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Abstract. In this paper, the problem of recognizing the plant’s diseases
and pests using deep learning methods has been addressed. This work
can be implemented on a client-side or integrated with IoT concept, in
order to be employed efficiently in smart farms. Nearly 40% of global
crop yields each year are lost due to pests. By considering the global
population growth, the agricultural food will run out of its resources
very soon and this will endanger the lives of many people. A pretrained
EfficientNet deep neural network architecture with student noise has
been optimized, both in volume and the parameter number, and has
been involved in this setup. Two different approaches have been adopted.
First, achieving the highest accuracy of recognition using the optimum
algorithms in development step. Second, preparation of the system as
a microservice model in order to be integrated with other services in a
smart agriculture deployment. Using an efficient number of parameters
and inference time, it has become doable to implement this system as a
service in a real world scenario. The dataset used in the training step is
the plant village data. By implementing the model on this dataset, we
could achieve the accuracy of 99.69% on test data, 99.85% on validation
data, and 99.78% on training data, which is remarkably competitive with
the state-of-the-art.
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1 Introduction

The ever-increasing growth of the population of our planet, necessitates the
food supplier organizations concern this critical problem for a sustainable future
of the world due to the limited resources. On the other hand, the agricultural
productivity will be decreased by growing the plant diseases and pests.

One development strategy would be migrating toward smart farms in order
to improve the productivity through incorporating the smart irrigation, planting
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and other agricultural procedures. This will diminish the environmental dam-
ages, as well as the productivity losses which is normal in conventional farming
techniques.

A crucial issue for treating a plant is to diagnose the disease early enough.
One challenging point for large countries (e.g. Iran) is vastness of the lands and
non-uniform distribution of herbalists in different provinces of the country. This
causes a long delay and the golden time for treatment of the plant that suffers
from a disease will be running late. Thus, irrecoverable damages would happen
to the plants.

In recent years, owing to the rapid advancements in computer vision and
artificial intelligence, it has become possible to integrate different engineering
fields in order to be able to deal with a broader category of multi-disciplinary
applications.

In this research work, our effort has been dedicated to develop an intelligent
plant disease diagnosis system using the modern deep neural network architec-
tures. This server-based system is able to get the image of the sick plant even
on the farm, diagnose the disease and using the pretrained system which has
been already used the knowledge of the herbalists for a wide range of diseases,
determine a proper remedy for it. Thus, the whole integrated smart setup helps
us diagnose and perform the plant treating during the golden time, without the
presence of a herbalist.

2 Related Works

A handful of techniques have been proposed so far, in order to tackle the problem
of plant’s disease detection. Some approaches leverage image processing tech-
niques and extracting features, such as LBP (Local Binary Pattern) and HBBP
(Brightness Bi-Histogram Equalization) [17]. Other methods, extract features
using HoG (Histogram of Gradients) followed by SVM classifiers [9,18]. The
state-of-the-art of these methods has been achieved, through using the Otsu’s
classifier [13,19].

In recent years, by advancement of the computer vision field through lever-
aging the deep learning techniques, methods based on deep convolutional neural
networks have been widely proposed for both plant’s disease diagnosis, as well
as classification of the healthy and infected plants [3,7].

3 The Proposed Framework

3.1 Dataset

Despite the potential capabilities of deep neural networks, one drawback of these
systems is that they need a huge amount of data in order to train their few
million network parameters. Providing such amount of data in many problems
is practically a big challenge, by itself. In this work, we elaborate presenting
different models in order to deal with various types of applications (Fig. 1).
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Fig. 1. Example of leaf images from the PlantVillage dataset, representing every
crop-disease pair used. 1) Apple Scab, Venturia inaequalis 2) Apple Black Rot,
Botryosphaeria obtusa 3) Apple Cedar Rust, Gymnosporangium juniperi-virginianae
4) Apple healthy 5) Blueberry healthy 6) Cherry healthy 7) Cherry Powdery Mildew,
Podosphaera spp. 8) Corn Gray Leaf Spot, Cercospora zeae-maydis 9) Corn Com-
mon Rust, Puccinia sorghi 10) Corn healthy 11) Corn Northern Leaf Blight, Exsero-
hilum turcicum 12) Grape Black Rot, Guignardia bidwellii, 13) Grape Black Measles
(Esca), Phaeomoniella aleophilum, Phaeomoniella chlamydospora 14) Grape Healthy
15) Grape Leaf Blight, Pseudocercospora vitis 16) Orange Huanglongbing (Citrus
Greening), Candidatus Liberibacter spp. 17) Peach Bacterial Spot, Xanthomonas
campestris 18) Peach healthy 19) Bell Pepper Bacterial Spot, Xanthomonas campestris
20) Bell Pepper healthy 21) Potato Early Blight, Alternaria solani 22) Potato healthy
23) Potato Late Blight, Phytophthora infestans 24) Raspberry healthy 25) Soybean
healthy 26) Squash Powdery Mildew, Erysiphe cichoracearum, Sphaerotheca fulig-
inea 27) Strawberry Healthy 28) Strawberry Leaf Scorch, Diplocarpon earlianum 29)
Tomato Bacterial Spot, Xanthomonas campestris pv. vesicatoria 30) Tomato Early
Blight, Alternaria solani 31) Tomato Late Blight, Phytophthora infestans 32) Tomato
Leaf Mold, Fulvia fulva 33) Tomato Septoria Leaf Spot, Septoria lycopersici 34) Tomato
Two Spotted Spider Mite, Tetranychus urticae 35) Tomato Target Spot, Corynespora
cassiicola 36) Tomato Mosaic Virus 37) Tomato Yellow Leaf Curl Virus 38) Tomato
healthy.
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One useful dataset to deal with the plant’s disease problem is called Plant
Village [10]. This dataset has been publicly available and contains 54, 306 images
of the plants, including the healthy ones, as well as the sick plants and have been
classified into 38 classes with 14 different plant species and 26 different types of
plant’s diseases.

In paper [10], the AlexNet and GoogleNet architectures have been used and
the accuracy of 99.35% on disease diagnosis have been achieved.

Another dataset, namely PlantDoc [16], has been released on 2019 which
contains 2, 598 images on 13 different plant species and 27 classes (10 healthy
and 17 diseased classes). The main difference between this dataset and the Plant
Village is that the images of the new dataset have been gathered in real life,
whereas the old one has collected the images in a lab-controlled fashion.

3.2 The Proposed Method

In PlantVillage paper [10], AlexNet and GoogleNet architectures have been used
in order to perform the classification task. However, both these architectures are
so large and not efficient and unlike to be implementable on the client side.

In this paper, we have proposed two different models. First, we propose a
model based on EfficientNet architecture to achieve a high accuracy and imple-
mentability on the client side as an internet-based service [20]. Second, we pro-
pose a model based on tiny MobileNet V2 [12], and the separable CNN logic
which has been presented in Xception architecture [1]. This model yields a rea-
sonably small number of controllable parameters in a light model and makes it
suitable as an end system on the client’s mobile handset (Fig. 2).

Fig. 2. Process flowgraph of the entire proposed architecture for: (left) training and
(right) testing phases.
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Our proposed architectures have been trained by Plant Village dataset, with
60% − 20% − 20% chunks for training, validation, and test steps, respectively.

Overall saying, the model is first trained using the Plant Village dataset. How-
ever, in a server-based implementation the input image being taken by the user
is to be preprocessed to get suitable dimensions corresponding to the network
input resolution and then sent to the server. In addition, as the second method
an architecture with a relatively small number of parameters has been proposed
that could be implemented on all kinds of smart mobile handsets directly with
a slightly worse, yet acceptable accuracy.

3.3 EfficientNet Architecture

EfficientNet B0 is a CNN architecture being employed in our first proposed
model [20], as depicted in Fig. 3.

Fig. 3. The first proposed architecture based on EfficientNet B0. Transfer learning has
been involved regarding the weights of the network.
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This network has been already trained on ImageNet [2], with input dimen-
sions of 224× 224× 3 for 1000 different classes of images and could be employed
in similar applications using transfer learning, since it can seriously expedite the
training process of the networks being involved. Figure 4, visualizes the final
dense layer perception of EfficientNet B0 on ImageNet data. This figure impli-
cates that the pretrained model on the ImageNet data could be logically justified
as a suitable model to be transferred for learning the plant disease problem. This
can be realized from the fact that visualizing the final model layers before clip-
ping them for the training phase has strong similarities with the classes that
are included in our problem. This helps our pretrained model using its original
weights be converged quite faster than the model being initialized by the random
noise weights.

Fig. 4. Visualized final layer of the trained EfficientNet model on ImageNet. (Top-Left)
945: Bell pepper, (Top-right) 949: strawberry, (Bottom-left) 950: orange, (Bottom-
right) 987: corn

Next step would be modifying the architecture appropriately to meet the
requirements of our problem. After dropping off the FC (Fully Connected) layer
of ImageNet classifier, we add our determined stack of layers to the model. This
stack includes a CNN connected to a dense layer with 1024 neurons that are
initiated with Swish activation functions [11], due to a better performance com-
pared with the Leaky ReLU, and it would be connected to the next hidden
layer. In order to avoid overfitting the dropconnect technique has been incor-
porated with 0.5 deactivation coefficient [21]. The batch-normalization has been
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also employed [8], and the layer is then connected to another fully-connected
layer. Then, the dimension has been reduced to 256 and Tanh activation func-
tion has been used. This stack of batch-normalization and dropconnect, has
been repeated until it boils down to 38 neurons with Softmax activation func-
tion in the output in order to perform a probabilistic multi-class classification.
This stack has been pretrained and the model parameters have been weighted
using Xavier Normal technique in order to make the model converge rapidly [6].
Then, the entire model has been trained on the Plant Village dataset using these
pretrained weights.

Since a multi-class classification is to be performed, the categorical cross
entropy has been used as the loss function and the proposed model is monitored
through maximizing the accuracy over the validation data at each epoch.

Fig. 5. Training and validation accuracy of the proposed model, based on EfficientNet.

Fig. 6. Training and validation loss of the proposed model, based on EfficientNet.

As it is obvious from Fig. 5 and 6, the validation accuracy and loss are
slightly better than that of training accuracy and loss, respectively. That is due
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to using dropconnect during the training phase which prevents our model from
overfitting.

The final proposed architecture contains 5, 988, 002 parameters which are to
be trained. Moreover, the final model needs about 68 MBytes to be saved.

The proposed model outperforms both the GoogleNet and AlexNet-based
models being tested on Plant Village dataset from both the accuracy aspect
and having the smaller size. This highlights the idea of leveraging the proposed
model and implementing it as a web service. The results of the average training,
validation and test accuracy and loss for the proposed model is shown in Table 1.

Table 1. Accuracy and Loss of Training, Validation and testing of the model.

Training Validation Testing

Accuracy 99.78 99.85 99.69

Loss 0.0363 0.0089 0.0403

3.4 MobileNet V2 - Lite Version

In addition to the previously proposed architecture that could be implemented as
a web service, we further elaborated a low weight model which could be deployed
and executed on mobile device processors, to the cost of a slight degradation on
the accuracy level as a trade-off with the model size.

In order to implement this model the separable CNN logic (i.e., the Point-
wise, Depth-wise blocks [4]) has been leveraged which has already been employed
in Xception architecture [1], and the MobileNet V2 has been optimized to meet
the requirements of our problem. To achieve that, we have omitted the dense
layer with 1000 neurons and connected our stack of blocks to the final CNN
layer. Similar to the previously proposed architecture, we have used the Ima-
geNet pretrained model for CNN as the initial weights and the Xavier Normal
technique has been employed for training the weights on the remaining parts of
the architecture [5].

The input resolution size has been resized to 96× 96 and the kernel numbers
have been reduced to one third, as well. Instead of using Swish activation function
which entails a heavy burden for the processor, the Leaky ReLU has been used.
furthermore, dropconnect technique has been involved in place of dropout to be
more efficient [21], and the batch size has been increased form 48 to 512. Hence,
a group-normalizer has been used instead of batch-normalization [22]. Finally,
similar to the previously proposed model the stack of fully connected layers has
been attached to the CNN final layer. The entire model has been depicted in
Fig. 7.

The total number of parameters for the proposed model has been reduced
to 279, 169 and the model size has become 3, 92 MBytes, as well. Needless to
say that after performing the postprocessing methods such as quantization and
pruning the model size will boil down to about 270 KBytes.
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Fig. 7. Our proposed architecture based on lite mobileNet V2. Transfer learning has
been involved for the weights of the network.

Despite the simplifications imposed to the model architecture, the model
could still achieve the reasonable accuracy of 95, 64% on the test dataset. The
accuracy and loss of the model on training and validation datasets have been
depicted in Fig. 8 and Fig. 9. Moreover, the results of the average training,
validation and test accuracy and loss for the simplified proposed model is shown
in Table 2.
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Fig. 8. Training and validation accuracy results for the proposed architecture based
on lite-mobilenetV2

Fig. 9. Training and validation losses for the proposed architecture based on lite-
mobilenetV2

Table 2. Accuracy and Loss of Training, Validation and testing of the simplified model.

Training Validation Testing

Accuracy 99.62 95.82 95.46

Loss 0.0363 0.0089 0.2234

In a practical implementation of the tiny MobileNet version (with 270
KBytes) two samples of the test data have been given to the model. Figure 10
illustrates the sample infected leaves along with their saliency maps [15], as
well as their corresponding heat-maps [14]. As it is depicted in Fig. 10 the
model attention has been correctly placed on the infected parts of the leaves, as
expected by a human expert [14].
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Fig. 10. (Left to right) 1st Column: RGB images of the sick plants, 2nd column:
Saliency maps corresponding to the RGB samples, 3rd column: Model attention of
the corresponding RGB samples

Fig. 11. (Top row: Left to right) Corn maize healthy, Corn maize with Cercospora
leaf spot disease, Apple healthy, Apple Scab. (Bottom row: Left to right) Visualization
of the corresponding dense layer of “Corn maize healthy”, Visualization of the corre-
sponding dense layer of “Corn maize with Cercospora leaf spot disease”, Visualization
of the corresponding dense layer of “Apple healthy”, Visualization of the corresponding
dense layer of “Apple scab”, all for lite MobileNet V2.



Plant Disease Recognition Using Optimized Deep CNN 29

Furthermore, as depicted in Fig. 11 the discrepancies between the visualized
outputs of the neurons corresponding to the sample images has been clearly
illustrated. The visualized outputs belong to the dense layers corresponding to
the input class of images.

4 Conclusion

The gist of this paper has been to recognize the plant’s disease using deep learn-
ing techniques. To achieve this, we have proposed two models based on con-
volutional neural networks. The first proposed model uses an EfficientNet B0
CNN as a core block which has been customized to meet the requirements of
our problem and has been optimized to be properly usable as a server-based
application. The second model involves MobileNet V2 as a core block and sim-
plifies it to be deployable on a mobile device. The first model outperforms the
state-of-the-art in the accuracy sense, and the second model in spite of simplicity
performs reseanably well for diagnosing the plant’s diseases and pests on Plant
Village test data samples. Specifications of the proposed systems qualifies them
for being employed as a microservice model in an integration with other required
services in a smart farm and other agricultural activities.
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