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Abstract. In recent years, abnormal event detection in video surveil-
lance has become a very important task mainly treated by deep learning
methods taken into account many challenges. However, these methods
still not trained on an anomaly detection based objective which proves
their ineffectiveness in such a problem. In this paper, we propose an
unsupervised method based on a new architecture for deep one class of
convolutional auto-encoders (CAEs) for representing a compact Spatio-
temporal feature for anomaly detection. Our CAEs are constructed by
added deconvolutions layers to the CNN VGG 16. Then, we train our
CAZEs for a one-class training objective by fine-tuning our model to prop-
erly exploit the richness of the dataset with which CNN was trained. The
first CAE is trained on the original frames to extract a good descriptor
of shapes and the second CAE is learned using optical flow representa-
tions to provide a strength description of motion between frames. For
this purpose, we define two loss functions, compactness loss and repre-
sentativeness loss for training our CAEs architectures not only to max-
imize the inter-classes distance and to minimize the intra-class distance
but also to ensure the tightness and the representativeness of features
of normal images. We reduce features dimensions by applying a PCA
(Principal Component Analyser) to combine our two descriptors with a
Gaussian classifier for abnormal Spatio-temporal events detection. Our
method has a high performance in terms of reliability and accuracy. It
achieved abnormal event detection with good efficiency in challenging
datasets compared to state-of-the-art methods.

Keywords: Deep Learning - Anomaly detection + Convolutional
Auto-Encoder

1 Introduction

Security is a founding value of any modern society, it contributes strongly to
creating a climate of peace necessary for good social development. Currently,
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the conditions and the various mechanisms for its implementation are major
concerns, whether at the individual or collective level. In recent decades, cameras
are used everywhere in public space for security purposes. Video surveillance is a
system composed of cameras and signal transmission equipment. The use of video
surveillance is an essential tool for fighting crime and strengthening security. It
allows controlling the necessary conditions for security and the identification of
the risked elements in the scene. In the current context, one operator is in charge
of several scenes at the same time and may on the same screen. In [1], the author
proves that an operator can miss 60% of target events when it is in charge of
viewing 9 or more video streams. A possible solution to this problem would be
the use of intelligent video surveillance systems. Theses systems will have to be
able to learn the normal behavior of a monitored scene and detect any abnormal
behavior that may represent a safety risk.

The AE auto-encoder is a fully connected and neural network widely used
in unsupervised learning. It consists of an input layer, an output layer, and one
or more hidden layers. The hidden layers are distributed between the encoder
and the decoder, the encoder is used to encode the input data into a more com-
pact representation, the decoder is used to reconstruct the data according to
the representation generated by the encoder. To exploit its unsupervised learn-
ing capacity, the AE has been widely explored in the detection of abnormal
events. The author in [2] proposes AMDN (Appearance and Motion DeepNet)
a network consisting of three SDAEs (stacked denoising auto-encoders) a first
trained to reconstruct patches extracted from normal images, a second trained
with the optical flow representations corresponding to the patches and a third
trained with the concatenation of the patches and their optical flow represen-
tations. Moreover, based on CAEs the author in [3] proposes to train a CAE
for the reconstruction of 3D input volumes and the optical flux extracted from
the image and the previous image. In, [4] compared two methods also based on
CAEs. The first method suggests that a CAE should be trained to reconstruct
low-level characteristics (HOG and HOF) extracted from samples in the nor-
mal class. In the second method, the authors propose to use a Spatio-temporal
CAE trained on video volumes. In effect, in both approaches, the anomalies are
captured using a regularity score calculated with the error of reconstruction. In
recent years, many works exploit the progress that has been made in both areas
of Deep Learning (DL) and Computer Vision (CV) to automate surveillance
for abnormal events detection. Deep Learning automatizes the feature extrac-
tion from raw data to realize many purposes such as image classification [5],
facial recognition [6], automatic generation of computer code [7], automatic nat-
ural language processing [8] and automatic speech recognition [9]. Unsupervised
Deep Learning is often used in the field of anomaly detection not only due to the
subjective aspect of the anomaly but also usually only normal data are available
for training. The development of learning methods that do not require a labeled
database has always been a primary objective in the field of automatic learn-
ing. In this perspective, many recent works have aspired to the development of
deep one-class networks has have been proposed [35]. However, these methods
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proposed to use an extra data set to ensure the compactness of normal features
with a deep CNN. To remedy those drawbacks we propose in this paper, a new
deep architecture for abnormal event detection. It consists of two convolutional
auto-encodes, one formed on images and other on optical flow representations to
obtain compact and descriptiveness features. This combination allows extract-
ing high-level compact representation able to describe complex behaviors and
dissociate between normal and abnormal events. In this paper, we propose new
method based on a combination between auto-encoders to extract deep features
contain both information about motion and shapes. The aim of this combina-
tion is to extract tight and representative spatio-temporal features of normal
frames, and subsequently, these features are more easy to isolate it from abnor-
mal frames. The originality of this work is to extract a deep spatio-temporal
features of deep one class without using any external database.

2 Related

Anomaly detection in video footage is very import task in computer vision. Usu-
ally, state-of-the-art methods try to train a model to represent the normal events
and labelled any new event at the testing phase that has small occurrence during
the training as abnormal events. The earlier methods were proposed to extract
low-level features to train a model, for example in [10], the author used the
Histogram of Oriented Social Force (HOSF) to represent the events and in [11],
the authors propose multiples features extraction such as size, color, and edges
on small regions at any frame of input video obtained by foreground segmenta-
tion technique. Multiple classifier for each feature are exploited to decide if that
region is contain anomaly or not. [12], use Histograms of Optical Flow (HOF)
to represent the motion information of each frame enhanced by one class Sup-
port Vector Machine (SVM) classifier to pick up abnormal motion. In [13], the
author propose to train a model from the available frames at the training using
sparse coding and based on the assumption: “Usual events in a video footage
are more reconstructible from a normal event dictionary compared to unusual
events”. The dictionary is obtain a model capable of computing normality score
at each new event in order to dissociate normal and abnormal events. Moreover,
other trajectory-based methods have been applied in order to recognize unusual
trajectories in monitored scene. [14] propose to represent trajectories by Kanade
Lucas-Tomasi Feature Tracker (KLT) and use Multi-Observation Hidden Markov
Model (MOHMM) to determine if trajectory are normal or abnormal. [15] pro-
pose to train One-Class Support Vector Machine model to recognize the normal
trajectories and pick up any abnormal events may occur. [16] combine two mod-
els; a vector quantization and a neural networks to extract robust representation.
In last few years, several researchers based their works on deep learning. They
have obtained greats results on various applications such as object detection [17],
action recognition [18], face recognition [19]. This success come from to their
capability to learn non-linear and complex representations from raw images,
which is important because the real-world application contain many non-linear
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relationships. These methods also have a good property of generalization: they
can be applied on data unused during the learning process. The author of [20]
propose to apply optical flow to extract spatial-temporal volumes of interest
(SVOI) and use them to train a 3D - CNN to classify events into normal and
abnormal. [21] combine pre-trained CNN completed with Binary Quantization
Layer (BQL) and optical flow to detect local anomalies. [22] propose a method
called AVID (Adversarial Visual Irregularity Detection) to detect and locate
abnormalities in videos footage. A GAN composed of a generator trained to
remove abnormalities in the input images and replace them with the dominant
patterns of the same images and a discriminator in the form of an FCN that
predicts the probability that the different regions (patches) of the input images
will be abnormal. The two networks are trained in an adversarial manner and
the abnormalities are simulated using Gaussian noise. After the training, each
of the two networks is capable to detect abnormalities.

3 Proposed Method

3.1 Architecture

One-class classification is a machine learning problem that has received impor-
tant attention by many researchers in different fields such as novelty detection,
anomaly detection, and medical imaging. Nevertheless, the lack of data in the
training phase reduces the depth of network architecture which in turn reduces
the representativeness of features. To solve this weakness we propose to fine-
tuning a pre-trained CAE for a one-class training objective constructed from
VGG 16 CNN which is achieved 92.7% top-5 test accuracy. The database used
to train VGG 16 CNN is ImageNet which is a dataset of over 14 million high-
resolution images belonging to 1000 classes. The images were collected from the
web and labeled by humans using Amazon’s Mechanical Turk crowd-sourcing
tool. We freeze the first layers of convolutions to properly exploit the richness of
the database with which the CNN was trained (Fig. 1). The objective of the con-
volution operation is to extract the high-level features from the input image. Our
architecture need not be limited to only one convolution layer. Conventionally,
the first convolution layer is responsible for capturing the Low-Level features
such as edges, color, gradient orientation, etc. With added layers, the architec-
ture adapts to the High-Level features as well, giving us a network that has the
wholesome understanding of images in the dataset, similar to how we would. So,
we construct the encoder part of our CAE architecture based on convolutions
layers of pre-trained CNN VGG16. We freeze the first convolutional block of
VGG 16 and we keep the others convolutional blocks trainable (Fig.2). In the
hand, the decoder part is a plane network made up of four 2D-deconvolution lay-
ers to be able to reconstruct the original frames, Its hyper-parameters is given
in (Table 1).

Similar to the traditional auto-encoder, the CAE is composed of two parts.
The encoder part which is a sequence of convolutional layers aims to extract
compressed data of input image at the bottleneck layer and the decoder part
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Fig. 1. 2D-CAE based on pre-trained CNN VGG16 ConvNet
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Fig. 2. VGG 16 architecture used for fine-tuning one class objective

which is successive of deconvolutional layers aims to reconstruct the input data
from compressed data at bottleneck layer. The CAE can reconstruct better the
data with was trained than the data that have ever seen, so the bottleneck
layer must be reduced and representative as possible which in reality presents
a compromise, many tests are done to select properly the bottleneck dimension
(Table 1). A non-linear activation function is used at the convolutional and
deconvolutional layers to obtain more useful and robust representations, except
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Table 1. Hyper parameter of added layers

Input size | Layer type Filter number | Kernel size | Strides | Activation | Output size
7,7 2D-convolution | 512 (3,3] [2,2] Relu [3, 3]
(3, 3] 2D-deconvolution | 256 [5,5] 3,3] |Relu [11,11]
[11, 11] | 2D-deconvolution | 128 (5,5] 2,2] |Relu (35,35]
[35, 35] | 2D-deconvolution | 96 [7,7] (2,2] Relu [109,109]
[109, 109] | 2D-deconvolution | 1 (8,8] [2,2] linear (224, 224]

for the last deconvolution layer we used linear activation function due to the
range of our input data which is [—255, 255]. Our architecture consists of two
parallel CAEs constructed as mentioned above. The first CAEs are trained on
original images to be able to detect any abnormalities in shapes and the second
CAEs are trained on optical flow representation aim to detect any abnormal
motion relative to training (Fig. 3).

G(F(V))

First
stream
/\GTF"(V’»
Second
stream

Fig. 3. Two stream learning

3.2 Training

The training phase aims to obtain a model capable to get representative and
compact features of normal images for easy classification. We can ensure that in
two methods; the first method (Fig. 4) is to do training in cascade objectives by
training only at the beginning with the reconstruction objective and after a few
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epochs we extract a representative point denoted “c” of features of the dataset
which with our model is training at bottleneck layer as the mean of features.
Then, we do training only with the compactness objective and we fix the point
¢ as the target of our new features. The disadvantage of this training method
is that the representativeness of the images is not robust but it gives very com-
pacted features. To remedy this flaw, a second training method is proposed with
pseudo-parallel objectives (Fig. 3), we start the training with only reconstruction
objective then as we have done at the first method we extract a fixed point “c”
as the target of features then we continue the training with both compactness
and reconstruction objectives to get robust model.

K(V) G(K(V))

K'(V)

Fig. 4. The first training method: Cascade objectives

During the training phase (Fig.5), both 2D-CAE are trained, one is trained
with a stream of a sequence of original images and the other is trained with
a stream of a sequence of optical flow representation. The optical flow is the
pattern of apparent motion of image objects between two consecutive frames
caused by the movements of the object. We have used a color code for better
visualization. (Figure 6) shows some samples of images and optical flow images.
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Fig. 5. The second training method: pseudo-parallel objectives
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Fig. 6. Examples of optical flow representations and original images

Representativeness Loss: L, The aim of representativeness loss is to evaluate
the capacity of the learned feature to generalize normal class. The representative-
ness loss increases the capacity of our model to raise the distance inter-classes.

Lo==) (V-V) (1)
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Compactness Loss: L. The objective of compactness loss is to tight all the
features used during the training phase belonging to the normal class. Compact-
ness loss evaluates the similarity between each feature vector and the fixed point
‘C’. Tt is used to decrease the intra-class variance of the normal class.

Le= =3 (F(V) =) Q

To perform back-propagation using this loss, it is necessary to assess the
contribution each element of the input has on the final loss. For each ith sample
F(V)= {Fv;1,Fvia,...Fv;;} € RF and the fixed point as m;= {m;1,ma,...m1},
we define the gradient /. with respect to the input F'v;; is given as,

L. 2 n
dFvy;  (n— Ly b (Fg) = ;(Fvik i) (3)

3.3 Testing

The proposed testing procedure aims to classify features of testing images as nor-
mal or abnormal based on the Mahalanobis distance threshold. Both motion and
shapes features vectors noted respectively F(v)= {Fuv;1,Fvs,...Fv;} € RFand
F'(v)= {F'v}y,F'vly,...F'v},} € R¥ are extracted from trained encoders parts
to be concatenated into one vector. Then we apply PCA to this vector to reduce
dimension and to extract important information noted X = PCA ([F(V); (V)]
= {Xi1,Xi2,.--Xik,X;1} € RP when p < 2 x k (Fig. 7). Using PCA is made the
calculation of the covariance matrix Q faster and not complicate.

For each new feature vector X;.s; we calculate a Mahalanobis distance
between each feature vector and X as given:

d = (Xtest - X) X Q_l X (Xtest - X)t (4)

When X as the mean of X € RP and Q € RP*P as its covariance.

The classification process is carried out according to the following process:
In the first step, we extract feature vectors X ={z;},r; € R*'? from the normal
training examples, the mean M and the inverse of the covariance matrix @) of X
are then calculated. In the second step, we evaluate each feature vector x; of the
testing frames with Mahalanobis distance d; using M and . This is represented
in the following equation:

dj=(zj—M)xQx(xj— M) ()

The outlier vectors, which actually represents abnormal frames, are then picked
by thresholding the distance. If the distance exceeds a threshold «, the vector
x; is considered as outlier and the frame p; is labeled as abnormal, Eq. (6).

. | Normal if dj <o (6)
Pi A\ Abnormal if d; >«
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Fig. 7. Classification flowcharts

4 Experimental Results

UCSD Peds2 and UMN are challenging anomaly detection datasets. Both of
them contain normal events like people are walking and abnormal events like
the walking movement of bikers, skaters, cyclists, and small carts in the case of
Ped2, and people are running in the case of UMN. Ped2 contains 16 training
and 12 testing video samples and provides frame-level ground truth to evaluate
the detection performance by comparing our method with others stat- of-the-art
anomaly detection methods. In the other hand, The UMN dataset has consisted
of 3 scenes: lawn (1450 frames), indoor (4415 frames) and plaza (2145 frames)
and the ground truth is provided in the video frames that need to be extracted
to evaluate the performance.

We evaluate our different methods using (Error Equal Rate) EER and (Area
Under Curve ROC) AUC as evaluation criteria. A smaller EER corresponds with
better performance. As for the AUC, a bigger value corresponds with better
performance.

Our two methods have the same results nearly, with a little advantage for
the pseudo-parallel objectives method.

It proves the robustness to occlusion and high performance in anomaly detec-
tion compared with state-of-the-art methods. To visualize the important effect
of the compactness loss function we extract from each feature extracted by
our architecture two components by applying the PCA. These components are
named later features for visualization. Figure 8 illustrates the results, just to
better understand its effects, we will categorize our database into three classes.

— Normal images contains only normal events as mentioned in ground truth,
this class represented by green points in Fig. 8.
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— Confused images when a portion of anomaly start to appear and not a whole
of the anomaly enter in the scene, this class is presented by blue points in
Fig. 8.

— Abnormal images when a more of the half of anomaly enter in the scene, this
class represented by red points in Fig. 8.

The Fig. 8 1.a represents features for visualisations of our architecture trained
with only representativeness loss, as we can see in this figures each of three classes
reserved a region of space. Which is mean representativeness loss has increased
the inter-classes distance between the three classes in an unsupervised way and
using only the class of normal images (Class one). In order to decrease the
intra-class distance for normal image we have used compactness loss. The Fig. 2
1.b represents features for visualisations of our architecture trained with both
representativeness loss and compactness loss. In this case, the normal images not
only are reserved region in space but also are very tight and easy to separate
from abnormal images.

Combining the two CAEs have decreased the EER from 17% to 11% which
make the importance of using of optical flow image to represent the motion in
each frames. The Table 2 shows our results on Ped2 dataset and proves the
robustness of our method compared to others state of the art methods.

Abnormal Images
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Fig. 8. Compactness loss importance
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Table 2. EER comparison of UCSD Peds2

Method EER

Mehran. [23] 42.00%
Kim (MPCCA). [24] 30.00%
Bertini. [25] 30.00%
Zhou. [26] 24.40%
Bouindour. [27] 24.20%
Hamdi. [28] 14.5%
Li. [29] 18.50%
Chong. [30] 12.00%
Tan Xiao. [31] 10.00%
Ours (Cascade) 12%

Ours (pseudo parallel) | 11%

Table 3. Results in UMN dataset

Scene |EER |AUC

Lawn |3.17% | 99.23%
Indoor | 1.92% | 99.37%
Plaza |1.11% | 99.80%

Table 4. ERR comparison of UMN dataset

Method EER

Mehran. [23] 12.60%
Chaotic invariants [32] | 5.30%
Li. [29] 3.70%
Saligrama et al. [33] | 3.40%
Sparse. [34] 2.80%
Ours 2.28%

Our results in scene of UMN is presented in the following table:

This table shows our results relatively at each scene. Despite that our model
is trained on different scenes. It proves that our method have good efficiency for
anomaly detection (Table 3).

This table shows our results for UMN dataset, in this case we use one thresh-
old for whole the dataset and its independent to the scenes. It proves that our
method have good efficiency and robust for variation of scenes (Table 4). This
figure is plotted with tools from python library sklearn.metrics and roc_curve.
It proves that our architecture achieve more then 99% of AUC.
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Fig. 9. ROC Curve of UMN dataset

5 Conclusion

In this paper, a new unsupervised methods were proposed to train CAEs for
the Deep Omne-Class objective. We used these methods to learn a new archi-
tecture composed of two CAEs, one trained on video volumes and the second
on optical flow representations. Our two networks allow extracting high-level
Spatio-temporal features taking into account the movements and shapes present
in each small region of the video. This robust representation makes possible,
with a simple classifier, to differentiate between normal and abnormal events.
We have tested our network on challenging datasets, containing crowded scenes
(USCD Ped2 and UMN) Our method obtained high results competing with the
best state-of-the-art methods in the detection of abnormal events (Fig. 9).

Our future works will investigate the strengthening of our learning process and
apply our model on drone video for anomaly detection.
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