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Abstract In this chapter, we review and compare existing theoretical models of
the relationship between genetic and phenotypic variation or genotype-phenotype
map (GPM). By doing that, we introduce the reader to concepts and assumptions
of evolutionary genetics and contrast them with concepts and models coming
from developmental biology. Although these two approaches can be regarded as
complementary to study the same underlying problem, phenotypic variation and
evolution, they contradict each other in a number of ways.

The evolutionary genetics models on the GPM consider genetic interactions but
not epigenetic interactions. This simplicity has been used to argue that they are the
most general (Wagner, Trends Ecol Evol 26: 577–584, 2011). We argue, in contrast,
that epigenetic factors are crucial to understand the GPM. We understand epigenetic
factors as nongenetic factors that are instrumental in building the phenotype during
development (Waddington, Beyond reductionism, 1968). We argue that models
including epigenetic factors exhibit features found in real GPMs that are not found
in purely genetic models. Since these features are widely found in real GPMs,
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no model can be considered general without those and, then, models including
epigenetic factors are more general than purely genetic models, even when the
details of the former are specific of certain types of phenotypes.

1 Introduction

The twentieth century can be seen as the century of genetics. We have learned that
phenotypes and most of their variation have, ultimately, a specific genetic basis. We
know what is at the bottom, the genome, and what is at the top, the phenome, but we
do not understand well enough the processes in between to explain which changes
at the genetic level lead to which specific changes at the phenotypic level (and why
to those changes and not to others). It is our perception, and that of many others
(e.g., Houle et al., 2010), that early twenty-first century biology would be, largely,
about understanding the genotype-phenotype map.

The genotype-phenotype map, or GPM, is simply the pattern of association
between each specific phenotypic variant and its underlying genetic variant. Its
domain of application is not fixed and, thus, one can talk of the GPM of an organism,
a part of an organism or even of a gene network affecting some aspect of the
phenotype.

A central tenet of developmental evolutionary biology is that the GPM is, at
least for the case of morphology, determined by embryonic development (Alberch,
1991). By morphology, we mean the distribution of cells and extracellular matrix,
ECM, in space. During the process of embryonic development, a single zygotic
cell gives rise to a functional organism characterized by a complex distribution
of cell types in space. If one defines morphology as the distribution of cells and
extracellular matrix in space, it follows that cells have to do things to change their
position from the early embryo to the adult. These things are the cell behaviors (cell
division, cell adhesion, cell contraction, etc.) and interactions, either mechanical or
chemical through cell–cell signaling. In other words, specific morphologies arise
in development because individual cells do specific things (e.g., divide, die, secrete
ECM) in specific places and times along development. Genes and gene networks
have an effect on morphology because they affect the spatiotemporal regulation of
these cell behaviors and interactions (Forgacs & Newman, 2005).

There is a complex interdependence between gene networks, cell behaviors, and
cell interactions (Salazar-Ciudad et al., 2003). On one hand, some of the gene
products in networks are extracellular diffusible signals. These can alter the behavior
and network dynamics of the neighboring cells that receive them. On the other
hand, changes in cell behaviors and cell mechanical properties lead to changes
in mechanical interactions between cells. These lead to changes in the shape of
the space in which these signals are diffusing (i.e., the embryo morphology). By
affecting this shape, biomechanics indirectly affect the spatial distribution of signals
and then which cells are receiving which extracellular signals. This, in turn, affects
which genes are expressed and where. In that sense, gene networks, signaling, and
biomechanics reciprocally affect each other.
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As a result of these interdependent interactions between gene networks and
cellular processes, gene expression, cell location, cell shape and ECM change over
time and space to produce the complex morphology of the adult.

Since morphology arises through complex networks of gene, cell, and tissue-
level interactions, it follows that single genes do not have intrinsic morphological
effects. In other words, no individual gene codes, or has the information, for a
specific phenotype or phenotypic variant. On the contrary, the morphological effect
of a gene, and by extension of genetic variation in it, is totally dependent on
the gene networks in which it is embedded and on the effect of these networks
on the cell behaviors and interactions by which morphology is built (Oster &
Alberch, 1981; Alberch, 1991). We call a gene network regulating cell behaviors and
mechanical properties a developmental mechanism (Salazar-Ciudad et al., 2003).
The cell behaviors and properties are also part of the developmental mechanism.

Natural selection is a crucial factor determining the direction of evolutionary
change. Natural selection, however, can only act by eliminating phenotypic variation
in each generation. Within an individual, the ultimate cause of phenotypic variation
is genetic and environmental variation (Griffiths, 2002). Which phenotypic variation
will arise from such genetic and environmental variation, however, is determined
by development since, as we come to discuss, development has a crucial role in
determining the GPM. It follows then that development, in addition to natural
selection, is crucial to understand the direction of phenotypic evolution (de Beer,
1930; Goldschmidt, 1940; Waddington, 1957; Alberch, 1982; Arthur, 2001; Salazar-
Ciudad, 2006a), at least for the case of morphological phenotypes.

In this chapter, we review existing models of the GPM. We aim to show that many
prevailing genetic models, although claiming to be general, fail to recreate some
fundamental properties of real GPMs. We will argue that this is largely because
they do not consider epigenetic factors (e.g., cell behaviors). Instead, phenotypes
are often conceptualized as arising purely from gene product interactions or even
from genes themselves. We will argue that it is only because of epigenetic factors
that complex multicellular phenotypes, or even just phenotypes, are possible at all.
Based on these premises, we will also argue that models including epigenetic factors
are not only more realistic, they also uncover general characteristics of real GPMs
that are simply invisible to purely genetic models.

In this article, we will focus on the GPMs for morphological phenotypes but
we will also discuss similarities between these GPMs and those studied at other
phenotypic levels. The article is arranged in sections: a section describing what we
mean by epigenetic factors, one section per each kind of GPM model and sections
describing each main difference between the models that include epigenetic factors
and the models that do not.
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2 Epigenesis and Epigenetic Factors

The concept of epigenetic factors has two meanings. An epigenetic factor can be
anything that is not in the DNA sequence (such as the patterns of methylation on
the DNA) but that is heritable and has a causal role in development, physiology or
any other biological process. Epigenetic is also the adjective of epigenesis (Haig,
2004) and, thus, epigenetic factor would be any “factor” related to epigenesis.
Epigenesis is one of the two alternative views Aristotle proposed about embryonic
development. Epigenesis is the view that during development new organization
arises from previously existing organization that was not equal or trivially similar
to it (Jablonka & Lamb, 2005; Müller, 2007). The other view is preformationism:
the view that nothing really new arises in development and that most body parts and
organization are already present, at a smaller scale, within the gametes.

At the most general conceptual level, development can be described as the
process by which specific arrangements of cell types, what we call developmental
patterns (Salazar-Ciudad et al., 2003), transform into other developmental patterns.
Over developmental time, these pattern transformations occur constantly and lead
from a simple developmental pattern, the zygote, to a quite complex one, the adult
organism. In that sense, embryonic development is in concordance with Aristotle’s
epigenesis, except that there is something that remains constant during development
and that is faithfully copied between generations: the genotype.

An example of an epigenetic factor, in the epigenesis sense, is the asymmetric
spatial distribution of many proteins and RNAs in the oocytes of many species
(Newman, 2011a). These distributions are relatively simple but most animals have
an asymmetry along the animal-vegetal pole and many of them have also asym-
metries along other axes (Gilbert & Raunio, 1997; Gilbert & Barresi, 2016). These
asymmetries are absolutely required for development, if they are experimentally
disturbed, embryos become spherically symmetric and their development gets
arrested very early (Kandler-Singer & Kalthoff, 1976; Gilbert & Barresi, 2016).
These spatial asymmetries arise from spatial asymmetries present in the gonads
of the parents, typically their cell-level apical-basal asymmetries (Bastock & St
Johnston, 2008), or are transferred to the oocyte from an apical-basally polarized
epithelium through short-range signaling (Neuman-Silberberg & Schupbach, 1993;
Roth & Lynch, 2009).

One may argue that the asymmetries in the mother’s gonads are due to gene
product interactions in the earlier development of the mother. This is indeed the
case, but these asymmetries in the mother’s gonad required also that the oocyte that
gave rise to the mother had the same spatial asymmetries, otherwise, the mother’s
development would have arrested early on. The spatial asymmetries in the oocyte
are, thus, not reducible to gene product interactions. This interdependence between
genetic and spatial epigenetic factors is not exclusive of multicellular organisms, but
applies to all organisms (Jablonka & Lamb, 2005).

Another example of epigenetic factors is the developmental patterns themselves
(see Figs. 1 and 2). Gene product interactions are crucial in determining which
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Fig. 1 Schema of the interplay between genetic and epigenetic factors along successive stages
of organismal development. The top row shows different developmental patterns, different
distributions of cell types in space, from the zygote to the adult of one organism and its parent.
In the case of the zygote, the developmental pattern comes from the asymmetric distribution of
gene products mediated by the mother during gametogenesis. The plot below shows the amount
of genetic and epigenetic accumulated change within an individual and between generations in
respect to the zygote. The genotype does not change per se during development, it is the interplay
between it and the epigenetic factors (solid and dashed arrows) that builds the developing organism.
This interaction (the arrows) should be understood, as discussed in the text, as different epigenetic
factors affecting where and when different genes get expressed, while at the same time, which
epigenetic factors are encountered in each time and place in the embryo depends on previous
genetic and epigenetic interactions (as the arrows abstractly depict)

developmental patterns arise from which previous developmental patterns, but so
are these previous developmental patterns themselves. The same developmental
mechanism (i.e., gene network plus cell behaviors and mechanical properties) can
lead to different final developmental patterns depending on which developmental
pattern it acts on (Salazar-Ciudad et al., 2000, 2003). In each developmental stage,
existing developmental patterns depend on previous gene product interactions acting
on previous developmental patterns. Thus, these patterns, starting from the asymme-
tries in the oocyte, are both a consequence and a cause of developmental dynamics.
In this process, genes and epigenetic factors are intricately interdependent, but not
reducible to each other.

Other epigenetic factors relevant for embryonic development include the
mechanical properties of cell collectives (Newman & Comper, 1990; Newman
& Müller, 2000) and basic cell behaviors such as cell division, cell adhesion,
apoptosis, extracellular signal secretion, etc. (Salazar-Ciudad et al., 2003). All these
factors are often regulated by gene products, but their existence is not due to, or
merely reducible to, genes or genetic interactions. In fact, many cells and tissue
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Fig. 2 Example of a genetic-epigenetic model. The figure shows, in the left, an initial develop-
mental pattern the model takes as input and the developmental mechanism it implements, top. In
the right, the resulting developmental pattern is shown (the output of the model). In the left, each
purple sphere represents the apical side of an epithelial cell and each sphere in blue the basal side.
In the developmental mechanism, positive gene regulation is shown by green arrows and negative
gene regulation by red arrows. Each sphere is a different gene product, gene product in red can
diffuse between cells. In the final developmental pattern, the colors show the expression of gene
2 in the developmental mechanism (yellow for the maximal expression and blue for the minimal
expression). The model is implemented in EmbryoMaker (Marin-Riera et al., 2016)

mechanical properties that are relevant to understand morphogenesis are also found,
in some rudimentary form, in other systems such as in liposomes devoid of proteins
(Newman & Comper, 1990). Gene interactions can then be seen as just a way to
more precisely regulate properties and behaviors that are intrinsic to cell clusters
(Newman & Müller, 2000). Understanding those cell properties and behaviors is
fundamental to understand development, as has been widely discussed (Newman &
Comper, 1990; Beloussov, 1998; Oyama, 2000; Newman, 2011b; Guillot & Lecuit,
2013) under different names and slightly different concepts: epigenetic mechanisms
(Newman & Müller, 2000), soft-matter properties (Newman & Comper, 1990),
developmental resources (Oyama, 2000), phenogenesis (Weiss & Fullerton, 2000),
and epigenotype (Waddington, 1942).

Epigenetic factors are heritable but their variation is usually not (Jablonka &
Lamb, 2005; Salazar-Ciudad, 2008). One could then argue that the epigenetic
factors are not necessary to understand the GPM. After all, the GPM is defined
as the association between genetic variation and phenotypic variation. However, as
we come to explain, genetic and epigenetic factors need to interact for complex
phenotypes and their variation to be possible at all. In other words, genetic variation
does not have phenotypic effects unless it affects some epigenetic factors. Thus, to
understand the phenotypic consequences of a genetic change, and then the GPM,
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the interaction between genetic and epigenetic factors needs to be considered too
(Waddington, 1968; Oster & Alberch, 1981).

3 GPMModels

Models about the GPM coming from an evolutionary genetics tradition do not
consider epigenetic factors (Wagner, 1994; Hansen & Wagner, 2001). In fact, it has
been claimed that these purely genetic models (Wagner, 2011) are the most general
because, allegedly, they make fewer assumptions and do not include epigenetic
factors that are always specific of certain phenotypic levels. In this chapter, we will
argue that purely genetic models are not more general, but more particular because
they do not exhibit some general features of real phenotypic variation and GPMs.
In addition, they make a number of simple but strong assumptions. When these
assumptions are considered explicitly, as we will do in this article, it becomes clear
that the purely genetic models are not more general than the models that consider
epigenetic factors.

4 Mendelian and Quantitative Genetics

The study of the GPM has not been central to evolutionary genetics and, by
extension, to the modern evolutionary synthesis, also called neo-Darwinism (Mayr
& Provine, 1980). Although it was very early recognized (Wright, 1932) that such
a map was likely to be complex, most models in evolutionary genetics assume or
require a simple GPM. Such an assumption may be justified depending on the
questions being addressed. Thus, for example, if the aim is to show that natural
selection can lead to the fixation of some alleles (i.e., some variants of a gene),
then one may ignore the GPM and consider only the average phenotypic effect of
an allele on the phenotype (Fisher, 1930). For more advanced questions, as we will
discuss, this assumption is not tenable.

Evolutionary genetics is based in population genetics. The way the relationship
between genetic and phenotypic variation is understood in population genetics,
is based on Mendelian genetics (Griffiths, 2002). Specific discrete phenotypic
variation was conceived to be associated with some particles in the nucleus, the
genes. Later on, these particles were found to be made of DNA (Griffiths, 2002).
Finding this association is a major achievement of twentieth century biology.
However, it is rarely the case that a discrete phenotypic character can be simply
associated with a gene as in Mendelian genetics. Even in the best cases, there
is substantial penetrance and expressivity: different proportions of the individuals
bearing a gene exhibit the corresponding phenotype and when they do it, they do it
to different degrees.
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Most characters do not depend on one but several genes, i.e., they are polygenic
(Griffiths, 2002). In that case, Mendelian genetics considers that each different
combination of alleles could be associated with a different state in that character,
a different variant phenotype. Mendelian genetics, however, has no way to tell
which these character states would be. In other words, Mendelian genetics can
tell us about the frequency of certain phenotypic states (e.g., a pea being green)
given that those states are statistically associated with specific combinations of
alleles, but it cannot tell us why some alleles are associated with some specific
character states, and it cannot tell us which character states, or phenotypic variation,
are possible (Alberch, 1982). This relevant information has to be found by other
means, i.e., observation or other theories. In essence, genes in Mendelian genetics
are defined based on their statistical association with phenotypic variants. However,
in some of the applications of Mendelian genetics that we will discuss, genes
become understood as actual bearers of the information necessary to build specific
phenotypes and phenotypic variants.

Quantitative genetics is a theory that aims at providing such information.
Quantitative genetics is concerned with the inheritance of quantitative characters or
traits. These are characters that can be described by continuous, rather than discrete,
values (e.g., weight, limb length). Quantitative genetics was originally conceived as
an extension of multilocus (i.e., polygenic) population genetics following the so-
called infinitesimal model (Rice, 2004), that in its turn, was based in Mendelian
genetics. According to this model, each phenotypic trait is determined by the
sum of the phenotypic effect of a large number of Mendelian loci (i.e., genes) of
small quantitative effect on the phenotype. In addition, loci’s phenotypic effects
are supposed to be additive. This means that the phenotypic effect of a locus is
independent from the effect of other loci. Thus, each different allele in a locus
(i.e., each variant of a gene) adds a value to the phenotype independently from
the other alleles in the other loci in the genome. Contrary to what we proposed
in the introduction, then, genes are conceived to have intrinsic phenotypic effects.
Note also that the assumption that the effects of alleles are small and independent
from each other is also a mechanistic assumption on how genes interact in order to
construct the phenotype.

The infinitesimal model leads to a clear view on which phenotypic variation
should be possible by genetic variation. This model is, thus, implicitly a model
about the GPM. Mutations would affect genes and lead to new alleles. These would
have slightly larger or smaller intrinsic phenotypic effects than their non-mutated
version. It is then assumed that the values of phenotypic traits are able to increase
or decrease by the replacement of old alleles by specific new alleles over time. This
simple model implies that, in principle, all quantitative traits should be able to vary
gradually and increase or decrease forever as long as there is selection acting on
them. Since the phenotypic effect of alleles is small and additive (independent) one
is assuming a linear GPM: small genetic changes lead to small phenotypic changes.

In practice, quantitative genetics uses information about the genetic relatedness
between individuals to estimate which proportion of the phenotypic variation
between these individuals is due to shared genetics. This information is based
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on genealogies or on direct information of the genotypes of individuals (such as
in GWAS studies) (Uricchio, 2020). The GPM is conceptualized through the G
matrix, the matrix of covariances between traits due to shared genetics (Lande &
Arnold, 1983). Describing the GPM through covariances is convenient if the GPM
is assumed to be linear. In such an approach, all traits can change indefinitely, but
not all of them are necessarily equally variable. Since some genes may be affecting
several traits at the same time these traits may not be able to vary independently
from each other.

It is important to note that although the quantitative genetics approach is
eminently statistical and claimed to be applicable to any phenotype (Roff, 2007),
the assumption of linearity implies that it should only be accurate when the GPM
is linear. When the GPM is nonlinear, quantitative genetics will still provide
predictions but these would often be inaccurate (Pigliucci, 2006; Milocco & Salazar-
Ciudad, 2020).

There is the general perception that the predictions of quantitative genetics are
experimentally accurate (Roff, 2007). Artificial selection experiments are usually
seen as supporting this perception (Roff, 2007). This evidence, however, exists only
for selection on single traits. Some authors claim that most studies only show that
the quantitative genetics approach works better than nothing since no alternative
approaches are used (Pigliucci, 2006). In addition, more general experiments
selecting for a trait and looking at the response in others or experiments selecting
for multiple traits at the same time are rare. The few studies that attempt that are
sometimes compatible with the expectations of multivariate quantitative genetics,
but some other times they are not (Roff, 2007).

5 Evolutionary Genetics Models on Epistasis

There are several theoretical models that are conceptually related to quantitative
genetics but that explicitly consider that the phenotypic effects of loci depend
on each other, although linearly (Barton & Turelli, 1987; Jones et al., 2004). As
an example, we will discuss one such model in some more detail: Hansen’s and
Wagner’s multilinear model (Hansen & Wagner, 2001). The multilinear model was
developed with the explicit intention of (quoting this original work; Hansen &
Wagner, 2001, p. 76):

The current body of theory in quantitative genetics lacks an operational theory of gene
interaction [ . . . ] The multilinear theory is [ . . . ] the only current suggestion that allows for
a systematic non-statistical way of incorporating gene interactions in quantitative genetic
theory.

The multilinear model bears an assumption about the GPM: The interactions
between gene effects are linear; changing the genetic background for a locus causes
a linear transformation of the effects of all substitutions at this locus. Thus, the
value of each trait is determined by a fixed phenotypic (iy) effect from each locus
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i, defined as the phenotypic change of a substitution in that locus in respect to an
arbitrary reference genotype, and a term multiplying all combinations of phenotypic
effects by an epistatic coefficient ε. This coefficient can be different for each gene
interaction (ijε for two loci interactions, ijkε for three loci interactions, etc.).

x = x0 +
∑

i

iy +
∑

i

∑

j>i

ij εiyj y +
∑

i

∑

j>i

∑

k>j

ijkεiyj yky + . . . (1)

For several traits we have

xa = xa0 +
∑

i

iya +
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i

∑

j>i

∑

b

∑

c

ij εabc
iyb

j yc

+
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i

∑

j>i

∑

k>j

∑

b

∑

c

∑

d

ijkεabcd
iyb

j yc
kyd + . . . (2)

Where a, b, c . . . are the successive traits conforming the phenotype. There
are a number of models that make similar linear assumptions (Zhivotovsky &
Feldman, 1992; Gavrilets & Dejong, 1993; Turelli & Barton, 1994; Nowak et al.,
1997; Wagner et al., 1997). Other than linearity, this model does not propose much
about how the GPM is (i.e., nothing is said about the distribution of the epistatic
coefficients or about whether epistasis happens between two, three or more loci
at the same time). However, the actual applications of the model do take more
detailed assumptions about the GPM: they assume that (Hansen et al., 2006; Fierst
& Hansen, 2010) all epistatic coefficients are equally likely to change by mutation.
In other words, since the coefficients in Eqs. (1) and (2) can acquire any arbitrary
value through mutations, the GPM is totally plastic to change in any direction over
generations. This is a common feature of the models based on quantitative genetics
(Barton & Turelli, 1987; Jones et al., 2004). These models consider that loci’s
phenotypic effects depend on each other but they assume that these dependencies
are free to change, over time, by mutation in any way. This is a sort of second-
order neo-Darwinism: Traits are not assumed to all be equally likely to change as in
the neo-Darwinian approach. There are genetic covariances between traits but these
covariances are free to change in any way by the accumulation of small adaptive
mutations. This is like applying the infinitesimal model to the evolution of the GPM
rather than directly to the evolution of the phenotype (Roff, 2000; Wagner et al.,
2007; Cheverud, 2007; Crow, 2010).

6 Wagner’s Model

Wagner’s purely genetic model (Wagner, 1994) has also been used to study the
evolution of the GPM and its effect on phenotypic evolution (Le Cunff & Pakdaman,
2012; Fierst, 2011; Pinho et al., 2012; Draghi & Whitlock, 2012). In contrast to
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Hansen’s model, this is a nonlinear model in which gene products regulate each
other expression. The phenotype is the level of expression of the genes in the
network.

The level of expression of a gene i in a given time t + 1, Si(t + 1), is a nonlinear
function, σ , of the sum of the regulatory inputs from each other gene j, wij, each
multiplied by the expression of those genes Sj(t).

Si (t + 1) = σ

[
N∑

i=1

wijSj (t)

]
(3)

The σ function is a sigmoidal function that it effectively acts as a threshold: it
gives −1 if its argument is smaller than 0 and 1 if its argument is larger than 0 (and
0 if its argument is zero). The matrix of all wij values effectively determines gene
network topology and the interaction strength between genes.

In Wagner’s model, the number of traits is the same as the number of genes. For
that model to be generally applicable to the GPM, it is required that the phenotype
can be explained, at least in its main features, solely on the bases of gene expression
levels. To explain the phenotype, thus, Wagner’s model still takes the idea that
genes have intrinsic phenotypic effects. In this case, simply, it is not the genes but
their expression that have intrinsic phenotypic effects. Thus, there are no epigenetic
factors nor space.

The main improvement of this model in respect to previous models is that there
are gene networks and that the gene interactions in this network are nonlinear.
Although this approach is an improvement over other purely genetic approaches,
it still fails to capture some important features of GPMs, as we later discuss.

7 Genetic-Epigenetic Models

In this section, we include those models in which the phenotype is understood to
arise from genetic factors, epigenetic factors and their interactions. The models
we will discuss in most detail are those of embryonic development. Most models
of embryonic development (e.g., Odell et al., 1981; Meinhardt, 1982; Jaeger et
al., 2004; Honda et al., 2008; Salazar-Ciudad & Jernvall, 2010; Zhu et al., 2010;
Osterfield et al., 2013) have some elements in common: gene networks, cells,
and some epigenetic factors in an explicit spatial context. These models always
include some initial developmental pattern (i.e., an initial condition), and often,
some cell behaviors (e.g., cell division, cell contraction, cell adhesion, etc.). There
is often the diffusion of extracellular signals in space. Similar models can be
applied to other phenotypic levels such as cell biology (Vik et al., 2011; Karr et al.,
2012), organ physiology (Noble, 2002; Gjuvsland et al., 2013) and neurophysiology
(Skinner, 2012; Goldberg & Bergman, 2011), RNA secondary structure (Schuster
et al., 1994; Schuster et al., 1994; Cowperthwaite & Meyers, 2007) and protein
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conformation (Silva et al., 2009; Ferrada & Wagner, 2012). Models at each
phenotypic level include epigenetic factors that are level-specific (e.g., cell signaling
and other cell behaviors, the rules of nucleotide base pairing in RNA models, or the
stereochemistry of amino acids in proteins).

In the case of development, most models focus on a specific organ and incorpo-
rate experimental information on the genetic, cellular, and other epigenetic factors
known to be important for that organ development, just to cite a few: epithelial
buckling (Odell et al., 1981), skin coat patterns (Meinhardt, 1982), early fly
segmentation (Jaeger et al., 2004), mammal blastulation (Honda et al., 2008), tooth
morphogenesis (Salazar-Ciudad & Jernvall, 2010), limb morphogenesis (Zhu et al.,
2010), and egg shape (Osterfield et al., 2013).

There are genetic-epigenetic models that are not specific to any organ but that
intend to apply to the whole of animal development (Hogeweg, 2000; Hagolani et
al., 2019). They implement basic equations for gene network dynamics, cell behav-
iors, extracellular signal diffusion, and cell mechanical interactions. One can then
explore the different GPMs arising from the theoretically possible developmental
mechanisms (Hogeweg, 2000; Marin-Riera et al., 2016; Hagolani et al., 2019).
With these models, it has been recently suggested that the development of complex
morphologies can be achieved if most cells in an embryo activate cell behaviors
(mostly cell division and contraction). For these complex morphologies to be also
stable (i.e., that they develop in the same way in spite of noise), it is required that
the embryo is partitioned in relatively small areas of gene expression where cell
behaviors are regulated differently (Hagolani et al., 2019). These models, however,
have not yet been applied to better understand the GPM directly.

One limitation of the genetic-epigenetic models is that there is no genotype as
such. There are parameter’s that specify the strength of some genetic interactions in
the model. Changes in the values of these parameters are usually used as proxies for
genetic variation but, in fact, the relationship between the values of these parameters
and genetic variation is likely to be quite complex since it may depend in process
such as protein folding, RNA folding, enzymatic catalysis, etc.

8 The Lattice Pattern Formation Model

The simplest genetic-epigenetic models, are those that include gene networks and
two epigenetic factors: the cell behavior of cell signaling, and the physical process
of signal diffusion in the extracellular space. These models are framed in a spatial
cellular context, e.g., a lattice of cells, and the phenotype of interest is the spatial
distribution of gene expression. There are several of those models (Mjolsness et al.,
1991; Jaeger et al., 2004; Cotterell & Sharpe, 2010; Jiménez et al., 2015; Rothschild
et al., 2016) but only one is being discussed here, the Salazar-Ciudad’s lattice model
(from here on just the lattice model), because it intends to be general (i.e., applying
to all animal development not to a specific organ) and it explicitly focuses in the
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GPM and in its evolution (Salazar-Ciudad et al., 2000, 2001a). In essence, this and
other models can be seen as adding epigenetic factors to Wagner’s model.

In this model, a number of nonmotile cells, each one including an identical
gene network, occupy different positions in a 2D regular lattice. Some of the
gene products are extracellular diffusible signals that affect gene expression in
neighboring cells. In the lattice model the (continuous) change in concentration of
a given gene product “i” in a given cell “j,” that is gij, does not only depend on the
gene network dynamics of that cell, but also on the contribution of diffusible gene
product coming from other cells:

∂gii

∂t
=

φ
[∑Ng

k=1wijgik

]

φ
[∑Ng

k=1wijgik

]
+ Km

− μgij + Di∇2gij (4)

As in Wagner’s model, wjk values determine the gene network topology and
the interaction strength between genes. The heaviside function × prevents negative
concentrations in the gene products (×(x) is such that if x > 0 then ×(x) = x and
if x ≤ 0 then ×(x) = 0). The first term is a Michaelis–Menten saturating function
with a Km coefficient. The degradation rate of the gene products is specified by the
μ parameter and Dl is the specific diffusion rate of the gene product l.

The model starts from a very simple initial developmental pattern in which only
one gene is expressed and only in a cell in the middle of the lattice (Salazar-
Ciudad et al., 2000). As a result of genetic interactions in the network, cell signaling
and diffusion, a new developmental pattern arises (i.e., new distributions of gene
expression in space). This developmental pattern is the phenotype in this model.
There is, thus, some basic morphology in the sense of the distribution of cell types
in space where cell types are described by their gene expression. Despite its relative
simplicity, lattice models have been used to study the segmentation mechanisms in
the early embryos of Drosophila and other insects (Salazar-Ciudad et al., 2001b;
Jaeger et al., 2004).

The main result of the analysis of the Salazar-Ciudad lattice model is that there
are a limited number of gene network topologies that can lead to pattern formation
(Salazar-Ciudad et al., 2000). In other words, most gene networks one could build
(for example by wiring genes at random as in Salazar-Ciudad et al., 2000) simply
do not lead to any changes in gene expression over space, no pattern, even if
they promote cell–cell signaling. Somehow there are mathematical constraints or
rules on which gene networks can lead to pattern formation. These rules exist,
however, because genes affect some epigenetic factors (e.g., the physical process of
extracellular signal diffusion). These epigenetic factors allow for phenotypes (i.e.,
patterns) to arise rather than just being assumed as in the purely genetic models.
These constraints simplify the study of the GPM, since one only needs to worry
about the GPM in this subset of topologies.
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9 Models Including Morphogenesis: The Tooth Model

The Salazar-Ciudad lattice and similar models including cell signaling are still
rather unrealistic models of the GPM for morphological phenotypes. First, because
morphological variation does not involve just differences in the location of gene
expression but also differences in the location of cells themselves and the former
cannot be defined without the latter unless one leaves morphology as such as
unexplained. Second, during development, cells not only signal to each other, they
also activate cell behaviors. In fact, cells only change their position, and thus
morphology, as a consequence of these other cell behaviors. There are a number
of specific models doing that (Odell et al., 1981; Honda et al., 2008; Salazar-Ciudad
& Jernvall, 2010; Osterfield et al., 2013) but most of them are only concerned with
wild-type phenotypes or with mutations of large phenotypic effect that are unlikely
to be found in natural populations due to their likely highly deleterious effects.

One exception is the tooth model (Salazar-Ciudad & Jernvall, 2010; Salazar-
Ciudad & Marín-Riera, 2013). This model integrates experimental knowledge on
how genes and cells interact in a specific system, the mammalian teeth, to reproduce
their development, their adult morphologies, and their variation. In addition, the
model is used to reproduce the multivariate and three-dimensional morphological
variation in natural populations. This allows to suggest which changes in develop-
ment, and possibly in which genetic pathways, may be responsible for the observed
patterns of micro-evolutionary phenotypic variation. This model also allows to
obtain some mechanistic understanding on why some morphological variation arises
and some other does not arise from mutations affecting development.

General models of development including many, or even most, cell behaviors
do exist (Hogeweg, 2000; Marin-Riera et al., 2016; Delile et al., 2017) but so far
their potential to address general questions about the GPM itself has not been fully
explored (except for two attempts, Hogeweg, 2000; Hagolani et al., 2019).

10 The Differences Between Purely Genetic Models
and Genetic-Epigenetic Models

Overall, genetic-epigenetic models provide a view on the GPM and the phenotypic
variation that differs from that of the purely genetic models in a number of
fundamental ways:
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10.1 Genetic-Epigenetic Models Reproduce Individual
Phenotypes and the GPM

The first difference is that in genetic-epigenetic models the phenotypes arise from
the modeling of specific epigenetic factors or even physical interactions (e.g.,
between gene products, between cells, between nucleotides; see Fig. 1 for an
example) while in the purely genetic models the phenotypes arise from the assumed
intrinsic phenotypic effect of genes and the distribution of genes among individuals
in a population. Wagner’s model is somehow in between because it simulates gene
product interactions but in order to be general it assumes that gene expression has
an intrinsic effect on the phenotype (i.e., it does not depend on epigenetic factors)
and that these can arise without considering the interactions between cells (i.e.,
Wagner’s model is a unicellular model).

In the genetic-epigenetic models, the GPM is studied by exploring which pheno-
types arise from which changes in its parameters. These models make assumptions
at the level of which genetic interactions and epigenetic factors are relevant to
explain the phenotype and its variation. Given these assumptions, the GPM arises
from the model, i.e., no assumptions are made directly on the nature of the
phenotype or the GPM. In the purely genetic models, in contrast, there are features
of the GPM that do not arise from the model, they are simply assumed, most notably
linearity and that genes have intrinsic phenotypic effects. This inevitably makes the
genetic-epigenetic models more general since they make fewer assumptions on the
nature of the GPM.

Genetic-epigenetic models often have enough realism as to be quantitatively
comparable with a real organ’s morphology (Odell et al., 1981; Meinhardt, 1982;
Jaeger et al., 2004; Harris et al., 2005; Honda et al., 2008; Newman et al., 2008;
Salazar-Ciudad & Jernvall, 2010; Osterfield et al., 2013; Moustakas-Verho et al.,
2014; Ray et al., 2015; Onimaru et al., 2016; Brun-Usan et al., 2017; Marin-Riera
et al., 2018).

It is relevant to note that genetic-epigenetic models reproducing population-level
phenotypic variation can also reproduce the statistical properties of the population
that purely genetic models aim at. All models have parameters, e.g., the diffusivity
of an extracellular signal in the lattice models that can be varied. This variation
leads, through the model, to phenotypic variation. Statistics can then be applied to
this variation, as it is done in population and quantitative genetics, and these can be
compared to the ones observed in natural populations (as for example in Salazar-
Ciudad & Jernvall, 2010; Milocco & Salazar-Ciudad, 2020).
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10.2 Epigenetic Factors Inform About the Space of Possible
Networks

Epigenetic factors provide informative rules on which networks are biologically
plausible. In the lattice model, for example, we have found that cell signaling
and signal diffusion allows for pattern formation but only for specific types, or
families, of gene network topologies (Salazar-Ciudad et al., 2000). In other words,
by including the epigenetic factor of signaling, we learn that not all gene network
topologies can be found in nature to perform a given function (e.g., lead to pattern
formation in lattices of cells). This is not the case in purely genetic models, not even
in Wagner’s model. Since these include no epigenetic factors, the space of gene
network topologies that can lead to plausible phenotypes is much larger. This is
relevant because different conclusions would be reached when studying one space
of gene networks or the other. For example, some studies (Wagner, 1996; Draghi
& Whitlock, 2012) claim that phenotypes become more robust to environmental
changes as a result of conservative natural selection (i.e., selection for a phenotype
to remain unchanged over generations). For that to occur there has to be many gene
networks that can lead to the same specific phenotype and they have to differ in
their environmental robustness. This is the case for Wagner’s model. This is not
necessarily the case in genetic-epigenetic models. In the genetic-epigenetic models
where this has been studied (Salazar-Ciudad & Jernvall, 2005; Hagolani et al.,
2019), many phenotypes are only possible for specific genetic-epigenetic networks
and for very specific values in their parameters. Conservative natural selection is,
thus, unlikely to increase environmental robustness by choosing among the networks
that can produce the same morphology. This is because there is not many of them
and they are not connected to each other by a small number of mutations. Thus,
the result that conservative selection increases robustness depends on a specific
unconstrained space of gene networks that does not seem to be realistic.

10.3 In Genetic-Epigenetic Models Not All Aspects
of the Phenotype Can Change

The third main difference between genetic-epigenetic models and purely genetic
models is that, in the former, not all aspects of the phenotype are equally likely
to change by mutation, and in fact, some aspects may not be changeable at all,
at least in the short term. This is a general property of genetic-epigenetic models
(Oster & Alberch, 1981), although it has been explicitly studied only in a subset of
these models (Hogeweg, 2000; Salazar-Ciudad & Marín-Riera, 2013; Crombach et
al., 2016; Verd et al., 2019). This coincides with the evo-devo view that, because
of how genes and epigenetic factors interact during development, some aspects of
morphology are more variable than others (Alberch, 1982; Horder, 1989). Similar
results are obtained in the GPM models of RNA and protein folding (Schuster et al.,
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1994). In this case, there are also many studies measuring how different phenotypes
are more or less likely to arise by mutations and how the same phenotype can arise
from different genotypes (Ahnert, 2017; Ferrada & Wagner, 2012).

As explained in the previous sections, the purely genetic models, except for
Wagner’s model, either assume that all aspects of the phenotype are equally likely
to change or have no way to explain why some aspects of the phenotype are more
variable than others, other than natural selection-based arguments. In addition, they
assume that all traits can change unlimitedly by mutation.

This difference implies that the genetic-epigenetic models provide a more general
depiction of the GPM and of the variability of the phenotype. In other words,
the purely genetic models only consider the possibility that all traits are equally
likely to vary while the genetic-epigenetic models can explain, even within a single
model (Salazar-Ciudad & Jernvall, 2005; Cotterell & Sharpe, 2010), many other
possibilities. Again, the purely genetic models do in fact make an assumption, that
all traits are free to vary indefinitely, that the genetic-epigenetic models do not
usually make.

10.4 Genetic-Epigenetic Models Can Explain Changes
in Phenotypic Dimensionality and Novelty

The fourth main difference between genetic-epigenetic models and purely genetic
models is related to the dimensionality of the phenotypic changes they can consider.
Quantitative and evolutionary genetics conceptualize the phenotype as a set of
quantitative traits. Although these approaches consider that the value of each trait
can vary without limit, they do not consider that the nature and number of these
traits can itself evolve (Müller & Wagner, 1991). In Hansen’s model, for example,
one has to specify the number of traits from the beginning and this number will not
change over time. In Wagner’s model, since each phenotypic trait is the expression
of a gene, the number of genes defines the dimensionality of the phenotype.

Evolution, however, cannot be reduced to quantitative changes in previously
existing traits. As an extreme example, it is clear that one cannot derive a human
from gradually changing the traits one could measure in a distant bacteria-like
ancestor: the nature and number of traits has dramatically changed in evolution.
This kind of changes are sometimes called, or related to the concept of, novelty
(Müller & Wagner, 1991).

In many genetic-epigenetic models, some novelty can arise. This is specially
evident in models that include cell division or growth since there are then new
traits being created over the time in the model. In the tooth model, for example,
mutations from one individual can lead to individuals with novel cusps. These are
due to simple changes on how strongly genes interact with each other or on how
strongly they affect cell division (Salazar-Ciudad & Jernvall, 2004, 2010). These
new cusps cannot be defined as arising from other cusps or as arising from some
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traits measurable in its ancestors: they arise where there was a feature-less flat area
on the tooth and the show no relationship to previously existing cusps.

Again the genetic-epigenetic models turn out to be more general since they do
not necessarily assume that variation occurs only as quantitative variation in existing
traits but can consider a much larger class of phenotypic changes.

10.5 Genetic-Epigenetic Models Can Explain How the GPM
Evolves

Ideally, any model on the GPM should give some hints about how the GPM itself
evolves, otherwise its utility is restricted to the short time scale in which the GPM
itself is not expected to evolve much. Here again, the differences between the two
approaches are fundamental. The purely genetic models have no way to address this
question other that assuming, as in the second-order neo-Darwinian view described
above, that all aspects of the GPM are equally likely to change by mutation and
that then, the GPM smoothly changes in the direction imposed by natural selection.
From this perspective past natural selection would be the only factor determining
the evolution of the GPM.

In the case of the genetic-epigenetic models, as explained, the nature of the
GPM arises from the genetic and epigenetic interactions included in the model.
The evolution of the GPM can then be studied by making changes in the genetic
interactions, i.e., the gene network. This approach has been taken in a number of
articles simulating evolution and development (Hogeweg, 2000; Salazar-Ciudad,
2001a; Salazar-Ciudad & Marín-Riera, 2013; Crombach et al., 2016; Hagolani et
al., 2019). Some of these articles show, for example, that the most parsimonious way
to evolve a complex phenotypes leads to a highly complex, non-linear GPM where
parts of the phenotype cannot vary independently (Salazar-Ciudad et al., 2001a, b).

Many other rules or trends of change in development and the GPM have been
hypothesized over the years, either based on models or not: constructional con-
straints on how developmental stages can be put onto each other over developmental
time (Alberch & Blanco, 1996), rules arising from the intrinsic material properties
of cells and tissues (Newman & Müller, 2000), from the structure of morphogenetic
fields (Webster & Goodwin, 1996) from the logic of gene networks (Kauffman,
1993) or from the limited number of ways in which genes and cells can be wired
to lead to pattern formation and morphogenesis (Salazar-Ciudad et al., 2000; Von
Dassow et al., 2000).
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11 Conclusions

From the previous discussion, it should become apparent that the genetic-epigenetic
models describe some important and general properties of GPMs that cannot be
described by models that do not include epigenetic factors. First, they explain
phenotypes and the GPM based on genetic interactions and epigenetic factors
without making assumptions on the nature of the GPM itself. Second, they restrict
the space of possible gene network topologies to the ones capable of performing
biological functions. Third, they can help to explain which directions of phenotypic
variation are more likely by genetic mutation and why. Fourth, they can explain
some novelty, and, thus, changes in the dimension of phenotypic variation. Fifth,
they can explain how the GPM itself evolves and, thus, they have a stronger
explanatory power in evolution.

We think that the generality of models should be measured based on the number
of features of reality they can reproduce. Purely genetic models cannot reproduce
many of the features of GPMs and, thus, should be considered non-general. Genetic-
epigenetic models are specific of a specific phenotypic level. In spite of that,
however, many of them reproduce more features of real GPMs than purely genetic
models. Thus, even if the details may differ between genetic-epigenetic models,
they should be regarded, overall, as a more general description of the GPM than
purely genetic models. This view has already been put in practice in some research.
Models of specific phenotypes, the tooth model, have been used as a general models
of evolution under realistically complex GPMs (Salazar-Ciudad & Marín-Riera,
2013; Milocco & Salazar-Ciudad, 2020). Other authors have gone even further and
suggested that secondary RNA structure models can be used to model evolution at
other phenotypic levels such as morphology because they capture crucial features
of the GPM that are not captured by purely genetic models (Fontana, 2002).
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