
methods get a good performance facing the established AFR. DoS attack has an attack
success rate of 92.13% and escape attack has an attack success rate of 82%.

In future, wewill control the illuminationmore rigorous to realize the stronger attack.
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Abstract. In this paper, we extend the notion of server-aided revocable
identity-based encryption (SR-IBE) to the hierarchical IBE (HIBE) set-
ting to obtain the definition of server-aided revocable hierarchical IBE
(SR-HIBE), and consider a stronger security called SSR-a/sID-CPA secu-
rity. Specifically, the security required that the challenge identity ID∗ is
revoked when both the private key for ID∗ or some ancestors of ID∗ and
the public key for ID∗ are revealed, or both the private key and the secret
key for ID∗ or some (may be different) ancestors of ID∗ are revealed. And
the adversary can have access to the transformation keys oracle. Then,
we propose a generic construction of SR-HIBE schemes from any L-level
revocable HIBE scheme and (L+ 1)-level HIBE scheme. The security of
our generic SR-HIBE scheme inherits those of the underlying building
blocks. Furthermore, when the maximum hierarchical depth is one, we
obtain a generic construction of SR-IBE schemes from any IBE scheme
and two-level HIBE scheme.

Keywords: Generic construction · Server-aided revocation
mechanism · Hierarchical identity-based encryption

1 Introduction

Identity-based encryption (IBE), which was proposed by Shamir [12] in 1984,
provides a public key encryption mechanism that an arbitrary string represent-
ing user’s identities (e.g., email address, ID number) can be used as public keys.
As an extension of IBE, hierarchical identity-based encryption (HIBE) supports
key delegation functionality. It has been well studied on (H)IBE [1,3,5–7,13–15]
since after Boneh and Franklin [4] gave the first IBE scheme in 2001. As for
many multi-user cryptosystems, adding an efficient revocation mechanism to
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 73–82, 2021.
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the (H)IBE scheme to revoke the malicious user is a necessary problem. In 2008,
Boldyreva et al. [2] introduced the notion of revocable IBE (RIBE). In their def-
inition, each user can issue a long-term secret key corresponding to his identity,
but only using this secret key cannot decrypt the ciphertext. In their work, the
size of the key update in each time period is logarithmic in N (i.e., O(r log N

r ),
where r is the number of the revoked users).

In order to reduce the workload of the users and capture decryption key
exposure resistance (DKER) property, Qin et al. [11] introduced server-aided
RIBE (SR-IBE)and defined semantic security against adaptive-identity security
chosen plaintext security (SR-aID-CPA). In the SR-IBE scheme, almost all the
workloads of users are outsourced to an untrusted server, and the users need
no communication with the KGC during key updating and can compute their
decryption keys at any time period by themselves. The server can be untrusted
since it does not keep any secret, and the only requirement is computing correctly.

Cheng and Meng [10] revisited Qin et al.’s security model [11] and proposed
a stronger one called SSR-sID-CPA security where ID∗ should be revoked before
t∗ if both the private key privkID∗ and the public key pkID∗ are all revealed to the
adversary. Besides, the adversary is allowed to have access to the transformation
key oracle since the untrusted server could be operated by anyone, including the
adversary.

Motivations. Observe that the RHIBE scheme supports both key revocation
and key delegation functionalities, the secret key of a user can be divided into
two parts: one part is its own secret key which used to realize key revocation
by combining with the key update while the second part is used to realize key
delegation for its descendants. Thus, the workloads of users in RHIBE are much
heavier than that in RIBE. So it has practical interest to add a server-aided
revocation mechanism to the RHIBE setting to reduce the user’s heavy workload.
Besides, note that [9] and [10] also considered the generic construction of SR-
IBE. In their works, the server gains and sends a random chosen message to the
recipient. While the server may be untrusted, if he sends a random string which
is not what he obtained, then the recipient cannot obtain the real message and
may have no idea of that.

For security aspect, the security model of SR-IBE in [10] considered a stronger
security called SSR-a/sID-CPA security to capture both DKE attacks on the
local decryption key and TKE attacks on the transformation key. In order that
the security definition be as close to the practical scenarios as possible, it is
needed to consider the corresponding stronger security of the SR-HIBE scheme.

Our Contributions. In this paper, we add a server-aided revocation mechanism
to the HIBE scheme and propose a generic construction of SR-HIBE scheme. Our
contributions are as follows:

First, we extend the notion of SR-IBE to the SR-HIBE case and give a formal
definition of SR-HIBE scheme. We also give a stronger security definition of SR-
HIBE by extending that of SR-IBE in [10]. Specifically, the challenge identity ID∗

is revoked when both the private key privkID∗ for some ID ∈ prefix(ID∗) and the
public key pkID∗ are revealed, or both privkID for some ID ∈ prefix(ID∗) and the
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secret key skID′ for some ID′ ∈ prefix(ID∗) are revealed. Besides, the adversary also
can have access to the transformation keys oracle. To the best of our knowledge,
it is the first time to realize the server-aided revocation mechanism in the HIBE
setting.

Second, we propose a generic construction of SR-HIBE scheme from any
L-level RHIBE with DKER and a (L+1)-level HIBE. In our construction, the
decryption key size is equal to that of the underlying HIBE scheme, and the
ciphertext size is the same as that of the underlying RHIBE scheme. Our generic
construction inherits those of the underlying building blocks.

Third, our construction implies a generic transformation from any IBE and
two-level HIBE to SR-IBE scheme by combining with Ma and Lin’s work [9]
that the generic construction of RIBE with DKER from any IBE and a two-level
HIBE. Compared with the SR-IBE scheme with DKER in [9], our construction
can guarantee both the integrity and privacy of messages. If the server sends
something that is different from what he obtained, then the recipient cannot
decrypt and thus can detect this dishonest behavior.

2 Preliminaries

Notations. Let λ be the security parameter, negl(λ) represents a negligible
function. For positive integer n ∈ N, [n] represents the set {1, · · · , n}. PPT is the
abbreviation for probabilistic polynomial time. In (R)HIBE, ID = (id1, · · · , id�),
idi ∈ ID, denotes a �-level user with identity ID, where idi and ID are called
as element identity and element identity space. For � ∈ N, define (ID)≤� :=⋃

i∈[�](ID)i and the hierarchical identity space IDh := (ID)≤L, where L is the
maximum depth of the hierarchy. The level-0 user is denoted as kgc, i.e., the key
generation center. For a �-level identity ID = (id1, · · · , id�), ID[i] := (id1, · · · , idi)
represents the length-i prefix of ID, i ∈ [�], define pa(ID) := (id1, · · · , id�−1) as
the direct ancestor of ID, and prefix(ID) denotes the set that consisting of itself
and all of its ancestors, i.e., prefix(ID) := {ID[1], · · · , ID[|ID|] = ID}. Furthermore,
ID‖ID ⊆ (ID)�+1 represents the subset that contains all the nodes who have ID
as its direct ancestor.

2.1 Revocable Hierarchical Identity-Based Encryption

In this paper, we adopt the syntax definition of the RHIBE scheme in [8] with
a little change. Specifically, we separate the secret key skID into two parts:
(skID,mskID), where skID is the actual secret key for ID which used in GenDK
algorithm to generate the decryption key, and mskID which is used in GenSK and
KeyUp algorithms for delegation functionality when ID worked as a “delegate
KGC” for its children. Note that this modification does not change the syntax
definition of RHIBE since it is just a change in form. Due to the space limit, we
omit the syntax definition here, and the reader can get more details in [8].



76 Y. Liu and Y. Sun

2.2 Server-Aided Revocable Hierarchical Identity-Based Encryption

In this section, we give a definition of SR-HIBE by extending that of SR-IBE in
[10] to the HIBE setting and consider a stronger security definition which called
SSR-a/sID-CPA secure. As in [10], the “revoke” algorithm also not explicitly
mentioned as part of the syntax.

Definition 1 (Server-Aided Revocable Hierarchical Identity-Based
Encryption, SR-HIBE).

Setup(1λ, L) → (mpk, skkgc). This algorithm is run by the KGC. On input the
security parameter 1λ and the maximum depth of the hierarchy L ∈ N, output
a public parameter mpk and the KGC’s secret key skkgc (also called the master
secret key).

UserKG(mpk, skpa(ID), ID) → (pkID, skID, sk′
pa(ID)).

1 This algorithm is run by a par-
ent user pa(ID) when a user ID ∈ IDh registers to the system. On input the
public parameter mpk, the parent’s secret key skpa(ID) and an identity ID, out-
put a public key pkID, a secret key skID and the updated parent’s secret key
sk′

pa(ID). The public key pkID is sent to the server through public channel and
the secret key skID is sent to the user ID by secret channel.

UpdKG(mpk, skID, t,RLID,t, ukpa(ID),t) → (ukID,t, sk
′
ID). This algorithm is run by

the user with ID ∈ IDh. It takes the public parameter mpk, the secret key
skID, the time period t, the revocation list RLID,t ⊆ ID||ID and the parent’s
update key ukpa(ID),t as inputs, outputs an update key ukID,t and the updated
secret key sk′

ID. The update key ukID,t is sent to the server by public channel.
TranKG(mpk, pkID, ukpa(ID),t) → tkID,t. This algorithm is run by the server. It

takes the public parameter mpk, a public key pkID of a user with ID ∈ IDh

and a parent’s update key ukpa(ID),t as inputs, outputs a transformation key
tkID,t for time period t.

PrivKG(mpk, privkpa(ID), ID) → privkID.2 This algorithm is run by the user with
pa(ID) ∈ IDh. It takes the public parameter mpk, a parent’s private key
privkpa(ID) and ID ∈ IDh as inputs, outputs a private key privkID.

DecKG(mpk, privkID, t) → dkID,t. This algorithm is run by the recipient. On input
the public parameter mpk, a private key privkID of user with ID ∈ IDh and a
time period t as inputs, output a decryption key dkID,t for time period t.

Enc(mpk, ID, t,M) → ctID,t. This algorithm is run by the sender. It takes the
public parameter mpk, the recipient’s identity ID ∈ IDh, a time period t and
a message M , outputs a ciphertext ctID,t, which is sent to the server.

Transform(mpk, ctID,t, tkID,t) → ct′ID,t. This algorithm is run by the server. It takes
the public parameter mpk, a ciphertext ctID,t and a transformation key tkID,t,
outputs a partially decrypted ciphertext ct′ID,t, which is sent to the recipient
by the public channel.

1 When L = 1, i.e. for the RIBE case, skpa(ID) = skkgc, thus UserKG(skkgc, ID) →
(pkID,⊥, sk′

kgc).
2 When pa(ID) = kgc, privkpa(ID) = skkgc, thus PrivKG(mpk, skkgc, ID) → privkID.
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Dec(mpk, ct′ID,t, dkID,t) → M/⊥. This algorithm is run by the recipient ID ∈ IDh.
It takes the public parameter mpk, a partially decrypted ciphertext ct′ID,t and
a decryption key dkID,t, outputs a message M or a symbol ⊥.

Correctness. We require that for all λ ∈ N, L ∈ N, (mpk, skkgc) ← Setup(1λ, L),
� ∈ [L], ID ∈ IDh, t ∈ T , M ∈ M, RLID[�−1],t ⊆ ID[�−1] ‖ ID, if ID′ /∈ RLpa(ID′),t

holds for all ID′ ∈ prefix(ID), and all parties follow the above prescribed algo-
rithms Setup,UserKG,UpdKG,TranKG,PrivKG,DecKG,Enc,Transform to gener-
ate mpk, ct′ID,t, dkID,t, then Dec(mpk, ct′ID,t, dkID,t) = M .

Security Definition. We give a stronger security definition for SR-HIBE called
SSR-a/sID-CPA secure by combining that of SR-IBE in [10] and that of RHIBE
in [8]. Specifically, ID∗ is revoked before t∗ when both the private key privkID for
some ID ∈ prefix(ID∗) and the public key pkID∗ are revealed, or both privkID and
the secret key skID′ for some (may different) ancestors of prefix(ID∗) are revealed.
The adversary has access to the transformation keys oracle. The following game
is played between an adversary A and the challenger C.

At the beginning, A announces the challenge identity/time period pair
(ID∗, t∗) ∈ IDh × T and sends them to C. After that, C runs (mpk, skkgc) ←
Setup(1λ, L), prepares a table SKList to store the new generated identity/public
key/secret key tuple (ID, pkID, skID) or update this tuple during the game, and
a list PrivKList to store new generated identity/private key pairs (ID, privkID)
and identity/decryption key pairs ((ID, t), dkID,t). We will not explicitly mention
those addition/update. Then C executes (ukkgc,1, sk′

kgc) ← UpdKG(mpk, skkgc,
tcu = 1,RLkgc,1 = ∅,⊥). After that, C sends mpk and ukkgc,1 to A. From this
point on, A may adaptively issue any of the following queries to C:

User’s key generation query: When A issues a query ID ∈ IDh, C first
checks if (ID, ∗, ∗) /∈ SKList and (pa(ID), pkpa(ID), skpa(ID)) ∈ SKList for some
pa(ID). If not, return ⊥. Otherwise, C runs (pkID, skID, sk′

pa(ID)) ← GenSK(mpk,
skpa(ID), ID). Furthermore, if ID ∈ (ID)≤L−1, C then executes (ukID,tcu , sk

′
ID) ←

UpdKG(mpk, skID, tcu,RLID,tcu = ∅, ukpa(ID),tcu) and returns ukID,tcu to A.
In the following, we require all identities ID appearing in the following queries
must have been queried in this query, namely, (ID, pkID, skID) ∈ SKList.

Public key reveal query: When A queries on ID ∈ IDh, C obtains the entry
(ID, pkID, skID) and returns skID to A.

Secret key reveal query: When A queries on ID ∈ IDh, C retrieves skID and
returns it to A.

Revoke and update key query: When A queries on RL ⊆ IDh (the set of
identities that will be revoked), C first checks if the following condition holds:

– RLID,tcu ⊆ RL for all ID ∈ (ID)≤L−1 ∪ {kgc} that appear in SKList.
– For all identities ID such that (ID, ∗, ∗) ∈ SKList and ID′ ∈ prefix(ID), if
ID′ ∈ RL, then ID ∈ RL.

– If tcu = t∗ − 1 and A has issued the private key reveal queries on some
ID ∈ prefix(ID∗), and public key reveal query on ID∗, then ID∗ ∈ RL.



78 Y. Liu and Y. Sun

– If tcu = t∗ − 1 and A has issued the private key reveal queries on some
ID ∈ prefix(ID∗) and secret key reveal queries on some ID′ ∈ prefix(ID∗),
then ID, ID′ ∈ RL.

If not, return ⊥. Otherwise, C increments tcu ← tcu + 1. Then, C executes
the following two steps for all identities that have been issued a secret
key generation queries and not been revoked, i.e., ID ∈ (ID)≤L−1 ∪ {kgc},
(ID, ∗, ∗) ∈ SKList and ID /∈ RL, in the identity hierarchy order:
1. Set RLID,tcu ← RL ∩ (ID‖ID), where kgc‖ID := ID.
2. Run (ukID,tcu , sk

′
ID) ← UpdKG(mpk, skID, tcu,RLID,tcu , ukpa(ID),tcu). When

ID = kgc, ukpa(kgc),tcu := ⊥.
Finally, C sends all the generated update key {ukID,tcu}(ID,∗,∗)∈SKList to A.

Transformation key reveal query: When A issues a query (ID, t) ∈ IDh ×
T , C first checks if the conditions that t ≤ tcu, ID /∈ RLpa(ID),t, (ID, t) 
=
(ID∗, t∗) hold. If not, return ⊥. Otherwise, C retrieves pkID), runs tkID,t ←
TranKG(mpk, pkID, ukpa(ID),t) and returns tkID,t to A.

Private key generation query: Upon a query ID ∈ IDh, C checks if (ID, ∗) /∈
PrivKList and (pa(ID), privkpa(ID)) ∈ PrivKList for some pa(ID). If not, return ⊥.
Otherwise, C runs privkID ← PrivKG(mpk, privkpa(ID), ID) and returns nothing
to A.
Similarly, we require that all identities ID appearing in the following queries
must have been queried by this query and hence (ID, privkID) ∈ PrivKList.

Private key reveal query: Upon a query ID ∈ IDh from A, C finds
(ID, privkID) ∈ PrivKList and returns privkID to A.

Decryption key reveal query: Upon a query (ID, t) ∈ IDh × T from A, C
first checks the conditions that ((ID, t), ∗) /∈ PrivKList, t ≤ tcu, and if ID /∈
RLpa(ID),t, then (ID, t) 
= (ID∗, t∗) are all holds. If not, return ⊥. Otherwise,
find privkID from PrivKList, run dkID,t ← DecKG(mpk, privID, t) and return
dkID,t to A.

Challenge phase: Once the adversary A submits two messages M0,M1 with
equal length, C chooses a random bit b ∈ {0, 1}, computes and sends the
challenge ciphertext ct∗b ← Enc(ID∗, t∗,Mb) to A.

Guess. A make a guess b′ for b and wins the game if b′ = b.

Definition 2 (SSR-sID-CPA security). A SR-HIBE scheme SR-HIBE is
SSR-sID-CPA secure if for any PPT adversary A, its advantage denoted as
AdvSSR−sID−CPA

SR−HIBE,A(1λ) =
∣
∣Pr[b′ = b] − 1

2

∣
∣ is negligible in λ.

Adaptive-Identity Security. In the adaptive security game, A chooses
(ID∗, t∗) along with two messages M0,M1 at the challenge phase with the restric-
tions that (1) If t∗ ≤ tcu, then A has not submitted a decryption key reveal
query on (ID∗, t∗), (2) If A has issued both the private key reveal query on some
ID ∈ prefix(ID∗) and the public key reveal query on ID∗, or both the private
key reveal query and the secret key reveal queries on some ID ∈ prefix(ID∗), then
ID∗ ∈ RLpa(ID),t∗ . SR-HIBE is adaptive-identity secure if for any PPT adversary
A, its advantage denoted as AdvSSR−aID−CPA

SR−HIBE,A (1λ) =
∣
∣Pr[b′ = b] − 1

2

∣
∣ is negligible

in λ.
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3 Generic Construction of Server-Aided Revocable HIBE
with DKER

In order to satisfy the security guarantee, we assume that if ID = {0, 1}n, then
for the identity ID = (id1, · · · , idi) ∈ IDh, i ≤ [L], idi ∈ ID′ = {0} × {0, 1}n−1,
and the time period space T = {1} × {0, 1}n−1. Namely, it should keep that
ID′ ∩ T = ∅. The generic construction of SR-HIBE are as follows.

Setup(1λ, L): It takes the security parameter 1λ and the maximum depth of
the hierarchy L ∈ N as inputs, the algorithm runs (r.mpk, r.mskkgc) ←
r.Setup(1λ, L) and (h.mpk, h.mskkgc) ← h.Setup(1λ). Then, output the pub-
lic parameter mpk := (r.mpk, h.mpk) and the KGC’s secret key skkgc :=
(r.mskkgc, h.mskkgc).

UserKG(mpk, skpa(ID), ID): On input the public parameter mpk = (r.mpk, h.mpk),
the parent’s secret key skpa(ID) = (r.mskpa(ID), h.skpa(ID)) and identity ID ∈
IDh, the parent pa(ID) runs ((r.skID, r.mskID), r.msk′

pa(ID)) ← r.GenSK(r.mpk,
r.mskpa(ID), ID), Then, output the public key pkID := r.skID, the secret key
skID := r.mskID and the parent’s updated secret key sk′

pa(ID) := r.msk′
pa(ID).

UpdKG(mpk, skID, t,RLID,t, ukpa(ID),t): On input mpk = (r.mpk, h.mpk), the secret
key skID = (r.mskID, h.skID), the time period t ∈ T and a revocation
list RLID,t = r.RLID,t and the parent’s update key ukpa(ID),t = r.kupa(ID),t, run
(r.kuID,t, r.msk′

ID) ← r.KeyUp(r.mpk, r.mskID, t, r.RLID,t, r.kupa(ID),t). Then, out-
put an update key ukID,t := r.kuID,t and the updated secret key sk′

ID := r.msk′
ID.

TranKG(mpk, pkID, ukpa(ID),t): On input the public parameter mpk =
(r.mpk, h.mpk), a public key pkID = r.skID and the update key ukpa(ID),t =
r.kupa(ID),t, the server runs r.dkID,t ← r.GenDK(r.mpk, r.skID, r.kupa(ID),t), and
outputs a transform key tkID,t := r.dkID,t for identity ID in time period t.

PrivKG(mpk, privkpa(ID), ID): On input the public parameter
mpk = (r.mpk, h.mpk), the private key privkpa(ID) = h.skpa(ID) and the identity
ID ∈ IDh, the user pa(ID) runs h.skID ← h.Delegate(h.mpk, h.skpa(ID), ID)3 and
outputs the private key privkID := h.skID.

DecKG(mpk, privkID, t): On input the public parameter mpk = (r.mpk, h.mpk), the
private key privkID = h.skID and the time period t, the user ID ∈ IDh runs
h.skID,t ← h.Delegate(h.mpk, h.skID, t) and outputs a decryption key dkID,t :=
h.skID,t.

Enc(mpk, ID, t,M): On input the public parameter mpk = (r.mpk, h.mpk),
an identity ID ∈ IDh, a time period t ∈ T and a message M ∈
M, the algorithm runs h.ctID,t ← h.Enc(h.mpk, (ID, t),M) and r.ctID,t ←
r.Enc(r.mpk, ID, t, h.ctID,t). Finally, output the ciphertext ctID,t := r.ctID,t.

Transform(mpk, ctID,t, tkID,t): On input the public parameter mpk = (r.mpk,
h.mpk), a ciphertext ctID,t = r.ctID,t and a transform key tkID,t = r.dkID,t

for identity ID in time period t, run h.ct′ID,t ← r.Dec(r.mpk, r.dkID,t, r.ctID,t).
Output a partial decrypted ciphertext ct′ID,t := h.ct′ID,t.

3 When ID is level-1 user, pa(ID) = kgc, then privkpa(ID) = skkgc.
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Dec(PP, ct′ID,t, dkID,t): On input the public parameter mpk = (r.mpk, h.mpk),
a partial decrypted ciphertext ct′ID,t = h.ct′ID,t and a decryption key
dkID,t = h.skID,t for identity ID in time period t, run h.M ′ ←
h.Dec(h.mpk, h.skID,t, h.ct

′
ID,t). If h.M ′ = ⊥, return ⊥. Otherwise, output a

message M := h.M ′.

Correctness. The correctness of the constructed SR-HIBE scheme Π follows
from that of the underlying RHIBE scheme r.Π and the HIBE scheme h.Π.

Theorem 1. If the underlying RHIBE scheme r.Π satisfies selective-identity
(resp. adaptive-identity) security and the underlying (L+1)-level HIBE scheme
h.Π satisfies selective-identity (resp. adaptive-identity) security, then the con-
structed constructed SR-HIBE scheme Π satisfies SSR-sID-CPA (resp. SSR-aID-
CPA) security.

Proof sketch (of Theorem 1). The strategies that an adversary used can be
divided into the following cases:

– Type-I: A issues valid private key reveal queries on at least one ID ∈
prefix(ID∗).

– Type-I-i∗: A issues a valid private key reveal queries on ID∗
[i∗] but not on

any ID ∈ prefix(ID∗
[i∗−1]).

– Type-I-i∗-1: A issues a valid public key reveal query on ID∗. In this
case, ID∗ must be revoked before t∗.

– Type-I-i∗-2: A issues valid secret key reveal queries on at least one
ID′ ∈ prefix(ID∗).

– Type-I-i∗-3: A issues a valid public key reveal query on ID∗ and valid
secret key reveal queries on at least one ID′ ∈ prefix(ID∗).

– Type-I-i∗-4: A does not issue a valid public key reveal query on ID∗

and valid secret key reveal queries on any ID′ ∈ prefix(ID∗).
– Type-II: The adversary does not issue valid private key reveal queries on any
ID ∈ prefix(ID∗).

By the strategy-dividing lemma in [8], in order to prove the theorem, it is suffi-
cient to show that for each type of adversary, its advantage is negligible.

3.1 Generic Construction of SR-IBE

When the maximal hierarchical depth L = 1, we obtain a generic construction
of SR-IBE from RIBE with DKER and two-level HIBE. Compared with the SR-
IBE in [10], our construction has shorter ciphertext size when instantiated with
pairing since we use the “double encryption” technique. While Ma and Lin [9]
gave a generic construction of RIBE with DKER from any IBE scheme and two-
level HIBE scheme. Combining their work with our construction, we can get
a generic construction of SR-IBE scheme from any IBE scheme and two-level
HIBE scheme.

Observe that [9] and [10] also gave the generic construction of SR-IBE scheme.
In their work, the sender chooses a random message M1 and set the message
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M2 = M ⊕M1, and the server can get one of M1 and M2 while the recipient can
recover the other one. Since the server may be untrusted, if he sends something
that is different from what he obtained, then the recipient cannot gain the real
message M . While in our construction, the server only can get a HIBE cipher-
text on M , if he has dishonest behavior, then the recipient cannot decrypt to
recover the message M and thus can detect this case. Thus, our construction
can guarantee both the integrity and privacy of messages.
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Abstract. Attribute-based encryption (ABE) provides fine-grained
access control on encrypted data, but it is not suitable for limited-
resource devices due to the inefficiency of decryption. To solve this
problem, Green et al. proposed a new paradigm named attribute-based
encryption with outsourced decryption (OD-ABE). It allows a proxy with
a transformation key delegated from the user to transform any ABE
ciphertext into a constant size ciphertext. While full security against
chosen ciphertext attack (CCA) is generally considered as the strongest
security notion for an ABE system, none of existing OD-ABE schemes
achieves full security and CCA security simultaneously. In this paper, we
propose the full CCA security model for OD-ABE and construct concrete
(ciphertext-policy and key-policy) OD-ABE schemes that are fully CCA-
secure in the random oracle model. Specifically, most complex operations
of decryption as well as the verification of ciphertexts can be offloaded to
the proxy in our schemes. We make detailed performance evaluations in
the Charm framework. The experimental results indicate that the user
saves significantly on both bandwidth and time during decryption.

Keywords: Attribute-based encryption · Outsourced decryption · Full
security · Chosen ciphertext security

1 Introduction

Cloud computing is a quite fascinating service paradigm for data sharing. To
ensure confidentiality, users may outsource encrypted data to the public cloud.
Attribute-Based Encryption (ABE), introduced by Sahai and Waters [33] and
refined by Goyal et al. [18], is a suited solution for this concern. It provides fine-
grained access control and encryption functionalities simultaneously. Specifically,
there are two main flavors of ABE. In Ciphertext-Policy ABE (CP-ABE) [6,
12,37], ciphertexts are associated with access policies and keys are associated
c© Springer Nature Switzerland AG 2021
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with sets of attributes. A key will decrypt a ciphertext if and only if the set
of attributes satisfies the access policy. Alternatively, in Key-Policy ABE (KP-
ABE) [4,18,32] the roles are flipped.

Although ABE achieves powerful and flexible access control, the communi-
cation and computation overhead of decryption is quite high. The ciphertext
size, as well as the pairing and exponentiation operations during decryption
usually grow linearly with the complexity of the access policy. It severely limits
the usage for limited-resource devices and essentially impedes ABE from wide-
range deployment. To solve this problem, Green et al. [19] proposed the concept
of attribute-based encryption with outsourced decryption (OD-ABE). It allows
a proxy (such as the cloud server) to transform any ABE ciphertext into a
constant-size El Gamal-style ciphertext, while the proxy learns nothing about
the underlying plaintext. The user needs only compute one exponentiation and
no pairings to recover the message. Subsequently, a series of work [29–31,35] has
been dedicated to design OD-ABE schemes for various applications.

When constructing a concrete ABE scheme, there are two aspects of secu-
rity should be considered: (1) Full security or selective security. Take CP-ABE
for example, a fully (or adaptively) secure scheme [2,10,11,17,22,23,26,27] pro-
vides confidentiality for data encrypted under policies chosen anytime during a
system’s life-cycle, even after the system parameters have been published and
several keys have been distributed. On the contrary, selectively secure schemes
[4,6,12,18,32,37] can only guarantee security for policies that are declared
upfront, before the system is deployed. (2) CCA security or CPA security. It is
well-known that the security against chosen ciphertext attack (CCA) is generally
considered as the strongest notion that does not allow any bit of the ciphertext
to be altered. While the security against chosen plaintext attack (CPA) only
provides the basic confidentiality for a cryptosystem.

As far as we know, none of existing OD-ABE schemes achieves full security
and CCA security simultaneously. There exist the following serious technical
problems. (1) It seems infeasible to make a security proof of OD-ABE that
could be a black box reduction to fully secure ABE schemes. When the adver-
sary makes a query for some transformation key before the challenge phase, the
reduction algorithm could not adopt the strategy in selective security model.
Otherwise, it would have to abort the simulation or the simulation would be dis-
tinguishable from the real game. (2) Submitting ciphertexts to validity testing
is crucial to achieve CCA security. However, if we apply techniques like the FO
transformation [16] and require the user to verify original ABE ciphertexts, the
communication and computation overhead will become so heavy, and hence the
outsourced decryption mechanism is meaningless.

Our Contribution. In this paper, we propose fully secure ABE schemes with
outsourced decryption against chosen ciphertext attack. Firstly, we construct
a basic OD-CP-ABE scheme based on the CP-ABE proposed by Agrawal and
Chase [2], and make a dual system encryption type proof to show the scheme is
fully CPA-secure. The simulator could generate all (semi-functional) transforma-
tion keys for the adversary in the proof. Next, we transform the basic scheme into
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a CCA-secure one without compromising the efficiency of decryption. The main
idea is to apply the “Encryption + Proof of Knowledge” construction [1,34] to
make the ciphertext publicly checkable, which allows the proxy to execute some
parts of the verification of original ciphertexts. Therefore, the user needs only
verify transformed ciphertexts according to the FO transformation [16]. The
same techniques are applied to construct a fully CCA-secure OD-ABE scheme
in KP setting.

Moreover, we implement our OD-CP-ABE scheme in the Charm framework
[3] to evaluate the practical performance. The experimental results indicate that
the user saves significantly on both bandwidth and time during decryption.

1.1 Related Work

Lewko et al. [23] proposed the first fully secure ABE scheme by adapting the dual
system encryption technique of [24,36]. The construction is secure under three
assumptions used by Lewko and Waters [24] in composite order bilinear groups.
Lewko and Waters [26] presented a fully secure CP-ABE scheme in prime order
groups while matching the efficiency of the state of the art selectively secure
systems. Subsequently, a series of simpler and improved constructions of ABE
schemes with full security have been presented [2,10,11,17,22,27].

The OD-ABE schemes proposed by Green et al. [19] could achieve a relaxed
variant of CCA security, called replayable CCA security [8]. Zuo et al. [39] pro-
posed a concrete selectively CCA-secure CP-ABE with outsourced decryption,
by applying the CHK [7] and FO [16] techniques. In terms of generic conversions,
Goyal et al. [18] presented a method for transforming a CPA-secure KP-ABE
to a CCA-secure one. Yamada et al. [38] proposed generic conversions for both
CP and KP flavors. Due to the reasons talked above, these methods are not
suitable to construct an OD-ABE scheme with full CCA security, which is our
main concern in this paper.

1.2 Paper Organization

The remaining paper is organized as follows. In Sect. 2, we give notations and
definitions used in the paper. In Sect. 3, we formally define OD-ABE systems and
their security model. In Sect. 4, we present a basic OD-CP-ABE scheme that is
fully CPA-secure. In Sect. 5, we present our proposal for fully CCA-secure OD-
CP-ABE scheme and give the details of security proof in the proposed security
model. In Sect. 6, we give the construction of an OD-KP-ABE scheme with full
CCA security. In Sect. 7, we make performance evaluations of our OD-CP-ABE
scheme. At last, we conclude the paper in Sect. 8.

2 Preliminary

2.1 Notations

For n ∈ N, [n] = {1, 2, . . . , n}. If S is a set, s
$←− S denotes the operation

of selecting an element s uniformly at random from S. Mi and Mi,j denote
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the ith row and the (i, j)th element of a matrix M, respectively. MT denotes
the transpose of M. λ denotes the security parameter, and negl(λ) denotes a
negligible function, i.e., ∀n > 0, ∃λ0 ∈ N, s.t., λ > λ0, negl(λ) < 1/λn.

2.2 Definitions

Definition 1 (Access Structure [5]). Let U be the attribute universe. An
access structure on U is a collection A of non-empty sets of attributes, i.e. A ⊆
2U \ {∅}. The sets in A are called the authorized sets, and the sets not in A are
called unauthorized sets. Additionally, an access structure is called monotone
for ∀B,C, if B ∈ A and B ⊆ C, then C ∈ A.

Definition 2 (Monotone Span Program (MSP) [2,21]). A monotone span
program is given by a matrix M of size n1 × n2 over Zp and a mapping π :
{1, . . . , n1} → U . Let S be a set of attributes and I = {i|i ∈ {1, . . . , n1}, π(i) ∈
S} be the set of rows in M that belong to S. We say that an MSP (M, π) accepts
S if there exists a linear combination of rows in I that gives (1, 0, . . . , 0). More
formally, there should exist coefficients {γi}i∈I such that

∑

i∈I

γiMi = (1, 0, . . . , 0).

Denote F as a monotone boolean formula with AND and OR gates, where each
input is associated with an attribute in U . Lewko and Waters [25] proposed a
simple and efficient method to convert any F into an MSP (M, π), where each
entry in M is either a 0, 1 or −1. Note that it is always possible to pick coefficients
that are either 0 or 1 for the resulting MSP, irrespective of the attribute set S.

Definition 3 (Σ-Protocol [13]). Let R be a binary relation. That is, R is a
subset of {0, 1}∗ × {0, 1}∗, where the only restriction is that if (x,w) ∈ R, then
the length of w is at most p(|x|), for some polynomial p(). For some (x,w) ∈ R,
we may think of x as an instance of some computational problem, and w as a
witness for x. A two-party protocol π between the prover P and verifier V is a
Σ-protocol for relation R if:

– Three-move form: π is of the following form.
1. P sends V a commitment U .
2. V chooses a random challenge c and sends it to P.
3. P returns a response z to V, and V decides to accept or reject based on

the values (x,U, c, z).
– Completeness: If P and V follow the protocol on common input x and private

input w to P where (x,w) ∈ R, then V always accepts.
– Special soundness: There exists a polynomial-time algorithm extractor that

given any x and any pair of accepting transcripts (U, c, z) and (U, c′, z′) for
x, where c 	= c′, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a probabilistic
polynomial-time (PPT) simulator, which on input x and a random c out-
puts an accepting transcript of the form (U, c, z), with the same probability
distribution as transcripts generated by the real protocol.
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Definition 4 (Bilinear Maps). Let GroupGen be an asymmetric pairing group
generator that takes as input a security parameter λ and outputs a tuple
par = (p,G1,G2,GT , e, g, h), where G1, G2 and GT are three multiplicative cyclic
groups of prime order p ∈ Θ(2λ), g, h are the generator of G1,G2 respectively,
and e : G1 ×G2 → GT is an efficiently computable bilinear map satisfying that:

1. Bilinearity: ∀g ∈ G1, h ∈ G2 and ∀a, b ∈ Z
∗
p, we have e(ga, hb) = e(g, h)ab.

2. Non-degeneracy: e(g, h) 	= 1, whenever g, h are not the identity of G1,G2.

Definition 5 (Decisional Linear (DLIN) Assumption [14]). An asymmet-
ric pairing group generator GroupGen satisfies the decisional linear assumption
if for all PPT adversaries A, there exists a negligible function negl such that:

|Pr[A(λ, par,D, T0) = 1] − Pr[A(λ, par,D, T1) = 1]| ≤ negl(λ),

where par = (p,G1,G2,GT , e, g, h) ← GroupGen(λ), a1, a2, s1, s2, s
$←− Z

∗
p, D =

(ga1 , ga2 , ha1 , ha2 , ga1s1 , ga2s2 , ha1s1 , ha2s2), T0 = (gs1+s2 , hs1+s2), T1 = (gs, hs).

3 ABE with Outsourced Decryption

3.1 Syntax of OD-ABE

Let S represent an attribute set and A an access structure. For generality, we
will define (Ik, Ie) as the inputs to the key generation and encryption functions
respectively. In a CP-ABE scheme (Ik, Ie) = (S,A), while in a KP-ABE scheme,
we have (Ik, Ie) = (A,S). We define the function f as follows:

f(Ik, Ie) =

⎧
⎪⎨

⎪⎩

1 if Ik ∈ Ie in CP − ABE setting

1 if Ie ∈ Ik in KP − ABE setting

0 otherwise.

A CP-ABE (resp., KP-ABE) with outsourced decryption, OD-CP-ABE (resp.,
OD-KP-ABE), for access structure space G is a tuple of PPT algorithms:

– Setup(λ,U) → (PK,MSK). The probabilistic setup algorithm takes as input
a security parameter λ and a universe description U , and outputs the public
parameters PK and the master secret key MSK. We implicitly assume that
all the following algorithms take PK as input.

– KeyGen(MSK, Ik) → (TK,RK). The probabilistic key generation algorithm
takes as input the master secret key MSK and an attribute set (resp., access
structure) Ik, and outputs a transformation key TK and a retrieving key RK
corresponding to Ik.

– Encrypt(msg, Ie) → CT. The probabilistic encryption algorithm takes as
input a message msg from the message space M and an access structure
(resp., attribute set) Ie, and outputs a ciphertext CT corresponding to Ie.
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– Transform(TK,CT) → TCT or ⊥. The deterministic transformation algo-
rithm takes as input a transformation key TK corresponding to Ik and a
ciphertext CT encrypted under Ie, and outputs a transformed ciphertext
TCT if f(Ik, Ie) = 1. Otherwise, it outputs ⊥.

– Decrypt(RK,TCT) → msg or ⊥. The deterministic decryption algorithm
takes as input a retrieving key RK corresponding to Ik and a transformed
ciphertext TCT that was originally encrypted under Ie, and outputs msg if
f(Ik, Ie) = 1. Otherwise, it outputs ⊥.

Correctness. For the fixed security parameter λ ∈ N and the universe descrip-
tion U , the OD-CP-ABE correctness property requires that for all S ⊆ U ,
all A ∈ G, all msg ∈ M, all (PK,MSK) ∈ Setup(λ,U) and all (TK,RK) ∈
KeyGen(MSK,S):

Decrypt(RK,Transform(TK,Encrypt(msg,A))) = msg, if f(S,A) = 1.

OD-KP-ABE correctness is defined analogously, with the last inputs to KeyGen
and Encrypt reversed.

3.2 Security Model for OD-ABE

We recall the security definition introduced in [19]. Let ΠOD-ABE =
(Setup,KeyGen,Encrypt,Transform,Decrypt) be an OD-ABE scheme for
access structure space G, and consider the following experiment for an adversary
A, parameter λ and attribute universe U .

The OD-ABE Experiment ExpCCA
A,ΠOD-ABE

(λ,U) :
Setup. The challenger C runs Setup(λ,U) to obtain (PK,MSK) and returns

PK to A.

Phase 1. C initializes an empty table T , an empty set D and an integer j = 0.
Proceeding adaptively, A can repeatedly make any of the following queries:

– Create(Ik): C sets j = j +1. It runs KeyGen(MSK, Ik) to obtain (TK,RK)
and stores the entry (j, Ik,TK,RK) in table T . It returns TK to A. Note
that Create can be repeatedly queried with the same input.

– Corrupt(i): C retrieves the ith entry (i, Ik,TK,RK) in table T and sets
D := D ∪ {Ik}. It returns RK to A.

– Decrypt.CT(i,CT): C retrieves the ith entry (i, Ik,TK,RK) in table T and
returns the output of Decrypt(RK,Transform(TK,CT)) to A.

– Decrypt.TCT(i,TCT): C retrieves the ith entry (i, Ik,TK,RK) in table T
and returns the output of Decrypt(RK,TCT) to A. Note that it simply
returns ⊥ if TCT is not generated from Transform(TK, ·).

Challenge. A submits two equal length messages msg∗
0,msg∗

1 and a value I∗
e as

the challenge tuple, where for all Ik ∈ D, f(Ik, I∗
e ) 	= 1. C picks b

$←− {0, 1} and
returns the challenge ciphertext CT∗ = Encrypt(msg∗

b , I∗
e ) to A.

Phase 2. Phase 1 is repeated with the restriction that A cannot query:



Fully CCA-Secure ABE with Outsourced Decryption 89

– Corrupt(i) that would result in a value Ik which satisfies f(Ik, I∗
e ) = 1 being

added to D.
– Decrypt.CT(i,CT∗) that f(Ik, I∗

e ) = 1.
– Decrypt.TCT(i,TCT∗) that f(Ik, I∗

e ) = 1 and TCT∗ = Transform(TK,
CT∗), where TK is of the ith entry in table T .

Guess. A outputs a guess b′ of b. The output of the experiment is 1 iff b′ = b.

Definition 6 (Full CCA Security). An OD-ABE is fully CCA-secure (or
secure against adaptive chosen ciphertext attack) if for all PPT adversaries A,
there exists a negligible function negl such that:

∣∣∣Pr[ExpCCA
A,ΠOD-ABE

(λ,U) = 1] − 1/2
∣∣∣ ≤ negl(λ).

CPA Security. We say that an OD-ABE scheme is CPA-secure (or secure
against chosen plaintext attack) if we remove decryption oracles Decrypt.CT
and Decrypt.TCT in the CCA security experiment.

Selective Security. We say that an OD-ABE scheme is selectively secure if we
add an Init stage before Setup where the adversary outputs the challenge I∗

e ,
instead of waiting until Challenge.

4 An OD-CP-ABE Scheme with Full CPA Security

4.1 Construction

First, we construct a basic ciphertext-policy attribute-based encryption with out-
sourced decryption (OD-CP-ABE) based on the CP-ABE scheme called FAME
in [2]. The basic scheme is described as follows:

– Setup(λ,U). Call GroupGen(λ) to obtain par = (p,G1,G2,GT , e, g, h). Let
U = {0, 1}∗. Choose a one-way collision-resistant cryptographic hash func-

tion H1 : {0, 1}∗ → G1, and choose a1, a2, b1, b2, d1, d2, d3
$←− Z

∗
p. Output

PK = (par,H1,H1 = ha1 ,H2 = ha2 , T1 = e(g, h)d1a1+d3 , T2 = e(g, h)d2a2+d3),
MSK = (a1, a2, b1, b2, g

d1 , gd2 , gd3).
– KeyGen(MSK,S). Choose r1, r2, β

$←− Z
∗
p and compute K0 =

(hβb1r1 , hβb2r2 , hβ(r1+r2)). Choose σ
$←− Z

∗
p and for t ∈ [2], compute

K1,t = gβdt · H1(011t)
βb1r1

at · H1(012t)
βb2r2

at · H1(013t)
β(r1+r2)

at · g
βσ
at .

Set K1 = (K1,1,K1,2, g
β(d3−σ)). For all y ∈ S, t ∈ [2], choose σy

$←− Z
∗
p and

compute

Ky,t = H1(y1t)
βb1r1

at · H1(y2t)
βb2r2

at · H1(y3t)
β(r1+r2)

at · g
βσy
at .

Set Ky = (Ky,1,Ky,2, g
−βσy ). Output TK = (S,K0,K1, {Ky}y∈S), RK = β.
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– Encrypt(msg ∈ GT ,A = (M, π)). Choose s1, s2
$←− Z

∗
p and compute

Cm = T s1
1 · T s2

2 · msg, C0 = (Hs1
1 ,Hs2

2 , hs1+s2).

Suppose M has n1 rows and n2 columns. For i ∈ [n1] and l ∈ [3], compute

Ci,l = [H1(π(i)l1) ·
n2∏

j=1

H1(0jl1)Mi,j ]s1 · [H1(π(i)l2) ·
n2∏

j=1

H1(0jl2)Mi,j ]s2 .

Set Ci = (Ci,1, Ci,2, Ci,3) and output CT = (A, Cm, C0, {Ci}i∈[n1]).
– Transform(TK,CT). If f(S,A) = 0, output ⊥. Otherwise, compute con-

stants {γi}i∈I that satisfy
∑

i∈I γiMi = (1, 0, . . . , 0) and

num =
∏

l∈[3]

e(
∏

i∈I

Cγi

i,l ,K0,l), den =
∏

l∈[3]

e(K1,l ·
∏

i∈I

Kγi

π(i),l, C0,l),

where K0,1,K0,2,K0,3 denote the first, second and third elements of K0; the
same for C0. Output TCT = (Cm, kem = num/den).

– Decrypt(RK,TCT). Compute and output msg = Cm · kem1/β .

Theorem 1. The basic scheme is fully CPA-secure under the DLIN assumption
on asymmetric pairing groups in the random oracle model.

4.2 Security Analysis

As discussed in [19], to prove the full security of an OD-ABE scheme, it seems
infeasible to make a black box reduction to fully secure schemes. Accordingly, we
make a dual system encryption type proof that would go along the lines of FAME
[2], with the exception that in the hybrid stage of the proof all transformation
keys will be set (one by one) to be semi-functional including those that could
transform the eventual challenge ciphertext.

Proof. First, we give names to various compact forms of keys and challenge
ciphertexts that will be used. P and SF stand for pseudo and semi-functional,
respectively. Following [10,14], we represent group elements in a succinct way.
The descriptions of random oracle H1 and the sampling algorithm are the same
as those in [2], thus we omit them.

A transformation key TK can be in one of the following forms:

– Normal: K0 = [βBr]2, K1 = [βd + βU1Br + βσa⊥]1, Ky = [βWyBr +
βσya⊥]1.

– P-normal: K0 = [β(Br + r̂a⊥)]2, K1 = [βd + βU1(Br + r̂a⊥) + βσa⊥]1,

Ky = [βWy(Br + r̂a⊥) + βσya⊥]1, where r̂
$←− Z

∗
p.

– P-normal�: K0 = [β(Br + r̂a⊥)]2, K1 = [βd + βU1(Br + r̂a⊥)]1, Ky =
[βWy(Br + r̂a⊥)]1.

– Normal�: K0 = [βBr]2, K1 = [βd + βU1Br]1, Ky = [βWyBr]1.
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– P-SF�: K0 = [β(Br + r̂a⊥)]2, K1 = [βd + βU1(Br + r̂a⊥) + βαa⊥]1, Ky =

[βWy(Br + r̂a⊥)]1, where α
$←− Z

∗
p.

– SF�: K0 = [βBr]2, K1 = [βd + βU1Br + βαa⊥]1, Ky = [βWyBr]1.

where a separate β
$←− Z

∗
p is used for each TK. By setting the retrieving key

RK = β, it is clear that all forms of TK with the corresponding RK are essentially
identical to the secret key SK in the proof of FAME.

A ciphertext CT can be in one of the following forms:

– Normal�: C0 = [As]2, Cm = [dTAs]T · msgb, Ci = [WT
π(i)As +

n2∑
j=1

Mi,jUT
j As]1.

– SF�: C0 = [As + ŝb⊥]2, Cm = [dT(As + ŝb⊥)]T · msgb, Ci = [WT
π(i)(As +

ŝb⊥) +
n2∑

j=1

Mi,jUT
j (As + ŝb⊥)]1, where ŝ

$←− Z
∗
p.

– Rnd�: C0 = [As + ŝb⊥]2, Cm = [dT(As + ŝb⊥)]T · msg�, Ci = [WT
π(i)(As +

ŝb⊥) +
n2∑

j=1

Mi,jUT
j (As + ŝb⊥)]1, where msg� $←− GT .

Then, we provide the description of hybrids. Denote Q as the total number
of Create queries. For notational purposes, we think of Hyb2,3,0 and Hyb4,3,0 as
another way of denoting Hyb1 and Hyb3, respectively.

– Hyb0: The one where C and A interact according to the security definition of
the basic scheme, in which H1 is assumed to behave like a random oracle.

– Hyb1: All transformation keys are Normal, the challenge ciphertext CT∗ is
Normal�.

– Group-I hybrids for q = 1, . . . , Q:
• Hyb2,1,q: Same as Hyb1, except that first q − 1 keys are Normal�, qth key

is P-Normal, and rest are Normal.
• Hyb2,2,q: Same as Hyb2,1,q, except that qth key is P-Normal�.
• Hyb2,3,q: Same as Hyb2,2,q, except that qth key is Normal�.

– Hyb3: Same as Hyb2,3,Q, except that CT∗ is SF�.
– Group-II hybrids for q = 1, . . . , Q:

• Hyb4,1,q: Same as Hyb3, except that first q − 1 keys are SF�, qth key is
P-Normal�, and rest are Normal�.

• Hyb4,2,q: Same as Hyb4,1,q, except that qth key is P-SF�.
• Hyb4,3,q: Same as Hyb4,2,q, except that qth key is SF�.

– Hyb5: Same as Hyb4,3,Q, except that CT∗ is Rnd�.

At last, we show the indistinguishability of hybrids. In both FAME and the
basic scheme, the adversary can not query for any secret keys SK∗ or RK∗ that
could decrypt the challenge ciphertext CT∗. However, the adversary gets all TK∗

in the basic scheme. We argue that when changing the forms of transformation
keys and the challenge ciphertext, the indistinguishability of every pair of hybrids
holds under the DLIN assumption just like in the dual system proof of FAME.
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Note that all kinds of transformation keys could correctly transform nor-
mal ciphertexts. We need only demonstrate that the transformed ciphertexts
TCT∗ = Transform(TK∗,CT∗) of every pair of hybrids are indistinguishable
from the view of the adversary. In Group-I and Group-II hybrids, we consider
TK∗ is generated in the qth Creat query.

– Hyb0: TCT∗ = ([dTAs]T · msgb, [−βdTAs]T ).
– Hyb1: TCT∗ is identical to that in Hyb0, so Hyb0 ≈ Hyb1.
– Group-I hybrids for q = 1, . . . , Q:

• Hyb2,1,q: TCT∗ is identical to that in Hyb1, so Hyb2,1,q ≈ Hyb1. With
the following two indistinguishable hybrids, finally we have Hyb2,1,q ≈
Hyb2,3,q−1.

• Hyb2,2,q: TCT∗ is identical to that in Hyb2,1,q, so Hyb2,1,q ≈ Hyb2,2,q.
• Hyb2,3,q: TCT∗ is identical to that in Hyb2,2,q, so Hyb2,2,q ≈ Hyb2,3,q.

– Hyb3: TCT∗ = ([dT(As + ŝb⊥)]T · msgb, [−βdT(As + ŝb⊥)]T ). Note that if
ŝ is uniformly random, then so is to As + ŝb⊥. Hence, TCT∗ is identically
distributed to that in Hyb2,3,Q, and Hyb2,3,Q ≈ Hyb3.

– Group-II hybrids for q = 1, . . . , Q:
• Hyb4,1,q: TCT∗ is identical to that in Hyb3, so Hyb4,1,q ≈ Hyb3. With

the following two indistinguishable hybrids, finally we have Hyb4,1,q ≈
Hyb4,3,q−1.

• Hyb4,2,q: TCT∗ = ([dT(As + ŝb⊥)]T · msgb, [−βdT(As + ŝb⊥)) −
βαa⊥ŝb⊥]T ). Note that the extra component βαa⊥ŝb⊥ results in the
simulator producing an incorrect correlation between TK∗ and CT∗. Nev-
ertheless, the last component of TCT∗ is blinded by a random factor
β

$←− Z
∗
p. Since the adversary cannot query the corresponding RK∗ = β,

this correlation remains hidden from the point of view of the adversary.
Hence, Hyb4,1,q ≈ Hyb4,2,q.

• Hyb4,3,q: TCT∗ is the same as Hyb4,2,q. Hence, Hyb4,2,q ≈ Hyb4,3,q.
– Hyb5: TCT∗ = ([dT(As+ ŝb⊥)]T ·msg�, [−βdT(As+ ŝb⊥)) − βαa⊥ŝb⊥]T ).
Hyb4,3,Q ≈ Hyb5 can be proved in a manner similar to Hyb4,1,q ≈ Hyb4,2,q.

Finally, Hyb0 is indistinguishable from Hyb5 that contains no information about
the messages submitted by the adversary, proving the argument. This completes
the proof.

5 An OD-CP-ABE Scheme with Full CCA Security

Before giving our fully CCA-secure OD-CP-ABE scheme, we would like to
present some intuitions. The main idea to realize CCA security for public key
encryption is to allow the decryptor to have the ability to check the validity of
the ciphertext. In our scheme, we apply the FO transformation [16] on the basic
scheme to make the transformed ciphertext checkable. The user can recover the
randomness used in the encryption and then execute re-encryption to check the
validity. However, it is noteworthy that the scheme is privately checkable and
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hence not efficient. In the decryption phase, the user should download the origi-
nal ciphertext and compare it with the re-encryption result. Thus the communi-
cation and computation overhead is proportional to the complexity of the access
policy. Though it achieves CCA security, the outsourced decryption mechanism
is meaningless. To solve this problem, we outsource some parts of the verifica-
tion to the proxy in our scheme. Specifically, we use the “Encryption + Proof of
Knowledge” construction [1,34] to make the original ciphertext publicly check-
able. A (non-interactive) zero knowledge proof of knowledge is attached behind
the ciphertext, to prove the ciphertext is well-formed. Hence, we can achieve
CCA security without efficiency compromise during decryption.

5.1 Σ-protocol Used in the Schemes

We describe a Σ-protocol for proving that a tuple (A,B,C,D) is of the following
relation. The relation is similar to the discrete logarithm equality [9].

R = {(x,w) | x = (p,G1,G2,H1,H2, h, P,Q,A,B,C,D), w = (s1, s2),

A = Hs1
1 , B = Hs2

2 , C = hs1+s2 ,D = P s1Qs2},

where it is to be understood that p is the prime order of groups G1 and G2, that
H1,H2, h, A,B,C ∈ G2, that P,Q,D ∈ G1 and that s1, s2 ∈ Z

∗
p. Note that the

relation R involving two groups G1 and G2 is non-trivial to verify, even with the
help of the bilinear map bilinearity e(ga, hb) = e(g, h)ab.

The Σ-protocol πR works as follows:

1. P chooses u1, u2
$←− Z

∗
p, computes and sends the following values to V.

U1 = Hu1
1 , U2 = Hu2

2 , U3 = hu1+u2 , U4 = Pu1Qu2 .

2. V chooses c
$←− Z

∗
p and sends it to P.

3. P computes z1 = cs1 + u1, z2 = cs2 + u2 and sends them to V. V accepts if
the following hold, else it rejects:

Hz1
1 = AcU1, Hz2

2 = BcU2, hz1+z2 = CcU3, P z1Qz2 = DcU4.

Theorem 2. πR is an honest verifier zero knowledge proof of knowledge of w =
(s1, s2) for (x,w) ∈ R, under the discrete log assumption in G1 and G2.

Proof. We prove the properties of the three-move protocol πR.

1. Correctness: This protocol is obviously complete. If the prover truly does
know the witness w = (s1, s2), then

Hz1
1 = Hcs1+u1

1 = (Hs1
1 )cHu1

1 = AcU1,

Hz2
2 = Hcs2+u2

2 = (Hs2
2 )cHu2

2 = BcU2,

hz1+z2 = hcs1+u1hcs2+u2 = (hs1+s2)chu1+u2 = CcU3,

P z1Qz2 = P cs1+u1Qcs2+u2 = (P s1Qs2)c(Pu1Qu2) = DcU4.

So the verifier’s test of acceptance is valid.
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2. Special soundness: The extractor interacts with the prover, which
is on the same random tape, to obtain two convincing transcripts
(U1, U2, U3, U4, c, z1, z2) and (U1, U2, U3, U4, c

′, z′
1, z

′
2), where z1 = cs1 +

u1, z2 = cs2 + u2, z
′
1 = c′s1 + u1, z

′
2 = c′s2 + u2. Then it can extract the

witness
s1 = (z1 − z′

1)/(c − c′), s2 = (z2 − z′
2)/(c − c′).

3. Special honest verifier zero knowledge: The simulator takes (p,G1,G2,H1,
H2, h, P,Q,A,B,C,D) and a random c as input. It outputs a transcript by

sampling z1, z2
$←− Z

∗
p, and computing

U1 = Hz1
1 A−c, U2 = Hz2

2 B−c, U3 = hz1+z2C−c, U4 = P z1Qz2D−c.

The simulated transcript is accepting by inspection, and its proof elements
are uniformly random, matching the distribution in a real proof.

AND Composition. In our OD-ABE schemes, all attribute components of
the ciphertext should be proved well-formed. It is easy to construct a Σ-
protocol for an “AND” compound relation of some n ∈ N: R = {(x,w) | x =
(p,G1,G2,H1,H2, h, Pi, Qi, A,B,C,Di), w = (s1, s2), A = Hs1

1 , B = Hs2
2 , C =

hs1+s2 ,Di = P s1
i Qs2

i , i ∈ [n]}. Simply have P prove all in parallel with a single
challenge c.

Applying Fiat-Shamir Heuristic [15]. The protocol can be transformed into
a non-interactive one. P hashes (H1,H2, h, P,Q,A,B,C,D,U1, U2, U3, U4) to
obtain the challenge c, then computes z1, z2. The proof is (c, z1, z2). To
verify, V reconstructs (Ũ1, Ũ2, Ũ3, Ũ4) and checks that hashing (H1,H2, h, P,Q,

A,B,C,D, Ũ1, Ũ2, Ũ3, Ũ4) yields c.

5.2 Construction

Next, we propose the OD-CP-ABE construction. The Setup and KeyGen
algorithms operate exactly as in the basic scheme, except that the public
parameters also include the description of a key derivation function KDF :
GT → {0, 1}k and two one-way collision-resistant cryptographic hash functions
H2 : GT × {0, 1}k × {1, 2} → Z

∗
p, H3 : {0, 1}∗ → Z

∗
p. The remaining algorithms

are as follows:

– Encrypt(msg ∈ {0, 1}k,A = (M, π)). Choose ran
$←− GT , u1, u2

$←− Z
∗
p and

compute

s1 = H2(ran,msg, 1), s2 = H2(ran,msg, 2),
Cr = T s1

1 · T s2
2 · ran, Cm = KDF(ran) ⊕ msg,

C0 = (Hs1
1 ,Hs2

2 , hs1+s2), U0 = (Hu1
1 ,Hu2

2 , hu1+u2).
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Suppose M has n1 rows and n2 columns. For i ∈ [n1] and l ∈ [3], compute

Pi,l = H1(π(i)l1) ·
n2∏

j=1

H1(0jl1)Mi,j , Qi,l = H1(π(i)l2) ·
n2∏

j=1

H1(0jl2)Mi,j ,

Ci,l = P s1
i,l · Qs2

i,l, Ui,l = Pu1
i,l · Qu2

i,l .

Compute c = H3(H1,H2, h, C0, U0, {Pi, Qi, Ci, Ui}i∈[n1]) and z1 = cs1 + u1,
z2 = cs2 + u2. Output CT = (A, Cr, Cm, C0, {Ci}i∈[n1], c, z1, z2).

– Transform(TK,CT). If f(S,A) = 0, output ⊥. Otherwise, check the validity
of CT as follows:
1. According to A, for i ∈ [n1] and l ∈ [3], compute Pi,l, Qi,l and

Ũ0 = (Hz1
1 · C−c

0,1,H
z2
2 · C−c

0,2, h
z1+z2 · C−c

0,3), Ũi,l = P z1
i,l · Qz2

i,l · C−c
i,l .

2. If c 	= H3(H1,H2, h, C0, Ũ0, {Pi, Qi, Ci, Ũi}i∈[n1]), output ⊥.
Compute constants {γi}i∈I that satisfy

∑
i∈I γiMi = (1, 0, . . . , 0) and

num =
∏

l∈[3]

e(
∏

i∈I

Cγi

i,l ,K0,l), den =
∏

l∈[3]

e(K1,l ·
∏

i∈I

Kγi

π(i),l, C0,l).

Output TCT = (Cr, Cm, C0,1, C0,2, kem = num/den).
– Decrypt(RK,TCT). Compute ran = Cr · kem1/β , msg = Cm ⊕ KDF(ran),

s1 = H2(ran,msg, 1), s2 = H2(ran,msg, 2). If Cr = T s1
1 · T s2

2 · ran, kem =
(T s1

1 · T s2
2 )−β , C0,1 = Hs1

1 and C0,2 = Hs2
2 , output msg. Otherwise, ⊥.

Correctness. By the correctness of πR, FAME [2] and the scheme in [19], we
have if f(S,A) = 1, decryption recovers the correct message with probability 1.

Theorem 3. The proposed OD-CP-ABE scheme is fully CCA-secure under the
DLIN assumption on asymmetric pairing groups in the random oracle model.

5.3 Security Analysis

Proof. Assume there is a PPT adversary A that can attack the OD-CP-ABE
scheme in the full CCA security model with non-negligible probability. We can
construct a PPT algorithm B to attack the basic scheme in the full CPA security
model with non-negligible probability.
Setup. B receives the public parameters PK = (par,H1,H1,H2, T1, T2) from the
challenger C of the basic scheme, and returns them to A.
Phase 1. B initializes an empty table T , three empty lists L1,L2,L3, an empty
set D and an integer j = 0. It answers the queries from A as follows:

– Random Oracle KDF(ran): If there is an entry (ran, r) in L1, B returns r.

Otherwise, it choose r
$←− {0, 1}k, records (ran, r) in L1 and returns r.
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– Random Oracle H2(ran,msg, t) for t ∈ [2]: If there is an entry (ran,msg, t, st)

in L2, B returns st. Otherwise, it chooses st
$←− Z

∗
p, records (ran,msg, t, st) in

L2 and returns st.
– Random Oracle H3(string): If there is an entry (string, c) in L3, B returns

c. Otherwise, it chooses c
$←− Z

∗
p, records (string, c) in L3 and returns c.

– Create(S): B sets j = j + 1. It retransmits Create(S) to C to obtain TK as
the return, and stores the entry (j,S,TK) in table T .

– Corrupt(i): B retrieves the ith entry (i,S,TK) in table T . It retransmits
Corrupt(i) to C to obtain RK as the return, and sets D := D ∪ {S}.

– Decrypt.CT(i,CT): B parses CT = (A, Cr, Cm, C0, {Ci}i∈[n1], c, z1, z2) and
acts as follows:
1. B retrieves the ith entry (i,S,TK) in T . If f(S,A) = 0, it returns ⊥.
2. B checks the validity of CT as in the Transform algorithm. If it does

not pass, B returns ⊥.
3. B searches the pairs (ran, r) in L1 and (ran,msg, 1, s1), (ran,msg, 2, s2)

in L2. These pairs should satisfy Cr = T s1
1 · T s2

2 · ran, Cm = r ⊕ msg,
C0,1 = Hs1

1 and C0,2 = Hs2
2 . If zero matches are found, it returns ⊥. If

more than one matches are found, it aborts the simulation. Otherwise, it
returns msg.

– Decrypt.TCT(i,TCT): B parses TCT = (Cr, Cm, C0,1, C0,2, kem) and acts
as follows:
1. B retrieves the ith entry (i,S,TK) in T . If f(S,A) = 0, it returns ⊥.
2. B searches the pairs (ran, r) in L1 and (ran,msg, 1, s1), (ran,msg, 2, s2)

in L2. These pairs should satisfy Cr = T s1
1 · T s2

2 · ran, Cm = r ⊕ msg,
C0,1 = Hs1

1 and C0,2 = Hs2
2 . If zero matches are found, it returns ⊥. If

more than one matches are found, it aborts the simulation.
3. B checks the validity of TCT as follows. It randomly chooses a mes-

sage msg′ $←− GT and an access structure A
′ such that f(S,A′) = 1.

It runs Encrypt(msg′,A′) with the randomness (s1, s2) in the previous
step to obtain CT′ and runs Transform(TK,CT′) to obtain TCT′ =
(·, ·, ·, ·, kem′). If kem 	= kem′, it returns ⊥. Otherwise, it returns msg.

Challenge. A submits two equal length messages msg∗
0,msg∗

1 from the message
space {0, 1}k and an access structure A

∗. B acts as follows:

1. B chooses random “messages” ran0, ran1
$←− GT and passes (ran0, ran1,A

∗) on
to C to obtain CT = (A∗, C∗

r , C∗
0 , {C∗

i }i∈[n1]).

2. B chooses c∗, z∗
1 , z∗

2
$←− Z

∗
p and computes U0 = (Hz∗

1
1 C∗−c∗

0,1 ,H
z∗
2

2 C∗−c∗
0,2 ,

hz∗
1+z∗

2 C∗−c∗
0,3 ). According to A

∗, for i ∈ [n1] and l ∈ [3], it computes Pi,l,

Qi,l and Ui,l = P
z∗
1

i,l Q
z∗
2

i,lC
∗−c∗
i,l . It records ((H1,H2, h, C0, U0, {Pi, Qi, Ci,

Ui}i∈[n1]), c
∗) in L3.

3. B chooses a random value C∗
m

$←− {0, 1}k and returns CT∗ = (A∗, C∗
r , C∗

m,
C∗

0 , {C∗
i }i∈[n1], c

∗, z∗
1 , z∗

2).
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Phase 2. Almost the same as Phase 1, but with the specified restric-
tions. Besides, for a query Decrypt.CT(i,CT) from A, B parses CT =
(A, Cr, Cm, C0, {Ci}i∈[n1], c, z1, z2) and acts as follows:

1. B retrieves the ith entry (i,S,TK) in T . If f(S,A) = 0, it returns ⊥.
2. B checks the validity of CT as in the Transform algorithm. If it does not

pass, B returns ⊥.
3. If (Cr, Cm, C0,1, C0,2) 	= (C∗

r , C∗
m, C∗

0,1, C
∗
0,2), B searches the pairs (ran, r) in

L1 and (ran,msg, 1, s1), (ran,msg, 2, s2) in L2. These pairs should satisfy Cr =
T s1

1 · T s2
2 · ran, Cm = r ⊕ msg, C0,1 = Hs1

1 and C0,2 = Hs2
2 . If zero matches

are found, it returns ⊥. If more than one matches are found, it aborts the
simulation. Otherwise, it returns msg.

4. Else, (Cr, Cm, C0,1, C0,2) = (C∗
r , C∗

m, C∗
0,1, C

∗
0,2). Then we must have

(C0,3, {Ci}i∈[n1], c, z1, z2) 	= (C∗
0,3, {C∗

i }i∈[n1], c
∗, z∗

1 , z∗
2). B rewinds A to

obtain the witnesses (s∗
1, s

∗
2). If ran0 = T

s∗
1

1 · T
s∗
2

2 , B halts the simulation and
outputs 0 as the final guess. Otherwise, it halts and outputs 1.

Guess. Eventually, A must either output a bit or abort, either way B ignores
it. Next, B searches through lists L1 and L2 to see if the values ran0 or ran1

appear as the first element of any entry, i.e., that A issued a query of the form
KDF(ranb) or H2(ranb, ·, ·). If neither or both values appear, B outputs a random
bit as its guess. If only value ranb appears, B outputs b as its guess.

It is clear that from the view of A, the above simulation is indistinguishable
from the real experiment. According to the analysis in [16], the simulation will
abort with a negligible probability. Therefore, we obtain the theorem.

6 An OD-KP-ABE Scheme with Full CCA Security

At last, we propose a key-policy attribute-based encryption with outsourced
decryption (OD-KP-ABE) based on the KP-ABE scheme in [2] as follows:

– Setup(λ,U). Same as that of OD-CP-ABE.

– KeyGen(MSK,A = (M, π)). Choose r1, r2, β
$←− Z

∗
p and compute K0 =

(hβb1r1 , hβb2r2 , hβ(r1+r2)). Suppose M has n1 rows and n2 columns. Choose

σ′
2, . . . , σ

′
n2

$←− Z
∗
p. For i ∈ [n1] and t ∈ [2], choose σi

$←− Z
∗
p and compute

Ki,t =[H1(π(i)1t) ·
n2∏

j=2

H1(0j1t)Mi,j ]
βb1r1

at · [H1(π(i)2t) ·
n2∏

j=2

H1(0j2t)Mi,j ]
βb2r2

at ·

[H1(π(i)3t) ·
n2∏

j=2

H1(0j3t)Mi,j ]
β(r1+r2)

at · g
βσi
at · gβdtMi,1 ·

n2∏

j=2

g
βσ′

j
at

Mi,j

Ki,3 = g−βσi · gβd3Mi,1 ·
n2∏

j=2

g−βσ′
jMi,j

Output TK = (A,K0, {Ki}i∈[n1]), RK = β.
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– Encrypt(msg ∈ {0, 1}k,S). Choose ran
$←− GT , u1, u2

$←− Z
∗
p and compute

s1 = H2(ran,msg, 1), s2 = H2(ran,msg, 2),
Cr = T s1

1 · T s2
2 · ran, Cm = KDF(ran) ⊕ msg,

C0 = (Hs1
1 ,Hs2

2 , hs1+s2), U0 = (Hu1
1 ,Hu2

2 , hu1+u2).

For all y ∈ S and l ∈ [3], compute

Py,l = H1(yl1), Qy,l = H1(yl2), Cy,l = P s1
y,l · Qs2

y,l, Uy,l = Pu1
y,l · Qu2

y,l.

Compute c = H3(H1,H2, h, C0, U0, {Py, Qy, Cy, Uy}y∈S) and z1 = cs1 + u1,
z2 = cs2 + u2. Output CT = (S, Cr, Cm, C0, {Cy}y∈S , c, z1, z2).

– Transform(TK,CT). Same as that of OD-CP-ABE except that for any i ∈ I,
Cπ(i) is used to compute num and Ki to compute den. Also, note that there
is no K1 component in TK.

– Decrypt(RK,TCT). Same as that of OD-CP-ABE.

Correctness and security of this scheme can be proved in a manner very similar
to that of the proposed OD-CP-ABE scheme.

7 Performance Evaluations

We give both theoretical and experimental analyses of the proposed OD-CP-
ABE scheme, and compare it with the underlying ABE scheme FAME [2]. For
consistency in the comparison, we use FAME as a key encapsulation mechanism
(KEM), and the message to be encrypted is an element in GT .

7.1 Theoretical Analysis

Computation Cost Comparison. Table 1 shows the computation cost com-
parison of OD-CP-ABE with FAME. We only consider the modular exponenti-
ation and pairing computation since they are significantly more expensive than
other operations [20]. Compared with FAME, the encryption algorithm of OD-
CP-ABE additionally generates a proof of knowledge, whose computation cost
is almost the same as that of generating an ABE ciphertext. In the decryp-
tion of FAME, there are 6 pairing computations and the number of modular
exponentiation grows linearly with the complexity of the access policy. While in
OD-CP-ABE, most operations are offloaded to the proxy in the transformation
algorithm, leaving only 6 exponentiations in the decryption.

Communication Cost Comparison. Table 2 compares the communication
cost of OD-CP-ABE with FAME. Compared with FAME, the original ciphertext
of OD-CP-ABE contains 3 more elements in Zp for the proof of knowledge, which
is quite shorter than the size of an ABE ciphertext. In the decryption phase,
FAME needs to transmit all ciphertext parts used in decryption, the number of
which is proportional to the complexity of the access policy. While in OD-CP-
ABE, the transformed ciphertext is transmitted with constant size of 2 elements
in G2 and 3 elements in GT .
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Table 1. Computation cost comparisona

Schemes Encryption Transformation Decryption

FAME [2] 6n1E1 + 3E2 + 2ET × 6|I|E1 + 6P

OD-CP-ABE 12n1E1 + 6E2 + 2ET (6|I| + 9n1)E1 + 6E2 + 6P 2E2 + 4ET

aE1, E2, ET and P denote a modular exponentiation in G1, G2, GT

and a pairing computation, respectively. n1 and |I| indicate the num-
ber of rows of M and the number of attributes used in decryption,
respectively.

Table 2. Communication cost comparisonb

Schemes Transfer size during encryption Transfer size during decryption

FAME [2] 3n1|G1| + 3|G2| + 2|GT | 3|I||G1| + 3|G2| + 2|GT |
OD-CP-ABE 3|Zp| + 3n1|G1| + 3|G2| + 2|GT | 2|G2| + 3|GT |

b|Zp|, |G1|, |G2| and |GT | denote the size of an element in Zp, G1, G2

and GT , respectively. n1 and |I| indicate the number of rows of M and
the number of attributes used in decryption, respectively. We omit the
additive overhead in order to transmit the access structure.

7.2 Experimental Analysis

We utilize the Charm framework [3] to evaluate the practical performance of
the proposed OD-CP-ABE scheme, and make a comparison with FAME. The
schemes use the BN254 curve from Pairing-Based Cryptography library [28] and
the HKDF implementation from OpenSSL. All running times are measured on
a MacBook Pro laptop with an Intel Quad-Core i5 CPU @2.3 GHz and 8 GB
RAM running macOS Catalina 10.15.6 and Python 3.7.4.

Experiment Setting. We use access policies of type (A1 and A2 and . . . and Al)
as in Green et al. [19] because all the l attributes are required for decryption. We
set 20 distinct policies with l increasing from 5 to 100, repeat each instance 20
times and eventually take the average. Policies are converted into MSPs accord-
ing to the method in [25], and all instances are completely independent to each
other. The test data to be encrypted is a random element in GT .

Execution Time. As depicted in Fig. 1(a) and (b), we show the time cost
of algorithms. In Fig. 1(a), FAME.Encrypt Time is about 88 ms–967 ms and
OD-CP-ABE.Encrypt takes almost the double time, about 158ms–1823 ms.
In Fig. 1(b), FAME.Decrypt Time is always about 428 ms while OD-CP-
ABE.Decrypt Time is always about 77 ms, which saves up to 82% on time.
OD-CP-ABE.Transform Time is about 590 ms–1872 ms.

Transfer Size. Figure 1(c) and (d) illustrate the transfer overhead of algorithms.
In Fig. 1(c), the CT size of FAME is 678–6663 bytes and that of OD-CP-ABE
is a bit longer with 60 bytes in each instance. In Fig. 1(d), the transfer size of
FAME during decryption is exactly the same as that during encryption, while
OD-CP-ABE always takes only 802 bytes during decryption.
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(b) Execution Time of Decryption/Transformation
FAME.Decrypt [2]
OD-CP-ABE.Transform
OD-CP-ABE.Decrypt
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FAME CT [2]
OD-CP-ABE CT

5 20 40 60 80 100
Number of policy attributes

0

2000

4000

6000

8000

Si
ze

 in
 b

yt
es

(d) Transfer Size during Decryption
FAME CT [2]
OD-CP-ABE TCT

Fig. 1. Experimental results.

8 Conclusions

In this paper, we investigate the full CCA security of attribute-based encryption
with outsourced decryption (OD-ABE). Particularly, we propose the full CCA
security model for OD-ABE and construct fully CCA-secure OD-ABE schemes
in both CP and KP setting. We make detailed performance evaluations, and the
experiment results indicate that the user saves significantly on both bandwidth
and time during decryption. However, the computation cost during encryption
in our schemes is almost double that of the underlying ABE schemes. In the
future, we will focus on designing OD-ABE with more efficient encryption.
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Abstract. Access control encryption (ACE) is a useful concept intro-
duced by Damg̊ard, Haagh and Orlandi in TCC 2016, which not only
protects the data privacy but also controls the information flow. How-
ever, their DDH-based scheme suffered from the ciphertext revealing
attack (CRA) introduced by Badertscher, Matt and Maurer in Asi-
acrypt 2017 and just satisfied chosen plaintext attack (CPA) security.
Badertscher, Matt and Maurer strengthened the security model to cho-
sen ciphertext attack (CCA) security and constructed a CCA secure
scheme under Naor-Yung paradigm. However, they did not indicate how
to fix the DDH-based scheme proposed by Damg̊ard, Haagh and Orlandi.
Their CCA secure scheme is inefficient and complicated due to the non-
interactive zero knowledge proofs (NIZKs) of a very complicated relation.
And their scheme is constructed just for limited communication policies.

In this paper, we generalize the DDH-based scheme proposed by
Damg̊ard, Haagh and Orlandi and fix its flaw in a very efficient way.
Then, we construct a CCA secure ACE scheme, which is efficient, sim-
ple, constructed for any communication policy and can be instantiated
from many kinds of standard assumptions including the lattice assump-
tions. Finally, we propose two instantiations respectively based on the
lattice assumptions and the decisional bilinear Diffie-Hellman (DBDH)
assumption.

Keywords: Access Control Encryption · CCA security · Efficient

1 Introduction

Access control encryption (ACE), first proposed by Damg̊ard, Haagh and
Orlandi in TCC 2016 [5], is a novel and useful concept which not only deter-
mines who can read the message (read rights) but also determines who can send
the message (write rights). The former function can be realized by the tradi-
tional public key encryption, such as the identity-based encryption, and only
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the receiver who has the decryption key can read the message. But the lat-
ter function is not considered in nearly all kinds of the traditional public key
encryption concepts. This function is also very useful in some systems, especially
in those with multiple security levels. For example, in a local area network, a
user with the top-secret role, who usually possesses large sensitive information,
should not send messages in his computer to the users with the public role, even
he is corrupted. ACE provides these two kinds of functions, then can prevent the
leakage of the information with the top-secret level even the host is corrupted.

In [5], an ACE scheme based on DDH assumption is constructed. However,
it suffers from the CRA attack (the sender, without ek, generates the legal c by
attaining the legal ciphertexts under ek) found by Badertscher, Matt and Maurer
due to the flaw of its security model. In [2], it introduced the role respecting
security model to resist CRA and constructed a CCA secure scheme based on the
NIZKs [6] and the homomorphic public key encryption (PKE) [3] under Naor-
Yung design paradigm [12]. However, they did not fix the DDH-based ACE
scheme in [5] and essentially their method is difficult to extent to the CPA
secure scheme. Their scheme is very complicated and inefficient due to NIZKs.
Furthermore, their CCA secure scheme is just constructed for limited polices.
Constructing an efficient CCA secure scheme for more useful policies is left as
one open problem in [2].

Our Contributions. We first generalize the DDH-based ACE scheme in [5] and
fix its flaw to resist the CRA attack with a very efficient way. Then, we propose
a general but efficient construction of the CCA secure scheme for any policy.
Our construction can be instantiated from many kinds of standard assumptions,
including the lattice assumptions. Therefore, our CCA secure scheme can also
be post quantum secure. Finally, we give two concrete constructions of the CCA
secure schemes based on the learning with error (LWE) [14] and short integer
solution (SIS) [7] assumptions and the DBDH assumption [17].

Efficient CPA Secure Scheme Resisting CRA. We generalize the DDH-based
scheme in [5] and propose a CPA secure scheme based on the homomorphic
PKE and a pseudorandom function (PRF). Our scheme resists the CRA attack
introduced in [2] and is nearly as efficient as the original DDH-based scheme if
our scheme is instantiated from the DDH assumption. It has the same ciphertext
size as the original and the cost is only some calculation of the PRF.

General and Efficient CCA Secure Construction for Any Policy. We propose a
general CCA secure construction of the ACE scheme based on the identity based
encryption (IBE), the strong one-time signature (sOTS) and the PRF. Inspired
by Canetti-Halevi-Katz transform (CHK transform) [4], we construct a more
efficient CCA secure ACE scheme. In our scheme, the form of the ciphertext c is
(vk, c1, c2, σ), where vk is the verifying key of sOTS, c1 and c2 are the ciphertexts
of IBE and σ is the signature of (c1, c2). The sanitizer will check the signature
and if the signature is valid, it will just dispose (vk, c1, c2) and the signature is
not sent to the receiver(the ciphertext of c is required to satisfy CCA security,
but c′ is not).
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Table 1. Comparison of existed constructions and ours

Construction CPA/CCA No-CRA PQC Any policy Complexity of
ciphertext

DDH-based in [5] CPA × × √
O(N)

iO-based in [5] CPA
√

–
√

O(polylog(N))

[6] CPA
√ × × O(polylog(N))

[11] CPA
√ × √

O(polylog(N))

[15] CPA × √ √
O(N)

[2] CCA2
√ × × O(polylog(N))

Our CPA framework CPA
√ √ √

O(N)

Our CCA framework CCA2
√ √ √

O(N)

Instantiations Based on Lattice or DBDH Assumptions. We give two instanti-
ations of the general CCA secure constructions. One is based on the LWE and
SIS assumptions, which is post quantum secure. The other one is based on the
DBDH assumptions, which is more efficient. The main challenge is to construct
the IBE scheme with IND-ID-CON property. We prove that Gentry-Peikert-
Vaikuntanathan IBE (GPV-IBE) scheme [7] and Waters IBE scheme satisfy the
IND-ID-CON property.

Related Work and Comparison. Damg̊ard, Haagh and Orlandi also proposed
an ACE scheme with the polylogarithmic complexity of the ciphertext size for
any policy [5], and their scheme is based on the indistinguishability obfuscation.
Fuchsbauer, Gay, Kowalczyk and Orlandi proposed a scheme with the polylog-
arithmic complexity based on the standard pairing assumption [6]. But their
communication policy is restricted. Kim and Wu proposed an ACE scheme with
polylogarithmic complexity for any policy and their scheme is based on standard
assumptions [11]. They utilized a digital signature scheme, a predicate encryp-
tion scheme [10] and a single-key functional encryption scheme [10,13]. In order
to control the information flow, their functional encryption needs to support ran-
domized functionality [1,9]. Tan et al. constructed a LWE-based ACE scheme
[15]. However, all these schemes are just CPA secure. We show a concrete com-
parison with these schemes in Table 1.

Note that N is the number of the security levels or the users in the system.
For a local network, N maybe is small. Then our schemes maybe are more suite
for these systems due to the simple and efficient structure of our basic scheme
(for single user system, i.e. one sender, one sanitizer and one receiver).

2 Preliminary

In this section, we review some useful notations and definitions.

Notations. Let Z be the integer set. For a positive integer of p, Zp represents the
set of {0, 1, . . . , p−1}. For a positive integer n, let [n] denote the set {1, 2, . . . , n}.
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Denote the vector by the bold lower case letters (e.g. u, v) and the matrix by
the bold upper case letters (e.g. A). If x is a string, let |x| denote its length.
If S is a set then s ← S denotes the operation of picking an elements s of
S uniformly at random. Let χ be a distribution, x ← χ represents choosing
x according χ. Denote the algorithm by the calligraphy letters A,B. We write
z ← AO(·)(x, y, . . .) to indicate that A is an algorithm with inputs (x, y, . . .),
queries to O(·) and an output z. If k ∈ N, a function f(k) is negligible if ∃
k0 ∈ N, ∀ k > k0, f(k) ≤ 1/kc, where c > 0 is a constant. We denote a negligible
function as negl(·).
Identity Based Encryption. An IBE scheme consists of four algorithms,
denoted as IBE = (KGibe, Extibe, Encibe, Decibe). The following property
are useful in our work.

Let IBE.CONVERT(·, ·), called the identity converting algorithm, be a
probability algorithm, which takes the identity id and the ciphertext c under
id as the inputs and outputs a ‘new’ identity id′ and a ciphertext c′ under id′,
denoted as (id′, c′) ← IBE.CONVERT(id, c). The following definition shows
the property we need about IBE.CONVERT.

Definition 1 (Indistinguishable Identity Converting Property). Let λ
be the security parameter and IBE be the identity based encryption scheme.
Denote ID as the identity space of IBE. Let U(ID) be the uniform distribution
over ID. Then IBE is called satisfying the indistinguishable identity converting
property, if there is an efficient IBE.CONVERT algorithm, for any (id, c) ∈
ID ×Cibe, where m = Decibe(skid, id, c), (id′, c′) ← IBE.CONVERT(vk, c), it
holds that

1. The distribution of id′ is computationally indistinguishable from U(ID).
2. The ciphertext c′ has the same security as c and Decibe(skid′ , id′, c′) = m.

Access Control Encryption. The ACE scheme consists of five PPT algorithms
ACE = (Setup, KG, Enc, San, Dec). Concretely, (pp,msk) ← Setup(1λ, P ),
where λ is the security parameter and P : [n] × [n] → {0, 1} is the security
policy. k ← KG(msk, i, t), where i ∈ {0, 1, . . . , n + 1} is the identity of the user,
t ∈ {sen, rec, san} is the role, and k ∈ {eki, dki, rk} is the encryption key, the
decryption key or the re-randomized key. c ← Enc(eki,m), c′ ← San(rk, c) and
m′ ← Dec(dkj , c

′).
The correctness of ACE requires that Pr[m′ �= m] is negligible about λ for

any legally generated keys and ciphertexts. There exist the CPA-security model
including No-Read Rule, No-Write Rule and Role-Respecting against chosen
plaintext attack (NR-CPA, RW-CPA and RR-CPA) and the CCA-security model
including No-Read Rule, No-Write Rule and Role-Respecting against chosen
ciphertext attack (NR-CCA, NW-CCA and RR-CCA). We give tow construc-
tions of ACE satisfying these two security models respectively.
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3 General Constructions

In this section, we give two general constructions of the ACE schemes respec-
tively satisfy the CPA security model and the CCA security model.

The General Construction of the CPA-Secure Scheme. Here, we present
the general construction of the ACE scheme satisfying the CPA-security model.
We mainly propose the construction of a system with a single identity, namely,
with one sender, one sanitizer and one receiver, denoted as 1-ACE and the
scheme for the multiple users can be easily attained from the single-identity
scheme. Let PKE = (KG pke,Encpke, Decpke) be a homomorphic public key
encryption scheme with IND-CPA security. We use “+” to denote the homo-
morphic operation of the ciphertext of PKE. Let Fk(·) be a pseudorandom
function (PRF) with secret key k. Assume that PRF maps the ciphertext space
Cpke of PKE into its plaintext space Mpke. Our construction of 1-ACE with
CPA-security is as follows.

– (pp,msk) ← Setup(1λ, P ): Taking a security parameter λ and a commu-
nication policy P as inputs, the setup algorithm invokes (skpke, pkpke) ←
KGpke(1λ) and k ← KG prf(1λ) and outputs the master secret key msk =
(skpke, k) and the public parameter pp = (pkpke, P, λ).

– k′ ← KG(msk, i, t): Taking a master secret key msk, an identity i ∈ {1, 2}
and a role t ∈ {sen, rec, san} as inputs,

– for (msk, 1, sen), it outputs sender’s encryption key ek1 = k.
– for (msk, 1, rec), it outputs receiver’s decryption key dk1 = skpke.
– for (msk, 2, san), it outputs sanitizer’s re-randomized key rk = k.

– c ← Enc(ek1,m): Taking an encryption key ek1 and a message m as inputs,
it computes c1 = Encpke(pkpke,m) and c2 = Encpke(pkpke,Fk(c1)), and out-
puts the ciphertext c = (c1, c2).

– c′ ← San(rk, c): Taking a re-randomized key rk and a ciphertext c as inputs,
it chooses a random integer r, then creates c3 ← Encpke(pkpke,Fk(c1)) and
computes c′ = r(c2 − c3) + c1 and outputs c′.

– m′ ← Dec(dk1, c
′): Taking a decryption key dk1 and a ciphertext c′ as inputs,

it invokes m′ ← Decpke(skpke, c′) and outputs m′.

Note that when P (i, j) = 0, the part of the ciphertext at slot j for the receiver
j is chosen randomly from the ciphertext space.

Correctness. Let λ be the security parameter and P be the policy. For pp,msk,
ek1, dk1, rk legally generated as 1-ACE, if PKE can be decrypted correctly for
any ‘fresh’ ciphertext and homomorphically genenrated ciphertext, then it holds
that m = Dec(dk1,San(rk,Enc(ek1,m))) for any m ∈ MPKE and the proof is
straightforward.

Theorem 1 (Security). Let λ be the security parameter and P be the policy.
For the 1-ACE scheme constructed as above, if PKE is IND-CPA secure and
Fk is pseudorandom. Then the 1-ACE scheme satisfies NR-CPA, NW-CPA and
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RR-CPA security. In particular, for any adversary A of 1-ACE scheme with
running time T , there is an adversary A′ to break PKE such that

Advpp-cpa1-ACE,A(λ) ≤ Advind-cpaPKE,A′(λ)

Advsa-cpa1-ACE,A(λ) ≤ 2Advind-cpaPKE,A′(λ)

Advnw-cpa
1-ACE,A(λ) ≤ 1

2
Advind-cpaPKE,A′(λ) + 2AdvPRF(λ) + negl(λ)

Advrr-cpa1-ACE,A(λ) ≤ 1
2
Advind-cpaPKE,A′(λ) + 2AdvPRF(λ) + negl(λ)

The running time of A′ is almost equal to T .

The General Construction of the CCA-Secure Scheme. In this section, we
give a general construction of ACE with CCA-security. We also mainly construct
an ACE scheme (1-ACE) for the single identity. Let IBE = (KGibe, Extibe,
Encibe, Decibe) be a homomorphic IBE-scheme. Denote its identity converting
algorithm as IBE.CONVERT(·, ·) and the homomorphic operation as “+”.
Let SIG = (KGsig, S, V) be a strong one-time signature scheme. Let Fk be a
pseudorandom function with the secret key k. The 1-ACE scheme for a single
identity with CCA security is as follows.

– (pp,msk) ← Setup(1λ, P ):Taking a security parameter λ and a policy P as
inputs, it invokes (mskibe,mpkibe) ← KGibe(1λ) and k ← KGprf(1λ), then
outputs msk = (mskibe, k) and a public parameter pp = (mpkibe, P, λ).

– k′ ← KG(msk, i, t): Taking a master secret key msk, an identity i ∈ {1, 2}
and a role t ∈ {sen, rec, san} as inputs,

– for (msk, 1, sen), it outputs sender’s encryption key ek1 = k.
– for (msk, 1, rec), it outputs receiver’s decryption key dk1 = mskibe.
– for (msk, 2, san), it outputs sanitizer’s re-randomized key rk = k.

– c ← Enc(ek1,m): Taking an encryption key ek1 and a message m as inputs, it
invokes (sks, vks) ← KGsig(1λ), then computes c1 = Encibe(mpkibe, vks,m),
c2 = Encibe(mpkibe, vks,Fk(c1)) and creates a signature σ = S(sks, (c1, c2)).
It outputs a ciphertext c = (vks, c1, c2, σ).

– c′ ← San(rk, c): Taking the re-randomized key rk and ciphertext c as inputs,
it verifies whether σ is a valid signature for (c1, c2) by V(vks, (c1, c2), σ). If
the result is 0, it ignores this ciphertext and stops. Otherwise, it chooses
a random integer r and creates c3 ← Encibe(mpkibe, vks,Fk(c1)). It attains
c4 = r(c2−c3)+c1 and c′ = (vk′, c′

4) ← IBE.CONVERT(vks, c4). Broadcast
c′ to every receiver.

– m′ ← Dec(dk1, c
′): Taking a decryption key dk1 and a ciphertext c′ as inputs,

it extracts a decryption key skvk′ ← Extibe(mskibe, vk′), then computes a
message m′ ← Decibe(skvk′ , c′

4) and outputs m′.

Theorem 2 (Security). Let λ be the security parameter and P be the policy.
Assume that the IBE scheme is IND-aID-CPA secure with homomorphic and
IND-ID-CON property, the one-time signature SIG satisfies sEUF-CMA, and
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Fk is pseudorandom, then the 1-ACE scheme constructed as above satisfies NR-
CCA (Payload Privacy against Chosen Ciphertext Attack, PP-CCA and Sander
Anonymity against Chosen Ciphertext Attack, SA-CCA), NW-CCA and RR-
CCA security. In particular, for any PPT adversary A of 1-ACE, assume that it
makes qD decryption queries and its running time is T . There is a PPT adversary
A′ to break the IBE scheme such that,

Advpp-cca1−ACE,A(λ) ≤ Advind-aid-cpaIBE,A′ (λ) + Advseuf-cma
SIG (λ) + negl(λ)

Advsa-cca1−ACE,A(λ) ≤ 2Advind-aid-cpaIBE,A′ (λ) + 2Advseuf-cma
SIG (λ) + negl(λ)

Advnw-cca
1−ACE,A(λ) ≤ 2Advind-aid-cpaIBE,A′ (λ) + 2AdvPRF(λ) + negl(λ)

Advrr-cca1−ACE,A(λ) ≤ 2Advind-aid-cpaIBE,A′ (λ) + 2AdvPRF(λ) + negl(λ)

and the running time of A′ is T +qD(TE +TD), where TE is the running time of
the secret key extraction algorithm and TD is the running time of the decryption
algorithm of IBE.

The proof of Theorem 2 is very similar to the proof of CHK-transform in [4]. The
decryption query can be answered by the key extraction query of IBE. Then the
proof is similar to the proof of Theorem1.

4 Instantiation

It is easy to instantiate the CPA secure ACE scheme based on ElGamal encryp-
tion, Paillier encryption or many lattice-based encryption schemes, such as the
schemes in [3,8], with a pseudorandom function. In this section, we focus on
instantiating the CCA secure ACE scheme. One is based on the learning with
error (LWE) and short integer solution (SIS) assumptions. The other one is based
on the decisional bilinear Diffie-Hellman (DBDH) assumption. By the limits of
the space, we only show the construction of its identity converting algorithm in
detail.

The Instantiation Based on LWE and SIS. This instantiation of the CCA
secure ACE scheme is based on the IBE scheme proposed by Gentry, Peikert and
Vaikuntanathan (GPV-IBE) [7], the strong one-time signature also in [7], called
probabilistic full domain hash (PFDH) scheme in [7]. The identity converting
algorithm of GPV-IBE.CONVERT is constructed as follows.

(id′, c′) ← GPV-IBE.CONVERT(id, c): Let {ui}i∈[l] = H(id). Parse c =
{(pi, ci)}i∈[l]. For i ∈ [l], choose zi ← χm, then compute u′

i = ui + Azi and
c′
i = ci + zT

i pi. Output id′ = {u′
i}i∈[l] and c′ = {(pi, c

′
i)}i∈[l].

The Instantiation Based on DBDH. This instantiation of the CCA secure
ACE scheme is based on Waters IBE scheme [17] and the strong one-time sig-
nature scheme in [16]. The identity converting algorithm of Waters IBE is as
follows.

(id′, c′) ← WATERS-IBE.CONVERT(id, c): Let v = H(id), u =
u′ ∏

vi=1
ui. Choose x ← Zq. Output id′ = ugx and c′ = (c1, c2, c3(c2)x).
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5 Conclusion

We proposed an efficient CCA-secure Access Control Encryption scheme for any
policy. Our scheme can be instantiated from the standard assumptions, especially
from the lattice assumption. Thus, our scheme can be post quantum security.
Finally, we give two instantiations from the LWE and SIS assumptions and the
DBDH assumption.
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Abstract. Identity-Based Cryptography (IBC) is a useful tool for the
security of IoT devices, but securely deploying this cryptographic tech-
nique to the IoT systems is quite challenging. For instance, a leakage of
the master secret key will result in the leakage of all IoT devices’ pri-
vate keys. SM9 is the only approved IBC algorithm standard in China.
It is critical to have mechanisms to protect the SM9 master secret keys.
In this work, to reduce the risk of the master secret key leakage, we
propose a (t, n)-threshold distributed private key generation scheme for
SM9 with some techniques from multiparty computation. Our scheme is
compatible with all the three SM9 sub-algorithms (i.e., the encryption,
signature and key agreement). It is also provably secure and completely
eliminates the single point of failures in SM9 that is concerned by the
industry. The experimental analysis indicates that the proposed scheme
is efficient, e.g., up to 1 million private key generation requests can be
handled per day.

Keywords: Identity-Based Cryptography · SM9 · Distributed Key
Generation · Threshold cryptography

1 Introduction

Identity-Based Cryptography (IBC) where user’s public key is an arbitrary
string, is a promising tool for securing the Internet of Things (IoT). In IBCs, all
users’ private keys are generated from a master secret key msk being privately
held by a trusted third party—the Private Key Generator (PKG). Such central-
ized key generation nature, however, inevitably makes the PKG a single point of
failures that is harmful to both system robustness and security: once the single
PKG crashes, the user private key generation service halts immediately; once the
single PKG is corrupted, the master secret key msk is leaked as a consequence.
In fact, the msk leakage problem is of big concern when integrating IBCs to a

c© Springer Nature Switzerland AG 2021
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deployed IoT system. Usually, a user device private key SID is generated from
msk, burned into the device and never changed. It is always more profitable to
attack msk than each single device private key. But keeping msk safe seems to
be a difficult task. For instance, the master secret key leakage of PlayStation 31

has caused tremendous losses.
In general, there are two approaches known in the literature to deal with

the msk leakage problem of IBCs. The first approach, such as the certificate-
based cryptography [13,15] and certificate-less public key cryptography [3,5,17],
lets users contribute to their own private keys with the help of a PKG. Even if
the PKG’s msk is compromised, the user’s private key remains safe as long as
the user’s secret kept confidential. But this type of solution generally loses in
transmission efficiency, since the receiver’s certificate or self-generated public key
has to be pre-published. Considering IoT networks are often multi-hop routing
based, poor transmission efficiency makes this approach less attractive and for
most low-cost IoT devices this approach is actually impractical.

The second approach to deal with the msk leakage problem is to adopt the
Distributed Key Generation (DKG), by distributing the power of user private
key generation among multiple parties rather than a single PKG. The n Key Pri-
vacy Authorities (KPAs) based scheme [18] and the n Trusted Authorities (TAs)
based scheme [9] allow the n trusted parties to pick their secret keys freely. Both
schemes are general methods applicable to all IBC schemes, but they are not
compatible with the IBC algorithms after user private key generation (e.g., the
encryption, signature and key agreement). In contrast, within schemes following
a t-out-of-n DKG fashion, the n PKGs must ensure that their secret keys are
sharing one msk. These schemes [7,14,19,20,23] are often based on the Shamir
secret sharing or homomorphic Paillier encryption primitive: the former which
we refer to as (t, n)-threshold distributed key generation [7,14,23] focuses on the
general t-out-of-n case; the latter which we refer to as two-party distributed key
generation [19,20] generally focuses on the 2-out-of-2 case specifically. Since the
distributedly generated user public/private key keep their original forms, the
resulting schemes have good compatibility but heavily rely on concrete mathe-
matical structures. For some IBC schemes with poor homomorphic properties,
these schemes could be particularly complicated and inefficient.

SM9 is a Chinese standard for IBC [1,2] that consists of three sub-algorithms:
a digital signature scheme, a key agreement scheme and an encryption scheme.
Table 1 compares four DKG solutions feasible for SM9. The (t, n)-threshold DKG
seems to be the most desirable one, since only it completely eliminates the single
point of failures in SM9 where both the security and robustness are achieved.

Difficulties of (t, n)-Threshold DKG for SM9. As stated before, the con-
struction of (t, n)-threshold DKG heavily relies on concrete IBC schemes’ math-
ematical structures. Earlier techniques based on the IBC scheme proposed by
Boneh and Franklin [7] (BF-IBC), and proposed by Sakai and Kasahara [14] (SK-
IBC) cannot be directly adopted to SM9. For schemes enjoying fully homomor-

1 The Sony PS3 and Bitcoin crypto hacks. https://tinyurl.com/udg5tyg.

https://tinyurl.com/udg5tyg
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Table 1. Distributed user private key generation schemes for SM9

Construction Round
need a
Secure
channel

eliminate
Key

escrow
Compatible Robust

n KPAs based Generic N/A × √ × ×
n TAs based Generic N/A

√ √ × ×
Two party based Specific 2 × √ √ ×
(t, n)-threshold

based (this work)
Specific 1

√ √ √ √

† Since no negotiation happens among key generation authorities, the “Round” item
for the KPA and TA based schemes are listed as not applicable (N/A). A scheme
is compatible if it doesn’t modify the IBC algorithms after private key generation,
and is robust if key generation authorities can go offline without interrupting the
private key generation. Key escrow refers to the situation that a single PKG can
generate all users’ private keys.

phic property like BF-IBC [7], where the user private key SID = [msk]hID with
[·] denoting the elliptic curve scalar multiplication operation and hID denoting an
elliptic curve point hashing from a user’s identity string, it is quite straightfor-
ward to generate a t-privately Shamir share of SID = [msk]hID from a t-privately
msk share. Whereas in SM9 [10], the user private key SID = [ msk

msk+F (ID) ]P2 with
F (ID) denoting the hash value of a user’s identity string and P2 denoting the
generator of an additive elliptic curve point group. It is hard for a PKG holding
a t-privately Shamir share of msk to generate a t-privately Shamir share of the
user private key SID = [ msk

msk+F (ID) ]P2, since msk appears both in the numerator
and denominator. This further positions challenges for constructing an efficient
(t, n)-threshold DKG for SM9.

Our Contributions. In this paper, we investigate the problem of distributed
key generation for SM9 and propose a scheme where both the master secret key
msk and user private key SID are generated in a (t, n)-threshold way. To the best
of our knowledge, the proposed (t, n)-threshold Distributed Private Key Gener-
ation ((t, n)-DPKG)2 is the first work that completely eliminates the single point
of failures in SM9. Besides security and robustness, our scheme also presents an
efficient distributed extraction protocol for the exponent inversion IBE family,
an open challenge in [14]. By removing one semi-honest BGW distributed mul-
tiplication protocol [4,16], the round complexity of our protocol is only 1-round,
while the best known solution [14] was with 3-rounds.

Related Work. To reduce the risk of msk leakage, (t, n)-DPKG divides msk
into n shares. Each PKG privately holds a share and generates a private key
fragment for the user. t PKGs or less cannot derive any information about the

2 DKG vs. DPKG: DPKG is a branch of DKG. Within IBCs, DPKG captures the
property of distributedly generating user private keys more precisely. Besides user
private keys, our scheme also generates the master secret key distributedly.
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msk, and the complete user private key SID can only be extracted from at least
t + 1 SID fragments. Thus (t, n)-DPKG relies heavily on concrete mathemati-
cal structures of IBE schemes. Boneh and Franklin [7] came up with the first
(t, n)-DPKG scheme based on BF-IBE. As BF-IBE user private key enjoys fully
homomorphic property, their scheme allows non-interactive partial private key
generation. In comparison, designing such schemes for the exponent inversion
IBE family [8] (e.g., SK-IBE [21] and SM9-IBE [10]) is not that straightforward.
Facilitated by the sharing the inverse of a shared secret multiparty computation
protocol [6], Smart and Geisler developed a (t, n)-DPKG scheme for SK-IBE [14].
Their scheme requires 3-rounds interaction between PKGs during the partial pri-
vate key generation phase and a more efficient protocol remains open. Kate and
Goldberg then revisited above schemes in [14], and extended them to malicious
PKG case with non-interactive proofs of knowledge.

In particular, we notice Xu et al. [23] have presented a similar (t, n)-threshold
distributed private key generation solution for SM9. But some insufficiencies
exist in Xu et al.’s solution: (1) correctness. By distributing 1

msk among n PKGs,
Xu et al.’s scheme successfully extracts the user private key, but it seems very
hard to extract the master public key Ppub = [msk]P1 from the shares of 1

msk to
further extract the user public key. Our scheme shares msk instead, and facili-
tated by multiparty computation techniques, our scheme can efficiently extract
both the user public/private keys from the shares of msk; (2) completeness.
Xu et al.’s solution didn’t describe how to share 1

msk among n PKGs in the
setup phase. Whereas, we present a completely distributed master key genera-
tion protocol which removes the need of pre-distributing msk; (3) efficiency. In
Xu et al.’s scheme, the distributed extraction phase requires 3-rounds interaction
of PKGs. Whereas, only 1-round is needed in our scheme.

2 Preliminaries

Notations. For an integer n, [n] denotes the set {1, 2, . . . , n}. For a real number
n, �n� denotes the greatest integer less than or equal to n. Given a set I, |I|
denotes the cardinality of I. Vector v having n components is denoted as vn with
n being a non-negative integer. The set of all finite binary strings as {0, 1}∗. If
A is an algorithm, then A(x) → y means that running the algorithm A with x
as its input gets the output y. Furthermore, we let y ← A(x) denote the output
y of running the algorithm A with x as its input. The term PPT is abbreviated
for probabilistic polynomial-time. A function negl(·) is called negligible, if for
any polynomial p(·), there exists some λ0 such that negl(λ) ≤ 1/p(λ) for every
λ > λ0. Throughout the paper, λ will denote the security parameter.

2.1 (t, n)-Secret Sharing

Definition 1 ((t, n)-Secret Sharing). A (t, n)-secret sharing in the finite field
Fp is a pair of algorithms (Share,Reconstruct):
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– Share(s, 1λ): A probabilistic algorithm takes as input the security parameter
1λ and a secret s ∈ Fp. It returns n shares {s1, . . . , sn} of s.

– Reconstruct(si1 , . . . , sit+1): A deterministic algorithm takes as input at least
t + 1 shares {si1 , . . . , sit+1} of some secret. It returns the secret s, that is,
Reconstruct(si1 , . . . , sit+1) → s.

Definition 2 (Perfect Security of (t, n)-Secret Sharing). A (t, n)-secret
sharing scheme (Share,Reconstruct) in finite field Fp is of perfect security if the
following properties hold:

– Correctness: ∀s ∈ Fp,∀I ⊂ [n] s.t. |I| > t,Pr[Reconstruct(si : i ∈
I, s1, . . . , sn ← Share(s)) = s] = 1

– Security: ∀s, s′ ∈ Fp,∀I ⊂ [n] s.t. |I| ≤ t, the two distributions are the same:
{{si}i∈I : {s1, . . . , sn} ← Share(s)}
{{s′

i}i∈I : {s′
1, . . . , s

′
n} ← Share(s′)}.

2.2 Identity-Based Encryption with a Single PKG

Boneh and Franklin [7] formalized an Identity-Based Encryption (IBE) scheme
as four algorithms:

– Setup(1λ) → (msk,mpk): The setup algorithm takes 1λ as its input. It returns
a master public key mpk and a master secret key msk.

– Extract(mpk,msk, ID) → SID: The private key extraction algorithm takes as
input a key pair (mpk,msk) and an identity ID ∈ {0, 1}∗. It returns a user
private key SID for identity ID.

– Enc(mpk, ID,m) → c: The encryption algorithm takes as input the master
public key mpk, an identity ID, and a message m. It returns a ciphertext c.

– Dec(mpk, SID, c) → m or ⊥: The decryption algorithm takes as input the
master public key mpk, a user private key SID, and a ciphertext c. It returns
a message m or ⊥ denoting a failure.

Boneh and Franklin [7] also formalized the security notion of an IBE scheme
as IND-ID-CCA secure, by defining the following two-stage game between an
adversary A and a challenger C:

– Setup. C runs the setup algorithm and obtains (mpk,msk). Then C sends
mpk to A and keeps msk to respond A’s queries.

– Phase 1. A adaptively makes private key extraction queries and decryption
queries. For a private key extraction query 〈ID〉, C returns SID to A by running
Extract(mpk,msk, ID); For a decryption query 〈ID, c〉, C sends decrypted c
to A by running Dec(mpk,Extract(mpk,msk, ID), c).

– Challenge. A outputs a tuple {m0,m1, ID∗} where m0 and m1 are two
distinct messages with the same length, ID∗ is an identity for which A never
issues a private key extraction query in Phase 1. Then C picks a random bit
b ∈ {0, 1}, and sends c∗

b to A by computing c∗
b = Enc(mpk, ID∗,mb).
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– Phase 2. A continues to make private key extraction queries and decryption
queries. C responds just as Phase 1 except for the private key extraction query
〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
– Guess. A outputs a guess b′ ∈ {0, 1} of b and wins the game if b′ = b.

Definition 3 (IND-ID-CCA Security of IBE Scheme). An IBE scheme
is secure in the IND-ID-CCA model if for any PPT adversary A, there exists a
negligible function ngel(·) satisfying:

AdvIND-ID-CCAIBE

A = 2|Pr[b′ = b] − 1
2
| ≤ negl(λ).

2.3 The SM9 Private Key Generation

There are 3 sub-algorithms, namely encryption, signature, key agreement in
SM9; their key generation is essentially the same. Besides, our proposal will only
affect the key generation phase. Due to space limitation, here we only introduce
some necessary notions used in the SM9 private key generation. For complete
SM9 schemes, one can redirect to [10] for more details.

Let a bilinear pairing mapping define as ê : G1×G2 → GT , where G1, G2 are
additive groups and GT is a multiplicative group. All three groups have prime
order p. G1 and G2 are generated by P1 ∈ G1, P2 ∈ G2, respectively. Assume a
random s ∈ Z

∗
p is chosen as a global master secret key and the master public key

for SM9 encryption scheme can be defined as Ppub = [s]P1. Then the private key
extraction algorithm computes the user’s public key as QID = [F (ID)] P1 + Ppub

and the user’s private key as SID =
[

s
s+F (ID)

]
P2,

2.4 Dealerless Replicated Secret Sharing Protocol Pσ
rep

Pσ
rep is a protocol that allows n players to jointly determine a random secret σ

of a t-privately replicated secret sharing scheme, without a trusted dealer:

Pσ
rep(G, . . . ,G) = (σ1, . . . , σn)

The input for each player is the public system parameters G = {t, n, p}, where t
is the threshold, n is the number of players and p is a prime number. The output
for each player Pi is a t-privately replicated share σi of secret σ. The protocol
proceeds as follows: each player Pi,i∈[n] chooses a random secret μi ∈ Zp and
shares μi to player Pj,j∈[n] according to the replicated secret sharing scheme [22].
The share that Pi sends to Pj is denoted as Rμi

(t,n)(j). Then Pi,i∈[n] outputs σi =∑n
j=1 Rμj

(t,n)(i). Finally, the shares {σ1, . . . , σn} determine a random replicated
secret scheme Rσ

(t,n) where σ = μ1 + . . . + μn and σi = Rσ
(t,n)(i).
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Fig. 1. Architecture of the distributed private key generation scheme

2.5 Share Conversion Algorithm

Conv∗
(t,n) is a share conversion algorithm used in the Pseudo-Random Secret

Sharing (PRSS) protocol [12,22] that locally converts player Pi,i∈[n]’s t-privately
replicated share Rσ

(t,n)(i) to a t-privately pseudo-random Shamir share Sz
(t,n)(i)

sharing a pseudo-random secret z. st is a common input for all n players.

Conv∗
(t,n)(Rσ

(t,n)(i), st) → Sz
(t,n)(i)

Conv0(2t,n) is a share conversion algorithm used in the Pseudo-Random Zero
Sharing (PRZS) protocol [12,22] that locally converts player Pi,i∈[n]’s t-privately
replicated share Rσ

(t,n)(i) to a 2t-privately pseudo-random Shamir share S0
(2t,n)(i)

sharing secret 0. st is a common input for all n players.

Conv0(2t,n)(Rσ
(t,n)(i), st) → S0

(2t,n)(i)

3 Threshold Distributed Private Key Generation for IBE

In this section, we introduce the system model, formal definition and properties
of (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) for IBE.

3.1 System Model and Security

The proposed distributed private key generation scheme involves 3 entities shown
in Figure 1. Their characteristics and functionalities are introduced as follows:

– Private Key Generator (PKG): It is a powerful entity holding a master
secret key share, who generates private key fragments for IoT devices.

– Combine Center (CC): It is a stateless entity, whose major task is to
perform some complex cryptographic computation. CC collects private key
fragments S

(i)
ID from PKGs, extracts the complete private key SID by combing

the S
(i)
ID fragments then installs SID into the IoT device. Once the SID has

been successfully installed, CC immediately erases the memory related to
SID.
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– IoT Device (DID): It is a resource-constrained entity. DID wants to get its
private key SID installed before leaving the factory.

Since key generation takes place inside the factory, not exposed in an open
environment. We assume all communications shown in Fig. 1 are done via secure
channels under synchronous network setting.

For the security goals, the proposed scheme should prevent two types of adver-
saries – one residing in the private key generation centers, and the other residing
in the private key combine center.

– Corrupted PKG Coalition. We assume the adversary can control up to
t PKGs, learning at most t master secret key shares. Specifically, we assume
the adversary is static – the corrupted PKG set is fixed before the game.
Since behaviors deviating the predefined rules will be quickly detected, the
corrupted PKG coalition is assumed to be semi-honest – they will fulfill faith-
fully promised tasks. The security goal is that this corrupted PKG coalition
learns no more information than its members’ master secret key shares.

– Corrupted CC. The adversary residing at the combine center is assumed
to be active. It is able to generate arbitrary legal identities representing IoT
devices and normally interact with PKGs. The security goal is to ensure that
this adversary learns no more information than SID for which it has queried.

3.2 Security Definition

In this part, we revisit the security definition of (t, n)-DPKG for IBE proposed
by Kate and Goldberg [14]. For comprehension, these schemes are described
within the background of the proposed system model. An IBE scheme with
(t, n)-threshold distributed private key generation consists of four components:

– The distributed setup: DSetup(t, n,G) → (mski,mpkn+1). Each PKGi,i∈[n]

takes in a threshold t, the number of PKGs n and public system parame-
ters G. It returns a t-privately share mski of msk and a vector mpkn+1 =
{mpk1, . . . ,mpkn,mpk}, where mpki denotes the ith share of mpk.

– The distributed extraction: it involves a distributed extraction protocol
DExtract ran by PKGs and a Combine algorithm locally ran by the CC.

DExtract(ID,mski,mpk) → S
(i)
ID

Combine(S(1)
ID , S

(2)
ID , . . . , S

(m)
ID ) → SID

In DExtract, each PKGi,i∈[n] takes in an identity ID, a t-privately share mski

of msk and mpk. It will output a t-privately share S
(i)
ID of the device private

key SID. Having received m ≥ t + 1 shares of SID, CC will run the Combine
algorithm to compute SID.

– The encryption: Enc(mpk, ID,m) → c. It is the same as the single PKG.
– The decryption: Dec(mpk, SID, c) → m or ⊥. It is the same as the single

PKG.
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Kate and Goldberg [14] formalized the security notion of (t, n)-DPKG for IBE
as IND-ID-CCA secure, by defining an IND-ID game that a challenger C plays
against a Byzantine adversary who can control up to t PKGs and make them
behave arbitrarily. In this work, we assume the corrupted PKGs are semi-honest
instead of malicious, so we have made two modifications to Kate and Goldberg’s
IND-ID game definition [14]: (1) proofs for private key shares are not required,
since the semi-honest assumption implies that all PKGs will fulfill their tasks
faithfully and will always generate correct shares as required; (2) only n ≥ t is
required, instead of n ≥ 2t + 1 required by the malicious PKG assumption. The
IND-ID game under the semi-honest PKG assumption is defined as:

Before the game, the adversary A(t,n) fixes a set of corrupted PKGs denoted
as A with |A| ≤ t (for general purpose, we assume |A| = t), and the challenger
C will simulate the rest n − t honest PKGs denoted as B with |B| = n − t.

– Setup. C simulates PKGi,i∈B and runs the distributed setup protocol with
A(t,n). In the end, A(t,n) will receive mskt = {mski}i∈A contains t shares of
msk for PKGi,i∈A, and mpkn+1 = {mpk1, . . . ,mpkn,mpk} contains n shares
of mpk generated by PKGi,i∈A∪B and mpk.

– Phase 1. A(t,n) adaptively makes private key extraction 〈ID〉 queries and
decryption 〈ID, c〉 queries. For a 〈ID, c〉 query, C decrypts c using its msk then
sends decrypted c to A(t,n). For a 〈ID〉 query, C simulates PKGi,i∈B running
the distributed private key extraction protocol with A(t,n), and sends Sn−t

ID

to A(t,n) where Sn−t
ID = {S

(i)
ID}i∈B are shares of SID generated by PKGi,i∈B .

– Challenge. A(t,n) outputs a tuple {m0,m1, ID∗} where m0 and m1 are two
distinct messages with the same length, an identity ID∗ for which A(t,n) never
issues a private key extraction query in Phase 1. Then C picks a random bit
b ∈ {0, 1}, and sends c∗

b to A(t,n) by computing c∗
b = Enc(mpk, ID∗,mb).

– Phase 2. A(t,n) continues to make private key extraction queries and decryp-
tion queries. C responds just as Phase 1 except for the private key extraction
query 〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
– Guess. A(t,n) outputs a guess b′ ∈ {0, 1} of b and wins the game if b′ = b.

Definition 4 (IND-ID-CCA Security of IBE Scheme With (t, n)-DPKG).
With (t, n)-threshold distributed private key generation, an IBE scheme is secure
in the IND-ID-CCA model if for any PPT adversary A(t,n), there exists a neg-
ligible function ngel(·) satisfying:

Adv
IND-ID-CCA(t,n)-IBE

A(t,n)
= 2|Pr[b′ = b] − 1

2
| ≤ negl(λ).

In fact, A(t,n) depicted in the above IND-ID-CCA game models an attacker
A′ who corrupts t PKGs as well as the CC. A(t,n)’s failure in the IND-ID-CCA
game also indicates that attacker A′ learns no more information than t corrupted
PKGs’ msk shares and the device private keys SID for IDs it has queried for.
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4 Construction of (t, n)-DPKG for SM9

As the (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) won’t
change the original forms of user public/private key, it is compatible with the
original SM9 algorithms after user private key extraction. Hence we only focus
on the first two phases – distributed setup and extraction. Construction of
(t, n)-DPKG for SM9 relies on (t, n)-Shamir secret sharing, and the challeng-
ing task is to let PKGi,i∈[n] holding a t-privately Shamir share mski to generate
a t-privately Shamir share of SID = [ msk

msk+F (ID) ]P2. To do this, we first rewrite

SID as [1 − F (ID)
msk+F (ID) ]P2, and employ a sharing the inverse of a shared secret

protocol [6] enabling PKGi holding a msk share mski to obtain a t-privately
Shamir share θi of 1

msk+F (ID) . Then PKGi can locally convert θi to a t-privately
Shamir share of SID = [ msk

msk+F (ID) ]P2 by computing [1−F (ID)·θi]P2. Besides, to
reduce interactions between PKGs, an auxiliary variable σ and share conversion
algorithms Conv∗

(t,n) and Conv0(2t,n) are introduced to provide Shamir shares.

A. System Bootstrapping
In this phase, n PKGs are supposed to collaboratively determine the following
public system parameters:

(1) Determine PKG group size n and threshold t such that n ≥ 2t + 1.3 If
unsatisfied, decline to proceed.

(2) Agree on parameters G = {1λ,G1,G2,GT , p, ê, P1, P2,Hv, hid} required by
the SM9-IBE scheme [10].

B. Distributed Setup
In this phase, n PKGs jointly determine a secret msk where PKGi,i∈[n] obtains
a t-privately msk share mski.

- DSetup(t, n,G) → (mski,mpkn+1): is a protocol jointly ran by n PKGs.

(1) PKGi,i∈[n] jointly runs the Pσ
rep protocol defined in Sect. 2.4, that is,

Pσ
rep({t, n, p}) → σi. At the end of Pσ

rep execution, n PKGs will collabo-
ratively determine a global secret σ and PKGi,i∈[n] will privately output σi,
which represents a t-privately replicated share Rσ

(t,n)(i) sharing the secret σ.
(2) PKGi,i∈[n] locally runs the PRSS share conversion algorithm Conv∗

(t,n)(σi,
st0) → si, where st0 is a string representing an agreed-upon initial global
state (e.g. Lamport timestamp). The private output si is a t-privately
pseudo-random Shamir share, sharing the master secret key s.

(3) PKGi,i∈[n] publicly outputs a t-privately Shamir share mpki of mpk by com-
puting mpki = [si]P1.

3 n ≥ 2t+1 is required because the distributed extraction phase of SM9 involves secret
reconstruction from 2t-privately Shamir shares.
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(4) PKGi,i∈[n] reconstructs the master public key mpk by performing Lagrange
polynomial interpolation on received m ≥ t+1 mpk shares. That is, mpk =∑m

i=1[ci]mpki where ci =
∏m

j=1,j �=i
−j
i−j .

(5) PKGi,i∈[n] privately outputs mski = {σi, si} and publicly outputs
mpkn+1 = {mpk1, . . . ,mpkn,mpk}. Here, si is a t-privately Shamir share
of the master secret key of SM9 and σi is an auxiliary variable to generate
Shamir shares (all Shamir shares can be re-computed from σi including si).
To avoid confusion, the master secret key of SM9 is denoted as s instead of
msk in the following discussions.

C. Distributed Private Key Extraction
This phase includes a DExtract protocol jointly ran by n PKGs where PKGi,i∈[n]

will generate a private key fragment S
(i)
ID for the IoT device DID, and a Combine

algorithm locally ran by the CC where the CC will extract the complete private
key SID from the received private key fragments.

- DExtract(ID,mski,mpk) → S
(i)
ID : is a protocol collaboratively ran by n PKGs.

(1) PKGi,i∈[n] locally computes xi = si + F (ID), which is a t-privately Shamir
share sharing secret x = s + F (ID).

(2) PKGi,i∈[n] locally invokes Conv∗
(t,n)(σi, st) → ri, where ri is a pseudo-random

t-privately Shamir share sharing some pseudo-random secret r. Here, st
denotes the current agreed-upon global state.

(3) PKGi,i∈[n] locally invokes Conv0(2t,n)(σi, st) → yi, where yi is a 2t-privately
pseudo-random Shamir share sharing secret 0.

(4) PKGi,i∈[n] locally computes zi = xi · ri + yi, which is a 2t-privately pseudo-
random Shamir share sharing secret z = x · r, with x = s + F (ID).

(5) PKGi,i∈[n] first reveals zi to the rest n − 1 PKGs, then reconstructs the
2t-privately secret z. This step requires at least 2t + 1 PKGs to be online,
that is, n ≥ 2t + 1.

(6) PKGi,i∈[n] locally computes ωi = 1 − F (ID) · θi, where θi = ri

z is a t-
privately pseudo-random Shamir share of 1

s+F (ID) . Therefore, ωi is a t-
privately pseudo-random Shamir share of s

s+F (ID) .

(7) PKGi,i∈[n] sends S
(i)
ID = [ωi]P2 to CC.

In [14], Geisler and Smart reconstructed the product of x and r based on
t-privately Shamir shares of x · r. However, to obtain this t-privately share,
PKGi,i∈[n] has to run a semi-honest BGW distributed multiplication protocol [4]
with the remaining n − 1 PKGs. We reconstruct x · r from 2t-privately Shamir
shares instead, where PKGi,i∈[n] can locally obtain its 2t-privately Shamir share
of x · r. In this way, we avoid invoking one distributed multiplication protocol
and only 1 round interaction between PKGs are needed to recover the secret x ·r
from its 2t-privately Shamir shares.

Having received m ≥ t + 1 private key fragments from PKGs, CC invokes the
Lagrange polynomial interpolation algorithm to obtain the complete private key.
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- Combine(S
(1)
ID , . . . , S

(m)
ID ) → SID: is an algorithm locally ran by the CC.

CC derives the complete key via:

SID =
m∑

i=1

[c′
i]S

(i)
ID , where c′

i =
m∏

j=1,j �=i

−j

i − j
.

Correctness Analysis. To show above construction is correct, we only need to
show that the device public/private key generated in a (t, n)-threshold way is
the same as the one generated in a centralized way. For the device public key,
we only need to show that the master public key mpk = [s]P1 is correctly
extracted from mpki = [si]P1 fragments. Namely, the equation mpk = [s]P1 =∑m

i=1[ci]mpki should hold where ci denotes the Lagrange coefficient. Guaranteed
by the correctness of (t, n)-threshold Shamir secret sharing, mpk = [s]P1 =
[
∑m

i=1 cisi]P1 =
∑m

i=1[cisi]P1 =
∑m

i=1[ci]mpki where mpki = [si]P1. Therefore,
the device public key can be correctly extracted. Similarly, we can verify that
the device private key can be correctly extracted too.

5 Security Analysis

In this section, we prove that the distributed form of PKGs won’t downgrade
the security level of SM9 schemes by reducing the multiple PKG scenario to a
single PKG scenario. Specifically, we choose SM9-IBE as an illustration. In [11],
Cheng gave a rigorous proof of SM9-IBE as IND-ID-CCA secure, so we have:

Theorem 1. If SM9-IBE scheme is secure in the IND-ID-CCA model, then
SM9-IBE scheme with (t, n)-DPKG is secure in the IND-ID-CCA model.

Proof. The central idea of the proof is that, if there exists an adversary A(t,n)

that wins the IND-ID-CCA game under the (t, n)-DPKG setting with advantage
ε, then we are able to construct a simulator S to win the IND-ID-CCA game
under the single PKG setting with the same advantage ε. The key step in this
reduction is to create a simulator S which can perfectly simulate a view for A(t,n)

in a real attack. Specifically, we denote the pre-fixed corrupted PKG set chosen
by A(t,n) as A with |A| = t, and the remaining honest PKG set simulated by S
as B with |B| = n − t.
� Setup. S simulates PKGi,i∈B and runs the distributed setup protocol with
A(t,n). In the end, A(t,n) receives (mskt, mpkn+1) where mskt = {mski}i∈A

contains t shares of msk for PKGi,i∈A, and mpkn+1 = {mpk1, . . . ,mpkn,mpk}
contains n shares of mpk generated by PKGi,i∈A∪B and the mpk.

As S wants to leverage A(t,n) to help it answer the challenge proposed by the
challenger C under the single PKG setting, S should convince A(t,n) that: 1)
A(t,n)’s output mskt are t shares of the msk chosen by the challenger C even if
S has no idea about the msk chosen by C; 2) A(t,n)’s output mpkn generated
by PKGi,i∈A∪B are n shares of the mpk chosen by C. Concretely, S works as:

(1) S gets mpk from C, by running a setup algorithm with C.
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(2) S runs the Pσ
rep protocol (defined in Sect. 2.4) with A(t,n) by simulat-

ing PKGi,i∈B , where S randomly chooses secret μi for PKGi,i∈B . At the
end of the Pσ

rep protocol execution, A(t,n) will obtain t shares σt of σ
for PKGi,i∈A. Then A(t,n) can compute the t master secret key shares
st ← Conv∗

(t,n)(σ
t, st0), and the t master public key shares mpkt ← [st]P1.

Since the simulator S chooses secrets for n− t honest PKG nodes randomly,
S can perfectly simulate the view for A(t,n) in a Pσ

rep protocol. After run-
ning the Pσ

rep protocol with S, A(t,n) obtains ({σt, st},mpkt) for PKGi,i∈A.
Since (t, n)-DPKG for SM9 requires n − t ≥ t + 1, S holding n − t shares of
σ is able to derive all the outputs of A(t,n).

(3) S computes the mpkn−t generated by PKGi,i∈B, by performing Lagrange
polynomial interpolation with mpkt generated by PKGi,i∈A and mpk. This
ensures the n shares mpkn generated by PKGi,i∈A∪B are sharing the secret
mpk. Then S sends mpkn−t and mpk to A(t,n).

(4) A(t,n) outputs ({σt, st},mpkn+1), where mskt is denoted as {σt, st}.

Guaranteed by the perfect security of (t, n)-Shamir secret sharing, A(t,n) hold-
ing only t shares st of some master secret key s′ (s′ is the master secret key deter-
mined by S and A(t,n) running the Pσ

rep protocol), cannot tell if st is sharing
the secret s′ or the secret msk chosen by C. Hence the simulation is correct.
� Phase 1. A(t,n) adaptively makes private key extraction 〈ID〉 queries and
decryption 〈ID, c〉 queries. For a 〈ID, c〉 query, S passes the query and decrypted
c back and forth between A(t,n) and C. For a 〈ID〉 query, S simulates PKGi,i∈B

running the distributed private key extraction protocol with A(t,n), and sends
Sn−t

ID = {S
(i)
ID}i∈B generated by PKGi,i∈B to A(t,n). Concretely, S works as:

(1) S gets SID from C, by forwarding A(t,n)’s 〈 ID 〉 query to C.
(2) S runs the DExtract protocol with A(t,n) by simulating PKGi,i∈B , where

S needs to simulate zi,i∈B for A(t,n). To simulate zi,i∈B, S first computes
zi,i∈A. Then S chooses a random z. Next, S computes zi,i∈B with zi,i∈A and
z, ensuring that the 2t-privately Shamir shares {zi}i∈A∪B are sharing the
secret z. Finally, S sends zi,i∈B to A(t,n).

(3) S computes Sn−t
ID generated by PKGi,i∈B . First, S computes St

ID =
{S

(i)
ID}i∈A. Then S computes Sn−t

ID = {S
(i)
ID}i∈B , by performing Lagrange

polynomial interpolation with St
ID and the SID. This ensures the t-privately

Shamir shares {S
(i)
ID}i∈A∪B are sharing the secret SID returned by the chal-

lenger C.
(4) S sends SID

n−t to A(t,n).

In the simulation, Sn
ID = {S

(i)
ID}i∈A∪B are random shares to A(t,n), since z are

randomly chosen by S. The view is consistent with what A(t,n) has seen in a real
distributed private key extraction protocol. A(t,n) holding only t shares of z and
without any prior-knowledge of z, views z as completely random distribution
(guaranteed by perfect security of (t, n)-Shamir secret sharing), which means
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the ith key fragment S
(i)
ID = [1 − F (ID) · ri

z ]P2 is actually a random share to
A(t,n). Thus the simulation is correct.
� Challenge. A(t,n) sends a tuple {m0,m1, ID∗} to S, where m0 and m1 are two
distinct messages with the same length, an identity ID∗ which has never been
queried in Phase 1. S forwards the tuple to C. C picks a random bit b ∈ {0, 1},
and sends c∗

b to S by computing c∗
b = Enc(mpk, ID∗,mb). S passes c∗

b to A(t,n).
� Phase 2. A(t,n) continues to make private key extraction queries and decryp-
tion queries. S responds just as Phase 1 except for the private key extraction
query 〈ID∗〉 and the decryption query 〈ID∗, c∗

b〉.
� Guess. A(t,n) outputs a guess b′ ∈ {0, 1} of b. Then S outputs b′ as its guess.

Obviously, the advantage of S is the same as A(t,n)’s, because A(t,n)’s guess
is exactly what S needs to attack the IBE scheme under the single PKG setting:

AdvIND-ID-CCAIBE
S = 2|Pr[b′ = b : S → b′] − 1

2
| = 2|Pr[b′ = b : A(t,n) → b′] − 1

2
|

= Adv
IND-ID-CCA(t,n)-IBE

A(t,n)
= ε (1)

Since the SM9-IBE scheme under the single PKG setting is IND-ID-CCA secure,
we have ε ≤ negl(λ) for some negligible function negl(·). Combing with (1), we
come to the conclusion that the SM9-IBE scheme under the (t, n)-DPKG setting
is IND-ID-CCA secure, too.

6 Performance Evaluation

In this section, we first present implementation details of the proposed
(t, n)-DPKG. Then we focus on the tradeoff between the system security, robust-
ness and efficiency that inherently existed in the threshold key generation.
Finally, we justify the feasibility of integrating (t, n)-DPKG to a deployed system,
by comparing a (2, 6)-DPKG instance with the centralized private key genera-
tion.

A. Implementation Details
We construct our code in C and C++, based on the MIRACL library for elliptic
curve cryptography. Benchmark tests are done with google benchmark. We have
six PKGs deployed on three Alibaba Cloud simple application servers having 1
CPU core with 2 GB RAM, each running two PKG instances. The round-trip
latencies among them are 3 ms∼17 ms. We implement CC as a relatively resource-
constrained virtual machine on Virturalbox, which is assigned to only 400 MB
RAM, 1 CPU core and the CPU frequency is set to 360 MHz. The operating
system for PKG/CC is Ubuntu Server 18.04/14.04 LTS.

B. The Tradeoff Between the Security, Robustness and Efficiency
Although (t, n)-DPKG tackles the inherent single point of failures problem of
IBC schemes, the system security and robustness come at a price. There is
an inherent tradeoff between the system security, robustness and efficiency in
(t, n)-DPKG , which can be adjusted via the (t, n)-threshold. Table 2 presents
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Table 2. (t, n)-threshold’s impact on various overheads

Communication

(sent bytes)
Computation Time

Storage

(bytes)

PKG at setup 32(n − 1) (n−1
t ) (n−1

t ) Th + Tpm
32 (n−1

t ) + nLaddr

PKG at extract 32(n − 1) (t − 1) (n−1
t ) Th + Tpm

CC at setup 0 (t + 1)Tpm
nLaddr

CC at extract nLid (t + 1)Tpm

† Lid and Laddr are the byte-length of the IoT device’s identity and the ip address
of the PKG respectively. Th and Tpm stand for the time complexity of hashing and
elliptic curve scalar multiplication operation respectively.

how the storage overhead, communication overhead and computation overhead
change with the (t, n)-threshold. Due to space limitation, Table 2 only lists the
most significant item that affects the overhead. In conjunction with Table 2, we
can get the following conclusions:

– Small (t, n)-threshold values are preferable in terms of efficiency, as the over-
heads on PKG/CC will increase exponentially/linearly with increasing (t, n).

– Large (t, n)-threshold values are preferable in terms of security and robustness.
Since in the proposed (t, n)-DPKG scheme for SM9, the security connotation is
that at most t PKGs can be corrupted without exposing the master secret key ;
the robustness connotation is that at most n − 2t − 1 PKGs can go offline half
the way without interrupting the user private key generation service.

– To strike a good tradeoff between the system security, robustness and efficiency,
a recommended range for the number of private key generators n is between 3
and 10. On the one hand, (t, n)-DPKG for SM9 requires n ≥ 2t + 1 and t > 0
which implies n ≥ 3. On the other hand, according to the experiment we find
out that after n has climbed to a certain value (roughly around n = 10), a
slight increase in t will result in the boom of overheads on the PKG side. One
can choose the t value on the need, but increasing t will result in increasing
system security while decreasing system robustness, and vice versa.

C. Comparison to the Centralized Private Key Generation
A major concern of the proposed (t, n)-DPKG scheme for SM9 is about efficiency,
that is, if (t, n)-DPKG is too slow to be integrated into a deployed system. Indeed,
efficiency is a practical concern since the key generation centers may need to gen-
erate substantial private keys for distinct IDs. To inspect efficiency, we instanti-
ate a (2, 6)-DPKG instance and compare it with the centralized key generation
setting. We can tell from the outcome presented in Table 3 that when the (t, n)-
threshold is small (t = 2 and n = 6 in our case), the proposed (t, n)-DPKG
for SM9 can easily handle up to 1 million private key generation requests per
day (only 21ms is required handling per request in (2, 6)-DPKG). For IoT device
manufactories equipped with much more productive settings, they can trade
efficiency for security and robustness by working with larger (t, n) values.
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Table 3. Comparison between the centralized key generation and (2, 6)-DPKG

Communi-
cation Traffic

Computation Time Key Genera-
tion Time

Secure Robust
on PKG on CC

Centralized 43 Bytes 1.54 ms N/A 1.54 ms × ×
(2, 6)-DPKG 1218 Bytes 2.11 ms 33.49 ms 21.32 ms

√ √

† We assume the IoT device identity’s byte-length Lid = 10. The key generation
time refers to the time that the PKGs deal with a private key generation request,
which excludes the time of combining private key fragments.

7 Conclusion

In this paper, to deal with the master secret key leakage problem in SM9, we pro-
pose a (t, n)-threshold Distributed Private Key Generation ((t, n)-DPKG) solu-
tion with some techniques from multiparty computation. The proposed scheme
achieves better master secret key protection, and doesn’t require any modifica-
tion of original SM9 algorithms after the user private key generation. Besides
enhanced security and robustness, we conduct experiments and the results show
that with a small (t, n)-threshold value, the proposed scheme can achieve a good
balance between the system security, robustness and efficiency.
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Abstract. Functional Encryption (FE) is an ambitious generalization of
public key encryption (PKE), which overcomes the all-or-nothing feature
and is an emerging technique for cloud computing. Security against cho-
sen ciphertext attacks (CCA) is the de facto level of security required for
PKE used in practice. We first show a generic construction from (selec-
tive id) chosen plaintext attacks secure identity-based functional encryp-
tion (sIBFE-CPA) to CCA secure FE, which is efficient and interesting,
resulting in constructing CPA, even CCA FE is to construct CPA IBFE.
Then we give an instantiation of sIBFE scheme for inner product (IP)
functions from standard learning with errors (LWE) assumption, which
applying our transformation gives the first CCA secure IPFE under the
same assumption.

Keywords: Functional encryption · Identity-based functional
encryption · Chosen ciphertext attacks security · Inner product ·
Learning with errors.

1 Introduction

FE is an ambitious generalization of PKE which overcomes the all-or-nothing,
user-based access to encrypted data and enables fine grained, role-based access
to the data. Namely, FE comes equipped with a key generation algorithm that
utilizes a master secret key to generate decryption keys skF corresponding to
functions F where the key holders only learn F (x) from a ciphertext Enc(x) and
no more information about x is revealed. This is well suited for cloud computing
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platforms and remote untrustworthy servers to store sensitive private data and
allow users to request the result of the function F computing on the underlying
data.

The definition of FE was first formalized by [18,40] which gave indis-
tinguishability (IND-based) and simulation (SIM-based) security model, and
identity-based encryption (IBE) [3,14,16,21,22,29,44], attribute-based encryp-
tion (ABE) [11,17,30,32,43], predicate encryption (PE) [4,31,35,36,39] and
other concrete functionalities [19,46] in a general framework could all be regarded
as specific function classes of FE. And IBFE formalized by Yun et al. [48] which
adds identity id to the input to KeyGen and Encrypt algorithms and in the
game, adversary cannot query secret keys under challenge identity id*, is also a
special class and could be easily realized from fully fledged FE schemes.

However, the only existing FE schemes for general function [9,25,27,47] were
constructed from some strong assumptions, e.g. indistinguishability obfuscation
(iO) or multi-linear maps machinery, and existing constructions [24,28] were
found to be insecure [23,33]. Conversely, there is also some fascinating work
that constructs iO from FE schemes [8,12,13,26]. So constructing unbounded
FE schemes from standard assumptions is a fascinating problem and the final
aim in this area.

Recently Abdalla et al. [1] built FE for IP surprisingly and efficiently from
standard assumptions like the Decision Diffie-Hellman (DDH) and LWE assump-
tions. Later, Agrawal et al. [5] promoted their schemes from selective security to
adaptive security and gave an additional construction from Decision Compos-
ite Residuosity (DCR) assumption. Then Wang et al. [45] promoted their proof,
especially under the standard LWE assumption avoiding the multi-hint extended
learning with errors assumption (meLWE). The above schemes are CPA secure,
which ensures that the plaintext is protected from any eavesdropping that adver-
sary is infeasible to determine which message was actually encrypted. CCA secu-
rity guarantees security against active adversary who may obtain decryptions
of ciphertexts or may modify messages. As we have already mentioned, CCA
is the de facto level of security required used in practice. Benhamouda et al.
[10] presented the first CCA secure IPFE from projective hash functions (PHF)
with homomorphic properties, which gave up on the lattice-based concrete con-
structions, because existing constructions from lattices are not satisfied with the
required properties. This motivates the following question:

Can we build CCA secure IPFE scheme under the standard LWE assump-
tion?

1.1 Our Results

We answer the above question affirmatively. We first show a generic construction
from sIBFE-CPA to CCA secure FE. Then we give an instantiation of sIBFE
for IP from standard LWE assumption, which applying our transformation gives
the first CCA secure IPFE under the same assumption.

Our result is powerful and interesting, resulting in constructing CPA, even
CCA FE is to construct CPA IBFE. For instance, beyond IP functions, Yun et al.
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[48] presented an IBFE for quadratic functions construction from standard LWE
assumption in the random oracle model. Thus, applying our transformation,
there is also a CCA FE for quadratic functions scheme in the random oracle
model from LWE assumption.

Overview of Techniques. IBFE, on the one hand, can be regarded as FE
under identity-based control, and on the other hand, we can think it as an
extension of IBE what only allows certain identity owners to decrypt partial
information or function values. There are so many IBE schemes from different
kinds of assumptions, so we think maybe we can gain some interesting results.

CCA security is the go-to security nowadays. To achieve CCA security, there
is not only PHF method, competitively in efficiency but also BCHK [15] trans-
formation which transforms CPA IBE to CCA PKE. So using their methods, we
obtain a generic transformation from CPA IBFE to CCA FE which has almost
the same high efficiency. Besides IBFE, we only need a strong one time signature
which prevents malleability of the ciphertexts.

We then combine IBE [3] and IPFE [5] to obtain a sIBIPFE. Recently Wang
et al. [45] promoted the proof of IPFE scheme under standard LWE assumption,
which avoids meLWE by using noise re-randomized technique from [34], so we
obtain a sIBIPFE from the same assumption and our security proof can be
reduced to their proof besides some IBE techniques.

1.2 Related Work

Nandi and Pandit [38] gave a conversion from CPA to CCA FE which have del-
egation or verifiability property, which does not adapt to hidden index predicate
encryption and hence for a general FE.

Benhamouda et al. [10] presented the first CCA secure IPFE from projec-
tive hash functions (PHF) with homomorphic properties, which gave up on the
lattice-based concrete constructions, because existing constructions from lattices
are not satisfied with the required properties, and as a byproduct, they intro-
duce a tag-based functional encryption (TBFE). Note that TBFE is weaker than
IBFE, especially in its verifiability. Namely, the KeyGen algorithm does not refer
to an identity verification.

Yun et al. [48] formalized the identity-based functional encryption definition
and indistinguishability security (IND-IBFE-CPA), and presented an IBFE for
quadratic functions construction from standard LWE assumption in the random
oracle model. Thus, applying our transformation, there is also a CCA FE for
quadratic functions scheme in the random oracle model from LWE assumption.

Abdalla et al. [2] recently revisit FE with fine-grained access control owing
to its efficiency and interest, and they give an IBFE scheme for IP almost as
ours, and applying our transformation, there is also a CCA IPFE, which is more
interesting.
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1.3 Organization

In Sect. 2, we introduce some definitions of some primitives and its security. We
present our construction from sIBFE to FE and its proof in Sect. 3. Section 4
first introduces some necessary notations and some lemmas, algorithms and
assumptions from lattice-based cryptography and then presents an instantia-
tion of sIBIPFE scheme. In Sect. 5, we briefly analyze its security. We conclude
and propose some open problems in Sect. 6.

2 Preliminary

2.1 Functional Encryption

We recall the syntax of FE, as defined by [18], and indistinguishability based
CCA definition [10].

Definition 1 (Functionality). A functionality F defined over (K, M) is a
function F: K × M → Σ ∪ {⊥} where K is a key space, M is a message space
and Σ is an output space which does not contain the special symbol ⊥. For IP,
F(K, M) = < K, M >.

Definition 2 (Functional Encryption). A functional encryption scheme FE
for a functionality F is a tuple of four algorithms FE = (Setup, KeyGen, Encrypt,
Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).

KeyGen(msk,K) takes as input the master secret key and a key (i.e. a func-
tion) K ∈ K, and outputs a secret key skK .

Encrypt(mpk,M) takes as input the master public key mpk and a message M
∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all keys K ∈ K
and all messages M ∈ M, if skK ← KeyGen(msk, K) and C ← Encrypt(mpk,
M), then it holds with overwhelming probability that Decrypt(skK , C) = F(K,
M) whenever F(K, M) �= ⊥.

Definition 3 (IND-FE-CCA Security). For a functional encryption scheme
FE for a functionality F over (K, M), security against chosen ciphertext attacks
(IND-FE-CCA, for short) if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
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2. The adversary A adaptively makes secret key and decryption queries. At each
secret key query, A chooses a key K ∈ K and obtains skK ← KeyGen(msk, K).
At each decryption query, A chooses a ciphertext C ′ and K ∈ K, then the chal-
lenger computes skK ← KeyGen(msk, K) and sends back Decrypt(skK , C ′).

3. Adversary A chooses a pair of distinct messages M0, M1 ∈ M such that
F(K, M0) = F(K, M1) holds for all Keys K queried in the previous phase.
The challenger computes C* ← Encrypt(mpk, Mβ) and return C* to A.

4. Adversary A makes further secret key queries for arbitrary keys K ∈ K under
the requirement that F(K, M0) = F(K, M1), and further decryption queries
(C ′, K) under the requirement that C ′ �=C*.

5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.
The adversary’s advantage is defined to be AdvA(λ) := |Pr[β′ = β] − 1/2|.

We then recall the definitions of IBFE and its security by [48].

Definition 4 (Identity-Based Functional Encryption). An identity-based
functional encryption (IBFE) scheme for a functionality F is a tuple of four
algorithms IBFE = (Setup, KeyGen, Encrypt, Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).

KeyGen(msk, id,K) takes as input the master secret key, an id ∈ ID and a
key (a.k.a. a function) K ∈ K, and outputs a secret key skK .

Encrypt(mpk, id,M) takes as input the master public key mpk, an id ∈ ID and
a message M ∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all id ∈ ID,
all keys K ∈ K and all messages M ∈ M, if skK ← KeyGen(msk, id, K)
and C ← Encrypt(mpk, id, M), then it holds with overwhelming probability that
Decrypt(skK , C) = F(K, M) whenever F(K, M) �= ⊥.

Definition 5 (IND-IBFE-CPA Security). For an identity-based functional
encryption scheme for a functionality F over (K, M), security against chosen-
plaintext attacks (IND-IBFE-CPA, for short) if no PPT adversary has non-
negligible advantage in the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
2. The adversary A adaptively makes secret key queries. At each query, A

chooses an identity id ∈ ID and a key K ∈ K and obtains skK ← Key-
Gen(msk, id, K).

3. Adversary A chooses an identity id*∈ ID and a pair of distinct messages M0,
M1 ∈ M such that F(K, M0) = F(K, M1) holds for all Keys K queried in
the previous phase. The chanllenger computes C* ← Encrypt(mpk, id*, Mβ)
and return C* to A.

4. Adversary A makes further secret key queries for arbitrary identities id ∈ ID
and keys K ∈ K, but under the restriction that id �= id* and F(K, M0) =
F(K, M1).
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5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.
The adversary’s advantage is defined to be AdvA(λ) := |Pr[β′ = β] − 1/2|.

The selective id security (IND-sIBFE-CPA) has the further requirement that the
challenge identity is selected by the adversary before the public key is generated.

Finally, we recall definitions of signature and its strong one-time security.

Definition 6 (Signature). A signature is a tripple of PPT algorithms (Gen,
Sign, Vrfy) such that:

Gen(1λ) takes as input the security parameter 1λ and outputs a verification key
vk and a signing key sk.

Sign(sk,m) takes as input a signing key sk and a messages m, and outputs a
signature σ.

Vrfy(vk,m, σ) takes as input a verification key vk, a message m, and a signature
σ, outouts 1 if accept, otherwise 0.

Definition 7 (Strong Unforgeable One Time Signature (OTS-sUF-
CMA)). If the success probability of any PPT adversary A in the following
game is negligible in the security parameter λ:

1. Gen(1λ) outputs (vk, sk) and the adversary is given 1λ and vk.
2. Query: A(1λ, vk) is given access to the oracle Sign(sk, . ) at most once. Let

(m, σ) be the query message and signature.
3. Forge: The adversary A outputs a signature (m*, σ*).

We say the adversary succeeds if V rfyvk(m*, σ*) = 1 but (m*, σ*) �= (m, σ).

3 A Genneric Construction from CPA-sIBFE to CCA FE

Given an IBFE scheme = (Setup′,KeyGen′, Encrypt′, Decrypt′), which is selec-
tive id secure against chosen plaintext attacks (IND-sIBFE-CPA), we construct a
FE scheme = (Setup,KeyGen, Encrypt, Decrypt) secure against chosen cipher-
text attacks (IND-FE-CCA). In the construction, we use a strong one-time sig-
nature scheme Sig = (Gen, Sign, V rfy). The construction proceeds as follows:

Setup(1λ) runs Setup′(1λ) to obtain (mpk′,msk′), then mpk = mpk′ and msk
= msk′.

KeyGen(msk,K) runs KeyGen′(msk, id,K) to obtain (sk′
K , id), and outputs

a secret key skK = (sk′
K , id).

Encrypt(mpk,M) runs (vk, sk) ← Gen(1λ) and C ′ ← Encrypt′(mpk, vk, M),
and computes σ ← Signsk(C ′) outputs a ciphertext C = (vk,C ′, σ).

Decrypt(mpk, skK , C) first checks whether id = vk and V rfyvk(C ′, σ) =1 or
not. If not, output ⊥, otherwise output Decrypt′(mpk, sk′

K , C ′).

Correctness is obvious. We give some intuition why FE scheme is CCA secure.
Let (vk*, C*, σ*) be the challenge. It should be clear that C* hides plaintext.
Then we claim that decryption oracle queries cannot help adversary determining
the plaintext.
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Theorem 1. If IBFE is IND-sIBFE-CPA secure and Sig is a strong one-time
signature scheme, then FE is IND-FE-CCA secure.

Proof. Let A be an adversary attacking the CCA security of FE, B be an adver-
sary attacking the CPA security of IBFE. Say a ciphertext (vk, C, σ) is valid if
V rfyvk(id||C ′, σ) = 1. Let (vk*, C*, σ*) be the challenge.

If vk = vk*, the decryption oracle reply ⊥, so the advantage of A is the
probability of the strong one time signature forge successfully.

If vk �= vk*, the decryption oracle will not help the adversary, so the advan-
tage of A is the advantage of B.

Then, we have

AdvFE−CCA
A ≤ AdvIBFE−CPA

B + AdvOTS−sUF−CMA.

4 Instantiations of Identity-Based Inner Product
Functional Encryption

4.1 Lattices Preliminary

Notations. We denote vectors by lower-case bold letters (e.g. x) and are always
in column form (respectively, x� is a row vector). Matrices are denoted by upper-
case bold letters (e.g. A) and treat them with their ordered column vector sets
[a1,a2, ...]. We let M1|M2 denote the (ordered) concatenation of the column
vector sets of M1 and M2, M1‖M2 denote the (ordered) concatenation of the
row vector sets of M1 and M2, and vectors are similar. For a vector x, we let
‖x‖ denote its l2 norm and ‖x‖∞ denote its infinity norm. Similarly, for matrices
‖ · ‖ and ‖ · ‖∞ denote their l2 and infinity norms respectively.

An m-dimensional lattice L is a discrete additive subgroup of R
m. Given

positive integers n,m, q and a matrix A ∈ Z
n×m
q , we let Λ⊥

q (A) denote the
lattice {x ∈ Z

m : A · x = 0 mod q} and Λq(A) denote the lattice {y ∈ Z
m :

y = A� · s mod q for some s ∈ Z
n}. For u ∈ Z

n
q , we let Λu

q (A) denote the coset
{x ∈ Z

m : A · x = u mod q}. Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t

and hence Λu
q (A) is a shift of Λ⊥

q (A).

Discrete Gaussians. Let σ be any positive real number, c ∈ R
m. The Gaussian

distribution Dσ,c centered at c with parameter σ is defined by the probability
distribution function ρσ,c(x) = exp(−π‖x − c‖2/σ2). For any set L ⊂ R

m,
define ρσ,c(L) =

∑
x∈L ρσ,c(x). The discrete Gaussian distribution DL,σ,c over

L centered at c with parameter σ is defined by the probability distribution
function DL,σ,c(x) = ρσ,c(x)/ρσ,c(L) for all x ∈ L.

The following lemma states that the total Gaussian measure on any translate
of the lattice is essentially the same.

Lemma 1 ([29,37]). For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), c ∈ R
m,

ε ∈ (0, 1), we have

ρσ,c(Λ) ∈ [
1 − ε

1 + ε
, 1] · ρσ(Λ)
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A sample from a discrete Gaussian with parameter σ is at most
√

mσ away
from its center c with overwhelming probability.

Lemma 2 ([29,37]). For any m-dimensional lattice Λ, m > n, center c, σ ≥
ω(

√
log m), we have

Pr[‖x − c‖ >
√

mσ|x ← DΛ,σ,c] ≤ negl(n).

There is an upper bound on the probability of a discrete Gaussian, equiva-
lently, it is a lower bound on the min-entropy of the distribution.

Lemma 3 ([29]). For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), center c,
positive ε > 0, and x ∈ Λ, we have

DΛ,σ,c ≤ 1 + ε

1 − ε
· 2−m.

In particular, for ε < 1
3 , the min-entropy of DΛ,σ,c is at least m − 1.

Ajtai et al. [6,7] showed how to sample an essentially uniform A, along with
a relatively short basis TA.

Lemma 4 ([6,7]). Let n, q, m be positive integers with q > 2 and m ≥ 5n log q.
There is a probabilistic polynomial-time(PPT) algorithm TrapGen that outputs
a pair (A ∈ Z

n×m
q , TA ∈ Z

m×m) where the distribution of A is statistically close
to uniform over Z

n×m
q and ‖TA‖ ≤ m · ω(

√
log m).

Gentry et al. [29] showed that if ISISq,m,2σ
√

m is hard, fA : Zm
q → Z

n
q with

fA(e) = Ae mod q is one-way function, even collision resistant function where
‖e‖ ≤ √

mσ. Note that for m > 2n log q, σ > ω(
√

log m), fA is subjective for
almost all A, and the distribution of u = Ae mod q is statistically close to
uniform over Z

n
q . Furthermore, fix u ∈ Z

n
q , a short basis for Λ⊥(A) can be used

to efficiently sample short vectors from f−1
A (u) without revealing any information

about the short basis TA.

Lemma 5 ([29]). Let n, q, m be positive integers with q ≥ 2 and m ≥ 2n log q.
There is a PPT algorithm SamplePre that on input of A ∈ Z

n×m
q , a basis

TA for Λ⊥
q (A), a vector u ∈ Z

n
q and an integer σ ≥ ‖T̃A‖ · ω(

√
log m), the

distribution of the output of e ← SamplePre(A, TA,u, σ) is with negligible
statistical distance of DΛu

q (A),σ.

Lemma 6 ([3]). Let q > 2, full rank A,B ∈ Z
n×m
q , a basis TA of Λ⊥

q (A), a
matrix U ∈ Z

n×l
q and σ ≥ ‖T̃A‖ · ω(

√
log m). Then there exists PPT algorithm

SampleLeft(A,TA,B,U, σ) output a matrix Z ∈ Z
2m×l
q , distributed statisti-

cally close to DΛU
q (A|B),σ.

Lemma 7 ([3,21]). Let q > 2, full rank A ∈ Z
n×m
q , a matrix R, U ∈ Z

n×l
q

and y �= 0 ∈ Zq, and σ =
√

5 · (1 + ‖R‖2) · ω(
√

log m). Then there exists PPT
algorithm SampleRight(A,R, y,U, σ) output a matrix Z ∈ Z

2m×l
q , distributed

statistically close to DΛU
q (A|AR+yG),σ.
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Lemma 8 ([3]). Let R be a matrix chosen uniformly at random from {±1}k×m.
There exists a universal constant C, then

Pr[‖R‖ > C
√

k + m] ≤ 1
ek+m

.

Lemma 9 ([3]). Let q prime and m > (n + 1) log q + ω(log n). Let R be chosen
uniformly from {±1}m×k mod q, with k polynomial in n. Let A, B be chosen uni-
formly from Z

n×m
q and Z

n×k
q . Then, for every r ∈ Z

m
q , we have the distributions

(A, AR, R�r) and (A, B, R�r) are statistically close.

Lemma 10 ([3]). Let q be a prime and n a positive integer. We say that a
function H : Zn

q → Z
n×n
q is an encoding with full rank differences when:

1. for all distinct u, v ∈ Z
n
q , the matrix H(u)-H(v) ∈ Z

n×n
q has full rank.

2. H must be computable in polynomial time in n log q.

Lemma 11 ([34]). NoiseReRand(Z,b + r, σ, τ): Let b ∈ Z
m
q and r ← Dm

σ .
Given a matrix Z ∈ Z

m×l, τ ∈ R
+ such that τ2 > s1(Z�Z), it first samples

c ← Dm
σ , r1 = (τ2Il − ZZ�)

1
2 r2, where r2 ← Dl√

2σ
. Then it samples r3 ←

D
Zl−r1,

√
2στ . Outputs Z�b + Z�(r + c) + r1 + r3, where r1 + r3 is distributed

close to DZm,2στ .

4.2 Learning with Errors

We review the learning with errors (LWE) problem for the most part from [42].
We first introduce the error distribution χ, that is, the normal (Gaussian)

distribution on T with mean 0 and standard deviation α/
√

2π having density
function 1

αexp(−πx2/α2). Its discretized normal distribution χα on Zq denoted
to be the distribution of 
q · X� mod q, where X is a random variable with
distribution χ and 
x� is the closest integer to x ∈ R.

The following lemma about the distribution χα will be needed to show that
decryption works correctly.

Lemma 12 ([3]). Let x ∈ Z
m and r ← χm

α , then the quantity |x�r| treated as
an integer in [0, q − 1] satisfies

|x�r| ≤ ‖x‖qαω(
√

log m) + ‖x‖√m/2

with all but negligible probability in m.
For an integer q ≥ 2 and some probability distribution χ over q, s ∈ Z

n
q , define

As,χ to be the distribution on Z
n
q × Zq of the variable (a, a�s + x) induced by

choosing a uniformly at random from Z
n
q , x ← χ.
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Learning with Errors (Decision Version). For an integer q = q(n) and a
distribution χ on Zq, LWEq,χ is to distinguish between the distribution As,χ for
some uniform secret s ← Z

n
q and the uniform distribution on Z

n
q ×Zq(via oracle

access to the distribution).
Regev [42] demonstrated that for certain moduli q and Gaussian error dis-

tribution χα, LWEq,χα
is as hard as solving several standard worst-case lattice

problems using a quantum algorithm.

Theorem 2 ([42]). Let α(n) ∈ (0, 1) and q(n) be a prime such that α ·q ≥ 2
√

n.
If there exists an efficient (possibly quantum) algorithm that solves LWEq,χα

,
then there exists an efficient quantum algorithm for approximating SIVP and
GapSVP to with O(n/α) factors in the worst case.

Peikert et al. [20,41] showed that there is a classical reduction from GapSVP to
the LWE problem.

4.3 Construction

Setup(1n, 1l, P, V ): Utilize TrapGen to generate A ∈ Z
n×m
q and trapdoor

TA ⊂ Λ⊥
q (A) where A, is statistically close to uniform, and TA ∈ Z

m×m.
Choose B ← Z

n×m
q , U ← Z

n×l
q , Set ‖x‖∞ = P and ‖y‖∞ = V , K = lPV .

Define mpk := {A,B,U,K, P, V } and msk := {TA}.
Keygen(msk, id,y): running SampleLeft(A, TA, B+H(id)G, U, σ) to sample

Zid ∈ Z
2m×l such that (A|B + H(id)G)Zid = U. Compute and return the

secret key skid,y = (Zid · y).
Encrypt(mpk, id, x):] Sample s ← Z

n
q , R ← {±1}m×m uniformly at random,

r1 ← χ2m
q,α and r2 ← χl

q,α, r3 ← χl
q,τ and compute

f = (Im|R)�r1
c1 = (A|B + H(id)G)�s + f

c2 = U�s + r2 + r3 + 
 q

K
� · x

Then, return C := (c1, c2).
Decrypt(mpk, skid,y, C): Compute μ

′
= y�c2 −sk�

id,yc1 mod q and output the

value μ ∈ {−K + 1, ...,K − 1} that minimizes | (
 q

K
�) · μ − μ

′ |.

4.4 Parameters and Correctness

μ
′
= y�c2 − sk�

id,yc1 = y�U�s+y�r2 +y�r3 + 
 q

K
� < x,y > −y�Z�

id(A|B+

H(id)G)�s − y�Z�
idf , and (A|B + H(id)G)Zid = U. Then, we have

error = y�r2 + y�r3 − y�Z�
idf .

Note that ‖Zid‖ ≤ σ
√

2ml, ‖R‖ ≤ C
√

2m.
Then, error ≤ lV (αq + τq) + 4Cαqσm

√
lnmV
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In order to ensure the correctness, we let error ≤ 
 q
K �/4. We set

q > 4KlV (αq + τq) + 16CKαqσm
√

lnmV

Additionally, ensure that TrapGen can work. We set

m ≥ 6n log q, σ > mω(log m)

And the scheme is secure under standard LWE assumption. We set

αq > 2
√

n, τ > C ′mσ(2
√

n +
√

m)

5 Security Analysis

Theorem 3. If LWEq,χα
is hard with the parameters set as above, then the

IBIPFE scheme is IND-sIBFE-CPA secure.

Proof. Let A be an adversary attacking the CPA security of sIBFE. A first
announce the challenge identity id*. Choose R*← {±1}m×m, Let B = AR*-
H(id*)G. Then, in secret key queries phase, we use SampleRight(A, R*, H(id)-
H(id)*, U, σ) to answer the secret keys.
Because (A, B, R*r1) is statistically close to (A, AR*, R*r1), and we let
(A|AR*)Zid = U, then we have

c1 = (A|AR∗)�s + (Im|R∗)�r1
= (Im|R∗)�(A�s + r1)

= (Im|R∗)�ctALS
1

c2 = U�s + r2 + r3 + 
 q

K
� · xβ

= Z�
1 A

�s + Z�
2 R

∗�A�s + 
 q

K
� · xβ + r2 + r3

= ctALS
2 + NoiseReRand(R∗Z2, ctALS

1 , αq, τ)

Then indistinguishability of ciphertexts is reduced to ALS [5] and their promo-
tion [45].

6 Conclusions and Open Problems

We showed a generic construction from (selective id) chosen plaintext attack
secure identity-based functional encryption (sIBFE-CPA) to CCA secure FE.
Then we give an instantiation of sIBFE for inner product from standard learning
with errors (LWE) assumption, which applying our transformation gives the first
CCA secure IPFE under the same assumption. But directly constructing a CCA
IPFE, especially from competitive PHF is still appealing and meaningful.

We showed the power of IBFE, so we appeal for more constructions for more
practical function classes for IBFE.
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Lattice-based cryptography have many fascinating properties not found in
other types of cryptography, but related techniques are still limited to construct
and prove some primitives(e.g. FE), so whether we can construct an FE scheme
for polynomial functions from standard assumptions is an appealing open prob-
lem.
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Abstract. The Commutative Supersingular Isogeny Diffie-Hellman key
exchange (CSIDH) uses supersingular elliptic curves of Montgomery
form over Fp with p ≡ 3 (mod 8), while CSURF considered those of
Montgomery− form with p ≡ 7 (mod 8). The two protocols both have
ratio (1:1) between the coefficients and the Fp-isomorphism classes. Cas-
tryck and Decru showed that the ratio became (2:1) when Montgomery
supersingular curves with endomorphism ring Z[(1+

√−p)/2] and p ≡ 7
(mod 8) were considered. The fact that the coefficients are not unique
for each Fp-isomorphism class is the major obstacle to use this case in
the scheme.

In this article, we remedy the ratio (2:1) by dividing the coefficients
into two orbits and show that there exist the unique representatives of
Fp-isomorphism classes in each orbit, which leads to new pools of hard
homogeneous space and our resulting protocol CSURF-TWO. Moreover,
we give more explicit formulae for 2-isogenies running in each orbit, which
offer a noticeable speedup of about 5.69% to CSIDH. We also refresh the
sample interval and gain a speed-up of about 0.839%. Changing the form
of elliptic curves offers no extra security, while 0 is no longer the startup
parameter and thus precomputation for ± 3√

2
in Fp is needed.

Keywords: CSIDH · CSURF · Montogomery curves · Ideal class
action

1 Introduction

Isogeny-based cryptography [13] was first proposed by Couveignes in 1997 [15]
and then re-proposed by Rostovtsev and Stolbunov independently [16] in 2006,
named CRS. Luca De Feo et al. [10] gave a method to accelerate the scheme
which required that the orders of the elliptic curves over finite fields must have
small primes as factors. The requirement is hard to achieve by ordinary ellip-
tic curves, while easy to be satisfied by supersingular elliptic curves over Fp

as long as p = kl1 · · · ln − 1 with li small primes. Since CRS scheme has a
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subexponential-time quantum attack [7], Jao and De Feo introduced supersin-
gular isogeny Diffie-Hellman key exchange (SIDH) [4,8], relying on the isogenies
between supersingular elliptic curves, which can thwart the quantum attack pro-
posed by Kuperberg [5]. As a disadvantage, SIDH has an active attack [11] which
prevents static private keys.

To perform the acceleration [10] and avoid the active attack [11], Commu-
tative Supersingular Isogeny Diffie-Hellman key exchange (CSIDH) [9] was pro-
posed using Montgomery+ supersingular curves of over a finite field Fp with p ≡ 3
(mod 8), which have endomorphism ring O = Z[

√−p] and thus live on the floor of
the isogeny graph. It uses hard homogeneous space cl(O)×ELL(O) → ELL(O),
the set of Fp-isomorphism classes of supersingular elliptic curves with the action
of the ideal class group. Applying similar statement to the surface, consisting
of Fp-isomorphism class of endomorphism ring Z[(1 +

√−p)/2], Castryck and
Decru proposed CSURF using Montgomery− supersingular curves over Fp with
p ≡ 7(mod 8) and gained some improvements [12]. CSIDH and CSURF work over
the ratio (1:1), which implies the coefficients can be the unique representation
for the Fp-isomorphism class. Now it leaves us with the case with Montgomery+

curves and p ≡ 7(mod 8).
In this article, as our main contribution, we consider the Montgomery+

supersingular elliptic curves over Fp with p ≡ 7(mod 8) whose endomorphism
rings are isomorphic to Z[(1 +

√−p)/2]. This case is unsatisfactory since the
ratio becomes (2:1) instead of (1:1), which immediately leads to a discussion
about how can the coefficients uniquely represent the Fp-isomorphism classes.
We divide M+

p,Z[(1+
√−p)/2]

, the set of coefficients of supersingular Montgomery+

curves on the surface, into two independent orbits and prove that every two coef-
ficients corresponding to same Fp-isomorphism class can be separated into the
two orbits according to specific criteria. Moreover, the closure of each orbit under
the action of cl(Z[(1+

√−p)/2]) makes it deserve a new protocol CSURF-TWO.
The appearance of 2-isogenies yields 5.69% faster performance than CSIDH,
while the compact 2-isogenies formulae removing rescalings only yield a little bit
faster performance than CSURF since the rescalings only happen twice, at the
beginning and the end of the chain of 2-isogenies. Furthermore CSURF-TWO
uses a new sample interval of the secret keys, which brings in a speed-up for
about 0.839% than the original one. However, as a disadvantage, 0 can be no
longer the starting coefficient and the precomputation of 3√

2
is needed in our

new protocol.

Organization. In Sect. 2, we recall, besides CSIDH and CSURF, some basic
results on ideal class groups and isogenies over Fp. In Sect. 3, we give some essen-
tial conclusions about the two orbits of the Montgomery coefficients. In Sect. 4,
we implement our new protocol CSURF-TWO and compare the performance
with CSIDH and CSURF. In Sect. 5, we give a conclusion.
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2 Preliminaries

2.1 The Endomorphism Ring and Ideal Class Group

For a supersingular elliptic curve E defined over Fp, its Frobenius endomorphism
π satisfies the characteristic equation π2+p = 0. The Fp-rational endomorphism
ring EndFp

(E) is an order O of the imaginary quadratic field K = Q(
√−p) [2,6].

The group P (O) consisting of all principal fractional ideals of O is a subgroup of
the abelian group I(O) consisting of the invertible fractional ideals. So we can
define the ideal-class group of O as cl(O) = I(O)/P (O), of which the elements
should be denoted as [a]. Let ELL(O) be the set of elliptic curves whose endo-
morphism rings are isomorphic to O. The action of a on a given elliptic curve
E can be determined by the kernel E[a] = {P ∈ E | ∀φ ∈ a, φ(P ) = O},
and thus can be represented by an isogeny a : E → E/E[a]. Since the principal
ideal corresponds to the endomorphism, different ideals in the same ideal class
lead to the same codomain. So we write [a]E for E/E[a] to highlight the group
action and stress that the composition of the isogenies corresponds to the mul-
tiplication of the ideal classes. We now give a formal theorem about the group
action.

Theorem 1. Let O be an order of an imaginary quadratic field and let ELL(O)
be the set of isomorphism classes of elliptic curves whose endomorphism rings
are isomorphic to O. Then the ideal class cl(O) acts freely and transitively on
ELL(O). The map is

cl(O) × ELL(O) → ELL(O)

[a] × E �→ E/E[a].

2.2 CSIDH and CSURF

Using the properties of supersingular elliptic curves over Fp and the isogenies
between them, Castryck et al. [9] CSIDH. They choose Montgomery models over
Fp with p = 4 · l1 · · · ln −1, so that and E(Fp) has Fp-rational subgroups of order
li. The properties ensure lO = li ·li = (li, π−1)·(li, π+1). The action of the ideal
class of l (resp. l) can be computed entirely over Fp by applying Vélu formulae [3]
to E (resp. its quadratic twist Et), the reason being that only Fp-rational points
are involved. Finding a generator of the kernel used in the Vélu formulae requires
full-size multiplication which dominates the cost of it. Different from previous
protocols, CSIDH uses the coefficient A defining the curve EA : y2 = x3+Ax2+x
as the shared key and a vector (e1, · · · , en) as the private key. The protocol using
the E0/Fp : y2 = x3 + x as the starting curve is in the style of Diffie-Hellman,
see Fig. 1.

CSURF changes the form of the curves into Montgomery− over Fp with
p = 4 · 2 · l1 · · · ln − 1, which implies the endomorphism ring becomes OK =
Z[(1+

√−p)/2]. And the whole protocol is similar with CSIDH, with the excep-
tion of different beginning elliptic curve, E0 : y2 = x3 − x, and range of the
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Fig. 1. CSIDH. The “(test)” represents the test of the supersingularity.

exponent vectors. Castryck and Decru [12, Table 1] gave the ratio of the number
of Montgomery± coefficients to that of Fp-isomorphism classes of supersingular
elliptic curves, which is shown in Table 1, where |M+

p,O| and |M−
p,O| denote the

number of coefficients of supersingular Montgomery curves and supersingular
Montgomery− curves over Fp with endomorphism ring O, respectively. To high-
light the differences between two forms of elliptic curves, we sometimes denote
Montgomery curves as Montgomery+ curves in later sections.

Table 1. The ratio between number of the coefficients and of Fp-isomorphism classes

(|M+
p,O| : |ELL(O)|) (|M−

p,O| : |ELL(O)|)
p ≡ 3 (mod 8) O = Z[ 1+

√−p
2

] 0 (3:1)

O = Z[
√−p] (1:1) 0

p ≡ 7 (mod 8) O = Z[ 1+
√−p
2

] (2:1) (1:1)

O = Z[
√−p] (1:1) 0

p ≡ 1 (mod 4) 0 0

CSIDH and CSURF are respectively based on the ratio of the color blue
and red. We mainly consider the ratio (2 : 1) in later sections. To give further
notation and explain the existence of the ratio (2 : 1), we review the following
lemma whose proof can be found in [12]. Note that for a square a in Fp we denote
by

√
a the unique square root which is again a square.

Lemma 1. Every elliptic curve E/Fp ∈ ELL(Z[1+
√−p
2 ]) with p ≡ 7 (mod 8)

comes with three distinguished points of order 2:

– P−: The x-coordinate of its halves are not defined over Fp.
– P+

1 : Its halves are defined over Fp.
– P+

2 : Its halves are not defined over Fp, but their x-coordinates are.

According to [12, Lemma 4], the Montgomery− curves EB : y2 = x3+Bx2−x

in the identical case as Lemma 1 has P− = (0, 0), P+
1 = (−B+

√
B2+4

2 , 0) and
P+
2 = (−B−√

B2+4
2 , 0). The two Montgomery+ models are obtained by translat-

ing P+
1 or P+

2 to (0, 0) and then scaling down to the exact form.
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3 The Two-to-One Correspondence

In this section, we discuss the exact structure of M+
p,OK

with p ≡ 7 (mod 8) and
overcome the obstruction of uniquely representing the Fp-isomorphism class.

3.1 Exact Structure of M+
p,OK

with p ≡ 7 (mod 8)

From Sect. 2.2, we get |M+
p,OK

| : |ELL(OK)| = 2 : 1 when p ≡ 7 (mod 8) and the
Montgomery+ models can be obtained from Montgomery− model by φ+ and φ−,
translating P+

2 or P+
1 to (0, 0). So we can handle the exact structure of M+

p,OK

by the following lemma.

Lemma 2. Let p ≡ 7 (mod 8) and M+
p,OK

= {A ∈ Fp | supersingular elliptic

curveEA : y2 = x3 + Ax2 + x ∈ ELL(Z[1+
√−p
2 ])}, then M+

p,OK
= I ∪ J where

the sets I and J respectively come from translating P+
2 or P+

1 to (0, 0). More
concretely, J = {−A : A ∈ I} and J ∩ I = ∅.
Proof. Every element in M+

p,OK
comes from φ+ and φ−, translating P+

2 or P+
1

to (0, 0), and I and J are denoted as the resulting sets of them. It is easily to
get that J ∩ I = ∅.

Focusing on J = {−A|A ∈ I}, we first show if A ∈ M+
p,OK

, then −A ∈ M+
p,OK

.
Since E−A is the quadratic twist of EA, they have same supersingularity and
thus the only need is to prove E−A has full Fp-rational 2-torsion to confirm its
endomorphism ring Z[(1 +

√−p)/2], which can be easily checked since A2 − 4 is
a square in Fp. So each element in M+

p,OK
has opposite again in M+

p,OK
.

Assume the curve EA is obtained by the isomorphism φ+ : E−
B → EA :

(x, y) �→ (α+x + γ+, β+y) which positions P+
2 at (0, 0), i.e. A ∈ I. By con-

sidering the quadratic twist, E−A : y2 = x3 − Ax2 + x is isomorphic to
E−

−B : y2 = x3 − Bx2 − x through the isomorphism φ′+ : E−
−B → E−A :

(x, y) �→ (α+x − γ+, β+y). We then analyze the above two isomorphisms to get
more exact structure. According to the correspondence between the points of
order 2, we see that φ+ satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ+ =
−A − √

A2 − 4
2

,

α+−B +
√

B2 − 4
2

+ γ+ =
−A +

√
A2 − 4

2
,

α+−B − √
B2 − 4

2
+ γ+ = 0.

(1)

Using the Eq. (1), we note that φ′+ positions the P+
1 = (B+

√
B2+4
2 , 0) in E−

−B

at (0, 0) in E−A, which means it is exact φ− over E−
−B and −A ∈ J . So we can

construct I (resp. J) by acting φ+ (resp. φ−) on all Montgomer− supersingular
curves and then gathering the coefficients of the resulting Montgomery+ curves.
In this way, the elements in J are actually the opposites of those in I, which
ends the proof.
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By the foregoing proof, the exact distribution of the two Montgomery+ coef-
ficients A and A′, corresponding to the same Fp-isomorphism class, satisfies that
A ∈ I if and only if A′ ∈ J . The following proposition tackles the unique repre-
sentative problem for our family of CSIDH instantiations.

Proposition 1. Assume p ≡ 7 (mod 8) and consider a supersingular elliptic
curve E over Fp. Then EndFp

(E) ∼= ELL(Z[1+
√−p
2 ]) if and only if there exists

a unique element A in I and another unique element A′ in J such that E is Fp-
isomorphic to the curves EA : y2 = x3 + Ax2 + x and EA′ : y2 = x3 + A′x2 + x
simultaneously.

Proof. First assume E is Fp-isomorphic to EA and EA′ for some A ∈ I and
A′ ∈ J . By the definition of M+

p,OK
in Lemma 2, we can conclude EndFp

(E) =

EndFp
(EA) =EndFp

(EA′) ∼= ELL(Z[1+
√−p
2 ]).

Now suppose EndFp
(E) ∼= ELL(Z[1+

√−p
2 ]), there exists a unique

Montgomery− curve E−
B : y2 = x3 + Bx2 − x isomorphic to E. It immedi-

ately follows from the Lemma 2 that E is isomorphic to Montgomery+ curves
with a coefficients in I and another in J . The uniqueness of Montgomery− curve
[12] directly yields the uniqueness in our case, so we omit the details and end
the proof.

3.2 The Isogenies of Odd Degree

We now construct a variant of Theorem 1 as the backboneon of our protocol in
Sect. 4 by using the Velu’s isogeny formulae (in version of [1, Proposition 1]).

Theorem 2. If p ≡ 7 (mod 8) then the map:

ρ :

{
cl(Z[(1 +

√−p)/2]) × I → I,

cl(Z[(1 +
√−p)/2]) × J → J

sending ([a], A) to [a]×A = (A−3
∑

P �=∞∈EA[a](x(P )− 1
x(P ) ))·

∏
P �=∞∈EA[a] x(P )

is well-defined free and transitive group action. Here, we assume that the ideal a
representing [a] has odd norm.

Proof. In [12, Theorem 3], Castryck and Decru proposed a well-defined free and
transitive group action ρ− : cl(Z[(1 +

√−p)/2]) × M−
p,OK

→ M−
p,OK

. So we
consider the isomorphism φ+ and define

cl(Z[(1 +
√−p)/2]) × I → I : ([a], A) �→ φ+(ρ−([a], (φ+)−1(A))),

which is a well-defined free and transitive group action because φ+ is a bijection.
It is suffices to show this matches with ρ. We construct a diagram in the following
two ways:

– We quotient out by EA[a] for A ∈ I using the formulae in [1, Proposition 1],
yielding a curve Ea. Note that the isogeny corresponds to the group action ρ
and maps (0, 0) to (0, 0). We continue by applying the isomorphism (φ+)−1

proposed in Sect. 3.1 to arrive at the set M−
p,OK

.
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– Conversely, we apply (φ+)−1 on EA, arriving at the coefficient of E−
B in set

M−
p,OK

. It also maps EA[a] to E−
B [a], which we quotient out in turn. The

isogeny by means of the formulae from [12, Proposition 2] corresponds to the
group action ρ−, taking us to M−

p,OK
.

Thus we obtain the ρ ◦ φ+ = φ+ ◦ ρ− which implies that ρ = φ+ ◦ ρ− ◦ (φ+)−1.
Similarly, the proof for the action on J employs the isomorphism φ− to obtain

a commutative diagram. So I and J are two independent orbits under the action
of ideal class group cl(Z[(1 +

√−p)/2]).
The exact formula of [a] × A directly comes from [1, Proposition 1]. Since

the Fp-isogenies map point (0, 0) to (0, 0) with same properties, they keep the
(non-)squareness of A + 2 and hence the closure of each orbit.

4 Implementation and Comparison

In this section, we utilize Theorem 2 to design a variant of CSURF-512, CSURF-
TWO, acting on I or J rather than M−

p,OK
. For that sake of comparison, we

propose CSURF-TWO with same finite field as CSURF-512, while we use a new
near-optimal sample range [−141, 141]× [−4, 4]3× [−6, 6]13× [−5, 5]33× [−4, 4]24.

To put everything back to Montgomery+ curves, we change the starting
curve of CSURF-512 E− : y2 = x3 − x into E : y2 = x3 ± 3√

2
x2 + x, which

are in the same Fp-isomorphism class with E−. Note that − 3√
2

and 3√
2

are in
orbits I and J respectively. Our protocols based on I and J have high degree of
similarity, except for the starting curve and the formulae of 2-isogenies. So we
only implement CSURF-TWO based on the orbit I.

Our protocol can be viewed as a near-copies of CSIDH and CSURF. It is
built from CSURF-like action of cl(Z[(1 +

√−p)/2]) on I or J , the sets consist-
ing of some Montgomery+ curves like in CSIDH. The scheme has same formulae
to compute actions of ideals as CSIDH, with the exception of 2-isogenies, which
bring in a noticeable speed-up of about 5.69%. When compared with CSURF,
our formulae of 2-isogenies are more explicit on account of omitting the rescal-
ings between Montgomery− models and Montgomery+ models. Although it only
leads to an unobtrusive speed-up since the rescalings are only needed twice in
the whole program, the more compact formulae can help with understanding
and implementation. We implement our new intervals and the original one on
CSURF-TWO and compare the performance of them. The new one omits the
computation of the 389-isogenies and increase that of 2-isogenies, which speeds
up the resulting protocol by about 0.839%.

5 Conclusion

In the article, we consider Montgomery supersingular curves with endomorphism
ring Z[(

√−p + 1)/2] and p ≡ 7 (mod 8). Castryck and Decru showed that there
exists two-to-one correspondence between the coefficients and Fp-isomorphism



CSIDH on Other Form of Elliptic Curves 155

classes, which prevents the unique representative of the Fp-isomorphism class. So
we divide the two coefficients in same Fp-isomorphism class into two orbits I and
J to imply the one-to-one correspondence and then offer a new protocol CSURF-
TWO based on each orbit. In our protocol, the 2-isogenies offer a noticeable
speedup of about 5.69% to CSIDH. We also propose a new interval to sample
secret keys offering 0.839% speed-up without lost of security.
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Abstract. Group key exchange (GKE) protocols get much attention in
current research with increasing applicability in numerous group-oriented
and collaborative applications. In this paper, we propose three schemes
on supersingular isogenies. They all have two rounds. Two of them are
optimizations of Burmester and Desmedt’s protocols without authenti-
cation. Our methods are more efficient in the view of communication and
computation time. Another one is a provably secure constant round post-
quantum authenticated group key exchange (AGKE) protocol, which is
built from the first GKE protocol. This proposed scheme achieves secu-
rity following the security notion namely the eGBG model which con-
siders forward secrecy, KCI resilience and the leakage of ephemeral keys.
We give formal proofs for its AKE security, mutual authentication and
contributiveness. We also give a comparison of these existing GKE and
AGKE protocols.

Keywords: Supersingular isogeny · Post Quantum · Group key
exchange · Authenticated group key exchange

1 Introduction

Group Key Exchange. A group key exchange (GKE) protocol allows a group
of parties to agree upon a common secret session key over a public network.
GKE protocols are applicable in various real world communication networks
such as ad-hoc networks, wireless sensor networks and so on. So far, several
GKE protocols have been proposed, most of which are extended from two-party
key exchange protocols [4–6,13]. However, this GKE protocol can only be secure
against passive adversaries.

Authenticated group key exchange (AGKE) protocols are essential for mul-
tiple parties to establish a session key in the presence of active adversaries.
There have been plenty of literatures about constant-round AGKE protocols
[2,10,22,28]. Particularly, Katz and Yung [22] brought forward a scalable com-
plier that converts any unauthenticated GKE protocol into an authenticated
c© Springer Nature Switzerland AG 2021
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one by adding one round and performing signing and verification operations. In
terms of security models, BCPQ model [3] was the first security model for GKE
protocols, along with KS model [21], BGS model [7], BM model [8] and CCGJJ
model [23]. These models consider the indistinguishability of computed group
keys and forward secrecy. GBG model [11] also takes key compromise imper-
sonation (KCI) resilience into account. In eGBG model [29], they extend the
GBG security by additionally considering the leakage of ephemeral keys. So any
non-trivial combination of the long-term key and ephemeral key can be revealed
under this model. It is called the resistance to MEX attacks in CK+ model [20]
which is the strongest model for the two-party AKE.

Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). Apart
from lattice, code, hash and multivariate cryptography, supersingular elliptic
curve isogeny is one of the most attractive candidates for post-quantum cryp-
tography. The best-known protocols are supersingular isogeny Diffie-Hellman key
exchange (SIDH) [14] and supersingular isogeny key encapsulation (SIKE) [24]
submitted to NIST. They are based on the hard problem of computing isoge-
nies between supersingular elliptic curves. Recently the very important problem
of designing AKE schemes from the basic SIDH primitive has been studied in
[17,18,25,27]. They note that there are several challenges in adapting the secu-
rity proof of existing well-designed AKE schemes to the SIDH case. We also find it
is difficult to construct AGKE protocols from the existing schemes such as SIKE.

1.1 Our Contributions

1. We propose two two-round post-quantum group key exchange protocols based
on supersingular isogenies. The first one is an optimization of supersingular
isogenies Burmester and Desmedt (SIBD) protocol [16]. Since the BD pro-
tocol has been pointed out that the shorting coming is high communication
overhead and the tree based GKE protocols are considered superior [19], the
second one is a combination of SIDH and BDII [6]. In the two schemes, we
change the way to compute the session key by performing addition instead of
multiplications in the finite field. So they have a much higher efficiency and
are more acceptable for the tiny processors. We also give a formal security
proof against the passive adversaries for the first one.

2. We propose a two-round post-quantum authenticated group key exchange
protocol based on our first group key exchange protocol. It is proved to be
eGBG secure which considers forward secrecy, KCI resilience and the leak-
age of ephemeral keys. We give formal proofs for its AKE security, mutual
authentication and contributiveness.

3. Finally, we have an analysis about the complexity including the round num-
ber, the communication size and computation cost. Compared with the exist-
ing AGKE protocol on supersingular isogenies [2], our scheme has much less
isogeny computation cost and higher communication efficiency.
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1.2 Related Works

There has been relatively little work looking at candidate post quantum group
key exchange protocols. Apon et al. [1] proposed an unauthenticated GKE by
generalizing the Burmester-Desmedt protocol to the Ring-LWE setting. As for
group key exchange on isogenies, Furukawa et al. [16] proposed two multi-party
key exchange protocols based on supersingular isogeny. The first one is a gener-
alized SIDH variant with p = f ·∏n

i=1 �ei
i ±1, which is of n−1 rounds. The second

one is a variant of the classic Burmester-Desmedt (SIBD) key exchange protocol
[4] with many multiplication operations. Azarderakhsh et al. [2] constructed a
n-party key agreement which is sequential from party to party and ensures each
party applies their own private information before sending the next messages.
This scheme provides authentication without extra cost such as signatures. How-
ever, this scheme also works in the case that p = f ·∏n

i=1 �ei
i ±1, so if the number

of users n changes, the public prime p will have to be changed. Furthermore, this
scheme involves too much isogeny computation and point computation. Each
user has to compute n − 1 isogenies and (n − 1)n image points. And the num-
ber of bits communicated by any single user reaches up to O(λn2), where n is
the number of users and λ is the security parameter. They also did not pro-
vide a formal security proof. Fujioka et al. [15] also proposed one-round AGKE
protocols on isogenies from cryptographic invariant maps, but their schemes are
based on commutative SIDH (CSIDH) which is about group actions on the set of
supersingular curves defined over a prime field. We can see that it is urgent and
meaningful of further research on GKE and AGKE on supersingular isogenies.

Outline. The rest of this paper is organized as follows. Section 2 gives basic nota-
tions for SIDH key exchange protocol, related assumptions, and the description
of the secure model. Section 3 describes the two improved group key exchange
protocols on supersingular isogeny, and gives a formal security proof for the
first one. Section 4 describes an authenticated group key exchange protocol with
a detailed security proof. Section 5 compares the complexity of the proposed
schemes with the previous. Section 6 gives a conclusion.

2 Preliminaries

2.1 SIDH

We recall briefly the SIDH protocol using the same notation as [14,24]. Let p be
a large prime of the form p = �e0

0 �e1
1 ·f ±1, where �0 and �1 are two small primes,

and f is an integer cofactor. Then we can construct a supersingular elliptic
curve E0 defined over Fp2 of order |E0(Fp2)| = (�e0

0 �e1
1 · f)2. Let Zm be the ring

of residue class modulo m. The subgroup E0[m] is isomorphic to Z�
e0
0

× Z�
e1
1

.
Let P0, Q0 be two points that generate E0[�e0

0 ] and P1, Q1 be two points that
generate E0[�e1

1 ]. The public parameters are (E0;P0, Q0;P1, Q1; �0, �1, e0, e1).
The SIDH works as follows. Alice chooses her secret key ka from Z�

e0
0

and
computes the isogeny φA : E0 → EA whose kernel is the subgroup 〈RA〉 =
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〈P0+[ka]Q0〉. She then sends to Bob her public key which is EA together with the
two points φA(P1), φA(Q1). Similarly, Bob chooses his secret key kb from Z�

e1
1

and
computes the isogeny φB : E0 → EB with kernel subgroup 〈RB〉 = 〈P1+[kb]Q1〉.
He sends EB together with the two points φB(P0), φB(Q0) to Alice. To get
the shared secret, Alice computes the isogeny φBA : EB → EBA with kernel
subgroup 〈φB(P0) + [ka]φB(Q0)〉. Similarly, Bob computes the isogeny φAB :
EA → EAB with kernel subgroup 〈φA(P1) + [kb]φA(Q1)〉. Since the composed
isogeny φAB ◦φA has the same kernel 〈RA, RB〉 as φBA ◦φB , Alice and Bob can
share the same j-invariant j(EAB) = j(EBA).

It will be helpful to have a crypto-friendly description of SIDH for the
presentation of our AKEs. We follow the treatment of Fujioka et al. [17]. In
what follows, we assume {t, s} = {0, 1}, and denote the public parameters by
g = (E0;P0, Q0, P1, Q1) and e = (�0, �1, e0, e1). We define the sets of supersingu-
lar curves and those with an auxiliary basis as

SSECp = {supersingular elliptic curves E over Fp2 with E(Fp2) � (Z�
e0
0 �

e1
1 f )2};

SSECA = {(E;P ′
t , Q

′
t)|E ∈ SSECp, (P ′

t , Q
′
t) is basis of E[�et

t ]};
SSECB = {(E;P ′

s, Q
′
s)|E ∈ SSECp, (P ′

s, Q
′
s) is basis of E[�es

s ]}.

Let a = ka and b = kb, then we define,

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA,where RA = Ps + [ka]Qs, φA : E0 → EA = E0/〈RA〉;
gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB ,where RB = Pt + [kb]Qt, φB : E0 → EB = E0/〈RB〉;
(gb)a = j(EBA), where RBA = φB(Ps) + [ka]φB(Qs), φBA : EB → EBA = EB/〈RBA〉;
(ga)b = j(EAB), where RAB = φA(Pt) + [kb]φA(Qt), φAB : EA → EAB = EA/〈RAB〉.

We emphasize that we define ga and gb as groups while (gb)a and (ga)b are
defined to be j-invariants. That is not a mathematical mistake and aims to
combine the classical Diffie-Hellman with SIDH. By this notation, the SIDH
looks almost exactly like the classical Diffie-Hellman. The public parameters are
g and e. Alice chooses a secret key a and sends ga to Bob, while Bob chooses a
secret key b and sends gb to Alice. The shared key is j = (gb)a = (ga)b.

2.2 Standard SIDH Assumptions

We describe two standard assumptions about supersingular isogeny based on the
crypto-friendly notation. Let s �= t and s, t ∈ {0, 1}.

Definition 1 (SI-CDH Assumption [14,17]). The SI-CDH problem is that,
given public parameters g and e, and ga, gb where a ← Z�es

s
, b ← Z�

et
t
, compute

the j-invariant (ga)b = (gb)a. For any PPT algorithm A, we define the advantage
of solving SI-CDH problem as Advsicdh

A = Pr[j′ = (ga)b|j′ ← A(g, e, ga, gb)]. The
SI-CDH assumption states: for any PPT algorithm A, the advantage of solving
SI-CDH problem is negligible.
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Definition 2 (SI-DDH Assumption [14,17]). Let g and e be that defined in
SI-CDH assumption. Let D0 and D1 be two distributions defined as:

D1 :={e, g, ga, gb, (ga)b|a ← Z�es
s

, b ← Z�
et
t

},

D0 :={e, g, ga, gb, (gs)t|a, s ← Z�es
s

, b, t ← Z�
et
t

}.

The SI-DDH problem is that given a random sample from Db depending on
b ← {0, 1}, guess b. The advantage of solving SI-DDH problem for any PPT
algorithm A is Advsiddh

A = 2|Pr[b′ = b|b′ ← A(db ← Db), b ← {0, 1}] − 1/2|. The
SI-DDH assumption states: for any PPT algorithm A, the advantage of solving
SI-DDH problem is negligible.

2.3 Extended GBG Model

We describe the extended GBG (eGBG) model [29] for GAKE protocols below.
This model considers the key compromise impersonation (KCI) attack, the max-
imal exposure (MEX) attack and the breaking of weak perfect forward secrecy
(wPFS). This eGBG model captures almost the same properties as G-CK+

model which extends the CK+ model for two parties to the group setting [26].

Participants. Suppose there are total n participants U = {U1, U2, ..., Un} and
the protocol may run among any subset U of these parties. Each participant is
allowed to run multiple instances concurrently. The i-th instance of participant
U can be represented by

∏i
U . We set the session identifier as sid and the partner

identifier pid.

Adversary Model. The security of GAKE protocol is defined by a series of
games between the challengers and adversaries A. In the games, A must solve a
challenge on the test session by issuing the following queries in any sequence:

– Execute(
∏i

U ): It returns the messages exchanged during the honest execution
∏i

U . This is what the passive attacks do.
– Send(

∏i
U ,m): This query returns the reply generated by instance

∏i
U during

the normal execution of the protocol.
– RevealKey(

∏i
U ): This query outputs the group session key if the instance

∏i
U

is accepted.
– Corrupt(Ui): This query models the reveal of the long-term secret key. The

participant is honest if the adversary has not made any Corrupt query.
– EphemeralKeyReveal(

∏i
U ): The adversary makes this query to obtain the

ephemeral key of U for instance
∏i

U .
– Test(

∏i
U ): This query can be made only once during the execution of the

accepted instance
∏i

U .

Now we discuss the the notations of AKE security, mutual authentication
and contributiveness defined in eGBG model.
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AKE Security. The adversary A could make a sequence of the queries described
above. During the Test query, the challenger randomly picks a bit b. If b =
1, the oracle generates a random value in the key space; if b = 0, it reveals
the session key. The adversary wins the game if the session is fresh and the
guess of the adversary is correct, i.e. b′ = b. The advantage of the adversary
A is defined as AdvA = |2 Pr [A wins] − 1|. The protocol is said to be a secure
unauthenticated group key exchange (GKE) protocol if there is no polynomial
time passive adversary A with non-negligible advantage AdvGKEA . We say that
protocol is a secure authenticated group key exchange (AGKE) protocol if there
is no polynomial time active adversary A with non-negligible advantage AdvAGKEA .

Mutual Authentication (MA Security) [29]. Mutual authentication
requires that parties who complete the protocol execution should output iden-
tical session keys and that each party should be ensured of the identity of the
other participating parties. An adversary Ama against the mutual authentica-
tion is allowed to make Execute, Send, RevealKey, Corrupt, EphemeralKeyReveal
queries. The adversary Ama violates the mutual authentication property of the
AGKE protocol if at some points during the protocol run, there exists an uncor-
rupted instance

∏i
U that has been accepted with a session key ski

U and another
party U ′ ∈ pidi

U that is uncorrupted at the time
∏i

U accepts such that

1. there is no instance
∏j

U ′ with (pidj
U ′ , sid

j
U ′) = (pidi

U , sidi
U ) or

2. there is no instance
∏j

U ′ with (pidj
U ′ , sid

j
U ′) = (pidi

U , sidi
U ) that has accepted

with skj
U ′ �= ski

U .

Let AdvAma
be the success probability of Ama winning the mutual authen-

tication game. If AdvAma
is negligible in the security parameter λ, then we say

the protocol provides mutual authentication in the presence of insiders.

Contributiveness [29]. A GKE protocol under this notion resists the key con-
trol attacks where a proper subset of insiders tries to predetermine the resulting
session key. An adversary Acon against the contributiveness is allowed to make
Execute, Send, RevealKey, Corrupt, EphemeralKeyReveal queries. It operates in
two stages prepare and attack as follows:

– prepare. Acon queries the instances of π and outputs some state information
ζ along with a key k̃.
At the end of the prepare stage, a set

∏
is built such that

∏
consists of all the

uncorrupted instances which have been asked either Execute or Send queries.
– attack. On input (ζ,

∏
), Acon interacts with the instances of π as in the

prepare stage.
At the end of this stage, Acon outputs (Ui, j) and wins the game if an instance
πj

i at an uncorruptes party Ui has terminated accepting k̃ with πj
i /∈ ∏

.

Let AdvAcon
be the success probability of Acon winning the contributiveness

game. If AdvAcon
is negligible in the security parameter λ, then we say the

protocol provides contributiveness in the presence of insiders.
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3 Improved Group Key Exchange on Supersingular
Isogeny

Inspired by [4–6,16], we combine SIDH with BD and BDII protocol respectively
and propose a more efficient group key exchange on supersingular isogeny by
performing addition instead of multiplications. We also compare the efficiency,
the communication size and the security of the GEK schemes in Table 1.

3.1 Improved SIBD Protocol

Furukawa et al. [16] proposed a generalization of BDI, called SIBD, using SIDH
as the underlying key exchange. We optimize it by changing multiplication into
addition and give security proof against the passive adversaries.

The public parameters are the same as those in SIDH, except that there are
n users indexed by 1, 2, ..., n. Users are organized logically in a cycle, such as
Un+1 = U1. When n is odd, then one party needs to behave as two independent
machines virtually. So we just consider the case where n is even.

Round 1. Each Ui randomly chooses ki ∈ Z�es
s

and computes Ri = Ps + kiQs,
where s = i (mod 2). Ui computes the isogeny φi : E → Ei = E/〈Ri〉. Then it
sets sk1

i = ki and broadcasts pk1
i = (Ei, φi(P1−s), φi(Q1−s)) to Ui−1 and Ui+1.

Round 2. User Ui takes the keys pk1
i−1, pk1

i+1 and sk1
i to execute SIDH key

exchange and obtain KL
i = ji−1,i and KR

i = ji,i+1, where ji−1,i and ji,i+1

represent the j-invariants of Ei−1/〈φi−1(Ps)+kiφi−1(Qs)〉 and Ei+1/〈φi+1(Ps)+
kiφi+1(Qs)〉, respectively. Then user Ui broadcasts pk2

i = ui = ji,i+1 − ji−1,i.

Key Computation. Each user Ui uses hash function H : {0, 1}∗ → {0, 1}λ,
where λ is the security parameter and computes its session key

Ki = H(nji−1,i + (n − 1)ui + (n − 2)ui+1 + ... + 2ui−3 + ui−2).

It can be easily verified that Ki = H(j1,2 + ... + jn,1) = K for all i.
We stress that the costs of addition in finite fields can be ignored when com-

pared with the multiplication costs, which is the main reason of the efficiency
improvement. The requirement of KE-security, i.e. indistinguishability of com-
puted group keys with respect to passive adversaries, states the basic security
requirement for any GKE protocol. We now give a formal security proof.

Theorem 1. Under the SI-DDH assumption, the improved SIBD GKE proto-
col is secure against passive adversary in random oracle and achieves forward
secrecy. Precisely, if there are n users and the adversary A makes qE calls to
the Execute oracle, this protocol satisfies AdvGKEA (qE) ≤ 2nAdvSIDDH

A + 2nqE

p .

Proof. Suppose that there is an adversary A for the improved SIBD GKE pro-
tocol. Then we construct an algorithm D to solve the SI-DDH problem with
non-negligible advantage. Since there is no long-term secret key, Corrupt query
can be ignored by A. So this protocol obviously achieves forward secrecy. A can
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query Execute, RevealKey and Test oracles. Suppose T = (pk1
i , pk2

i ) is a tran-
script of an execution of the GKE protocol and K is the resulting session key.
We define two distributions Real and Fake, where Real is just the original pro-
tocol while Fake represents that all the pk2

i are uniformly chosen in Fp2 subject
to the constraint

∑
i pk2

i = 0. We write gki
�= (Ei, φi(P1−s), φi(Q1−s)), where

φi : E → Ei = E/〈Ps + kiQs〉.

Real =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ,

KR
1 = KL

2 = j(gk1k2), ..., KR
n = KL

1 = j(gknk1);
pk2

1 = KR
1 − KL

1 , ..., pk2
n = KR

n − KL
n ;

T = (pk1
1 , ..., pk1

n; pk2
1, ..., pk2

n);

K = H(nj(gki−1ki) + (n − 1)pk2
i + (n − 2)pk2

i+1 + ... + pk2
i−2).

: (T, K)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

Fake =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ,

KR
1 = KL

2 = j(gs1s2), ..., KR
n = KL

1 = j(gsns1); s1, ..., sn ∈ Z�
es
s

;

pk2
1 = KR

1 − KL
1 , ..., pk2

n = KR
n − KL

n ;
T = (pk1

1, ..., pk1
n; pk2

1, ..., pk2
n);

K = H(nj(gki−1ki) + (n − 1)pk2
i + (n − 2)pk2

i+1 + ... + pk2
i−2).

: (T, K)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Claim 1. For any algorithm A, we have |Pr[(T,K) ← Real : A(T,K) = 1] −
Pr[(T,K) ← Fake’ : A(T,K) = 1]| ≤ AdvSIDDH

A + 1
p , where

Fake’ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ,

KR
1 = KL

2 = j(gk1k2), ..., KR
n−1 = KL

n = j(gkn−1kn),
KR

n = KL
1 = j(gsns1); s1, sn ∈ Z�

es
s

;

pk2
1 = KR

1 − KL
1 , ..., pk2

n = KR
n − KL

n ;
T = (pk1

1 , ..., pk1
n; pk2

1 , ..., pk2
n);

K = H(nj(gki−1ki) + (n − 1)pk2
i + (n − 2)pk2

i+1 + ... + pk2
i−2).

: (T, K)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Proof. Suppose there is a distinguisher D for SI-DDH problem using algorihtm
A. On the input (ga, gb, gc) as defined in SIDH, it generates a pair (T,K) accord-
ing to the below distribution Dist’ and then outputs what A outputs.

Dist’ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

;

pk1
1 = ga, pk1

2 = gk2 , ..., pk1
n−1 = gkn−1 , pk1

n = gb,

KR
1 = KL

2 = j(gak2), KR
2 = KL

3 = j(gk2k3), ...,

KR
n−2 = KL

n−1 = j(gkn−2kn−1),

KR
n−1 = KL

n = j(gkn−1b), KR
n = KL

1 = j(gc);
pk2

1 = KR
1 − KL

1 , ..., pk2
n = KR

n − KL
n ;

T = (pk1
1 , ..., pk1

n; pk2
1 , ..., pk2

n);

K = H(nj(gki−1ki) + (n − 1)pk2
i + (n − 2)pk2

i+1 + ... + pk2
i−2).

: (T, K)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The distribution Real and the distribution {a, b ∈ Z�es
s

; (T,K) ← Dist’ :
(T,K)} are statistically equivalent if any ki is random. Furthermore, the distri-
bution Fake’ and the distribution {a, b ∈ Z�es

s
, c �= ab; (T,K) ← Dist’ : (T,K)}

are statistically equivalent except for a factor of 1
p . Hence, the two distributions

Real and Fake’ are statistically equivalent by the reduction of SI-DDH problem.
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Claim 2. For any algorithm A, we have |Pr[(T,K) ← Fake’ : A(T,K) = 1] −
Pr[(T,K) ← Fake : A(T,K) = 1]| ≤ (n − 1)AdvSIDDH

A + n−1
p .

Proof. The proof can imitate that of Claim 1, so we omit it here.

Claim 3. For any algorithm A, we have |Pr[(T,K0) ← Fake;K1 ← Fp2 ; b ←
{0, 1} : A(T,Kb) = b]| = 1

2 .

Proof. We can get nothing from the transcript T about the session key K =
H(j1,2 + ... + jn,1), since pk2

1 + pk2
2 + ... + pk2

n = 0. Hence the probability
|Pr[(T,K0) ← Fake;K1 ← Fp2 ; b ← {0, 1} : A(T,Kb) = b]| = 1

2 .

Now AdvGKEA = |2 Pr [A wins] − 1| = 2|Pr[(T,K0) ← Real,K1 ← Fp2 , b ←
{0, 1} : A(T,Kb) = b] − 1

2 | = 2|Pr[(T,K0) ← Real,K1 ← Fp2 , b ← {0, 1} :
A(T,Kb) = b] − Pr[(T,K0) ← Fake,K1 ← Fp2 , b ← {0, 1} : A(T,Kb) = b]|. Sum
up the above claims, we can obtain AdvGKEA ≤ 2nAdvSIDDH

A + 2n
p .

For qE times of query, the proceeding is in the similar way. Hence,
AdvGKEA (qE) = 2|Pr[(T,K0) ← Real,K ← Fp2 , b ← {0, 1} : A(T,Kb) = b] −
Pr[(T,K0) ← Fake,K ← Fp2 , b ← {0, 1} : A(T,Kb) = b]| ≤ 2nAdvSIDDH

A + 2nqE

p .

3.2 Improved SIBDII Protocol

Since the BD protocol has high communication overhead, so we consider BDII
protocol, which is rather akin to a tree structure and needs O(log n) commu-
nication and computation complexity per user in the multicast version. So we
give an optimized SIDH version of the BDII scheme. The n users are indexed
by 1, 2, ..., n with n even and their places in the binary tree automatically deter-
mined by their indexes are illustrated in Fig. 1.

U1 U2

U3 U4 U5 U6

U7 U8 U9 U10 U11 U12 U13 U14

...
...

...
...

...
...

...
...

Fig. 1. The Binary tree in BDII scheme

We can find the user Ui is at level �log2(i + 1)� in the ordered tree. Let
parent(i), lchild(i) and rchild(i) be the indexes of the parent, the left child and
the right child of Ui, respectively. U1 and U2 consider their respective opposite
as parent, which insures all but the leaves of the binary tree each have one
parent and two children. Let ancestors(i) be the set of indexes of all ancestors
of Ui, including i but excluding 1 and 2. To make the computations of Ui and
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Uparent(i) are in different subgroups of the public elliptic curve, we set s(1) = 0
and s

�= s(i) = s(parent(i)) + 1 (mod 2), which denote the indexes of the two
subgroups. And the public parameters are also the same as those in SIDH.

Round 1. Each user Ui randomly chooses ki ∈ Z�es
s

and computes Ri = Ps +
kiQs. User Ui computes the isogeny φi : E → Ei = E/〈Ri〉. Then it sets sk1

i = ki

and broadcasts pk1
i = (Ei, φi(P1−s), φi(Q1−s)) to its parent and children.

Round 2. User Ui takes the keys pk1
parent(i), pk1

lchild(i)
, pk1

rchild(i)
and sk1

i to
execute
SIDH key exchange and obtain KP

i = jparent(i),i = Eparent(i)/〈φparent(i)(Ps) +
kiφparent(i)(Qs)〉, KL

i = ji,lchild(i) = Elchild(i)/〈φlchild(i)(Ps) + kiφlchild(i)(Qs)〉,
and KR

i = ji,rchild(i) = Erchild(i)/〈φrchild(i)(Ps) + kiφrchild(i)(Qs)〉. Then it com-
putes and multicasts pk2

i to its descendants, where pk2
i = (ulchild(i), urchild(i)) =

(jparent(i),i − ji,lchild(i), jparent(i),i − ji,rchild(i)).

Key Computation. Each user Ui uses the hash function H : {0, 1}∗ →
{0, 1}λ, where λ is the security parameter, and computes its session key Ki =
H(jparent(i),i +

∑

m∈ancestors(i)

Xm), where Xm = jparent(parent(m)),parent(m) −
jparent(m),m.

It can be easily verified that Ki = H(j1,2) = K for all i.

Theorem 2. Under the SI-DDH assumption, the improved SIBDII GKE proto-
col is secure against passive adversary in the random oracle model and achieves
forward secrecy. Precisely, if there are n users and the adversary A activates at
most k sessions, the GKE protocol satisfies AdvGKEA (qE) ≤ k(n − 1)AdvSIDDH

A .

Proof. Suppose that there is an adversary A for the improved SIBDII GKE
protocol. Then we construct an algorithm D to solve the SI-DDH problem with
non-negligible advantage. Since there is no long-term secret key, Corrupt query
can be ignored by A. So this protocol obviously achieves forward secrecy. A can
query Execute, RevealKey and Test oracles. Suppose T = (pk1

i , pk2
i ) is a transcript

of an execution of the GKE protocol and K is the resulting session key. We still
define two distributions Real and Fake, where Real is just the original protocol
while Fake represents that all the pk2

i are uniformly chosen from (Fp2)2. We write
gki

�= (Ei, φi(P1−s), φi(Q1−s)), where φi : E → Ei = E/〈Ps + kiQs〉.

Real =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ;

KP
1 = KP

2 = j(gk1k2), and for 3 ≤ i ≤ n
2

− 1

KL
i = KP

2i+1 = j(gkik2i+1), KR
i = KP

2i+2 = j(gkik2i+2),
pk2

1 = (KP
1 − KL

1 , KP
1 − KR

1 ), ..., pk2
n = (KP

n − KL
n , KP

n − KR
n );

T = (pk1
1 , ..., pk1

n; pk2
1 , ..., pk2

n);
K = H(KP

i +
∑

m∈ancestors(i)(K
P
parent(m) − KP

m)).

: (T, K)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

Fake =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ;

KP
1 = KP

2 = j(gs1s2 ), and for 3 ≤ i ≤ n
2 − 1 :

KL
i = KP

2i+1 = j(gsis2i+1 ), KR
i = KP

2i+2 = j(gsis2i+2 ), s1, · · · , sn ∈ Z�
es
s

;

pk2
1 = (KP

1 − KL
1 , KP

1 − KR
1 ), ..., pk2

n = (KP
n − KL

n , KP
n − KR

n );

T = (pk1
1, ..., pk1

n; pk2
1, ..., pk2

n);

K = H(KP
i +

∑
m∈ancestors(i)(K

P
parent(m) − KP

m)).

: (T, K)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.
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We use hybrid technique to compute |Pr[(T,K0) ← Real,K1 ← Fp2 , b ←
{0, 1} : A(T,Kb) = b] − Pr[(T,K0) ← Fake,K1 ← Fp2 , b ← {0, 1} : A(T,Kb) =
b]|. So we define the distribution Fake1 as follows.

Fake1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1, ..., kn ∈ Z�
es
s

; pk1
1 = gk1 , ..., pk1

n = gkn ;

KP
1 = KP

2 = j(gs1s2), s1, · · · , sn ∈ Z�
es
s

;
for 3 ≤ i ≤ n

2
− 1 :

KL
i = KP

2i+1 = j(gkik2i+1), KR
i = KP

2i+2 = j(gkik2i+2);
pk2

1 = (KP
1 − KL

1 , KP
1 − KR

1 ), ..., pk2
n = (KP

n − KL
n , KP

n − KR
n );

T = (pk1
1 , ..., pk1

n; pk2
1, ..., pk2

n);
K = H(KP

i +
∑

m∈ancestors(i)(K
P
parent(m) − KP

m)).

: (T, K)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Claim 1. For any algorithm A, we have |Pr[(T,K0) ← Fake;K1 ← Fp2 ; b ←
{0, 1} : A(T,Kb) = b]| = 1

2 .

Claim 2. For any algorithm A′, we have |Pr[(T,K) ← Real : A′(T,K) = 1] −
Pr[(T,K) ← Fake1 : A′(T,K) = 1]| = k

2Adv
SIDDH
A , where k is an upper bound on

the number of sessions activated by the adversary.

Proof. We have 1
k chance that the session actually matches. We now build D

to solve SIDDH in Algorithm 1 and get the final advantage of it is AdvSIDDH
A =

AdvA′
k = 2|Pr[(T,K)←Real:A′(T,K)=1]−Pr[(T,K)←Fake1:A′(T,K)=1]|

k .

Algorithm 1. SIDDH distinguisher D
Input: E1, E2, φ1(P1), φ1(Q1), φ2(P0), φ2(Q0), E

′

Output: d
1: Invoke A′ and simulate protocol to A′, except for the test session;
2: Simulate the Round 1; Set KP

1 = KP
2 = j(E′) and compute pk2

i as in Round 2;
3: if the selected section is the test session then
4: d ← A’s output.

5: else d
R← {0, 1}.

6: end if

Claim 3. For any algorithm A, we have |Pr[(T,K) ← Fake : A′(T,K) = 1] −
Pr[(T,K) ← Fake1 : A′(T,K) = 1]| = k(n − 3

2 )AdvSIDDH
A .

So AdvGKEA = |2 Pr [A wins] − 1| = 2|Pr[(T,K0) ← Real,K1 ← Fp2 , b ←
{0, 1} : A(T,Kb) = b] − 1

2 | = 2|Pr[(T,K0) ← Real,K1 ← Fp2 , b ← {0, 1} :
A(T,Kb) = b] − Pr[(T,K0) ← Fake,K1 ← Fp2 , b ← {0, 1} : A(T,Kb) = b]| ≤
k(n − 1)AdvSIDDH

A .

4 Authenticated Group Key Exchange

According to the improved SIBD protocol (Sect. 3.1), we propose an AGKE
protocol that is secure in eGBG model.
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These public parameters are the same as the protocol in Sect. 3.1, except
that there are two additional hash functions H1 : {0, 1}∗ → Z�es

s
and

H2 : {0, 1}∗ → {0, 1}λ, where λ is the security parameter. We write gai
�=

(Ei, φi(P1−s), φi(Q1−s)), where φi : E → Ei = E/〈Ps + aiQs〉 (Sect. 2.1).

Key Generation: For each user Ui, it chooses ski = ai ∈ Z�es
s

and computes
pki = gai , where s = i (mod 2). Also, each user needs to generate the verifica-
tion/signing keys (pk′

i, sk
′
i).

Round 1. 1. Each user Ui randomly chooses ki ∈ Z�es
s

, computes k′i = H1(ski, ki)
and then computes Yi = gk

′
i . After obtaining Yi, user Ui destroys k′i.

2. Each user Ui sets M1
i = Yi||pid. Then Ui computes a signature σ1

i =
Sign(sk′

i,M
1
i ).

3. Each user Ui broadcasts M1
i ||σ1

i to Ui−1 and Ui+1.

Round 2. 1. Each user Ui checks the signatures of Ui−1 and Ui+1 by the ver-
ification algorithm using the verification keys pk′

i−1 and pk′
i+1. If it fails, then

abort. Else, each user Ui computes tLi = H2(ji−1,i) and tRi = H2(ji,i+1) where
ji−1,i and ji,i+1 represent the j-invariants of Y

k′
i

i−1 and Y
k′
i

i+1, respectively. Then
set Ti = tLi ⊕ tRi .
2. Each user Ui chooses xi ∈ {0, 1}λ and set M2

i = Ti||xi except Un. Un com-
putes maskn = xn ⊕ tRn and H2(xn) and then sets M2

n = maskn||Tn||H2(xn).
After that, tLi , tRi and xn will be destroyed.
3. Ui computes a signature σ2

i = Sign(sk′
i,M

2
i ) and broadcasts M2

i ||σ2
i .

Key Computation
1. Ui verifies all the incoming signatures σ2

j and checks whether T1⊕ ...⊕Tn = 0.
2. Each Ui recomputes k′i = H1(ski, ki) and tLi = H2(ji−1,i), extracts xn =
maskn ⊕ T1 ⊕ ... ⊕ Ti−1 ⊕ tLi , and then checks H2(xn). If all the above checks
pass, then set sid = H2(pid||x1||...||xn−1||H2(xn)).
3. Each Ui computes the session key SK = H(sid||x1||...||xn).

Remark 1: In Round 1, each Ui doesn’t broadcasts its message and signature
to to any other user. This can reduce much communication.

Remark 2: The signature scheme used in the above protocol can be any post-
quantum signature, not essentially these isogeny-based signatures, since these
signatures on supersingular isogeny are impractical at present [12].

Theorem 3. Suppose that H1,H2 and H are random oracles and the signature
scheme used in AGKE protocol is UF-CMA secure. Under the SI-CDH assump-
tion, the AGKE protocol is eGBG secure in the random oracle model. Precisely,
if there are n users and for any PPT adversary A against AGKE, there exists B
s.t. AdvAGKEA ≤ 2n2 ·AdvSig+

q2
H1√
p +

q2
H2
2λ + q2

H

2λ + q2
S

2λ−1 + qH

2λ−1 +nqH2 ·AdvSICDH
B , where

n is the number of users, qH1 , qH2 , qH are the number of hash oracle queries to
H1,H2,H, respectively, and qS is the number of queries to Send oracle. And
AdvSig denotes the advantage against the UF-CMA security of the signature.
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Proof. We refer the readers to Sect. 2.3 for the definition of eGBG secure. For
each game Gi, we define Succi as the adversary wins the game.

Game 0: This game corresponds to the real execution, where we do not modify
any simulation of the oracles. Hence, AdvAGKEA ≤ |2Pr[Succ0] − 1|.
Game 1: In this game, the event Forge happens when the adversary A succeeds
in forging an authenticated message Mi||σi for user Ui, where Mi was not out-
puted by any Ui’s instance and Corrupt has not been queried. The probability of
A outputting a valid forgery on behalf of the target party is ≥ 1

n and probability
of not getting the long-term key of the target party is ≥ 1

n , hence using A we can
defeat the existential unforgeability of the underlying signature with probability
AdvSig ≥ 1

n2 Pr[Forge]. Then we have |Pr[Succ1] − Pr[Succ0]| ≤ Pr[Forge] ≤
n2 · AdvSig.

Game 2: This game is the same as Game 1 except that Collision occurs when the
random oracles produce a collision. We denote qH1 , qH2 and qH as the numbers
of hash oracle queries to H1,H2 and H, respectively. According to the birthday
paradox, we can get the probability of collisions of H1,H2 and H oracles. Hence,

|Pr[Succ2] − Pr[Succ1] ≤ Pr[Collision]| ≤ q2H1

2
√

p
+

q2H2

2λ+1
+

q2H
2λ+1

.

where p is the prime of the finite field Fp2 and λ is the security parameter.

Game 3: This game is the same as Game 2 except that Repeat occurs when
different users choose the same random values xi. We denote qS as the number of
queries to the Send oracle. Hence, |Pr[Succ3] − Pr[Succ2]| ≤ Pr[Repeat] ≤ q2

S

2λ .

Game 4: This game differs from the previous game by the different answers to
the Send queries during the Test session.

The SI-CDH solver B obtains the tuple (g, ga, gb) and randomly chooses a
party Ui. When the Send query is asked, B sets A = Yi−1 and B = Yi and returns
A,B to Ui. Since the eGBG model only allows the adversary to reveal the long-
term secret ski or the ephemeral key ki, but not both ski and ki simultaneously.
However, we set k′i = H1(ski, ki) and compute Yi with k′i. So the SI-CDH solver
simulates all oracle queries without knowing a = k′i and b = k′i−1.

If the adversary A successfully obtained the session key, then A must know
xn and tLi = H2(ji−1,i) where ji−1,i represents Y

k′
i

i−1 or Y
k′
i−1

i . So the only way

for A to get tLi is to ask a hash query with Y
k′
i

i−1 or Y
k′
i−1

i to H2. Then we can
solve the SI-CDH problem with the advantage AdvSICDH

B in polynomial time.
Hence, according to the above analysis, we have |Pr[Succ4] − Pr[Succ3]| ≤

n · qH2 · AdvSICDH
B .

Game 5: The difference between this game and Game 4 is that the test ses-
sion aborts if the adversary A issues a query to H with sid||x1||...||xn. Since
the adversary A does not obtain anything about kn, then A guesses it with a
probability of 1

2λ . Hence, |Pr[Succ5] − Pr[Succ4]| ≤ qH

2λ , where Pr[Succ5] = 1
2 .

The theorem is proven by summing them up.
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Theorem 4. Suppose that H1,H2,H are random oracles and the signature
scheme used in AGKE proto3col is UF-CMA secure. Ama is an adversary that
can perform all the queries in Sect. 2.3. Then the AGKE protocol provides mutual

authentication security. Precisely, AdvAGKEAma
≤ n2 ·AdvSig+

q2
H1

2
√

p +
q2

H2
2λ+1 + q2

H

2λ+1 + q2
S

2λ ,

where n, qH1 , qH2 , qH , qS ,AdvSig are the same as those in Theorem 3.

Proof. We still define Succi as the adversary wins the game.

Game 0: This game corresponds to the real execution, where we do not modify
any simulation of the oracles. Hence, AdvAGKEAma

= Pr[Succ0].

Game 1, 2, 3 are same with those in the proof of Theorem 3.
If Game 3 does not abort, then all the honest users can compute the same

key. Hence Pr[Succ3] = 0. Sum up the probabilities from Game 0 to Game 3,
we can prove Theorem 4.

Theorem 5. Suppose that H1,H2,H are random oracles and the signature
scheme used in AGKE protocol is UF-CMA secure. Acon is an adversary that can
perform all the queries in Sect. 2.3. Then the AGKE protocol provides contribu-

tiveness security. Precisely, AdvAGKEAcon
≤ q2

H2
2λ+1 + q2

H

2λ+1 + q2
S

2λ , where n, qH1 , qH2 , qH ,
is the number of users, qH1 , qH2 , qH , qS are the same as those in Theorem 3.

Proof. We give a proof following the proofs of Theorem 3 and Theorem 4.

Game 0: This game is the real execution. Hence, AdvAGKEAma
= Pr[Succ0].

Game 1: This game is the case that Repeat occurs. We simulate all oracles
in Game 1 except that we half all executions in which Repeat occurs. Hence,
|Pr[Succ1] − Pr[Succ0]| ≤ Pr[Repeat] ≤ q2

S

2λ .

Game 2: This game is the case that Collision for input xn happens. Then we

have |Pr[Succ2] − Pr[Succ1]| ≤ Pr[Collision] ≤ q2
H2

2λ+1 .

Game 3: This game is the case that Collision for input (sid||x1||...||xn) occurs.
Consequently, |Pr[Succ3] − Pr[Succ2]| ≤ Pr[Collision] ≤ q2

H

2λ+1 .
Then sum them up, we get the result.

5 Complexity Analysis

We first give an analysis about our first GKE scheme. We change the tradi-
tional way to compute the session key by using addition (subtraction), which
has a more obvious practical benefit than multiplication (inverse) in finite field
computation. In [16], their SIBD scheme needs to compute a maximum of n2+n

2
multiplications. However, in our scheme in Sect. 3.1, we only need around (n−1)
multiplications and n additions. For easier comparison, we set the square oper-
ation as multiplication here. For our second GKE scheme, it is a trivial general-
ization of BDII protocol, which is tree-based and has computational complexity



Group Key Exchange Protocols from Supersingular Isogenies 171

Table 1. Comparison of GKE and AGKE protocols on supersingular isogenies.

Scheme Rd Com Cost Assum Sec Auth

SIBD [16] 2 (48n − 48)λ 3Iso + n2+n
2 M SI-DDH BCPQ No

First GKE 2 (12n + 60)λ 3Iso + (n − 1)M + nA SI-DDH BCPQ No

Second GKE 2 (12	log2(n + 1)
 + 96)λ 4Iso + (	log2(i + 1)
 + 1)A SI-DDH BCPQ No

AJJ19 [2] 2 O(n2λ) (n − 1)Iso + n(n − 1)Point SI-DDH CK Yes

Sect. 4 2 O(nλ) 4Iso + 2Sign + (n + 1)Ver SI-CDH eGBG Yes

O(log n). The communication efficiency of a GKE protocol can be measured by
the number of rounds it takes to complete the total protocol and the size of the
messages exchanged by any user. If we require λ bits of quantum security and
adopt the parameters chosen in [9] which are considered the most efficient, then
the prime is of bit-length 6λ. Each field element needs 12λ since the curve is
defined over Fp2 . Then one curve and one point both require 12λ bits.

For our AGKE scheme, it has two rounds. During the whole process, any
single user has to compute four isogenies (1 in Round 1, 2 in Round 2 and 1
in Key Computation), two signatures and (n + 1) verifications. The number of
isogeny computation is much smaller than that of [2] where each user computes
n − 1 isogenies and (n − 1)n image points.

In the following table, Rd denotes the number of communication round.
Com is the total communication size. Cost is the computation cost for each
user Ui. Assum is the assumptions. Sec is the security model. Auth denotes if
the scheme provides authentication. λ is the security parameter. Iso means the
cost to compute an isogeny. M and A mean one multiplication and one addition in
Fp2 , respectively. Point means the computation of the image point by an isogeny.
Sign and Ver are the cost of one signature and verification algorithm.

6 Conclusion

In this paper, we present two improved GKE protocols of BD and BDII style
by using SIDH as the underline two-party key exchange. We show our schemes
have optimal performance and satisfy quantum security through a reduction
to SI-DDH assumption. We then propose a AGKE protocol under the SI-CDH
assumption with a formal security proof. To show our schemes are more practical
and have stronger security, we also give comparison among the existed protocols.
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Abstract. Because of billions of users, the social network is the best
choice for person who has an urgent task which needs enough people
to participant or that only a few people are able to solve. Inspired by
incentive mechanisms for retrieving information from networked agents
and motivating the participation of people in crowdsourcing or human
tasking systems, we design a paid message forwarding scheme based on
social network so that the task will be known to capable persons in a
short time. In our scheme, each participant helps solving the task directly
or forwards the message he has received. Both kinds of contribution will
bring a reward. Additionally, we use Elliptic Curve Digital Signature
Algorithm to make the real contribution of participants known to who
will pay the reward. Our scheme is shown sybil-proof, incentive com-
patible, efficient and is proved secure with the assumption that Elliptic
Curve Digital Signature Algorithm is safe.

Keywords: Mechanism design · Incentive tree · Sybil attack ·
Signature algorithm

1 Introduction

The emergence of the Internet has changed the way of information transmission.
Billions of social network users make it possible that a message is read by millions
of people in a short time. As a result, if person has a task which needs enough
people to participant or that only a few people are able to solve, he can ask for
help through the social network and of course he is willing to pay for correct
responses. The challenge is how to spread the task quickly and accurately with
the reward paid according to the real contribution.

One solution is to design an incentive mechanism that encourages each social
network user to forward messages about the task to his friends and gives a reward
even if he isn’t the right person the task is looking for.

A common type of incentive mechanisms for raising user participation in
such systems are Incentive Trees. Incentive Trees are referral-based mechanisms
in which (1) each participant is rewarded for contributing to the system, and
(2) a participant that has already joined the system can make referrals, and
c© Springer Nature Switzerland AG 2021
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thereby solicit new participants to also join the system and contribute to it. The
mechanism incentivizes such solicitations by making a solicitor’s reward depend
on the contributions (and recursively also on their further solicitations, etc.)
made by such solicitees. Incentive Trees have been widely used in a variety of
domains and under different names, e.g., in referral trees, multi-level marketing
schemes, affiliate marketing or even in the form of the infamous illegal Pyramid
Schemes. The question of how people can be incentivized using Incentive Trees
to participate in crowdsourcing or network-effect systems is starting from the
work on Lottery Trees [6], and most prominently through the work by the MIT
team on the Red Balloon Challenge [12], which has attracted significant interest
from the research community [3,7].

However, few incentive mechanisms have ever discussed the condition that
the contribution of a participant p is falsely claimed by another one between p
and the root. The root may be cheated by participants. On the other hand, the
root may refuse to pay the reward after his task is solved.

In this paper, we construct a paid message forwarding scheme. First, we use
elliptic curve digital signature algorithm [8] to build a message forward scheme
to make the participants obey the roles. Second, we design a reward distribution
mechanism which is an incentive tree and where a node will get fix-split rewards
of its children as commission. Third, we prove the paid message forwarding
scheme is secure assuming ECDSA is safe.

In our model, the following principles are taken into account:

– Rational: All participants should be rational and they will involve in our mes-
sage forward process for more rewards rather than breaking roles to deprive
the source of help.

– Sybil-Proofness: Nodes involved in message forward process will be known
to the source and rewarded. Intuitively, a greedy node may make multiple
false-names (Sybil attack [5]) before sending to his friends. It should make a
clever design to prevent nodes from deviating from honest operations.

– Fairness: A node will get a reward that matches his contributions. To make
our scheme fair, the contributions of each node should be truly delivered to
the source and the source distributes rewards according to commitments.

– Entirety: The rewards are originally from the source node, thus we hope
that it is the source node who sets the method of reward allocation. For each
node, he does not have a lot of knowledge of the underlying network. It is
better to avoid using many parameters of network property in the design of
reward allocation function.

– Efficiency: The source should quickly know all the nodes that help trans-
ferring the message on finding one of the target nodes. Besides, if there exist
lots of target nodes, the source should complete the reward allocation process
within acceptable time.

Related Work. The related works about incentive mechanism can be divided
into three parts according to the description about social network.
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Tree Model. The work by Douceur and Moscibroda on Lottery Trees [6] aims at
motivating people to participate in networked systems and bootstrapping such
systems by network effect. The paper addresses the following question: Assuming
that some system organizer is willing to spend a fixed amount of money incen-
tivizing people to do a specific type of work, how should the system be organized
to maximize the resulting work? The authors propose Lottery Trees, formalize a
set of desirable properties, prove impossibility results, and devise two nontrivial
mechanisms, one of which achieves near-optimality in terms of achieved desir-
able properties. In the work by Yuezhou Lv and Thomas Moscibroda [10,11],
they study Incentive Trees for motivating the participation of people in crowd-
sourcing or human tasking and define a set of basic, desirable properties which
ideally an Incentive Tree Mechanism should satisfy.

Branching Process Model. The model of branching process in P2P network was
introduced to analyze query incentive network [9], where they considered a simple
branching process in a tree. Cebrian et al. [3] studied the Red Balloon Challenge
[12] with split contracts and showed that in contrast to fixed-payment contracts,
split contracts are robust to nodes’ selfishness. In the above-mentioned works,
Sybil-proofness was not explicitly explored. Chen et al. [4] proposed a family of
mechanisms for query incentive network, called the direct referral (DR) mecha-
nisms, which allocate most reward to the information holder as well as its direct
parent (or direct referral). It was shown that, when designed properly, the direct
referral mechanism is Sybil-proof and efficient.

Other Models. In addition to above two models, there has recently been many
other works on incentive systems. For example, the Bitcoin system by Babaioff
et al. [1] studies a problem similar to multi-level marketing. It uses a game-
theoretic solution concept to study a problem in which agents are incentivized to
forward sensitive information in such a way that the overall system performance
is maximized.

Organization. The rest of the paper is organized as follows: We have shown
necessary knowledge about Elliptic Curves digital signature algorithm in Sect. 2.
Section 3 gives the definition of Message Path Tree. We have given the message
forward model in Sect. 4 and the reward distribution mechanism in Sect. 5. The
analysis of our construction is given in Sect. 6.

2 Background

Definition 1 (Elliptic Curves EC). Let Fp be a finite field, where p is any
prime. The elliptic curve over Fp is described as

E : y2 = x3 + Ax + B,

where A and B are constants, belonging to Fp, such that 4A3 + 27B2 �= 0. For
all x, y ∈ Fp there are finitely many pair of points on E, which have coordinates
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in Fp. We use E(Fp) to represent the elliptic curve E over Fp. In the set E(Fp)
we always include the point at infinity,which is donated as O. The set E(Fp) is
written as

E(Fp) = {(x, y) ∈ Fp × Fp|y2 = x3 + Ax + B} ∪ {O}.

Addition Formula of Elliptic Curves. Let P and Q be two distinct points
on an elliptic curve E. The sum of P and Q denoted R = P + Q is defined
as follows. First draw the line through P and Q; this line intersects the elliptic
curve in a third point. Then R is the reflection of this point in the x-axis.

Usually, we use a set of EC domain parameters D = (Ep(a, b), G, n) with the
following conditions:

– Ep(a, b) refers to the EC E(Fp) = {(x, y) ∈ Fp × Fp|y2 = x3 + ax + b} ∪ {O}.
– G ∈ Ep(a, b) and G �= O.
– p is an odd prime.
– n is prime and nG = O.

Definition 2 (Elliptic Curve Digital Signature Algorithm ECDSA).
Given a particular set of EC domain parameters D = (Ep(a, b), G, n) and a hash
function H, an Elliptic Curve Digital Signature Algorithm ECDSA consists of
three algorithm: KeyGen, Sign and V erify.

– KeyGen(λ) → (PP, V K, SK). This algorithm takes security parameter λ as
input. An entity A runs KeyGen and generates a public parameter PP =
(D,H), public key V K and private key SK. The key pair is published as
following:
1. Select a random integer d in the interval [1, n − 1].
2. Compute Q = dG.
3. (V K,SK) = (Q, d).

– Sign(M,PP, SK) → (σ). This algorithm takes as input a message M , public
parameter PP and private key SK. A runs Sign and generates a signature
σ as:
1. Select a random integer k, 1 ≤ k ≤ n − 1.
2. Compute kG = (x1, y1) and r = x1 mod n. If r = 0 then go to step 1.
3. Compute k−1 mod n.
4. Compute e = H(M).
5. Compute s = k−1(e + dr) mod n. If s = 0 then go to step 1.
6. σ = (r, s).

– V erify(σ,M,PP, V K) → {0, 1}. This algorithm takes as input a signature
σ = (r, s), a message M , the public parameter PP and the public key V K.
Any verifier runs V erify to check whether σ is a valid signature on M .
1. Verify that r and s are integers in the interval [1, n − 1].
2. Compute e = H(M).
3. Compute w = s−1 mod n.
4. Compute u1 = ew mod n and u2 = rw mod n.
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5. Compute X = u1G + u2Q. If X = O, then reject the signature. Other-
wise,compute v = x1 mod n where X = (x1, y1).

6. Accept σ if and only if v = r.

Definition 3 (Elliptic Curve Discrete Logarithm Problem ECDLP).
The elliptic curve discrete logarithm problem (ECDLP) is the following: given
an elliptic curve E defined over a finite field Fq, a point P ∈ E(Fq) of order n,
and a point Q = lp where 0 ≤ l ≤ n − 1, determine l.

Slight variants of ECDSA have been proven existentially unforgeable against
chosen-message attack) by Pointcheval and Stern [13] under the assumptions
that the ECDLP is hard and that the hash function employed is a random
function.

Theorem 1. ECDSA is safe under the assumptions that the ECDLP is hard
and that the hash function employed is a random function.

3 Model

3.1 Task

As briefly introduced in Sect. 1, the goal of a paid message forwarding scheme
is to finish a task. In our scheme, two types of tasks can be finished. One is a
difficult question only a few people know the answer, such as missing persons
column. Another one is a work that needs a large number of people involved,
such as crowd sensing. In both types, the task owner needs to spread a message
to a significant number of people.

3.2 Social Network User

The participation of a great quantity of social network users is the key point of
our scheme. In our scheme, we use different symbols to represent users: Source
(S) is the owner of task who will start the process of paid message forwarding. U
is the set of all social network users except S. B is the set of users who are able to
finish part of task by themselves. Then we define that C = {u|u ∈ U and u /∈ B}.
C is the set of uses who just help forward message.

3.3 Message Path Tree

Definition 4 (Message Path Tree). Messages are forwarded from one user to
another in the social network for many times. For convenience, we assume that
a user can not receive message from different ones. Then, the paths of messages
eventually form a tree rooted at Source. We defined the result of our scheme in
the social network as a Message Path Tree (MPT).
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Each participant who joins a MPT is represented as a tree node, and a
directed edge from a node u to node v indicates that u has forwarded the message
to v. Let Tr denote a tree rooted at node r. Formally, we represent a tree T as
a set containing nodes n and ordered nodepairs (p, c) that indicate parent-child
edges. This representation allows trees to be partially ordered using subset and
superset relations. Standard tree properties are assumed to hold.

The following operators on trees are used in the paper: Sub(T, u) is the
subtree of T rooted at node u; Child(T, n) indicates the set of node n’s children
in T ; Height(T, n) is the number of edges on the path from node n to the root
of tree T .

Besides, we need some other parameters in the rewarding scheme: Type(T, n)
describe the class of node n,

Type(T, n) =
{

1 if n ∈ B
0 if n ∈ C

(1)

A crucial ingredient of MPT is that every participant has a certain amount
of measurable contribution. Formally, we model this contribution using a contri-
bution function C(T, n) that maps each node n to the non-negative sum of its
accumulated contribution; larger values of C(T, n) indicate greater contributions
in the process of message forwarding.

In the sections below, we may have two MPTs (T and T ′) at the same time.
For convenience, we will use Type(n) to represent Type(T, n) while Type′(n) to
represent Type(T ′, n).

4 Message Forwarding

In this section, we describe the process of generating a MPT. When designing
message forwarding model, we use ECDSA to make our scheme fair to everyone.

4.1 Forward Strategy

Forward strategy describes what to do for each kind of participants. And the
whole process of message forwarding is as following:

1. S announces the message forwarding mechanism, which stipulates rules for
period of validity and rewarding the involved agents.

2. S sends the message along with the verification information to his friend.
3. Each node (agent), when receiving the message and tempted by rewards, will

continue to forward the message.
4. If a B class node receive the message, he can also send extra special infor-

mation while helping solving the task of S for more rewards besides Step
(3).

5. After a period of time announced in Step (1), S refuses to accept information
and thus ends the process of forwarding.
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6. S generates a MPT according to all the information he has received from B
nodes.

7. S pays the involved nodes according to the MPT.

One significant difference between our model and the previous works is that
a B class node will directly submit an answer to S instead of reporting along
the opposite direction of message propagation. And S can learn about the real
message path from B.

4.2 Message Forwarding Scheme

In this subsection, we will give a detailed description about our Message Forward-
ing Scheme. Three parts are included in the whole scheme: SETUP , F (orward)
and V ERIFY . The Source run SETUP and starts the whole scheme. Both B
and C class nodes can run F and transmit messages to their friends. While,
V ERIFY needs the participation of Source and a B class node. The scheme
may come to an end after a period t set by Source or when the task is solved.

– SETUP (M,λ) → (PP, PK, SK, IDC0, SigC0). The algorithm takes as input
the security parameter λ and message M which S wants to be forwarded.
S runs SETUP and outputs PP = (D,H,M), PK = d and SK = v0,
where d and v0 are random integers in the interval [1, n − 1] and a validation
information v0. IDC is a chain of identity while SigC is a chain of signatures.
In SETUP , S set IDC0 = NULL and SigC0 = NULL.

– F (vh−1, IDCh−1, SigCh−1, PK, IDh) → (Vh, IDCh, SigCh). An agent Nh

with identity IDh and height h receives message (vh−1, IDCh−1, SigCh−1)
from his friend with (IDh−1, h − 1) or Source S. The process seems that Nh

is running ECDSP.Sign on message IDh with private key dvh−1. Agent Nh

does the following:
1. Compute vh = H(vh−1).
2. Select a random integer kh,1 ≤ kh ≤ n − 1.
3. Compute khG = (xh, yh) and rh = xh mod n. If rh = 0 then go to step

(1).
4. Compute (kh)−1 mod n.
5. Compute eh = H(IDh).
6. Compute sh = k−1

h (eh + dvh−1rh) mod n. If sh = 0 then go to step (1).
7. Nh’s signature is (rh, sh).
8. Compute IDCh = IDCh−1 ∪ {IDh}.
9. Compute SigCh = SigCh−1 ∪ {(rh, sh)}.

10. Nh with identity IDh sends message (vh, IDCh, SigCh) to one of the
friends with identity IDh+1 or transmits to S.

– V ERIFY (IDCx, SigCx, PK, SK) → accept/reject. The B Class node IDx

with height x submits message (IDCx, SigCx) and S will verify the mes-
sage (Algorithm 1). The message (IDh, Sigh = (rh, sh)) will be split from
(IDCx, SigCx) and verified by S as ECDSA.V erify with key dvh−1G:
1. Verify that rh and sh are integers in the interval [1, n − 1].
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2. Compute eh = H(IDh).
3. Compute wh = s−1

h mod n.
4. Compute uh,1 = ehwh mod n and uh,2 = rhwh mod n.
5. Compute Qh = dvh−1G.
6. Compute Ph = uh,1G + uh,2Q. If Ph = O, then reject the signature.

Otherwise,compute vh = xh mod n where Ph = (xh, yh).
7. Accept the signature if and only if vh = rh.

If all the messages (IDh, Sigh) for 1 ≤ h ≤ x are accepted, the message
submitted by IDx is valid and S will update the MPT according to IDC.

Algorithm 1. VERIFY Function
Input: Public parameter PP = (D,H,M) PK=(d); Secret parameter SK=(v0); Sub-

mitted message (IDCx, SigCx)
Output: accept or reject
1: function verify(i, vi−1, IDi, Sigi, SK)
2: Get (ri, si) from Sigi
3: if ri, si ∈ Z∗

n then
4: ei = H(IDi)
5: wi = s−1

i mod n
6: ui,1 = eiwi mod n
7: ui,2 = riwi mod n
8: Qi = (dvi−1)G
9: (xi, yi) = Pi = ui,1G + ui,2Q

10: if Pi �= O then
11: vi = xi mod n
12: if vi == ri then
13: return 1
14: end if
15: end if
16: end if
17: return 0
18: end function
19:
20: function V ERIFY (IDCx, SigCx, PK, SK)
21: Get x from IDCx

22: for i = 1 → x do
23: Get IDi from IDCx

24: Get Sigi = (ri, si) from SigCx

25: if verify(i, vi−1, IDi, Sigi, SK) == 0 then
26: return reject
27: else
28: vi = H(vi−1)
29: end if
30: end for
31: return accept
32: end function
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Proof. The correctness of function V ERIFY can be proved by the following
equation:

kh ≡ s−1
h (eh + dvh−1rh) ≡ s−1

h eh + s−1rh(dvh−1)
≡ wheh + whrh(dvh−1) ≡ uh,1 + uh,2(dvh−1) (mod n)

(2)

Thus uh,1G + uh,2Qh = (uh,1 + uh,2dvh−1)G = khG, and so vh = rh as
required.

5 Reward Distribution Mechanism

In our model, participants can contribute to the system by forwarding the mes-
sage to friends. A reward mechanism is a function that takes as input the MPT,
and computes for each n ∈ T a non-negative real reward, denoted by R(T, n).
Similar to conditions in Sect. 2, we use R(n) and R′(n) to represent R(T, n) and
R(T ′, n).

5.1 Desirable Properties

In this section, we define the set of desirable properties that our reward mecha-
nism should ideally satisfy. All these properties are inspired by related proper-
ties defined for Lottery Trees [6]; or for multi-level marketing [7]; and they are
adjusted appropriately to our MPT model with arbitrary contributions.

Task Solver Incentive (TSI). What S actually need is enough B class users
who are able to solve the task together. A reward mechanism satisfies TSI if it
provides more reward for a B class participant than a C class one (other con-
ditions remain the same). This encourages participants with ability to continue
contributing to the task. Formally, given a message path tree T and a C class
node n ∈ T . If n is replaced by a B class node n′ (T turns to T ′) and the type
of all other nodes v ∈ T\{u} remains the same, then R′(n′) > R(n).

Continuing Forwarding Incentive (CFI). A reward mechanism satisfies CFI
if every participant always has an incentive to forward the message and bring
new participants. Formally, given a message path tree T and a node n ∈ T . Then
a new node u is added to T (T becomes T ′) and node n is the parent node of
u in the new message path tree T ′. Then, the reward of n will increase because
R′(n) ≥ R(n).

Unbounded Reward Opportunity (URO). This property demands that
there should be no limit to the reward a participant can potentially receive, even
when his own contribution is fixed by constant. Formally, a reward mechanism
satisfies URO if for every positive real R, contribution C(n) and positive integer
k, there exist k trees T1,· · · , Tk attached to node n in message path tree such
that R(n) ≥ R.
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Unprofitable Sybil Attack (USA). This property is taken directly from [11],
and it captures the classic notion of Sybil resilience. The USA property imposes
that no participant can increase his profit purely by pretending to have multiple
identities: A reward mechanism satisfies USA if a participant cannot increase
his reward by creating a set of C class nodes as Sybil nodes and joining the
system. In other words, a participant who makes a certain contribution to the
system should never have a benefit of “splitting” himself and its contribution
up and making this contributions as two or more identities, even if these “Sybil
identities” join the tree as if referring themselves.

5.2 Reward Distribution Mechanism

In this subsection, we will construct a reward distribution mechanism (RDM)
which satisfies all properties defined above.

In our reward distribution mechanism, the reward of participant p will be
calculated according to p’s contribution to the system, which can be divided into
two parts: direct contribution and indirect contribution. Direct contribution is
whether p is in B class, while indirect contribution is how many B class nodes
there are in p’s subtree.

For node n, We define the reward from n’s direct contribution as DR(n) and
the reward from indirect contribution as IR(n). As a result, the total reward
R(n) = DR(n) + IR(n).

The idea about how to calculate indirect reward is inspired by the work of
MIT team on the Red Balloon Challenge [12]. One participant n forwards the
message, one friend u who has received this message will join the message path
tree as the child nodes of n. Then n will get β-split of u’s reward (0 < β < 1).
So in our construction, the indirect reward of n can be written as

IR(n) = β ·
∑

u∈Child(n)

R(u) = β ·
∑

u∈Child(n)

[DR(u) + IR(u)].

For example, Fig. 1 (left) is part of the whole message path tree, where node
n5 is in B class. In this situation, all ancestors of n5 will get more reward because
of n5. We use symbol r to indicate DR(n5), then the extra reward of other nodes
is shown in Fig. 1 (right).

To make our RDM satisfy the properties defined above, we define the height
of node n in message path tree as h(n) and set

DR(n) =
Type(n)

(1 + β)h(n)
.

Finally, we have

R(n) =
Type(n)

(1 + β)h(n)
+ β ·

∑
u∈Child(n)

R(u).
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Fig. 1. A simple situation to show the construction of reward

Lemma 1. RDM satisfies TSI.

Proof. Assume a node n interacts with Source and becomes a B class node
instead of being a C class node, while all other nodes in the message path tree
remain the same. Naturally, we know that indirect reward doesn’t change while
direct reward increases:

IR(n′) = IR(n)

and
DR(n′) − DR(n) =

1

(1 + β)h(n)
.

So, the total reward increases, too.

Lemma 2. RDM satisfies CFI.

Proof. Assume a node n forwards message to node u0 and becomes u0’s parent,
while all other nodes in the message path tree remain the same. Then the total
reward of n will increase (or remains the same) because

R(n′) − R(n) = β · R(u0) ≥ 0.

Lemma 3. RDM satisfies URO.

Proof. Given a positive real R, the reward of node n will be greater than R if
there exist k B class nodes in n’s child nodes and k > R

β .

Lemma 4. RDM satisfies USA
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Fig. 2. Participant p2 who has C class node n2 in Fig. 1 launches a Sybil Attack by
splitting n2 into n2,1 and n2,2

Proof. First, let’s consider a simple situation. In Fig. 1, a participant p2 owns
the node n2, and his extra reward from B class node n5 is R = β3 · r. Now, p2
has tried to launch a Sybil Attack by splitting n2 into n2,1 and n2,2, which is
shown in Fig. 2. The total reward of node n2,1 and n2,2 is R′ = β3 · r′ + β4 · r′.
The relation between R and R′ is

R′

R
=

(1 + β) · r′

r
.

According to the definition of direct reward,

r′

r
=

(1 + β)5

(1 + β)6
=

1
1 + β

.

Finally, we have R = R′. From this situation, we can know that by creating a
Sybil nodes, a participant cannot increase the indirect reward from other nodes
(not including the Sybil node).

Next, we consider another situation. In Fig. 1, a participant p5 owns the B
class node n5, and his reward from node n5 is R = r. Now, p5 has tried to launch
a Sybil Attack by splitting n5 into n5,1 and n5,2 so that p5 can create an extra
indirect reward from his own direct contribution, which is shown in Fig. 3. The
total reward of node n5,1 and n5,2 is R′ = r′ + β · r′. The relation between R
and R′ is

R′

R
=

(1 + β) · r′

r
.

According to the definition of direct reward,

r′

r
=

(1 + β)5

(1 + β)6
=

1
1 + β

.
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Fig. 3. Participant p5 who has B class node n5 in Fig. 1 launches a Sybil Attack by
splitting n5 into n5,1 and n5,2

Finally, we have R = R′. From this situation, we can know that by creating a
Sybil node, a participant cannot increase the reward from Sybil nodes.

In the above two situations, we have selected a chain from the whole message
path tree, and only the last node is in B class. In the message path tree, the
reward of a node comes from all the B class nodes in subtree. Though the real
case seems more complex, we can regard it as superimposition of chains. Besides,
if participant p launches a Sybil attack by creating x extra nodes(x > 0), it is the
same as that p creates one new node for x times. We can know p can’t increase
his total reward in each step. As a result, property USA is obeyed in our RDM.

6 Analysis

6.1 Security

Theorem 2. Let A be any adversary against our Paid Message Forwarding
Scheme. The following two situations cannot be held at the same time:

1. There exists an algorithm P , such that A can forge a valid message M ′ and
send it to his friends or S.

2. A will get more reward by send M ′.

Proof. To prove Theorem 2, we will discuss two situations separately in
Theorem 3 and 4.

Theorem 3. A can forge a valid message M ′ as if there are more participants
than reality and the reward of A won’t increase.
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Proof. Assume the height of A in MPT is L, A receives message
(vL−1, IDCL−1, SigCL−1) and ought to send (vL, IDCL, SigCL). As mentioned
in Sect. 4, the process of F (forward) seems a node with height L and identity
IDL signs the message IDL with private key dvL−1 and A can get any vL+k

from vL−1. As a result, A is able to construct (vL+k, IDCL+k, SigCL+k) with a
positive integer k ≥ 0 by the following steps:

1) F (vL, IDCL, SigCL, PK, ID1
A) → (vL+1, IDCL+1, SigCL+1)

2) F (vL+1, IDCL+1, SigCL+1, PK, ID2
A) → (vL+2, IDCL+2, SigCL+2)

k) F (vL+k−1, IDCL+k−1, SigCL+k−1, PK, IDk
A) → (vL+k, IDCL+k, SigCL+k)

In this situation, it is as if A launches a Sybil attack by creating k Sybil
nodes with identities (ID1

A, ID2
A, · · · , IDk

A). According to Lemma 4, A′s reward
doesn’t increase.

Theorem 4. It’s hard for A to forge a valid message as if the height of A in
MPT is smaller than reality under the assumptions that ECDSA is safe.

Proof. Assume that A can forge a valid message as if the height of A in MPT
is smaller than reality. A can’t know the value of vL−2 from vL−1 and the hash
function H, because of the assumption that H is a random function (Theorem 1).
So A isn’t able to reduce his height by legally running FORWARD function.

Then, A must forge a valid signature on IDL from the signature (rL−1, sL−1)
on IDL−1 with private key dvL−2 and public key G (A actually doesn’t know
QL−1 = dvL−2G). This process is harder than A breaks a ECDSA under a
chosen-message attack.

Different from ECDSA, the private parameter v0 is known to not only the
source but also the nodes at height 1. If the node of participant p is at height
1, he tends to keep v0 in secrete because there exists no extra reward for him.
As a result, if all the participants are rational, A can’t get vL−2 from nodes at
lower height.

6.2 Other Assumptions

Besides security assumption, some other assumptions are significant in the paper.
As introduced in Sect. 1, we assume that all nodes are rational. It is also an
assumption that S will obey the roles all the time in our scheme. Considering
the following two conditions:

1. S refuses to pay the reward.
2. S distorts the message path tree.

The solution of the former is to execute the process of paying on the blockchain
using a smart contract [2]. And in the latter condition, S will open all the
submitted message and parameters to the public. In our construction, these
information will generates the only MPT. Besides, introducing a third party for
supervision is also practicable.

Collusion is not considered in our scheme, which is one target of our future
work.
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6.3 Efficiency

The efficiency of our scheme is based on that of ECDSA. We set the computation
cost of ECDSA.Sign, ECDSA.V erify, hash function as CS , CV and CH . Then
the computation cost of F is CS + CH and V ERIFY is h · (CV + CH) where
h is the number of ID in IDC. For S, V ERIFY will be executed many times
according to the number of B class node in MPT. Some results can be stored
for less time.

7 Conclusion

In this paper, we designed a paid message forwarding scheme based on social
network. Compared with other related works, we first propose a cryptography
scheme in incentive network so that the path of messages is proved to be true
and rewards will be distributed correctly.

In our model, each node is inspired to receive and send messages and the
process eventually forms a Message Path Tree. The source finishes his task with
the help of participants and allocates rewards according to the MPT. We use
incentive tree model for motivation and cryptography for fairness. Our scheme
is shown sybil-proof, incentive compatible, efficient and easy to forward.
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Abstract. With the increasing complexity of cyberspace infrastructure and its
applications, cyberattack is becoming ubiquitous and evolving rapidly. As one
of the basic techniques to cyberattack awareness, network traffic anomaly detec-
tion has been facing diverse challenges such as low detection ability, huge cost
of training data collection, weak generalization of classification model. In this
paper, we present WebSmell, a framework that conducts malicious HTTP traffic
detection using deep learning with data augmentation based on keywords library
avoidance. The proposed method can improve the cross-dataset detection ability,
reduce the input cost of training dataset, andmake deep learningmodel have strong
generalization even with a small training dataset.

Keywords: Data augmentation · Malicious web traffic · Anomaly detection ·
Deep learning

1 Introduction

As an effectivemeans of protection, malicious HTTP traffic detection can not only detect
known attacks, but also identify unknown attacks, which has become one of the key
techniques in network situation awareness [1]. Current malicious HTTP traffic detection
methods can be roughly divided into two categories, signature detection and anomaly
detection. The signature detection mainly constructs the detection model for known
attacks. Although this method has high accuracy, it cannot detect unknown attacks. The
strategy of anomaly detection is to create rules based on the traffic of normal behaviors.
Any traffic that violates the rules will be identified as an attack behavior, which has
certain detection ability for unknown attacks. However, this detection strategy is similar
to the white list mechanism, and all rules are set in a certain range in advance [2]. Once
the user produces unexpected but still normal operational traffic will be misjudged as
malicious traffic. In addition, most of current anomaly detection often require a large
number of traffic samples for training. It is not so easy to obtain traffic samples, especially
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malicious traffic payloads. Due to the lack of training samples, it is difficult to extract
features effectively, resulting in weak over fitting and generalization ability.

In summary, there exists the challenges such as low cross-dataset detection ability,
huge cost of training data collection, weak generalization ability of classification model.
Therefore, it is necessary to design a method that can achieve a better malicious traf-
fic detection performance by training the model with only a small number of training
samples.

In this paper, we focus on HTTP traffic detection, treat the training traffic data as
text, and propose the WebSmell framework with a special data augmentation method
for HTTP traffic detection. The main contributions of our works include 1) A data
augmentation method based on Keywords Library Avoidance (KLA) is proposed. 2)
An effective method on malicious HTTP traffic detection is proposed based on semi-
supervised text classification model. 3) Various experimental performance tests on the
whole proposed approaches for model optimization are individually evaluated.

The rest of this paper is listed as follows. Section 2 introduces the related
works. Section 3 describes our proposed WebSmell framework. Section 4 shows the
performance results. Finally, we conclude the paper in Sect. 5.

2 Related Work

Most of the current data augmentationmethods [3–5] are suitable for image or time-series
data, for example, by shifting the image, transforming the angle of view, transforming the
size, using co-training [6] and applying Gaussian noise [7], which make the added noise
data have lower level of information distortion. However, these methods are not suitable
for the augmentation task of text data. For text data, existing researches have proposed the
method of synonym substitution [8] and the method of constructing weighted undirected
graph [9]. However, this method is suitable for texts such as articles and Q&A, which
mainly studies the semantic association characteristics. It is difficult to extract features
through simple regular matching using the word-order structure of web traffic.

In the aspect of text data augmentation, it is unreasonable to use image or speech
recognition signal conversion to increase data because the sequence of characters will
affect the syntax and semantics. Data augmentation aims at creating novel and realistic-
looking training data without changing its label [10]. Moreover, most of the characters in
web traffic data are independent or meaningless encoding and non-semantic. Therefore,
we need to enhance the web traffic data on the basis of retaining most keywords in the
malicious traffic.

In terms of malicious traffic detection, many studies have used different models
and data pre-processing methods to extract web traffic characteristics. Park et al. [11]
proposed a method for anomaly detection of HTTP based on a character-level binary
image transformation, which is superior to the traditional heuristic machine learning
method for selecting input features. Zolotukhin et al. [12] proposed an anomaly detec-
tion method for web attacks by analyzing HTTP logs. Yang et al. [13] designed a CGRU
(convolutional gated-recurrent-unit) neural network for malicious URLs detection based
on characters as text classification features. Yu et al. [14] proposed a Bi-LSTM (bidi-
rectional long short-term memory), which using a method based on special character
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segmentation. Cretu-Ciocarlie [15] proposed a content anomaly detector, which was
used to detect malicious traffic and “suspicious” network packets by modeling a high-
order N-grams hybrid model. Lee [16] presented an anomalous traffic detection method
based on network traffic entropy.

The above work is to use a variety of models and extract different features to model
and classify the traffic, but most of the work in the data pre-processing part uses simple
N-grams word segmentation or data statistics. Using simple data statistics to pre-process
the traffic will lead to the problem that the traffic data characteristics can not be well
preserved. And in most of the web traffic, there are no semantic association characters
and encoding characters, then using N-grams to extract keywords of different lengths
will generate a large number of coded characters and invalid strings, while traditional
malicious keywords are often not reserved.

3 Methodology

3.1 WebSmell Framework

The overall architecture of WebSmell proposed in this paper is shown in Fig. 1, where
the process represented by the solid line is the model training process, and the dotted
line is the detection process of sample to be predicated.

Fig. 1. System architecture of WebSmell. Including mixing normal traffic data and malicious
traffic data after preprocessing, obtaining keywords library to generate augmentation samples and
get the enhanced training dataset using KLA, converting the specified.

The training data is a dataset obtained by mixing normal traffic data and malicious
traffic data after pre-processing. The keywords library is a set which divides the training
dataset according to the special symbols and retains the high-frequency strings. The
enhanced training dataset is based on the keyword avoidance after sample enhance-
ment. The vector statement is a vector obtained by converting the specified data through
Word2vec.
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3.2 Data Augmentation

3.2.1 Traffic Parsing and Keyword Extraction

In this paper, the malicious HTTP traffic is divided into three categories: XSS, SQL
injection, and directory traversal. Since the attack payload of most web attacks exist
in the request path and request data of HTTP traffic, they need first be parsed to form
samples. The following pre-processing is required: 1)Data extraction. Extract the request
path in the Get request and the request data in the Post request. 2) Data cleaning. Perform
URL decoding, lower case characters, remove spaces and other invalid characters on the
extracted data to obtain the final samples.

3.2.2 Keyword Library Generation

In order to process the text data effectively, we first divide the text into a large number
of independent units. The keyword library generation steps are as follows:

Step1. Divide malicious HTTP traffic into three categories and extract valid data to
obtain XSS samples, SQL injection samples and directory traversal samples, and extract
normal HTTP traffic samples.
Step2. The XSS, SQL injection and directory traversal samples were divided into strings
respectively to obtain XSS strings set AS, SQL injection strings set BS and directory
traversal string set CS.
Step3. Divide the string of the normal traffic valid data to obtain the normal traffic string
set N.
Step4. Equation (1) is used to obtain the malicious HTTP traffic keywords library W,
where j represents each character string in the set, Pj represents the frequency of string
j, and NS is a set of all strings with frequency greater than 99%.

W = (AS ∪ BS ∪ CS) − NS,NS = {j,Pj > 99%, j ∈ N } (1)

In order to recognize SQL injection correctly, we should focus on the characteristic
in SQL injection. When a SQL query exists in the requested data, it is most likely
a malicious request. Therefore, common SQL query statements can be recorded as
keywords. The ideal way is to analyze web traffic wording patterns based on training
samples, and abstract the web traffic keywords to build a keywords library. Considering
the existence of various special symbols in web traffic, extracting the substring of two
special symbols as one word simplifies the segmentation process. At the same time, the
28 special characters in web traffic (including., “” < > + −_* = {}()[] ~ /\#:;?!-&@)
are used as the basis for segmentation.

3.2.3 KLA-Based Data Augmentation

As the keywords library is the key to transform the training samples into the word
vector representation, and it comes from the training samples, so we should reserve
the keywords to the greatest extent. At the same time, non-keyword strings should be
randomly replaced. The rules of random noise replacement are listed in Table 1.
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Table 1. Rules of random noise replacement.

Rules of random noise replacement

Rule 1 Keep all keywords in the keyword library

Rule 2 Remain the symbols % $# @ unchanged

Rule 3 Numbers are randomized to other numbers in the range of 0–9

Rule 4 English characters are randomized to other English characters in the range of a–z

It is obvious that the SQL syntax no longer conforms to the specification (error
syntax), and there is only one where statement that is suspected to be SQL injection
syntax, whichmakes theweight of wordmatrix decline, and it is difficult to be effectively
identified inmodel training phase. According to the above rules, the generated noise data
and the keywords of malicious traffic have been reserved, while other characters have
been changed.

4 Experimental Evaluations

This article collects a set of open source WAF request dataset from Fsecrurify based on
HTTP protocol as training set and test set. Randomly select 45,000malicious traffic with
malicious behavior characteristics and 45,000 normal traffic, we randomly divided them
into training set and test set according to a ratio of 3.5:1. At the same time, we collect
6465 wild malicious traffic (hereinafter referred to as wild malicious traffic) recorded by
honeypot server (deployed in March 2019) as a generalization performance test dataset.

The ratio of malicious traffic samples to normal traffic samples in the training set
is 1:1, both of which are 35000. And the ratio in the test set is also 1:1, both of which
are 10000. There are 6465 wild malicious traffic dataset, including 614 SQL injection
samples, 4093 XSS samples, and 1758 directory traversal samples.

4.1 Data Augmentation Effectiveness

This experiment explores the influence of using different data nosing ratios on the model
detection effect, and finally find the best noise ratio. The experimental results are shown
in Fig. 2.

The results show that adding a small amount of noise data in the training set can
improve the accuracy and generalization rate of the model and improve the performance
of model detection. However, after exceeding the ratio threshold, the model will be
over-fitted, the accuracy or generalization rate of the model will decline, and the overall
recognition and detection performance will show a downward trend.

4.2 Pre-processing Influence

This experiment explores the performance of various data pre-processing methods on
the detection effect of learning model. In the pre-processing step, our method (10%
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Fig. 2. (a) Effect of different noise ratio on model performance. (b) The influence of different
noise ratio on the model generalization with different types of malicious HTTP traffic.

noise in the training set) and the methods of [11, 13] and [14] are used to obtain the
corresponding training models. The performance of models trained by different data
pre-processing methods was compared in four aspects: sample size, detection rate, false
alarm rate and accuracy. The method proposed in this paper has higher accuracy and
lower false alarm rate, and the overall performance is optimal compared with other
existing methods when using small training traffic samples.

Table 2. Comparison of generalization ability between noisy training model and non noisy
training model.

Noise ratio Accuracy of training dataset Accuracy of wild malicious traffic

WebSmell (10%) 88.08% 85.66%

WebSmell (non noisy) 86.49% 80.34%

Using the method in this paper, the models obtained from the non noisy training
set and the 10% noisy training set were used to perform detection classification on
the same test set respectively. The comparison results are shown in Table 2. It can
be seen that the noise-adding model can adapt to the new samples well, ensure the
relatively stable performance of the model in training samples and test samples, and
have a strong generalization ability, indicating that the noise-adding can effectively
improve the generalization ability of the model.

4.3 Detection Performance with Different Models

One of the main purposes of WebSmell is to verify the effectiveness of the data augmen-
tation method in the DL-based detection algorithms. For the sake of demonstration we
choose two classic DL algorithm here for comparison, one is TextCNN [17], the other is
based on UDA [18] (see Fig. 3). That is to say, one is classically using supervised learn-
ing while the other is recently introduced semi-supervised. The experimental results are
shown in Table 3 and Table 4.



WebSmell: An Efficient Malicious HTTP Traffic Detection Framework 199

We compared the performance of the detection between the supervised learning
model and the semi-supervised learning model under the data pre-processing method
(optimal parameters) in the actualmalicious traffic.Dataset is composed of honeypotweb
target deployed in real network environment. Honeypot container is CentOS7.0 system.
Finally, 120000 traffic records are collected, and 30000 records of each kind of traffic
obtained according to IDS and WAF classification. Since IDS and WAF are relatively
mature and have high reliability, the detection results of them are regarded as accurate
results, while the test model results are used as reference results. By comparing the
actual results obtained by the test model with the IDS and WAF test results, the real-
world performance results of the model in Table 4 (Accuracy of wild dataset) can be
obtained.

In the real-world detection, the overall detection effect of the model is slightly lower
than that of the training phase due to the more complex coding obfuscation strategy and
the multiple detection bypass methods of the attacker. At the same time, the performance
of the semi-supervised learningmodel is always better than that of the supervised learning
model.

Fig. 3. (a) TextCNN-based architecture. (b) UDA-based semi-supervised training procedure.

Table 3. The performance comparison between supervised learning and semi-supervised
learning.

Learning model TPR Precision Recall F-measure Accuracy

Supervised learning 96.03% 82.86% 96.03% 88.96% 88.08%

Semi-supervised learning 98.43% 98.08% 38.30% 55.09% 96.43%
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Table 4. The generalization ability comparison between supervised learning and semi-supervised
learning.

Learning model Accuracy of training dataset Accuracy of wild dataset

Supervised learning 88.18% 85.17%

Semi-supervised learning 96.43% 89.13%

5 Conclusions

In this paper, we present the system WebSmell to detect the malicious HTTP traffic
through UDA-based neural network with data augmentation. Our contribution to the
research community is the design, implementation, and evaluation of WebSmell that
autonomously abstracts the web traffic keywords to build a keywords library, extends
data according to augmentation facilities, detect the malicious HTTP traffic by enhanced
learning model.The experiment of malicious HTTP traffic detection using deep learning
with data augmentation proves that our WebSmell has good performance even in real
network environment. It can meet the generality, efficiency and usability requirements
jointly in malicious HTTP traffic detection.
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Abstract. Public integrity auditing enables a user to delegate a third-
party auditor (TPA) to periodically audit the integrity of the outsourced
data. Whereas, the security of public auditing schemes relies on the trust-
worthiness of TPA: once TPA misbehaves, the data integrity auditing
would be invalidated. In this paper, we propose a blockchain-based effi-
cient public integrity auditing scheme to resist misbehaved TPA, where
the user is required to check the behaviors of TPA in a much longer period
compared with that of the data integrity auditing performed by TPA. To
free users from heavy computation costs during the checking, our scheme
uses two key techniques. We first design a smart contract to (1) enable
TPA to record each auditing entry (which records the information about
each auditing task) into the blockchain and (2) ensure the validity of
each recorded entry. Then, we propose an auditing record chain built on
the Ethereum blockchain to link all auditing entries corresponding to the
same data in the chronological order. By doing so, the user only needs to
check the last auditing entry generated by TPA to verify the trustworthi-
ness of TPA (i.e., whether TPA has correctly performed the prescribed
auditing tasks). Compared with existing schemes, where the user has to
check multiple entries one by one, our scheme achieves the same security
guarantee with constant and low costs in terms of communication and
computation.

Keywords: Public auditing · Data integrity · Ethereum blockchain ·
Cloud storage · Smart contract

1 Introduction

Cloud storage is an important application in our daily life, which has brought
lots of benefits, such as saving the local storage space, providing convenience
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for users, improving resource utilization and so on [1–4]. Although users have
gained great benefits from these services, data outsourcing raises many security
concerns. One of the most severe problems is data integrity. Since users would
not physically control their outsourced data, they are anxious about the integrity
of the outsourced data. The integrity of outsourced data is being put at risk due
to both internal and external threats in reality [5,6]. For example, the cloud
server may hide an incident of data corruption to keep a good reputation and a
hacker, who has compromised the cloud server, may tamper with a target user’s
data for profits. Worse still, a misbehaved cloud server may intentionally delete
part of outsourced data to reduce the storage costs [6,7]. Therefore, the integrity
of outsourced data should be verified periodically to ensure that the cloud server
well maintains the data intact.

Public integrity auditing is a paradigm that enables users to delegate data
integrity auditing tasks to a third-party auditor (TPA). Existing public integrity
auditing schemes [5,7–9] are constructed on homomorphic signatures and utilize
a sampling auditing paradigm: the outsourced data is split into multiple blocks;
each data block is associated with an authentication tag that is constructed on a
homomorphic signature (e.g., [10]); TPA chooses a random subset of all blocks and
checks their integrity by verifying the corresponding tags. If the subset of blocks
is well maintained, the integrity of the entire data set is ensured. In addition, due
to the development of the homomorphic signature, TPA is able to verify the tags
without needing to download the corresponding blocks from the cloud server.

On the other hand, existing public integrity auditing schemes [5,7–9] also
bear a strong assumption that TPA is honest and reliable. In these schemes, if
TPA is compromised, the integrity auditing would be invalidated [11,12]. Specif-
ically, a malicious TPA may always claim that the outsourced data is well main-
tained even without auditing the data integrity. Worse still, the malicious TPA
may collude with the cloud server to generate a bias auditing result by biasing
the randomness of the subset blocks (i.e., always choosing the well-maintained
blocks to audit) to keep a good reputation of the cloud server [11]. Much more
trickily, the malicious TPA would procrastinate on the scheduled auditing, which
makes the timely detection of data corruption impossible [6].

To resist malicious TPA, existing schemes (e.g., [6,12]) require the user to
audit the behavior of TPA in a much longer period compared with that of the
data integrity auditing performed by TPA. The user needs to audit whether
TPA correctly performs the integrity auditing tasks on time, which guarantees
that once TPA misbehaves, it could be detected by the user. However, in such
a scheme [6], to ensure that TPA has honestly performed the prescript auditing
tasks in a long period of time, the user needs to check the auditing records gener-
ated by TPA one by one. Consequently, the computation costs on the user side
are linear to the number of auditing tasks that TPA has performed. Further-
more, a user may delegate TPA to audit multiple outsourced files, during such
a period, the user has to bear a huge computation delay which is not only pro-
portional to the number of auditing records for each file, but also proportional
to the number of files she/he outsourced. As such, reducing the computation
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costs on the user side is of critical importance such that the user can check the
reliability of TPA with an affordable delay, even if the user equips a low-power
device.

In this paper, we propose a blockchain-based efficient public integrity audit-
ing against malicious TPA that significantly reduces the checking delay on the
user side. The computation costs on the user side are reduced by utilizing two
key techniques. The first one is that the validity of each auditing record (i.e.,
an entry recording the information about the corresponding auditing task) is
verified by a smart contract; The second one is that all auditing entries corre-
sponding to the same data performed by TPA form an auditing record chain
[13] with the aid of the Ethereum blockchain, such that the user only needs to
verify the validity of the last record on the chain to check the validity of all the
auditing records on the chain. Specifically, the contributions of this paper are
described as follows:

• We design a smart contract on the Ethereum blockchain for data integrity
auditing, which is triggered by TPA for recording information about each
integrity auditing entry into the blockchain and guarantees the validity of entries.

• We propose an efficient public auditing scheme against malicious TPA.
The scheme employs an auditing record chain built on the Ethereum blockchain,
which ensures the linkability of each auditing entry. A user only needs to check
the validity of the last entry on the chain (rather than all of the entries) to verify
the TPA’s behavior, which significantly improves the efficiency on the user side,
compared with the existing schemes.

• We analyze the security of our scheme to prove that our scheme can resist
various attacks. We conduct a performance evaluation to demonstrate that our
scheme is efficient in terms of communication and computation overhead.

2 Preliminaries

2.1 Terminology

Bilinear Maps. Let G be an additive group, and GT is a multiplicative cycle
group. G and GT have the same prime order p. P is the generator of G. A bilinear
map is that e : G×G → GT with three properties. Bilinearity: for P,Q ∈ G and
a, b ∈ Zp

∗: e(aP , bQ) = e(P,Q)ab; Nondegeneracy: e(P,Q) �= 1 for all P,Q ∈ G
and P �= Q; Computability: there exists an efficiently computable algorithm for
computing e.

Pseudorandom Function. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
length-preserving, keyed function. F is a pseudorandom function if for all prob-
abilistic polynomial-time distinguishers D, there is a negligible function negl
such that: |Pr[DFk(·)(1n) = 1] − Pr[Df(·)(1n) = 1]| ≤ negl(n), where the first
probability is taken over uniform choice of k ∈ {0, 1}n and the randomness of D,
and the second probability is taken over uniform choice of f ∈ Funcn and the
randomness of D, where Funcn denotes the set of all functions mapping n-bit
strings to n-bit strings [14].
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Pseudorandom Generator. Let l be a polynomial and let T be a deterministic
polynomial-time algorithm such that for any n and any input s ∈ {0, 1}n, the
result T (s) is a string of length l(n) [14]. T is a pseudorandom generator if the
following conditions hold: for any n it holds that l(n) > n; for any polynomial-
time algorithm D, there is a negligible function negl such that |Pr[D(T (s)) =
1] − Pr[D(r) = 1]| ≤ negl(n), where the first probability is taken over uniform
choice of s ∈ {0, 1}n and the randomness of D, the second probability is taken
over uniform choice of r ∈ {0, 1}l(n) and the randomness of D. We call l the
expansion factor of T .

Blockchain. The blockchain servers as an underlying technology in current dig-
ital currency and online payment system—Bitcoin [15]. Existing schemes [16,17]
have shown that blockchain technology could prove to be much more significant
than Bitcoin. The blockchain consists of multiple blocks and each block contains
a timestamp, the hash value of the previous block, a nonce (a random number
for verifying the hash), and multiple transactions. The first block of the chain
is called “genesis block”, while generating a new block, the miners collect all
validate transactions and the miners compute a valid nonce such that the hash
value of the newly generated block is less than or equal to a value provided
by the blockchain system. This process is defined as the Proof of Work (PoW)
consensus, which is the core of the Bitcoin blockchain [15].

Another prominent application of PoW consensus is Ethereum blockchain
[18], which focuses on providing a platform to facilitate building decentralized
applications on its blockchain and is more expressive than Bitcoin blockchain
[19]. In Ethereum blockchain, the ledger is a state transition system, where the
state consists of the ownership status of all existing Ethers and the state transi-
tion function which takes a state and a transaction as input, and outputs a new
state as the result [6]. In general, Ethereum blockchain has two types of accounts:
externally owned accounts and contract accounts, controlled by private keys and
their contract code, respectively. The externally owned account can create and
sign a transaction. However, the contract account would receive a message once
the smart contract code is activated, which allows it to read and write to internal
storage [20]. The smart contract has an expressive programming language and
the code is stored directly on the blockchain, which is the key difference between
the Ethereum blockchain and the Bitcoin blockchain. There are three properties
in blockchain systems: chain consistency, chain quality, chain growth [21–23].
With the fundamental properties, the blockchain acts as a bulletin board and a
secure source of randomness in some studies [2,6].

2.2 System and Adversary Models

As shown in Fig. 1, there are three entities in a public integrity auditing scheme:
users (data owner), the cloud server, and a third-party auditor (TPA).

• Users: users are data owners, they outsource their data to the cloud server
and would access the outsourced data as needed. To guarantee the integrity
of the outsourced data, users employ TPA to periodically verify the outsourced
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data. Furthermore, users check the auditing results generated by TPA in a longer
period of time (compared with the data integrity auditing performed by TPA).

• Cloud server: the cloud server is subject to the cloud service provider and
provides users with cloud storage services. The cloud server generates the public
auditing proofs for TPA’s auditing.

• Third-party auditor: TPA periodically verifies the integrity of the out-
sourced data, records the verification result entry to the Ethereum blockchain,
and informs users once their data is corrupted.

Fig. 1. System model

In the adversary model, we consider three types of threats as follows.
• Semi-trusted cloud server. The cloud server is a semi-trusted entity, it may

deceive TPA and/or users and make them believe that the outsourced data is
well maintained for keeping a good reputation. Here, by “semi-trusted”, we mean
that the cloud server would deceive TPA and/or users (i.e., it would deviate from
the prescribed scheme) if and only if its profits can be increased by utilizing such
a strategy.

• Misbehaved TPA. We follow the existing thread model of malicious TPA
[6,11]. TPA may collude with the cloud server to hide the fact of data corruption,
and may not perform data integrity auditing on schedule.

• Malicious users. Malicious users may intentionally accuse the cloud server
or TPA’s correct behaviors.

2.3 Design Goals

To achieve the secure and efficient public auditing under the aforementioned
model, our scheme should achieve three goals as follow.

• Functionality. The scheme is able to allow TPA to periodically audit the
outsourced data and allows the users to check the trustworthiness of TPA.

• Security. If and only if the cloud server well maintains the outsourced data,
can it pass the TPA’s auditing; Collusion between any two entities cannot deceive
the other entity.

• Efficiency. TPA is able to audit the integrity of outsourced data without
needing to download the data set; A user is able to check the TPA’s behaviors
during a long period of time with a constant and slight cost.
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3 The Proposed Scheme

3.1 Overview of the Proposed Scheme

In this section, we give an overview of our scheme, focusing on the challenge
addressed by our scheme.

Time in our scheme is divided into fixed and pre-determined time-intervals
called period. A period describes the frequency at which the user checks the
TPA’s behaviors. In addition, each period is further divided into multiple time-
intervals called epoch. An epoch is determined by the user and prescribes the
frequency at which TPA audits the integrity of outsourced data.

As described before, in a public auditing scheme, to ensure the trustworthi-
ness of TPA, the user is required to check the TPA’s behaviors in a much longer
period of time (compared with the epoch). The TPA’s behaviors are described
by multiple entries, where each entry records the interaction messages between
TPA and the cloud server during one auditing task. In existing schemes [6,12],
the user has to check all entries one by one, which incurs heavy costs in terms
of communication and computation and takes a long delay. This problem would
be further exacerbated by the fact that the user always wants to perform the
above operations using a low-powerful device (e.g., smartphone). Therefore, the
main challenge in this work is how to significantly reduce the checking costs on
the user.

The above challenge is addressed by using two key techniques.
We design a smart contract on the Ethereum blockchain for data integrity

auditing. Such a smart contract is triggered by TPA. At the end of each epoch,
TPA extracts the hash values of the latest ε confirmed blocks in Ethereum
blockchain. These hash values are utilized to compute the challenged blocks
to ensure the randomness of the challenge, due to (ε, ι)-chain quality [6]. Upon
receiving the challenged blocks, the cloud server generates the corresponding
proofs and sends back to TPA. Then TPA verifies the validity and triggers the
smart contract to record the auditing entries into the blockchain. Here, the func-
tionality of the smart contract is not only to record these entries, but also to
guarantee the validity of each entry generated by TPA. There are three func-
tions in the smart contract. The first one is to verify whether the ε blocks are
consecutive and newly generated based on the height of the current Ethereum
blockchain (for the sake of brevity, in this work, we set ε = 12). The second one
is to verify the validity of the auditing proofs generated by the cloud server. The
third one is to record the valid auditing entries into the blockchain. Additionally,
TPA stores a log file for all auditing information in its local storage.

To enable the user to check the TPA’s behaviors with a constant and slight
cost in terms of communication and computation, we construct an auditing
record chain [13] based on the Ethereum blockchain for the same data. As a
result, all entries corresponding to the same data form a chain in the chronologi-
cal order, which ensures that the validity of the last entry can reflect the validity
of all entries on the chain. Specifically, each block on the chain contains the
current epoch’s auditing proofs, the height of the block recording current and
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Table 1. The log file

Recorded content Height of
current block

Hash value of chosen blocks Proofs
information

h1(t(1)||σ(1)||μ(1)||τ(1))||Bl
(1)
ω ||Bl

(1)
η t(1) B

(1)
t , B

(1)
t−1, B

(1)
t−2, · · · , B

(1)
t−11 σ(1), μ(1), τ(1)

h1(t(2)||σ(2)||μ(2)||τ(2))||Bl
(2)
ω ||Bl

(2)
η t(2) B

(2)
t , B

(2)
t−1, B

(2)
t−2, · · · , B

(2)
t−11 σ(2), μ(2), τ(2)

· · · · · · · · · · · ·
h1(t(ϕ)||σ(ϕ)||μ(ϕ)||τ(ϕ))||Bl

(ϕ)
ω ||Bl

(ϕ)
η t(ϕ) B

(ϕ)
t , B

(ϕ)
t−1, B

(ϕ)
t−2, · · · , B

(ϕ)
t−11 σ(ϕ), μ(ϕ), τ(ϕ)

previous epoch’s auditing proofs. With such a binding mechanism, all auditing
entries corresponding to the same data performed by TPA would form an audit-
ing record chain such that any one of them is corrupted, the chain is broken.
During the Check Verification phase, a user firstly checks the consistency
between the auditing results and the content required from the log file. Then,
the user checks the validity of the latest entry recorded in the blockchain. If
both checking results are successful, the correctness, integrity, and timeliness of
auditing entries can be ensured.

3.2 Construction of the Proposed Scheme

Our scheme consists of three entities: the user (U), the cloud server (CS), a
third-party auditor (TPA).

Setup. With the security parameter l, the system initializes public parameters
as follows:

– G is the an additive group with the prime order p and the generator P , GT is
a multiplicative group. G and GT determine a bilinear map e : G × G → GT .

– U randomly chooses γ as his/her secret key sk, the public key pk can be
computed as y = γP . U also generates a random signing keypair (spk, ssk).

– h1(·) : {0, 1}∗ → Z∗
p , h2 : {0, 1}∗ → G are two hash functions.

– Choose a pseudorandom permutation πkey(·) and a pseudorandom function
fkey(·) [14].

The system parameters are {l, G,GT , e, πkey(·), fkey(·), h1(·), h2(·)}.

Outsource. U interacts with CS, and outsources the data M to CS.

– Using the erasure code algorithm [24], U divides M into n blocks and splits
each block into s sectors. Each sector is denoted by M = {mij}, 1 ≤ i ≤
n, 1 ≤ j ≤ s.

– U chooses a random data name name ∈ Z∗
p for the outsourced data M ,

randomly chooses an element set {U1, U2, · · · , Us} ← G.
– U computes the data tag τ ← τ0||Sigssk(τ0), where τ0 = name||U1||

U2|| · · · ||Us.
– For each sector mij , 1 ≤ j ≤ s, U computes the verification tag σi = γ ·

(h2(i||name) +
s∑

j=1

mijUj).

– U outsources {M, {σi}, τ} to CS for storage.
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Audit. During each predetermined epoch, TPA interacts with CS to audit the
integrity of the outsourced data.

– TPA extracts the lasted confirmed 12 hash values {Bt−11, Bt−10, Bt−9, · · · , Bt}
from the Ethereum blockchain, where t is the hight of the newly confirmed block
under the current time.

– TPA sends the set ({Bt−11, Bt−10, Bt−9, · · · , Bt}, t) to CS.
– Upon receiving the set, CS computes two seeds:

θ1 = h1(Bt||Bt−1||Bt−2|| · · · ||Bt−11||1),
θ2 = h1(Bt||Bt−1||Bt−2|| · · · ||Bt−11||2).

– CS computes challenged index-coefficient pairs as ki = πθ1(i), vki
= fθ2(i), i =

1, 2, 3, · · · , c, where c is the number of challenged blocks and is determined
the security parameter l.

– For each j ∈ [1, s], CS computes the set μ = {μ1, μ2, · · · , μs} by μj =
kc∑

i=k1

vimij , and generates aggregated verification tag σ =
kc∑

i=k1

viσi.

– CS sends the proof information {σ, μ, τ} to TPA.
– Upon receiving the proof information, TPA verifies the data integrity as fol-

lows:
• TPA uses the verification key psk of U to verify the signature on τ . If the

signature is invalid, TPA takes the verification result as Reject.
• TPA computes two seeds:

θ1 = h1(Bt||Bt−1||Bt−2|| · · · ||Bt−11||1),
θ2 = h1(Bt||Bt−1||Bt−2|| · · · ||Bt−11||2).

• TPA computes the index-coefficient pairs as ki = πθ1(i), vki
= fθ2(i), i =

1, 2, 3, · · · , c.

• TPA verifies the data integrity by checking the equation e(σ, P ) ?=

e(
kc∑

i=k1

vi · h2(i||name) +
s∑

j=1

μj · Uj , y).

– After the verification, TPA runs the smart contract contract (described
in Algorithm 1), which verifies whether the 12 blocks {Bt, Bt−1, Bt−2, · · · ,
Bt−11} used are consecutive under the current height of block, verifies
the validity of the proofs {σ, μ, τ}, and records the valid information
{h1(t||σ||μ||τ)||Blω||Blη} into the contract storage. Blω is the height of the
block recording the current epoch’s valid information, Blη(η ≤ ω) is the
height of the block recording the previous epoch’s valid information. The
process is depicted in Fig. 2.

– TPA also generates a log file in its local storage as follows:
• At the end of each epoch, TPA generates an entry as {h1(t||σ||μ||τ)||Blω||

Blη, t, Bt||Bt−1||Bt−2|| · · · ||Bt−11, σ, μ, τ}.
• TPA stores the entries to a log file as described in Table 1.

Check Verification. At the end of each period, U interacts with TPA to check
the auditing entries generated in this period.
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Fig. 2. Auditing record chain structure

Algorithm 1: Smart contract algorithm
Require:

Bt, Bt−1, Bt−2, ..., Bt−11, σ, μ, τ
Ensure:

true or false or error
if (Bt, Bt−1, Bt−2, ..., Bt−11) are consecutive and well-timed then

if (e(σ, P ) = e(
kc∑

i=k1

vi · h2(i||name) +
s∑

j=1

μj · Uj , y) then

record true||h1(t||σ||μ||τ)||Blw||Blη;
else

record false||Blw||Blη;
end if

else
record error;

end if

– U requires the all recorded contents (h1(t(1)||σ(1)||μ(1)||τ (1))||Bl
(1)
ω ||Bl

(1)
η , h1

(t(2)||σ(2)||μ(2)||τ (2))||Bl
(2)
ω ||Bl

(2)
η , · · · , h1(t(ϕ)||σ(ϕ)||μ(ϕ)||τ (ϕ))||Bl

(ϕ)
ω ||Bl

(ϕ)
η )

and the last entry (h1(t(ϕ)||σ(ϕ)||μ(ϕ)||τ (ϕ))||Bl
(ϕ)
ω ||Bl

(ϕ)
η , t(ϕ), B

(ϕ)
t , B

(ϕ)
t−1,

B
(ϕ)
t−2, · · · , B

(ϕ)
t−11, σ

(ϕ), μ(ϕ), τ (ϕ), Accept/Reject) stored in the log file from
TPA.

– U acquires the auditing record chain recording the same data’s auditing
entries from the Ethereum blockchain.

– U checks the consistence of the verification results recorded into the Ethereum
blockchain and the content required from the log file. If any of them is incon-
sistent, U would argue the credibility of TPA; Otherwise, U checks the validity
of the last entry as follows:

• U first acquires t(ϕ) and t(ϕ) + 13, derives physical time, and verifies the
time whether matches the agreed one. If the time does not match the
agreed one, the checking result is false.
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• U extracts the hash values of 12 latest confirmed blocks before the block
Bl

(ϕ)
t , generates the two seeds as

θ
(ϕ)
1 = h1(B

(ϕ)
t ||B(ϕ)

t−1||B(ϕ)
t−2|| · · · ||B(ϕ)

t−11||1),

θ
(ϕ)
2 = h1(B

(ϕ)
t ||B(ϕ)

t−1||B(ϕ)
t−2|| · · · ||B(ϕ)

t−11||2),

and checks the consistence between the generated seeds and the last entry
in the second row.

• U uses his/her verification key psk to verify the signature on τ (ϕ). If the
signature is invalid, the checking result is false.

• U computes the index-coefficient pairs as k
(ϕ)
i = πθ1(i), v

(ϕ)
ki

= fθ2(i), i =
1, 2, 3, · · · , c.

• U checks the verification result by justify the equation e(σ(ϕ), P ) ?=

e(
k(ϕ)

c∑

i=k
(ϕ)
1

v
(ϕ)
i · h2(i||name) +

s∑

j=1

μ
(ϕ)
j · U

(ϕ)
j , y). If the equation does not

hold, the checking result is false, otherwise, the checking result is true.

3.3 On the Necessity of TPA

Intuitively, we can remove TPA and only require the smart contract mechanism
to perform the auditing tasks. Such smart contract-based public auditing of the
data integrity mechanism has been proposed in [25,26]. Specifically, to regu-
late the behaviors of the cloud server, the smart contract-based public auditing
schemes introduce a fair arbitration mechanism, i.e., automatic penalization. At
the beginning of smart contract deployment, each user and the cloud server take
a certain amount of deposit as input, respectively. After each auditing, if the
outsourced data is well maintained, the smart contract would send the user’s
deposit to the cloud server’s account as the charge of the storage service. Oth-
erwise, the smart contract would send the cloud server’s deposit to the user’s
account as the compensations.

However, as part of our contribution, we point out that such a fair arbitration
is unsatisfactory in reality, due to the following reasons.

• Once the outsourced data is corrupted, the smart contract would automat-
ically transfer the cloud server’s deposit to the user as the compensations. In
reality, neither holding accountable nor demanding compensation is the main
objective for a public auditing scheme. We stress that the main objective of
public auditing schemes is to detect data corruption and inform the user as soon
as possible (within one time-interval that TPA audits the data integrity). How-
ever, in the above fair arbitration mechanism, only if the user checks her/his
blockchain account, can she/he detect the data corruption. Actually, requiring
the users to periodically check her/his blockchain account is very inefficient in
reality. If a user is able to meet this requirement, she/he may directly utilize the
private auditing scheme [7] to verify the integrity of outsourced data. Therefore,
to enable the user to obtain the data corruption timely, TPA plays an important
role in the public auditing schemes.
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• In reality, the cloud server needs to serve multiple users simultaneously.
For each user, the cloud server is required to take a certain amount of deposit as
input for the smart contract. As a consequence, the total amount of deposit of the
cloud server is proportional to the number of users, which brings huge costs for
the cloud server. Furthermore, the price of Ether (as well as other value tokens of
blockchains) fluctuates frequently and volatility. Such an instability would bring
economic losses both for users and the cloud server. We take the following scene
as an example, at the beginning of a period, the price of 1 Ether is $10. Here,
both a user and the cloud server deposit 1 Ether as input. At the end of this
period, the price of 1 Ether is $20. At this time, the smart contract has been
triggered to perform the auditing tasks. If some auditing result shows that the
data is corrupted, the cloud server should compensate for its misbehavior. The
smart contract would send 1 Ether to the user’s account. Consequently, due to
price fluctuation, the cloud server paid an extra $10 for the user. If the auditing
result shows that the outsourced data is well maintained, the user should pay
the storage service charge to the cloud server. The smart contract would send 1
Ether to the cloud server’s account. Here, the user paid an extra $10 for the cloud
server. In addition, regarding to the case of multiple users, the cloud server has
to hold a large number of Ethers for deposit. Therefore, the cloud server bears
a more serious risk of loss than the user due to price fluctuations.

4 Security Analysis

In this section, we analyze the security of our scheme with respect to the adver-
sary model described in Sect. 2.

4.1 Resistance Against the Semi-trusted Cloud Server

A semi-trusted cloud server may hide the incident of data corruption by forging
a proof information to deceive TPA.

Theorem 1. An aggregate signature σ for a set of blocks {ki}, i = 1, 2, · · · , c in
our scheme is existentially unforgeable under adaptively chosen-message attacks.

Proof. To prove the above Theorem, we define a game as follows.

– A challenger S runs the Setup to initiate the system and generate the public
parameters PP . S sends PP to an adversary A.

– Upon receiving PP , A randomly chooses the i-th block messages {mij}, j =
1, 2, · · · , s, requests U ’s signature on the i-th block messages, and sends it to
S.

– On receiving the query, S generates the corresponding signature σi, and sends
σi to A.

– A repeats the above query on different blocks.
– Finally, A outputs an aggregate signature σ.

A wins the game if and only if satisfying the following two conditions:
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– σ is a valid aggregate signature.
– σk, k ∈ [k1, kc] is not submitted during the queries.

Here, we prove the advantage that A wins Game is negligible.
Supposing A wants to generate an aggregate signature about the set of blocks

{ki}, i = 1, 2, · · · , c. A dishonest prover would response A with μ′
1, μ

′
2, · · · , μ′

s

together with σ′. If the responses from an honest prover, the response is
μ1, μ2, · · · , μs with a valid signature σ. By the correctness of the scheme, we
know that the valid response satisfies the verification equation as follows:

e(σ, P ) = e(
kc∑

i=k1

vih2(i||name) +
s∑

j=1

μjUj , y).

and for the adversary’s outputs, we have that

e(σ′, P ) = e(
kc∑

i=k1

vih2(i||name) +
s∑

j=1

μ′
jUj , y).

where y = γ·P is the challenger’s public key. We know that, for all j = 1, 2, · · · , s,
if μ′

j = μj , then σ′ = σ, which contradicts our assumption above. Thus, for
1 ≤ j ≤ s, if we define Δμj = μj

′ − μj , then, there is at least one {Δμj} is
nonzero.

Let A be an elliptic curve discrete algorithm problem (ECDLP) attacker who
is given P, γ · P, h ∈ G and needs to compute γ · h. Here, we show that if A is
able to forge a signature with a probability, then S would break the ECDLP by
the same probability.

– During the Setup phase, the public key y is set to γ ·P . That means, S does
not know the secret key γ.

– S simulates the random oracle h2. It has a list of queries and responses to
keep consistently. When it answers a query from A, S randomly chooses r
from Zp

∗ and responds rP ∈ G to A.
– A selects a random i-th block, where i ∈ [k1, kc], and sends the messages

{mij}, j = 1, 2, · · · , s to S.
– Upon receiving the query, S randomly chooses name ∈ Zp

∗. For each j, 1 ≤
j ≤ s, S randomly chooses αj , βj ∈ Zp

∗ and sets Uj = αj ·P +βj ·h. For each
different i, S randomly chooses ri ∈ Zp

∗, and generates the random oracle at
i as follows:

h2(i||name) = ri · P − (
s∑

j=1

αjmijP +
s∑

j=1

βjmijh).
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Then, S can compute σi, since S has

h2(i||name) +
s∑

j=1

mijUj = ri · P − (
s∑

j=1

αjmijP +
s∑

j=1

βjmijh) +
s∑

j=1

mijUj

= ri · P − (
s∑

j=1

αjmijP +
s∑

j=1

βjmijh) +
s∑

j=1

mij(αj · P + βj · h)
= ri · P.

Consequently, S generates the signature σi = ri · (h2(i||name) +
s∑

j=1

mijUj).

– A repeats the query on different i, i ∈ [k1, kc], and S answers it as above.
– Finally, A generates an aggregate signature σ′.
– S computes the equation as follows:

e(σ′ − σ, P ) = e(
s∑

j=1

ΔμjUj , y) = e(
s∑

j=1

Δμj(αj · P + βj · h), y)

= e(
s∑

j=1

Δμjαj · P , y) + e(
s∑

j=1

Δμjβj · h, y),

and rearranges terms yields as follows:

e(σ′ − σ −
s∑

j=1

Δμjαj · y, P ) = e(
s∑

j=1

Δμjβj · h, y) = e(h, y)

s∑

j=1
Δμjβj

.

– S can solve ECDLP by the equation as follows:

γ · h = (σ′ − σ −
s∑

j=1

Δμjαj · y) · (
s∑

j=1

Δμjβj)−1.

By doing so, S can solve ECDLP using the A’s outputs. However, in reality,
ECDLP is a difficult problem, A cannot forge a valid signature under adaptively
chosen-message attack.

4.2 Resistance Against the Misbehaved TPA and Malicious Users

The misbehaved TPA may collude with the semi-trusted cloud server to hide
the fact of data corruption, and may not perform data integrity auditing on
schedule.

Theorem 2. In our scheme, the misbehaved TPA can the cloud server cannot
predetermine the hash values of the block generated at a future time.
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Proof. In our scheme, the challenged blocks are computed by the random seeds.
These seeds are generated the hash values of the latest 12 confirmed blocks in the
Ethereum blockchain according to the corresponding time. Thus, the randomness
of these seeds can be ensured by the chain quality of blockchain. In addition,
the miners cannot be incentivized by the malicious TPA to generate a target
block due to the preimage resistance property of hash functions. Specifically, if
the malicious TPA wants to audit the well-maintained data blocks, he has to
incentivize the miners to generate 12 continuous target blocks in the blockchain.
In reality, since the hash value of future blocks cannot be predicted and the
miners cannot break the preimage resistance of the hash functions, the malicious
TPA cannot collude with the cloud server to generate a bias auditing result using
the well-preserved blocks.

In our scheme, TPA is required to audit the data integrity at the prescribed
time, the auditing result entries are recorded in the Ethereum blockchain, where
these entries are tamper-resistant and unforgeable. Thus, if TPA does not audit
data integrity on schedule, users would detect the misbehavior.

The malicious users may intentionally accuse the cloud server or TPA’s hon-
est behaviors. In our scheme, during the Check Verification phase, all users
can check the auditing results, if there is a malicious user deliberately accuse
the honest cloud server or TPA, other honest users would break the lie if they
execute the valid verification result.

5 Performance Evaluation

We implement experiment in JAVA with JPBC using a computer with a single
Intel Core i7-3720QM, 2.6 GHz CPU, 8 GB of RAM. SHA-2 is implemented in
the hash functions. We select 80 bits security level for analysis, the size of RSA
modulus is selected |N |=1024, and the curve of field size is 159 bits.

5.1 Communication Overhead

In this section, we compare the communication costs between our scheme with
CPVPA [6] and SWP [7]. The comparison result is depicted in Fig. 3, which shows
that the communication overhead is proportional to the number of challenged
blocks in SWP scheme, while it is constant in CPVPA and our scheme.

5.2 Computation Overhead

We first estimate the basic cryptographic operations as Table 2.
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Table 2. Notation of operations

Notation Description

HashZp
∗ Hash a value to Zp

∗

HashG Hash a value to G

MulG Multiplication in group G

MulZp
∗ Multiplication in Zp

∗

Prf A pseudorandom function

AddZp
∗ Addition in Zp

∗

AddG Addition in G

PairGT
Computing pairing e

Table 3. Computation costs on the cloud server side

Schemes Computation costs

SWP [7] c ·MulG + c ·AddG + c ·MulZp
∗ + c ·AddZp

∗

CPVPA [6] c ·MulG + c ·AddG + c ·MulZp
∗ + c ·AddZp

∗ + 2c · Prf + 2 ·HashZp
∗

Our scheme c ·AddG + c ·MulZp
∗ + c ·AddZp

∗ + 2c · Prf

We show the computation costs on the cloud server side of our scheme,
CPVPA [6], and SWP [7] in Table 3. Here, c denotes the number of challenged
blocks during each auditing. Since our scheme is based on an addition group,
thus, our scheme requires less computation cost on the cloud server side.

We show the computation costs on the TPA side of our scheme, CPVPA [6],
and SWP [7] in Table 4. Here, c is the number of challenged blocks during each
auditing and s is the number of sectors in our scheme.

In Fig. 4, we give a comparison of computation overhead between our scheme,
SWP [7] and CPVPA [6] in cloud server side and TPA side. According to the
experiment results, we can see that the costs of our scheme in server side and
TPA side are much less than existing schemes [6,7], namely, our scheme is much
more efficient.

We show the computation costs on the user side during the Check Verifi-
cation phase in Table 5, where c is the number of challenged blocks and N is
the number of all entries in a long period of users. The table shows that, during
the Check Verification phase, the computation costs of user side in CPVPA is
proportional to the number of auditing entries in this period. To show in more
detail, we depict a linear graph as shown in Fig. 5. Compared with existing public
auditing schemes, only our scheme and CPVPA [6] require the user to audit the
behavior of TPA. According to Fig. 5, we can learn that compared with CPVPA,
our scheme extremely reduces the checking costs for users.

In our scheme, we allow TPA to run a smart contract to record the valid
auditing records into the Ethereum blockchain. Here, the smart contract contains
three functions. The first one is to verify the continuity of 12 blocks corresponding
to the height of the block at that time. The second one is to verify the proofs
generated by the cloud server, namely performing the auditing by the smart
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Table 4. Computation costs on TPA side

Schemes Computation costs

SWP [7] 2 · PairGT + (c + 1) · MulG + c · AddG + c · HashG

CPVPA [6] 4 · PairGT + (3c + 2) · MulG + 3c · AddG + (c + 4) ·
HashG + (2c + 3) · HashZp

∗ + 2c · MulZp
∗ + 2c · Prf

Our scheme 2 · HashZp
∗ + 2c · Prf + 2PairGT + c · HashG + (c +

s) · MulG + (c + s − 1) · AddG
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contract. The last one is to record the auditing entries into the blockchain. To
achieve the second functionality, the smart contract has to compute a bilinear
pairing operation and make a judgment. We have found that there have been
some works on Ethereum blockchain to support pairing operations [27] and the
code is uploaded in Github [28]. To verify the correctness of this algorithm,
we test it in the Ethereum blockchain and show the experiment in Fig. 6. As
shown in Fig. 6, gas consumption is acceptable for Ethereum blockchain. Thus,
the bilinear operation performed by the smart contract is feasible in practice.
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Table 5. Computation costs on user side

Schemes Computation costs during the Check Verification
phase

CPVPA [6] N · (4 ·PairGT +(3c+2) ·MulG +3c ·AddG +(c+4) ·
HashG + (2c + 3) ·HashZp

∗ + 2c ·MulZp
∗ + 2c ·Prf)

Our scheme 2 · HashZp
∗ + 2c · Prf + 2PairGT + c · HashG + (c +

s) · MulG + (c + s − 1) · AddG

6 Conclusion

In this paper, we have proposed a secure and efficient blockchain-based pub-
lic integrity auditing scheme against malicious TPA for cloud storage systems.
In our scheme, a smart contract has been deployed and triggered by TPA.
Such a mechanism would record information about each auditing entry into
the blockchain and guarantee the validity of those entries. Furthermore, our
scheme has employed the Ethereum blockchain-based auditing record chain to
ensure the linkability of the same data’s auditing entries from different epochs.
Our scheme resists against the semi-trusted cloud server, the misbehaved TPA,
and the malicious users. Compared with existing schemes, our scheme reduces
the computation costs on the user side while keeping constant communication
overhead.
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Abstract. Cache side-channels are among the major weaknesses of Intel
SGX. We mitigate this weakness with E-SGX, an effective defensive app-
roach against all known access-driven/trace-driven cache side-channel
attacks from privileged code. The core idea of E-SGX is to monopolize
the whole CPU during security-critical executions, breaking the concur-
rent execution condition of access-driven/trace-driven cache side-channel
attacks. To achieve this, E-SGX employs several SGX threads within
the same enclave: one application thread and a few dummy threads
together hold all CPU cores. A key challenge is to ensure all those
enclave threads are scheduled exclusively to occupy all CPU cores with
an untrusted OS scheduler. E-SGX addresses this challenge by provid-
ing effective mechanisms to detect violations of exclusive scheduling:
challenge-response check of dummy threads aliveness and detection of
asynchronous enclave exits, both performed with a carefully selected
period. Comparing to existing approaches, E-SGX is capable of defending
against access-driven/trace-driven cache side-channel attacks not only
from the sibling logical core but from across all physical cores.
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1 Introduction

Intel Software Guard Extensions (SGX) [6,14,21,29] protect user-level sensi-
tive code and data against modification or disclosure from other processes,
the untrusted OS, and even physical attackers. SGX provides applications with
trusted execution environments (TEE), called enclaves, whose memory areas are
isolated from the OS by hardware. The memory areas used by the enclaves are
encrypted using processor-specific keys. SGX distinguishes different enclaves in
hardware-level by the code measurement of the enclaves.

While Intel SGX provides isolation at a logical level, physical resources such
as caches are still shared by all programs including SGX-protected programs,
to support efficient multiplexing of workloads. This enables different forms of
side-channel attacks across isolation boundaries. Wenhao Wang et al. identify 8
potential attack vectors about side channel including cache, TLB, DRAM mod-
ules, etc. [42]. Cache side-channel attacks are worrisome in particular, which has
been shown to be a serious threat to the confidentiality of SGX-protected pro-
grams in realistic scenarios. Brasser et al. extracted 70% of a 2048-bit RSA key
with 300 repeated executions by Prime+Probe cache monitoring [8]. Schwarz
et al. extracted 96% of an RSA private key from a single trace and recovered the
full RSA private key in an automated attack from 11 traces within 5 mins [38].
Johannes et al. [20] extracted an AES secret key in less than 10 s by Neve
and Seifert’s elimination method, as well as a cache probing mechanism on Intel
PMC. The-state-of-art attacks, Meltdown [26] and Spectre [24], exploit Out-of-
Order Execution and Speculative Execution, which are originally designed for
performance optimization in modern processors, to extract secrets from vulner-
able applications and OS kernel by cache side channels. SGX enclaves are also
vulnerable to Meltdown [9] and Spectre [12]. After Meltdown and Spectre, a
series of Microarchitectural Data Sampling (MDS) attacks appeared [10,36,37].
They can leak information through microarchitectural buffers and also extract
secrets by cache side-channels. The latest research shows that MDS attacks are
also effective against SGX [2,35].

Two necessary requirements to perform access-driven/trace-driven cache side-
channel attacks are: (1) the adversarial code executes concurrently with the vic-
tim code; and (2) the adversarial code shares caches with the victim code. Most of
prior countermeasures [13,15,18,25,39–41] to mitigate cache side-channel attacks
are targeted at breaking the cache sharing condition. Some try to prevent adver-
sarial observation of shared caches using Hardware Transaction Memory (e.g.,
Intel TSX [33]), which ensures no cache within a transaction can be observed by
other threads without being detected [13,18,40]. Some try to make it more dif-
ficult or even impossible for an attacker to locate shared caches by randomizing
the address space layout or control flow of victim programs [7,15,17,25,34,39].
Some try to totally eliminate cache sharing by disabling caching of critical mem-
ory [41] and disabling Hyper-Threading [28]. There are also some solutions trying
to prevent the adversarial code from executing concurrently with the victim code
[11,31]. A major approach is occupying the sibling logical core of the main thread
with a dummy thread, and ensuring that no adversarial code could take its place.
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However, they can only defeat attacks launched from the sibling logical core, since
they rely on cache access time measurement to detect dummy thread anomalies. In
fact, there have been attacks from different physical cores against SGC. At present,
neither the VERW instruction issued by Intel nor the above-mentioned defense
schemes can effectively mitigate these attacks.

In this paper, we propose E-SGX (enhanced SGX), a defensive approach
against various known access-driven/trace-driven cache side-channel attacks
from privileged code, including OS kernel and hypervisor. At its core, our app-
roach monopolizes the whole CPU during the execution of security-critical oper-
ations. Unlike the above mentioned schemes which can only prevent attacks
from the sibling logical core, E-SGX prevents concurrent execution of adversar-
ial code from any physical cores, which breaks the concurrent execution condition
of access-driven/trace-driven cache side-channel attacks thoroughly. To achieve
this, E-SGX employs two types of SGX threads within the same enclave: a main
thread and a few dummy threads. The main thread runs on a logical CPU core
to realize the application functionality, so we also call it the computing thread
in the remainder. On each of the other logical CPU cores, whether within the
same physical core or not, runs a dummy thread. The computing thread and
the dummy threads together hold all the CPU cores. E-SGX requests exclu-
sive scheduling for all these enclave threads during the execution. Only if all
dummy threads are scheduled on different logical CPU cores exclusively and
running properly, which implies the prerequisites for attacks are never met, the
computing thread will continue the execution.

A significant challenge is to ensure these enclave threads occupy all the logical
CPU cores reliably, especially with an untrusted or even malicious OS scheduler.
As E-SGX relies on the OS scheduler for exclusive scheduling, a malicious OS
scheduler might fool the computing thread into believing that all dummy threads
are running properly, and tempt it to continue the execution. E-SGX addresses
this challenge by providing a mechanism to detect all violations of exclusive
scheduling. We develop a different approach from that of cache access time mea-
surement [11,31], to empower E-SGX with the ability to detect attacks from
all CPU cores. The mechanism works as follows. First, the computing thread
periodically challenges the dummy threads to check if they are running prop-
erly, at a frequency higher than the time it takes for an unexpected enclave
exit, i.e., an Asynchronous Enclave Exit (AEX). Then, upon receiving positive
responses from the dummy threads, the computing thread detects whether an
AEX has occurred due to interruptions. All challenge and response messages are
protected by SGX. Note that adversarial cache side-channel attack code has to
interrupt at least one enclave thread to have a chance to execute. An attack may
have occurred if the computing thread hasn’t received timely responses from the
dummy threads or has detected an AEX. The computing thread addresses such
an alarm according to application-specific policies, for example, self-terminating
the execution.
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We implement E-SGX based on the Intel Linux SGX SDK [5]. At present,
all known cache side-channel attacks [19,27,32,43] need to execute concurrently
with the victim program. The experimental results show that those cache side-
channel attacks are detected by E-SGX at a very early stage when they try
to interrupt any of the dummy threads or the computing thread, which is a
necessary condition for the attacks to continue. This is achieved by selecting an
appropriate detection period so that the adversary cannot afford to launch an
attack without being detected by two consecutive detection acts.

Additionally, we have evaluated the performance of E-SGX in mbed TLS
(formerly known as PolarSSL) [3] and Nginx web server [4] on Intel NUC6 with
a 4-core i3-6100U processor. The experimental results show that, (1) it takes
twice the original time for cryptographic routines of mbed TLS to proceed with
E-SGX, and (2) E-SGX brings moderate overheads to the Nginx web server
while such overheads decrease as the number of concurrent requests increases.
As such, we can conclude that E-SGX can defend against all access-driven cache
side-channel attacks at the cost of performance. It is favorable for programs that
are not computation-intensive while requiring strong security, like authentication
modules at client side, typically.

Contributions. In summary, our main contributions are:

– We propose E-SGX, an approach that can mitigate all known access-
driven/trace-driven cache side-channel attacks against Intel SGX without
trusting system software (i.e., OS or hypervisor).

– We propose an idea of using AEX time as the response threshold to determine
whether an SGX thread located in any core is online, which can defend against
side-channel attacks in the shared LLC .

– We have implemented a prototype of E-SGX on an SGX-enabled physical
machine and evaluated its effectiveness and performance against mainstream
benchmarks including mbed TLS and Nginx.

2 Preliminaries and Related Work

2.1 Intel Software Guard Extensions

Intel SGX protects user-level sensitive code and data against modification or
disclosure from other processes, the untrusted OS, and even physical attackers.
To achieve this, SGX provides applications with trusted execution environments,
called enclaves, which are isolated from the OS by CPU hardware, and encrypts
the memory areas used by the enclaves using processor-specific keys. Intel SGX
identifies enclaves and distinguishes different enclaves in hardware-level by their
measurements, which is the hash of an enclave’s contents. Enclaves with different
measurements are considered as totally different and are isolated from each other.

The execution of an enclave may be interrupted by certain events, such as
interruptions. Such events cause control to transition to an address outside the
enclave. SGX will exit the enclave before invoking the event handler. The process
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of leaving an enclave is called an Asynchronous Enclave Exit (AEX). To protect
the secrecy of the enclave, an AEX automatically saves the state of certain
general-purpose registers as well as the exit reason of the AEX to GPRSGX
region of the State Save Area (SSA) of a Thread Control Structure (TCS) [22],
which is a thread local storage within enclave memory.

2.2 Cache Side-Channel Attacks

Cache Side-Channel Attacks on SGX Enclaves. Cache side-channel
attacks are the main threats to SGX-protected applications. Although cache side-
channel attackers, privileged or unprivileged, cannot access the memory inside
an enclave, they may generate frequent interruptions to interrupt the execution
of the enclave and leverage such frequent interruptions to set up fine-grained
cache side-channel attacks, for example, Prime+Probe attacks, on L1 cache to
extract secret keys. For an unprivileged attacker, he can exploit the vulnerabili-
ties of the underlying OS or hypervisor to generate interruptions. For a privileged
attacker who can control the scheduling of processor resources, he can generate
even more frequent interruptions simply by programming hardware interrupt
controllers (e.g., the Advanced Programmable Interrupt Controller (APIC)). As
such, he can preempt and intercept the control flows of the enclave’s execution
in manipulable ways at a high frequency. Additionally, a privileged attacker can
reduce the background noise which are key obstacles in unprivileged cache side-
channel attacks. The privileged attacker can achieve this by, e.g., pinning the
attack process to a dedicated CPU core and disabling the preemption on that
core to make sure no other processes are scheduled on it.

Brasser et al. and Schwarz et al. Leaked key information from enclave.
Both achieved it through prime + probe cache side-channel attack. Some recent
researches such as Foreshadow [9] and SGAxe [35], they steal the secret infor-
mation inside the enclave by transient instructions, and finally leak the secret
through the cache side-channels.

Cache Side-Channel Attacks Across Physical Cores. In recent years, in
addition to cache side-channel attacks from the sibling logical core, attacks from
the non-sibling logical cores have also appeared. It is mainly aimed at some
internal buffers shared by multiple physical cores, such as LLC, staging buffers,
etc. Because of the more complex structure and more noise, side-channel attacks
from the non-sibling logical cores are very difficult to implement in the Intel
SGX environment.

Recently, there have been much research on side-channel attacks against LLC.
Liu et al. [27], Disselkoen et al. [16] and Craig Disselkoen et al. [16] each designed
an LLC based cache side-channel attacks to extract key information. Unfortu-
nately, SGX can not protect against this type of attack. Moghimi et al. [30] pro-
posed an attack named CacheZoom which is able to virtually track all memory
accesses of SGX enclaves. The CacheZoom was implemented in L1 cache,however
it can be as well implemented in LLC.

In addition to attacks against LLC, the latest attack named CrossTalk [2]
uses staging buffers readable by all CPU cores to perform transient execution
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attacks in all cores and extract the ECDSA key of the entire secure enclave
running on the independent CPU core via cache side-channel. Crosstalk is an
kind of MDS attack, which exploit staging buffers shared by all cores to launch
attacks from the non-sibling logical cores.

2.3 Defense Against Cache Side-Channel

Shih et al. proposed a solution, called T-SGX [40], works by compiling the enclave
application into a collection of TSX transactions. By handling page faults within
the transaction abort handler first before trapping into the kernel, T-SGX can
suppress the notification of errors to the underlying OS, which means that the OS
cannot know whether a page fault has occurred during the transaction, and thus
thereby completely eradicates the known controlled-channel attack. A similar
solution is Cloak [18]. Cloak deterministically preloads all sensitive code and
data into the caches at the beginning of a transaction and instruments HTM
to prevent any cache misses on the code and data. This way, Cloak prevents
adversarial observation of cache misses on sensitive code and data, and provides
strong protection against all known cache-based side-channel attacks. However,
both Cloak and T-SGX may require keeping all sensitive code and data in cache
during the transaction, incurring large write and read sets. Such large write and
read sets will tend to incur frequent transaction aborts.

Tromer et al. suggested disable caching of critical memory, which can totally
eliminate cache sharing [41]. This is an attractive approach to prevent cache
side-channel attacks since modern processors support selectively disabling page
caching. However, it is inapplicable for SGX-protected programs, in that: (1)
SGX logic relies on caching and (2) disabling caching on other cores relies on the
OS, which is untrusted under SGX threat model, and SGX-protected programs
cannot verify whether caching has been disabled.

Closely related to our solution is the research by Chen et al.. Their solution,
called Déjà Vu [13], works by building into enclave execution the ability to check
application program execution time at the granularity of paths in its control-flow
graph. It implements a software reference clock that is protected by Intel TSX
to provide the enclave execution a trustworthy source of time measurement. By
requesting the reference clock thread, a computing thread within the enclave
can detect privileged side-channel attacks by observing the timing difference of
the execution with or without AEXs. Chen et al. presented HYPERRACE, an
LLVM-based tool for instrumenting SGX enclave programs to eradicate all side-
channel threats due to Hyper-Threading [11]. They created a shadow thread
for each enclave thread, asked the underlying untrusted OS to schedule both
threads on the same physical core, and verified that the communication between
the threads using a shared variable inside the enclave did take place in the
shared L1 data cache, which indicated that the OS had scheduled the threads as
expected. Oleksii Oleksenko et al. also take advantage of the cache access time
to defend against cache side-channel attacks by occupying sibling threads [31].
However, they are weak in defending against side-channel attacks from different
physical cores. In this paper we address this problem in the design of E-SGX.
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3 Threat Model

We consider access-driven/trace-driven cache side-channel attacks against the
execution of security-critical operations in SGX enclaves. By security-critical
operations, we refer to the operations performing on cryptographic keys, for
example, RSA private key operations (i.e., signing and decrypting operations),
which are typically short-lived.

The goal of an attacker is to capture cryptographic keys from SGX enclaves.
The attacker can reveal secrets in turn. To serve this purpose, the attacker is
assumed to have full control over the OS, capable of generating interruptions
to preempt the execution of SGX enclaves, and tracing their control flow or
data flow at a cache line granularity. The attacker can block, delay, replay, read,
and modify all messages outside enclaves while the direct inspection of enclave
memory is prohibited by SGX. The attacker cannot break through CPU and
compromise SGX enclaves from inside. Especially, the attacker has no access to
processor-specific keys.

We assume that the untrusted OS is willing to provide an execution environ-
ment as well as enough continuous time to the SGX enclave that is exclusively
scheduled. Violation of this requirement will result in self-termination of SGX
enclave execution (assuming the program is configured with policies to do so),
which leads to denial-of-service (DoS). The detection of such violations uses the
methods we propose in this paper. Especially, the untrusted OS restarting the
enclave abnormally, e.g., frequently restarting the execution, is also considered
as a violation of the requirement. This can be mitigated by introducing a remote
party to monitor the start of the enclave, in a way that the enclave requests a
token from the remote party to get run, so that the execution can be forbidden
by refusing to send the token if the enclave is detected being restarted abnor-
mally. In this paper, we do not focus on mitigating such restarting attacks. DoS
attacks are also out of the scope of this paper, as a malicious OS can easily do
so by not scheduling SGX enclave execution.

4 E-SGX Design

4.1 Architecture

The architecture of E-SGX is illustrated in Fig. 1. The security-critical operations
that run inside the SGX enclave are contained in a computing thread, which
is accompanied by several dummy threads within the same enclave. The total
number of the computing thread and the dummy threads equals that of the
logical CPU cores. Both the computing thread and dummy threads are scheduled
on different logical CPU cores exclusively by the untrusted OS. The untrusted
OS failing to do so will cause these threads to go offline or suffer interruptions.

The computing thread preloads all the code and data required by security-
critical operations into memory at the very beginning in case of page-faults
during the execution. Before starting a security-critical operation, the computing
thread resets memory and cache that will be used. After that, the computing
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Fig. 1. The architecture of E-SGX. Blocks in gray are untrusted, which include the
untrusted components of the processes and the entire OS kernel.

thread challenges the dummy threads to check if they are running properly
and waits for the responses, at a frequency higher than the time it takes for
an AEX (see detailed explanation in Sect. 4.4). Upon receiving the challenge
from the computing thread, each dummy thread syncs its latest running state
immediately in response if it holds a core and is running properly. If a dummy
thread is offline due to being not scheduled on core or being interrupted, it
cannot respond in time. The computing thread checks the timeliness of the
responses from the dummy threads and detects whether an AEX has occurred.
Only if all the responses are in time and no AEX is detected, the computing
thread will continue executing the security-critical operation. Otherwise, it will
self-terminate the execution. At the end of the execution, the computing thread
again resets the memory and cache used during the execution.

Both challenge and response messages are transferred through a trusted com-
munication channel protected by SGX, which cannot be manipulated by the OS
without being noticed.

4.2 Enable Trusted Communication Among Enclave Threads

To protect the challenge-response messages transferred among enclave threads
from being modified or forged, it is necessary to construct a trusted communi-
cation channel. A straightforward and efficient solution is to use enclave global
variables shared by all enclave threads to securely deliver the messages. The
enclave global variables act as a billboard to store the challenges and responses,
whose values are compared by the computing thread to verify the timeliness of
the responses. The above approach can benefit from the features provided by
SGX, in that all memory within the enclave is protected and cannot be manip-
ulated by even privileged attackers without being noticed. But a key problem
of such a solution is that, writing operations on the shared global variables
are simultaneous because in E-SGX all enclave threads are running in parallel.
Such simultaneous writing may cause frequent cache access conflicts, making the
global variables inconsistent in different enclave threads.
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We improve this solution by skillfully configuring the shared global variables
with additional access policies. E-SGX defines different shared global variables
for the computing thread and the dummy threads, which are denoted by Chal-
lenge and State[i] respectively. Challenge is for the computing thread to keep
the latest challenge message, while State[i] is for the i-th dummy thread to keep
its response message. We make both Challenge and State[i] meet the following
requirements:

– Both Challenge and State[i] are located at different cache lines and are read-
able for all enclave threads.

– Challenge can only be written by the computing thread while State[i] can
only be written by the i-th dummy thread.

These requirements eliminate cache conflicts when writing global variables, mak-
ing sure that (1) there is no simultaneous writing to the same global variables;
and (2) each enclave thread can only write its own global variable. We have ver-
ified that message transfer among enclave threads using this improved solution
is very efficient, more than one order of magnitude faster than that using thread
locks.

4.3 Attack Detection

In E-SGX, all logical CPU cores are held by enclave threads and thus adver-
sarial code has to interrupt at least one enclave thread to get a chance to run.
Such context switches will induce AEXs and make the enclave thread go offline.
Specifically, if the interrupted thread is a dummy thread, it will go offline and fail
to respond to the challenge in time; if the interrupted thread is the computing
thread, it will detect an AEX after being resumed from the interruption. Both
of those circumstances can be detected by the computing thread, i.e., the com-
puting thread can detect such an interruption. The computing thread performs
attack detection periodically by checking running states of the dummy threads
and detecting AEXs in sequence during security-critical operations. Figure 2
shows the state transition diagram of attack detection. The details of the two
detection mechanisms are as follow.

Fig. 2. Attack detection state transition diagram. 0© Initiate environment – reset inter-
nal memory; 1© Not all State[i] are updated; 2© All State[i] are updated in time; 3©
Time out; 4© AEXs are detected; 5© No AEX is detected; 6© Time is up and execution
is not finished – perform the periodic detection again; 7© Execution is finished – reset
internal memory.
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Checking Dummy Threads Aliveness. The purpose of checking the running
states of the dummy threads is to ensure that all dummy threads are scheduled
on different logical CPU cores exclusively by the untrusted or even malicious
OS and are running properly, or in another word, alive. To achieve this, E-SGX
enables the computing thread to challenge all dummy threads using one-time
messages and check the responses. If a dummy thread cannot respond to the
challenge in time due to, for example, being not scheduled or being interrupted,
it is considered being offline.

As shown in Fig. 2, at the beginning of a new detection period, the computing
thread generates a one-time message randomly as a new challenge, writes it to
Challenge as an update, and uses the updated Challenge to check the dummy
threads. After that, the computing thread waits for the update of all State[i] of
the dummy threads until all of them have been updated to the new Challenge or
time out. In the meanwhile, the i-th dummy thread continually reads Challenge
and uses the fetched value to update its State[i] immediately. State[i] will be
updated to the latest Challenge immediately if the i-th dummy thread is running
properly on a logical CPU core. If all State[i] have been updated to the new
Challenge in time, which indicates all the dummy threads still hold those logical
CPU cores exclusively and are running properly, the computing thread performs
an AEX detection; otherwise, namely a timeout occurs, the computing thread
will know that the i-th dummy thread is offline possibly due to, for example,
being interrupted by adversarial code, and will abort the execution and raise an
alarm.

Detecting AEXs. After checking all dummy threads, the computing thread
performs an AEX detection to make sure that it itself has not been inter-
rupted. E-SGX enables the computing thread to do so by providing it an inter-
face inside the enclave to check the exit reasons of AEXs. As described by
Intel in [22], the processor automatically saves the exit reasons of AEXs to
SSA.GPRSGX.EXITINFO, located within enclave thread local area. VECTOR
and EXIT TYPE fields of EXITINFO keep the number and type of excep-
tion reported inside an enclave. The interface determines whether an AEX has
occurred by checking the two fields and returns a boolean result to the comput-
ing thread. Note that E-SGX only concerns about the occurrence of an AEX
rather than what the exact exit reasons are, so it makes no difference whether
a malicious OS overwrites the exit reasons by means like triggering arbitrary
interrupts.

If no AEX is detected, which means no attack is launched on the computing
thread, the computing thread continues security-critical execution until the time
is up or the execution is finished, as shown in Fig. 2. Otherwise, namely an AEX
is detected, the computing thread will abort the execution and raise an alarm.

4.4 Detection Period Selection

The computing thread performs attack detection periodically during the execu-
tion of security-critical operations. We denote the detection period as T . T has



E-SGX 231

an influence on the security of E-SGX. For example, if T is longer than the time it
takes for an entire security-critical operation, the computing thread will perform
attack detection only once during the entire security-critical operation, which is
only nominal. To guarantee the effectiveness of attack detection, T should be no
longer than the time it takes for an AEX (briefly called an AEX duration). In
fact, the time it takes for the adversary to successfully launch an attack won’t be
less than an AEX duration, as he must interrupt an enclave thread to kick-start
an attack, which will always incur an AEX.

If T is longer than an AEX duration, the adversary will be able to launch a
cache side-channel attack without being detected. For example, the adversarial
code interrupts a dummy thread and resumes it before the computing thread
times out waiting for the response. In this example, the computing thread has
no awareness that a dummy thread had been interrupted. It is considered more
secure to adopt a smaller T since it brings more intensive attack detection.

On the other hand, T also has an influence on the performance of E-SGX. To
demonstrate more clearly how T affects the performance of E-SGX, we divide a
complete detection period into different time parts. The time spent on security-
critical operations is denoted by t, and the time spent on attack detection is
denoted by t0. Both t and t0 are measured in clock cycles. We use the time
utilization ratio (denoted as r), i.e., the ratio of t in a complete detection period,
as an indicator of the performance. r can be approximated by:

r =
t

T
=

T − t0
T

= 1 − t0
T

where t0 is almost constant. This is reasonable since for a given slice of code,
e.g., the implementation of attack detection including checking dummy threads
aliveness and detecting AEXs, its execution time in clock cycles is independent
of processor speeds. It can be proved that r is monotonically increasing at T , i.e.,
and a larger r indicates higher performance. For a very small T , the execution
may spend most of the time on attack detection, leading to a significant decline
in the performance of security-critical operations. Thus, it is not recommended
to make T too small.

E-SGX allows applications to specify their own detection period. Setting T
to a relatively small value can allow for early-state attack detection and more
adequate reaction time. However, it is preferable to set the detection period to
an AEX duration.

4.5 Attack Reaction

When an alarm is raised, which indicates that an attack has possibly occurred,
the computing thread addresses such an alarm according to application-specific
policies. E-SGX allows users to specify application-specific policies. This is
preferable since it is unlikely that there is a single best policy for all detected
attacks across a wide variety of applications. For applications that require strong
security, such as online banking, they can specify strict policies, for example,
self-terminating the execution and refresh cryptographic keys. For applications
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that are not sensitive to security, they can adopt moderate policies, for exam-
ple, ignoring a few suspect alarms. Such moderate policies make E-SGX tolerant
to some AEXs triggered by Non-Maskable Interrupts. Also, moderate policies
enable the applications to process huge sensitive data without incurring page
faults. Our focus is on providing reliable detection of AEXs during the execu-
tion of security-critical operations rather than the specific policies for different
applications.

5 Security Analysis

By performing access-driven/trace-driven cache side-channel attacks, attackers
aim to extract cryptographic keys from enclaves by measuring the timing differ-
ences between cache hits and misses to collect cache access-patterns. Recall that
the attackers are prohibited by SGX from directly inspecting enclave memory nor
can the attackers break processor package. The attackers can be either privileged
or unprivileged. They can set up fine-grained attacks by frequently interrupting
one or more enclave threads and preempting the execution of security-critical
operations. If the attackers are privileged, they can trigger even more frequent
interrupts, for example, one interrupt per instruction, by programming hardware
interrupt controllers (e.g., APIC) to do so. Nevertheless, all these interrupts will
incur AEXs.

We analyze the security of E-SGX from two aspects: (1) attacks on the com-
puting thread; and (2) attacks on the dummy threads.

5.1 Attacks on Computing Thread

In E-SGX it is the computing thread rather than the dummy threads that per-
forms the security-critical operations, which operates on cryptographic keys.
Thus, the attackers have to interrupt the computing thread and then resume it
to collect a cache access-pattern by side-channel (recall that to carry out a cache
side-channel attack, an attacker has to manipulate cache to be a known state,
wait for victim activity, and examine what has changed). When the computing
thread is interrupted, an AEX is incurred and the exit reason of the AEX is
automatically saved in SSA.GPRSGX.EXITINFO by the processor. After being
resumed, the computing thread can finally detect the AEX by checking the exit
reason. Thus, attacks on the computing thread can be detected.

However, there does exist a vulnerable window before the computing thread
detects the AEX. During such a vulnerable window, the attackers can trace the
execution of security-critical operations. By programming hardware interrupt
controllers, the attackers can even interrupt the computing thread per instruc-
tion, maximizing the traces they can get in the vulnerable window. Note that
the size of the vulnerable window is not larger than one detection period since
the AEX will finally be detected within one detection period.

Cache side-channel attackers extract cryptographic keys by observing the
access-patterns of the keys. In E-SGX, by launching an attack, the number of
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Fig. 3. The distribution of AEX duration occurs once.

bits of a key that the attackers can observe within the vulnerable window is very
limited. For example, less than 4 bits of an RSA private key can be observed
in the vulnerable window, since RSA employs one Montgomery multiplication
operation [23] to process every bit of the private key and there are less than 4
Montgomery multiplication operations can be proceeded in an AEX duration (an
AEX costs at least 8150 cycles while one Montgomery multiplication operation
costs 2314 cycles in our platform, as shown below). Note that the attackers
successfully observing access-patterns of the key does not mean that they can
extract the keys correctly.

An application can set the detection period to a small value and thus allow
for more frequent attack detection, to shrink the vulnerable window and restrain
the attack effect of the adversary. More importantly, the risk of key leakage can
be eliminated by adopting strict application-specific attack reaction policies,
for example, altering the cryptographic key and restarting the security-critical
operation when necessary.

5.2 Attacks on Dummy Threads

By interrupting one of the dummy threads, attackers would have a chance to
execute in parallel with the computing thread and carry out a cache side-channel
attack from a co-located logical CPU core. The interrupted dummy thread will
be offline and unable to update its State[i] in time, resulting in the comput-
ing thread time out waiting for the response when challenging the interrupted
dummy thread. Thus, by challenging the dummy threads, the computing thread
can detect attacks on the dummy threads. Interrupting a dummy thread takes
an AEX duration, during which the computing thread will time out waiting for
the response. Thus, there is no vulnerable window for this scenario.
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6 Implementation

We implemented E-SGX as a library based on the Intel Linux SGX SDK [5],
providing interfaces to create dummy threads, detect AEXs, and specify policies
in respond to an alarm. We measured in advance three important time values of
E-SGX: (1) the time for challenging the dummy threads, which was 456 cycles
on average (no attack occurs) (2) the time for detecting AEXs, which was several
dozens of cycles; and (3) an AEX duration. Measuring an AEX duration was
a little complicated. Recall that the time for an AEX includes the time for an
enclave exit and a context switch into the kernel. To conservatively estimate the
minimum time needed by an AEX, we measured only the time for an enclave exit,
which could be approximated to the time spent in an empty OCall. Because the
AEX duration directly determines the value of the E-SGX detection period, so we
repeatedly measured the AEX duration 3000 times and recorded its distribution.
As shown in Fig. 3, the AEX duration is 8404 cycles on average and the minimum
is 8150 cycles. To ensure that the E-SGX detection mechanism can be triggered
at any time, the detection cycle length should be shorter than the AEX duration.
So we set the detection period to 8100 cycles. As we all know that the time in
clock cycles it takes for a given slice of code is independent of processor speeds.
As such, we pre-measured all the three-time values of E-SGX in non-enclave
mode, leveraging the rdtscp instruction.

The E-SGX detection phase is mainly divided into two steps. The first step is
the detection of the dummy threads. As shown in Listing 1.1 in appendix A, each
dummy thread has a State[i] to store the Challenge, which is assigned by the com-
puting thread. Especially, the size of the State[i] is aligned to the cache line size,
which can effectively avoid cache line read and write conflicts. In addition, we
closed the compiler optimization fo each dummy thread’ State[i], which prevents
reading errors during periodic detection due to cache content not being updated
in time. The second step is to detect whether an AEX has occurred in the com-
puting thread. As shown in Listing 1.2 in Appendix A, we modified the SGXSDK
to make the judgment according to the state of SSA.GPRSGX.EXITINFO. And
then the SGXAPI and detection of the dummy thread will be called by the
computing thread, as shown in Listing 1.3 in Appendix A.

We employed the OS to schedule all E-SGX enclave threads in a
SCHED FIFO way (First-in-first-out scheduling) with the highest priority. A
SCHED FIFO thread runs until either it is blocked by an I/O request, it is
preempted by a higher priority thread, or it calls sched yield to relinquish the
processor. Scheduling in SCHED FIFO with the highest priority ensures that
E-SGX threads are first scheduled and probably not preempted by other pro-
cesses, making E-SGX more practical. If SCHED FIFO E-SGX threads are
preempted, E-SGX resets the environment and tries again.
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7 Evaluation

7.1 Experiment Setup

Our experiments were conducted on an Intel NUC6 with an SGX-enabled i3-
6100U processor and 8GB DRAM. The processor was designed for low power
(15W) usage and had 4 logical cores (denoted by core 0, core 1, core 2, core
3, respectively), whose maximum frequency is 2.3 GHz. The size of EPC was
128 MB. The operating system was Ubuntu 16.04 with Linux kernel version
4.13.0. Connections to the Intel NUC6 were via the local area network (ping
about 0.55 ms). We used GCC 5.4.0 to compile the source code including the
Linux SGX SDK.

7.2 Security Evaluation

We considered all known access-driven/trace-driven cache side-channel attacks,
both of which incurred interruptions, and evaluated the security of E-SGX from
three aspects: (1) we validated that E-SGX could detect such interruptions on
any one of the enclave threads; (2) we measured the size of the vulnerable window
before the computing thread detected such interrupts and showed that it was
very limited, less than a detection period; and (3) we validated that manipulated
CPU speeds did not break (1) and (2).

To make such evaluations intuitive, we applied E-SGX to protect a carefully
designed program. This program did nothing but count from a predefined value
N to zero in the computing thread. N was large enough, e.g., 105, so that it took
multiple detection periods to count from N to zero. We pre-measured the time in
clock cycles for the computing thread to count from N to zero. The computing
thread would exit the execution if counting was finished or an interruption was
detected. To make it simple and intuitive, the counter was located outside enclave
in purpose, so that we could directly observe it even if the computing thread
terminated itself. We instrumented the OS kernel to trigger interrupts to preempt
one of the dummy threads and the computing thread respectively, executed
adversarial code and observed the final counter value as well as the execution
time for the computing thread.

Validating Interrupt Detection. Under E-SGX protection, to launch a cache
side-channel attack, whether using flush+reload or other cache side-channel
attack means, the attacker needs to interrupt at least one thread. In such a
carefully designed program, we could verify whether E-SGX had detected inter-
rupts by checking the counter value: if the value of the counter is greater than
zero, it indicates that E-SGX has detected the interrupts and terminated itself.
Note that the interrupts can be caused by either event: (1) the dummy threads
being hung up; (2) an AEX happens to the computing thread. To test the first
case, we hung up a dummy thread 106 times, and the interrupts are detected
correctly every time. To test the second case, we deliberately induce an AEX
106 times and the interrupts are also detected every time.
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Fig. 4. lower-level functions CPU costs (in cycles).

Measuring Vulnerable Window Size. To measure the vulnerable window
size, we enabled adversarial code to record the counter value immediately when
it interrupted an enclave thread and executed itself. We measured the difference
between the recorded counter value and the final counter value as an indicator
of the vulnerable window size. The results showed that for all the tests, the
difference between the two counter values was less than 1540. Note that it took
about 4 cycles for each decrement. As such, the vulnerable window size was less
than 6160 cycles, less than a detection period, 8100 cycles (less than an AEX
duration). So any attack launched during the vulnerable window will surely be
detected afterwards.

Manipulated CPU Speeds. To verify whether manipulated CPU speeds have
an impact on E-SGX, we scaled down the operating frequency of the logical
CPU core [1], where the computing thread ran on, from the maximum 2.3 GHz
to the minimum 800 MHz on our platform, and then repeated above tests. The
results were the same. This is as expected, since all times are measured in CPU
clock cycles, and for the same code, the time in clock cycles it takes to execute
is independent of processor speeds though the time in seconds does depend. As
such, an advanced attacker cannot benefit from manipulating processor speeds
in E-SGX.

7.3 Performance Evaluation

To verify the practicability of E-SGX, we mainly carried out two sets of experi-
ments. First, we use E-SGX to protect the digital signature algorithm in mbed
TLS [3]. And then we use ngnix [4] to transfer openssl as a third-party library,
which runs in an E-SGX scene. So we measured the running cycles of some fre-
quently called lower-level functions in mbed TLS RSA signature implementation
and openssl RSA encryption implementation. As shown in Fig. 4, the most time-
consuming operation is the Montgomery operation that costs 2314 cycles, which



E-SGX 237

is one third of an AEX duration. And other operations are much shorter than
an AEX duration.

(a) The number of CPU clock cycles
spent on the RSA private key oper-
ation in the original model and the
E-SGX modely.

(b) Performance overhead when oc-
cupying different logical cores with
dummy threads.

Fig. 5. mbed TLS library

Performance in mbed TLS. We applied E-SGX to protect RSA private key
operations in mbed TLS. We consider that to capture long-term cryptographic
keys, typically private keys (e.g., RSA private key) is the primary goal of an
attacker, since capturing temporary symmetric keys (e.g., AES key) or actual
secrets are useful for only one session while acquiring long-term private keys
grants full access.

Private key operations, i.e., signing and decrypting, were done by calling
rsa private in mbed TLS. rsa private consisted of a series of lower-level func-
tions, such as mpi add mpi, mpi mul mpi, mpi montmul (Montgomery multipli-
cation [23]), etc. We indexed those lower-level functions and pre-measured the
time in clock cycles for each of them (noted as ti for lower-level function i, e.g.,
t3 for mpi montmul was 2314 cycles). We dynamically maintained the remain-
ing available time (noted as tr) to execute. In each detection period, tr was
initiated to T − t0. If tr was larger than ti, which indicated the remaining time
was enough to execute lower-level function i, updated tr = tr − ti and executed
lower-level function i; otherwise turned to next period. We measured the average
clock cycles for a private key operation with and without E-SGX. The detection
period for E-SGX varied from 2500 cycles to 8800 cycles.

E-SGX protected operations cost more time than the original ones. We can
learn from Fig. 5(a) that when the detection period is less than 8000 cycles,
the time penalty in E-SGX protected operations goes down when the detection
period increases. This result is in line with the conclusion in Sect. 4.4 that the
performance of E-SGX is monotonically increasing as the detection period grows.
While the detection period is larger than 8000 cycles, the change in performance
overhead is not obvious, because at this moment the additional performance
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overhead is mainly caused by the dummy threads. Specifically, the logical cores
in a same physical core share the L1/L2 cache, the execution engine and the
system bus interface, which means the two logical cores almost evenly share
the computing capability of the physical core which supports Hyper-Threading
Technology. As a result, the dummy thread running on the same physical core as
the computing thread creates additional performance overhead. To prove that,
we run the computing thread in the first logical core (denoted by core 0) and
occupy other logical cores with different combinations. Besides, the detection
period is set to 8100 CPU cycles, which is less than the minimum AEX duration
we detected. As shown in Fig. 5(b), since the third logical core (core 2) and the
first logical core (core 0) are in the same physical core, the additional performance
overhead is introduced when and only when core 2 is occupied. In this manner,
turning off Hyper-Threading can be an option for E-SGX users to maintain
the original performance of the protected single-threaded operations (i.e., the
computing thread), since there will be no dummy thread acting as a resource
competitor on the same physical core.

In summary, when we set the detection period to 8100 CPU cycles and turn
on Hyper-Threading, compared to the original mbed TLS which takes 6.5084 ×
106 CPU cycles to produce an RSA signature, mbed TLS with E-SGX spends
1.2336 × 107 CPU cycles. The performance overhead is 47.24%. And when we
turn off Hyper-Threading, mbed TLS with E-SGX only spends 6.6706×106 CPU
cycles. The performance overhead drops to 2.43%.
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Fig. 6. Nginx calls the original openssl and E-SGX’s openssl environment for each
https access request time. The number of concurrent requests varies from 1 to 3, 200.

Performance in Nginx. We ported Nginx to support openssl. We created two
Nginx web servers with same configurations, hosting default welcome pages—one
was running with origin openssl (Origin Nginx) while the other one was running
in an E-SGX scene (E-SGX Nginx). We benchmarked the web servers, with the
number of concurrent requests varied from 1 to 3200. Before each test, the web
servers were restarted to clear out any potential caching or other issues that may
interfere with results. All requests to the web servers were through local area
network.

First of all, unexpectedly, we can learn from Fig. 6 that E-SGX protected
web server can also benefit from concurrency just like the origin one. This is
because E-SGX is just one part of the web server and the protected web server
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can still use all concurrent resources outside E-SGX, though E-SGX monopolizes
the whole CPU and wastes resources during security-critical operations. Figure 6
also shows that time per request in E-SGX protected web server is greater than
that in the origin one at any concurrent level, especially when the concurrent level
is lower than 150. This shows that our E-SGX does induce performance overhead
to web server. However, as the concurrency level goes higher, the performance in
E-SGX protected web server increases fast and closes to the original one. This
is possibly because (1) E-SGX can also benefit from concurrency; and (2) the
number of requests that queue up to await increases when the concurrency level
goes high, and requests have to spend more time in waiting. As such, the overhead
introduced by E-SGX becomes less significant at higher levels of concurrency.
As also shown in Fig. 6, both web servers cannot benefit more from concurrency
when the level of concurrency is higher than 200, and even gain performance
overhead instead.

8 Discussion

Human Effort. The functionalities of E-SGX rely on its attack detection mech-
anism that is performed periodically, so enhancing an application with E-SGX
scheme requires the developer to manually divide the source code into code snip-
pets separated by lines that implement periodic detection. The reform involves
CPU cycle measurements of low-level functions of the target application, which
is application specific and somewhat time consuming. Though, such reform could
be once and for all. Nevertheless, the automatic E-SGX reform of applications
can be expected as well.

Security with Overhead. When Hyper-Threading is on, E-SGX introduces an
overhead of 47% to the execution of its protection target according to Sect. 7.3,
since it affects the shared computation resource by occupying the sibling logical
core. However, by carefully selecting and tailoring the code area that is protected
by E-SGX, we can minimize the impact on system performance, which also
conforms to the design philosophy of Intel SGX. Nevertheless, as stated in Sect. 1,
E-SGX is most favorable for programs that are not computation-intensive while
requiring strong security, like authentication modules at client side, typically.

Single-threaded vs. Multiple-threaded. E-SGX requires that the dummy
threads occupy all the other cores when the computing thread of the application
executes security-critical operations and be scheduled exclusively by the com-
puting thread. It will be difficult to confirm all of the cores has been occupied
if more than one computing threads are being executed simultaneously, due to
the complexity in scheduling. So currently for E-SGX, we require that the appli-
cation should be single-threaded (only one computing thread present), which is
also the normal case for many client-side applications. We are also working on
the multi-threaded version of E-SGX which are more preferable for server-side
programs that demands concurrency.
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9 Conclusion

In this paper, we present an approach to mitigate one of the main weaknesses
of Intel SGX: cache side-channel attacks. Our approach employs several SGX
threads from the same enclave to hold all logical CPU cores exclusively to
break the concurrent execution condition of access-driven/trace-driven cache
side-channel attacks, and use a mechanism which take advantage of AEX time
to detect any interrupts to enclave threads. Our approach can mitigate all known
access-driven/trace-driven cache side-channels and even page-fault side-channels,
as well as other interruption-based and exception-based attacks, at a cost of some
overhead. It is favorable for programs that are not computation-intensive while
requiring strong security.

A Implementation Code

Listing 1.1. Dummy thread algorithm

void e c a l l s e i z e c o r e ( s i z e t ) {
do { s t a t e [CPU] = cha l l enge ;}while ( ! e x i t ) ;

}
bool i s a l l s e o n l i n e ( ) {

for ( int i =0; i<CORE PER CPU; i++)
i f ( cha l l enge != s t a t e [ i ] )
return f a l s e ;
return t rue ;

}

Listing 1.2. AEX algorithm

void SGXAPI s g x g e t t h r e a d e x i t i n f o
( int ∗ vector , int ∗ ex i t type , int ∗ va l i d ) {

thread data = ge t th r ead da ta ( ) ;
s s a gp r = thread data−> f i r s t s s a g p r ;
e x i t i n f o = &ssa gpr−>e x i t ;
∗ vec to r = e x i t i n f o −>vec to r ;∗ e x i t t yp e =

e x i t i n f o −>e x i t t yp e ;∗ va l i d =
e x i t i n f o −>va l i d ;

}
bool SGXAPI sgx i s ex c ep t i on happen ( ) {

s g x g e t t h r e a d e x i t i n f o (&vector ,&
ex i t type ,& va l i d ) ;

i f ( vec to r | | e x i t t yp e t yp e | | va l i d ) return
1 ;

return 0 ;
}
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Listing 1.3. Computing thread algorithm

. . .
sgx read rand ( cha l lange ,
s izeof ( cha l l ange ) ) ;
do {

i f ( i s a l l s e o n l i n e ( )&&sgx i s e x c e p t i o n ( )
) {

. . . // de t e c t i on pass , cont inue
break ;}

}while ( ! i s t imeou t ) ;
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Abstract. Decision tree is a favored prediction model in machine learn-
ing and data mining. With the fast development and wide application of
machine learning, the privacy of decision tree prediction is a rising concern.

In this paper, We construct a specific purpose NIZK for privacy-
preserving decision tree prediction. The protocol allows the server who
holds a decision tree model to convince others the result of the decision
tree on an encrypted data sample, without leaking private information
about the decision tree. Our protocol has high efficiency in both prover
time and verifier time, and the proof size is only several KBs. With such
NIZK, we can build a public verifiable private decision tree prediction
system. In this system, a client can query the result of the server’s deci-
sion tree on its encrypted feature vector, and anyone who has only the
access to public information can verify the validity of the result.

Keywords: NIZK · Decision tree prediction · Privacy-preserving

1 Introduction

With the development of machine learning, there are many companies who hold
some machine learning models providing consulting or assessment services by
evaluating user’s information. For example, many people use the Zhima Credit
Score what is provided by Alipay as a person’s credit rating. In most cases, we
require privacy for the model, because training this model may take a lot of cost
or use a lot of sensitive information. On the flip side, the service provider also
needs to provide something to make sure that users can verify the validity of
the results. Consider another specific scenario, the government wants to build
a building and invite public bidding. The government holds a decision-making
model which will evaluate the bids of bidding companies. On the one hand,
this decision-making model should be kept confidential; On the other hand, to
prevent cheating and corruption, the correctness of the evaluation results should
be public verifiable. It means that anyone who has access to public information
can verify the correctness of the results.
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Decision Trees [FHT01] is among the most popular machine learning tech-
niques. As the name suggests, decision tree consists of a collection of nodes
arranged in a tree structure and each decision node is associated with a thresh-
old value which makes a test on the query. Prediction process simply corresponds
to tree traversal and the leaf node at the end of this traversal path is associated
with a classification label, which is the result of this prediction process. Since its
structure is simple and easy to explain, decision tree models are favored by many
users and have been widely used in many fields and scenarios such as credit-risk
assessment [KTG06].

Zero-knowledge (ZK) proofs (of knowledge) [GMR89] are fundamental cryp-
tographic tools. They allow a prover to convince a verifier, who has access
to a circuit C, that there exists a witness w for which C(w) = 1 with-
out leaking any extra information. To make ZK proofs practical, in recent
years, several efficient ZK proof systems have been developed such as zero-
knowledge succinct non-interactive arguments of knowledge [Gro10,Gro16,
BSCTV14,GGPR13,PHGR13]. These ZK proofs can also be used in decision
tree prediction, while we noticed that all of them are general purpose ZK proofs.
We must transfer the statement that we want to prove into a suitable format
that will bring lots of computation overhead.

In this work, we develop a specific purpose non-interactive zero-knowledge
proof (NIZK) for decision tree prediction, And we also give a public verifiable
decision tree prediction system. In our settings, the client holds a feature vector
x, the server holds a decision tree M, and the client wants to query the result
c = M(x). We require that the server returns the result c to the client along
with a NIZK proof so that the client can verify the validity of the result.

1.1 Our Contributions

In this paper, we give a specific purpose NIZK proof for decision tree prediction,
which can be used to prove the correctness of the decision tree prediction results
without leaking extra information. Our construction is very efficient on both
proving and verifying, the proof consists of only 5d + 2(log2 l + log2 d) + 4 group
elements and 4d+5 Zp elements, where d is the depth of the decision tree. With
such NIZK proof, we give a public verifiable private decision tree prediction
system.

2 Preliminaries

In this section, we define some notations and review some basic definitions of
cryptographic primitives used in this paper. We also introduce some background
knowledge about decision trees used in our work.

Notations. Let [n] be the set of integers {1, 2, ..., n}, Zp be the ring of integers
modulo p. With [a, b], we denote the set of all integers from a to b, means
{a, a + 1, ..., b}. For a set S, we write x ← S to denote a uniform draw x from
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S. Let λ be the security parameter, Λ be a interactive protocol, Π be a non-
interactive protocol, and π be the proof in a non-interactive protocol. A function
negl(λ) is said to be negligible if for all polynomial p(λ), it holds that negl(λ) ≤
1/p(λ) for sufficiently large λ ∈ N. Let PPT stands for probabilistic polynomial-
time. Let MS be the plaintext space and R be the randomness space.

2.1 Cryptographic Primitives

Elgamal Encryption. Elgamal [ElG85] is a widely used PKE scheme. It works
in a cyclic groups which the discrete logarithm problem is hard. We will give the
details of Elgamal below

– Assuming Elgamal works on a cyclic group G, and g is a base element in G.
– (h; s) ← KGen(1λ), where h is public-key and s is secret key. It holds that

h = gs.
– c = (c1, c2) ← Enc(h,m; r) = (gr, gmhr), c is the ciphertext of m under

public-key h and randomness r.
– Dec(s, c) = Dec(s, (c1, c2)), firstly compute c−s

1 c2 = g−srhrgm = gm, then
compute the logarithm m of gm to g. Outputs m as the decryption of c.

2.2 Decision Trees

Decision trees are frequently encountered in machine learning and can be used
for classification and regression. We will introduce some necessary background
knowledge about decision tree model.

Decision Tree. A decision tree (DT) is a map Φ : Z
n → Z, implements the

function on an n dimensional feature space. In practical scenarios, the feature
space is usually R

n, so we use a fixed-point encoding of the values. We refer to
element x ∈ Z

n as a feature vector and denote a finite set {c1, c2, ...ck} ∈ Z
k as

the classification label set. The decision tree maps a feature vector to an element
in classification label set and the decision at each decision node is a comparison
between the assigned threshold and associated feature values.

Node Indices. Given a complete binary decision tree (all the decision trees can
be transformed into a complete binary tree by increasing the depth of the tree
and introducing “dummy” nodes), we set 1 to be the index of the root node.
And we label the remaining nodes inductively: given an internal node with index
v, let 2v be its left child and 2v + 1 be its right child. We also refer to the node
with index v as the node v.

Paths in Complete Binary Trees. We use bit strings to represent paths in a
complete binary trees. Specifically, given a complete binary tree M with depth
d, we specify a path by a bit string b = b1, b2, ...., bd ∈ {0, 1}d, where bi denotes
whether we visit the left child or the right child when we are at a node at level i
(in this work, we visit the left child when bi = 0 and the right child when bi = 1).
Starting at the root node (level 1), and traversing according to the bit string b,
then we define a unique path in M.
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Decision Tree Prediction. Given a feature vector x = (x1, x2, ..., xn) and a
decision tree M, starting at the root node 1, the decision tree prediction evaluates
at each reached node vi the decision bit bi ← [xatt(vi) ≥ thr(vi)] and moves to
the left (if bi = 0) or right (if bi = 1) subsequent node. At the end, this prediction
process returns the label of the reached leaf node as the result of the computation.
We denote it M(x).

3 Our Construction

3.1 Overview

Here we will describe our construction briefly to give readers a general intuition.
In the setup phase, the server should encrypt his decision tree M and make the
encrypted decision tree M̂ public. M̂ can be used as public information to verify
the correctness of the output results. In the query phase, the client encrypts his
feature vector under the server’s public key and send the ciphertexts to the
server. The security of the encryption will protect the privacy of the client from
others except the server. In the response phase, after receiving the query, the
server decrypts the ciphertexts and obtain a plain feature vector, then computes
the result of M on the vector by the standard decision tree prediction.

The server also need to provide a NIZK proof to prove that result is correct.
By in-depth observation, the validity of the result is indeed the correctness of
all the comparison on the decision path. In our construction, we show the cor-
rectness of each comparison by proving the difference between threshold value
and correspond attribute value is in correct range. Formally, we define such a
statement stcorrect as

{(g, h,X, Y )|∃m, r s.t. X = gr ∧ Y = hrgm ∧ c ∈ Range}

where Range is the correct range we need. And for ease of analysis, we can write
such statement as

stcorrect = stenc ∧ strange

where
stenc = {(g, h,X, Y )|∃m, r s.t. X = gr ∧ Y = gmhr}

strange = {(g, h, Y )|∃m, r s.t. Y = gmhr ∧ m ∈ Range}
We apply bulletproof [BBB+18] as our range proof for strange. Here we point out
that the security of bulletproof is based on the discrete logarithm assumption,
but in our settings, the secret key of the server is indeed the discrete logarithm
of public keys. With the knowledge of such secrete key, the server can convince
the verifier a false statement which breaks the soundness of bulletproof. And
the server can only learn the plain message, it generally does not know the
correspond randomness. It means the server does not know all the witness for
stcorrect.
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Our solution is encrypting the same plaintext under new public keys whose
discrete logarithm keeps secret to the server. And hence, we also need to provide
a proof to ensure that the two ciphertexts encrypt the same value under different
public keys. We define such a statement

stequi = {(g, h1, h2, C1, C2) : ∃m, s1, r2 s.t. m = Dec(s1, C1) ∧ C2 = Enc(h2, m; r2)}

3.2 Data Structure

To present our constructions, we give some necessary description of data struc-
tures here. For convenience, we only consider complete binary trees and set the
right child of v to be the next node of the decision path when b = 1 and the left
child to be the next node when b = 0.

Definition 1. Data Structure For a decision tree model M, We let Node be a
data structure that for each node v defines the following notations:

– v.thre stores the threshold value thr(v) of the node v.
– v.ain stores the associated index att(v) of the node v.

We denote D by the set of decision nodes which have the described data structure
and L by the set of such leaf nodes. It is clear that M can be rewritten as M =
(D,L). We can encrypt the threshold values of M and obtain a corresponding
decision tree M̂ = (D̂,L), where v̂ ∈ D̂ is same as v ∈ D except the threshold
values they stored. It means that v̂.thre stores the ciphertexts of v.thre.

3.3 Building Blocks

Setup. In this step, the system generates the necessary parameters and establish
the initial state. Specifically, on inputs security parameter λ, it outputs public
parameters pp, which includes group G and associated parameters (p, g) where
p is the order and g is the base element. And pp also includes a global public key
hpub of ElGamal encryption scheme and l which is the bit length of the threshold
value in plain decision tree M. Then on inputs λ and pp, outputs the server’s
key-pair.

Setup

– On inputs λ, outputs pp = (G, p, g, hpub, l)
– For the server, run (pkS, skS) ← keygen(pp, λ).
– The server holds a decision tree M = (D,L) with data structures

described above, encrypts all the threshold values of v in D and obtain an
encrypted decision tree M̂. That is to say, in M̂, v̂.thre stores the cipher-
texts of thr(v) under ther server’s public key pkS. The server exposes M̂
to all.
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Bulletproof. Bulletproof is a very efficient range proof in practice and supports
batching. We employ bulletproof Λbullet = (Setup, P, V ) for strange. To avoid
repetition, we refer the readers to [BBB+18] for more details.

Lemma 1. Assuming the hardness of discrete logarithm problem, Λbullet is a
public coin SHVZK arguments.

Sigma protocol for stenc. Here we give a sigma protocol for the knowledge
proof of ElGamal ciphertexts.

Protocol Λenc

– Common inputs: stenc = (g, h,X, Y ).
– private inputs: the plaintext m, the randomness r.

1. P: Randomly chooses b1, b2 ← Zp, computes a1 = gb1 , a2 = hb1gb2 . Then
sends a1, a2 to the V.

2. V: Randomly chooses e ← Zp, and sends e to the P.
3. P: Upon receiving challenge e, computes z1 = re + b1, z2 = me + b2.
4. V: Upon receiving z1, z2, checks that:

– if gz1 = a1X
e;

– if gz2hz1 = a2Y
e;

If all the check pass, accepts; Otherwise, rejects.

Lemma 2. Protocol Λenc is a Σ−protocol for statement stenc.

Proof. This proof is trivial, we omit the details here due to the space limitations.

NIZK for stcorrect. Let Λcorrect be the sequential composition of Λenc and Λbullet

as described in [CMTA19].

Lemma 3. Protocol Λcorrect is a public-coin SHVZK arguments of knowledge
for stcorrect.

The proof for Lemma 3 has appeared in [CMTA19], to avoid repetition, we refer
readers to [CMTA19] for more details. And in this paper, we apply Fiat-Shamir
heuristic to achieve corresponding non-interactive protocol and we denote the
non-interactive form by Πequi.

NIZK for stequi. As described above, we need a NIZK proof for the plaintext
equivalence between two ciphertexts. Below, we will give the concrete description
of our construction.

Protocol Λequi
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– Common inputs: stequi = (g, h1, h2, C1, C2), where C1 = (c1, d1), C2 =
(c2, d2).

– private inputs: the plaintext m, the secret key s1 where h1 = gs1 and
randomness r2 used in C2.

– Note that c1 = gr1 , d1 = gmhr1
1 , c2 = gr2 , d2 = gmhr2

2 , and it is easy to
verify that d2 = d1c

−s1
1 hr2

2 . The P has no idea about r1.

1. P: Randomly chooses b1, b2 ← Zp, computes a1 = gb1 , a2 = gb2 , a3 =
cb1
1 h−b2

2 . Then sends a1, a2, a3 to the V.
2. V: Randomly chooses e ← Zp, and sends e to the P.
3. P: Upon receiving challenge e, computes z1 = s1e + b1, z2 = r2e + b2.
4. V: Upon receiving z1, z2, checks that:

– if gz1 = he
1a1 and gz2 = ce

2a2;
– if de

2d
−e
1 cz1

1 h−z2
2 = a3.

If all the check pass, accepts; Otherwise, rejects.

Lemma 4. Protocol Λequi is a Σ−protocol for statement stequi.

Proof. (Perfect) Completeness and special HVZK are trivial.
We only give the proof sketch for the special soundness. By standard rewind-

ing technology, we can extract s1, b1, r2, b2. Substitute z1, z2 with s1e+b1, r2e+b2
into the third verification, we have (d2d−1

1 cd1
1 h−r2

2 )ecb1
1 h−b2

2 = a3 which is sat-
isfied for two different e, e′. d2d

−1
1 cd1

1 h−r2
2 must be the identity of the group G,

we have that d2 = d1c
−s1
1 hr2

2 , and this equation holds iff C1, C2 correspond to a
same plaintext m. That is to say, the plaintext m we obtained from C1 is also
the plaintext of C2.

We can also apply Fiat-Shamir heuristic to achieve a corresponding non-
interactive protocol and we denote the non-interactive form by Πequi.

3.4 NIZK for Decision Tree Prediction

Here we put all building blocks together to achieve a NIZK proof for decision
tree prediction. In our settings, the prover holds a decision tree M and a key-
pair. The verifier only knows the prover’s public key and the encrypted decision
tree M̂. Given an ecnrypted feature vector (c1, c2, ..., cn), a classification label
y and an associated decision path (b1, b2, ..., bd), the prover will prove that y is
indeed the correct output of M on the plaintexts of (c1, c2, ..., cn).

ΠDTP: NIZK for Decision Tree Prediction
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1. Common inputs: M̂, classification label y, decision path (b1, b2, ..., bd),
encrypted feature vector (c1, c2, ..., cn), the bit length l of threshold val-
ues, pp.

2. Private inputs: the plain feature vector (x1, x2, ..., xn), plain decision
tree M.

3. Prove: The prover
– sets v0 = 1, that is to say, let v0 to be the root node.
– for each i ∈ {1, 2, ..., d}, if bi = 1, sets vi = 2vi−1 + 1, else let vi =

2vi−1.
– for each j ∈ {0, ..., d−1}, randomly chooses a rj ← Zp, computes ctj

homomophicly according to bj+1, then computes the corresponding
ciphertext CTj under the global public key.

– for each j ∈ {0, ..., d − 1}, invokes Πequi and computes πj .equi ←
Πequi.Prove(hpub, pkS, g, ctj ,CTj ; rj , skS, (−1)bj+1(vj .thre−xvj .ain)).

– for each j ∈ {0, ..., d−1}, invokes Πcorrect and computes πj .correct ←
Πcorrect.Prove(g, hpub,Xj , Yj ; rj , yj) to prove that yj is in the range
[0, 2l−1], where yj is the corresponding plaintext and CTj = (Xj , Yj).

– sends πDTP = {πj .equi, πj .correct,CTj}j∈{0,...,d−1} to the verifier.
4. Verify: The verifier receives proof πDTP, then

– for each j ∈ {0, ..., d − 1}, computes ct′
j homomophicly according

to bj+1 and checks Πequi.Verify(ct′
j ,CTj , pkS, hpub, g). If all checks

pass, continues. Else, rejects.
– for each j ∈ {0, ..., d − 1}, writes CTj in the Elgmal ciphertext form

(Xj , Yj), then checks Πcorrect.Verify(g, hpub,Xj , Yj). If all checks pass,
accepts; Otherwise, rejects.

Theorem 1. ΠDTP is a NIZK protocol.

Proof. It is easy to see that ΠDTP = Πcorrect ∧ Πequi. And Πcorrect and Πequi

are both NIZK, then the proof of this theorem follows from the property of
AND−proofs.

Optimizations. After executing Πenc and Πequi, we prove the knowledge
of the plaintext and the randomness twice. We can put them in one pro-
tocol to reduce the repetition. For a (n, d,m)−tree, one πDTP proof consists
5d + 2(log2 l + log2 d) + 4 G elements and 4d + 5 Zp elements.

Application. With such NIZK for decision tree prediction, we will give a brief
description of a public verifiable private decision tree prediction system which is
a straightforward application of ΠDTP.

– Builds the initial state of the system by the Setup step.
– The client encrypts his feature vector under the server’s public key, and sends

the ciphertexts to the server.
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– After receiving the query, the server decrypts the ciphertexts and obtains a
plain feature vector, then computes the output of his decision tree on such
feature vector, and invorks ΠDTP to compute a corresponding NIZK proof.
Sends the results and the proof to the client.

Note that the output results and the corresponding proof can be verified by
anyone who has the access to these public informations. It means that the client
can use such proof as his “certificate” of this results (maybe his credit evaluation
score). And anyone else can learn nothing about both the server’s and the client’s
private information.

4 Implementation and Evaluation

We implement the NIZK protocol ΠDTP and we will evaluate its performance
on prover time, verifier time, proof size. Our implementation is written in rust
and use the library libsecp256k1 which is used in many cryptocurrency systems.
libsecp256k1 uses the elliptic curv secp256k1 which has 128 bit security, and
one secp256k1 point is stored as 33 bytes (32 bytes plus 1 bit). When imple-
ment ΠDTP, we use batching bulletproof to prove d instances, it will saves a
lot communication overhead. To make Λcorrect and Λequi non-interactive in the
random oracle model, we instantiate the random oracle with SHA-256. All our
codes runs on a personal computer with a Intel Core i7-9700k CPU. And all the
codes is using a single thread. We run the experiments many times on different
decision trees which has different depth d. Besides, we fix the bit length l = 32.
The results about ΠDTP are summarized in Table 1.

Table 1. The performance of ΠDTP.

Depth d = 4 d = 8 d = 16

Prover time 59.3 ms 122.2 ms 244.7 ms

Verifier time 15.9 ms 28.4 ms 54.7 ms

Proof size 2.58 KB 3.82 KB 6.23 KB
a n is set to be 20 and l is set to be 32.
b KB is short for KiloBytes.

From the table, we can see that the efficiency of ΠDTP is reasonable in
practice. The proof size is several KBs, the prover time and the verifier time
scale linearly with the depth d and they are all only on the order of milliseconds.
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Abstract. Modern Identify-as-a-Service solutions solve the problems
of burdensome user credential management and non-uniform security
strength, by introducing an Identity Provider (IdP) that holds the users’
identities and grants a user one-time access tokens when he/she tries to
login to different online applications (known as the Relying Parties, RPs).
However, the non-negligible problem of privacy leakage during authenti-
cation largely remains unattended. In this paper, we propose a Privacy
Preserving Anonymous Authentication Scheme (P2A) with Blockchain
and Intel Software Guard Extensions (SGX). The IdP inP2Amanages the
users’ identities by issuing different kinds of transactions in the Blockchain,
covering the registration, update, freeze/thaw, and deletion of identities.
When the user wants to login to an RP, instead of asking for an one-time
token from the IdP, he can generate an identity proof locally with SGX and
login to the RP with an RP-specific pseudonym (PN). By resorting to the
Blockchain, the RP will be convinced that the PN is associated with some
registered identity on IdP and specific attributes of the user are satisfac-
tory, without obtaining the real identity and raw attributes of the user. In
this way, privacy leakages to the IdP and RPs are eliminated. P2A has a
few exciting new features and security analysis shows it can resist various
attacks even under strict assumptions.

Keywords: Privacy Preserving · Anonymous Authentication · Intel
Software Guard Extensions · Blockchain

1 Introduction

Authentication is the process of determining whether the identity a user declares is
authentic. A simple authentication method is to compare the username and pass-
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word entered by the user with the original copies stored on the application server.
However, the increasing number of online applications results in heavy burden for
the users in managing large numbers of accounts and credentials. What’s worse,
the security strength of the online applications vary and the security of the user
accounts can not be guaranteed. To address the above problems, a few unified
authentication protocols have been proposed and adopted in the past years, such
as SAML [1], OAuth [2], and OpenID Connect [3]. In systems that apply these
protocols, when a user who has registered on the identity provider (IdP) wants to
access an application (known as the Relying Party, RP), he can get an authenti-
cation assertion from the IdP, which will be forwarded to the RP along with his
access request. After that, the RP can confirm the user’s identity by verifying the
assertion and allow (or disallow) the access. However, such protocols suffer from
privacy leakage, e.g., unnecessary identity attributes may be obtained by the RP
from the assertion, and the specific login action is leaked to the IdP.

In this paper, we propose an privacy preserving anonymous authentication
scheme (P2A) based on Blockchain and Intel SGX [4–7]. With SGX, a user can
create an SGX enclave containing a verification program prog, and get an SGX
CPU signed quote quote. quote will be sent to the remote verifier to prove that
prog has been correctly initialized and executed, and the outputs of prog are
believable. The roles in P2A include the users, an identity provider (IdP), some
relying parties (RPs), and a Blockchain. The IdP holds all the identities with
the help of the Blockchain. It can change the state of an identity by issuing
different types of transactions onto the Blockchain. To register a new identity, a
registration transaction will be issued. To update the attributes of the identities,
an update transaction will be issued. To freeze a valid identity or thaw a frozen
identity, a freeze/thaw transaction will be issued. To remove an identity from
the identity set on the Blockchain, a deletion transaction will be issued. An
identity Merkle tree will be kept on the Blockchain network with all the registered
identity commitments as leaves, and the Merkle tree will be modified once a new
transaction is published and verified. The changes will take effect immediately
after the Merkle tree has been modified. A new user should register an identity
on the IdP, and the identity will be valid after the IdP has issued a registration
transaction onto the Blockchain. A valid user can generate an identity proof with
a pseudonym using SGX. The proof will be sent to the RP and convince the RP
that the pseudonym is associated with some valid identity on the Blockchain,
and that the attributes of the user fulfill the individual requirements of the RP,
without disclosing the real identity and raw attributes of the user.

Owing to its new design philosophy, P2A has a few good features.

User Authentication Independent of the IdP. In the traditional unified
authentication schemes, the user relies on the IdP in every authentication trial,
as a result, the IdP knows clearly when and for which application the user is
authenticated. In P2A, a user can generate an identity proof with Intel SGX and
be authenticated by an RP with the proof, without the participation of the IdP.
Zero participation of the IdP in the authentications means that the use of the
user’s identity is kept secret against the IdP.
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Non-leakage Proof of User Attributes Fulfillment. Conventionally, an
RP may obtain some sensitive user attributes to ensure the user fulfills its login
requirements, e.g. collect the user’s age to ensure that he/she is adult, which is
more than necessary. In P2A, an identity proof generated by the user can be
used to prove that the verification program prog compiled by the RP has been
initialized and executed correctly, and the outputs of prog are believable. Using
the proof, the user can convince the RP that the identity attributes can meet
the requirements of the RP, without revealing any attribute value. Thus the user
attributes will be preserved against the RP.

Isolated Pseudonyms Across RPs. A valid user can anonymously login to
different RPs with RP-specific pseudonyms. In the system initialization proce-
dure, every RP needs to upload their RPIds onto the Blockchain. A user can
generate one and only one pseudonym with an RP’s RPId. Different RPs can not
analyze whether any two pseudonyms are associated with the same user. Mean-
while, the IdP can not know the pseudonyms of an identity, even by launching
a conspiracy attack with all the RPs.

Accountable Identity Management. When the IdP issue a transaction onto
the Blockchain, the identity Merkle tree will be modified and a new root rtnew

will be generated and the old root rtold will be replaced. Note that all identity
management operations are realized based on the operations to the Blockchain.
So the operations of the IdP on the user identities are accountable for the users,
since all the transactions on the Blockchain are verifiable and irreversible. This
accountability feature outperforms the existing unified authentication protocols.

We analyze the security of our proposed scheme, and find that P2A is secure
against different types of attacks. The assumption on the adversaries covers curi-
ous IdP, curious RPs, malicious users, and conspiracy attackers. These attackers
may launch proof forgery attack, proof replay attack, attributes theft attack,
identity tracking attack, and conspiracy attack. We can conclude that P2A is
not only privacy preserving but also provides reliable authentication functional-
ities.

The rest of this paper is organized as follows. The background is described
in Sect. 2. In Sect. 3, we introduce the design goals and models of this paper.
Section 4 provides the details of P2A. The security analysis will be provided in
Sect. 5.1, followed by the discussion in Sect. 6. The conclusion will be given in
Sect. 8.

2 Background

2.1 Blockchain

Blockchain was first proposed by Satoshi Nakamoto in 2008 [8]. In a narrow sense,
the Blockchain is a type of chain data structure that combines data blocks in a
sequential manner in a chronological order, and it is an unmodifiable distributed
ledger guaranteed by cryptography. Blockchain can be regard as a distributed
database that records all the transactions and states, maintained by every node
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in a decentralized network. In a centralized system, the center often has too
much power, resulting in information asymmetry. The security of many central-
ized systems can only be built on the strong security assumption that the center
is trusted. However, in practice, this assumption is often not true for various rea-
sons. The decentralization feature can free the system design from the premise
that the center is trusted, thereby improving the security of the system and pre-
venting systemic risks caused by a single point of failure of the center. Before
Blockchain, methods such as timestamp were often used to ensure the order
of the data generation time. These methods not only put higher requirements
on developers in the design of the system scheme, but also often assumed the
existence of a trusted third party. The emergence of Blockchain is a convenient
and efficient solution to ensure the order of the data generation time, which is
guaranteed by cryptography. Considering the efficiency, the previous consensus
protocols of distributed systems only allow a small number of nodes to partic-
ipate. However, all the nodes in a Blockchain network ensure data consistency
through several consensus protocols, such as Proof of Work (PoW) [8] and Proof
of Stake (PoS) [9]. The consensus protocols have greatly increased the number
of nodes that can participate in a distributed system. The large number of nodes
participating in the consensus enhances the robustness of the system, and it is
difficult for malicious nodes to tamper with the information on the Blockchain.
Blockchain has been widely used for privacy protection, such as some anonymous
cryptocurrencies [10–12] and Privacy-Preserving Smart Contracts [13]. In this
article, we will use a Blockchain as a trusted bulletin board (BB) for the above
advantages, which keeps the data chronological, verifiable, and traceable.

2.2 Merkle Tree

A Merkle tree is a tree where every non-leaf node is the hash of a data block,
which is composed of its child nodes, as shown in Fig. 1-a. Given a path from a
leaf to the root rt of the tree, the leaf can be verified that it belongs to a tree
and the root of the tree is rt. For example, for the leaf2 in the Fig. 1-b, the path
can be expressed as path2 := (right, h01; left, leaf3).

Merkle tree is widely used in various information system to help verify some
data in data storage, processing, and transmission. In decentralized anonymous
payment (DAP) schemes of Zerocash [10], which lets users pay each other directly
and privately, Merkle tree is applied for proving that the commitment of a coin
is one of all the historical commitments.

2.3 SGX and Attestation

Intel Software Guard Extensions (SGX) is a set of instructions and mechanisms for
memory accesses added to recent-model Intel R©Architecture processors [4]. With
SGX, a process can run in a Trusted Execution Environment (TEE), which is
known as an enclave in SGX. The code and data in an enclave are stored in Pro-
cessor Reserved Memory (PRM), which can not be accessed by other software.

SGX can generate a proof quote, with which a remote system can verify that a
program runs in a SGX-protected enclave. When an enclave is created, the CPU
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Fig. 1. Merkle Tree

will generate a measurement of the initial state. The software in the enclave
can request for a report including the measurement and some supplementary
data. The report will be signed by a group signature scheme to produce a quote,
with which a remote system can verify the report by accessing Intel’s Attestation
Service (IAS). Each report struct includes a 256-bit field for User Data. This field
can be occupied by the hash value for some auxiliary data a, which will be shared
to the remote verifier. And in our proposed scheme, some input parameters,
which we defined as secret data x, need to be kept from the verifier. SGX can
help increase privacy and security for consensus [14,15], smart contracts [16],
and data storage [17] for the Blockchain.

In this paper, a quote of the Intel SGX remote attestation will be informally
generated as follows:

quote = ΣIntel[auxiliary data hash].

3 Design Goals and Models

3.1 Design Goals

To effectively mitigate the risk of privacy leakage, as far as we are concerned, an
ideal authentication scheme should achieve the following goals:

– The login actions of the user to RPs are unknown to the IdP.
– The user can anonymously login to any RP with an RP-specific pseudonym,

and convince the RP that the pseudonym is associated with some valid iden-
tity held by the IdP.

– The user can convince an RP that his attributes meet the requirements of
the RP, without revealing any raw values of the attributes.

– The identity operation logs are unmodifiable and accountable for the users.

3.2 System Model

Four kinds of roles will participate in our proposed scheme, including the users,
an identity provider (IdP), some relying parties (RP), and a Blockchain. Different
from the traditional Unified Authentication Schemes, we introduce a Blockchain
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as a platform to assist the IdP in identity management, as shown in Fig. 2.
The IdP only manages the identities without participating in the authentication
procedure. To join the scheme, a new user need to communicate with the IdP,
which will issue a registration transaction after checking the user’s attributes. In
an authentication interaction with an RP, the user needs to generate an identity
proof, with which the RP can make sure that the user is associated with a valid
identity and the attributes can meet the requirements of the RP. A user identity
is in one of the four kinds of states, include unregistered, valid, frozen, and
deleted. A new transaction issued by the IdP will change the state into a new
state, as shown in Fig. 3.

Fig. 2. System Model. Fig. 3. State transition

3.3 Attack Model

An attacker is one of the following four kinds of attackers, malicious user, curious
IdP, curious RP, and conspiracy attacker. A malicious user is a user who want
to generate a fake authentication. A curious IdP is assumed to be curious about
the associated pseudonyms of the registered users. A curious RP is assumed to
be curious about the associated identity attributes of the authenticated identity.
And the conspiracy attackers are assumed to be more than two curious RPs or
the curious IdP and more than one curious RP.

The following types of attacks are considered in our anonymous authentica-
tion scheme.

– Proof Forgery Attack : By an proof forgery attack, we mean that an attacker
attempts to forge an identity proof, with which a victim RP will misunder-
stand that the attacker’s identity is valid and the identity attributes is verified.
However, in fact, the identity attributes verification function may output 0
(unqualified), or even the user identity is not in the set of all the registered
identities.

– Proof Replay Attack : By an proof replay attack, we mean that one or several
identity proofs from a user has been obtained by the attacker, who attempts
to reused the proofs for a new authentication interaction with the RP.

– Attributes Theft Attack A curious RP is assumed to attempt to get the iden-
tity attributes of the authenticated pseudonyms from the received proofs and
the publicly accessible attributes on the Blockchain.
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– Identity Tracking Attack A curious IdP is assumed to attempt to compute
the pseudonym which should be used in an identity proof with an RP by a
registered user.

– Conspiracy Attack Two or more RPs may share all their knowledge of the
authenticated pseudonyms to analyze whether two pseudonyms authenti-
cated on two different are associated with the same user. Similarly, the IdP
and more than one RP may share the knowledge of the registered identities
and the authenticated pseudonyms to analyze the associations between the
pseudonyms and the Ids.

4 Privacy Preserving Anonymous Authentication

We describe the roles and key procedures of the proposed privacy preserving
anonymous authentication scheme in this section.

4.1 Roles

Figure 2 summarizes the entities and interactions in our proposed P2A, where
the participants include users, an identity provider, relying parties, and the
Blockchain.

Identity Provider. An identity provider (IdP) is responsible for the manage-
ment of the user identity, including operations such as user registration, update,
freeze/thaw, and deletion. The operations are specifically publishing correspond-
ing transactions (TX) on the Blockchain, including registration TX, update TX,
freeze/thaw TX, and deletion TX.

A new user needs to send a registration request to the IdP firstly. when
receiving a registration request from a user, the IdP should verify user identity
attributes and issue a registration TX onto the Blockchain if the request is valid.
The registration TX contains the salted hash value of the identity attributes, and
the salt value only kept by the user and the IdP, so the identity attributes will
be only known by the user and the IdP. For user registration, the IdP needs to
compile a function TEEr which will run in a user’s SGX-protected enclave. An
identity commitment cm will be computed in TEEr with the identity attributes
Attr and user secret key s as inputs. SGX CPU of the user will sign a quote
quoter to prove to the IdP that cm is well-formed with Attr.

When a user identity attributes needs to be updated for some reason, the
IdP will issue a update TX onto the Blockchain. After the update TX is pub-
lished on the Blockchain, the user can generate identity proofs with new identity
attributes, and the old identity attributes will be unavailable immediately. For
user update, the IdP needs to compile a function TEEm which will run in a
user’s SGX-protected enclave. A new identity commitment cmnew will be com-
puted in TEEr with s and new identity attributes Attrnew. And SGX CPU of
the user will sign a quote quotem to prove to the IdP that (i) cm is well-formed
with Attrnew and (ii) s has not been modified. When a user identity has to be
frozen/unfrozen, the IdP needs to issue a freeze/thaw TX onto the Blockchain.
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Then the identity is frozen or thawed. If the identity is frozen, the identity can
not be used for authentication before being thawed. When a user identity needs
to be deleted, the IdP needs to issue a deletion TX onto the Blockchain. Then
the associated identity will be removed from the Blockchain, and can not be
used to generate valid identity proofs. We assume the IdP is honest but curious,
which means that the transactions issued by the IdP are credible, but the IdP
may be curious about the user’s authentication behavior, such as the user Login
behavior on an RP. So, in our proposed system, a user can generate an identity
proof by itself, without communication with the IdP. A user only needs to access
the IdP when the identity needs to be registered, updated, or frozen/thawed. So
the IdP can get nothing about user’s authentication behavior. And we have fur-
ther strengthened the level of privacy protection with cryptography so that even
the IdP and an RP share information and launch a conspiracy attack, they can
still know nothing about the association between the user identity attributes on
the IdP and the pseudonym on the RP.

The IdP can only modify identity status by issuing transactions on the
Blockchain, which is publicly accessible for the user. So all identity operation
logs in P2A are accountable for the users.

Relying Party. A relying party (RP) is generally an information system where
users need to use identity proofs for identity authentication. In our scheme, an
RP is assumed to be associated with a unique identity number which we called
RPId. An RP needs to compile a function TEEa which will run in a user’s SGX-
protected enclave. TEEa will check if the user owns one of the valid identities on
the Blockchain and if the user’s identity attributes meets the requirements of the
RP. The requirements of the RP are defined by the RP, and can be formalized
as an identity attributes verification function (IVF): b ← IV F (A, v), where A is
the set of identity attributes, and v is the requirement parameter. For example,
if an RP requires users to be older than 18, the v can be the date 18 years old,
and the V F (A, v) will output 1 (qualified) if and only if v is larger than the
date of birth parsed from A. When receiving an identity proof from a user, an
RP will check the proof and accept the authentication if the proof is valid. A
pseudonym PN can be parsed from the proof, with which the RP can determine
if the authentication behaviors are coming from the same user.

User. A user is assumed to register and update identity on the IdP, and to
be authenticated by the RPs. When registering on the IdP, the user should get
TEEr compiled by the IdP firstly and generate a signed quoter to prove to
the IdP that a identity commitment cm is well-formed with the correct identity
attributes. quoter will be packaged into a registration request to the IdP. Then a
new identity will be registered onto the Blockchain with a registration TX being
issued by the IdP after the registration request has been verified. Similarly, before
requesting for identity update, a user needs to get TEEu compiled by the IdP,
and generate a signed quotem. quotem will be packaged into a update request to
the IdP. Then the associated identity will be modified with a update TX being
issued by the IdP after the update request has been verified.
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Different from traditional unified authentication schemes such as SAML2.0
and OpenId-Connect, in P2A, a user who has successfully registered on the IdP,
can generate an identity proof locally when needed, without communicating
with the IdP. When authenticated by an RP, a user will get TEEa from the
RP firstly. The user will generate a quote quotea, a pseudonym PN and the
authentication result b after calling the TEEa with some parameters downloaded
from the Blockchain and the valid identity attributes as inputs. An identity proof,
including quotea, PN , b, and some other auxiliary parameters, will be sent to the
RP. Then the identity authentication will be successful if the proof is verified.
An valid identity can be used to generate only one PN for an RP.

Fig. 4. In this picture, we take a three-tier Merkle tree as an example, to illustrate how
the Merkle tree changes when a registration TX, a modification TX, a freeze/thaw TX,
or a deletion TX has been published on the Blockchain. The l is the size of the hash
function output. For a TXf or TXt, cm′

2 =∼ cm2, and for a TXd, cm′
2 = 1 ‖ 0l−1.

Blockchain. In our proposed scheme, only the IdP can issue and publish trans-
actions, which means that a transaction without a valid signature signed by the
IdP will be rejected by every nodes in the Blockchain network. Five kinds of
transactions (TX) will be issued on the Blockchain, including registration TX,
update TX, freeze/thaw TX, and deletion TX. All the TXs can be accessed
by every RP and user. When the IdP has issued and uploaded a TX onto the
Blockchain network, the nodes which have received the TX should check it. If
the TX is valid, it may be included into a new block for the Blockchain. The
consensus on a new block of all the nodes means that the TXs in the new block
should be verified by all the nodes.
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Every node should manage a Merkle tree locally for user identity. A leaf of
the tree is an valid identity commitment. When a new block is created, every
node should parse all the TXs from the new block, and modify the Merkel tree
accordingly. A node can parse an commitment cm from a new registration TX,
and added cm into the Merkle tree as a leaf. A node can parse a new commitment
cmnew and an old commitment cmold from a update TX, and replace cmold with
cmnew in the Merkle tree. A node can parse a commitment cm from a freeze/thaw
TX, and change it to the bitwise negation. A node can parse a commitment cm
from a deletion TX, and remove it from the Merkle tree. The RPs and the IdP
need to read the data on the Blockchain frequently, so for them, an efficient way
is to maintain a Blockchain node and interact with the node.

4.2 Key Procedures

Fig. 5. Paremeters and key procedures.

In this section, we will present the details of the P2A . The data structure used
in P2A is described in Fig. 5 (a). We will give the explanations on the key proce-
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dures in the scheme, including system initialization, identity registration, anony-
mous authentication, identity update, identity freeze/thaw, and identity deletion.

System Initialization. In the system initialization procedure, the IdP generate
a public-private key pair (pkIdP , skIdP ). The public key pkIdP will be synchronized
to every Blockchain nodes, and the private key skIdP will be used to issue trans-
actions onto the Blockchain. Every RP identity number (RPId) is synchronized
to the Blockchain and accessible for every one. The RPIds of any two RPs should
be different, and an RPId synchronization from a new RP will be refused by the
Blockchain network if the RPId has been used by another RP. The Blockchain gen-
erates an empty Merkle tree without any identity, which means that every node of
the Blockchain network create an empty Merkle tree locally.

Registration on the IdP. The identity registration procedure is shown as
Fig. 5 (c). A new user who want to use P2A should register an identity with
the IdP. The user communicates with the IdP to get the identity attributes
Attr and an unique identity number Id. Id and Attr are recognized by the user
and the IdP. The user then gets the SGX-compliant registration verification
program progr compiled by the IdP, and create an registration enclave TEEr

with progr. The user samples a random secret key s and set s as the secret
data xr of progr. The user samples a random trapdoor r and compute the
attribute commitment k. The inputs of progr are (xr, k, Id), and the outputs
are (quoter, ar). A registration message mr := (quoter, ar, r) will be sent to
the IdP in a secure manner. The quoter can be used to prove to the IdP that
progr has been running in an SGX-enclave and the ar is believable, and the ar

can be parsed as (k, Id, cm). After having verified the quoter, the IdP issues a
registration TX TXr, which includes quoter, ar, and a signature σ, onto the
Blockchain. The Blockchain will accept the TX if the signature and the quoter

are both valid and the identity number Id parsed from ar is unique. Once a new
registration TX has been published, every node will update the identity Merkle
tree locally as described in Sect. 4.1.

In the Algorithm 1, we describe how the user constructs a registration mes-
sage, how the IdP issues a registration TX, and how the Blockchain Verify
a registration TX. The details of the pseudocode of quoter are described in
Algorithm 2.

Authentication on the Relying Party. The participants in an authentication
procedure include a registered user, an RP, and the Blockchain. The interactions
between them are shown in Fig. 5 (d). The identity proof will be generated by
the user locally and sent to the RP. The identity attributes Attr, the trapdoor
r, the secret key s, and the identity number Id are kept locally by the user. The
user gets the path path from the Blockchain, with which the current root rt can
be computed from its registered identity commitment cm. The user also gets the
RP identity number RPId from the Blockchain and generated the extensibility
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Algorithm 1. Registration. Secret data xr is kept by the user and auxiliary
data ar is sent to the IdP.

Generate a registration message
• INPUTS:
- identity number Id
- identity attributes Attr
- user secret key s
- a trapdoor r

• OUTPUTS:
- registration message mr

1. Compute k = Hash(Attr ‖ r).
2. Create an enclave TEEr.
3. Set xr := (s).
4. Call progr() in TEEr.
5. quoter, ar ← progr(xr, k, Id).
6. Set mr := (quoter, ar, r).
7. Return mr.

Issue a registration transaction
• INPUTS:
- identity number Id
- identity attributes Attr
- registration message mr

- IdP private key skIdP

• OUTPUTS:
- registration transaction TXr if mr is

valid
1. Set b′ = 1.
2. Set b′ = 0 if A or RN is invalid.
3. Parse mr as (quoter, ar, r)
4. Parse ar as (k, Id, cm)
5. Set b′ = 0 if k �= Hash(Attr ‖ r).

6. Parse quoter and get the auxiliary
hash hr.
7. Set b′ = 0 if hr �= Hash(ar).
8. Check quoter by accessing IAS.
9. Set b′ = 0 if quoter is invalid.
10. Compute σ := SigskIdP (quoter, ar)
if b′ = 1.
11. Return TXr := (quoter, ar, σ) if
b′ = 1.

Verify a registration transaction
• INPUTS:
- a registration transaction TXr

- the IdP’s public key pkIdP

- current Merkle tree mt
• OUTPUTS:
- a Merkle tree

1. Set b′ = 1.
2. Parse TXr as (quoter, ar, σ).
3. Check σ with pkIdP .
4. Set b′ = 0 if σ is invalid.
5. Parse ar as (k, RN, cm).
6. Parse quoter and get the auxiliary
hash hr.
7. Set b′ = 0 if hr �= Hash(ar).
8. Check quoter by accessing IAS.
9. Set b′ = 0 if quoter is invalid.
10. Add cm into mt if b′ = 1.
11. Return mt.

Algorithm 2. Registration verification program (progr): A new user can prove
that cm is the commitment of its identity attributes Attr and identity number
Id.

Function progr(xr, k, Id)
Parse xr as s.

cm = (k ‖ Hash(s ‖ Id))
ar = (k, Id, cm)

hr = Hash(ar)
quoter:=Σintel[hr]
Return quoter, ar

parameters y for this authentication process, including a timestamp T , a random
challenge number CN sampled by the RP, the public key of the user, etc. The
user will communicate with the RP and get the SGX-compliant authentication
verification program proga compiled by the RP, and the requirement parameters
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v. The user then creates an authentication enclave TEEa with proga. The inputs
of proga are (Attr, r, s, Id, path,RPId, y), and the outputs are an authentication
message ma, which should be sent to the RP in a secure manner. When receiving
ma, the RP will parse ma as (quotea, aa), and parse aa as (rt, PN,RPId, y, b, v).
The RP will accept the authentication request if the following holds: (i) b = 1;
(ii) rt is one of the several newest historical roots of the Merkle tree; (iii) quotea

is valid and the ha parsed from quotea is the hash value of aa; (iv) T and CN
parsed from y is correct.

The details of the authentication procedure and the pseudocode of quotea is
described in Algorithm 3 and Algorithm 4.

Algorithm 3. Authentication. Secret data xa is kept by the user and auxiliary
data aa is sent to the IdP.

Generate an authentication
request
• INPUTS:
- identity number Id
- identity attributes Attr
- user secret key s
- a trapdoor r
- path path from commitment cm to

root rt.
- relying party ID RPId
- RP’s requirement parameters v
- extensibility parameters y

• OUTPUTS:
- an authentication message ma

1. Create an enclave TEEa.
2. Set xa := (Attr, r, s, Id, path).
3. Call proga() in TEEa.
4. quotea, aa ← proga(xa, v, RPId, y).
5. Set ma := (quotea, aa).
6. Return ma.

Verify an authentication message
• INPUTS:
- an authentication message ma

- relying party ID RPId
- root list of several newest historical

root listrt
• OUTPUTS:
- bit b′, equals 1 if ma is valid.

1. Parse ma as (quotea, aa).
2. Parse aa as (rt, PN, RPId, y, b, v).
3. Set b′ = b.
4. Set b′ = 0 if rt /∈ listrt.
5. Parse quotea and get the auxiliary
hash ha.
6. Set b′ = 0 if hr �= Hash(aa).
7. Check quotea by accessing IAS.
8. Set b′ = 0 if quotea is invalid.
9. Parse y and get timestamp T and ran-
dom challenge number CN
9. Set b′ = 0 if T or CN is wrong.
9. Return bit b′.

User Identity Update. In our proposed scheme, the attributes of a registered
identity can be updated for some reason. For example, the user email address
or phone number needs to be modified. So we designed an identity update pro-
cess, with which a registered user can update its identity attributes while keep
the secret key s and the identity number Id unmodified, so that the associ-
ated pseudonym numbers (PN) will be kept unchanged. The participants of the
update procedure include the IdP, the user, and the Blockchain, and the inter-
actions are shown in Fig. 5 (f). The new identity attributes Attrnew and new
trapdoor rnew should also be recognized by both the user and the IdP. The user
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Algorithm 4. Authentication program (proga):

Function proga(xa, v, RPId, y).
Parse xa as (Attr, r, s, Id, path)
k = Hash(Attr ‖ r).
cm = Hash(k ‖ Hash(s ‖ Id)).
rt = gen root from leaf(cm, path).
ρ = Hash(Id ‖ s).

PN = Hash(RPId ‖ ρ).
b = IV F (A, v).
aa = (rt, RPId, PN, b, v, y).
ha = Hash(aa).
quotea := Σintel[ha].
Return quotea, aa.

will compute a new identity attribute commitment knew with Attrnew and rnew).
The user will communicate with the IdP and get the SGX-compliant update pro-
gram progu compiled by the IdP. The inputs of progu include (s, kold, knew) and
the outputs are a quote quoteu and the auxiliary data au. quoteu can be used
to prove to the IdP that the secret key s and the identity number Id are kept
unchanged for the updated identity. An update message mu will be sent to the
IdP and the IdP will issued an associated update TX TXu onto the Blockchain.
The TXu includes quoteu, Au, and a signature σ. The old identity commitment
cmold and the new identity commitment cmnew can be parsed from au. Each
Blockchain node will update the Merkle tree when receiving TXu by change the
cmold to cmnew.

The details of the update procedure and the pseudocode of quoteu is
described in Algorithm 5 and Algorithm 6.

User Identity Freeze, Thaw, and Deletion. In our anonymous authentica-
tion scheme, a registered identity can be frozen, and a frozen identity can also
be thawed. The IdP can freeze/thaw an identity by issuing a freeze/thaw TX
with or without the identity freeze request from the user. A freeze/thaw trans-
action TXf or TXt includes the current associated identity commitment cmold,
and a signature σf/σt := SigskIdP

(cmold). When a new TXf or TXt has been
published on the Blockchain, each Blockchain node will modify the Merkle tree
accordingly after verifying the signature of the transaction. Each node will parse
the transaction and get the old identity commitment cmold and the Merkle tree
will be modified by changing cmold to its bitwise negation cmnew =∼ cmold. A
frozen identity can not be used for authentication because the user can not find
the valid (k′, s′, Id′) so that ∼ cm = Hash(k′ ‖ Hash(s′ ‖ Id′)) in polynomial
time. And a thawed identity can be revived because cm =∼ (∼ (cm)).

When a registered identity needs to be deleted from the set of valid identities,
the IdP will issue a deletion transaction TXd. Each node can parse TXd and
get an identity commitment cm from TXd. Then each node will replace cm with
1 ‖ 0l−1 as shown in Fig. 4.
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Algorithm 5. Update user attributes.

Generate update request

• INPUTS:

- old identity attributes Attrold

- new identity attributes Attrnew

- old trapdoor rold

- new trapdoor rnew

- identity number Id

- secret key s

• OUTPUTS:

- an identity update request message mu

1. Compute kold = Hash(Attrold ‖ rold).

2. Compute knew = Hash(Attrnew ‖ rnew).

3. Create an enclave TEEu.

4. Set xu = (s).

5. Call the function progu(xu, kold, knew, Id)

in TEEu.

6. quoteu, au ← progu(xu, kold, knew, Id).

7. Set mu := (quoteu, au).

8. Return mu.

Issue an update transaction

• INPUTS:

- old identity attributes Attrold
- new identity attributes Attrnew

- old trapdoor rold

- new trapdoor rnew

- an identity update request message mu

• OUTPUTS:

- an update TX TXu

1. Parse mu as (quoteu, au).

2. Parse au as (kold, knew, cmold, cmnew, Id).

3. Set b′ = 1.

4. Set b′ = 0 if kold �= Hash(Attrold ‖ rold).

5. Set b′ = 0 if knew �= Hash(Attrnew ‖
rnew).

6. Parse quoteu and get the auxiliary hash hu.

7. Set b′ = 0 if hu �= Hash(au).

8. Check quoteu by accessing IAS.

9. Set b′ = 0 if quotea is invalid.

10. Set b′ = 0 if Id is valid.

11. Compute σu := SigskIdP
(quoteu, au) if

b′ = 1.

12. Return TXu := (quoteu, au, σu) if b′ =

1.

Verify an update transaction

• INPUTS:

- current Merkle tree mt

- an update TX TXu

• OUTPUTS:

- a new Merkle tree mtnew

1. Set b′ = 1.

2. Parse TXu as (quoteu, au, σu).

3. Check σu with pkIdP .

4. Set b′ = 0 if σu is invalid.

5. Parse quoteu and get the auxiliary hash hu.

6. Set b′ = 0 if hu �= Hash(au).

7. Parse au as (kold, knew, cmold, cmnew, Id).

8. Set b′ = 0 if cmold /∈ mt.

9. Update mt to mtnew by replacing cmold

with cmnew if b′ = 1.

10. Return mtnew.

Algorithm 6 Update program (progu).

Function progu(xu, kold, knew, Id)
Parse xu as (s).

cmold = Hash(kold ‖ Hash(s ‖ Id))
cmnew = Hash(knew ‖ Hash(s ‖ Id))

au = (kold, knew, cmold, cmnew, Id)
hu = Hash(au)
quoteu:=Σintel[hu]
Return quoteu, au

5 Analysis

5.1 Security Analysis

In this section, we will demonstrate that P2A can resist the attacks mentioned
in Sect. 3.3.



272 T. Song et al.

Proof Forgery Attack. An proof forgery attacker will attempt to generate a
forge quote∗

a to deceive an RP that the user has been authenticated success-
fully in the local created SGX enclave. However, in fact, the user is not asso-
ciated with any registered identity or the identity attributes is non-compliant
for the RP’s requirement. The proof forgery attack will failed in P2A. Firstly,
the SGX CPU signed quote quote∗

a ensures that the authentication verifica-
tion function has been initialized and executed correctly, and auxiliary data
a∗

a = (rt∗, RPId∗, PN∗, b∗, v∗, y∗) can not be modified out of SGX enclave. If a
user want to use an unregistered, frozen, or deleted identity for authentication,
the rt∗ can not be the current Merkle tree root because the rt∗ is not computed
from any leaf of the Merkle tree. Another attack manner for the attacker is to use
a registered identity with the non-compliant identity attributes, which, however,
will be found by the RP because b = 0 or v∗ is wrong.

Proof Replay Attack. An Proof replay attacker is assumed to have stolen the
authentication request ma of a victim user, and attempts to reuse ma for imper-
sonate the victim to login the RP. However, in ma, the random challenge number
CN and the time stamp T are embedded in the extensibility parameters y, which
is part of the auxiliary data aa and cannot be modified by the attacker. And the
RP will reject the authentication because T is expired and CN is not correct.

Attributes Theft Attack. A attributes theft attacker, such as a curious RP, is
assumed to be curious about the identity attributes info and the number Id
of the authenticated users. They attempts to get knowledge about info and Id
from the authentication request ma. However, info and Id are embedded in the
secret data xa which will kept secretly against the RP. The RP can parse aa

from ma, and parse aa as (rt, PN,RPId, y, b, v), with which the RP can know
nothing about info and Id because of the one-way property of the hash function.

Identity Tracking Attack. A identity tracking attacker is assumed as a curious
IdP. The IdP attempts to compute the pseudonyms associated with the regis-
tration request mr. The IdP can parse ar from mr, and parse ar as (k, Id,m).
However, the secret key s will be kept privately against the IdP, so the IdP can-
not compute the PN seed value ρ with the equation ρ = Hash(Id ‖ s), and of
course cannot compute the PN with the equation PN = Hash(RPId ‖ ρ).

Conspiracy Attack. Without loss of generality, we assume that a conspiracy
attacker know two the authenticated requests ma1, ma2 and a registration
request mr. The attacker attempts to analyze whether ma1 and ma2 belong
to the same user, or whether mr is associated with ma1. The first problems is
equivalent to analyzing whether PN1 and PN2 are computed with the same PN
seed value ρ, and the second problem is equivalent to analyzing whether Id can
be used to compute a PN seed value ρ′ = Hash(Id ‖ s) so that PN1 can be
computed with ρ. These two problems are difficult because the properties of the
hash function, so the conspiracy attacks will be failed.
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5.2 Performance Analysis

We built a prototype system and analyzed the communication overhead, cal-
culation overhead, and Blockchain space overhead of the transactions. Without
loss of generality, we Set the size of each parameter in Fig. 5(a) as shown in
Table 1. We deployed the client in an Ubuntu1804 system with a CPU model
of Intel(R)Core(TM) i5-6300U CPU @2.40 GHz 2.5 GHz and a system memory
of 16 GB. In each procedure of the system, the most of the computational over-
head is generated during calculating quotes. We have measured that during the
registration, authentication, and update process, the client takes about 522 ms
to generate the quote.

Both IdP and RP can download the certificate chain and deploy the server
locally, so the interaction with the IAS server provided by Intel can be omitted,
and thus the communication overhead caused by the interaction with the IAS
server when verifying the quote can be omitted. And proga ,progr, and progu

can be embedded into the client in advance, without the need for temporary
download. In the registration procedure, the communication overhead is mainly
composed of the interaction between the client and the IdP, and uploading of
mr, the size of which is 1244 bytes. In the authentication procedure, the user
needs to download the v, RPId, and y, 96 bytes in total, and upload ma, the
size of which is 1277 bytes. The user also needs to download the path from his
commitment cm to the current root rt, the size of which is 2056 bytes. In the
update procedure, the user needs to upload a mu, 1276 bytes in total.

In our proposed scheme, the transations onto the Blockchain only generated
during the low-frequency operations such as registration, update, freeze, thaw,
and deletion. Therefore, the space requirement for the blockchain is not high,
and public chains such as Ethereum can be used for deployment. The size of the
transactions required for registration and update is 1180 and 1244 bytes, and
the size of the transactions for freeze, thaw, and deletion operations is only 103
bytes.

Table 1. Parameter size

Paremeter Size (byte) Paremeter Size (byte)

b 1 k,cm,PN,ρ 32

Attr 1024 path 32*64+64/8

σ∗ 71 s,r,RPId,Id,v,y,rt 32

ar 96 quoter, quotea, quoteu 1116

au 160 aa 161

mr 1244 ma 1277

mu 1276 TXu 1244

TXr 1180 TXf , TXt, TXd 103
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6 Discussions

The Security of SGX. Our proposed P2A scheme is based on the security
assumption that the quote generated by SGX cannot be forged. At present,
most attacks against the SGX system are to obtain confidential information in
the Enclave through side channels. In this solution, the Enclave is created on the
user’s local device, so there is no need to worry about the privacy leakage caused
by the Enclave being attacked by the side channel. Nilsson et al. [18] has proposed
that the attestation key might be extracted. However, some solutions [19,20] can
also be used in our scheme to prevent clients from forging quotes.

The Storage of Identity Attributes. In this article, we assume that the
user’s identity attributes is stored on the user’s local computer. If having to use
the identity on a new computer, the user can easily recover all parameters with
the help of the IdP, as long as the user keeps the secret key s. The user can login
the IdP and download info, r, and Id kept by the IdP.

The Tolerance of Latency in Merkle Tree Modification. In the authen-
tication procedure, the user will prove to the RP that the commitment of his
identity is one leaf of the current Merkle tree with the newest root rtn, where n
is the number of all the versions of the Merkle tree. However, due to the network
delay and processing delay, the Merkle tree will be changed during the authenti-
cation interaction. So, the RP will accept the authentication request if the root
parsed from the request is in the list of the several newest historical roots. The
number of roots in the list can be individually set by every RPs.

The Number of Pseudonyms for a User on a Single RP. According to
the equation PN = Hash(RPId ‖ ρ), a user can only generate one PN with
an RPId. If an RP want to allow a registered user is associated with n PNs
on it, it can keep n RPIds. And if an RP do not need to know whether two
authentications are requested from the same identity, it can remove the RPId
and the PN from the auxiliary data. And thus the user do not need to generate
a PN for the RP.

Tracking Malicious Identities. The purpose of P2A is to protect the identity
attributes in the authentication, and the PNs can not be tracked by the RPs
and the IdP as designed in Sect. 4. However, for some relying parties to track
illegal pseudonyms, a trusted tracking authority (TA) can be added into P2A.
The public-private key pair (pkTA, skTA) will be generated by the TA, and pkTA

will be publicly accessible. Every user needs to encrypted the PN seed value ρ
with pkTA and get the cipher-text c := EncpkTA

(ρ). c will be computed in the
registration enclave TEEr and added into the auxiliary data ar, together with
pkTA. So with ar and quoter the user can prove to others that c is the cipher-
text of his PN seed value encrypted with pkTA. c can be decrypted by the TA
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to get ρ, and thus all the PNs associated with rho can be computed by the
TA. c and the identity commitment cm os the same user will be packaged into
the same registration transaction, so that the TA will know all the PNs of a
commitment. When having been proved that a PN needed to be tracked, the TA
will return the associated commitment, with which the IdP can figure out the
identity attributes of the malicious user. The TA does not need to participate
in the registration procedure, so it can be offline and only need to synchronize
all the registration transactions in a secure manner.

7 Related Work

In Security Assertion Markup Language 2.0 (SAML 2.0) [1], the identity provider
and a service provider can exchange data through redirected access of the user’s
browser. With SAML 2.0, once a user’s identity has been authenticated by the
identity provider, he can login to other applications directly without having
to enter his username and password. OAuth 2.0 (Open Authorization) [2] is
an open standard that allows users to allow third-party applications to access
private resources (such as photos, videos, contact lists) that the user has stored
on a website without providing a username and password to the third party
application. And OpenID Connect 1.0 [3] is a simple identity layer on top of the
OAuth 2.0 protocol. With the OpenID Connect 1.0 the user can realize unified
authentication.

Zhang et al. [14] and Milutinovic et al. [15] allow miners to generate proof-of-
useful-work (PoUW) for the Blockchain consensus protocols. Instead of calculat-
ing useless hash values, PoUW can be generated by providing trustworthy remote
attestation with SGX on CPU cycles they devote to inherently useful workloads,
and thus avoiding wasting computational resources. Matetic et al. [21] propose
a rollback protection system called ROTE with SGX that realizes integrity pro-
tection as a distributed system.

8 Conclusions

In this paper, we propose an privacy preserving anonymous authentication
scheme for protecting user identity related privacy in the authentication inter-
actions with online applications. P2A is designed based on Blockchain and
Intel SGX. Owing to its design philosophy, P2A supports user authentication
independent of the IdP, non-leakage proof of user attributes fulfillment, iso-
lated pseudonyms across RPs, and accountable identity management. The secu-
rity analysis demonstrates that the proposed scheme is secure under the strict
assumption of malicious user, curious relying party, curious identity provider,
and the conspiracy attackers. We can conclude that P2A is a secure and reliable
authentication scheme that provides exciting privacy preserving features.
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Abstract. The characteristics of social networks has always been a hot topic of
scientific research. In order to protect the privacy of users, the owner of the private
data need to provide privacy protection when providing inquiries or publishing
data. Local differential privacy (LDP) is difficult to construct a highly available
social networks graph due to its independent perturbation process. Centralized
differential privacy usually adds excessive noise due to the structural characteris-
tics of social networks graphs. Higher security usually results in lower availabil-
ity. Simply implementing any differential privacy mechanism will cause a large
amount of data to be disturbed by noise. On the other hand, some spectral based
privacy protection methods provide accurate spectrum, however ignore the disclo-
sure of privacy data in spectrum query. Therefore, we propose a spectrum query
algorithm based on personalized differential privacy. The algorithm effectively
improves data availability by taking advantage of different privacy preferences
of users in the social network and the characteristics of the spectrum. To verify
the availability of these methods, experimental tests have been carried out in both
model networks and actual networks, which shows that the algorithm improves
the availability of data when it has the same security.

Keywords: Social networks · Difference privacy · Spectrum

1 Introduction

Social networks are complex networks that reflect the connections between people.With
the development of technology, especially the promotion of instant messaging tools,
social networks are becomingmore andmore important. Themacroscopic characteristics
and structural information of social networks are of great help to the study of human
society. However, the security of users’ social relationship and personal privacy data
in social networks still needs to be studied. Especially the relational privacy of social
networks, that is, the connection between people.

The method based on graph-anonymity could not resist the attacks based on back-
ground knowledge and consistency [1, 2]. Therefore, the research on the privacy pro-
tection of social networks has been transformed into the research based on differential
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privacy [3–5]. However, due to the strict definition of a unified level of privacy protec-
tion, the data availability of the network will be greatly reduced after the centralized
differential privacy noise processing is performed on the data [6]. It is unrealistic to
assume that everyone has the same privacy protection.

A possible solution is to set a personalized privacy threshold for each user in cen-
tralized differential privacy [7]. Jorgensen [8] first proposed a personalized differential
privacy (PDP) mechanism at the ICDE conference. This mechanism preprocesses the
data, and then applies the differential privacy mechanism to the pre-processed data set.
Zhang [9] applied the personalized difference privacy mechanism to the protection of
social networks privacy, but there was no conclusion on the selection rules of segmenta-
tion and sampling coefficient. Chamikara [10] proposes an efficient and scalable privacy
protection algorithm (SEAL) for big data and data streams. However, SEAL’s current
configuration does not allow distributed data perturbation, and it only limits the utility
to privacy-protected data classification. Cui [11] proposed a trust-grained personalized
differential privacy (TGDP) mechanism, but trust is influenced by several social factors,
and sometimes not every kind of required data is available. In addition, weighing values
for different factors are always based on subjective experience.

Social networks not only haveunique characteristics. It is also found that the spectrum
is closely related to the properties of the graph [12]. Therefore, many spectrum-based
privacy protectionmethods have emerged, such as Singular ValueDecomposition (SVD)
perturbations [13, 14], eigenvalue decomposition perturbations [14, 15]. These methods
lack the security analysis and security model and there is a risk of being reconstructed
[14–16]. In addition,most of the existing spectral informationprivacyprotectionmethods
[17] usually adopt the consistent privacy threshold. These methods are also limited by
the aforementioned disadvantages of differential privacy.

2 Our Contribution

In this paper, we focus on mitigating the decline in data availability due to differential
privacy disturbances. In the above-mentioned traditional differential privacymechanism,
as there always exists a tradeoff between availability and security of data, a higher
security generally indicates a lower availability. Simply implementing any differential
privacy mechanism will cause a large amount of data to be disturbed by noise. In order
to solve these problems, we propose a spectrum query algorithm based on personalized
differential privacy. Specifically, our main contributions are summarized as follows.
(I) We apply the sampling mechanism to social networks. This mechanism effectively
improves data availability while ensuring the same level of privacy security. (II) We use
the aggregation mechanism to obtain the optimal solution of the sampling threshold and
evaluate the error caused by the sampling. In addition, we apply the algorithm to the
privacy protection of spectrum information in social networks. As far as we know, our
work is the first to apply a non-uniform privacy sampling mechanism to the spectrum
information protection field of social networks.
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3 Background and Definition

This paper aims to protect the spectrum of personal relationship data in social networks.
So, we define the social networks data set as the weighted graph G (V, E).

Definition 1. If graph G and G’ have only one edge with different weights and the
change is not more than 1, then G’ is called G’s weighted neighbor graph.

Definition 2. A privacy specification is a mapping from users to personal privacy pref-
erences. The notationFu ∈ (0,1] is used to denote the privacy preference corresponding
to user u ∈ U.

Definition 3. (Personalized Differential Privacy) [8] Let M be a graph analysis algo-
rithm, which takes graph G as input and outputsM (G). For all output subsets S, pair of
neighboring datasets G and G′, with G ~ G’, it is satisfied:

Pr[M (G) ∈ S] ≤ e�u · Pr[M (G
′
) ∈ S] (1)

then M satisfies edge weighted ε-PDP.
Singular values and the singular vector are related to network structure closely. With

the development of machine learning theory, more and more attention has been paid
to spectrum. No matter what kind of spectrum of the graph, it refers to the eigenvalue
and singular value of the corresponding matrix, and the spectrum vector refers to the
eigenvector and singular vector. Corresponding to spectrum, spectrum decomposition
can be divided into eigenvalue decomposition and singular value decomposition. The
singular value decomposition is a generalization of eigenvalue decomposition on any
matrix.

4 Personalized Differential Privacy Algorithms for Spectral

This section will investigate the realization principle of personalized differential privacy.
Secondly, the global sensitivity of the query function is analyzed and proved. The main
result in this paper is given as follows.

4.1 The Sampling Mechanism Implements the PDP

Sampling mechanism is a method to design personalized differential privacy algorithm.
The probability of the random samplingmechanismdepends on the user’s privacy thresh-
old, and adds the differential privacy noise to the query results. In the graph data of social
networks, the sample object is the edge between nodes. In directed graphs, edge weights
and privacy thresholds are determined by the starting node. In an undirected graph,
the edge weight is determined by the two related nodes, and the edge privacy thresh-
old depends on the stricter of the two nodes. The sampling mechanism are defined as
follows:
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Definition 4. (Sampling mechanism) [8] Consider a function f , a graph datasetG, and a
privacy specificationF. LetRS(G,F, t) denote the procedure that independently samples
each edge x ∈ D with probability.

πx =
{

emin{�x1
,�

x2 }−1
et−1 if min{�x1

,�
x2 } < t

1 otherwise
(2)

whereminFu ≤ t≤maxFu andmaximizesqε .Fx1,Fx2 represents the privacypreference
of the two edge-related nodes respectively.

The definition indicates that the privacy preference of the edge is close to 0, and the
probability of the edge being selected is greater. When the privacy preference is greater
than the privacy threshold t, this edge must be selected. Generally, the closer � is to 1,
the stricter the user’s privacy requirements. Therefore, the probability of edge selection
is negatively correlated with the privacy preference of the edge node.

The previous algorithm analyzes the security issues of undirected weighted social
networks, and the disturbance of singular valuesmay lead to negativeweights in networks
that originally contained only positive weights. The sampling algorithm in this paper
only uses the existence of the selected edge as a basis for judgment and calculation.

4.2 Privacy Threshold of the Sampling Mechanism

According to the definition of the sampling mechanism, we need to determine the value
of the privacy threshold t. Sampling when the tuple’s privacy preference is less than the
privacy threshold. The smaller the threshold, the fewer tuples discarded by sampling,
and the lower the sampling error, but it will cause the differential privacy mechanism to
add more noise. When t = max Fu, each tuple provides the exact privacy required to
meet its privacy preferences, but not necessarily the best utility.

The optimal value of the sampling threshold depends not only on the distribution
of data, but also on the set of privacy specifications. One possible mechanism is to
analyze the given network data set in advance using the idea of aggregation before sam-
pling, which was investigated in the literature [16–18]. This mechanism divides similar
nodes into the same group and calculates the influence of threshold value on the data
set through the evaluation function. Specifically, � = {g1,……, gn} represents different
aggregation strategies. First, the nodes in the original data set are grouped by the aggre-
gation strategy, and gn = {k1, ……, kn} represents different nodes in the group. Based
on this, the sampling threshold is determined based on the pre-sampling results. At the
same time, a quality function needs to be designed to evaluate the aggregation sampling
mechanism. Our quality function is like that used in [24], and has two components. The
first component captures the errors introduced in the process of sampling, computed as
follows:

lsamp(G,�,�) =
∑
gk∈�

∑
e∈gk

∣∣∣∣∣cw −
∑

e∈gk cw
|gk |

∣∣∣∣∣ (3)
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where cw denotes the number of edgeswith theweightw in a group. The above sums over
the error for all group. The second component captures the sampling loss. Intuitively,
we want to capture the number of edges that change after sampling.

ledge(G) =
∣∣∣{e|e ∈ G, eweight �= e′

weight}
∣∣∣ (4)

Combining the two components, our proposed quality function is

qε(G,�,�) = −lsamp(G,�,�) − ledge(G) (5)

According to the aggregation mechanism and quality function evaluation sampling
process, we can get a better privacy threshold. Based on the selected privacy threshold
and privacy specification set, it can be used to personalize differential privacy algorithms.
Detailed steps are shown in Algorithm 1.

Algorithm 1: Random sampling threshold algorithm
Input: Graph G, Privacy Specification Ф, candidates T, Aggregation strategy O
Output: Random sampling threshold t
Random sampling threshold algorithm (G, Ф) 
1: For each (t, Ω) T × O, computes qε (G, Ф, Ω) 
2: For each Ω O do 
3:     For each t T do 
4:         if q’

ε (G, Ф, Ω’) < qε (G, Ф, Ω) 
5:             t  t’

6: Output t

4.3 Differential Privacy Perturbation of Spectrum

According to graph theory, a weighted undirected graph G is represented by a matrix A.
The matrix An×n can be decomposed into singular values λ = (λ1, λ2,…, λn) and corre-
sponding singular vectorsUn = (u1, u2,…,un), under ε-differential privacywith the given
graph G and privacy specificationF. We first derive the sensitivities for the eigenvalues
and eigenvectors. Because the perturbed eigenvectors will no longer be orthogonalized
to each other, we finally do a postprocess to normalize and orthogonalize the perturbed
eigenvectors according to orthogonalization of vectors with minimal adjustment [15].

Theorem 1. (Global sensitivity of singular value) Let functionM take graphG as input,
and output the singular value after the disturbance. The global sensitivity of all singular
values λ = (λ1, λ2,…, λn) as output value is �f 1 = √

2n.

Proof. Let G be a weighted undirected graph whose weight adjacency matrix is An×n.
According to definition 2, without losing generality, the edge weight between node v
and node u in sampled graphG is changed by 1 as neighbor graphG’. If the perturbation
matrix P = A − A′, then P is a symmetric matrix where only Pij and Pji have value ±1
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and all other entries are 0. We have the Frobenius norm of P respectively as ||P||F = √
2.

Based on the matrix perturbation theory, we have.

�f1 =
n∑

i=1

|λi − λi| ≤ √
n

√√√√ n∑
i=1

(
λi − λi

)2 ≤ √
n‖P‖F = √

2n (6)

So, the global sensitivity of singular value is
√
2n.

Theorem 2. (Global sensitivity of singular vector) Let function M take graph G as
input, and output the singular vector after the disturbance. The global sensitivity of each
singular vector is

�f2 =
√
n

min{|λi − λi−1|, |λi − λi+1|} (7)

Proof. We define the perturbation matrix P and other terminologies the same as those in
the proof of Theorem 2. We denote singular vectors of matrix A, A + P respectively as
column vectors ui and u˜i. Based on the matrix perturbation theory, for each eigenvector,
we have

�f2 ≤ √
n‖ui − ui‖2 ≤

√
n‖Pui‖2

min{|λi − λi−1|, |λi − λi+1|} (8)

Because of the particularity of perturbationmatrixP, the 2 norms ofP can be obtained
directly || P ||2 = 1. The equation can be obtained. Therefore, the global sensitivity of
the singular vector is obtained.

Algorithm 2: Personalized differential privacy algorithm for spectral 
Input: Graph G, Privacy Specification Ф
Output: The singular values = (λ1, λ2, ..., λn) and corresponding singular 

vector Un = (u1, u2, ..., un) satisfies Ф-Personalized differential privacy. 
PDP for social networks (G, i, ε) 
1: t  qε (G, t, Ω) by Algorithm 1.  
2: G’  Sampling mechanism(t) to G
3: Decomposition A(G’) obtain the singular values  = (λ1, λ2, ..., λn) and 

corresponding singular vector Un = (u1, u2, ..., un) 
4: add Laplace noise to λn with f1 

5: add Laplace noise to ui with f2

6: Normalize and orthogonalize u1, u2, ..., un 

7: Output λ1, λ2, ..., λn and u1, u2, ..., un

The sampling procedure has definite steps, which are evaluated according to the
aggregation mechanism and quality function, so the sampling result and time cost can be
calculated, so the method of obtaining the solution is also reproducible and quantifiable.
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5 Experiments and Results Analysis

The privacy protection algorithm protects the private data from being leaked and ensures
the availability of data,which two aremutually restrictive and indispensable. For security,
differential privacy mechanism, which has strict proof in theory and practice to ensure
its security is adopted in this paper. As for data availability, it will be tested and analyzed
detailed in this section. First, we verify the effectiveness of the new mechanism on the
BA scale-free network and the ER random network. The availability of the spectrum
was tested and analyzed through numerical experiments. Then, we compared it with the
current best personalized differential privacy algorithm (TGDP) [11]. The root mean
square error (RMSE) is used to measure the deviation between the observed value and
the true value. It reflects the accuracy of the results well, and it quantifies the degree to
which the measured data deviates from the true value [20].

5.1 Datasets and Settings

In order to verify the effectiveness of the algorithm, we compared the BA Scale-free
network and ER random network. Considering that many actual networks have the
characteristics of BA and ER networks, so different types of networks for multiple
experiments are generated by these two networks.

In order to develop a set of privacy specifications, we randomly divide users on the
network into four groups. Different groups represent people with different requirements
for privacy protection. The privacy specification Fu1 of users in Group G1 was drawn
uniformly at random from the ranges (0.01, 0.25). Similarly, {Fu2 ∈ (0.25,0.5) | u2 ∈
G2}, {Fu3 ∈ (0.5,0.75) | u3 ∈ G3}, {Fu4 ∈ (0.75,1) | u4 ∈ G4}. Each group accounts for
different proportions in the population. For example, P1 = 0.15 means that the number
of users in Group 1 accounts for 15% of the total and P1 + P2 + P3 + P4 = 100%.

Fig. 1. RMSE of BA Network and ER Network. The minimum privacy preference for the first to
third rows is 0.1, 0.5, and 0.9. The density (edges/ nodes) is 20.
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5.2 The Impact of Network Data

First, we compared the effectiveness of the algorithm in the two classic networks. Fig 1
shows the result in BA network and ER network, where the thresholds are set that P1 =
P2 = P3 = P4 = 0.25. Due to the combination of differential privacy, it does not take the
mean of multiple experiments and only shows one of the query results in the figure. The
added noise is random, so RMSE is also random. However, it can be seen from Fig. 1 that
considering the PDP mechanism has obvious advantages over the traditional DP mech-
anism. RMSE is lower, meaning that the output is more available. In addition, although
the two networks have different characteristics, the noise disturbance of both networks is
reduced after considering the PDP mechanism.

Table 1. Comparison of the density of the graph

Graph S = 10 S = 20

DP PDP DP PDP

BA 1 1.25 0.51 0.72 0.37

ER 1 1.31 0.64 0.68 0.24

BA 2 1.01 0.49 1.10 0.49

ER 2 1.27 0.53 0.85 0.35

BA 3 1.15 0.37 1.35 0.67

ER 3 1.32 0.46 1.10 0.55

Table 1 shows the difference between graphswith different densities. The density S is
defined as the ratio of the number of edges to the number of nodes in the graph. The larger
S indicates the more complicated the relationship of a graph. In addition, the number
of nodes degreeBA1 = degreeER1 = 100, degreeBA2 = degreeER2 = 500, degreeBA3 =
degreeER3 = 1000. It can be seen that our algorithm also effectively reduces the impact
of the disturbance in the graphs with different densities.

5.3 Impact of Privacy Specification

In order to test the effectiveness of the algorithm in this paper, we compared the differ-
ences between different privacy preference distributions of the real networks (Facebook,
Twitch and Wiki-Vote Networks downloaded from [21]).

In the experiment shown in Fig. 2, the variable is the proportion of Group G1 users.
Group G1 represents conservative users. The RMSE of the traditional DP mechanism
is always relatively large. So, the traditional DP is not shown in Fig. 2 to accurately
compare the impact of different aggregation strategies on the results.

Figure 2 shows that as the number of conservative users increases, the disturbances
reduce the availability of data. In addition, the introduction of the aggregation mech-
anism effectively improves the accuracy of the sampling mechanism. In general, our
mechanisms are more effective than traditional DP mechanisms. In addition, Trying

https://doi.org/10.1007/978-3-030-71852-7_2
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Fig. 2. Impact of Fraction of Group 1 Users

the best aggregation strategy for some time usually produces better results, but usually
requires more time to run the algorithm. The sampling threshold selection algorithm
affects the sampling process by selecting a better threshold to reduce the impact of con-
servative users on the overall data availability. This process is affected by user privacy
preferences.

Fig. 3. Impact of Minimum privacy preference

In the experiment shown in Fig. 3, the minimum value of user privacy preference
in the data set is artificially restricted to observe the impact of privacy specification on
data availability and we compared with the current best personalized differential privacy
mechanism (TGDP) [16]. When Minimum privacy preference is 0, the experimental
result is equivalent to Fig. 2, P1= 0.25. It can be seen from Fig. 3 that the traditional DP
mechanism is greatly affected by the parameters. Because in the DP mechanism, a large
amount of noise must be added in order to meet the privacy protection requirements of
each user. The personalized differential privacy mechanism has achieved better utility
when the privacy preferences of many users are low. Compared with the TGDP mecha-
nism, our algorithm performs better when privacy preferences are low, which means that
disturbances cause fewer errors. As shown in Fig. 3, the minimum privacy preference
is less than 0.5. When the privacy preference is high, the performance of the two is
basically the same, and the performance is better than the traditional differential privacy
mechanism.

6 Conclusion

The spectrum is an important attribute of the networks. In order to improve the usability of
spectral queries on edge weights in weighted social networks, a spectral query algorithm
based on personalized differential privacy is proposed. Compared with the traditional
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differential privacy mechanism, this mechanism minimizes the impact of noise on data
availability while ensuring that the differential privacy mechanism is satisfied. Com-
pared with the traditional differential privacy query algorithm of social networks, this
algorithm has the characteristics of wide application range and less disturbance. And
the data availability is better under the circumstances of meeting the privacy protection
requirements of different users.

Acknowledgements. We would like to thank the anonymous reviewers for their insightful com-
ments. This work was sponsored by the National Natural Science Foundation of China (No.
61941105).
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Abstract. There are two popular location-based service (LBS) applica-
tions: searching k-nearest neighbor Points of Interests (kNN POIs) and
finding Nearby Friends (NF) via a social network server (SNS). Never-
theless, both applications are based on users’ current locations, and no
scheme has been devised yet to merge POIs, NF and SNS together. A
series of works were proposed to preserve users’ query privacy leaked
from service attributes of POIs or location privacy over Mobile Social
Networks (MSNs). However, their communication and computation costs
are heavy.

In this paper, we design a novel LBS application named NFPOI,
which allows users to search NF based on a given POI via an SNS. To
preserve users’ identity privacy, location privacy and query privacy, we
firstly propose Location Privacy Preserving schemes based on Ring Sig-
nature (LPPRS). In our LPPRS, (1) Both user’s real identity and real
location are kept secret from others effectively. (2) Due to the anonymity
of ring signature, the SNS was allowed to return query results while
it cannot distinguish the real sender when processing a query message.
Thus, the sender’s query privacy is preserved even though the SNS knows
the actual attributes and locations of POIs. (3) Neither a fully trusted
third party (TTP) nor a pre-shared secret key with friends is required.
A semi-TTP scheme and a TTP-free scheme were proposed respectively
with different trade-offs in efficiency and security level. (4) Communica-
tion and computation costs for user side are less than existing works.

Keywords: Location privacy-preserving · Ring signature · Points of
interests · Mobile social networks

1 Introduction

Location based services (LBS) are of great importance in our daily life. One
LBS application is location-based searching, which allows users to query kNN
POIs. For instance, Alice1 can use the Google map to check how many bars,
cinemas, or hospitals are within a radius of 3 km based on her current location.
1 Alice represents a user or a user’s device in this work.
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Note that searching kNN POIs does not rely on MSNs, i.e., the information in
Alice’s social network, such as Alice’s friend lists.

MSNs construct a sharing medium for individuals’ daily communication. Via
a SNS, provided by Twitter for instance, users can create profiles and share per-
sonal data like videos and pictures with friends in their social networks. Location
sharing among social network friends is another popular function of SNS. After
uploading a current location to SNS, users can query NF.

The searching goals of the above two functions are individual. One is for
kNN POIs but another one is for NF. However, no LBS application achieves
the two goals at the same time and thus cannot satisfy some specific cases. For
example, Alice is currently in New York and she can search for friends near the
hotel in London where she has booked or she can choose a hotel which is more
likely near her friends living in London. Motivated by such demands, we design
a novel application for searching NF based on a given POI via a SNS. We define
it as NFPOI, which also allows users to search nearby POIs.

Since both of the LBS applications are based on a user’s current and precise
location, privacy concerns are raised by sensitive information leakage. The first
one is location privacy that is revealed from the disclosure of users’ exact
locations. For instance, some fitness tracking APPs like Strava allows its users to
record and share their jogging routes. However, in 2018, it was reported that the
location of a secret US army base was leaked by the locations shared in the APP.
Another one is query privacy leaked from the service attribute of POIs, e.g.,
amusement services, medical services, catering services, especially when a sender
issues POIs query with the same service attribute continuously in a period. For
example, if Alice frequently queries bars, an adversary can infer that Alice is
an alcoholic and she may face some health issues caused by over drinking. As
shown in [1], the adversary also can infer the sender’s interests, health condition,
eating habits, and so forth by analyzing the sender’s POIs. In our LPPRS, a
continuous NFPOI query refers that a sender continuously searches NF based
on POIs with the same service attribute in a period. Otherwise, we denote that
the user does a non-continuous NFPOI query.

To protect users’ location privacy, a number of schemes are proposed, such as
k-anonymity [2–5], dummy locations [6–9], obfuscation [10,11], mix zone [12,13],
spatial transformation [14,15] and homomorphic encryption (HE) [16–19]. For
query privacy, private information retrieval (PIR) proposed in [20–23] is a useful
algorithm.

The k-anonymity and dummy location are applied to construct a cloak region
for a user’s location with k − 1 locations, which can be obtained from the user
or a TTP. Different from the dummy location algorithm, the k − 1 locations of
k-anonymity can be exact or dummy. The obfuscation algorithm is to select an
appropriate location (not a cloak area) to substitute a user’s exact location. For
mix zone, a TTP will help a user change her identity when her location is in a spe-
cific zone,mixing the user’s identitywith others, but users cannot change locations.
The space transformation is to map a user’s location into another space with a
one-way transformation. Paillier [16] and BV [17] are two popular HE algorithms
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applied in privacy-preserving, achieving additive homomorphic and full homomor-
phic respectively. The PIR allows a user to retrieve POIs from servers with indexes
while the user does not reveal any content of POIs. More introductions about loca-
tions privacy protection can be found in recent surveys [24–26].

Limitations of Existing Works on Location Privacy and Query Pri-
vacy. (1) The k-anonymity algorithm in continuous queries is vulnerable to
location-dependent attacks [27] and attackers can recognize users’ identities with
an anonymized graph [28]. (2) The accuracy is reduced when a query message
is processed under a cloak region, e.g., k-anonymity and dummy location. (3)
Users need to reveal their exact locations to a TTP, e.g., mix zone. (4) The com-
munications and computations costs for users or servers sides are heavy, e.g.,
HE, PIR.

Fig. 1. Linkage between sender’s identity and query message.

Furthermore, we find that the linkage between a sender and her query mes-
sage is revealed to SNS directly in most existing schemes and thus allows SNS to
infer more sensitive information, Fig. 1(a). For example, according to the loca-
tion of POI, e.g., a bar, the sender’s location, and her friends’ IDs, SNS can infer
that the sender’s or her friends’ future locations may be the specific bar with
a high probability. Thus, besides location privacy and query privacy, hiding the
linkage between the sender’s query message and identity is essential. Since ring
signature is a more powerful tool than k-anonymous to achieve anonymity, we
apply a RingCT 3.0 algorithm proposed by Yuen et al. [29] to achieve anony-
mous query, Fig. 1(b). A comparison between k-anonymity and ring signature is
presented in Table 1.

Table 1. Comparison between k-anonymity and ring signature

k-anonymity • Anonymize a sender’s exact location for LBS

• Cannot resist location-dependent and anonymized graph attack for continuous

queries

• Cannot satisfy unconditional anonymity and cloak region easily causes vague query

results

Ring signature • Anonymize the linkage between a sender’s identity and query message

• SNS can only distinguish the real sender with the probability of 1/ring size even

for continuous queries

• Allow users to submit an exact location of POI to SNS without compromising the

accuracy of query results
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In this work, therefore, we design a lightweight and anonymous framework
for NFPOI query, which preserves the sender’s location privacy, query privacy
and identity privacy simultaneously. To the best of our knowledge, no mechanism
satisfying all requirements has been proposed yet.

Our Contributions. We propose location privacy-preserving schemes over
MSNs based on ring signature (LPPRS) in two different security settings: with
Semi-TTP and without TTP. In our scheme 1, there are three entities: User,
Social Network Server (SNS) and Cloud Server (CS). CS is a semi-trusted third
party. Our scheme 2 is TTP-free. The main contributions of our LPPRS are as
follows.

1) Proposed a novel LBS application over MSNs combining POI and
NF together. Our NFPOI successfully breaks the limitation of either POIs
query or NF query. Via a SNS, NFPOI allows users to search NF based on a
given POI. Thus, it can be used as a practical LBS searching fashion.

2) Identity privacy and location privacy are preserved. Instead of
inputting email addresses or telephone numbers to SNS, only ring signature
public keys are used to denote users’ identities. Thus, users’ registration IDs
do not reveal any personal information to SNS. Users’ location privacy is pro-
tected by submitting substitution locations to SNS. Different from algorithms
discussed above, it is efficient because no heavy computation or communica-
tion cost is involved.

3) Anonymous query and query privacy are preserved. Due to the
anonymity property of ring signature, although SNS can learn that the query
message including exact location and attribute of POI is sent from the ring
members, it cannot find out the real sender with an unnegligible probability.
Thus, anonymous query is guaranteed in LPPRS. In addition, as it is impos-
sible for SNS to distinguish whether two query messages are sent from the
same user, query privacy is preserved after sending continuous queries.

4) Achieved Semi-TTP and TTP-free. In LPPRS, only a semi-trusted third
party is involved in scheme 1 (Sect. 4.1). Computation cost of CS is trivial, as
it only helps users select ring members and forwards messages to SNS. Apart
from the sender’s identity privacy, user’s location privacy and query privacy
will not be leaked to CS. Additionally, scheme 2 (Sect. 4.2) removes the need
of utilizing a semi-trusted third party by using anonymity networks or anony-
mous algorithms and requiring the SNS to perform public key encryption.

5) Achieve session key free. Different from previous works, users do not share
any session key with social network friends in advance, thus avoiding privacy
leakage caused by dishonest friends when users share the session key with them.

2 Preliminaries

Ring signature was proposed by Rivest et al. [30] in 2001. A ring is formed by
n public keys Y among which one is the signer’s public key and the remaining
public keys are from n − 1 other users. The signer generates a ring signature
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for a message using his own secret key. A verifier can validate the signature for
the message with the ring Y . The ring signature provides anonymity for the
signer in the ring Y without using a trusted third party or a group manager.
The unconditional anonymity of ring signature makes the attacker unable to
distinguish the actual signer with probability greater than 1/n, ever though the
attacker has infinitely powerful computation and can access to an unbounded
number of chosen-message signatures signed with the same ring members.

RingCT 3.0. Many ring signature schemes are proposed since the invention
of ring signature. In 2019, Yuen et al. [29] proposed a new ring signature
scheme named RingCT3.0 protocol to protect the privacy of a sender in Monero
blockchain transaction. To the best of the authors’ knowledge, it is the short-
est ring signature scheme without trusted setup up to now. Thus, we use the
RingCT 3.0 as a building block of our protocol2.

3 System Descriptions and Threat Model

3.1 System Descriptions

Fig. 2. Framework of Scheme 1. Fig. 3. Privacy preserving objects and
methods.

The framework of scheme 1 is shown in Fig. 2. There are three entities:
Users, Social Network Server (SNS), Cloud Server (CS). Scheme 2 is TTP-free
by moving the setting of CS.

Users. They can access CS and SNS via a smart device such as smartphone,
smartwatch, iPad, and so on.

SNS. It carries out users’ query messages based on their social network friends
lists and locations.
2 The details of RingCT 3.0 are in the full version.
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CS. It assists users in three ways. (1) CS helps users select ring members for each
location query. Since Alice’s friend list is revealed to SNS, the ring members can-
not be selected from Alice’s friends simply. Otherwise, SNS can easily recognize
that Alice is the sender by checking ring members’ common friends. Besides, we
require that the ring members must be registered users in SNS. Hence, it is not
easy for Alice to construct a ring without the knowledge from users who are not
her social friends. (2) CS conveys users’ ring signatures to SNS. (3) CS extracts
the final encrypted query results sent from SNS with a sender’s ring index. It
can prevent the sender from decrypting the query results of the n− 1 decoy ring
members. Therefore, this step provides protection against malicious users.

As shown in Fig. 3, the ring signature is applied to sign a sender’s query
message, and a ring signature public key is used to hide the sender’s identity.

Substitution Location (sl): It is used to preserve users’ exact locations. Sim-
ilar to the works [10,11], we assume that there are some public buildings such as
subway stations, bus stops, supermarkets, etc., around a user’s current location.
A nearby public location (not a cloak region) will be selected to replace the
exact location in LPPRS. The choice is flexible, depending on the user’s current
location. For example, if Alice’s current location is near a subway station exit,
then that location is a better substitution.

District of Substitution Location and Ring Members: The district of
substitution location represents a larger area, such as a town or a suburb. Since
the location of POI is independent on the sender’s substitution location, we
propose that ring members are selected randomly from users who are in the
same district as the sender’s.

3.2 System Threat Model

The assumptions of system threat model in LPPRS are as follows.

1) The communications between three entities in LPPRS are via a secure chan-
nel. Thus, an eavesdropping attack is not considered in LPPRS.

2) Both CS and SNS are honest-but-curious, which means that they will execute
schemes honestly while intend to infer more private information. In general,
an entity is defined as a TTP when it knows each user’s real identity, location,
query message and query result, such as the setting of CT in [31]. Thus, similar
to [32], we define that CS in our LPPRS is a semi-trusted entity (semi-TTP)
since it does not have users’ real query messages, exact locations and real
query results.

3) Following to the works [31–33], we assume that CS and SNS cannot be con-
trolled by the same adversary, because they are managed by two individual
institutions. In other words, CS and SNS do not collude with each other.

4) CS and SNS can monitor users’ information running in the system, respec-
tively, including users’ historical substitution locations, query messages, query
results, and so on. Meanwhile, both entities receive all public parameters of
algorithms applied in the mechanism.
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Fig. 4. Steps of NFPOI query in scheme 1.

4 Our LPPRS

4.1 Construction of Scheme 1

Registration in Social Network Server. Alice’s registration identity (ID) in
SNS is a ring public key YA. We suppose that each user’s ID is different from
others. In LPPRS, based on the location of a POI, uploading personal location
to SNS is not the prerequisite for NFPOI query. Thus, if Alice is willing to reveal
it to social network friends, she can upload a substitution location slA to SNS.

Registration in Cloud Server. Alice’s ID in CS is also YA. Once Alice updates
her ID in SNS, she will send the new ID to CS simultaneously. Different from
SNS, CS records Alice’s ring and corresponding index of her query message.
Besides, instead of sending a slA, Alice only sends the district of slA to CS once
she has updated her location in SNS.

Query Steps. There are seven steps in scheme 1, seeing Fig. 4.

– Step 1: Alice sets qm. Firstly, to prevent CS from knowing query results
sending from SNS, Alice randomly generates a one-time-key KID−SNS of
AES3. Instead of sending KID−SNS to SNS directly, Alice adds the key into
a query message denoted by qm = (POIloc, qd,KID−SNS), where POIloc
is the exact location of POI, and qd is a radius of query distance. Secondly,
Alice encrypts qm to get CID−SNS = EPKSNS

(qm), where PKSNS is a RSA4

public key of SNS.
3 AES represents a symmetric encryption algorithm in this work.
4 RSA represents an asymmetric encryption algorithm in this work. Note that RSA

can be replaced by Elliptic Curve Cryptography or other asymmetric encryption
algorithms in trade-offs in efficiency and security.
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Suppose that Alice desires to search kNN friends within qd = 2 km, denoted
the query region by �qd. Due to the distance between a user’s real location
and substitution location, a border case is that the user’s substitution location
is outside �qd, while the user’s real location is inside �qd. Since SNS performs
qm based on users’ substitution locations, SNS will not add the user to its
query result. For this case, we propose that qd sent to SNS is larger than
2 km, e.g., 4 km (double times), flexibly avoiding omitting all kNN friends
within �qd=2km. Besides, we set that results returned by SNS are recorded
increasingly based on the distance among POIloc and her friends’ locations
(seeing Step 5). Thus, Alice can quickly learn about whose location is around
and can obtain those friends’ exact locations by privately communicating with
them.

– Step 2: Alice asks ring Y from CS. Based on Alice’s district, CS selects
n − 1 ring members from its MCS randomly and keeps the ring index. After
that, CS sends ring Y = (Y1, Y2, ..., Yn) to Alice. On the other hand, if Alice
does continuous queries, then ring Y and its indexes are the same as the first
time during the whole period. Otherwise, ring Y is deleted by CS and Alice
after a NFPOI query.

– Step 3: Alice computes σ for CID−SNS. Once Alice obtains the ring Y
from CS, Alice keeps her index secretly. Based on RingCT 3.0, Alice computes
a ring signature σ for CID−SNS . After that, Alice sends (CID−SNS , σ) to CS.
For CS, once it receives Alice’s query message, it firstly records Alice’s ring
Y and index. Later, CS sends (CID−SNS , σ, (Y1, Y2, ..., Yn)) to SNS.

– Step 4: SNS verifies σ. For σ, if it is valid, SNS decrypts CID−SNS with
its RSA private key to get the query message, and keeps the session key
KID−SNS secretly. Otherwise, SNS rejects the query.

– Step 5: SNS performs qm based on ring Y . Firstly, due to the anonymity
of ring signature, SNS cannot find out that qm = (POIloc, qd,KID−SNS)
is sent from Alice. Thus, SNS carries out qm based on (Y1, Y2, ..., Yn) and
records results from Y1 to Yn sequentially. Denoted query results for ring Y
by rSNS = (r1, r2, ..., rn) and rs is the query result for ring member in Y with
index s, (s = 1, ..., n). In general, rs is a set and its each element is in the
form of (dt, IDt, slt), where t is a number of Y ′

s friends whose substitution
locations are in �qd=4km, dt is a distance satisfying dt = dist(POIloc, slt) <
qd, and IDt represents a Y ′

s friend. We require that SNS records results
according to dt increasingly. The smaller value of dt implies the nearer friend.
Secondly, SNS encrypts each ri with the session key KID−SNS and gets Ri =
EKID−SNS

(ri). Denoted the ciphertext results by RSNS = (R1, R2, ..., Rn).
Finally, SNS sends RSNS to CS.

– Step 6: CS extracts result Rs. After receiving RSNS = (R1, R2, ..., Rn)
from SNS, CS exacts the result Rs with index s, sends it to Alice, and discards
the rest results.

– Step 7: Alice decrypts Rs. Finally, Alice can learn about how many friends
are nearby the POI by decrypting Rs with KID−SNS .
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4.2 Construction of Scheme 2

Registration in SNS. Firstly, each user generates a RSA public key, denoted as
RSAID. Secondly, since users’ IDs are ring public keys, we assume that all IDs in
SNS are public. Besides, users’ location districts are also published by SNS. Thus,
Alice’s public information is in the form of (YA, RSAYA

, country/city, district),
if she has updated a location to SNS. Otherwise, her public information is (YA,
RSAYA

,⊥,⊥). Note that all users’ social relationships are not published.

Query Steps. Without the setting of CS, there are six steps in scheme 2.

– Step 1: Alice sets qm. In scheme 2, a symmetric random private key
is removed from qm, qm = (POIloc, qd). Next, Alice encrypts qm to get
CID−SNS = EPKSNS

(qm).
– Step 2: Alice selects ring Y personally. Based on the public information

offered by SNS, the same as scheme 1, Alice randomly selected ring Y from
the same district with her location. If Alice needs continuous queries, then
she will keep ring Y and use it to sign new qm during the period of continuous
queries. Otherwise, ring Y is deleted after obtaining query results.

– Step 3: Alice computes σ for CID−SNS. Firstly, Alice computes a ring
signature σ for CID−SNS , and sends message {CID−SNS , σ, (Y1, Y2, ..., Yn))}
to SNS. Secondly, similar to [18], we assume that the communication between
Alice and SNS is via anonymized algorithms [34] or an anonymized network
(e.g., Tor5).

– Step 4: SNS verifies σ. (This step is the same as scheme 1.)
– Step 5: SNS carries out qm based on ring Y . Different from scheme 1,

SNS encrypts query results rSNS = (r1, r2, ..., rn) with each ring member’s
RSAID, getting Rs = ERSAYs

(rs), s = 1, ..., n. Next, SNS returns RSNS =
(R1, R2, ..., Rn) to the sender.

– Step 6: Alice decrypts the query result. After obtaining RSNS , Alice
selects the result with her ring index, and decrypts it with RSA secret key.
Note that even though Alice can obtain all ring members’ results, she only can
obtain her own friends’ information by decrypting the result with personal
RSA private key.

Note that following to scheme 2, SNS also can apply RSA to encrypt rSNS =
(r1, r2, ..., rn) in scheme 1, while considering the setting of CS and the efficiency
of AES, we adopt AES to encrypt query results instead of RSA for scheme 1.

5 Schemes Comparison and Security Analysis

5.1 Scheme Comparison

Comparisons among LPPRS and other schemes are shown in Table 2.

5 https://www.torproject.org/.

https://www.torproject.org/
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Table 2. Comparison between LPPRS and other schemes. The following symbols are
used: DS: Digital Signature, FL: friends’ list, qt: query type, qd: query distance, qm:
query message, σ: ring signature, f: the number of friends, [#x]: runs for x-times.

Scheme User User Server(s) Server(s)

Comp. cost Comm. cost Comp. cost knows

[31] DS.Sign ID||qt||qd CT: pseudonyms & dummy loc CT & SNS: ID & fake IDs

U-CT-SNS-LS AES[#1+f] RSA.Enc & RSA.Dec CT: loc & dummy locs

(TTP: CT) SNS: DS.Verify SNS: FL

LS: RSA.Enc LS: fake IDs & dummy locs

[33] RSA.Enc ID||qt||qd||loc.cipher SNS: pseudonyms & k-anonymity SNS: ID & fake IDs & FL

U-SNS-LS AES[#4] LS: RSA.Dec & AES[#2] LS: fake ID & real loc

[35] Broadcast Enc, DS.Sign ID||qt||qd SNS: pseudonyms & DS.Verify SNS: ID & fake IDs & FL

U-SNS-LS AES[# > 2+f] LS: AES[#2] & DS.Sign LS: fake ID & real loc

[36] ORE.Enc[#2] multi-qm.cipher SNS: ORE.Cmp SNS: ID & loc.cipher

U-SNS ORE.QGen Index construction

AES[# > f] Index maintenance

[18] CP-ABE (To a friend) negligible SNS: ID & FL

U-SNS Paillier HE multi-times comm. (mainly computed by users)

Functional Enc

[1] DUMMY-Q multi-(loc||POIs) LS: multi-query processing LS: ID & real loc

U-LS technique

[32] Hilbert Curve loc||POI SA: anonymity area SA: ID

U-SA-LS RSA.Enc compute redundant results

(Semi-TTP : SA) LS: RSA.Dec & loc transform

[37] RSA.Enc[#2], RSA.Dec[#2] multi-times comm. LS: RSA.Dec[#2] LS: ID & real qm

U-LS Bilinear Pairing[#n] RSA.Enc[#2]

Deniable Authentication Bilinear Pairing

Ours. 1 RSA.Enc qm.cipher||σ SNS: RSA.Dec CS: sender’s ring index

U-CS-SNS Ring.Sign Ring.Verify SNS: FL & real qm

(Semi-TTP : CS) AES AES[#n]

Ours. 2 RSA.Enc qm.cipher||σ SNS: RSA.Dec SNS: FL & real qm

U-SNS Ring.Sign Ring.Verify

RSA.Dec RSA.Enc[#n]

• Column 1 (Scheme): For each scheme, we summarize the involved entities
such as User (U), SNS, location server (LS), cloud server (CS). CT repre-
sents Cell Tower in [31] and SA represents Semi-Anonymizer in [32]. We also
describe the type of TTP used if there is one.

• Column 2 (A user’s comp.cost6): The cryptographic operations computed by
a user are listed. We use [# ] to represent the number of times when an algo-
rithm runs by the user multiple times. For example, in [31], the sender runs
the AES once in registration period. Besides, a query result includes several
locations, encrypted by friends’ private keys respectively. Thus, the sender
totally needs to perform the AES for (1+f) times, denoted as AES[#1+f],
where f is the number of friends of a query result.

• Column 3 (A user’s comm.cost7): To simplify, we only compare a user’s
comm.cost of sending query messages, excluding registration and location
updating periods. Note that the loc.cipher and qm.cipher represent the cipher-
text of location and query message respectively. The multi-times comm.
means there are multiple communications between two entities. Unless other-
wise specified, the user sends the query to the party connected to U in column
1.

• Column 4 (Comm.cost of server(s)): Its description is similar to column 2.
• Column 5 (Sever knows): We summarize a user’s privacy that is revealed to

server(s).

Detailed comparisons in different perspectives are given as follows.
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TTP. Our scheme 1 and [32] have a semi-TTP, which both cannot obtain users’
real IDs and locations, but the semi-TTP in [32] needs to help users perform
extra computations for query results. [1,37] are TTP-free schemes, but [1] only
focus on preserving user’s query privacy, and user’s comp.cost and comm.cost
are all heavy in [37]. Our scheme 2 is TTP-free, offering privacy-preserving for
a user’s identity, location and query message simultaneously.

Comp.cost (User and server(s)). In our LPPRS, for each query, the sender
only needs to compute the RSA, AES and ring signature one time, respectively.
However, in [31,33,35,36], the sender needs to run the RSA or AES several times.
Besides, due to the running costs of CP-ABE/Hilbert curve/Bilinear Pairing,
user’s comp.cost from [18,32,37] are significant. Different from [31,33,35,36],
comp.cost for server side in [18] is negligible, since the computation is mainly
done by two parties for each query. Comparing to [37], our LPPRS is lightweight
as the server does not need to perform the bilinear pairing operations.

Comm.cost (User). In our LPPRS, a query message sent to the server only
includes a RSA ciphertext and a ring siganture. However, in [1,36], the sender’s
query message either contains multiple dummy POIs or multiple locations
encrypted with AES. For [18,37], the user has to interact with her friend or
the server multi-times. Thus, user’s comm.costs in [1,18,36,37] are all heavy.

Server(s) Knows. In our LPPRS, a user’s real ID and location are not revealed
to any party as they are preserved by a ring public key and a substitution location
respectively. However, at least one server knows a user’s real identity or location
in [1,18,31–33,35–37]. For query privacy, our schemes and [37] allow SNS to
obtain an anonymous query message in the form of plaintext. Our LPPRS is
based on the ring signature that preserves query privacy perfectly, while [37]
enables the sender to deny her behavior when the server tells her data to others,
with a deniable ring authentication algorithm.

Searching Method and Session Key. Based on users’ current locations,
schemes [18,31,33,35,36] and [1,32,37] are designed to offer privacy-preserving
for searching kNN NF and POIs respectively. Our NFPOI focuses on NF search-
ing based on a given POI via SNS. In addition, different from [31,33,35,36],
we do not require users to share session keys with friends, successfully avoiding
privacy leakage from malicious users. Due to the length limitation, we do not
show both items in Table 2.

5.2 Security Analysis

In this section, we analyze that the sensitive information that CS and SNS intend
to infer is preserved when they perform inference attacks.

For SNS, it knows all users’ friends lists, query messages, ring members and
some users’ substitution locations, while it desires to infer the real sender and
users’ exact locations. For CS, it stores users’ historical and current districts of
substitution locations, encrypted query messages, encrypted query results, ring
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members and ring indexes, while it hopes to acquire the plaintext of users’ query
message, query results and exact locations.

Inference Attack Resistant: A mechanism is inference attack resistant if an
adversary in probabilistic polynomial time cannot infer a user’s real value over
a possibility ε, where ε depends on the secure parameter of a specific privacy
preserving algorithm.

Property 1. Our LPPRS is inference attack resistant to SNS.

(1) Given a query message signed by Alice YA with a ring Y = (Y1, Y2, ..., Yn),
the possibility that SNS infers the real sender is ε = 1

n .

Analysis 1: Firstly, if Alice does not need continuous query, different query
message is signed with different ring Y = (Y1, Y2, ..., Yn). Each ring member in
Y is selected from whole registration IDs of SNS, as long as they are in the
same district as Alice. Besides, the location of POI is independent on Alice’s
substitution location. Thus, SNS cannot find out Alice by matching each ring
member’s substitution location with the location of POI. In addition, each ring
Y is generated randomly and the ring members are not chosen from Alice’s
social network friends. Thus, even though SNS has all users’ social friends lists,
it cannot recognize Alice by checking ring members’ common friends, or via
performing joint analysis based on a large number of ring signatures.

Secondly, if Alice needs a continuous query, all of her query messages are
signed with the same ring and index. Hence, due to the perfect anonymity of
ring signature, it is impossible for SNS to find out whether two query messages
are sent from the same user. Therefore, without the knowledge of the ring index,
even though SNS obtains POI and its exact location, it only has the possibility
of 1

n to identify Alice as the real sender.

(2) Given a substitution location sending from Alice, the possibility that SNS
deduces Alice’s exact location is ε = 1

w .

Analysis 2: Suppose Alice’s substitution location is a subway station, and there
are ’w’ buildings around it. Since the substitution location is selected by Alice
secretly, SNS can infer Alice’s exact location with the possibility of 1

w at most,
even though SNS knows that what buildings are near the subway station.

Property 2. Our LPPRS is inference attack resistant to CS.

Analysis 3: As a semi-TTP, CS receives query messages from users and query
results from SNS. For Alice’s query message qm = (POIloc, qd,KID−SNS), it is
encrypted with PKSNS . The corresponding private key of PKSNS is kept by
SNS secretly, so CS only owns the ciphertext of Alice’s query message.

For query results RSNS = (R1, R2, ..., Rn) sending from SNS, they are
encrypted by SNS with a systematic key KID−SNS , generated by Alice secretly
and randomly. Hence, given RSNS , without the knowledge of KID−SNS , CS
cannot obtain the plaintexts of them.
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For users’ locations, CS only obtains districts of users’ substitution location,
so the possibility that CS can infer Alice’s real location is far less than 1

w .
From analysis 1 and analysis 3, we can conclude that Alice’s query privacy

and the linkage between her ID and query messages are preserved anonymously.
From analysis 2, we can deduce that users’ location privacy is also preserved.

6 Evaluation

This section shows that our LPPRS are practical, via evaluating communication
and computation costs for the user side and server side, respectively.

– Comm.cost: RSA, AES and ring signature (RS) are three main algorithms
applied in LPPRS. For RSA and AES, the key length is represented by 2048
bytes and 256 bytes respectively. For 2048-byte RSA with PKCS#1 padding,
the ciphertext size is 256 bytes for every 245 bytes message. For a ring size
of n, the ring signature size of RingCT 3.0 is 2�log2(n)� + 7 elements in G

and 7 elements in Zp. Based on Curve 25519, each element in G and Zp

has the length of 33 bytes and 32 bytes respectively. Thus, we have |σ| =
(2 log n + 7) ∗ 33 + 7 ∗ 32 = 66 log n + 455 bytes. For a ring size of 1024, the
signature is 1115 bytes.

– Comp.cost (User):
• RSA.Enc. It is used to encrypt query message, CID−SNS = EPKSNS

(qm).
• RS.Sign. To sign CID−SNS , a ring signature of RingCT 3.0 is dominated

by 3 multi-exponentiations in G of size 2n + 1, 2n and n + 1 respectively,
where n is the size of ring members.

• AES.Dec. It is performed to get final result rs. (Scheme 1)
• RSA.Dec. It is performed to get final result rs. (Scheme 2)

Note that the above computations can be done offline by users.
– Comp.cost (SNS)

• RS.Verify. It is dominated by 2 multi-exponentiations in G of size 2n +
2log2n + 1 and n + 4 respectively.

• RSA.Dec. SNS applies it to decrypt CID−SNS and obtain qm.
• Perform qm. SNS calculates results rSNS based on qm and ring Y .
• AES.Enc. To obtain ciphertexts RSNS of rSNS . (Scheme 1)
• RSA.Enc. To obtain ciphertexts RSNS of rSNS . (Scheme 2)

– Comp.cost (CS): CS does not need to perform any cryptographic algorithm.
It just needs to select ring members and forward information between users
and SNS.

– The total running time of LPPRS: The running time of RS.Sign and
RS.Verify of RingCT 3.0 for different ring members n are given in [29]. Refer-
ring to the test data of AES and RSA algorithms providing by Crypto++
library8, the running time in LPPRS for AES or RSA algorithm is negligible.
Thus, the total running time of SNS (TSNS) is mainly dominated by the time
of RS.Verify (TRS.V erify) and the computing time of query message (Tqm),

8 https://www.cryptopp.com/benchmarks.html.

https://www.cryptopp.com/benchmarks.html
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TSNS ≈ TRS.V erify +Tqm. Based on RingCT 3.0, even if the size n of a ring is
1000, its’ verification time is less than 3 s. Thus, TRS.V erify does not increase
TSNS remarkably. For Tqm, it is reasonable to set that SNS calculates results
for ring members simultaneously, instead of one by one. Therefore, we can
conclude that our LPPRS is practical to protect users’ privacy with the ring
signature.

7 Conclusion

In this paper, we present a new LBS application named NFPOI, which firstly
combines SNS with POI and NF. Additionally, two privacy preserving frame-
works (semi-TTP and TTP-free) based on ring signature are proposed in our
LPPRS, aiming to offer anonymity for a sender’s query message, and preserve
the sender’s location privacy and query privacy efficiently.

Firstly, ring signature is applied to sign the ciphertext of a query message.
Based on the anonymity of ring signature, LPPRS supports SNS to return query
results for a query message while it cannot find out who is the real sender. Thus,
query privacy is preserved even when the sender does continuous queries. Sec-
ondly, a lightweight location privacy preserving algorithm called substitution
location is applied to hide users’ real locations. Thirdly, no entity in LPPRS is
assumed fully trusted and the pre-sharing session key for friends is not required.
Furthermore, our LPPRS is secure under inference attacks. Finally, users’ com-
munication costs and computation costs are lower than previous works according
to comparisons shown in Table 2.

In LPPRS, the anonymity of a query message is related to the size of ring
members n, which also influences the computations costs of SNS. Thus, the
balance between the anonymity and the ring size n is a trade-off.
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Abstract. In this paper we find a deterministic structure respecting the
adjacency graph of a pure circulating shift register (PCR) with a prime
order, and give a theoretical method for constructing all floor weight
class of M-sequences. As a special case of this method, we calculate a
lower bound of the number of floor weight class of M-sequences and give
their corresponding feedback functions.
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1 Introduction

Because of its huge quantity and favorable pseudo-randomness, the M-sequence
is widely used in secure communication. In recent decades, the method for con-
structing M-sequences and their feedback functions is increasingly studied. The
common methods are Direct (Cycle joining, Montage [1] and Spanning Tree [2])
and Recursion [3,4]. In [2], it has already been proved that there is an one-to-
one correspondence between all spanning trees of PCR’s (resp. complementing
cycling register’s) adjacency graph and all floor (resp. maximum) weight class of
M-sequences for the same order. Furthermore, due to the existence of the odd-
weight feedback function of M-sequences, in which the odd number is between
the floor and maximum weight value, we just find out all floor (resp. maxi-
mum) weight feedback functions of M-sequences by Spanning Tree, compare the
differences among their minor term parts, and obtain all feedback functions of
M-sequences for the same order. Therefore, the study on the structure of PCR’s
(resp. complementing cycling register’s) adjacency graph and the number of its
spanning tree is of great significance for constructing M-sequences.
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In fact, because the adjacency graph is a multiple oriented graph, it’s diffi-
cult to express its deterministic structure, and few references describe the struc-
ture of PCR’s (resp. complementing cycling register’s) adjacency graph. In [5],
Mykkeltveit first studies on generating and counting the double adjacencies of
PCR’s adjacency graph, and in [6,7], on the basis of a larger automorphism
group on PCR’s (resp. complementing cycling register’s) adjacency graph, a
quantitative result of various characteristics is obtained through a series of its
properties of multiple-lines converting to a number theory calculation. But fur-
ther, the quantitative result limits the imagination of the deterministic structure
of PCR’s (resp. complementing cycling register’s) adjacency graph in a way.

On the other hand, in [8], the method for constructing all floor (resp. max-
imum) weight class of M-sequences is given by matrix-tree theorem for a gen-
eralized multiple oriented graph, and Kang gets the number of all floor (resp.
maximum) weight class of M-sequences for order n ≤ 7 through experimental
calculation results. In [9], Mayhew gets the number of all floor (resp. maximum)
weight class of M-sequences for order n ≤ 11 through a similar graph theory
approach[8]. That is the best numerical result about the number of all floor
(resp. maximum) weight class of M-sequences for order n so far. In [10], for the
research on the non-extremal weight class of M-sequences, a theoretical discus-
sion of symmetric groups acting on these sequences is presented. And in [11,12],
Mayhew gets the number of all weight class of M-sequences for order n ≤ 6 and
the partial weight class of M-sequences for order n ≤ 7. These numerical results
indicate the difficulty of exhaustive enumeration for order n > 7 in a way.

In order to give more numerical results about the number of floor weight class
of M-sequences for higher orders (n > 11), we present a deterministic structure
to describe PCR’s adjacency graph with a prime order. And this deterministic
structure can directly generate a type of spanning trees and get their number, as
well as all spanning trees in theory. For example, we conclude that the number of
its spanning trees is at least 2498 ·3309 ·5198 ·7 ·11 for order n = 13 by calculating
(see Theorem 4), and this number is more than the total number of all spanning
trees for order n ≤ 11.

The rest of this paper is organized as follows. In Sect. 2 we delimit the adja-
cency graph and the relationship between its spanning tree and the floor (resp.
maximum) weight class of M-sequences based on [2]; In Sect. 3, we present a
deterministic structure description on the basis of properties of PCR and its
adjacency graph with a prime order, calculate a lower bound of the number of
floor weight class of M-sequences and give their corresponding feedback func-
tions; According to the above structure a theoretical construction method for
obtaining all floor weight of M-sequences is given in Sect. 4, and we apply it to
the order n = 5.

2 Preliminaries

The following Definition 1 [2], Lemma 1 and 2 [2] and Theorem 1 [2] are sum-
marized in [2], and we rule the following ⊕ to the addition on F2.
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Definition 1. (see [2]): Let f(Xn) = x1 ⊕ f0 be a non-singular shift register
feedback function with order n, whose state cycle structure Gf has Nf cycles,
and let Γf be the adjacency graph of Gf . Then Gf has cycles σi as Γf has vertices
gi(i = 1, 2, · · · , Nf ). Let a = (a1, a2, · · · , an) and a∗ = (a1 ⊕ 1, a2, · · · , an) be
an arbitrary pair of conjugate vertices in Gf . If a and a∗ are in the cycle σi and
σj respectively (i can be j), we use one side to connect the point gi and gj , and
set this side be (a2, · · · , an). Consequently, the number of vertices and sides are
equal to Nf and 2n−1 in Γf .

Lemma 1. (see [2]): If Γf satisfies the following two conditions:(1) Γf has a
partial graph of undirected tree; (2) a partial graph of undirected tree of Γf

consists of Nf − 1 sides, then

f ′(Xn) = f(Xn) ⊕
Nf−1∑

i=1

x
a
(i)
2

2 x
a
(i)
3

3 · · · xa(i)
n

n

is a feedback function of M-sequences.

Lemma 2. (see [2]) (a necessary condition of the feedback function of M-
sequences): Let wt(f0) be the weight of f0 in the feedback function. Then cor-
respondingly,

Z(n) − 1 ≤ wt(f0) ≤ 2n−1 − Z∗(n) + 1,

and wt(f0) is odd, where Z(n)= 1
n

∑
d|n

φ(d)2n/d, Z∗(n) = 1
2Z(n) − 1

2n

∑
2d|n

φ(d)

2n/2d. Meanwhile we say that the weight Z(n) − 1 is the floor weight class of feed-
back function of M-sequences with the order n, and the weight 2n−1 −Z∗(n)+1 is
the maximum weight class of feedback function of M-sequences with the order n.

Theorem 1. (see [2]): There is a one-to-one correspondence between the all
spanning trees of PCR’s adjacency graph and all floor weight class of M-
sequences, so the number of all floor weight class of M-sequences is equal to
the number of partial graph of undirected tree of Γx1 ; There is a one-to-one cor-
respondence between all spanning trees of the complementing cycling register’s
adjacency graph and all maximum weight class of M-sequences, so the number
of all maximum weight class of M-sequences is equal to the number of partial
graph of undirected tree of Γx1⊕1.

3 The Structure of PCR’s Adjacency Graph
with a Prime Order

We first give the cycle structure of PCR with a prime order as follows.

Theorem 2. Let f(Xn) be x1, where n is a prime number greater than 2. Then
Nf = (2n − 2)/n+2, and the cycle structure satisfies the following properties:
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1. the states with different weights are not in the same circle;
2. Let i(0 < i < n) be the weight value of the state. Then the number of cycles

is
(

n
i

)
/n, which are formed by states with the same weight;

3. There are only 2 circles with the length of 1, which are formed by the state
0 and 1.

Proof. Take n as a prime number into Z(n). Then we get Nf = (2n−2)/n+2; By
the definition of PCR, the states with different weights are obviously not in the
same circle. Because n is a prime number, every circle is in PCR, whose number
of states is either 1 or n. And because the number of weight value i(0 < i < n) of

states is
(

n
i

)
, the number of circles which are formed by states with the same

weight, is exactly
(

n
i

)
/n. Simultaneously, It is easy to know that there is a

circle with a length of 1 if and only if its state is 0 or 1.

Based on the above cycle structure properties of PCR with a prime order,
we can describe the structure of its adjacency graph. In the first place, we define

the concept of “level” in the adjacency graph. And let
(

n
i

)
/n be mi.

Definition 2. In the adjacency graph of PCR with a prime order, the corre-
sponding vertices g

(i)
j (1 ≤ j ≤ mi) of the state circle which is formed by the

weight i(0 < i < n) of states, are on the i-th level. In particular, we say that the
corresponding vertex g(0) of the state circle, which is formed by the state 0, is
on zero level. Correspondingly, the corresponding vertex g(n) of the state circle,
which is formed by the state 1, is on the n-th level.

Theorem 3. A deterministic structure of PCR’s adjacency graph with a prime
order satisfies the following conditions:

1. Only vertices on adjoining levels have sides to connect;
2. For each vertex on the i(1 ≤ i ≤ n−1

2 )-th level, there are i sides connected to
vertices on the previous level;

3. For each vertex on the i(n+1
2 ≤ i ≤ n − 1)-th level, there are n − i sides

connected to vertices on the next level;
4. For each vertex on the n−1

2 -th (resp. n+1
2 -th) level, there are n+1

2 sides con-
nected to vertices on the n+1

2 -th (resp. n−1
2 -th) levels.

Proof. Because the weight of a pair of conjugate states must be a difference of
1, only vertices on adjoining levels have sides to connect. Since in the cycles rep-
resented by each vertex on the i(1 ≤ i ≤ n−1

2 )-th level only the most significant
bit of i states is 1, according to the definition of the side of adjacency graph, it
can be seen that for each vertex on the i(1 ≤ i ≤ n−1

2 )-th level, there are i sides
connected to vertices on the previous level; Since in the cycles represented by
the each vertex on the i(n+1

2 ≤ i ≤ n − 1)-th level only the most significant bit
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of n − i states are 0, according to the definition of the side of adjacency graph,
it can be seen that for each vertex on the i(n+1

2 ≤ i ≤ n − 1)-th level, there are
n − i sides connected to vertices on the next level; Similarly, according to the
definition of the side of adjacency graph, it can be seen that for each vertex on
the n−1

2 -th (resp. n+1
2 -th) level, there are n+1

2 sides connected to vertices on the
n+1
2 -th (resp. n−1

2 -th) levels. At this point, we count the total number of these
sides. Since the i-th level has mi vertices, for 1 ≤ i ≤ n−1

2 ,

i · mi =
(

n − 1
i − 1

)
;

for i(n+1
2 ≤ i ≤ n − 1),

(n − i) · mi = (n − i) ·
(

n
n − i

)
/n =

(
n − 1

i

)
;

And the total number of sides connected to each vertex on the n−1
2 -th and n+1

2 -th
levels is

n + 1
2

·
(

n
n−1
2

)
/n =

(
n − 1
n−1
2

)
.

Consequently, the total number of all sides at this point is exactly the expanding
combinatorial number of 2n−1.

Theorem 4. The number of the partial graph of undirected tree of PCR’s adja-
cency graph Γx1 with a prime order, namely the number of all floor weight class
of feedback function of M-sequences, is at least

⎡

⎣
n−1
2∏

i=1

imi

⎤

⎦
2

·
(

n − 1
n−1
2

)
.

Proof. According to the concept of partial graph of undirected tree, it can be
seen that we need Nf −1 sides to connect Nf vertices. Therefore, for each vertex
on the i(1 ≤ i ≤ n−1

2 )-th level, we can choose one of i sides connected to vertices
on the previous level. Then the Nf

2 vertices in the upper part of adjacency graph
are connected with Nf

2 − 1 sides, and the upper part of spanning tree is formed;
Similarly, for each vertex on the i(n+1

2 ≤ i ≤ n − 1)-th level, we can choose
one of n − i sides connected to vertices on the next level. Then the Nf

2 vertices
in the lower part of adjacency graph are connected with Nf

2 − 1 sides, and the
lower part of spanning tree is formed; At this point, we only need to choose
one of all sides connected to each vertex on the n−1

2 -th and n+1
2 -th levels, then

the upper and lower part of spanning tree can be connected to form a whole
spanning tree. It’s easy to see that the upper and lower parts of adjacency graph
are symmetrical, and the total number of selectable sides in the corresponding
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connected upper part of spanning tree is
n−1
2∏

i=1

i
mi . And the total number of all

sides in the middle two levels is
(

n − 1
n−1
2

)
. Consequently, the total number of

generated partial graph of undirected tree is at least

⎡

⎣
n−1
2∏

i=1

imi

⎤

⎦
2

·
(

n − 1
n−1
2

)
.

Then, according to Theorem 1, the proof is finished.

Next we discuss the deterministic form of floor weight class of feedback func-
tion of M-sequences formed in Theorem 4. Because the weight value has been
determined to be (2n −2)/n+1, then the floor weight class of feedback function
of M-sequences generated in Theorem 4 can be expressed as follows:

f(Xn) = x1 ⊕
(2n−2)/n∑

t=1

x2
at
2x3

at
3 · · · xn

at
n ⊕ x2

al
2x3

al
3 · · · xn

al
n .

Since f(Xn) is a class of feedback functions of M-sequences, Then to determine
the corresponding state among minor terms is equal to determine state sets which
(at

1, a
t
2, · · · , at

n) and (al
1, a

l
2, · · · , al

n) belong to. According to the proof process of
Theorem 4, there are the following symbol notations:

{
Ai(1 ≤ i ≤ n−1

2 ) = {(1, a2, · · · , an) |wt(a2, · · · , an) = i − 1}
Ai(n+1

2 ≤ i ≤ n − 1) = {(0, a2, · · · , an) |wt(a2, · · · , an) = i} .

At the same time, all states in the each set Ai are equivalently classified by the
left circular shift R. Let the classified state set be

{
Bi

j

}
, namely

Bi
j =

{
R(k)a

∣∣∣0 ≤ k ≤ n − 1, a ∈ Ai, R
(k)a ∈ Ai

}
.

It’s easy to see that
∣∣Bi

j

∣∣ = i, 1 ≤ j ≤ mi, namely the state set

Ai =
mi∪
j=1

Bi
j .

Consequently, each state (at
1, a

t
2, · · · , at

n)(1 ≤ t ≤ (2n−2)/n) exactly comes from
one of state sets Bi

j . At the same time, It’s easy to see that

(al
1, a

l
2, · · · , al

n) ∈ {(0, a2, · · · , an)
∣∣∣∣wt(a2, · · · , an) =

n − 1
2

}.

The above analytic process can be an one-to-one correspondence with the proof
of Theorem 4.
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4 A Construction Method for Solving All Floor Weight
Class of M-Sequences

For the deterministic structure of PCR’s adjacency graph with a prime order
in Theorem 3, this paper carries out a research on whether it can derive the
other floor weight class of M-sequences which are different from them described
in Theorem 4, namely generate other types of spanning trees. On account of this
deterministic structure, when we select the upper and lower spanning trees, it
actually considers that how to merge the two parts into a connected spanning
tree. In Theorem 4 we use one side to connect, but in fact we can use multiple
sides to connect according to the number of vertices on the middle two levels.
Sequentially, when the middle two levels are connected by k sides, the upper and
lower spanning trees need to be combined to disconnect k − 1 sides.

According to the concept of partial graph of undirected tree, it is shown that
vertices on the middle two levels have been connected with one side after the
formation of upper and lower spanning trees, namely form a branch between the
ones and g(0)(g(n)). It is assumed that one side on the branch formed by a certain
vertex is disconnected in the connected spanning tree (the side can’t be connected
with g(0)(g(n))). Then the number of disconnected sides on the branches formed

by vertices on one of the middle two levels will be at most
(

n
n−1
2

)
/n − 1,

otherwise, a connected spanning tree can not be obtained. Consequently in total,

at most 2(
(

n
n−1
2

)
/n−1) sides are disconnected, namely k ≤ 2·

(
n

n−1
2

)
/n−1. At

the same time, it has been proved that there are at most double sides connected
by two vertices in PCR’s adjacency graph on the basis of [6]. Therefore, there is a
double-side between the corresponding vertices on the middle two levels. At this
point if we consider that the role of double-side in the disconnection process, it
should be selected before the connection in fact. Consequently it does not affect
the maximum value of k.

Figure 1 shows a possible disconnection process when k reaches the maximum
value, where the “hyphen” represents one disconnected side on a branch.

In this case, a construction method for solving all floor weight class of M-
sequences can be described as follows:

1. Enumerate the weight n−1
2 and n+1

2 of states, get the correspondence among
sides in the middle two levels of PCR’s adjacency graph, and calculate the
number of double-side groups in the middle two levels. Namely, set the number
as B(n). In the meantime, a double-side can be equivalent to one side in the
following steps.

2. For k = 1, the sum of spanning trees is the lower bound described in Theorem4.

3. For k = 2, select two sides from
(

n − 1
n−1
2

)
− B(n) sides, and there are only

two following cases when the two sides are connected in the middle two levels:
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Fig. 1. A schematic diagram of a possible disconnection process when k reaches its the
maximum value

(a) One vertex through the two sides is connected to two vertices on the
upper (lower) level. Then the disconnected side is on one of two branches
corresponding to the two vertices. Accordingly, we count the number of
groups in this case as K2;

(b) Two vertices through the two sides are connected to two vertices on the
upper (lower) level. Then the disconnected side is on one of four branches
corresponding to the four vertices. Accordingly, the number of groups in

this case is

⎛

⎝

(
n − 1
n−1
2

)
− B(n)

2

⎞

⎠ − K2.

Note that when we calculate the possibility of disconnected sides, the choices
about the original side corresponding to i or n − i possible choices is gone.
And the number of possible disconnected sides selected on a branch at this
time is n−3

2 (excluding the side connected with g(0)(g(n))). Consequently, the
sum of spanning trees in this case is
n−1
2∑

i=2

1
i

⎧
⎨

⎩
2B(n) ·

⎡

⎣
n−1
2∏

i=1

i
mi

⎤

⎦

2

· n−3
2

·
⎡

⎣2 · K2 + 4 · (
⎛

⎝

(
n − 1
n−1
2

)

− B(n)

2

⎞

⎠ − K2)

⎤

⎦

⎫
⎬

⎭

=

n−1
2∑

i=2

1
i

⎧
⎨

⎩
2B(n) ·

⎡

⎣
n−1
2∏

i=1

imi

⎤

⎦

2

· (n − 3) · (2 ·
⎛

⎝

(
n − 1
n−1
2

)

− B(n)

2

⎞

⎠ − K2)

⎫
⎬

⎭

4. For k = i(2 < i ≤ 2 ·
(

n
n−1
2

)
/n − 1), According to the case for k = 2, until

calculating the total number of spanning trees in the current case on k, finally
we count the sum of spanning trees on all values of k, namely the number of
all floor weight class of M-sequences.

The rest of this paper takes the order n = 5 as an example, giving the steps
to solve all floor weight class of M-sequences. Figure 2 shows Γx1 for the order
n = 5.
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Fig. 2. Γx1 for the order n = 5

1. For k = 1, Theorem 4 shows that the sum at this time is 25 ·3. And a spanning
tree is shown in Fig. 3.

Fig. 3. A spanning tree of Γx1 for k = 1 (imaginary lines indicate selectable sides)

2. For k = 2, at this time a double-side can be regarded as one side marked with
short vertical lines. Then according to the above construction we classify
spanning trees and the classified spanning trees are shown in Fig. 4.

Fig. 4. Spanning trees of Γx1 for k = 2

In turn, the sum of spanning trees is 25 + 25 + 25 + 25 + 27 + 25 = 25 · 9.
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3. For k = 3, k reaches the maximum value, and the classified spanning trees
are shown in Fig. 5.

Fig. 5. Spanning trees of Γx1 for k = 3

In turn, the sum of spanning trees is 26 + 26+25+25 = 25 · 6.

In conclusion, for the order n = 5, the sum of spanning trees of Γx1 , namely the
number of all floor weight class of M-sequences, is 26 · 32, which is consistent
with the data in [9].

5 Conclusion

In this paper, we study on the structure of PCR’s adjacency graph with a prime
order and the number of its spanning trees. For the first time, we give a determin-
istic structure and a lower bound of the number of spanning trees of PCR’s adja-
cency graph with any prime orders. On this basis, by this construction method on
M-sequences, it can theoretically generate all floor weight class of M-sequences.
Therefore, as long as the correspondence between sides in the middle two levels
of PCR’s adjacency graph can be further accurately described, a more accu-
rate lower bound of the number of all floor weight class of M-sequences can be
obtained, which is also a research objective of the next step for this paper.
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1 Introduction

Pseudorandom binary sequences are widely used in many areas of communication
and cryptography. These sequences can be efficiently generated by linear feed-
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[8,9]. Linear complexity and 2-adic complexity of a sequence are defined as the
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ing a given sequence. In a cryptographic application, sequences as a candidate
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of 2-adic complexity of sequence was presented by Klapper and Goresky [8,9].
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Compared to the linear complexity, the 2-adic complexity of sequences has not
been fully researched. The 2-adic complexity of the series of sequences with ideal
autocorrelation or good autocorrelation was studied in [5,12,13,16,17] (see also
references here). Thus, it is important to study 2-adic complexity of the known
sequences and find binary sequences with large linear complexity and high sym-
metric 2-adic complexity. Its value cannot be less than half of the period, oth-
erwise the sequence will be vulnerable to be attacked by 2-adic of the rational
approximation algorithm [8].

In [1], Ding and Helleseth introduced the generalized cyclotomy of order
2 with respect to odd modulo, which includes classical cyclotomy of order 2
as a special case. It is well known that we can obtain binary sequences with
high linear complexity using the generalized cyclotomic classes of Ding-Helleseth.
There are a lot of papers devoted to study of characteristics of these sequences.
In particular, the linear complexity and the autocorrelation of such sequences
with period pq is investigated in [2,10,11,18,19](see also references here). In [21],
Yan et al. studied 2-adic complexity of family of Ding-Helleseth sequences for
q = p+2 and in [22] for gcd(p−1, q −1) = 2, p ≡ q ≡ 3 (mod 4). They used the
method of the determinant of a circulant matrix given in [6] and Gauss periods.
Very recently, new method of studying 2-adic complexity was presented in [23].
It uses “Gauss periods” and “Gauss sums” on the finite field Fq valued in the
ring Z22q−1. In [20], this method was employed to study 2-adic complexity of
generalized binary sequences of order 2 and also to generalize the results from
[4,14] about the 2-adic comeplxity of the modified Jacobi sequences.

Here in this paper, we will use this interesting approach to study the sym-
metric 2-adic complexity of Ding-Helleseth binary sequence with period pq in
general case. We will obtain the estimate of symmetric 2-adic complexity of
these sequences; in particular, we will generalize the results from [21] and [22].

The remainder of this paper is organized as follows. In Sect. 2, some basic
concepts are discuss and the main result is presented. In Sect. 3 subsidiary state-
ments are considered. In Sect. 4 the symmetric 2-adic complexity of generalized
cyclotomic sequences with period pq is estimated.

2 Preliminaries

We need some preliminary notations and results before we begin. First, we recall
the definitions of generalized cyclotomic classes of Ding-Hellesth and sequences
for our case. Throughout this paper, we will denote by ZN the ring of integers
modulo N for a positive integer N , and by Z

∗
N the multiplicative group of ZN .

Let p and q be two distinct odd primes, d = gcd(p − 1, q − 1), and e =
(p − 1)(q − 1)/d. Denote by g a common primitive root modulo p and q [7]. Let
x be integer satisfying x ≡ g (mod p), x ≡ 1 (mod q) [15]. Then Ding-Helleseth
generalized cyclotomic classes of order d modulo pq is defined as

Di = {gi+jdxt : j = 0, 1, . . . , e/d − 1, t = 0, 1, . . . , d − 1}, i = 0, 1, . . . , d − 1.
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We have the partition

Z
∗
pq =

d−1⋃

i=0

Di.

Denote P = {p, 2p, . . . , (q − 1)p}, Q = {0, q, 2q, . . . , (p − 1)q} and define the
following two sets

C0 =
d/2−1⋃

i=0

D2i, and C1 =
d/2−1⋃

i=0

D2i+1.

It is clear that Zpq = C0 ∪ C1 ∪ P ∪ Q and |Cj | = (p − 1)(q − 1)/2.
Ding-Helleseth binary sequences s∞ = (s0, s1, s2, . . . ) of period pq can thus

be defined as

si =

{
0, if i (mod pq) ∈ C0 ∪ Q,

1, if i (mod pq) ∈ C1 ∪ P.
(1)

The autocorrelation of these sequences was studied in [11] and the linear com-
plexity was considered in [10] for d = 2, see also [2,18].

2.1 Main Result

In this paper we will study the symmetric 2-adic complexity of s∞. First we
recall the notation of 2-adic complexity.

Let s∞ = {s0, s1, . . . , sN} be a binary sequence with period N and S(x) =
s0 + s1x + · · · + sN−1x

N−1 ∈ Z[x]. According to [8] the 2-adic complexity of s∞

can be defined as

Φ(s∞) =
⌊
log2

(
2N − 1

gcd (S(2), 2N − 1)
+ 1

)⌋
,

where �x� is the greatest integer that is less than or equal to x.
The symmetric 2-adic complexity of s∞ is defined by Φ̄(s∞) =

min (Φ(s∞), Φ(s̃∞)), where s̃∞ = (sN−1, sN−2, . . . , s0) is the reciprocal sequence
of s∞.

For a positive integer m = 2am0; 2 � | m0, we denote the odd part m0 of m
by (m)o as in [20]. The main result in this paper is given as follows.

Theorem 1. Let s∞ be a binary sequence of period pq defined in (1). Then the
symmetric 2-adic complexity of s∞ is given by

(i) for q ≡ 3 (mod 4)

Φ̄(s∞) =
⌊
log2

(
2pq − 1
r1r2

)
+ 1

⌋
,

where r1 = gcd ((q − 1)o, 2p − 1) and r2 = gcd
(
p + (p − 1)2(q + 1)/4,

2q − 1
)
;
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(ii) for q ≡ 1 (mod 4)

Φ̄(s∞) ≥
⌊
log2

(
2pq − 1
r1r3

)
+ 1

⌋
,

where r3 = gcd
(
p + (p − 1)2(1 − q)/4, 2q − 1

)
.

According to Theorem 1 the above mentioned sequences have high symmetric
2-adic complexity. Theorem 1 gives us the exact value of symmetric 2-adic com-
plexity for such sequences for q ≡ 3 (mod 4) and the lower bound for q ≡ 1
(mod 4).

The following conclusions are obvious.

Remark 1. If (q − 1)o < 1 + 2p then gcd ((q − 1)o, 2p − 1) = 1.

Corollary 1. Let s∞ be a binary sequence of period pq defined in (1). Then

Φ(s∞) ≥
⌊
log2

(
2pq − 1

gcd ((q − 1)o, 2p − 1) · gcd (p + (p − 1)2(1 ± q)/4, 2q − 1)

)
+ 1

⌋
.

These results are consistent with [21,22]. The below statement gives us the lower
bound for symmetric 2-adic complexity of these sequences.

Corollary 2. Let s∞ be a binary sequence of period pq defined in (1). Then

Φ̄(s∞) ≥ pq − p − q.

3 Subsidiary Lemmas

First, we will prove some subsidiary statements, and then in the next section
derive the 2-adic complexity of s∞ defined in (1).

The residue classes ring Zpq
∼= Zp × Zq relative to isomorphism φ(m) =

(m mod p,m mod q). Let Gj = {gj+2u mod q, u = 0, 1, . . . , (q − 3)/2}, j = 0, 1.
Then G0 and G1 are cyclotomic classes of order two modulo q and |Gj | =
(q − 1)/2, j = 0, 1.

Lemma 1. Let the symbols be the same as before. Then

Cj = φ−1
(
Z

∗
p × Gj

)
, j = 0, 1.

Proof. Let y ∈ Cj , j = 0, 1. Then y = gj+udxv for some u, v. By choosing x
we see that y ≡ gj+ud (mod q) for even d. Hence y mod q ∈ Gj . Since |Cj | =
|Z∗

p × Gj |, j = 0, 1, it follows that the statement of this lemma is true. 
�
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3.1 Generalized “Gauss Sums”

In this subsection, we will use the generalization of notation of generalized
“Gauss periods” and “Gauss sums” presented in [23].

Let c �= 1 and gcd(c, q) = 1. By definition put ηj(c) =
∑

i∈Gj

ci, j = 0, 1. It is

clear that ηj(cu) ≡ ηj(c) (mod cq − 1) for u ∈ G0 and

η0(c) + η1(c) = (cq − 1)/(c − 1) − 1. (2)

We will use the notation of cyclotomic numbers of order two modulo q in the
sequel. By definition cyclotomic number of order two (i, j) is equal to |(Gi +1)∩
Gj |. It is well known that

(0, 0) = (q − 5)/4 and (0, 1) = (1, 0) = (1, 1) = (q − 1)/4 for q ≡ 1 (mod 4),
(0, 0) = (1, 0) = (1, 1) = (q − 3)/4 and (0, 1) = (q + 1)/4 for q ≡ 3 (mod 4).

(3)

Lemma 2. With notation above, we have that η0(c), η1(c) satisfy the congru-
ence:

(i) x2 + x − (q − 1)/4 ≡ 0 (mod (cq − 1)/(c − 1)) for q ≡ 1 (mod 4);
(ii) x2 + x + (q + 1)/4 ≡ 0 (mod (cq − 1)/(c − 1)) for q ≡ 3 (mod 4).

Proof. By (2) it is sufficient to find η0(c) ·η1(c) by modulo mod (cq − 1)/(c − 1).
In the proof of this lemma, we will use the integer addition modulo m and
the integer multiplication modulo m as the ring operations, where m =
(cq − 1)/(q − 1). According to the definition of ηj(c) we have

η0(c) · η1(c) =
∑

i∈G0, j∈G1

ci+j =
∑

i∈G0, j∈G1

ci(i−1j+1) =
∑

i∈G0, k∈G1

ci(k+1).

It is well known that −1 ∈ G0 for q ≡ 1 (mod 4) and −1 ∈ G1 for q ≡ 3 (mod 4)
[7].

Suppose q ≡ 1 (mod 4); then

η0(c) · η1(c) =
∑

k∈(G1+1)∩G0

η0(c) +
∑

k∈(G1+1)∩G1

η1(c) = (1, 0)η0(c) + (1, 1)η1(c)

since −1 ∈ G0. Using (2) and (3) we derive the statement of this lemma for
q ≡ 1 (mod 4).

Let q ≡ 3 (mod 4). With similar arguments as above we get that here

η0(c) · η1(c) = (1, 0)η0(c) + (1, 1)η1(c) + (q − 1)/2.

Here −1 ∈ G1. Again, using of (2) and (3) completes this proof. 
�
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3.2 The Properties of Generating Polynomial

Since gcd(p, q) = 1, it follows that there exist integers u, v such that 1 = up+vq.
Hence exist a, b ∈ N satisfying the congruence 1 ≡ ap + bq (mod pq).

Lemma 3. Let the symbols be the same as before. Then
∑

i∈Cj

2i ≡ ηj (2ap)
∑

f∈Z∗
p

2fbq (mod 2pq − 1), j = 0, 1.

Proof. Suppose c ∈ Gj for fixed j = 0, 1; then we have
∑

i∈φ−1(Z∗
p×{c})

2i ≡
∑

i∈φ−1(Z∗
p×{c})

2iap+ibq ≡ 2cap
∑

f∈Z∗
p

2fbq (mod 2pq − 1).

Since Cj =
⋃

c∈Gj
φ−1

(
Z

∗
p × {c})

by Lemma 1, this completes the proof of this
lemma. 
�
Proposition 1. Let s∞ be defined in (1). Then

S(2) ≡ η1 (2ap)
∑

f∈Z∗
p

2fbq +
q−1∑

i=1

2ip (mod 2pq − 1). (4)

This proposition follows from the definition of sequence in (1) and Lemma 3.
Now we will obtain the congruence for S̃(2) where S̃(x) is the generating

polynomial of s̃∞. First we consider the subsidiary sequence t∞ defined as

ti =

{
0, if i (mod pq) ∈ C1 ∪ Q,

1, if i (mod pq) ∈ C0 ∪ P.
(5)

Lemma 4. Let t∞ be defined in (5) and T (x) =
∑pq−1

i=0 xi. Then

T (2) ≡ η0 (2ap)
∑

f∈Z∗
p

2fbq +
q−1∑

i=1

2ip (mod 2pq − 1). (6)

This lemma can be proved the same way as Proposition 1.

Proposition 2. Let s∞ be defined in (1) and s̃∞ = (spq−1, . . . , s1, s0). Then

2S̃(2) ≡
{

S(2), if q ≡ 1 (mod 4),
T (2), if q ≡ 3 (mod 4),

(mod 2pq − 1).

Proof. By definition of s̃∞ we see that S̃(2) =
∑pq

i=1 2i−1spq−i. Hence

2S̃(2) =
pq∑

i=1

2ispq−i =
pq−1∑

i=0

2ispq−i + 2pqs0 − spq. (7)
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It is clear that spq−i = 1 for i ∈ P , spq−i = 0 for i ∈ Q and vice versa.
Let i ∈ Z

∗
pq. As noted above we have that −1 ∈ G0 for q ≡ 1 (mod 4) and

−1 ∈ G1 for q ≡ 3 (mod 4)[7]. So, s−i = 1 iff i ∈ C1 for q ≡ 1 (mod 4) and
s−i = 1 iff i ∈ C0 for q ≡ 3 (mod 4). In the last case we see that s−i = ti for for
q ≡ 3 (mod 4). Thus this statement follows from (7), (5). 
�

We finish the section with a few remarks about the greatest common divisor
for some numbers. This lemma will be useful in sequel.

Lemma 5. Let p and q be odd distinct primes and ap + bq ≡ 1 (mod pq), a, b ∈
N. Then

(i) gcd (2p − 1, 2q − 1) = gcd
(
2p − 1, 2bq − 1

)
= 1;

(ii) gcd
(
2bq − 1, 2pq − 1

)
= gcd (2q − 1, 2pq − 1);

(iii) gcd (2q − 1, (2pq − 1)/(2q − 1)) = gcd (2q − 1, p).

Proof. We will prove only the second statement. The first statement can be
proved the same way and the third is clear.

Since gcd(bq, pq) = q, it follows that there exist m,n such that q = mbq+npq.
Hence 2q = 2mbq+npq. Let r be a divisor of gcd

(
2bq − 1, 2pq − 1

)
. We see that

2q ≡ 2mbq+npq ≡ 1 (mod r). Thus gcd
(
2bq − 1, 2pq − 1

) | gcd (2q − 1, 2pq − 1).
The inverse statement is clear and we get the desired conclusion. 
�

4 The Proof of Main Theorem

Let r be a divisor of 2pq − 1. We consider three cases.
(i) Let r divides 2p − 1. According Lemma 5 we have 2bq − 1 �≡ 0 (mod r),

hence
∑

f∈Z∗
p
2fbq ≡ −1 (mod r). In this case, by (4) we obtain

S(2) ≡ −(q − 1)/2 + q − 1 ≡ (q − 1)/2 (mod r).

As earlier, (a)o is the odd part of a. Since r is odd, we have

gcd (2p − 1, S(2)) = gcd ((q − 1)o, 2p − 1) .

Similarly, by Proposition 2 and (6) we can prove that gcd
(
2p − 1, S̃(2)

)
=

gcd
(
(q − 1)o, S̃(2)

)
.

(ii) Let r divides 2q − 1. Here by (4), (6), Proposition 2, Lemma 4 we get

S(2) ≡ η1(2ap)(p − 1) − 1 (mod r)

and

2S̃(2) ≡
{

η1(2ap)(p − 1) − 1, if q ≡ 1 (mod 4),
η0(2ap)(p − 1) − 1, if q ≡ 3 (mod 4),

(mod r).

Here ap ≡ 1 (mod q).
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Suppose q ≡ 3 (mod 4) and r divides S(2) or S̃(2); then gcd(p−1, r) = 1 and
η1(2) ≡ 1/(p−1) (mod r) or η0(2) ≡ 1/(p−1) (mod r). According to Lemma 2
in this case we have the congruence

1/(p− 1)2 +1/(p− 1)+ (q +1)/4 ≡ 0 (mod r) or p+(p− 1)2(q +1)/4 ≡ 0 (mod r).

Hence, max
(
gcd (2q − 1, S(2)) , gcd

(
2q − 1, S̃(2)

))
divides gcd

(
p+(p−1)2(q+

1)/4, 2q − 1
)
.

Vice versa, if r is a divisor of gcd
(
p + (p − 1)2(q + 1)/4, 2q − 1

)
. Then r is

odd, gcd(r, q) = 1 and gcd(p − 1, r) = 1. Hence by Lemma 2 we get η1(2) ≡
1/(p − 1) (mod r) or η0(2) ≡ 1/(p − 1) (mod r). Thus, r is a divisor of
max

(
gcd (2q − 1, S(2)) , gcd

(
2q − 1, S̃(2)

))
.

Let q ≡ 1 (mod 4). In this case we can only claim that gcd (2q − 1, S(2)) or
gcd

(
2q − 1, S̃(2)

)
divides gcd

(
p + (p − 1)2(1 − q)/4, 2q − 1

)
by Lemma 2.

(iii) Let r be a prime divisor of gcd (2pq − 1, S(2)) and r does not divide
(2p − 1)(2q − 1). Then the order 2 modulo r equals pq and pq divides r − 1.
Farther, by Lemma 5 we see that r does not divide 2bq − 1 and by (4) we obtain
S(2) ≡ −η1(2ap) − 1 (mod r). It follows that q + 1 ≡ 0 (mod r) or q − 1 ≡ 0
(mod r) by Lemma 2, here c = 2ap. We have the contradiction, since r − 1 is
divided by pq in this case. Further, it can be easy to show in the same way that
r does not divide S̃(2).

So, from (i)-(iii) for q ≡ 3 (mod 4) we obtain that

max (gcd (2pq − 1, S(2)) , gcd (2pq − 1, S(2))) = r1r2,

where r1 = gcd ((q − 1)o, 2p − 1, ) and r2 = gcd
(
p + (p − 1)2(q + 1)/4, 2q − 1

)
.

Also for q ≡ 1 (mod 4) we see that

max (gcd (2pq − 1, S(2)) , gcd (2pq − 1, S(2)))

divides gcd ((q − 1)o, 2p − 1) ·gcd
(
p + (p − 1)2(1 − q)/4, 2q − 1

)
. This completes

the proof of Theorem 1.

Remark 2. According to Lemma 4 and Proposition 2, Theorem 1 will be also
true for the sequence t∞ defined in (4).

In conclusion of this section we consider a few examples.
1. Let q = 5. Here G0 = {1, 4} and G1 = {2, 3}. Thus η0(2) = 18 and

η1(2) = 12.
(i) Suppose p = 107; then gcd

(
p + (p − 1)2(1 − q)/4, 2q − 1

)
= 31. Fur-

ther, in this case 1/(p − 1) ≡ 1/13 ≡ 12 (mod 31). Hence η1(2) ≡ 1/(p − 1)
(mod 31) and gcd

(
25 − 1, S(2)

)
= 31 and gcd

(
25 − 1, S̃(2)

)
= 31. So, Φ̄(s∞) =

⌊
log2

(
25·107−1

31 + 1
)⌋

= 530 (r3 �= 0).

(ii) Suppose p = 113; then again gcd
(
p + (p − 1)2(1 − q)/4, 2q − 1

)
= 31.

But, in this case 1/(p − 1) ≡ 1/19 ≡ 18 (mod 31). Hence η1(2) �≡ 1/(p − 1)
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(mod 31) and gcd
(
25 − 1, S(2)

)
= gcd

(
25 − 1, S̃(2)

)
= 1. Hence, Φ̄(s∞) =

⌊
log2

(
(25·113 − 1) + 1

)⌋
= 565 (r3 = 0).

2. Let q = 3, p = 5. Here η0(2) = 2 and η1(2) = 4. Hence η0(2) ≡ 1/(p −
1) (mod 7) and η1(2) �≡ 1/(p − 1) (mod 7). Thus, gcd

(
23 − 1, S(2)

)
= 1 and

gcd
(
25 − 1, S̃(2)

)
= 7. Hence Φ(s∞) = 15, Φ(s̃∞) = 12 and Φ̄(s∞) = 12.

5 Conclusion

Sequences generated by FCSRs share many important properties enjoyed by
LFSR sequences. Due to the effectiveness of rational approximation algorithm,
the 2-adic complexity has been viewed as one of the important security criteria
of sequences. We derived symmetric 2-adic complexity of Ding-Helleseth gener-
alized cyclotomic sequences of length pq for any odd distinct primes p, q. We
obtained the exact value of symmetric 2-adic complexity of these sequences for
q ≡ 3 (mod 4) and the lower bound for q ≡ 1 (mod 4). We generalized known
statements about 2-adic complexity Ding-Helleseth sequences of length pq from
[21,22]. Our results showed that 2-adic complexity of these sequences is good
enough to resist the attack by the rational approximation algorithm.
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Abstract. Random number generator (RNG) is a fundamental element
in modern cryptography. If the quality of the outputs generated by RNGs
is not as well as expected, the cryptographic applications which use the
random number service are vulnerable to security threats. In reality, the
entropy source of RNGs could be impressible by the changes of environ-
mental factors, resulting in defects in the generated data, such as poor
statistical properties. Thus, RNG is generally designed with a preset
post-processing module to improve the quality of the output sequences.
Linear feedback shift register (LFSR) is one of the frequently used meth-
ods for post-processing thanks to the characteristic of simplicity and no
reduction in output throughput. However, we point out that even if the
statistical properties of the outputs of the entropy source are extremely
poor, the sequences processed by LFSR can still pass the statistical test.
This undoubtedly increases the security risks in the usage of RNGs. In
this work, we propose a distinguisher for the RNGs with LFSR post-
processing for the first time. The distinguisher can be used to detect
the RNGs with LFSR post processing, and we theoretically prove the
sequences before processing can be recovered. On this basis, we design a
new statistical test via combining the distinguisher with the Frequency
Test in the NIST test suite. The experimental results show that if the
sequence is biased before being processed by LFSR, our proposed method
can detect it, but the NIST SP 800-22 Test Suite cannot.

Keywords: Random number generator · LFSR · Post-processing ·
Distinguisher · Randomness test

1 Introduction

Random number generators (RNGs) play a basic and important role in cryp-
tographic systems. The outputs of RNGs are widely used in the generation
of cryptographic keys, initial vectors, timestamps, etc. The security of many
cryptographic algorithms and protocols is based on the randomness of outputs
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from RNGs. The RNGs can be mainly classified into two types, true RNGs
(TRNGs) and pseudo RNGs (PRNGs). TRNGs generally contains three com-
ponents: entropy source, entropy extraction and post-processing. The entropy
source is also called the random source, that is, the randomness in the physical
phenomenons used by TRNGs, such as thermal noise and scattering noise in the
circuit, Brownian motion, atmospheric noise, radioactive decay, etc. The quality
of the entropy source directly determines the quality of the random numbers
generated by the RNGs. So the entropy source is the core component of a RNG.
Entropy extraction is used to collect randomness from the entropy source.

However, the entropy sources are often affected by external factors, such as
non-Gaussian noise inside the circuit, changes in external temperature and volt-
age, etc. External factors or inappropriately entropy extraction methods may
cause the generated sequences with deviation or correlation. For this reason,
designers often add post-processing module to optimize the statistical proper-
ties of the sequences and to improve the security of the random number ser-
vice. The post-processing module in a RNG can eliminate the statistical weak-
ness of the sequence and make it pass the statistical test. Post-processing can
reduce the bias, but can never completely eliminate the bias [3]. The common
post-processing techniques include XOR corrector [2], Von Neumann corrector
[14], H-post-processing and S-post-processing, resilient functions, linear feedback
shift register (LFSR), etc. The implementation of LFSR is highly efficient and
it does not reduce the output throughput. Besides, in hardware, LFSRs are
easy to implement and can generate sequences with large periods. Moreover, the
sequences they produce have good statistical properties [4]. Therefore, LFSR is
often used as a post-processing module in many RNGs [1,5–7], etc.

Black-box statistical test is a commonly used method to assess the quality
of RNGs, specifically, evaluate whether the output sequence has obvious sta-
tistical flaws. It is characterized by versatility (independent of the structure of
RNGs) and convenient operation. At present, the commonly used statistical test
suites are black-box testing, such as NIST SP 800-22 [13] issued by US National
Institute of Standard and Technology (NIST), AIS 20/31 [8] issued by Germany
Bundesamt für Sicherheit in der Informationstechnik (BSI), Diehard [11] pro-
posed by Marsaglia, and TestU01 [9] proposed by L’Ecuyer.

The design of RNGs with post-processing is generally able to pass the statis-
tical test, but in fact, the post-processing also masks the defects of the entropy
source, especially the LFSR post-processing. The simulation results in Sect. 3
show that a sequence post-processed by the LFSR can pass the NIST SP 800-
22 test, even if the statistical properties of the original sequence are extremely
poor. The defect of the entropy source essentially affects the quality of the output
sequence, which leads to serious security risks in the cryptographic system. How-
ever, the traditional/current black-box statistical test cannot detect the defects
of the entropy source. Therefore, in this paper, for the RNGs with LFSR post-
processing, we propose a distinguisher and a new test item, which can detect
the sequence post-processed by LFSR, and recover the original sequence from
post-processed one.



330 X. Wu et al.

In summary, we make the following contributions.

– We simulate the LFSR post-processing structure and expose the sequence
post-processed by LFSR can pass NIST SP 800-22 test, even if the statistical
properties of the original sequence are extremely poor.

– We propose a distinguisher for the RNGs with LFSR post-processing for the
first time. This distinguisher can be used to discriminate whether the LFSR
post processor is employed in a RNG or not, and we theoretically prove the
sequences before processing can be recovered.

– We design a new statistical test method named LFSR Post-Processing Struc-
ture Test which can distinguish the sequences post-processed by LFSR from
perfectly random sequences.

The rest of the paper is organized as follows. In Sect. 2, two kinds of LFSR
post-processing structures are introduced. In Sect. 3, the simulation results show
the LFSR2 post-processing structure can conceal the statistical defects. In
Sect. 4, for LFSR2 post-processing structure, we propose a distinguisher and
a new test item to detect the sequence post-processed by LFSR. In Sect. 5, the
proposed method is verified in simulation.

2 Related Work

LFSR post-processing structure is used in many RNGs. Since in hardware,
LFSRs are easy to implement and they can generate sequences with large
periods. Moreover, the sequences they produce have good statistical proper-
ties [4]. There are two classical types of LFSR processing structures. One
structure is the sequence XOR-ed with the output of LFSR, as shown in
Fig. 1(a), called LFSR1. This structure is widely used in stream cipher. Zeng
et al. [15,16] proposed an algorithm to LFSR1 which can recover the seed. For
keystream generator based on LFSR1, Merir et al. [12] proposed fast correlation
attacks to recover the seed of LFSR. For stream cipher based on LFSR1, many
scholars have studied this field. Another structure is the random source XOR-ed
with the output of LFSR and the result is fed back to the register, as shown in
Fig. 1(b), called LFSR2. The LFSR2 structure is widely used in post-processing
structure, the RNGs in [1,5–7] used LFSR2-based structure for post-processing.

Structure 1. Figure 1(a) shows one of the LFSR processing structures. At every
clock tick, the LFSR1 shifts one bit to the left. The LFSR1 uses the generating
polynomial f(x) = xl0 +xl1 +xl2 + ...+xlr−1 to generate a feedback bit which is
fed into the LFSR1 on the right. Additionally, the feedback bit is XOR-ed with
the input bit xi to get the output bit. Then, we can get the output sequence B
that equals sequence A XOR-ed with sequence X (that is B = A ⊕ X). Zeng et
al. [15,16] proposed an algorithm to recover sequence X from sequence B based
on linear syndrome. The sequence B is the obtained sequence, and the sequence
A is generated by LFSR1 whose generating polynomial is known. The sequence
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Fig. 1. Two kinds of LFSR post-processing structures

X is an unknown structure sequence, but the probability of ‘0’ in sequence X
is greater than that of ‘1’. The proposed algorithm can recover the sequence A
and sequence X.

Zeng et al. defined the linear syndrome as σi,k(f) =
∑r−1

p=0 b(i−lk+lp), which
is called the signal b(i) the k-th linear syndrome with generating polynomial
f(x). They calculate 2m+1 linear syndromes of b(i) and revise the signal b(i) in
according with the following rule of majority logic decision. After several rounds
of iteration revisions, the resulting sequence b

′
(i) will be close to sequence A.

b (i) =
b(i) + 1 at least m+ 1 linear syndromes are ‘1’
b(i) at least m+ 1 linear syndromes are ‘0’

When the ratio of ‘1’ in the sequence X is known, the author gives the
required length of sequence B to recover the seed of sequence A as shown in
Table 1. In Table 1, with the ratio of ‘1’ in the sequence X increasing, the
required length of sequence B becomes longer.

Structure 2. Figure 1(b) shows another processing structure based on LFSR
with generating polynomial f(x) = xl0 + xl1 + xl2 + ... + xlr−1 . This structure
is the common LFSR post-processing structure in RNGs. At every clock tick,
the LFSR shifts one bit to the left, using the generating polynomial to generate
a feedback bit. The leftmost bit a(i) is discarded. Besides, the LFSR2 has an
input bit xi that is XOR-ed with the feedback bit and the result is outputted
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Table 1. The required length of sequence B to recover the seed of sequence A.

The ratio of ‘1’ in the
physical random sequence X

The length of sequence
B required

0.125 1817

0.1875 1501

0.25 2923

0.3125 6715

0.375 269469

0.4375 4.52 × 1012

and fed into the LFSR2 on the right. When using in RNG for post-processing,
most designs adopt the LFSR2 structure. For example, the RNG designed by
Bucci et al. [1] used this structure with primitive polynomials of degree 32 for
post-processing. The Mifare Classic cards [5] also used post-processing methods
based on this structure. However, there is no literature about the security of the
LFSR2 structure as far as we know.

Compared with LFSR2, in LFSR1, the feedback bit is directly fed into the
register. While in LFSR2, the feedback bit is firstly XOR-ed with the input bit
xi, and the result is then fed into the register. In LFSR1, the input bits have no
influence on the internal of the LFSR1, while in LFSR2, the input bits impact
on the internal register.

3 Problem Statement

In this section, LFSR2 post-processing structure is simulated to observe the
statistical properties of the output sequences. Sequence X is a biased sequence
that simulates the output of entropy source. The bias of sequence X is denoted
as s, that is the ratio of ‘1’ in the sequence X is s (namely P (xi = 1) = s).
The value of s is from 0.001 to 0.999 in 0.001 step. The sequence X is a random
sequence with P (xi = 1) = s, generated by randsrc function in Matlab. The
simulation uses LFSR2 structure to post-process the sequence X. The degrees
of generating polynomials are 32, 48 and 64, alternating the value of s to generate
the sequence B with a length of 109 bytes. The generating polynomials are shown
in Table 2. The generated sequence B is tested by SP 800-22 which includes 15
test items. When using SP 800-22 Test Suite, the tested data are 1000 successive
sequences with a length of 1,000,000 bytes. The significance level is 0.01. For the
first-level tests, the proportion of sequences that pass the tests is lying in [0.981,
0.999]. The P-value in the second-level tests is above 10−4, which indicates the
tested sequence can pass the SP 800-22 test.

The simulation results show that when the generating polynomial is f(x) =
x32+x30+x24+x21+x20+x9+x8+x7+x6+x2+x0 and s ∈ [0.001, 0.007], except
Binary Matrix Rank Test and Linear Complexity Test, the sequence B can pass
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Fig. 2. Number of passing test items in SP 800-22 for different generating polynomials
with s increasing

all other tests in SP 800-22. When s ∈ [0.008, 0.009], except Linear Complexity
Test, the sequence B can pass all other tests in SP 800-22. Figure 2 shows the
numbers of passed test items in SP 800-22 for different generating polynomials
with s increasing. The purpose of Binary Matrix Rank Test is to check for linear
dependence among fixed length substrings of the original sequence. The focus
of Linear Complexity Test is the length of LFSR. The purpose of this test is
to determine whether or not the sequence is complex enough to be considered
random. Random sequences are characterized by longer LFSRs. An LFSR that is
too short implies non-randomness. This test is based on the Berlekamp-Massey
algorithm [13]. However, as shown in Fig. 2, with s increasing, even if the length of
LFSR does not change, the generated sequences can pass the Linear Complexity
Test. That is a few noises are added to the sequence generated by a short LFSR,
then it can pass the Linear Complexity Test and other test items in SP 800-22.
For generating polynomial with different degrees, Table 2 shows the values of s,
in which the generated sequences can pass SP 800-22. When degree of generating
polynomial is 32 and s = 0.01, the detailed test report is presented in Table 6
in Appendix.

Table 2. Intervals of s, in which the sequences generated by LFSR2 can pass SP
800-22.

Generating polynomial Intervals of s

f(x) = x32 + x30 + x24 + x21 +
x20 + x9 + x8 + x7 + x6 + x2 + x0

[0.01, 0.989]

f(x) = x40 + x32 + x30 + x27 +
x25+x18+x16+x15+x7+x2+x0

[0.003, 0.998]

f(x) = x48 + x36 + x35 + x26 +
x24+x19+x15+x14+x6+x4+x0

[0.001, 0.999]
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The simulation results show when 0.01 ≤ s ≤ 0.989, the generated sequence
B can pass the SP 800-22. That is, no matter whether the statistical proper-
ties of sequence X are good or bad, the processed sequence B can pass SP
800-22. When statistical properties of the sequence X are extremely poor, the
LFSR2 post-processing can mask the defects of the entropy source. However,
there is no literature about the security of the LFSR2 structure. Using fast cor-
relation attacks to crack the LFSR2 post-processing structure has a high time
complexity. So we focus on the structural characteristics of LFSR2 and propose
a distinguisher specifically for LFSR2. We propose a distinguisher for the RNGs
with LFSR post-processing. We prove the sequences before processing can be
recovered and propose a new test item to detect whether a sequence has been
processed by LFSR2.

4 A Distinguisher and a Test Item for LFSR
Post-processing Structure

In this section, the structure of LFSR2 is analyzed and the relationship between
sequences in LFSR2 is given. Firstly, the linear syndrome of LFSR2 is defined
and a distinguisher is proposed based on the linear syndrome. Then, a new test
item is designed based on the distinguisher. The test can distinguish sequences
post-processed by LFSR from perfectly random sequences.

4.1 A Distinguisher Based on Linear Syndrome

For LFSR2 post-processing structure, on the condition that the structure is
known (that is the generating polynomial is known), according to the output
sequence, we propose a distinguisher based on linear syndrome (LS-based dis-
tinguisher) which can recover the random source sequence. Linear feedback shift
register with generating polynomial f(x) = xl0 + xl1 + xl2 + ... + xlr−1 , the feed-
back bit equals:

a(i + l0) ⊕ a(i + l1) ⊕ ... ⊕ a(i + lr−2). (1)

For LFSR2, the bit a(i+ lr−1) fed into the structure is equal to the feedback bit
XOR-ed with the input bit x(i). According to Eq. (1), we can get the a(i+ lr−1):

a(i + lr−1) = a(i + l0) ⊕ a(i + l1) ⊕ ... ⊕ a(i + lr−2) ⊕ x(i). (2)

The output bit b(i) is also equal to the feedback bit XOR-ed with the input bit
x(i), that is,

b(i) = a(i + l0) ⊕ a(i + l1) + ... ⊕ a(i + lr−2) ⊕ x(i) = a(i + lr−1). (3)
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For this structure, we define the linear syndrome as σi(f) =
∑r−1

p=0 b(i + lp)
mod 2. According to Eqs. (2) and (3), we can get:

σi(f) =
r−1∑

p=0

b(i + lp) mod 2

=
r−1∑

p=0

a(i + lp + lr−1) mod 2

= (
r−2∑

p=0

a(i + lr−1 + lp) mod 2) ⊕ a(i + lr−1 + lr−1)

= a(i + lr−1 + lr−1) ⊕ x(i) ⊕ a(i + lr−1 + lr−1)
= x(i + lr−1).

The linear syndrome σi(f) establishes the corresponding relationship between
sequence X and sequence B. Hence, the hidden source sequence X can be recov-
ered using the output sequence B.

x(i) =
r−1∑

p=0

b(i − lr−1 + lp) mod 2. (4)

LS-based distinguisher is based on Eq. (4) to recover the sequence X and analyzes
whether X is perfectly random. Let n = lr−1, n is the degree of the generating
polynomial. When using the LS-based distinguisher, at least n bits of sequence B
are needed. While when L (the length of sequence B) > n, L−n bits of sequence
X can be recovered. The LS-based distinguisher selects bits in sequence B for
XOR-ed operation which is very fast. So the efficiency of algorithm is high. The
algorithm uses the unique correspondence between sequence B and sequence X.
Obviously, the accuracy of the proposed LS-based distinguisher is a hundred
percent. The time complexity of the LS-based distinguisher is O(n).

4.2 A New Test Based on the Distinguisher

The sequence post-processed by LFSR2 can pass the SP 800-22, even if the sta-
tistical properties of the original sequence are extremely poor. Based on the LS-
based distinguisher, a new test item is proposed to detect whether a sequence
has been post-processed by LFSR2. The new test item is named LFSR Post-
Processing Structure Test, which is called LPP Test for short. For a certain
sequence, we need to detect whether it has been post-processed by LFSR2. In
Sect. 4.1, a distinguisher is proposed to the structure of LFSR2. When the gen-
erating polynomial is known, the input sequence X can be recovered from the
output sequence B.

The generating polynomial of LFSR is a primitive polynomial. In F2[x], the
number of N -th primitive polynomials is ϕ(2N − 1)/N , where ϕ(n) is the Euler
function, representing the number of positive integers that are mutually prime
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with n in positive integers from 1 to n. On account of the LS-based distinguisher
is very fast, we design the LPP Test item that traverses primitive polynomials
of degree 32 to 48 to perform the LS-based distinguisher. Then we analyze the
properties of the sequences after the LS-based distinguisher to get the result.

Test Purpose. After the LFSR2 post-processing structure, the bad statistical
properties of entropy source may be hidden. In Sect. 4.1, a LS-based distinguisher
to the structure proposed. Therefore, the sequences post-processed by LFSR2 can
be recovered and the deficiency of the physical entropy source can be exposed.
The purpose of the test is to detect whether a sequence has been post-processed
by LFSR2, and whether the sequence before post-processing is not random.

Test Description. The test item is designed based on the LS-based distin-
guisher. The test item traverses primitive polynomials to do the LS-based dis-
tinguisher of tested sequences. For the recovered sequences, we analyze the prop-
erties of them. We can use all the test item in NIST SP 800-22 to analyze the
properties. NIST recommends the Frequency Test to be run first. If a sequence
fails the Frequency Test, it has a high likelihood of failing other tests, because
this provides the most basic evidence for the existence of non-randomness in the
sequence, especially non-uniformity [13]. The procedure of this test is simple and
the process is fast, so it can optimize the speed. Therefore, we choose the Fre-
quency Test to analyze the properties. In fact, the LS-based distinguisher can be
combined with other test items in practice. In this paper, we use the Frequency
Test as an example.

Table 3. Parameters using in LPP test

F The set of primitive polynomials

Num The number of the primitive polynomials

F (k, x) The k-th primitive polynomial

n = lr−1 The degree of the primitive polynomial

L The length of the sequence B

We design the test algorithm process as follows. Table 3 shows the parame-
ters. In Fig. 3, the process of the LPP Test is presented. Firstly, let k = 0, then,

Step 1: If k≥Num, stop and pass the test.
Step 2: Set k = k+1; choose the k-th primitive polynomial (that is f = F (k, x));

let i = 0, m = L − n.
Step 3: Calculate x(i) = σi−lr−1(f).
Step 4: If i < m, set i = i + 1; return step 3.
Step 5: Run Frequency Test, if pass, return step 1;

else stop, fail the test.
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Fig. 3. The process of LPP Test

4.3 Correctness Analysis of the LPP Test

We define the error test as a phenomenon of a sequence has not been post-
processed by LFSR and pass the SP 800-22. But it fails the LPP Test. Leakage
test is defined as a phenomenon of an original sequence has large deviation
and the sequence after LFSR post-processing can pass the LPP Test. In order
to discuss whether there are error/leakage test, three situations using the LPP
Test is discussed.

– Situation 1. Sequence B has been post-processed by LFSR2, and we use
the LS-based distinguisher with a matching polynomial (that is, the polyno-
mial for LS-based distinguisher is the same as the polynomial used in post-
processing).

– Situation 2. Sequence B has been post-processed by LFSR2, and we use the
LS-based distinguisher with an dismatching polynomial (that is, the polyno-
mial for LS-based distinguisher is not the polynomial used in post-processing).

– Situation 3. Sequence B has not been post-processed by LFSR2, and we use
the LS-based distinguisher with any polynomial.
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In situation 1, the sequence after LS-based distinguisher is the same as
unpost-processed sequence. If the deviation of unpost-processed sequence is
large, the sequence cannot pass the test. That is LPP Test will not have the
phenomenon of leakage test. For situation 2, we first give a ‘shift and add’ prop-
erty [10] of m-sequences.

Property 1 For a m-sequence A, ‘shift and add’ operation means cyclically
shifted by i positions (digits) to the left, denoted as Li(A). For polynomial f(x) =
xl0 + xl1 + xl2 + ... + xlr−1 , n = lr−1, m-sequence S ∈ G(f), when t1 > t2 > 0,
and (t1 − t2)� |(2n − 1), Lt1(S) ⊕ Lt2(S) is a m-sequence.

When the polynomial for LS-based distinguisher is f(x) = xl0 + xl1 + xl2 +
...+xlr−1 , then the LS-based distinguisher can be described as X = B⊕Ll0(B)⊕
Ll1(B) ⊕ Ll2 (B) ⊕ . . . ⊕ Llr−1(B). Sequence B is a m-sequence. According to
the ‘shift and add’ property, the sequence X is a m-sequence. So the sequence
after LS-based distinguisher is unbiased. That is there is no error test in LPP
Test. In situation 3, the sequence B is denoted as (b(0), b(1)...). We only focus
on the situation that sequence B is unbiased. If sequence B is biased, it cannot
pass the other test item in statistical test. For the test, using any polynomial
f(x) = xl0 +xl1 +xl2 + ...+xlr−1 to generate sequence x as x(i) =

∑r−1
p=0 b(i+ lp).

p(x(i) = 1) = p(
r−1∑

p=0

b(i + lp) = 1)

= p(
r−2∑

p=0

b(i + lp) ⊕ b(i + lr−1) = 1)

The sequence generated by
∑r−2

p=0 b(i + lp) is a m-sequence. So the sequence
is balance (that is (p(

∑r−2
p=0 b(i + lp) = 1) = 1/2)). For sequence B, we have

p((b(i + lr−1) = 1) = 1/2). So we have p(
∑r−2

p=0 b(i + lp) ⊕ b(i + lr−1) = 1) = 1/2.
So the sequence after LS-based distinguisher is unbiased. That is there is no
error test in LPP Test.

In summary, the sequence that has not been post-processed by LFSR and
pass the SP 800-22 will not fail the test algorithm. Original sequence has a large
deviation and the sequence after LFSR post-processing will not pass the test.
The LPP Test we proposed will not have error test or leakage test. It is noted
that if a sequence fails the LPP test, it must a have statistical defect. However,
the sequences pass the LPP test are not guaranteed to be perfectly random.
In this section we give the procedure of LS-based distinguisher and analyze the
accuracy of the distinguisher. Additionally, we propose a new test item and
analyze the correctness. In next section, LS-based distinguisher and LPP Test
are validated in simulation.
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5 Validation on the Method in Simulation

In this section, LS-based distinguisher and LPP Test are simulated to validate
the method. First of all, the simulated sequences are generated by LFSR2 post-
processing structure. Then, LS-based distinguisher experiments are performed
with the simulated data and the sequences before post-processing are compared
with that after LS-based distinguisher, to illustrate the recovery effect. Moreover,
the LPP Test and the SP 800-22 Test Suite are used to test the simulated data
and pseudorandom sequences.

5.1 Generation of the Data Sets

The input sequence X is post-processed by LFSR2, then the output sequence is
the simulated data set. The degree of the generating polynomial is denoted as n.
The sequence X is simulated with deviation s of 0.01, 0.1 and 0.3. Using sequence
X, sequences B0–B8 are produced with generating polynomials of degree 32, 40,
48. Corresponding relationships between the generating polynomials, bias and
sequences are shown in Table 4. In addition, we collect random sequences from
pseudorandom number generators, which have perfect statistical properties. The
Blum-Blum-Shub (BBS) generator and the Linear Congruential (LC) generator
are used to collect sequence B9 and B10. The pseudorandom sequences are gen-
erated by NIST Statistical Test Suite tool, which is called sts-2.1.2.

Table 4. Corresponding relationships between the generating polynomials, bias and
sequences

Degree Generating polynomial s (the ratio of 1 in X) Generated sequence

32 f(x) = x32 + x30 + x24 + x21 + x20 +

x9 + x8 + x7 + x6 + x2 + x0
0.01 B0

0.1 B1

0.3 B2

40 f(x) = x40 + x32 + x30 + x27 + x25 +

x18 + x16 + x15 + x7 + x2 + x0
0.01 B3

0.1 B4

0.3 B5

48 f(x) = x48 + x36 + x35 + x26 + x24 +

x19 + x15 + x14 + x6 + x4 + x0
0.01 B6

0.1 B7

0.3 B8

5.2 Validation of LPP Test

Validation of LPP Test is to determine whether there are error or leakage tests.
The test experiment is designed with three situations. The common primitive
polynomials of degrees from 32 to 48 are chosen. For sequences Bi, there are
three situations,
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– Situation 1. For B0 − B8, the results of matching polynomials are observed.
– Situation 2. For B0−B8, the results of dismatching polynomials are observed.
– Situation 3. For pseudorandom sequences B9, B10, the results of all polyno-

mials are observed.

Table 5. Using matching and dismatching polynomials, s′ after LS-based distinguisher

Tested sequence s (the ratio of 1 in X) Recovery polynomial s′ after LS-based distinguisher

B0, B3, B6, 0.01 Dismatching [0.4999, 0.5]

Matching 0.01

B1, B4, B7 0.1 Dismatching [0.4998, 0.5]

Matching 0.1

B2, B5, B8 0.3 Dismatching [0.4998, 0.5]

Matching 0.3

B9 0.5006 All [0.4999, 0.5001]

B10 0.4998 All [0.4999, 0.5]

As shown in Table 5, for the matching polynomials, the recovered sequences
X are biased. For the dismatched polynomials, the recovered sequences X are
not biased. The pseudorandom sequences are not biased. Therefore, there is no
error test or leakage test. The detailed test reports are presented in Appendix.
In Appendix, the NIST SP 800-22 and LPP Test reports of sequences B0 and
B9 is presented. Then, the results of the LPP Test and SP 800-22 Test Suite
are compared. The sequences B0–B8 post-processed by LFSR2 can pass the SP
800-22 Test Suite, but cannot pass the LPP Test. The sequences B9 and B10

can pass both the SP 800-22 and LPP Test. The LPP Test can be a supplement
of the SP 800-22 Test Suite.

6 Conclusion

LFSR post-processing structures are used in many RNGs. The sequences they
produce have good statistical properties and can ensure the stability of the out-
puts quality. However, they mask the defects of the entropy source, when statisti-
cal properties of the entropy source sequences are extremely poor. In this paper,
we propose a LS-based distinguisher for the RNGs with LFSR post-processing
for the first time. We prove the sequences before processing can be recovered
from the sequence processed by LFSR. On this basis, we design a new statistical
test via combining the distinguisher with the Frequency Test. After the verifi-
cation experiments, the results demonstrate that if the sequence before LFSR
processing has a deviation, our proposed test can detect it, but the NIST Test
Suite cannot.
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A Appendix: The Detailed Statistical Test Report

Table 6. NIST SP 800-22 statistical test report of generating sequence, when degree
of generating polynomial is 32 and s = 0.01.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Propo Statistical test

97 104 104 100 98 107 92 101 100 97 0.995578 994/1000 Frequency

129 110 112 113 97 97 85 83 91 83 0.010383 988/1000 BlockFrequency

88 106 112 102 110 87 103 99 90 103 0.620465 990/1000 CumulativeSums

92 112 106 92 104 96 108 85 99 106 0.672470 992/1000 CumulativeSums

109 106 101 111 109 83 103 87 94 97 0.502247 991/1000 Runs

103 100 95 97 105 96 115 94 105 90 0.859637 988/1000 LongestRun

98 96 88 112 101 88 97 111 105 104 0.715679 989/1000 Rank

95 107 100 109 85 85 121 96 94 108 0.235589 990/1000 FFT

102 103 105 86 110 96 99 113 89 97 0.689019 992/1000 NonOverlappingTemplate

99 119 107 94 99 92 87 96 105 102 0.610070 994/1000 OverlappingTemplate

115 93 99 101 98 92 97 98 93 114 0.737915 992/1000 Universal

108 107 107 109 88 103 94 94 89 101 0.749884 991/1000 ApproximateEntropy

59 64 65 66 65 64 58 67 63 62 0.998731 628/633 RandomExcursions

64 62 59 65 48 70 74 71 61 59 0.538952 626/633 RandomExcursionsVariant

114 129 101 98 105 107 89 88 73 96 0.011545 985/1000 Serial

119 112 107 92 97 90 100 99 106 78 0.187581 989/1000 Serial

103 101 83 97 100 103 109 97 100 107 0.870856 986/1000 LinearComplexity

Table 7. NIST SP 800-22 statistical test report of the sequence B0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Propo Statistical test

97 86 94 102 95 111 132 88 104 91 0.056069 991/1000 Frequency

144 102 108 109 100 81 96 102 82 76 0.000102 983/1000 BlockFrequency

93 103 97 91 113 105 85 102 104 107 0.703417 993/1000 CumulativeSums

102 98 105 116 88 97 102 99 87 106 0.686955 993/1000 CumulativeSums

100 93 105 99 89 103 103 92 100 116 0.803720 995/1000 Runs

94 97 103 81 113 111 92 103 111 95 0.415422 990/1000 LongestRun

105 96 106 99 100 95 119 103 84 93 0.556460 987/1000 Rank

113 97 118 93 105 89 104 86 103 92 0.365253 996/1000 FFT

98 112 102 103 105 100 109 87 88 96 0.743915 995/1000 NonOverlappingTemplate

105 89 109 91 93 103 113 109 98 90 0.616305 992/1000 OverlappingTemplate

113 107 100 91 97 111 102 92 96 91 0.745908 995/1000 Universal

103 105 95 100 96 83 103 112 98 105 0.792508 988/1000 ApproximateEntropy

69 65 57 63 64 66 57 58 61 70 0.956968 622/630 RandomExcursions

59 61 65 76 69 66 65 56 60 53 0.704523 626/630 RandomExcursionsVariant

122 110 105 103 86 103 85 101 104 81 0.484646 988/1000 Serial

120 96 89 115 104 94 96 95 103 88 0.344048 981/1000 Serial

99 94 88 92 90 95 122 108 91 121 0.108791 992/1000 LinearComplexity
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Table 8. NIST SP 800-22 statistical test report of the sequence B9

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value Propo Statistical test

92 107 93 103 113 115 102 87 95 93 0.522100 990/1000 Frequency

120 90 111 100 101 95 109 88 97 89 0.348869 988/1000 BlockFrequency

90 117 95 122 97 106 103 87 98 85 0.141256 990/1000 CumulativeSums

91 99 113 98 103 94 113 98 110 81 0.406499 990/1000 CumulativeSums

98 102 101 91 116 94 107 112 91 88 0.534146 993/1000 Runs

97 102 93 104 108 99 101 100 100 96 0.996335 990/1000 LongestRun

87 102 103 115 100 96 100 95 108 94 0.790621 993/1000 Rank

108 125 96 95 109 92 108 79 104 84 0.056785 993/1000 FFT

99 91 120 108 91 111 93 107 82 98 0.228367 991/1000 NonOverlappingTemplate

94 114 115 101 88 111 98 87 100 92 0.383827 995/1000 OverlappingTemplate

98 104 91 108 95 92 95 107 100 110 0.892036 994/1000 Universal

106 93 87 104 112 88 111 98 101 100 0.653773 991/1000 ApproximateEntropy

70 72 76 53 58 62 61 48 64 53 0.203333 610/617 RandomExcursions

54 52 73 75 5 1 64 74 64 50 60 0.108475 610/617 RandomExcursionsVariant

118 92 106 112 107 99 90 108 94 74 0.092597 986/1000 Serial

122 101 111 97 116 86 98 100 88 81 0.072066 989/1000 Serial

93 103 97 96 91 113 104 107 111 85 0.591409 992/1000 LinearComplexity
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Abstract. We study the k-error linear complexities of de Bruijn
sequences. Let n be a positive integer and k be an integer less than

� 2n−1

n
�. We show that the k-error linear complexity of a de Bruijn

sequence of order n is greater than or equal to 2n−1 + 1, which implies
that de Bruijn sequences have good randomness property with respect
to the k-error linear complexity. We also study the compactness of some
related bounds, and prove that in the case that n ≥ 4 and n is a power
of 2, there always exists a de Bruijn of order n such that the Hamming

weight of L(s) ⊕ R(s) is 2n−1

n
, where L(s) and R(s) denote respectively

the left half and right half of one period of this de Bruijn sequence.
Besides, some experimental results are provided for the case that n is
not a power of 2.

Keywords: k-Error linear complexity · de Bruijn sequence · Nonlinear
feedback shift register

1 Introduction

Binary de Bruijn sequences of order n are sequences of period 2n such that
each n-bits tuple appears exactly once in one period. In recent years, de Bruijn
sequences have attracted much attentions due to their many good randomness
properties such as long period and large complexity, and thus have important
applications in communication systems, coding theory and cryptography [1,4,22,
28,31]. In stream cipher designs, de Bruijn sequences are believed to be a class of
ideal source sequences which if used instead of linear recurring sequences would
make the cipher resistant to many classical attacks and therefore enhance the
security greatly [6,29]. However, due to their nonlinearity, de Bruijn sequences
seems very difficult to study. Despite years of intensive research some basic
problems about them are still open [2,9,15,27,33,34].

One main topic of studying de Bruijn sequences is to investigate their various
properties, such as the linear complexity, the correlation property, their distri-
butions and etc. [3,5,10,12,26,32]. Linear complexity is a basic cryptographic
criterion of sequences, which measures the linear predictability of sequences. The
linear complexities of de Bruijn sequences were first studied by Games et al. [3],
c© Springer Nature Switzerland AG 2021
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where they showed that for the de Bruijn sequences of order n their linear com-
plexities lie in the range of 2n−1 +n ≤ LC(s) ≤ 2n −1. Then Etzion and Lempel
showed that the lower bound 2n−1 + n is attainable [13]. Thereafter the linear
complexity distribution of de Bruijn sequences was also studied [11,14].

The concept of k-error linear complexity, proposed by Ding et al., is a gen-
eralization of the concept of linear complexity, which measures the stability of
sequences in terms of linear complexity [8,24]. If a sequence can be approximated
by a sequence with low linear complexity, then this sequence is vulnerable to cor-
relation attacks [25,29], and hence it is not secure to be used in cryptography.
The k-error linear complexity of a periodic sequence is defined to be the small-
est linear complexity of the sequences obtained by changing no more than k bits
of the original sequence per period. The k-error linear complexities of several
classes of sequences were studied by Ding et al. [7,8]. An efficient algorithm for
calculating the k-error linear complexities of sequences whose periods are powers
of 2 was given by Stamp and Martin [30].

In this paper, we study the k-error linear complexities of de Bruijn sequences.
Although the linear complexities of de Bruijn sequences have been studied exten-
sively, their k-error linear complexities have not attracted much attention yet.
By using the distribution property of de Bruijn sequences and by a known result
for the linear complexities of sequences whose periods are powers of 2, we derive
a bound for the k-error linear complexities of de Bruijn sequences. Specifically,
we show that for a de Bruijn sequence of order n, when k < � 2n−1

n � its k-error
linear complexity lies in the range of 2n−1 + 1 ≤ LCk(s) ≤ 2n − 1. From this
bound we know that, de Bruijn sequences have very good randomness property
with respect to the k-error linear complexity. Then we analyze the compactness
of some ralated bounds. Let L(s) and R(s) be the left half and right half of one
period of a de Bruijn sequence, and L(s) ⊕ R(s) be their bit-wise xor. We show
that, wH(L(s)⊕R(s)) ≥ � 2n−1

n �, and the lower bound � 2n−1

n � is attainable when
k ≥ 4 and k is a power of 2. The proof is constructive and it is based on the
frame work of Etzion [13] which constructs a class of de Bruijn sequences whose
linear complexity reaches the minimum value 2n−1 + n. For the case that n is
not a power of 2 we did some experiments to analyze the compactness of the
bound.

The remainder of this paper is organized as follows. Section 2 introduces
some preliminaries. In Sect. 3, we show a lower bound for the k-error linear
complexities of de Bruijn sequences. In Sect. 4, we analyze the compactness of
some related bounds. Section 5 presents some experimental results. Section 6
gives the final conclusions of this paper.

2 Preliminaries

2.1 Feedback Shift Register

An n-stage feedback shift register (FSR) consists of n binary storage cells and
a feedback function regulated by a single clock. At every clock pulse, the cur-
rent state (s0, s1, . . . , sn−1) is updated by (s1, s2, . . ., sn−1, F (s0, s1, . . . , sn−1))
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and the bit s0 is output. An n-stage FSR can generate 2n sequences with each
sequence corresponding to a different initial state. It is shown by Golomb that
all the 2n output sequences are periodic if and only if the feedback function F
is of the form F = x0 + f0(x1, . . . , xn−1). In the following discussions, we always
assume the feedback function has this form and we will mostly concentrate on
the function f = x0 + f0(x1, . . . , xn−1) + xn which we call the characteristic
function. The set of 2n output sequences of the FSR with characteristic function
f is denoted by G(f).

Let s = (si)∞
i=0 be a periodic sequence. We use per(s) to denote the (least

positive) period of s. The left shift operator L is defined as: Lrs = (si)∞
i=r. Two

periodic sequences s1 and s2 are called shift equivalent (or simply equivalent)
if there exists an integer r such that s1 = Lrs2. According to the shift equiva-
lent relation, the output sequences G(f) are partitioned into equivalent classes
G(f) = [s1] ∪ [s2] ∪ . . .∪ [sk] such that two sequences are in the same equivalent
class if and only if they are equivalent. Each equivalent class is called a cycle,
and the partition is called the cycle structure. The cycle [s] is often written as
[s0s1 . . . sper(s)−1]. It is easy to see that [s] contains exactly per(s) sequences.

An FSR is called a linear feedback shift register (LFSR) if its characteristic
function f is linear; otherwise, it is called a nonlinear feedback shift register
(NFSR). For an n-stage FSR, the periods of its output sequences are limited by
2n. If this value is attained, we call the sequences de Bruijn sequences, and the
FSR a maximum length FSR.

For a state S = (s0, . . ., sn−2, sn−1) its companion is defined as S′ = (s0,
. . ., sn−2, sn−1) where s denotes the complements of s. Companion states can
be used to join two sequences together into a sequence with larger period, which
is often called the cycle joining method.

Lemma 1. [17] Let s and s′ be two non-equivalent sequences in G(f). If there is
a state S on s such that its companion S′ is a state on s′, then by interchanging
the predecessors of S and S′ the two sequences s and s′ are joined into a single
sequence whose period is per(s) + per(s′).

2.2 Linear Complexity and k-Error Linear Complexity

For a periodic sequence, its linear complexity is defined to be the length of the
shortest LFSR that can generate this sequence. We use LC(s) to denote the
linear complexity of the sequence s. Chan et al. studied the sequences whose
periods are powers of 2, and gave a bound for their linear complexities [3].

Lemma 2. [3] Let s be a sequence of period 2n. Then the linear complexity of
s lies in the range of

2n−1 + 1 ≤ LC(s) ≤ 2n.

Since the periods of de Bruijn sequences are powers of 2, their linear com-
plexities satisfy the above range. Moreover, due to the particularity of de Bruijn
sequences, their linear complexities have a more compact bound.
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Lemma 3. [3] For de Bruijn sequences of order n with n ≥ 3, their linear
complexities lie in the range of

2n−1 + n ≤ LC(s) ≤ 2n − 1.

It is conjectured by Chan et al. [3] and then proved by Games and Richard
[16] that there are no de Bruijn sequences of order n with linear complexity
2n−1 + n + 1.

The k-error linear complexity of a periodic sequence is defined to be the
smallest linear complexity of the sequences obtained by changing no more than
k bits of the original sequence per period [8]. Formally, the k-error linear com-
plexity of the periodic sequence s is

LCk(s) = min{LC(s ⊕ e) | wH(E) ≤ k,per(e)|per(s)},
where E is the first per(s) bits of e. A systematic study of k-error linear com-
plexity can be found in Ding et al.’s book [8] (see Sect. 5 of [8]).

2.3 D-morphism

The D-morphism, proposed by Lempel [19], is a homomorphism between de
Bruijn graphs of order n and order (n + 1). Based on the properties of D-
morphism, Lempel presented a method to construct de Bruijn sequences of order
(n+1) from de Bruijn sequences of order n. The D-morphism can also be treated
as a mapping on sequences. Let s = (si)∞

i=0 be a sequence. Its imagine under
D-morphism is defined to be the sequence u = (ui)∞

i=0 where ui = si ⊕ si+1 for
i ≥ 0. The inverse of D-morphism is defined as D−1(s) = {v | D(v) = s}. It is
easy to see that, for any sequence s, D−1(s) contains exactly two sequences. We
denote the two sequences respectively by D−1

0 (s) and D−1
1 (s), that is

D−1
0 (s) = 0, s0, s0 ⊕ s1, s0 ⊕ s1 ⊕ s2, . . . ,

D−1
1 (s) = 1, 1 ⊕ s0, 1 ⊕ s0 ⊕ s1, 1 ⊕ s0 ⊕ s1 ⊕ s2, . . . .

Some basic properties of D-morphism are recalled in the following lemma.
For a periodic sequence s = (si)∞

i=0, its Hamming weight wH(s) is defined to
be the Hamming weight of one period of s, i.e., the number of 1s in the tuple
(s0, s1, . . . , sper(s)−1).

Lemma 4. Let s be a periodic sequence. Then the two sequences D−1
0 (s) and

D−1
1 (s) have the same period. Moreover,

1. If the weight of s is odd, then the two sequences D−1
0 (s) and D−1

1 (s) are shift
equivalent, and the period of D−1

0 (s) or D−1
1 (s) is two times the period of s.

Furthermore, if the period of s is even then the weights of D−1
0 (s) and D−1

1 (s)
are both even.

2. If the weight of s is even, then the two sequences D−1
0 (s) and D−1

1 (s) are not
shift equivalent, and the period of D−1

0 (s) or D−1
1 (s) is equal to the period

of s. Furthermore, if the period of s is even then the weights of D−1
0 (s) and

D−1
1 (s) are both odd or both even (depends on the specific sequence s).
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For two characteristic functions f(x0, x1, . . . , xn) and g(x0, x1, . . . , xm), their
∗-product is defined to be [18]:

f ∗ g = f(g(x0, x1, . . . , xm), g(x1, x2, . . . , xm+1), . . . , g(xn, xn+1, . . . , xn+m)).

If we apply D−1 to all the sequences in G(f), we will obtain 2n+1 sequences.
Actually, these 2n+1 sequences are exactly the output sequences of the FSR with
characteristic function f ∗ (x0 + x1), that is,

G(f ∗ (x0 + x1)) = {D−1
0 (s),D−1

1 (s) | s ∈ G(f)}.
More detailed discussions about D-morphism and their application in construct-
ing de Bruijn sequences can be found in [20,21,23].

3 A Lower Bound

In this section, we give a lower bound for the k-error linear complexities of de
Bruijn sequences. Firstly, we present a simple property of the sequences whose
periods are powers of 2. Let s = {si}∞

i=0 be a sequence of period 2n. We use L(s)
and R(s) to denote respectively the left half and right half of one period of s,
that is,

L(s) = s0s1 . . . s2n−1−1,

R(s) = s2n−1s2n−1+1 . . . s2n−1.

By changing some bits in each period of s, we will get a new sequence s′. It
is easy to see that, the period of s′ is less than or equal to the period of s. We
want to know at least how many bits we need to change in order to make the
period of s′ less than 2n.

Lemma 5. Let s = {si}∞
i=0 be a sequence of period 2n. In order to get a sequence

of period less than 2n we need to change at least m bits in each period of s, where
m is the Hamming weight of L(s) ⊕ R(s).

Proof. Let s′ = {s′
i}∞

i=0 be the sequence obtained by changing k bits in each
period of s. Denote the periods of s and s′ by per(s) and per(s′) respectively. It
is easy to see, per(s′) must be a factor of per(s). If per(s′) is less than 2n, then
per(s′) | 2n−1. Therefore, we have s′

i = s′
i+2n−1 for any 0 ≤ i < 2n−1. Consider

the set
U = {0 ≤ i ≤ 2n−1 − 1 | si 
= si+2n−1}.

In order to make the equation s′
i = s′

i+2n−1 valid for any 0 ≤ i < 2n−1, for each
index i ∈ U one of the two bits si and si+2n−1 must be changed. The proof is
completed by noting that the number of elements in U is equal to the Hamming
weight of L(s) ⊕ R(s). ��

In the special case that s is a de Bruijn sequence, we can derive a bound for
the Hamming weight wH(L(s) ⊕ R(s)).
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Theorem 1. Let s be a de Bruijn sequence of order n. Then wH(L(s) ⊕ R(s))
is an even number and it lies in the range of⌈

2n−1

n

⌉
≤ wH(L(s) ⊕ R(s)) ≤ 2n−1.

Proof. Denote by wH(s) the Hamming weight of one period of s. Then we have
wH(s) = wH(L(s)) + wH(R(s)). Because one period of a de Bruijn sequence
contains all the n-bits tuples, we know that wH(s) = 2n−1 which is an even
number. It is easy to see that

wH(L(s) ⊕ R(s)) ≡ wH(L(s)) + w(R(s)) (mod 2).

Therefore, wH(L(s) ⊕ R(s)) is also an even number.
The upper bound in the theorem can be derived by using the inequality

wH(L(s) ⊕ R(s)) ≤ wH(L(s)) + w(R(s)) = wH(s) = 2n−1.

In the following, we consider the lower bound of wH(L(s) ⊕ R(s)).
Since the period of s is 2n, there exist an index v with 0 ≤ v ≤ 2n−1 −1 such

that sv 
= sv+2n−1 . We shift s to the left by v + 1 bits to obtain a new sequence
t so that the sequence t has the property t2n−1−1 
= t2n−1. Because t is shift
equivalent with s we have wH(L(t) ⊕ R(t)) = wH(L(s) ⊕ R(s)).

Firstly, we divide L(t) and R(t) into blocks of length n (the length of the
last block may less than n). This is illustrated in Fig. 1. Then we compare the
i-th blocks of L(t) and R(t) which are denoted by li and ri respectively, 0 ≤
i ≤

⌈
2n−1

n

⌉
− 1. Because t is a de Bruijn sequence, the two blocks li and ri are

different from each other. Remember that t has the property t2n−1−1 
= t2n−1,
so even if the two last blocks of L(t) and R(t) have length less than n they are
still different from each other.

From the above discussion, the blocks li and ri are different from each other
for any 0 ≤ i ≤

⌈
2n−1

n

⌉
− 1, which implies that wH(li ⊕ ri) ≥ 1. Then by using

the inequality

wH(L(t) ⊕ R(t)) =
∑
i

wH(li ⊕ ri) ≥
⌈

2n−1

n

⌉
,

we know that the lower bound in the theorem is also valid. ��

L(t) R(t)

l0 l1 r0 r1

Fig. 1. Divide L(s) and R(s) into blocks

By combining the above theorem with Lemma 2, we can derive a bound for
the k-error linear complexities of de Bruijn sequences.
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Theorem 2. Let s be a de Bruijn sequence of order n, and k be an integer less
than � 2n−1

n �. Then the k-error linear complexity of s satisfies

LCk(s) ≥ 2n−1 + 1.

Proof. From Theorem 1, we know that if k < � 2n−1

n � then the sequence obtained
by changing k bits in each period of a de Bruijn sequence will still has period
2n, and hence by Lemma 2 its linear complexity is ≥ 2n−1 + 1. ��

4 Compactness of Some Related Bounds

It is shown in Theorem 1 that, for a de Bruijn sequence of order n we have
wH(L(s) ⊕ R(s)) ≥

⌈
2n−1

n

⌉
. In this section, we study the compactness of this

bound. We will show that this lower bound is attainable if n ≥ 4 and n is a power
of 2. The proof is constructive, and it is based on the frame work of Etzion [13]
which constructs a class of de Bruijn sequences whose linear complexity reaches
the minimum value 2n−1 + n.

For a polynomial a0 + a1x + . . . + anx
n ∈ F2[x], we can associate it with a

linear function a0x0 +a1x1 + . . .+anxn. Sometimes it is convenient to use linear
functions instead of polynomials. Let ln(x) be the linear function corresponding
to the polynomial (1 + x)n. Denote by G(ln(x) + 1) the set of output sequences
of the FSR whose characteristic function is ln(x)+1. The reader can verify that:

ln+1(x) + 1 = (ln(x) + 1) ∗ (x0 + x1).

Hence, the sequences in G(ln+1(x) + 1) can be seen as obtained by applying the
inverse of the D-morphism to the sequences in G(ln(x) + 1), i.e.,

G(ln+1(x) + 1) = {D−1
0 (s),D−1

1 (s) | s ∈ G(ln(x) + 1)}.
When n = 1, we have l1(x)+1 = x0 +x1 +1 which is the characteristic function
of the 1-th order de Bruijn sequence 0101 . . .. The following lemma recalls some
properties of the sequences in G(ln(x) + 1).

Lemma 6. Let G(ln(x) + 1) be the set of output sequences of the FSR whose
characteristic function is ln(x) + 1. Then we have

1. The sequences in G(ln(x) + 1) all have the same period: 2�logn�+1.
2. There are 2n−�logn�−1 cycles in G(ln(x) + 1).
3. The sequences in G(ln(x) + 1) all have the same linear complexity: n + 1.
4. The weights of the sequences in G(ln(x) + 1) are all even, or all odd.

The formal proofs for the first three properties can be found in [13] (see Fact
2 in [13]). The fourth property is valid because that, according to Lemma 4 if
there are two sequences in G(ln(x)+ 1), denoted as s and t, whose weights have
different parities, then D−1

0 (s) and D−1
0 (t) would have different periods which

contradicts with the property 1 of this lemma.
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Now we choose from each cycle in G(ln(x) + 1) a sequence to form a set
F (n). By the property 2 of Lemma 6, F (n) consists of 2n−�logn�−1 sequences.
It is shown by Etzon that by properly choosing the sequences it is possible to
arrange the sequences in F (n) into pairs Pi = (ai,bi) with 1 ≤ i ≤ 2n−�logn�−2

so that the following three conditions hold.

1. For each pair Pi, the initial states of ai and bi form a companion pair.
2. For each i, ai ⊕ bi = a1 ⊕ b1.
3. The graph (V (n), E(n)), where V (n) = {vi | 1 ≤ i ≤ 2n−�log n�−2} and

{vi, vj} ∈ E(n) if and only if ai and aj have a pair of companion states in the
same position (relative to their respective first states), is a connected graph.

Take n = 4 for example. By calculation we know that, G(l4(x) + 1) consists
of 2 cycles: C1 = [10000111] and C2 = [10010110]. Let a1 = 10000111 . . . and
b1 = 10010110 . . . be two sequences in C1 and C2 respectively. Define F (4) =
{(a1,b1)}. It is easy to verify that F (4) satisfies the above three conditions (the
last two conditions are trivially met).

We remark that in the original paper [13] there is an additional condition: the
linear complexity of a1 ⊕ b1 is n. However, this condition is actually redundant
because for any two sequences s and t in G(ln(x) + 1) whose initial states form
a companion pair, the linear complexity of s ⊕ t is always n. A short proof of
this fact is given as follows. Write s = {si}∞

i=0 and t = {ti}∞
i=0. Since s and t

are sequences in G(ln(x) + 1) they satisfy the recursion of ln(x) + 1, i.e., for any
i ≥ 0 we have

ln(si, si+1, . . . , si+n−1) ⊕ 1 = 0,
ln(ti, ti+1, . . . , ti+n−1) ⊕ 1 = 0.

Since ln(x) is a linear function, by adding the above two equations together we
get

ln(si ⊕ ti, si+1 ⊕ ti+1, . . . , si+n−1 ⊕ ti+n−1) = 0,

which implies that s ⊕ t can be generated by an n-stage LFSR. Therefore, its
linear complexity is no more than n. On the other hand, because the first n bits
of s ⊕ t is (0, . . . , 0, 1), it can not be generated by a LFSR whose length is less
than n. So the linear complexity of s⊕ t must be n. For this reason, we remove
the condition LC(a1 ⊕ b1) = n here. Another thing need to mention is that, in
the original paper [13] the existence of such F (n) is proved for any integer n ≥ 8.
But here we consider only the case that n is a power of 2 and the existence of
such F (n) for n = 4 is already shown, so we can start from n = 4.

By using the structure of F (n), Etzion et al. constructed a de Bruijn sequence
of order n whose linear complexity attained the minimum value 2n−1 +n. In the
following, we show that in the case that n ≥ 4 and n is a power of 2 the de Bruijn
sequence constructed by them also has the property wH(L(s) ⊕ R(s)) = 2n−1

n ,
which by Theorem 1 reaches the lower bound.

Let (V (n), T ) be a spanning tree of (V (n), E(n)). According to Lemma 1 we
can join the sequences ai, 1 ≤ i ≤ 2n−�log n�−2 in F (n) to form a single sequence



352 M. Li et al.

a. Notice that if ai and aj have a pair of companion states in the same position
k, then bi and bj also have a pair of companion states in the same position k.
So we can join the sequences bi, 1 ≤ i ≤ 2n−�log n�−2 in F (n) to form a single
sequence b in the same manner as we have done for ai. Then the two sequences
a and b can be joined together by using their initial states (which are a pair of
companion states) to form a de Bruijn sequence s.

Denote the first periods of a1,b1,a,b and s by A1,B1,A,B and S, respec-
tively. The lengths of the five finite subsequences are 2�log n�+1, 2�logn�+1,
2n−1, 2n−1 and 2n, respectively. From the construction, we know that S = (A|B),
the concatenation of A and B. Furthermore, we have A⊕B = (A1⊕B1)k where
k = 2n−�log n�−2 denotes the number of repetitions of A1 ⊕ B1.

Theorem 3. In the case that n ≥ 4 and n is a power of 2, there exists a de
Bruijn sequence s of order n such that

wH(L(s) ⊕ R(s)) =
2n−1

n
.

Proof. Because n is a power of 2, we have (1 + x)n = 1 + xn. Hence the charac-
teristic function ln(x) + 1 is actually

ln(x) + 1 = x0 + xn + 1,

which implies that the two sequences a1 and b1 satisfy the recursion xn = x0+1.
Then it is easy to see that the sequence a1 ⊕ b1 satisfies the recursion xn = x0.
Since the first n bits of a1 ⊕ b1 is 0 . . . 01, the sequence a1 ⊕ b1 is actually a
sequence period of n and its one period is 0 . . . 01. Therefore,

A1 ⊕ B1 = (0 . . . 01)2.

Then by the discussion before this theorem we have

L(s) ⊕ R(s) = A ⊕ B = (0 . . . 01)
2n−1

n ,

which implies that wH(L(s) ⊕ R(s)) = 2n−1

n . This completes the proof. ��

5 Experimental Results

In the case that n is not a power of 2, the authors don’t know whether there
exist de Bruijn sequences of order n such that wH(L(s) ⊕ R(s)) = � 2n−1

n �. We
did some experiments to study the compactness of this bound. The experimental
results are given in the following tables.

With the help of C-programming, we generated all the de Bruijn sequences
of orders 5 and 6, and calculated the weight wH(L(s) ⊕ R(s)) for each of them.
The distributions of wH(L(s) ⊕ R(s)) for de Bruijn sequences of orders 5 and 6
are given in Tables 1 and 2, respectively.
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Table 1. For de Bruijn sequences of order 5

Weight 4 6 8 10 12 14 16

Num 32 400 992 500 120 4 0

Table 2. For de Bruijn sequences of order 6

Weight 6 8 10 12 14 16 18

Num 696 72828 1098604 5826920 14522584 19616964 15570460

Weight 20 22 24 26 28 30 32

Num 7606696 2300736 433528 54024 4728 96 0

For the de Bruijn sequences of order 7, because their number is 257 which
is quite beyond our ability of computation, we randomly chose 108 de Bruijn
sequences from them and calculated the distribution of wH(L(s) ⊕ R(s)). The
result is given in Table 3.

Table 3. For de Bruijn sequences of order 7 (108 times)

Weight 20 22 24 26 28 30 32

Num 85654 471092 2269806 4025700 10578160 16445391 16788011

Weight 34 36 38 40 42 44

Num 14903633 10321191 6124198 2912212 214137 214131

From Tables 1 and 2 we know that, when n = 5 or 6, the lower bound � 2n−1

n �
is attainable. For n = 7 because the search is not exhaustive, we don’t know if
the lower bound is attainable.

We can also observe from Tables 1 and 2 that when n = 5 or 6, the upper
bound 2n−1 is not attainable, i.e., there is no de Bruijn sequence satisfying
wH(L(s)⊕R(s)) = 2n−1. Actually, this result is true for any n ≥ 3. The reason is
that, wH(L(s)⊕R(s)) = 2n−1 implies si+2n−1 = si ⊕ 1 for any 0 ≤ i ≤ 2n−1 − 1,
and it has been proved by Chan et al. [3] that there are no such de Bruijn
sequences if n ≥ 3 (see Theorem 2 in [3]).

Table 4 presents all the de Bruijn sequences of order 5 such that wH(L(s) ⊕
R(s)) reaches the lower bound. There are totally 32 such sequences.
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Table 4. All the de Bruijn sequences of order 5 such that wH(L(s) ⊕ R(s)) = 4

0000010001101011 1001010011111011 0000010001101111 1001010011101011

0000010001101111 1010010101100111 0000010010101111 1000110011101101

0000010011100101 1000110111110101 0000010011101111 1000110010101101

0000010011101111 1001010001101011 0000010011111001 0100011010111011

0000010011111001 0100011011101011 0000010011111011 1001010001101011

0000010100011011 0010011101011111 0000010101101111 1010010001100111

0000010101111101 1000110100111001 0000010110101001 1000111110111001

0000010110111001 1000111110101001 0000011010011111 0010001010111011

0000011010110001 0100111011111001 0000011010110001 0100111110111001

0000011010111001 0001010011111011 0000011010111001 0100010011111011

0000011010111001 0100111110110001 0000011010111011 0001010011111001

0000011010111011 0010001010011111 0000011011101010 0010011111001011

0000011011101011 0001010011111001 0000011011111001 0001010011101011

0000011011111001 0100010011101011 0000011011111001 0100111010110001

0000011100110001 0010111110110101 0000011100110101 0010111110110001

0000011111001010 0010011011101011 0000011111010111 0010011011000101

6 Conclusions

We analyzed the k-error linear complexities of de Bruijn sequences. Based on the
distribution property of de Bruijn sequences, we showed that for an n-th order
de Bruijn sequence, if k < � 2n−1

n � then its k-error linear complexity is more
than or equal to 2n−1 + 1. We also studied the compactness of some related
bounds. Specifically, we showed that if n ≥ 4 and n is a power of 2 then there
exists a de Bruijn sequence of order n such that wH(L(s) ⊕R(s)) = 2n−1

n . Some
experimental results are also provided for the case that n is not a power of 2.
We hope these experimental results will be helpful for future research.
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Abstract. Group signature allows members in a group to sign messages
anonymously on behalf of the group. In this paper, we propose the first
lattice-based fully dynamic group signature scheme without NIZK based
on the work in [Katsumata and Yamada, EUROCRYPT2019]. In order
to realize our idea, we present a new indexed ABS scheme by using
the Bonsai tree structure [Cash et al., EUROCRYPT2010]. Our fully
dynamic group signature scheme satisfies CCA-selfless anonymity, trace-
ability, weak non-frameability, and tracing soundness under the LWE
and SIS assumptions. The size of keys and signature grow linearly in the
upper bound of the group size in the system.

Keywords: Dynamic group signature · Standard model · LWE · SIS

1 Introduction

Related Work. The group signature was proposed by Chaum and van Heyst [8],
which allows members in a group to sign messages anonymously on behalf of
the group, while the generated signature does not reveal any information of the
signer. When a dispute arises, it allows the group manager to reveal the identity
of the original signer according to the signature, which guarantees the binding of
the signature and the signer’s identity. Because a secure group signature scheme
satisfies anonymity and traceability, it becomes one important cryptography
primitive to realize anonymous authentication.

Most of the early constructions of group signature scheme are static [2]. In
other words, the group is fixed at setup and assume that the group manager is
always trustworthy. Subsequently, considering the practical significance, many
other properties were considered during the specific construction, for example,
the weakened group manager capability [1], the dynamic registration or revoca-
tion [4,13]. Considering the post-quantum security of the scheme, lattice-based
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cryptography has become a research hot-spot in recent years. Gordon, S. et al.
[10] proposed the first lattice-based static group signature scheme, and it was
improved to obtain stronger anonymity in [5], the signatures size of the two
schemes are all polynomial in N . To reduce the communication cost, it is imper-
ative to reduce the signature size to O(log N) [16] or make it constant [15].
Subsequently, a lattice-based dynamic group signature scheme [14] was given
based on the scheme in [12] by using an accumulator. However, most of the
lattice-based group signature schemes are built in RO model, since the construc-
tions of such schemes follow the encryption-then-proof framework, and the proof
processes rely heavily on the non-interactive zero-knowledge (NIZK) protocol.
It was not until 2018 that some breakthrough emerged on lattice-based NIZK
[6,18], so it seems feasible to construct a lattice-based group signature scheme
under standard model [11].

Our Work. In this paper, we modify the indexed ABS scheme in [11] by using the
Bonsai tree structure [7]. This modification is to facilitate the subsequent con-
struction of our fully dynamic group signature schemes to check whether the user
has been revoked by the group manager when signing messages. And fortunately,
this modification does not weaken the security properties of the scheme. In other
words, our new indexed ABS scheme satisfies correctness, perfect privacy and
no-signing-query unforgeability. Then we can improve the unforgeability of the
scheme by using the same method as described in [11], i.e. from no-signing-query
unforgeability to co-selective unforgeability.

By using our new indexed ABS scheme for a new circuit class Cκ, we fur-
ther give the first lattice-based fully dynamic group signature scheme without
NIZK in this paper. During the construction of the scheme, we also use another
two schemes as sub-module just like the work in [11]: the SKE scheme with
key robustness and IND-CCA anonymity, the OTS scheme with strong unforge-
ability. And we can prove that our fully dynamic group signature scheme sat-
isfies correctness, CCA-selfless anonymity, traceability, weak non-frameability,
and tracing soundness under the standard learning with error (LWE) and small
integer solution (SIS) assumptions. Finally, the size of the public parameter, the
secret signing key and the signature grow linearly in N that is the upper bound
of the group size in the system.

Organization. We recall some definitions, theorems used in the scheme in Sect. 2.
And the detailed description of the new indexed ABS scheme is presented in
Sect. 3. Finally, our main scheme is constructed and analyzed in Sect. 4.

2 Preliminaries

2.1 Background on Lattice

Let λ be security parameter, n, m, q be integers such that n = poly(λ), m ≥
n�log q�. A ∈ Z

n×m
q , for all V ∈ Z

n×m′
q , let A−1

γ (V) be an output distribution
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of SampZ(γ)m×m′
conditioned on A · A−1

γ (V) = V. SampZ(γ) is a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter
γ > 0 whose support is restricted to z ∈ Z such that |z| ≤ √

nγ. A γ-trapdoor
for A is a trapdoor that enable one to sample from the distribution A−1

γ (V) for
any V in time poly(n,m,m′, log q). We slightly overload notation and denote a
γ-trapdoor for A by A−1

γ . The gadget matrix G ∈ Z
n×m
q is obtained by padding

In ⊗ (1, 2, 22, · · · , 2�log q�) with zero columns. Finally, we use the same definition
of the function WldCmp : {0, 1}l × {0, 1}l × {0, 1}l → {0, 1} as in [11].

For the properties of lattice trapdoor, there exists an efficient procedure
TrapGen(1n, 1m, q) that outputs (A, A−1

γ0
) where A ∈ Z

n×m
q for some m =

O(n log q) and is 2−n close to uniform, where γ0 = ω(
√

n log q log m). Further-
more, the distributions (A,A−1

γ ,U,V) and (A,A−1
γ ,U′,V′) are statistically

indistinguishable for any m′ = poly(κ) and γ ≥ γ0, U $← SampZ(γ)m×m′
,

V = AU, V $← Z
n×m′
q , and U′ $← A−1

γ (V′).

Definition 1 (The small integer solution problem SIS) [9]. Let n, m, q
be integers, the SISn,m,q,β problem (in the infinite norm) is as follows: Given a

matrix A $← Z
n×m
q , and a real β, find a nonzero integer vector z ∈ Z

m such that
Az = 0 mod q and ‖z‖∞ ≤ β.

Proposition 1 [9]. Given a security parameter λ, for any n = poly(λ), m =
poly(n), β = poly(n) and prime q ≥ β

√
n · ω(log n), the average-case problem

SISn,m,q,β is as hard as approximating the problem SIVP and GapSVP in the
worst case to within certain γ = β · Õ(

√
n) factors.

There exists a pair of deterministic algorithm (PubEval,TrapEval) with
the following properties:

1. PubEval(
→
B, F ) → BF with

→
B = [A‖B1‖ · · · ‖Bk] ∈ Z

n×k′m
q , k′ = k + 1,

F : {0, 1}k′ → {0, 1} is a circuit.

2. TrapEval(
→
R, F,x) → RF,x with

→
R = [R0‖R1‖ · · · ‖Rk] ∈ Z

m×mk′
q , ‖Ri‖∞

≤ δ for i ∈ {0, 1, · · · , k}, x = (x0, x1, · · · , xk) ∈ {0, 1}k′
, F : {0, 1}k′ → {0, 1}

is a circuit with depth d. We have PubEval(A
→
R +x ⊗ G) = ARF,x +

F (x)G where we denote x ⊗ G = [x0G‖x1G‖ · · · ‖xkG]. Furthermore, we
have ‖RF,x‖∞ ≤ δ · m · 2O(d).

3. The running time of (PubEval,TrapEval) is bounded by poly(k, n,m, 2d,
log q).

2.2 The Fully Dynamic Group Signature Scheme

Given a security parameter λ, the syntax of our fully dynamic group signature
scheme without NIZK consists the following polynomial time algorithms:

GS.KeyGen(1λ, 1N ): Given 1λ, 1N , this algorithm is operated by the group
manager, outputs public parameter pp and key pair (gpk = (mpk,pp),
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msk), and finally initializes the valid member list gul, the tracing secret key
list gok, the secret signing key list gsk, the revocation token list grt as ∅.

GS.UKeyGen(1λ,pp): Take 1λ and pp as inputs, the user uses this algorithm
to generate its public-secret key pair (upk,usk).

〈GS.Join(upki,gpk),GS.Issue(msk,gpk, grt, gok, gsk, gul)〉: This is an inter-
active protocol between a user and the group manager. If the algorithm runs
successfully, the user becomes a valid member of the group, the algorithm
GS.Issue returns the secret signing key to the user, and conserves the user’s
registration information.

GS.Update(RL,msk, gok, gsk, gul): This algorithm is operated by the group
manager to update the users’ registration information. Given a revocation
list RL, if RL = ∅, outputs ⊥. Otherwise, the manager updates the users’
public/secret key lists.

GS.Sign(1λ,gpk,gski,M, C,RL): On input the group public key gpk, a user’s
secret signing key gski, a message M ∈ Mλ, a policy C ∈ Cλ, and a revocation
list RL, this algorithm outputs a signature Σ = (ovk, ct, σ1, σ2) on message
M with C[ovk, ct, RL] = 1. If the user with gski is not a valid member of the
group, i.e. the user is not registered yet or grti ∈ RL, the algorithm outputs
⊥.

GS.Vrfy(gpk,M, C,RL,Σ): This is a deterministic algorithm, it outputs � if
Σ is a valid signature on message M with policy C, otherwise outputs ⊥.

GS.Open(gpk,gok,M, Σ): Given a valid signature Σ on message M, this algo-
rithm is operated by the group manager to trace the signer who generated Σ.
And returns ⊥ if the algorithm unable to trace the signature Σ to a particular
group member.

The properties required for our fully dynamic group signature scheme are
given in the following:

Correctness: This property means that if the signer signs a message honestly,
the algorithm GS.Vrfy can always output 1, the group manager can trace the
identity of the signer who generated the signature by the algorithm GS.Open
with overwhelming probability.

CCA-Selfless Anonymity: For any PPT adversary A, this property means
that it is impossible to distinguish signatures generated by two valid members
in the group with a non-negligible probability, even though the adversary A could
corrupt some but not all users, and is given the accesses to the oracle GS.Sign
and GS.Open [11]. In other words, a fully dynamic group signature scheme is
CCA-Selfless Anonymity for all PPT adversary A if Pr[Expanon−b

FDGS,A(λ) = 1] ≤
negl(λ).

Tracing Soundness: For any PPT adversary A, the probability of forging
a valid signature that can traced to two different members is negligible, even
though the adversary A could corrupt the group manager and all users [3]. In
other words, a fully dynamic group signature scheme satisfies tracing soundness
for all PPT adversary A if Pr[Exptrace−sound

FDGS,A (λ) = 1] ≤ negl(λ).
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Traceability: For any PPT adversary A, the probability of forging a valid
signature that is traced to ⊥ or a member who did not generate the signature
is negligible, even though the adversary A could corrupt the admitter and some
but not all users, and is given the access to the oracle GS.Sign [11]. In other
words, a fully dynamic group signature scheme is traceable for all PPT adversary
A if Pr[Exptrace

FDGS,A(λ) = 1] ≤ negl(λ).

3 A New Indexed Attribute-Based Signature

3.1 The Scheme with No-Signing-Query Unforgeability

The new indexed attribute-based signature scheme is inspired by the indexed
ABS in [11]. Let {Mλ}λ∈N be a family of message spaces, {Fλ}λ∈N be the
circuit class that is dealt with in the scheme, where Fλ is a set of circuits F :
{0, 1}k′(λ) → {0, 1} with depth at most dF = O(log λ). An indexed ABS scheme
for the circuit class Fλ is defined by the following algorithms:

ABS.Setup(1λ, 1N ) → (mpk,msk): Given a security parameter λ, and input
1λ and 1N , it sets the parameters n, m, β, q, γ0, γ as specified later. And
N is the upper bound of the group size, q is a prime number, k = �log N�,
k′ = k + 1. Then, it runs (A,A−1

γ0
) $← TrapGen(1n, 1m, q) with A ∈ Z

n×m
q ,

samples random matrices Bd
j

$← Z
n×m
q for d ∈ {0, 1}, j ∈ [k], random vector

r ∈ {0, 1}m, computes Ar = u ∈ Z
n
q , and let B = [A‖B0

1‖B1
1‖ · · · ‖B0

k‖B1
k].

We denote i the index of the group member, and i1i2 · · · ik is its binary form,
then let Bi = [A‖Bi1

1 ‖ · · · ‖Bik
k ]. Finally, it outputs mpk = (A, {Bi}i∈[N ],u)

and msk = (A−1
γ0

, {Bi}i∈[N ]).
ABS.KeyGen(msk, i,x) → skx: On inputs msk = (A−1

γ0
, {Bi}i∈[N ]), the

attribute x ∈ {0, 1}k′
that the first bit is 1, and a group member’s index

i ∈ [N ] with its binary presentation i1i2 · · · ik, it samples Ri $← A−1
γ0

(Bi −
x ⊗ G) with Ri ∈ Z

m×mk′
q using A−1

γ0
. Note that Bi = ARi + x ⊗ G and

‖Ri‖∞ ≤ γ0
√

n holds by the definition of the distribution A−1
γ0

(Bi − x⊗G).
Then outputs skx = (i,Ri).

ABS.Sign(mpk, skx,M, F ) → σ: It outputs ⊥ if M /∈ Mλ, F /∈ Fλ, or F (x) =
0. Otherwise, it first parses skx = (i,Ri), then computes Bi

F = PubEval
(Bi, F ) and Ri

F,x = TrapEval(Ri, F,x) such that ‖Ri
F,x‖∞ ≤ γ. Since

F (x) = 1, we have Bi
F = ARi

F,x + G. It then computes [A‖Bi
F ]−1

β from
Ri

F,x, and further computes [A‖B1
F ‖ · · · ‖BN

F ]−1
β from [A‖Bi

F ]−1
β . Finally, it

samples σ
$← [A‖B1

F ‖ · · · ‖BN
F ]−1

β (u) and outputs σ ∈ Z
m(N+1) as a signature

of message M.
ABS.Vrfy(mpk,M, F, σ) → � or ⊥: It outputs ⊥ if F /∈ Fλ or σ /∈ Z

m(N+1).
Otherwise, it computes Bi

F = PubEval(F,Bi) for i ∈ [N ], then checks
whether ‖σ‖∞ ≤ √

nβ, [A‖B1
F ‖ · · · ‖BN

F ] · σ = u are valid, if yes outputs
�, otherwise outputs ⊥.
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Theorem 1. Given a security parameter λ, circuit class Fλ with bounded depth
O(log λ), β′ = 1 + (N + 1)mγ · √

nβ. Suppose that the problem SIS∞
n,m,q,β′ is

hard, then the indexed ABS scheme in this paper satisfies correctness, perfect
privacy and no-signing-query unforgeability.

The detailed proof of the theorem is given in the full version. Denote the
scheme above as ABS, then we can change it into a new indexed ABS scheme
ABS′ that satisfies correctness, perfect privacy and co-selective unforgeability
by the same way with [11], where function class F = {Fλ}λ∈N is defined as
Fλ = {F [M̃, C] : {0, 1}k′(λ)+2l(λ)+1 → {0, 1}|M̃ ∈ {0, 1}l(λ), C ∈ Cλ}, C :
{0, 1}k′(λ) → {0, 1}, we won’t go into details here.

4 The Fully Dynamic Group Signature Without NIZK

Suppose that the group manager is honest, and the upper bound of the group
size is N . We give a construction of fully dynamic group signature scheme from
the following building blocks: an indexed ABS scheme ABS = (ABS.Setup,
ABS.KeyGen,ABS.Sign,ABS.Vrfy) with perfect privacy and co-selective
unforgeability, an one-time signature scheme OTS = (OTS.KeyGen,OTS.Si-
gn,OTS.Vrfy) with strong unforgeability [17], and a secret key encryption
scheme SKE = (SKE.Setup,SKE.Gen, SKE.Enc, SKE.Dec) with key
robustness, IND-CCA security, and the decryption circuits depth is O(log λ).

GS.KeyGen(1λ, 1N ): This algorithm is operated by the group manager. It runs
SKE.Setup(1λ) → pp and (mpk,msk) ← ABS.Setup(1λ, 1N+1). Finally,
it outputs gpk := (pp,mpk), and initializes gul, gok, gsk, grt = ∅, where gul
is the valid member list, gok is the tracing secret key list, gsk is the secret
signing key list, and grt is the revocation token list.

GS.UKeyGen(1λ,pp): The users use this algorithm to generate his public key
upk and secret key usk.

〈GS.Join(upki,gpk),GS.Issue(msk,gpk, grt, gok, gsk, gul)〉: It is an interac-
tive protocol between a user and group manager. Suppose that the new user
is the ith member in the group with 0 < i ≤ N and abort otherwise, the
algorithm GS.Join sends the user’s public key upki to the group manager.
If the latter agree this application, the algorithm GS.Issue firstly receives
Ki that generated by the admitter by running Ki ← SKE.Gen(pp‖upki),
and ski‖Ki

← ABS.KeyGen(msk, i, i‖Ki), sets gski = (i,Ki, ski‖Ki
).

Then computes z =
∑k

j=1 B
ij
j rij

j where r01, r
1
1, · · · , r0k, r1k

$← DZm,σ′ . Let

r = [r0‖r01‖r11‖ · · · ‖r0k‖r1k] where r0
$← A−1

γ0
(u − z), ri = [r0‖ri1

1 ‖ · · · ‖rik
k ],

so we have Biri = u. Then let grti = Ar0 be a revocation token, includes
grti to grt, goki = Ki to gok, and gski to gsk, upki to gul. Finally, the
algorithm GS.Issue sends gski to the user and outputs grt, gul.

GS.Update(RL,msk, gok, gsk, gul): Suppose that the set of indexes of the
revoked members is RL ⊂ grt with upper bound N − 1. If RL = ∅, out-
put ⊥, otherwise set goknew = gok\{Kj}j∈RL, gsknew = gsk\{gskj}j∈RL,
gulnew = guk\{upkj}j∈RL.
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GS.Sign(1λ,gpk,gski,M, C,RL): It runs (ovk,osk) $← OTS.KeyGen(1λ)

and ct $← SKE.Enc (Ki, i‖ovk), then runs

ABS.Sign(mpk, ski,‖Ki
, C[ovk, ct, RL],M) → σ1

where C[ovk, ct, RL] is defined in the next section. Finally, it runs OTS.Si
gn(osk,M‖σ1) → σ2, and outputs Σ := (ovk, ct, σ1, σ2).

GS.Vrfy(gpk,M, C,RL,Σ): It parses Σ = (ovk, ct, σ1, σ2), then outputs � if

ABS.Vrfy(mpk,M, C[ovk, ct, RL], σ1) = �
∧ OTS.Vrfy(ovk,M‖σ1, σ2) = �.

Otherwise, it outputs ⊥.
GS.Open(gpk,gok,M, Σ): It runs GS.Vrfy(gpk,M, C,RL,Σ) and returns

⊥ if the verification result is ⊥. Otherwise, it parses Σ → (ovk, ct, σ1, σ2),
computes di ← SKE.Dec(Ki, ct) for i ∈ [N ] and outputs the smallest index
i such that di �= ⊥. If there is not such i, it returns ⊥.

The policy C[ovk, ct, RL](i‖Ki) used in our scheme as follows with hard-
wired constants ovk, ct and RL.

1. Parse the input to i ∈ [N + 1] and Ki, if the input does not conform to the
format, output 0.

2. If i = N + 1, output 1.
3. Compute SKE.Dec(Ki, ct) = i′‖ovk′, if i′ = i ∧ grti′

/∈ RL ∧ ovk′ = ovk,
output 1, otherwise, output 0.

Theorem 2. If the indexed attribute-based signature scheme ABS satisfies per-
fect privacy and co-selective unforgeability, one-time signature scheme OTS is
strongly unforgeable, and the secret key encryption scheme SKE satisfies cor-
rectness, key robustness and IND-CCA security, then the fully dynamic group
signature in this paper satisfies correctness, CCA-selfless anonymity, traceabil-
ity, tracing soundness, and weak non-frameability.

The detailed proof of the theorem is given in the full version.
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Abstract. The Chinese government releases the SM2 digital signature
algorithm as one part of the Chinese public key crypto standard, and now
it has become an international standard algorithm. To protect the pri-
vacy of messages, we propose an efficient blind signature scheme based on
the SM2 signature algorithm in this paper. We prove that our scheme can
satisfy blindness and EUF-CMA (existential unforgeability under chosen
message attacks). We implement our scheme using MIRACL Crypto-
graphic SDK, and propose a variant blind signature scheme. Security
analysis and experimental evaluation demonstrate that our proposed
scheme is practical for real-world applications.

Keywords: SM2 algorithm · Digital signature · Blind signature ·
Provable security · Implementation

1 Introduction

The digital signature [1–3] plays a key role on the Internet, such as authentica-
tion, e-business and cryptocurrency. Digital signatures can provide authentica-
tion, integrity and non-repudiation, all of which can make sure the validation of
user identity and messages. However, traditional digital signature scheme may
cause users’ privacy to be leaked. For example, when a user uses e-banking for
online transactions, all the transaction information will be returned to the bank.
Data breach would occur if the bank collect and leak the data to other parties.
Also, in the electronic voting system [4–6], the votes are directly exposed to the
administrator. The voters are however not willing to disclose their votes to the
administrator. In addition, there are still many privacy breaches of cryptocur-
rency users. Although mixcoin technique [7] has been proposed and applied, the
mixcoin server holds all transaction information. Therefore, how to protect user’s
privacy has become an urgent problem to be solved.

One of the potential solutions is blind signature, which was first introduced
by Chaum [8]. In a blind signature scheme, a signer and a user are involved in
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 368–384, 2021.
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the system. The signer can generate a valid signature on the user’s message,
while the signer can not get any information from the blinded message. Based
on the concept of blind signature, many blind signature schemes [9–12] have
been proposed. Blind signature has two properties, (1) blindness: signer cannot
obtain the original message from the blinded message; (2) unforgeability: the
user cannot generate a valid signature without interacting with the signer. Notice
that, in the generalized blindness, the signer cannot link any blinded message to
its unblinded version, which is also called untraceability.

Recently, He et al. [13] proposed a blind signature generation method based
on SM2 signature algorithm. However, because He’s method [13] employs Pail-
lier encryption algorithm, their scheme is not efficient or practicable. To solve
this defect, we propose a novel and lightweight blind signature scheme based on
SM2 signature algorithm. In our proposed scheme, the user first blinds the mes-
sage, then sends the blinded message to the signer. Upon receiving the blinded
message, the signer signs on it and returns the blind signature to the user. The
user unblinds and verifies the blind signature. If it is valid, then the user outputs
the message together with the signature. In addition, our proposed scheme can
meet the property of untraceability. Finally, we give a variant of the proposed
scheme.

The public key cryptographic algorithm SM2, published by the Chinese State
Cryptography Administration Office of Security Commercial Code Administra-
tion in 2010, is the Chinese cryptographic public key algorithm standard [14].
Noticeable, ISO/IEC has standardized it in ISO/IEC 14888-3:2016/DAMD 1
[15]. The SM2 algorithm is used in many fields, such as electronic authentica-
tion systems, key management systems and applications systems. In our pro-
posed scheme, the signer can generate a valid signature for the user without
knowing the original message. Also, the signature can be verified efficiently by
the original verification algorithm.

Moreover, we demonstrate that our scheme achieves the blindness property
and show the security analysis of our scheme. Finally, we utilize the MIRACL
Cryptographic SDK [16] to implement our proposed blind signature scheme on
a PC (personal computer) and an Android smartphone. The results show that
our scheme is suitable for real-world applications.

1.1 Application Case

Anonymous e-Cash: The user first blinds the e-cash and sends it to the e-
bank, then the e-bank returns a blinded signature to the user. Upon receiving
the blinded signature, the user unblinds it and sends the payment information
to the merchandiser server. Finally, the merchandiser sends the goods or receipt
to the user.

Privacy Preserving Cryptocurrency Transactions

1. If a user buys some cryptocurrencies (e.g., Bitcoin, Ethereum and Ripple) by
using credit card or PayPal directly, the seller can link the blockchain address
to the user’s real identity. However, if the user utilizes the blind signature
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technique to buy cryptocurrency, it can prevent users’ privacy from leaking
to sellers.

2. Mixcoin server can employ blind signature technique. The user generates a
blind signature of the output address. Therefore, the server cannot link the
input addresses to the output addresses.

1.2 Our Contributions

To protect the user’s privacy, we propose a novel lightweight blind signature
scheme based on SM2 signature algorithm, which yields security and efficiency.
Especially, the main contributions of this paper are as follows:

1. First, we design an efficient blind signature scheme based on SM2 signature
algorithm.

2. Second, we prove that our scheme can satisfy the property of blindness and
existential unforgeability.

3. Finally, we implement our scheme on a PC and a smart phone, the exper-
imental performance shows that our scheme is efficient and convenient for
many real-world applications.

1.3 Organization

In Sect. 3, we show the notations and describe the respective building blocks (i.e.
SM2 signature algorithm, model and the hash functions). In Sect. 4, we present
the detailed algorithms of the proposed blind signature scheme. In Sect. 5, we
give the security analysis and prove our scheme achieves the blindness property.
In Sect. 6, we implement our proposed scheme under MIRACL cryptographic
SDK on Android devices and personal computers (PCs) and evaluate its perfor-
mance. In Sect. 7, we give a variant scheme of the SM2 blind signature. Section 8
concludes this paper.

2 Related Work

Blind signature was first introduced by Chaum [8] in 1982, which a user can
have a message signed without revealing its contents to the signer. Then, blind
signature became a practical tool in many applications such as electronic cash
and anonymous credentials. However, no formal notion of security has been
proved, Pointcheval and Stern [17] proposed a provably secure design for blind
signatures, and they first showed the definition of security for blind signatures.
Then, Juels et al. [18] presented the first complexity-based proof of security
for blind signatures. They also showed that both the properties of security and
blindness can be defined and satisfied simultaneously. Abe [19] proposed a blind
signature scheme which can issue a polynomial number of signatures while only
needs three data exchanges. Boldyreva [20] proposed a blind signature scheme
which is based on Gap Diffie-Hellman (GDH) group, the construction is simple
and it is more efficient than most previous works.
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Previous work on blind signature [18] is secure in the standard model in
stand model, and it is extremely inefficient. Camenisch et al. [21] proposed an
efficient blind signature scheme without random oracles. Hazay et al. [22] also
proposed a scheme for blind signatures without random oracles, which is based
on standard cryptographic assumptions, and it is the first to be proven secure
in a concurrent setting without random oracles. Fischlin [23] built executable
blind signatures schemes, each time a signature is generated, the user and the
signer only need to transmit one message each, in addition, they also proposed
the definition of universally composable blind signature schemes.

In a universally composable (UC) blind signature functionality, the user needs
to commit to the message to be blindly signed. Abe and Ohkubo [24] proposed a
framework for UC non-committing blind signatures. Because of lattice operations
are more efficient and lattice problems remain hard for quantum adversaries,
Rückert [9] constructed a lattice-based blind signature scheme, they showed the
way to turn Lyubashevsky’s identification scheme into a blind signature scheme.

In recent years, many derivative schemes based on blind signatures have also
been proposed. In 2000, Lin and Jan proposed the first proxy blind signature
scheme [25]. In the proxy blind signature, a user can require the branch to gener-
ate proxy blind signature on behalf of the original signer. Some other proxy blind
signature schemes [26,27] have also been put forward. In order to predetermine
user’s public key by his/her uniquely identifier, some identity-based blind signa-
ture schemes [11,28] have been proposed. Group blind signature schemes [29,30]
also been studied. The group blind signature scheme combines anonymity prop-
erties of both group signature and blind signature, protecting both the message
and the signer.

Bonneau et al. proposed a Bitcoin mixing protocol proposed which provides
strong accountability guarantees [7]. However, in the Mixcoin protocol, the map-
ping from a user’s input to output address is visible to the mixing server. By
using the blind signature schemes [8,31], Valenta and Rowan modify the Mixcoin
protocol to provide guarantees that the input/output address mapping for any
user is kept hidden from the mixing server [32].

3 Preliminaries

In this paper, we use κ for the security parameter. For any polynomial p, if the
equation μ(κ) = O(1/p(κ)) holds, we say that the function μ(κ) is negligible.
P.P.T denotes a probabilistic-polynomial time algorithm. R is a finite set, a

r←−
R denotes that a is selected randomly from R. H and h are two secure hash
functions, where H : {0, 1}∗ → {0, 1}256, and h : {0, 1}∗ → Z

∗
n.

3.1 Elliptic Curves Cryptography

In recent decades, elliptic curve cryptography (ECC) has been extensively stud-
ied. In 1985, Neal Koblitz and Victor Miller independently proposed using elliptic
curves to design public-key cryptographic systems. The advantage of ECC is that
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to achieve the same level of security, ECC requires a smaller parameters include
speed (faster computations) and smaller keys and certificates. In addition, the
operations on private key (such as signing and decryption) for ECC are more
efficient than RSA and discrete logarithm (DL) private key operations. There-
fore, these advantages make ECC widely used, especially on some devices with
limited computing resources, such as mobile phones and smart cards.

3.2 Review of SM2 Signature Algorithm

The SM2 signature algorithm includes four sub-algorithms of Setup, Key Gener-
ation, Signature Generation and Verification, as follows:

1. Setup: Given the security parameter κ, the administrator executes the follow-
ing steps:
(a) Generate an elliptic curve y2 = x3 + ax + b over Fq, the parameters of

the elliptic curve are (q, a, b, n), where n is a prime number.
(b) Choose G ∈ E(Fq) randomly as a generator, where the order of G is n.
(c) Set the parameters params = (q, a, b, n,G), and output it.

2. Key Generation: Given the parameters params, the user executes the following
steps:
(a) Choose x

r←− Z
∗
n randomly as the private key.

(b) Compute Q = xG and set Q as the public key.
(c) Output the key-pair (x,Q).

3. Signature Generation: Given the parameters params, the message m to be
signed and the private key x, the signer executes the following steps:
(a) Compute Z = H(ENTL||ID||a||b||G||Y ), where ENTL is the length of

signer’s ID.
(b) Compute e = h(ā), where ā = Z||m.
(c) Choose k

r←− Z
∗
n randomly, then compute R = k · G = (rx, ry).

(d) Compute r = rx + e mod n, then check the following equations, if r = 0
or r + k = n, jump to step 3c, otherwise, go to step 3e.

(e) Compute s = (1 + x)−1 · (k − rx) mod n.
(f) Set the signature σ = (r, s), and output it.

4. Verification: Given the parameters params, the public key Q = xG, the mes-
sage m and the corresponding signature σ, the verifier executes the following
steps:
(a) Compute Z = H(ENTL||ID||a||b||G||Y ), where ENTL is the length of

signer’s ID.
(b) If r /∈ Z

∗
n, output 0.

(c) If s /∈ Z
∗
n, output 0.

(d) Set ā = Z||m, compute e = h(ā).
(e) Compute t = (r+s) mod n, if t = 0, terminate the algorithm and output

0, otherwise go to step 4f.
(f) Compute (rx, ry) = sG + tQ.
(g) Compute R = (e + rx) mod n, if R �= r, the signature is invalid, output

0, otherwise output 1.
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3.3 Model of Blind Signature

Following the notion of [8] and [18], we give the detailed model of the blind
signature and the blindness property in this subsection. As shown in the Fig. 1,
a user and a signer are involved in the blind signature architecture. The signer
produces the public parameter and sends it to the user. After that, the user blinds
the message m (i.e., e-cash and e-vote). At this step, the message m is converted
to a blinded one m′, while the blinded message m′ does not reveal anything of
the original message m. The blinded message m′ is sent to the signer. Upon
receiving m′, the signer signs on it and returns a blind signature σ′ to the user.
Finally, the device unblinds σ′ to obtain the valid signature σ of the original
message m.

Fig. 1. System model

Definition 1. Blind Digital Signature: The blind signature scheme consists of the
following algorithm: Setup, KeyGen, Blind signature issuing protocol and Verify.

– Setup: Given the security parameter, the administrator produces the public
parameters params, which is published in the system.

– KeyGen: Given the parameters params, the signer generates public-private key
pair.

– Blind signature issuing protocol: User and Signer interact with each other. Given
params and the message m to be signed, User and Signer engaged in the blind
signature generation phase. The generation will cease in a polynomial time.
Finally, if the interaction is not completed, Signer outputs not-completed.
Otherwise, Signer sends the blind signature to User and outputs completed.
After that, User outputs the signature σ of the message m or fail.

– Verify: Given the parameters params, the public key, the original σ, and the
message m, the verifier outputs 0 if the signature is invalid. Otherwise, the
algorithm outputs 1.

Definition 2. Blindness Property: Select b
r←− {0, 1} randomly, where the random

number b is kept secret from A, A is the Signer or a P.P.T algorithm which can
control the Signer. A excutes the following steps with two honest users U0 and
U1 [8,18].



374 Y. Zhang et al.

1. (pk, sk) ← KeyGen(1κ).
2. m0,m1 ← A(1κ, pk, sk).
3. A engages in two parallel interactive protocols, where A sends mb to U0 and

m1−b to U1.
4. If U0 outputs σ(mb) and U1 outputs σ(m1−b), the signature pair

(σ(mb), σ(m1−b)) is given to A, or else, ⊥ is given to A.
5. A outputs b′, where b′ ∈ {0, 1}.

If b′ = b, A wins the game. In the blind signature scheme, for all P.P.T
algorithm A, the maximum probability that A wins the game is 1/2 + μ(κ),
where c is a constant.

Definition 3. Existential Unforgeability under Adaptive Chosen Message Attack:
Suppose that there is a challenger C and an adversary A playing the following
game:

1. C executes KeyGen, then sends pk to A.
2. A sends messages m1,m2, . . . ,mq to C, q is the maximum number of queries.

C replies σi = Sign(mi, sk) to A for each message.
3. Finally, A outputs and sends the pair (m∗, σ∗) to C. We say the forgery is a

valid one, if m∗ /∈ m1, . . . ,mq and Verify(m∗, σ∗, pk) = 1.

If for polynomial bounded q, it is computationally infeasible for A to output
a valid signature, then, the scheme is existentially unforgeable under adaptive
chosen message attack (EUF-CMA).

3.4 Collision-Resistant Hash Functions

For any P.P.T adversary A, if the hash function h : {0, 1}∗ → R is collision-
resistant, then there is a negligible function μ(κ) satisfies that:

Pr[(x, y) ← A(1κ, h) : x �= y, h(x) = h(y)] � μ(κ).

Here, R is the range of the hash function h.

4 The Proposed Blind Signature Scheme

A summary of notations used in our proposed scheme is presented as follows
(Table 1).

We show the detailed construction of our proposed scheme in this section.
Our proposed scheme consists of the following four algorithms:

1. Setup: Given the security parameter κ, the administrator executes the follow-
ing steps:
(a) Generate an elliptic curve y2 = x3 + ax + b over Fq, the elliptic curve

parameters are (q, a, b, n), where n is a prime number.
(b) Choose G ∈ E(Fq) randomly as a generator, where the order of G is n.
(c) Set the parameters params = (q, a, b, n,G) and output params.
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Table 1. Notations

Parameter Meaning

K Commitment

x Private key

Q Public key

α, β Blind factors

r′ Blinded message

s′ Blinded signature

(r, s) Original signature

2. Key Generation: Given the parameters params, the Signer executes the follow-
ing steps:
(a) Choose x

r←− Z
∗
n randomly as the private key.

(b) Compute Q = xG, set Q as public key.
(c) Output the key-pair (x,Q).

Fig. 2. A blind signature scheme.

3. Blind Signature Generation: Given the parameters params and the message m
to be signed. User and Signer interact as follows and shown in Fig. 2:
(a) Committing: The signer selects k

r←− Z
∗
n randomly, computes K = kG,

then sends K to the user as a commitment.
(b) Blinding: The user randomly selects two blinding factors α, β

r←− Z
∗
n, then

computes K ′ = αK +βG = (rx, ry), r = rx +e mod n, and r′ = α−1(r+
β), and returns r′ to the signer.

(c) Signing: The signer computes s′ = (1+x)−1(k−r′x) mod n, then returns
s′ to the user.
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(d) Unblinding: The user computes s = α · s′ + β, then outputs (r, s) with the
corresponding message m.

The unblinded signature is (r, s).
4. Verification: Given the parameters params, the public key Q, and message m

with the corresponding signature (r, s). The verifier executes the following
steps:
(a) Compute Z = H(ENTL||ID||a||b||G||Y ), where ENTL is the length of

signer’s ID.
(b) If r /∈ Z

∗
n, output 0.

(c) If s /∈ Z
∗
n, output 0.

(d) Set ā = Z||m, compute e = h(ā).
(e) Compute t = (r+s) mod n, if t = 0, terminate the algorithm and output

0, otherwise go to step 4f.
(f) Compute (rx, ry) = sG + tQ.
(g) Compute R = (e + rx) mod n, if R �= r, the signature is invalid, output

0, otherwise output 1.

In our proposed blind signature generation phase, the User computes K ′ =
(α ·K +β ·G), i.e., (rx, ry) = (αk+β)G. Finally, the User computes the equation
that

s = α · s′ + β

= α((1 + x)−1(k − r′x) + β

= α(1 + x)−1(k − α−1(r + β)x) + β

= (1 + x)−1(αk − rx − βx) + β

= (1 + x)−1(αk + β − rx)

Compared with the original SM2 signature algorithm, it’s obviously to see
that (αk+β) is same as k in SM2 signature algorithm. Therefore, the blind SM2
signature (r, s) can be verified correctly.

5 Security Analysis

5.1 Mathematical Assumptions

We give the mathematical assumptions in this subsection, which are required in
our security proof.

Definition 4. Elliptic Curve Discrete Logarithm (DL) Problem: Sup-
pose that E(Fq) is an elliptic curve over Fq where G ∈ E(Fq). Given a multiple
K of G, the elliptic curve DL problem in E(Fq) is to compute k ∈ Z

∗
n where

K = kG ∈ E(Fq). A P.P.T algorithm A has advantage at least ε in solving DL
problem in E(Fq)

Pr [A (G,K) = k : k ∈ Z∗
n,K = kG] � ε

Definition 5. The elliptic curve DL assumption holds, if no P.P.T algorithm
can solve elliptic curve DL problem with a non-negligible advantage.
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5.2 Blindness Property

Theorem 1. The proposed scheme is blind.

Proof. Suppose that A is the Signer or a P.P.T algorithm which can control the
Signer. If A gets ⊥, then A wins the game with the probability 0.5, i.e. A guess
b randomly.

A is assumed to obtain σ(mb) and σ(m1−b). Let (Ki, s
′
i) (i ∈ {0, 1}) be the

data emerging in A’s view during the execution of blind signature generation
phase, and (r0, s0), (r1, s1) are sent to A. Therefore, this is enough to indicate
that there are two random factors (α, β) which can map (Ki, s

′
i) to (rj , sj). We

can define that α = sj+rj

s′
i+r′

i
, β = αr′

i − rj . We have that:

(rx, ry) = sjG + tQ

= sjG + rjQ + sjQ

= (α(s′
i + r′

i) − rj)(G + Q) + rjQ

= α(s′
i + r′

i)(G + Q) − rjG

= α(s′
i + r′

i)(G + Q) − (αr′
i − β)G

= αs′
i(G + Q) + αr′

iQ + βG

= αKi − αr′
iQ + αr′

iQ + βG

= αKi + βG

Therefore,

R = (e + rx) mod n

= (e + [αKi + βG]x) mod n

Note that, [P ]x denotes x coordinate of the point P .

5.3 Non-forgeablility

Suppose that there exists a P.P.T adversary A which may be the user or any
other, it holds the system public parameters params = (q, a, b, n,G). Then A
tries to forge a signature which can pass the verification.

At the beginning, we assume that A can interact with the signer, therefore
K, r′ and s′ can be viewed by A in the blind signature generating phase. Since
s′ = (1+x)−1(k−r′x) mod n. A knows r′. If A tries to obtain x from s′, he/she
must know k. A knows K = kG, it is a DL problem to compute k from K. If DL
problem is hard, then A cannot obtain the private key when he/she interacts
with the signer.

Lemma 1. Assume that h is a uniform and collision-resistant hash function,
under adaptively chosen-message attacks in the generic group model, the SM2
signature scheme is existentially unforgeable [33].
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Theorem 2. If the SM2 signature scheme satisfies EUF-CMA, then our pro-
posed scheme satisfies EUF-CMA.

Proof. In our proposed scheme, both the signing equation and verifying equation
are the same as the SM2 signature scheme. If there exists a P.P.T adversary A
which can produce a signature (r′, s′) for the given message m, and the forgery
can pass the verification algorithm, then for the message m, A can forge a valid
blind signature based on the SM2 signature scheme.

The SM2 signature scheme is EUF-CMA, our proposed blind signature
scheme is existentially unforgeable under EUF-CMA attacks.

Remark 1. As mentioned in [34] by Pointcheval and Stern, one-more signature
forgery is the most powerful attack to the blind signature. However, there are
multiple key components in Pointcheval and Stern’s scheme, and only one private
key is involved in our proposed scheme. Therefore, their theorem cannot be
applied to ours.

6 Performance and Experimental Results

In order to implement and analysis the efficiency of our proposed scheme, we uti-
lized the MIRACL Cryptographic SDK. We implement and deploy the proposed
scheme on a personal computer (with an AMD Phenom II X6 1100T processor,
16 GB DDR3 RAM and the Microsoft Windows 10 Professional operating sys-
tem) and a Google Nexus 6 Android phone (with a Qualcomm Snapdragon 805
processor, 3 GB RAM and Android Oreo 8.1.0 operating system). We choose
the the elliptic curve in the SM2 algorithm to implement our proposed scheme,
that can achieve AES-128 security. In addition, we analyze the run time of each
progress in both setup phase and blind signature generation phase.

The experimental results on the PC are shown in Fig. 3. Signer-Step1 denotes
the first progress executed by the signer, User-Step1 denotes the first progress
executed by the user, after he/she receives the commitment from the signer.
Signer-Step2 denotes the progress of blind signature generation which is executed
by the signer. User-Step2 denotes the progress of unblinding which is executed
by the user. Figure 3 shows the time consuming of each progress in our proposed
scheme. Besides, we compared our scheme with the SM2 signature scheme in
Table 2. In the Sign algorithm of our proposed scheme, User and the Signer need
to interact for three rounds.

The time consuming of each algorithm running on the phone is shown in
Fig. 4.

The comparison results of our proposed blind signature scheme and the SM2
signature scheme which are running on the Android phone is shown in Table 3.

We also compared our proposed scheme with He’s patent [13]. They use
Paillier encryption algorithm to generate an SM2 blind signature. It can be seen
from Table 4 that our proposed scheme is far more efficient than [13].

In addition, we evaluate the performance by using the different lengths of
messages in both Sign and Verify algorithms. This experiment is running on
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Table 2. Running time on PC.

Scheme Algorithm

Setup Sign Verify

Original SM2 5.97 ms 3.23 ms 6.03 ms

Blind SM2 5.97 ms 9.35 ms 6.03 ms

6.18

2.95

13.73

0.07 0.03

13.42

0

2

4

6

8

10

12

14

16

Setup Signer-Step1 User-Step1 Signer-Step2 User-Step2 Verify

m
s

Time consuming

Fig. 4. Time consuming for each algorithm running on phone

Table 3. Running time on phone.

Scheme Algorithm

Setup Sign Verify

Original SM2 6.18 s 10.49 ms 13.42 ms

Blind SM2 6.18 ms 16.78 ms 13.42 ms
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Table 4. Running time comparison.

Scheme Algorithm

Setup Signer-Step1 User-Step1 Signer-Step2 User-Step2

Our scheme 5.97 ms 2.99 ms 6.32 ms 0.03 ms 0.01 ms

He’s patent [13] 38.38 ms 2.99 ms 31.76 ms 48.87 ms 231.14 ms

the PC and the results is shown in Fig. 5, the lengths of the messages used
are 1byte, 32bytes, 1K bytes, 10K bytes, 100K bytes and 1M bytes. Except for
the message of 1M-byte in length, the messages are signed for approximately
3.1 ms and 9.1 ms in the SM2 signature scheme and our blind signature scheme,
respectively.

Fig. 5. Time costs for messages of different sizes in the sign algorithm

Since the verification algorithm is same as the original one, we can learn
from Fig. 6 that when the message length is less than 1 MB, the time required
for verification is about 6 ms, but when the message length reaches 1 MB, it takes
18 ms.

Moreover, we compared our scheme with blind Schnorr signature scheme [35]
which was proposed in EUROCRYPT 2020. We implemented the two schemes
by using SECP256 curve on a personal computer, the experimental results are
show in Fig. 7.
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Fig. 6. Time costs for messages of different sizes in the sign algorithm

Fig. 7. Comparison between our scheme and [35]

7 Extensions and Discuss

In this section, we slightly change the Blind Signature Generation as follows and
shown as in Fig. 8:

1. Committing: The signer selects k
r←− Z

∗
n randomly, computes K = kG, then

sends K to the user as a commitment.
2. Blinding: The user randomly selects two blinding factors α, β

r←− Z
∗
n, then

computes K ′ = αK + αβG = (rx, ry), r = rx + e mod n, and r′ = α−1r + β,
and returns r′ to the signer.

3. Signing: The signer computes s′ = (1 + x)−1(k − r′x) mod n, then returns s′

to the user.
4. Unblinding: The user computes s = α · (s′ + β), then outputs (r, s) with the

corresponding message m.
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Fig. 8. The variant SM2 blind signature scheme

8 Conclusion

Blind signature is beneficial to protect the user’s privacy on the Internet. Based
on the SM2 signature algorithm, we proposed a novel and lightweight blind
signature scheme. Specifically, the proposed scheme can meet the property of
untraceability. The security analysis demonstrated that our method can achieve
the security requirement. According to the performance evaluation, our proposed
scheme shows that it is potentially useful in many real-world applications.
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Abstract. Quantum digital signatures (QDS) is a cryptography primi-
tive based on quantum mechanics, and has the same role as the classical
digital signature. Many novel QDS protocols have been proposed, which
can guarantee the information-theoretic security of the signature for a
single bit against forging and denying. Recently, T.Y. Wang et al. first
proposed a QDS scheme satisfying multi-bit security which based on arbi-
trary single-bit signature scheme. However, their coding scheme requires
2n+ 4 signature keys to sign a classical n-bit message. In this paper, we
propose a more efficient protocol for signing multi-bit message. We need
about 1.5n + 7 signature keys for a n-bit message.

Keywords: Quantum digital signature · High efficiency · Forgery
attack

1 Introduction

Digital signature (DS) is a fundamental cryptographic primitive, which can guar-
antee the non-repudiation, authenticity and transferability of messages. Never-
theless, the security of classical digital signature are based on difficult mathe-
matical problems. With the development of quantum algorithms, these difficult
mathematical problems may become easy to solve. Fortunately, Gottesman and
Chuang [1] put forward quantum digital signature (QDS), whose security is based
on the fundamental principles of quantum mechanics. The early schemes [1–3]
require that complex quantum states be prepared in advance, and these states
need to be stored in quantum memory, which make these schemes impractical.
Then, many new QDS schemes [4–6,18] without quantum memory are proposed
in succession. With the update of quantum technology, some QDS schemes can
be implemented on QKD systems [8–15]. The security of signing a single-bit mes-
sage is unconditionally secure against most existing methods of attack. However,
it is not secure to use these schemes directly for multi-bit messages [16] without
any preprocessing. A malicious participant can forge a new signature by inter-
cepting part of the legitimate signature. For example, Alice sends a message-
signature pair (Don’t pay Bob 10$ Sig(Don’t) Sig(pay) Sig(Bob) Sig(10$)) to
Bob. When Bob receives this message-signature pair, he can get a new valid
message-signature pair (Pay bob 10$ Sig(pay) Sig(Bob) Sig(10$)), then sends to
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 385–394, 2021.
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Charlie. It is clear that Charlie will accept the signature, which means that Bob
successfully forged a valid signature.

Recently, T.Y. Wang et al. [17] has given a solution to the above problems,
which is to set a predetermined label for signature and put all the signatures
in a sequence. In addition, a special kind of coding of the message is carried
out, which makes the truncation attack impossible to implement. However, their
scheme requires more than twice as many bits to sign a multi-bit message, which
has a great impact on practical efficiency.

Based on the construction framework of [17], we propose a new coding
scheme, which increase the efficiency of our scheme by 25% compared with the
previous scheme. In our scheme, we encode 0 to 0 and 1 to 01. And then we
add a special codeword 11 to the start and 10111 to the end of the codeword
sequence. For example, we will encode a message 1010 to 11||01||0||01||0||10111.
In T.Y. Wang et al. [17], they encode 0 to 00 and 1 to 01, and add a special
codeword 11 at the beginning and end. For example, they will encode a message
1010 to 11|01||00||01||00||11. Obviously, the signature keys needed in [17] for a n
bit message are 2n + 4. But in our scheme, if the message is all 0 bits, then we
just need n + 7 signature keys for a n bit message which is 50% more efficient
than [17]. Generally speaking, the number of 0 bits and 1 bits in the message is
roughly the same, and our scheme needs 1.5n + 7 signature keys, which is 25%
more efficient than the previous scheme.

2 An Efficient Scheme

In this section, we give an efficient scheme for signing multi-bit messages which
based on the security of signing a single bit. Our proposal includes three stages:
the initial stage, the signing state and the verifying stage. There are three parties
in our proposal include a signer Alice, a trusted third party (TTP) Joe, who has
the ability to judge the validity of signatures and provide a fair judgement in
the event of dispute, and several recipients Bod, Charlie, David and so on are
also involved in this protocol. Specifically, we will describe our proposal in detail
below.

2.1 The Initial Stage

We use ki = 0 or 1 to represent the message bit in the future, i = 1, 2, 3, . . . , N ,
where the integer N is sufficiently large. For each ki, Alice generates its signature
key Ski

and verification key Vki
. After that, Alice distribute all verification key

{Vki
}, i = 1, 2, 3, . . . , N to TTP and each recipient. This stage can be completed

by any ways in [8–15]. Specially, all signature keys and verification keys should
be labeled and sequential, and the signature Ski

is predetermined to sign 0 or
1, which means that if ki = 0, it only can be used to sign bit 0; otherwise, it
shall be used to sign bit 1. Besides, the verification key Vki

which TTP and
recipient received may be different, which depends on the method used in [8–
15]. However each verification key can successfully verify the legitimate signature
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which generated by the corresponding signature key Ski
. In the following, we no

longer distinguish the same kind of verification key and use Vki
to represent it

uniformly.

2.2 The Signing Stage

As stated in [17], Alice encodes a message M = m1||m2|| · · · ||mn, mi ∈ {0, 1},
i = 1, 2, . . . , n, where || denotes the concatenation between bits, into ̂M using a
specific coding rule. For each bit mi, i = 1, 2, . . . , n, if it is 0, Alice encodes it
with the codeword 00, otherwise she encodes it with the codeword 01. After that
she adds a special codeword 11 to both start and the end of codeword sequence.
we use a simple formula to express it as follows:

̂M = 1||1||0||m1||0||m2||0||m3|| · · · ||0||mn||1||1, (1)

where n is the length of a classical message in binary. Therefore, the length of
̂M is exactly 2n + 4. Then, she signs ̂M with corresponding signature keys.

In our proposal, we will encodes the bit 0 into 0 and the bit 1 into 01.
Furthermore, we add a special codeword 11 to the start and 10111 to the end
of the codeword sequence. In this way, the message M is transformed to a bit
sequence ˜M . It’s easy to see that the length of ˜M depends on the number of 0
in the message M . Because of our unique coding method, we can’t get the exact
length of ˜M as in the scheme above. Without loss of generality, suppose that the
length of ˜M is n′ + 7, n ≤ n′ ≤ 2n, where n is the length of a classical message
in binary. The following is the concrete process of our scheme.

1. Bob sends the message M to Alice via a classical authenticated channel.
2. When receiving the message M , Alice encodes it to ˜M = m̃1||m̃2||m̃3||

· · · ||m̃n′+2||m̃n′+3|| · · · ||m̃n′+7 where m̃1||m̃2 = 1||1, m̃n′+3 · · · ||m̃n′+7 =
1||0||1||1||1 and checks whether the signature keys she had are enough to
sign ˜M . If it is not so, she abort.

3. Then Alice chooses n′+7 signature keys Skl+1, Skl+2, . . . , Skl+n′+7 in sequence
where kl + j = m̃j , j = 1, 2, . . . , n′ + 7. After that, she signs each m̃j with
corresponding signature key Skl+j and the signature of m̃j is denoted as
SigSkl+j

(m̃j). Finally, she sends the message-signature pair
(

M,Sig(M), l
)

to Bob via a classical authenticated channel, where M is the initial message,
l + 1 is the sequence number of the first signature key in the whole, and

Sig(M) = SigSkl+1(m̃1)||SigSkl+2(m̃2)|| · · · ||SigSkl+n′+7
(m̃n′+7). (2)

4. Bob encodes the message M to ˜M by the same rule mentioned in 2 when
he receives the message-signature pair

(

M,Sig(M), l
)

. Then, he checks each
signature SigSkl+j

(m̃j) is legal or not by the corresponding verification key
Vkl+j . If every signature SigSkl+j

(m̃j), j = 1, 2, . . . , n′ + 7 can successfully
pass the verification, Bob accepts the message. Otherwise, he rejects it.
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2.3 The Verifying Stage

Bob has the right to distribute the received message-signature pair
(

M,Sig(M),
l
)

to other recipient, such as Charlie, via a classical authenticated channel. Then
Charlie can check these message-signature pair by the same way as Bob does in
step (4), i.e. if each message-signature pair

(

m̃j , SigSkl+j
(m̃j)

)

(j = 1, 2, . . . , n′ +
7) matches with the corresponding verification key Vkl+j distributed by Alice in
the initial stage, he confirms the legitimacy of message M ; otherwise he thinks
that the message M does not come from Alice or it has been tampered with.

When any one of the recipient in the protocol has a difference, for exam-
ple, the singer Alice denies her signature or a recipient doubts the validity of
the message-signature pair

(

M,Sig(M), l
)

, in this case, they send the message-
signature pair

(

M,Sig(M), l
)

to TTP via a classical authenticated channel.
TTP checks the legality of the message-signature pair

(

M,Sig(M), l
)

by the
same way as Bob does in step (4) of Sect. 2.2 and gives the objective judgement
according to the verification results, that means, if the message-signature pair
(

M,Sig(M), l
)

pass the verification, he judges the message M come from Alice
and

(

M,Sig(M), l
)

has not been tampered with; otherwise, he denies that the
signature come from Alice.

2.4 Security Analysis

The security of signature includes anti-forgery and undeniable. It has
been proved that the signature for a single bit is unconditionally secure
in [8–15], that means nobody could forge a valid message-signature pair
(

m̃j , SigSkl+j
(m̃j)

)

except with a negligible probability. Obviously, nobody could
forge a valid message-signature pair

(

M,Sig(M), l
)

by the way of forge a new
(

m̃′
j , SigSkl+j

(m̃′
j)

)

except the signer Alice. On the other hand, the way we con-
struct the protocol creates some new problems. Adversary could recombine the
bit-signature pair

(

m̃j , SigSkl+j
(m̃j)

)

to forge a valid message-signature pair
(

M ′, Sig(M ′), l′
)

by using known message-signature pair
(

M,Sig(M), l
)

. We
can prove that an opponent Eve can’t form a valid message-signature pair even
if he has access to get a lot of valid message-signature pairs

(

M1, Sig(M1), l1
)

,
(

M2, Sig(M2), l2
)

, . . . ,
(

MT , Sig(MT ), lT
)

.
When an opponent Eve wants to forge a message-signature pair, she needs

to consider the following three situations. First, the label of verification key for
each message bit 0 or 1 is predetermined and sequential, which requires the
bit-signature pairs chosen from known message-signature pairs must be also in
sequence.

Second, a valid signature

Sig(M) = SigSkl+1(m̃1)||SigSkl+2(m̃2)|| · · · ||SigSkl+n′+7
(m̃n′+7)

are tagged with SigSkl+1(1)||SigSkl+2(1) and SigSkl+n′+3
(1)||SigSkl+n′+4

(0)||
SigSkl+n′+5

(1)||SigSkl+n′+6
(1)||SigSkl+n′+7

(1) at the start and the end, i.e., the
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start of a valid signature Sig(M) must be a signature on the special codeword 11
and the end of a signature must be a signature on the special codeword 10111.

Finally, except the first two and the last five bit signatures in a valid signature
Sig(M), all the other bit signatures are consisted of the codewords 0 and 01 in
sequence.

In general, if an opponent Eve wants to forge a valid message-signature pair
(

M ′, Sig(M ′), l′
)

(here the length of the message M ′ is ñ) which can pass the
verification, she must make the forged signature

Sig(M ′) = SigSk′
l
+1

(m̃′
1)||SigSk′

l
+2

(m̃′
2)|| · · · ||SigSk′

l
+ñ′+7

(m̃′
ñ′+7), ñ ≤ ñ′ ≤ 2ñ

satisfy the following three requirements:

1. m̃′
1m̃

′
2 = 11, m̃′

ñ′+3m̃
′
ñ′+4m̃

′
ñ′+5m̃

′
ñ′+6m̃

′
ñ′+7 = 10111;

2. m̃′
3m̃

′
4 · · · m̃′

ñ′+2 are consisted of the codewords 0 and 01;
3. Each bit-signature pair must pass the verification.

Theorem 1. It is impossible to forge a valid message-signature pair
(

M ′,
Sig(M ′), l′

)

in our protocol no matter how many valid message-signature pairs
(

M1, Sig(M1), l1
)

,
(

M2, Sig(M2), l2
)

, . . . ,
(

MT , Sig(MT ), lT
)

Eve has access to.

In order to prove the above theorem, we first prove the following three nec-
essary lemma.

Lemma 1. Suppose that C = c1||c2|| · · · ||ct, ci ∈ {0, 01}, i = 1, 2, . . . , t, is a
bit sequence. then 11 and 10111 /∈ C.

Proof. There are only four cases 0||0, 0||01, 01||0, 01||01 between the concatena-
tion of 0 and 01, which is the basic component of C. Therefore, it is impossible
to find a codeword 11 or 10111 in C, no matter how large t is, that is 11 and
10111 /∈ C.

Lemma 2. Suppose that C = 1||1||c1||c2|| · · · ||ct||1||0||1||1||1, ci ∈ {0, 01}, i =
1, 2, . . . , t is a bit sequence, it is impossible to find a sequence C ′ =
1||1||c′

1||c′
2|| · · · || c′

k||1||0||1||1||1 with c′
i ∈ {0, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C

except C ′ = C. Noted that here all the codewords in C ′ are in sequence.

Proof. To find a sequence C ′ = 1||1||c′
1||c′

2|| · · · ||c′
k||1||0||1||1||1 with c′

i ∈
{0, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C, we must find the special code-
word 11 and 10111 in the sequence C at first. But, according to Lemma
1, which means that it is impossible to find a codeword sequence C ′ =
1||1||c′

1||c′
2|| · · · ||c′

k||1||0||1||1||1 with c′
i ∈ {0, 01}, i = 1, 2, . . . , k such that C ′ ⊆

c1||c2|| · · · ||ct. Besides, the first bit of both the valid codewords 0 and 01 is 0, so
we cannot find a new codeword 11 in the sequence 11||c1||c2|| · · · ||ct except for
the primitive codeword 11. When we consider the sequence c1||c2|| · · · ||ct||10111,
if ct = 01 we can find a new codeword 11 in c1||c2|| · · · ||01||10111, but there
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are no 10111 in this sequence, which means that it is not a valid sequence.
Therefore, to find a sequence C ′ = 1||1||c′

1||c′
2|| · · · ||c′

k||1||0||1||1||1 with c′
i ∈

{0, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C, we must choose the first codeword
11 of the sequence C as the start codeword of the sequence C ′. Then, the
next task is to find codeword 10111 in the sequence c1||c2|| · · · ||ct||1||0||1||1||1.
Through simple analysis, we can see that there is no 10111 in the sequence
c1||c2|| · · · ||ct||1||0||1||1||1, ci ∈ {0, 01} except the primitive codeword 10111.
Therefore, it is impossible to find a sequence C ′ = 1||1||c′

1||c′
2|| · · · ||c′

k||1||0||1||1||1
with c′

i ∈ {0, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C except C ′ = C.

Lemma 3. Suppose that Cj = cj1||cj2|| · · · ||cjnj
, cj1 = 11, cjnj

= 10111, cji ∈
{0, 01}, i = 2, 3, . . . , nj − 1, j = 1, 2, . . . , l, it is impossible to find a sequence
C ′ = c′

1||c′
2|| · · · ||c′

n′ , with c′
1 = 11, c′

n′ = 10111, c′
i ∈ {0, 01}, i = 2, 3, . . . , n′ − 1

such that C ′ ⊆ C1||C2|| · · · ||Cl except C ′ = Cj , j = 1, 2, . . . , l.

Proof. When l = 1, we can reduce Lemma 3 to lemma 2, and the conclusion is
obviously right.

When l = 2

C1||C2 = c11||c12|| · · · ||c1n1−1||c1n1
||c21||c22|| · · · ||c2n2−1||c2n2

.

To find a sequence C ′ = c′
1||c′

2|| · · · ||c′
n′ with c′

1 = 11, c′
n′ = 10111, c′

i ∈
{0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2|| · · · ||Cl, it is necessary to
find two new codeword 11 and 10111. By Lemma 2, the new codeword 11 and
10111 can be only found from c1n1−1||c1n1

||c21 or c2n2−1||c2n2
.

(1) When c1n1−1||c1n1
||c21 = 0||10111||11 and c2n2−1||c2n2

= 0||10111, if we choose
11 in the sequence c2n2−1||c2n2

= 0||10111 as the start codeword of the
sequence C ′, there is no end codeword 10111 in the sequence C ′, so we
can only choose new codeword 11 from c1n1−1||c1n1

||c21 = 0||10111||11. Nev-
ertheless, if we choose c11 as the start codeword of the sequence C ′, we
can choose c1n1

as the end codeword, in the case C ′ = C1; if we choose
c11 as the start codeword of the sequence C ′, we also can choose c2n2

as
the end codeword, i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11|| · · · ‖|10111||11||101111,
in the case there must exist at least one codeword c′

i such that c′
i /∈

{0, 01} if we choose the third and fourth bit of c1n1
as the start code-

word of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,

C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||1||11|| · · · ‖|101111, in the case there must exist

at least one codeword c′
i such that c′

i /∈ {0, 01}; if we choose the fourth and
fifth bit of c1n1

as the start codeword of the sequence C ′, we must choose
c2n2

as the end codeword, i.e., C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||11|| · · · ‖|101111, in

the case there must exist at least one codeword c′
i such that c′

i /∈ {0, 01};
if we choose the fifth bit of c1n1

and the first bit of c21 as the start code-
word of the sequence C ′, we must choose c2n2

as the end codeword, i.e.,
C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11||1|| · · · ‖|101111, in the case there must exist at
least one codeword c′

i such that c′
i /∈ {0, 01}; if we choose c21 as the start

codeword of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,
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C ′ = C2. Therefore, when c1n1−1||c1n1
||c21 = 0||10111||11 and c2n2−1||c2n2

=
0||10111, it is impossible to find a sequence C ′ = c′

1||c′
2|| · · · ||c′

n′ , with
c′
1 = 11, c′

n′ = 10111, c′
i ∈ {0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = Cj , j = 1, 2.
(2) When c1n1−1||c1n1

||c21 = 01||10111||11 and c2n2−1||c2n2
= 0||10111, if we choose

11 in the sequence c2n2−1||c2n2
= 0||10111 as the start codeword of the

sequence C ′, there is no end codeword 10111 in the sequence C ′, so we can
only choose new codeword 11 from c1n1−1||c1n1

||c21 = 01||10111||11. Neverthe-
less, if we choose c11 as the start codeword of the sequence C ′, we can choose
c1n1

as the end codeword, in the case C ′ = C1; if we choose c11 as the start
codeword of the sequence C ′, we can also choose c2n2

as the end codeword,
i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11|| · · · ‖|10111||11||10111, in the case there must
exist at least one codeword c′

i such that c′
i /∈ {0, 01} if we choose the last

bit of c1n1−1 and the first bit of c1n1
as the start codeword of the sequence

C ′, we must choose c2n2
as the end codeword, i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ =
11||01111||11|| · · · ‖|10111, in the case there must exist at least one codeword
c′
i such that c′

i /∈ {0, 01} if we choose the third and fourth bit of c1n1
as the

start codeword of the sequence C ′, we must choose c2n2
as the end codeword,

i.e., C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||1||11|| · · · ‖|10111, in the case there must exist

at least one codeword c′
i such that c′

i /∈ {0, 01}; if we choose the fourth and
fifth bit of c1n1

as the start codeword of the sequence C ′, we must choose
c2n2

as the end codeword, i.e., C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||11|| · · · ‖|10111, in

the case there must exist at least one codeword c′
i such that c′

i /∈ {0, 01};
if we choose the fifth bit of c1n1

and the first bit of c21 as the start code-
word of the sequence C ′, we must choose c2n2

as the end codeword, i.e.,
C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11||1|| · · · ‖|10111, in the case there must exist at
least one codeword c′

i such that c′
i /∈ {0, 01}; if we choose c21 as the start

codeword of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,

C ′ = C2. Therefore, when c1n1−1||c1n1
||c21 = 01||10111||11 and c2n2−1||c2n2

=
0||10111, it is impossible to find a sequence C ′ = c′

1||c′
2|| · · · ||c′

n′ , with
c′
1 = 11, c′

n′ = 10111, c′
i ∈ {0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = Cj , j = 1, 2.
(3) When c1n1−1||c1n1

||c21 = 0||10111||11 and c2n2−1||c2n2
= 01||10111, if we choose

11 in the sequence c2n2−1||c2n2
= 0||10111 as the start codeword of the

sequence C ′, there is no end codeword 10111 in the sequence C ′, so we
can only choose new codeword 11 from c1n1−1||c1n1

||c21 = 0||10111||11. Nev-
ertheless, if we choose c11 as the start codeword of the sequence C ′, we
can choose c1n1

as the end codeword, in the case C ′ = C1; if we choose
c11 as the start codeword of the sequence C ′, we also can choose c2n2

as
the end codeword, i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11|| · · · ‖|10111||11||101111,
in the case there must exist at least one codeword c′

i such that c′
i /∈

{0, 01} if we choose the third and fourth bit of c1n1
as the start code-

word of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,

C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||1||11|| · · · ‖|101111, in the case there must exist

at least one codeword c′
i such that c′

i /∈ {0, 01}; if we choose the fourth and
fifth bit of c1n1

as the start codeword of the sequence C ′, we must choose



392 Y. Wang and M. Wang

c2n2
as the end codeword, i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11||11|| · · · ‖|101111, in
the case there must exist at least one codeword c′

i such that c′
i /∈ {0, 01};

if we choose the fifth bit of c1n1
and the first bit of c21 as the start code-

word of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,

C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||1|| · · · ‖|101111, in the case there must exist at

least one codeword c′
i such that c′

i /∈ {0, 01}; if we choose c21 as the start
codeword of the sequence C ′, we must choose c2n2

as the end codeword, i.e.,
C ′ = C2. Therefore, when c1n1−1||c1n1

||c21 = 0||10111||11 and c2n2−1||c2n2
=

0||10111, it is impossible to find a sequence C ′ = c′
1||c′

2|| · · · ||c′
n′ , with

c′
1 = 11, c′

n′ = 10111, c′
i ∈ {0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = Cj , j = 1, 2.
(4) When c1n1−1||c1n1

||c21 = 01||10111||11 and c2n2−1||c2n2
= 01||10111, if we choose

11 in the sequence c2n2−1||c2n2
= 01||10111 as the start codeword of the

sequence C ′, there is no end codeword 10111 in the sequence C ′, so we can
only choose new codeword 11 from c1n1−1||c1n1

||c21 = 01||10111||11. Neverthe-
less, if we choose c11 as the start codeword of the sequence C ′, we can choose
c1n1

as the end codeword, in the case C ′ = C1; if we choose c11 as the start
codeword of the sequence C ′, we can also choose c2n2

as the end codeword,
i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11|| · · · ‖|10111||11||10111, in the case there must
exist at least one codeword c′

i such that c′
i /∈ {0, 01} if we choose the last

bit of c1n1−1 and the first bit of c1n1
as the start codeword of the sequence

C ′, we must choose c2n2
as the end codeword, i.e., C ′ = c′

1||c′
2|| · · · ||c′

n′ =
11||01111||11|| · · · ‖|10111, in the case there must exist at least one codeword
c′
i such that c′

i /∈ {0, 01} if we choose the third and fourth bit of c1n1
as the

start codeword of the sequence C ′, we must choose c2n2
as the end codeword,

i.e., C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||1||11|| · · · ‖|10111, in the case there must exist

at least one codeword c′
i such that c′

i /∈ {0, 01}; if we choose the fourth and
fifth bit of c1n1

as the start codeword of the sequence C ′, we must choose
c2n2

as the end codeword, i.e., C ′ = c′
1||c′

2|| · · · ||c′
n′ = 11||11|| · · · ‖|10111, in

the case there must exist at least one codeword c′
i such that c′

i /∈ {0, 01};
if we choose the fifth bit of c1n1

and the first bit of c21 as the start code-
word of the sequence C ′, we must choose c2n2

as the end codeword, i.e.,
C ′ = c′

1||c′
2|| · · · ||c′

n′ = 11||1|| · · · ‖|10111, in the case there must exist at
least one codeword c′

i such that c′
i /∈ {0, 01}; if we choose c21 as the start

codeword of the sequence C ′, we must choose c2n2
as the end codeword, i.e.,

C ′ = C2. Therefore, when c1n1−1||c1n1
||c21 = 01||10111||11 and c2n2−1||c2n2

=
0||10111, it is impossible to find a sequence C ′ = c′

1||c′
2|| · · · ||c′

n′ , with
c′
1 = 11, c′

n′ = 10111, c′
i ∈ {0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = Cj , j = 1, 2.

Therefore, when l = 2, the conclusion is also right. Suppose that when
l = n − 1, the conclusion is right, then we consider the case of l = n.
Let C = C1||C2|| · · · ||Cl−1, assumed by induction method, it is impossible
to find a sequence C ′ = c′

1||c′
2|| · · · ||c′

n′ , with c′
1 = 11, c′

n′ = 10111, c′
i ∈

{0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2|| · · · ||Cl−1 except C ′ = Cj , j =
1, 2, . . . , l−1. We can see from the above analysis as l = 2 that it is impossible to
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find a sequence C ′ = c′
1||c′

2|| · · · ||c′
n′ , with c′

1 = 11, c′
n′ = 10111, c′

i ∈ {0, 01}, i =
2, 3, . . . , n′ − 1 such that C ′ ⊆ C||Cl except C ′ = Cj , j = 1, 2, . . . , l.

From Lemma 1, 2 and 3, we can conclude that it is impossible to
find a sequence C ′ = c′

1||c′
2|| · · · ||c′

n′ , with c′
1 = 11, c′

n′ = 10111, c′
i ∈

{0, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2|| · · · ||Cl except C ′ =
Cj , j = 1, 2, . . . , l, which means that it is impossible to forge a valid message-
signature pair

(

M ′, Sig(M ′), l′
)

no matter how many valid message-signature
pairs

(

M1, Sig(M1), l1
)

,
(

M2, Sig(M2), l2
)

, . . . ,
(

MT , Sig(MT ), lT
)

Eve has
access to.

So we can prove that Theorem 1 is true by Lemma 1, Lemma 2, Lemma 3.
Hence, if the single bit signature is unconditionally secure against forging, the

protocol we present is also unconditionally secure against forging. Furthermore,
there is a TTP in our protocol, which can help the participants to the protocol
to verify the validity of the message-signature pairs

(

M,Sig(M), l
)

and prevent
the denial of a valid message-signature pairs

(

M,Sig(M), l
)

.

2.5 Efficiency Analysis

In [17], 2n + 4 signature keys is needed for signing a n bits message. We have
improved the encoding of messages so that fewer signature keys are required,
which depend on the number of zeros in the message.

Theorem 2. If there are x (0 ≤ x ≤ n) 0 bits in a message of length n, then
our scheme needs 2n − x + 7 signature keys.

Proof. In our scheme, we will encodes the bit 0 into 0 and the bit 1 into 01, so
there are x + 2(n − x) = 2n − x codewords for a message of length n with x
zeros. Furthermore, we add a special codeword 11 to the start and 10111 to the
end of the codeword sequence. So, our scheme needs 2n − x + 7 signature keys.

3 Conclusion

In this paper, we propose a more efficient proposal for safely singing multi-
bit message. Compared with T.Y. Wang et al. [17], which need more than 2n
signature keys to sign n-bit message, our scheme requires only n + 7 to 2n + 7
signature keys to sign n-bit messages. The number of signature keys we need
depends on the number of 0 bits in the message. Specifically, if there are x
(0 ≤ x ≤ n), bits 0 in an n bits message, then 2n − x + 7 signature keys are
required. It is obvious that the more 0 bits in the message, the less signature
keys we need, the more efficient our scheme will be. When the message is all bit
0, our scheme has 50% efficiency improvement. Generally speaking, the number
of 0,1 bits in a message should be roughly the same, and even so, our scheme
still has a big advantage (we just need 1.5n + 7 signature keys in this case).
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Abstract. A cryptographic primitive, called encryption switching pro-
tocol (ESP), has been proposed recently. This two-party protocol enables
interactively converting values encrypted under one scheme into another
scheme without revealing the plaintexts. Given two additively and mul-
tiplicatively homomorphic encryption schemes, parties can now encrypt
their data and convert underlying encryption schemes to perform dif-
ferent operations simultaneously. Due to its efficiency, ESP becomes an
alternative to fully homomorphic encryption schemes in some privacy-
preserving applications.

In this paper, we propose an improvement in ESP. In particular, we
consider the multi-exponentiation with encrypted bases argument (MEB)
protocol. This protocol is not only the essential component and effi-
ciency bottleneck of ESP, but also has tremendous potential in many
applications. For example, it can be used to speed up many intricate
cryptographic protocols, such as proof of knowledge of a double loga-
rithm. According to our theoretical analysis and experiments, our pro-
posed MEB protocol has lower communication and computation cost.
More precisely, it reduces the communication cost by roughly 29% com-
pared to the original protocol. The computation cost of the verifier is
reduced by 19%–42%, depending on the settings of experimental param-
eters. This improvement is particularly useful for verifiers with weak
computing power in some applications. We also provide a formal secu-
rity proof to confirm the security of the improved MEB protocol.

Keywords: Encryption switching protocols · Paillier encryption ·
Twin-ciphertext proof · Zero-knowledge

1 Background

Nowadays, data has been widely regarded as a kind of valuable resource. Many
solutions have been proposed to preserve the privacy of data during its usage,
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 397–414, 2021.
https://doi.org/10.1007/978-3-030-71852-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71852-7_27&domain=pdf
http://orcid.org/0000-0003-1722-6746
http://orcid.org/0000-0001-9780-5443
https://doi.org/10.1007/978-3-030-71852-7_27


398 Y. Liu et al.

such as secure multi-party computation (MPC) [9,17,18] and fully homomorphic
encryption (FHE) [8]. However, efficiency is still a problem in most cases.

In 2016, Couteau, Peters, and Pointcheval [6] proposed a cryptographic prim-
itive named encryption switching protocol (ESP) (for its extension, see [4]), and it
was shown that ESP has great potential to achieve many privacy-preserving goals
efficiently. In ESP, two parties secretly share the private keys of an additively
homomorphic encryption scheme and a multiplicatively homomorphic encryption
scheme, such that the two parties can individually encrypt messages, but should
cooperate to perform threshold decryption in order to decrypt a ciphertext. Two
parties can also work interactively to switch one underlying encryption scheme
of a ciphertext to the other without revealing the plaintext. In summary, ESP
allows both parties to perform both additions and multiplications on encrypted
values to evaluate pre-deterministic circuits securely. It was shown that ESP
could be instantiated for generic two-party computation (2PC) protocol [6], and
thus ESP is powerful to cover many MPC tasks (see examples in [5]).

To ensure that the encryption switching procedure of ESP is executed cor-
rectly in the presence of malicious parties, the authors of [6] introduced a new
cryptographic primitive, called twin-ciphertext proof (TCP). We call a cipher-
text pair (C+, C×) twin-ciphertext if the encrypted (or committed) value of the
additively homomorphic encryption ciphertext (or commitment) C+ is equal
to the value encrypted in the ciphertext C× of multiplicatively homomorphic
encryption. In TCP protocol, the prover can efficiently prove that a given pair
(C1, C2) is a twin-ciphertext pair without revealing the encrypted value and
corresponding random coins. The main idea of TCP is to generate a random
twin-ciphertext pair first, and then show the colinear relation between this ran-
dom twin-ciphertext pair and the pair (C1, C2) to complete the proof. During
this approach, the generated random twin-ciphertext pair is consumed. There-
fore, to speed up ESP processes, the prover can generate a pool of random
twin-ciphertext pairs before executions of ESP and consume them one by one
during the ESP executions. We note that this approach is similar to the Beaver
triples technique [2].

Although a costly cut-and-choose procedure is involved in the generation of
random twin-ciphertext pairs, the authors of [6] mentioned that it is possible to
batch the executions of TCP. More precisely, by consuming one random twin-
ciphertext pair, we are able to prove that some given pairs are all twin-ciphertext
pairs simultaneously. This technique can be used to batch the generation of ran-
dom twin-ciphertext pairs or conduct TCP for many pairs simultaneously. A
protocol called multi-exponentiation with encrypted bases argument (MEB) is
thereby proposed and acts as the underlying basis to batch the executions of
TCP. The MEB protocol is designed for additively homomorphic encryption (or
commitment) schemes. Informally, given parameters (λ)i=1,...,� and additively
homomorphic encryption ciphertexts ((ci)i=1,...,�, C), the MEB protocol allows a
prover to prove the knowledge of encrypted values ((mi)i=1,...,�,M) and random
coins of ((ci)i=1,...,�, C), respectively, and the fact that the encrypted value M

of C satisfies M =
∏�

i=1 mλi
i , in a zero-knowledge manner. The basic idea of
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batching TCP executions is to batch the two ciphertexts of all pairs separately
in a multi-exponentiation form and execute a TCP for the pair of batched cipher-
texts. The MEB protocol is indeed the bottleneck of efficiency for the execution
of batch TCP.

TCP, as the direct application of the MEB protocol, is not only the underlying
protocol of ESP but also of independent interest. Many commonly used MPC
protocols that are expensive in traditional scenarios become very cheap when
TCP is involved [6], e.g., proof of knowledge of exponential relation of committed
values (for both plain/committed exponent), proof of knowledge of a double
logarithm, proof of committed prime, etc. Hence, improvements of the MEB
protocol can further enhance the performance of these protocols.

Moreover, MEB can individually play as the underlying protocol of some
applications that are typical in commercial and medical areas. For instance, users
may wish to evaluate a public function f on an encrypted dataset (di)i=1,...,m

provided by a data holder, where f is of the form f =
∏

j(
∑

i aidi)λj with public
constant parameters {a1, a2, . . .} and {λ1, λ2, . . .}. The MEB protocol can thus
be used for the data holder to prove the correctness of the encrypted evaluation
results without revealing other information of the dataset. Compared with FHE-
based solutions, this approach provides a relatively smaller encrypted dataset
and is much more efficient for functions with higher depths of multiplication.

In this paper, we provide an improved MEB protocol, in the sense that our
protocol is more efficient for both the prover and the verifier, and has lower com-
munication cost than the original MEB protocol in [6]. The same as the original
protocol, our MEB protocol is also a public-coin special honest-verifier zero-
knowledge (SHVZK) argument of knowledge (see more information in Sect. 2).
In general, the argument size of our protocol is roughly 29% smaller than that of
the original protocol. Meanwhile, our protocol reduces the computation cost of
the verifier by 19%–42% depending on different experimental parameters. The
basic idea of our protocol is that we further decompose statements into several
conditions and batch them into one proof of a specific relationship to obtain a
compact and more efficient protocol (see more details in Sect. 3 and Sect. 4.1).

We summarize the main contributions of this paper in the following.

1. We provide an improvement of the MEB protocol in both argument size and
efficiency. To be comparable with the original MEB protocol of [6], we present
the construction of our MEB protocol based on Paillier encryption [14]. We
remark that MEB protocol for other additively homomorphic schemes, such as
Pedersen commitment scheme [15], can be constructed in a similar approach.

2. We provide proof-of-concept implementations for both our MEB protocol and
the original MEB protocol. We compare the two protocols from the perspec-
tives of theoretical analysis and experiments to verify the improvement of our
MEB protocol.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
necessary background knowledge. We provide the description of our MEB pro-
tocol and the corresponding subprotocols in Sect. 3 and Sect. 4, respectively.
Comparisons between our protocol and the original protocol are presented in
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Sect. 5 from both theoretical and experimental aspects. We conclude this paper
with future work in Sect. 6.

2 Preliminaries

In this paper, we mainly focus on constructing a public-coin SHVZK argument of
knowledge and prove its security under standard security definitions (see [12,13]
for more information). Note that such a protocol can be compiled to be secure
against malicious verifiers with low overhead by many techniques, such as using
an equivocal commitment scheme [3] and adopting the Fiat–Shamir heuristic [7].

2.1 Notation

We write x ←$ S for uniformly sampling x from a set S. We use bold let-
ters to represent vectors, e.g., m = (m1, . . . ,m�) is a vector with � entries.
The notation ab denotes the entry-wise product of two vectors a and b, i.e.,
ab = (a1b1, . . . , a�b�), and the notation ra denotes scalar multiplications, i.e.,
ra = (ra1, . . . , ra�). The notation ||n|| is used to represent the length of the
bit-representation of a given variable n, and the notation |S| denotes the size of
a given set S.

We say a function f in variable μ mapping natural numbers to [0, 1] is negligi-
ble if f(μ) = O(μ−c ) for every constant c > 0. We say that 1−f is overwhelming
if f is negligible. In our protocols, we will give a security parameter μ written
in unary as input to all parties.

In the following descriptions of protocols, P denotes the prover, and V denotes
the verifier.

2.2 Paillier Encryption

Paillier encryption scheme is a public-key additively homomorphic encryption
scheme that is semantically secure [10] under the Decisional Composite Residu-
osity assumption. The public key of Paillier encryption scheme is a strong RSA
modulus n = pq, where p and q are safe primes with the same length. We denote
the Paillier encryption algorithm as Enc, and thus encrypting a value m with
random coin ρ is represented as Enc(m; ρ) = (1 + n)mρn mod n2. It is easily
verified that Paillier encryption scheme is additively homomorphic, such that
Enc(m1; ρ1)Enc(m2; ρ2) = Enc(m1 + m2; ρ1ρ2) and Enc(m; ρ)x = Enc(xm; ρx).

2.3 Pedersen Commitment

Pedersen commitment scheme is used as a component of our protocol. Given a
strong RSA modulus n, we can expect that there is a reasonably small value
k = O (log(n)), such that kn + 1 is a prime, and thus find a group G of order
n. Let the commitment key to be ck = (g0, g1, . . . , g�, h), where g0, . . . , g�, h
are all generators of G. We denote the Pedersen commitment algorithms for
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single values as Comi for i = 0, . . . , �. Committing a value m with random coin
r by Comi is via computing Comi(m; r) = gm

i hr. We further denote as Com
the general Pedersen commitment for vectors, and committing a vector m with
random coin r is to compute Com(m; r) = (

∏�
i=1 gmi

i )hr. Note that vectors with
less than � entries can be committed by setting the remaining entries to 0. In
our description here and below, equations of the Pedersen commitment (for both
message space and commitment space) implicitly involve modulo operations.

Pedersen commitment is computationally binding under the discrete loga-
rithm assumption, such that a non-uniform probabilistic polynomial-time (PPT)
adversary cannot find two openings of the same commitment except a negligi-
ble probability. The commitment scheme is perfectly hiding, because no mat-
ter what value/vector is committed, the commitment is uniformly distributed
in G. Clearly, Pedersen commitment scheme is additively homomorphic, such
that Com(m1; r1)Com(m2; r2) = Com(m1 + m2; r1 + r2) and Com(m; r)x =
Com(xm;xr).

2.4 The Generalized Schwartz–Zippel Lemma

We will use the following generalized Schwartz–Zippel lemma in this paper.

Lemma 1 (Generalized Schwartz–Zippel). Let p be a non-zero multi-
variate polynomial of total degree d ≥ 0 over a ring R. Let S ⊆ R be a finite
set with |S| ≥ d, such that ∀a �= b ∈ S, a − b ∈ R is not a zero divisor. Then
the probability of p(x1, . . . , x�) = 0 for randomly chosen x1, . . . , x� ←$S is at
most d

|S| .

3 Multi-exponentiation with Encrypted Bases Argument

In this section, we give the formal description of MEB protocol, propose the main
body of our improved MEB protocol, and prove that our protocol is secure.
Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . ,
g�, h, n).

– Word: λ = (λ1, . . . , λ�) ∈ ({0, 1}κ)�, � + 1 Paillier ciphertexts A and a =
(a1, . . . , a�). The public key of the Paillier encryption scheme is n, and we
denote μ = ||n||. Note that � = O (μc ) and κ = O (μc ) for a large enough
constant c.

– Statement: There are some (mi, ρi)i=1,...,� and ρ such that ai = Enc(mi; ρi)
for all i = 1, . . . , � and A = Enc(

∏�
i=1 mλi

i ; ρ).
– Witness: ρ, (mi, ρi)i=1,...,�.

The main idea of this protocol is as follows. First, the prover P provides a list
of Pedersen commitments to the verifier V and proves that she knows the open-
ings of commitments, such that each committed value is equal to each encrypted
value of (ai)i=1,...,� and A in batches. This approach bridges Paillier encryption



402 Y. Liu et al.

and Pedersen commitment schemes. Thus proving the multi-exponentiation rela-
tion of these committed values will accordingly impliy the multi-exponentiation
relation of encrypted values.

To prove the multi-exponentiation relation of committed values, both parties
first can individually write every λi as the bit-representation λi = λiκ · · · λi1, and
compute the commitment to the vector aj = (mλ1j

1 , . . . ,m
λ�j

� ) for j = 1, . . . , κ.
P then provides V with commitments to vectors

bj = (m
∑κ

φ=j 2φ−jλ1φ

1 , . . . ,m
∑κ

φ=j 2φ−jλ�φ

� )

and
cj = (m

∑κ
φ=j 2φ−j+1λ1φ

1 , . . . ,m
∑κ

φ=j 2φ−j+1λ�φ

� ) .

P proves in zero-knowledge that the committed vectors of these given commit-
ments satisfy all equations bj = ajcj+1 and cj = bjbj in batches. This implicitly
indicates that the committed b1 is of the form b1 = (mλ1

1 , . . . ,mλ�

� ). Finally, P
proves to V in zero-knowledge that the product of all entries of the committed
b1 is equal to the encrypted value of the Paillier ciphertext A using the corre-
sponding commitment that has been provided in the first step. Following these
steps, the statement is proved. The detailed procedure of the protocol is in the
following.

Procedure

1. P picks (r1, . . . , r�, rM ) ←$Z
�+1
n , computes commitments ci ← Comi(mi; ri)

for i = 1, . . . , � and C ← Com0(
∏�

i=1 mλi
i ; rM ). Then P sends (ci)i=1,...,� and

C to V. V will continue to interact with P if all ci ∈ G and C ∈ G. Otherwise,
V outputs reject.
Then P proves for each i her knowledge of (mi, ri, ρi) and the knowledge of
(M =

∏�
i=1 mλi

i , rM , ρ), such that ci = Comi(mi; ri), ai = Enc(mi; ρi), C =
Com0(M ; rM ), and A = Enc(M ; ρ), using the batch equality proof introduced
in Sect. 4.1. In other words, P proves to V that each committed values of
((ci)i=1,...,�, C) is equal to each encrypted values of ((ai)i=1,...,�, A).

2. Let (λij)j=1,...,κ be the bit decomposition of λi, i.e., λi = λiκ · · · λi1. Both
parties locally compute general Pedersen commitments

caj
← Com((mλij

i )i=1,...,�;
�∑

i=1

λijri)

for j ∈ {1, . . . , κ} from commitments (ci)i=1,...,� via caj
=

∏
i c

λij

i , and set
cbκ

← caκ
. We denote the committed vectors of caj

as aj = (mλ1j

1 , . . . ,m
λ�j

� ).
P computes for j ∈ {1, . . . , κ − 1}

cbj
← Com((m

∑κ
φ=j 2φ−jλiφ

i )i=1,...,�; rbj
)

and for j ∈ {2, . . . , κ}

ccj
← Com((m

∑κ
φ=j 2φ−j+1λiφ

i )i=1,...,�; rcj
) .



An Improvement of MEB: Smaller and Faster 403

where all rbj
and rcj

are uniformly sampled from Zn. We denote the com-

mitted vectors of cbj
as bj = (m

∑κ
φ=j 2φ−jλ1φ

1 , . . . ,m
∑κ

φ=j 2φ−jλ�φ

� ), and of ccj

as cj = (m
∑κ

φ=j 2φ−j+1λ1φ

1 , . . . ,m
∑κ

φ=j 2φ−j+1λ�φ

� ), respectively.
Note that for j ∈ {1, . . . , κ − 1},

bj = ajcj+1 ,

and for j ∈ {2, . . . , κ},
cj = bjbj .

P sends (cbj
)j=1,...,κ−1 and (ccj

)j=2,...,κ to V.
3. If all cbj

∈ G and ccj
∈ G, V sends random challenges x, y ←$ (Z∗

n)2 to P.
Otherwise, V outputs reject.

4. Both parties locally compute ca′
j

← cxj

aj
for j ∈ {1, . . . , κ − 1}, cb′

j
← cxκ+j−2

bj

for j ∈ {2, . . . , κ}, cd ← ∏κ−1
j=1 cxj

bj

∏κ
j=2 cxκ+j−2

cj
, and c−1 ← Com(−1; 0).

Meanwhile, P computes the committed vectors and random coins of ca′
j

via a′
j ← xjaj and ra′

j
← xj

∑�
i=1 λijri, of cb′

j
via b′

j ← xκ+j−2bj and

rb′
j

← xκ+j−2rbj
, and of cd via d ← ∑κ−1

j=1 xjbj +
∑κ

j=2 xκ+j−2cj and

rd ← ∑κ−1
j=1 xjrbj

+
∑κ

j=2 xκ+j−2rcj
.

Furthermore, let us define a bilinear operation ∗ for a given variable y as
a ∗ b =

∑
i aibiy

i.
Then P proves to V the knowledge of (a′

j , ra′
j
)j=1,...,κ−1, (b′

j , rb′
j
)j=2,...,κ,

(cj , rcj
)j=2,...,κ, (bj , rbj

)j=2,...,κ, d, rd such that

ca′
j

= Com(a′
j ; ra′

j
) , cb′

j
= Com(b′

j ; rb′
j
) , ccj

= Com(cj ; rcj
) ,

cbj
= Com(bj ; rbj

) , cd = Com(d; rd) ,

κ−1∑

j=1

a′
j∗cj+1+

κ∑

j=2

b′
j∗bj−1∗d = 0 .

using the zero argument introduced in Sect. 4.2.
5. If the zero argument is rejected, V outputs reject. Otherwise, P proves to V

the knowledge of b1, rb1 , M =
∏�

i=1 mλi
i and rM , such that

cb1 = Com(b1; rb1) , C = Com0(M, rM ) ,

�∏

i=1

b1i = M

using the committed single value product (CSVP) argument introduced in
Sect. 4.3.

Theorem 1. The MEB protocol above is a public-coin SHVZK argument of
knowledge.
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Proof. The completeness of the protocol first follows from the completeness of
the underlying batch equality proof. Then according to the homomorphic prop-
erty of Pedersen commitment scheme, we can verify that

ca′
j

= cxj

aj
= Com((xjm

λij

i )i=1,...,�;xj(
�∑

i=1

λijri)) = Com(a′
j ; ra′

j
) ,

cb′
j

= cxκ+j−2

bj
= Com(xκ+j−2bj ;xκ+j−2rbj

) = Com(b′
j ; rb′

j
) ,

and

cd =
κ−1∏

j=1

cxj

bj

κ∏

j=2

cxκ+j−2

cj

= Com(
κ−1∑

j=1

xjbj +
κ∑

j=2

xκ+j−2cj ;
κ−1∑

j=1

xjrbj
+

κ∑

j=2

xκ+j−2rcj
)

= Com(d; rd) .

It is easy to verify that bj = ajcj+1 for j ∈ {1, . . . , κ − 1}, and cj = bjbj for
j ∈ {2, . . . , κ}. Thus, we have

κ−1∑

j=1

a′
j cj+1 +

κ∑

j=2

b′
j bj − d

=
κ−1∑

j=1

xjajcj+1 +
κ∑

j=2

xκ+j−2bjbj −
κ−1∑

j=1

xjbj −
κ∑

j=2

xκ+j−2cj

=
κ−1∑

j=1

xj(ajcj+1 − bj ) +
κ∑

j=2

xκ+j−2(bjbj − cj ) = 0

Furthermore, given the random y, if ab = c, the equation a ∗ b = 1 ∗ c holds.
This shows that

κ−1∑

j=1

a′
j ∗ cj+1 +

κ∑

j=2

b′
j ∗ bj − 1 ∗ d = 0 .

Finally, since b1i = mλi
i , the equation

∏�
i=1 b1i = M is always satisfied.

For SHVZK, the simulator S first picks (r1, . . . , r�, rM ) ←$Z
�+1
n , computes

commitments ci ← Comi(0; ri) for i = 1, . . . , � and C ← Com(0; rM ). Since
Pedersen commitment is prefect hiding, the commitments (ci)i=1,...,� and C have
the same distribution as that of the real execution. Then S runs the SHVZK
simulator for the batch equality proof.

Given the challenge x and y, the simulator S picks rbj
←$Zn for j = 1, . . . , κ−

1, and rcj
← Zn for j = 2, . . . , κ, computes commitments cbj

= Com(0; rbj
)

and ccj
= Com(0; rcj

), and computes caj
, ca′

j
, cb′

j
, cd , and c−1 as in the real

execution. Due to the prefect hiding property of Pedersen commitment scheme,
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these commitments are perfectly indistinguishable from the real execution. The
simulator S then runs the SHVZK simulators for both the zero argument and
the CSVP argument.

Because the distributions of commitments are perfectly indistinguishable
from the real execution and the underlying protocols are SHVZK, the simulated
transcripts generated by S are indistinguishable from those of real executions.

Here we show that the protocol is witness-extended emulation. The emu-
lator will run the protocol with a random challenge, and output the resulting
transcript. If the argument is rejected, the emulator is done. If the argument is
accepted, the emulator will try to extract a witness. The emulator uses witness-
extended emulator of the batch equality proof to extract the encrypted values
and random coins of Paillier ciphertexts (ai)i=1,...,� and A, and the opening of
(ci)i=1,...,� and C that open to the these encrypted values.

Since x and y are randomly choosen, Lemma 1 guarantees that the equation∑κ−1
j=1 a′

j ∗ cj+1 +
∑κ

j=2 b′
j ∗ bj − 1 ∗ d = 0 holds if bj = ajcj+1 and cj = bjbj ,

while holds with a negligible probability if there exists one equation that does
not hold.

Hence, if the encrypted values of (ai)i=1,...,� and A do not satisfy the state-
ment of MEB, the verifier will output reject with an overwhelming probability
based on Lemma 1 and the soundness of the underlying zero argument and
CSVP argument. Therefore, the extracted witnesses satisfy the statement with
an overwhelming probability, and the soundness of the protocol follows. 	


We note that the round complexity of the protocol can be reduced to five
rounds. More precisely, the messages sent by the prover in Step 1 and Step 2
could be sent in the same round. Meanwhile, the 3-round batch equality proof
and CSVP argument can be executed in parallel from Step 1. In the third round,
the batch equality proof and CSVP argument end with the prover answering the
challenge messages while the 3-round zero argument protocol starts. Hence the
protocol ends in the fifth round, and we obtain a 5-round protocol (see Fig. 1).

Fig. 1. The procedure of our MEB protocol

4 Subprotocols

In this section, we present the subprotocols mentioned in Sect. 3.
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4.1 Batch Equality Proof

Informally, the batch equality proof is for a prover to prove that he knows the
encrypted values of a set of Paillier ciphertexts and the openings of a set of Ped-
ersen commitments that can be opened to these encrypted values. We illustrate
the batch equality proof in the following.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g�,
h, n).

– Word: � Pedersen commitments c, and � Paillier ciphertexts a, where � =
O(μc ) for a large enough constant c. The public key of the Paillier encryption
scheme is n, and we denote μ = ||n||.

– Statement: There exist some (mi)i=1,...,�, (ri)i=1,...,�, and (ρi)i=1,...,�, such
that ci = Comi(mi; ri) and ai = Enc(mi; ρi) for i = 1, . . . , �.

– Witness: (mi)i=1,...,�, (ri)i=1,...,�, and (ρi)i=1,...,�.

Procedure

1. P picks u ←$ (Zn)�, v ←$ (Zn)�, w ←$ (Z∗
n)�, computes xi ← Comi(ui, vi) and

yi ← Enc(ui;wi) for i = 1, . . . , �, and sends x, y to V.
2. If all xi ∈ G and yi ∈ Z

∗
n2 , V picks (d, e) ←$ (Z∗

n)2, and sends them to P.
Otherwise, V outputs reject.

3. P computes s ← ∑�
i=1(vi+rie)di mod n, ti ← wiρ

e
i mod n, zi = ui+mie mod

n for i = 1, . . . , �, and sends s, t, z to V.
4. V checks whether both Com(z1d, . . . , z�d

�; s) =
∏�

i=1(xic
e
i )

di

, (1 + n)zitni ≡
yia

e
i mod n2 for i = 1, . . . , � hold and t is relatively prime to n. If all conditions

hold, V outputs accept. Otherwise V outputs reject.

Theorem 2. The batch equality proof above is a public-coin SHVZK proof of
knowledge.

Proof. The completeness of the protocol can be verified as follows.

Com(z1d, . . . , z�d
�; s) =

(
�∏

i=1

gzid
i

i

)

hs =

(
�∏

i=1

g
(ui+mie)d

i

i

)

h
∑�

j=1(vj+rje)dj

=
�∏

i=1

(guid
i

i hvid
i

gmiedi

i hriedi

) =
�∏

i=1

(xic
e
i )

di

(1 + n)zitni ≡ (1 + n)(ui+mie)(wiρ
e
i )

n

≡ ((1 + n)uiwn
i ) ((1 + n)miρn

i )e

≡ yia
e
i mod n2

For SHVZK, given e and d, the simulator S picks si ←$Zn, ti ←$Z
∗
n, and

zi ←$Zn for i = 1, . . . , �, and computes s ← ∑�
i=1 sid

i mod n. S then computes



An Improvement of MEB: Smaller and Faster 407

xi ← gzi
i hsic−e

i , yi ← (1 + n)zitni a−e
i mod n2 for i = 1, . . . , �. It is easy to check

that the simulated transcript (x,y, e, d, s, t,z) is perfectly indistinguishable from
the transcript of a real execution.

To prove that the protocol has witness-extended emulation, the emulator
runs the protocol with P∗. If the transcript is accepted, it has to extract a
witness. We let the emulator rewind the challenge phase to obtain � pairs of
accepted transcripts with the same x, y. Meanwhile, each pair has different
random (d(j))j=1,...,�, and both transcripts in each pair are respectively with
different random e and e′. We denote these pairs of accepted transcripts with
index j = 1, . . . , � as follows.

(x,y, e, d(j), s(j), t(j),z(j)) (x,y, e′, d(j), s′
(j), t

′
(j),z

′
(j))

Note that the witness-extended emulator will make on average 2� arguments,
and hence it runs in expected polynomial time.

For each pair of transcripts, we have for i = 1, . . . , � the equations

(1 + n)z(j)itn(j)i ≡ yia
e
i mod n2

and
(1 + n)z′

(j)it′n(j)i ≡ yia
e′
i mod n2 .

Then there should be some m′, u′, such that

z(j)i = u′
i + m′

ie

and
z′
(j)i = u′

i + m′
ie

′ .

The emulator can compute (e.g., via Gaussian Elimination) m′ and u′, which
are encrypted values of (ai)i=1,...,� and (xi)i=1,...,�. Due to the fact that Paillier
encryption scheme is perfectly binding, the emulator can extract the same m′

and u′ from every pair of transcripts (and every pair of (z(j),z
′
(j)) are identical).

Let αi ← ai(1 + n)−m′
i mod n2. Following the result above, there should be

some w′ and ρ′, such that for i = 1, . . . , �,

αi = ρ′n
i mod n2

and for j = 1, . . . , �,

tn(j)i ≡ w′
iρ

′e
i mod n2 , t′n(j)i ≡ w′

iρ
′e′
i mod n2 .

The above first equation indexed by j divided by the second one is equal to

(t(j)it′−1
(j)i)

n ≡ ρ′e−e′
i mod n2 .

Since e − e′ is relatively prime to n except a negligible probability, we can find
β, γ, such that nβ + (e − e′)γ = 1. Hence, ρ′ can be extracted via

ρ′
i = αβ

i

(
(t(j)it′−1

(j)i)
n
)γ

mod n2 ,



408 Y. Liu et al.

since we have

αβ
i

(
(t(j)it′−1

(j)i)
n
)γ

≡ ρ′nβ
i ρ

′(e−e′)γ
i ≡ ρ

′nβ+(e−e′)γ
i ≡ ρ′

i mod n2 .

Therefore, with an overwhelming probability, these (m′
i, ρ

′
i) are the encrypted

values and random coins of the ciphertexts (ai)i=1,...,�.
Now the emulator continues to extract the openings of commitments

(ci)i=1,...,�. There should be some r′ and v′, such that for j = 1, . . . , �,

ci = g
m′

i
i hr′

i , xi = g
u′

i
i hv′

i .

Given a pair of accepted transcripts, we have

Com(z(j)1d(j), . . . , z(j)�d�
(j); s(j)) =

�∏

i=1

(xic
e
i )

di
(j) ,

Com(z′
(j)1d(j), . . . , z

′
(j)�d

�
(j); s

′
(j)) =

�∏

i=1

(xic
e′
i )di

(j) ,

where z(j) = m′e + u′ and z′
(j) = m′e′ + u′ according to the prefect binding of

Paillier encryption scheme. Thus, it is easy to derive the resulting equations

Com(0, . . . , 0; s(j)) =
�∏

i=1

(xic
e
i )

di

g
−z(j)1di

(j)
i =

�∏

i=1

(hv′
ihr′

ie)di
(j)

and

Com(0, . . . , 0; s′
(j)) =

�∏

i=1

(xic
e′
i )di

g
−z′

(j)1di
(j)

i =
�∏

i=1

(hv′
ihr′

ie
′
)di

(j) .

We can further derive

s(j) =
�∑

i=1

(v′
i + r′

ie)d
i
(j) mod n , s′

(j) =
�∑

i=1

(v′
i + r′

ie
′)di

(j) mod n .

Given � pairs of accepted transcripts, we can easily recover v′, r′ (e.g., via
Gaussian Elimination) with an overwhelming probability. It is easy to verify
that these (m′

i, r
′
i)i=1,...,� and (u′

i, v
′
i)i=1,...,�, are the openings of the commitments

(ci)i=1,...,� and (xi)i=1,...,�, respectively.
Hence, the protocol has witness-extended emulation, and the soundness of

the protocol follows. 	

For the verification step (Step 4), the verifier can pick f ←$Z

∗
n, compute

Z ← ∑�
i=1 zif

i mod n, T =
∏�

i=1 tf
i

i mod n, and check whether (1 + n)ZTn ≡
∏�

i=1(yia
e
i )

fi

mod n2. If the equation holds, we have (1 + n)zitni ≡ yia
e
i mod n2

with an overwhelming probability according to Lemma 1. This could reduce the
computation cost of the verification.
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4.2 Zero Argument

For completeness, we restate the zero argument introduced in [1] as follows.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g�,
h, n).

– Word: 2� Pedersen general commitments (cui
)i=1,...,�, (cvi

)i=1,...,�, a variable
y, a bilinear map ∗.

– Statement: There exist some (ui , rui
)i=1,...,�, (vi , rvi

)i=1,...,�, such that cui
=

Com(ui , rui
), cvi

= Com(vi , rvi
) for all i = 1, . . . , �, and

∑�
i=1 ui ∗ vi = 0.

– Witness: (ui , rui
)i=1,...,�, (vi , rvi

)i=1,...,�.

Procedure

1. P picks (u0,v�+1) ←$ (Z�
n)2, (ru0 , rv�

) ←$Z
2
n, and computes

cu0 ← Com(u0; ra0) , cv�+1
← Com(v�+1; rv�+1

) .

Then P computes for φ = 0, . . . , 2�

dφ ←
∑

0≤i≤� ,1≤j≤�+1
j=�+1−φ+i

ui ∗ vj .

P picks (rd0 , . . . , rd2�
) ←$Z

2�+1
n , sets rd�+1 = 0, and computes commitments

cdφ
= Com0(dφ; rdφ

) for φ = 0, . . . , 2�. After the computation, P sends cu0 ,
cv�+1

, and (cdφ
)φ=0,...,2� to V.

2. V sends x ←$Z
∗
n to P.

3. P computes

u ←
�∑

i=0

xiui ru ←
�∑

i=0

xirui
v ←

�+1∑

j=1

x�−j+1vj rv ←
�+1∑

j=1

x�+1−jrvj

t ←
2�∑

φ=0

xφrdφ

and sends u, ru , v, rv , t to V.
4. V outputs accept if cu0 ∈ G, cv�+1

∈ G, (cdφ
)φ=0,...,2� ∈ G

2�+1, cd�+1 =
Com0(0; 0), (u,v) ∈ (Z�

n)2, (ru , rv , t) ∈ Z
3
n, and

�∏

i=0

cxi

ui
= Com(u; ru ) ,

�+1∏

j=1

cx�+1−j

vj
= Com(v; rv ) ,

2�∏

φ=0

cxφ

dφ
= Com0(u∗v; t) .

Otherwise, V outputs reject.

Theorem 3 ([1]). The zero argument protocol above is a public-coin SHVZK
argument of knowledge.
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4.3 Committed Single Value Product (CSVP) Argument

We restate the committed single value product (CSVP) argument in [11] as
follows.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g�,
h, n).

– Word: A general Pedersen commitment c and a Pedersen commitment C
committed by Com0.

– Statement: There exits some (m, r) and (M, rM ), such that c = Com(m; r),
C = Com0(M ; rM ), and M =

∏�
i=1 mi.

– Witness: (m, r) and (M, rM ).

Procedure

1. P computes
b1 ← m1 , b2 ← m1m2 , · · · b� ← M .

Then P picks (d1, . . . , d�, rd, u) ←$ (Zn)�+2, sets δ1 ← d1, (δ2, . . . , δ�) ←$Z
�−1
n ,

(rδ, rΔ) ←$Z
2
n, computes

cd ← Com(d; rd) , cδ ← Com(−δ1d2, . . . ,−δ�−1d�; rδ) , a ← Com0(δ�;u) ,

cΔ ← Com(δ2 − m2δ1 − b1d2, . . . , δ� − m�δ� − 1 − b�−1d�; rΔ) ,

and sends cd, cδ, a, and cΔ to V.
2. V sends the challenge x ←$Z

∗
n to P.

3. P computes

m′
1 ← xm1 + d1 · · · , m′

� ← xm� + d� , r′ ← xr + rd ,

b′
1 ← xb1 + δ1 · · · , b′

� ← xb� + δ� , s′ ← xrΔ + rδ z ← xrM + u ,

and sends m′
1, b

′
1, . . . ,m

′
�, b

′
�, r

′, s′, z to V.
4. V outputs accept if all cd, cδ, cΔ ∈ G, a′

1, b
′
1, . . . , a

′
�, b

′
�, r

′, s′, z ∈ Zn and

cxcd = Com(m′; r′) , cx
Δcδ = Com(xb′

2 − b′
1m

′
2, . . . , xb′

� − b′
�−1m

′
n; s′) ,

Cxa = Com0(b′
�; z) , b′

1 = m′
1 .

Otherwise, V outputs reject.

Theorem 4 ([11]). The committed single value product (CSVP) argument pro-
tocol above is a public-coin SHVZK argument of knowledge.

5 Evaluation and Comparisons

In this section, we compare our MEB protocol with the original MEB proto-
col introduced in [6] from both theoretical and experimental aspects. We first
analyze the argument size of both protocols and the number of communication
rounds required by the protocols. Then, we conduct experiments to compare
their running times in different settings of parameters.
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5.1 Theoretical Comparison

We denote the length of the bit-representation of the RSA modulus n as μ. Thus,
elements in Zn and Z

∗
n can be represented by μ bits, and elements in Zn2 can

be represented by 2μ bits. We further denote the length of bit-representation
of elements in G as η, and we can expect that η = O (μ). The main MEB
protocol involves � terms. Table 1 provides the comparison. The argument sizes
of subprotocols are calculated according to the parameter settings of the main
MEB protocol. For instance, according to Step 1 of the main protocol, the batch
equality proof involves �+1 terms when the main MEB protocol involves � terms.

Table 1. Comparison of argument size and communication rounds

Sub-protocols (Our MEB) Argument size Rounds

Batch equality proof (4� + 7)μ + (� + 1)η 3

Zero argument (2� + 4)μ + (4κ + 1)η 3

CSVP argument (2� + 4)μ + 4η 3

Main MEB argument 2μ + (� + 2κ − 1)η 5

Overall Comparison:

Our MEB protocol (8� + 17)μ + (2� + 6κ + 5)η 5

Original MEB protocol [6] (12� + 20)μ + (2� + 6κ + 15)η 5

Table 1 presents the argument size and round complexity of all subprotocols
of our protocol together with the overall cost of both our protocol and the
original MEB protocol. Both MEB protocols are of 5 rounds, while the size of
ours is smaller than that of [6]. Since we can expect that η ≈ μ, the argument size
of our protocol is roughly 29% smaller than that of protocol in [6]. Hence, our
protocol has a lower communication cost compared with the original protocol.

5.2 Experimental Results

We provide proof-of-concept implementations for both our protocol and the orig-
inal protocol. The implementations are in C++ using the NTL library [16] for
the underlying modular arithmetic. Experiments are carried out on MacBook
Air (2018) of macOS 10.15.5 with 1.6 GHz dual-core Intel Core i5, 8 GB of RAM
using a single thread. We compare the running times of both protocols using
different settings of parameters. Note that the communication cost is given in
Sect. 5.1, and we here only measure the running times without the communica-
tion time. The results are shown in Table 2.

From Table 2, we can see that our protocol is more efficient for both prover
and verifier compared with the original protocol. Our protocol reduces the com-
putation cost of the verifier by 19%−42% depending on different experimental
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Table 2. Running time comparison of our MEB protocol and MEB protocol in [6]

μ � t Original MEB protocol [6] Our MEB protocol

Prover Verifier Total time Prover Verifier Total time

1024 128 8 1.749 s 0.776 s 2.525 s 1.583 s 0.480 s 2.063 s

1024 256 16 6.272 s 1.787 s 8.059 s 6.112 s 1.453 s 7.565 s

2048 128 8 11.275 s 4.884 s 16.159 s 10.273 s 2.851 s 13.124 s

2048 256 16 38.102 s 11.250 s 49.352 s 36.410 s 8.647 s 45.057 s

2048 512 8 44.506 s 19.507 s 64.013 s 41.636 s 15.824 s 57.460 s

parameters. Especially when μ = 2048, � = 128 and t = 8, the execution time
of the verifier in our protocol is 58% of that of the verifier in [6]. Therefore,
our protocol saves more computation cost compared with the original proto-
col. We emphasize that the computation cost of the verifier is critical for many
applications. One example is the computation on encrypted datasets as we have
mentioned in Sect. 1. In this example, different from the data holder who may
serve multiple users and have more computational power, users may use a device
with much weaker computational capability. Hence, our improvement in the effi-
ciency of the verifier is significant for this kind of applications.

6 Conclusions and Future Work

In this paper, we provide an improvement of the MEB protocol in both argument
size and efficiency. We prove the security of our protocol and demonstrate our
improvement from both theoretical and experimental aspects. Since MEB is the
bottleneck for batching the executions of TCP and has advantages to be adopted
in some applications as mentioned in Sect. 1, our improvement is significant for
ESP, TCP-based protocols, and other applications.

Based on our results, future work could be carried out in two main directions.
One direction is to further improve the MEB protocol in both communication
cost and efficiency. Since we only provide a proof-of-concept implementation
with single-thread, the other direction is to optimize the implementation of the
protocol, which may further improve the performance of related cryptographic
primitives and protocols.
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Abstract. Number theoretic transform (NTT) is a basic mathematic
operation, and is particularly fundamental to the practical implementa-
tions of cryptographic algorithms based on lattices with algebraic struc-
tures. In this work, we make a systematic and comprehensive study of
NTT and its variants. We first review the NTT technique and the recent
advances raised in the implementations of practical lattice-based cryp-
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optimal bounds. Finally, we show the applications of our results to some
prominent practical lattice-based algorithms.
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1 Introduction

Multiplications of big integers or polynomials are basic mathematic operations,
and are particularly fundamental for practical lattice-based post-quantum cryp-
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be broken, if large-scale quantum computers are ever built. These cryptosystems
are used to implement digital signatures and key establishment, and play a cru-
cial role in ensuring the confidentiality and authenticity of communications on
the Internet and other networks. The arrival of such quantum computers is now
believed by many scientists to be merely a significant engineering challenge, and
is estimated to be within the next two decades or so. Due to this concern, post-
quantum cryptography (PQC) was intensively investigated in recent years. It also
drove NIST to launch the PQC standardization competition since November 2017.
Recently, NIST announced seven finalist algorithms for the third-round competi-
tion, in which five algorithms are based on lattices with algebraic structures.

For cryptographic algorithms based on lattices with algebraic structures like
the ideal or module lattices, one fundamental and also time-consuming operation
is the multiplication of the elements in the polynomial quotient ring Zq[x]/(Φ(x))
where Φ(x) is a cyclotomic polynomial of degree n. Typically, Φ(x) = xn+1 where
n is a power of 2. There are two main approaches to fast polynomial multiplica-
tions in this setting: number theoretic transform (NTT) [5,7], and Toom-Cook
and Karatsuba based polynomial multiplication methods [6,10,13]. Generally
speaking, NTT is the most efficient multiplication method over rings, due to
its quasilinear (O(n log n)) time complexity. But the traditional NTT technique
puts some restrictions on the modulus and dimension of the underlying ring.
On the other hand, Toom-Cook and Karatsuba based polynomial multiplication
methods are relatively less efficient in general, but have a wider scope of appli-
cation parameters. For the five lattice-based algorithms in the third round of
NIST PQC standardization, four algorithms use the NTT technique, and only
the Saber algorithm [8] uses Toom-Cook and Karatsuba multiplication. Specif-
ically, Saber is based on the module learning with rounding (MLWR) problem,
and its provable security does not allow to set NTT-friendly parameters.

In this work, we focus on making a systematic study of the NTT technique,
and its applications to practical post-quantum cryptography. NTT is a special
case of fast Fourier transform (FFT). The origin of FFT can in turn be traced
back to discrete Fourier transform (DFT), the idea of which was first developed
by Carl Friedrich Gauss in his unpublished work in 1805 [9]. The traditional
form of NTT has two major problems in applications. Specifically, it requires
2n|(q − 1) and n be a power of two. Along with the progress of NIST PQC stan-
dardization, many research efforts are made for generalizing the NTT technique
in recent years. To relax the requirement on 2n|(q−1), the work [15] proposed the
“upper dividing” approach referred to as preprocess-then-NTT (Pt-NTT), and
the work of Kyber [2] used the “bottom cropping” approach that is referred to
as truncated-NTT (T-NTT in this work for presentation simplicity). The upper
dividing (resp., bottom cropping) method was further improved in [16] (resp.,
[1]) by combining it with the Karatsuba technique [14]. The Karatsuba technique
can reduce the number of multiplications at the cost of additional additions. For
presentation simplicity, in the rest of this work, by Pt-NTT (resp., T-NTT) we
refer to the Karatsuba-aided improved version of Pt-NTT (resp., T-NTT) pro-
posed in [16] (resp., [1]). To our knowledge, the relationship between Pt-NTT
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[15,16] and T-NTT [1,2] was not explicitly studied in the literature. Also, the
analysis of the exact computational complexity of Pt-NTT in [15,16] was inade-
quate or incomplete (for example, it lacks the complexity analysis of additions).

To relax the requirement of n being power-of-two, in the work of NTTRU
[11], the parameter set of n = 768 = 3 · 256 and q = 7681 is selected, so that
x768−x384+1 can be decomposed into (x384+684)(x384−685) in Zq[x]. Because
684 and 685 are roots of unity in Zq in this case, we can use the NTT method to
decompose a known polynomial f(x) into cubic polynomials in Zq[x]/(x384+684)
and Zq[x]/(x384 − 685) which, at this time, can be multiplied directly. At a high
level, NTTRU follows the “bottom cropping” approach of T-NTT but extends
to the case of n = 768. The NTTRU approach [11] for the case of n = 768
was further improved in [1]. On the one hand, the Karatsuba technique [14]
was introduced for the cubic polynomial multiplications (actually, polynomial
multiplications of degree 5 in [1] with q = 3457). On the other hand, q is set to
be 3457 instead of 7681 in [1]. Using a smaller q can make the ciphertext more
compact and can use smaller noises in randomness sampling. But employing
smaller q also brings the following disadvantages:

– The cryptosystems have to use different q’s for the case of n = 768 and for
the case of n being power-of-two (e.g., 512 and 1024);

– The number of NTT layers is changed, and polynomial multiplications of
degree 5 are required in the end [1] (rather than cubic as in [11]).

The NTTRU approach [11] and its improved version [1] focus only on the
specific case of n = 768, and the computational complexity for this special case
was not analyzed in [11] and was only demonstrated with computer experiments
(rather than mathematical analysis) in [1].

1.1 Our Contributions

In this work we apply Karatsuba technique to Pt-NTT in order to reduce the
number of multiplications. Different from [15,16], we calculate the exact and
complete computational complexity of Pt-NTT in terms of both additions and
multiplications, and derive the optimal computational complexity of Pt-NTT
with respect to any fixed (n, q).

Pt-NTT [15,16] follows the upper dividing approach, where α ≥ 0 upper
decompositions are made from the top. On the contrary, T-NTT follows the
bottom cropping approach, where β ≥ 0 layers are cropped from the bottom.
These two approaches appear to be quite different, and the relationship between
them was not explicitly studied in the previous literatures. In this work, we
observe that both of them can be represented in the matrix form, based on which
we prove that Pt-NTT and T-NTT are actually computationally equivalent.

The upper dividing approach and the bottom cropping approach can acceler-
ate the NTT process individually, by decomposing the polynomials or reducing
the layers of decomposition. Based on these clues, we combine the upper divid-
ing approach, the bottom cropping approach, and the Karatsuba technique all
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together, and propose a new variant of NTT referred to as hybrid number the-
oretic transform (H-NTT for short). In particular, Pt-NTT and T-NTT can be
viewed as the special case of H-NTT. We make a complete and comprehensive
analysis of the exact computational complexity of H-NTT, and derive its optimal
bound w.r.t. any fixed (n, q).

We generalize our NTT techniques to the more general polynomial quotient
ring Zq[x]/(Φ(x)), where Φ(x) is the cyclotomic polynomial of degree n = 3 ·2m.
Inspired by H-NTT and NTTRU [11], we present a generalized, modular and
parallelizable NTT method for the case of n = 3 · 2m, which is referred to as
G3-NTT for simplicity. Then we analyze its exact computational complexity
and derive its optimal bound. Based on the analysis, we explicitly specify the
optimized version of G3-NTT for the case of n = 768 = 3 ·256, referred to as P3-
NTT, which may arguably be the most important or relevant case in practice.
Different from the bottom cropping approach used in NTTRU [11] for the case
of n = 768, our P3-NTT follows the upper dividing approach leading to better
parallelizability and better modularity. Specifically, after dividing the polynomi-
als into three parts from the top, each of the three parts can be independently
dealt with in parallel, and enjoys better modularity with the traditional NTT
or its variants.

Finally, we apply the NTT techniques proposed in this work to some promi-
nent key encapsulation mechanisms based on lattices with algebraic structures,
in particular schemes based on the variants of learning with errors (LWE). In
this work, we focus on the applications to Kyber [4] and NewHope [12]. Kyber
is the prominent KEM scheme based on Module-LWE (MLWE), and is now in
the third round of NIST PQC standardization. NewHope is the standing KEM
scheme based on Ring-LWE (RLWE), and was one of the candidates in the sec-
ond round of NIST PQC standardization. Tough NewHope was not moved to
the third round, the study and optimization of NewHope still deserve further
research exploration.

– For applications to Kyber, we present a new parameter set for Kyber-1024
with our H-NTT technique. The new Kyber-1024 protocol has doubled key
size of 512 bits, which can provide more confidence in the target security
level in the long run in the post-quantum era and renders us more economic
ways to derive longer shared-key in certain application scenarios like future
generations of TLS. The H-NTT based implementation of the new Kyber-1024
protocol can reuse the T-NTT codes for Kyber-512 and Kyber-768. In other
words, though the parameter set is changed, there is no need for modification
of codes of NTT.

– For applications to NewHope, we present a new variant of NewHope, referred
to as NewHope-Unified, which sets the same modulus q = 7681 for all the
three cases of n ∈ {512, 768, 1024}. Accordingly, we apply T-NTT, P3-NTT
and H-NTT to NewHope-Unified for these three cases respectively. The uni-
fied q leads to a trade-off between bandwidth and error probability, and allows
more modular, space-efficient and parallelizable implementations.
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For all the new protocol variants of Kyber and NewHope proposed in this
work, we implement them and provide the performance benchmark.

2 Preliminaries

Let Φs(x) be the s-th cyclotomic polynomial of degree n = φ(s), where φ(s)
is Euler function. Denote the polynomial ring Zq[x]/(Φs(x)) by Rq, where q

is a prime. Any polynomial f ∈ Rq can be written as f =
∑n−1

i=0 fix
i, f =

(f0, f1, . . . , fn−1) or f = (f0, f1, . . . , fn−1)T where fi ∈ Zq, i = 0, 1, . . . , n − 1.

2.1 Karatsuba Technique

Definition 1 (Karatsuba technique) [14]. Let a, b, c and d be four numbers
or polynomials. To compute s1 = a·c, s2 = a·d+b·c and s3 = b·d, the Karatsuba
technique first computes s1 and s3, then computes s2 = (a+ b) · (c+d)− s1 − s3.

To compute s1, s2 and s3, we initially need 4 multiplications and 1 addition.
However, with the Karatsuba technique, we only need to perform 3 multiplica-
tions and 4 additions. Thus, the Karatsuba technique can reduce the number of
multiplications at the cost of additional additions.

2.2 Number Theoretic Transform

Number theoretic transform (NTT) is a special version of fast Fourier transform
(FFT) over a finite field. As for Rq = Zq[x]/(xn + 1) where n is a power of 2
and q is a prime satisfying 2n|(q − 1), given f, g ∈ Rq, to compute h = fg ∈ Rq

requires ordinary NTT of length 2n. But it can be turned into NTT of length
n, which can be seen below. Let ω be the 2n-th primitive root of unity in Zq.

Step 1: f̃ = (1, ω, ω2, . . . , ωn−1) ◦ f , g̃ = (1, ω, ω2, . . . , ωn−1) ◦ g, where “◦”
represents the point-wise multiplication of vectors.

Step 2: h̃ = NTT−1
(
NTT (f̃) ◦ NTT (g̃)

)
. The forward transformation f̂ =

NTT (f̃) is defined by f̂j =
∑n−1

i=0 f̃iγ
ij mod q, j = 0, 1, . . . , n − 1, where

γ = ω2 mod q. The inverse transformation f̃ = NTT−1(f̂) is given by f̃i =
n−1

∑n−1
j=0 f̂jγ

−ij mod q, i = 0, 1, . . . , n − 1. Note that the length of NTT
here is n.

Step 3: h = (1, ω−1, ω−2, . . . , ω−(n−1)) ◦ h̃.

Define N̂TT (f) = NTT
(
(1, ω, ω2, . . . , ωn−1) ◦ f

)
and N̂TT

−1
(f̂) = (1, ω−1,

ω−2, . . . , ω−(n−1))◦NTT−1(f̂). It holds that h = N̂TT
−1 (

N̂TT (f) ◦ N̂TT (g)
)
.

We can compute N̂TT byusing theFFT trick [3]. The computational complexity in
terms of multiplications and additions is listed below. Adding n multiplications in
the point-wise multiplication in N̂TT domain, we obtain the total computational
complexity of N̂TT -based polynomial multiplication: 3

2nlogn+2n multiplications
and 3nlogn additions.
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– Multiplications: Tm(N̂TT ) = 1
2nlogn and Tm(N̂TT

−1
) = 1

2nlogn + n.

– Additions: Ta(N̂TT ) = nlogn and Ta(N̂TT
−1

) = nlogn.

However, that explanation cannot explicitly express the real process of N̂TT .
There is another explanation based on the Chinese Remainder Theorem (CRT):

Zq[x]/(xn + 1) ∼= Zq[x]/(x − ω)×Zq[x]/(x − ω3)×· · ·×Zq[x]/(x − ω2n−1) (1)

Therefore, we only demand the images of f and g in Zq[x]/(x − ω2i+1),
i ∈ {0, 1, · · · , n − 1}. In fact, if we think of N̂TT as a special interpolation
method, the interpolation points of N̂TT we may have are {ω, ω3, . . . , ω2n−1}.
For presentation simplicity in the proof of equivalence in the subsequent sections,
we give the interpolation method in the matrix form.

Definition 2. Based on the explanation of N̂TT by CRT, we can think of N̂TT
process as a special form of interpolation. Notice that the process of the interpo-
lation is a linear transformation which can be represented in the matrix form:

⎡

⎢
⎢
⎢
⎢
⎣

f̂0
f̂1
...

f̂n−1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 ω ω2 . . . ωn−1

1 ω3 ω6 . . . ω3(n−1)

...
...

...
. . .

...
1 ω2n−1 ω2(2n−1) . . . ω(2n−1)(n−1)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0
f1
...

fn−1

⎤

⎥
⎥
⎥
⎦

(2)

where we denote the coefficient matrix above by Wn.

3 On the Exact Computational Complexity of Pt-NTT

In this section, we calculate the exact computational complexity of Pt-NTT
[15,16] in terms of both multiplications and additions. According to [15,16], as
for Rq = Zq[x]/(xn + 1) where n is a power of 2 and q is a prime satisfying

n
2α−1 |(q − 1) for the integer α ≥ 0, Pt-NTT can have α upper decompositions
from the top before the actual NTT progress kicks in. The steps of Pt-NTT in
the generalized form are described here.

Step 1: Let f(x) =
∑2α−1

i=0 xif̃i(x2α

) and g(x) =
∑2α−1

j=0 xj g̃j(x2α

) be the
decompositions of f and g respectively. The degrees of f̃i(z) and g̃j(z) are
bounded by n

2α , where z = x2α

. To compute h(x) ≡ f(x)g(x) mod (xn + 1),
we write h(x) =

∑2α−1
i=0 xih̃i(x2α

).
Step 2: For i = 0, 1, . . . , 2α − 1, we have

˜hi(z) =
i

∑

l=0

˜fl(z)g̃i−l(z) +

2α−1
∑

l=i+1

z ˜fl(z)g̃2α+i−l(z)

=̂NTT
−1

⎛

⎝

i
∑

l=0

̂NTT ( ˜fl(z)) ◦ ̂NTT (g̃i−l(z)) +

2α−1
∑

l=i+1

̂NTT (z) ◦ ̂NTT ( ˜fl(z)) ◦ ̂NTT (g̃2α+i−l(z))

⎞

⎠ .
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Step 3: Compute h(x) =
∑2α−1

i=0 xih̃i(x2α

).

In Step 2, by applying the Karatsuba technique, for any i �= j we have
N̂TT (f̃i)◦N̂TT (g̃j)+N̂TT (f̃j)◦N̂TT (g̃i) = (N̂TT (f̃i)+N̂TT (f̃j))◦(N̂TT (g̃i)+
N̂TT (g̃j)) − N̂TT (f̃i) ◦ N̂TT (g̃i) − N̂TT (f̃j) ◦ N̂TT (g̃j).

From the above description, the operations that Pt-NTT [16] needs to com-
pute in total are listed:

– 2α+1 N̂TT s. Every N̂TT requires n
2α+1 log n

2α multiplications and n
2α log n

2α

additions.
– 2α N̂TT

−1
s. Every N̂TT

−1
requires n

2α+1 log n
2α + n

2α multiplications and
n
2α log n

2α additions.
– 3 · 22α−2 + 2α−1 point-wise multiplications of vectors. Every point-wise mul-

tiplication of vectors requires n
2α multiplications.

– 22α+1+22α−1−5·2α−1 additions of vectors. Every addition of vectors requires
n
2α additions.

Finally, we obtain the exact computational complexity of Pt-NTT in its gen-
eralized form:

– Multiplications:

Tm(Pt-NTT) =

{
3
2nlogn + (3 · 2α−2 + 3

2 − 3α
2 )n, α ≥ 1.

3
2nlogn + 2n, α = 0 (i.e., Pt-NTT degenerates to N̂TT ).

– Additions: Ta(Pt-NTT) = 3nlogn + (5 · 2α−1 − 5
2 − 3α)n.

By mathematical analysis, we can conclude that the computational com-
plexity of Pt-NTT reaches its optimization when α = 1 w.r.t. the fixed (n, q):
3
2nlogn+ 3

2n multiplications and 3nlogn− 1
2n additions. In comparison, the com-

putational complexity analysis of Pt-NTT in [16] is incomplete and incorrect.
On the one hand, the complexity of additions was not analyzed in [16]. On the
other hand, the complexity of multiplications was incorrectly concluded to be
T (n) = 3n log n + (3 · 2α−2 − 3α + 1

2 )n in [16].

4 On the Computational Equivalence of Pt-NTT
and T-NTT

Pt-NTT [15,16] follows the upper dividing approach, where α upper decom-
positions are made from the top. On the contrary, T-NTT follows the bottom
cropping approach, where β layers are cropped from the bottom. To the best of
our knowledge, the relationship between Pt-NTT and T-NTT was not explicitly
studied in the previous literatures. In this section, we show that they are actually
computationally equivalent.

For ease of understanding, we consider the special case of Pt-NTT, i.e., α = 1.
We have f = fe + xfo and g = ge + xgo, i.e.,
⎧
⎪⎨

⎪⎩

f = f0 + f1x + . . . + fn−1x
n−1

fe = f0 + f2y + . . . + fn−2y
n
2 −1

fo = f1 + f3y + . . . + fn−1y
n
2 −1

,

⎧
⎪⎨

⎪⎩

g = g0 + g1x + . . . + gn−1x
n−1

ge = g0 + g2y + . . . + gn−2y
n
2 −1

go = g1 + g3y + . . . + gn−1y
n
2 −1

(3)
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where we define y = x2. We can obtain h = fg = he + xho, where he =
fege + x2fogo and ho = foge + fego.

As for T-NTT with β = 1, from [2] we know it can be explained by CRT:

Zq[x]/(xn + 1) ∼= Zq[x]/(x2 − ω) × Zq[x]/(x2 − ω3) × · · · × Zq[x]/(x2 − ωn−1)
(4)

where ω is the n-th primitive root of unity in Zq. Based on formula (4) above
which is similar to formula (1), T-NTT with β = 1 can be considered as a special
form of interpolation. Similar to Definition 2 and formula (2), we can give its
matrix form here:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̂f0 + ̂f1x
̂f2 + ̂f3x

.

.

.
̂fn−2 + ̂fn−1x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Wn
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f0 + f1x

f2 + f3x

.

.

.

fn−2 + fn−1x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, i.e.,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̂f0
̂f2

.

.

.
̂fn−2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ x

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̂f1
̂f3

.

.

.
̂fn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Wn
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f0
f2

.

.

.

fn−2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ xWn
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f1
f3

.

.

.

fn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

which implies

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̂f0
̂f2

.

.

.
̂fn−2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Wn
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f0
f2

.

.

.

fn−2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̂f1
̂f3

.

.

.
̂fn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Wn
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f1
f3

.

.

.

fn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that Wn
2

⎡

⎢
⎢
⎢
⎣

f0
f2
...

fn−2

⎤

⎥
⎥
⎥
⎦

and Wn
2

⎡

⎢
⎢
⎢
⎣

f1
f3
...

fn−1

⎤

⎥
⎥
⎥
⎦

are actually N̂TT (fe) and N̂TT (fo)

respectively, which are the terms obtained from the process of Pt-NTT with
α = 1.

The point-wise multiplication of

⎡

⎢
⎢
⎢
⎢
⎣

f̂0 + f̂1x

f̂2 + f̂3x
...

f̂n−2 + f̂n−1x

⎤

⎥
⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎣

ĝ0 + ĝ1x
ĝ2 + ĝ3x

...
ĝn−2 + ĝn−1x

⎤

⎥
⎥
⎥
⎦

is

equivalent to
⎡
⎢⎢⎢⎢⎣

f̂0
f̂2
...

f̂n−2

⎤
⎥⎥⎥⎥⎦

◦

⎡
⎢⎢⎢⎣

ĝ0
ĝ2
...

ĝn−2

⎤
⎥⎥⎥⎦+x2

⎡
⎢⎢⎢⎢⎣

f̂1
f̂3
...

f̂n−1

⎤
⎥⎥⎥⎥⎦

◦

⎡
⎢⎢⎢⎣

ĝ1
ĝ3
...

ĝn−1

⎤
⎥⎥⎥⎦+x

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

f̂1
f̂3
...

f̂n−1

⎤
⎥⎥⎥⎥⎦

◦

⎡
⎢⎢⎢⎣

ĝ0
ĝ2
...

ĝn−2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

f̂0
f̂2
...

f̂n−2

⎤
⎥⎥⎥⎥⎦

◦

⎡
⎢⎢⎢⎣

ĝ1
ĝ3
...

ĝn−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

.



Number Theoretic Transform 423

Here, x2 is actually a vector, going as (ω, ω3, · · · , ωn−1)T . And similar to
N̂TT (y) in Pt-NTT, the process of x2 is point-wise multiplication. Therefore,
T-NTT(f)◦T-NTT(g) = N̂TT (fe)◦N̂TT (ge)+N̂TT (y)◦N̂TT (fo)◦N̂TT (go)+
x(N̂TT (fe)◦ N̂TT (go)+ N̂TT (fo)◦ N̂TT (ge)). So we can see that Pt-NTT with
α = 1 has the same computing process as T-NTT with β = 1.

Given f ∈ Zq[x]/(xn + 1) where n is a power of 2 and q is a prime satisfying
n

2β−1 |(q − 1) for the integer β ≥ 0, we give the generalized form of T-NTT(f):

T-NTT(f) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂f0 + ̂f1x + . . . + ̂f
2β−1

x2β−1

̂f
2β + ̂f

2β+1
x + . . . + ̂f

2β+1−1
x2β−1

.

.

.

̂f
n−2β + ̂f

n+1−2β x + . . . + ̂fn−1x2β−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= W n
2β

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f0 + f1x + . . . + f
2β−1

x2β−1

f
2β + f

2β+1
x + . . . + f

2β+1−1
x2β−1

.

.

.

f
n−2β + f

n+1−2β x + . . . + fn−1x2β−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Applying the method similar to the above analysis for α = β = 1, we can
get the computational equivalence between Pt-NTT and T-NTT for any α = β.
Thus, the computational complexity of T-NTT can be derived from that of Pt-
NTT.

– Multiplications:

Tm(T-NTT) =

{
3
2nlogn + (3 · 2β−2 + 3

2 − 3β
2 )n, β ≥ 1.

3
2nlogn + 2n, β = 0 (i.e., T-NTT degenerates to N̂TT ).

– Additions: Ta(T-NTT) = 3nlogn + (5 · 2β−1 − 5
2 − 3β)n.

5 Hybrid Number Theoretic Transform (H-NTT)

Pt-NTT [16] accelerates the computing process by decomposing the polynomial
ahead of other procedures, while T-NTT aims at promoting the efficiency by
reducing the layers of decomposing from the bottom. From the computational
complexity analysis of Pt-NTT and T-NTT, we can see that each of Pt-NTT
and T-NTT has certain computational advantage over the traditional NTT on
its own. This motivates us to examine whether more efficient NTT algorithms
can be achieved by combining them both. This brings the introduction of hybrid
number theoretic transform (H-NTT). The purpose of the H-NTT is to calculate
h = fg more efficiently and more modularly, as we shall see with the applications
to the implementations of latticed-based cryptographic algorithms.

We refer to H-NTT(n, α, β) as the H-NTT process with α upper decompo-
sitions from the top and β layers cropped from the bottom. As mentioned in
Sect. 2, we operate it on Zq[x]/(xn +1), where n is a power of 2 and q is a prime
satisfying n

2α+β−1 |(q − 1). The H-NTT process is specified and discussed below.

Step 1: Similar to Pt-NTT, we first decompose the original polynomials: f(x) =
∑2α−1

i=0 xif̃i(x2α

) and g(x) =
∑2α−1

j=0 xj g̃j(x2α

). The degrees of f̃i(z) and g̃j(z)
are bounded by n

2α , where z = x2α

. To compute h(x) ≡ f(x)g(x) mod (xn +
1), we write h(x) =

∑2α−1
i=0 xih̃i(x2α

).
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Step 2: Then we compute h̃i(z) in Zq[z]/(z
n
2α + 1). For i = 0, 1, . . . , 2α − 1, we

have

˜hi(z) =

i
∑

l=0

˜fl(z)g̃i−l(z) +

2α−1
∑

l=i+1

z ˜fl(z)g̃2α+i−l(z)

=T-NTT
−1

⎛

⎝

i
∑

l=0

T-NTT( ˜fl) ◦ T-NTT(g̃i−l) +

2α−1
∑

l=i+1

T-NTT(z) ◦ T-NTT( ˜fl) ◦ T-NTT(g̃2α+i−l)

⎞

⎠ .

In Step 2, β layers are cropped from the bottom in T-NTT. By applying
the Karatsuba technique, for any i �= j we have T-NTT(f̃i) ◦ T-NTT(g̃j) +
T-NTT(f̃j) ◦ T-NTT(g̃i) = (T-NTT(f̃i) + T-NTT(f̃j)) ◦ (T-NTT(g̃i) +
T-NTT(g̃j)) − T-NTT(f̃i) ◦ T-NTT(g̃i) − T-NTT(f̃j) ◦ T-NTT(g̃j).
There are a few points that require our attention:

– The “◦” operator in “T-NTT(f̃i) ◦ T-NTT(g̃j)” means the point-wise
multiplication of polynomial vectors.

– T-NTT(z) = (z, z, . . . , z), including n
2α+β z’s in total.

– Though the “◦” operator in “T-NTT(z) ◦” means the point-wise mul-
tiplication of polynomial vectors, we actually need to process only n

2α+β

multiplications. As a matter of fact, we can call “◦” the point-wise mul-
tiplication of vectors.

Step 3: h(x) =
∑2α−1

i=0 xih̃i(x2α

).

Observe that, in Step 1 and Step 3, we are simply doing splitting and com-
bining of lists. Consequently, these two steps are not taken into account for
calculating the complexity in terms of multiplications and additions.

In Step 2, the computational complexity can be calculated as follows: 2α+1

T-NTTs, 2α T-NTT−1s, 22α−1 + 2α−1 point-wise multiplications of polynomial
vectors, 22α−2 point-wise multiplications of vectors, and 22α+1 +22α−1 −5 ·2α−1

additions of polynomials. Each of these processes requires different numbers of
multiplications and additions:

– Every T-NTT requires n
2α+1 (log n

2α − β) multiplications and n
2α (log n

2α − β)
additions.

– Every T-NTT−1 requires n
2α+1 (log n

2α − β) multiplications and n
2α (log n

2α − β)
additions.

– Every point-wise multiplications of polynomial vectors requires (3 · 2(β−2) +
1
2 ) · n

2α multiplications and (5 · 2(β−1) − 5
2 ) · n

2α additions.
– Every point-wise multiplication of vectors requires n

2α+β multiplications.
– Every addition of polynomials requires n

2α additions.

Finally, by combining all the multiplications and additions listed above, we
obtain the computational complexity of H-NTT in its generalized form:

– Multiplications: Tm(H-NTT) = 3
2nlogn + (3 · 2α+β−3 + 2α−2 + 3 · 2β−3 +

2α−β−2 − 3
2 (α + β) + 5

4 )n.
– Additions: Ta(H-NTT) = 3nlogn + (5 · 2α+β−2 + 5 · 2β−2 + 5 · 2α−2 − 3 · (α +

β) − 15
4 )n.
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By mathematical analysis, we can conclude that the computational com-
plexity of H-NTT can reach its optimization when α = β = 1, which contains
3
2nlogn + 5

4n multiplications and 3nlogn + 1
4n additions. Recall that Pt-NTT

(resp., T-NTT) reaches its optimization when α = 1 (resp., β = 1): 3
2nlogn+ 3

2n
multiplications and 3nlogn − 1

2n additions.

6 G3-NTT and P3-NTT

In this section, in the spirit of H-NTT, we present generalized, parallelizable
and modular NTT algorithms for the case of n = 3 · 2m for any integer m ≥ 0.
We can check that Φs(x) = x3·2m − x3·2m−1

+ 1 is the s-th cyclotomic poly-
nomial of degree n = 3 · 2m where s = 32 · 2m satisfying n = φ(s). In
the subsequent discussions, we will consider the polynomial multiplications in
Rq = Zq[x]/(Φs(x)) = Zq[x]/(x3·2m − x3·2m−1

+ 1) where q is a prime (more on
this point later).

We first present the generalized form of NTT for this case, which is referred
to as G3-NTT for simplicity, analyze its computational complexity and derive
its optimality. Then, we present the special and optimal version of G3-NTT for
the most important case of n = 768 = 3 · 256, which is referred to as P3-NTT.
We first present the procedures of G3-NTT for the general case of n = 3 · 2m,
referred to as G3-NTT(n = 3 · 2m, α, β) where 3 · 2α parts are generated from
the top and β layers are cropped from the bottom in T-NTT.

Step 1: Given f, g ∈ Rq, we divide the original polynomials into 3 · 2α parts:
f(x) =

∑3·2α−1
i=0 xif̃i(x3·2α

) and g(x) =
∑3·2α−1

j=0 xj g̃j(x3·2α

). The degrees of
f̃i(z) and g̃j(z) are bounded by n

3·2α , where z = x3·2α

. To compute h = fg ∈
Rq, we write h(x) =

∑3·2α−1
i=0 xih̃i(x3·2α

).
Step 2: Compute h̃i(z) in Zq[z]/(z

n
3·2α − z

n

3·2α+1 +1). For i = 0, 1, . . . , 3 · 2α − 1,
we have

˜hi(z) =
i

∑

l=0

˜fl(z)g̃i−l(z) +

3·2α−1
∑

l=i+1

z ˜fl(z)g̃3·2α+i−l(z)

=T-NTT
−1

⎛

⎝

i
∑

l=0

T-NTT( ˜fl) ◦ T-NTT(g̃i−l) +

3·2α−1
∑

l=i+1

T-NTT(z) ◦ T-NTT( ˜fl) ◦ T-NTT(g̃3·2α+i−l)

⎞

⎠ .

In Step 2, for any i �= j we have T-NTT(f̃i) ◦ T-NTT(g̃j) + T-NTT(f̃j) ◦
T-NTT(g̃i) = (T-NTT(f̃i) + T-NTT(f̃j)) ◦ (T-NTT(g̃i) + T-NTT(g̃j)) −
T-NTT(f̃i) ◦ T-NTT(g̃i) − T-NTT(f̃j) ◦ T-NTT(g̃j).
Some notes are in place:

– T-NTT(z) = (z, z, . . . , z), including n
3·2α+β z’s in total.

– The operator “◦” in “T-NTT(z) ◦” only needs n
3·2α+β multiplications.

Step 3: h(x) =
∑3·2α−1

i=0 xih̃i(x3·2α

).

According to the analysis above, the computational complexity of G3-
NTT(n = 3 · 2m, α, β) can be calculated as follow. We categorize the analysis
into several distinct cases, according to whether α or β is assigned to be 0 or
not.
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Case 1: α = 0, β ≥ 1,
– Multiplications: Tm(G3-NTT) = 3

2nlogn+(3·2β−1+2+ 1
32−β+1− 3

2 log3−
3
2β)n.

– Additions: Ta(G3-NTT) = 3nlogn + (5 · 2β + 1 − 3log3 − 3β)n.
Case 2: α ≥ 1, β = 0,

– Multiplications: Tm(G3-NTT) = 3
2nlogn + (9 · 2α−2 + 3

2 − 3
2 log3 − 3

2α)n.
– Additions: Ta(G3-NTT) = 3nlogn + (15 · 2α−2 − 3

2 − 3log3 − 3α)n.
Case 3: α ≥ 1, β ≥ 1,

– Multiplications: Tm(G3-NTT) = 3
2nlogn+(9·2α+β−3+3·2α−2+3·2β−3+

3 · 2α−β−2 + 5
4 − 3

2 log3 − 3
2 (α + β))n.

– Additions: Ta(G3-NTT) = 3nlogn + (15 · 2α+β−2 − 5 · 2β−2 − 3(α + β) −
3log3 − 11

4 )n.
Case 4: α = 0, β = 0,

– Multiplications: Tm(G3-NTT) = 3
2nlogn + (113 − 3

2 log3)n.
– Additions: Ta(G3-NTT) = 3nlogn + (6 − 3log3)n.

From the discussion above, we can see that when (n, q) is fixed, the computa-
tional complexity of G3-NTT(n = 3 · 2m, α, β) reaches the minimum value when
α = β = 0. We show more interest in this case, i.e., G3-NTT(n = 3 · 2m, α =
0, β = 0), and more details about this optimized case of G3-NTT are given
below.

With α = β = 0 in G3-NTT, considering s = 32 · 2m and n = 3 · 2m, we
only require q ≡ 1 mod 3 · 2m. Let ω be the 3 · 2m-th primitive root of unity in
Zq here. Define y = x3. We have Zq[x]/(Φs(x)) = Zq[y]/(y2m − y2m−1

+ 1)�
xZq[y]/(y2m − y2m−1

+ 1) � x2
Zq[y]/(y2m − y2m−1

+ 1) where Zq[y]/(y2m −
y2m−1

+ 1) ∼= Zq[y]/(y2m−1 − ω2m−1
) × Zq[y]/(y2m−1 − ω5·2m−1

). Then, we apply
T-NTT(with β = 0) in both Zq[y]/(y2m−1 −ω2m−1

) and Zq[y]/(y2m−1 −ω5·2m−1
).

Note that f, g ∈ Rq are divided into 3 parts respectively, i.e., f = f0 +
xf1 + x2f2 and g = g0 + xg1 + x2g2. To compute h = fg ∈ Rq, we concretely
write h = h0 + xh1 + x2h2. By applying the Karatsuba technique, we get h0 =
f0g0+[(f1+f2)(g1+g2)−f1g1−f2g2]y, h1 = (f0+f1)(g0+g1)−f1g1−f0g0+yf2g2
and h2 = (f0 + f2)(g0 + g2) − f2g2 − f0g0 + f1g1.

In applications of lattice-based cryptography, the dimension n of polynomials
usually dominates the bandwidth and security in some schemes. The case of
n = 768 = 3 · 256 (i.e., m = 8 and s = 32 · 256) may arguably be the most
important or relevant case in reality. Consequently, we explicitly specify the
special (optimized) case of G3-NTT: G3-NTT(n = 768, α = 0, β = 0), which
is referred to as P3-NTT. We can obtain the cyclotomic polynomial of degree
n = 768: Φs(x) = x768 − x384 + 1, which implies Rq = Zq[x]/(x768 − x384 + 1)
where q is a prime only satisfying q ≡ 1 mod 768. That is, ω is set to be the
768-th primitive root of unity in Zq.

The calculation process of P3-NTT is the same as that of G3-NTT(n =
3 ·2m, α = 0, β = 0) by simply fixing m = 8. We give the concrete computational
complexity of P3-NTT, by setting n = 768 and α = β = 0 in the analysis
of G3-NTT. Obviously, the computational complexity of P3-NTT reaches the
minimum value because of α = β = 0.
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– Multiplications: Tm(P3-NTT) = 3
2nlogn + (113 − 3

2 log3)n.
– Additions: Ta(P3-NTT) = 3nlogn + (6 − 3log3)n.

7 Applications to Kyber and NewHope

In this section, we apply the NTT techniques proposed in this work to Kyber
[4] and NewHope [12]. Kyber is the prominent KEM scheme based on MLWE,
and is now in the third round of NIST PQC standardization. NewHope is the
standing KEM scheme based on RLWE, and was one of the candidates in the
second round of NIST PQC standardization. Tough NewHope was not moved
to the third round, the study and optimization of NewHope still deserve further
research exploration.

Let R and Rq (restated) denote the rings Z[x]/(xn + 1) and Zq[x]/(xn + 1),
respectively. Denote by Sη ⊆ Rk the set of elements w ∈ Rk such that ||w||∞ ≤
η, where k ≥ 0 is an integer. Roughly speaking, the Module-LWE (MLWE)
problem states that given A ← Rk×k

q and b := As + e where s, e ← Sη,
no efficient algorithm can recover s with non-negligible probability. Kyber sets
n = 256, q = 3329 and η = 2, and provides three sets of parameters, referred
to as Kyber-512, Kyber-768 and Kyber-1024 respectively, which correspond to
k = 2, 3 and 4 respectively. The Ring-LWE (RLWE) problem can be viewed
as a special case of MLWE with k = 1. NewHope sets q = 12289, η = 8 and
k = 1, and provides two sets of parameters, referred to as NewHope-512 and
NewHope-1024, which correspond to n = 512 and n = 1024 respectively.

7.1 Application to Kyber

We focus on the Kyber-1024 parameter set, which aims at about 230-bit post-
quantum security but with 256-bit shared-key to be encapsulated. In this work,
we provide a new set of parameters for Kyber-1024: n = 512, k = 2 (and the same
q = 3329 and η = 2), which is summarized in Table 1 (page 12). In comparison
with the parameter set in [4], at the same level of security and error probability
the new Kyber-1024 parameter set has doubled key size (say, 512 bits). Here, we
would like to highlight the importance and desirability of larger shared-key size.

– Doubling the shared-key size means more powerful and economic ability of
key transportation, at the same level of security. For applications that require
a 512-bit shared-key, we may run Kyber-1024 twice. In this case, running our
new Kyber-1024 is much more efficient both in computation and in band-
width, though the size of public key and that of ciphertext of the new Kyber-
1024 are relatively larger on their own.

– Doubling the shared-key size is important for the targeted security level
against Grover’s search algorithm, and against the possibility of more sophis-
ticated quantum cryptanalysis in the long run. Note that for Kyber-1024, its
target security level is about 230-bit post-quantum security. Even if the under-
lying MLWE problem provides this level of hardness, the 256-bit shared-key
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may not. Though the standardization of post-quantum symmetric key cryp-
tography is not considered yet, it is expected that the key size will increase
to remain the same security level in the post-quantum era.

– Larger key size is indeed needed in many cryptographic standards. For exam-
ple, according to different security levels (specifically, 128, 192, 256-bit secu-
rity), in TLS 1.3 it mandates three options for the master secrecy size: 256,
384 and 512, by employing the secp256r1, secp384r1 and secp512r1 curves
respectively.

We apply our H-NTT technique with α = β = 1 to the new Kyber-1024
protocol. We note that the new Kyber-1024 protocol implementation can reuse
the NTT codes of Kyber-512 (for n = 256 and k = 2) and those of Kyber-768
(for n = 256 and k = 3). Specifically, Kyber-512 and Kyber-768 use T-NTT that
is a 7-level 256-point NTT. In this work, each polynomial used in the new Kyber-
1024 protocol is of degree 512, and is divided into two parts of degree 256 which
can then utilize the 7-level 256-point T-NTT used in Kyber-512 and Kyber-768.
Our H-NTT based implementation of the new Kyber-1024 protocol reuses the
codes of T-NTT employed in the implementations of Kyber-512 and Kyber-
768. In this sense, our H-NTT is compatible with the initial T-NTT utilized in
Kyber, since the initial codes of T-NTT can be reused as a sub-procedure in
H-NTT. In other words, though the parameter set is changed, there is no need
for modification of codes of NTT. As a consequence, our method can save the
code size of NTT and can improve computational efficiency.

Table 1. Parameter sets for Kyber-1024. Here, |K| refers to the size of the key to
be encapsulated; |pk| (resp., |ct|) refers to the size of public key (resp., ciphertext) in
bytes; pq-sec refers to the post-quantum bit security; err refers to the error probability.

Schemes n k q η |K| (|pk|, |ct|) pq-sec err

Kyber-1024 [2] 256 4 3329 2 256 (1568,1568) 230 2−174

(Ours) 512 2 3329 2 512 (1600,1728) 230 2−174

7.2 Application to NewHope

NewHope in [12] sets q = 12289 and η = 8, and provides two sets of parameters,
referred to as NewHope-512 and NewHope-1024, which correspond to n = 512
and n = 1024 respectively. Recently, the work [1] provides its variant: NewHope-
Compact, which provides three sets of parameters referred to as NewHope-
Compact-512,NewHope-Compact-768 andNewHope-Compact-1024 respectively.
Both NewHope-Compact-512 and NewHope-Compact-1024 set q = 3329, similar
to Kyber. But NewHope-Compact-768 sets q = 3457 for the case of n = 768 by
employing an improved version of the NTTRU approach [11].
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In this work, we present a new variant of NewHope, referred to as NewHope-
Unified for simplicity, which sets the same modulus q = 7681 (as well as the
same η = 4) for all the three cases of n ∈ {512, 768, 1024}. The parameters
for NewHope-Unified are given in Table 2 (page 13). For the three cases of
n = 512, 768 and 1024 of NewHope-Unified, we apply T-NTT (with β = 1),
P3-NTT, and H-NTT (with α = β = 1) respectively. Accordingly, their mod-
uli q’s should satisfy q ≡ 1 mod 512, q ≡ 1 mod 768, and q ≡ 1 mod 512
respectively. The smallest modulus q meeting these conditions is 7681. Note that
H-NTT for NewHope-Unified-1024 can reuse the codes of T-NTT for NewHope-
Unified-512. Specifically, the T-NTT used by NewHope-Unified-512 is an 8-level
512-point NTT. The polynomials used in NewHope-Unified-1024 are of degree
1024 and are divided into two parts of degree 512, which can then reuse the T-
NTT codes for NewHope-Unified-512. For NewHope-Unified-768, we apply the
P3-NTT technique developed in this work. It divides the polynomial of degree
768 into three parts of degree 256, and the NTT process of each part can be
performed independently in parallel.

As shown in Table 3 (page 14), NewHope-Unified provides a trade-off between
bandwidth and error probability. Specifically, it has lower sizes of ciphertexts and
public/secret keys than that of NewHope, and has lower error probability than
that of NewHope-Compact for the cases of n = 512 and n = 768. Finally, we
highlight some advantages of employing the unified modulus q = 7681 for all the
three cases of n ∈ {512, 768, 1024}:

– It allows more modular implementations, and simplifies implementation com-
plexity. For example, the same modular reduction can be used for all the three
cases.

– It allows more space-efficient implementations. Specifically, two tables omega
and omega inv are needed in NTTs. However, the contents of the tables vary
with q. If q is not unified, we need more tables to store the pre-computed
values of ωi and ω−i. In our implementation, we keep q = 7681 unified for
different n’s, so the storage of these pre-computed tables, as well as the size
of the program codes, can be reduced.

Table 2. Parameter sets of NewHope-Unified

Schemes n q ω η

NewHope-Unified-512 512 7681 62 4

NewHope-Unified-768 768 7681 20 4

NewHope-Unified-1024 1024 7681 62 4
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7.3 Implementation and Benchmark

We implement the algorithms and run the benchmark in reference C implemen-
tations on Intel(R) Core(TM) i7-9700k CPU @ 3.60 GHz, with HyperThreading
off. The codes are compiled with the option -mavx2 -maes -mbmi2 -mpopcnt -O3
-Wall -Wextra -Wpedantic -Wmissing-prototypes -Wredundant-decls -fPIC -std=c99.
We run KeyGen, Encaps and Decaps for 1000 times respectively. The averages of
CPU cycle counts are given in Table 4 (page 15) for Kyber and Table 5 (page 15)
for NewHope (and its variants) respectively. Here, we highlight some points of the
implementations.

Table 3. Comparison of NewHope, NewHope-Compact and NewHope-Unified. Here,
|pk|, |sk| and |ct| refer to the size of public key, secret key and ciphertext in bytes
respectively; pq-sec refers to the post-quantum bit security; err refers to the error
probability.

Schemes n q err pq-sec |pk| |sk| |ct|
NewHope 512 12289 2−213 101 928 1888 1120

1024 12289 2−216 233 1824 3680 2208

NewHope-Compact 512 3329 2−256 100 800 1632 992

768 3457 2−170 163 1184 2400 1568

1024 3329 2−181 230 1568 3168 2080

NewHope-Unified(Ours) 512 7681 2−300 98 864 1760 1056

768 7681 2−229 161 1280 2592 1568

1024 7681 2−176 227 1696 3424 2080

Butterfly Operation. Note that Cooley-Tukey butterfly takes input in the
normal order and outputs in the bit-reversed order, while Gentleman-Sande
butterfly takes input in the bit-reversed order and outputs in the normal order.
With this observation, unlike the implementation of NewHope [12], our imple-
mentation uses Cooley-Tukey butterfly in forward NTT and Gentleman-Sande
butterfly in NTT−1 for various n’s, in order to save a bit-reversal operation. Oth-
erwise, if Gentleman-Sande butterfly is used in both forward NTT and NTT−1,
we need an extra bit-reversal firstly.

Barrett Reduction and Lazy Reduction. For Barrett reduction, the range
of its input value a is − t

2 ≤ a < t
2 where t = 216 in this work, and the range of

its output is r = a mod q. Therefore, the coefficients of the polynomial can be
added or subtracted up to 3 times for the case of q = 7681, without exceeding
the input range of Barrett reduction. Thus, we do not need to perform modular
reduction after every addition or subtraction. Instead, we can perform it only
after every three additions or subtractions. This lazy reduction technique allows
us to greatly reduce the number of reductions.
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Montgomery Reduction. For Montgomery reduction, its input value a is a
32-bit integer ranging from − t

2q to t
2q where t = 216. The range of its output is

−q < r < q where r = t−1a mod q. This algorithm is used to keep the product
of two polynomial coefficients in the Montgomery domain. Actually, the product
of two polynomial coefficients is in the range of input of Montgomery reduction.

Sampling and Noise. Our parameter sets allow much faster sampling of secret
and noise polynomials. Usually, they are sampled by centered binomial distri-
bution ψη, which can be computed with

∑η
i=1 (ai − bi) where the bits ai and

bi are chosen uniformly at random from {0, 1}. In this work, we sample them
by ψ4 when implementing NewHope-Unified. On each call, SHAKE256 gen-
erates 128 bytes, every byte of which can be used to construct one coefficient
according to ψ4. That is, we can sample 128 coefficients on each call. To generate
all coefficients of polynomials in Rq, SHAKE256 has to be called 4, 6 and 8
times respectively for n = 512, 768 and 1024 in NewHope-Unified. As for the
implementation of our new Kyber-1024 protocol, we use the same ψ2 as in the
original Kyber-1024 implementation [2].

Table 4. Cycle counts of Kyber-1024

Schemes KeyGen Encaps Decaps

Kyber-1024 [2] 65145 109851 89781

(Ours) 36772 49113 45976

Table 5. Cycle counts of NewHope, NewHope-Compact and NewHope-Unified

Schemes n KeyGen Encaps Decaps

NewHope 512 85177 123058 144323

1024 163756 245402 278182

NewHope-Compact 512 49699 93731 119334

768 76434 187455 195533

1024 107655 204469 241979

NewHope-Unified(Ours) 512 77438 112867 129657

768 147917 233193 252238

1024 104402 210770 224403
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Abstract. Nonlinear feedback shift registers (NFSRs) are used in many
stream ciphers as their main building blocks. According to implementa-
tion configurations, NFSRs are generally classified as Fibonacci NFSRs
and Galois NFSRs. Compared to Fibonacci NFSRs, Galois NFSRs have
potentially shorter propagation time and higher throughput. Moreover,
if a Galois NFSR is equivalent to a Fibonacci NFSR in the sense that
they have the same set of output sequences, then this particular Galois
NFSR can overcome some drawbacks of a general one, and therefore may
improve the security of NFSR-based stream ciphers. Previous work has
found some types of Galois NFSRs equivalent to Fibonacci NFSRs, and
has shown many Galois NFSRs equivalent to a given Fibonacci NFSR
with the same stage number. This paper gives another type of Galois
NFSRs equivalent to a given Fibonacci NFSR, in which their all corre-
sponding states have either equal or complementary components at the
same positions. As an application of this result, the paper shows that
the stream ciphers Grain, Trivium and Acorn have used the NFSRs with
the lowest cost of hardware implementation among their own equivalent
Galois NFSRs of this type. The paper also enumerates the Galois NFSRs
equivalent to a given Fibonacci NFSR with the same stage number. More-
over, it reveals some common characterizations of Galois NFSRs that are
equivalent to Fibonacci ones from the perspectives of their stage number
and feedback functions, helpful to the design of stream ciphers.

Keywords: Shift register · Stream cipher · Equivalence

1 Introduction

Nonlinear feedback shift registers (NFSRs) have been used as the main building
blocks in many stream ciphers, such as the finalists of Grain [1] and Trivium [2] in
the eSTREAM project, and the finalist of Acorn [3] in the CAESAR competition.
An NFSR can be generally implemented in Fibonacci or Galois configuration.
In Fibonacci configuration, the feedback of an NFSR is only applied to the last
c© Springer Nature Switzerland AG 2021
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bit, while in the Galois configuration, the feedback can be applied to every bit.
NFSRs in Fibonacci configuration are called Fibonacci NFSRs, and those in
Galois configuration are called Galois NFSRs. Compared to Fibonacci NFSRs,
Galois NFSRs have potentially shorter propagation time and higher throughput
[4]. Actually, the foregoing stream ciphers have all used the Galois NFSRs.

Two NFSRs are said to be equivalent if their sets of output sequences
are equal. So far, some work has been done on the equivalence of NFSRs.
First, for the equivalence between Galois NFSRs, a Galois NFSR in which the
feedback function of the i-th bit satisfies fi(X1,X2, . . . , Xn) = X(i+1) mod n ⊕
gi(X1, . . . , Xi, Xi+2, . . . , Xn) was found equivalent to a class of Galois NFSRs
[5]. In addition, as particular Galois NFRSRs, cascade connections of two NFSRs
were characterized from the perspective of feedback functions if they are equiva-
lent [6]. Second, for the equivalence between Galois NFSRs and Fibonacci ones,
on one hand, it was found that any given Fibonacci NFSR can be equivalent
to “uniform” Galois NFSRs with the same stage number [4] and their initial
states were matched [7]; moreover, experiments verified Galois NFSRs capa-
ble of improving throughput and reducing areas, compared to their equivalent
Fibonacci NFSRs [4]. On the other hand, “lower triangular” Galois NFSRs [8]
and cascade connections of two NFSRs [9] were revealed equivalent to Fibonacci
NFSRs, which in fact are some sufficient conditions for Galois NFSRs equivalent
to Fibonacci NFSRs.

If a Galois NFSR is equivalent to a Fibonacci one, then this particular Galois
NFSR overcomes some drawbacks of a general one. Those drawbacks include
the output sequence of a general Galois NFSR having a period shorter than
the length of the longest cyclic sequence of its consecutive states, and a gen-
eral n-stage Galois NFSR with period 2n − 1 unsatisfying the first and second
randomness postulates of Golomb [4]. Such overcome drawbacks may improve
the security of NFSR-based stream ciphers. However, not all types of Galois
NFSRs equivalent to Fibonacci ones have been found, and how many Galois
NFSRs equivalent to a given Fibonacci NFSR is unclear, either. Moreover, it is
still unknown what necessary conditions are for the Galois NFSRs equivalent to
Fibonacci NFSRs? In other words, what are common characterizations of Galois
NFSRs equivalent to Fibonacci ones? These are what the paper addresses.

An NFSR has the same mathematical model as a Boolean network, which
is a finite automaton evolving through Boolean functions. Boolean networks
haven been well developed in the community of systems and control [10] via a
powerful tool of semi-tensor product [11]. As the literature [12–15], this paper
views NFSRs as Boolean networks, and uses the developed theory of Boolean
networks therein to analyze the cryptographical properties of NFSRs.

Contribution. The paper first gives a new type of Galois NFSRs equivalent
to a given Fibonacci NFSR, in which their all corresponding states have either
equal or complementary components at the same positions. As an application of
this result, the paper shows that the stream ciphers Grain, Trivium and Acorn
have used the NFSRs with the lowest cost of hardware implementation among
their own equivalent Galois NFSRs of this type. The paper then enumerates
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n-stage Galois NFSRs equivalent to a given n-stage Fibonacci NFSR. Finally,
it reveals some common characterizations of Galois NFSRs that are equivalent
to Fibonacci ones from the perspectives of their stage number and feedback
functions. All these are helpful to the design of NFSR-based stream ciphers.

Organization. The paper is organized as follows. Section 2 presents some pre-
liminaries. Section 3 is our main results. The paper concludes in Sect. 4.

2 Preliminaries

In this section, we first introduce some notations used throughout the paper.
We then review some concepts on Boolean functions and semi-tensor product.
Finally, we revisit the linear system representation of Boolean networks.

2.1 Notations

– F2: binary field.
– F

n
2 : n-dimensional vector space over F2.

– N: set of nonnegative integers.
– In: identity matrix of dimension n.
– δi

n: the i-th column of the matrix In with i ∈ {1, 2, . . . , n}.
– Δn: set of all columns of the matrix In.
– Ln×m: set of n×m matrices, whose columns belong to Δn. If L ∈ Ln×m, then

L = [δi1
n δi2

n · · · δim
n ], and its transpose LT = [(δi1

n )T (δi2
n )T · · · (δim

n )T ]T . For
simplicity, we write L and LT in compact forms, as L = δn[i1 i2 · · · im] and
LT = δn[i1 i2 · · · im]T .

– Colj(A): the j-th column of a matrix A.
– N !: factorial of a positive integer N .
– ⊗ and �: Kronecker product and semi-tensor product, respectively.
– +, − and ×: ordinary addition, subtraction and multiplication in the real

field, respectively.
– ⊕ and �: addition and multiplication modulo 2 over F2, respectively.

2.2 Boolean Function

An n-variable Boolean function f is a mapping from F
n
2 to F2. Let i be the

decimal number corresponding to the binary (i1, i2, . . . , in) via the mapping
i = i12n−1 + i22n−2 + · · ·+ in. Then i ranges from 0 to 2n −1. For the simplicity,
we denote f(i) = f(i1, i2, . . . , in). Then the binary string [f(2n − 1), f(2n −
2), . . . , f(0)] is called the truth table of f , arranged in the reverse alphabet order.
The matrix

F =
[

f(2n − 1) f(2n − 2) · · · f(0)
1 − f(2n − 1) 1 − f(2n − 2) · · · 1 − f(0)

]
,

is called the structure matrix of f [10,16]. The function f = [f1 f2 . . . fn]T is
a vectorial function if fis are Boolean functions for all i = 1, 2, . . . , n.
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The Hamming weight of a binary string α of finite length is the number of ones
in α, denoted by wt(α). The Hamming weight of a Boolean function f , denoted
by wt(f), is the Hamming weight of its truth table. The Hamming weight is
one of the most basic properties of a Boolean function, and is a crucial criterion
in cryptography [17]. If an n-variable Boolean function f has the Hamming
weight wt(f) = 2n−1, then the Boolean function f is said to be balanced. An
n-variable Boolean function f is said to be linear with respect to the variable
Xi if f(X1,X2, . . . , Xn) = Xi ⊕ f̃(X1,X2, . . . , Xi−1,Xi+1, . . . , Xn) for some i
satisfying 1 ≤ i ≤ n. If a Boolean function f is linear with respect to some
variable, then it is balanced.

2.3 Semi-tensor Product

Definition 1 ([18]). Let A = (aij) and B be matrices of dimensions n×m and
p× q, respectively. The Kronecker product of A and B, is defined as an np×mq
matrix, given by

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

...
an1B an2B · · · anmB

⎤
⎥⎥⎥⎦ .

Definition 2 ([11]). For an n × m matrix A and a p × q matrix B, let α be
the least common multiple of m and p. The (left) semi-tensor product of A and
B is defined as an nα

m × qα
p matrix, given by

A � B = (A ⊗ I α
m

)(B ⊗ Iα
p
),

where ⊗ represents the Kronecker product.

Clearly, in Definition 2 if m = p, then the semi-tensor product A � B is
reduced to the conventional matrix product AB. In fact, the semi-tensor product
is a generalization of the conventional matrix product, but it retains all major
properties of the conventional matrix product, such as the associative law and
the distributive law [11].

Lemma 1 ([11]). Let X and Y be two column vectors of dimensions m and n,
respectively. Then X � Y = X ⊗ Y.

2.4 Linear System Representation of Boolean Networks

In general, a Boolean network with n nodes can be described as a nonlinear
system:

X(t + 1) = g(X(t)), t ∈ N, (1)

where X = [X1 X2 · · · Xn]T ∈ F
n
2 is the state, and the vectorial function

g = [g1 g2 . . . gn]T is the state transition function.
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Lemma 2 ([10]). Let x = [X1 X1 ⊕ 1]T � [X2 X2 ⊕ 1]T � · · · � [Xn Xn ⊕
1]T with Xi ∈ F2, i = 1, 2, . . . , n. Then x ∈ Δ2n . Moreover, the state X =
[X1 X2 · · · Xn]T ∈ F

n
2 and the state x = δj

2n ∈ Δ2n with j = 2n − (2n−1X1 +
2n−2X2 + · · · + Xn) are one-to-one correspondent.

Lemma 3 ([10]). The nonlinear system (1) representing a Boolean network can
be equivalently expressed as the linear system:

x(t + 1) = Lx(t), t ∈ N, (2)

where x ∈ Δ2n is the state, and L ∈ L2n×2n is the state transition matrix,
satisfying

Colj(L) = Colj(G1) ⊗ Colj(G2) ⊗ · · · ⊗ Colj(Gn), j = 1, 2, . . . , 2n, (3)

with the structure matrix Gi of the i-th component gi of the vectorial function g
in (1) for any i ∈ {1, 2, . . . , n}.

2.5 Nonlinear Feedback Shift Registers

Galois and Fibonacci NFSRs. Figure 1(a) gives the diagram of an n-stage
Galois NFSR, in which each small square represents a binary storage device, also
called bit. Each i-th bit has a feedback function fi. All these feedback functions
f1, f2, . . . , fn form the feedback f = [f1 f2 . . . fn]T of the Galois NFSR. At
each periodic interval determined by a master clock, the content of each bit is
updated by the value of its feedback function at the previous contents of all bits.
The n-stage Galois NFSR can be described as the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1(t + 1) = f1(X1,X2, . . . , Xn),
X2(t + 1) = f2(X1,X2, . . . , Xn),

...
Xn(t + 1) = fn(X1,X2, . . . , Xn),

(4)

where t ∈ N represents time instant. The content of the first bit is used as the
output of the Galois NFSR.

In particular, if there is only shift between neighboring bits for the first n−1
bits, that is, fi(X1,X2, . . . , Xn) = Xi+1 for all i = 1, 2, . . . , n−1, then the n-stage
Galois NFSR is reduced to an n-stage Fibonacci NFSR. Figure 1(b) shows the
diagram of an n-stage Fibonacci NFSR, in which the Boolean function f is called
the feedback function of the Fibonacci NFSR. A Fibonacci NFSR is nonsingular
if and only if its feedback function f is nonsingular, that is, f(X1,X2, . . . , Xn) =
X1 ⊕ f̃(X1,X2, . . . , Xn) [19].

Lemma 4 ([13]). An n-stage Fibonacci NFSR with a feedback function f can
be represented by a linear system:

x(t + 1) = Lfx(t), t ∈ N,
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Fig. 1. Galois and Fibonacci NFSRs.

where x ∈ Δ2n is the state, Lf = δ2n [η1 η2 . . . η2n ] ∈ L2n×2n is the state
transition matrix, satisfying{

η2n−1+i = 2i − f(2n−1 − i),
ηi = 2i − f(2n − i), i = 1, 2, . . . , 2n−1.

Moreover, the Fibonacci NFSR is nonsingular if and only if its state transition
matrix Lf is nonsingular.

State Diagram of NFSRs. The state diagram of an n-stage NFSR is a directed
graph consisting of 2n nodes and 2n edges, in which each node represents a state
of the NFSR, and each edge represents a transition between states. An edge from
state X to state Y means that the state X is updated to the state Y. X is called
a predecessor of Y, and Y is called the successor of X. A sequence of p distinct
states, X1,X2, . . . ,Xp, is called a cycle of length p if X1 is the successor of Xp,
and Xi+1 is a successor of Xi for any i ∈ {1, 2, . . . , p − 1}.

Let G = (V,A) and Ḡ = (V̄ , Ā) be the state diagrams of two n-stage NFSRs,
where V and V̄ are their sets of states, while A and Ā are their sets of edges. G
and Ḡ are said to be isomorphic if there exists a bijection mapping ϕ : V → V̄
such that for any edge E ∈ A from state X to state Y, there exists an edge
Ē ∈ Ā from ϕ(X) to ϕ(Y).

Lemma 5 ([20]). Let y(t) = g(X(t)), where X is the state of a Galois NFSR,
and g is a Boolean function, and t represents the time instant. Then the period
of the sequence (y(t))t≥0 is a factor of the period of the state sequence (X(t))t≥0.

Lemma 6 ([21]). If an n-stage Fibonacci NFSR and an n-stage Galois NFSR
are equivalent, then their state diagrams are isomorphic.
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3 Main Results

In this section, we will reveal some characterizations of Galois NFSRs that are
equivalent to Fibonacci NFSRs from the point of view of their stage number and
feedback functions.

Lemma 7. An n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T can be
equivalently expressed as a linear system:

x(t + 1) = Lgx(t), t ∈ N,

where x ∈ Δ2n is the state, and Lg = δ2n [ζ1 ζ2 . . . ζ2n ] ∈ L2n×2n is the state
transition matrix, satisfying

ζi = 2n−2n−1f1(2
n−i)−2n−2f2(2

n−i)−· · ·−2fn−1(2
n−i)−fn(2

n−i), i = 1, 2, . . . , 2n.

Proof. View the Galois NFSR as a Boolean network. Then the result follows
from Lemmas 1, 2 and 3. �

Theorem 1. If a Galois NFSR is equivalent to a Fibonacci NFSR, then its
stage number is no less than that of the Fibonacci NFSR.

Proof. If a Galois NFSR is equivalent to a Fibonacci NFSR, then they have the
same set of output sequences. Thus, their corresponding output sequences have
the same period. According to Lemma 5, we know that the output sequence of a
Galois NFSR has a period dividing into the cycle length of its consecutive states.
It implies that a Galois NFSR possibly needs more states than its equivalent
Fibonacci NFSR to generate the same output sequence. The possible requirement
of more states induces possibly greater stage number. �

From Theorem 1, we know that from the economical perspective of the hard-
ware implementation cost, we can only consider the equivalent Galois NFSR
with stage number equal to that of a given Fibonacci NFSR.

Lemma 8. An n-stage Galois NFSR represented by System X(t+1) = F (X(t))
with state X ∈ F

n
2 is equivalent to an n-stage Fibonacci NFSR represented

by System Y(t + 1) = H(Y(t)) with state Y ∈ F
n
2 , if and only if there

exists a bijective mapping ϕ : X �→ Y such that ϕ(F (X)) = H(ϕ(X)) and
[1 0 · · · 0]ϕ(X) = [1 0 · · · 0]X for all X ∈ F

n
2 .

Proof. Necessity: Clearly, for each X ∈ F
n
2 , there exists an edge from state X to

state F (X) in the state diagram of the Galois NFSR. Similarly, for each state
Y ∈ F

n
2 , there exists an edge from state Y to state H(Y) in the state diagram of

the Fibonacci NFSR. If a Galois NFSR is equivalent to a Fibonacci NFSR, then
according to Lemma 6, their state diagrams are isomorphic, which is equivalent
to that there exists a bijective mapping ϕ : X �→ Y such that ϕ(F (X)) =
H(Y) = H(ϕ(X)) for each X ∈ F

n
2 . Moreover, since the output of an NFSR is

the content of the first bit, each state X and its correspondingly transformed
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state Y have the same first component, which is equivalent to [1 0 · · · 0]ϕ(X) =
[1 0 · · · 0]X for each X ∈ F

n
2 .

Sufficiency: If there exists a bijective mapping ϕ : X �→ Y such that ϕ(F (X)) =
H(ϕ(X)) and [1 0 · · · 0]ϕ(X) = [1 0 · · · 0]X for all X ∈ F

n
2 , then according to

the necessity proof, the state diagrams of the Galois NFSR and the Fibonacci
NFSR are isomorphic, and each state and its correspondingly transformed state
have the same first component. Hence, the Galois NFSR and the Fibonacci NFSR
have the same set of output sequences. Therefore, they are equivalent. �

Lemma 8 shows that an n-stage Galois NFSR equivalent to an n-stage
Fibonacci NFSR means their corresponding states mapped by a bijection have
the same first component. Each pair of corresponding states is called equivalent
states. The following result gives a type of Galois NFSRs, which are equivalent
to a given Fibonacci NFSR, and all pairs of equivalent states have either equal
or complementary components at the same positions.

Theorem 2. An n-stage Fibonacci NFSR with a feedback function f is equiva-
lent to an n-stage Galois NFSR with a feedback f = [f1 f2 . . . fn]T , in which
for some positive integers k1, k2 . . . , kr satisfying 1 < k1 < k2 < · · · < kr ≤ n,
the fks are expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk = Xk+1, if 1 ≤ k ≤ k1 − 2,

or ki + 1 ≤ k ≤ ki+1 − 2,

or k = ki = ki+1 − 1, i = 1, 2, . . . , r − 1,

fk = Xk+1 ⊕ 1, if 1 ≤ k = k1 − 1,

or ki + 1 ≤ k = ki+1 − 1,

or ki = k ≤ ki+1 − 2, i = 1, 2, . . . , r − 1,

fn = f(Y1, Y2, . . . , Yn), if kr < n,

fn = f(Y1, Y2, . . . , Yn) ⊕ 1, if kr = n,

(5)

where the variables Y1, Y2, . . . , Yn satisfy{
Yk = Xk ⊕ 1, if k = k1, k2, . . . , kr,

Yk = Xk, otherwise.
(6)

Moreover, each pair of their equivalent states X = [X1 X2 . . . Xn]T and Y =
[Y1 Y2 . . . Yn]T , respectively, of the Galois NFSR and of the Fibonacci NFSR,
satisfies Eq. (6).

Proof. Let ϕ be a mapping from states Xs of the Galois NFSR to the states Ys
of the Fibonacci NFSR, satisfying Eq. (6). We can easily see that ϕ is a bijective
mapping, and preserves the first component of X. Thus, according to Lemma 8,
the Galois NFSR and the Fibonacci NFSR are equivalent. On the other hand,
note that the Fibonacci NFSR with a feedback function f can be expressed as{

Yk(t + 1) = Yk+1(t), k = 1, 2, . . . , n − 1,

Yn(t + 1) = f(Y1(t), Y2(t), . . . , Yn(t)).
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Under the mapping ϕ, the above equation is transformed into the equation
Xk(t + 1) = fk(X1(t),X2(t), . . . , Xn(t)) for all k = 1, 2, . . . , n, where fks sat-
isfy Eq. (5). �

The Galois NFSR with feedback f = [f1 f2 . . . fn]T satisfying Eq. (5)
belongs to the class of “lower triangular” Galois NFSRs, shown equivalent to a
Fibonacci NFSR in [8]. However, for this particular “lower triangular” Galois
NFSR, its equivalent Fibonacci NFSR has the feedback function just being the
function appearing in the n-th bit of the Galois NFSR, and their equivalent
states have either equal or complementary components at the same positions.

Compared to the given Fibonacci NFSR, its equivalent Galois NFSR with
a feedback f = [f1 f2 . . . fn]T satisfying Eq. (5) may lower the hardware
implementation cost. We give a simple example below as an illustration.

Example 1. For a 4-stage Fibonacci NFSR with a feedback function f =
Y2Y3Y4 ⊕ Y2Y3 ⊕ Y2Y4 ⊕ Y3Y4 ⊕ Y1 ⊕ Y3 ⊕ Y4 ⊕ 1, via a mapping ϕ : Y =
[Y1 Y2 Y3 Y4]T → X = [X1 X2 X3 X4]T with

X1 = Y1,X2 = Y2 ⊕ 1,X3 = Y3 ⊕ 1,X4 = Y4 ⊕ 1, (7)

it is transformed into a 4-stage Galois NFSR with a feedback f = [f1 f2 f3 f4]T

satisfying f1 = X2 ⊕ 1, f2 = X3, f3 = X4, f4 = X2X3X4 ⊕ X1 ⊕ X2.
ϕ defined above is obviously a bijective mapping, and preserves the first com-

ponents of all states. Thus, according to Theorem 2, both NFSRs are equiva-
lent, and each pair of their equivalent states X = [X1 X2 X3 X4]T and
Y = [Y1 Y2 Y3 Y4] satisfies Eq. (7). All these are consistent with the facts in
Fig. 2, which describes their state diagrams.

Fig. 2. State diagrams of two NFSRs in Example 1.

The feedback function f1 to the first bit of the equivalent Galois NFSR has
one more constant term than that of the Fibonacci NFSR, while the feedback
functions f2 and f3 to the second and third bits of the Galois NFSR are the
same as those of the Fibonacci NFSR. However, the feedback function f to the
fourth bit of the Fibonacci NFSR has three more quadratic terms and one more
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linear term and one more constant term than the feedback function f4 to the
fourth bit of the Galois NFSR. All these imply that the equivalent Galois NFSR
has lower cost of hardware implementation than its equivalent Fibonacci NFSR.

Example 2. As an application of Theorem 2, we consider the stream ciphers
Grain, Trivium and Acorn. Notably, if the Galois NFSR resulted from Theorem 2
lowers the cost of hardware implementation than its equivalent Fibonacci NFSR,
then the feedback function of the Fibonacci NFSR has some terms being the
factors of some other terms with greater degree. In the stream ciphers Grain,
Trivium and Acorn, no bit appears more than once in the feedback functions of
their separate Fibonacci NFSRs and therefore, these stream ciphers have used
the NFSRs with the lowest cost of hardware implementation among their own
equivalent Galois NFSRs resulted from Theorem 2.

Proposition 1. An n-stage Galois NFSR represented by System x(t + 1) =
Lgx(t) with state x ∈ Δ2n is equivalent to an n-stage Fibonacci NFSR repre-
sented by System y(t + 1) = Lfy(t) with state y ∈ Δ2n , if and only if there
exists a transformation y = Px with permutation matrix P = δ2n [j1 j2 . . . j2n ]
satisfying 1 ≤ ji ≤ 2n−1 and 2n−1 + 1 ≤ j2n−1+i ≤ 2n for all i = 1, 2, . . . , 2n−1,
such that Lg = P−1LfP .

Proof. Let the system x(t+1) = Lgx(t) with x ∈ Δ2n be equivalently expressed
as X(t + 1) = F (X(t)) with X ∈ F

n
2 , and let y(t + 1) = Lfy(t) with y ∈ Δ2n

be equivalently expressed as Y(t + 1) = H(Y(t)) with Y ∈ F
n
2 . According to

Lemma 8, the Galois NFSR is equivalent to the Fibonacci NFSR if and only if
there exists a bijective mapping ϕ : X �→ Y such that ϕ(F (X)) = H(ϕ(X)) and
[1 0 · · · 0]ϕ(X) = [1 0 · · · 0]X for all X ∈ F

n
2 .

According to Lemma 2, the state δj
2n ∈ Δ2n uniquely corresponds to the

state over F
n
2 whose decimal number is 2n − j. Let P be the permutation matrix

determined by the bijective mapping ϕ. Since all states in the set S1 = {δj
2n |j =

1, 2, . . . , 2n−1} correspond to the states over F
n
2 whose first components are 1, and

all states in the set S2 = {δj
2n |j = 2n−1 + 1, 2n−1 + 2, . . . , 2n} correspond to the

states over F
n
2 whose first components are 0, we can easily see that the condition

[1 0 · · · 0]ϕ(X) = [1 0 · · · 0]X for each X ∈ F
n
2 is equivalent to the permutation

matrix P = δ2n [j1 j2 . . . j2n ] satisfying 1 ≤ ji ≤ 2n−1 and 2n−1 +1 ≤ j2n−1+i ≤
2n for all i = 1, 2, . . . , 2n−1.

In addition, under the transformation y = Px, the system x(t + 1) = Lgx(t)
is clearly transformed to the system y(t + 1) = Lfy(t); moreover, Lg and Lf

satisfy Lg = P−1LfP . Therefore, the result follows. �

Theorem 3. The number of n-stage Galois NFSRs that are equivalent to a
given n-stage Fibonacci NFSR is (2n−1!)2.

Proof. Let an n-stage Galois NFSR be represented by x(t + 1) = Lgx(t) with
x ∈ Δ2n , and let an n-stage Fibonacci NFSR be represented by y(t+1) = Lfy(t)
with y ∈ Δ2n . Then, according to Proposition 1, an n-stage Galois NFSRs is
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equivalent to an n-stage Fibonacci NFSR if and only if there exists a transfor-
mation x = P−1y with permutation matrix P = δ2n [j1 j2 . . . j2n ] satisfying
1 ≤ ji ≤ 2n−1 and 2n−1 + 1 ≤ j2n−1+i ≤ 2n for all i = 1, 2, . . . , 2n−1, such that
Lg = P−1LfP . Clearly, there are (2n−1!)2 possible forms of such permutation
matrix P , since (j1, j2, . . . , j2n−1) can be any permutation of (1, 2, . . . , 2n−1), and
(j2n−1+1, j2n−1+2, . . . , j2n) can any permutation of (2n−1 + 1, 2n−1 + 2, . . . , 2n),
and the total number of permutations of (j1, j2, . . . , j2n−1) (or (j2n−1+1, j2n−1+2,
. . . , j2n)) is 2n−1!. Hence, there are (2n−1!)2 possible P−1s. Moreover, different
transformation x = P−1y results in different state diagram of a Galois NFSR
and therefore, results in different Galois NFSR. Thus, the result follows. �

Theorem 4. If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T is
equivalent to an n-stage Fibonacci NFSR, then for any i0 ∈ I = {0, 1, . . . , 2n−1},
there is at most one i1 ∈ I such that fk(i1) = fk(i0) for all k = 1, 2, . . . , n.
Moreover,

1. if i0 ∈ I0 = {0, 1, . . . , 2n−1 − 1}, then i1 ∈ I1 = {2n−1, 2n−1 + 1, . . . , 2n − 1};
2. if i0 ∈ I1, then i1 ∈ I0;
3. if the Fibonacci NFSR is nonsingular, then such above i1 does not exist.

Proof. For any i0 ∈ I = {0, 1, . . . , 2n − 1}, let X0 = [X1 X2 . . . Xn]T be
a state of an n-stage Galois NFSR, corresponding to the decimal number i0.
Accordingly, let X1 = [X1 ⊕ 1 X2 . . . Xn]T be a state of the Galois NFSR,
corresponding to the decimal number i1. Then, it is easy to see that if i0 ∈ I0,
then i1 ∈ I1, and that if i0 ∈ I1, then i1 ∈ I0.

If the n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR, then
from Lemma 8, we know that there exists a bijective mapping ϕ : Xr �→ Yr with
r = 0, 1, and Yr being the states of Fibonacci NFSR; moreover, the equivalent
states Xr and Yr have the same first component.

For the state Y0 = [Y1 Y2 . . . Yn]T of the Fibonacci NFSR, there exists
at most another state Y1 = [Y1 ⊕ 1 Y2 . . . Yn]T such that Y1 has the same
successor as Y0. If the Fibonacci NFSR is nonsingular, then such a Y1 does not
exist. If the Galois NFSR is equivalent to the Fibonacci NFSR, then according
to Lemma 6, their state diagrams are isomorphic. Thus, the state X0 of the
Galois NFSR has at most another X1 such that X1 has the same successor
as X0. If the Fibonacci NFSR is nonsingular, then such an X1 does not exist.
Notably, if X0 and X1 have the same successor, then f(X0) = f(X1), which
implies fk(i0) = fk(i1) for all k = 1, 2, . . . , n. �

Theorem 5. If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T

is equivalent to an n-stage Fibonacci NFSR, then wt([f1(2n − 1), f1(2n −
2), . . . , f1(2n−1)]) = wt([f1(2n−1 − 1), f1(2n−1 − 2), . . . , f1(0)]) = 2n−2.

Proof. If an n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR,
then according to Proposition 1, there exists a permutation matrix P =
δ2n [j1 j2 . . . j2n ] satisfying 1 ≤ ji ≤ 2n−1 and 2n−1 + 1 ≤ j2n−1+i ≤ 2n for
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all i = 1, 2, . . . , 2n−1, such that Lg = P−1LfP , where Lg and Lf are the state
transition matrices of the Galois NFSR and the Fibonacci NFSR, respectively.
Let Lf = δ2n [η1 η2 . . . η2n ], and Lg = δ2n [ζ1 ζ2 . . . ζ2n ]. Hence,

Lg = P−1LfP = PT δ2n [η1 η2 . . . η2n ]δ2n [j1 j2 . . . j2n ]
= δ2n [j1 j2 . . . j2n ]T δ2n [ηj1 ηj2 . . . η2n ],

which yields δζi

2n = δ2n [j1 j2 . . . j2n ]T δ
ηji
2n , i = 1, 2, . . . , 2n, that is,

[0 · · · 0 1
ζi−th

0 · · · 0]T = δ2n [j1 j2 . . . j2n ]T [0 · · · 0 1
ηji

−th
0 · · · 0]T . (8)

From Eq. (8), we can easily see that the column vector [0 · · · 0 1
ζi−th

0 · · · 0]T

is just a row permutation of [0 · · · 0 1
ηji

−th
0 · · · 0]T via the permutation

(j1 j2 . . . j2n). Since 1 ≤ ji ≤ 2n−1 and 2n−1 + 1 ≤ j2n−1+i ≤ 2n for all i =
1, 2, . . . , 2n−1, we can infer that if 1 ≤ ηi ≤ 2n−1, then 1 ≤ ηji

≤ 2n−1 and
thereby 1 ≤ ζi ≤ 2n−1, and that if 2n−1 +1 ≤ ηi ≤ 2n, then 2n−1 +1 ≤ ηji

≤ 2n

and therefore 2n−1 + 1 ≤ ζi ≤ 2n.
According to Lemma 4, for all i = 1, 2, . . . , 2n−1 (resp., for all i = 2n−1 +

1, 2n−1 + 2, . . . , 2n), there are 2n−2 ηis satisfying 1 ≤ ηi ≤ 2n−1, and 2n−2 ηis
satisfying 2n−1 + 1 ≤ ηi ≤ 2n. Hence, for all i = 1, 2, . . . , 2n−1 (resp., for all
i = 2n−1 + 1, 2n−1 + 2, . . . , 2n), there are 2n−2 ζis satisfying 1 ≤ ζi ≤ 2n−1, and
2n−2 ζis satisfying 2n−1 + 1 ≤ ζi ≤ 2n. From Lemma 7, we know

ζi = 2n − 2n−1f1(2n − i) − 2n−2f2(2n − i) − · · · − fn(2n − i), i = 1, 2, . . . , 2n.

Thus, we can easily compute that 1 ≤ ζi ≤ 2n−1 yields f1(2n − i) = 1, and
that 2n−1 + 1 ≤ ζi ≤ 2n yields f1(2n − i) = 0. Therefore, there are 2n−2 ones
in the [f1(2n − 1), f1(2n − 2), . . . , f1(2n−1)], and there are also 2n−2 ones in the
[f1(2n−1 − 1), f1(2n−1 − 2), . . . , f1(0)]. �

Theorem 5 reveals a necessary condition for the feedback function of the first
bit of a Galois NFSR equivalent to a Fibonacci one. Note that in general there is
a shift between the adjacent bits for a shift register. In the following, we give a
feedback function for the first bit of a Galois NFSR, which satisfies the necessary
condition in Theorem 5, as well as satisfies the shift condition of a shift register.

Proposition 2. The Boolean function f(X1,X2, . . . , Xn) = X2⊕g(X3, . . . , Xn)
satisfies

wt([f(2n−1), f(2n−2), . . . , f(2n−1)]) = wt([f(2n−1−1), f(2n−1−2), . . . , f(0)]) = 2n−2.

Proof. Set Yi = Xi+1, i = 1, 2, . . . , n − 1, and set h = f . Then
h(Y1, Y2, . . . , Yn−1) = Y1 ⊕ g(Y2, Y3, . . . , Yn−1). Clearly, h is an (n − 1)-variable
function and is linear with respect to the variable Y1. Hence, h is balanced, and
thereby wt(h) = 2n−2.

On the other hand, note that f(2n − 1), f(2n − 2), . . . , f(2n−1) are the pos-
sible values of f(1,X2, . . . , Xn), while f(2n−1 − 1), f(2n−1 − 2), . . . , f(0) are



On Galois NFSRs Equivalent to Fibonacci Ones 445

the possible values of f(0,X2, . . . , Xn). Together considering f(1,X2, . . . , Xn) =
f(0,X2, . . . , Xn) for all [X2 X3 . . . Xn]T ∈ F

n−1
2 , we have f(2n−i) = f(2n−1−i)

for all i = 1, 2, . . . , 2n−1. Thus, wt([f(2n −1), f(2n −2), . . . , f(2n−1)]) = wt(h) =
2n−2, and wt([f(2n−1 − 1), f(2n−1 − 2), . . . , f(0)]) = wt(h) = 2n−2 as well. �

Proposition 2 gives a class of Boolean functions that satisfies the necessary
condition in Theorem 5, but is not relative to the first bit variable X1. In the fol-
lowing, we give another class of Boolean functions, which satisfies the necessary
condition in Theorem 5, as well as is relative to the first bit variable X1.

Proposition 3. The Boolean function f(X1,X2, . . . , Xn) = X1 ⊕ X2 ⊕
g(X3, . . . , Xn) satisfies wt([f(2n − 1), f(2n − 2), . . . , f(2n−1)]) = wt([f(2n−1 −
1), f(2n−1 − 2), . . . , f(0)]) = 2n−2.

Proof. Let h1(X1,X2, . . . , Xn) = X1, and let h2(X1,X2, . . . , Xn) = X2 ⊕
g(X3, . . . , Xn). Then, f = h1 ⊕ h2. On one hand, clearly, the left part of the
truth table of h1, arranged in the alphabet order, is [1, 1, . . . , 1] and its weight
is 2n−1, while the right half part of h1 is [0, 0, . . . , 0] and its weight is 0. On the
other hand, according to Proposition 2, the weight of the left part of the truth
table of h2 is 2n−2, and the weight of its left half part is 2n−2 as well. Therefore,
the weight of the left half part of the truth table of f is 2n−1 − 2n−2 = 2n−2,
and the weight of its right half part is 0 + 2n−2 = 2n−2. �

Example 3. Consider a 4-stage Galois NFSR given in [4], whose feedback f =
[f1 f2 f3 f4]T satisfies f1 = X1 ⊕ X2, f2 = X3, f3 = X4, f4 = X1 ⊕ X3X4.
This Galois NFSR is equivalent to a 4-stage Fibonacci NFSR [4], whose feedback
function is f = X1⊕X3⊕X4⊕X2X3⊕X2X4⊕X3X4 [8]. On one hand, by direct
computation, we know that the truth table of f1, arranged in the alphabet order,
is [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]. Clearly, both left and right half parts of
the truth table have the Hamming weight 4, which is consistent with the result
in Theorem 5. On the other hand, this Boolean function f1 is a particular form
of f in Proposition 3. According to Proposition 3, both the left half part and the
right half part of the truth table of f1 are 4, consistent with the above fact.

Example 4. Consider a 4-stage Galois NFSR with feedback f = [f1 f2 f3 f4]T

given in [4], where f1 = X2 ⊕ X1X2, f2 = X3 ⊕ X1 ⊕ X1X3 ⊕ X1X2X3, f3 =
X4⊕X1⊕X2⊕X3⊕X1X3⊕X2X3, f4 = X1⊕X2X4. It was found not equivalent to
Fibonacci NFSRs [4]. In fact, we can directly compute that the truth table of f1,
arranged in the alphabet order, is [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]. It is seen
that the left half part of the truth table is [0, 0, 0, 0, 0, 0, 0, 0], whose Hamming
weight is 0, not 4. According to Theorem 5, this Galois NFSR must not be
equivalent to a 4-stage Fibonacci NFSR, consistent with the fact found in [4].

Theorem 6. If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T

is equivalent to an n-stage Fibonacci NFSR, then wt(fk) = 2n−1 for all k =
1, 2, . . . , n − 1. Moreover, if the Fibonacci NFSR is nonsingular, then wt(fn) =
2n−1.
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Proof. If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T is equiv-
alent to an n-stage Fibonacci NFSR, then according to Theorem 5, we know
that wt([f1(2n − 1), f1(2n − 2), . . . , f1(2n−1)]) = wt([f1(2n−1 − 1), f1(2n−1 −
2), . . . , f1(0)]) = 2n−2. Since the Hamming weight of a Boolean function is the
Hamming weight of its truth table, we have wt(f1) = 2n−2+2n−2 = 2n−1. Thus,
the result holds for f1. Next, we show the result is valid for f2, f3, . . . , fn−1.

Let Lg = δ2n [ζ1 ζ2 . . . ζ2n ] and Lf = δ2n [η1 η2 . . . η2n ] be the state tran-
sition matrices of the Galois NFSR and its equivalent Fibonacci NFSR, respec-
tively, and let P = δ2n [j1 j2 . . . j2n ] be the permutation matrix determined
by the bijective mapping between the state diagrams of both equivalent NFSRs,
satisfying 1 ≤ ji ≤ 2n−1 and 2n−1 + 1 ≤ j2n−1+i ≤ 2n for all i = 1, 2, . . . , 2n−1.
According to the proof of Theorem 5, we know that, 1) if 1 ≤ ηji

≤ 2n−1, then
1 ≤ ζi ≤ 2n−1; 2) if 2n−1+ ≤ ηji

≤ 2n, then 2n−1 + 1 ≤ ζi ≤ 2n.
We equally divide N = {1, 2, . . . , 2n} into four subsets, N11 =

{1, 2, . . . , 2n−2}, N12 = {2n−2 + 1, 2n−2 + 2, . . . , 2n−1}, N21 = {2n−1 + 1, 2n−1 +
2, . . . , 2n−1 + 2n−2}, and N22 = {2n−1 + 2n−2 + 1, 2n−1 + 2n−2 + 2, . . . , 2n}.
According to Lemma 4, we can infer that, among η1, η2, . . . , η2n , there are 2n−2

ηji
s taking values from each Nkl with k, l = 1, 2. Hence, in the state transi-

tion matrix Lg = δ2n [ζ1 ζ2 . . . ζ2n ] of the Galois NFSR, we can deduce that,
among ζ1, ζ2, . . . , ζ2n , there are also 2n−2 ζji

s taking values from each Nkl with
k, l = 1, 2.

From Lemma 7, we know

ζi = 2n−2n−1f1(2
n−i)−2n−2f2(2

n−i)−· · ·−2fn−1(2
n−i)−fn(2

n−i), i = 1, 2, . . . , 2n.
(9)

According to the above equation, we can easily compute that

1. if 1 ≤ ζi ≤ 2n−2, then f2(2n − i) = 1,
2. if 2n−2 + 1 ≤ ζi ≤ 2n−1, then f2(2n − i) = 0,
3. if 2n−1 + 1 ≤ ζi ≤ 2n−1 + 2n−2, then f2(2n − i) = 1,
4. if 2n−1 + 2n−2 + 1 ≤ ζi ≤ 2n, then f2(2n − i) = 0.

Therefore, there are totally 2n−1 ones in the truth table [f2(2n − 1), f2(2n −
2), . . . , f2(0)] of f2. Thus, wt(f2) = 2n−1. For the case of 3 ≤ k ≤ n−1, we equally
divide N = {1, 2, . . . , 2n} into 2k subsets, and we can prove wt(fk) = 2n−1 in a
similar way.

Furthermore, if the Fibonacci NFSR is nonsingular, then according to
Lemma 4, its state transition matrix Lf is nonsingular. According to Proposi-
tion 1, the state transition matrix Lg = δ2n [ζ1 ζ2 . . . ζ2n ] of the Galois NFSR is
nonsingular as well, which implies that ζ1, ζ2, . . . , ζ2n are pairwise distinct, and
that they take all possible values of 1, 2, . . . , 2n. Hence, among ζ1, ζ2, . . . , ζ2n ,
there are 2n−1 odd ζis and there are also 2n−1 even ζis. According to Eq. (9),
we can easily see that ζi is odd if and only if fn(2n − i) = 1, and that ζi is even
if and only if fn(2n − i) = 0. Thereby, there are 2n−1 ones in the truth table
[fn(2n − 1), fn(2n − 2), . . . , fn(0)] of fn. Thus, wt(fn) = 2n−1. �
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Corollary 1. If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T is
equivalent to an n-stage nonsingular Fibonacci NFSR, then wt(fk) = 2n−1 for
all k = 1, 2, . . . , n.

Example 5. Consider a cascade connection of an m-stage NFSR1 into an n-
stage NFSR2. It is a particular (m + n)-stage Galois NFSR with feedback f =
[f1 f2 . . . fm+n]T , where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fi = Xi+1, i = 1, 2, . . . , n − 1,

fn = Y1 ⊕ g(X1,X2, . . . , Xn),
fn+l = Yl+1, l = 1, 2, . . . ,m − 1,

fn+m = h(Y1, Y2, . . . , Ym).

It is equivalent to an (n + m)-stage Fibonacci NFSR [9], and it is nonsingular
if and only if g and h are nonsingular [21].

On one hand, fi with i = 1, 2, . . . ,m + n − 1 are linear with respect to some
variables and thereby, wt(fk) = 2n−1. If the Fibonacci NFSR is nonsingular,
then the cascade connection is nonsingular, and thereby h is nonsingular, that
is, h(Y1, Y2, . . . , Ym) = Y1 ⊕ h̄(Y2, Y3, . . . , Ym). In this case, h is linear with
respect to the variable Y1 and therefore, wt(fn+m) = 2n−1.

On the other hand, since this particular Galois NFSR is equivalent to a
Fibonacci NFSR, according to Theorem 6, we know that wt(fi) = 2n−1 for all
i = 1, 2, . . . ,m + n − 1. If the Fibonacci NFSR is nonsingular, then wt(fm+n) =
2n−1. All these are consistent with the facts mentioned before.

Theorems 5 and 6 give some necessary conditions for an n-stage Galois NFSR
equivalent to an n-stage Fibonacci NFSR. It is worth pointing out that they are
not sufficient conditions. Take a 4-stage Galois NFSR as an example, whose
feedback f = [f1 f2 f3 f4]T satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1 = X2 ⊕ X3X4,

f2 = X3 ⊕ X1X2X4,

f3 = X4 ⊕ X1X3 ⊕ X2X3,

f4 = X1 ⊕ X2X4.

Clearly, here f1, f2 and f3 are linear with respect to the variables X2,X3 and
X4, respectively. Thus, wt(fk) = 8 with k = 1, 2, 3, satisfying the necessary
condition in Theorem 6. Moreover, we can easily compute that f1 has its truth
table [0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0], arranged in the reverse alphabet order.
The left half part of this truth table is [0, 1, 1, 1, 1, 0, 0, 0], and its right half part
is [0, 1, 1, 1, 1, 0, 0, 0] as well. We can seen both parts have the Hamming weight 4,
satisfying the necessary condition in Theorem 5. On the other hand, it is easily
seen that the state [1 1 1 0]T of the Galois NFSR has three predecessors,
[0 0 1 1]T , [0 1 1 0]T and [1 1 0 1]T . If this 4-stage Galois NFSR is
equivalent to a 4-stage Fibonacci NFSR, then according to Lemma 6, their state
diagrams are isomorphic. Thereby, in the state diagram of the Fibonacci NFSR,
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there is a state having three predecessors, which is in contradiction with the fact
that any state of a Fibonacci NFSR has at most two predecessors. Therefore,
this 4-stage Galois NFSR is not equivalent to a 4-stage Fibonacci NFSR, even
through it satisfies the necessary conditions in Theorems 5 and 6.

4 Conclusion

This paper considered the Galois NFSRs equivalent to Fibonacci ones. First, it
gave a new type of Galois NFSRs equivalent to a given Fibonacci NFSR, in which
their corresponding states have either equal or complementary components at the
same positions. As an application of this result, the paper showed that the stream
ciphers Grain, Trivium and Acorn have used the NFSRs with the lowest cost
of hardware implementation among their own equivalent Galois NFSRs of this
type. Second, the paper enumerated n-stage Galois NFSRs equivalent to a given
n-stage Fibonacci NFSR. Third, it revealed some common characterizations of
Galois NFSRs equivalent to Fibonacci ones from the perspectives of their stage
number and feedback functions. In future work, it is interesting to find more
types and more common features of Galois NFSRs equivalent to Fibonacci ones.
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Abstract. Confusion and diffusion are important design principles in
block ciphers. The famous structures in block ciphers such as SPN, Feis-
tel and Misty are proposed based on them and towards provable security
against differential and linear cryptanalyses. There is few structure based
on the two principles in stream ciphers except for Trivium. In this paper,
we generalize the design ideas of Trivium to propose a new construction
of Galois structure nonlinear feedback shift registers based on confusion
and diffusion principles. As an application of this construction, a stream
cipher named Bagua is proposed, which is a hardware-oriented prim-
itive of 128-bit initialization vector and 128-bit or 256-bit key. It can
be implemented in parallel up to 32 iterations at once, and the max-
imum throughout can be up to 8 Gbps. One can choose the parallel
degree in implementation according to the requirement of throughput
and hardware overhead in different application environments. Its resis-
tances against differential and linear cryptanalyses are estimated theo-
retically and experimentally.

Keywords: Stream ciphers · Nonlinear feedback shift registers ·
Trivium · Confusion · Diffusion

1 Introduction

In the field of symmetric cryptography, block ciphers seem more popular than
stream ciphers. Even in some cryptographic applications stream ciphers have
been replaced by block ciphers. For example, in IEEE 802.11 standard wired
equivalent privacy (WEP) the stream cipher RC4 [1] has been replaced by AES
[2]. The main reason is that the security of block ciphers seems to be better
understood and many famous structures in block ciphers such as SPN, Feistel,
Misty and Lai-Massey have been studied well in theorem. There is much less
the case for stream ciphers. Another reason is that many block ciphers can be
lightweight and efficient, which are ever advantages of steam ciphers, such as
PRESENT [4], KATAN and KTANTAN [5], HIGHT [20] and LBlock [21]. This
poses challenges for stream ciphers to develop simpler and reliable design criteria
or structures.
c© Springer Nature Switzerland AG 2021
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Confusion and diffusion are the cryptography design principles early pro-
posed by Shannon [22], which have been applied successfully to design modern
block ciphers. Differential cryptanalysis and linear cryptanalysis are the two
most powerful known attacks on block ciphers. The famous SPN, Feistel and
Misty block cipher structures are designed based on the confusion and diffusion
principles, and they can be evaluated towards provable security [6] or practical
security [9] against differential and linear cryptanalyses. For provable security
of a cipher, the low bounds of the maximum differential probability [7] and lin-
ear hull probability [8] are used to evaluate the resistance against differential
and linear cryptanalyses. The practical security of a cipher concentrates on the
differential characteristic and linear characteristic probabilities, which usually
are reduced to compute the lower bound on the number of active S-boxes. The
provable security against differential and linear cryptanalyses were studied for
Feistel structure [6,7] and for SPN structure [10–12], while Misty structure [13]
was proposed towards provable security.

Linear feedback shift registers (LFSRs) were the most popular building blocks
used to design stream ciphers [3], for they have very good statistical properties,
efficient implementations, and well-studied algebraic structures. However, it is
found that stream ciphers based on LFSRs are susceptible to algebraic attacks
and correlation attacks. As an alternative, many stream ciphers use nonlinear
feedback shift registers (NFSRs), such as Trivium [14], Grain [15], MICKEY [16],
and Fountain [24]. Besides, NFSRs are also used in block ciphers (see Keeloq
[17] and GF-NLFSR [23]) and hash functions (see Quark [18]). Trivium is a
stream cipher based on the design principles of block ciphers [19], which is one of
the eSTREAM hardware-oriented finalists and an International Standard under
ISO/IEC 29192-3:2012. It is a bit-oriented design according to SPN structure
of block ciphers, where substitution layer consists of three 2-bit products and
permutation layer is realized by the feedforward and feedback of shift registers.
In this paper, we generalize the design ideas of Trivium and propose a new
construction of Galois-NFSR based on confusion and diffusion principles. As an
application of this construction, a stream cipher named Bagua is proposed, which
is a hardware-oriented primitive of 128-bit initialization vector and 128-bit or
256-bit key. It can be implemented in parallel up to 32 iterations at once.

The rest of this paper is organized as follows. In Sect. 2, we review the model
of Galois feedback shift register and some definitions. A new construction of
Galois-NFSR is proposed in Sect. 3. Bagua, a stream cipher based on this con-
struction is described in Sect. 4 and the security analysis follows in Sect. 5. We
close the paper with the conclusions.

2 Preliminaries

2.1 Feedback Shift Register

Feedback shift register (FSR) is the main component used in the design of pseu-
dorandom numbers generator and stream cipher. An n-stage Galois-FSR consists
of n registers and n feedback functions, while Fibonacci-FSR is the special case
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of Galois-FSR and has only a feedback function. The structure of an n-stage
Galois-FSR is shown in Fig. 1, where the register xi is updated by the i-th feed-
back function fi(x1, x2, ..., xn), i = 1, 2, ..., n. The output sequence is usually
some register or a simple function of the FSR’s state. If all feedback functions
are linear, then the FSR is called linear feedback shift register, else it is called
nonlinear feedback shift register.

Fig. 1. Structure of n-stage Galois-FSR

2.2 Definitions

Definition 1. Let S be an n × n S-box. For any given Δx,Δy, Γx, Γy ∈ Fn
2 ,

the differential and linear approximation probabilities of S are defined as

DPS(Δx → Δy) =
#{x ∈ Fn

2 |S(x) + S(x + Δx) = Δy}
2n

,

LPS(Γy → Γx) =
(

2 × #{x ∈ Fn
2 |x · Γx = S(x) · Γy}

2n
− 1

)2

.

Definition 2. Let S be an n × n S-box. The maximum differential and linear
approximation probabilities of S are defined as

MDPS = max
Δx �=0,Δy

DPS(Δx → Δy),

MLPS = max
Γx,Γy �=0

LPS(Γy → Γx).

Definition 3. A differential active S-box is defined as an S-box given a non-
zero input difference, while a linear active S-box is defined as an S-box given a
nonzero output mask value.

If all differential or linear characteristics of a cipher involve at least k dif-
ferential or linear active S-boxes, we can derive the upper bound (MDPS)k

and (MLPS)k of the maximum differential and linear characteristic probabil-
ities which are used to evaluate the practical security against differential and
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linear cryptanalysis. In SPN structure ciphers, the differential and linear branch
numbers of diffusion layer are used to compute the number of differential and
linear active S-boxes. In the following we also give the definition of differential
branch number for an S-box.

Definition 4. Let S be an n × n S-box. The differential branch number Bd of
S is defined as:

Bd = min
Δx �=0,Δy∈CΔx

(H(Δx) + H(Δy)) ,

where CΔx denotes the set of all possible output differences of S given input
difference Δx, and H(x) denotes the Hamming weight of x.

3 New Construction of Galois-NFSR

In this section we propose a new construction of Galois-NFSR based on confusion
and diffusion principles, which can be seen as a generalization of the design
of Trivium, see Fig. 2. This construction consists of three components: FSRs,
confusion layer and diffusion layer. The FSRs part contains eight feedback shift
registers with different length. The confusion layer is a 8-bit input and 8-bit
output S-box as in block ciphers. The diffusion layer consists of eight linear
boolean functions instead of the permutation matrix in SPN structure block
ciphers.

Denote the eight FSRs by FSRi and their lengths by ni, i = 1, 2, ..., 8. Denote
eight linear boolean functions in diffusion layer by fi and the output bits of S-
box by wi, i = 1, 2, ..., 8. Denote the state of FSRi by FSRi[ni], FSRi[ni −
1], ..., FSRi[1], i = 1, 2, ..., 8. In the work stage of this construction the states of
FSRi are updated for per iteration as follows

FSRi[j] = FSRi[j + 1], 1 ≤ j ≤ ni − 1,

FSRi[ni] = wi + fi.

For each FSR the feedback tap is updated by one output bit of confusion layer
XORing with one output bit of diffusion layer, while the other registers are
updated by shift. The eight bits input of S-box come from eight FSRs respec-
tively. It can be written by

(w1, w2, ..., w8) = S-box(FSR1[t1], FSR2[t2], ..., FSR8[t8])

where 1 ≤ ti ≤ ni, i = 1, 2, ..., 8. We suggest that the positions in FSRs selected
as the input of S-box should follow the two principles:

(1) The position ti selected in FSRi should be close to the register FSRi[ni]
such that the feedback update of FSRi can enter into S-box as soon as
possible.

(2) The distances ni − ti, i = 1, 2, ..., 8, should be different so as to avoid two
feedback bits of FSRs entering into S-box at the same time.
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The eight linear boolean functions in diffusion layer are expressed by

fi = FSRi[1] + FSRi[ki] + FSR[i+1][ui] + FSR[i+4][vi],

where 1 < ki < ni, 1 < ui < n[i+1], 1 < vi < n[i+4], i = 1, 2, ..., 8. The subscripts
[i+1] and [i+4] denote i+1 and i+4 modulo 8 respectively, and the representative
elements modulo 8 are {1, 2, ..., 8}. For the 4 bits input of fi, there two taps are
selected in FSRi and another two taps are selected in the neighbors FSR[i+1]

and FSR[i+4] respectively. We also suggest that the positions ki in FSRi, ui in
FSR[i+1], and vi in FSR[i+4] selected as the input of fi should follow the two
principles:

(1) The distances ni − ki, n[i+1] − ui and n[i+4] − vi, i = 1, 2, ..., 8, are different.
(2) The positions selected distribute as uniform as possible in the eight FSRs.

Fig. 2. New construction of Galois-NFSR

Theorem 1. Let l be the longest distance in ni − ti, i = 1, 2, ..., 8. Then there
exists a positive integer N , after N iterations the differential characteristic of
the construction in any l iterations has d active S-boxes at least, where d is the
differential branch number of S-box.

Proof. For any input difference of this construction, there must be a positive
integer N such that the difference in any register of eight FSRs is unknown after
N iterations. The minimal value of N can be searched by computer program.
Since the distances ni − ti, i = 1, 2, ..., 8, are different, the input bits of S-box
come from the feedbacks at eight different times. In other words, the output bits
of S-box will enter into S-boxs at eight different times. Since l is the longest
distance in ni − ti, i = 1, 2, ..., 8, all output bits of S-box will be involved in
S-box again respectively after l iterations. Thus any differential characteristic of
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this construction after l iterations has d active S-boxes at least, where d is the
differential branch number of S-box.

Theorem 1 can be used to evaluate the number of rounds in the initialization
stage of a stream cipher based on this construction to resist differential crypt-
analysis. The number of active S-boxes in the linear characteristics is determined
by the detail of the eight linear boolean functions in diffusion layer, while there
are some results in this aspect for the design of Trivium in [19].

Fig. 3. Structure of Bagua

4 Bagua: A Stream Cipher Based on the Construction

As an application of this Galois-NFSR construction we propose a synchronous
stream cipher called Bagua in this section. Bagua is a hardware-oriented prim-
itive of 128-bit initialization vector and 128-bit or 256-bit key. It can be imple-
mented in parallel up to 32 iterations at once. One can choose the parallel degree
in implementation according to the requirement of throughput and hardware
overhead in different application environments.

4.1 Description of Bagua

The structure of Bagua is shown in Fig. 3. The lengths of eight FSRs are 68, 73,
79, 93, 89, 87, 71 and 65 respectively. Denote the registers in the first four FSRs
by a313, a312, ..., a1 and the registers in the latter four FSRs by b312, b311, ..., b1.
The states of FSRs are updated per iteration as follows
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FSR1 : (a313, a312, ..., a246) ← (f1 + w1, a313, ..., a247),
FSR2 : (a245, a241, ..., a173) ← (f2 + w2, a245, ..., a174),
FSR3 : (a172, a171, ..., a94) ← (f3 + w3, a172, ..., a95),
FSR4 : (a93, a92, ..., a1) ← (f4 + w4, a93, ..., a2),
FSR5 : (b312, b311, ..., b224) ← (f5 + w5, b312, ..., b225),
FSR6 : (b223, b222, ..., b137) ← (f6 + w6, b223, ..., b138),
FSR7 : (b136, b135, ..., b66) ← (f7 + w7, b136, ..., b67),
FSR8 : (b65, b64, ..., b1) ← (f8 + w8, b65, ..., b2).

The update of whole Galois-NFSR is a reversible transformation. The eight linear
boolean functions in the diffusion layer are

f1 = a246 + a263 + a212 + b277,

f2 = a173 + a192 + a139 + b192,

f3 = a94 + a115 + a60 + b102,

f4 = a1 + a28 + b281 + b32,

f5 = b224 + b250 + b185 + a277,

f6 = b137 + b162 + b98 + a205,

f7 = b66 + b85 + b27 + a128,

f8 = b1 + b17 + b272 + a62.

The confusion layer is an 8 × 8 reversible S-box and is written by

(w1, w2, ..., w8) = S-box(a281, a211, a136, a55, b275, b188, b103, b34).

The Design of S-box. For hardware implementation efficiency, the 8-bit S-
box is designed by SPS structure consisting of four different 4-bit S-boxes and
a lightweight linear transformation, see Fig. 4. The four 4-bit S-boxes are not
affine equivalent and have the optimal differential and linear properties in all 4-
bit S-boxes. That is, for each S-boxes both the maximum differential probability
and the maximum linear approximation probability are 2−2. The actions of the
four 4-bit S-boxes in hexadecimal notation are given in the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

S2[x] 1 D F 0 E 8 2 B 7 4 C A 9 3 5 6

S3[x] 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

S4[x] E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5

Let (x1, x2, x3, x4) be the input of 4-bit S-box, and (y1, y2, y3, y4) be its out-
put. Then

y1 + 2y2 + 22y3 + 23y4 = Si[x1 + 2x2 + 22x3 + 23x4], i = 1, 2, 3, 4.
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Fig. 4. S-box

The input of S1 is (a281, a211, a136, a55) and the input of S2 is
(
b275, b188, b103,

b34
)
. The output of S3 is assigned to (w1, w8, w2, w7) and the output of S4 is

assigned to (w3, w6, w4, w5) . The linear transformation can be represented by
P (x) = P · x, where P is the following 8 × 8 matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 0 1
1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the whole 8-bit S-box in Bagua, the maximum differential probability is
7

128 and the maximum linear approximation probability is 2−4. If we treat S-box
as an 8-bit input and 8-bit output vector boolean function, the algebraic degree
of component functions all are 6 and the number of monomials in the ANFs are
91, 98, 103, 99, 99, 96, 114 and 110 respectively.

4.2 Initialization and Output

Bagua has 128-bit initialization vector IV and supports key of lengths 128 or
256 bits. In order to unify the key loading, for the case of 128-bit key we copy it
to obtain a 256-bit tuple. Denote Key = (k0, k1, ..., k255) and IV = (iv0, iv1, ...,
iv127). Then the Key and IV are loaded as following
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FSR1 : (a313, a312, ..., a246) = (1, 0, ..., 0, k0, ..., k51),
FSR2 : (a245, a241, ..., a173) = (1, 0, ..., 0, k52, ..., k103),
FSR3 : (a172, a171, ..., a94) = (1, 0, ..., 0, k104, ..., k155),
FSR4 : (a93, a92, ..., a1) = (1, 0, ..., 0, k156, ..., k207),
FSR5 : (b312, b311, ..., b224) = (1, 0, ..., 0, k208, ..., k255),
FSR6 : (b223, b222, ..., b137) = (1, 0, ..., 0, iv0, ..., iv55),
FSR7 : (b136, b135, ..., b66) = (1, 0, ..., 0, iv56, ..., iv95),
FSR8 : (b65, b64, ..., b1) = (1, 0, ..., 0, iv96, ..., iv127).

The constant vectors 1, 0, ..., 0 are filled in the eight FSRs to avoid sliding attack,
where the lengths of constant vectors are 16, 21, 27, 41, 41, 31, 31 and 33
respectively. After key and initialization vector loading Bagua runs 960 iterations
without output for 128-bit key, while running 1600 iterations without output for
256-bit key. After initialization it enters into the stage of generating sequence.
One bit is generated per iteration, which is a simple function of the output bits
of diffusion layer as following

output = f1 × f7 + f3 × f5 + f2 + f4 + f6 + f8.

4.3 Hardware Performance

Bagua allows parallel implementation up to 32 iterations at once. One can choose
the parallel degree in implementation according to the requirement of throughput
and hardware overhead in different application environments. The area require-
ments of Bagua implemented in ASIC under different parallel degree are eval-
uated in Table 1, where the most economical implementation needs about 3905
gates. We also evaluate the performance of Bagua in FPGA implementation
using Verilog HDL simulation, see Table 2. It shows that the maximum through-
out can be up to 8 Gbps in 32-iteration parallel implementation.

Table 1. Area (GE) requirement of ASIC implementation

Parallel
degree

FSRs S-box Other Sum

1 3750 116 39 3905

4 3750 464 156 4370

8 3750 928 312 4990

16 3750 1856 624 6230

32 3750 3712 1248 8710
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Table 2. The performance in FPGA implementation

Parallel
degree

Area (LE) Peak frequency
(MHz)

Throughput
(Gbps)

1 1104 329.6 0.329

8 1465 299.58 2.397

16 2101 256.34 4.101

32 2554 250.13 8.004

5 Security Analysis

We have tested the pseudo-randomness of the output sequences using the NIST’s
suit sts-2.1.2 for Bagua-128 and Bagua-256. For the three cases of all-zero Key
and IV, all-one Key and IV, and random Key and IV, all tests are passed. In the
following we mainly evaluate the security of Bagua against linear, differential
and algebraic cryptanalyses.

5.1 Linear Cryptanalysis

In order to evaluate the resistance of Bagua against linear cryptanalysis, we
estimate the lower bound on the number of active S-boxes in the linear charac-
teristics. Since the eight linear functions in this construction can provide good
diffusivity, the larger the Hamming weight of the input linear mask, the more
active S-box will be involved in the linear characteristic. So we consider all one-
bit input masks of the initial state of FSRs, then estimate the lower bounds
on the number of active S-boxes per 50 iterations in the stage of initialization
by computer program. When the bit of input mask is selected in one of the
positions a93, a172, a245, a313, b65, b136, b223, b312, one could find the linear char-
acteristic with less active S-boxes. For the eight kinds of input masks, Table 3
presents the growth of the estimating number of active S-boxes along with the
iteration rounds. It shows that the minimal number of active S-boxes after 350
rounds is 128 in all considered linear characteristics. Since the maximum linear
approximation probability of S-box is 2−4 and the output sequence is a quadratic
function of internal state, Bagua is practical secure against linear cryptanalysis.

5.2 Differential Cryptanalysis

For any one-bit input difference of Bagua, the longest path of the differ-
ence entering into S-box has 65 iterations and the differences in all regis-
ters will be unknown after 247 iterations. The longest distance between feed-
back taps and positions selected as the input of S-box in FSRs is 38, that is,
max1≤i≤8 {ni − ti} = 38. Since S-box is reversible, its differential branch number
is 2 at least. By Theorem 1, we know that after 960 iterations any differential
characteristic of Bagua has at least 2 · � 960−247

38 � = 36 active S-boxes, while after
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Table 3. Number of active S-boxes with different rounds for 8 input masks

Rounds 100 150 200 250 300 350 400 450 500 550 600 650 700 750

a93 1 6 22 54 98 146 196 246 294 344 393 443 493 541

a172 2 14 53 100 149 198 247 296 344 393 443 493 543 592

a245 2 14 46 90 136 184 234 284 333 383 433 483 533 583

a313 2 18 55 100 149 199 248 298 348 397 446 496 546 596

b65 2 5 15 39 81 128 177 227 276 326 376 425 475 525

b136 3 20 54 99 147 195 243 292 341 391 441 491 540 590

b223 1 7 37 82 130 179 229 279 328 377 427 476 526 576

b312 1 8 36 77 125 174 224 272 321 371 421 471 520 569

1600 iterations any differential characteristic has at least 2 · � 1600−247
38 � = 70

active S-boxes. Note that the maximum differential probability of S-box is 7
128 .

Then for 960 rounds initialization the differential characteristic probability is less
than ( 7

128 )36 ≈ 2−150.9 and for 1600 rounds initialization the differential char-
acteristic probability is less than ( 7

128 )70 ≈ 2−293. It shows Bagua is practical
secure against differential cryptanalysis.

5.3 Algebraic Cryptanalysis

The general idea of algebraic attack is to treat the encryption algorithm as an
over-defined system of algebraic equations. Then the secret key or the internal
state at certain time interval can be recovered by solving this system of mul-
tivariate algebraic equations. In Bagua algorithm, for each output bit of S-box
the algebraic degree is 6 and the number of monomials in their algebraic normal
forms are 91, 98, 103, 99, 99, 96, 114 and 110 respectively. If we set the internal
state at some time interval as variables to construct equations using output
sequence, after 119 iterations each equation will involve all 625 variables and
the algebraic degree is too high. It is impossible to solve this kind of equations
using some known methods, such as linearization, XL, XSL and Gröbner basis
methods. As far as we know no method has been found to control the number
of variables and the degree of equations.

6 Conclusions

In this paper, we propose a new construction of Galois-NFSR based on Shannon’s
confusion and diffusion design principles. As an application of this construction,
we propose a hardware-oriented stream cipher named Bagua, which has 128-bit
initialization vector and 128-bit or 256-bit key. It can be implemented in paral-
lel up to 32 iterations at once, and the most economical implementation needs
about 3905 gates. The simulation evaluation of Bagua in FPGA implementation
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shows that the maximum throughout can be up to 8 Gbps in 32-iteration par-
allel implementation. We analyze its resistances against differential and linear
cryptanalyses theoretically and experimentally. More cryptanalyses on Bagua
and researches on the provable security for the Galois-NFSR construction are
expected in the future.
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Abstract. We continue the line of works constructing related-key secure
PRFs (Bellare and Cash, CRYPTO 2010) and PRPs (Barbosa and
Farshim, FSE 2014). In detail, we consider generalized Feistel networks
using contracting round functions from {0, 1}m to {0, 1}n, and explore
conditions that are sufficient for such Contracting Feistel Networks
(CFNs) to achieve security up to 2n/2 adversarial queries. As results,
we show that provable related-key security is achieved with �m

n
� + 3

rounds, as long as the CFN uses two independent main keys K1, K2 in
all the rounds in a close-to-alternating manner. Our results provide new
approaches to construct related-key secure variable-input-length block
ciphers from related-key secure variable-input-length PRFs.

Keywords: Block cipher · Contracting feistel networks · Related-key
attack · CCA-security · H-coefficient technique

1 Introduction

Feistel Networks. A plenty of modern block ciphers consist of iterative appli-
cations of a simple Feistel permutation, which maps (A,B) ∈ {0, 1}n ×{0, 1}n to
(B,A⊕FK(B)) for a domain-preserving round function F : K×{0, 1}n → {0, 1}n.
The most popular instance is likely the Data Encryption Standard (DES) [16].
This popularity has motivated a number of works investigating such Feistel net-
works.

A popular approach to analyzing the security of Feistel networks, pioneered
by Luby and Rackoff [23], is to model the round function FK as a secret ran-
dom function. This allows proving its information theoretic indistinguishability,
i.e., any distinguisher should not be able to distinguish the Feistel network from
a random permutation on 2n-bit strings. With this model, Luby and Rackoff
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proved the security for 4 rounds Feistel networks, following which a long series
of work has established either better security bounds [19,28] or reduced con-
struction complexity [26,32].

Contracting Feistel Networks. The above classical Feistel networks could be
generalized in various manners. In this paper, we consider replacing the domain-
preserving round function F by contracting ones. Concretely, assuming using
a contracting function F : K × {0, 1}kn+r → {0, 1}n, where k ∈ {1, ...} is a
positive integer and 0 ≤ r ≤ n − 1, then a contracting Feistel permutation
maps (A,B) ∈ {0, 1}n × {0, 1}kn+r to (B,A ⊕ FK(B)). Note this yields a per-
mutation on {0, 1}(k+1)n+r. The idea dates back to [33], with real instances
BEAR and LION [2] and later the Chinese standard SMS4 [13]. Such Contract-
ing Feistels Networks (CFNs) appear particularly useful in motivating ultra-
lightweight block ciphers [35] and full-domain secure encryption [25]. More-
over, with Variable-Input-Length (VIL) PRFs (though not necessarily domain-
preserving), it also gives rise to wide cryptographic permutations [17].

Information theoretic security of GFNs could be analyzed similarly to classi-
cal Feistel, with various “birthday-bound” results showed in [2,7,11,24,25,27,37]
and “beyond-birthday-bound” results found in [19,30]. It has been proved that,
with a sufficient number of rounds, CFNs are CCA-secure up to 2(kn+r)(1−ε)

adversarial queries for any ε > 0 [19,34].

Our Question. Despite the asymptotically optimal provable bounds, CFNs
remain far less understood regarding security beyond the classical PRP or SPRP
notions. In this regime, the arguably most important model is security against
the so-called Related-Key Attacks (RKAs) that were independently introduced by
Biham [8] and Knudsen [21] in early 1990s. Such attacks concentrate on multiple
secret keys satisfying some adversary-chosen relations, the presence of which
may be the consequence of a protocol-level key update [20] or tampering [3].
Compared to the classical “single-key” setting, the increased adversarial power
enables very efficient attacks against quite a number of block ciphers [9,10,14].

In light of such influential results, Bellare and Kohno [6] initiated the theoret-
ical treatment of security under related-key attacks by proposing definitions for
RKA secure pseudorandom functions (PRFs) and pseudorandom permutations
(PRPs), formalizing the adversarial goal as distinguishing the cipher oracles with
related-keys from independent random functions or permutations, and present-
ing possibility and impossibility results for these primitives. Since then, follow
up works have established various important positive results for provably RKA
secure constructions of complex cryptographic primitives [1,4,5,18]. Particularly
relevant to us, Barbosa and Farshim established RKA security for 4 rounds bal-
anced Feistel networks with two master keys K1 and K2 alternatively used in
each round [4], and Guo established RKA security for the so-called Feistel-2 or
key-alternating Feistel ciphers [18].

Our Results. This paper considers the RKA security of contracting Feistel net-
works built upon a round function F : K × {0, 1}kn+r → {0, 1}n. As observed
in the context of balanced Feistel networks [4,6], to achieve RKA security, the
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round keys have to be somewhat correlated. Thus, the first step is to pinpoint
a plausible key assignment. Motivated by the 4 rounds result in [4], we con-
sider assigning two κ-bit master keys K1,K2 to all the rounds alternatively,
which appears a quite natural idea. However, note that an odd number of Feis-
tel rounds with such alternated key assignment yields an involution, which is
clearly insecure as a block cipher. This means some “interference” is necessary,
which gives rise to the following key assignment scheme:

– When the number t of rounds of the candidate CFN is even, the two master
keys K1 and K2 are alternatively used in each round. I.e., the round keys are
of the form K1,K2,K1,K2, ...

– When the number t of rounds of the candidate CFN is odd, the two master
keys K1 and K2 are alternatively used in the 4-th to the t-th rounds, while
the round keys in the first three rounds are K1,K2,K2. I.e., the round keys
are of the form K1,K2,K2,K1,K2, ...

We remark that the key assignment K1,K2,K1,K2, ...,K2,K2 can also be
used when the rounds of CFN is odd, however, due to the page limits, we do
not provide a detailed proof. With above key assignment scheme using the round
function F : K×{0, 1}kn+r → {0, 1}n, we show that k+4 rounds are sufficient for
RKA security up to 2n/2 adversarial queries, establishing the classical birthday-
bound security. As shown in [31, Table 4], for contracting Feistel networks using
the round function F : K × {0, 1}kn+r → {0, 1}n, k + 3 rounds are necessary
for provable CPA security even in the single-key setting. By this, the round
complexity of our results is quite close to optimal (though we leave tightening
as an open problem).

CFNs are valuable due to the compatibility with “irregular” round functions.
For example, one of the RKA secure PRF candidates constructed in [5] maps
n-bit strings to elements in a group of prime order. Depending on the concrete
parameters, it may not be efficient (even possible) to truncate such a PRF to
a domain-preserving PRF. CFNs offer a more “direct” approach to construct
RKA secure PRPs from such PRFs. Moreover, with RKA secure VIL PRFs, our
results provide new approaches to construct related-key secure variable-input-
length block ciphers from related-key secure PRFs, which may find applications
in the context of, e.g., non-malleable codes for VIL messages [15, Sect. 6], and
wide tweakable block ciphers [22].

Related Work. Contracting Feistel networks have been analyzed regarding
provable CCA security [19,34,36] and generic attacks [31]. The CCA result in
[19,34] was established via the cascade of NCPA secure networks, and thus
the round complexities are much larger than ours. The CCA result in [36] was
established via a dedicated analysis, and has the same round complexities as
ours, though we are in the stronger RKA setting. Finally, provable related-key
security of classical balanced Feistel networks has been investigated [4,18], which,
as mentioned, also serves a part of our motivation.

Organization. We serve necessary notations and definitions in Sect. 2. Then,
as a warm up, in Sect. 3 we analyze the simplest setting of 5 rounds in detail.
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We serve the analysis of 6 rounds as another instructive example, which is how-
ever deferred to Appendix A due to page limits. After that, we present our main
result in Sect. 4. We finally conclude in Sect. 5.

2 Preliminaries

For X ∈ {0, 1}m, we denote by X[a, b] the string consisting of the b − a + 1 bits
between the a-th position and the b-th position. The t-round contracting Feistel
construction using a vector of round keys K = (K1, ...,Kt) is defined as

CFNFkn+r,n,t
K (X) := ΨFkn+r,n

Kt ◦ ... ◦ ΨFkn+r,n
K1 (X).

For such a round key vector K = (K1, ...,Kt), we denote by K[i] the i-th
round key Ki. Then, for X ∈ {0, 1}(k+1)n+r, a contracting Feistel round using
the key Ki is defined as (see Fig. 1)

Ψ
Fkn+r,n

Ki (Xi) := Xi[n+1, (k+1)n+r]‖F kn+r,n
Ki

(
Xi[n+1, (k+1)n+r]

)
⊕Xi[1, n].

Fig. 1. The i-th round of CFNFkn+r,n

K , and our notations.

2.1 (Multi-key) RKA Security

The RKA security notion is parameterized by a so-called related-key deriving
(RKD) sets. Formally, an n-ary RKD set Φ consists of RKD functions φ mapping
an n-tuple of keys in some key space Kn to a new key in K, i.e., φ : Kn → K.

Let F : K × {0, 1}m → {0, 1}n be a keyed function, and fix a key K ∈
K. We define the Φ-restricted related-key oracle RK[FK ], which takes a RKD
function φ ∈ Φ and an input X ∈ {0, 1}m as input, and returns RK[FK ](φ,X) :=
Fφ(K)(X). Then, we consider a Φ-restricted related-key adversary D which has
access to u related-key oracles instantiated with either F or a random function
RF : K×{0, 1}m → {0, 1}n, and must distinguish between two worlds as follows:

– the “real” world, where it interacts with RK[FK1 ], ...,RK[FKu
], and K1, ...,Ku

are randomly and independently drawn;
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– the “ideal” world, where it interacts with RK[RFK1 ], ...,RK[RFKu
], and K1,...,

Ku are randomly and independently drawn.

The adversary is adaptive. Note that in the ideal world, each oracle RK[RFKi
]

essentially implements an independent random function for each related-key
φ(Ki). Formally, D’s distinguishing advantage on F is defined as

Adv
Φ-rka[u]
F (D) :=

∣
∣
∣PrRF,K1,...,Ku

[

DRK[RFK1 ],RK[RFK1 ]−1,...,RK[RFKu ],RK[RFKu ]−1
= 1

]

− PrK1,...,Ku

[

DRK[FK1 ],RK[FK1 ]−1,...,RK[FKu ],RK[FKu ]−1
= 1

]
∣
∣
∣.

It was proved that, under some natural restrictions on RKD sets, the single-
key and multi-key RKA security notions are equivalent. We refer to [4] for details.

Similarly, a block cipher E : K × {0, 1}m → {0, 1}m shall be indistinguish-
able from an ideal cipher. For this we will only consider the single-key setting.
Formally, D’s distinguishing advantage on E is defined as

AdvΦ-rka[1]
E (D) :=

∣
∣
∣PrIC,K

[
DRK[ICK ],RK[ICK ]−1

= 1
]
− PrK

[
DRK[EK ],RK[EK ]−1]∣∣

∣,

where RK[EK ]−1(φ, Y ) := E−1
φ(K)(Y ).

As already noticed in [6], Φ-RKA security is achievable only if the RKD set Φ
satisfies certain conditions that exclude trivial attacks. For this, we follow [4] and
characterize three properties. Firstly, the output unpredictability (UP) advantage
of an adversary A against an RKD set Φ is

Advup
Φ (A) := Pr

[∃(φ,K∗) ∈ L1 × L2 s.t. φ(K) = K∗ : K ←$ K; (L1, L2) ← A]

.

Secondly, the claw-freeness (CF) advantage of an adversary A against an RKD
set Φ is

Advcf
Φ(A) := Pr

[∃φ1, φ2 ∈ L s.t. φ1(K) = φ2(K) ∧ φ1 �= φ2 : K ←$ K; L ← A]
.

Finally, the switch-freeness (SF) advantage of an adversary A against an RKD
set Φ is

Advsf
Φ(A) := Pr

[
(∃φ1, φ2 ∈ L)(∃i �= j ∈ {1, ..., t}) φ1(K)[i] =φ2(K)[j] :

K ←$ K; L ← A]

.

We require the three advantages to be sufficiently small. The necessity of UP
and CF has already been noticed in [6]: if A is able to figure out φ ∈ Φ such
that φ(K) = c for some constant c or φ(K) = φ′(K) for some φ′ �= φ, then
distinguishing is always possible by comparing RK[EK ](φ,X) with Ec(X) or
with RK[EK ](φ′,X) respectively.
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2.2 The H-coefficient Technique

The core step of our proofs consists of analyzing information theoretic indistin-
guishability of CFNs built upon random round functions, which will employ the
H-coefficient technique [12,29]. To this end, we assume deterministic a distin-
guisher that has unbounded computation power, and we summarize the infor-
mation gathered by the distinguisher in a tuple

Q =
(
(φ1,X1, Y1), . . . , (φqe ,Xqe , Yqe)

)

called the transcript, meaning that the j-th query was either a forward query
(φj ,Xj) with answer Yj , or a backward query (φj , Yj) with answer Xj .

To simplify the arguments (in particular, the definition of “bad transcripts”),
we reveal the key K to the distinguisher at the end of the interaction. This is wlog
since D is free to ignore this additional information to compute its output bit.
Formally, we append K to τ and obtain what we call the transcript τ = (Q,K)
of the attack. With respect to some fixed distinguisher D, a transcript τ is said
attainable, if there exists oracles IC such that the interaction of D with the
ideal world RK[ICK ] yields Q. We denote T the set of attainable transcripts.
In all the following, we denote Tre, resp. Tid, the probability distribution of the
transcript τ induced by the real world, resp. the ideal world (note that these two
probability distributions depend on the distinguisher). By extension, we use the
same notation for a random variable distributed according to each distribution.

Given a transcript Q, a block cipher E, and a key K ∈ K, we say the related-
key oracle RK[EK ] extends Q, denoted RK[EK ] 	 Q, if Eφ(K)(X) = Y for all
(φ,X, Y ) ∈ Q. It is easy to see that for any attainable transcript τ = (Q,K),
the interaction of the distinguisher with oracles RK[EK ] produces (Q,K) if and
only if K is sampled in the interaction and RK[EK ] 	 τ .

With all the above definitions, the main lemma of H-coefficient technique is
as follows (see [12]).

Lemma 1. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the
set of attainable transcripts T . Assume that there exists ε1 such that for any
τ ∈ Tgood, one has

Pr[Tre = τ ]
Pr[Tid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

3 Security Proof for CFNF 2n ,n

In this section, we prove RKA-CCA security for CFNF 2n,n

, i.e., the simplest case
of k = 2. According to [31, Table 4], 5 rounds are needed for CFNF 2n,n

. As men-
tioned in the Introduction, we consider the key assignment K = (K1,K2,K2,K1,
K2).
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Theorem 1. For any distinguisherD making at most q queries to RK[CFNF 2n,n,5
K ]

and RK[CFNF 2n,n,5
K ]−1 in total, where K = (K1,K2,K2,K1,K2), it holds

AdvΦ-rka[1]

CFNF2n,n,5(D) ≤ AdvΦ-rka[2]
F 2n,n (D) + Advcf

Φ(D) + Advsf
Φ(D) +

7q2

2n
+

q2

23n
.

The bound appears independent of the unpredictability advantage
Advup

Φ (D). Though, Advup
Φ (D) shall be small in order to ensure that

AdvΦ-rka[2]
F 2n,n (D) is sufficiently small.

Outline of the Proof. As the first step, we replace the keyed function F 2n,n

with a random function RF2n,n : K × {0, 1}2n → {0, 1}n. As two independent
keys K1 and K2 are involved, a standard hybrid argument yields

∣
∣
∣AdvΦ-rka[1]

CFNF2n,n,5(D) − AdvΦ-rka[1]

CFNRF2n,n,5(D)
∣
∣
∣ ≤ AdvΦ-rka[2]

F 2n,n (D).

The core step is to analyze AdvΦ-rka[1]

CFNRF2n,n,5(D) for the random CFN, which,
as mentioned, will employ the H-coefficient technique. We will define bad tran-
scripts and upper bound their probability in ideal world, and then show that the
probabilities to obtain any good transcript in the real word and the ideal world
are sufficiently close.

As notations, we denote Xi,j [s, t], where i refers to the input of the i-th round
in the forward inquiry, j is the j-th inquiry of the adversary to the Oracle, s
is the starting bit position and t is the ending bit position. In this article, we
divide them into n bits, we have

X[1, (k + 1)n + r] = X[1, n]‖X[n + 1, 2n]‖ . . . . . . ‖X[(k + 1)n + 1, (k + 1)n + r].

3.1 Bad Transcripts

In this subsection, we define bad transcripts, which capture either a claw or a
switch exists in K.

Definition 1. An attainable transcript τ = (Q,K) is bad, if the condition
EVcf ∨ EVsf , which means either a claw or a switch exists in K, is fulfilled.
Otherwise we say τ is good.

It is clear that

Pr
[
Tid ∈ Tbad] = Pr

[
EVcf ∨ EVsf

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (1)

3.2 Analyzing Good Transcripts

Bad Predicate. We define a “bad predicate” Bad(RF2n,n) on the ideal keyed
function RF2n,n, such that once Bad(RF2n,n) is not fulfilled, the event Tid = τ
is equivalent to RF2n,n satisfying 3q new and distinct equations. Since the keys
of the 2nd and 3rd rounds are the same, we need to ensure that for these two
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rounds, there exists 2q different equations for q queries. At the same time, it is
necessary to ensure that the input of the fourth round is collision free. And then,
Kbad

1 leads to RF2n,n
K2

input collisions and Kbad
2 causes RF2n,n

K1
input collisions.

Formally, the specific definition and probability analysis are as follows.

Definition 2. Given a function RF2n,n, the predicate Bad(RF2n,n) is fulfilled, if
either of the conditions “K1 is bad” and “K2 is bad” is fulfilled.

– The condition “K1 is bad” consists of five subconditions as follows.
(B-1) there exists i and j such that X2,i[n + 1, 3n]=X2,j [n + 1, 3n], (i �= j).
(B-2) there exists i and j such that X2,i[n + 1, 3n]=X3,j [n + 1, 3n].
(B-3) there exists i and j such that X2,i[n + 1, 3n]=X5,j [n + 1, 3n].
(B-4) there exists i and j such that X3,i[n + 1, 3n]=X3,j [n + 1, 3n]], (i �= j).
(B-5) there exists i and j such that X3,i[n + 1, 3n]=X5,j [n + 1, 3n].

– The condition “K2 is bad” consists of two subconditions as follows.
(B-6) there exists i and j such that X4,i[n + 1, 3n]=X1,j [n + 1, 3n].
(B-7) there exists i and j such that X4,i[n + 1, 3n]=X4,j [n + 1, 3n], (i �= j).

Otherwise we say τ is good.

Below we analyze the conditions in turn.

“K1 is bad”. Now we analyze the situation of Kbad
1 . Firstly, we pay attention

to (B-1).

1. Case φ(i) �= φ(j).
We have (K1,i,K2,i) �= (K1,j ,K2,j) and consider the following situations.
(a) When K1,i �= K1,j , we consider K2,i and K2,j . If K2,i �= K2,j ,

then we have the key assignments like (K1,K2,K2,K1,K2) and
(K3,K4,K4,K3,K4), we need not to care the collision of the inputs
in here. If K2,i = K2,j , then we have the key assignments
like (K1,K2,K2,K1,K2) and (K3,K2,K2,K3,K2), the probability of
X2,i[n + 1, 3n] = X2,j [n + 1, 3n] is up to 1/2n.

(b) When K1,i = K1,j , due to the claw-freeness, we can know that K2,i �=
K2,j , then we have the key assignments like (K1,K2,K2,K1,K2) and
(K1,K4,K4,K1, K4), we do not need to care the collision of the inputs
in here.

2. Case φ(i) = φ(j).
(a) When X1,i[2n + 1, 3n] �= X1,j [2n + 1, 3n], there is definitely no collision.
(b) When X1,i[2n+1, 3n] = X1,j [2n+1, 3n]. Under this condition, we consider

X1,i[n+1, 2n] = X1,j [n+1, 2n]. Because of X1,i[1, n] �= X1,j [1, n], we can
know that X2,i[2n + 1, 3n] �= X2,j [2n + 1, 3n].

(c) When X1,i[2n+1, 3n] = X1,j [2n+1, 3n]. Under this condition, due to the
contracting Feistel construction we know X2[n + 1, 2n] = X1[2n + 1, 3n],
we consider X1,i[n + 1, 2n] �= X1,j [n + 1, 2n], the probability of X2,i[2n +
1, 3n] = X2,j [2n + 1, 3n] is up to 1/2n.
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Further, the probability of (B-1) is

Pr
[
X2,i[n + 1, 3n] = X2,j [n + 1, 3n]

]
≤ 1

2n
.

Secondly, we think about (B-2), (B-3), (B-5). This is a random collision
for each of them, so we have the probabilities

Pr
[
X2,i[n + 1, 3n] = X3,j [n + 1, 3n]

]
=

1
22n

,

Pr
[
X2,i[n + 1, 3n] = X5,j [n + 1, 3n]

]
=

1
22n

,

Pr
[
X3,i[n + 1, 3n] = X5,j [n + 1, 3n]

]
=

1
22n

.

Finally, we pay attention to (B-4).

1. Case φ(i) �= φ(j).
We have (K1,i,K2,i) �= (K1,j ,K2,j) and consider two sub-case.
(a) Case K1,i �= K1,j .

If K2,i �= K2,j , we need not to care the collision of the inputs in here.
If K2,i = K2,j , the probability of X3,i[n+1, 3n] = X3,j [n+1, 3n] is up to
1/2n.

(b) Case K1,i = K1,j .
Due to the claw-freeness, we can know K2,i �= K2,j . So we do not need to
care the collision of the inputs in here.

2. Case φ(i) = φ(j).
(a) When X1,i[1, n] �= X1,j [1, n].

(a-1) If X1,i[n+1, 2n] = X1,j [n+1, 2n], X1,i[2n+1, 3n] = X1,j [2n+1, 3n],
there is definitely no collision.
(a-2) If X1,i[n+1, 2n] = X1,j [n+1, 2n], X1,i[2n+1, 3n] �= X1,j [2n+1, 3n],
we have the probability Pr[X3,i[n + 1, 2n] = X3,j [n + 1, 2n]] ≤ 1/2n and
due to the character of the contracting function, we have the probability
Pr[X3,i[2n+1, 3n] = X3,j [2n+1, 3n]] = 1/2n, so the probability of X3,i[n+
1, 3n] = X3,j [n + 1, 3n] is 1/22n.
(a-3) If X1,i[n + 1, 2n] �= X1,j [n + 1, 2n], X1,i[2n + 1, 3n] = X1,j [2n +
1, 3n], then we get Pr[X2,i[2n + 1, 3n] = X2,j [2n + 1, 3n]] ≤ 1/2n. When
X2,i[2n + 1, 3n] = X2,j [2n + 1, 3n], because of X2,i[1, n] �= X2,j [1, n],
there is no collision. When X2,i[2n + 1, 3n] �= X2,j [2n + 1, 3n], because of
X3,i[n + 1, 2n] �= X3,j [n + 1, 2n], there is also no collision.
(a-4) If X1,i[n+1, 2n] �= X1,j [n+1, 2n], X1,i[2n+1, 3n] �= X1,j [2n+1, 3n],
Pr[X3,i[n + 1, 3n] = X3,j [n + 1, 3n]] ≤ 1/22n.

(b) When X1,i[1, n] = X1,j [1, n].
(b-1) If X1,i[n+1, 2n] = X1,j [n+1, 2n], X1,i[2n+1, 3n] = X1,j [2n+1, 3n],
we suppose the adversary does not query like that.
(b-2) If X1,i[n+1, 2n] = X1,j [n+1, 2n], X1,i[2n+1, 3n] �= X1,j [2n+1, 3n],
we have the probabilities Pr[X3,i[n + 1, 2n] = X3,j [n + 1, 2n]] = 1/2n and
Pr[X3,i[2n + 1, 3n] = X3,j [2n + 1, 3n]] = 1/2n. So the probability of
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X3,i[n + 1, 3n] = X3,j [n + 1, 3n] is 1/22n.
(b-3) If X1,i[n+1, 2n] �= X1,j [n+1, 2n], X1,i[2n+1, 3n] = X1,j [2n+1, 3n],
then we can get Pr[X2,i[2n + 1, 3n] = X2,j [2n + 1, 3n]] = 1/2n.
When X2,i[2n+1, 3n] = X2,j [2n+1, 3n], because of X2,i[1, n] �= X2,j [1, n],
there is no collision. When X2,i[2n + 1, 3n] �= X2,j [2n + 1, 3n], because of
X3,i[n + 1, 2n] �= X3,j [n + 1, 2n], there is also no collision.
(b-4) If X1,i[n+1, 2n] �= X1,j [n+1, 2n], X1,i[2n+1, 3n] �= X1,j [2n+1, 3n],
we can get the probability is Pr[X3,i[n+1, 3n] = X3,j [n+1, 3n]] = 1/22n.

So the probability of (B-4) is

Pr
[
X3,i[n + 1, 3n] = X3,j [n + 1, 3n]

]
≤ 1

2n
.

In all,

Pr
[
K1 is bad | ¬(EVcf ∨ EVsf)

]
≤ 5q2

2n
. (2)

“K2 is bad”. Firstly, we pay attention to (B-6). This is a random collision, so
we have the probability

Pr
[
X4,i[n + 1, 3n] = X1,j [n + 1, 3n]

]
=

1
22n

.

Secondly, we think about (B-7). The detailed analysis is as follows.

1. Case φ(i) �= φ(j).
We have (K1,i,K2,i) �= (K1,j ,K2,j) and consider the following situations.
(a) When K2,i �= K2,j , we consider K1,i and K1,j . If K1,i �= K1,j , we need not

to care the collision of the inputs in here. If K1,i = K1,j , the probability
of the collision of X4[n + 1, 3n] is up to 1/2n.

(b) When K2,i = K2,j , due to the claw-freeness, we can know that K1,i �=
K1,j , we do not need to care the collision of the inputs in here.

2. Case φ(i) = φ(j).
(a) If X6,i[n + 1, 2n] �= X6,j [n + 1, 2n]. There is definitely no collision.
(b) If X6,i[n + 1, 2n] = X6,j [n + 1, 2n]. Under this condition, we consider

X6,i[2n + 1, 3n] = X6,j [2n + 1, 3n]. Because of the difference of X6[1, n],
we can know X4,i[n + 1, 2n] �= X4,j [n + 1, 2n], so there is no collision.

(c) If X6,i[n + 1, 2n] = X6,j [n + 1, 2n]. Under this condition, we consider
X6,i[2n + 1, 3n] �= X6,j [2n + 1, 3n] and we can get the probability
Pr[X4,i[n + 1, 2n] = X4,j [n + 1, 2n]] = 1/2n.

Further, the probability of (B-7) is

Pr
[
X4,i[n + 1, 3n] = X4,j [n + 1, 3n]

]
≤ 1

2n
.
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In all,

Pr
[
K2 is bad | ¬(EVcf ∨ EVsf)

]
≤ 2q2

2n
. (3)

Gathering Eqs. (2) and (3), we reach

Pr
[
Bad(RF2n,n)] ≤ 7q2

2n
. (4)

Completing the Proof. For the remaining, we fix a good transcript τ =
(Q,K), where Q = (φi,X1,i[1, 3n],X6,i[1, 3n])i=1,...,q.

First, we classify RKD functions φi, suppose that the quantity of φi is α,
which are denoted φ(1), φ(2), · · ·, φ(α) respectively. Qi(i = 1, . . . , α) are denoted
a set of transcripts with RKD functions φi. In detail, for i = 1, . . . , α, define

Qi =
{
(φ(i),X1i[1, 3n],X6i[1, 3n]), . . . , (φ(i),X1qi [1, 3n],X6qi [1, 3n])

}
,

where Qi has qi different inputs. Suppose that φ(1), φ(2), · · ·, φ(α) can derive β

different K1: K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 (β ≤ α). Suppose that q queries to Related-

Key Oracle constitute of q∗
1 , . . . , q∗

β inputs separately in K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 .

The probability to obtain τ in ideal word is

Pr[Tid = τ ] =
(

1
|K|

) α∏

i=0

1
(23n)qi

≤
(

1
|K|

)(
23n − q

)−q

.

On the other hand, the probability to obtain τ in the real world is

Pr[Tre = τ ] = Pr
[
RK[CFNRF2n,n,5

K ] 	 Q
]
· Pr

K∗
[K∗ = K]

≥
(

1
|K|

)
· Pr

[
RK[CFNRF2n,n,5

K ] 	 Q ∧ ¬Bad(RF2n,n)
]

=
(

1
|K|

)
·
(

1 − Pr
[
Bad(RF2n,n)

]
)

· Pr
[
RK[CFNRF2n,n,5

K ] 	 Q | ¬Bad(RF2n,n)
]
.

It can be seen that the event RK[CFNRF2n,n,5
K ] 	 Q is equivalent to the event that

RF2n,n satisfies 3q equations, i.e., for i = 1, ..., q,

RF2n,n
K2

(X2i[n + 1, 3n]) = X2i[1, n] ⊕ X3i[2n + 1, 3n],

RF2n,n
K2

(X3i[n + 1, 3n]) = X3i[1, n] ⊕ X4i[2n + 1, 3n],

RF2n,n
K1

(X4i[n + 1, 3n]) = X4i[1, n] ⊕ X5i[2n + 1, 3n].
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Therefore, we have the probability

Pr
[
RK[CFNRF2n,n,5

K ] 	 Q | ¬Bad(RF2n,n)
]

=
q∏

i=1

(
Pr

[
RF2n,n

K2
(X2i[n + 1, 3n]) = X2i[1, n] ⊕ X3i[2n + 1, 3n]

]

× Pr
[
RF2n,n

K2
(X3i[n + 1, 3n]) = X3i[1, n] ⊕ X4i[2n + 1, 3n]

]

× Pr
[
RF2n,n

K1
(X4i[n + 1, 3n]) = X4i[1, n] ⊕ X5i[2n + 1, 3n]

]
)

=
( 1

2n

)3q

.

The probability that a random function fulfilling each of 3q equations is 1/2n.
In all, using Eq. (4), we have

Pr[Tre = τ ]

Pr[Tid = τ ]

≥
(

1 − Pr
[
Bad(RF2n,n)

]
)

· Pr
[
RK[CFNRF2n,n,5

K ] 
 Q | ¬Bad(RF2n,n)
]/

α∏

i=0

1

(23n)qi

≥
(

1 − 7q2

2n

)

×
( 1

23n

)q

× (23n − q)q

≥ 1 −
(7q2

2n
+

q2

23n

)

. (5)

Gathering Eqs. (1) and (5), and using Lemma 1, we complete the proof of
Theorem 1.

3.3 The Case of CFNF 3n ,n

By [31, Table 4], 6 rounds are needed for CFNF 3n,n

, and we consider the alter-
nating key assignment.

Theorem 2. For any distinguisherD making at most q queries to RK[CFNF 3n,n,6
K ]

and RK[CFNF 3n,n,6
K ]−1 in total, where K = (K1,K2,K1,K2,K1,K2), it holds

AdvΦ-rka[1]

CFNF3n,n,6(D) ≤ AdvΦ-rka[2]
F 3n,n (D) + Advsf

Φ(D) + Advcf
Φ(D) +

10q2

2n
+

q2

24n
.

The proof resembles that of Theorem 1 and is deferred to Appendix A.

4 Security Proof for General CFNF kn+r,n

After the above warm-up, we now proceed to establish security for CFNs using
round function F kn+r,n for general k and r and k+4 rounds. Due to the deviation
in key assignments, below we first consider the case of k + 4 odd in Sect. 4.1,
and then the case of k + 4 even in Sect. 4.2.
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4.1 k + 4 is Odd

As mentioned in the Introduction, for odd number of rounds, we consider using
K1,K2,K2 in the first three rounds, and then alternate the remaining.

Theorem 3. For any distinguisher D making q queries to RK[CFNFkn+r,n,k+4
K ]

and RK[CFNFkn+r,n,k+4
K ]−1in total, where K = (K1,K2,K2,K1,K2, . . . ,K1,K2),

it holds

AdvΦ-rka[1]

CFNFkn+r,n,k+4
(D) ≤ AdvΦ-rka[2]

Fkn+r,n(D) + Advcf
Φ(D) + Advsf

Φ(D)

+
(k2 + 10k + 17)q2

2n+2
+

q2

2(k+1)n+r
. (6)

Similarly to Sect. 3, we (could) focus on analyzing AdvΦ-rka[1]

CFNRFkn+r,n,k+4
(D) for the

random CFN, which follows the general flow in Sect. 3.

Definition 3 (Bad Transcripts for k + 4 odd). An attainable transcript
τ = (Q,K) is bad, if the condition EVcf ∨EVsf , which means either a claw or a
switch exists in K, is fulfilled. Otherwise we say τ is good.

It is clear that

Pr
[
Tid ∈ Tbad] = Pr

[
EVcf ∨ EVsf

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (7)

Bad Predicate. We define a “bad predicate” Bad(RFkn+r,n) on the ideal keyed
function RFkn+r,n, such that once Bad(RFkn+r,n) is not fulfilled, the event Tid =
τ is equivalent to RFkn+r,n satisfying (k + 2)q new and distinct equations. Since
the keys of the 2nd round, the 3rd round and the remaining odd rounds are
K2, while the keys of the even rounds are K1, we need to ensure that for these
middle k + 2 rounds, there exists (k + 2)q different equations.

To facilitate, for any RFkn+r,n and every (φi,Xi, Yi) ∈ Q, we define X1,i :=
Xi,Xk+4,i := Yi, and define the “induced intermediate values” as follows.

X2,i := ΨRFkn+r,n
K1 (X1,i), Xk+3,i :=

(
ΨRFkn+r,n

K2
)−1(Xk+4,i).

Note that the 2nd round intermediate value X2,i is derived along the “forward
direction”, while the (k +3)-th round intermediate value Xk+3,i is derived along
the “backward direction”. And then, Kbad

1 leads to RFkn+r,n
K2

input collisions
and Kbad

2 causes RFkn+r,n
K1

input collisions. Formally, the specific definition and
probability analysis are as follows.

Definition 4. Given a function RFkn+r,n, the predicate Bad(RFkn+r,n) is ful-
filled, if either of the conditions “K1 is bad” and “K2 is bad” is fulfilled.

– The condition “K1 is bad” consists of k2+12k+27
8 subconditions as follows.

(B-1) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = X2,j [n + 1, (k + 1)n + r], (i �= j).
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(B-2) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = X3,j [n + 1, (k + 1)n + r].

...
...

...
(B-k+5

2 ) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r].
(B-k+7

2 ) there exists i and j such that
X3,i[n + 1, (k + 1)n + r] = X3,j [n + 1, (k + 1)n + r], (i �= j).
(B-k+9

2 ) there exists i and j such that
X3,i[n + 1, (k + 1)n + r] = X5,j [n + 1, (k + 1)n + r].

...
...

...
(B-k + 4 ) there exists i and j such that
X3,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r]

...
...

...
(B-k2+12k+19

8 ) there exists i and j such that
Xk+2,i[n + 1, (k + 1)n + r] = Xk+2,j [n + 1, (k + 1)n + r].
(B-k2+12k+27

8 ) there exists i and j such that
Xk+2,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r].

– The condition “K2 is bad” consists of k2+8k+7
8 subconditions as follows.

(B-k2+12k+35
8 ) there exists i and j such that

Xk+3,i[n + 1, (k + 1)n + r] = Xk+3,j [n + 1, (k + 1)n + r], (i �= j).
(B-k2+12k+43

8 ) there exists i and j such that
Xk+3,i[n + 1, (k + 1)n + r] = Xk+1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+16k+39

8 ) there exists i and j such that
Xk+3,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].
(B-k2+16k+47

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = Xk+1,j [n + 1, (k + 1)n + r], (i �= j).
(B-k2+16k+55

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = Xk−1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+20k+43

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+10k+13

4 ) there exists i and j such that
X4,i[n + 1, (k + 1)n + r] = X4,j [n + 1, (k + 1)n + r].
(B-k2+10k+17

4 ) there exists i and j such that
X4,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].

Otherwise we say τ is good.
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Similarly to Sect. 3.2, we expand the probability of each (B − i) to 1/2n and
obtain

Pr
[
K1 is bad | ¬(EVcf ∨ EVsf)

]
≤ (k2 + 12k + 27)q2

8 · 2n
,

Pr
[
K2 is bad | ¬(EVcf ∨ EVsf)

]
≤ (k2 + 8k + 7)q2

8 · 2n
.

And we reach

Pr
[
Bad(RFkn+r,n)] ≤ (k2 + 10k + 17)q2

2n+2
. (8)

Completing the Proof. For the remaining, we fix a good transcript τ =
(Q,K), where Q = (φi,X1,i[1, (k + 1)n + r],Xk+5,i[1, (k + 1)n + r])i=1,...,q.

First, we classify RKD functions φi, suppose that the quantity of φi is α,
which are denoted φ(1), φ(2), · · ·, φ(α) respectively. Qi( i = 1, . . . , α) are denoted
a set of transcripts with RKD functions φi. In detail, for i = 1, . . . , α, define

Qi =
{
(φ(i),X1i[1, (k + 1)n + r],X(k+5)i[1, (k + 1)n + r]),

. . . , (φ(i),X1qi [1, (k + 1)n + r],X(k+5)qi [1, (k + 1)n + r])
}
,

where Qi has qi different inputs. Suppose that φ(1), φ(2), · · ·, φ(α) can derive β

different K1: K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 (β ≤ α). Suppose that q queries to Related-

Key Oracle constitute of q∗
1 , . . . , q∗

β inputs separately in K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 .

The probability to obtain τ in ideal word is

Pr[Tid = τ ] =
(

1
|K|

) α∏

i=0

1
(2(k+1)n+r)qi

≤
(

1
|K|

)(
2(k+1)n+r − q

)−q

.

In a similar vein to Sect. 3, the probability in real world is

Pr[Tre = τ ] = Pr
[
RK[CFNRFkn+r,n,k+4

K ] 	 Q
]
· Pr

K∗
[K∗ = K]

≥
(

1
|K|

)
· Pr

[
RK[CFNRFkn+r,n,k+4

K ] 	 Q ∧ ¬Bad(RFkn+r,n)
]

=
(

1
|K|

)
· Pr

[
RK[CFNRFkn+r,n,k+4

K ] 	 Q | ¬Bad(RFkn+r,n)
]

·
(

1 − Pr
[
Bad(RFkn+r,n)

]
)

.
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It can be seen that the event RK[CFNRFkn+r,n,k+4
K ] 	 Q is equivalent to the event

that RFkn+r,n satisfies (k + 2)q equations, i.e., for i = 1, ..., q,

RFkn+r,n
K2

(X2i[n + 1, (k + 1)n + r]) = X2i[1, n − r] ⊕ X(k+4)i[kn + 2r + 1, (k + 1)n + r]

⊕ RFkn+r,n
K1

(X(k+4)i[1, kn + r])[r + 1, n]‖X2i[n − r + 1, n] ⊕ X(k+4)i[1, r]

RFkn+r,n
K2

(X3i[n + 1, (k + 1)n + r]) = X3i[1, n] ⊕ X4i[kn + r, (k + 1)n + r],

...
...

...

RFkn+r,n
K2

(X(k+2)i[n + 1, (k + 1)n + r]) = X(k+2)i[1, n] ⊕ X(k+3)i[kn + r, (k + 1)n + r],

RFkn+r,n
K1

(X(k+4)i[1, kn + r])[1, r] = X2i[(k + 1)n + 1, (k + 1)n + r]

⊕ X(k+4)i[kn + r + 1, kn + 2r].

We remark that the last equality is only on r output bits of RFkn+r,n
K1

(X(k+4)i

[1, kn + r]). This turns out crucial for the calculations. In detail, these indicate

Pr
[

RK[CFNRFkn+r,n,k+4
K ] 
 Q | ¬Bad(RFkn+r,n)

]

=

q
∏

i=1

(

Pr
[

RFkn+r,n
K2

(X2i[n + 1, (k + 1)n + r]) = X2i[1, n − r] ⊕ X(k+4)i[kn + 2r + 1,

(k + 1)n + r] ⊕ RFkn+r,n
K1

(X(k+4)i[1, kn + r])[r + 1, n]

‖X2i[n − r + 1, n] ⊕ X(k+4)i[1, r]
]

× Pr
[

RFkn+r,n
K2

(X3i[n + 1, (k + 1)n + r]) = X3i[1, n] ⊕ X4i[kn + r, (k + 1)n + r]
]

...
...

...

× Pr
[

RFkn+r,n
K2

(X(k+2)i[n + 1, (k + 1)n + r]) = X(k+2)i[1, n] ⊕ X(k+3)i[kn + r,

(k + 1)n + r]
]

× Pr
[
RFkn+r,n

K1
(X(k+4)i[1, kn + r])[1, r] = X2i[(k + 1)n + 1, (k + 1)n + r]

⊕ X(k+4)i[kn + r + 1, kn + 2r]
]
)

=
( 1

2(k+1)n

)q( 1

2r

)q

.

We remark that, the equation on RFkn+r,n
K2

(X2i[n + 1, (k + 1)n + r]) depends
on the function value RFkn+r,n

K1
(X(k+4)i[1, kn + r])[r + 1, n]. Though, this won’t

affect the distribution of RFkn+r,n
K1

(X(k+4)i[1, kn + r])[1, r], as the two parts
RFkn+r,n

K1
(X(k+4)i[1, kn + r])[r + 1, n] and RFkn+r,n

K1
(X(k+4)i[1, kn + r])[1, r] are

independent. In all, using Eq. (8), we have
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Pr[Tre = τ ]
Pr[Tid = τ ]

≥

(
1 − Pr

[
Bad(RFkn+r,n)

]
)

· Pr
[
RK[CFNRFkn+r,n,k+4

K ] 	 Q | ¬Bad(RFkn+r,n)
]

∏α
i=0

1
(2(k+1)n+r)qi

≥

(
1 − (k2+10k+17)q2

2n+2

)
×

(
1

2(k+1)n+r

)q

(2(k+1)n+r − q)−q

≥ 1 −
( (k2 + 10k + 17)q2

2n+2
+

q2

2(k+1)n+r

)
. (9)

Gathering Eqs. (7) and (9) yields Eq. (6).

4.2 k + 4 is Even

For even number of rounds, we consider the alternating key assignment.

Theorem 4. For any distinguisher D making at most q queries to RK

[CFNFkn+r,n,k+4
K ] and RK[CFNFkn+r,n,k+4

K ]−1 in total, where K = (K1,K2,K1,
K2, . . . ), it holds

AdvΦ-rka[1]

CFNFkn+r,n,k+4
(D) ≤ AdvΦ-rka[2]

Fkn+r,n(D) + Advcf
Φ(D) + Advsf

Φ(D)

+
(k2 + 10k + 16)q2

2n+2
+

q2

2(k+1)n+r
. (10)

We also focus on analyzing AdvΦ-rka[1]

CFNRFkn+r,n,k+4
(D).

Definition 5 (Bad Transcripts for k + 4 even). An attainable transcript
τ = (Q,K) is bad, if the condition EVcf ∨EVsf , which means either a claw or a
switch exists in K, is fulfilled. Otherwise we say τ is good.

It is clear that

Pr
[
Tid ∈ Tbad] = Pr

[
EVcf ∨ EVsf

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (11)

Bad Predicate. We define a “bad predicate” Bad(RFkn+r,n) on the ideal keyed
function RFkn+r,n, such that once Bad(RFkn+r,n) is not fulfilled, the event Tid =
τ is equivalent to RFkn+r,n satisfying (k + 2)q new and distinct equations. Since
the keys of the even rounds are are K2, while the keys of the odd rounds are
K1, we need to ensure that for these middle k + 2 rounds, there exists (k + 2)q
different equations. The specific definition and probability analysis are as follows.
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Definition 6. Given a function RFkn+r,n, the predicate Bad(RFkn+r,n) is ful-
filled, if either of the conditions “K1 is bad” and “K2 is bad” is fulfilled.

– The condition “K1 is bad” consists of k2+10k+16
8 subconditions as follows.

(B-1) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = X2,j [n + 1, (k + 1)n + r], (i �= j).
(B-2) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = X4,j [n + 1, (k + 1)n + r].

...
...

...
(B-k+4

2 ) there exists i and j such that
X2,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r].
(B-k+6

2 ) there exists i and j such that
X4,i[n + 1, (k + 1)n + r] = X4,j [n + 1, (k + 1)n + r], (i �= j).
(B-k+8

2 ) there exists i and j such that
X4,i[n + 1, (k + 1)n + r] = X6,j [n + 1, (k + 1)n + r].

...
...

...
(B-k + 3) there exists i and j such that
X4,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+10k+8

8 ) there exists i and j such that
Xk+2,i[n + 1, (k + 1)n + r] = Xk+2,j [n + 1, (k + 1)n + r].

(B-k2+10k+16
8 ) there exists i and j such that

Xk+2,i[n + 1, (k + 1)n + r] = Xk+4,j [n + 1, (k + 1)n + r].

– The condition “K2 is bad” consists of k2+10k+16
8 subconditions as follows.

(B-k2+10k+24
8 ) there exists i and j such that

Xk+3,i[n + 1, (k + 1)n + r] = Xk+3,j [n + 1, (k + 1)n + r], (i �= j).
(B-k2+10k+32

8 ) there exists i and j such that
Xk+3,i[n + 1, (k + 1)n + r] = Xk+1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+14k+32

8 ) there exists i and j such that
Xk+3,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].
(B-k2+14k+40

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = Xk+1,j [n + 1, (k + 1)n + r], (i �= j).
(B-k2+14k+48

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = Xk−1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+18k+40

8 ) there exists i and j such that
Xk+1,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].

...
...

...
(B-k2+10k+12

4 ) there exists i and j such that
X3,i[n + 1, (k + 1)n + r] = X3,j [n + 1, (k + 1)n + r].
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(B-k2+10k+16
4 ) there exists i and j such that

X3,i[n + 1, (k + 1)n + r] = X1,j [n + 1, (k + 1)n + r].

Otherwise we say τ is good.

Similarly to Sect. 3.2, we expand the probability of each (B − i) to 1/2n and
obtain

Pr
[
K1 is bad | ¬(EVcf ∨ EVsf)

]
≤ (k2 + 10k + 16)q2

8 · 2n
,

Pr
[
K2 is bad | ¬(EVcf ∨ EVsf)

]
≤ (k2 + 10k + 16)q2

8 · 2n
.

And we reach

Pr
[
Bad(RFkn+r,n)] ≤ (k2 + 10k + 16)q2

2n+2
. (12)

Completing the Proof. For the remaining, we fix a good transcript τ =
(Q,K), where Q = (φi,X1,i[1, (k + 1)n + r],Xk+5,i[1, (k + 1)n + r])i=1,...,q.

First, we classify RKD functions φi, suppose that the quantity of φi is α,
which are denoted φ(1), φ(2), · · ·, φ(α) respectively. Qi( i = 1, . . . , α) are denoted
a set of transcripts with RKD functions φi. For i = 1, . . . , α, define

Qi =
{
(φ(i),X1i[1, (k + 1)n + r],X(k+5)i[1, (k + 1)n + r]),

. . . , (φ(i),X1qi [1, (k + 1)n + r],X(k+5)qi [1, (k + 1)n + r])
}
,

where Qi has qi different inputs. Suppose that φ(1), φ(2), · · ·, φ(α) can derive β

different K1: K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 (β ≤ α). Suppose that q queries to Related-

Key Oracle constitute of q∗
1 , . . . , q∗

β inputs separately in K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 .

The probability to obtain τ in ideal word is

Pr[Tid = τ ] =
(

1
|K|

) α∏

i=0

1
(2(k+1)n+r)qi

≤
(

1
|K|

)(
2(k+1)n+r − q

)−q

.

In a similar vein to Sect. 4.1, the probability in real world is

Pr[Tre = τ ] ≥
(

1
|K|

)
· Pr

[
RK[CFNRFkn+r,n,k+4

K ] 	 Q | ¬Bad(RFkn+r,n)
]
.

It can be seen that the event RK[CFNRFkn+r,n,k+4
K ] 	 Q is equivalent to the

event that RFkn+r,n satisfies (k + 2)q equations, i.e., for i = 1, ..., q. Similarly
to Sect. 4.1, RFkn+r,n

K2
(X2i[n + 1, (k + 1)n + r]) depends on the function value

RFkn+r,n
K1

(X(k+4)i[1, kn+ r])[r +1, n]. Therefore we directly appeal to the result,
we have the probability

Pr
[
RK[CFNRFkn+r,n,k+4

K ] 	 Q | ¬Bad(RFkn+r,n)
]

=
( 1

2(k+1)n+r

)q

.
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In all, using Eq. (12), we have

Pr[Tre = τ ]
Pr[Tid = τ ]

≥

(
1 − Pr

[
Bad(RFkn+r,n)

]
)

· Pr
[
RK[CFNRFkn+r,n,k+4

K ] 	 Q | ¬Bad(RFkn+r,n)
]

∏α
i=0

1
(2(k+1)n+r)qi

≥

(
1 − (k2+10k+16)q2

2n+2

)
×

(
1

2(k+1)n+r

)q

(2(k+1)n+r − q)−q

≥ 1 −
( (k2 + 10k + 16)q2

2n+2
+

q2

2(k+1)n+r

)
. (13)

Gathering Eqs. (11) and (13) eventually establishes Eqs. (10).

5 Conclusion

We study related-key security of generalized Feistel networks using contracting
round functions. Assuming using contracting round functions from {0, 1}m to
{0, 1}n, and using two independent main keys K1,K2 in all the rounds in a close-
to-alternating manner, we prove birthday-bound security at �m

n �+3 rounds. The
result provides new constructions for related-key secure variable-input-length
block ciphers and wide tweakable block ciphers.

Acknowledgements. We sincerely thank the reviewers of Inscrypt 2020 for their
invaluable comments that help improving the quality of this paper. This work was
partly supported by the Program of Qilu Young Scholars (Grant No. 61580089963177)
of Shandong University.

A Security Proof for CFNF 3n ,n

The main flow quite resembles Sect. 3. In detail, we first replace the keyed
function F 3n,n with an random function RF3n,n : K × {0, 1}3n → {0, 1}n and
obtain the random CFN CFNRF3n,n

with a security gap at most AdvΦ-rka[2]
F 3n,n (D).

This allows us to focus on analyzing AdvΦ-rka[1]

CFNRF3n,n,6(D) below.

A.1 Bad Transcripts

Definition 7. An attainable transcript τ = (Q,K) is bad, if the condition
EVcf ∨ EVsf , which means either a claw or a switch exists in K, is fulfilled.
Otherwise we say τ is good.

It is clear that

Pr
[
Tid ∈ Tbad] = Pr

[
EVcf ∨ EVsf

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (14)
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A.2 Analyzing Good Transcripts

Bad Predicate. We define a “bad predicate” Bad(RF3n,n) on the ideal keyed
function RF3n,n, such that once Bad(RF3n,n) is not fulfilled, the event Tid = τ
is equivalent to RF3n,n satisfying 4q new and distinct equations. Since the keys
of the 2nd and 4th rounds are same, while the keys of the 3rd and 5th rounds
are also same, we need to ensure that for these four rounds, there exists 4q
different equations. And then Kbad

1 leads to RF3n,n
K2

input collisions and Kbad
2

causes RF3n,n
K1

input collisions. Formally, the specific definition and probability
analysis are as follows.

Definition 8. Given a function RF3n,n, the predicate Bad(RF3n,n) is fulfilled, if
either of the conditions “K1 is bad” and “K2 is bad” is fulfilled.

– The condition “K1 is bad” consists of five subconditions as follows.
(B-1) there exists i and j such that X2,i[n + 1, 4n]=X2,j [n + 1, 4n], (i �= j).
(B-2) there exists i and j such that X2,i[n + 1, 4n]=X4,j [n + 1, 4n].
(B-3) there exists i and j such that X2,i[n + 1, 4n]=X6,j [n + 1, 4n].
(B-4) there exists i and j such that X4,i[n + 1, 4n]=X4,j [n + 1, 4n], (i �= j).
(B-5) there exists i and j such that X4,i[n + 1, 4n]=X6,j [n + 1, 4n].

– The condition “K2 is bad” consists of five subconditions as follows.
(B-6) there exists i and j such that X5,i[n + 1, 4n]=X5,j [n + 1, 4n], (i �= j).
(B-7) there exists i and j such that X5,i[n + 1, 4n]=X3,j [n + 1, 4n].
(B-8) there exists i and j such that X5,i[n + 1, 4n]=X1,j [n + 1, 4n].
(B-9) there exists i and j such that X3,i[n + 1, 4n]=X3,j [n + 1, 4n], (i �= j).
(B-10) there exists i and j such that X3,i[n + 1, 4n]=X1,j [n + 1, 4n].

Otherwise we say τ is good.

Similarly to Sect. 3.2, we expand the probability of each (B − i) to 1/2n and
obtain

Pr
[
K1 is bad | ¬(EVcf ∨ EVsf)

]
≤ 5q2

2n
,

Pr
[
K2 is bad | ¬(EVcf ∨ EVsf)

]
≤ 5q2

2n
.

And we reach,

Pr
[
Bad(RF3n,n)] ≤ 10q2

2n
. (15)

Completing the Proof. For the remaining, we fix a good transcript τ =
(Q,K), where Q = (φi,X1,i[1, 4n],X7,i[1, 4n])i=1,...,q.

First, we classify RKD functions φi, suppose that the quantity of φi is α,
which are denoted φ(1), φ(2), · · ·, φ(α) respectively. Qi( i = 1, . . . , α) are denoted
a set of transcripts with RKD functions φi. For i = 1, . . . , α, define

Qi =
{
(φ(i),X1i[1, 4n],X7i[1, 4n]), . . . , (φ(i),X1qi [1, 4n],X7qi [1, 4n])

}
,
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where Qi has qi different inputs. Suppose that φ(1), φ(2), · · ·, φ(α) can derive β

different K1: K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 (β ≤ α). Suppose that q queries to Related-

Key Oracle constitute of q∗
1 , . . . , q∗

β inputs separately in K
(1)
1 , K

(2)
1 , . . . , K

(β)
1 .

The probability to obtain τ in ideal word is

Pr[Tid = τ ] =
(

1
|K|

) α∏

i=0

1
(24n)qi

≤
(

1
|K|

)(
24n − q

)−q

.

In a similar vein to Sect. 3.2, the probability in real world is

Pr[Tre = τ ] = Pr
[
RK[CFNRF3n,n,6

K ] 	 Q
]
· Pr

K∗
[K∗ = K]

=
(

1
|K|

)
·
(

1 − Pr
[
Bad(RF3n,n)

]
)

· Pr
[
RK[CFNRF3n,n,6

K ] 	 Q | ¬Bad(RF3n,n)
]
.

It can be seen that the event RK[CFNRF3n,n,6
K ] 	 Q is equivalent to the event

that RF3n,n satisfies 4q equations for the 2rd round to the 5th round, i.e., for
i = 1, ..., q,

RF3n,n
K2

(X2i[n + 1, 4n]) = X2i[1, n] ⊕ X3i[3n + 1, 4n],

RF3n,n
K1

(X3i[n + 1, 4n]) = X3i[1, n] ⊕ X4i[3n + 1, 4n],

RF3n,n
K2

(X4i[n + 1, 4n]) = X4i[1, n] ⊕ X5i[3n + 1, 4n],

RF3n,n
K1

(X5i[n + 1, 4n]) = X5i[1, n] ⊕ X6i[3n + 1, 4n].

Therefore, we have the probability

Pr
[
RK[CFNRF3n,n,6

K ] 	 Q | ¬Bad(RF3n,n)
]

=
q∏

i=1

(
Pr

[
RF3n,n

K2
(X2i[n + 1, 4n]) = X2i[1, n] ⊕ X3i[3n + 1, 4n]

]

× Pr
[
RF3n,n

K1
(X3i[n + 1, 4n]) = X3i[1, n] ⊕ X4i[3n + 1, 4n]

]

× Pr
[
RF3n,n

K2
(X4i[n + 1, 4n]) = X4i[1, n] ⊕ X5i[3n + 1, 4n]

]

× Pr
[
RF3n,n

K1
(X5i[n + 1, 4n]) = X5i[1, n] ⊕ X6i[3n + 1, 4n]

]
)

=
( 1

2n

)4q

.
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In all, using Eq. (15), we have

Pr[Tre = τ ]

Pr[Tid = τ ]

≥
(

1 − Pr
[

Bad(RF3n,n)
]
)

· Pr
[

RK[CFNRF3n,n,6
K ] 
 Q | ¬Bad(RF3n,n)

]/
α∏

i=0

1

(24n)qi

≥
(

1 − 10q2

2n

)

×
( 1

24n

)q

× (24n − q)q

≥ 1 −
(10q2

2n
+

q2

24n

)

. (16)

Gathering Eq. (14) and (16), and using Lemma 1, we complete the proof of
Theorem 2.
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Abstract. Online cipher is an important primitive in many crypto-
graphic schemes, such as authenticated encryption schemes. Considering
performance and security, the Hash-ECB-Hash (HEH) structure provides
a potential way to construct parallelizable and CCA secure online cipher.
In this paper, we start from the online cipher POE which is the only
instantiation of Hash-ECB-Hash structure in the literature. However,
the AXU property of hash function in the hash layer cannot guarantee
the security of POE. Then we propose a new concept of online universal
hash function (OUHF) for the hash layer and prove that the Hash-ECB-
Hash structure is CCA secure, if the hash layer is online almost universal
(OAU) hash function and the underlying block cipher is CCA secure. We
also give several concrete constructions of OAU.

Keywords: Online cipher · POE · Hash-ECB-Hash · Online universal
hash function

1 Introduction

Security is widely applied in daily scenarios such as live broadcasts, stock trading
system, which puts forward more online requirements for ciphers. These appli-
cations require high performance and low latency but the emerging memory-
restricted devices can only handle a small segmented data at a time. The security
and efficiency of online data processing becomes more important.

Online Cipher (OC). The concept of online cipher was proposed by Bellare et
al. [4] in 2001, which is a cryptographic primitive that enciphers data blocks in an
online way. There are a lot of online authenticated encryption schemes based on
online ciphers, such as McOE [13], POET [1], COPA [3], ELmD [11], COLM [2].

Online ciphers can be constructed from block ciphers, tweakable block ciphers
or permutations combined with universal hash functions (UHFs). They can be
sequential or non-sequential. The non-sequential designs usually adopt multi-
layer structure, including the 4-round Feistel structure in OleF [6], the Encrypt-
Mix-Encrypt (EME) structure in COPA [3], ELmD [11] and COLM [2], and
c© Springer Nature Switzerland AG 2021
Y. Wu and M. Yung (Eds.): Inscrypt 2020, LNCS 12612, pp. 491–503, 2021.
https://doi.org/10.1007/978-3-030-71852-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71852-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-71852-7_32


492 G. Liu et al.

the Hash-ECB-Hash (HEH) structure in POE [1]. Multi-layer structure implies
potentially parallel computing. The first structure processes each block with 4-
round Feistel, achieving CCA security, but the block-length is twice that of the
round function. The EME is only CPA secure [10]. The HEH structure firstly
processes the blocks using UHFs, then encrypts the blocks using ECB mode,
and finally processes the blocks using UHFs again. The UHF [9], which has
great advantage at efficiency, is widely used in cryptographic schemes, includ-
ing message authentication codes (MACs) [7,12,15,25], tweakable enciphering
schemes [14,24] and authenticated encryption schemes [17,20]. See Table 1 for
more details about existing online ciphers.

Table 1. Categories and security of online ciphers.

Sequential Non-sequential

CPA-secure HCBC1 [4], TC1 [21] COPE (in COPA) [3], online ciphers
in ELmD [11] /COLM [2]

CCA-secure HCBC2 [4], MCBC [18], MHCBC [18],
TC2 [21], TC3 [21], XTC [16]

OleF [6], POE (in POET) [1]

The Flaw in Instantiation of Hash-ECB-Hash Structure. So far the only
instantiation of HEH structure is the online cipher POE which is used in the
authenticated encryption scheme POET [1]. Unfortunately, Nandi [19] proposed
a successful distinguishing attack against POE by making only one encryption
query when the underlying UHF is chosen as a special one. Therefore the security
precondition is not reasonable and the security proof of POE has flaws.

Motivations. For fast implementation and security, an ideal online cipher
should be both non-sequential and CCA-secure. The HEH structure gives a
potential way to satisfy the both conditions. Therefore POE is a good starting
point. We want to make it clear what on earth is wrong with the design of POE.
We notice that POE uses a UHF f with almost XOR universal (AXU) property
in the CFB mode as the hash layer denoted as CFB[f ], and the AXU property
of f may not guarantee the security of HEH structure according to the work
of Nandi [19]. One question is what property of f can guarantee the security
of POE? Other than CFB mode, there are many other modes to construct the
hash layer. A more general question is what property of the whole hash layer can
guarantee the security of HEH structure?

Our Contributions. 1) We analyze the structure of POE. In order to thwart
the attacks to POE, the output-collision probability of the component func-
tion of the hash layer should be negligible. 2) We extend the classic concept
of UHF into online one and define the concept of online universal hash func-
tion (OUHF), including online almost universal (OAU) and online almost XOR
universal (OAXU) hash function. The CFB mode in POE using a uniform ran-
dom involution function or a Galois-Field multiplication function is not OAU.
3) We give concrete constructions of online universal hash function based on
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uniform random function, including the CFB and CBC modes. We also give a
construction, named MCFB, based on finite field multiplication function. 4) We
prove that HEH is CCA secure, if the hash layer is an online almost univer-
sal (OAU) hash function and the block cipher is a pseudorandom permutation
against chosen ciphertext attack (PRP-CCA).

2 Preliminaries

Notations. Let {0, 1}n be all n-bit strings and {0, 1}n∗ be all strings whose bit
length is the multiple of n excluding empty string ε. The bit length of string
M is written as |M |. A string X ∈ {0, 1}n∗ can be divided into n-bit blocks,
and its block-length is written as |X|n. If |X|n = m, its i-th block is denoted
as X[i], then X = (X[1], · · · ,X[m]). Continuous blocks from the i-th to j-th
(1 ≤ i < j ≤ m) block of X are denoted as X[i..j] = (X[i],X[i + 1], · · · ,X[j]).
The longest common n-prefix of X,Y ∈ {0, 1}n∗, denoted as LCPn(X,Y ), is
the longest string Z ∈ {0, 1}n∗ so that Z = X[1..i] = Y [1..i] and X[i + 1] �=
Y [i+1], where i ≤ |X|n, i ≤ |Y |n. The length of longest common n-prefix written
as LLCPn(X,Y ) is the block-length of the longest common n-prefix, that is
LLCPn(X,Y ) = |Z|n. Specially, LCPn(X,X) = X and LLCPn(X,X) = |X|n.

Generally, the symbol of multiplication operation · can be omitted without
confusion, i.e. KX = K · X. Ki denotes the product of K for i times. S1 × S2

denotes the Cartesian product of two sets S1 and S2. s
$←− S denotes choosing a

uniform random element s from the set S.
Let AO ⇒ 1 denote an adversary A that asks queries to one or more oracles

O and outputs a bit 1. Without loss of generality, adversaries never ask a query
for which the answer is trivially known, e.g. an adversary never repeats the query
to a deterministic oracle and never asks an answer derived from the encryption
oracle to the decryption oracle, and so forth.

Online Function and Online Permutation. G : {0, 1}n∗ → {0, 1}n∗ is an
online function if G is length-preserving, i.e. m-block input X = (X[1],X[2],
· · · ,X[m]) is mapped to m-block output Y = (Y [1], Y [2], · · · , Y [m]), where
|X[i]| = |Y [i]| = n, i = 1, 2, · · · ,m, and every output block Y [i] only depends on
X[1..i], i.e. there exists a variable-input-length (VIL) function Gc : {0, 1}n∗ →
{0, 1}n which is called component function, such that Y [i] = Gc(X[1..i]). The
component function only outputs the last output block of the online function.
Therefore G(X) = (Gc(X[1]), · · · , Gc(X[1..m])), i = 1, 2, · · · . For example, Xor

defined by Xorc(X[1..i]) =
⊕i

j=1 X[i], i = 1, 2, · · · is an online function.
Furthermore any practical online function should be computed efficiently in

an online way. E.g. Xor(X[1..m]) = Y [1..m] : S = S ⊕ X[i], Y [i] = S, for i =
1, 2, · · · ,m, where S ∈ {0, 1}n is a state maintained during the online computing
and initialized as 0. Therefore we can describe an online function by the original
multiple-block-input and multiple-block-input function, its component function,
or its online computation procedure.
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When G is invertible, in other words for any X[1..i − 1] ∈ {0, 1}n(i−1),
Gc(X[1..i − 1], ·), i = 1, 2, · · · , are all permutations on {0, 1}n, we say that G is
an online permutation, where Gc(X[1..0], ·) = Gc(·). The inverse of G is written
as G−1, then G−1 is also an online permutation, and (G−1)c(Y [1..i− 1], ·) is the
inverse of Gc(X[1..i − 1], ·) if Y [1..i − 1] = G(X[1..i − 1]), i = 2, 3, · · · . As an
example, Xor is also an online permutation.

If G is an online permutation, X,X ′ ∈ {0, 1}n∗ and LLCPn(X,X ′) = l,
then LLCPn(G(X), G(X ′)) = LLCPn(G−1(X), G−1(X ′)) = l. We call it longest
common prefix preserving property (LCPP property).

Block Cipher and Online Cipher. E : K×{0, 1}n → {0, 1}n is a block cipher
if K is a key space and E(K, ·) is a permutation on {0, 1}n for any K ∈ K. We
often write the key as a subscript: EK(·) = E(K, ·). The inverse of EK is denoted
as DK . OC : K × {0, 1}n∗ → {0, 1}n∗ is an online cipher if K is a key space and
OCK is an online permutation for any K ∈ K. Generally F : K × {0, 1}m →
{0, 1}n is a keyed function where K is a key space.

When we use a block cipher, an online cipher or a general keyed function,
the key is uniform random: K

$←− K, so that a random permutation, an online
random permutation or a random function is chosen. Let Perm(n) be a set of

all permutations on {0, 1}n. A uniform random permutation (URP) is π
$←−

Perm(n). Let OPerm(n) be a set of all online permutations on {0, 1}n∗. An

online uniform random permutation (OURP) is ρ
$←− OPerm(n). Let Func(m,n)

be a set of all functions from {0, 1}m to {0, 1}n. When m = n we denote it as

Func(n). A uniform random function (URF) is f
$←− Func(m,n).

The security of block cipher, online cipher or keyed function is defined as
indistinguishability from the corresponding uniform random object.

Definition 1 (PRP-CPA, PRP-CCA, OPRP-CPA, OPRP-CCA,
PRF). E : K×{0, 1}n → {0, 1}n is a block cipher, OC : K×{0, 1}n∗ → {0, 1}n∗

is an online cipher and F : K × {0, 1}m → {0, 1}n is a keyed function. The dis-
tinguishing advantages of the adversary A are defined as follows:

Advprp-cpa
E (A) = Pr[AEK ⇒ 1] − Pr[Aπ ⇒ 1],

Advprp-cca
E (A) = Pr[AEK ,DK ⇒ 1] − Pr[Aπ,π−1 ⇒ 1],

Advoprp-cpa
OC (A) = Pr[AOCK ⇒ 1] − Pr[Aρ ⇒ 1],

Advoprp-cca
OC (A) = Pr[AOCK ,OC−1

K ⇒ 1] − Pr[Aρ,ρ−1 ⇒ 1],

Advprf
F (A) = Pr[AFK ⇒ 1] − Pr[Af ⇒ 1].

Here PRP-CPA, PRP-CCA, OPRP-CPA, OPRP-CCA and PRF are acronyms
of pseudorandom permutation against chosen plaintext attack, pseudorandom
permutation against chosen ciphertext attack, online pseudorandom permuta-
tion against chosen plaintext attack, online pseudorandom permutation against
chosen ciphertext attack and pseudorandom function respectively. In the fol-
lowing, we write the maximal advantage of A with resources at most R as
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Advxxx
Π (R) = maxA{Advxxx

Π (A)}. The resources include the total number of
oracle queries q and the total block-length of those queries σ and the running
time t, etc. When Advxxx

Π (R) is negligible, we say that Π is a xxx.

Switching Lemma. When querying a block cipher which is idealized as a URP,
it behaves like a URF, which always returns uniform random values. It is known
as PRP/PRF switching lemma [5]. The distinguishing advantage is bounded by
q(q − 1)/2n+1, where q is the number of queries.

Analogously, we have OPRP/OPRF switching lemma [4]: An online uni-
form random permutation (OURP) approximately replies to queries with ran-
dom block values unless constrained by LCPP property. In other words, during
the querying to the encryption oracle and the decryption oracle, there exists a
transcript recording plaintext-ciphertext pairs. For any query of Z to the encryp-
tion/decryption oracle, find the maximal longest common prefix of Z and the
plaintext/ciphertext records, and output the corresponding ciphertext/plaintext
prefix and uniform random blocks for the remaining blocks.

Lemma 1 (OPRP/OPRF Switching Lemma [4]). Let A be an adversary
making oracle queries totalling at most σ blocks. Then,

Pr[Aρ,ρ−1 ⇒ 1] − Pr[Ag,g′ ⇒ 1] ≤ σ(σ − 1)/2n+1,

where ρ
$←− OPerm(n), and g and g′ reply to queries with uniform random block

values unless constrained by LCPP property.

Universal Hash Functions (UHF). Two commonly used UHFs are almost-
universal (AU) and almost-XOR-universal (AXU) hash function [23]. The
output-collision probability for any two different inputs of AU is negligible. The
output-differential probability for any two different inputs of AXU is negligible.
Clearly, if H is δ-AXU, it is also δ-AU. If H : K × D → {0, 1}n is δ-AXU, then
H ′ : K × D × {0, 1}n → {0, 1}n defined as H ′

K(X,X ′) = HK(X) ⊕ X ′ is δ-AU.
The AU is often used to extend the input length of a PRF. The composition of
a PRF and an AU is still a PRF.

Lemma 2 (PRF(AU) = PRF [22]). F : K × {0, 1}n → {0, 1}m is a keyed
function and H : K′ ×D → {0, 1}n is a δ-AU hash function. The composition of
F and H is defined as FHK1,K2(X) = FK1(HK2(X)). For any PRF-adversary
A against FH that asks q queries, then there exists a PRF-adversary B against
F that asks q queries in approximately the same time as A, such that

Advprf
FH(A) ≤ Advprf

F (B) + q2δ/2.

3 Analysis of POE

The Structure of POE. POE (Pipelineable On-line Encryption) [1] proposed
by Abed etc. in 2014 is an online cipher using HEH structure, which is the core
of authenticated encryption scheme POET. POET was published with POE in
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FSE 2014 and also submitted to CAESAR competition, ending up as one of
second-round candidates due to Nandi’s attack [19].

All three layers of POE are keyed online permutations. The first layer is
a hash layer which is a CFB mode based on a universal hash function F :
K × {0, 1}n → {0, 1}n. The middle layer is an ECB mode based on a block
cipher E. The third layer is also a hash layer which is the inverse of the CFB
mode using F but with a different key. See Fig. 1.

Fig. 1. Online cipher POE, where X0 and Y0 are two constants used as fixed IVs

More specifically, the encryption of POE is as follows:
Input: P = (P [1], P [2], · · · , P [m]).

1) The first layer CFB[FK1 ]: Xi = FK1(Xi−1)⊕P [i] for i = 1, 2, · · · ,m, and X0

is a constant.
2) The second layer ECB[EK2 ]: Yi = EK2(Xi) for i = 1, 2, · · · ,m.
3) The third layer CFB−1[FK3 ]: C[i] = FK3(Yi−1) ⊕ Yi for i = 1, 2, · · · ,m, and

Y0 is a constant. Output: C = (C[1], C[2], · · · , C[m]).

So we can denote POE as CFB[FK1 ]-ECB[EK2 ]-CFB−1[FK3 ].

The AXU Property is Not Enough. POE was claimed to be an OPRP-CCA
if F is an AXU hash function and E is a PRP-CCA. But in fact, POE is not
even an OPRP-CPA if F is instantiated as some special AXU hash functions.

If find two different (P [1], P [2], · · · , P [i]) and (P ′[1], P ′[2], · · · , P ′[j]) so that

CFB[FK1 ]
c(P [1], P [2], · · · , P [i]) = CFB[FK1 ]

c(P ′[1], P ′[2], · · · , P ′[j]),

then for any Y ∈ {0, 1}n,

CFB[FK1 ]
c(P [1], P [2], · · · , P [i], Y ) = CFB[FK1 ]

c(P ′[1], P ′[2], · · · , P ′[j], Y ).

In the third layer of CFB−1[FK3 ] each output block only depends on two
input blocks, i.e. the current and the previous ones. Therefore for any Y ∈
{0, 1}n,

POEc(P [1], P [2], · · · , P [i], Y ) = POEc(P ′[1], P ′[2], · · · , P ′[j], Y ).
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An adversary can query (P [1], P [2], · · · , P [i], Y ) and (P ′[1], P ′[2], · · · , P ′[j],
Y ) to the oracles. If the two last output blocks are identical, the adversary
outputs 1, otherwise 0. The distinguishing advantage is 1 − 2−n. So the crux of
the attack to POE is to find an output-collision for the component function of
hash layer.

In the following we show that some special AXU hash functions will make
the above attack happen. The AXU hash functions are derived from Nandi’s
paper [19], but rearranged under the output-collision property of the hash layer.

The first instantiation is a uniform random involution function θ on {0, 1}n. It
is easy to verify that θ is a 2/(2n −2)-AXU hash function. Because θ(θ(X)) = X
for any X ∈ {0, 1}n, we have that CFB[θ]c(X) = CFB[θ]c(X, 0, 0), for any X ∈
{0, 1}n. The second is a finite field multiplication function FK(X) = KX, where
K,X ∈ {0, 1}n and KX is the finite field multiplication of K and X. Assume
that X0 = 0, then CFB[FK ]c(X) = CFB[FK ]c(0,X), for any X ∈ {0, 1}n.

From the above analysis, we know that the AXU property of F in POE may
not guarantee the security of CFB[FK1 ]-ECB[EK2 ]-CFB−1[FK3 ]. One question
is which property of F can guarantee the security of CFB-ECB-CFB−1 struc-
ture? The CFB mode is only one way to construct the hash layer. As a general
online function, what property of the hash layer can insure the security of HEH
structure? We need a new concept of online universal hash function (OUHF).

4 Definitions of Online Universal Hash Function

OAU and OAXU. In order to thwart the attacks to POE, the output-collision
probability of the component function should be negligible. Corresponding to
the definitions of AU and AXU hash functions, we propose concepts of online
almost universal (OAU) and online almost XOR universal (OAXU) hash func-
tions, defined by properties of their component functions.

The output-collision probability of OAU’s component function is negligible.
The output-differential probability of OAXU’s component function is negligible.

Definition 2 (OAU). G : K × {0, 1}n∗ → {0, 1}n∗ is a keyed online function.
G is δ-online-almost-universal (δ-OAU) hash function, if its component function
Gc is δ-almost-universal (δ-AU) hash function and δ is negligible, in other words,
for any X,X ′ ∈ {0, 1}n∗, X �= X ′,

Pr[K $←− K : Gc
K(X) = Gc

K(X ′)] ≤ δ.

Definition 3 (OAXU). G : K×{0, 1}n∗ → {0, 1}n∗ is a keyed online function.
G is δ-online-almost-XOR-universal (δ-OAXU) hash function, if its component
function Gc is δ-almost-XOR-universal (δ-AXU) hash function and δ is negligi-
ble, in other words, for any X,X ′ ∈ {0, 1}n∗, X �= X ′, and any Y ∈ {0, 1}n,

Pr[K $←− K : Gc
K(X) ⊕ Gc

K(X ′) = Y ] ≤ δ.
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δ-OAU is a special case of δ-OAXU when Y = 0.
In Sect. 3 we show that the CFB mode using some special AXU, including

uniform random involution function and multiplication function, is not OAU.
The concept of OUHF can been viewed as the online version of blockwise

UHF in [14], which was proposed to construct a tweakable enciphering scheme
TET. The hash layer in TET is not online, because each output block depends
on all input blocks.

By the analysis of POE in Sect. 3, if we find X �= X ′ ∈ {0, 1}n∗, such that
CFBc(X) =CFBc(X ′) with high probability such as p, we can distinguish POE
from the OURP with the advantage of p − 2−n. The OAU property of hash
layer can prevent us from carrying out such an attack. Furthermore, in Sect. 6
we prove that when the hash layer is OAU and the block cipher is a PRP-CCA,
the HEH structure is an OPRP-CCA. Therefore the OAU property of the hash
layer is exactly what we need to insure the security of HEH structure. In the
following, we focus on the constructions of online function with OAU property.

5 Constructions of OUHF Using OAU

The hash layer of POE [1] is the CFB mode. Although when f is a uniform
random involution function or a multiplication function, CFB[f ] is not OAU.
Actually when f is a uniform random function, CFB[f ] is OAU. So whether the
hash layer is OAU or not depends on the strength of underlying function.

Fig. 2. CFB[f ] (above) and CBC[f ] (below).

The CFB/CBC Mode Using URF is OAU. The CFB mode and the CBC
mode are illustrated in Fig. 2 and listed below.

– The CFB mode. CFB[f ](X[1..m]) = Y [1..m]: Y [i] = f(Y [i − 1]) ⊕ X[i] for

i = 1, 2, · · · ,m, where Y [0] is a constant and f
$←− Func(n).



Revisiting Construction of Online Cipher in Hash-ECB-Hash Structure 499

– The CBC mode. CBC[f ](X[1..m]) = Y [1..m]: Y [i] = f(Y [i − 1] ⊕ X[i]) for

i = 1, 2, · · · ,m, where Y [0] = 0 and f
$←− Func(n).

According to Lemma 3 in [8], CBC-MAC is AU. When f
$←− Func(n),

CBC[f ]c is exactly CBC-MAC[f ] in [8], thus CBC[f ] is OAU. The relationship
between CBC[f ] and CFB[f ] is f(CFB[f ]c(X[1..m])) = CBC[f ]c(X[0],X[1..m]).

For X �= X ′ ∈ {0, 1}n∗, CFB[f ]c(X) = CFB[f ]c(X ′) implies
f(CFB[f ]c(X)) = f(CFB[f ]c(X ′)), i.e. CBC[f ]c(X[0],X) = CBC[f ]c(X[0],X ′).
So that

Pr[CFB[f ]c(X) = CFB[f ]c(X ′)] ≤ Pr[CBC[f ]c(X[0],X) = CBC[f ]c(X[0],X ′)].

Thus CFB[f ] is also OAU.
According to PRP/PRF switching lemma, f can be instantiated by a block

cipher, meaning three calls to block cipher for each block data process in the
HEH structure. It is overweight for some applications. Universal hash function is
a more lightweight function than block cipher. Although Sect. 3 shows that, for
multiplication function FK(X) = KX, CFB[FK ] is not OAU, it is still valuable
to construct OAU hash functions using universal hash functions such as FK .

Multiplication Function Based Construction. We notice CFB[FK ]c

(X[1..m]) = X[1]Km−1 ⊕ X[2]Km−2 ⊕ · · · ⊕ X[m] is a classic polynomial eval-
uation function used in GCM [17], HCTR [24], etc. Although CFB[FK ]c is not
AU on {0, 1}n∗, it is AU on {0, 1}nd for any fixed integer d.

Fig. 3. MCFB[FK ].

In order to preserve OAU property for variable-input-length data, we XOR
2iL, i = 1, 2, · · · , to the output blocks of CFB[FK ], where 2 = 0n−210 and L

$←−
{0, 1}n is a secret key, as illustrated in Fig. 3. We denote such mode as MCFB
(masked CFB). The component function MCFB[FK ]c(X[1..m]) = X[1]Km−1 ⊕
X[2]Km−2 ⊕ · · · ⊕ X[m] ⊕ 2mL.

Suppose that X,X ′ ∈ {0, 1}n∗, X �= X ′, |X|n = m, |X ′|n = m′. If m =
m′, MCFBc(X)⊕MCFBc(X ′) is a none-zero polynomial in K with degree of at
most (m − 1). So it has at most (m − 1) roots in finite field and the output-
collision probability of MCFB[FK ]c is bounded by (m − 1)/2n. If m �= m′,
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MCFBc(X)⊕MCFBc(X ′) has a monomial of (2m⊕2m′
)L, so the output-collision

probability is 1/2n. Therefore MCFB[FK ] is OAU.
Compared with CFB[FK ], the extra computations 2iL in MCFB[FK ] are

trivial, costing one shift and one XOR operations for each mask [20].

6 Security of Hash-ECB-Hash Structure

A general HEH structure is illustrated in Fig. 4: the first layer is a keyed online
permutation G : K × {0, 1}n∗ → {0, 1}n∗; the second layer is ECB mode with
a block cipher E : K′ × {0, 1}n → {0, 1}n; the third layer is the inverse of G;
each layer uses an independent key. The structure is denoted as HEH[G,E]. The
encryption and decryption of HEH[G,E] are denoted as E [G,E] and D[G,D].

Fig. 4. The Hash-ECB-Hash structure.

We prove that when G is an OAU and E is a PRP-CCA, the HEH structure
HEH[G,E] is an OPRP-CCA.

Theorem 1. In HEH[G,E], if G is δ-OAU, then for any OPRP-CCA-adversary
A against HEH[G,E] making oracle queries totalling σ blocks, there exists a
PRP-CCA-adversary B against E that asks σ queries in approximately the same
time as A, such that

Advoprp-cca
HEH[G,E](A) ≤ Advprp-cca

E (B) + σ2/2n + σ2δ.

Proof. The goal is to prove the indistinguishability between two oracle pairs:
(E [G,E],D[G,D]) and (ρ, ρ−1), where ρ

$←− OPerm(n). We add three oracle
pairs, as shown by Fig. 5. We only need to prove the indistinguishability between
the adjacent pairs, then using the hybrid technique to fulfill the proof.
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Fig. 5. Roadmap of the proof.

① - ②: (E [G,E],D[G,D]) and (E [G, π],D[G, π−1]), where π
$←− Perm(n). If we

replace (EK2 ,DK2) in the first oracle pair by (π, π−1), we get the second pair.
Adversary B simulates the query process of A, and returns what A returns, then

Pr[AE[G,E],D[G,D] ⇒ 1] − Pr[AE[G,π],D[G,π−1] ⇒ 1] = Advprp-cca
E (B). (1)

② - ③: (E [G, π],D[G, π−1]) and (E [G, f ],D[G, f ′]), where f, f ′ $←− Func(n). f and
f ′ reply queries with random block values. Using PRP/PRF switching lemma,

Pr[AE[G,π],D[G,π−1] ⇒ 1] − Pr[AE[G,f ],D[G,f ′] ⇒ 1] ≤ σ(σ − 1)/2n+1. (2)

③ - ④: (E [G, f ],D[G, f ′]) and (g, g′), where (g, g′) replies to queries with random
block values unless constrained by LCPP property. The component function of
the first two layers of the encryption oracle is f(Gc

K1
(X)), which is the com-

position of a uniform random function and an AU hash function. By Lemma 2
(PRF(AU) = PRF) [22], it is a PRF. The third layer is an independent online
permutation, so the component function of E [G, f ] is a PRF. By the same logic,
the component function of D[G, f ′] is also a PRF. More specifically,

Pr[AE[G,f ],D[G,f ′] ⇒ 1] − Pr[Ag,g′ ⇒ 1] ≤ σ2δ. (3)

④ - ⑤: (g, g′) and (ρ, ρ−1). According to OPRP/OPRF switching lemma [4],

Pr[Ag,g′ ⇒ 1] − Pr[Aρ,ρ−1 ⇒ 1] ≤ σ(σ − 1)/2n+1. (4)

Combining (1), (2), (3) and (4), we have that

Advoprp-cca
HEH[G,E](A) = Pr[AE[G,E],D[G,D] ⇒ 1] − Pr[Aρ,ρ−1 ⇒ 1]

≤ Advprp-cca
E (B) + σ2/2n + σ2δ.

7 Conclusions

By analysis of POE, the only instantiation of HEH structure in online cipher,
we extend the classic concepts of UHF into online ones and define the concepts
of online UHF. We prove that HEH is CCA secure, if the hash layer is OAU and
the block cipher is CCA secure. We give concrete constructions of OAU hash
functions, including the CFB and CBC modes based on URF, and the MCFB
mode based on multiplication function. The HEH structure provides a general
method to construct parallelizable and CCA secure online cipher, which is the
core of many online authenticated encryption schemes.
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