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Abstract. In the last few years, Earth Observation sensors received a
large development, offering, therefore, various types of data with different
temporal, spatial, spectral, and radiometric resolutions. However, due to
physical and budget limitations, the acquisition of images with the best
characteristics is not feasible. Image fusion becomes a valuable technique
to deal with some specific applications. In particular, the vegetation area,
which needs a high spectral resolution and frequent coverage. In this
paper, we present a novel fusion technique based on Convolutional Neu-
ral Networks (CNN) to combine two kinds of remote sensing data with
different but complement spectral and temporal characteristics, to pro-
duce one high spectral and temporal resolution product. To the best of
our knowledge, this is the first attempt to deal with the spectral-temporal
fusion problem. The feasibility of the proposed method is evaluated via
Sentinel-2 data. The experimental results show that the proposed tech-
nique can achieve substantial gains in terms of fusion performance.

Keywords: Image fusion · Remote sensing · Convolutional neural
networks · Spectral enhancement · Temporal enhancement

1 Introduction

Remote sensing (RS) generally comprises all techniques for measuring electro-
magnetic energy emitted from areas or objects on surface or subsurface of Earth
without the need to a physical contact. In the last years, Optical Remote sens-
ing has received a significant development thanks to the recent advancement
in electronics field, allowing the acquisition of a large variety of data with a
different spatial, spectral, radiometric, and temporal resolution, depending on
the sensor proprieties and missions. The spatial resolution represents the size
of the smallest area (pixel), the spectral resolution indicates the capability of
the sensor to detect fine wavelength bands and the number of spectral channels,
the temporal resolution is the period to take for revisiting the same region, and
the radiometric resolution refers to the sensor’s sensitivity to distinguish between
smallest brightness values while capturing an image [6]. Currently, satellites offer
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precious data about the Earth that help for detecting and monitoring in a multi-
tude of applications. For example, vegetation monitoring [10], change detection
[8], military target detection [20], and mineral exploration [21]. However, due
a physical and budget limitations of satellite platforms, the acquisition of data
with high characteristics for all aspects is not possible. When the technologies
tackle a specific issue, researchers handle the latter with an appropriate method.
Remote Sensing image fusion is a successful technique, which aims to combine
one or multiple satellite images, in order to produce a fused product that includes
more knowledge than each of the inputs [2]. Fusion techniques are advantageous
and increase the performance in several remote sensing tasks, including object
identification, segmentation, change detection, etc. The RS fusion products are
in progressive increase, thanks to the growing requests from reputable compa-
nies such as Google Earth and Microsoft Visual Earth, which require very high
resolution images in their commercial products, which could be done using the
appropriate fusion technique.

Recently, the unavailability of products with high spatial and temporal res-
olution dues to the spatial-temporal limitation of optical satellites has been
addressed by the reputable commercial company Planet lab [17]. Planet lab
exploits more than 175 dove satellites in orbit to provide daily images from the
whole Earth. Doves are nano-satellites that weight approximately 4 kg, which can
acquire data at high spatial resolution of 3 m with four spectral channels (Red,
Green, Blue, and near-infrared). Thanks to these satellites and its ability to offer
a series of daily observation at high resolution, the need of spatio-temporal fusion
has decreased. Especially, for applications that require high spatial and temporal
resolutions such as the detection of rapid changes, object extraction, and object
identification. Unfortunately, these satellites are characterized by a low spectral
resolution as they include a limited number of bands with broad wavelengths.
Besides, several agriculture applications such as monitoring vegetation seasonal
dynamics, detection of leaf disease, and water consumption monitoring, need a
higher number of bands with fine wavelengths, especially, in the near-infrared
range. In contrast, Sentinel-2 satellite can provide a higher number of bands (13
bands), which make it the most suitable for vegetation monitoring tasks thanks
to its valuable fine red-edge wavelength bands at 10 and 20 m. These bands are
principally utilized to derive the vegetation indices via red-edge bands, which are
significant to study the health of vegetation. However, Sentinel-2 is characterized
by a low temporal resolution, as it has a long revisit circle of 5 days. Indeed,
Planet and Sentinel-2 provide complementary characteristics, i.e., Planet pro-
vides a high spatial-temporal resolution but low spectral resolution, contrary to
Sentinel-2, which produces images with high spectral resolution but low temporal
resolution.

In this paper, we introduce a spectral-temporal fusion technique based on
CNN to tackle the physical limitation of widely used satellites. To the best of our
knowledge, it is the pioneering approach addressing the spectral-temporal image
fusion problem. To study the feasibility of the fusion technique, only Sentinel-
2 satellite is considered as a simulation tool. We assume that a low temporal
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resolution characterizes the fine wavelength bands at 20 m, while the broad ones
at 10 m have a higher temporal resolution. The main objective of this paper is
to integrate Sentinel-2 broad and fine wavelength bands on a prior date (t − 1),
a broad wavelengths bands on prediction date (t), to produce a product at 20 m
with high spectral resolution unavailable due to the technical limitation.

2 Related Works

The literature of RS fusion is rich with works proposed to address some par-
ticular image fusion problems, and the number of papers increases continuously
every year. Ones of the most common RS image fusion approaches are: pan-
sharpening [1,3] and spatio-temporal fusion [11]. Indeed, optical satellites (e.g.,
WorldView-3 and QuickBird) have the ability to capture two kinds of images, a
low spatial Multispectral (MS) image with several fine wavelength intervals and
a high spatial Panchromatic (PAN) image in one broadband (unique band). Due
to a Signal-to-noise ration (SNR) constraint, the acquisition of a MS image with
high spatial resolution is not realizable. This key issue has principally motivated
RS researchers to develop several sophisticated pansharpening fusion techniques
to deal with this system limitation. Pansharpening technique becomes a funda-
mental preprocessing for many RS tasks [5,12].

The majority of optical sensors that have an acceptable spatial resolution
(from 5 to 60 m), like Landsat TM and Sentinel-2, offer a long revisit time (16
days for Landat and 5 days for Sentinel-2), in addition to other factors like
the cloud contamination and other atmospheric conditions, which can further
increase the revisit periods. Even if their fine spatial resolution is appropriate
for tasks like change detection and cover mapping, the detection of rapid land
cover changes at the right time becomes limited using this type of satellites. In
contrast, another type of satellites, such as Sentinel-3 and MODIS, offer opposite
properties. In other words, they produce images with a coarse spatial resolution,
with a very short revisit time (less than 2 days). However, this coarse resolution
is inappropriate for monitoring small land cover changes. As a satellite with high
spatial resolution and daily observation does not exist, several works on fusion
techniques have been developed, aiming to combine the two different types of
satellites images, that have complementary characteristics, and fuse the latter
to offer a high spatial and temporal resolution product. Therefore, the ability
for monitoring and detecting land surface changes will be improved.

In the last few years, Convolutional Neural Networks (CNN) have received
large attention from the computer science community in many fields, including
RS image fusion [3,16], thanks to their great success in many image processing
tasks, especially, super-resolution (SR) [9,13]. SR aims to reconstruct a high-
resolution image from a unique low-resolution image. Recently, the authors pro-
posed a super resolution technique based on CNN known as SRCNN [9]. SRCNN
is a pioneering model that proved very competitive results compared with tradi-
tional techniques. Inspired by its great success, plenty of works adapted the latter
as prepossessing in many fields that need a high spatial resolution, including pan-
sharpening and spatial-temporal fusion techniques, as they all aim to enhance
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the spatial resolution of one or more low resolution images. With regard to pan-
sharpening, in [16], the authors developed a SRCNN to deal with pansharpening
task known as PNN. PNN aims to generate a high resolution MS image from the
PAN and the MS images, that can be captured by the satellite. PNN achieved
a consistent gain in performance compared with the state-of-the-art techniques.
As another example, in [4], we proposed a pansharpening CNN based on Mul-
tiresolution Analysis called GIP-CNN, which aims to estimate the injection gains
to control the amount of details need to be inserted into the MS image. GIP-
CNN can improve the fusion quality with respect to the literature approaches,
as well as the CNN-based techniques. In addition, SR success has influenced the
spatial-temporal fusion. One can cite, the authors in [18] implemented an app-
roach based on SRCNN capable to perform a complex mapping from a coarse
image (captured by MODIS) to fine image (captured by Landsat) sensor, and
utilize the pretrained model to predict the unavailable fine image due to the low
temporal resolution of the sensor from its associated coarse image. Similarly, in
[15], the authors proposed two-stream spatio-temporal fusion technique based
on SRCNN. The latter focuses on learning a mapping between the correspond-
ing fine residual image as a target and corresponding coarse images, captured
in neighboring dates, ending up with two pretrained models. These models are
used to produce two similar fine images; then, the outcomes are combined to
generate a unique fine resolution product by applying a local weighting strategy.

3 Background

3.1 Sentinel-2 Satellite

Sentinel-2 was launched in 2015 by the European Space Association (ESA),
as part of the European Copernicus program [19]. Sentinel-2 represents two
identical satellites: Sentinel-2A and Sentinel-2B. They provide multispectral
images with 13 bands covering the visible and near-infrared, in addition to
the shortwave-infrared (SWIR) spectral region, incorporating three new spec-
tral bands in the red-edge region (vegetation red-edge). The new bands are very
useful on vegetation applications. For instance, to retrieve the canopy chloro-
phyll content [7]. The availability of 4 vegetation red-edge bands (B5, B6, B7,
B8A) at 20 m is a unique characteristic that discriminates Sentinel-2 from other
optical satellite sensors. Table 1 describes the spectral bands of Sentinel-2. In this
paper, we consider the bands: B5, B6, B7, and B8a as high spectral resolution
bands with low temporal resolution, and B7 and B8, as lower spectral resolution
bands and higher temporal resolution.

3.2 Super-Resolution CNN

Super-Resolution is a technique to reconstruct a high-resolution (HR) images
from one or more low spatial resolution (LR) images. After the considerable suc-
cess of CNNs in many computer vision applications, particularly, image enhance-
ment, such as image denoising, image inpainting, image dehazing, and super-
resolution. Recently, single image super-resolution technique based on CNN
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Table 1. Specifications of Sentinel-2 spectral bands

Spectral band Central wavelength (nm) Band width (nm) Resolution (m)

B1 443 20 60

B2 490 65 10

B3 560 35 10

B4 665 30 10

B5 705 15 20

B6 740 15 20

B7 783 20 20

B8 842 115 10

B8a 865 20 20

B9 940 20 60

B10 1375 30 60

B11 1610 90 20

B12 2190 180 20

(SRCNN) has been proposed [9], which aims to learn a mapping from the low
resolution input to the high resolution image. Even the shallowness and the sim-
plicity of the architecture, SRCNN can achieve superior performance over the
state-of-the-art techniques. SRCNN includes only three convolutional layers. As
a preprocessing, the low resolution image must be interpolated to the same size
of the high resolution one in order to train the network. In the next section,
we propose a modified version of SRCNN adapted for the spectral-temporal
fusion problem. Therefore, the inputs of the network are substituted by the con-
catenation of two images (multiple inputs) with different spectral and temporal
characteristics instead of single input, and the output provides an improved prod-
uct that combines the best features of each input (high spectral and temporal
resolution).

4 The Spectral-Temporal Fusion Technique

The objective of the paper is to estimate a high spectral high temporal (HSHT)
product St

20 captured at date t, using the associated low spectral high temporal
(LSHT) image St

10 captured at the same date t, accompanied with a high spectral
low temporal (HSLT) image St−1

20 captured at a previous date t−1. The process
results in a high spectral resolution product with higher temporal resolution
(HSHT). In this work, we assume that the Sentinel bands: B5, B6, B7, and
B8a constitute a HSLT image, whereas the bands: B4 and B8 are considered as
LSHT resolution bands. As the considered HS and LS bands are characterized by
different wavelength, the selection of LS input is based on the correlation with
target HS one. For example, B4 (wavelength 650–680 nm) is used to estimate
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B5 (wavelength 698–713 nm) as their spectral ranges are close to each other.
Similarly, B8 (wavelength 785–900 nm) is utilized to estimate B6, B7, and B8a
(wavelengths are 733–748 nm, 773–793 nm, and 855–875 nm, respectively).

The proposed technique includes a training phase and a prediction phase.
Each phase is performed for each band separately respecting the same conditions.

Inspired by the great success of SRCNN in image super-resolution [9], the
proposed method aims to learn an end-to-end mapping function (F (.)) from
HSLT and LSHT images to HSHT one. As SRCNN require the same size of
input and target images, the LS image (St

10) input is downsampled by a factor
of 2 to the same size of HS St

20 target image (Y ), producing (Ŝt
10); then, the

latter is concatenated with the associated St−1
20 as a single input (X). The main

goal of the training phase is to optimize the following Mean Squared Error (l2)
loss function:

L(θ) =
1
N

N∑

i=1

‖F (Xi; θ) − Yi‖2 (1)

where N is the total number of the training samples, θ indicates the network
weights need to be optimized, i represents the image index, and F is estimated
high spectral resolution image at t. The objective function is minimized using
Adam [14] with a learning initialized to 10−4. To guarantee a successful train-
ing of the network, the whole image is cropped into 10000 sub-images 64 × 64
pixels, divided into training and validation parts. The former includes 80 % sub-
images, and the latter comprises the rest. Figure 1 illustrates the framework of
the proposed fusion technique.

Fig. 1. The framework of the proposed fusion technique.
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After the completion of the first phase, the prediction phase consists on
estimating the HSHT images on another dates using the pretrained model. To
this end, the training images at t and t − 1 by different dates t̂ and t̂ − 1, which
are previously unseen by the network, respectively, on the same region of study.

4.1 Datasets

In the experiments, we assume that the Sentinel-2 bands: B4, B8, are character-
ized by a low spectral resolution and high temporal resolution. In contrast, the
bands: B5, B6, B7, and B8a, are considered as high spectral and low temporal
resolution. Therefore, the principal objective is to estimate the high spectral
bands at date t, which are assumed unavailable due to physical limitations.
Figure 2 shows some considered broad and fine wavelength bands provided by
Sentinel-2.

(a) B8 (b) B8a (c) B6

Fig. 2. Illustration of some Sentinel-2’s bands.

To ensure an effective training and evaluation process of the proposed fusion
technique, we considered two datasets of size 2600 × 2600 pixels captured in
different dates by Sentinel-2 sensor from the city of Sfax (35◦06 N, 10◦54 E).
The datasets include an agriculture area from Jebiniana town, located about
thirty kilometers north of Sfax. The first dataset is used to train the network.
It was captured on June 6, 2017 (t − 1) and December 12, 2017 (t). The second
one is used to evaluate the fusion performance of the proposed technique. It was
acquired over the same region on June 30, 2018 (t̂ − 1) and December 17, 2018
(t̂).

A period of 6 months is chosen between observations on both datasets, as
the latter can guarantee the apparition of more change in the region of interest.
Consequently, the fusion process becomes more challenging. Figure 3 illustrates
the train and test images.
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Fig. 3. Illustration of train and test datasets. (a) and (b) represent the train images
on June 6, 2017 (t − 1) and December 12, 2017, respectively. (c) and (d) are the test
images on June 30, 2018 and December 17, 2018.

5 Experimental Results and Discussion

The proposed approach was compared with the state-of-the-art fusion technique:
the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [11].
STARFM was adapted to deal with the spectral-temporal fusion problem.

In order to assess the performance of the fusion techniques, the fused images
were compared with the ground-truth images at full-reference manner through
the three highly used metrics: Root Mean Square Error (RMSE), Spectral Angle
Mapper (SAM), and Structural Similarity (SSIM) index.

5.1 Root Mean Square Error

Root Mean Square Error (RMSE) measures the fusion distortion between the
target product (A), and fused image (B). It is defined as follows:

RMSE(A,B) =
√

E
[
(A − B)2

]
(2)

where E is the expectation value. The lower RMSE, the lower distortion. Its
ideal value is 0.

5.2 Spectral Angle Mapper

The Spectral Angle Mapper (SAM) [22] measures the spectral distortion between
two images A and B. It is defined as follows:

SAM(A,B) = arccos
〈A|B〉

‖A‖ · ‖B‖ (3)

where 〈.|.〉 and ‖.‖ denote the scalar product and the normalization, respectively.
SAM’s ideal value is 0.
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5.3 Structural Similarity

The Structural Similarity (SSIM) calculates the similarity between the target
image (A) and the predicted one (B) [19]. SSIM is defined as follows:

SSIM(A,B) =
(2μAμB + C1) + (2σAB + C2)

(μ2
A + μ2

B + C1)(σ2
A + σ2

B + C2)
(4)

where μA and μB represent the mean of the target and the predicted images,
respectively, σAB indicates the covariance between the target and the observed
images, σA and σB are the variances of the target and the predict images, and
C1 and C2 denote small constants utilized to avoid a null denominator when the
means and variances are almost zero.

Table 2 describes the quantitative performance of the fusion products on the
test dataset. Based on the results, the proposed approach overpasses the tradi-
tional technique STARFM on all bands in terms of spectral, as it obtained the
best SAM value. In term of spatial fidelity, the proposed approach provides the
best results on RMSE and SSIM metrics, which measures the spatial distortion.
Furthermore, the proposed technique produces very competitive results in terms
of RMSE with an error (less than 0.8%). Hence, this fusion result can be used for
agriculture monitoring applications. The worst product in RMSE is related to
the band B4, as its wavelength, compared with the other bands, is not included
in the inputs low spectral resolution bands: B4 and B8. Consequently, the fusion
task on this specific band is further complex for the CNN to learn.

Table 2. Quantitative performance of the fused products on test dataset.

Metric Band STARFM Proposed

RMSE B4 0.0250 0.0072

B6 0.0277 0.0069

B7 0.0287 0.0057

B8a 0.0294 0.0045

SAM B4 0.0797 0.0242

B6 0.0736 0.0179

B7 0.0701 0.0137

B8a 0.0657 0.0115

SSIM B4 0.7244 0.9783

B6 0.7149 0.9821

B7 0.7092 0.9854

B8a 0.7045 0.9881

Figure 4 illustrates the fusion results and their associated ground-truth
images for each band that have been described on Table 2. The ground-truth
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bands’ images are shown in the first row, The fused images produced by
STRAFM are shown in the second row, and the third row shows the fused
products generated by the proposed technique. The fused images of STARFM
technique provide the worst fusion performance, as the latter suffers from a
blurring effect compared with the ground-truth images, and it lacks of a huge
amount of spatial information. For example, the region highlighted in red suffer
from blurring effect, and both details and contours are not visible. The proposed
technique produces the best fusion quality as the fused results are as close as
possible to the ground-truth ones, and the details and the edges are well pre-
served. Furthermore, it is difficult to notice any type of distortion on the fused
images.

Fig. 4. Fusion products on the test dataset. The first row illustrates, from left to right,
the ground-truth bands: B5, B6, B7, and B8a, respectively, the second row shows
the fusion results using STARFM, and the third one shows the fusion results by the
proposed technique.

Figure 5 shows the residual error images, calculated as the difference between
the fused images and their associated ground-truth images for each band. The
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first row illustrates the residual images of the proposed technique, and the second
one shows the residual images of STARFM technique. As the residual pixel val-
ues are almost zero, they were multiplied by 100 to provide more interpretability.
STARFM produces the worst results, as the errors are shown on the whole resid-
ual images of each band, and it fails to reconstruct the most of spatial details of
the high spectral image. The proposed approach provides better fusions results,
as it successes to conserve the spatial structures of fused products. Although,
the proposed technique lacks of some spatial details on heterogeneous vegetation
areas that undergo small changes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Residual images on the test dataset. The first row shows, from left to right,
the residual images of the proposed technique for the bands: B5, B6, B7, and B8a,
respectively, the second row shows the residual images using STARFM. Brighter pixels
indicate a larger error.

6 Conclusion

In this paper, we introduced a spectral-temporal fusion technique based on CNN,
which aims to integrate the spectral information of high spectral images and the
temporal information of high temporal resolution images. The proposed network
aims to reconstruct a high spectral and temporal products from two inputs
characterized by different and complementary spectral and temporal resolutions.
To the best of our knowledge, it is the first work that focuses on CNN’s to deal
with the spectral and temporal fusion problem.

The qualitative and quantitative experimental results conducted on Sentinel-
2 satellites using simulated images show that the proposed approach achieved
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comptetitive fusion quality in terms of both spectral and temporal qualities. In
our future works, we intend to evaluate the proposed network to combine real
data from two widely used satellites with different spectral and spatial, using
deeper architecture and combining different loss functions.
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