
Deep Learning Architecture for Off-Line
Recognition of Handwritten Math

Symbols

Kawther Khazri Ayeb, Yosra Meguebli, and Afef Kacem Echi(B)

ENSIT-LaTICE, University of Tunis, Tunis, Tunisia
afef.kacem@ensit.rnu.tn

http://www.latice.rnu.tn/francais/presentation.htm

Abstract. Real scientific challenge, handwritten math formula recog-
nition is an attractive field of pattern recognition leading to practical
applications. Hundreds of alphanumeric and math symbols need to be
recognized, many are so similar in appearance that some use of con-
text is necessary for disambiguation. Analysis of the spatial relation-
ships between symbols is challenging. In this work, we focus on hand-
written math symbols and propose to recognize them by a deep learn-
ing approach. The symbol images, used for train, validation, and test
are generated from Competition on Recognition of Online Handwritten
Mathematical Expressions dataset (CROHME) 2019’s online patterns
of mathematical symbols. As the large dataset is crucial for the perfor-
mance of the deep learning model and it is labor-intensive to obtain a
large amount of labeled data in real applications, we first augmented the
database. Standing on the transfer learning technique, we then tested and
compared several pre-trained Convolutional Neural networks (CNNs) like
VGGNet, SqueezeNet, DenseNet, and Xception network and we tuned
them to better fit our data. An accurate classification of 91.88% (train),
88.82% (validation), and 83.68% (test) for 101 classes is achieved, using
only off-line features of the symbols.

Keywords: Handwriting math symbol recognition · Data
augmentation · Transfer learning · Deep learning · CNN · Xception ·
VGGNet · SqueezeNet · DenseNet

1 Introduction

Handwritten math formula recognition is attracting interest due to its practical
applications for consumers and academics in many areas such as education, office
automation, etc. It offers an easy and direct way to input math formulas into
computers, and therefore improves productivity for scientific writers. However,
it is a challenging field due to the variety of writing styles and math formulas
structures. Hundreds of alphanumeric and math symbols need to be recognized,

c© Springer Nature Switzerland AG 2021
C. Djeddi et al. (Eds.): MedPRAI 2020, CCIS 1322, pp. 200–214, 2021.
https://doi.org/10.1007/978-3-030-71804-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71804-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-71804-6_15

Deep Learning for Recognition of Math Symbols 201

and also the two-dimensional structures, specifically the relationships between a
pair of symbols, for example, superscript and subscript, both of them increase
the difficulty of this recognition problem.

Many on-line techniques have been studied for handwritten math formula
recognition. But when the recognition is carried out from a document image,
therefore off-line techniques must be considered. In the last decade, most of
the research has focused on typeset formulas but little research is published.
The main difference between on-line and off-line recognition of math formulas
is the temporal information that conveys the former problem that is lost in
the latter problem. Math formula recognition can be divided into main steps:
symbol recognition and structure analysis. Note that an accurate math formula
recognition system greatly depends on an efficient symbol recognizer. Recently,
deep learning marks the state of the art for math symbol classification prob-
lems, especially those including multiple layers of nonlinear information process-
ing that automatically solve problems without using any prior knowledge. The
results of recent researchers studies, summarized in Table 1 prove that Deep neu-
ral networks enhance mathematical recognition symbols [5] comparing to previ-
ous methods like Modified Quadratic Discriminant Functions (MQDFs) [4] with
Bidirectional Long Short-term Memory (BLSTM) and Hidden Markov Models
(HMM) [9].

The focus in this work is on handwritten math symbol recognition. It is one
of the application in pattern classification: the task of labeling the symbol candi-
dates to assign each of them a symbol class. It is as well a difficult task because
the number of classes are quite important, more than one hundred different sym-
bols including digits, alphabet, operators, Greek letters and some special math
symbols (see Fig. 1).

Fig. 1. Samples of math symbols.

It exists an overlapping between some symbol classes (inter-class variability):
for instance, some symbols belonging to different classes might look about the

202 K. K. Ayeb et al.

same when considering different handwritten samples. There is also a high intra-
class variability because each writer has his writing style (see Fig. 2). Besides, the
challenges coming with the off-line. Many results showed that on-line recognition
reached higher accuracy than off-line recognition [9], because of the absence
of tracking coordinate of the symbol from start to stop, used to recognize it
properly. So, it is important to design robust and efficient classifiers and to use a
representative training data set. Nowadays, most of the proposed solutions use
machine learning algorithms such as artificial neural networks or support vector
machines.

Fig. 2. Inter-class (a) and intra-class (b) variability.

This paper is organized as follows. In Sect. 2, we present a brief review in
the field of math symbol recognition. In Sect. 3, we detail architectures of the
proposed deep learning models and the used data augmentation and learning
transfer mechanisms. In Sect. 4, we discuss the obtained results and compare the
proposed models and some related works. In Sect. 5, we give some conclusions
and prospects.

2 Related Works

In this section, we briefly discuss all advances in the area of math symbol recog-
nition, as summarized in Table 1. The focus is on deep learning-based models.

In [1], authors define their proper CNN with a simple architecture composed
of two convolutional layers, two pooling layers, a fully connected and a softmax
layer to classify off-line handwritten math symbols. To improve their results,
they tuned the performance of CNN by changing the number of feature maps

Deep Learning for Recognition of Math Symbols 203

Table 1. Comparison between some related works.

Ref. System Model Classes Database Accuracy (%)

[1] Off-line

Handwritten

Math Symbols

Classification

proper CNN 102 CROHME 2014

- train: 85781

- test: 10061

- 93.27

- 87.72

[2] Off-line

Handwritten

Math Symbols

Classification

HMS-VGGNet - 101: CROHME - train: 403729 CROHME

2016 + HASYv2 (part)

- 369: HASYv2 - val: 6081 CROHME

2013 test

- 88.46

- test: 10061 CROHME

2014 test

- 91.82

- test: 10019 CROHME

2016 test

- 92.42

- train: 366566 ± 1356

HASYv2 train

- test: 16827 ± 166

HASYv2 test

- 85.05

[3] Off-line

Handwritten

Math Symbols

Classification

- modified LeNet - 87 - MNIST: 6000 - 90 (modified

LeNet)

- pretrained

SqueezeNet

- 101 - Set of Handwritten

Digit Images: 2000

- 90

(SqueezeNet)

[4] Online

handwritten Math

Expression

Recognition

Online: Markov

Random

Field(MRF)

101 - Hands-Math dataset

- Crohme 2016 [6]

- 88.24

- 86.05

Off-line: modified

quadratic

discriminant

function (MQDF)

[5] Online

Handwritten Math

Symbols Detection

Inception v2,

Resnet 50, Resnet

101, Inception

Resnet v2

- 7

- 101

- flowchart dataset [7]

- Crohme 2016

Inception

Resnet v2:

- 99 (val) 97

(test)

- 89.7 (val)

86.8 (test)

[9] Online

Handwritten

Math Expression

Recognition

- structure

recognition: 2D

stochastic

context-free

grammars

- 100

- 37

- 57

- MathBrush [8]

- CROHME 2011 Part1

- CROHME 2011 Part2

- 86.49 (W.

dep.) 84.11

(W. Ind.)

- 88.07

- 87.82

- symbol

recognition: HMM

(online and offline

features)

in convolutional layers, the number of nodes in a fully-connected layer, and
the size of the input image. The authors used CROHME 2014 for training and
evaluation. Authors declare obtaining 93.27% as train accuracy and 87.72% as
a test, but they didn’t show any accuracy or loss curve, which is necessary to
add more credibility to their work. In [2], authors proposed a CNN, called HMS-
VGGNet, for off-line recognition of handwritten math symbols. It is inspired by
VGGNet, with smaller image sizes and additional batch normalization layers.
The authors also used global average pooling layers to replace the fully connected
layers. To prevent the lack of off-line data, the authors used elastic distortion
to enrich the training set. Their proposed CNN uses only off-line features of

204 K. K. Ayeb et al.

the symbols and achieved an accuracy of 92.42% using CROHME 2016 test set.
In [3], authors described an approach for off-line recognition of handwritten math
symbols. They used Simple Linear Iterative Clustering for symbol segmentation
and different methods: k -Nearest Neighbors (k -NN), LeNet, and SqueezeNet for
symbol classification. The best-obtained accuracy using k -NN is 84% with 66
classes of symbols. Using modified LeNet, they achieved an accuracy of 90%
with 87 classes. Finally, they reached 90% with a pre-trained SqueezeNet for 101
classes. The authors mentioned that they used the 6000 MNIST images from the
CROHME dataset and 2000 images from the set of Handwritten Digit Images
published by Computer Vision Group of the University of Sao Paulo, but they did
not give details about the number of used instances for train, validation, and test
and the cited accuracies. Recently, researchers used the off-line features extracted
from the symbol images in combination with the online features to recognize the
online math symbols and got great achievements. MyScript [6], the winner of
CROHME 2016 extracted both online and off-line features and processed with
a combination of Deep Multilayer Perceptron and Recurrent Neural Networks.
MyScript achieved 92.81% in CROHME 2016 test set.

From our study of the state-of-the-art, we noted that the combination of
online and off-line features betters the symbol recognition task performance and
that the off-line recognition of math symbol should be more considered if we
aim to reach the best performance. We also noted that many classification tech-
niques are previously used, but there are very few works that compare different
classification techniques on the same database and with the same experimental
conditions.

3 Proposed System

We explored different architectures of CNNs, trained, and tested them using
CROHME 2019 dataset. The objective is to find out the appropriate model
for the off-line math symbol recognition. For that, we followed some steps, as
described below.

3.1 Data Generation and Tuning

In CROHME 2019, there are 101 different classes of math symbols. The online
data is given in Ink Markup Language (InkML) where each symbol is presented
by an InkML file. This latter contains the set of symbol traces, knowing that
a trace consists of a set of timing sampling points, and each point records its
position. When generating symbol images from online data, we connected the
points of the same trace with a single line. The generation of symbol images from
InkML files is performed by a tool provided with the CROHME 2019 dataset.
We then made some changes to ensure the automatic distribution of images on
folders named with the class names. To train the proposed CNN models, we
generated 30993 symbol images of size 38× 38. To built the train and validation
dataset, we automatically split the images dataset to have 24758 images for the

Deep Learning for Recognition of Math Symbols 205

train and 6235 for the validation. For the test, we generated and created ground
truth of 15483 images from the 15483 CROHME test dataset. As it is known,
improving the performance of a deep learning model depends either on tuning
the applied model or tuning the used data. Since training deep learning models
need several hours, we thought about normalizing the generated symbol dataset
by binarizing and inverting them.

3.2 Model Tuning

To classify math symbols using a deep learning model, we have to choose one of
these three alternatives: 1) to define a new model and train it on our data. 2)
to use a predefined model, tune and train it on our data, or 3) to reuse a pre-
trained model on other data and train it on our data. Based on the first tests and
limited by the available data and computational resources, we have chosen the
third alternative. One of the most common problems that we encountered while
training these deep networks is overfitting. Recall that overfitting happens when
a model learns the detail and noise in the training data to the extent that it
negatively impacts the performance of the model on new data. To prevent such
a problem, mainly due to overly complex models with too many parameters, we
added a global average pooling layer where all the parameters in one feature
map are averaged as a result. As deep networks need to be trained on large scale
datasets and it is labor-intensive to obtain a large amount of labeled data in real
applications, we first augmented the database. Standing on the transfer learning
technique, we then tested and compared several pre-trained CNNs. This is will
be dealt with in more detail in the next subsections.

Data Augmentation. Having a large dataset is crucial for the performance of
the deep learning model. However, we can improve the performance of the model
by augmenting the data we already have. Deep learning frameworks usually
have built-in data augmentation utilities. Accordingly, to perform augmentation
on a dataset of handwritten math symbols, it must be considered that it does
not change the symbol meaning, for example, <when is vertically flipped, it is
converted to>. Therefore, some augmentation techniques cannot be run on all
symbols. In this work, we applied rotation with a random angle in the range
of [−15, 15] and horizontal and vertical shift augmentation techniques which
are almost safe for handwritten math symbol recognition. Figure 3 shows several
symbol image samples generated by the used augmentation techniques.

206 K. K. Ayeb et al.

Fig. 3. Samples of symbol images result of data augmentation.

Used Models. Deep learning models need high computational resources with
a huge dataset to obtain good results. One of the solutions to use deep learning-
based models for symbol classification is to reuse pre-trained models and to test
them with different parameters to improve accuracy. In our work, we have tried
four pre-trained CNN models: VGGNet, SqueezeNet, Xception Network, and
DenseNet. To these deep networks, we added two layers: 1) an average pooling
layer to overcome the problem of over-fitting by averaging the parameters, and
2) a dense layer with regularization for math symbol class prediction. We started
our tests from the smallest to the deeper network:

– Squeezenet: is a CNN with 18 layers deep, it is characterized by its compressed
architecture design based on fire modules. A fire module is a combination of
squeeze layers (1 × 1 convolution filters) and expand layers (a mix of 1 × 1
and 3 × 3 convolution filters)

– VGGNet19 [10]: is a CNN with 19 layers deep, it is composed of 16 convolu-
tional layers and 3 fully connected layers

– Xception [11]: is a CNN with 71 layers deep it is based entirely on depthwise
separable convolution layers.

– Densenet121 [12]: is a CNN with 121 layers deep. Recent work has shown
that CNN can be deeper, more accurate, and efficient to train if they contain
shorter connections between layers and this is what characterises in fact the
Densenet. Each layer in Densenet is connected to every other layer in a feed-
forward fashion. Whereas traditional CNN with L layers have L connections,
one between each layer and its subsequent layer, Densenet has L(L + 1)/2
direct connections. DenseNets have several advantages: they strengthen
feature propagation, encourage feature reuse, and reduce the number of

Deep Learning for Recognition of Math Symbols 207

parameters. The efficiency of this model is proven by the tests that we did
for the recognition of math symbols.

Table 2 and Fig. 4 show the architectures of the different models.

Fig. 4. Architecture of the Xception network.

Transfer Learning. In computer vision, transfer learning is expressed through
the use of pre-trained models. A pre-trained model is a model that was trained
on a large dataset to solve a problem similar to the one that we want to solve. It
allows us to build accurate models in a timesaving way [13]. To well apply transfer
learning and reuse some pre-trained model, we first have to correctly classify the
treated problem, considering the size of the dataset and its similarity to the
used dataset to train the pre-trained model. Figure 5 shows the size-similarity
matrix that controls the choice of the model and guides us to fine-tune it to get
successful results.

208 K. K. Ayeb et al.

Table 2. Architecture of SqueezeNet, VGGNet and DenseNet

SqueezeNet VGGNet19 DenseNet121

18 weight layers 19 weight layers 121 weight layers

Input

conv1-64 conv3-64 con1-3

Relu conv3-64

maxpool

fire2-128 conv3-128 DenseBlock-64 (6×ConvBlock)

fire3-128 conv3-128

fire4-256

maxpool TransitionLayer (conv1+Average pool)

fire5-256 conv3-256 DenseBlock-128 (12×Convblock)

fire6-384 conv3-256

fire7-384 conv3-256

fire8-512 conv3-256

maxpool TransitionLayer

fire9-512 conv3-512 DenseBlock-256 (24×ConvBlock)

conv3-512

conv3-512

conv3-512

maxpool TransitionLayer

con1-1000 conv3-512 DenseBlock-512 (16×ConvBlock)

conv3-512

conv3-512

conv3-512

average pool maxpool average pool

FC-4096

FC-4096

FC-1000

Softmax

Fine-Tuning. Having situated our problem according to the size-similarity
matrix, we can choose the adequate fine-tuning alternatives. Figure 6 represents
a CNN model as a succession of two blocks: a convolutional base for feature
extraction in the top and a classifier in the bottom. Following the size-similarity
matrix, four fine-tuning decisions can be taken.

Deep Learning for Recognition of Math Symbols 209

Fig. 5. Size similarity matrix.

4 Experimental Results

4.1 CROHME Dataset

Since the datasets of off-line handwritten mathematical symbols are rare, we
used the online data of CROHME 2019 to generate symbol images for off-line
symbol recognition. The number of symbol classes in the CROHME dataset is
102, including a junk class for erroneous symbols. To evaluate the proposed CNN
models, we generated 30993 symbol images. To built the train and validation
datasets, we automatically split the images dataset to have 24758 images for the
train and 6235 for the validation. For the tests, we generated and created ground
truth of 6820 images from CROHME 2019 test dataset.

4.2 Experimental Setup

Our experiments were performed on an Intel(R)Core (TM) with a CPU of
2.5 GHz and a memory of 8 GB. We trained our system using pre-trained deep
learning models from the Tensorflow library, trained over the ImageNet dataset.
Although our generated images are different from the natural images of the Ima-
geNet dataset, we found that training using the pre-trained models allows for
much faster convergence than training from scratch, especially with the presence
of a small dataset. Regarding the size-similarity matrix presented in Fig. 5, we
found that our classification problem satisfied the third condition (small dataset
and different from the pre-trained model’s dataset, that is why we fine-tuned

210 K. K. Ayeb et al.

Fig. 6. Decision map for fine-tuning pre-trained models.

our model by freezing the ten first layers of the convolutional block responsible
of the extraction of generic features and train the rest on our data. The initial
learning rate was 0.001, the Batch Size was set to 32. We initialized the number
of the epoch at 200 and we implemented early stopping callbacks.

4.3 Results and Discussion

We trained different CNN models with various parameters on our dataset.
Figure 7 shows the accuracy and loss curves of the different CNN models. Our
best obtained experimental results are shown in Table 3.

We can see that DenseNet121 achieves the state-of-the-art and outperforms
the other models. This can be explained as follows: 1) This network is remarkably
deeper than the others (121 layers), and 2) Adding more instances to the dataset
enhances the capabilities of the model (using a dataset of 24758 train images
and 6235 validation images improves the accuracy from 91.73% to 91.88% for
the training and from 84.07% to 88.82% for the validation). Evaluating our
model on the test dataset, we obtained an accuracy of 83.68%. Table 4 shows
the performance measures: Precision, Recall and F1-score of the different classes
and the overall system.

Deep Learning for Recognition of Math Symbols 211

Fig. 7. Accuracy and loss curves.

212 K. K. Ayeb et al.

Table 3. Accuracy and loss results.

Models Dataset Accuracy (%) Loss

SqueezeNet - train: 21610 - 82.25 - 0.80

- val: 5462 - 82.6 - 0.35

VGGNet19 - train: 21610 - 72 - 1.01

- val: 5462 - 78 - 1.02

Xception - train: 15698 - 86.02 - 1.55

- val: 7012 - 78.15 - 0.85

DenseNet121 - train: 22794 - 91.73 - 0.33

- val: 5745 - 84.07 - 0.36

DenseNet121 - train: 24758 - 91.88 - 0.28

- val: 6235 - 88.82 - 0.20

- test: 6820 - 83.68 - 0.06

Comparing our work to others, we noted that obtained results are promising
but still less than some systems of online symbol recognition or those utilizing
online and offline features to classify symbols, and this because online data has
the tracing information while off-line data does not. Online data has advantages
when classifying symbols having similar shapes and different writing styles, such
as 5 and s. Our networks only use offline features so it is hard for it to correctly
classify those symbols.

Although the symbol recognition achieved good accuracy, that does not pre-
vent it from making mistakes to predict some symbol classes. Analyzing the
confusion matrix, we found that miss recognitions are mainly due to that cer-
tain distinct symbols are in close resemblance, such as the capital letter X and
math symbol ×, the symbol division / and the comma sign, the letter O and the
Greek letter Θ, the capital letter S and the digit 5, the digit 9 and letter g, etc.

Observing the event of confusion, we noted that confused symbols have
roughly similar morphologies that make them difficult to be distinguished even
for a human. We considered some of the misrecognition cases to be too difficult
for any classifier to resolve without considering symbol context. That is why we
keep resolving some of these confusion cases for future works dealing with the
entire math formula recognition.

Deep Learning for Recognition of Math Symbols 213

Table 4. Model performance evaluation.

Class Prec. Recall F1-score Nb. Class Prec. Recall F1-score Nb.

! 0.67 1.00 0.80 2 forall 1.00 1.00 1.00 1

(0.95 0.88 0.92 190 g 0.22 1.00 0.36 6

) 0.96 0.83 0.89 236 gamma 0.86 0.50 0.63 12

+ 0.98 0.95 0.97 601 geq 0.88 1.00 0.93 7

− 1.00 0.92 0.96 723 gt 1.00 1.00 11.00 5

0 0.97 0.96 0.96 118 h 0.60 0.60 0.60 5

1 0.53 0.96 0.68 215 i 0.72 0.96 0.82 24

2 0.81 0.98 0.89 326 in 0.75 1.00 0.86 3

3 0.94 0.99 0.96 137 infty 0.92 0.92 0.92 12

4 0.90 0.86 0.88 81 int 0.89 0.64 0.74 25

5 0.92 0.80 0.85 95 j 0.84 0.67 0.74 24

6 0.94 0.83 0.88 41 junk 0.86 0.90 0.88 1350

7 0.90 0.90 0.90 31 k 0.79 0.96 0.87 24

8 0.90 0.90 0.90 31 l 0.33 0.17 0.22 6

9 0.79 0.39 0.53 79 lambda 0.50 1.00 0.67 1

= 0.98 0.95 0.96 273 ldots 0.77 1.00 0.87 10

A 1.00 0.75 0.86 16 leq 1.00 1.00 1.00 16

B 1.00 1.00 1.00 9 lim 0.41 0.88 0.56 8

comma 0.28 0.38 0.32 53 log 0.67 0.92 0.77 13

C 1.00 0.60 0.75 62 lt 0.67 1.00 0.80 2

Delta 1.00 1.00 1.00 1 m 0.77 0.71 0.74 28

E 1.00 1.00 1.00 11 mu 0.00 0.00 0.00 4

F 0.71 0.83 0.77 6 n 0.79 0.94 0.86 81

G 0.00 0.00 0.00 2 neq 0.67 0.33 0.44 6

H 0.57 1.00 0.73 4 o 0.00 0.00 0.00 8

I 1.00 1.00 1.00 2 p 0.11 0.33 0.17 3

L 1.00 0.60 0.75 20 phi 0.00 0.00 0.00 1

M 0.75 0.75 0.75 4 pi 0.79 0.96 0.86 23

N 0.43 0.50 0.46 6 pm 0.00 0.00 0.00 4

P 0.78 0.52 0.62 27 point 0.87 1.00 0.93 13

R 1.00 1.00 1.00 15 prime 0.00 0.00 0.00 4

S 0.53 0.82 0.65 28 q 0.20 0.29 0.24 17

T 0.67 1.00 0.80 4 r 0.30 0.58 0.40 12

V 1.00 0.70 0.82 10 rightarrow 0.55 0.86 0.67 7

X 0.06 0.30 0.10 27 s 1.00 1.00 1.00 1

Y 0.62 0.93 0.74 14 sigma 0.12 1.00 0.22 1

[0.92 0.82 0.87 28 sin 0.86 0.86 0.86 22

] 0.94 0.60 0.73 25 sqrt 0.95 0.78 0.86 96

a 0.87 0.97 0.92 100 sum 1.00 0.88 0.94 25

alpha 0.91 0.86 0.89 36 t 0.80 0.77 0.79 31

b 0.89 1.00 0.94 59 tan 0.88 0.54 0.67 13

bar 0.00 0.00 0.00 131 theta 0.62 0.91 0.74 11

beta 1.00 0.93 0.97 15 times 1.00 0.08 0.15 173

c 0.05 1.00 0.10 1 u 0.48 1.00 0.65 12

cos 0.92 0.83 0.87 29 v 1.00 1.00 1.00 3

d 0.96 0.96 0.96 94 w 0.83 1.00 0.91 5

div 0.89 0.89 0.89 9 x 0.83 0.98 0.90 339

division 0.15 0.06 0.09 31 y 0.81 0.92 0.86 62

e 0.96 1.00 0.98 25 z 0.96 0.56 0.70 144

exists 1.00 1.00 1.00 1 { 1.00 0.50 0.67 4

f 0.91 0.40 0.56 25 } 1.00 1.00 1.00 4

214 K. K. Ayeb et al.

5 Conclusion and Future Work

In this paper, we addressed the problem of offline recognition of handwritten
mathematical symbols. We used a deep learning recognition method based on
the Densenet model to which we did some modification. Our symbol recognition
system has shown its efficiency on a reasonable number of handwritten symbols
from Crohme 2019 dataset with an accuracy rate of 83.71%. In further works,
we plan to improve the performance of the model by augmenting the data we
already have. We will also work out on treating the case of junk symbol by
making the focus on finding why they are considered junk, and how to treat
them based on cause analysis.

References

1. Ramadhan, I., Purnama, B., Al Faraby, S.: Convolutional neural networks applied
to handwritten mathematical symbols classification. In: Fourth International Con-
ference on Information and Communication Technologies (ICoICT) (2016)

2. Dong, L., Liu, H.: Recognition of offline handwritten mathematical symbols using
convolutional neural networks. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG
2017. LNCS, vol. 10666, pp. 149–161. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-71607-7 14

3. Nazemi, A., Tavakolian, N., Fitzpatrick, D., Fernando, C., Suen, C.Y.: Offline
handwritten mathematical symbol recognition utilising deep learning, cs.CV (2019)

4. Phan, K.M., Le, A.D., Indurkhya, B., Nakagawa, M.: Augmented incremental
recognition of online handwritten mathematical expressions. Int. J. Doc. Anal.
Recogn. (IJDAR) 21(4), 253–268 (2018). https://doi.org/10.1007/s10032-018-
0306-1

5. Julca-Aguilar, F.D., Hirata, N.S.T.: Symbol detection in online handwritten graph-
ics using Faster R-CNN. In: International Workshop on Document Analysis Sys-
tems (DAS) (2018)

6. Mouchere, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR2016 CROHME:
competition on recognition of online handwritten mathematical expressions (2016)

7. Awal, A.M., Feng, G., Mouchere, H., Viard-Gaudin, C.: First experiments on a new
online handwritten flowchart database. In: Document Recognition and Retrieval
XVIII (2011)

8. MacLean, S., Labahn, G., Lank, E., Marzouk, M., Tausky, D.: Grammar-based
techniques for creating ground-truthed sketch corpora. Int. J. Doc. Anal. Recogn.
14, 65–74 (2011). https://doi.org/10.1007/s10032-010-0118-4

9. Alvaro, F., Sanchez, J.A., Benedi, J.M.: Recognition of on-line handwritten mathe-
matical expressions using 2D stochastic context-free grammars and hidden Markov
models. Pattern Recogn. Lett. 35, 58–67 (2014)

10. Simonyan, K., Zisserman, A.: Very deep convolutional neural networks for large-
scale image recognition. In: ICLR (2015)

11. Chollet, F.: Xception: deep learning with depthwise separable convolutions, cs.CV
(2017)

12. Huang, G., Liu, Z., Maaten, L., Weinberger, K.: Densely connected convolutional
networks, cs.CV (2018)

13. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification:
a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

https://doi.org/10.1007/978-3-319-71607-7_14
https://doi.org/10.1007/978-3-319-71607-7_14
https://doi.org/10.1007/s10032-018-0306-1
https://doi.org/10.1007/s10032-018-0306-1
https://doi.org/10.1007/s10032-010-0118-4

	Deep Learning Architecture for Off-Line Recognition of Handwritten Math Symbols
	1 Introduction
	2 Related Works
	3 Proposed System
	3.1 Data Generation and Tuning
	3.2 Model Tuning

	4 Experimental Results
	4.1 CROHME Dataset
	4.2 Experimental Setup
	4.3 Results and Discussion

	5 Conclusion and Future Work
	References

