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Abstract Cellular metabolism consists of many interconnected reactions that
present feedbacks through cyclic reaction motifs and through metabolite regulation
of enzyme kinetics. In addition, metabolism is interlinked with gene regulation and
other cellular, energy-driven processes such as division and motility. While many
important insights have been gained on metabolism in the last decades, we are still
far from a complete, predictive understanding of it. This is reflected in our current,
limited ability to pinpoint the drivers of metabolic system dynamics and devising
ways to engineer it.

In this review paper, we argue that the study of metabolism through the lens of
evolutionary biology can provide further insights into its structure and dynamics.
By structure, we mean the composing reactions of a metabolic system, and how
these reactions are connected with each other through shared metabolites, while
by dynamics, we mean the temporal behaviour and responses of the resulting
metabolic system. Following an introductory section, we summarise the key findings
on the structure and dynamics of cellular metabolism within an evolutionary systems
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perspective in Sects. 2 and 3. In doing so, we highlight two key ways of thinking
about metabolic systems, one based on considering metabolism optimised for
biomass production, and another one based on considering metabolism as a self-
regulating emergent system for maintaining nonequilibrium metabolic fluxes. From
this second consideration, we then expand to discuss the possible biophysical drivers
that could have played a key role in shaping metabolic systems in Sect. 4. Finally,
in Sect. 5, we call for an evolutionary perspective on metabolism that takes into
account both of the above considerations. We conclude by highlighting key areas of
future research where this combined view can provide valuable insights.

1 Introduction

Metabolism is the collective biochemical reaction set through which cells convert
available chemicals from the environment into energy and cell components. Cells
cannot and could not have existed without metabolism, thus, metabolic systems
must have been very early inventions in the evolution of life, possibly emerging
before cells. Such an ancient character of metabolism is evident in the fact that
many metabolic reactions and systems are conserved across a range of uni- and
multicellular organisms (Yamada et al., 2006). These highly conserved aspects of
metabolism, as well as variations across organisms may provide a clue back to the
chemical conditions during early origins of life and the current environments of
organisms.

Discussions regarding the origin of life usually emphasise the need for self-
replication and information carrier molecules. The emergence of such molecules
must have been linked tightly with the emergence of early metabolic systems that
provided the building blocks needed for their synthesis. Such systems might have
had an abiotic nature initially (Branscomb & Russell, 2013; Keller et al., 2014,
2017; Messner et al., 2017), but it is possible that their structure and tight linkage
with reproduction came to be embedded into the fabric of current-day biological
systems. Indeed, it is difficult to separate metabolism from the other aspects of cell
physiology, including membrane potential (Merrins et al., 2016), gene expression
and regulation (Chubukov et al., 2014; You et al., 2013), motility (Egbert et al.,
2010), and cell division (Papagiannakis et al., 2017). It is this linkage that makes
an understanding of cell metabolism a prerequisite for a complete understanding of
cell physiology. Besides its importance as a fundamental research topic, metabolism
and its connections to cell physiology relate to biotechnological applications such as
bioproduction in microbial or mammalian cells, and to medicine, including possible
cancer treatment (Jain et al., 2012; Locasale, 2013).

Evolutionary considerations in the study of metabolism are not rare (Nam et
al., 2011; Papp et al., 2009) but do commonly take an adaptive stance that views
metabolism as optimised for biomass production. While there have been cases
where laboratory evolution experiments resulted in metabolic adaptations matching
such optimality predictions (Ibarra et al., 2002; Fong & Palsson, 2004), there are
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also many instances where solely adaptive explanations cannot capture observations
from metabolic systems (Papp et al., 2009; Schuster et al., 2008). In this review, we
advocate the importance of considering also the possibility of metabolic system
features emerging through nonadaptive mechanisms, as by-products of biophysical
and biochemical requirements on maintaining metabolic fluxes out of equilibrium.
In particular, the first emergence of metabolic systems and their early evolution must
have been driven by achieving nonequilibrium flux across system boundaries, and
the drivers for achieving such a state must have influenced system structure and
dynamics in ways that is still visible in current-day metabolism. We argue that such
an extended, evolutionary view on metabolism can provide better insights on ‘why
the metabolism is the way it is’, and in turn, lead to new ways of understanding and
engineering current metabolic systems.

In the following two sections, we first review the current knowledge on the struc-
ture (i.e. composition and connectedness) and dynamics (i.e. temporal behaviour
of metabolic fluxes) of metabolic systems and discuss them from the perspective
of evolutionary systems biology. Rather than providing an exhaustive summary
of the vast literature on metabolism, we highlight findings that we believe are
representative or of key importance to our current thinking and understanding of
metabolism and its evolution. In Sect. 4, we consider the possible key biological
and biophysical factors that might drive and constrain the evolution of metabolic
systems. Finally, in Sect. 5, we provide a future outlook that evaluates how taking
an evolutionary systems biology approach to metabolism can open up new ways of
understanding and engineering metabolic systems.

2 Structural Features of Metabolic Systems

The elucidation of the structure of metabolic systems starts with the pioneering
biochemical studies of early 1900s. These Nobel-winning studies mapped key
metabolic conversions within cells onto specific enzymes and organised these into
so-called ‘pathways’ (Gottschalk, 1986). Known today mostly through the names
of their discoverers, these include the Entner—Doudoroff (ET), Embden—Meyerhof—
Parnas (EMP) and pentose-phosphate (PP) pathways involved in glucose uptake
and conversion into pyruvate, and the Krebs pathway (a.k.a. tricarboxylic acid
cycle) involved in the conversion of pyruvate into biomass precursors (Neidhardt
et al., 1990). As biochemical studies continue to define new enzymatic reactions
and pathways, organised databases of enzyme function (e.g. KEGG: Kanehisa,
2013; BRENDA: Jeske et al., 2019) allow us to increasingly achieve biochemical
annotation through evolutionary relatedness among enzymes. This, together with
increasing sequencing ability allows obtaining the lists of enzymatic reactions from
genome sequences and derive insights on how cellular metabolism is organised in
different organisms. It must be noted, however, that any analysis of reaction maps
will be limited by the accuracy of such maps, which will relate to the quality of
enzyme function annotations (derived biochemically or from genomic sequences by
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homology). Setting aside such limitations, the study of metabolic reaction maps has
flourished in the last few decades with the application of graph theory.

2.1 Metabolic Maps as Graphs (Networks)

Conceptually, it is easy to make the transition from a biochemist’s drawing of
a metabolic reaction pathway to a mathematically well-defined graph or network
representation (see Fig. 1). Indeed, metabolites can readily be envisioned as nodes
in a network connected through enzymatic reactions. The actual practice of mapping
a biochemical reaction set into a network, however, can be done in several different
ways that preserve or lose different types of information (Sandefur et al., 2012;
Montaiiez et al., 2010; Zhou & Nakhleh, 2011; Arita, 2004; Beber et al., 2012)
(Fig. 1).

In one approach, networks are defined such that there are two sets of nodes in
the network; the molecular species in one set and the reactions themselves in the
other set. This approach defines a bipartite graph, where the edges connect nodes
from elements of one set (species nodes) to elements of the other set (reaction
nodes) only (Fig. 1b). To make this network representation simpler, a logical
first step is to combine the set of reaction nodes with their corresponding edges
across the network. This results in a unipartite graph representation with only one
type of node, which corresponds to the metabolites. Edges in this representation
correspond to reactions that involve (or connect) the associated nodes (metabolites)
(Fig. 1c). While some information on reaction mechanisms is lost in the unipartite
graph representation, it is commonly used in databases and many graph theoretical
network analyses. The latter aspect is important, because the representation of a
metabolic system as a uni- or bipartite graph can have direct impact on the results
of common network analyses such as degree distribution and modularity (Montafiez
et al., 2010; Zhou & Nakhleh, 2011; Arita, 2004; Beber et al., 2012) (see legend of
Fig. 1).

2.2 Connectivity Within Metabolic Networks

Notwithstanding the importance of choices associated with the abstraction of a
metabolic system as a network, the analyses of the resulting networks using graph
theory can provide insights into their large-scale properties. An early, key finding
in this regard was that the connectivity distributions of metabolic systems are
more aligned with a scale-free distribution. For this distribution the probability
of finding a node with connectivity k, scales with k=7, with y being a constant
degree exponent. This contrasts with a Poisson distribution expected from a random
network (Jeong et al., 2000). The scale-free like distribution indicates the presence
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Fig. 1 Cartoon diagram showing a selection of approaches to capture biochemical reaction
information as a graph, and possible discrepancies that can arise from this choice. We consider
a small section of the central metabolism as an illustrative example. (a). The system contains
three enzymatic reactions labelled as R1, R2 and R3, as well as with their KEGG reaction IDs
(R00267, R0O1899, and R00268). The main metabolites {M1, M2 and M3} and additional ones
{C1, C2, C3 and C4} are highlighted in black and red font respectively. (b) A directed bipartite
graph corresponding to the reaction system given in (a). The enzyme information can be encoded
within the reaction class (rectangular boxes), while substrates and products are represented by a
metabolite class (circles). Solid and dashed lines represent involvement of substrates and products
respectively in each reaction. (¢). An undirected unipartite graph representing the same system.
A reduced graphical complexity has been obtained by omitting the enzymatic information (i.e. the
reaction class). Note that this results in the loss of the specificity of products and substrates towards
reactions. (d) Another alternative graph representation with further reduction of complexity.
Additional metabolites C1, C2, C3 and C4 have been absorbed into the graph. A comparison
between these different graphs shows differences in graph-based statistics such as centrality and
node degree; for example metabolites M1, M2 and M3 have different degrees {4, 5, 4}, in (c), but
the same degree of 2 in (d)

of highly connected nodes, so-called hubs, in the system. It has been argued that
these highly connected metabolites, that include the well-known energy carriers
(such as ATP and GTP) and reductive equivalents (such as NADH and NADPH),
represent evolutionarily ancient parts of the system (Wagner & Fell, 2001).

In order to better understand if any specific connectivity distribution could infer a
functional (or evolutionary) benefit to a network, it is necessary to consider possible
mechanisms that can generate such distribution. A general, empirical model for
network expansion, which can lead to a scale-free connectivity distribution has
been proposed and involves the preferential attachment of new nodes onto existing
ones based on their connectivity (Ravasz et al., 2002). While the general nature
of this model is useful to construct random networks with scale-free connectivity
distribution, it has been shown that alternative, and biochemically more realistic
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network expansion schemes can also lead to networks that display such connectivity
distributions (Keller, 2005; Salathé et al., 2005; Takemoto & Akutsu, 2008; Pastor-
Satorras et al., 2003). Additionally, in silico evolution of toy metabolic systems of
enzymatic reactions, under selection for supporting growth, has shown to lead to the
emergence of networks with scale-free connectivity distribution and hubs (Pfeiffer
et al., 2005; Hintze & Adami, 2008). In one such study, the initial system that was
composed of broad-specificity enzymes evolved, under selection for faster growth,
into one that is composed of enzymes with high specificity, some of which highly
connected, i.e. enzyme specificity and hubs have emerged (Pfeiffer et al., 2005).
However, whether hubs emerged or not was dependent on the presence/absence
of group transfer reactions in the toy metabolism, suggesting that the observed
connectivity distributions in metabolic networks might be a by-product of the
nature of biochemical reactions involved. An alternative theory suggests that the
observed connectivity distributions (and in particular the presence of hubs) have
emerged from selection for increased robustness of metabolic systems against loss
of enzymes, since presence of hubs can infer to the system such robustness (Jeong et
al., 2000). This argument, however, is not fully supported by subsequent analyses.
In particular, it is indicated that the robustness of metabolic systems to enzyme
loss is apparent; many of the enzymes that can be seemingly dispensable under
a metabolically rich environment (suggesting high robustness to enzyme loss) are
actually required in some other, metabolically limited environment (Papp et al.,
2004). This kind of apparent robustness has emerged under in silico evolution
experiments, where toy metabolic models were evolved under selection for growth
under fluctuating environments (Soyer & Pfeiffer, 2010).

In summary, these findings show that the general connectivity distribution
of metabolic networks is different from random ones, but might not have been
directly selected for during evolution and rather resulted as a by-product of other
evolutionary forces acting on metabolic systems. More broadly, they highlight the
need for any adaptive arguments proposed for the possible evolutionary origins and
significance of any structural network features to be evaluated carefully against
simpler and possibly nonadaptive explanations (Papp et al., 2009; Zhou & Nakhleh,
2011; Basler et al., 2012).

2.3 Modules in Metabolic Networks

Another structural feature observed in graph representation of metabolic networks
is the presence of clusters, or modules, where member nodes in a module present
higher connectivity among themselves compared to the rest of the network (Ravasz
et al., 2002; Guimera & Amaral, 2005). It is shown that many of these modules
correspond to known pathways that are described based on biochemical studies
(Guimera & Amaral, 2005). As with connectivity distributions, several evolutionary
mechanisms have been proposed that can lead to the emergence of modular
networks, including selection for increased enzyme specialisation (Soyer, 2007;
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Espinosa-Soto & Wagner, 2010) or robustness to gene loss (Ravasz et al., 2002),
or growth under static (Takemoto, 2012), randomly fluctuating (Hintze & Adami,
2008), or structured environments (Lipson et al., 2002; Kashtan & Alon, 2005).
Modularity being the result of selection for robustness, is not supported by a
subsequent study, which found no relation between robustness against genetic and
metabolic perturbations and modularity in computationally generated toy models of
metabolic systems (Holme, 2011). Modularity emerging from selection for growth
under fluctuating or modular environments had a mixed support from subsequent
analyses. Analysis of network modularity in different organisms that were grouped
according to the environmental variability that they experience suggested some
correlation between the two (Parter et al., 2007). Analysis of randomly generated
metabolic networks also suggested a relation between modularity (based on flux
distributions) and ability of a metabolic system to sustain growth in different
simulated environments (Samal et al., 2011). Several other analyses found distinct
levels of modularity for organisms living in different habitats or living different
lifestyles (e.g. auto- vs. heterotrophic) (Kreimer et al., 2008; Takemoto & Borjigin,
2011; Mazurie et al., 2010), however there was no simple correlation between
possible indicators of environmental variability (for example number of transport
enzymes) and network modularity (Kreimer et al., 2008). Few studies found
instead a strong correlation between habitat temperature and the level of metabolic
modularity (Takemoto et al., 2007; Takemoto & Akutsu, 2008). In silico evolution
of a toy metabolic system under fluctuating environments has found no positive
relation between the level of modularity emerging over an evolutionary period
and the level of environmental fluctuation over that time (Hintze & Adami, 2008).
Taken together, these findings leave it inconclusive at the moment if the nature and
frequency of environmental fluctuations had a strong influence on the selection of
the level of network modularity.

It must be noted that any analysis of modularity in a network will depend on
the definition of modularity and its quantification, as well as the choice of system
abstraction used for the network representation. Methods that are alternative to those
based on simple graph representation of metabolic systems have been attempted
to define and measure modules (Kanehisa, 2013; Yamada et al., 2006; Muto et
al., 2013; Sorokina et al., 2015). Perhaps the most straightforward of these is
to define metabolic modules based on sets of reactions that are associated with
each other according to the information in the literature. The KEGG database
for example employs this strategy to define ‘metabolic modules’, which contain
reactions resulting from literature-based pathway definitions, or are associated to
a set of enzymes that are shown to either form a larger complex or are organised
together on the genome (Kanehisa, 2013). The latter aspect is further developed
into a ‘phylogenetically’ motivated metabolic module description, where modules
are identified from the phylogenetic distribution profiles of individual enzymes and
their ‘connectedness’ within metabolic reaction maps (Yamada et al., 2006). This
approach indicated that enzymes that are closely connected (in terms of how many
reactions separate their substrates) share more similar phylogenetic distributions
across sequenced genomes. While plausible, this finding needs to be reevaluated in
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light of phylogenetic distributions of modules corrected for phylogenetic relatedness
of the organisms that they are found in, since such a correction is shown to impact
the level of ‘true’ modularity in all biological networks analysed (Snel & Huynen,
2004).

Another alternative approach is to define modules based on reaction similarities.
In this case, all known reactions are grouped into categories based on the similarity
of the atomic conversions that they enable and then are used to analyse existing,
known metabolic systems for common reaction patterns. This approach has allowed
identification of so-called reaction modules, which represent patterns of specific
reaction groups reoccurring in different parts of metabolism (Muto et al., 2013;
Sorokina et al., 2015). While some of these reaction modules correspond to
aforementioned, enzyme-based metabolic modules, some of them represent unique
modules (Kanehisa, 2013). The existence of such modules suggests that despite the
differences in the enzymes employed, different parts of metabolism employ similar
reactions and that metabolic system evolution might be driven by adaptation of
existing reactions to ‘work’ on new metabolites (Schmidt et al., 2003). Supporting
this suggestion, simulating the evolution of metabolic systems through a reaction-
based expansion algorithm, where new reactions are added to a network when
their corresponding metabolites are made available by previous reactions or by
the environment, showed that the resulting expanded networks display similar
properties as those observed in nature (Ebenhoh et al., 2004; Ebenhoh et al., 2005;
Raymond & Segre, 2006). These findings can be interpreted as metabolic systems
having emerged as a core set of chemical reactions, which are then reused in slightly
different biochemical contexts when that network expanded to accommodate new
molecules (Raymond & Segre, 2006; Muto et al., 2013). This reaction-based view
of metabolic evolution would be in agreement with an enzyme-based evolutionary
scenario that considers early enzymes of low specificity subsequently diverging and
specialising on different substrates, while maintaining a core set of reaction types
(Jensen, 1976; Schmidt et al., 2003; Pfeiffer et al., 2005). It is important to note,
in this context, that many of the current-day enzymes display promiscuous (low
specificity) functions that are shown to facilitate the evolution of new pathways
within the metabolic system (Kim et al., 2010; Soo et al., 2011).

2.4 Network Motifs

An alternative structural analysis of metabolic systems abstracted as networks, is
to search for small interaction patterns within them that are overrepresented in the
original network compared to randomised networks serving as null models. These
patterns, or so-called motifs, were first identified in signalling and transcription
networks (Milo et al., 2002). These two types of networks are found to display
different motif prevalence, suggestive of a link between network function and
type of motifs present (Milo et al., 2004). Indeed, subsequent studies have shown
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that several of the motifs found in signalling and transcription networks can
embed specific functions in a dynamical context, including noise filtering in signal
transduction, and decoupling of the expression speed and level, in gene regulation
(Goentoro et al., 2009; Mangan & Alon, 2003; Mangan et al., 2006; Alon, 2007;
Lipshtat et al., 2008).

These findings, where overrepresented motifs from specific networks display
specific dynamical and functional properties that are relevant to the overall function
of those networks, suggest that motifs could provide the link between structural and
dynamical (or functional) analyses of networks. This possibility, however, is called
into question both in terms of statistical significance of overrepresented motifs
and in terms of how specific their functional and dynamical properties are. The
identification of overrepresented motifs is directly influenced by the choice of null
models that the original, analysed networks are compared to (Artzy-Randrup, 2004).
This raises the issue of identifying a suitable null model for the network being
analysed, with alternative null models giving rise to different motif significance
results (Konagurthu & Lesk, 2008; Avetisov et al., 2010). Even if overrepresented
motifs are correctly identified, their functional significance is difficult to assess.
For example, the bi-fan motif, identified in gene regulatory motifs and suggested to
display specific dynamical properties, displays a range of dynamics under different
parameter sets and modelling choices (Ingram et al., 2006). Similarly, an analysis
of all three-node signalling network motifs indicated dependence of their response
dynamics on the specifics of biochemical implementation choices in the model used
(Soyer et al., 2006).

Identification and analysis of network motifs in metabolic systems are subject to
these same issues as well. While specific metabolic network motifs were identified
as significant (Eom et al., 20006), it was subsequently shown that this result is
dependent both on the original network representation used and the randomised
networks used for comparison (Beber et al., 2012).

3 Dynamics of Metabolic Systems

Cell metabolism is a dynamical process that converts an initial set of environ-
mentally available metabolites into a set of end products that are released into
the environment or incorporated into biomass (Fig. 2). While many reactions
take part in this process, an overall chemical reaction can be written to describe
the full conversion from substrates to end products. This overall reaction takes
the form of a redox reaction, indicating that cell metabolism enables the flux of
electrons across many reactions and between an initial electron donor and a final
electron acceptor (Gottschalk, 1986) (Fig. 2a). It is shown that these intercoupled
reactions, the involvement of conserved moieties in many of them, and metabolite-
mediated allosteric regulation of enzymes (Fig. 2b) can all lead to rich temporal
dynamics including oscillations and multi-stability (Reich & Sel’kov, 1981). These
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Fig. 2 Schematic representation of the chemical transformations carried out by a cell. (a)
Representation of metabolic reactions at cell scale, considering the cell itself as a black box. From
this standpoint, the phenomenon of cell growth appears as the combination of a catabolic and an
anabolic reaction, as well as energy extraction from redox reactions that transfer electrons from
an initial electron donor to a final electron acceptor. (b) More detailed representation of metabolic
reactions, where the focus is shifted from the cell to its metabolic network, and highlighting both
the many redox reactions and other types of chemical conversions. The metabolites are linked
by chemical reactions (black arrows), sometimes involving the conversion of conserved moieties
that are involved in redox (e.g. NAD/NADH, yellow for reduction and green for oxidation) and
energy (e.g. ADP/ATP, red for energy investment and blue for energy extraction) balances. The
upkeep of conserved moieties’ balances can involve interaction with protein complexes embedded
in the membrane (shown in grey). Some of the enzymes catalysing the reactions of the metabolic
network are regulated by the concentration of metabolites, through allosteric regulations (shown
as light blue and orange arrows)

nonlinear dynamics, on their own, or in combination with gene regulation, can
then give rise to dynamic cellular behaviours. One of the key, open challenges
in metabolic research is to decipher these higher-level metabolic behaviours and
pinpoint structural features in the network that can be used as their explanatory and
predictive indicators.
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3.1 Overflow Metabolism and the Respiration-Fermentation
Switch

Perhaps one of the earliest dynamical observation on higher-level behaviour of
metabolism is a shift from pure respiration into fermentation or respiro-fermentation
with changing conditions. This shift, known as contre-effet Pasteur, Warburg, or,
Crabtree effect, is described initially in yeast and mammalian cells (De Deken,
1966). In a respiratory mode, metabolism utilises a strong electron acceptor
such as oxygen and the associated, membrane bound electron transport chain. In
fermentative mode, instead, metabolism utilises weak organic acids as electron
acceptors and associated pathways, which provide a stoichiometric balance between
reactions oxidising and reducing the key electron carriers (such as NAD* and
NADH) (Gottschalk, 1986). Cells are found to display a shift from respiration to
fermentation with changing availability of electron acceptors or carbon source, and
with increasing growth rate (De Deken, 1966; Christen & Sauer, 2011; Meyer et al.,
1984; Nanchen et al., 2006; Schulze & Lipe, 1964; Valgepea et al., 2010; Luli &
Strohl, 1990; Postma et al., 1989; Rieger et al., 1983; Dauner et al., 2001). While
a shift into fermentative pathways due to lack of strong electron acceptors can be
intuitively understood as the only route to sustain electron flow, a similar shift due to
increased carbon availability or growth rate are nonintuitive as they occur under the
continued presence of strong electron acceptors such as oxygen and despite higher
energy efficiency of respiration.

It has been suggested that a switch into fermentative pathways in presence of
oxygen, happens due to limitations on the respiratory chain and associated pathways
(Postma et al., 1989; Rieger et al., 1983). In this argument, the increasing carbon
flow cannot be sustained by respiration alone, and any overflow needs to be directed
into fermentative pathways to maintain stoichiometric balances and an assumed
optimal growth (Majewski & Domach, 1990; Varma et al., 1993). This ‘limitation-
based’ view, is extended by recent studies, which have argued for cellular space
(Szenk et al., 2017; Zhuang et al., 2011) or protein content being key limiting
factors that can favour fermentation over respiration, because fermentation is more
efficient with regards to these features compared to respiration (i.e. higher energy
produced per protein or space investment) (Molenaar et al., 2009; Basan et al., 2015;
Schuster et al., 2011; Goelzer & Fromion, 2017; Wortel et al., 2018). The idea that
overall protein amounts can be limiting is linked to the observation that increasing
growth rates, where a switch to fermentation happens, results in an increased
investment from the shared proteome pool into ribosomes (Klumpp et al., 2009)
and that this can cause a shift into the more protein efficient fermentation (Basan
et al., 2015; Schuster et al., 2011). Recent temporal measurements on proteome
allocation, however, do not necessarily show a shift in the expression of the enzymes
involved in central metabolism vs. respiration when cells undergo a respiration-to-
fermentation switch (Goel et al., 2015; Metzl-Raz et al., 2017). Moreover, the fact
that not all yeast species exhibit the Crabtree effect (De Deken, 1966) indicates that
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the extent and dynamics of the Crabtree effects can be tuned, instead of being the
result of an insurmountable limitation arising from resource allocation.

A plausible alternative explanation for the onset of a respiration-fermentation
shift is the dynamics of the oxidised and reduced forms of key redox carriers
within metabolism. These forms are involved in many of the reactions of the central
metabolism, including glycolysis, TCA cycle, and pathways branching from these,
as well as the respiratory chain (Fig. 2b). Thus, it is possible that shifts in the
NADT/NADH balance can directly affect the flux distribution across these different
pathways (Hatakeyama & Furusawa, 2017; Reich & Sel’kov, 1981). It is observed,
both in yeast and E. coli, that altering NADH/NAD™ dynamics with synthetically
incorporated oxidases alters the critical level of glucose, at which the respiration-
to-fermentation switch happens (Vemuri et al., 2006, 2007). Additionally, it is
found that changes in the activity of pyruvate kinase, a key enzyme implicated in
cancer cells’ increased capacity for the respiration-fermentation switch (Diaz-Ruiz
et al., 2009), can cause a feedback onto the dynamics of NADPH, which acts both
as an electron carrier and a neutraliser of reactive oxygen species through redox
reactions (Griining et al., 2011). It is also possible to envision similar limitations,
and impacts on metabolic fluxes, arising from ATP/ADP balances. Indeed, ATP
balance is implicated to affect metabolic fluxes under different conditions in B.
subtilis, including conditions favouring a respiration-fermentation switch (Dauner
et al., 2001). That limitations arising from ATP/ADP and NAD'/NADH balances
can cause changes in overall metabolic fluxes, and lead to metabolic switches
and overflows, is an attractive mechanistic explanation that could explain several
additional metabolic overflows such as of amino acids and vitamins (Dauner et al.,
2001; Jiang et al., 2018; Ponomarova et al., 2017).

The proposition that metabolic shifts are due to certain cellular limitations is an
interesting concept to consider through the lens of evolution. It can be argued that
any limitations on cellular resources can be overcome under appropriate selective
pressures. If such limitations have not been overcome, then this is suggestive that
they are either linked to physical hard bounds that evolution cannot surpass, or relate
to trade-offs between different selective pressures. One such trade-off is proposed
between growth rate and yield (Novak et al., 2006; Schuster et al., 2011; Bachmann
et al., 2013; Wortel et al., 2018). For example, increasing the number of ATP
producing reactions in a linear pathway would slow its overall flux rate, presenting
a simple mechanism of a rate-yield trade-off (Pfeiffer et al., 2001; Heinrich et al.,
1991). Such a thermodynamic basis for a rate-yield trade-off, combined with the
higher energy yield of respiration, is used to argue for it driving the respiration-to-
fermentation shift (Pfeiffer et al., 2001).

The respiration-to-fermentation shift, or overflow metabolism, results in the
excretion of organic acids from cells, such as acetate and lactate. These organics
can be used as a carbon source by other cells and result in a so-called cross-feeding
interaction. It has been theoretically shown that trade-offs among uptake efficiencies
of different carbon sources can lead to cells evolve into specialists on one of such
carbon sources, creating the basis for the emergence of cross-feeding even within
a single population (Doebeli, 2002). Indeed, long-term evolution experiments with
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Escherichia coli resulted in the emergence of different clones that are shown to
interact metabolically through cross-feeding (Le Gac et al., 2008; Rozen & Lenski,
2000; Grosskopf & Soyer, 2016).

3.2 Carbon Preference and Catabolic Pathway Switching

Another phenomenon observed with overall metabolic dynamics is the ‘carbon
preference’ or ‘carbon catabolic repression’. It was found that when microbes are
cultivated in the presence of a mix of different substrates that they can catabolise,
consumption follows a sequential pattern (Gorke & Stiilke, 2008; Monod, 1949),
with an order of carbon sources specific to the microbial species (Collier et al.,
1996; Van Den Bogaard et al., 2000; Parche et al., 2006). While it is shown
that such carbon source switching can involve genetic regulatory networks with
possible bistable dynamics (Ozbudak et al., 2004; Solopova et al., 2014; van Hoek
& Hogeweg, 2000), it is less clear how the initial sensing of different carbon
sources is achieved and conveyed to the regulatory level. One simplistic explanation
is that carbon sources are directly sensed to trigger activation and inhibition of
the associated downstream catabolic pathways to enforce the carbon preference
hierarchy. This mechanism has been shown to be implemented in a few bacteria,
but only for a small subset of their possible substrates (Aidelberg et al., 2014).
Recent studies suggest that the adaptation of the microbial metabolic networks is not
modulated by direct detection of the concentration of the entry-point substrates, but
rather by the temporal dynamics of the concentration of key metabolites inside the
network. It is proposed that there could be sensing of the metabolic fluxes through
these key metabolites, which can react with transcription factors and thus affect
the expression of catabolic enzymes to create feedback systems (Kotte et al., 2010;
Gorke & Stiilke, 2008; Aidelberg et al., 2014).

A kinetic model of metabolism and gene regulation featuring central carbon
pathways and several regulatory interactions between specific metabolites and
transcription factors has allowed successful simulation of the carbon preference
hierarchy (Kotte et al., 2010). Analysis of this model suggested that a given
metabolite can become a ‘flux-reporting’, key metabolite, either because it is only
produced under specific environmental conditions, or because it sits between two
low-energy reactions, where its concentration can act as a reporter of the flux
direction at this point in the metabolic system (Kotte et al., 2010). For example,
in the E. coli metabolic system, fructose-1,6-bisphosphate, an intermediate of
glycolysis, and its interaction with the transcription factor Cra is implicated as a
flux-sensing regulatory system (Kochanowski et al., 2013).

Allosteric regulation of enzymes, that is regulation of enzyme activity through
binding of substrates and products or additional metabolites, is another possible
route to altering metabolic fluxes. This is possibly an evolutionary more ancient
route to regulating metabolic systems, as it would not require gene regulation and the
intermediary role of transcription factors. Additionally, allosteric regulation could
allow for a quicker response to changing environmental conditions. Information on
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the allosteric regulation of many enzymes is available and catalogued in databases
(Jeske etal., 2019; Huang et al., 2011), and its regulatory role is implicated in several
computational and experimental studies. The dynamic variations of many fluxes
in the metabolic network of B. subtilis were not correlated to the expression level
of its enzymes, suggesting that other means of regulation were at play, including
allosteric regulation (Chubukov et al., 2013). Recent experimental work shows that
allosteric regulation is required in addition to transcriptional control to explain the
observed flux dynamics during catabolic repression and co-utilisation in B. subtilis
(Buffing et al., 2018). Similarly, in E. coli, explaining metabolic flux shifts in
response to changes in the nature of the carbon source required multiple regulatory
layers including allosteric regulation (Link et al., 2013; Gerosa et al., 2015). A
metabolic network model implementing such candidate allosteric regulations was
able to predict flux dynamics under changing substrate availability (Machado et al.,
2015).

3.3 Oscillations and Bistability

The high-level observations of pathway switching and catabolic hierarchy indicate
that metabolic system fluxes can be abruptly altered upon changes in conditions.
Such dynamics are suggestive of multistable, nonlinear dynamics, which could be
expected from any system that displays high interconnectedness as seen in metabolic
systems; many metabolites are acted upon by many different enzymes, individual
enzymes can form dimers and heteromers that can bind multiple substrates and
additional, nonsubstrate metabolites, and multiple reactions can connect through
their metabolites to form cyclic or feedback reaction systems. These features pro-
vide a significant potential for metabolic systems to implement nonlinear dynamics
such as bistability, oscillation, and homeostasis (Reich & Sel’kov, 1981).

Among these, bistability refers to a dynamical system that can attain two different
steady states depending on initial conditions. Changes from one of these steady
states to the other can be caused through perturbations in parameters or concentra-
tions of system components. In the context of metabolic systems, two steady states
would manifest themselves as different flux rates across reactions and perturbations
can arise from changes in enzyme or metabolite concentrations, or through changes
in catalytic rates of enzymes (induced for example through allosteric regulation).
Bistability in metabolic system dynamics has been implicated in the context of
respiration-to-fermentation switch (Lei et al., 2003), and when carbon metabolism
is initiated on glucose (van Heerden et al., 2014) or switches from glucose to
other carbon sources (Kotte et al., 2014; Simsek & Kim, 2018; Ozbudak et al.,
2004; Solopova et al., 2014). In particular, the latter studies found subpopulations,
within isogenic populations, that show different metabolic behaviours not caused
by mutations. In glucose-shift experiments, additional experiments with isotope
labelled carbon indicated that these subpopulations emerged at the time of the
shift, i.e. in response to changing conditions, and in a manner dependent on the
concentrations of the different carbon source (Kotte et al., 2014). This suggests
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that the metabolic system implements bistable dynamics, such that changes in
external glucose concentrations can lead some cells to shift to a new metabolic
steady-state flux distribution. Indeed, mathematical models implementing bistability
are proposed to explain these experimental observations, in some cases involving
transcriptional feedback in addition to metabolic dynamics (Kotte et al., 2014;
Ozbudak et al., 2004; Solopova et al., 2014), and in other cases just the metabolic
dynamics (Planqué et al., 2014).

In terms of bistability arising solely from metabolic system dynamics, there
have been many theoretical studies indicating the possibility of bistability within
simple enzymatic reaction systems (Fig. 3a). For example, bistability is shown to
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Fig. 3 Two cyclic reaction motifs and their corresponding dynamics. Note that such cyclic
reaction motifs are readily found in natural metabolic systems, and in particular for reactions
involving NADT/NADH-linked dehyrogenases (e.g. isocitrate and dihydrolipoyl dehydrogenases)
and kinase-phosphatase pairs (e.g. phosphofructokinase—fructosebiphosphate pair). Reaction
motifs are shown as cartoons with labelled circles representing substrate (S), product (P) and
enzymes (E; and Ep). (a) Substrate (S) is converted into product (P) and then back again by
two different enzymes (E; and E;). These two enzymatic reactions can involve additional and
different substrates and products (not shown) such that thermodynamic feasibility of the cycle is
ensured. The activity of E; is substrate inhibited, that is, high concentrations of substrate reduce
the rate of substrate to product conversion. Such a motif can display bistability under certain
parameter conditions as shown in the subsequent panels. The middle panel shows the steady-state
concentration of the substrate against the catalytic constant for E (kcat), while the last panel shows
the time evolution of the substrate concentration, simulated from different starting conditions. (b)
The same reaction motif as in (a), with the addition of flux into substrate from an external reservoir
or upstream reaction (not shown) and flux out from the product into a downstream reaction (not
shown). In this case, substrate concentration may oscillate within certain parameter regimes as
shown in the subsequent panels. The first panel shows the steady-state concentration of product
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be possible in systems of few coupled enzymatic reactions (Edelstein, 1971; Reich
& Sel’kov, 1981). A particular ‘reaction motif” that has been studied extensively is
a two-enzyme cyclic reaction system, where a substrate is converted into a product
and then back again, with both forward and backward reactions usually involving
different co-substrates. It is common that the enzyme catalysing the forward reaction
is regulated through substrate inhibition or substrate inhibition coupled with product
activation (Hervagault & Canu, 1987; Cimino & Hervagault, 1990; Simonet et al.,
1996; Guidi & Goldbeter, 1998; Mulukutla et al., 2014). This motif is found in
several locations within metabolism, particularly around dehydrogeneases such as
lactate dehydrogenase (Simonet et al., 1996), and kinase/phosphatase pairs such
as those involved around fructose-6-phosphate (Mulukutla et al., 2014). These
reactions convert different metabolites back and forth, using the NAD*/NADH or
ADP/ATP pairs as reaction partners. The theoretical findings from such cyclic reac-
tion models were further supported by several in vitro re-constitution experiments
that confirmed bistability experimentally and that were performed with different
pyruvate kinase, lactate dehydrogenase, and isocitrate dehydrogenase enzymes
and their corresponding partners in creating cyclic reaction schemes (Cimino &
Hervagault, 1990; Simonet et al., 1996; Guidi et al., 1998).

In addition to bistability, threshold dynamics known as ultrasensitivity can arise
from metabolic branching points (LaPorte et al., 1984), and can also lead to
heterogeneities in metabolic phenotypes. Both ultrasensitivity and bistability are
manifested by nonlinear ‘input—output’ relations, where the output of a system can
change its steady-state value abruptly at a threshold value of a specific parameter of
the system (Fig. 3a). Thus, if these dynamics are coupled with intrinsic or external
noise in a relevant parameter across a population of cells, heterogenous metabolic
outputs and cellular phenotypes can be observed. In this context, it is notable
that significant level of noise or variance is seen in several metabolic parameters,
including sugar uptake (Nikolic et al., 2013, 2017), ATP levels (Yaginuma et al.,
2014), and expression levels of the enzymes involved in glycolysis and the TCA
cycle (Rosenthal et al., 2018).

The same basic models that show bistable behaviour (as discussed above) can
readily be extended with in- and out-fluxes of involved metabolites, to display
oscillations (Fig. 3b) (Higgins, 1964; Sel’kov, 1968; Guidi & Goldbeter, 1998, 2000;
Goldbeter & Guilmot, 1996). While these theoretical demonstrations of specific
enzymatic schemes leading to oscillations have not been explored in detail in vitro,
metabolic oscillations are readily observed both in vivo (Satroutdinov et al., 1992;
Richard et al., 1993, 1996; Keulers et al., 1996; Sohn et al., 2000; Wittmann et
al., 2005; Dodd & Kralj, 2017; Papagiannakis et al., 2017) and in situ, with cell
extracts (Boiteux et al., 1975; Frenkel, 1968; Chance et al., 1964). In the latter case,
both damped and sustained oscillations are observed, usually with a phase ranging
from few to tens of minutes. It is possible that these oscillations relate to artificial
changes in ATP dynamics arising from cell extract preparations (Frenkel, 1968),
however, the fact that oscillations could be entrained by controlled glucose additions
(Boiteux et al., 1975), show that there is an inherent ability for oscillatory dynamics
in the underpinning enzymatic system. This ability is suggested to be linked



An Evolutionary Systems Biology View on Metabolic System Structure and Dynamics 175

to the enzyme phosphofructokinase (PFK), which catalyses the phosphorylation
of fructose-6-phosphate into fructose-diphosphate (Laurent et al., 1979). Several
mathematical models of this enzymatic reaction, and incorporating the observed
allosteric regulation of PFK both by its substrates and products, confirm the
possibility of sustained oscillations (Higgins, 1964; Sel’kov, 1968; Goldbeter &
Lefever, 1972).

In the case of intact cells, oscillatory dynamics are observed to occur within the
central carbon pathways and displaying a phase of tens of minutes (Satroutdinov
et al., 1992) up to several hours (Wittmann et al., 2005; Papagiannakis et al.,
2017). Metabolic oscillations were demonstrated at single-cell level and are found
to be autonomous but coupled with cell cycle oscillations (Papagiannakis et al.,
2017). Additional studies across cell populations found that cells can synchronise
metabolic oscillations under some conditions (Satroutdinov et al., 1992; Richard
et al.,, 1993), and proposed several possible mediators including acetaldehyde,
hydrogen sulphide, carbon dioxide, and pH (Richard et al., 1996; Keulers et al.,
1996; Sohn et al., 2000; Dodd & Kralj, 2017). Models, involving some of these
proposed synchronisation molecules, were also developed (Wolf & Heinrich, 2000;
Wolf et al., 2001) and could reproduce experimental findings.

4 Evolutionary and Physical Drivers (and Constraints)
on Metabolic Systems

We have highlighted, so far, a diverse range of structural and dynamical features of
metabolism. We would argue that despite this accumulated wealth of information,
we still lack a predictive understanding of metabolism at a systems level. For
example, for many of the observed dynamics, it is not clear what their causative
mechanisms are and how they could be influenced with external and internal
perturbations. Additionally, for many of the observed structural features, we do
not know what their functional significance are. Answering these open questions,
as well as better conceptualising metabolic systems and devising new means to
influencing their behaviour can benefit from identification of evolutionary drivers
and constraints. While we have alluded to specific evolutionary arguments and
studies in the above sections on observed properties, here we would like to
summarise additional evolutionary and biophysical drivers and constraints relating
to metabolism.

4.1 Thermodynamics

As collections of chemical reactions, metabolic systems must obey the laws of
thermodynamics (Alberty, 2005). An active metabolic system remains away from
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thermodynamic equilibrium through interactions of cells with external energy
sources including molecular, thermal or pH gradients, and photo radiation, and
as such, metabolism and its link to cellular growth can be described through the
formalisms of nonequilibrium thermodynamics (Cannon & Baker, 2017; Westerhoff
et al., 1983; Hellingwerf et al., 1982; Desmond-Le Quéméner & Bouchez, 2014;
Goldbeter, 2018). Thus, considering thermodynamics-based ideas and criteria can
provide insights into the evolution and present organisation of metabolic systems.
For example, it has been shown that the utilisation of low-energy reactions that
are more prone to thermodynamic inhibition due to product accumulation can
allow relaxation of the ecological competitive-exclusion principle, and lead to co-
existence of diverse species implementing different metabolic conversions, starting
from a single substrate (Grosskopf & Soyer, 2016). Such low-energy reactions
are present within cellular metabolism itself (Fig. 4), suggesting that metabolic
pathway diversification could have evolved as a way to overcome thermodynamic
bottlenecks. Other studies made similar suggestions for thermodynamics playing a
key role in determining the overall organisation of cellular metabolism (Bar-Even
et al., 2012a, b) and metabolically interacting multiple species (Vallino, 2010).
In the latter case, computational simulations showed that applying the theory of
‘entropy maximisation’ in a way such that entropy production is maximised in a toy
metabolic model over a time span and across a varying environment, results in a
system behaviour similar to that observed from experimental microbial microcosms
(Vallino, 2010). It remains to be seen if this type of optimisation can also explain
the organisation of cellular metabolism or not.

Besides its possible role in shaping metabolic system organisation, thermo-
dynamic constraints could also be directly influencing their temporal dynamics.
Evidence for this possibility comes from the observation that many reactions
within central carbon metabolism have free energies of reaction close to zero
(Miller & Smith-Magowan, 1990; see also Fig. 4 legend). These reactions can
become thermodynamic bottlenecks or reverse pathway flux direction under certain
conditions (Gonzdlez-Cabaleiro et al., 2013; Dauner et al., 2001), thereby becoming
influencing points for metabolic system dynamics. Thus, a combination of mea-
suring metabolic concentrations and assessing reaction thermodynamics can allow
an understanding of metabolic fluxes within a system, or conditions for enabling
a certain flux distribution (Kiimmel et al., 2006; Bennett et al., 2009; Noor et al.,
2014). It is also possible that thermodynamic limitations under certain conditions
can serve a regulatory or feedback role. For example, it is indicated that some
proportion of observed flux shifts with changing carbon sources are explained by
changes in reaction thermodynamics (Gerosa et al., 2015) and the excretion or
consumption of acetate can be thermodynamically controlled by external acetate
concentration (Enjalbert et al., 2017).
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Fig. 4 Frequency histogram showing the standard reduction potentials (at pH = 7) of a set of
metabolic redox half-reactions among a select set of 140 metabolites. This set of metabolites was
compiled by Thauer (1977) along with their standard free energies of formation (at pH = 7).
Using this set, we have computationally generated all possible atom balanced reduction half-
reactions among the 140 metabolites (a total of 14,563 reactions) and computed the standard
reduction potential for each reaction from the standard free energies of formation of the constituting
metabolites and the number of electrons involved. The mean reduction potential of these half-
reactions was found to be —272.03 mV (red dashed line). While the presented results contain
both biologically realised and unrealised reactions, it is interesting to note that the mean of
the distribution is close to the reduction potential of the NAD1/NADH pair at —320 mV. Four
examples of biologically observed reactions are indicated on the distribution, at their corresponding
standard reduction potentials; calculated values according to the presented approach are {—517,
—431, 281, 815 mV}, while corresponding values from the literature are {—500, —420, 300,
820 mV} (Voet et al., 2013). Note that higher (more positive) values of standard reduction potentials
indicate metabolites affinity for electrons, i.e. their tendency to be reduced in a redox reaction.
Thus, half-reactions with more negative (positive) reduction potentials have a tendency to run in
the oxidation (reduction) direction
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4.2 Biomass and Energy Production

The connection between metabolism and the production of cell constituents (i.e.
biomass) is clear and well-formulated (Neidhardt et al., 1990). This clear connection
has led to a dominant evolutionary view on metabolism that puts it as a servant to
the cell and argues that selection for cells’ proliferation dominates the evolution
of metabolism. This view has led to the development of the commonly used stoi-
chiometric modelling through flux balance analysis (FBA), which uses optimisation
for biomass yield (on a given substrate) as its basis (Price et al., 2004). Alternative
optimality criteria for FBA has also been formulated, but these also assume links
to biomass formation; maximisation of ATP yield (Schuster et al., 2008; Schuetz
et al., 2007) and minimisation of enzyme investment (i.e. total flux in the FBA
context) along with biomass maximisation (Holzhiitter, 2004). The latter idea has
recently given rise to the Resource Balance Analysis (RBA), where the focus is
still the optimisation of biomass production but considering not only metabolic flux
constraints but also constraints arising from protein allocation to different cellular
processes including transcription and house-keeping (Goelzer & Fromion, 2017).

Optimality ideas are also used to explore the biochemically feasible space of
reactions using both kinetic simulations and graph theoretical approaches and to see
if observed metabolic pathways are superior to alternatives in terms of supporting
cellular growth. Both kinetic studies using optimality analysis and the simulation of
feasible possible pathways indicated that glycolysis represents an optimal solution
for maximising ATP flux (Heinrich et al., 1997; Court et al., 2015). Graph theoretical
approaches suggested that the central carbon pathways represent enzymatically
minimal routes among the different metabolites that act as precursors to biomass
(Noor et al., 2010), and that the pentose-phosphate pathway represent the most
enzyme-efficient solution to the sugar conversion it implements (Meléndez-Hevia &
Isidoro, 1985). Enzyme cost minimisation with biomass optimisation, as used in the
RBA approach, is also used to explain the presence of enzymatically different, but
seemingly functionally redundant pathways in central metabolism, in particular, the
glycolytic Embden—Meyerhoff—Parnass and Entner—Doudoroff pathways (Flamholz
et al., 2013). These pathways are shown to require different levels of enzyme
investment for achieving the same flux, a point that is used to argue that their
evolution was driven for a requirement to sustain efficient biomass formation under
environmental conditions that can support different levels of protein production
(Flamholz et al., 2013). Following on from these findings, it was shown that
when a metabolic system is simultaneously optimised for maximum flux and
minimal enzyme investment, the resulting flux distributions correspond to so-called
elementary flux modes (Wortel et al., 2014; Miiller et al., 2014), which are paths
through the metabolic system that have minimal enzymatic steps and that can sustain
the required metabolic conversion under steady-state conditions (Schuster et al.,
2000). In a recent study, these elementary flux modes are enumerated and analysed
for their biomass yield and the growth rate that they can sustain when assuming
minimal enzyme investment (Wortel et al., 2018).
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4.3 Maintenance of Metabolic Gradients and Physicochemical
Constraints

Selection alone for more or faster biomass formation could not have been a key
driver of early metabolic systems that must have predated cells (or at least cells as
we know them today). Instead, these systems must have been directly born out of
nonequilibrium thermodynamics emerging from chemical gradients (Branscomb &
Russell, 2013). Thus, the presence and maintenance of these gradients, as well as
the chemicophysical properties of associated metabolites can still be relevant and
informative for the current-day metabolic systems.

Stabilisation of mechanisms that can generate extracellular entropic gradients
on which metabolism can operate is considered an important prerequisite for
the emergence of metabolism (Branscomb & Russell, 2013). Extracellular spatial
organisations that can allow metabolic systems to operate on chemical gradients
are argued not to readily form in a well-mixed ‘primordial soups’ based on
considerations of diffusion rates (Barge et al., 2017; Branscomb & Russell, 2013).
A possible solution to this problem is mounds of hydrothermal vents that can sustain
metabolic gradients (Branscomb & Russell, 2013; Martin & Russell, 2007). There is
also a possible role for self-forming coacervates, a type of phase separation driven
by charged molecules, that could maintain short-scale metabolic gradients due to
different diffusion rates through the bulk and coacervate phases (Oparin, 1965). In
this context, it is interesting to note that synthetic coacervates are shown to be able
to harbour enzymatic processes (Nakashima et al., 2018) and coacervate-like phase
separations are observed in current-day cells (Nott et al., 2016).

Adaptation of metabolites into these early cell-like formations (or liquid phases)
and ultimately into cellular metabolism could have been driven by their physic-
ochemical properties. For example, metabolites that are more readily involved
in the formation of coacervates or that are readily trapped in them, might end
up being locked-in into later metabolic systems. From this perspective, it is
interesting to note that the analysis of physicochemical properties of current-day
metabolites indicate some trends in terms of reactivity, solubility, and diffusion
across membranes (Morowitz et al., 2002; Srinivasan & Morowitz, 2009; Bar-Even
et al., 2012a, b), there seems to be relations between metabolites’ connectivity in
graph representations of metabolism and their polarity (Zhu et al., 2011), and that
simple physicochemical pruning rules applied on the available chemical space can
lead to biologically relevant subsets of molecules (Morowitz et al., 2002).

If the early evolution of metabolic systems involved a phase-separated, cell-
like environment, than there must have been mechanisms to ensure maintaining
a metabolic gradient across such an environment. It has been suggested that
maintaining such a gradient in light of fluctuating external metabolite concentrations
can be ensured by cyclic reaction systems (Hatakeyama & Furusawa, 2017; Reich &
Sel’kov, 1981). Such cyclic systems are highly prevalent in current-day metabolism
in form many coupled reactions that use the same conserved moieties such as
NAD/NADH and ADP/ATP in opposing directions (see Fig. 3).
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5 Conclusion and Future Outlook

The extensive biochemical and genetic study of metabolism provided us with
detailed information on metabolic systems. While this information can and has
been condensed to graphical representations, graph theoretical analyses of metabolic
systems have not necessarily yielded clear insights to structure—function relations
and predictive capabilities. It is indeed possible that many of the structural features
of metabolic networks are by-products of biochemical and biophysical drivers.
Indeed, when using biochemically appropriate representation and randomisation
schemes, the significance of the gross structural properties of metabolic networks
are highly dependent on the exact null model utilised (Basler et al., 2012; Zhou &
Nakhleh, 2011). When compared to similarly complex abiotic chemical systems,
many structural features of metabolism are found not to be unique (Holme et al.,
2011), suggesting that there is not necessarily any functional (or evolutionary)
significance to these properties.

In terms of dynamics, most focus has been on modelling pathway dynamics,
while considering them as isolated entities. This divide-and-conquer type approach
might be justified due to the curse of dimensionality and lack of detailed kinetic
parameters associated with large-scale metabolic models, yet, we argue that it will
eventually be limited because metabolism is so highly interconnected. Thus, we
advocate a push for analysis of models that can take into account the connected
nature of metabolism, especially through conserved moieties such as redox and
energy carriers. It is possible that simulations with tractable toy models (e.g.
combining metabolism with other cellular processes; Molenaar et al., 2009; Weisse
et al., 2015), or new approaches, such as statistical thermodynamics applied to
metabolic dynamics (Cannon, 2014; Thomas et al., 2014), can provide headways
in this direction.

It has been a common practice to conceptualise metabolism within an adaptive
evolutionary framework and see it as a servant to achieving optimal biomass
production. Within this view, it is proposed that pathway dynamics can be under-
stood through supply—demand type relations (van Heerden et al., 2015; Hofmeyr
& Cornish-Bowden, 2000), where cell growth determines demand for biomass
precursors (and ATP), which is then delivered through pathways such as glycolysis.
This adaptive view has also given rise to the development of whole-genome scale
stoichiometric models of metabolism and their study through FBA and biomass
optimisation. In our view, and as noted also by others (Schuetz et al., 2007; Schuster
et al., 2008), this strong reliance on an adaptive evolutionary argument and ad hoc
constraints limits the FBA approach. Efforts are now being made to improve FBA’s
predictive power with the development of flux rate constraints that are based on
biophysical arguments (Mori et al., 2016), and with the development of approaches
that enable sampling of larger number of possible flux distributions rather than using
linear optimisation on a single objective to obtain a single flux distribution (Binns et
al., 2015). The former point is also being addressed with the recently developed
RBA, which assumes metabolism to be simultaneously optimised for maximum
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biomass production at minimum enzyme investment (Wortel et al., 2018; Goelzer &
Fromion, 2017; Flamholz et al., 2013; Schuster et al., 2011; Molenaar et al., 2009;
Holzhiitter, 2004).

It remains to be verified if selection for fast or high-yield biomass production
is, or was, a dominant force on the evolution of metabolism and if the issue
of enzyme allocation is a widespread and evolutionarily relevant limitation. For
example, while unicellular organisms are shown to evolve rapidly under selection
for faster growth, selection for individual cell proliferation is certainly not the
dominant factor in the case of multicellular organisms, where cell collectives have
to limit their growth to achieve developmental constraints and requirements. Even in
the case of unicellular organisms, many environments only support extremely slow
growth (Jgrgensen & Marshall, 2015) and selection for fast growth might never
become relevant. Similarly, the argument that minimisation of enzyme investment
being a strong factor shaping metabolic system evolution needs to be considered
carefully. While it is likely that cellular protein content has an upper bound, it is
less clear if cells are close to this upper bound to the extent that limits on enzyme
amount would directly influence metabolic fluxes, or if such effects would operate
equally for every enzyme or under different conditions (Brown, 1991). While some
studies indicate control architectures for transcriptional regulation of enzyme levels
to confer to optimality criteria (Chubukov et al., 2012), these were confined to
linear, biosynthesis pathways within metabolism. In contrast, global analyses of
metabolic systems suggest that enzyme levels are not necessarily tightly regulated as
metabolic fluxes change with changing conditions. For example, proteomics studies
have found that levels of different enzymes do not change as metabolic fluxes shift
(Goel et al., 2015; Metzl-Raz et al., 2017) and several experimental analysis pointed
to the importance of allosteric and thermodynamic regulation (Rossell et al., 2006;
Chubukov et al., 2013; Link et al., 2013; Gerosa et al., 2015; Machado et al., 2015;
Buffing et al., 2018) rather than transcriptional regulation of enzyme levels.

It has also been shown that the commonly pre-assumed tight linkage between
energy harvesting through catabolic pathways and biomass formation through
anabolic pathways is not necessarily observed and there are many instances of
significant ‘energy spilling’ (Russell & Cook, 1995; Dauner et al., 2001). In its
simplest form, such spilling can happen, and some of the harvested energy is
‘lost’ by the cell to drive chemical reactions. It has been largely documented
that the amount of harvested energy not converted into biomass is correlated to
some properties of the anabolic pathways, across many taxa and growth conditions
(Heijnen et al., 1992; von Stockar et al., 2006; Roden & Jin, 2011; Smeaton & Van
Cappellen, 2018) and this observed link has been used to couple the stoichiometry
of energy harvest and biomass synthesis, and successfully predict population growth
yields (Gonzélez-Cabaleiro et al., 2015). However, a mechanistic understanding of
this correlation remains elusive.

Considering links to the pre-cellular metabolic systems, an alternative evolution-
ary view can be formulated that considers metabolic evolution as primarily being
shaped and constrained by thermodynamics and physicochemical factors (Vallino,
2010; Branscomb & Russell, 2013). Thus, these factors need to be included in
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formulating both evolutionary ideas and dynamical models of metabolism. While
steady-state, stoichiometric models tried to include reaction thermodynamics as
additional constraints in their optimisation formulations (Flamholz et al., 2013;
Henry et al.,, 2007; Hoppe et al., 2007), dynamical simulations incorporating
thermodynamics are only recently being started to be explored in the context of
metabolism (Cannon, 2014; Cannon & Baker, 2017; Cannon et al., 2018; Gonzélez-
Cabaleiro et al., 2013, 2015; Thomas et al., 2014).

We argue that it will be productive to reconcile the two evolutionary views on
metabolism; metabolism as a highly regulated system optimised solely for cell
growth vs. a self-organising system governed by thermodynamics and biophysical
factors. It is possible, for example, to consider that thermodynamically driven and
self-organising, early metabolic systems could have been stabilised by cell-like
structures, which could have then helped stabilise and perpetuate those metabolic
systems. There could be remnants of such feedbacks still evident in current-day
metabolic systems, where features that have emerged (and maintained) solely
due to thermodynamic and other physicochemical drivers are intertwined with
those that resulted from selection for increased biomass production rate or yield.
To this end, we note that considering metabolism as composed of interlinked
catabolic and anabolic pathways within a thermodynamic framework allows a
successful empirical description of cell growth and biomass yield (von Stockar et
al., 2006), and in certain cases, growth dynamics (Gonzélez-Cabaleiro et al., 2015).
Similarly, explaining metabolic regulation seems to benefit from the synthesis of
regulatory mechanisms based solely on metabolite-driven effects, and those based
on transcriptional control of enzyme levels (Chubukov et al., 2014).

While many ideas and studies about metabolism concerns steady-state fluxes,
it is clear that metabolic dynamics are highly nonlinear and can readily give rise
to bistability and non-steady-state dynamics such as oscillations. Both of these
dynamical features are linked to higher functionalities, with bistability implicated
in dynamic switching of metabolic fluxes and oscillations linked to the regulation
of cell cycle (Lloyd et al., 2003; Papagiannakis et al., 2017), management of
superoxide generation during growth (Murray et al., 2007), and resilience and
communication in multicellular structures such as biofilms (Liu et al., 2015). Thus,
further study of metabolic dynamics, and their molecular driving mechanisms, can
provide important insights on how higher-level cellular and multicellular behaviours
arise and are maintained through metabolism. While it is possible that the emergence
of oscillations is intertwined with bistability (Martinez-Corral et al., 2018), one can
already note that the same metabolic ‘motif’ that can mediate bistability can also
readily be extended with additional features to mediate oscillations (as discussed
above). Interestingly, and as a side note, the association of simple metabolic
motifs with potentially complex nonlinear dynamics led to the suggestion that
engineering of enzymatic dynamics could be an ideal route for implementing
specific dynamics with biological systems (Arkin & Ross, 1994). Subsequent focus
in the then emerging field of synthetic biology, however, focused on engineering
of transcriptional regulation. It would be useful, in our view, to now reconsider
enzymatic systems from an engineering perspective, to use them to implement
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specific system dynamics (such as bistability). This would be facilitated by new
mathematical and experimental tools (such as ability to create multidomain proteins)
and by further exploring the biochemical and kinetic determinants of enzyme
reaction motifs that enable in them specific dynamics. In this context, identifying
allosteric interactions, as being done with emerging proteomic approaches (Li et al.,
2010; Piazza et al., 2018), and considering the resulting reaction motifs from these
interactions (Reich & Sel’kov, 1981) can allow us to better understand the role of
allosteric regulation in metabolic system evolution, either as a positive factor or as
something to be avoided (Alam et al., 2017). Finally, an electrochemical view on
metabolism (Berry, 1981; Zerfass et al., 2018) can allow interfacing and controlling
metabolism through such reaction motifs, for example, by controlling redox states
of conserved moieties to drive the dynamics of interlinked reaction cycles.

Experimental analysis of metabolic systems is constantly benefiting from the
application of omics and biophysical techniques, including metabolomics and imag-
ing. We argue that, as these new techniques develop, old ideas need also be revisited
with new tools. For example, thermodynamic information on many reactions within
metabolism are not available, and measurement of key physiological parameters
such as pH, respiration rate, or ATP/ADP ratio are still mostly lacking at the
single-cell level. Such single-cell measurements can be essential to develop better
understanding of cellular metabolism, which is implicated to show heterogeneities
within clonal populations (Nikolic et al., 2013, 2017; Yaginuma et al., 2014;
Rosenthal et al., 2018) and discover the key trade-offs arising from metabolic system
structure and dynamics. Single-cell analyses can also allow identifying metabolic
interactions within populations (Rosenthal et al., 2018), especially in populations
with an inherent structure, such as biofilms and tissue. This, in turn, can allow us to
make connections between metabolic dynamics and emergence of division of labour
and multicellularity (Liu et al., 2015). Within spatially organised systems, the role
of diffusion of metabolites, especially charged ones, across or within membranes
needs to be considered, as they can give rise to the formulation of new modes of
communication such as metabolite-driven electrochemical signalling (Prindle et al.,
2015). Finally, the analysis of metabolic systems under conditions of no growth,
but sustained viability, is another under-studied area, which can give better insights
into the connections between metabolism and other physiological processes, and in
particular membrane potential and cell division.

Evolutionary thinking can provide a canvas on which to evaluate findings
from metabolic systems and draw up new experiments. More specifically, the
use of evolutionary thinking and experiments for the identification of selective
trade-offs, physicochemical constraints, and ecology-evolutionary feedbacks can
provide insights into current-day metabolic systems. For example, the consideration
of possible feedbacks between ecological and evolutionary dynamics can help
us better understand the emergence of metabolic interactions within microbial
communities (Grosskopf et al., 2016). The consideration of trade-offs between
different selectable traits, on the other hand, can allow proposition of multistable
metabolic behaviours that might become embedded in the metabolism of different
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cell types in multicellular organisms. The advancement of an evolutionary thinking
in metabolic research can thus bear important insights into the future.
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