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Preface

In 2012, a first book on Evolutionary Systems Biology was published (Adv. Exp.
Med. Biol. 751), addressing the question of what this (back then emerging) field
precisely is. The book put on display a rich variety of topics and approaches that
touched upon a combination of the three terms, evolution, systems, and biology.
Now, almost a decade later, this new book provides a moment to take a pause and
reflect on the current status and future aspirations of Evolutionary Systems Biology.

The core goal of Evolutionary Systems Biology is to study the genotype-
phenotype (GP) mapping—in the broad sense of the term. The GP map is an
abstraction to capture that high-level phenomena are generated by lower-level
mechanisms. This multilevel reasoning can be applied at various scales, e.g., RNA
and other macromolecules that fold into 2- or 3-dimensional structures, networks
of metabolites that determine a cell’s physiological response, or gene regulatory
networks that form patterns across tissues in multicellular organisms. Moreover,
Evolutionary Systems Biology addresses not only the question of how the GP map
works, but especially how evolution shapes the mapping, and vice versa, how
the mapping shapes evolutionary opportunities. Soyer and O’Malley (BioEssays
35:696–705, 2013) concluded that this is not a definition of a well-demarcated
field, nor a discipline, but that it hints at Evolutionary Systems Biology becoming a
general mode of research: it prescribes how one looks at biology and how one asks
questions about biological systems. The exact methodology and precise topic are
only of secondary importance. Given my experience in the field and my interactions
with colleagues, I think this assessment remains spot on and provides a viable way
forward for thinking about Evolutionary Systems Biology in the years to come.

This book should thus be viewed as a snapshot of the current state of affairs
in Evolutionary Systems Biology. My goal has been to capture some of the key
developments during this last decade. Perhaps the most important one is a reduction
in fear for “big” systems approaches, which has to happen as we increasingly make
use of genome-wide data sets and large parameter scans—be they experimental
(mutants, genetic screens), computational simulations, or complex mathematical
models. In addition, each of the chapters is from a researcher that I know to be a
cross-disciplinary scientist, either because they themselves have done both modeling
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vi Preface

and experiments or because they work extensively with colleagues who are on
opposite sides of the wet-dry spectrum. As a result, the book brings a combination
of topics and viewpoints.

The first chapters (Chaps. 1–3) address perennially difficult topics of complexity
and predictability from a theoretical point of view. Beslon et al. (Chap. 1) probe the
origins of complexity and ask why evolutionary systems come up with “complex”
and “complicated” solutions, while a simple solution could be easily constructed by
a human. Hogeweg (Chap. 2) exploits in silico evolution to mitigate the parameter
curse and at the same time shows that models with additional degrees of freedom
can be more informative than overly minimalist ones. In turn, Kaneko and Furusawa
(Chap. 3) show that even if biological systems are high-dimensional, complex enti-
ties, their evolutionary paths may collapse to a much lower-dimensional phenotypic
space. This provides a step towards a mechanistic explanation for the results of
Chaps. 1 and 2, and an opportunity to develop a general theory for predicting
evolution.

The next two chapters (Chaps. 4 and 5) can be considered critical reviews of
success stories. Crombach and Jaeger (Chap. 4) provide a progress report on their
use of reverse engineering and in silico evolution. They review their studies on the
evolution of a regulatory network used by fly embryos to lay down their body plan.
In a similar vein, Onimaru and Marcon (Chap. 5) document their work on data-
driven modeling of the fin-to-limb transition in vertebrates. Both chapters address
what a systems-level approach, innovative experiments, and (evolutionary) models
may bring. Importantly the chapters also address the practical features that enabled
the studies. One common basis for these successes is the availability of a wealth of
knowledge on the model systems studied—this know-how was obviously generated
in an era and through disciplines that did not stress the “system” component,
e.g., molecular biology and genetics. My hope is that new technologies and novel
theoretical insights enable us to generate similarly rich knowledge bases in a
“leapfrog” manner for many other (non-model) systems of interest.

Complementing Chaps. 1–4 that use in silico evolution, Chaps. 6 and 7 elaborate
on experimental evolution in the wet-lab. Helsen and Jelier (Chap. 6) thoroughly
review how studying “evolution in the lab” has helped our understanding of
phenomena like clonal interference and evolvability. Moreover, they highlight the
novel approaches that are shaping the emerging field of evolutionary systems
genetics. Next, Baier and Schaerli (Chap. 7) capture the fast-moving field of
evolutionary synthetic biology. They elaborate on the advantages and challenges
of using synthetic systems to study evolutionary dynamics, from simple engineered
regulatory circuits to entire artificial genomes. From gene regulation, Johnson et al.
(Chap. 8) then move to the state of the art in our understanding of the metabolic
system. They argue that taking an explicit evolutionary viewpoint, especially if
combined with (novel) omics approaches, will enable progress on various fronts
including eco-evolutionary systems where single cell dynamics are interlocked with
population-level behavior.

In the three closing chapters, we move back from data to analysis and modeling.
Two notions permeating all of Evolutionary Systems Biology are robustness and
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evolvability. Aguilar-Rodríguez and Payne (Chap. 9) discuss these concepts from
various angles within the frame of transcriptional regulation. As such, they provide
a crucial foundation to many of the topics discussed in the rest of the book, and
beyond. Chapters 10 and 11 make convincing cases for improving the computational
and mathematical toolkit that we use to investigate evolving biological systems.
Salazar-Ciudad et al. (Chap. 10) argue for the inclusion of epigenetic factors
(f.i. cellular behavior, a tissue context), which are commonly ignored in purely
genetic models, to improve the explanatory power of models (cf. Chap. 2). And
Jaeger and Monk (Chap. 11) advocate the study of dynamical modularity through
a decomposition of a system’s behavior, contrasting more traditional methods that
focus solely on (gene) interaction structure. Both chapters remind us that the set of
glasses we look through has a strong influence on the results we observe and the
conclusions we draw.

Finally, I would like to thank Orkun Soyer for the opportunity to embark
on the adventure of this second book on Evolutionary Systems Biology, and the
editorial team at Springer Nature led by Larissa Albright, Noreen Henson, and
Sofia Valsendur for making it happen. I thank the authors and external reviewers
for their hard work, wonderful contributions, and abundance of patience. I hope this
book helps guide the field to transition into a valuable, general approach of studying
biology.

Villeurbanne, France Anton Crombach
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Of Evolution, Systems and Complexity

Guillaume Beslon, Vincent Liard, David P. Parsons,
and Jonathan Rouzaud-Cornabas

Abstract The question of complexity in biological systems is recurrent in evo-
lutionary biology and is central in complex systems science for obvious reasons.
But this question is surprisingly overlooked by evolutionary systems biology. This
comes unexpected given the roots of systems biology in complex systems science
but also given that a proper understanding of the origin and evolution of complexity
would provide clues for a better understanding of extant biological systems. In
this chapter, we will explore the links between evolutionary systems biology and
biological systems complexity, in terms of concepts, tools and results. In particular,
we will show how complex models can be used to explore this question and show
that complexity can spontaneously accumulate even in simple conditions owing to
a “complexity ratchet” fuelled by sign epistasis.

1 Introduction

The link between evolution and complexity is as old as the evolutionary theory
itself.1 However, it is still largely controversial. There is a kind of a general agree-
ment that complexity has globally increased along evolutionary history (McShea,
1996)—although it may have decreased in some lineages, typically endosymbionts
and marine cyanobacteria (Batut et al., 2014)—and that all extant organisms can

1“[. . . ] if we know of a long series of gradations in complexity, each good for its possessor,
then, under changing conditions of life, there is no logical impossibility in the acquirement of
any conceivable degree of perfection through natural selection” (Darwin, 1859, page 204, Chap.
VI).

G. Beslon (�) · V. Liard · D. P. Parsons · J. Rouzaud-Cornabas
Université de Lyon, INSA-Lyon, LIRIS CNRS UMR 5205, INRIA Beagle Team, Villeurbanne,
France
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2 G. Beslon et al.

be considered “complex”, but the question becomes highly controversial when it
comes to the origin of complexity, i.e. to its ultimate causes (Mayr, 1961).

The question of the evolutionary origin and dynamics of biological complexity
should logically be a central matter of interest in evolutionary systems biol-
ogy (ESB). Yet, although not completely absent (Soyer & Bonhoeffer, 2006), it
is surprisingly overlooked compared to questions about modularity or robustness,
for instance. This is surprising as a proper understanding of the evolutionary origin
of biological complexity could provide valuable clues to analyse extant biological
systems and help decipher the structure-function relationship in biology.

In this chapter, we will first discuss the specific aspects of ESB questions with a
focus on the question of the evolution of complexity (Sect. 2). We will then discuss
why and how “complex models” are required to tackle this question in particular
and ESB questions in general (Sect. 3). Finally, in Sect. 4, we will present a series
of experiments based on the Aevol model that shed a new light on the old question
of the evolution of complexity.

2 Of Evolution, Systems and Complexity

The definition of evolutionary systems biology is a recurrent matter of discussions
within the community (Loewe, 2016; Soyer & O’Malley, 2013). But although
defining precisely ESB and its relations to evolutionary biology on one side and
systems biology on the other side could be an important matter for science policy,
it is of low practical importance in performing science itself. Indeed, a field can
afford to be fuzzily defined. What is important is to identify a coherent corpus
of concepts, questions, tools and methods that are shared within a given scientific
community. Ultimately, the latter determines what is considered a valid result within
the boundaries of a given science and what is not.

Linked with the attempts to define ESB, one could typically discuss whether ESB
embraces evolutionary biology and systems biology, whether ESB addresses those
questions that are shared by both fields or whether ESB comes with its own set of
questions. However, if, as suggested above, we consider this problem at the level of
concepts, questions and tools, it immediately appears that, in terms of concepts,
ESB unifies both fields, while, in terms of questions, ESB appears more as an
intersection—if not as a disjunction—of evolutionary biology and systems biology.

Logically, ESB concepts include many concepts that originate, on the one side,
from evolutionary biology (typically Selection, Fitness, Population, Mutations,
Drift, Epistasis, Fitness Landscape, Genotype-to-Phenotype (G2P) Map, etc.) and,
on the other side, from systems biology (Regulation Networks, Metabolic Networks,
Pathways, Motifs, Architecture, etc.). Given the strong roots of systems biology
itself in complex systems science, it is not surprising to find also concepts initially
formulated in this domain, typically Multiscale Systems, Complex Networks, Self-
Organisation, Modularity, Feedback, etc. Some concepts, initially formulated in one
field, have strongly benefited from the interaction with the other and have fructified
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therein. Typically, the concepts of Robustness and Evolvability that initially emerged
in the context of complex systems science (Simon, 1962) are now fully integrated
in the corpus of evolutionary biology (De Visser et al., 2003; Pigliucci, 2008; Wilke
et al., 2001; Woods et al., 2011). Finally, two concepts have acquired a specific
status within ESB: Fitness Landscapes and Genotype-to-Phenotype Maps. Initially
formulated within the context of evolutionary biology and genetics (Alberch, 1991;
Wright, 1932), they quickly became central in ESB, probably because they directly
match systems biology and complex systems science concepts (respectively, Energy
Landscapes and Multiscale Systems), hence enabling direct exchanges between both
fields.

When it comes to questions, the integrative trend that we observe for concepts
seems to be reversed, and ESB questions seem more to intersect than to unify
evolutionary and systems biology. In fact, one could easily understand that ESB,
that has emerged as a scientific field after both its “parent fields”, cannot address the
same questions they do. To be recognised as an independent scientific field, ESB
must identify its own, independent, corpus of questions: questions that cannot be
answered (or even addressed) within the fields of evolutionary biology or systems
biology alone but that, on the opposite, require to link both fields. Given this, it
appears that the questions addressed by ESB belong to two families:

(i) What kind of system is likely to result from a given evolutionary process?
(ii) Knowing its properties, how is a given system likely to evolve?

Of course, both kinds of questions are very general and lead to more specific ones
(e.g. How may a change of the mutation rate/mutational pattern/population size/etc.
impact a given characteristic of the system?), but all ESB questions ultimately
belong to one of these two families. Importantly, both families of questions cannot
be addressed by evolutionary biology or systems biology alone as they require
manipulating concepts originating from both fields. Typical examples are the
influence of a system’s robustness on its evolution (Wilke et al., 2001) and the
influence of evolutionary conditions on a system’s modularity (Kashtan & Alon,
2005) or evolvability (Crombach & Hogeweg, 2008).

Surprisingly, among the properties of biological systems, complexity has received
relatively little attention within the field of ESB. This is surprising because the
question of the origin of biological complexity is a recurrent source of debate
in evolutionary biology (Dawkins, 1997; Gould, 1996; McShea, 1996); because
it is at the heart of several unsolved questions, among which the well-known C-
value enigma (Elliott and Gregory, 2015; Thomas Jr., 1971); and because it clearly
requires integrating concepts from evolutionary biology, complex systems sciences
and systems biology.

It is difficult to identify the reasons for this lack of interest, but it is worth
noting that this question is also absent from the systems biology corpus. This
may have two explanations. First, systems biology focuses on extant organisms
which are all considered complex. Considering that biological epistemology is
rooted in classification and comparison, complexity can easily be ignored as a
question. Second, and more importantly, from the outside of evolutionary biology,
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complex biological systems are generally implicitly believed to be produced by
selection (Lukeš et al., 2011). Complexity therefore seems a non-question, and
systems biology focuses mainly on the function of pathways, networks or elements,
following the naive idea that they are there because they have been selected for while
they could very well flourish by the sake of random drift rather than by selective
necessity (Lynch, 2007).

Finally, and directly related to the questions, is the matter of tools and methods.
Methods change very quickly in science, and evolutionary biology, systems biology
and evolutionary systems biology have all followed the “big data bioinformatics”
trend (Greene et al., 2014), accumulating deep sequencing data on an ever-
increasing number of organisms, systems and conditions. Now, accumulating data
is of low interest if this data is not to be integrated into a coherent explanation
framework—an unfortunate trend in the current “big data-machine learning” era
(Pigliucci, 2009). On that matter, both evolutionary biology and systems biology
share the same tradition of explanatory modelling to seek for unifying principles.
Typical explanatory models comprise fitness landscapes and population genetics (in
evolutionary biology) or complex networks and dynamical systems (in systems biol-
ogy). But these tools only integrate concepts from their origin field. Addressing ESB
questions requires tools that integrate concepts originating from both fields (e.g.
tools integrating concepts such as fitness or drift and concepts such as modularity
or complexity). In other words, we need tools to observe how systems evolve when
systems biology provides us with tools to understand systems (independently from
their evolution) and evolutionary biology provides us with tools to understand the
evolution of independent items (e.g. genes or traits) but lacks tools to understand the
evolution of systems integrating a large number of interacting elements. What ESB
requires is a set of tools enabling to observe and analyse the evolution of systemic
properties within the framework of Darwinian evolution.

3 Of Complex Evolution Models

Darwinian evolution has the advantage of being relatively simple to reproduce
artificially. Indeed, since the emergence of Evolutionary Algorithms (EAs) in the
1950s and 1960s, it has been shown that virtually any data structure (variables, sets,
vectors, matrices, programmes, networks, trees, etc.) can evolve in silico as long
as it is subjected to a selection process and to a replication-with-variation process.
While EAs use this capacity for optimisation purposes, it can also be used to design
models of evolution. Now, since there is no limit to the complexity of the data
structures that can evolve within such a framework, one can design data structures
with specific systemic properties and experimentally—but computationally—study
how these properties evolve under various evolutionary constraints (Fig. 1). This
approach emerged within the field of artificial life (O’Neill, 2003; Ray, 1991) and
differs from other modelling approaches in evolutionary biology by the use of
“complex models”, i.e. models in which the “digital organisms” (Adami, 2006) are
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Fig. 1 Sketch of in silico experimental evolution. The model uses a population (a) of N data
structures (DSs) (DS1, DS2,. . . DSi,. . . DSN ), each associated with a computable fitness fi and
quantifiable systemic properties Si . DSs are submitted to a generational loop composed of a
selection process (b) based on fi (but generally independent of Si ), a mutation process (c) that
can modify the DSs (hence modifying fi and Si ) and a replication process (d) that populates the
forthcoming generation. The population is let to evolve under monitoring, usually for thousands of
generations, before the trajectories fi(t) and Si(t) are analysed

purposefully complex, redundant and degenerated. This introduces many degrees of
freedom in the organisms’ genotype-to-phenotype map, hence allowing to study the
evolution of organisms’ structures in parallel with the evolution of their phenotypes
and fitnesses. We will hereby call this approach “in silico experimental evolution”
(ISEE) to emphasise its methodological similarities with in vivo experimental
evolution (Batut et al., 2014; Hindré et al., 2012).

ISEE methodology is in some way closer to in vivo experimental evolutionary
assays than to classical population genetic models. Indeed, after the initial design of
the data structure (see Fig. 1) and of the experimental conditions, ISEE practitioners
let populations evolve in controlled conditions. Then, exactly as experimentalists
would, they analyse a posteriori the winning lineages (i.e. the final data structure’s
systemic properties) and the underlying evolutionary dynamics (including the
sequence of fixed mutational events) to relate the digital organism’s characteristics
with the evolutionary conditions. Although ISEE is of course limited by its use of
digital rather than biological organisms, it offers numerous advantages compared
to in vivo assays. One is of course time. ISEE offers the possibility to simulate the
evolution of hundreds of populations for hundreds of thousands of generations. But
more than that, it allows for perfect fossil records of the simulations (Adami, 2006;
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Hindré et al., 2012), hence making it possible to decipher contingent events from
deterministic ones, a classical issue in evolution. Last but not the least, it allows for
“impossible experiments” (O’Neill, 2003), i.e. experiments that would be infeasible
in vivo, either because the experimental conditions would be impossible to set up or
because too many confounding factors would interact within biological organisms.

Compared to other modelling approaches in systems biology, the interest of ISEE
is straightforward: it allows for the simulation of the evolution of any systems
biology model provided that one can define mutation and selection operators on
that model (the former is generally relatively straightforward, but the latter may
be tricky as it requires to be able to estimate the fitness corresponding to any
parameter set). Compared to other modelling approaches in evolutionary biology
(typically population genetics and quantitative genetics), ISEE is particularly suited
to study the evolution of systems. Indeed, there is virtually no limit to the complexity
of the data structures that could evolve within a computer, as long as variation
and selection operators can be defined for these data structures. In the context of
ESB, this allows to use data structures in which systemic properties (S in Fig. 1)
can vary by mutations and to observe how these properties evolve under different
conditions. As long as the underlying data structure is redundant (formally if the
application DS → f is non-injective in Fig. 1), the systemic properties S can
evolve independently from the fitness of organisms f . It is then possible to study
the indirect interplay between evolution and these systemic properties. Indeed, in
the last 20 years, many different data structures, including programmes (Adami,
2006; Wilke et al., 2001), networks (Espinosa-Soto & Wagner, 2010; Kashtan &
Alon, 2005), differential equation systems (Soyer & Bonhoeffer, 2006), etc., have
been used to study properties such as robustness (Wilke et al., 2001), evolvability
(Crombach & Hogeweg, 2008) or modularity (Clune et al., 2013; Espinosa-Soto
& Wagner, 2010; Kashtan & Alon, 2005). However, surprisingly, only few ISEE
assays have tackled the question of complexity (Adami et al., 2000; Lenski et al.,
2003; Soyer & Bonhoeffer, 2006). Apart from the aforementioned reasons, another
issue limits the capacity to study complexity with digital models. Indeed, most ISEE
data structures have a fixed complexity. For instance, in most network models, the
strength of the connections can evolve, while the size of the network cannot (number
of nodes, number of connections). In other words, one could state that most complex
models are not complex enough to tackle the question of complexity.

4 Of Evolution of Complexity

4.1 Introduction

The evolutionary origin of complexity is a historical source of controversy. Basi-
cally, there are two main theoretical bodies, each emphasising one of the two main
engines of evolution: variation and selection. A naive (but common) interpretation
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of Darwinian theory states that selection is the driving force at the origin of extant
structures. In this view, extant complexity is “naturally” due to selection, which can
act through several mechanisms (Lukeš et al., 2011): complexity could be selected
simply because complex organisms intrinsically have a higher fitness or because
complex environments select for complex organisms, directly (Albantakis et al.,
2014) or through interactions with other species or mates (Zaman et al., 2014);
because complex organisms are more robust or more evolvable than simple ones
(Soyer & Bonhoeffer, 2006); because multi-part systems require complex regulation
mechanisms (Maslov et al., 2009); or because new genes are recruited to compensate
for the negative pleiotropic effects previous mutations brought about (Pavlicev &
Wagner, 2012). In contrast, according to neutralist theories, complexity increases
by the action of random variations that spontaneously accumulate complexity, at
least in some lineages. For instance, in S. J. Gould’s “drunkard’s walk” model,
variation disperses lineages in the space of complexity levels, hence resulting in
the emergence of lineages with ever-increasing complexities (Gould, 1996). In the
“Zero-Force Evolutionary Law” (McShea & Brandon, 2010), variation disperses
redundant components of the evolving system, hence increasing its complexity.
Finally, in “Constructive Neutral Evolution” (Lukeš et al., 2011), complexity arises
because mutations create dependencies in multi-component systems. So, while the
precise mechanism by which variation may increase complexity depends on the
authors, all neutral models agree on the idea that the main driving force is random
drift.

There are many reasons why studying the evolution of complexity is difficult.
First, definitions and measures of complexity are not firmly established, especially
for biological systems (Adami, 2002). Second, biological systems are multiscale
systems, and complexity can simultaneously rise and fall on different scales, as
exemplified by the C-value enigma (Elliott & Gregory, 2015), by the strong stream-
lining of obligate bacterial symbionts (Moran, 2007) and by “major transitions”
(Maynard Smith & Szathmary, 1997). Finally, another difficulty is the lack of
experimental tools. Indeed, most of the above-mentioned hypotheses are based on
thought experiments and/or on extant organisms without any possibility to observe
the transition between the emergent life, supposedly “simple”, and extant complex
life forms.

By using complex models, ISEE can overcome these difficulties. Complexity
is easier to define and measure on models than it is on real organisms, and, in
a simulation, complexity can be monitored all along the evolutionary process on
perfect fossil records. Moreover complex models can integrate different scales, and
complexity can be quantified simultaneously at these different scales. Last but not
the least, ISEE makes it possible to perform “impossible experiments” (O’Neill,
2003) in which multiscale organisms evolve in environments which are more or less
demanding in terms of complexity. Indeed, one can define environments in which
simple organisms can easily thrive (at least as easily as complex organisms) and
environments in which complex organisms are likely to have a better fitness than
simple ones. Then, by comparing the evolutionary outcomes in these two conditions,
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it is possible to decipher the relative effect of selective and neutralist forces on the
dynamics of complexity.

We used the Aevol in silico experimental evolution platform to implement this
research programme. We let populations of initially simple individuals evolve in two
different environments: a simple one and a complex one. The analysis of the winning
lineages in the two contexts revealed that complexity evolves in both contexts
and that complex organisms are not more complex in demanding environments.
Moreover, in both environments, complexity increases are driven by selection,
although in simple environments, simple organisms are far fitter than complex ones.
These seemingly antagonistic results together show that complexity is driven by a
ratchet mechanism, powered by selection but clicking in a direction opposite to the
long-range selection gradient.

4.2 The Aevol Model

Aevol (https://www.aevol.fr) is an in silico experimental evolution platform devel-
oped by the Inria Beagle team. This chapter is not intended to promote Aevol, and
since the platform has been described in numerous publications (Batut et al., 2014;
Beslon et al., 2010; Knibbe et al., 2007; Liard et al., 2020; Rutten et al., 2019),
we will confine ourselves to its core principles and focus on the structure of the
information coding scheme as it is of utmost significance in our experiments.

The rationale of Aevol is that the structure of the fitness landscape of an organism
is likely to be strongly determined by the structure of the biological information
coding of this organism (i.e. by the structure of its genotype-to-phenotype (G2P)
map) and by the variety of mutational operators that act on its genome. That is why
Aevol uses a data structure that mimics precisely the biological genomic structure
and that is decoded through a bio-like G2P map (Fig. 2a–d). “Organisms” are then
embedded in an evolutionary loop that includes classical selection operators and a
large variety of mutations operators including structural ones (Fig. 2f–h).

The core principles of Aevol make it ideally suited to study the evolution of
biological complexity. Aevol is a multiscale model. As such, complexity can be
monitored at different levels (genomic, proteomic and phenotypic), and the set
of mutational operators includes large-scale chromosomal rearrangements (includ-
ing duplications and deletions). Hence, genomic complexity can vary by gene
duplication-divergence, possibly driving complexity to higher levels. Finally, similar
to “real” biological G2P mappings, Aevol’s mapping is redundant meaning that
complexity can evolve partly independently at the different levels.

4.2.1 Information Coding in Aevol

In Aevol, each individual owns a genome containing its heritable information
(Fig. 2a). The genome is a binary double-stranded sequence that is decoded in

https://www.aevol.fr
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Fig. 2 The Aevol model. Genomes (a) contain genes decoded into proteins. Functional levels
(proteome and phenotypes) use a mathematical abstraction where proteins are represented by
triangular functions (b) and phenotypes are computed as the sum of all the proteins’ functions
(c). Fitness is computed through a curve-fitting task; the closer the phenotype from a “phenotypic
target” (in red on parts b and c), the fitter the organism. Aevol is based on a generational loop
with selection (f), a complex mutational process including rearrangements and mutations (g) and
replication (h)

two steps: transcription and translation. Transcription relies on consensus signals
(promoters) and hairpin-like structures (terminators) for transcription initiation and
termination, respectively. Translation involves consensus ribosome binding sites and
an artificial genetic code based on triplet codons (including START and STOP) which
is used to compute the protein sequences. Importantly, these processes introduce
redundancy and degeneracy: complex genomes can encode for simple proteomes
(e.g. if all genes have the same sequence), and complex proteomes can be encoded
on compact sequences (e.g. if genes share sequences by overlapping).

Given the sequence of a protein, Aevol computes its functional contribution.
Now, although mimicking biological processes at the sequence level is feasible,
it is impossible to compute the function of a protein from its primary structure in a
realistic way. That is why Aevol uses an abstract mathematical formalism to describe
the functional levels (proteins and phenotype). In Aevol, all functions are expressed
in a one-dimensional continuous “functional space” (more precisely on the [0, 1]
interval) by an activation value in the [−1, 1] interval (upper and lower bounds
corresponding to maximum activation and maximum inhibition, respectively). In
this space, proteins are described as triangle-shaped functions (Fig. 2b), themselves
described by three parameters (mean m, height h and half-width w) computed from



10 G. Beslon et al.

three interlaced variable-length binary codes in the primary structure of the protein.
Once all kernels have been computed from the protein set, they are summed to
compute the phenotype (Fig. 2c).

Finally, in Aevol, the fitness is computed as the exponential of the difference
between the phenotypic function and a “phenotypic target” indirectly representing
the abiotic conditions the organisms evolve in. Classically, in Aevol, the target
function is defined by a sum of Gaussians, hence requiring a virtually infinite
number of protein-triangles to be perfectly fitted.

4.3 Designing an Impossible Experiment

The abstract mathematical formalism used to model functional levels in Aevol
makes it possible to design experiments allowing to quantify the relative contri-
bution of neutral and selective forces in the evolution of complexity. Indeed, it is
difficult to quantify these relative contributions in a complex environment where
they are both expected to increase complexity. Now, if one can let initially simple
organisms evolve in a simple environment, then selective forces are supposedly
inactive, and the evolutionary outcome shall only reflect neutral force contribution.

Using Aevol, we can easily design such an “impossible experiment”: given
Aevol’s G2P map, we can design two kinds of environments. As stated above, in
Aevol, genes are decoded into triangular kernel functions, and the sum of these
kernels gives the organism’s phenotype. As a result, because triangular phenotypic
targets have the same shape as protein kernel functions, they don’t require a complex
proteome structure to be fitted (but they can be fitted by a complex proteome). On
the opposite, Gaussian-shaped functions are impossible to fit with a finite number of
protein-triangles. We used this property to design two phenotypic target functions,
one simple and the other complex (Fig. 3). Then, we sampled random genomes to
find “trivial” organisms with only one gene and let these initially trivial organisms
evolve in both environments to quantify the final levels of complexity. Finally, since
the mutation rate is also likely to influence complexity (Knibbe et al., 2007), we
tested three different mutation rates: μ = 10−4, 10−5 and 10−6 mut.bp−1.gen−1.
We simulated 100 independent evolution threads per condition with a constant
population size (1024 individuals). Simulations were seeded with clonal populations
of simple individuals with a single gene generated by random sampling of 5000 bp
genomes. All simulations lasted 270,000 generations.

In silico experimental evolution makes it possible to store perfect fossil records.
Hence, once the evolutionary runs are finished, one can take any organism at any
generation and retrieve its lineage, including fixed mutations. Given an organism,
one can also measure its characteristics, including its complexity, robustness and
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Fig. 3 The two phenotypic targets used in our experiments. (a): The simple target is an isosceles
triangle of mean m = 0.5, half-width w = 0.1 and height h = 0.5. This shape can be perfectly
fitted by a single protein-triangle (see Sect. 4.2). (b): The complex target is a Gaussian-shaped
curve of mean m = 0.5, standard deviation σ ≈ 0.03989 and a maximum value h = 0.5. Given
the protein model in Aevol, this target cannot be perfectly fitted with a finite number of proteins

evolvability.2Here we measured fitness, complexity, robustness and evolvability of
the ancestors of the best final organism (at generation 270,000) from generation
0–250,000 (the last 20,000 generations being ignored as ancestors cannot be
considered to be fixed when they are too close to the final generation).

Following Adami (2002), we considered complexity as the quantity of infor-
mation an evolving system integrates from its environment. Here we quantified
complexity at two levels: the sequence level and the functional level. At the
sequence level, genomic complexity (CG) is directly measured by the number of
“essential” base pairs on the genome (i.e. base pairs which, if mutated, would
change the phenotype of the organism). Note that it may be very different from the
genome size since the genome can accumulate non-coding sequences. It can also be
shorter than the functional information stored on the genome since genes can share
sequences by means of overlapping (see Fig. 4b). Measuring functional complexity
CP is not as straightforward. At the phenotypic level, complexity is directly driven
by selection that imposes that the phenotype fits the phenotypic target. Now, the
phenotypic function can result from the sum of a variable number of protein kernel
functions. However, simply counting the proteins would overestimate complexity as

2In Aevol, robustness and evolvability are estimated by Monte Carlo sampling. 10,000,000
offspring of a given individual are generated. Robustness is estimated by the fraction of neutral
offspring, and evolvability is estimated by the mathematical expectation of fitness improvement on
the forthcoming generation.
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two proteins can have different sequences but the same function. Hence, we used a
finer description of the proteomic information to measure the functional complexity
CP : CP is defined as the number of parameter values used to encode the protein set
(i.e. the number of different m, different w and different h values in the kernel set).

To study the long-term fate of simple vs. complex organisms, we also defined
a qualitative classification procedure. A trivial option would have been to define
a threshold on the quantitative measures, but this would be arbitrary. Hence, we
classified organisms according to their functional structure: in Aevol, if all the
proteins of an organism have the same m and w (i.e. all the proteins have the
same function, possibly with different levels of activity h), then their functions
produce a triangular phenotype with the same characteristics. We used this property
to define two classes. Organisms are called “simple” if all their proteins have the
same function (in mathematical terms, if the sum of all kernel functions is a kernel).
Importantly simple organisms may contain many different proteins differing in their
efficiency h. Hence, simple organisms can have variable levels of genomic (CG)
and functional (CP ) complexities. Figure 4 shows examples of simple and complex
organisms.
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Fig. 4 A simple (a) and a complex (b) organism. Both evolved for 250,000 generations under a
mild mutation rate (10−5 mut.bp−1.gen−1) in simple conditions (triangular target). Left: Circular
genomes and genes (black arcs). Notice the non-coding sequences on both genomes and also the
genes overlap on the genome of the complex organism (b). Right: Proteins (black triangles) and
phenotypic targets (red-filled triangle). Panel (c) zooms on the protein structure of the complex
organism. The simple organism has two genes, two proteins and a functional complexity CP = 4.
The complex organism has 12 genes, 11 functional proteins and CP = 24
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4.4 Results: The Complexity Ratchet

Among the 300 simulations that evolved in a complex environment, 298 were
classified as “complex” at generation 250,000. However, strikingly, only 71 of the
300 simulations that evolved in a simple environment are “simple” at generation
250,000, the remaining 229 being “complex”. Even more strikingly, a comparison
of the mean fitness of the simple and complex organisms (in a simple environment)
shows that simple organisms are far fitter with a mean fitness fsimple = 0.99±0.008
(the maximum fitness in Aevol being fmax = 1) than the complex ones (fcomplex =
0.42 ± 0.32). This shows that in a simple environment, complex organisms have
no direct selective advantage over simple ones. We also verified that they have no
robustness and evolvability advantage (simple organisms being actually much more
robust than complex ones).

A natural interpretation of these results is that complexity is a transitory state and
that complex organisms will become simpler as their fitnesses improve. However,
this is firmly contradicted by the dynamics of simple vs. complex individuals. First,
simples’ fitnesses grow very quickly at the beginning of the simulations to reach
their maximum in a few thousands of generations (often less than 1000). Second,
among the 236 individuals that were complex at generation 10,000, 227 were still
complex at generation 250,000. This shows that complexity (or simplicity) belongs
to organisms’ identities and that, once fixed at the very beginning of the simulations,
hardly can it change thereafter.

When comparing the final complexity levels in the simple and complex environ-
ments, we found no significant difference. Together with the previous observation
that, in a simple environment, complexity accumulates despite the fitness advantage
of simple organisms, this suggests that complexity is driven by a strong neutral
process, strong enough to overcome the large difference of fitness between simple
and complex organisms in the simple environment (see above). However, in both
environments, results show that a high mutation rate strongly limits complexity
at both the genomic and functional levels, which is not consistent with a neutral
process as diffusion is likely to occur at a faster pace with a high mutation rate.
Moreover, when relaxing the selection pressure (i.e. letting the populations evolve
further without selection), we observed that complexity quickly drops to zero, hence
invalidating neutralist hypotheses.

Altogether, these results are puzzling: on the one hand, they show that complexity
accumulates despite selection (simple organisms being fitter than complex ones),
and on the other hand, they suggest that complexity is not driven by a neutral
process either. To disentangle the relationship between drift and selection, we
analysed the evolution of complexity and fitness during the 250,000 generations
of the experiments (Fig. 5).

Figures 5a, b illustrate that the dynamics are different for the two complexity
measures but similar for the two environmental conditions. Indeed, in both complex
and simple environments, CG quickly plateaus, while CP increases all along
evolution (less obviously so for the highest mutation rate). Moreover, Fig. 5c shows
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Fig. 5 (a) Mean genomic
complexity CG along
generations for organisms
that evolved in the simple
environment (blue lines) and
in the complex environment
(red lines) and for the three
different mutation rates. None
of the differences are
statistically significant at
generation 250,000 except the
effect of a harsh mutation rate
(p-value <10−4). (b) Mean
functional complexity CP

along generations for
organisms that evolved in the
simple environment (blue
lines) and in the complex
environment (red lines) and
for the three different
mutation rates. None of the
differences are statistically
significant at generation
250,000 except the effect of a
harsh mutation rate
(p-value <10−3). (c) Mean
fitness f along generations
for organisms that evolved in
the simple environment (blue
lines) and in the complex
environment (red lines) and
for the three different
mutation rates. The effects of
mutation rates on fitness are
all statistically significant at
generation 250,000 in
complex conditions and for
the 2 extreme mutation rates
in simple conditions. Plain
line, μ = 10−6. Dotted line,
μ = 10−5. Dashed line,
μ = 10−4
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that, even though simple organisms are fitter than complex ones (see above),
paradoxically, the latter improve their fitnesses while increasing in complexity. This
shows that, in our experiments, complexity is driven by a strong sign epistasis
mechanism that, in the fitness landscape of Aevol, sets simple functional structures
and complex ones apart. This sign epistasis initiates a “complexity ratchet” (Liard
et al., 2018, 2020) that pushes organisms towards greater complexity, meanwhile
improving their fitness but staying far below the fitness of simple organisms.

This means that the negative complexity-fitness correlation observed in the
simple environment is due to some initial contingent events (“frozen accidents”).
Depending on their very first evolutionary steps, organisms initiate different evolu-
tionary trajectories: some initiate a “gene optimisation” trajectory (typically through
substitutions), while others initiate a “gene duplication-divergence” trajectory. In a
complex environment, both strategies ultimately converge as complexity is required
to adapt to the Gaussian target. But in a simple environment, the gene optimisation
strategy and the gene duplication strategy are antagonistic because of sign epistasis.
Hence, once organisms have set themselves on either trajectory, they can hardly
switch to the other, and the longer the evolutionary history, the harder the switch
becomes. We verified this theory by evolving populations without any chromosomal
rearrangement mechanism. We observed that, in these new conditions, 98% of the
simulations lead to simple organisms (to be compared to the 23.7% of simple
organisms in presence of both point mutations and rearrangements), confirming
that the complexity ratchet is indeed fuelled by duplications. This also shows that a
minimum diversity of mutational operators is required for the ratchet to be effective
and suggests that including such a variety of operators is mandatory to observe the
whole complexity of the evolutionary process.

By evolving initially simple organisms in a simple environment, we were able to
observe the effect of a “complexity ratchet”. Now, by comparing the complexity lev-
els in simple and complex environments, we can estimate the power of this ratchet.
Indeed, we first showed that complexity is not higher in complex environments,
showing that the ratchet is at least as powerful as direct selection for complexity.
Second, we have observed an effect of the mutation rate on the complexity levels
and on fitness levels (Fig. 5): high mutation rates strongly limit the maximum level
of genomic complexity (Fig. 5a). This suggests that evolution of complexity must
be analysed in a multiscale framework: the complexity ratchet drives complexity at
the functional level, but the functional level has to be encoded within the genomic
sequence. Hence, mutational robustness, by bounding the amount of information
a genome can store (Knibbe et al., 2007; Wilke et al., 2001), loosely bounds
the functional complexity. Yet, at the functional level, complexity continuously
increases (Fig. 5b), driven by the complexity ratchet that slowly increases fitness
(Fig. 5c).



16 G. Beslon et al.

5 Conclusion

In this chapter, we have explored the relationship ESB maintains with complexity.
We successively discussed the apparently low interest of ESB for the question
of complexity. We then showed how complex models can be used to explore
how evolving systems accumulate complexity. Finally, we presented an experiment
that revealed the existence of a “complexity ratchet” fuelled by sign epistasis
(Liard et al., 2018, 2020). Within the field of ESB, this result deserves a specific
discussion. Indeed, it shows that, when analysing a biological system, there may
be no relationship between the complexity of the structure and that of the function.
Because of the complexity ratchet, a simple function can very well be carried out
by very complicated systems, even when simple solutions exist. Interestingly, sign
epistasis has recently been identified in signalling cascades (Nghe et al., 2018), a
system that is well known for its unnecessary complexity (Soyer & Bonhoeffer,
2006).

On the methodological side, complex models raise a difficult question: given
the complexity of these models, how can one ensure that the results (and, here,
the complexity ratchet) are valid, i.e. transferable to “real” living systems but
also to evolutionary biology and to systems biology that don’t make use of this
kind of models (and hence don’t trust them). On that question, the answer has
been given more than 20 years ago by Volker Grimm in an enlightening article
(Grimm, 1999) “The decisive thing with modelling is not the model per se, but
what the model and working with the model does to our mind. [. . . ] If the whole
process of modelling has succeeded, something will have happened in our head,
namely that an understanding of relationships has emerged. We should then be in
a position to communicate our insights to others without referring to the model”.
It has no meaning to discuss whether Aevol is “true” or “false”; but if we are able
to explain the complexity ratchet in biological terms independently from the model
that revealed it, then the question of the model’s rightness no longer matters.
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Modeling Complex Biological Systems:
Tackling the Parameter Curse Through
Evolution

Paulien Hogeweg

Abstract As we all know, “Nothing in biology makes sense except in the light
of evolution” Dobzhansky (Am Biol Teach 35(3):125–129, 1973). Among the
challenges of modeling complex biological systems is to determine the relevant
parameters. The common practice is to extract parameters from the literature, or to
determine them from ongoing experiments, or by collectively fitting the parameters
to the experimental results the model tries to explain. Doing so ignores, or at
least does not exploit, Dobzhansky’s wisdom. In this perspective paper, we argue
and demonstrate the importance of using evolutionary methods to derive relevant
parameters. We show that by doing so, we can debug experimental and modeling
artifacts.

1 Introduction

The holy grail of systems biology is to match experimental and modeling results.
In pursuing this lofty goal, one should keep in mind that wet experiments and dry
in silico modeling face different opportunities and limitations to the challenge of
unraveling complex biological systems. A common heuristic for experiments is to
keep conditions as constant as possible, and limiting the variability of the biological
material, e.g., by working with clonal populations, or preferring males over females
in medical research because of less hormonal variation. This way a simplest “input-
output” system is approached, without accounting for the (variable) state, i.e.,
considering an < I,O,� > dynamical system (defined in terms of a set of inputs
(I ), a set of outputs (O), and a function linking input and output (�)) instead of a
full < I,O, S,�,� > dynamical system, in which in addition the internal state
(S) and internal state changes (�) are considered. In contrast, modeling approaches
do focus on state changes of the system and use either the full system specification
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< I,O, S,�,� > or simplify it to < S,� > considering fixed external conditions
(no input beyond initial condition) and observing state changes as outputs.

In silico modeling requires full specification of processes and parameters. An
often used heuristic is to compose a very simple model, in which it is possible to
survey the full parameter space. This way the result takes the form “the observed
in vivo or in vitro behavior is possible within the proposed model”. In such simple
models, the parameters are often composites of potentially measurable quantities
and often not validated beyond the fact that they produce the observed behavior. On
the other hand, large-scale models try to integrate measurements of many different
experiments, often having to add “reasonable” values for unknown parameters, and
determine whether these parameters and inferred interactions incorporated in the
model indeed produce particular experimental results.

In both cases, one should keep in mind the warning signal put up by James
Watson (as quoted by Francis Crick 1988, pp. 59–60 Crick, 1988) “no good model
ever accounted for all the facts, since some data was bound to be misleading if not
plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do
so and would thus be open to suspicion.”

The relevance of this warning signal is preeminently exposed in the history of
the study of the lactose operon (lac operon). Both models and experiments agreed
for a long time that the lac operon coded for a bistable switch, (e.g., Griffith, 1968;
Novick & Weiner, 1957; Ozbudak et al., 2004), although this notion was challenged
early on on theoretical grounds by Savageau (1999). This conclusion is now on
theoretical and experimental grounds falsified, (e.g., Afroz et al., 2014; Ozbudak
et al., 2004; Rao & Koirala, 2014; Savageau, 2011; Van Hoek & Hogeweg, 2006,
2007; Zander et al., 2017). Here we will relate how evolutionary systems theory
contributed to this reversed conclusion.

2 Case Study: The lac Operon and Bistability

We will use the lac operon to illustrate the power of evolutionary modeling to
understand the “how and why” of a particular well-studied regulatory circuit. To
this end, we will review an earlier published model and results (Van Hoek &
Hogeweg, 2006, 2007), emphasizing the methodology, from a conceptual as well as
from a “hands-on” point of view. For details of the model, quantitative results, and
mathematical analysis, the reader is referred to the original publications (Van Hoek
& Hogeweg, 2006, 2007).

2.1 Background: “State of the Art”

The lac operon has been seen for many years as the prototype example of a
bistable switch. Indeed the very concept of gene regulation was discovered by Jacob
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and Monod (1961) by the observation of population heterogeneity and hysteresis
when E. coli was grown at different concentrations of an inducer. An artificial, not
metabolized, inducer was used, in order to be able to create constant conditions for
the experiment. These and subsequent experimental results were soon supported by
a simple theoretical model, showing that the positive feedback loop of the import
of an inducer on the internal inducer concentration was sufficient to explain the
bistability (Novick & Weiner, 1957). This model is taught in many “introduction
to biological modeling” courses. Such a so-called mini-model shows that for some
parameters, the model can account for the observed behavior and therewith that such
a positive feedback is potentially sufficient to explain the observations. For such a
compact mini-model, there are only a few parameters; these parameters can be fitted
to match the experimental results but cannot be measured in a model-independent
way.

Subsequent experimental results elucidated many details of the structure of the
lac operon and its regulation by a combination of the inducer (lactose or an artificial
substitute (IPTG or TMG)) and the preferred resource glucose (see scheme in
Fig. 1). A shorthand description is the lac operon is an AND gate: it is ON when
there is lactose and no glucose and OFF otherwise.

Subsequent large-scale modeling (e.g., Wong et al., 1997; Yildirim & Mackey,
2003) incorporated this accumulated experimental knowledge. Consequently these
models contain many parameters, which were taken from the literature or estimated
as “reasonable”. Also these models concluded that yes indeed the lac operon of
E. coli encodes a bistable switch. However, close scrutiny of the parameters used
revealed large differences between those used in different models. Moreover some
parameters were adjusted in order to ensure bistability.

Finally, the notion that the lac operon encoded a bistable switch was also rein-
forced by an evolutionary mini-model which showed bistability to be advantageous
(e.g., Thattai & Van Oudenaarden, 2004).

Although the agreement between models, experiments, and optimization consid-
eration may seem conclusive, the parameter uncertainties and their adjustments to
match experimental outcomes suggest that we should heed Watson’s warning quoted
above.

Our research was triggered by a then recent paper of (Setty et al., 2003) which
reported direct measurements of the transcription rate of the operon (by coupling a
GFP reporter to the operon) for many combinations of the artificial inducer IPTG
and cAMP (high cAMP concentrations correspond to low glucose concentration;
see scheme of the lactose operon in Fig. 1). The resulting promoter function is not
a simple AND gate (ON for high inducer and high cAMP (i.e., low glucose) and
OFF otherwise) but shows distinct (non-zero) expression levels for, respectively,
low inducer high cAMP, high inducer low cAMP, and low inducer low cAMP (see
Fig. 3b).

They fitted the data to a phenomenological promoter function (see Fig. 1) and
obtained a good fit. However, they also showed that this function is quite sensitive
to its parameters. They concluded that “the promoter is selected to perform an
elaborate computation in setting the transcription rate” (Setty et al., 2003).
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Fig. 1 Overview of the model, which includes the intracellular as well as the intercellular
interactions. On the left, the intracellular metabolism and gene regulation related to lactose and
glucose utilization are shown as implemented in the model. Expression of the lac operon is
regulated by the concentration of allolactose (A) and cAMP (C). Allolactose is derived from
lactose, and cAMP is inhibited by the influx of glucose in the cell. The expression of the operon
is needed for the production of allolactose. It codes for the pump to get lactose into the cell, as
well as the enzyme β-galactosidase which transforms lactose to allolactose. Because allolactose
induces the lac operon, by inhibiting LacI (which inhibits the operon), and needs the expression
of the operon to be produced, there is a positive feedback loop which might lead to bistability.
On the upper right, the form of the promoter function, dependent on allolactose (A) and cAMP
(C), is given as fitted to experimental data by Setty et al. (2003). The V parameters are functions
of the following physiological parameters: RNA polymerase and its dissociation constant for
binding to the free promoter site and to the site when occupied by CRP (the cAMP-associated
transcription factor), as well as its transcription rate dependent on the site occupancy (α and β);
the “leakage” of the promoter (γ ), i.e., its expression when not induced; the concentration of LacI
and its dissociation constant; and the CRP concentration and its dissociation constant. It are these
(more physiological) parameters which are subject to mutation and selection in the model; see
main text. Finally, in the lower right, the “ecosystem” is depicted, showing the local variation of
the external concentration of glucose and lactose and the presence of the cells at arbitrary point in
time. For details, see Van Hoek and Hogeweg (2006)

Heeding Dobzhansky’s dictum (Dobzhansky, 1973) we wondered if we could
“make sense” of the form of the promoter function from an evolutionary point of
view, i.e.:

1. Should we expect such a promoter function to evolve given the known and/or
hypothesized details of the metabolic pathways involved?

2. What is the functionality that is in fact being selected?

To answer these questions, we used an evolutionary systems biology approach.
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3 Eco-evolutionary Model of the lac Operon

We constructed a multilevel agent-based eco-evolutionary model. The model
includes the within-cell physiological dynamics related to the lac operon, cell
growth, and reproduction and competition between cells in a spatially explicit
environment, which is modified by the cell metabolism (see Fig. 1).

The model for cell-level physiological dynamics is adapted from the model of
(Wong et al., 1997), using their parameter values. However, the promoter function
of (Setty et al., 2003) was incorporated, and its parameters were subjected to
evolution. The rationale for using fixed parameters for all processes except those
of the promoter function was that we wanted to study how the promoter function
evolved, given the constraints set by the rest of the system. Important, for example,
are the relatively slow protein dynamics.

Thus the model includes the following components (Fig. 1):

• A promoter function. We used the same (phenomenological) function that (Setty
et al., 2003) used to (successfully) fit their experimental data (see Fig. 1). The
parameters of the function were subject to evolution, i.e., subjected to mutation
and selection. Importantly, after initial trials in which “nothing happened” (i.e.,
no evolutionary adaptation was observed), we realized we should not use the
dimension (parameter) reduction used to simplify the model fitting, but the
underlying binding reactions instead. This increases the number of parameters
from the 7 shown in Fig. 1 to 11 more physiological parameters (see the legend
of Fig. 1). Thus we create a redundant genotype-to-phenotype (GP) mapping.
Such a redundant GP mapping has been shown to strongly improve evolutionary
search. (For a recent extensive review on the role of GP maps in evolution, see
Manrubia et al., 2020.)

• Intracellular molecular interactions, including protein expression and degrada-
tion, transport into the cell of lactose and glucose, and ATP production, as
modeled by (Wong et al., 1997). In addition, the cells grow as a function of ATP
production, causing dilution of the protein concentrations. When a cell reaches a
certain predefined size, it can divide.

• Ecology: the cells are embedded on a spatial grid. Resources, i.e., lactose and
glucose, flux into the medium and are taken up by the cells. The cells compete
for the resources as well as empty grid cells. Cells divide after reaching a certain
size and die with a probability which depends on the global cell density.

The aim of this evolutionary model is to alleviate the “parameter curse,”
inherent in detailed models. Paradoxically, but unavoidably, extra (semi-arbitrary)
parameters have to be set in the evolutionary model, in this case, for example, the
cost (in terms of ATP) of protein expression and the definition of the environment
in which the evolution takes place. The latter involves relative changes in external
and internal resource concentration when resources are consumed, as well as the
temporal changes of the influx of the resources into the environment. Fortunately, for
the environmental parameters, we could use an “adequacy” criterion, i.e., in order
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Fig. 2 Coverage of the state space, i.e., the conditions the cells experience over time. On the
left, the external conditions, i.e., the concentrations of glucose and lactose, encountered. On the
right, the realized internal conditions which directly impact on the expression of the lac operon,
i.e., the concentrations of cAMP and allocatose. Because of the dynamics of the model, all these
concentrations cannot be directly manipulated as input but are the result of the model dynamics.
Glucose and lactose were influxed in independently Poisson-distributed blocks of certain duration
and concentration. We tuned frequency and amount of influx in such a way that all circumstances
were encountered regularly, as shown in the pictures

to select for the full operon function, all combinations of concentrations of glucose
and lactose as well as the resulting internal concentrations of allolactose and cAMP
should be regularly encountered by the cells. As these concentrations are not directly
imposed, but result from the consumption and metabolism, we tuned the timing and
amount of influx of glucose and lactose in such a way that this requirement is met
(see Fig. 2 for the resulting coverage of the state space).

3.1 Analysis of the Eco-evolutionary Dynamics of the Model

Darwin distinguished “natural selection” from “artificial selection”, where the latter
referred to selection by breeders for certain properties preferred by them. The above
described eco-evolutionary model of the lac operon (artificial as it is) incorporates
in this sense “natural selection”: no a priori fitness criterion is defined. Instead the
environmental conditions are constantly shifting, not only due to fluctuating external
influx of glucose and lactose but importantly also through the current population
of cells and the variation of the promoter functions of neighboring cells which
defines their uptake of the resources, and therefore the local resource conditions.
(Indeed recent experiments have shown the importance of micro-scale gradients in
the functioning and evolution of bacterial colonies Dal Co et al., 2019; Van Vliet
et al., 2017). These local conditions determine the immediate fitness. Long-term
integration of immediate fitness will determine, in the long run, what evolves. This
is indeed what evolution is about. However, it makes life harder for the modeler,
because there is not one obvious observable (fitness) to evaluate whether or not the
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Fig. 3 First observations on the evolutionary dynamics of the model. (a) The evolution through
time of individual parameters does not show any clear trend. (b) Depicts the evolution over time
of some phenotypic features, namely, the promoter activity the evolving promoter function would
have when encountering the four extremes of high and low cAMP and allolactose concentration
(although the circumstances in which it finds itself are different). The phenotypic features show a
somewhat clearer evolutionary trend, although they also do not convincingly show that anything
other than drift occurs

model is actually evolving something. As shown in Fig. 3a, b, looking at changes in
the parameter values over time is hardly informative, although looking at the change
over time of some selected phenotypic features indicates something beyond neutral
drift might be happening. However, further analysis and experiments with the model
are needed to establish this, as discussed below.

There is at all times plenty of variation in the population. To get a more detailed
understanding of what is evolving, we extracted the last common ancestor of the
population at the end of the simulation. This cell obviously was most successful in
producing surviving offspring, thus, in hindsight, being per definition the fittest. This
works quite well (as shown below), but one should keep in mind that the success of
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Fig. 4 Similarity of the shape of the promoter function of the best evolved common ancestor (b)
with the promoter function of Setty et al. (2003); see panel (a). Shown is the activity in the state
space as experienced by the cells (compare Fig. 3), which is not the same in both cases

the last common ancestor could be caused simply by chance or importantly by later
occurring mutations. Several independent evolutionary runs were performed. To
select the “best” evolved promoter function, we pairwise competed the last common
ancestors of the various runs and selected the one which won most often. This best
promoter function is depicted in Fig. 4 alongside the promoter function of (Setty
et al., 2003) as fitted to their measured data. The similarity is striking, especially
realizing that no fitting was involved in setting up the model.

So far so good: apparently the shape of the promoter function as determined in
the experiment, with the “fine-tuned parameter values” noted by Setty et al. (2003),
is explained by the “natural selection” in our eco-evolutionary model, given the
background metabolic processes as modeled previously (Wong et al., 1997). But
why? We can now study its behavior in different external resource concentrations.
The results are given in Fig. 5a for various concentrations of external lactose, either
with high or low glucose concentrations. In contrast to the common expectation that
the natural promoter function of the lac operon of E. coli codes for a bistable switch,
the promoter function evolved in our eco-evolutionary model does not, despite its
similarity to the measured promoter function. What is wrong?

3.2 Internal Validation of the Model

It turns out that nothing is wrong with the model and that, indeed, the lac operon
of E. coli does not encode a functional bistable switch. This insight is first of all
obtained from the model itself. Realizing that experiments were almost always done
with artificial inducers (IPTG or TMG), which are not metabolized, we tested our
promoter function by stimulating it with IPTG, adjusting the model accordingly. As
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Fig. 5 The best evolved promoter function does not code for a bistable switch in its natural
environment and the model, i.e., when it is induced by lactose (a). However, when studied with
an artificial inducer (IPTG) as commonly done in the lab, it does code for a bistable switch (b).
Solid line, low glucose concentration; dotted line, high glucose concentration (Reproduced from
Van Hoek and Hogeweg, 2006)

seen in Fig. 5b, the model with the evolved promoter function in that case recovers
a strong bistable switch, both for low and for high concentrations of external
glucose. The difference in behavior is due to the fact that artificial inducers are
not metabolized, whereas lactose is. This is in fact the advantage of using these
artificial inducers in experiments, as it allows to control the conditions. However,
because they are not metabolized, the positive feedback loop is strengthened,
causing bistability under a much wider set of circumstances than is the case for
lactose, which is metabolized (Díaz-Hernández & Santillán, 2010). In other words,
we conclude that the common notion that the lac operon is coding a bistable
switch is an experimental artifact, derived from the preference to do experiments
in controlled conditions. As mentioned above, in our eco-evolutionary model, as in
nature, conditions are extremely non-controlled.

3.3 Experimental Validation of the Model Results

Currently, the consensus opinion has shifted away from considering the lac operon
as a bistable switch. Although the model results described above, in my opinion,
support this conclusion strongly, the communis opinio is based on more recent, more
conventional systems biology experiments as well as wet evolutionary experiments.
Strikingly, the paper entitled “Multistability in the lactose utilization network
of Escherichia coli” mentions in passing in the supplementary material “During
induction with lactose, as opposed to IPTG, TMG. . . . . . .the steady state distribution
after 4 hours of growth is always uni-modal, and we never observe hysteresis”
(Ozbudak et al., 2004). Strikingly, despite its title, this paper is frequently cited
as evidence for the gradual response instead of bistability.
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A combined experimental and modeling paper (Zander et al., 2017) confirmed in
their carefully parameterized model that the lac operon is not bistable. However,
they showed in the model and in experiments that overexpression of LacI (the
repressor of the operon which is repressed by the inducer (allolactose or artificial
inducer)) does induce bistability. In fact, their results show that the wild-type
promoter function is only just not bistable. Similarly, in our model, we see that over
evolutionary time some individuals of the variable population do show bistability for
lactose. Moreover, we see that when, as we did, evolution starts off with a bistable
promoter, it evolves away from bistability by increasing the default expression of
the operon without induction (the γ parameter (see Fig. 3a top panel)). Note that
decreasing LacI expression implies less repression of the operon and therewith an
increase of leakage (i.e., γ ). Indeed we showed analytically that the occurrence of
bistability (i.e., a Hopf bifurcation) depends primarily on a low enough value of
γ (Van Hoek & Hogeweg, 2006). These results suggest that long-term evolution
avoids bistability but minimizes the (costly) expression of the operon when not
induced as much as possible without becoming bistable.

Interestingly, LacI is in fact itself also regulated by the lac operon (Semsey et al.,
2013). This autoregulation leads to a further smoothing of the response. This is
another indication that avoidance of bistability is an evolved feature.

Also interesting are the results of the evolutionary experiments of (Quan et al.,
2012). They evolved E. coli cells on four different media, only glucose, only lactose,
glucose and lactose, and alternating glucose and lactose, and studied the bistability
of the evolved lac operons, using artificial inducer (TMG). Even with artificial
inducer, they only observed bistability consistently in the glucose-only medium and
in a subset of cases in the lactose-only medium. These results, counterintuitive as
they may seem at first sight, can be understood in terms of the above discussion.
On glucose-only medium, the operon should never be expressed. Therefore, the
“leakage” expression without inducer should be low. When this is low enough,
bistability is even seen with lactose as inducer (see also Fig. 6b).

Conversely, if they evolved on lactose only, the operon should be active all
the time. Whether or not it is bistable under other circumstances is irrelevant.
Hence, in some replicates, it remains bistable for artificial inducer as it was the
initial wild type, and in other cases, bistability is lost by neutral evolution. In the
other two cases, a graded response is observed even for TMG. In contrast to our
eco-evolutionary model, where we tuned the parameters so that all environmental
conditions were experienced regularly, these evolutionary experiments severely
limited the environmental conditions experienced by the cells. Therefore, the cells
adapted quickly to the subset of conditions encountered. Likewise when we varied
the environmental conditions or internal parameters (e.g., cost of gene expression)
and only a subset of conditions occurred, different promoter functions evolved
(Van Hoek & Hogeweg, 2006).

Finally I mention the study of (Afroz et al., 2014), who studied bistability for
a number of carbon sources. They report no bistability for the lac operon, but do
find bistability for others, e.g., L-arabinose. It would be interesting to see whether
the modeling methodology we used here would for L-arabinose indeed predict
bistability.
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Fig. 6 (a) Delay in activation of the lac operon when external lactose becomes available,
dependent on un-induced activity level: delays longer than average division time of E. coli for un-
induced values compatible with bistability. (b) Evolved promoter activity dependent on internal
allolactose in various replicates. Dotted line, initial bistable promoter. Dashed and solid line,
evolved promoters in, respectively, the deterministic and the stochastic model. The stochastic
model evolves even farther from bistability by increased un-induced expression (Reproduced from
Van Hoek and Hogeweg, 2006, 2007)

3.4 Why Avoid Bistability?

The theoretical and experimental results discussed so far show that bistability is
evolutionary avoided. But why? When some phenotypic feature evolves, this does
not automatically imply that it has an adaptive benefit, as it may be produced by
neutral drift. Indeed neutral drift can generically lead to well-defined, apparently
nonrandom phenomena which are attractors of the stochastic dynamical system
defined by the mutational operators employed, a striking example of which is shown
in (Cordero & Hogeweg, 2006). The fact that an evolutionary model and empirical
data converge to the same outcome, as is the case in both (Cordero & Hogeweg,
2006) and the current model, also does not preclude a neutral explanation. For
example, the avoidance of bistability simply could be due to the fact that a larger
part of parameter space generates a graded response, rather than bistability, which
is indeed so for the natural system with lactose as inducer, whereas the parameter
space leading to bistability is much larger in the case of artificial inducer (as shown
here and argued in Savageau, 1999, 2011). Apart from neutral drift, another non-
adaptive explanation of an evolved phenotypic feature might be that it is a side
effect of the positive selection acting on an apparently unrelated feature, when the
same mutations affect both. The above mentioned bistability of the lac operon when
evolved on glucose medium is a nice example of this. Important for the discussion
here is that whether or not the studied feature is generated by adaptive or neutral
evolution, or as a side effect, does not affect the main conclusion of this paper, i.e.,
that an evolutionary perspective is very helpful to debug matching theoretical and
experimental results.
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In the present case, we see a clearly adaptive signature in the outcome. First of
all, competition experiments mentioned above clearly show the fitness advantage
of the evolved promoter function, in the type of environment in which it evolved
(but note that in competition experiments, the environment unavoidably differs
from the native environment because of the presence of the competitor). Another
indication of the adaptive relevance of the evolved promoter function is that under
different environmental circumstances, clearly different promoter functions evolve,
as discussed above in this model as well as in experiments (Quan et al., 2012).

Moreover we can pinpoint why a sufficiently high value of γ and therewith
the avoidance of bistability give an evolutionary advantage. In Fig. 6a, we show
the onset of mRNA and protein production when external lactose becomes available.
For promoters with very low activity when no external lactose is available, the
delays are very long, in fact longer than the average division time of E. coli.
Obviously such long delays are detrimental. Cells which avoid such delays consume
the external lactose earlier, leaving less resource for cells with longer delays. Slow
protein dynamics plays an important role in these long delays. This underscores the
importance of using the large-scale parameterized model for the cell metabolism
in our eco-evolutionary model. Note that bistability, and therewith hysteresis,
would even further aggravate the delays. We conclude that it is the transient, non-
equilibrium situation which determines the long-term evolutionary outcome.

In contrast, an earlier evolutionary model “explained” the advantages of bista-
bility (Thattai & Van Oudenaarden, 2004). In their mini-model, instantaneous
switching was assumed. In addition, their model was stochastic. Bistability ensured
heterogeneity in the population, so that some cells were pre-adapted to a changing
environment. This raises the question whether it is the lack of stochasticity in
gene expression in our model which prevents evolution to exploit the advantages
of bistability. We modified the model to incorporate stochastic gene expression
(Van Hoek & Hogeweg, 2007) and conducted a similar set of experiments in the
stochastic model. Figure 6b shows that the stochastic model evolved even farther
away from bistability by increasing the expression in the absence of lactose (i.e., γ ).
Indeed, again the explanation is in terms of delays, which are even more severe in the
stochastic model (Van Hoek & Hogeweg, 2007). Moreover, the stochasticity only
marginally increases the heterogeneity of the population, relative to the genetic and
environmental heterogeneity prevalent in the eco-evolutionary model (Van Hoek &
Hogeweg, 2007). Likewise through metagenomic analysis, extreme heterogeneity is
commonly observed in natural bacterial populations at a micro-scale (e.g., Preheim
et al., 2011; Vetsigian et al., 2011).

4 Discussion

The evolutionary systems biology approach discussed in this paper proved to be
surprisingly powerful. We showed that the measured promoter function (Setty
et al., 2003) was evolutionary favored, which was our original aim. The modeling
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was moreover rich in “results++”. i.e., in unexpected novel insights. Foremost
the insight emerged that the assumption of bistability of the lac operon, which
was supported by experiments, mini-models, large-scale models, and evolutionary
optimization models, is in fact incorrect. How could this false notion be sustained for
so many years? The need for well-defined conditions in experiments, and therewith
the use of artificial inducer, clearly was the primary cause, combined with the
construction of models and the setting of parameters such that the model results
match the experimental results. In contrast, we used an unsupervised modeling
approach and observed a striking match to some experimental results, namely, the
shape of the promoter function together with the totally unexpected evolutionary
trend away from bistability. Moreover, we could determine that bistability was
avoided in order to avoid delays in activation and therewith gain a competitive
edge. Our results also indicate that examining monomorphic, clonal populations
in experiments or models may lead to artifacts, in the sense that it does not reflect
what happens in natural populations.

Having argued that the lac operon does not encode a bistable switch, we should
reflect on what we mean with such a statement. Bacteria, including E. coli, adapt
to a prevailing environment very quickly, as shown in evolutionary experiments,
e.g., those of (Quan et al., 2012) discussed above, and stressed by (e.g., Dekel and
Alon, 2005). This we also see in our model: if the environment switches too fast,
regulation is largely lost, as only an average environment is experienced by the cells.
As another example, when cost of protein expression is set very high, bistability may
evolve but occurs at very high glucose concentrations, which were very seldom if
ever encountered. In such a case, like in the glucose-only environment of (Quan
et al., 2012), bistability occurs as a side effect which does not harm the system.
Thus, indeed as stated by Setty et. al., the promoter function can be fine-tuned easily.
It is therefore even more remarkable that, given that a full set of environmental
conditions is encountered (which is not the case in the abovementioned examples),
evolution of wild-type E. coli and the model converge to an unequivocal solution.

In the eco-evolutionary model discussed here, we only evolved some of the
large number of parameter values which needed to be specified, and for which
the experimental evidence is not unequivocal. However, because of the evolution
of the parameters determining the phenomena of interest, their precise value might
not matter too much and certainly was not tuned/fitted for the results obtained. In
that sense, the parameter curse which encumbers large-scale models was somewhat
alleviated. This was enough to debug the results obtained from models in which
parameters were fitted or tuned to match the experimental results.

Finally I like to note that the general approach advocated here, i.e., non-
supervised, multilevel eco-evolutionary modeling, can be generalized beyond evolv-
ing parameters in a fixed model structure as done here. Giving the models many
degrees of freedoms to adjust model structure, we have repeatedly seen surprising
convergence to biological systems, leading to novel insights in their functioning as
well as novel insights in evolution itself (e.g., Cuypers & Hogeweg, 2012, 2014; van
Dijk et al., 2019; Van Hoek & Hogeweg, 2009).
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Direction and Constraint in Phenotypic
Evolution: Dimension Reduction and
Global Proportionality in Phenotype
Fluctuation and Responses

Kunihiko Kaneko and Chikara Furusawa

Abstract A macroscopic theory for describing cellular states during steady growth
is presented, based on the consistency between cellular growth and molecular
replication, as well as the robustness of phenotypes against perturbations. Adaptive
changes in high-dimensional phenotypes were shown to be restricted within a low-
dimensional slow manifold, from which a macroscopic law for cellular states was
derived, which was confirmed by adaptation experiments on bacteria under stress.
Next, the theory was extended to phenotypic evolution, leading to proportionality
between phenotypic responses against genetic evolution and environmental adapta-
tion. The link between robustness to noise and mutation, as a result of robustness
in developmental dynamics to perturbations, showed proportionality between phe-
notypic plasticity by genetic changes and by environmental noise. Accordingly,
directionality and constraint in phenotypic evolution were formulated in terms
of phenotypic fluctuation and the response against environmental change. The
evolutionary relevance of slow modes in controlling high-dimensional phenotypes
is discussed.

1 Introduction

In a chapter in the previous volume of Evolutionary Systems Biology (Kaneko,
2012a; Soyer, 2012), we discussed the evolutionary fluctuation-response relation-
ship, which states that if phenotypic variance due to noise is high, then evolution
rapidly occurs. This suggests a correlation between short-term phenotypic dynamics
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and long-term evolutionary responses. This, in some sense, is a quantitative
expression of Waddington’s genetic assimilation (Waddington, 2014).

Can we push this viewpoint forward to determine the direction of phenotypic
evolution in a high-dimensional phenotypic space (i.e., with a large degree of
freedom components)? Can one predict which traits are likely to evolve among
many components before evolution progresses?

To answer the question, we first investigate the characteristics of responses of
phenotypes with a large degree of freedom. We review the general relation in
phenotypic responses of cells over many components, demonstrating that global
proportionality exists among all logarithmic changes in concentrations against adap-
tation to different environmental conditions. We first discuss this proportionality
as a general consequence of steady exponential growth cells, following (Kaneko
et al., 2015). We show that when a cell grows and divides while maintaining its
composition, the abundances of each component increase at the same rate; this
constraint supports the global proportional relationship.

However, the growth rate constraint is not enough to explain the experimen-
tal observations. Global proportional changes across all components are con-
firmed even across many different environmental conditions. This result cannot
be explained by the constraint of steady growth alone. We will see that another
important constraint, imposed by the robustness in a phenotypic state shaped
throughout evolution, is essential. From this evolutionary robustness, phenotypes
can change mostly along only one or in a few dimensions, although the original
phenotypic space is high-dimensional as a consequence of the huge diversity in
the components of cells. Based on (Furusawa & Kaneko, 2018; Kaneko, 2012a),
we demonstrate this evolutionary dimension reduction both through theory and
simulations, whereas its consequence is consistent with experimental observations.

This constraint in phenotypic changes is extended to changes that occur in
evolution. We demonstrate that long-term phenotypic changes via evolution and
short-term changes via adaptation are highly correlated. Global proportionality in
the phenotypic changes by environmentally induced adaptation and those by geneti-
cally induced evolution is confirmed across all components, both in simulations and
laboratory evolution experiments (Furusawa & Kaneko, 2015).

In contrast, response and fluctuation are two sides of the same coin, as has been
demonstrated by statistical mechanics (see also the first volume of Evolutionary
Systems Biology (Kaneko, 2012a and Kaneko & Furusawa, 2018)). Hence, a
similar correlation in concentration fluctuations is expected across all components.
Indeed, we demonstrate a proportional relationship between fluctuations by gene
mutation and those by noise over the concentration of all components. Recall that
the variances in each trait (phenotype) due to genetic variation are proportional
to the evolution rate of the trait according to the fundamental theorem of natural
selection by Fisher (1930). Hence, the evolution rate of each trait is correlated
with its variance by noise, which is predetermined before mutation and selection.
This means that the evolutionary potential of each trait is determined in advance by
the phenotypic changeability which is affected by environmental variation or noise
before genetic changes occur. This enables the prediction of phenotypic evolution.
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Among the high-dimensional phenotypic space, evolution progresses along the
direction in which the variation by the noise or environmental response is larger,
which is predetermined before mutation. Although genetic variation itself is random
and undirected, phenotypic evolution tends to show directionality.

2 Constraint in a Steady-Growth System: Global
Proportionality Law

To describe changes in the cellular state in response to environmental changes, we
introduce a simple theory by assuming that cells undergo steady growth. When a cell
grows and reproduces in this steady state, all components, e.g., expressed proteins,
must be approximately doubled (Furusawa & Kaneko, 2003; Kaneko, 2006).

Consider a cell consisting of M chemical components. In the cellular state under
steady-growth conditions, the cell number increases exponentially over time, as does
the cell volume V , as given by dV/dt = μV . In a steady-growth cell, the abundance
of all components increases at the same rate, preserving the concentration of each
component during the cell cycle.

To formulate the constraint for steady growth, let us denote the concentration
xi(> 0) for each component i = 1, · · · ,M . The cellular state is represented as a
point in an M-dimensional state space. Here, each component i is synthesized or
decomposed relative to other components at a rate fi({xj }), for instance, by the rate
equation in chemical kinetics. Additionally, all concentrations are diluted by the rate
(1/V )(dV/dt) = μ, so that the time change of a concentration is given by

dxi/dt = fi({xj }) − μxi. (1)

For convenience, let us denote Xi = log xi and fi = xiFi . Then, Eq. (1) can be
written as dXi/dt = Fi({Xj })−μ, which assumes that xi �= 0, i.e., all components
exist. Then, the stationary state is given by the fixed-point solution Fi({X∗

j }) = μ

for all i.
In response to environmental changes, the term Fi({Xj }) and growth rate μ

change, as does each concentration x∗
i ; however, the M − 1 conditions F1 = F2 =

· · · = FM must be satisfied. Thus, a cell must follow a one-dimensional curve in the
M-dimensional space (see Fig. 1) under a given change in the environmental condi-
tions (e.g., against changes in stress strength). Now, consider intracellular changes
in response to environmental changes. Here each environmental change given by a
type of stress a is parametrized by a single continuous parameter Ea (such as the
temperature, degree of nutrient limitation, etc.). Using this parameterization Ea , the
steady-growth condition leads to Fi({X∗

j (E
a)}, Ea) = μ(Ea).

We consider the parameter change from E0 to E, where each X∗
j changes from

X∗
j at E0 to X∗

j + δXj , which is accompanied by a change from μ to μ + δμ.
Assuming a gradual change in the dynamics xj , we introduce a partial derivative
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Fig. 1 Schematic representation of our theoretical analysis: changes in gene expression in a
high-dimensional state space under different perturbations Ea and Eb are presented. Upon a
given environmental change, the phenotypic changes in component concentrations follow a curve
satisfying the constraint showing that the growth rates of all components are identical, i.e., an iso-μ
line F1 = F2 = · · · = FM , in an M-dimensional state space. For a different environmental vector,
the locus in the state space follows a different iso-μ line

of Fi({X∗
j (E)}) by Xj at E = E0, which gives the Jacobian matrix Jij . Assuming

that the environmental change is small and that phenotypic changes are sufficiently
small and follow only the linear term in δXj , we obtain

∑

j

Jij δXj (E) + γiδE = δμ(E) (2)

with γi ≡ ∂Fi

∂E
. Under our linear conditions, δμ ∝ δE, so that δμ = αδE holds for

a constant α. Accordingly, we obtain
∑

j Jij δXj (E) = δμ(E)(1 − γi/α). Hence,
∑

j Jij δXj (E)

δμ(E)
=

∑
j Jij δXj (E′)

δμ(E′) so that

δXj (E)

δXj (E′)
= δμ(E)

δμ(E′)
(3)

is obtained over all j . The formula can be compared with experimental observations.
Note that it can be applied to any component. For example, one can use the
concentration of either mRNA or protein, depending on the available experimental
data.

3 Experimental Confirmation

To explore the relationship between changes in global gene expression and growth
rate, we analyzed transcriptome data of Escherichia coli obtained under three
environmental conditions, osmotic stress, starvation, and heat stress, as presented
in Matsumoto et al. (2013). In the experiments, the cells were initially cultured
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under minimal medium at 37 ◦C. After the transient response to the introduction
of a given stress, the cells were harvested when the growth rate reached a constant
value. The data were taken only from an exponentially growing steady state. For
each stress condition, three levels of stresses (s = high, medium, low) were used, so
that the absolute expression levels, represented by xj for j th gene, were measured
over 3 × 3 conditions.

Through transcriptome analysis under different environmental conditions, we
calculated the change in gene expression levels between the original state and for
a system experiencing environmental stress. We investigated the difference in gene
expression using a log scale (Xj = log xj ), that is, δXj (E) = Xj(E) − XO

j (i.e.,

log(xj (E)/xO
j )), for genes j , where E represents a given environmental condition

and XO
j represents the log-transformed gene expression level under the original

condition (Kaneko et al., 2015).
To examine the validity of the theory for global changes in expression induced

by the environmental stresses, we plotted the relationship between the differences
in expression (δXj (E

a
s1

), δXj (E
a
s2

)) in Fig. 2a for s1 = low and s2 = medium,
where a is heat stress. A common proportionality was observed in concentration
changes across most mRNA species, which is consistent with the theory (Kaneko
et al., 2015).

According to our theory, the proportion coefficient in the expression level should
agree with the growth rate. Here, for each condition, the change in the growth rate
δμ(Ea

s ) was also measured (a is either osmotic, heat, or starvation stress). The slope
fitted from the data agrees well with the common ratio δXj (E

a
s1

)/δXj (E
a
s2

).
In this respect, the theory based on the steady-growth state and linearization

of changes in stress works well for analyzing transcriptome changes in bacteria.
Indeed, the relevance of growth rate to global trend in transcriptome changes was
noted in several experiments (Brauer et al., 2008; Keren et al., 2013; O’Duibhir
et al., 2014; Regenberg et al., 2006), and the formulation in the last section can
provide a step to understand such global trend (see also Klumpp et al., 2009; Scott
et al., 2010). Here, however, the steady-growth theory is not sufficient. First, the
global proportionality is satisfied even under a stress condition that reduces the
growth rate to below 20% or as compared to the standard. Such expansion of the
linear regime is beyond the simple theory. The other important point missed by this
steady-growth theory will be discussed in the next section.

4 Global Proportional Changes in Gene Expression Beyond
the Simple Theory

Until now, we have compared the responses against a given type of environmental
condition with different strengths. In general, possible environmental changes are
described by a vector as E. In the study, the changes are given by E = λaea

with different strengths λa by fixing ea . However, one can also compare expression
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Fig. 2 Examples of common proportionality in E. coli gene expression changes δXj (E
a
s1

) and
δXj (E

b
s2

) for genes in E. coli. δXj represents the difference in the logarithmic expression level of
a gene j between non-stressed and stressed conditions, where a, b represents the stress type and
s1 and s2 represent stress strengths, e.g., low, medium, and high. Reproduced from Kaneko et al.
(2015). (a) The relation between δXj (E

a
s1

) and δXj (E
a
s2

) for a = heat stress and s1 =medium
and s2 =low. The fitted line indeed agrees well with that expected from the growth-rate change
in Eq. (3). (b) The relation between δXj (Ea

s ) and δXj (Eb
s ), where a and b are osmotic stress

and starvation, respectively, and s =high. (c) Relation between the slope of the change in protein
expression and the change in the growth rate. The abscissa represents δμ(Ea)/δμ(Eb), whereas the
ordinate is the slope in δXj (Ea)/δXj (Eb). The slope was obtained by fitting the protein expression
data. Reproduced from Furusawa and Kaneko (2018)

changes across different types of stress conditions. In this case, the environmental
change E is no longer represented by a scalar variable, and the responses against the
environmental changes given by different vectors ea and eb must be compared.

However, the above theory cannot predict the common proportionality. This is
because each one-dimensional curve upon a given type of environmental change is
generally located along a different direction in the state space (see Fig. 1). This can
also be understood using Eqs. (1)–(3) in Sect. 2. To compare the responses against
different types of environmental changes using Eqs. (2) and (3), one needs γ a

i ≡
∂Fi

∂λa , which depends on the type of environmental (stress) condition a. Hence, rather
than Eq. (3), we obtain

δXj (Ea)

δXj (Eb)
= δμ(Ea)

δμ(Eb)
.

∑
i Lji(1 − γ a

i /αa)
∑

i Lji(1 − γ b
i /αb)

(4)

Then, because γ a
i �= γ b

i , in general, the proportionality cannot be determined as
in Eq. (3). Although the theory cannot predict the simple proportional relationship,
one can plot the experimental data as in Fig. 2a, even across different conditions for
osmotic pressure, heat, and starvation. An example of such plot is given in Fig. 2b
(see also Kaneko et al., 2015). Further support of the proportionality was obtained
from the changes in concentrations of thousands of proteins (rather than mRNA)
under different conditions by using proteome analysis (Schmidt et al., 2016).
Interestingly, in both cases, a strong correlation between δXj (Ea) and δXj (Eb) was
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still observed for all components j , even under different environmental conditions.
Although more genes deviated from the common proportionality, lowering the
correlation coefficients as compared with those for the same type of stress, the global
proportionality still held for most genes (note that Fig. 2b includes more than 1000
points, so that a single line fits most of these points). Thus, the global proportionality
is still valid. Further, as shown in Fig. 2c, the slope approximately agrees with
the rate of growth change, as in Eq. (3). Additionally, other data suggested such
a correlation in mRNA abundance under different environmental conditions (Keren
et al., 2013; Stern et al., 2007).

Because gene expression dynamics are very high-dimensional, this correlation
suggests that a strong constraint exists in adaptive changes in expression dynamics
that cannot be explained by the simple theory assuming only steady growth. The
global proportionality is beyond the scope of the simple theory presented in Eqs. (2)
and (3). Thus, this proportionality is not generic in any dynamical systems satisfying
only steady growth.

In summary, two questions remain: how to evaluate a broad range of linearity
regime and evaluate proportionality under different environmental conditions. To
answer these questions, some factor other than steady growth must be evaluated.

Of course, cells are not only constrained by steady growth but also are a
product of evolution. Through evolution, cells can efficiently and robustly reproduce
themselves under external conditions. Therefore, the above two features may result
from evolution. In the next section, we examine the validity of the hypothesis
that evolutionary robustness constrains intracellular dynamics to exhibit global
proportionality in the adaptive changes of many components.

5 Emergence of Global Proportionality Through Evolution:
Formation of a Dominant Mode

5.1 Catalytic Reaction Network Model for Numerical
Evolution

The above hypothesis regarding the consequence of evolutionary robustness is
difficult to evaluate experimentally, as the experimentally available data are only
from organisms that currently exist as a result of evolution: one cannot compare
them with the data before evolution. Hence, we used numerical evolution for some
models.

To this end, we utilize simple cell models consisting of a large number of com-
ponents and numerically evolve them under a given fitness condition to determine
how the phenotypes of many components evolve. Two models are adopted in which
phenotypes are generated by dynamical process for intracellular components. One
is a catalytic reaction network model (Furusawa & Kaneko, 2003, 2012) in which
catalysts are synthesized with the aid of other catalysts so that the concentrations of
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a set of catalytic molecules constitute the phenotypic state space. The other model
adopts a gene regulation network (Ciliberti et al., 2007; Glass & Kauffman, 1973;
Kaneko, 2007; Mjolsness et al., 1991) in which proteins are expressed as a result of
mutual activation or inhibition from other proteins. Both dynamics involve a large
number of components, i.e., chemical concentrations or protein expression levels,
which determine the phenotypes. The growth rate or fitness is determined by these
phenotypes.

In these models, genes govern the network structure and parameters for the
reactions that establish the rules for such dynamical systems. The phenotype of each
organism, as well as the growth rate (fitness) of a cell, is determined by such reaction
dynamics, whereas the evolutionary process consists of selection according to the
associated fitness and genetic change in the reaction network (i.e., rewiring of the
pathway). The global proportionality in concentration changes across components
is confirmed in both the models after evolution.

Here, we explain the results of analysis using the catalytic network. Despite its
simplicity, this model captures the basic characteristic of cells such as the power-law
abundance and log-normal fluctuations of cellular components and adaptation with
fold-change detection, among other factors (Furusawa & Kaneko, 2003; Furusawa
et al., 2005; Furusawa & Kaneko, 2012; Kaneko & Furusawa, 2006).

In the model, the cellular state is represented by the numbers of k chemical
species, i.e., (N1, N2, · · · , Nk), whereas their concentrations are given by xi =
Ni/V with the volume of the cell V (Furusawa & Kaneko, 2003, 2012). There
are m(< k) resource chemicals S1, S2, · · · , Sm whose concentrations in the
environment and within a cell are given by s1, · · · , sm and x1, · · · , xm, respectively.
Each reaction leading from one chemical i to another chemical j was assumed to
be catalyzed by a third chemical �, i.e., i + � → j + �. The resource chemicals
are transported into the cell with the aid of other chemical components named as
“transporters.” We assumed that the uptake flux of nutrient i from the environment
is proportional to Dsixti , where chemical ti acts as the transporter of nutrient i and
D is a transport constant. For each nutrient, there is one corresponding transporter,
represented by ti = m + i. The other k − 2m chemical species are catalysts
synthesized from other components via the catalytic reactions mentioned above. The
catalytic reactions result in nutrient transformation into cell-component chemicals.
With the uptake of nutrient chemicals from the environment, the total number of
chemicals N = ∑

i Ni in a cell increases. A cell, then, is divided into two cells
when the total number of molecules exceeds a given threshold.

Here, to achieve a higher growth rate, the synthesis of the cell components must
progress concurrently with nutrient uptake. Hence, the cellular growth rate depends
on the catalytic network, which is determined by genes. With evolution, this growth
rate, i.e., the fitness, can be increased.

Because of this fitness, the evolutionary procedure is carried out as follows:
First, we prepared n parent cells with slightly different reaction networks, randomly
generated with a given connection rate. We applied stochastic reaction simulation
of the above model and selected n/L cells with high growth rates. From each of the
n/L parent cells, L mutant cells were generated by replacing a certain fraction of
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reaction paths, whose rate is determined by the mutation rate. Next, we obtained n

cells of the next generation, which contained slightly different reaction paths. We
repeated the same procedure to obtain the next generation population and so on.

The simulation of evolutionary dynamics was performed under a constant
environmental condition o = {so

1 , · · · , so
m}. Under the original condition, the

concentrations were set at so
1 = so

2 = · · · = so
m = 1/m, at which evolution

progresses so that the cell growth rate, i.e., inverse of the average division time,
is increased.

5.2 Emergent Global Proportionality Through Evolution

Using the model described in the last subsection, we analyzed the response
of the component concentrations to the environmental change from the original
condition. Here, the environmental condition is given by the external concentration
{s1, · · · , sm}. We then changed the condition to s

(ε,E)
j = (1 − ε)so

j + εsE
j , where

ε is the intensity of the stress and E = {sE
1 , · · · , sE

m} denotes the vector of the
new, stressed environment, in which the values of component sE

1 , · · · , sE
m were

determined randomly to satisfy
∑

j sE
j = 1. For each environment, we computed

the reaction dynamics of the cell to obtain the concentration x
(ε,E)
j in the steady-

growth state, from which the logarithmic change in the concentration δX
(ε,E)
j =

log(x
(ε,E)
j /xo

j ) was obtained; the change in growth rate μ, designated as δμ(ε,E),
was also computed.

We next examined whether changes in δX
(ε,E)
j satisfy the common proportional-

ity across all components under a variety of environmental changes for the ranges
0 ≤ ε ≤ 1. We examined the degree of proportionality both for the random networks
before evolution and those after evolution under the given environmental conditions.
We also tested whether the proportion coefficient is consistent with δμ(ε,E).

We computed the response of expression to the same type of stress, i.e., the same
vector E with different intensities ε. We first examined the correlation between
changes in component concentrations δX

(ε1,E)
j and δX

(ε2,E)
j caused by different

magnitudes of environmental change (ε2 = ε1 + ε, at ε > 0). For a small
environmental change (ε = 0.02), the correlation was strong both for the random
and evolved networks, whereas for a larger environmental change (ε = 0.08),
the correlation coefficients were significantly smaller for the random networks
(Furusawa & Kaneko, 2018). We then computed the relationship between the ratio
of the growth rate changes δμ(ε1,E)/δμ(ε2,E) and fitted slope in (δX

(ε1,E)
j , δX

(ε2,E)
j )

across all components. Figure 3a shows the ratio of the slope to δμ(ε1,E)/δμ(ε2,E)

(which turns to be unity when Eq. (3) is satisfied) as a function of the magnitude of
environmental change ε1. These results demonstrated that for the evolved network,
Eq. (3) is maintained under large environmental changes, whereas it holds only
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Fig. 3 Common proportionality in concentration changes in response to the stresses in the
catalytic reaction network model. Reproduced from Furusawa and Kaneko (2018). (a) Ratio of
the slope in the concentration changes by the same type of stress to the growth rate change
as a function of the intensity of stress ε. For the random (red) and evolved networks (green),
against 100 randomly chosen environmental vectors E. The ratio in the ordinate becomes unity
when Eq. (3) is satisfied. (b–d) Common proportionality in concentration changes in response to
different types of stress in the catalytic reaction network model. (b) Concentration changes across
different types of environmental stressors. For three different networks from different generations,
(δXj (Ea), δXj (Eb)) are plotted by means of different randomly chosen vectors Ea and Eb. (c)
Distributions of coefficients of correlation between the changes in component concentrations

δX
(ε,Ea)
j and δX

(ε,Eb)
j . Red and green curves represent the distributions of a random network and

evolved network (150th generation) obtained from 1000 pairs of Ea and Eb, respectively. The
magnitude of environmental change ε is fixed at 0.8. (d) Ratio of the slope in the relation between
concentration changes to the growth rate change, plotted as a function of the intensity of stress ε

in the case of different types of stress

against small changes for random networks. The expansion of the linear regime
by evolution was confirmed.

Next, we examined the correlation of concentration changes under different

types of environmental stressors. Figure 3b shows examples of (δX
(ε,Ea)
j , δX

(ε,Eb)
j )

obtained by three networks from different generations. For the initial random
networks, there was no correlation, whereas a modest correlation emerged in the
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tenth generation. Later, over evolution, common proportionality was observed; for
instance, in the 150th generation, the proportionality reached more than 2 digits. To
demonstrate the generality of the proportionality over a variety of environmental
variations, we computed the coefficients of correlation between δX

(ε,Ea)
j and

δX
(ε,Eb)
j for a random choice of different vectors Ea and Eb. Figure 3c shows

the distributions of the correlation coefficients obtained by the random network
and evolved network (150th generation). Remarkably, global proportionality was
observed even under different environmental conditions that had not been experi-
enced through the course of evolution.

We first computed the relationship between δμ(ε1,Ea)/δμ(ε2,Eb) and the slope in

(δX
(ε1,Ea)
j , δX

(ε2,Eb)
j ), from which the ratio of the slope in (δX

(ε1,Ea)
j , δX

(ε2,Eb)
j ) to

δμ(ε1,Ea)/δμ(ε2,Eb) is shown in Fig. 3d as a function of ε2. The slope of δX agrees
rather well with the growth rate change as given by Eq. (3) for the evolved networks
as compared to the random networks.

The global proportionality over all components across various environmental
conditions suggests that changes δX

(ε,E)
j across different environmental conditions

are constrained mainly along a one-dimensional manifold after evolution has
progressed (even) under a single environmental condition. To verify the existence of
such constraints, we carried out the principal component (PC) analysis of the data
of δX

(ε,E)
j across different environmental changes E and ε. As shown in Fig. 4a, we

plotted the data in the space with the first three PC axes. In the evolved network,
high-dimensional data from X

(ε,E)
j were located along a one-dimensional curve.

Note that the contribution of the first PC reached 74% in the data. In contrast, the
data from the random network were scattered, and no clear structure was visible,
as shown in Fig. 4b. Furthermore, for the evolved network, the value of the first PC
agrees rather well with the growth rate (Furusawa & Kaneko, 2018).

We then examined the evolutionary course of the phenotype projected on the
same principal component space, as depicted in Fig. 4a. As shown in Fig. 4c, the
points from {Xj } generated by random mutations in the reaction network are again
located along the same one-dimensional curve. Thus, the phenotypic changes are
highly restricted, both genetically and non-genetically, within an identical one-
dimensional curve. As shown in Fig. 4a, c, variation in the concentration due to
perturbations was much larger along the first PC than along the other components.
This suggests that relaxation is much slower in the direction of the first component
than in the other directions.

In summary, we observed emergent global proportionality which is far beyond
the trivial linearity in response to tiny perturbations. After evolution, the linearity
region expanded to a level with an order-of-magnitude change in the growth
rate. Additionally, the proportionality over different components across different
environmental conditions was enhanced through evolution. In this global pro-
portionality, evolutionary dimension reduction in phenotypic dynamics underlies
changes in the high-dimensional phenotypic space across a variety of environmental
conditions, genetic variations, and noise, which are confined to a common one-
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Fig. 4 (a–c) The change in X
(ε,E)
j with environmental changes in principal component space.

Reproduced from Furusawa and Kaneko (2018). Component concentrations X
(ε,E)
j at randomly

chosen various E and ε values are presented for (a) evolved and (b) random networks. In (a), the
contributions of the first, second, and third components were 74%, 8%, and 5%, respectively. In
(c), change in component concentration Xj because of mutations is plotted, where mutations were
added to the evolved reaction network by randomly replacing 0.5% of the reaction paths. The red
dots show the concentrations of components after mutations, which are projected onto the same
principal component space, as depicted in (a). The gray dots represent the concentration changes
caused by environmental changes for the reference, which are identical to those shown in (a). (d)
Schematic representation of the dimension reduction hypothesis. In the state space of X, dominant
changes are constrained along the mode W following the major axis and its connected manifold,
whereas the attraction to this manifold is much faster

dimensional manifold. The first principal component mode corresponding to the
one-dimensional manifold is highly correlated with the growth rate.

Notably, this dimension reduction by evolution has also been observed in some
other models. First, even when the fitness for selection does not affect the growth
rate but rather some other quantity (such as the concentration of a component),
the phenotypic change is mainly constrained along a one-dimensional manifold.
Second, even when the environmental condition (e.g., concentrations of external
nutrients) is not fixed but rather fluctuates over generations, restriction within the
one-dimensional manifold is observed (Sato & Kaneko, 2020). Third, there are
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preliminary reports that the evolution of gene regulation networks and spin-glass
models (Sakata et al., 2009) also show dimension reduction of phenotypic changes,
as observed in our results.

6 Evolutionary Dimension Reduction Hypothesis

Following the observation of global proportionality and dimension reduction from
the high-dimensional phenotypic space in the last section, we proposed the follow-
ing hypothesis:

Phenotypic dynamics involve a large number of variables, and their state space
is generally high-dimensional. However, phenotypic changes induced by environ-
mental perturbations are constrained mainly along a low-dimensional (often one-
dimensional) manifold (major axis). Along this manifold, the phenotypic dynamics
are much slower than those across the manifold. Further, phenotypic changes
induced by evolutionary changes (i.e., due to genetic changes governing phenotypic
dynamics) also progress mainly along this manifold. The fitness gradually changes
along the manifold, whereas it rapidly decreases across the manifold.

Indeed, the results described in the last section support the hypothesis, where
the dominance of the first principal mode in a phenotypic change emerges after
evolution, and the phenotypic changes as a result of mutation are constrained along
the principal mode axis (see Fig. 4c). Moreover, expression data from bacterial
evolution studies support this hypothesis, as described later.

This hypothesis is plausible considering the evolutionary robustness of pheno-
types: first, in most cases, phenotypes (e.g., concentrations of chemicals) are shaped
as a result of complex dynamics involving a large degree of freedom. For examples,
these dynamics can be determined by catalytic reaction or gene regulatory networks,
which are determined by genes. In general, networks with higher fitness are rare,
and thus a mutation selection process is needed to achieve higher fitness. Because
of the complexity of the dynamics, stochastic perturbations may influence the final
phenotype in general, unless the networks are evolved to reduce the influence of
perturbations (Kaneko, 2012a).

As evolution progresses, robustness of the state against perturbations will be
acquired. Otherwise, because of inevitable noise during the dynamics, a rare
fitter state is not sustained. Increased robustness to perturbations is expected to
result from evolution (see also Ciliberti et al., 2007; Kaneko, 2007). Accordingly,
in the state space, the dynamics provide flow to the selected (fitter) phenotype
against perturbations for most directions, as shown schematically in Fig. 4d. Strong
contraction to the attracted state is shaped by evolution. However, there is (at least)
one exceptional direction that does not possess such a strong contraction. This is the
direction along which evolution to increase fitness progresses. Along this direction,
phenotypic states can be changed rather easily by perturbations. Otherwise, it is
difficult for evolution to progress. Hence, as schematically shown in Fig. 4d, only
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along the direction in which evolutionary changes proceed, the relaxation is slow,
whereas for other orthogonal directions, the change is much faster.

Now, let us consider the relaxation dynamics to the original state (attractor) at a
given generation, as represented by Eq. (2). The relaxation dynamics are represented
by a combination of eigenmodes with negative eigenvalues. The magnitude of
(negative) eigenvalues will be large, except for one (or a few) eigenvector, whereas
that along the direction of evolution will be much closer to zero, that is, relaxation
along the direction of evolution is slower. Hence, variance along the largest principal
component will be dominant, as demonstrated numerically in Fig. 4a, c.

Indeed, in a recent study Sato and Kaneko (2020), the eigenvalues of the
Jacobian matrix in Eq. (2) were numerically computed by using the catalytic
reaction dynamics adopted in the last subsection. The results confirmed that one
eigenvalue was close to zero and all other (negative) eigenvalues had much larger
magnitudes. This separation of one eigenvalue occurred because of evolution.

This hypothesis indicates that only one mode dominates in Eq. (2). Although
the original dynamics are high-dimensional, most changes occur along the one-
dimensional manifold W, corresponding to the eigenvector for the smallest eigen-
value (or its nonlinear extension). Let us denote this direction as w0. From this
dominance of the single dominant mode W , the global proportionality in Eq. (3) is
naturally derived across different conditions E. Because changes in all components
Xj , δXj s are constrained along the dominant mode W , they are given by the
projection of the change in W onto each Xj axis, which is in turn given by cos θj ,
where θj is the angle between W and each axis Xj . This angle is determined by
the given phenotypic state only and is independent of the type of environmental
perturbation. Thus, the proportionality observed over different strengths of an
identical environmental condition is valid across different types of environmental
perturbations.

Note that the change along W is parametrized by the growth rate δμ because it
shows tight one-to-one correspondence with the principal coordinate. Then δW is
represented as a function of δμ. Given that δW ∝ δμ(E) for small δμ, then Eq. (3)
can be extended to different environmental vectors as follows:

δXj (E)

δXj (E′)
= δμ(E)

δμ(E′)
. (5)

Indeed, the above argument can be formulated explicitly by using linear algebra
for the relaxation dynamics to the original state (attractor) at a given generation, as
represented by Eq. (2). By using L = J−1, it follows that δX = L(δμI − γ δE),

where I is a unit vector (1, 1, 1, . . . 1)T . The matrix L is represented by
∑

k λkwkvT
k ,

with their eigenvalues λk and the corresponding right (left) eigenvectors wk (vk),
respectively. Note that the hypothesis in the present section postulates that the
magnitude of the smallest eigenvalue of J (denoted as k = 0) is much smaller
than that of the others. In other words, the absolute eigenvalue of λ0 for L = J−1

is much greater than others. Then, the major response to environmental changes
is given only by the projection to this mode for λ0. In other words, the major
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axis for the change δX is given by w0. Using this reduction to this mode w0, and
through straightforward calculation (see Furusawa & Kaneko, 2018 for details), we
obtain δX = λ0w0(δμ(v0 · I)). Accordingly, the global proportionality relationship
in Eq. (5) is reproduced.

In summary, we can explain two basic features observed in experiments and
simulations using the above theoretical formulation:

1. Overall proportionality in expression level changes across most compo-
nents and across various environmental conditions: This is because high-
dimensional changes are constrained to changes along the major axis, i.e.,
eigenvector w0.

2. Extended region of global proportionality: Because the range in variation
along w0 is large, the change in the phenotype is constrained to points near
this eigenvector, causing the proportionality range of phenotypic change to
extend via evolution. Furthermore, as long as the changes are nearly confined
to the manifold along the major axis, global proportionality reaches the regime
nonlinear to δε.

7 Global Proportionality Between Responses by
Environmental and Evolutionary Adaptations

According to the hypothesis in the last section, the change due to genetic variation
would also be constrained along with this major axis w0, as the most changeable
direction w0 is the direction in which evolution has progressed and will progress.
Indeed, in the simulation described in Sect. 5, the phenotypic changes caused by the
mutational change are constrained along the manifold spanned by the first principal
mode in the environmentally induced phenotypic changes (see Fig. 4). Accordingly,
we expect to observe global proportionality between the concentration changes
induced by a given environmental condition (stress) (δXj (Env)) and those derived
from evolution with genetic changes (δXj (Gen)), as given by

δXj (Gen)

δXj (Env)
= δμ(Gen)

δμ(Env)
. (6)

For example, when cells are subjected to a stressed condition Env, the growth
rate is reduced so that δμ(Env) < 0, whereas the expression levels change
δXj (Env) accordingly. Next, the cells evolve under this given stressed condition
over several generations along with genetic changes. After n generations under
genetic evolution, the growth rate recovers to some degree so that the growth rate
shows a difference of δμ(Gen) from the original (non-stressed) state, satisfying
0 ≥ δμ(Gen) ≥ δμ(Env). The accompanied expression change, denoted by
δXj (Gen), is then expected to satisfy
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δXj (Gen)

δXj (Env)
= δμ(Gen)

δμ(Env)
≤ 1 (7)

across most components j in a similar manner as in Eq. (5). Because |δμ(Gen)| is
reduced with the progression of evolution, changes in the components introduced by
the environmental change are reduced. Thus, there is an evolutionary tendency that
the original expression pattern is recovered. This is reminiscent of the Le Chatelier
principle in thermodynamics.

We next examined if the above relationship would hold in numerical simulation
and bacterial evolution experiments.

7.1 Verification by the Reaction Network Model

We employed the catalytic reaction network model in Sect. 5. After evolving the cell
as described in the section under the given environmental condition, we switched
the nutrient condition at a given generation. This caused the growth rate to decrease,
which was later recovered through genetic evolution over generations. We computed
the phenotypic changes induced by the environmental and evolutionary changes to
examine the validity of the above relationship.

After altering the nutrient conditions, the abundances of all the components
were changed. The average change of these abundances was denoted by δXEnv

j ≡
〈Xj(1)〉 − 〈Xj(0)〉 = log

〈Nj (1)〉
〈Nj (0)〉 , where generation 1 refers to the time point imme-

diately after the environmental change and generation 0 denotes the generation right
before this nutrient change. Similarly, we defined the response by genetic evolution
after m generations by δXGen

j (m) = 〈Xj(m)〉−〈Xj(0)〉. Figure 5a, b shows the plot

of δXEnv
j versus δXGen

j (m) for m = 5 and 50. The proportionality was observed
between the environmental and genetic responses over all components.

Let us now define this proportion coefficient r(m) for
δXGen

j (m)

δXEnv
j

across compo-

nents j . According to Eq. (6), this agrees with the growth rate change given by the
ratio of δμGen(m) = μ(m) − μ(0)(≤ 0) to δμEnv = μ(1) − μ(0)(< 0) at each
generation m. In Fig. 5c, the proportion coefficient r(m) was plotted against this
growth rate recovery δμGen(m)/δμEnv . The agreement between the two is clearly
discernible. This proportion coefficient r(m) is initially close to 1 (i.e., m ∼ 1);
with increasing generation m, the value decreased toward zero, in conjunction
with recovery of the growth rate δμGen(m)/δμEnv . Thus, as stated in Le Chatelier
principle mentioned in the previous section, evolution shows a common tendency to
reduce changes in components introduced by environmental change.
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Fig. 5 (a–c) Response to environmental change versus response by evolution in the reaction
network model. Reproduced from Furusawa and Kaneko (2015). Relationship between the
environmental response δXEnv

j and genetic response δXGen
j (m). (a) and (b) show the plots for

m = 5 and 50, respectively. The black solid lines are y = x for reference. (c) Relationship between
growth recovery rate δμGen(m)/δμEnv and the proportion coefficient r(m). The proportion
coefficient r(m) was obtained by using the least squares method for the relationship of δXEnv

j

and δXGen
j (m) for m = 1 ∼ 200. The black solid line is y = x for reference. (d, e)Response

to environmental change versus response by evolution in E. coli adaption to ethanol stress. (d)
Relationship between growth recovery rate δμGen(n)/δμEnv and the proportion coefficient r(n).
The proportion coefficient r(n) was obtained by using the least squares method for the relationship
of δXEnv

j and δXGen
j (n) for n = 384, 744, 1224, 1824, and 2496 h. The growth recovery

rate δμGen(n)/δμEnv was calculated based on the experimental measurements. Among the six
independent culture lines (see Horinouchi et al., 2015 for details), the results of five culture lines
without genome duplication are plotted. The black line is y = x for reference. (e) Changes in PCA
scores during adaptive evolution. Starting from the parent strain, changes in the expression profiles
during adaptive evolution are plotted as orbits in the three-dimensional PCA plane

7.2 Experimental Confirmation by Laboratory Evolution

To verify the relationship given by Eq. (7), we analyzed time-series transcriptome
data obtained in an experimental evolution study of E. coli under conditions of
ethanol stress (Horinouchi et al., 2010, 2015). In this experiment, after cultivation
of approximately 1000 generations (2500 h) under 5% ethanol stress, 6 independent
ethanol-tolerant strains were obtained, which exhibited an approximately twofold
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increase in specific growth rates compared with the ancestor. For all independent
culture series, mRNA samples were extracted from approximately 108 cells at
six different time points, and the absolute expression levels were quantified by
microarray analysis. All mRNA samples were obtained from cells in an exponential
growth phase (see Horinouchi et al., 2015 for details).

Using the expression data taken at several generations through adaptive evolu-
tion, we analyzed the common proportionality in expression changes. The environ-
mental response of the j th gene δXEnv

j is defined by the log-transformed ratio of the
expression level. Similarly, the evolutionary response at n hours after the exposure
to stress δXGen

j (n) is defined by the log-transformed ratio of the expression level at
n hours to that of the non-stressed condition. We found a common trend between the
environmental and genetic responses over all genes (Furusawa & Kaneko, 2015).

Furthermore, as shown in Fig. 5d, the agreement between r(n) and the growth
recovery ratio δμGen(n)/δμEnv , as predicted by Eq. (7), was discernible, where
δμGen(n) and δμEnv are the growth rate differences at n h and 24 h after the
exposure to stress, respectively. These results demonstrate that the evolutionary
dynamics with growth recovery were accompanied by gene expression changes,
which were reduced from those introduced by the new environment.

How does {Xj } change in the state space of a few thousand dimensions? As it
is hard to see a high-dimensional state space, we used the first, second, and third
principal components determined from the data for each generation of E. coli gene
expression. (Approximately 31% of the change in each data set can be explained by
the first component, whereas 15% is explained by the second component). When
the data points were plotted in the space of each principal component P i axis,
they were distributed mainly along the P 1 axis direction, whereas the spread in
the P 2 and P 3 axes was limited. Furthermore, the value of this first component was
approximately proportional to the growth rate. This is consistent with the finding
that the growth rate is a major factor in determining the change in expression of
each gene. Now, Fig. 5e shows the cell state changes by projecting the expression
state Xj at each generation onto these three component axes. Here, six independent
data are superimposed, which were obtained by repeating the same experiment.
Mutations occurred at different sites by each experiment; each of the six strains has a
different genetic sequence. Nevertheless, all experimental samples changed with the
same curve. The phenotypic changes to increase fitness are rather deterministic as
compared to random changes in genetic sequences. Shaping the relevant phenotypic
change is a priority in evolution, whereas several possibilities exist to achieve such
changes genetically.

8 Evolutionary Fluctuation-Response Relationship

In the previous section, we discussed the relationship between environmental and
evolutionary responses. According to statistical physics, response and fluctuation
are proportional (Einstein, 1926; Kubo et al., 1976). In evolution, analogously, we
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previously proposed an evolutionary fluctuation-response relationship: the pheno-
typic response throughout the evolutionary course is proportional to the phenotypic
variance induced by noise (Kaneko, 2012a; Sato et al., 2003). Consider a system
characterized by a gene parameter a and phenotypic trait X. We can then evaluate
the change in X against that in the gene parameter value from a to a + Δa. Then,
the proposed fluctuation-response relationship is given by

〈X〉a+Δa − 〈X〉a
Δa

∝ 〈(δX)2〉, (8)

where 〈X〉a and 〈(δX)2〉 = 〈(X − 〈X〉)2〉a are the average and variance of the
phenotypic trait X for a given system parameterized by a, respectively.

If a is assigned as a parameter specifying the genotype (e.g., number of
substitutions in the DNA sequence), this relationship implies that the evolutionary
rate, i.e., change in average phenotype per generation, is proportional to the variance
of the isogenic (clonal) phenotypic distribution, denoted by Vip = 〈(δX)2〉. In fact,
several model simulations and some experiments support this type of evolutionary
fluctuation-response relationship (Kaneko & Furusawa, 2006; Sato et al., 2003).

This evolutionary fluctuation-response relationship is associated with the phe-
notypic variance Vip of isogenic individuals, which is caused by noise (for its
measurement, see e.g., Bar-Even et al., 2006; Elowitz et al., 2002; Furusawa et al.,
2005). In standard population genetics, in contrast, the phenotypic variance due
to genetic variation, named as genetic variance Vg , is considered. In fact, the so-
called fundamental theorem of natural selection proposed by Fisher (1930) states
that the evolutionary rate is proportional to Vg . Thus, for both the evolutionary
fluctuation-response relationship and Fisher’s theorem to be valid, Vip and Vg must
remain proportional throughout the evolutionary course. Indeed, such a relationship
between these two variances was confirmed through evolutionary simulations of
a catalytic reaction network model and gene regulation network (Kaneko, 2007;
Kaneko & Furusawa, 2006).

The origin of such a relationship can be explained as follows: In general,
developmental dynamics to shape the phenotype are quite complex, and the final
state may be diverted by perturbations in the initial condition or by those that
occur during the dynamics. Even if the fit phenotype is shaped by developmental
dynamics, the perturbations due to noise during the dynamics may result in different
non-fit states. Thus, the phenotype may be rather sensitive to noise. After evolution
progresses, the robustness of the fitted state to noise is increased. In this case, the
global attraction to the target phenotype is shaped. This agrees with the hypothesis
in Sect. 6.

Genetic changes, in contrast, can also cause perturbations to such dynamics.
As the robustness to noise is shaped, the robustness against genetic changes is
also expected to increase. Through evolution, as the dynamics become increasingly
robust to noise, they also become more robust to genetic changes, resulting in a cor-
relation between the two types of robustness. As the robustness to noise is increased,
the phenotypic variance Vip will decrease; similarly, an increase in the robustness
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to genetic mutation leads to a decrease in Vg . Hence, throughout evolution, both
Vip and Vg decrease in correlation (or in proportion). Thus, proportionality between
Vip and Vg is expected, as observed in the evolution simulations (Kaneko, 2007;
Kaneko & Furusawa, 2006). Furthermore, this proportionality of the two variances
is extended to that between the phenotypic variances of Xi for each component i by
noise (written as Vip(i)) and that by genetic variation (denoted by Vg(i)) (Furusawa
& Kaneko, 2015; Kaneko, 2012a,b) (see also Stearns et al. (1995) for possible
experimental support). This, indeed, is expected by assuming that the relaxation
of phenotypic changes is much slower along the dominant mode W, and phenotypic
fluctuations due to noise are nearly confined to this axis.

9 Discussion

In summary, we demonstrated the 2-by-2 global proportionality of phenotypic
changes occurring between responses and fluctuations and between the pertur-
bations due to environmental (noise) and genetic changes. This proportionality
is explained by evolutionary dimension reduction, which states that phenotypic
changes due to environmental changes and genetic variation are constrained along a
unique low-dimensional manifold, as observed in bacterial and numerical evolution
experiments. Furthermore, expression changes induced by environmental stress, for
most genes, are reduced through evolution to recover the growth, which is analogous
to the Le Chatelier principle in thermodynamics (Callen, 1985; Kubo et al., 1976).

We demonstrated in numerical evolution that high-dimensional phenotypic
change is mainly constrained along with the mode w0, the eigenvector correspond-
ing to the eigenvalue of the relaxation dynamics closest to zero. The change in
the phenotypic state is larger along the direction of w0, and the variable W along
this direction slowly returns to the steady-state value. The timescale of this mode
is distinctively slower than others, as confirmed directly by evolution simulation
of catalytic reaction and gene regulation networks (Sato & Kaneko, 2020). This
separation of the timescale of the slowest mode from others is theoretically
expected in order to make the robustness of the fitted state and plasticity along the
evolutionary course compatible.

Formation of one (or few) slow mode as given by W separated from other modes
is significant in evolutionary biology. It may be possible that this type of mode is
straightforwardly given by the expression of some specific genes that changes more
slowly than others. However, it may be more natural that this W is expressed as a
collective change in the expressions of several genes rather than as a single protein.
Because the slow mode is expressed by the first principal component, determination
of genes whose expression levels contribute more to the first principal component
will improve the understanding of how plasticity and robustness are compatible.

The slow, dominant mode W emerges from evolution but accelerates evolution.
When faster and slower variables coexist and interact, the slower mode generally
functions as a control variable for the faster variables. Accordingly, if the slower
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mode is modified by a genetic change, most faster variables will be influenced
simultaneously. Furthermore, because the mode W can influence the fitness μ, the
phenotypic evolution will be feasible simply by the change in this slow mode W .

In contrast, if many variables change in a similar timescale, the genetic changes
introduced to each will influence each other and make directional phenotypic
changes difficult to progress. This situation is reminiscent of the proverb “Too many
cooks spoil the broth.” The emergence of slow modes governing the others has also
been observed in the evolution of pattern formation (Kohsokabe & Kaneko, 2016).

The correlation between evolutionary and environmental responses raises a
question regarding how the two processes with quite different timescales are
correlated. The presence of the slow mode W suggests a possible answer to
this question. Adaptive dynamics, which originally show a much faster timescale
than the evolutionary change, will be slowed along the mode W , whereas the
evolutionary change, which originally has a much slower timescale, is fastest, along
the direction of the mode W . Thus, along the dominant mode W , the timescales of
phenotypic adaptation and evolution can approach each other.

Of course, further studies are needed to establish a phenomenological theory
for phenotypic evolution. The generality of the evolutionary dimension reduction
and resultant constraint in phenotypic evolution must be explored. The condition
required for the emergence of dimensional reduction should also be determined.
The models we studied satisfy the following conditions: (1) phenotypes with
higher fitness are shaped by complex high-dimensional dynamical systems and
(2) the fraction of such fit states is rare in the state space and in the genetic
rule space. These two features are also consistent with our theoretical argument.
The evolution of a statistical physics model on interacting spins that preliminarily
supports the dimension reduction also satisfies these conditions (Sakata et al.,
2009; Sakata & Kaneko, 2020). Studies of statistical physics and high-dimensional
dynamical systems are needed to reveal the condition for evolutionary dimension
reduction. Further experimental confirmation of the dimension reduction, as well
as the directionality and constraint in phenotypic evolution, is needed, including in
multicellular organisms.

Note that dimension reduction, or separation of a slow eigenmode from other
faster modes, has been discussed in several other topics. They include protein
dynamics (Tlusty et al., 2017; Togashi & Mikhailov, 2007), laboratory ecological
evolution (Frentz et al., 2015), learning in brain (Sadtler et al., 2014), and neural
networks (Hopfield, 2015; Schreier et al., 2017), among others. As a possible
relationship, the sloppy parameter hypothesis by Daniels et al. (2008) is proposed,
which suggests that many parameters employed in biological models are irrelevant.
Further studies are necessary to explain the universality of such evolutionary
dimension reduction.

There are some limitations to dimension reduction. In the studies described
here, we assumed steady-growth state, i.e., exponential phase. Under nutrient-
limited conditions, however, there occurs a transition from such exponential growth
to the stationary phase with suppressed growth, as has been investigated both
experimentally (Gefen et al., 2014; Novick, 1955) and theoretically (Himeoka &
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Kaneko, 2017; Maitra & Dill, 2015). As such phase with suppressed growth may
not be selected as a robust fitted state, whether the dimension reduction is valid to it
requires further analysis.
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Life’s Attractors Continued: Progress in
Understanding Developmental Systems
Through Reverse Engineering
and In Silico Evolution

Anton Crombach and Johannes Jaeger

Abstract We present a progress report on our efforts to establish a new research
program for evolutionary systems biology, based on reverse engineering and in
silico evolution. The aim is a mechanistic understanding of the genotype-phenotype
map and its evolution. Our review focuses on the case study of the gap gene network
in dipteran insects (flies and midges). This network is the top regulatory tier of
the segmentation gene hierarchy, generating a pattern of overlapping expression
domains that subdivide the embryo during early embryogenesis. It is one of the
best-understood developmental regulatory networks today. We have studied this
system in a comparative way, across three species: the vinegar fly, Drosophila
melanogaster; the scuttle fly, Megaselia abdita; and the moth midge, Clogmia
albipunctata. In this context, we discuss methodological challenges concerning
data processing and model fitting, consider different functional decompositions
of the gap gene network, and highlight novel insights into network evolution
by compensatory developmental system drift. Finally, we discuss the prospect of
simulating the phylogenesis of the gap gene network using in silico evolution. We
conclude by arguing that our case study is a first step toward a more systematic
empirical investigation into the principles of network evolution.

1 Introduction

A few years ago, we proposed a comparative research program into the function
and evolution of developmental systems based on reverse engineering and in
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silico evolution (Jaeger & Crombach, 2012).1The program’s main objective is to
move beyond static descriptions of regulatory network structure, toward a more
processual perspective, based on the analysis and comparison of network dynamics
arising from the interactions between genetic and non-genetic factors (DiFrisco
& Jaeger, 2019, 2020). This objective stems from our desire to shed light upon
a fundamental question in biology: how phenotypic variability is generated and
shaped by developmental processes. The variability of phenotypic traits among
individuals in a population provides the raw material for evolution by natural
selection. In the famous words of Hugo De Vries, we are interested not in the
survival but the arrival of the fittest (Wagner, 2011).

Developmental processes not only constrain or bias but, more importantly,
generate phenotypic variability and determine the variational properties of morpho-
logical traits (Salazar-Ciudad, 2006; Wagner, 2014; Wagner & Altenberg, 1996).
In abstract terms, development can be represented as a mapping from genotype
to phenotype (the G–P map), which relates variation at the genotypic level to
the variability of phenotypes (Alberch, 1991; Burns, 1970; Pigliucci, 2010; Soyer
and O’Malley, 2013). Mathematically, G–P maps may either be interpreted as
purely correlational maps (e.g., in quantitative genetics) or as characterizing causal-
mechanistic processes (e.g., in evolutionary developmental and systems biology)
(DiFrisco & Jaeger, 2019). In the latter sense, G–P maps are thought to be best
captured by models of developmental gene regulatory networks (GRNs) (Davidson
& Erwin, 2006; Wagner, 2014). If required, such networks can be expanded to
include non-genetic regulatory factors.

Continuing on this path, we need empirical studies to establish the structure
and dynamics of developmental regulatory networks, if we are to understand
the origins of phenotypic variability (Jaeger & Crombach, 2012). This entails
the decomposition of a system into building blocks using genetic and molecular
methods and to recompose it to show how the building blocks and their interactions
generate the orchestrated overall behavior of the process (Bechtel, 2011, 2012;
Bechtel & Abrahamsen, 2005, 2010; Brigandt, 2013, 2015; DiFrisco & Jaeger,
2019, 2020). Considering the complexity of development in even the simplest
multicellular organisms, this recomposition poses a formidable challenge.

To manage the regulatory complexity involved in characterizing developmental
systems, we need dynamic mathematical models. These models integrate the
components of a system by defining how these parts interact, which in turn leads
to the characteristic dynamics of the system. We previously presented four distinct
approaches that yield such models of developmental regulatory networks and their
evolution (Jaeger & Crombach, 2012). These consist of (1) ensemble approaches,
(2) forward modeling, (3) reverse engineering, and (4) in silico evolution. Ensemble
modeling involves the simulation of entire categories of dynamic networks to

1While our argument focuses on developmental processes in multicellular organisms, it is directly
extendable to other ontogenetic processes (metabolic, physiological, etc.) that constitute the life
cycle of uni- and multicellular organisms.
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Fig. 1 The systems biology cycle for reverse engineering evolving developmental processes
(modified after Kitano, 2002). Researchers generate hypotheses about regulatory mechanisms
underlying observable developmental dynamics (e.g., gene expression patterns). Data are acquired
that capture all relevant features of those developmental dynamics, shown as expression domains
on a schematic fly embryo. For our comparative study, we used data from three species of dipteran
insects: the moth midge Clogmia albipunctata, the vinegar fly Drosophila melanogaster, and the
scuttle fly Megaselia abdita (left to right). Dynamical models (gene circuits) are then fitted to
the data in order to infer the regulatory structure of the underlying network. Root mean square
(RMS) deviation indicates quality of the fit (lower is better). The best circuits and the topology of
their phase spaces (trajectories, attractors, and their basins, shown schematically for a bistable
switch network) are then analyzed using the tools of dynamical systems theory. Comparative
analyses distinguish between essential and accidental features of the system. In addition, we can
use fitted circuits as start and end points of in silico evolutionary simulations, which reveal possible
evolutionary pathways between mechanisms and how much they depend on internal constraints or
historical contingency. Gap genes: hunchback (hb), yellow; Krüppel (Kr), green; knirps (kni), red;
giant (gt), blue

reveal their shared general properties. Forward modeling is the classical bottom-up
approach to biophysical modeling, where models are formulated in physicochemical
terms and parameters are determined by measurement. In contrast, our proposal for
a research program in evolutionary systems biology is based on reverse engineering
and in silico evolution, which are employed together in a complementary fashion
(Fig. 1) (Jaeger & Crombach, 2012).

Over the last decade, much progress has been made in deciphering the evolution
and functioning of developmental systems. Examples range from exploratory,
computational studies (Hagolani et al., 2019; Jiménez et al., 2015, 2017; Vroomans
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et al., 2015, 2016, 2018) to approaches combining theory and experiment (Bailleul
et al., 2019; Raspopovic et al., 2014; Sadier et al., 2019; Zagorski et al., 2017) (see
also the chapter by Onimaru and Marcon). Here, we primarily focus on describing
our own recent work on the gap gene system of dipteran insects (flies, midges, and
mosquitoes), which we already used as a case study in (Jaeger & Crombach, 2012)
(see Fig. 1). A concise overview on this work can be found in (Jaeger, 2018). It
shows how reverse engineering can be used to analyze the dynamics and evolution
of a complex regulatory network involving multiple regulatory genes—illustrating
the high-dimensional and nonlinear nature of the G–P map and its influence on
the evolutionary process. In particular, our work reveals how we can explain the
phenomenon of developmental system drift in a mechanistic manner. Moreover,
it demonstrates the multifaceted nature of a complex regulatory process and how
alternative ways of subdividing it help in understanding its overall behavior. All
of these aspects together yield a much deeper level of insight into the dynamics
of development and evolution than could be achieved by genetic and molecular
experimental processes alone.

In the rest of this chapter, we will reflect on a number of methodological and
conceptual issues in reverse engineering and in silico evolution, which should be of
general interest to practitioners in evolutionary systems biology. In particular, we
document the major challenges we have faced, and the progress we have made to
overcome them, during our efforts to reverse-engineer the gap gene system across
three different evolutionary lineages of dipteran insects. The chapter is composed
of four sections. In the first, we focus on methodological bottlenecks imposed by
the reverse-engineering approach. In the second, we discuss a bottom-up strategy
to decompose and recompose a complex dynamical system such as the gap gene
network in order to generate mechanistic explanations of the underlying regulatory
process. We also briefly touch upon a complementary top-down strategy (Verd et al.,
2019). Due to space constraints, we refer to the chapter by Jaeger and Monk for an
in-depth account of this approach. In the third part, we connect these explanations
to network evolution. Finally, we conclude with an outlook on future work using in
silico evolution that will shed light on the evolutionary transitions that have occurred
in insect body segmentation.

2 Reverse Engineering with Gene Circuits

Let us first provide a brief outline of our reverse-engineering approach. It requires
(1) a suitable model of the regulatory system and (2) an efficient and reliable
method for inferring the parameters of the model by fitting it to (3) data that
suitably represent the observable dynamics of the system, and (4) finally, we need
a conceptual framework and analytical tools to extract biological insights from the
resulting set of model fits. We will discuss each of these steps in turn.

We use gene circuits as models of the gap gene network (Mjolsness et al., 1991;
Reinitz & Sharp, 1995). Gene circuits are dynamical models, historically derived
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from recurrent Hopfield neural networks (Hopfield, 1984). In mathematical terms,
a gene circuit is defined as a set of coupled ordinary differential equations (ODEs).
Each equation describes the change in concentration g over time t of the product
(mRNA or protein) of gene a in nucleus i:

dga
i

dt
= Ra�(ua) − λaga

i + Da(n)(ga
i−1 + ga

i+1 − 2ga
i ) (1)

with R, λ, and D(n) representing rates of production, decay, and diffusion,
respectively. Diffusion rates depend on nuclear density, i.e., the number of nuclear
divisions n that the system has undergone at time t .

Gene regulation is modeled by a sigmoid regulation-expression function �.
This function captures the coarse-grained dynamics of eukaryotic transcriptional
regulation, that is, a switch-like activation with a saturating response:
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Regulatory interactions are represented by an interconnectivity matrix of regulatory
weights w ∈ W and external input weights e ∈ E for regulators that are not them-
selves regulated by gap genes. In our case study, internal regulators include the trunk
gap genes G = {hb,Kr, gt, kni}, and external inputs are provided by maternal
gradients and the products of terminal gap genes M = {Bcd, Cad, Tll, Hkb}. Each
weight w and e determines whether a specific regulatory interaction exists (non-zero
weights) and, if so, whether it is activating (positive) or repressing (negative). These
matrices abstract from the complex (and largely unknown) biochemical details of
eukaryotic transcriptional regulation. h is a threshold parameter that captures the
transcriptional state of a gene in the absence of any spatially specific regulators.

Reverse engineering means fitting gene circuits to spatiotemporal gene expres-
sion data. This is framed as an optimization problem where values need to be
estimated for the parameters W,E, h,R,D, and λ, such that the simulated model
reproduces the expression data as closely as possible. The two weight matrices W

and E are central to this challenge. They represent the regulatory structure of the
network, which cannot be measured directly, but must be inferred from data. In
other words, gene circuits are used as an analytical tool to understand the genetic
regulatory mechanisms driving the observed dynamics of gene expression.

To determine the difference between model output and gene expression data, we
can use different residuals or cost functions. Originally, we used the ordinary least
squares (OLS) approach (Jaeger et al., 2004a,b; Manu et al., 2009a,b), which was
later replaced by weighted least squares (WLS), which takes the variability of the
data into account (see Sect. 3.2). Thus, our cost function is defined as:
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The value of this function depends on the number of data points used for fitting. To
make the score of a fit comparable between different simulation settings, we use the
root mean square deviation (RMS; see Fig. 1):
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Since the RMS still depends on the scale of the data, we scale mRNA data to match
protein data (Crombach et al., 2012). The result is an RMS which is a normalized
measure for the differences between model output and observed expression levels.

We find optimal parameter sets by minimizing the cost function (Eq. 4). This
poses a challenging nonlinear global optimization problem. Several algorithms have
been used to solve this challenge. Initial studies using gene circuits used a global
optimization approach called parallel Lam simulated annealing (pLSA) (Chu et al.,
1999; Lou & Reinitz, 2016). pLSA is a robust optimization method that is computa-
tionally costly. If high-performance computing facilities are available, it remains
our preferred fitting method. Several alternatives, mostly based on evolutionary
computation and scatter search, have been proposed to reduce computational cost
(Abdol et al., 2017; Fomekong-Nanfack et al., 2007; Jostins & Jaeger, 2010; Perkins
et al., 2006). Until recently, however, none of these alternatives were able to match
the robustness and reliability of pLSA on our particular problem. This appears to
have changed with a new method called FIGR, which converts the problem of fitting
nonlinear gene circuit models (based on sigmoid regulation-expression functions)
to a classification problem on models with purely on–off regulatory dynamics
(Heaviside step function), which can be solved using standard machine learning
approaches (Fehr et al., 2019). This method leads to significant speedup without a
loss of robustness, which effectively removes the computational bottleneck of fitting
models to data (see Sect. 3).

After optimization is performed, model fits with an RMS below a certain
threshold are carefully inspected for visible expression defects and selected for
analysis. We also assess the determinability of the inferred parameter values using
statistical methods (Ashyraliyev et al., 2009a,b, 2008; Crombach et al., 2012). In the
best case, this yields a consensus network structure, where the qualitative nature of
each interaction (activation or repression) is shared between a large majority of the
selected fits. Alternatively, we end up with a set of different network variants that
can all explain the observed expression dynamics. In both cases, solutions must be
compared to and validated with experimental evidence. From the set of validated
best-fitting solutions, we choose representative examples for further analysis of
regulatory mechanisms and phase space topology (Manu et al., 2009a; Verd et al.,
2018, 2014, 2017). These analyses result in mechanistic and structural explanations
for the dynamical behavior of the system (Fig. 1) (DiFrisco & Jaeger, 2019).



Life’s Attractors Continued 65

3 Challenges in Reverse-Engineering Gap Gene Networks

The gap gene network is active in early embryogenesis, during the blastoderm
stage, before the onset of gastrulation (Jaeger, 2011). Pioneering genetic work in
D. melanogaster established that gap genes form the top-most zygotic layer of
the hierarchical gene regulatory network governing segment determination. They
encode short-lived transcription factor proteins that diffuse through the syncytial
blastoderm embryo. Here, we consider the four trunk gap genes hunchback (hb),
Krüppel (Kr), giant (gt), and knirps (kni). They generate a set of broad, overlapping
expression domains subdividing the embryo along its main (or anteroposterior, A–
P) body axis (Fig. 2). No tissue growth is involved in this process. Gap genes are
activated by maternal gradients of Bicoid (Bcd), Hb, and Caudal (Cad) proteins
and cross-regulate each other. Together with the maternal factors, they activate
the pair-rule genes, whose periodic two-segment patterns are exemplified by the
seven stripes of even-skipped (eve) expression. Pair-rule genes, in turn, regulate the
molecular pre-pattern of the segment polarity genes, expressed in 14 single-cell-
wide stripes, which demarcate the boundaries of the embryonic parasegments that
form later in development.

The molecular pre-pattern of the segment polarity genes is widely conserved
across insects and other arthropods, but the peculiar way by which D. melanogaster
arrives at it is not (Chipman, 2020; Clark et al., 2019; Davis & Patel, 2002;
Rosenberg et al., 2009). The simultaneous subdivision of the pre-gastrulation
embryo observed in D. melanogaster is called long-germband segment determi-
nation. Outside the dipteran lineage, it also occurs in some groups of beetles
and the Hymenoptera (ants, bees, and wasps; see Fig. 2). In contrast, other insect
lineages determine most of their segments later in development, after gastrulation
has occurred, through sequential addition and tissue growth. This sequential mode
is called short-germband segment determination.

To better understand how the derived long-germband mode of segment deter-
mination in D. melanogaster originated and evolved, we set out to perform a
comparative analysis of the mechanisms underlying gap gene expression across sev-
eral distantly related species of dipteran insects. To achieve this, we reconstructed
the gap gene system in silico in two non-model species. The first is the phorid scuttle
fly Megaselia abdita, which belongs to a basally branching cyclorrhaphan lineage
(Wiegmann et al., 2011). M. abdita possesses a Bcd gradient, but no maternal Cad
expression (Fig. 2) (Lemke et al., 2008; Stauber et al., 1999, 2008, 2000). Gap
gene expression in this species is very conserved compared to D. melanogaster,
which allows us to study how compensatory evolution maintains patterning output
in the presence of changing maternal inputs (Wotton et al., 2015a,b). In addition,
we attempted to reverse-engineer the gap gene system of the psychodid moth midge
Clogmia albipunctata (Fig. 2). In this basally branching dipteran lineage (Jiménez-
Guri et al., 2013), there is no bcd gene, and posterior gap gene expression differs
markedly from that of both other species (García-Solache et al., 2010; Janssens
et al., 2014; Rohr et al., 1999).
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Fig. 2 Evolution of the gap gene system in holometabolan insects. A simplified phylogenetic
tree is shown, featuring selected holometabolan insect lineages with (partially) known gap gene
expression and regulation. The top branch of the tree represents the dipteran lineage (flies, midges,
and mosquitoes) and the bottom branch the hymenopteran lineage (bees and wasps). The vinegar
fly Drosophila melanogaster, hoverfly Episyrphus balteatus, and scuttle fly Megaselia abdita
represent cyclorrhaphan lineages; the moth midge Clogmia albipunctata and the malaria mosquito
Anopheles gambiae depict nematoceran lineages within the Diptera. Apis mellifera is the honeybee
and Nasonia vitripennis the jewel wasp. Key evolutionary events are numbered on the tree: 1 and
3, loss of maternal hunchback (Hb); 2, loss of maternal Caudal (Cad) expression. The second
column shows maternal morphogen gradients (Yoon et al., 2019), while column three depicts the
relative position of gap gene expression domains along the A–P axis (Jaeger, 2011; Lemke et al.,
2010; Lynch et al., 2006; Olesnicky et al., 2006; Pultz et al., 2005; Wilson & Dearden, 2011;
Wilson et al., 2010). Column four shows the structure of the three reverse-engineered gap gene
networks described in the text, with inhibitory interactions indicated by T-bars and self-activation
by circular arrows (activation by maternal gradients is omitted for simplicity). Question marks
indicate incomplete or missing information: C. albipunctata may have an additional posterior gap
gene, and several of its gap gene interactions remain undetermined (Crombach et al., 2014; García-
Solache et al., 2010). The posterior morphogen of A. gambiae is unknown. Data is ambiguous
regarding the ordering of posterior gt and kni in N. vitripennis (Olesnicky et al., 2006). The
schematic embryo in the bottom-right corner shows the location of gap gene expression patterns in
the trunk region of cyclorrhaphan flies (anterior is to the left; dorsal is up). Gene/protein names in
the legend: hunchback (hb), Krüppel (Kr), giant (gt), knirps (kni), knirps-like (knl), Bicoid (Bcd),
Caudal (Cad), Odd-paired (Opa), Pangolin (Pan), Orthodenticle (Otd). Image sources: all dipterans
by Wotton et al. (2015a), except A. gambiae by Muhammad Mahdi Karim (Wikimedia Commons),
A. mellifera (carnica) from Makro Freak (Wikimedia Commons), and N. vitripennis from the New
Zealand Arthropod Collection (flickr.com)

www.flickr.com
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3.1 Bottleneck No. 1: Quantitative Data

Reverse-engineering complex regulatory systems poses significant methodological
challenges, particularly if attempted in non-model organisms, where robust and
efficient experimental protocols are often lacking. The first major challenge consists
in the generation of suitable data for model fitting and model validation. This is
the principal bottleneck, especially if we are aiming to understand processes of
pattern formation or morphogenesis that require spatially resolved time series of
gene expression data.

The quality of a reverse-engineered model crucially depends on the quality of the
data used for fitting. However, the amount of work and the technical complications
involved in generating high-quality spatial gene expression data can be daunting.
Progress in high-throughput methodology for image bioinformatics is being made
but is slower than in other areas, such as sequencing. For instance, it took over 5
years to generate the gap protein expression data used to fit the initial set of gene
circuit models for D. melanogaster (Ashyraliyev et al., 2009b; Jaeger et al., 2004a,b;
Manu et al., 2009a,b). These data were based on immunofluorescence staining
protocols and confocal microscopy, combined with a quantitative data processing
pipeline to measure the concentration of maternal gradients and gap gene proteins
at high spatiotemporal and cellular resolution (Surkova et al., 2008a,b).

Clearly, for our comparative project, we had to find a good compromise
between data quality and effort. As we struggled to raise suitable antibodies for
immunofluorescence in non-model dipteran species (for a partial success story in
C. albipunctata, see Janssens et al., 2014), we chose instead to demonstrate that
post-transcriptional regulation of gap genes is not essential for the establishment
and dynamics of their expression domains in D. melanogaster (Becker et al., 2013).
This implied that we could use gap gene mRNA expression data for model fitting.
Such data are much easier to acquire in non-model systems than protein expression
data.

We proceeded to develop a fast and robust approach to generate semiquantitative
mRNA expression data based on colorimetric in situ hybridization protocols,
imaging by widefield microscopy, and a standardized, interactive pipeline for
“medium-throughput” data processing and consistent staging of embryos into
homologous developmental time classes (Crombach et al., 2012). Our measure-
ments are semiquantitative in the sense that they only capture the timing and location
of gene expression precisely, while accurate levels of expression cannot be assayed
due to the nonlinear nature of the staining protocol. Expression data are available
through a database called SuperFly, which contains expression data from over 1500
embryos from all 3 species (http://superfly.crg.eu) (Cicin-Sain et al., 2015). This
unique data set of spatiotemporal gene expression patterns provided the basis for our
comparative study of gap gene regulation dynamics across dipteran species. Once
pipeline and database were in place, it only took a few months for three researchers
to generate and process all the data, which means that the approach is scalable to
much larger systems.

http://superfly.crg.eu
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A related challenge, that tends to receive little attention, is appropriate embryo
staging and the establishment of homology between developmental stages in
different species. The staging scheme used in D. melanogaster resolves expression
patterns down to intervals of about 7 min in the late blastoderm (the whole
blastoderm stage lasts for about 90 min) (Surkova et al., 2008b). This scheme is
based on morphological features, such as the progression of membrane invagi-
nation during cellularization, that are not necessarily conserved in other species.
For this reason, we had to establish equivalent staging schemes for M. abdita
and C. albipunctata. This required the identification of suitable morphogenetic
landmarks: the occurrence of specific nuclear divisions and nuclear movements, the
appearance of the head furrow, pole cell formation, and the onset and progression
of cellularization during the blastoderm stage. The task was complicated by the
possibility of heterochronic shifts in developmental timing between landmarks and
by the presence of extraembryonic membranes (amnion and serosa) in M. abdita and
C. albipunctata, which are heavily reduced in D. melanogaster (Schmidt-Ott et al.,
2010). Despite considerable differences between species, our efforts resulted in a
consistent sequence of homologizeable developmental stages, which put us in the
exceptional position to draw detailed comparisons between the dynamical properties
of gap gene expression between all three species (Jiménez-Guri et al., 2014; Wotton
et al., 2014).

Next, we ensured that our semiquantitative data from D. melanogaster would
yield the same kind of fitted gene circuit models as the (more accurate and
fully quantitative) original set of protein expression data (Crombach et al., 2012).
Not surprisingly, these efforts yield model solutions with more dispersed param-
eter values compared to the original protein fits (Ashyraliyev et al., 2009b).2

Moreover, parameter determinability analysis indicates that the level of statistical
confidence generally decreases when we use semiquantitative mRNA data. These
shortcomings can be overcome, however, using experimental approaches such as
RNA interference (RNAi) to empirically validate the nature and strength of a
given regulatory interaction. More importantly, in D. melanogaster at least, we
can still reconstruct a consensus network structure that includes all the relevant
developmental mechanisms identified in gap gene circuits fit to protein expression
data (Ashyraliyev et al., 2009b; Crombach et al., 2012; Jaeger et al., 2004b).

All of this is encouraging news for attempts at fitting gene regulatory network
models to spatiotemporal gene expression data in general. We expect many devel-
opmental systems to be more sensitive to alterations in the timing and location of
gene expression than to the precise level of expression for specific factors. This
needs to be confirmed case by case, of course. But if it is a general trend, then fast
semiquantitative approaches will be sufficient to yield robust and consistent results
for reverse engineering in many developmental systems.

2We also pruned data and time points from our data set to test the minimal requirements for success.
This led to the insight that the data should have the right spatiotemporal resolution to capture the
expression features one wants to explain, such as transitions between different types of dynamics
or the appearance of expression boundaries and domains (Crombach et al., 2012).
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3.2 Bottleneck No. 2: Model Fitting

Another bottleneck for reverse engineering lies in the global optimization procedure
required for fitting nonlinear dynamical models to expression data. We have already
mentioned above that computational efficiency is no longer the problem today than
it was a few decades ago. This is mainly due to the incessant increase in available
computational power, but also because of more effective optimization algorithms
(e.g., scatter search and FIGR) becoming available (see Sect. 2). However, a
number of other problems remain, which have to do with the determinability of
parameter values. As discussed in the previous section, fits to mRNA expression
data result in higher dispersion and lower determinability. Another factor that
affects determinability is the presence of correlations between parameter values
(Ashyraliyev et al., 2009a, 2008). Such correlations are known to exist between rates
of production, diffusion, and degradation in kinetic systems. Moreover, correlations
can arise from redundancies in the regulatory network. For instance, auto-activation
can compensate for ubiquitous activation of gene expression, and vice versa, or
higher rates of maternal activation can be compensated by stronger rates of cross-
repression between gap genes.

Other parameter correlations are not so obvious to detect. They require parameter
determinability analysis to be uncovered. One of these cases affects repression of
trunk gap genes by terminal gap genes tll and hkb. It turns out that all but one of these
regulatory interactions—the repression of hb by Hkb—are functionally redundant
(Ashyraliyev et al., 2009b). This not only corroborates experimental observations
(Jaeger, 2011) but also allows us to eliminate these parameters from optimization,
since their inferred values would not carry useful regulatory information. In turn,
this leads to the practical benefits of speeding up the fitting procedure and reducing
the dispersion of other parameter values. Model fitting, therefore, is most efficient
if informed by functional considerations, without unnecessarily constraining the
range of possible parameter values for the interactions for which we can extract
information from the expression data. Naturally, acquiring these insights is heavily
problem- and context-dependent and must be done case by case in an empirical
manner.

Two other aspects of model fitting are worth noting. First, fitting quality
and biological accuracy of inferred parameter values improved greatly when we
introduced a weighted least squares (WLS) cost function, which takes both average
expression patterns and their standard deviations into account (Ashyraliyev et al.,
2009b, 2008) (see Sect. 3). As a general rule, protein expression shows variances
that are roughly proportional to expression levels (Surkova et al., 2008a). For
this reason, we introduced artificial variances to levels of mRNA expression in
our semiquantitative data, which mimicked the pattern observed for protein data
(Crombach et al., 2012). This greatly improved the determinability of parameter
estimates, by putting a high penalty on the expression of genes in areas of the
embryo where they should not be expressed. As a second step for quality control,
two independent experts inspected each circuit for remaining small domains of
ectopic expression. In our experience, these circuits tend to lead to artifacts in
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the inferred parameter values and need to be removed as outliers that confuse the
analysis of network structure.

In conclusion, we recommend an iterative procedure for reverse engineering
where the values of inferred parameters are increasingly constrained through
empirical considerations and determinability analysis. More generally, good model
fits require data that capture the timing and location of relevant expression features
and take variability of gene expression into account. Getting the exact levels of gene
expression right is not crucial, at least for the gap gene system (see also Uzkudun
et al., 2015). Our semiquantitative approach with mRNA instead of protein data is
robust across model and non-model species and requires much less time and effort
than methods based on immunofluorescence. A trained technician or postdoc is able
to gather a data set for model fitting in about 3–4 months.

Taken together, this means we have overcome the two main bottlenecks involved
in reverse-engineering systems of spatial pattern formation: the acquisition of
microscopy data and the fitting of a consistent set of network models. This
establishes the reverse-engineering approach as a method that is widely applicable
in evolutionary systems biology.

4 The Art and Science of Network Decomposition

Once we have obtained a set of validated gap gene circuits with a consensus network
structure (or a small set of network variants), we must find a way to analyze these
models to extract biological insight from them. What we need to do to understand
the G–P map as a causal regulatory process is to reconstruct how parts of the system
govern specific features of the developmental dynamics that propagate the process
from its initial to its final state. Importantly, this can be done in different ways that
are all equally valid. Here we discuss a bottom-up approach that enables a first
recomposition of parts of the network. This approach is complemented by a top-
down analysis that we briefly elaborate on here and that is described in more detail
in the chapter by Jaeger and Monk.

Our starting point is the consensus network structure of the gap gene system
in D. melanogaster (Figs. 2 and 3). Simply by looking at this representation of
the network, we can infer certain regulatory principles. For instance, the two
double-negative (hence positive) feedback loops between pairs of gap genes with
complementary expression patterns are easy to notice: hb and kni, as well as Kr
and gt (Fig. 3b). The bistable switching behavior typically driven by such positive
feedback loops explains that only one of the genes in each pair can be present in an
embryonic nucleus at a given time.

In other cases, however, visual inspection and mental simulation are not suffi-
cient. For example, what do the weak repressive interactions between overlapping
gap domains do (Fig. 3c)? Upon their discovery, these interactions elicited some
controversy (Jaeger, 2011), and no specific regulatory role for them could be
determined based on qualitative evidence from genetics. This only changed with
quantitative, high-resolution data and gene circuit models, which revealed that these
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Fig. 3 Comparative analysis of dipteran gap gene networks. (a–e) The bottom-up decomposition
of the D. melanogaster gap gene network reveals the five basic regulatory mechanisms shown here.
(f) A complementary, top-down decomposition reveals three dynamical modules. Each module
has the structure of an AC/DC circuit (Verd et al., 2019) (see the chapter by Jaeger and Monk).
(g) A molecular ratchet involving hb, Kr, and kni can explain the shift of the anterior hb domain
boundary in M. abdita and the lack of such a shift in D. melanogaster, where this boundary is
set through bistability instead. (h) In M. abdita, posterior Gt activates hb, which triggers hb auto-
activation once Hb concentration has sufficiently built up (“pull-and-trigger” mechanism), while
D. melanogaster exhibits a smooth shift based on hb auto-activation only. (i) Reverse-engineering
the C. albipunctata gap gene system resulted in a set of four different network structures, two of
which are shown here. (j) Gap domain shifts are much more pronounced in C. albipunctata than in
D. melanogaster or M. abdita, suggesting that these shifts may be a dynamic vestige (or “fossil”), a
remnant inherited from the ancestral short-germband segmentation process. Inhibitory interactions
are indicated by T-bars, self-activation by circular arrows, and self-inhibition by circular T-bars.
For gene names, see Fig. 2. See main text for details

interactions are involved in dynamic positional shifts of posterior gap domains
toward the anterior (Jaeger et al., 2004b; Surkova et al., 2008a). These domain
shifts are an important expression feature that can be explained neither by genetic
experiments (since the shifts are an emergent property of the system and do not
depend on a specific mutation) nor mental simulation of the system (since the
interactions that generate them are too numerous and interconnected to simply
“think them through”). This is why we need dynamical models for network analysis
and mechanistic explanations (DiFrisco & Jaeger, 2019, 2020).
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4.1 Bottom-up Decomposition into Regulatory Mechanisms

Our validated gene circuit models allow us to directly track the influence of each
specific regulatory interaction in the gap gene network, in each nucleus separately,
and at any time point during segmental patterning. To achieve this, effective
regulatory contributions are calculated as regulator concentration ga

t multiplied
by regulatory weights from matrices W and E (see Eq. (3)) and plotted against
each other for visual inspection (see Fig. 6C in Crombach et al., 2012). Regulatory
inputs can be integrated over an embryonic region and time interval of interest.
This enables us to precisely characterize the relative importance of individual
contributions to every observable expression feature that is correctly reproduced
by the model.

Using this kind of graphical analysis, we were able to distinguish five basic
developmental mechanisms involved in gap gene expression in D. melanogaster
(Fig. 3a–e) (Crombach et al., 2012; Jaeger et al., 2004a,b):

1. Gap genes are predominantly activated by maternal factors Bcd (in the anterior)
and Cad (in the posterior region of the embryo), especially during early stages
when gap protein levels are still low (Fig. 3a) (Hoermann et al., 2016; Jaeger
et al., 2007). Bcd acts in a graded spatially distributed manner, and Cad mainly
contributes to activation in the posterior region of the embryo, where its early
concentration levels are uniformly high. This activating mechanism does not
correspond to classical morphogen-based patterning, since maternal inputs are
not specific enough on their own to precisely position gap domain boundaries
(Jaeger et al., 2008; Jaeger & Reinitz, 2006; Jaeger & Verd, 2020). As Bcd and
Cad concentrations reduce over time, maternal activation diminishes, yet its role
remains important as it contributes to the dynamics of gap domain shifts (Verd
et al., 2017).

2. Strong mutual repression between complementary gap domains of hb and kni
as well as Kr and gt establishes the basic staggered arrangement of gap gene
expression domains (Fig. 3b) (see above). This double-negative (hence positive)
feedback mechanism lies at the core of gap gene regulation and is conserved
among dipteran species (Crombach et al., 2014, 2016) (Fig. 2). In addition, it is
required for the sharpening of gap domain boundaries over time (Jaeger, 2011).

3. Gap genes with overlapping expression domains weakly repress each other.
These interactions show a posterior bias such that Hb represses gt, Gt represses
kni, Kni represses Kr, and Kr represses hb, but not the other way around (Fig. 3c).
As mentioned above, this asymmetric cascade of repressive interactions causes
the temporal shift of posterior gap domains toward the embryo’s anterior.

4. Auto-activation boosts expression levels and contributes to the sharpening of
expression domain boundaries of hb, Kr, and gt at later stages, when gap protein
levels are sufficiently high (Fig. 3d). However, auto-activation does not influence
the determination of positional information and is dispensable for gap gene
patterning in principle (Perkins et al., 2006). Our models indicate that auto-
activation is present in all three species (Crombach et al. 2012, 2014, 2016).
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However, we cannot analyze its precise regulatory role, since auto-regulation
is mainly involved in controlling levels of expression, which are not accurately
captured by our semiquantitative data. We do know that in D. melanogaster, gt
expression levels are governed by a temporal switch from regulatory elements
that mediate broad early expression in response to maternal gradients to domain-
specific elements later on (Hoermann et al., 2016).

5. Repression by terminal gap genes tll and hkb excludes the expression of gap
genes from the posterior pole, restricting them to the embryo’s trunk region
(Fig. 3e). The terminal gap genes mediate the influence of the terminal maternal
system on segmentation gene expression (Jaeger, 2011). Most of the regulatory
inputs from these two genes are redundant with the exception of repression of
hb by Hkb, which establishes the posterior boundary of the posterior hb domain
(Ashyraliyev et al., 2009b).

4.2 Top-Down Decomposition into Dynamical Modules

Decomposing a network by tracking single regulatory interactions is but one
possible way to analyze the dynamics of a complex regulatory system. We call
it the bottom-up approach, as it examines how individual contributions combine
to yield the overall behavior of the network. In contrast, a top-down approach
considers dynamics at the level of the whole system and dissects it into modular
components (see the chapter by Jaeger and Monk). This approach is based on
dynamical systems theory, specifically phase space analysis (Strogatz, 2015). For
our gene circuit models, this means to identify attractors, their basins, and the
separatrices between them. In time-variant systems, like the gap gene network,
we also need to consider the possible transitions (bifurcations) between different
dynamical regimes and transient behavior along trajectories that stay far from any
steady state (Verd et al., 2014).

Phase space analysis of gap gene circuits reveals two fundamentally different
patterning regimes: stationary domains in the anterior, generated by multi-stability,
and shifting domains in the posterior, generated by a damped oscillator (Verd
et al., 2018). The presence of such different regimes allows us to identify which
subsets of gap genes contribute to each of them (Fig. 3f) (Verd et al., 2019), even
if the gap gene network shows no signs of modularity in its structure, being very
densely connected (see Fig. 2). In the anterior trunk region, for example, only gt, hb,
and Kr are expressed. Their interactions generate switch-like multi-stable behavior
leading to stationary domain boundaries for these gap genes. In the posterior trunk
region, Kr, kni, and gt are expressed, where they generate oscillatory behavior
and shifting domain boundaries. Surprisingly, the central region of the embryo
contains a third dynamical module composed of hb, Kr, and kni, which drives two
different kinds of behavior. It straddles the bifurcation point between nuclei that
show switch-like and oscillatory behavior. Thus a non-modular network produces
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modular, multifunctional behavior. These subsets of gap genes are not structural but
dynamical modules.

Strikingly, all three dynamical modules of the gap gene network exhibit exactly
the same network structure (topology) (Fig. 3f), only differing in strength of
regulatory interactions. This canonical structure corresponds to the AC/DC circuit,
a known minimal motif for producing both switch-like and oscillatory behaviors
(Panovska-Griffiths et al., 2013). This explains how a single subcircuit can produce
two different dynamical behaviors depending on the maternal input it receives.

In summary, we demonstrate that one can decompose a regulatory network in
multiple ways: bottom-up, by plotting the contributions of individual regulatory
interactions, and top-down, by decomposing the system based on different kinds
of behavior observed in the system’s dynamics. Both of these approaches are valid
ways to decompose a network. Both describe how specific subsets of interactions
between gap genes contribute to specific aspects of gene expression. Yet, each
decomposition has its peculiar focus. In the bottom-up approach, we classify
contributions to specific expression features, such as the positioning, sharpening,
or shift of particular domain boundaries. In the top-down approach, we focus
on more general dynamical behaviors. Even though gap domains in the anterior
and the posterior of the embryo look similar at first sight, they are generated by
fundamentally distinct processes. These analyses may not easily add up to a unified
picture of the network. Instead, they complement and contextualize each other,
which makes it easier to recognize the uses and limitations of either approach. In
short, these perspectives synergize to give us a deeper understanding of the system
(Wimsatt, 2007).

5 Drifting Shifts: The Evolution of the Gap Gene System

A comparative analysis of the gap gene network beyond the drosophilid lineage
illuminates the origin and evolution of long-germband segment determination.
Moreover, it allows us to distinguish conserved aspects of the patterning mech-
anisms from contingent regulatory features that are evolutionarily labile. More
generally, our reverse-engineering approach grounds the search for principles of
network evolution in empirical evidence.

The gap gene network, in turn, is an ideal model system in which to establish
methodology for comparative modeling of regulatory evolution. We can start our
analysis with a common set of candidate genes, since gap genes are highly con-
served across dipteran lineages (Jaeger, 2011). We can track gene expression using
mRNA data, as post-transcriptional regulation is not required for the positioning
of gap domains (Becker et al., 2013). We can ignore morphological changes and
focus on gene expression only, because there is no growth nor tissue arrangement
during the blastoderm stage. We can homologize specific developmental stages
between species, as dipteran embryos are morphologically very similar to each
other (Jiménez-Guri et al., 2014; Wotton et al., 2014). Moreover, we can compare
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the resulting dynamic patterns at high spatiotemporal resolution (Cicin-Sain et al.,
2015). And we can validate our fitted models with genetic perturbation methods,
such as RNAi, that establish independent empirical evidence on gap gene regulation
(Jiménez-Guri et al., 2018; Wotton et al., 2015a). All of this renders the dipteran gap
gene network exceptionally tractable as a paradigm system for metazoan patterning.
The combination of experimental decomposition and in silico recomposition of the
gap gene system was particularly successful in the phorid scuttle fly Megaselia
abdita (Fig. 2).

5.1 The Scuttle Fly Megaselia abdita: Compensatory
Evolution

Evidence from systematic RNAi knockdown experiments and fitted gene circuit
models indicates that the qualitative structure of the gap gene network is highly
conserved between M. abdita and D. melanogaster (Fig. 2) (Crombach et al.,
2016; Wotton et al., 2015a). Both species exhibit the same pattern of repressive
interactions among gap genes, with strong double-negative feedback between com-
plementary domains, and much weaker (and posteriorly biased) repression between
gap genes with overlapping expression. All five basic regulatory mechanisms
observed in D. melanogaster (see Fig. 3a–e) are also present in M. abdita. However,
there are qualitative differences in the way maternal factors activate gap genes in
either species, as well as quantitative differences in the strength of gap–gap cross-
repressive interactions.

One experimentally observable difference between the two species is that there
is no maternal expression of cad in M. abdita, while zygotic expression is present
(Fig. 2) (Stauber et al., 2008). In addition, bcd mRNA shows a much broader
anterior localization pattern than in D. melanogaster (Lemke et al., 2008; Stauber
et al., 1999, 2000), indicating that the Bcd protein gradient extends further to the
posterior in this species. Despite these expression differences, the activating role
of both of these maternal factors in gap gene expression is conserved (Wotton
et al., 2015b). This results in a broader initial distribution of anterior gap domains
(activated by Bcd) and a delayed activation of gt and hb in the posterior of the
embryo (because there is no maternal Cad) (Wotton et al., 2015a). In addition, the
maternal Hb gradient does not contribute to A–P polarity in M. abdita, in contrast to
D. melanogaster (Wotton et al., 2015b). Moreover, experimental evidence from the
syrphid hoverfly Episyrphus balteatus shows no maternal expression of hb (Lemke
et al., 2010). This suggests a qualitative rewiring of maternal inputs on the gap gene
network in the evolutionary lineage leading up to D. melanogaster where maternal
Hb acquired a role in setting up embryo polarity.
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These differences in early maternal activation are later compensated by gap–gap
cross-repression in M. abdita, such that the patterning output of the system—the
position of gap domains at the onset of gastrulation—is nearly identical between
the two species (Wotton et al., 2015a). In particular, M. abdita shows a marked
anterior shift of the posterior boundary of the anterior hb domain, a boundary which
is stationary in D. melanogaster and was thought to be a stable organizing center in
the central region of the embryo (see Crombach et al., 2016; Wotton et al., 2015a and
references therein). We explain this difference in mechanistic terms through altered
repressive inputs from Kr and Kni on hb. While these repressors act in a redundant
manner in D. melanogaster, they are both required for correct positioning of the hb
boundary in M. abdita (Wotton et al., 2015a). Our models show that weak repression
by Kr gradually diminishes the concentration of hb in the boundary region until
kni can become expressed, which strongly represses hb, downregulating it in an
irreversible manner (Fig. 3g) (Crombach et al., 2016). In summary, the hb boundary
is controlled by a multi-stable switch in D. melanogaster and by a molecular ratchet
in M. abdita.

Another difference is that the abdominal domain of kni and the posterior
domain of gt form later and in a more posterior position in M. abdita than in
D. melanogaster. This delayed onset of expression is caused by the absence of
maternal Cad (Fig. 2). As a consequence, both domains initiate their anterior shifts
with a delay, which they compensate by a higher shift velocity at later stages
(Wotton et al., 2015a). The main regulatory difference between the two species lies
in the effect of Gt on hb: in M. abdita, Gt weakly activates hb, setting the pace
for the early buildup of Hb protein in the posterior of the embryo. This buildup
is driven predominantly by strong hb auto-activation in D. melanogaster, where
it leads to a gradual accumulation of Hb protein in the posterior of the embryo,
repressing gt and causing its smooth shift toward the anterior. In contrast, hb auto-
activation is much weaker in M. abdita and is only triggered at a later stage, once
enough Hb protein has accumulated. This provides a mechanistic explanation for
the accelerated domain shift at late stages. We termed this the “pull-and-trigger”
mechanism for the observed biphasic shifts in M. abdita (Fig. 3h) (Crombach et al.,
2016).

An important point to make here is that higher-level insights are rarely possible
in biology without careful consideration of (mechanistic) detail. Understanding
compensatory evolution in regulatory networks requires a detailed understand-
ing of the underlying mechanisms. Only in this way can we arrive at lineage
explanations—plausible scenarios for sequences of regulatory changes (Calcott,
2009)—that explain the evolution of a gene network. Such explanations are the
foundation for a broader understanding of the principles of network evolution.
Before we discuss such general insights, we review our work in the psychodid moth
midge C. albipunctata.
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5.2 The Moth Midge Clogmia albipunctata: Shifts
as Dynamic Fossils?

For several reasons, our reverse-engineering approach was less successful in
C. albipunctata. First of all, it was difficult to establish an efficient protocol for
RNAi knockdown in this species, which hindered systematic model validation.
Second, C. albipunctata has no maternal Bcd gradient. Instead, it uses a maternal
gradient of the pair-rule gene product Odd-paired (Opa) as its anterior determinant
(Yoon et al., 2019). Since this was unknown at the time, we assumed an unknown
anterior gradient to be present. Finally, we strongly suspect that we miss at least
one regulatory factor involved in gap gene regulation in C. albipunctata: Gt protein
is not detectable in the posterior of the embryo (Crombach et al., 2014; García-
Solache et al., 2010; Janssens et al., 2014), and a candidate gene that is expressed
in the relevant region shows no gap-like phenotype upon knockdown (Jiménez-Guri
et al., 2018). Therefore, a region in the posterior of the embryo lacks an expression
domain at the late blastoderm stage (Fig. 2). Missing regulators are a severe problem
for reverse engineering, since they can lead to defects and artifacts in models fitted to
incomplete data. Together, these obstacles impeded us from extracting a consensus
network. Instead, we end up with four candidate networks for C. albipunctata that
remain to be tested against experimental evidence (Fig. 3i) (Crombach et al., 2014).
This limits any detailed and robust conclusions about the mechanisms of gap gene
regulation in this species, though our analysis still allowed us to gain some general
insights into the evolution of long-germband segmentation.

One such insight is drawn directly from our semiquantitative gene expression
data: not only posterior gap genes but also Kr and hb show extensive positional
shifts toward the anterior, which are more pronounced than the shifts observed in
D. melanogaster and M. abdita (Fig. 3j) (Crombach et al., 2014; García-Solache
et al., 2010; Janssens et al., 2014). Gap gene patterning in C. albipunctata is
very dynamic. Interestingly, shift mechanisms are based on weak repression with
posterior bias between overlapping gap domains (where we can resolve them
with our models) (Crombach et al., 2014). In this sense, they are similar in
C. albipunctata and M. abdita.

Another remarkable feature of gap gene regulation in C. albipunctata concerns
the nature of maternal regulation: our models indicate that Cad acts as a repressor
of gt, which explains the absence of its posterior domain (Crombach et al., 2014).
The absence of a posterior gt domain, in turn, relaxes the requirement for mutual
repression between Kr and gt, as their patterns are no longer complementary. In fact,
gt may not even be a proper gap gene in this species as it lacks a gap phenotype upon
RNAi knockdown (Jiménez-Guri et al., 2018). This is probably connected to the
presence of additional, yet-to-be-identified factors involved in gap gene regulation
in C. albipunctata, but the precise role and importance of such gene recruitment
and loss for gap gene network evolution remain to be determined once the missing
regulators are identified.
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The observation that a basally branching dipteran shows more pronounced gap
domain shifts supports the view that shifts are an ancestral feature. Still, the
functional significance of these shifts for segment patterning remains unclear. They
may add robustness to the process (Manu et al., 2009a). In addition, they are
required for the correct placement of pair-rule expression stripes—the primary
regulatory targets of the gap gene system—in D. melanogaster (Clark, 2017).
Ultimately, however, their presence may reflect evolutionary inertia more than
functional conservation. Gap domain shifts—and the oscillator-based mechanisms
that generate them (Verd et al., 2018, 2017)—may represent a dynamic fossil, a
remnant of the ancestral short-germband mechanism of segment determination. This
hypothesis is supported by the fact that the damped oscillatory mechanisms that
produce domain shifts in the gap gene system are functionally similar to the limit-
cycle oscillators of sequential short-germband segmentation (Clark, 2017; Sarrazin
et al., 2012; Verd et al., 2019). But the evidence remains preliminary. Future studies
based on a larger sample of evolutionary lineages are required to resolve this issue.

5.3 Evolving Mechanisms and Network Drift

What general insights into network evolution do we gain from our comparative
analysis of the gap gene system? Our first conclusion involves the evolution of
the five basic gap gene regulatory mechanisms. We have shown that these core
principles are largely conserved across dipteran lineages: we find broad activation by
maternal factors, strong mutual repression between complementary gap genes, shifts
through weak repression with a posterior bias among overlapping gap domains, gap
gene auto-activation, and repression by terminal gap genes in all species we have
examined (Crombach et al., 2014, 2016; Wotton et al., 2015a,b). However, none
of these mechanisms are perfectly conserved, and some evolved more rapidly than
others. In particular, maternal inputs are more variable than any of the regulatory
mechanisms specific to gap genes. This is consistent with an hourglass pattern of
developmental variation in dipteran insects, where patterning becomes increasingly
more canalized as we progress downward through the layers of the segmentation
gene network (Duboule, 1994; Kalinka et al., 2010; Manu et al., 2009a; Perkins,
2020; Raff, 1996; Sander, 1983; Seidel, 1960; Slack et al., 1993; Wotton et al.,
2015a).

The degree of conservation also varies among mechanisms at the level of gap–
gap cross-regulation. This is because mutations in different mechanisms have
different consequences. The core repressive feedback loops between complemen-
tary gap domains are particularly conserved. They are only partially disrupted
in C. albipunctata, where additional regulatory factors may have acquired their
function. In contrast, our work in M. abdita shows how alterations in maternal
inputs can be buffered by alterations in the timing and extent of gap domain
shifts, implicating the weak interactions between overlapping domains (Crombach
et al., 2016; Wotton et al., 2015a,b). A similar explanation likely applies to the
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pronounced shifts observed in C. albipunctata with its distinct set of maternal
regulators (Crombach et al., 2014; Yoon et al., 2019). Taken together, this suggests
that compensatory evolution is an important factor driving changes in gap domain
shifts in dipterans.

More broadly speaking, we are providing a detailed mechanistic explanation for
regulatory network evolution by developmental system drift, also called pheno-
genetic drift (Haag, 2007; Haag & True, 2018; Pavlicev & Wagner, 2012; True
& Haag, 2001; Weiss, 2005; Weiss & Fullerton, 2000). In this mode of network
evolution, regulatory interactions change without affecting the overall output of
the system. In this way, regulatory systems can evolve along so-called genotype
networks, which are meta-networks—networks of networks that produce the same
phenotypic outcome, connected to each other through single mutational steps
(Wagner, 2011). Our analysis reveals that evolution of the gap gene network occurs
along such a genotype (meta-)network, predominantly driven by mutations that fine-
tune the strength of regulatory interactions influencing the extent and velocity of gap
domain shifts (Crombach et al., 2016).

We emphasize that the developmental system drift we observe in the gap
gene system is based on quantitative changes in interaction strengths (Wotton
et al., 2015a). This stands in stark contrast to earlier accounts of system drift,
which focus on qualitative changes that alter the components, and the number or
kind of interactions between them (see, e.g., True & Haag, 2001; Wagner, 2011;
Weiss, 2005). Considering the highly redundant nature of eukaryotic transcriptional
regulation and the high rate of evolutionary turnover for transcription factor binding
sites, we expect quantitative changes in regulatory interactions to be much more
widespread than qualitative changes in a system (Wotton et al., 2015a). In addition,
quantitative changes tend to be less disruptive than qualitative ones and are thus less
likely to be eliminated by selection. For these reasons, we predict that quantitative
developmental system drift is a common mode of regulatory network evolution.

6 Outlook: in silico Evolution

We have presented a significant advance toward a lineage explanation—a sequence
of mutational transformations—for evolution in dipteran insects (Calcott, 2009).
Our new insights into system drift suggest possible evolutionary paths and tran-
sitions between lineages. However, our analysis does not provide any information
about the actual sequence of regulatory changes. The main question is if there are
many possible evolutionary paths or if epistatic effects in the network constrain them
to a few specific sequences of changes. Of course, the actual evolutionary pathway
of the gap gene network can be empirically resolved through additional sampling of
dipteran lineages. This requires reverse-engineering the gap gene network in many
other species, which will cost a large amount of time and effort. Meanwhile, we can
test possible constraints on the sequence of transitions through in silico evolution.
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In silico evolution is a simulation-based approach that models the evolutionary
process (for reviews and example studies, see Batut et al., 2013; François, 2012,
2014; Vroomans et al., 2016, 2018; see also the chapters by Beslon et al. and
by Hogeweg). It comes in many variations, yet the general idea is as follows: we
simulate populations of “digital organisms” that have a genotype, which is translated
into a phenotype via a G–P map. Each phenotype is assigned a fitness value based on
a predefined fitness function, which is used to select individuals to create offspring.
Reproduction consists in copying an individual with a certain rate of mutational
changes to its genotype. In this way, populations evolve. The whole procedure is
similar to optimization by evolutionary computation (see Sect. 2), except that we
are less interested in the final outcome of the simulation and more in how the
population has evolved: which evolutionary trajectories are taken? What kind of
network structures are changed in the process? What intermediate stages occur?
In the case of the gap gene system, the aim is to take the gap gene networks of
C. albipunctata or M. abdita as initial conditions and to trace their evolution back
to the common ancestor and along the phylogenetic tree to D. melanogaster.

In contrast to comparative empirical studies, the in silico approach provides
several advantages for the study of evolutionary dynamics. It enables us to rapidly
test and explore many scenarios, to modify any of the simulation parameters (e.g.,
mutational operators, rates, population sizes, etc.), and to trace parent–offspring
relationships, thus creating a perfect “fossil record” (Batut et al., 2013). Especially
the latter is important, as it gives us the exact sequence of mutations and their precise
phenotypic effects along the lineage that leads to the fittest individual(s). Thus, by
running many simulations and by searching for parallel mutational trajectories, we
can separate contingency from general trends in the evolutionary process (Batut
et al., 2013).

We have not yet carried out a definitive set of simulations of gap gene evolution.
One reason is that the simulation setup must be designed to be robust against many
of our necessarily ad hoc modeling choices. Not only is the problem underdeter-
mined in terms of which network modeling formalism to use but also concerning
population size and structure and the kind of mutations that are implemented (and
at what rate). One example is whether to simulate gene duplication, deletion, and
recruitment, since it is currently unknown if such events occurred in the evolution of
the gap gene system (see Sect. 5). Another issue concerns the use of gene circuits:
these models feed all regulatory inputs to a gene into a single sigmoid function,
which means that if they are sensitive to changes in one input, they will be sensitive
to all. This is clearly not an accurate representation of transcriptional regulation,
which requires individual thresholds for each regulatory interaction. Hence, the
latter type of model is usually preferred for in silico evolutionary studies (François
et al., 2007; François & Siggia, 2010; ten Tusscher, 2013; ten Tusscher & Hogeweg,
2011).

Another sensitive choice is what fitness function to use, since this strongly
influences if a simulation gets stuck at a local fitness peak (our unpublished results).
Residual functions measuring squared differences between model and data may be
useful for model optimization, but they may overconstrain the evolutionary process.
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Indeed, the actual selective pressure(s) on the gap gene system may be less stringent
than getting the exact spatiotemporal expression pattern right. Though we do not
know what is selected for, distinct dipteran lineages show significant differences
in the dynamics of gap gene expression. Thus the most relevant feature may be a
regular and ordered set of segment polarity stripes by the onset of gastrulation. For
this reason, we currently experiment with an indirect approach, inspired by a recent
in silico evolution study that explores how D. melanogaster and the nematoceran
malaria mosquito, Anopheles gambiae, swapped the order of their posterior gt and
hb domains during evolution (Fig. 2) (Rothschild et al., 2016). Instead of defining
fitness directly on gap gene expression, they define it at the next level of the
segmentation gene hierarchy, basing it on the number and position of pair-rule
expression stripes. In other words, fitness is defined by the output of the gap genes.

Given the above setup, we aim to answer two questions. The first concerns
compensatory evolution of gap domain shifts in response to altered maternal inputs
between M. abdita and D. melanogaster. The second focuses on the gain/loss
of the posterior gt and hb expression domains between C. albipunctata and
D. melanogaster (Fig. 2). For both questions, we take advantage of the perfect “fos-
sil record” provided by the simulations to compare possible mutational trajectories
and to search for trends or fixed sequences of mutations that lead to changes in gap
gene expression across simulations. If such trends exist, they indicate the presence
of epistatic constraints, which lead to a small set of key mutations being crucial for
the transition from the initial to the target phenotype. On top of that, our simulations
would also provide the epistatic network context these mutations require to exert
their effects. To the best of our knowledge, this would be the first such study where
evolutionary simulations are explicitly constrained by expression data.

Such simulations open up the exciting prospect of analyzing the evolution of
a developmental gene regulatory network at the level of its phase space structure.
We could trace changes in gene expression dynamics to the bifurcations that cause
them. Such a study would actualize the pioneering insights of C. H. Waddington,
René Thom, and the process structuralists, who proposed decades ago that the best
way to understand the evolution of organic form, and the systems that generate it, is
to understand how these systems move through the space of possible configurations
(Alberch, 1991; Goodwin, 1982; Oster & Alberch, 1982; Thom, 1976; Waddington,
1957). We have never been as close to realizing this vision as we are now.

7 Conclusion

This chapter provides a progress report, following up on the research program we
proposed in (Jaeger & Crombach, 2012). We have demonstrated its usefulness and
its potential for evolutionary systems biology. It is an approach based on reverse
engineering and in silico evolution, which strives to strike a compromise between
the accuracy and rigor of forward modeling and the generality of the ensemble
approach. We have discussed our accomplishments, the challenges overcome, and
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those we still have to meet. We focused on the methodological bottlenecks of
data acquisition and model fitting, on issues of network decomposition, and on
our comparative analysis to understand the mechanisms underlying compensatory
network drift in the dipteran gap gene system. This work is complemented by the
account of dynamical network modularity presented in the chapter by Jaeger and
Monk. Together with Jaeger (2018), these chapters present a comprehensive review
of our efforts to understand the function and evolution of the gap gene network
across dipteran lineages.

Despite a number of open challenges—such as establishing a robust setup for in
silico evolution—we are optimistic about the prospects of our proposed approach. It
enables us to elevate our piecemeal understanding of genetic regulatory mechanisms
to a more integrated view of network evolution at the systems level. We have
demonstrated that we can use dynamical models to recompose the orchestrated
behavior of whole evolving regulatory networks and that we can do this in a
rigorous, detailed, and empirically grounded way. Such recomposition is essential if
we are looking for a mechanistic understanding of regulatory network evolution.
The general idea is to accumulate more case studies of this kind—in different
species and different developmental contexts. Ultimately, the ambition is to reveal
the regularities, or even principles, underlying the evolution of regulatory networks.
Here, we have documented a small but important first step on this fascinating
journey.
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Systems Biology Approach to the Origin
of the Tetrapod Limb

Koh Onimaru and Luciano Marcon

Abstract It is still not understood how genome sequences are linked with diverse
and spectacular forms during evolution. The difficulty to bridge genotypes and
phenotypes stems from the complexity of multi-cellular systems, where thousands
of genes and cells interact with each other providing developmental non-linearity.
To understand how diverse morphologies have evolved, it is essential to find ways to
handle such complex systems. Here, we review the fin-to-limb transition as a case
study for the evolution of multi-cellular systems. We first describe the historical
perspective of comparative studies between fins and limbs. Second, we introduce our
approach that combines mechanistic theory, computational modeling, and in vivo
experiments to provide a mechanical explanation for the morphological difference
between fish fins and tetrapod limbs. This approach helps resolve a long-standing
debate about anatomical homology between the skeletal elements of fins and limbs.
We will conclude by proposing that due to the counter-intuitive dynamics of
gene regulatory feedback, integrative approaches that combine computer modeling,
theory and experiments are essential to understand the evolution of multi-cellular
organisms.

1 Introduction

Multi-cellular organisms have evolved a remarkable diversity in body forms. In the
last decades, thanks to the advance of DNA sequencing technologies, the genome
sequence data of various species have become available. However, we still poorly
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understand how genome sequences are connected to the diverse morphologies of
animals. One of the causes that make genotype-phenotype mapping so difficult
is that the dynamical behavior of developmental systems is not encoded in the
genome (Alberch, 1991). Indeed, developmental systems involve numerous gene
interactions that can generate emergent phenomena which cannot be intuitively
explained by knowing just the list of genes involved—or even their interaction
network. An example of such phenomena is the diffusion-driven instability proposed
by Turing (1952), in which cross-regulatory interactions between multiple diffusive
molecules spontaneously generate periodic spatial patterns. Therefore, in order to
map genotypes into phenotypes, we need to understand the causal relationship
between genetic mutations and the developmental phenomena that are not directly
encoded in the genome.

The difficulty of genotype-phenotype mapping is also related to the homology
problem. Homology is fundamental to evolutionary studies, since it provides the
frame of reference to identify differences between species. Traditionally, homology
has been defined according to two different notions (Wagner, 2014):

• “the correspondency of a part or organ, determined by its relative position and
connections, with a part or organ in a different animal” (Owen, 1848),

• “Attributes of two organisms are homologous when they are derived from an equivalent
characteristic of the common ancestor” (Mayr, 1982).

The first one is Richard Owen’s original definition, which was proposed before
the development of evolutionary theory. The second is Mayr’s definition, which was
supposed to replace Owen’s one in the context of the modern evolutionary synthesis.
Nowadays however, homology has often been associated with both notions (Wagner,
2014; Shubin & Alberch, 1986). As pointed out by Wagner (2014), although the
concept of homology was first defined to systematically categorize anatomical
modules, comparative analysis of coding genes is the most successful and prac-
tical application of homology. Because genes are one-dimensional sequences of
nucleotides or amino acid, they are algorithmically comparable, which allows the
quantitative assessment of Owen’s homology. In addition, because genes are directly
inherited from ancestors via replication, comparison of genes is conceptually
straight forward in terms of the continuity from the common ancestor. In contrast,
anatomy is often about complex three-dimensional structures, thus it is difficult
to assess homology with Owen’s definition. In addition, anatomy is reconstructed
from inherited information, such as the genome sequence and maternal factors, at
every generation through complex developmental dynamics, which makes it difficult
to trace back homology by applying Mayr’s definition. Without understanding
of how genome information is translated into anatomical traits, homology could
be concluded from superficial resemblances with ambiguous ancestral continuity
(see Wagner, 2014 for further discussions on the homology concept). Therefore, a
proper description of the genotype-phenotype map is required to solve the homology
problem and to provide a better conceptual basis for anatomical comparisons.
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In this chapter, we will use vertebrate fins and limbs as a case study for the
evolution of multi-cellular systems, showing how understanding developmental
mechanisms demystifies the complex relationship between gene regulatory changes
and morphological diversity. Firstly, we review a historical perspective of studies
of the fin-to-limb evolution. Secondly, we discuss positional information and the
Turing mechanism—two key developmental concepts involved in skeletal pattern
formation of the tetrapod limb. Thirdly, we will introduce a recent effort to
understand molecular mechanisms that differentiate fins and limbs.

2 Homology Debates on Fins and Limbs

The tetrapod limb is often divided into three anatomical modules: stylopod
(humerus/femur), zeugopod (ulna and radius/fibula and tibia), and autopod (wrist
and digits), ordered from proximal to distal (Fig. 1a). Most limb variations
are explained by reduction or elongation of the skeletal elements of this basic
architecture, which Richard Owen called “archetype.” On the other hand,
comparison between fish fins and tetrapod limbs has been controversial for more
than 150 years. First of all, to clarify the terminologies, fish fins are generally
composed of “radials” (endoskeletal elements) and “rays” (the fluttering part of
fins made of dermal bones in ray-finned fishes or stiff filaments in the case of
sharks). Here, we mainly discuss fin radials, because rays are thought to have
been lost in the tetrapod lineage. A German zoologist, Gegenbaur was the first to
seriously tackle the homology problem between fins and limbs (Gegenbaur, 1865).
Although his main hypothesis that fins/limbs originate from gill arches is no longer
supported (reviewed by Jarvik, 1980), his attempt to identify homologous elements
between fins and limbs is still influential in contemporary research. He categorized
the adult skeletal elements of a shark pectoral fin into three modules along the
anterio-posterior (AP) axis: propterygium, mesopterygium, and metapterygium,
each connected to a large basal element (Fig. 1b). While fish fins generally exhibit
considerable variation between species, he identified that the metapterygium was
the most constant module across fish fins. The metapterygium is characterized by
its unique branching pattern—multiple small skeletal elements are connected to a
series of thick ones (later named as the metapterygial axis; orange line in Fig. 1b).
Because of the robustness of the metapterygium, he speculated that the tetrapod limb
also originated from the metapterygium, and drew a hypothetical metapterygial axis
on the skeletal elements of the tetrapod limb (Fig. 1c). Since then, many researchers
have attempted to identify the metapterygial axis in tetrapod limbs by incorporating
embryological and fossil data, but never reached a consensus. In particular, while
the majority of researchers consider that the axis “runs” through humerus and ulna
(femur and fibula for the hindlimb), there was a strong disagreement regarding
the autopod, which promoted a debate whether digits are the de novo structure of
tetrapod limbs or just modified fin elements. For example, Watson (1913) suggested
that the axis run through the digit IV, therefore digit I–III are corresponding to the
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Fig. 1 The history of comparative study of fins and limbs. (a) The tetrapod limb. (b) A pectoral fin
of the small-spotted catshark. (c) Metapterygial axes. (d) Shubin and Alberch’s scheme of a mouse
forelimb (adapted from Shubin & Alberch, 1986). (e) The expression patterns of Hoxd genes in
mouse limb buds (adapted from Tarchini & Duboule, 2006). hu humerus, ul ulna, ra radial, uln
ulnare, d1-d5 digit 1–5

preaxial fin radials and digit V is the postaxial fin radial (Watson, 1913). On the
other hand, Holmgren (1952) suggested the axis stops running around the wrist,
so the autopod emerged as a de novo structure in the tetrapod lineage (Holmgren,
1952). This significant variation between different hypotheses raised doubt about
the conceptual validity of metapterygial axis (Jarvik, 1980).

Even though all of the attempts to find homologous structures between fins and
limbs failed to reach a solid conclusion, one theory became highly influential: the
digital arch theory proposed by Shubin and Alberch (1986). Although this theory
has been largely rejected by experimental data (Wagner & Larsson, 2007; Cohn
et al., 2002), it involves a careful conceptual development of homology. Shubin
and Alberch attempted to reexamine the concept of homology on the basis of
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developmental mechanisms by viewing limb development as “the product of a
combination of ‘global’ organizers . . . and ‘local’ interactions that characterize
the process of chondrogenesis.” In general, chondrogenic condensation in limb
development gradually and continuously progresses from proximal to distal. When
a new element starts forming, chondrogenic condensations either branch-off or
segment from the edge of already existing condensations. Shubin and Alberch
considered that these local processes were necessary mechanisms for skeletal
pattern formation. In addition, they assumed that the type of bifurcations that occurs
(i.e., branching or segmentation) was determined by a global organizer, such as
the ZPA (discussed later). Their meticulous comparison of various tetrapod limbs,
lungfishes, and other fossil fishes (Fig. 1d as mouse example) led them to propose
three conclusions: (a) branching events are involved only in the postaxial elements,
(b) the postaxial elements also give rise to the digits via branching from the distal
carpals (wrist bones), called the “digital arch,” (c) the postaxial elements including
the digital arch, are homologous to the metapterygial axis. Therefore, according to
this theory, tetrapods acquired the autopod domain by bending metapterygial axis
anteriorly during evolution (Fig. 1c).

The theory subsequently received supportive data from the analysis of genes
related to positional information—Hox genes. During mouse limb development,
5′Hoxd genes (Hoxd9, Hoxd10, Hoxd11, Hoxd12, and Hoxd13) exhibit mainly two
phases of spatial expression patterns (Tarchini & Duboule, 2006; Nelson et al., 1996;
Dolle et al., 1989). In the early phase, Hoxd9 to Hoxd13 are transcribed in a colinear
manner; Hoxd9 is expressed in the whole limb bud, and the expression domains of
d10 to d13 are restricted posteriorly in a nested manner. In the late phase (during
the autopod formation), the expression domain of Hoxd13 is expanded anteriorly to
cover all the digit forming regions, and those of the others only overlap with digit
II–V (Fig. 1e). Because the anterior expansion of Hoxd gene expression seemed
correlated with the hypothesis that the axis was bent to the anterior side, this late
phase of Hoxd gene regulation was interpreted as molecular evidence for the digital
arch (Shubin et al., 1997). This interpretation was also supported by an observation
that zebrafish pectoral fins lacked the late phase of Hox gene expression (Sordino
et al., 1995). However, subsequent examinations of several other fish fins and re-
examination of zebra fish fins showed that the anterior expansion of Hoxd gene
expression is a deeply conserved mechanism across jawed vertebrates (Davis et al.,
2007; Freitas et al., 2007; Tulenko et al., 2016; Ahn & Ho, 2008). As discussed later,
these distally expressed Hoxd genes in fish fins seem to regulate the formation of
fin rays (dermal bones) (Nakamura et al., 2016; Tulenko et al., 2017; however, this
is still controversial; Freitas et al., 2012). Therefore, the late phase of Hoxd gene
expression does not provide strong evidence for the digital arch theory.

Indeed, the theory has been often dismissed (Wagner & Larsson, 2007; Cohn
et al., 2002). The weakness of this theory is that the branching and segmentation
processes during skeletal pattern formation is an observed empirical regularity
rather than a real developmental mechanism. A critical observation that contrasts
with the digital arch theory is that the autopod can form independently of the
proximal modules without branching processes (Cohn et al., 2002). Relying on
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empirical regularities to identify homology is after all the same approach to
Gegenbaur’s analysis. However, dismissing the digital arch theory does not rule
out the existence of the metapterygial axis. Indeed, current paleontological data
suggest that the axis runs through at least the humerus/femur and the ulna/fibula
(Clack, 2009) (Fig. 1c). On the other hand, other recent molecular evidence also
suggests that the loss of the propterygium and the mesopterygium during the fin-
to-limb transition resulted from a fusion of the three modules (Onimaru et al.,
2015), which is roughly congruent with Jarvik’s argument based on the analysis of
spinal nerve distribution in fins and limbs (Jarvik, 1980). This questions the general
practicality of defining homology between individual skeletal elements of fins and
limbs with a traditional paleontologist framework. Instead, the concept of homology
should be focused on discovering which developmental mechanisms underlie the
weak identity of the skeletal elements of fins and limbs. Therefore, in the next three
sections, we review the two mechanisms that have been proposed to explain skeletal
pattern formation. One is the positional information model, where patterning is
controlled by a global asymmetric organizer, and the other is the Turing mechanism,
where patterning results from local interactions.

3 Global Asymmetric Organization in Limb Development

Embryonic limb development is a classic model of developmental biology, serving
as a conceptual platform to understand morphogenesis in multicellular systems.
In particular, it is a traditional model system to explain pattern formation on
the basis of positional information by morphogen gradients. In the mid twentieth
century, Saunders and his colleague discovered two signaling centers in chick limb
development—the apical ectodermal ridge (AER; Saunders, 1948) and the zone of
polarizing activity (ZPA; Saunders & Gasseling, 1968). These findings contributed
to the early conceptual development of positional information, which proposed that
morphogen gradients generate spatially heterogenous cell differentiation, proposed
by Lewis Wolpert in 1969 (Wolpert, 1969).

The AER is a thickened ectodermal ridge, running on the tip of limb buds, and
responsible for growth and pattern formation along the proximo-distal (PD) axis. In
1948, Saunders reported his discovery that removal of the AER causes terminal limb
deficiencies (Saunders, 1948; Fig. 2a). Based on Saunders’ experiments, Wolpert
suggested a “laying-down” mechanism, in which signals from the AER lay down
positional information from proximal to distal in the course of growth (Wolpert,
1969). This suggestion was later elaborated and called the “progress zone model”
(Summerbell et al., 1973), in which cells in a narrow domain directly below
the AER (progress zone) are kept undifferentiated by AER signals, and undergo
differentiation when they become far from the AER (Fig. 2b). According to this
model, the positional value of cells is determined by the duration of exposure to the
AER signals, which includes in the model the assumption of a clock-like mechanism
within cells to measure time. In 1990s, several fibroblast growth factors (FGFs, a
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Fig. 2 PD patterning in limb development. (a) Saunders’s AER experiments (adapted from
Saunders, 1948). (b) The progress zone model (adapted from Tabin & Wolpert, 2007). PZ progress
zone. (c) The expression pattern of Meis1/2, Hoxa11, and Hoxa13 in mouse limb buds (based
on Mercader et al., 2009). (d) in silico simulation of the two-signal model. (Reproduced from
Uzkudun et al., 2015)

family of secreting proteins) were found to substitute the activity of the AER (Fallon
et al., 1994; Niswander et al., 1993), and FGFs were indeed expressed in the AER
(Niswander & Martin, 1992; Ohuchi et al., 1994; Heikinheimo et al., 1994). These
series of discoveries provided the first strong evidence that morphogens controlled
the pattern formation of the limb PD axis in a broad sense. Successively, alternative
PD patterning models were proposed, such as the early specification model (Dudley
et al., 2002) and the two-signal model (Tabin & Wolpert, 2007). In the two-signal
model, a gradient of FGFs from the AER and a gradient of retinoic acid from the
proximal side coordinately determine positional values. Namely, FGFs positively
regulate distal genes such as Hoxa11 (a zeugopod marker) and Hoxa13 (an autopod
marker), and RA counteracts the FGF signal to maintain proximal genes, such as
Meis1 (Fig. 2c for the expression pattern of these markers). Recently two studies
provided data to show that features of both the progress zone model and the two-
signal model are involved in PD patterning; FGFs are required for the activation of
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the distal markers, but also act to keep cells undifferentiated (Cooper et al., 2011;
Roselló-Díez et al., 2011), suggesting the requirement of a clock-like mechanism
(see Delgado & Torres, 2016 for a detailed discussion). Interestingly, a data-driven
computational model confirmed the validity of the two-signal model, and also
indicated that the clock-like mechanism can be explained by the dynamics of gene
regulatory network in the frame of the two-signal model (Uzkudun et al., 2015; Fig.
2d). Overall, several lines of evidence suggest that positional information by the
FGF and RA gradients control limb PD patterning.

The case of the anterio-posterior (AP) patterning is more complicated. An
important signaling region for AP patterning is the ZPA, that is located in the
posterior part of limb buds and can induce a mirror-imaged duplication of the limb
when grafted anteriorly (Saunders & Gasseling, 1968). From this induction ability,
Wolpert suggested that the ZPA provided a gradient of “polarity potential” to specify
digit identity, with the highest potential close to the ZPA and the lowest potential
in the anterior side of the limb bud (Wolpert, 1969; Fig. 3a, b). More than two
decades later, SHH was found to be the actual secreting molecule responsible for
AP pattering because its expression domain exactly match with the ZPA, and Shh-
expressing cells mimic the grafting experiment of the ZPA (Riddle et al., 1993).
Indirect visualization of SHH gradient with its target genes, such as Ptch1, also
helped speculate the distribution of positional values in the limb bud (Marigo et al.,
1996). In addition, Shh null mice form only one zeugopod element (with unclear
identity) and one or no digit (Chiang et al., 2001). The result is congruent with
the grafting experiment, but also indicates that SHH is not only responsible for
positional information along the AP axis, but it is also required for limb growth.
At this point of time, perturbations of the Shh signaling pathway linearly correlated
with the initial proposal by Wolpert. However, the discovery of the phenotype of
the Shh;Gli3 double-knockout became difficult to reconcile with the idea that SHH
provides positional information. GLI3 is known to be a main factor of the SHH
pathway, and to act as a transcription repressor. The repressor activity of GLI3 is
inhibited by Shh, resulting in the gradient of GLI3 repressor opposite to the Shh
gradient. This GLI3 repressor gradient is thought to be the actual substance of
positional values in limb buds (Wang et al., 2000). The limbs of Gli3 mutants exhibit
severe polydactyly, which was interpreted to be due to the ectopic Shh expression
observed in the anterior side of the mutant limb buds (i.e., the loss of the anterior
positional value; Masuya et al., 1997). In contrast to this interpretation, the double-
knockout of GLI3 and SHH also resulted in severe polydactyly with no clear identity
(Te Welscher et al., 2002; Litingtung et al., 2002), showing that GLI3 and SHH
are not required for digit formation, but instead that they are likely to constrain
“the polydactylous potential of the autopod” (Litingtung et al., 2002). As we will
discuss more detail in the next section, these findings are instead consistent with an
alternative digit patterning mechanism based on a self-organizing Turing reaction-
diffusion model (Newman, 2007; Tickle, 2006).

As we can see from the above discussions, positional information models can
recapitulate some aspects of the patterning process of limb development along the
PD and AP axes. However, in both cases they fail to explain important genetic
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Fig. 3 Positional information theory of the ZPA. (a, b) Schemes of polarity potential in a normal
chick wing (a) and Saunders’ ZPA graft experiment (b) (adapted from Saunders & Gasseling, 1968
and Wolpert, 1969). (c) Mouse genetics on AP patterning. Left panel, a mouse limb bud with SHH
and GLI3 repressor (GLI3R) gradients (based on Riddle et al., 1993 and Wang et al., 2000). Right
panel, the autopods of indicated genotypes. (Adapted from Litingtung et al., 2002)

perturbations that question the relation between the genes associated with positional
information and anatomical modules. In the case of AP patterning several digits can
form in the absence of a SHH gradient and only a few genes have been shown to
be expressed in a specific digit. For example, Pax9 is expressed only in the digit
I and is positively regulated by GLI3 (McGlinn et al., 2005), but Pax9 mutants
exhibit only a preaxial polydactyly (Peters et al., 1998), instead of loss of digit I.
In the case of PD patterning, loss of function of the zeugopod markers Hoxa11
exhibit only a subtle malformation of the forelimb wrist (Small & Potter, 1993).
Similarly, while Hoxa13 and Hoxd13 show autopod-specific expression, the double
mutants of these genes exhibit truncated polydactylous limbs rather than loss of the
autopod (Fromental-Ramain et al., 1996). This nonlinear relationship between genes
and phenotypes suggests that skeletal patterning cannot be fully explained by the
positional information theory and advocates for alternative patterning mechanisms
as discussed in the following sections.

4 Turing Mechanism as Local Interactions

Turing’s reaction-diffusion mechanism is a mathematical theory that explains
spontaneous pattern formation as the results of interactions between two or more
diffusive molecules. The work of Alan Turing in 1952 (Turing, 1952) is one of
the most important contributions in theoretical biology and yet for long time a
lot of doubts were raised about its validity. In this section, we briefly introduce
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the Turing reaction-diffusion model and present recent evidence that show its
importance in developmental biology. Turing considered a set of simple reaction-
diffusion equations to describe interaction between diffusible substances that he
named morphogens:

∂c

∂t
= f (c) + D∇2c,

where c is the vector of molecules or morphogens, f represents interactions between
them, and D is the diagonal matrix of diffusion constants. Turing showed that
under specific conditions, this system could self-organize to generate periodic
spatial patterns of morphogen concentration. The profound and counterintuitive
discovery of Turing is that diffusion, which usually is believe to play an equilibrating
role, coupled with specific reactions could amplify random morphogen fluctuations
to create spatial heterogeneity (i.e., periodic morphogen concentration patterns).
The resulting patterns could be stationary periodic patterns of spots or stripes,
waves or oscillations depending on parameters (Fig. 4 as an example; reviewed by
Kondo & Miura, 2010). These mechanisms could recapitulate various biological
pattern formation such as fish skin, seashells, and the skeletal structure of limbs
(see Murray, 1993 for the further details about the Turing mechanism). However,
the mere resemblance between simulated patterns and experimental data was not
considered as a strong evidence for the Turing mechanism.

Rather, it was proposed that Turing systems required parameter fine-tuning
(Murray, 1982), and therefore were too unreliable to control pattern formation
during embryonic development (Bard & Lauder, 1974; Maini et al., 2012). This
assumption was based on the observation that Turing systems could undergo
the diffusion-driven instability in a very narrow parameter space region (Murray,
1982; Butler & Goldenfeld, 2011). Therefore, a major concern in biology was
that these systems required large difference in diffusivities for reliable pattern
formation, which was difficult to reconcile with the similar diffusion coefficients.
The parameter space to obtain a Turing patterns is usually derived by performing
linear stability analysis, which identifies the parameters that promote stability
without diffusion and instability in the presence of diffusion. Owing to mathemat-
ical complexity, linear stability analysis was initially performed only on simple
Turing systems implemented by two diffusible substances, which identified two
minimal models that could generate periodic patterns: the activator-inhibitor and
the substrate-depletion model. Both models required a considerable degree of
differential diffusion. For example, a pervasive formulation of the activator-inhibitor
model requires the inhibitor molecule to diffuse two orders of magnitude faster
than the activator to form a robust pattern (Gierer & Meinhardt, 1972), which
is unrealistic for most of biological molecules. Recent studies, however, indicate
that differential diffusion is not a necessary condition for the majority of Turing
models (White & Gilligan, 1998; Korvasová et al., 2015; Marcon et al., 2016). In
particular, a recent study developed a novel method to perform an automated linear
stability analysis, and demonstrated that multicomponent reaction-diffusion systems
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Fig. 4 An example of the
Turing mechanism. The top
four panels show simulation
results of the bottom
equations with slightly
different parameters,
generating spot, stripe, and
anti-spot patterns. The bottom
equations are a linear
activator-inhibitor model

that contain nondiffusive molecules expand the parameter space of diffusion-driven
instability, completely eliminating the differential diffusion requirement (Diego et
al., 2018).

Another argument against Turing mechanisms was the unreliability of their
patterns (Bard & Lauder, 1974). Due to sensitivity to initial conditions, simple
Turing models produce patterns that can be considered unreliable following three
criteria: they can have slightly different number of stripes/spots, the orientation of
these periodic patterns is random and the sequence of pattern appearance cannot
be easily controlled. This unreliability has been gradually solved by adding several
external controls. For example, expanding boundaries at a certain speed can reliably
generate patterns with a same number of periodic elements (Crampin et al., 1999).
In addition, several recent studies suggested that modulation of reaction-diffusion
systems with external gradients can increase the robustness of pattern formation
and also control the orientation of stripes (Hiscock and Megason, 2015a; Lacalli
and Harrison, 1991; Pecze, 2018; Sheth et al., 2012). However, whether or not
these kinds of modulations are a biologically relevant hypothesis is still being
investigated.
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To summarize, the diffusion driven instability proposed by Turing is a mech-
anism that can create stationary periodic patterns, such as spots and stripes in a
self-organizing manner. Although the theory received several criticisms, gradual
progress in the theoretical understanding of the Turing mechanism has revived its
biological relevance and has broadened its potential applications to developmental
pattering systems. Besides the Turing mechanism, several other self-organizing
patterning mechanisms based on mechanical force, cell migrations or active trans-
port, have been studied (e.g., chemotaxis is considered to explain feather primordia
pattern formation (Painter et al., 2018); see Hiscock and Megason, 2015b for a
review). In the future, new self-organizing models that combine different cellu-
lar and regulatory behaviours should be explored further. Nevertheless, Turing’s
original model remains a seminal contribution that provides the set of theoretical
conditions to explain self-organization and that could be regarded as a minimal
approximation to explain pattern formation in real biological systems.

5 Intertwining the Turing Mechanism and Positional
Information in Limb Development

Several attempts to build the reaction-diffusion models of limb development were
already made in 1970s and 1980s (Goodwin & Trainor, 1983; Wilby & Ede, 1975;
Newman & Frisch, 1979), though strictly speaking they did not involve the Turing
mechanism (Othmer, 1986).

Most of these abstract models predicted that the different number of the skeletal
elements in the stylopod, zeugopod, and autopod was controlled by the width of
the limb bud along the anterio-posterior (AP) axis. This ruled out the requirement
of a clock-like mechanism to determine positional identity along the PD axis. In
particular, Wilby and Ede wisely discussed how their self-organizing model differed
from Wolpert’s positional information model by taking talpid3 as an example
(Wilby & Ede, 1975). talpid3 is a chicken mutant that exhibits numerous extra digits
and expanded limb buds (Ede & Kelly, 1964). Wilby and Ede proposed that with
their reaction-diffusion model, the polydactyl talpid3 phenotype could be readily
explained by the increased width of the limb bud. In contrast, Wolpert’s model
was not expected to produce extra digits because the expansion of limb would not
change the range of the AP morphogen gradient. The only way in which Wolpert’s
model could explain the appearance of new digits was if a second ZPA would be
initiated in the anterior part of the limb, providing a duplication of the gradient
similar to grafting experiment. Just 20 years later, without noticing Wilby and Ede’s
idea, the talpid3 mutant was indeed found to have a normal Shh expression pattern
and no duplication of the ZPA (Francis-West et al., 1995), which should have been
supportive evidence for reaction-diffusion models. In the following decades, more
sophisticated Turing mechanisms were proposed by several groups to explain limb
skeletal patterning (Chaturvedi et al., 2005; Hentschel et al., 2004; Zhu et al., 2010;
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Miura et al., 2006; Miura & Shiota, 2000a, b; Miura & Maini, 2004). However, there
was seemingly a tremendous gap between theoretical and experimental biologists,
which was probably due to the fact that the models were rather abstract and they
lacked clear experimental data to support their assumptions.

Although the Turing mechanism was not a mainstream of investigation for a long
time, it was gradually realized that the patterning mechanism of limb development
could not be understood only on the basis of the positional information theory
(Tickle, 2006). As mentioned in the previous section, the critical turning point was
the surprising discovery of the polydactylous phenotype of Gli3;Shh double mutants
(Te Welscher et al., 2002; Litingtung et al., 2002), in which the signaling center
connected to AP patterning by positional information was completely abolished.
These mutants suggested that digits formed spontaneously by a self-organizing
mechanism, that produced more digits in larger limbs. Almost a decade later, three
studies confirmed this hypothesis (Sheth et al., 2007, 2012, 2013). These studies
showed that not only more digits were created in expanded limbs that lacked
GLI3, but that in this genetic background, the number of digits could be further
increased by removing Hoxd and Hoxa genes. These genes were originally thought
to encode positional values for digit specification. However, in Sheth et al. (2012), a
quantitative comparison between combinatorial mutations of Hoxa and Hoxd genes
and an abstract Turing model showed that Hox genes act as negative regulators of
the wavelength of a Turing mechanism responsible for periodic digit patterning.
Interestingly, the authors went further to speculate that the pentadactyl limb evolved
by a gradual increase in the dose of distal Hox expression to reduce the numerous
skeletal elements of ancestral fish fins. As discussed later, this speculation seems
to agree with experimental observations of catshark fin buds. This work provided
a new interpretation of the function of Hox genes and a mechanical explanation
of polydactylous phenotypes in the absence of positional information. This was
also the first study to provide evidence that Turing models combined external
modulations such as Hox gene dose and gradients from the AER, thereby robustly
reproducing digit patterning.

The molecular candidates responsible for the Turing mechanism (Turing
molecules), however, were still unknown. A previous study proposed Tgfb2 as a
strong Turing molecule candidate, because it enhances chondrogenic differentiation
and it is localized with prechondrogenic condensation in micromass cultures (Miura
& Shiota, 2000b). However, Tgfb2 expression in limb development starts after the
digit pattern appears (Raspopovic et al., 2014). In addition, Tgfb2 null mutants
show only a minor patterning defect (Sanford et al., 1997). FGFs are also often
mentioned as a candidate (Hentschel et al., 2004), but there is no evidence for the
co-localization of their signal with condensations. Although an FGF receptor,
Fgfr2 (more precisely its IIIc isoform) is expressed in the prechondrogenic
mesenchyme (Szebenyi et al., 1995; Sheeba et al., 2010), the loss of Fgfr2 in
the limb mesenchyme results in a minor growth defect (Eswarakumar et al., 2002).
Similarly, no patterning defects are also observed in the limbs lacking galectins
(e.g., Georgiadis et al., 2007), which were proposed as Turing molecules to explain
digit patterning in chick embryos.
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Fig. 5 Computer modeling of limb and fin development. (a) The BSW network (left) and
comparison between a simulation result (top right) and real Sox9 expression (right bottom). From
Raspopovic et al., Science 345:566 (2014). Reprinted with permission from AAAS. (b) Time-
series of Sox9 expression of the catshark pectoral fin buds. Bottoms are corresponding skeletal
elements. (c) A simulation of Sox9 expression of the catshark fin buds. (d) The difference between
fins and limbs (b–d are reproduced from Onimaru et al., 2016). (e) The diverse morphology of
fins. Note that distal nodular radials are widely recognized in fish fins, but Sauripterus (a fossil
fish) may have had different type of fins. An autopod-like structure is seen in Acanthostega (a stem
fossil tetrapod), but it shows polydactyly. (Sauripterous and Acanthostega are adapted from Davis
et al., 2004 and Coates, 1996, respectively)
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Strong experimental evidence in support of specific Turing molecules was
provided only more recently (Raspopovic et al., 2014). This study sought to find
molecules that show either in-phase or out-of-phase periodic patterns as seen in
typical Turing models such as the activator-inibitor and subtrate-depletion models.
By performing a detailed spatio-temporal analysis of candidates with comparative
microarray analysis, in situ hybridization and analysis of protein distributions, this
study identified three promising molecules as Turing candidates: BMP, SOX9, and
WNT (referred to as the BSW model; Fig. 5a). SOX9 is the earliest chondrogenic
marker (therefore in-phase with digit primordia), and is required for prechondro-
genic condensation (Liu et al., 2018). This study showed that Bmp2 expression
and WNT signal exhibited out-of-phase distributions with respect to Sox9 that was
congruent with the requirement for Turing molecules. In addition, perturbations of
the BMP and WNT pathways are consisted with their roles as Turing molecules that
regulate Sox9. It is worth emphasizing that in this study, three technical advances
played a central role to test the molecular candidates. Firstly, the development of a
computational model based on accurate quantification of 2D limb bud morphology,
including information about growth, tissue movement, and spatial gene expression
dynamics (Marcon et al., 2011). This allowed the authors to compare realistic
simulations of digit patterning with experimental expression patterns. Secondly,
the use of an ex utero limb culture method, which utilizes the air liquid interface
cell culture system, to perform perturbation and test model predictions in a near in
vivo environment. Thirdly, the development of a novel Turing model with three
components that include a non-diffusing reactant corresponding to SOX9. This
last point was a major difference with previous models, which considered only
two diffusible substances. In general, multicomponent models with non-diffusible
elements relax the parameter constraint required to form Turing patterns and
increase the robustness of pattern formation. This extended Turing model, known
as the BSW model, captures the essential dynamics of skeletal pattern formation
showed by Sox9 expression patterns. In addition, the model integrates a Turing
network with positional signals, such as FGFs and HOX genes that help to generate
the properly aligned digit primordia in a reproducible manner. The theoretical idea
that external gradients could modulate Turing systems to obtain specific patterns
was already proposed previously (Gierer & Meinhardt, 1972). However, the BSW
model represents the first biologically relevant realization of this idea supported
by experimental data. Taken together, this study does not only represent a major
step forward to understand limb development, but it also invokes a conceptual
innovation by showing that Turing mechanisms and positional information can act
simultaneously, and should not be considered as alternative mechanisms (Green &
Sharpe, 2015; Miura, 2013).

Indeed, positional information and the Turing mechanism have often been seen
as contrasting patterning strategies. The former has a hierarchical nature, because
morphogen gradients are upstream and genes for differentiation are downstream.
Moreover, it requires a signaling center that imposes a global asymmetry, where
identity is uniquely determined as a function of distance from the signaling source.
Turing models on the contrary are self-organizing, and are based on local molecular
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interactions that amplify random fluctuations to generate a periodic pattern. This
model generates identical elements that are regularly distributed in space. Positional
information and the Turing mechanism, however, can act together to form interme-
diate structures, e.g., periodic pattern with slightly different wavelength (Green &
Sharpe, 2015). In such intermediate systems, the identity of the resulting anatomical
modules can be vague and quantitative rather than qualitative. As seen by Gli3 and
Hox gene mutants, the loss of genes related to positional information by genetic
perturbations may accentuate the nature of the Turing mechanism.

6 Emergence of Homology by Coupling Turing Mechanism
and Positional Information

As we have seen in the previous sections, an integrative approach is required to
understand the evolution of fins and limbs. We covered a wide range of topics
such as classical comparative anatomy, developmental biology, and mathematical
models. However, the above discussion can be summarized into two main points: (1)
the homology problem between fins and limbs is likely due to poor understandings
of the developmental mechanism that underlies skeletal pattern formation; (2)
Turing mechanism and positional information control together limb development. In
this section, we discuss how both mechanisms are also involved in the development
of fish fins.

Molecular studies of the fin-to-limb transition have suffered from similar prob-
lems to the ones faced in limb development that we mentioned in the previous
section. Although key genes responsible for positional information, such as HOX
genes, SHH, and FGFs, were analyzed to investigate fin development in several
species including sharks, rays and ray-finned fishes, the observed differences
were not readily interpretable. For example, the overlapping expression domains
of Hoxa11 and Hoxa13 seem to be a common feature in pectoral fin buds,
while in tetrapod limbs, Hoxa11 and Hoxa13 are expressed in the zeugopod and
autopod domains separately (Kherdjemil & Kmita, 2018; Leite-Castro et al., 2016).
However, as discussed earlier, current data shows that these genes alone do not
affect the skeletal patterning process in mouse limb buds, therefore this regulatory
difference alone cannot fully explain the anatomical difference between fins and
limbs. Secondly, a study (Onimaru et al., 2015) showed that the gross expression
domains of genes related to the AP positional information (or SHH targets) are
shifted to the posterior side of catshark pectoral fin buds. Experimentally shifting
of these expression domains anteriorly caused a fusion of the anterior radials to
metapterygium, which is correlated with the pro- and mesopterygium loss during the
fin-to-limb transition. However, owing to the lack of the one-to-one correspondence
between gene expression domains and skeletal elements, it remains unclear how
these genes regulate skeletal patterning.
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Fish fins exhibit a greater variety of skeletal patterns than tetrapod limbs (Fig.
5e). Most fins seem to have an affinity to the basic characteristic of the Turing
pattern, because they are composed of numerous and regular periodic elements, but
also show a weak asymmetric trend along both of the AP and PD axes. Therefore,
given the aforementioned nature of limb development, the pattern formation of
fish fins strongly points to a Turing mechanism that is still weakly controlled by
positional information. This idea was recently tested in (Onimaru et al., 2016),
where a combination of data driven in silico modeling and in vivo experiments was
used to investigate catshark pectoral fin development. This study showed that the
Turing mechanism driven by the interactions of BMP, SOX9, and WNT seems to be
conserved at least between mouse digits and the distal fin elements of the catshark
(Fig. 5b for Sox9 expression data and Fig. 5c for simulated Sox9 expression with
the BSW model). However, there are several differences that are likely responsible
for their different anatomical structures: (1) in the catshark, the distal fin radials
arise from a periodic spot pattern of Sox9 expression (Fig. 5b), in contrast to the
stripe pattern in mouse digit formation, highlighting one of the major parameters
that cause the anatomical difference between fins and limbs. (2) In catshark fins, the
BSW model seems to be decoupled from the distal Hox genes (yet still regulated
by FGFs). Sox9 expression in catshark pectoral fin buds is located proximal to
the distal Hoxa13 expression without an overlapping domain, which is congruent
with the reverse correlation between the amount of Hox genes and the number
of skeletal elements (Sheth et al., 2012). Interestingly, two independent groups
concurrently suggested that HOX13s in fish fins regulate the differentiation of fin
rays, but not radials (Nakamura et al., 2016; Tulenko et al., 2017). In addition, the
computational model predicts that modulation of WNT-related parameters shifts
the Sox9 expression domain distally, and changes the spot pattern into a stripe
pattern (Fig. 5d). Therefore, it is tempting to hypothesize that a distal shift of Sox9
expression and a pattern change from spots to stripes were critical events prior to the
de novo acquisition of digits. Subsequently, the acquisition of wavelength regulation
by distal Hox genes (Sheth et al., 2012) may have resulted in the emergence of
the homologous autopod and a gradual reduction of the number of digits until the
current pentadactyl state (Fig. 5e).

It is worth noting that there is an earlier attempt to simulate the diverse
morphologies of fins with the Turing mechanism (Zhu et al., 2010). In this study, a
single computational framework simulated overall skeletal patterns of fins and limbs
of various species including the catshark, obtaining a good degree of resemblance
between known skeletal patterns and simulations. The models developed in this
study however were not constrained by experimental data. Instead they arbitrarily
modulated the AP width and wavelength without comparison with real data, which
limits the predictive power of the model. In fact, the Sox9 expression pattern of
catshark fin buds (Onimaru et al., 2016) does not fit with the catshark simulation
presented in this study. This highlights that to draw a biologically meaningful
conclusion, computational models should be constrained with real data.

In this section, we discussed how the underling developmental patterning
mechanisms play a central role to understand the morphological difference between
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fins and limb. Evidence indicates that a Turing mechanism modulated by positional
information is very likely to underlie skeletal pattern formation in both fins and
limbs. The diverse morphologies of fins radials and digits can be traced to changes
in the modulations of a Turing mechanism to generate topologically different
patterns, such as spots and stripes with slight changes in parameters. Therefore,
continuous changes in genotype space can trigger a drastic or even discontinuous
change in the phenotype, causing a disparity between homology at gene regulatory
and morphological levels. This is a major conceptual shift to understand fin-to-
limb evolution, and it provides a new framework to infer homology and similarity
between appendages. Nevertheless, many aspects of the fin-to-limb transition
remain unclear. For example, the biological significance of the metapterygium
is not yet solved. Sox9 expression data (Fig. 5b; Onimaru et al., 2016) suggest
that the metapterygium at least in the catshark, is not formed by a branching
process that can be inferred from the adult skeletal pattern. Instead, the distal
elements appear separately from the proximal ones and they are connected later.
Therefore, a branching-like pattern, which is thought to be the characteristic of the
metapterygium, may not represent a common developmental mechanism derived
from the last common ancestor of jawed vertebrates. Another untouched issue is the
actual genetic changes that are responsible for the different dynamics of fin and limb
pattern formation. Because several shark genome sequences were recently released
(Hara et al., 2018), comparative genome analysis is now possible and will help us
draw a more detail genotype-phenotype map of fins and limbs.

7 Evolutionary Systems Biology Toward
the Genotype-Phenotype Mapping

Three general conclusions:

1. Anatomical homology can be recognized when the elements of an organ exhibit
global asymmetry (possibly induced by morphogen gradients).

2. The non-linear and periodic nature of self-organizing mechanisms obscures the
homologous relationship of elements between species.

3. Because global asymmetries and self-organizing mechanisms can work as a sin-
gle system, there could be intermediate states where a homologous relationship
becomes vague.

These conclusions may not be applicable to every case of evolutionary studies,
but they will work as precaution by showing that some homology problems may
not be solvable because of the nature of developmental mechanisms. The avian
digit identity problem—a debate if avian digits should be counted as “I, II, III”
or “II, III, IV”—might be the case of such “overdiagnosis”. Indeed, evolutionary
drifts between periodic and identity-containing patterns appear to be observed in
other systems, such as body segmentation in insects and computational experiments
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(Jiménez et al., 2015; Salazar-Ciudad et al., 2001; Verd et al., 2018). The very
essence of our argument is that homologous gene regulatory networks can generate
distinct morphologies. In other words, even if a morphological part or a gene
regulatory network was derived from a common ancestor, the homologous relation
can disappear by changes in the developmental mechanism responsible for the
morphological identity.

In this chapter, we focused on the problems surrounding the homology concept
that emerges from the comparison between fins and limbs. Our discussion can be re-
examined under the light of two alternative theories. The first is the Developmental
Systems Drift theory (DSD), which emphasizes the idea that “many characters
known to be homologous between taxa have diverged in their morphogenetic or
gene regulatory underpinnings” (True and Haag, 2001). In other words, this theory
highlights that developmental mechanisms can vary while the phenotype remains
unchanged. In this picture, investigating the evolutionary continuity of develop-
mental mechanisms does not provide reliable clues for morphological evolution.
Although the DSD theory is dominant in some cases (e.g., sex determination),
interpreting a shared developmental mechanism as a signature of homology is at
least partially verified by another theory, the “character identity networks (ChINs)”
(Wagner, 2007, 2014). This theoretical framework states that if two characters
are homologous, they are likely to be within the phylogenetic continuity of the
conserved core gene regulatory network (i.e., ChIN) responsible for the identity of
the characters. ChINs are described as the interface of two evolutionary variable
processes: positional information (or inductive) signals and downstream genes
responsible for species-specific morphological characters. The “ChIN model” was
introduced to explain highly variable (yet partially conserved) developmental
programs that underlie homologous organs between species. In this chapter, we
discussed how the development of the distal elements of fins and limbs may be
interpreted within the phylogenetic continuity of a conserved ChIN implemented
by the BSW Turing network under the influence of external positional information
signals. In this case, unlike the assumption of the classical ChIN model, the
Turing mechanism exhibits a strong developmental plasticity and does not require
highly variable species-specific mechanism to produce different characters. Instead,
relatively small changes in regulation strength of the Turing gene regulatory network
can drive the emergence of substantially different characters making morphological
homology disappear.

By reviewing computational methods, mathematical theories, and experimental
biology, we have attempted to create an integral understanding of the evolution of
fins and limbs. One of the critical factors that we did not cover in this chapter is
genome information. Because evolution is driven by genetic mutations, approaches
to integrate genome information into models are needed to draw a more realistic
(if not whole) picture of the genotype-phenotype map. The recent advancement in
DNA-sequencing technologies has improved the availability of genome sequences
from various species. However, currently, owing to the complicated organization of
the genome, the ability to extract functional information such as protein structures
and gene regulatory networks from genome sequences remains limited. Several
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recent studies indicate that deep learning-based methods are promising to interpret
genome information (e.g., Onimaru et al., 2018; Quang and Xie, 2016; Zhou
and Troyanskaya, 2015). Developing methods to understand what is encoded in
genomes will facilitate closing the gap between genotypes and phenotypes.

In conclusion, we have discussed how the nature of morphological evolution
depends on developmental mechanisms. Because of the counter-intuitive dynamics
of gene regulatory feedbacks like those present in Turing systems, a multi-
disciplinary approach that combines computer modeling, theoretical and experi-
mental biology is essential to understand the evolution of multi-cellular organisms.
Therefore, finding a good collaboration between researchers from different fields
or educational opportunities to learn different fields will be a key to stimulate the
growth of evolutionary systems biology.
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Experimental Evolution to Understand
the Interplay Between Genetics and
Adaptation

Jana Helsen and Rob Jelier

Abstract Experimental evolution has grown to be a powerful and versatile tool
to study the evolutionary dynamics of genetics. The principle is simple: cells are
grown under a specific selective pressure, mutations arise over time, and lineages
carrying mutations that increase fitness can outcompete others. Here we discuss how
experimental evolution has allowed us to study various evolutionary processes, from
clonal interference to diminishing-returns epistasis and genetic hitchhiking. Next,
we discuss how experimental evolution can reveal how an organism’s genotype
affects evolutionary processes, how adaptation can sometimes fix even the most
severe fitness defects, and how the approach can be used to learn more about the
genetic architecture of complex traits. Finally, we look ahead at how experimental
evolution can be used to study genetic networks and, conversely, how the structure
of such networks influences evolution.

1 Understanding Adaptation by Experimental Evolution

Adaptation is the process by which organisms adjust to their environment and
improve their chance of producing fecund offspring. During adaptation, mutations
that increase fitness can get selected and fix themselves in the evolving population, a
process that is fundamental in shaping the genetic architecture of complex traits. The

J. Helsen
Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven,
Belgium

Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium

Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
e-mail: jana.helsen@embl.de

R. Jelier (�)
Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven,
Belgium
e-mail: rob.jelier@kuleuven.be

© Springer Nature Switzerland AG 2021
A. Crombach (ed.), Evolutionary Systems Biology,
https://doi.org/10.1007/978-3-030-71737-7_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71737-7_6&domain=pdf
mailto:jana.helsen@embl.de
mailto:rob.jelier@kuleuven.be
https://doi.org/10.1007/978-3-030-71737-7_6


116 J. Helsen and R. Jelier

historical view of adaptation starts with Darwin himself, and was one of gradualism,
where adaptation takes place through many small mutations of minor effect. Fisher
consolidated this view in 1930 in the form of a coherent but simplified model: the
geometric model of adaptation (Fisher, 1930). In this model, Fisher argued that the
probability that a random mutation has a beneficial effect drops quickly when the
effect size of the mutation increases, according to 1−φ(x), with x proportional to the
effect size and φ the cumulative distribution function of a normal distribution. He
concluded that small-effect mutations would dominate adaptation. Kimura pointed
out in the 1960s that fitness effects that were too small would not spread fast enough
to fix efficiently in a population, pointing to the importance of intermediate-effect
mutations (Kimura, 1964; Kimura et al., 1968). While these models have proven to
be very useful, they were in fact based on indirect observations. This changed in the
1980s, when experimental evolution gained traction and allowed us to directly study
and observe the dynamics of adaptation. Since then, the method has yielded many
important insights into how adaptation proceeds and what a theory of adaptation
should represent (Orr, 2005). Below we will concisely review seven of the most
crucial findings that have been made using experimental evolution.

First, adaptation to a new environment or challenge is typically swift, with a rapid
initial fitness increase that depends on a few large-effect mutations (Holder & Bull,
2001). For example, Lenski’s famous Long Term Evolution Experiment (LTEE)
(see Box 1) showed a power-law adaptation curve across 12 populations. Fitness
improved rapidly over the first ∼1000 generations, caused by few mutations of large
effect, after which a phase of ever slower adaptation started with mutations showing
decreasing fitness benefit (Wiser et al., 2013). The rate of adaptation, quantified
by the increase in fitness over time, therefore depends on how far adaptation has
proceeded and is reflected by the current fitness in the given condition. Three factors
contribute to explain this phenomenon: (a) the overall distribution of fitness effects
of mutations (see second point below); (b) the mutations that are present at any
given time in a population (in terms of both quantity and quality), which in turn
depends on population size and mutation rate (see third and seventh points); and (c)
diminishing-returns epistasis, the phenomenon whereby beneficial mutations have
smaller fitness effects in fitter backgrounds (see fourth point). The potential for rapid
adaptation is quite general and has been observed in experimental evolution studies
across many conditions, species, and genetic backgrounds (Liu et al., 2015; Rainey
& Travisano, 1998; Rancati et al., 2008; Szamecz et al., 2014).

Box 1 The Long Term Evolution Experiment

In the Long Term Evolution Experiment, 12 evolving E. coli populations were
started from the same ancestral strain in 1988 and have been continuously
propagated to this day. The populations grow in a minimal medium (DM25)

(continued)
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Box 1 (continued)

with glucose as the limiting factor and are passed to fresh medium with a
100-fold dilution every day. Periodically, population samples are frozen, so
they can be examined in detail at a later time. As of 2020, the experiment
has run for more than 73,000 generations. The experiment is remarkable for
its duration but also for the many phenomena observed and studied as the
evolutionary process unfolded in the populations (reviewed in Lenski, 2017).
For example, the study has demonstrated how the pace of adaptation changes
over time, as well as the repeatability of adaptation between populations
and the competition between beneficial mutations in a population (clonal
interference). More surprising was the observation that ecological interaction
took place between stably co-existing strains. Two distinct lineages arose in 1
population and co-existed for over 50,000 generations. One strain specialized
in rapid growth on glucose, beneficial after transfer to fresh medium, whereas
the other specialized in fast growth on acetate, the product of the former’s
metabolism and beneficial as glucose supply is limiting. Both strains stably
co-existed in a cross-feeding relationship driven by the particular growth
conditions during the experiment (Le Gac et al., 2012).

Second, though there are many mutations that provide a positive fitness effect,
variants of large effect are rare. A crucial part of understanding how adaptation
proceeds comes from examining the distribution of fitness effects of genetic variants
(reviewed in Eyre-Walker & Keightley, 2007). Experimental evolution makes it
possible for a direct measurement of the distribution of such fitness effects. By
following how fast variants rise in frequency in a population, we can estimate their
relative fitness as well. Sequencing populations allows to follow variants as they rise
and fall during selection (Lang et al., 2013; Voordeckers et al., 2015), but at limited
resolution. To overcome this limitation, Levy et al. created a barcoded budding yeast
library, where each lineage contained 1 of ∼500,000 random DNA barcodes (Levy
et al., 2015). Using this system, the evolutionary dynamics could be followed in
much higher detail (see Box 2). By measuring the fitness of many lineages using
this method, though limited to a single genotype and condition, it was shown that
large-effect variants are rare, but many variants provide a modest fitness advantage.
About 0.04% of the genome’s bases (∼5000 bases) confer a larger than 5% fitness
benefit when mutated. It is clear, however, that the distribution of fitness effects
heavily depends on the condition and current fitness of the strain, as strains closer
to the optimum growth rate will by necessity have fewer options for rapid fitness
increase.



118 J. Helsen and R. Jelier

Box 2 Focus on Adaptation Dynamics with Barcoding

Due to cost considerations, whole genome sequencing of populations is
normally limited in sequencing depth, i.e., the number of reads that cover
a genomic position. This means that the detail and resolution for tracking
lineages as they rise and fall in a population are limited, especially for new lin-
eages when their frequency is still low. One trick to improve on this limitation
is to introduce a highly variable but short barcode into the population, which
can then be sequenced at very high coverage. In the paper that introduced
this approach, a random 20-nucleotide barcode was synthesized as random
primers and then ligated into a plasmid backbone (Levy et al., 2015). The
plasmid library was subsequently transformed into yeast cells, and a Cre-
loxP recombination system was used to insert the barcodes into an engineered
genome location (Levy et al., 2015). The method allowed the researchers to
follow lineages arising and competing in a population in unprecedented detail.

Third, clonal interference is the norm in large asexually reproducing populations.
In a more or less typical microbial experimental evolution setting, the mutation
rate will be on the order of ∼10−10 per base per generation (Zhu et al., 2014),
effective population sizes can be in the order of ∼107, and (for example) the baker’s
yeast genome has about ∼107 bases, so we can expect ∼104 new mutations to
arise every generation within the population, of which a handful (say ∼0.04%; see
point 2) should be beneficial. Many of these mutations will be lost by chance before
they can expand their occurrence rate in the population, but we can expect several
beneficial mutations to co-exist and rise in frequency at the same time and so cause
competition between alleles. The term clonal interference refers to the effects of this
competition, in that some beneficial mutations do not fix, or fix more slowly, because
other fit alleles are expanding in the population at the same time. In the absence of
recombination by sexual reproduction, only one of the concurrent beneficial alleles
can fix, and this will slow down adaptation (Gerrish & Lenski, 1998; Good et al.,
2012). This process will also ensure that only large-effect variants can fix early in
adaptation. Further, the stochastic nature of the mutation rate as well as the chance
that additional beneficial mutations are acquired in an expanding lineage can give
rise to complex patterns of clonal expansion and shrinkage (Lang et al., 2013).

A fourth defining feature of adaptation is epistasis. This is the phenomenon
whereby the effect of one mutation depends on the presence or absence of other
mutations. One particular recurring observation during adaptation is that a beneficial
allele will tend to cause less fitness gain when introduced into a strain that is
fitter than when introduced into a less fit strain (Chou et al., 2011; Khan et al.,
2011; Kryazhimskiy et al., 2014, 2009; MacLean et al., 2010; Moore et al., 2000;
Wünsche et al., 2017). This is called diminishing-returns epistasis and can also
be described as a generalized negative epistasis between beneficial mutations (i.e.,
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Fig. 1 Fitness landscapes and epistasis. (a) Diminishing-returns epistasis. The beneficial effect of
a mutation depends on the stage of adaptation of the strain. The same beneficial mutation tends to
cause smaller fitness gains when introduced in a fitter strain than in a less fit strain. (b) Reciprocal
(negative) sign epistasis. This causes a rugged fitness landscape and implies that the order in which
beneficial mutations occur in a lineage is important. In this hypothetical example, mutations A
and B are equally beneficial when introduced into the initial unfit strain. However, due to negative
epistasis between the mutations, their combined effect is worse than their individual effects. As
a result, strains that first acquired mutation A will never acquire mutation B and vice versa.
Even though they initially have the same beneficial effect, the two mutations direct strains toward
different peaks within the fitness landscape. In the illustrated example, strains that first acquired
mutation B have the potential to achieve higher fitness values after further adaptation than strains
that first acquired mutation A

when mutations occur together, their combined effect is worse than what would be
predicted by the sum of their individual effects) (see Fig. 1a). One implication of this
is that the order in which beneficial mutations occur in a lineage is important. For
example, one particular beneficial mutation that causes a strain to grow twice as fast
during early adaptation can have only a marginal beneficial effect on fitness during
the later stages of adaptation. At that point, the strain will have already acquired
a whole other set of beneficial mutations, and negative epistasis between these
mutations and the additional beneficial mutation will result in the new mutation
having a smaller effect on growth. This implies that the mutation has a much
higher chance of being fixed during early adaptation compared to later on in the
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evolutionary process. A second observation is that beneficial mutations can show
strong sign epistasis when combined. Sign epistasis between mutations occurs
when the presence of one mutation (A) causes another beneficial mutation (B) to
become deleterious, such that either f (B) > f (−), f (B,A) < f (A) (where
f (B) represents fitness in the presence of B, negative epistasis shown here) or,
the other way around, f (B) < f (−), f (B,A) > f (A) (positive epistasis). In
the context of adaptation, reciprocal sign epistasis is of particular interest, as it can
lead to a complex multi-peaked fitness landscape (Poelwijk et al., 2011). In this
special case of sign epistasis, the effect of both mutations is reversed when they are
combined: f (A) < f (−), f (B) < f (−), f (B,A) > max(f (B), f (A)). If two
beneficial mutations show reciprocal sign epistasis, the lower fitness combination is
unlikely to remain in the population. The available mutational routes toward higher
fitness will become conditional on existing mutations and hence constrained (see
Box 3 and Fig. 1b). Reciprocal negative sign epistasis has been observed and studied
in several experimental evolution experiments (Chiotti et al., 2014; Kvitek and
Sherlock, 2011) and was even found to be common among initial adaptive mutations
in a biosynthetic pathway (Ono et al., 2017). In In their large-scale study, Szamecz
et al. (2014) found two mutations that decreased fitness when they occurred on their
own: deleting MDM34 and mutating MGA2. However, the combination of the two
mutations resulted in a higher fitness than either of the single mutations, an example
of reciprocal positive sign epistasis. Indeed, mutations in MGA2 were selected
during evolution in mdm34Δ strains (Szamecz et al., 2014). Rojas Echenique et
al. aimed to investigate the effect of epistasis on a larger scale (Rojas Echenique
et al., 2019). After evolving a set of gene deletion mutants, they tried to reintroduce
the originally deleted gene in the evolved strains. For over half of these strains,
they did not succeed in reverting the deletion, possibly due to strong epistasis
between the deletion and the acquired compensatory mutations. In other words, the
compensatory mutations showed reciprocal positive sign epistasis and were strongly
detrimental in the absence of the gene deletion.

Box 3 Reciprocal Sign Epistasis and Fitness Landscapes

A useful concept to get an intuitive grasp of epistasis and its role in
evolution is the evolutionary fitness landscape (see schematic example in
Fig. 1) (Wright, 1932, 1988). In an adaptive fitness landscape, each coordinate
represents a point in the genotypic space, and the value on the z-axis
indicates the corresponding fitness of the genotype. In this way, evolution
can be visualized as an exploration of the landscape, where selection favors
genotypes that climb a fitness peak. Epistasis has a large effect on determining
the shape of the landscape. Reciprocal sign epistasis, where the effect of

(continued)
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Box 3 (continued)

individual mutations is reversed when combined, is the reason why fitness
landscapes can show not just one single peak but multiple local peaks,
what is called “ruggedness” (Poelwijk et al., 2007, 2011). This ruggedness
has been observed in studies using experimental evolution. For example,
Kvitek and Sherlock recurrently observed mutations in two loci, MTH1
and HXT6/HXT7, in yeast populations evolving under glucose limitation
(Kvitek & Sherlock, 2011). Individually, these mutations are both beneficial
for fitness. However, the double mutant has a fitness that is lower than even
that of the wild-type strain. As a result, strains that carry the MTH1 mutation
are unlikely to achieve the slightly higher fitness peak of those with mutations
in HXT6/HXT7. In fitness landscape parlance, the two peaks are separated by
a deep fitness valley, with a mutational path unlikely to be taken in the face of
natural selection.

Fifth, parallel adaptive evolution can be common (Anderson et al., 2003; Riehle
et al., 2001). Identical mutations or mutations within the same pathway occur much
more often during experimental evolution than would be expected by chance. For
example, in the adaptation of a cell polarization mutant, Laan et al. found the same
gene to be inactivated in all ten replicate adapting populations (Laan et al., 2015).
One factor, as noted above, is that large-effect mutations tend to be rare and may
be efficiently selected for in a large enough population. Another good example
of studies where parallel trajectories are often observed is in those that studied
the development of antibiotic resistance in E. coli. The parallelism of evolved
antibiotic resistance was found to be high enough at the level of mutated molecular
pathways so that simple linear models could be trained to successfully predict
the level of antibiotic resistance, using the gene expression of only a few genes
(Suzuki et al., 2014). Other large-scale studies found more modest but still elevated
rates of parallel mutation (Rojas Echenique et al., 2019; Szamecz et al., 2014),
potentially indicating less rare large-effect mutations being available. A possible
explanation is the relatively high fitness of the adapting strains. When the growth
speed approximates optimality, there is limited potential for a large fitness increase
with a single mutation (see also fourth point above). Sign epistasis can be another
contributing factor. If strong epistasis is present between beneficial variants, it
can increase diversity between adaptation experiments, as the mutational trajectory
becomes dependent on which epistatic mutation arises first in the lineage.

Sixth, hitchhiking mutations are common and highlight the benefit of sex. In
asexual populations, all variants in an individual’s genome are passed on to its
offspring, and their frequency will rise and fall together in the population according
to the individual’s fitness. This implies that a variant showing a rapid fixation
during adaptation may not be beneficial but is merely hitchhiking with the fixation
of a beneficial variant elsewhere in the genome. This complicates analyses of
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experimental evolution studies, as the fitness effects of fixed mutations need to be
confirmed experimentally (Lang et al., 2013; Voordeckers et al., 2015). One way to
get around this is to observe patterns of parallel adaptive evolution, as a hitchhiking
mutant should only occur at background rates in independent experiments. The
phenomena of hitchhiking and clonal interference differ between asexually and
sexually reproducing populations. As budding yeast can grow both asexually and
sexually, it can be used to make a direct comparison of adaptation in both scenarios.
For example, McDonald et al. compared the adaptation rate between asexually
growing populations and those that were forced to reproduce solely by sexual
reproduction (McDonald et al., 2016). They found that sex can indeed allow for
faster adaptation, as predicted by theoretical work. It allows beneficial mutations to
recombine, which in turn avoids clonal interference, and allows beneficial mutations
to dissociate from neutral or mildly detrimental hitchhiking mutations (McDonald
et al., 2016).

The seventh and last point is that adaptation can proceed rapidly through
relatively crude alterations that only have positive effects within a narrow range
of conditions. One such alteration that is often observed during experimental
evolution is loss of protein function (Kvitek and Sherlock, 2013; Laan et al.,
2015; Szamecz et al., 2014). This is counterintuitive given that genes have to be
subject to positive selection to be maintained in a genome at all. Adaptation by
gene loss does occur in nature (see, e.g., D’Souza et al., 2014), but it may be
observed more frequently in experimental evolution due to the typically controlled
and predictable conditions. Indeed, loss-of-function mutations tend to come with
negative fitness consequences in conditions other than the controlled environment
under which experimental evolution proceeds (Kvitek and Sherlock, 2013; Szamecz
et al., 2014). For example, in a study to better understand how fitness increased
during adaptation using S. cerevisiae, mutations were found to be beneficial in
only a narrow range of conditions (Li et al., 2018). During the experiment, strains
were serially transferred, and the population went through a lag, fermentation, and
finally a limited respiration phase after every transfer. The adapted strains had
improved respiration and a shortened lag phase, which improved fitness in the
experimental conditions. However, there was a trade-off with survivability, which
dramatically limited the conditions in which the adaptations were beneficial (Li
et al., 2018). Trade-offs are also of crucial importance when strains evolve in
fluctuating environments, i.e., where the selecting environment fluctuates over time.
Since mutations that enable a strain to grow faster in one environment quite often
come with trade-offs for growth in other environments, the extent and speed of
evolution when evolving in such conditions can be severely constrained. A related
phenomenon is the cost of generalism, where generalists (organisms that are fit in
a broad niche) usually have a lower fitness under specific constant conditions than
specialists (organisms that are fit in a small niche) (Bono et al., 2020). Next to loss of
gene function, another common crude adaptation route is aneuploidy (Rancati et al.,
2008; Sunshine et al., 2015). The adaptive aneuploidies tend to have big fitness
effects, but only strongly affect the transcription of relatively few genes (Sunshine
et al., 2015). As with the loss-of-function mutations, the fitness effects are mostly
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condition-specific (Sunshine et al., 2015). Both aneuploidies and loss-of-function
mutations occur de novo relatively frequently when compared to gain-of-function
mutations or promoter mutations that specifically alter gene expression responses.
Combined with their large, but specific, fitness effects, this may explain their
frequent appearance during experimental evolution.

2 Experimental Evolution to Study Genes and Traits

Experimental evolution can be used to study complex traits and to also improve our
understanding of how the genotype of an organism affects evolutionary processes.
In classical experimental evolution experiments such as the Long Term Evolution
Experiment, genetic variation arises spontaneously by mutation. However, to be able
to systematically explore the interplay between genotype and evolution, genetic
variation can also be explicitly introduced at the start of the experiment (Fig. 2).
By crossing and backcrossing divergent strains, we can acquire a population with a
controlled set of genetic variants. After growing such populations under selection,
the frequency of the variants can then be correlated with fitness. Alternatively,
different offspring from such crosses can be evolved separately, to explore how
their differences in genotype influence adaptation. Another way of inducing genetic
variation is to use recombinant DNA technology. This allows us to, for example,
evaluate the potential for adaptation under near-fatal gene perturbations. Further, we
can study whether and how a specific mutation in an adapting strain can constrain
the mutational trajectory during adaptation. A constrained (i.e., parallel) trajectory
in a strain that suffered a deleterious gene perturbation could inform us on which
cellular processes can alleviate the stress experienced by the cell during adaptation.
We will expand upon these two techniques to induce genetic variation and the most
important insights they have provided in the three sections below.

2.1 Evolving the Progeny of Crosses to Understand the Genetic
Structure of Complex Traits

Experimental evolution can be used to identify beneficial variants from standing
genetic variation. This can be effectively employed to explain the genetic origins
of phenotypic differences between individuals. By repeatedly crossing two strains,
a synthetic population can be made in which the alleles of the strains segregate
in different combinations. Imposing a selective pressure can then increase the
relative frequency of beneficial variants (see Fig. 3). For this approach to work,
the population can even be grown for only a handful of generations, just long
enough to see that the differences in fitness between lineages are reflected in
occurrence frequency in the population. Parts et al. studied the genetics underlying
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Fig. 2 Evolving various genotypes to explore the link between genotype and evolution. Variation
in genotype can be generated in a controlled manner by crossing and backcrossing divergent strains
or by using recombinant DNA technology to, for example, systematically knock down genes. By
next evolving the diverse array of genotypes, we can measure the effect of genetic variation on the
speed of adaptation and observe how adaptation proceeds when starting from different parts in the
fitness landscape

heat sensitivity in S. cerevisiae (Parts et al., 2011). They crossed a heat-tolerant
North American oak tree bark strain and a heat-sensitive West African palm wine
strain and generated between 10 and 100 million random segregants. They then
grew a pool of these segregants at normal and high temperatures for 12 days, to
enrich for lineages with beneficial alleles. After sequencing the enriched pools, 21
genomic regions were enriched in the population. They found that the resolution
of the regions and their number compared favorably to standard genomic linkage
studies. However, this method is limited to selecting for haplotypes that arose during
the original crosses, which is only a small fraction of all possible combinations of
segregating alleles in the population. Burke et al. (2014) started from a synthetic
population with genetic variants stemming from a four-way cross of diploid budding
yeast strains from different geographic origins (Burke et al., 2014). They switched
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Fig. 3 Growing the offspring of crosses under selection to understand complex traits. By
repeatedly crossing two strains, a synthetic population can be made in which the alleles of the
strains segregate in different combinations. Imposing a selective pressure can then increase the
relative frequency of beneficial variants

between mitotic and sexual propagation to break the linkage between alleles and
evolved for over 500 generations with 18 rounds of recombination. This regime
enriches the most beneficial alleles efficiently, causing a convergence between
independently evolving populations. In theory, this should be a more powerful and
better resolved way to identify the functional variants that contribute additively to
the phenotypic differences between the original strains.

The genetic variability in the offspring of a cross can also be used in combination
with experimental evolution to study the genetic basis of adaptability itself. Jerison
et al. independently evolved 230 individuals descended from a cross between lab
and wine yeast strains for 500 generations (see Fig. 2; here they evolve individual
offspring, not the population) (Jerison et al., 2017). The aim of the study was to
use quantitative genetic tools to identify the genetic basis of adaptability, defined
as the speed at which a strain can improve its fitness during evolution. In line
with previous work, the authors confirmed that adaptability is highly heritable. A
large part of the differences in heritability between strains could be explained by the
loci that affect the initial fitness of the strain and indeed the fitness of the founder
strains. Strains that are less fit initially will improve their fitness more quickly
during evolution, which can be explained by the phenomenon of diminishing-returns
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epistasis as discussed above (Sect. 1, fourth point). In addition to this, a few genomic
regions were found to be specifically associated with adaptability, beyond the effect
of founder growth rate (Jerison et al., 2017). The locus with the strongest signal
was explored in more detail. The wine strain allele of a gene within this locus,
KRE33, is involved in the biogenesis of the small ribosomal subunit and was
detrimental to growth in the experimental conditions. However, further mutations
in the same gene or functionally related genes could compensate for the allele’s
effect to improve fitness relatively quickly, and the locus was hence associated with
increased adaptability.

2.2 Gene Essentiality and Evolvability

In rich medium, a large portion of yeast genes can be removed without having
a big effect on fitness. In fact, the deletion of some genes can actually increase
fitness or decrease fitness with a wide range of effect sizes (Giaever et al., 2002).
Essential genes are traditionally defined as being critical for survival irrespective
of the growth condition. However, the notion of gene essentiality has been found
to be dependent on genotype. For example, many synthetic lethal interactions were
found in a screen of millions of double gene knockouts in baker’s yeast. Costanzo
et al. identified around 3300 “conditionally essential” genes, about half of the
total number of genes, that are essential when they occur in a particular deletion
background (Costanzo et al., 2010, 2016). Further, Dowell et al. compared gene
essentiality between two commonly used S. cerevisiae lab strains (Dowell et al.,
2010). They found that both strains contain genes that are essential in one strain but
not in the other. They concluded that the essentiality of some genes depends entirely
on the genetic background in which they occur (Dowell et al., 2010).

Experimental evolution has contributed to changing how the concept of essential-
ity is viewed. Liu et al. were able to recover viable deletion strains by using adaptive
evolution for around 9% of the yeast genes that were originally tagged as “essential”
(Liu et al., 2015). They sporulated heterologous diploid strains, in which one copy of
the essential gene was knocked out, and screened a large number of spores. If a strain
could yield viable offspring—even if only a diminutive fraction—and contained
the gene deletion, that strain would be included in an evolution experiment. The
authors showed that these strains could improve their growth rates substantially
by adaptation. One perspective on this finding is that there is a problem with the
definition of essential genes, and indeed the yeast deletion collection has technical
limitations, and phenotypic annotations should be interpreted with caution (Giaever
and Nislow, 2014). However, a more striking insight is that even some of the most
serious growth defects can be overcome, or suppressed, by acquiring compensatory
mutations.
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2.3 Compensatory Trajectories After Gene Loss

One way of exploring the effect of genotype on evolution is to evolve strains that
only differ in the deletion of one particular gene in parallel and then compare how
these strains adapt. Adaptation may be specific to the deleted gene or general for the
condition and follow a single or various adaptive routes. Further, the way the strain
adapts may reveal what has been corrected at a molecular level. If deleting the gene
results in a growth deficit, one could expect that only a specific set of mutations is
able to reverse the strain’s fitness loss.

Various small-scale experiments have shown that gene deletion strains can have
a characteristic mutational trajectory and a straightforward way of adapting (see
also the fifth point in Sect. 1 about parallel evolution). Wild-type Saccharomyces
cerevisiae cells repeatedly amplify the sulfate transporter SUL1 when they are
evolved in sulfate-limiting conditions (Gresham et al., 2008) (introducing aneuploi-
dies; see also the seventh point in Sect. 1). Strains lacking the SUL1 transporter
predictably duplicate the paralogous transporter SUL2. Similarly, variants elsewhere
in the genome can change which mutation has the largest beneficial effect, as
Saccharomyces uvarum, a close relative of S. cerevisiae, amplifies SUL2 when
it is evolved under the same sulfate-limiting conditions (Sanchez et al., 2017).
In other cases, however, adaptation can be complex. Deleting MYO1, the only
myosin II gene in budding yeast, results in cells that are unable to divide properly
(Watts et al., 1987). After serially passaging these myo1Δ yeast populations for
around 400 generations, the majority of them can adapt and significantly restore
cytokinesis even though the evolved strains are still less fit than their ancestor
wild type (Rancati et al., 2008). In this case, though despite evidence of parallel
evolution at the level of chromosomal aneuploidies, the populations show a variety
of morphologies, mutational and phenotypic profiles, indicating they have followed
diverse compensatory trajectories. At least three modes were identified to restore
cytokinesis, two of which by mechanisms distinct from the original damaged
system.

Studies where a larger number of deletion strains are evolved allow for a general
study into the phenomenon of adaptation after gene loss. Teng et al. cleverly made
use of the fact that the yeast deletion collection has already undergone several rounds
of selection and as such carries compensatory mutations (Teng et al., 2013). They
first screened the haploid deletion collection for phenotypic heterogeneity within
individual deletion strains, under the assumption that heterogeneous populations
contain clones with unfixed secondary mutations. After this, they dissected the
mutations that were responsible for this variation and concluded that the gene that
was originally deleted is indeed a key predictor for the secondary mutations in a
strain. Szamecz et al. performed a more controlled wide-scale study by evolving a
large set of deletion mutants in the lab (Szamecz et al., 2014). They generated 180
haploid yeast gene deletion strains with growth defects on rich medium and evolved
them in quadruplicate in this medium for around 400 generations; 65% of the strains
recovered ≥50% of the fitness lost due to the gene deletion (Szamecz et al., 2014).
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They sequenced a subset of evolved clones and observed that the mutations that
were found after evolution tended to be specific to the function of the deleted
gene. However, replicate lineages of the same deletion strain did not generally
acquire mutations within the same genes. Rojas Echenique et al. selected a set of
37 genes with functions across diverse functional modules and evolved deletion
mutants of these genes on rich medium for about 500 generations (Rojas Echenique
et al., 2019). In this case, the majority of compensatory mutations seemed to be
nonspecific to the original genotype, even though a small but significant correlation
pattern was observed between the functional module of the deleted gene and the
functional module of the mutated genes.

In a recent and elegant study involving Escherichia coli, McCloskey et al.
knocked out five different core metabolic genes and evolved the resulting strains
in quintuplicate on glucose minimal medium (McCloskey et al., 2018). By
characterizing the mutations that were acquired during evolution, as well as
measuring gene expression levels, intracellular metabolite levels, and metabolic
fluxes, they showed that each deletion strain followed specific adaptive paths to
correct their growth-limiting molecular phenotypes. For example, cells lacking
a functional succinate dehydrogenase, which converts succinate into fumarate in
the TCA cycle, specifically acquired mutations to reduce the flux through the
TCA cycle (McCloskey et al., 2018). In contrast, strains without phosphoglucose
isomerase, the catalyst of the second step in glycolysis, experienced increased redox
and sugar phosphate stress before evolution. During experimental evolution, cells
reproducibly follow mutational paths that result in a reduced flux in those pathways
(McCloskey et al., 2018).

In conclusion, a strain lacking a specific gene tends to evolve in a genotype-
specific way, though this can still be quite variable. If a clear mutational trajectory
can be identified, the adaptations can provide insight into the processes perturbed
by the gene deletion.

3 Outlook: Using Experimental Evolution for Systems
Genetics

As introduced in the previous section, the genetic background of an evolving
organism can influence the available mutational trajectories. One way of looking
at this is to think of the fitness landscape (see Box 3 and Fig. 2) as being shaped by
the genotype, which determines through epistatic interactions which variants will be
most adaptive. Obviously genes are part of an integrated system and interact with
each other at different scales; locally at the level of protein interactions or gene tran-
scription and globally as cellular processes that jointly define organismal properties
such as fitness. The solutions found by evolution will always be successful trade-
offs given the genotype and environment and will reflect how different parts of the
cellular machinery work together. This implies that adaptation experiments have the
potential to give us a better general understanding of cellular processes. Below, we
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will discuss early results and perspectives on learning about genetic networks from
experimental evolution experiments.

As mentioned above, recent large-scale assays have systematically mapped
genetic interactions between gene deletions. This has resulted in a detailed map
of the genetic wiring within a cell (Costanzo et al., 2010, 2016). When we look at
the average degree of connectivity in this genetic network, the majority of genes has
only interactions with few genes, whereas a small fraction has a very large number
of interactions. The genes with the highest number of interactions, the so-called
network hubs, usually perform central cellular functions, and many of them are
essential (Jeong et al., 2001). As the perturbation of a network hub tends to have
large fitness effects (Batada et al., 2006), and given that genes with more interaction
partners tend to show a slower rate of evolution (Alvarez-Ponce et al., 2017; Fraser
et al., 2002; Krylov et al., 2003), it was thought that changes during evolution
primarily occur away from hubs and at the periphery of the network (Kim et al.,
2007). Through experimental evolution, it has been possible to test the effect of
perturbing a hub gene on adaptation. For example, Koubkova-Yu et al. investigated
the role in evolution of Hsp90, a molecular chaperone and a well-known network
hub (Koubkova-Yu et al., 2018). They replaced the native S. cerevisiae HSP90 with
a homolog from Yarrowia lipolytica and used experimental evolution to allow the
strain to adapt. They showed that perturbing a hub does not preclude adaptation:
instead, the strains evolved in a remarkably diverse manner by acquiring mutations
in different parts of the genetic network. If we project this situation onto a fitness
landscape, then we can say that the perturbation of the hub gene brought the strain
into a deep fitness valley from which many distinct evolutionary paths could provide
a way out (Helsen et al., 2019).

Further research is needed to test if the finding is generalizable and holds
for other highly interacting genes. Specifically, is it just the number of genetic
interactions that is important, or is it actually the function of the protein which
determines how adaptation proceeds? Does it matter in evolution if a perturbed
protein, causing a drop in fitness, is a transcription factor, a chromatin factor, a
core metabolic enzyme, or a structural protein? Further, accepting that knocking out
a hub gene does not inhibit adaptation, can we identify parts in the network where
perturbations are poorly compensated? For example, if heritability itself is affected
by a perturbation, does that affect adaptability?

Another feature of genetic and physical interaction networks is that they have
a clustered structure, where clusters are groups of genes with a high density of
interactions. Such clusters tend to overlap with the so-called functional modules,
groups of genes that work together to perform a cellular function and whose activity
is (partly) self-regulated, such as metabolic pathways or protein complexes (Tong
et al., 2004). An interesting question is how this modular structure comes into
play when organisms evolve. For example, earlier we discussed how generalized
diminishing-returns epistasis slows down adaptation as fitness increases (fourth
point of Sect. 1). The deeper cause of this widespread phenomenon is not really
understood. Clearly, growth speed can increase only up to a point, for example,
because basic physical processes, such as diffusion, limit the maximal speed
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of chemical reactions. It is not straightforward, however, to link such ideas to
actual biological gene networks. One framework for this is the model of “modular
epistasis” (Silander et al., 2007; Tenaillon et al., 2012; Wei and Zhang, 2019),
which asserts that the fitness of an individual depends on the action of several
functional modules. Mutations can improve fitness by improving the functioning
of the modules, but only until they reach a state close to their optimal performance.
Experimental support for this model is limited. The previously mentioned studies
by Szamecz et al. and Rojas Echenique et al. offer a first clue to the role of
modular network structure in adaptation (Rojas Echenique et al., 2019; Szamecz
et al., 2014). They both show that strains with deletions in the same functional
module tend to evolve in a more similar way than strains lacking genes from other
modules. Still, most of the acquired mutations appear not specific to the deleted
gene, and only a limited amount of parallel evolution is observed. In retrospect, these
studies had limited power because of their generic setup and limited repeats but also
because there was little follow-up on leads to identify exactly what was corrected
during adaptation. Nonetheless, these types of experiments can reveal the molecular
phenotypes that govern a complex trait and show which functional modules interact
and how they interact.

4 Conclusions

Experimental evolution is a versatile method that can be applied to answer many
biological questions, and its applications extend beyond what we have discussed
here. For example, from an ecological point of view, the method can be used
to explore how diverse strains can stably co-exist and how this phenomenon can
be emulated and controlled. Experimental evolution is now also being applied
in multicellular organisms, such as fruit flies and nematodes, which bring their
own set of research questions. The method is also frequently being used now
in biotechnology, to optimize strains for the production of industrially relevant
compounds such as ethanol and to evolve specific proteins for desired properties,
such as brighter and more stable fluorescent protein tags.

In this chapter, we discussed how experimental evolution has allowed us to
directly study many factors related to the process of adaptation, which has aided
in firmly establishing phenomena such as clonal interference and diminishing-
returns epistasis. The approach has also shed light on how an organism’s genotype
influences adaptation. Additionally, it has proved a useful tool in finding the genetic
basis of complex traits. The crucial power of the method lies in the fact that it can
efficiently select the most beneficial genetic changes out of millions of variants.
Even though the method also comes with a number of caveats, such as the fact
that adaptation using experimental evolution can be highly specific to the chosen
growth regime, with important trade-offs to growth in other conditions, the method
holds considerable potential to ask system-level questions about complex traits and
genetic architecture.
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Addressing Evolutionary Questions
with Synthetic Biology

Florian Baier and Yolanda Schaerli

Abstract Synthetic biology emerged as an engineering discipline to design and
construct artificial biological systems. Synthetic biological designs aim to achieve
specific biological behavior, which can be exploited for biotechnological, medi-
cal, and industrial purposes. In addition, mimicking natural systems using well-
characterized biological parts also provides powerful experimental systems to study
evolution at the molecular and systems level. A strength of synthetic biology is
to go beyond nature’s toolkit, to test alternative versions and to study a particular
biological system and its phenotype in isolation and in a quantitative manner. Here,
we review recent work that implemented synthetic systems, ranging from simple
regulatory circuits, rewired cellular networks to artificial genomes and viruses, to
study fundamental evolutionary concepts. In particular, engineering, perturbing or
subjecting these synthetic systems to experimental laboratory evolution provides
a mechanistic understanding on important evolutionary questions, such as: Why
did particular regulatory network topologies evolve and not others? What happens
if we rewire regulatory networks? Could an expanded genetic code provide an
evolutionary advantage? How important is the structure of genome and number of
chromosomes? Although the field of evolutionary synthetic biology is still in its
teens, further advances in synthetic biology provide exciting technologies and novel
systems that promise to yield fundamental insights into evolutionary principles in
the near future.

1 Introduction

Evolutionary biology traditionally studies past or present organisms to reconstruct
past evolutionary events with the aim to explain and predict their evolution.
However, understanding evolution and why life evolved the way it did might require
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going beyond solutions found in nature. As the evolutionist, J. M. Smith states in
1992 in respect to the development of computational models of artificial evolving
systems: “So far, we have been able to study only one evolving system, and we
cannot wait for interstellar flight to provide us with a second. If we want to discover
generalizations about evolving systems, we will have to look at artificial ones.”
(J. M. Smith, 1992). Now, with advances in synthetic, systems and computational
biology it is actually possible to design, create, and study artificial (synthetic)
biological systems (Cameron et al., 2014). The interdisciplinary field of synthetic
biology essentially started with the publication of the first synthetic regulatory
networks in 2000 (Elowitz & Leibler, 2000; Gardner et al., 2000; Becskei &
Serrano, 2000) and since then expanded to the design and construction of more
complex genetic circuits (Bashor & Collins, 2018), organelles (Lee et al., 2018),
and even whole genomes (Hutchison et al., 2016) and cells (Blain & Szostak, 2014).
The design and construction of synthetic biological systems is usually focused
on new and desirable metabolic, sensory, regulatory, and physical capabilities,
which are of particular interest for biotechnological and medical applications (Xie
& Fussenegger, 2018; Nielsen & Keasling, 2016; Tang et al., 2020). Synthetic
systems are built by combining, co-opting, and modifying biological parts that are
implemented in a biological host “chassis” (Y.-H. Wang et al., 2013). A desirable
feature of synthetic systems is their (at least partial) orthogonality, meaning that
their functionality is not affecting the host’s regulation and fitness (C. C. Liu
et al., 2018a). This allows manipulating, tuning and recording the function of
synthetic biological systems independently and without causing much undesirable
side effects. In contrast, studying natural systems is often challenging because many
biological phenotypes are difficult to disentangle, quantify and characterize. Even
for the well-studied single-cell model organisms such as E. coli and yeast, we
often poorly understand how genes are functionally interconnected and contribute
to particular phenotypes (Paaby & Rockman, 2013).

The ability to design and build synthetic biological systems that achieve a specific
desired phenotype already demonstrates a significant knowledge about its function-
ality, which is summarized by Richard Feynman’s famous quote: “What I cannot
create, I do not understand” (written on his blackboard at the time of his death in
February 1988). One step further is to not only build a system with a particular
purpose in mind, but also to study it and learn how it behaves when it is perturbed
and/or evolving. Directed evolution mimics the process of diversification and natural
selection that resembles Darwinian evolution under well-defined conditions and
is frequently used to optimize proteins and enzymes toward specific functions
(Zeymer & Hilvert, 2018). Beyond its applied side, the ability to control each
parameter in directed evolution experiments has substantially contributed toward
a more fundamental understanding of the dynamics and constraints of molecular
evolution (Kaltenbach & Tokuriki, 2014; Arnold, 2010; Dean & Thornton, 2007).
Similarly, the well-defined properties of synthetic biological systems and the ability
to manipulate and report the system’s behavior have motivated researchers to
explore fundamental biological and evolutionary questions with synthetic biology
(Peisajovich, 2012; Davidson et al., 2012; de Lorenzo, 2018; Bashor & Collins,
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Fig. 1 Overview of synthetic biological systems discussed in this chapter. Bottom-up designed
and built synthetic biological systems are implemented into a host cell (center) that executes
their function using its internal cellular machinery and resources. Synthetic biological systems
are amenable for characterization, perturbations, and evolution

2018; Simon et al., 2019). Although the exciting synthesis of evolutionary and
synthetic biology is still young, it benefits from existing technologies that have been
used to debug and optimize imperfect designs of synthetic systems (Yokobayashi et
al., 2002; Cobb et al., 2012; Haseltine & Arnold, 2007).

In the following, we will highlight a selection of studies that apply synthetic
biology tools to understand evolutionary dynamics at the systems level. In particular,
we focus on examples of synthetic systems, ranging from simple synthetic regula-
tory networks (Sect. 2), rewired gene regulatory networks (Sect. 3), and extended
genetic codes to synthetic viruses and genomes (Sect. 4) (summarized in Fig. 1
as a graphical overview). In Sect. 5, we end with a discussion on how further
advances in synthetic biology will pave the way for a deeper understanding of life
and evolutionary principles and how synthetic biology and evolutionary systems
biology can benefit from each other in the future.

2 Synthetic Regulatory Networks

Regulatory networks control the spatial and temporal expression of downstream
genes through interactions between DNA, RNA, proteins and/or metabolites (Rock-
man & Kruglyak, 2006; Hill et al., 2020). The first synthetic gene regulatory
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networks (synGRNs) that were constructed are the repressilator and the toggle
switch in 2000 (Gardner et al., 2000; Elowitz & Leibler, 2000). Since then, many
diverse operational behaviors have been achieved with synGRNs, such as logic
gates (Guet et al., 2002), counting events (Friedland et al., 2009), cellular memory
(Ajo-Franklin et al., 2007), pattern formation (Schaerli et al., 2014; Barbier et al.,
2020; Santos-Moreno et al., 2020), cell polarization (Chau et al., 2012), and light-
sensing (Tabor et al., 2009) (reviewed in Xie & Fussenegger, 2018; Santos-Moreno
& Schaerli, 2018; Bashor & Collins, 2018). SynGRNs have been successfully
implemented in prokaryotic and eukaryotic systems (Xie & Fussenegger, 2018).
In addition to the numerous potential applications of synGRNs in biotechnology,
biomedicine and other fields (Xie & Fussenegger, 2018; Ruder et al., 2011; Weber
& Fussenegger, 2011), synGRNs are also great model systems to study function
and evolution of cellular regulation (Crocker & Ilsley, 2017; Bashor & Collins,
2018; Davies, 2017; Santos-Moreno & Schaerli, 2018). In the following, we will
highlight several studies that explored design principles and evolutionary dynamics
with synGRNs.

2.1 Exploring Network Design Space with Synthetic
Regulatory Networks

A certain biological function can be achieved with different networks varying in
their topologies, i.e., in their type and number of regulatory nodes and interactions
(Cotterell & Sharpe, 2010). Explorations of distinct networks topologies can be
highly insightful in regard to their functional properties and evolutionary poten-
tial. Chau et al. explored the design space of simple gene regulatory networks
that achieve cell polarization (Chau et al., 2012). Spatial organization within
cells through polarization is crucial for many cellular behaviors such as motility,
asymmetric cell division and establishing polarity in epithelial cells and neurons
(Raman et al., 2018). The team first computationally predicted all one- and two-node
network topologies capable of cell polarization. All functional solutions contained
one of three minimal motifs: positive feedback, mutual inhibition, or inhibition
with positive feedback. Combinations of two or three minimal motifs increased the
robustness of cell polarization, i.e., it was achieved over a larger range of parameters.
To test their predictions experimentally, Chau et al. built an elegant synthetic system
to study cell polarization in budding yeast using a toolkit of well-characterized
biological parts including promoters, kinases, phosphatases, and localization tags,
most of which are not naturally found in budding yeast. Using this strategy,
the authors were able to generate the three minimal motifs predicted to provide
cell polarization and explored the parameter range under which the networks are
functional. In agreement with their theoretical predictions, the minimal motifs alone
gave rise to cell polarization, although within a limited parameter range. However,
when the minimal motifs were combined into more complex networks, robust cell
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polarization could be achieved over a wide parameter range. Thus, in this case,
network robustness can be achieved by combining multiple minimal motifs, which
might explain why combinations of multiple network motifs occur frequently in
nature (Chau et al., 2012). In summary, this work not only demonstrated that it is
possible to predict, design and synthetically build cell polarization networks, but
also how multiple interactions contribute to network robustness and consequently
evolutionary dynamics.

In a similar approach, Schaerli and colleagues explored the design space of three-
node gene regulatory networks that translate a morphogen concentration gradient
into a stripe-like gene expression pattern, i.e., a low-high-low gene expression along
a morphogen gradient (Schaerli et al., 2014). The ability of GRNs to convert a
gradient input into spatial information is crucial during development, for example
during axial patterning of the Drosophila embryo (Wolpert, 1969). Similar to
the study above, Schaerli et al. first explored the design space computationally.
Interestingly, the identified networks can be divided into four groups and the
simplest network of each group corresponds to one of the four types of incoherent
feed-forward loops (Mangan & Alon, 2003). Each of the four groups employs a
distinct dynamical mechanism (spatiotemporal course of gene expression) to form
a stripe (Cotterell & Sharpe, 2010). The four simple networks were constructed
by combining well-characterized regulatory components with a fluorescent reporter
and expressed in E. coli. Indeed, a stripe pattern was experimentally achieved
with all four network topologies. Based on the experimental and model results,
they also designed and built a two-node stripe-forming network, representing the
archetype of the four minimal three-node network topologies. Conclusively, this
study experimentally demonstrated that stripe formation can be achieved with
various network topologies and dynamical mechanisms, some of which have not
yet been discovered in nature.

2.2 Exploring Evolutionary Dynamics with Synthetic
Regulatory Networks

In a follow-up study, Schaerli et al. used two of the stripe-forming synthetic
networks (the incoherent feed-forward loops type 2 (I2) and 3 (I3)) to investigate
whether and how the underlying dynamical regulatory mechanism of a network
biases and affects its evolutionary potential (Fig. 2a) (Schaerli et al., 2018). To this
end, they introduced random mutations into each network and used a combination
of experimental measurements, DNA sequencing, and mathematical modeling to
understand how mechanisms of GRNs affect the ability to evolve novel phenotypes,
i.e., phenotypes that are different from a stripe (Fig. 2a). Remarkably, each network
could only access a limited set of novel phenotypes and the accessible phenotypes
differed for each network. The study provides thus the first empirical evidence that
the underlying regulatory mechanisms of a GRN can cause constrained variation, as
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Fig. 2 Using synthetic circuits to understand evolutionary constraints and epistasis in gene
regulatory networks. (a) Investigating evolutionary biases of two synthetic networks (incoherent
feed-forward loops type 2 (I2, top) and 3 (I3, bottom)) that achieve stripe formation with distinct
topologies and regulatory mechanisms (Schaerli et al., 2018). The networks were implemented in
E. coli cells with a “morphogen” (arabinose) input receiver gene (red), an intermediate loop gene
(blue) and an output gene (green) with GFP expression as readout. Arrows represent activation
and bars indicate repression. Mutations were introduced into the regulatory regions of each
node of both networks and resulting phenotypic changes were characterized at three arabinose
concentrations (low, medium and high). The two circuits produce a different spectrum of novel
gene expression phenotypes, e.g., only I2 achieves a flat phenotype. (b) A synthetic transcriptional
regulatory system to study how mutations in single and multiple components affect gene expression
phenotypes (Lagator et al., 2017). In this system, an inducible trans-element (lambda repressor
protein cI) represses expression of a fluorescent reporter gene by binding to the operator sites in a
cis-element that overlaps with the promoter region (RNA polymerase binding site). Presence of the
trans-element (+cI) results in a low fluorescence phenotype, whereas its absence (−cI) results in
a high fluorescence phenotype. Introducing mutations only in trans yields a bimodal fluorescence
distribution, whereas mutations only in cis yield low and intermediate fluorescence phenotypes.
Combined mutagenesis of trans and cis sequences produces more intermediate fluorescence
phenotypes than expected from each separately

was previously proposed (Jiménez et al., 2015). Consequently, GRNs with the same
phenotype, but different underlying topology or regulatory mechanism, may not
be equally evolvable and may constrain an organism’s ability to evolve innovative
and/or adaptive properties.

Using a similar approach, the Guet lab aimed at understanding how mutations
in multiple components of a regulatory system interact and potentially yield new
expression phenotypes (Lagator et al., 2017). The group built a simple synthetic
regulatory system in E. coli consisting of three interacting molecular components:
two trans-regulatory elements, namely a repressor (cI from lambda phage) and
an endogenous RNA polymerase, and a cis-regulatory element consisting of the
promoter and overlapping repressor binding sites (Fig. 2b). The three components
regulate the expression of a fluorescent protein that can be quantitatively measured.
To understand how mutations in two components alter the regulatory behavior and
function of the system, they introduced mutations in the cis-regulatory element and
in the repressor. They analyzed the effect of the mutations independently and in
combination. Surprisingly, when introducing mutations in both components the reg-
ulatory system produced gene expression phenotypes that were not observed when
mutating only one component. The authors attribute these emerging phenotypes
to epistatic interactions between the transcription factor and its DNA binding site.
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Epistasis means that the combined functional effect of two or more mutations differs
from the expected value based on the individual effects (Lehner, 2011; Nghe et al.,
2020). In this case, epistasis increased phenotypic variation that selection can act on
and thus might facilitate subsequent adaptive evolution. This seems to be true also
for other transcriptional regulatory systems, such as for the above-described stripe-
forming three-node synGRN of Schaerli et al. (2018). Here, mutations in multiple
network nodes gave rise to a wider spectrum of phenotypes compared to mutations
in only one of three network nodes.

Phenotypic heterogeneity, e.g., due to stochasticity in gene expression, can be a
beneficial property for microorganisms in a changing or fluctuating environment by
providing some individuals within a population with a survival advantage (reviewed
in Ackermann, 2015; Payne & Wagner, 2019). How does phenotypic heterogeneity
influence evolutionary dynamics? To address this question experimentally the Pál
lab used an elegant combination of synthetic biology and experimental evolution
by designing and implementing two synGRNs that control the expression of an
antifungal resistance gene in S. cerevisiae with different degrees of gene expression
heterogeneity (Bódi et al., 2017). They found that synGRNs with higher hetero-
geneity not only provided a higher initial resistance to the antifungal drug, but
also allowed the yeast cells to evolve a higher resistance after several rounds of
evolution under gradually increasing concentrations of the antifungal drug. Also,
beneficial mutations in the synGRN with high heterogeneity were contingent on
this high gene expression stochasticity, meaning that their adaptive effects were
substantially reduced in a background with low gene expression stochasticity. Thus,
gene expression stochasticity can influence evolutionary trajectories by widening
the spectrum of available beneficial mutations during evolutionary adaptation.
Remarkably, in the synGRN with initial low stochasticity elevated phenotypic
heterogeneity evolved as a direct response to the antifungal stress. However, at the
same time, the benefit of high phenotypic heterogeneity trades-off with reduced
fitness in the drug-free medium. Thus, gene expression stochasticity might be
an evolvable trait that is selected for in fluctuating and changing environments
(Sánchez-Romero & Casadesús, 2013; Arnoldini et al., 2014; Holland et al., 2014;
Salathé et al., 2009; Acar et al., 2008; Kuwahara & Soyer, 2012; Sato et al., 2003).

3 Rewired Regulatory Networks

Understanding why natural GRNs evolved a particular topology and which com-
ponents and connections of a network are either necessary or dispensable for
functionality is a difficult question to address. Classical genetic approaches usually
delete individual network components or interactions to decipher their functional
role within the network. However, alternative topologies with new and rewired
interactions are difficult to study in this way. Instead, with a synthetic biology
approach network components and interactions cannot only be deleted but also
added, rewired, and fine-tuned (Mukherji & van Oudenaarden, 2009; Bashor et al.,
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Fig. 3 Rewiring of cellular circuits to understand design principles. (a) Hedgehog pathway
topologies studied by Li et al. The natural bifunctional PTCH receptor provides intracellular
(IC) and extracellular (EC) feedback simultaneously. The IC feedback inhibits the signaling
pathway only intracellular, whereas the EC feedback does so only extracellular by sequestering the
ligand. The PTCH feedback was uncoupled through separating the functional parts of the PTCH
receptor. The cell-culture system with sender and receiver cells allowed quantitative analysis of the
spatiotemporal patterning dynamics resulting from the different circuit wirings. (b) Summary of
robustness and speed properties of different feedback architectures for Hedgehog (HH) signaling
gradient formation. (Reproduced with permission Li et al., 2018)

2010). Additionally, a networks’ output, which might be difficult to observe and
quantify, can be linked to an additional measurable output such as expression of a
fluorescent protein.

An interesting question is why a particular topology was favored during evolution
over alternative topologies. A study by the Elowitz lab investigated the network
topology of the Hedgehog signaling pathway by reconstituting a developmental
morphogen gradient in vitro, with a tunable synthetic rewiring of regulatory inter-
actions and a fluorescent readout in a cell-culture model, combined with in silico
modeling (Fig. 3a) (Li et al., 2018). The Hedgehog pathway is crucial in establishing
positional information for proper patterning during embryonic development and is
composed of a double-negative regulatory logic and an additional negative feedback
(Briscoe & Thérond, 2013). The results revealed that the natural negative feedback
architecture shows the most robust behavior in length scale and amplitude of the
hedgehog signaling gradient compared to alternative architectures. In addition, it
reaches steady state more rapidly and over a wider range of signaling molecule
concentration than alternative topologies (Fig. 3b). However, it remains an open
question of whether the rapid response and robustness of the system to changes in
the rate of morphogen production has been directly selected for during evolution or
rather resulted as a by-product of other evolutionary forces (Kaneko, 2007; Ciliberti
et al., 2007).

Isalan and colleagues went beyond individual networks and instead rewired
large parts of the E. coli genome (Isalan et al., 2008). The authors rewired a
set of transcription factor and σ-factor genes with different unrelated regulatory
regions, thus creating almost 600 reconnected networks on top of an otherwise
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unchanged E. coli genome. Surprisingly, only a few of the synthetic rewirings did
considerably affect growth, although a follow-up study showed that perturbations
of gene expression span up to four orders of magnitude and changed up to ~70%
of the transcriptome (Baumstark et al., 2015). In fact, some of the rewirings were
actually beneficial under stressful conditions such as heat-shock and prolonged
stationary phase. Thus, substantial rewiring of transcriptional networks, at least in
E. coli, is tolerable to some extent and may even be advantageous under stressful
environmental conditions.

4 Synthetic Genomics

The ability to do large-scale recoding and the emergence of computationally
(re-)designed synthetic genes and genomes opened many possibilities for applied
and fundamental research. Synthetic genomics advanced drastically since the first
synthetic gene was synthesized in 1970 (Agarwal et al., 1970). In particular the
cost, quality and speed of de novo DNA synthesis improved significantly, as well as
assembly technologies that allow the de novo synthesis of whole chromosomes and
genomes (H. Wang et al., 2016; Haimovich et al., 2015). Here, we will focus on the
evolutionary perspective of recoded and designed synthetic genomes (see also Pál et
al., 2014) and refer to other excellent reviews that cover technological aspects and
potential applications of this exciting topic (Mukai et al., 2017; Chari & Church,
2017; Haimovich et al., 2015; W. Zhang et al., 2020).

4.1 Extending the Alphabet of Life

In the early 2000s, researchers first demonstrated that the genetic code can be
engineered and expanded to incorporate nonnatural amino acids (nnAA) with
distinct chemical and structural properties (Chin et al., 2003; L. Wang et al., 2001)
(reviewed in C. C. Liu & Schultz, 2010; Chin, 2014; Santos-Moreno & Schaerli,
2020a). To encode a nnAA within a gene or genome, an unassigned free codon
(usually the rare TAG amber stop codon) is reassigned to encode a nnAA (Chin,
2017). Second, incorporation of a nnAA into proteins requires an orthogonal tRNA-
synthetase pair that specifically recognizes the assigned codon and the nnAA, but
not any other codon or AA (Chin, 2017). Protein engineers have used nnAAs
to generate proteins and enzymes with new biophysical and chemical properties
that would not be possible with standard AAs (W. H. Zhang et al., 2013; C. C.
Liu & Schultz, 2010). Now, with the development of genome-wide editing tools
researchers have recoded whole genomes in order to allow incorporation of nnAAs
into the proteome (Arranz-Gibert et al., 2018; Fredens et al., 2019). The Isaacs
and Church labs engineered an E. coli strain (named C321.�A) that has all 321
TAG stop codons replaced with the synonymous TAA stop codon (Lajoie et al.,
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2013). The complete codon substitution allowed the deletion of the release factor 1
(RF1, which terminates translation at UAG and UAA). Therefore, UAG codons are
unassigned in C321.�A while RF2 still terminates translation at UGA and UAA.
The evolutionary consequence of the complete codon substitution and RF1 deletion
is that horizontally acquired DNA containing TAG codons cannot correctly be
translated, meaning that the organism is genetically isolated (Lajoie et al., 2013). On
the one hand, this provides resistance to phages that contain TAG codons but it also
hinders the acquisition of potentially beneficial DNA, such as plasmids containing
antibiotic resistance genes. Jing Ma and Isaacs performed an interesting evolution
experiment with phage populations infecting a mixture of standard and recoded E.
coli strains at various ratios (N. J. Ma & Isaacs, 2016). The study showed that phages
adapted toward C321.�A by reducing their TAG codon usage. This experiment
provides compelling evidence that phages and viruses adapt rapidly their genetic
code to achieve compatibility with their host.

Another intriguing question is how an expanded genetic code beyond the generic
20 amino acids alters the evolution of an organism. Does the availability of new
chemistry promote novel opportunities for beneficial mutations? A study by the
Barrick lab addressed this question experimentally by evolving T7 bacteriophages
with a host E. coli in which the amber stop codon (TAG) was reassigned to
incorporate 3-iodotyrosine (IdioY) as a 21st amino acid (Fig. 4a) (Hammerling
et al., 2014). The T7 phage populations improved their lysis times (fitness proxy)
during several rounds of laboratory evolution and adapted specifically to the IdioY
incorporating E. coli host. At the end of the experiment several improved phage
mutants also incorporated IdioY into their genome and their improved fitness was
dependent on the unnatural amino acid. For example, a Tyr39-to-IodoY mutation in
the T7 Type II holin gene was more beneficial than having a Tyr or Trp at this
position. Although other mutants in this study evolved to have the same fitness
using only the generic 20 amino acids, the readiness to which the phage population
adapted to an alternative genetic code and incorporated a non-natural amino acid in
its proteins is quite remarkable. Since incorporation of nnAA can generate proteins
with novel functionalities and properties (see reviews Chin, 2014; C. C. Liu &
Schultz, 2010), an expanded genetic code could potentially facilitate evolution
toward higher fitness beyond what is feasible with the universal 20 amino acids.

Recently, systems have been developed that allow the incorporation of more than
one nnAA at the same time in one organism. This is achieved by freeing up and
reassigning existing triplet codons (Fredens et al., 2019) or by using quadruplet
codons (K. Wang et al., 2012), both of which require modified and orthogonal
translation systems in the host cell. For example, the Chin lab recoded the entire E.
coli genome to use only 61 (instead of 64) codons, which will eventually allow the
reassignment of three codons to distinct nnAAs (Fredens et al., 2019). To encode
even more nnAAs simultaneously, orthogonal quadruplet-decoding ribosome and
tRNA-synthetase have been evolved in the laboratory, which theoretically allows the
incorporation of more than 200 different nnAAs in recombinant proteins or recoded
organisms (K. Wang et al., 2012). However, the approach is challenging and so far
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Fig. 4 Evolutionary insights with modified, recoded, and designed synthetic genomes. (a) Adap-
tive evolution experiment of T7 bacteriophages infecting a recoded E. coli strain with an expanded
genetic code that incorporates 3-idiotyrosine (IodoY) at the amber stop codon TAG (Hammerling
et al., 2014). Phages adapt by incorporating IdioY in their proteome, which provides higher
fitness than other amino acids at the same positions. (b) Two independent studies explore the
consequences of step-wise fusing the 16 chromosomes (n = 16) in S. cerevisiae down to n = 2
(J. Luo et al., 2018a) and n = 1 (Shao et al., 2019). (Box) Mating strains with equal numbers of
chromosomes produces viable spores. Increasing the difference in chromosome numbers between
mating strains results in reduced spore viable and eventually in reproductive isolation. (c) Evolution
of a computationally designed protein capsid that encapsulates its own RNA (Butterfield et al.,
2017; Terasaka et al., 2018). A DNA mutant library is transformed into E. coli hosts that produce
the encoding capsids, which are subsequently harvested and selected for improved properties, such
as RNase and heat stability as well as blood and mouse circulation times (small box). Isolated RNA
is reverse-transcribed to DNA with RT-PCR (reverse-transcription polymerase chain reaction) to
start a new round of evolution. Several rounds of evolution resulted in improved RNA packaging
and stability within the capsid

only a few studies were able to encode nnAAs with quadruplet codons (Neumann
et al., 2010; Niu et al., 2013).

Not only have nnAAs been incorporated into proteins, but also nonnatural
nucleotides into the DNA and RNA of living organisms (Pinheiro & Holliger,
2012; Y. Zhang & Romesberg, 2018). In 2014, the Romesberg lab reported the
first successful incorporation of an unnatural base pair (UBP) dNaM-dTPT3 into
an E. coli plasmid (Malyshev et al., 2014). The UBP forms through hydrophobic
interactions instead of hydrogen bonding present in the natural base pairs. However,
cells with an expanded genetic code grew poorly and very easily lost the UBP.
The stable maintenance of the six-letter/three-base-pair code required tuning of
the nucleotide uptake system and the implementation of an elegant Cas9-based
control system that eliminates DNA that had lost the UBP (Y. Zhang et al., 2017a).
Subsequently, the team extended their system to code for nnAAs with the UBP
(Y. Zhang et al., 2017b). This required transcription by T7 RNA polymerase and
translation involving a tRNA containing the unnatural anticodon. As a proof-of-
principle, the Romesberg lab successfully incorporated a nnAA into a fluorescent
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protein using two codons that contain the UBP (Y. Zhang et al., 2017b). In a
recent follow-up study, the Romesberg lab systematically generated and studied
the functionality of unnatural codons using the dNaM-dTPT3 UBP (Fischer et al.,
2020). Out of the 152 theoretical possible codons they identified nine functional
unnatural codons that are stably integrated in DNA, transcribed into mRNA and
tRNA, and finally can be decoded into nnAAs in proteins. Out of the nine, three
unnatural codons also function orthogonal and can be used for simultaneously
incorporating of multiple nnAAs into a single protein, thus allowing the decoding
of 67 codons in a living semisynthetic organism (Fischer et al., 2020).

Together, this body of work demonstrates that the central dogma of life is not
limited to four DNA bases and 20 amino acids. This in turn may allow us to design
and construct new synthetic life forms that are different from natural ones at the
molecular level. The work on synthetic genetic polymers (XNA) with different
backbone chemistries than DNA and RNA also brings us closer to this goal (Pinheiro
& Holliger, 2012; Pinheiro et al., 2012; Anosova et al., 2016; Hoshika et al.,
2019). Not only can such synthetic life forms be exploited for applications such
as biocontainment, therapeutics, and novel chemistry (Sun et al., 2014), but also
to better understand the evolutionary constraints and benefits of the natural genetic
code and the canonical nucleic and amino acids (Bacher et al., 2004; Koonin &
Novozhilov, 2017).

4.2 Synthetic Karyotyping

The number of chromosomes varies widely in eukaryotic species. What happens
if the number of chromosomes changes? Comparative studies between related
species with different chromosome numbers are difficult to interpret due to the
simultaneous presence of other changes in the genome, such as sequence divergence
and genomic rearrangements. This makes it difficult to assign a given phenotypic
feature to the difference in chromosome number. Synthetic biology allows us to
change only the chromosome number, while maintaining the genetic content. Two
studies successfully fused the 16 chromosomes of the budding yeast in successive
rounds of chromosome fusion down to two chromosomes (n = 2) (J. Luo et al.,
2018a) or a single giant chromosome (n = 1) (Shao et al., 2019) (Fig. 4b). Both
groups used the CRISPR–Cas9 technology to remove the telomers and centromeres
of the chromosomes and took advantage of the endogenous DNA repair machinery
for chromosome fusion. Surprisingly, chromosome fusion had little impact on cell
fitness, with only small fitness defects becoming apparent at n = 2 and n = 1.
Also, the mating efficiency of strains with the same number of chromosomes was
unaffected, e.g., n= 2 × n= 2 were not different in sporulation efficiency compared
to n = 16 × n = 16. However, the larger the difference in chromosome number
between the two mating partners, the fewer viable spores resulted from crossing.
For example, n = 16 could only produce viable spores with strains having at
least ten chromosomes, but not less. Therefore, despite having identical sequences,
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a reduction to eight chromosomes is enough to isolate strains reproductively.
This is interesting because the phenomenon of “reproductive isolation” is usually
associated with sequence divergence rather than with the number of chromosomes
(Greig, 2009). One avenue for future work with these strains might be to perform
laboratory evolution experiments in order to investigate how they adapt to a reduced
number of chromosomes (Liti, 2018).

4.3 Synthetic Viruses

Viruses and phages are one of the simplest biological systems in which genotype
and phenotype are directly linked through encapsulation. However, they require a
host to proliferate. Given the small genomes of viruses, it is not surprising that
the first genomes to be chemically synthesized were that of viruses, namely that
of the poliovirus in 2002 (Cello et al., 2002) and of the bacteriophage ϕX174 in
2003 (H. O. Smith et al., 2003). Building a synthetic virus only requires chemically
synthesizing its genome and injecting it into the right host cells, which will then
produce viral particles that are infectious. The synthesis of viral genomes has
allowed reconstructing and characterizing viruses from past and current pandemics,
such as the Spanish Flu virus from 1918 (Tumpey et al., 2005) and SARS-CoV-2
(Thao et al., 2020), and studying the effect of genome modifications on pathology
as well as to test potential vaccine candidates (Wimmer & Paul, 2011).

The emergence of protein cages capable of encapsulating its DNA or RNA
genome was probably the critical step in the evolution of viruses. Two studies
describe the design, construction and evolution of viral-like capsids from nonviral
proteins that encapsulate their own genetic information (Butterfield et al., 2017;
Terasaka et al., 2018) (Fig. 4c). In both cases, the genome packaging and protection
properties of the starting capsids were improved by carrying out several rounds
of in vitro directed evolution. This approach quickly yielded mutants that could
compete with recombinant virus vectors and thus established simple evolutionary
pathways by which virus-like genome packaging can emerge. In the future, such
synthetic capsids might be endowed with further properties such as cell recognition
and infection, unloading and even self-replication (Lemire et al., 2018). Moreover,
synthetic viruses and phages offer interesting alternatives to natural viruses and
phages as vectors in drug delivery in therapeutics and vaccines or as platforms for
phage display (Citorik et al., 2014).

4.4 Designing a Synthetic Minimal Genome

The minimum number of genes to sustain life is a fundamental question in biology.
Researchers have approached this question theoretically by hypothesizing that
a common set of genes shared between species with small genomes might be
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a good approximation of how many genes are essential for life (Mushegian &
Koonin, 1996). Complementary, scientists performed transposon mutagenesis on the
Mycoplasma genitalium genome, which has the smallest genome of any organism
that can be grown in pure culture, to identify essential genes for bacterial growth
under laboratory conditions (Glass et al., 2006). Synthetic biology now offers tools
to address this question by designing and synthesizing a minimal synthetic genome.
In 2010, the team of Craig Venter generated the first bacterial cell controlled by
a chemically synthesized M. mycoides genome (1077 kb), named JCVI-syn1.0
(Gibson et al., 2010). Although the JCVI-syn1.0 genome is nearly identical to
the natural M. mycoides genome, it was an important technical milestone toward
bottom-up genome designs. In 2016, the Venter team released JCVI-syn3.0, a
reduced version of the JCVI-syn1.0 synthetic genome: JCVI-syn3.0 contains only
473 genes encoded on only 531 kb, which makes it the smallest genome of
any autonomously replicating cell known so far. In addition to essential genes,
it also contains quasi-essential genes that are required for robust growth with a
doubling time of around 180 min (Hutchison et al., 2016). Thus, JCVI-syn3.0 is
an approximation of a minimal cellular genome. Intriguingly, even in this simple
organism the cellular function of 149 genes (≈31%) is still unknown. Thus, much
has still to be learnt about what functions are required for life. Once the functions of
all these genes are known, the genome size may potentially even be further reduced.
In addition, knowing all the biochemical, structural and cellular functions essential
for supporting life, one can start to design new organisms from these basic principles
and learn much about the origin and evolution of life (Göpfrich et al., 2018; Forster
& Church, 2006).

4.5 Synthetic Self-Replicating Systems in Cell-Like
Compartments

Studying the factors that facilitated the emergence of life from chemical molecules
is an exciting, but obviously also a challenging task. In the last decade, several
groups have built simple self-replicating systems based on RNA molecules, which
are hypothesized to have stored genetic information and at the same time cat-
alyzed chemical reactions in primitive cells (Joyce & Szostak, 2018). A particular
interesting question is how compartmentalization facilitated the early evolution of
self-replicating molecules such as RNA and dealt with the emergence of parasitic
mutants, which are replicated, but themselves are not replicating and thus would
cause eventual collapse of the system (Ichihashi et al., 2013). Matsumura et al.
(2016) evolved self-replicating RNA molecules in a scenario of repeated mixing and
compartmentalization in nonbiological material, using a droplet-based microfluidic
system, which provided protection from emerging parasitic mutants. The study
supports the hypothesis that transient compartmentalization, e.g., in aerosols, micro-
compartments in hydrothermal vents or on mineral surfaces, has facilitated evolution
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before the first cell-like structures emerged (Ichihashi et al., 2013). In another
study, Mizuuchi & Ichihashi extended a synthetic RNA self-replicating system to
depend on cooperation, which is a necessary requirement for the evolution of higher
complexity (Mizuuchi & Ichihashi, 2018). Emerging parasitic RNA molecules
plagued self-replication and cooperation, but compartmentalization protected the
system and supported cooperation. Interestingly, evolutionary adaptation through
mutations toward higher replication efficiency was characterized by improved
“selfish” replication and at the same time coevolution of the cooperators.

5 Outlook

Since its foundation in 2000, synthetic biology has undergone dramatic growth
into a vibrant research discipline that is poised to provide fundamental insights
into biological questions as well as to revolutionize many aspects of our lives,
for example by producing smart materials, sustainable biofuels and personalized
therapeutics (Cameron et al., 2014; Purnick & Weiss, 2009; Tang et al., 2020).
This progress was enabled by improved and novel technologies, including better
computational models, cheaper DNA sequencing, improved DNA synthesis, high-
precision DNA editing tools such as CRISPR, novel tools for gene expression
control, microfluidic devices, as well as high-throughput assembly and screening
methods (Gach et al., 2017; H. Wang et al., 2016; Cobb et al., 2013; Santos-Moreno
& Schaerli, 2020b). As reviewed here, synthetic biological systems also started to
improve our understanding of fundamental evolutionary concepts. We predict that
this process will continue, and we highlight here some research avenues where we
expect interesting results in the near future.

The improvement in quality and speed of de novo DNA synthesis and assembly
technologies and the accompanying reduced costs allowed the de novo synthesis
of whole chromosomes and genomes, as discussed above for bacterial genomes.
The Synthetic Yeast 2.0 consortium (www.syntheticyeast.org) is on its way to
build the first synthetic eukaryotic genome, a synthetic version of S. cerevisiae
genome, called Sc2.0. So far, the synthesis of six (out of 16) synthetic Sc2.0
chromosomes has been published and we expect soon the publication of the whole
genome (Richardson et al., 2017; Kannan & Gibson, 2017). The next version
of a synthetic yeast genome (Sc3.0) is also already in planning (Dai et al.,
2020) with the aim for further compacting the synthetic chromosomes (Z. Luo
et al., 2021). For now, the Sc2.0 features the following changes compared to the
natural yeast genome: all TAG stop codons are changed to TAA, loxP sites are
introduced after nonessential genes to allow increased evolutionary diversification
using SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-
mediated evolution), and enhanced genome stability is achieved through removal of
repeat elements, introns and relocation of all transfer RNAs to a new chromosome
(Richardson et al., 2017). These design features not only increase its potential
for biotechnology applications, but will also allow us to address fundamental

http://www.syntheticyeast.org
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questions. For example, the SCRaMbLE technology, with its different versions,
such as L-SCRaMbLE (Hochrein et al., 2018) (light-inducible and completely
reversible), in vitro DNA SCRaMbLE (Wu et al., 2018), SCRaMbLE-in (W. Liu
et al., 2018b) (combination of in vitro and in vivo recombination) and ReSCuES (Z.
Luo et al., 2018b) (reporter of SCRaMbLEd cells using efficient selection), allows
large-scale genome reshuffling to expand the evolutionary potential of budding
yeast (Blount et al., 2018; L. Ma et al., 2019; Wightman et al., 2020). Evolution
experiments with SCRaMbLEd synthetic genomes might provide crucial insights
into speciation, minimal genome requirements and genome evolution (Szymanski
& Calvert, 2018). The Genome Project-write (http://engineeringbiologycenter.org),
aiming to synthesize the human and other genomes, is also poised to significantly
advance genome-engineering technologies and provide new exciting platforms to
study evolutionary questions (Boeke et al., 2016).

Another area that promises to yield fundamental insights into evolutionary sys-
tems biology questions is the building of a synthetic cell. Several interdisciplinary
consortia, such as BaSyC (Building a Synthetic Cell, www.basyc.nl), MaxSyn-
Bio (www.maxsynbio.mpg.de) and Synthetic Cell Initiative (www.syntheticcell.eu)
started to work on the ambitious goal to create a completely synthetic cell-
like system that has characteristics of life, such as reproduction, metabolism,
growth, compartmentalization, homeostasis, heredity, adaptation and communica-
tion. Although we are still far away from a synthetic cell that is truly “alive,” simple
cell-like systems that exhibit some of these characteristics have already been built
(Vogele et al., 2018; van Nies et al., 2018; Lavickova et al., 2020; Buddingh & van
Hest, 2017).

So far, we discussed how evolutionary systems biology can benefit from synthetic
biology. However, the combination of the two disciplines is not a one-way road.
Despite impressive progress, building synthetic systems rationally is often still
not straightforward. Therefore, synthetic biologists increasingly choose to select
or screen a library of different variants to obtain systems that function as desired
(de Lorenzo, 2018; Szymanski & Calvert, 2018). By adopting the powerful method
of directed evolution, which originates from protein engineering (Packer & Liu,
2015), functional synthetic systems can be obtained through screening or selecting
from randomized or combinatorial libraries (Schaerli & Isalan, 2013; Duarte et
al., 2017; Cobb et al., 2013). In fact, initial designs of computationally designed
proteins (Giger et al., 2013; Blomberg et al., 2013), synthetic circuits (Yokobayashi
et al., 2002), metabolic pathways (Bachmann, 2016), synthetic genomes (Wannier
et al., 2018) and virus-like nucleocapsids (Butterfield et al., 2017; Terasaka et al.,
2018) have been optimized with directed evolution. In many of these cases, rational
design and modeling alone could not have identified the necessary modifications to
optimize the systems. Indeed, various techniques based on evolutionary principles
have been developed such as MAGE (multiplex automated genome engineering) (H.
H. Wang et al., 2009), SEER (serial enrichment for efficient recombineering) (Wan-
nier et al., 2020) DIvERGE (directed evolution with random genomic mutations)
(Nyerges et al., 2018), CAGE (conjugative assembly genome engineering) (Isaacs
et al., 2011), PACE (phage-assisted continuous evolution) (Esvelt et al., 2011) and

http://engineeringbiologycenter.org
http://www.basyc.nl
http://www.maxsynbio.mpg.de
http://www.syntheticcell.eu
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eVOLVER (automated high-throughput growth experiments) (Wong et al., 2018)
and help to achieve ambitious goals in synthetic biology.

In conclusion, the combination of synthetic and evolutionary systems biology
is proving to be a successful partnership. As showcased in this book chapter,
the application of synthetic biology to address evolutionary questions has already
produced promising results. In the future, the combination of synthetic systems and
evolutionary experiments promises to deliver further exciting fundamental insights
into the principles of molecular evolution.
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An Evolutionary Systems Biology View
on Metabolic System Structure
and Dynamics

Connah Johnson, Hadrien Delattre, Clarmyra Hayes, and Orkun S. Soyer

Abstract Cellular metabolism consists of many interconnected reactions that
present feedbacks through cyclic reaction motifs and through metabolite regulation
of enzyme kinetics. In addition, metabolism is interlinked with gene regulation and
other cellular, energy-driven processes such as division and motility. While many
important insights have been gained on metabolism in the last decades, we are still
far from a complete, predictive understanding of it. This is reflected in our current,
limited ability to pinpoint the drivers of metabolic system dynamics and devising
ways to engineer it.

In this review paper, we argue that the study of metabolism through the lens of
evolutionary biology can provide further insights into its structure and dynamics.
By structure, we mean the composing reactions of a metabolic system, and how
these reactions are connected with each other through shared metabolites, while
by dynamics, we mean the temporal behaviour and responses of the resulting
metabolic system. Following an introductory section, we summarise the key findings
on the structure and dynamics of cellular metabolism within an evolutionary systems

C. Johnson
Mathematics of Real-World Systems Doctoral Training Centre, University of Warwick, Coventry,
UK

School of Life Sciences, University of Warwick, Coventry, UK

H. Delattre
School of Life Sciences, University of Warwick, Coventry, UK

C. Hayes
School of Life Sciences, University of Warwick, Coventry, UK

Synthetic Biology Doctoral Training Centre, University of Warwick, Coventry, UK

O. S. Soyer (�)
School of Life Sciences, University of Warwick, Coventry, UK

Synthetic Biology Doctoral Training Centre, University of Warwick, Coventry, UK

Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, UK

Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, UK
e-mail: o.soyer@warwick.ac.uk

© Springer Nature Switzerland AG 2021
A. Crombach (ed.), Evolutionary Systems Biology,
https://doi.org/10.1007/978-3-030-71737-7_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71737-7_8&domain=pdf
mailto:o.soyer@warwick.ac.uk
https://doi.org/10.1007/978-3-030-71737-7_8


160 C. Johnson et al.

perspective in Sects. 2 and 3. In doing so, we highlight two key ways of thinking
about metabolic systems, one based on considering metabolism optimised for
biomass production, and another one based on considering metabolism as a self-
regulating emergent system for maintaining nonequilibrium metabolic fluxes. From
this second consideration, we then expand to discuss the possible biophysical drivers
that could have played a key role in shaping metabolic systems in Sect. 4. Finally,
in Sect. 5, we call for an evolutionary perspective on metabolism that takes into
account both of the above considerations. We conclude by highlighting key areas of
future research where this combined view can provide valuable insights.

1 Introduction

Metabolism is the collective biochemical reaction set through which cells convert
available chemicals from the environment into energy and cell components. Cells
cannot and could not have existed without metabolism, thus, metabolic systems
must have been very early inventions in the evolution of life, possibly emerging
before cells. Such an ancient character of metabolism is evident in the fact that
many metabolic reactions and systems are conserved across a range of uni- and
multicellular organisms (Yamada et al., 2006). These highly conserved aspects of
metabolism, as well as variations across organisms may provide a clue back to the
chemical conditions during early origins of life and the current environments of
organisms.

Discussions regarding the origin of life usually emphasise the need for self-
replication and information carrier molecules. The emergence of such molecules
must have been linked tightly with the emergence of early metabolic systems that
provided the building blocks needed for their synthesis. Such systems might have
had an abiotic nature initially (Branscomb & Russell, 2013; Keller et al., 2014,
2017; Messner et al., 2017), but it is possible that their structure and tight linkage
with reproduction came to be embedded into the fabric of current-day biological
systems. Indeed, it is difficult to separate metabolism from the other aspects of cell
physiology, including membrane potential (Merrins et al., 2016), gene expression
and regulation (Chubukov et al., 2014; You et al., 2013), motility (Egbert et al.,
2010), and cell division (Papagiannakis et al., 2017). It is this linkage that makes
an understanding of cell metabolism a prerequisite for a complete understanding of
cell physiology. Besides its importance as a fundamental research topic, metabolism
and its connections to cell physiology relate to biotechnological applications such as
bioproduction in microbial or mammalian cells, and to medicine, including possible
cancer treatment (Jain et al., 2012; Locasale, 2013).

Evolutionary considerations in the study of metabolism are not rare (Nam et
al., 2011; Papp et al., 2009) but do commonly take an adaptive stance that views
metabolism as optimised for biomass production. While there have been cases
where laboratory evolution experiments resulted in metabolic adaptations matching
such optimality predictions (Ibarra et al., 2002; Fong & Palsson, 2004), there are
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also many instances where solely adaptive explanations cannot capture observations
from metabolic systems (Papp et al., 2009; Schuster et al., 2008). In this review, we
advocate the importance of considering also the possibility of metabolic system
features emerging through nonadaptive mechanisms, as by-products of biophysical
and biochemical requirements on maintaining metabolic fluxes out of equilibrium.
In particular, the first emergence of metabolic systems and their early evolution must
have been driven by achieving nonequilibrium flux across system boundaries, and
the drivers for achieving such a state must have influenced system structure and
dynamics in ways that is still visible in current-day metabolism. We argue that such
an extended, evolutionary view on metabolism can provide better insights on ‘why
the metabolism is the way it is’, and in turn, lead to new ways of understanding and
engineering current metabolic systems.

In the following two sections, we first review the current knowledge on the struc-
ture (i.e. composition and connectedness) and dynamics (i.e. temporal behaviour
of metabolic fluxes) of metabolic systems and discuss them from the perspective
of evolutionary systems biology. Rather than providing an exhaustive summary
of the vast literature on metabolism, we highlight findings that we believe are
representative or of key importance to our current thinking and understanding of
metabolism and its evolution. In Sect. 4, we consider the possible key biological
and biophysical factors that might drive and constrain the evolution of metabolic
systems. Finally, in Sect. 5, we provide a future outlook that evaluates how taking
an evolutionary systems biology approach to metabolism can open up new ways of
understanding and engineering metabolic systems.

2 Structural Features of Metabolic Systems

The elucidation of the structure of metabolic systems starts with the pioneering
biochemical studies of early 1900s. These Nobel-winning studies mapped key
metabolic conversions within cells onto specific enzymes and organised these into
so-called ‘pathways’ (Gottschalk, 1986). Known today mostly through the names
of their discoverers, these include the Entner–Doudoroff (ET), Embden–Meyerhof–
Parnas (EMP) and pentose-phosphate (PP) pathways involved in glucose uptake
and conversion into pyruvate, and the Krebs pathway (a.k.a. tricarboxylic acid
cycle) involved in the conversion of pyruvate into biomass precursors (Neidhardt
et al., 1990). As biochemical studies continue to define new enzymatic reactions
and pathways, organised databases of enzyme function (e.g. KEGG: Kanehisa,
2013; BRENDA: Jeske et al., 2019) allow us to increasingly achieve biochemical
annotation through evolutionary relatedness among enzymes. This, together with
increasing sequencing ability allows obtaining the lists of enzymatic reactions from
genome sequences and derive insights on how cellular metabolism is organised in
different organisms. It must be noted, however, that any analysis of reaction maps
will be limited by the accuracy of such maps, which will relate to the quality of
enzyme function annotations (derived biochemically or from genomic sequences by
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homology). Setting aside such limitations, the study of metabolic reaction maps has
flourished in the last few decades with the application of graph theory.

2.1 Metabolic Maps as Graphs (Networks)

Conceptually, it is easy to make the transition from a biochemist’s drawing of
a metabolic reaction pathway to a mathematically well-defined graph or network
representation (see Fig. 1). Indeed, metabolites can readily be envisioned as nodes
in a network connected through enzymatic reactions. The actual practice of mapping
a biochemical reaction set into a network, however, can be done in several different
ways that preserve or lose different types of information (Sandefur et al., 2012;
Montañez et al., 2010; Zhou & Nakhleh, 2011; Arita, 2004; Beber et al., 2012)
(Fig. 1).

In one approach, networks are defined such that there are two sets of nodes in
the network; the molecular species in one set and the reactions themselves in the
other set. This approach defines a bipartite graph, where the edges connect nodes
from elements of one set (species nodes) to elements of the other set (reaction
nodes) only (Fig. 1b). To make this network representation simpler, a logical
first step is to combine the set of reaction nodes with their corresponding edges
across the network. This results in a unipartite graph representation with only one
type of node, which corresponds to the metabolites. Edges in this representation
correspond to reactions that involve (or connect) the associated nodes (metabolites)
(Fig. 1c). While some information on reaction mechanisms is lost in the unipartite
graph representation, it is commonly used in databases and many graph theoretical
network analyses. The latter aspect is important, because the representation of a
metabolic system as a uni- or bipartite graph can have direct impact on the results
of common network analyses such as degree distribution and modularity (Montañez
et al., 2010; Zhou & Nakhleh, 2011; Arita, 2004; Beber et al., 2012) (see legend of
Fig. 1).

2.2 Connectivity Within Metabolic Networks

Notwithstanding the importance of choices associated with the abstraction of a
metabolic system as a network, the analyses of the resulting networks using graph
theory can provide insights into their large-scale properties. An early, key finding
in this regard was that the connectivity distributions of metabolic systems are
more aligned with a scale-free distribution. For this distribution the probability
of finding a node with connectivity k, scales with k−γ , with γ being a constant
degree exponent. This contrasts with a Poisson distribution expected from a random
network (Jeong et al., 2000). The scale-free like distribution indicates the presence
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Fig. 1 Cartoon diagram showing a selection of approaches to capture biochemical reaction
information as a graph, and possible discrepancies that can arise from this choice. We consider
a small section of the central metabolism as an illustrative example. (a). The system contains
three enzymatic reactions labelled as R1, R2 and R3, as well as with their KEGG reaction IDs
(R00267, R01899, and R00268). The main metabolites {M1, M2 and M3} and additional ones
{C1, C2, C3 and C4} are highlighted in black and red font respectively. (b) A directed bipartite
graph corresponding to the reaction system given in (a). The enzyme information can be encoded
within the reaction class (rectangular boxes), while substrates and products are represented by a
metabolite class (circles). Solid and dashed lines represent involvement of substrates and products
respectively in each reaction. (c). An undirected unipartite graph representing the same system.
A reduced graphical complexity has been obtained by omitting the enzymatic information (i.e. the
reaction class). Note that this results in the loss of the specificity of products and substrates towards
reactions. (d) Another alternative graph representation with further reduction of complexity.
Additional metabolites C1, C2, C3 and C4 have been absorbed into the graph. A comparison
between these different graphs shows differences in graph-based statistics such as centrality and
node degree; for example metabolites M1, M2 and M3 have different degrees {4, 5, 4}, in (c), but
the same degree of 2 in (d)

of highly connected nodes, so-called hubs, in the system. It has been argued that
these highly connected metabolites, that include the well-known energy carriers
(such as ATP and GTP) and reductive equivalents (such as NADH and NADPH),
represent evolutionarily ancient parts of the system (Wagner & Fell, 2001).

In order to better understand if any specific connectivity distribution could infer a
functional (or evolutionary) benefit to a network, it is necessary to consider possible
mechanisms that can generate such distribution. A general, empirical model for
network expansion, which can lead to a scale-free connectivity distribution has
been proposed and involves the preferential attachment of new nodes onto existing
ones based on their connectivity (Ravasz et al., 2002). While the general nature
of this model is useful to construct random networks with scale-free connectivity
distribution, it has been shown that alternative, and biochemically more realistic
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network expansion schemes can also lead to networks that display such connectivity
distributions (Keller, 2005; Salathé et al., 2005; Takemoto & Akutsu, 2008; Pastor-
Satorras et al., 2003). Additionally, in silico evolution of toy metabolic systems of
enzymatic reactions, under selection for supporting growth, has shown to lead to the
emergence of networks with scale-free connectivity distribution and hubs (Pfeiffer
et al., 2005; Hintze & Adami, 2008). In one such study, the initial system that was
composed of broad-specificity enzymes evolved, under selection for faster growth,
into one that is composed of enzymes with high specificity, some of which highly
connected, i.e. enzyme specificity and hubs have emerged (Pfeiffer et al., 2005).
However, whether hubs emerged or not was dependent on the presence/absence
of group transfer reactions in the toy metabolism, suggesting that the observed
connectivity distributions in metabolic networks might be a by-product of the
nature of biochemical reactions involved. An alternative theory suggests that the
observed connectivity distributions (and in particular the presence of hubs) have
emerged from selection for increased robustness of metabolic systems against loss
of enzymes, since presence of hubs can infer to the system such robustness (Jeong et
al., 2000). This argument, however, is not fully supported by subsequent analyses.
In particular, it is indicated that the robustness of metabolic systems to enzyme
loss is apparent; many of the enzymes that can be seemingly dispensable under
a metabolically rich environment (suggesting high robustness to enzyme loss) are
actually required in some other, metabolically limited environment (Papp et al.,
2004). This kind of apparent robustness has emerged under in silico evolution
experiments, where toy metabolic models were evolved under selection for growth
under fluctuating environments (Soyer & Pfeiffer, 2010).

In summary, these findings show that the general connectivity distribution
of metabolic networks is different from random ones, but might not have been
directly selected for during evolution and rather resulted as a by-product of other
evolutionary forces acting on metabolic systems. More broadly, they highlight the
need for any adaptive arguments proposed for the possible evolutionary origins and
significance of any structural network features to be evaluated carefully against
simpler and possibly nonadaptive explanations (Papp et al., 2009; Zhou & Nakhleh,
2011; Basler et al., 2012).

2.3 Modules in Metabolic Networks

Another structural feature observed in graph representation of metabolic networks
is the presence of clusters, or modules, where member nodes in a module present
higher connectivity among themselves compared to the rest of the network (Ravasz
et al., 2002; Guimerà & Amaral, 2005). It is shown that many of these modules
correspond to known pathways that are described based on biochemical studies
(Guimerà & Amaral, 2005). As with connectivity distributions, several evolutionary
mechanisms have been proposed that can lead to the emergence of modular
networks, including selection for increased enzyme specialisation (Soyer, 2007;



An Evolutionary Systems Biology View on Metabolic System Structure and Dynamics 165

Espinosa-Soto & Wagner, 2010) or robustness to gene loss (Ravasz et al., 2002),
or growth under static (Takemoto, 2012), randomly fluctuating (Hintze & Adami,
2008), or structured environments (Lipson et al., 2002; Kashtan & Alon, 2005).
Modularity being the result of selection for robustness, is not supported by a
subsequent study, which found no relation between robustness against genetic and
metabolic perturbations and modularity in computationally generated toy models of
metabolic systems (Holme, 2011). Modularity emerging from selection for growth
under fluctuating or modular environments had a mixed support from subsequent
analyses. Analysis of network modularity in different organisms that were grouped
according to the environmental variability that they experience suggested some
correlation between the two (Parter et al., 2007). Analysis of randomly generated
metabolic networks also suggested a relation between modularity (based on flux
distributions) and ability of a metabolic system to sustain growth in different
simulated environments (Samal et al., 2011). Several other analyses found distinct
levels of modularity for organisms living in different habitats or living different
lifestyles (e.g. auto- vs. heterotrophic) (Kreimer et al., 2008; Takemoto & Borjigin,
2011; Mazurie et al., 2010), however there was no simple correlation between
possible indicators of environmental variability (for example number of transport
enzymes) and network modularity (Kreimer et al., 2008). Few studies found
instead a strong correlation between habitat temperature and the level of metabolic
modularity (Takemoto et al., 2007; Takemoto & Akutsu, 2008). In silico evolution
of a toy metabolic system under fluctuating environments has found no positive
relation between the level of modularity emerging over an evolutionary period
and the level of environmental fluctuation over that time (Hintze & Adami, 2008).
Taken together, these findings leave it inconclusive at the moment if the nature and
frequency of environmental fluctuations had a strong influence on the selection of
the level of network modularity.

It must be noted that any analysis of modularity in a network will depend on
the definition of modularity and its quantification, as well as the choice of system
abstraction used for the network representation. Methods that are alternative to those
based on simple graph representation of metabolic systems have been attempted
to define and measure modules (Kanehisa, 2013; Yamada et al., 2006; Muto et
al., 2013; Sorokina et al., 2015). Perhaps the most straightforward of these is
to define metabolic modules based on sets of reactions that are associated with
each other according to the information in the literature. The KEGG database
for example employs this strategy to define ‘metabolic modules’, which contain
reactions resulting from literature-based pathway definitions, or are associated to
a set of enzymes that are shown to either form a larger complex or are organised
together on the genome (Kanehisa, 2013). The latter aspect is further developed
into a ‘phylogenetically’ motivated metabolic module description, where modules
are identified from the phylogenetic distribution profiles of individual enzymes and
their ‘connectedness’ within metabolic reaction maps (Yamada et al., 2006). This
approach indicated that enzymes that are closely connected (in terms of how many
reactions separate their substrates) share more similar phylogenetic distributions
across sequenced genomes. While plausible, this finding needs to be reevaluated in



166 C. Johnson et al.

light of phylogenetic distributions of modules corrected for phylogenetic relatedness
of the organisms that they are found in, since such a correction is shown to impact
the level of ‘true’ modularity in all biological networks analysed (Snel & Huynen,
2004).

Another alternative approach is to define modules based on reaction similarities.
In this case, all known reactions are grouped into categories based on the similarity
of the atomic conversions that they enable and then are used to analyse existing,
known metabolic systems for common reaction patterns. This approach has allowed
identification of so-called reaction modules, which represent patterns of specific
reaction groups reoccurring in different parts of metabolism (Muto et al., 2013;
Sorokina et al., 2015). While some of these reaction modules correspond to
aforementioned, enzyme-based metabolic modules, some of them represent unique
modules (Kanehisa, 2013). The existence of such modules suggests that despite the
differences in the enzymes employed, different parts of metabolism employ similar
reactions and that metabolic system evolution might be driven by adaptation of
existing reactions to ‘work’ on new metabolites (Schmidt et al., 2003). Supporting
this suggestion, simulating the evolution of metabolic systems through a reaction-
based expansion algorithm, where new reactions are added to a network when
their corresponding metabolites are made available by previous reactions or by
the environment, showed that the resulting expanded networks display similar
properties as those observed in nature (Ebenhoh et al., 2004; Ebenhöh et al., 2005;
Raymond & Segrè, 2006). These findings can be interpreted as metabolic systems
having emerged as a core set of chemical reactions, which are then reused in slightly
different biochemical contexts when that network expanded to accommodate new
molecules (Raymond & Segrè, 2006; Muto et al., 2013). This reaction-based view
of metabolic evolution would be in agreement with an enzyme-based evolutionary
scenario that considers early enzymes of low specificity subsequently diverging and
specialising on different substrates, while maintaining a core set of reaction types
(Jensen, 1976; Schmidt et al., 2003; Pfeiffer et al., 2005). It is important to note,
in this context, that many of the current-day enzymes display promiscuous (low
specificity) functions that are shown to facilitate the evolution of new pathways
within the metabolic system (Kim et al., 2010; Soo et al., 2011).

2.4 Network Motifs

An alternative structural analysis of metabolic systems abstracted as networks, is
to search for small interaction patterns within them that are overrepresented in the
original network compared to randomised networks serving as null models. These
patterns, or so-called motifs, were first identified in signalling and transcription
networks (Milo et al., 2002). These two types of networks are found to display
different motif prevalence, suggestive of a link between network function and
type of motifs present (Milo et al., 2004). Indeed, subsequent studies have shown
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that several of the motifs found in signalling and transcription networks can
embed specific functions in a dynamical context, including noise filtering in signal
transduction, and decoupling of the expression speed and level, in gene regulation
(Goentoro et al., 2009; Mangan & Alon, 2003; Mangan et al., 2006; Alon, 2007;
Lipshtat et al., 2008).

These findings, where overrepresented motifs from specific networks display
specific dynamical and functional properties that are relevant to the overall function
of those networks, suggest that motifs could provide the link between structural and
dynamical (or functional) analyses of networks. This possibility, however, is called
into question both in terms of statistical significance of overrepresented motifs
and in terms of how specific their functional and dynamical properties are. The
identification of overrepresented motifs is directly influenced by the choice of null
models that the original, analysed networks are compared to (Artzy-Randrup, 2004).
This raises the issue of identifying a suitable null model for the network being
analysed, with alternative null models giving rise to different motif significance
results (Konagurthu & Lesk, 2008; Avetisov et al., 2010). Even if overrepresented
motifs are correctly identified, their functional significance is difficult to assess.
For example, the bi-fan motif, identified in gene regulatory motifs and suggested to
display specific dynamical properties, displays a range of dynamics under different
parameter sets and modelling choices (Ingram et al., 2006). Similarly, an analysis
of all three-node signalling network motifs indicated dependence of their response
dynamics on the specifics of biochemical implementation choices in the model used
(Soyer et al., 2006).

Identification and analysis of network motifs in metabolic systems are subject to
these same issues as well. While specific metabolic network motifs were identified
as significant (Eom et al., 2006), it was subsequently shown that this result is
dependent both on the original network representation used and the randomised
networks used for comparison (Beber et al., 2012).

3 Dynamics of Metabolic Systems

Cell metabolism is a dynamical process that converts an initial set of environ-
mentally available metabolites into a set of end products that are released into
the environment or incorporated into biomass (Fig. 2). While many reactions
take part in this process, an overall chemical reaction can be written to describe
the full conversion from substrates to end products. This overall reaction takes
the form of a redox reaction, indicating that cell metabolism enables the flux of
electrons across many reactions and between an initial electron donor and a final
electron acceptor (Gottschalk, 1986) (Fig. 2a). It is shown that these intercoupled
reactions, the involvement of conserved moieties in many of them, and metabolite-
mediated allosteric regulation of enzymes (Fig. 2b) can all lead to rich temporal
dynamics including oscillations and multi-stability (Reich & Sel’kov, 1981). These
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Fig. 2 Schematic representation of the chemical transformations carried out by a cell. (a)
Representation of metabolic reactions at cell scale, considering the cell itself as a black box. From
this standpoint, the phenomenon of cell growth appears as the combination of a catabolic and an
anabolic reaction, as well as energy extraction from redox reactions that transfer electrons from
an initial electron donor to a final electron acceptor. (b) More detailed representation of metabolic
reactions, where the focus is shifted from the cell to its metabolic network, and highlighting both
the many redox reactions and other types of chemical conversions. The metabolites are linked
by chemical reactions (black arrows), sometimes involving the conversion of conserved moieties
that are involved in redox (e.g. NAD/NADH, yellow for reduction and green for oxidation) and
energy (e.g. ADP/ATP, red for energy investment and blue for energy extraction) balances. The
upkeep of conserved moieties’ balances can involve interaction with protein complexes embedded
in the membrane (shown in grey). Some of the enzymes catalysing the reactions of the metabolic
network are regulated by the concentration of metabolites, through allosteric regulations (shown
as light blue and orange arrows)

nonlinear dynamics, on their own, or in combination with gene regulation, can
then give rise to dynamic cellular behaviours. One of the key, open challenges
in metabolic research is to decipher these higher-level metabolic behaviours and
pinpoint structural features in the network that can be used as their explanatory and
predictive indicators.
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3.1 Overflow Metabolism and the Respiration-Fermentation
Switch

Perhaps one of the earliest dynamical observation on higher-level behaviour of
metabolism is a shift from pure respiration into fermentation or respiro-fermentation
with changing conditions. This shift, known as contre-effet Pasteur, Warburg, or,
Crabtree effect, is described initially in yeast and mammalian cells (De Deken,
1966). In a respiratory mode, metabolism utilises a strong electron acceptor
such as oxygen and the associated, membrane bound electron transport chain. In
fermentative mode, instead, metabolism utilises weak organic acids as electron
acceptors and associated pathways, which provide a stoichiometric balance between
reactions oxidising and reducing the key electron carriers (such as NAD+ and
NADH) (Gottschalk, 1986). Cells are found to display a shift from respiration to
fermentation with changing availability of electron acceptors or carbon source, and
with increasing growth rate (De Deken, 1966; Christen & Sauer, 2011; Meyer et al.,
1984; Nanchen et al., 2006; Schulze & Lipe, 1964; Valgepea et al., 2010; Luli &
Strohl, 1990; Postma et al., 1989; Rieger et al., 1983; Dauner et al., 2001). While
a shift into fermentative pathways due to lack of strong electron acceptors can be
intuitively understood as the only route to sustain electron flow, a similar shift due to
increased carbon availability or growth rate are nonintuitive as they occur under the
continued presence of strong electron acceptors such as oxygen and despite higher
energy efficiency of respiration.

It has been suggested that a switch into fermentative pathways in presence of
oxygen, happens due to limitations on the respiratory chain and associated pathways
(Postma et al., 1989; Rieger et al., 1983). In this argument, the increasing carbon
flow cannot be sustained by respiration alone, and any overflow needs to be directed
into fermentative pathways to maintain stoichiometric balances and an assumed
optimal growth (Majewski & Domach, 1990; Varma et al., 1993). This ‘limitation-
based’ view, is extended by recent studies, which have argued for cellular space
(Szenk et al., 2017; Zhuang et al., 2011) or protein content being key limiting
factors that can favour fermentation over respiration, because fermentation is more
efficient with regards to these features compared to respiration (i.e. higher energy
produced per protein or space investment) (Molenaar et al., 2009; Basan et al., 2015;
Schuster et al., 2011; Goelzer & Fromion, 2017; Wortel et al., 2018). The idea that
overall protein amounts can be limiting is linked to the observation that increasing
growth rates, where a switch to fermentation happens, results in an increased
investment from the shared proteome pool into ribosomes (Klumpp et al., 2009)
and that this can cause a shift into the more protein efficient fermentation (Basan
et al., 2015; Schuster et al., 2011). Recent temporal measurements on proteome
allocation, however, do not necessarily show a shift in the expression of the enzymes
involved in central metabolism vs. respiration when cells undergo a respiration-to-
fermentation switch (Goel et al., 2015; Metzl-Raz et al., 2017). Moreover, the fact
that not all yeast species exhibit the Crabtree effect (De Deken, 1966) indicates that
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the extent and dynamics of the Crabtree effects can be tuned, instead of being the
result of an insurmountable limitation arising from resource allocation.

A plausible alternative explanation for the onset of a respiration-fermentation
shift is the dynamics of the oxidised and reduced forms of key redox carriers
within metabolism. These forms are involved in many of the reactions of the central
metabolism, including glycolysis, TCA cycle, and pathways branching from these,
as well as the respiratory chain (Fig. 2b). Thus, it is possible that shifts in the
NAD+/NADH balance can directly affect the flux distribution across these different
pathways (Hatakeyama & Furusawa, 2017; Reich & Sel’kov, 1981). It is observed,
both in yeast and E. coli, that altering NADH/NAD+ dynamics with synthetically
incorporated oxidases alters the critical level of glucose, at which the respiration-
to-fermentation switch happens (Vemuri et al., 2006, 2007). Additionally, it is
found that changes in the activity of pyruvate kinase, a key enzyme implicated in
cancer cells’ increased capacity for the respiration-fermentation switch (Diaz-Ruiz
et al., 2009), can cause a feedback onto the dynamics of NADPH, which acts both
as an electron carrier and a neutraliser of reactive oxygen species through redox
reactions (Grüning et al., 2011). It is also possible to envision similar limitations,
and impacts on metabolic fluxes, arising from ATP/ADP balances. Indeed, ATP
balance is implicated to affect metabolic fluxes under different conditions in B.
subtilis, including conditions favouring a respiration-fermentation switch (Dauner
et al., 2001). That limitations arising from ATP/ADP and NAD+/NADH balances
can cause changes in overall metabolic fluxes, and lead to metabolic switches
and overflows, is an attractive mechanistic explanation that could explain several
additional metabolic overflows such as of amino acids and vitamins (Dauner et al.,
2001; Jiang et al., 2018; Ponomarova et al., 2017).

The proposition that metabolic shifts are due to certain cellular limitations is an
interesting concept to consider through the lens of evolution. It can be argued that
any limitations on cellular resources can be overcome under appropriate selective
pressures. If such limitations have not been overcome, then this is suggestive that
they are either linked to physical hard bounds that evolution cannot surpass, or relate
to trade-offs between different selective pressures. One such trade-off is proposed
between growth rate and yield (Novak et al., 2006; Schuster et al., 2011; Bachmann
et al., 2013; Wortel et al., 2018). For example, increasing the number of ATP
producing reactions in a linear pathway would slow its overall flux rate, presenting
a simple mechanism of a rate-yield trade-off (Pfeiffer et al., 2001; Heinrich et al.,
1991). Such a thermodynamic basis for a rate-yield trade-off, combined with the
higher energy yield of respiration, is used to argue for it driving the respiration-to-
fermentation shift (Pfeiffer et al., 2001).

The respiration-to-fermentation shift, or overflow metabolism, results in the
excretion of organic acids from cells, such as acetate and lactate. These organics
can be used as a carbon source by other cells and result in a so-called cross-feeding
interaction. It has been theoretically shown that trade-offs among uptake efficiencies
of different carbon sources can lead to cells evolve into specialists on one of such
carbon sources, creating the basis for the emergence of cross-feeding even within
a single population (Doebeli, 2002). Indeed, long-term evolution experiments with
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Escherichia coli resulted in the emergence of different clones that are shown to
interact metabolically through cross-feeding (Le Gac et al., 2008; Rozen & Lenski,
2000; Grosskopf & Soyer, 2016).

3.2 Carbon Preference and Catabolic Pathway Switching

Another phenomenon observed with overall metabolic dynamics is the ‘carbon
preference’ or ‘carbon catabolic repression’. It was found that when microbes are
cultivated in the presence of a mix of different substrates that they can catabolise,
consumption follows a sequential pattern (Görke & Stülke, 2008; Monod, 1949),
with an order of carbon sources specific to the microbial species (Collier et al.,
1996; Van Den Bogaard et al., 2000; Parche et al., 2006). While it is shown
that such carbon source switching can involve genetic regulatory networks with
possible bistable dynamics (Ozbudak et al., 2004; Solopova et al., 2014; van Hoek
& Hogeweg, 2006), it is less clear how the initial sensing of different carbon
sources is achieved and conveyed to the regulatory level. One simplistic explanation
is that carbon sources are directly sensed to trigger activation and inhibition of
the associated downstream catabolic pathways to enforce the carbon preference
hierarchy. This mechanism has been shown to be implemented in a few bacteria,
but only for a small subset of their possible substrates (Aidelberg et al., 2014).
Recent studies suggest that the adaptation of the microbial metabolic networks is not
modulated by direct detection of the concentration of the entry-point substrates, but
rather by the temporal dynamics of the concentration of key metabolites inside the
network. It is proposed that there could be sensing of the metabolic fluxes through
these key metabolites, which can react with transcription factors and thus affect
the expression of catabolic enzymes to create feedback systems (Kotte et al., 2010;
Görke & Stülke, 2008; Aidelberg et al., 2014).

A kinetic model of metabolism and gene regulation featuring central carbon
pathways and several regulatory interactions between specific metabolites and
transcription factors has allowed successful simulation of the carbon preference
hierarchy (Kotte et al., 2010). Analysis of this model suggested that a given
metabolite can become a ‘flux-reporting’, key metabolite, either because it is only
produced under specific environmental conditions, or because it sits between two
low-energy reactions, where its concentration can act as a reporter of the flux
direction at this point in the metabolic system (Kotte et al., 2010). For example,
in the E. coli metabolic system, fructose-1,6-bisphosphate, an intermediate of
glycolysis, and its interaction with the transcription factor Cra is implicated as a
flux-sensing regulatory system (Kochanowski et al., 2013).

Allosteric regulation of enzymes, that is regulation of enzyme activity through
binding of substrates and products or additional metabolites, is another possible
route to altering metabolic fluxes. This is possibly an evolutionary more ancient
route to regulating metabolic systems, as it would not require gene regulation and the
intermediary role of transcription factors. Additionally, allosteric regulation could
allow for a quicker response to changing environmental conditions. Information on
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the allosteric regulation of many enzymes is available and catalogued in databases
(Jeske et al., 2019; Huang et al., 2011), and its regulatory role is implicated in several
computational and experimental studies. The dynamic variations of many fluxes
in the metabolic network of B. subtilis were not correlated to the expression level
of its enzymes, suggesting that other means of regulation were at play, including
allosteric regulation (Chubukov et al., 2013). Recent experimental work shows that
allosteric regulation is required in addition to transcriptional control to explain the
observed flux dynamics during catabolic repression and co-utilisation in B. subtilis
(Buffing et al., 2018). Similarly, in E. coli, explaining metabolic flux shifts in
response to changes in the nature of the carbon source required multiple regulatory
layers including allosteric regulation (Link et al., 2013; Gerosa et al., 2015). A
metabolic network model implementing such candidate allosteric regulations was
able to predict flux dynamics under changing substrate availability (Machado et al.,
2015).

3.3 Oscillations and Bistability

The high-level observations of pathway switching and catabolic hierarchy indicate
that metabolic system fluxes can be abruptly altered upon changes in conditions.
Such dynamics are suggestive of multistable, nonlinear dynamics, which could be
expected from any system that displays high interconnectedness as seen in metabolic
systems; many metabolites are acted upon by many different enzymes, individual
enzymes can form dimers and heteromers that can bind multiple substrates and
additional, nonsubstrate metabolites, and multiple reactions can connect through
their metabolites to form cyclic or feedback reaction systems. These features pro-
vide a significant potential for metabolic systems to implement nonlinear dynamics
such as bistability, oscillation, and homeostasis (Reich & Sel’kov, 1981).

Among these, bistability refers to a dynamical system that can attain two different
steady states depending on initial conditions. Changes from one of these steady
states to the other can be caused through perturbations in parameters or concentra-
tions of system components. In the context of metabolic systems, two steady states
would manifest themselves as different flux rates across reactions and perturbations
can arise from changes in enzyme or metabolite concentrations, or through changes
in catalytic rates of enzymes (induced for example through allosteric regulation).
Bistability in metabolic system dynamics has been implicated in the context of
respiration-to-fermentation switch (Lei et al., 2003), and when carbon metabolism
is initiated on glucose (van Heerden et al., 2014) or switches from glucose to
other carbon sources (Kotte et al., 2014; Şimşek & Kim, 2018; Ozbudak et al.,
2004; Solopova et al., 2014). In particular, the latter studies found subpopulations,
within isogenic populations, that show different metabolic behaviours not caused
by mutations. In glucose-shift experiments, additional experiments with isotope
labelled carbon indicated that these subpopulations emerged at the time of the
shift, i.e. in response to changing conditions, and in a manner dependent on the
concentrations of the different carbon source (Kotte et al., 2014). This suggests
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that the metabolic system implements bistable dynamics, such that changes in
external glucose concentrations can lead some cells to shift to a new metabolic
steady-state flux distribution. Indeed, mathematical models implementing bistability
are proposed to explain these experimental observations, in some cases involving
transcriptional feedback in addition to metabolic dynamics (Kotte et al., 2014;
Ozbudak et al., 2004; Solopova et al., 2014), and in other cases just the metabolic
dynamics (Planqué et al., 2014).

In terms of bistability arising solely from metabolic system dynamics, there
have been many theoretical studies indicating the possibility of bistability within
simple enzymatic reaction systems (Fig. 3a). For example, bistability is shown to

Fig. 3 Two cyclic reaction motifs and their corresponding dynamics. Note that such cyclic
reaction motifs are readily found in natural metabolic systems, and in particular for reactions
involving NAD+/NADH-linked dehyrogenases (e.g. isocitrate and dihydrolipoyl dehydrogenases)
and kinase-phosphatase pairs (e.g. phosphofructokinase—fructosebiphosphate pair). Reaction
motifs are shown as cartoons with labelled circles representing substrate (S), product (P) and
enzymes (E1 and E2). (a) Substrate (S) is converted into product (P) and then back again by
two different enzymes (E1 and E2). These two enzymatic reactions can involve additional and
different substrates and products (not shown) such that thermodynamic feasibility of the cycle is
ensured. The activity of E1 is substrate inhibited, that is, high concentrations of substrate reduce
the rate of substrate to product conversion. Such a motif can display bistability under certain
parameter conditions as shown in the subsequent panels. The middle panel shows the steady-state
concentration of the substrate against the catalytic constant for E1 (kcat), while the last panel shows
the time evolution of the substrate concentration, simulated from different starting conditions. (b)
The same reaction motif as in (a), with the addition of flux into substrate from an external reservoir
or upstream reaction (not shown) and flux out from the product into a downstream reaction (not
shown). In this case, substrate concentration may oscillate within certain parameter regimes as
shown in the subsequent panels. The first panel shows the steady-state concentration of product
against the steady-state concentration of substrate, while the second panel shows the evolution of
substrate concentration over time
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be possible in systems of few coupled enzymatic reactions (Edelstein, 1971; Reich
& Sel’kov, 1981). A particular ‘reaction motif’ that has been studied extensively is
a two-enzyme cyclic reaction system, where a substrate is converted into a product
and then back again, with both forward and backward reactions usually involving
different co-substrates. It is common that the enzyme catalysing the forward reaction
is regulated through substrate inhibition or substrate inhibition coupled with product
activation (Hervagault & Canu, 1987; Cimino & Hervagault, 1990; Simonet et al.,
1996; Guidi & Goldbeter, 1998; Mulukutla et al., 2014). This motif is found in
several locations within metabolism, particularly around dehydrogeneases such as
lactate dehydrogenase (Simonet et al., 1996), and kinase/phosphatase pairs such
as those involved around fructose-6-phosphate (Mulukutla et al., 2014). These
reactions convert different metabolites back and forth, using the NAD+/NADH or
ADP/ATP pairs as reaction partners. The theoretical findings from such cyclic reac-
tion models were further supported by several in vitro re-constitution experiments
that confirmed bistability experimentally and that were performed with different
pyruvate kinase, lactate dehydrogenase, and isocitrate dehydrogenase enzymes
and their corresponding partners in creating cyclic reaction schemes (Cimino &
Hervagault, 1990; Simonet et al., 1996; Guidi et al., 1998).

In addition to bistability, threshold dynamics known as ultrasensitivity can arise
from metabolic branching points (LaPorte et al., 1984), and can also lead to
heterogeneities in metabolic phenotypes. Both ultrasensitivity and bistability are
manifested by nonlinear ‘input–output’ relations, where the output of a system can
change its steady-state value abruptly at a threshold value of a specific parameter of
the system (Fig. 3a). Thus, if these dynamics are coupled with intrinsic or external
noise in a relevant parameter across a population of cells, heterogenous metabolic
outputs and cellular phenotypes can be observed. In this context, it is notable
that significant level of noise or variance is seen in several metabolic parameters,
including sugar uptake (Nikolic et al., 2013, 2017), ATP levels (Yaginuma et al.,
2014), and expression levels of the enzymes involved in glycolysis and the TCA
cycle (Rosenthal et al., 2018).

The same basic models that show bistable behaviour (as discussed above) can
readily be extended with in- and out-fluxes of involved metabolites, to display
oscillations (Fig. 3b) (Higgins, 1964; Sel’kov, 1968; Guidi & Goldbeter, 1998, 2000;
Goldbeter & Guilmot, 1996). While these theoretical demonstrations of specific
enzymatic schemes leading to oscillations have not been explored in detail in vitro,
metabolic oscillations are readily observed both in vivo (Satroutdinov et al., 1992;
Richard et al., 1993, 1996; Keulers et al., 1996; Sohn et al., 2000; Wittmann et
al., 2005; Dodd & Kralj, 2017; Papagiannakis et al., 2017) and in situ, with cell
extracts (Boiteux et al., 1975; Frenkel, 1968; Chance et al., 1964). In the latter case,
both damped and sustained oscillations are observed, usually with a phase ranging
from few to tens of minutes. It is possible that these oscillations relate to artificial
changes in ATP dynamics arising from cell extract preparations (Frenkel, 1968),
however, the fact that oscillations could be entrained by controlled glucose additions
(Boiteux et al., 1975), show that there is an inherent ability for oscillatory dynamics
in the underpinning enzymatic system. This ability is suggested to be linked
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to the enzyme phosphofructokinase (PFK), which catalyses the phosphorylation
of fructose-6-phosphate into fructose-diphosphate (Laurent et al., 1979). Several
mathematical models of this enzymatic reaction, and incorporating the observed
allosteric regulation of PFK both by its substrates and products, confirm the
possibility of sustained oscillations (Higgins, 1964; Sel’kov, 1968; Goldbeter &
Lefever, 1972).

In the case of intact cells, oscillatory dynamics are observed to occur within the
central carbon pathways and displaying a phase of tens of minutes (Satroutdinov
et al., 1992) up to several hours (Wittmann et al., 2005; Papagiannakis et al.,
2017). Metabolic oscillations were demonstrated at single-cell level and are found
to be autonomous but coupled with cell cycle oscillations (Papagiannakis et al.,
2017). Additional studies across cell populations found that cells can synchronise
metabolic oscillations under some conditions (Satroutdinov et al., 1992; Richard
et al., 1993), and proposed several possible mediators including acetaldehyde,
hydrogen sulphide, carbon dioxide, and pH (Richard et al., 1996; Keulers et al.,
1996; Sohn et al., 2000; Dodd & Kralj, 2017). Models, involving some of these
proposed synchronisation molecules, were also developed (Wolf & Heinrich, 2000;
Wolf et al., 2001) and could reproduce experimental findings.

4 Evolutionary and Physical Drivers (and Constraints)
on Metabolic Systems

We have highlighted, so far, a diverse range of structural and dynamical features of
metabolism. We would argue that despite this accumulated wealth of information,
we still lack a predictive understanding of metabolism at a systems level. For
example, for many of the observed dynamics, it is not clear what their causative
mechanisms are and how they could be influenced with external and internal
perturbations. Additionally, for many of the observed structural features, we do
not know what their functional significance are. Answering these open questions,
as well as better conceptualising metabolic systems and devising new means to
influencing their behaviour can benefit from identification of evolutionary drivers
and constraints. While we have alluded to specific evolutionary arguments and
studies in the above sections on observed properties, here we would like to
summarise additional evolutionary and biophysical drivers and constraints relating
to metabolism.

4.1 Thermodynamics

As collections of chemical reactions, metabolic systems must obey the laws of
thermodynamics (Alberty, 2005). An active metabolic system remains away from
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thermodynamic equilibrium through interactions of cells with external energy
sources including molecular, thermal or pH gradients, and photo radiation, and
as such, metabolism and its link to cellular growth can be described through the
formalisms of nonequilibrium thermodynamics (Cannon & Baker, 2017; Westerhoff
et al., 1983; Hellingwerf et al., 1982; Desmond-Le Quéméner & Bouchez, 2014;
Goldbeter, 2018). Thus, considering thermodynamics-based ideas and criteria can
provide insights into the evolution and present organisation of metabolic systems.
For example, it has been shown that the utilisation of low-energy reactions that
are more prone to thermodynamic inhibition due to product accumulation can
allow relaxation of the ecological competitive-exclusion principle, and lead to co-
existence of diverse species implementing different metabolic conversions, starting
from a single substrate (Grosskopf & Soyer, 2016). Such low-energy reactions
are present within cellular metabolism itself (Fig. 4), suggesting that metabolic
pathway diversification could have evolved as a way to overcome thermodynamic
bottlenecks. Other studies made similar suggestions for thermodynamics playing a
key role in determining the overall organisation of cellular metabolism (Bar-Even
et al., 2012a, b) and metabolically interacting multiple species (Vallino, 2010).
In the latter case, computational simulations showed that applying the theory of
‘entropy maximisation’ in a way such that entropy production is maximised in a toy
metabolic model over a time span and across a varying environment, results in a
system behaviour similar to that observed from experimental microbial microcosms
(Vallino, 2010). It remains to be seen if this type of optimisation can also explain
the organisation of cellular metabolism or not.

Besides its possible role in shaping metabolic system organisation, thermo-
dynamic constraints could also be directly influencing their temporal dynamics.
Evidence for this possibility comes from the observation that many reactions
within central carbon metabolism have free energies of reaction close to zero
(Miller & Smith-Magowan, 1990; see also Fig. 4 legend). These reactions can
become thermodynamic bottlenecks or reverse pathway flux direction under certain
conditions (González-Cabaleiro et al., 2013; Dauner et al., 2001), thereby becoming
influencing points for metabolic system dynamics. Thus, a combination of mea-
suring metabolic concentrations and assessing reaction thermodynamics can allow
an understanding of metabolic fluxes within a system, or conditions for enabling
a certain flux distribution (Kümmel et al., 2006; Bennett et al., 2009; Noor et al.,
2014). It is also possible that thermodynamic limitations under certain conditions
can serve a regulatory or feedback role. For example, it is indicated that some
proportion of observed flux shifts with changing carbon sources are explained by
changes in reaction thermodynamics (Gerosa et al., 2015) and the excretion or
consumption of acetate can be thermodynamically controlled by external acetate
concentration (Enjalbert et al., 2017).
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Fig. 4 Frequency histogram showing the standard reduction potentials (at pH = 7) of a set of
metabolic redox half-reactions among a select set of 140 metabolites. This set of metabolites was
compiled by Thauer (1977) along with their standard free energies of formation (at pH = 7).
Using this set, we have computationally generated all possible atom balanced reduction half-
reactions among the 140 metabolites (a total of 14,563 reactions) and computed the standard
reduction potential for each reaction from the standard free energies of formation of the constituting
metabolites and the number of electrons involved. The mean reduction potential of these half-
reactions was found to be −272.03 mV (red dashed line). While the presented results contain
both biologically realised and unrealised reactions, it is interesting to note that the mean of
the distribution is close to the reduction potential of the NAD+/NADH pair at −320 mV. Four
examples of biologically observed reactions are indicated on the distribution, at their corresponding
standard reduction potentials; calculated values according to the presented approach are {−517,
−431, 281, 815 mV}, while corresponding values from the literature are {−500, −420, 300,
820 mV} (Voet et al., 2013). Note that higher (more positive) values of standard reduction potentials
indicate metabolites affinity for electrons, i.e. their tendency to be reduced in a redox reaction.
Thus, half-reactions with more negative (positive) reduction potentials have a tendency to run in
the oxidation (reduction) direction
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4.2 Biomass and Energy Production

The connection between metabolism and the production of cell constituents (i.e.
biomass) is clear and well-formulated (Neidhardt et al., 1990). This clear connection
has led to a dominant evolutionary view on metabolism that puts it as a servant to
the cell and argues that selection for cells’ proliferation dominates the evolution
of metabolism. This view has led to the development of the commonly used stoi-
chiometric modelling through flux balance analysis (FBA), which uses optimisation
for biomass yield (on a given substrate) as its basis (Price et al., 2004). Alternative
optimality criteria for FBA has also been formulated, but these also assume links
to biomass formation; maximisation of ATP yield (Schuster et al., 2008; Schuetz
et al., 2007) and minimisation of enzyme investment (i.e. total flux in the FBA
context) along with biomass maximisation (Holzhütter, 2004). The latter idea has
recently given rise to the Resource Balance Analysis (RBA), where the focus is
still the optimisation of biomass production but considering not only metabolic flux
constraints but also constraints arising from protein allocation to different cellular
processes including transcription and house-keeping (Goelzer & Fromion, 2017).

Optimality ideas are also used to explore the biochemically feasible space of
reactions using both kinetic simulations and graph theoretical approaches and to see
if observed metabolic pathways are superior to alternatives in terms of supporting
cellular growth. Both kinetic studies using optimality analysis and the simulation of
feasible possible pathways indicated that glycolysis represents an optimal solution
for maximising ATP flux (Heinrich et al., 1997; Court et al., 2015). Graph theoretical
approaches suggested that the central carbon pathways represent enzymatically
minimal routes among the different metabolites that act as precursors to biomass
(Noor et al., 2010), and that the pentose-phosphate pathway represent the most
enzyme-efficient solution to the sugar conversion it implements (Meléndez-Hevia &
Isidoro, 1985). Enzyme cost minimisation with biomass optimisation, as used in the
RBA approach, is also used to explain the presence of enzymatically different, but
seemingly functionally redundant pathways in central metabolism, in particular, the
glycolytic Embden–Meyerhoff–Parnass and Entner–Doudoroff pathways (Flamholz
et al., 2013). These pathways are shown to require different levels of enzyme
investment for achieving the same flux, a point that is used to argue that their
evolution was driven for a requirement to sustain efficient biomass formation under
environmental conditions that can support different levels of protein production
(Flamholz et al., 2013). Following on from these findings, it was shown that
when a metabolic system is simultaneously optimised for maximum flux and
minimal enzyme investment, the resulting flux distributions correspond to so-called
elementary flux modes (Wortel et al., 2014; Müller et al., 2014), which are paths
through the metabolic system that have minimal enzymatic steps and that can sustain
the required metabolic conversion under steady-state conditions (Schuster et al.,
2000). In a recent study, these elementary flux modes are enumerated and analysed
for their biomass yield and the growth rate that they can sustain when assuming
minimal enzyme investment (Wortel et al., 2018).
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4.3 Maintenance of Metabolic Gradients and Physicochemical
Constraints

Selection alone for more or faster biomass formation could not have been a key
driver of early metabolic systems that must have predated cells (or at least cells as
we know them today). Instead, these systems must have been directly born out of
nonequilibrium thermodynamics emerging from chemical gradients (Branscomb &
Russell, 2013). Thus, the presence and maintenance of these gradients, as well as
the chemicophysical properties of associated metabolites can still be relevant and
informative for the current-day metabolic systems.

Stabilisation of mechanisms that can generate extracellular entropic gradients
on which metabolism can operate is considered an important prerequisite for
the emergence of metabolism (Branscomb & Russell, 2013). Extracellular spatial
organisations that can allow metabolic systems to operate on chemical gradients
are argued not to readily form in a well-mixed ‘primordial soups’ based on
considerations of diffusion rates (Barge et al., 2017; Branscomb & Russell, 2013).
A possible solution to this problem is mounds of hydrothermal vents that can sustain
metabolic gradients (Branscomb & Russell, 2013; Martin & Russell, 2007). There is
also a possible role for self-forming coacervates, a type of phase separation driven
by charged molecules, that could maintain short-scale metabolic gradients due to
different diffusion rates through the bulk and coacervate phases (Oparin, 1965). In
this context, it is interesting to note that synthetic coacervates are shown to be able
to harbour enzymatic processes (Nakashima et al., 2018) and coacervate-like phase
separations are observed in current-day cells (Nott et al., 2016).

Adaptation of metabolites into these early cell-like formations (or liquid phases)
and ultimately into cellular metabolism could have been driven by their physic-
ochemical properties. For example, metabolites that are more readily involved
in the formation of coacervates or that are readily trapped in them, might end
up being locked-in into later metabolic systems. From this perspective, it is
interesting to note that the analysis of physicochemical properties of current-day
metabolites indicate some trends in terms of reactivity, solubility, and diffusion
across membranes (Morowitz et al., 2002; Srinivasan & Morowitz, 2009; Bar-Even
et al., 2012a, b), there seems to be relations between metabolites’ connectivity in
graph representations of metabolism and their polarity (Zhu et al., 2011), and that
simple physicochemical pruning rules applied on the available chemical space can
lead to biologically relevant subsets of molecules (Morowitz et al., 2002).

If the early evolution of metabolic systems involved a phase-separated, cell-
like environment, than there must have been mechanisms to ensure maintaining
a metabolic gradient across such an environment. It has been suggested that
maintaining such a gradient in light of fluctuating external metabolite concentrations
can be ensured by cyclic reaction systems (Hatakeyama & Furusawa, 2017; Reich &
Sel’kov, 1981). Such cyclic systems are highly prevalent in current-day metabolism
in form many coupled reactions that use the same conserved moieties such as
NAD/NADH and ADP/ATP in opposing directions (see Fig. 3).
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5 Conclusion and Future Outlook

The extensive biochemical and genetic study of metabolism provided us with
detailed information on metabolic systems. While this information can and has
been condensed to graphical representations, graph theoretical analyses of metabolic
systems have not necessarily yielded clear insights to structure–function relations
and predictive capabilities. It is indeed possible that many of the structural features
of metabolic networks are by-products of biochemical and biophysical drivers.
Indeed, when using biochemically appropriate representation and randomisation
schemes, the significance of the gross structural properties of metabolic networks
are highly dependent on the exact null model utilised (Basler et al., 2012; Zhou &
Nakhleh, 2011). When compared to similarly complex abiotic chemical systems,
many structural features of metabolism are found not to be unique (Holme et al.,
2011), suggesting that there is not necessarily any functional (or evolutionary)
significance to these properties.

In terms of dynamics, most focus has been on modelling pathway dynamics,
while considering them as isolated entities. This divide-and-conquer type approach
might be justified due to the curse of dimensionality and lack of detailed kinetic
parameters associated with large-scale metabolic models, yet, we argue that it will
eventually be limited because metabolism is so highly interconnected. Thus, we
advocate a push for analysis of models that can take into account the connected
nature of metabolism, especially through conserved moieties such as redox and
energy carriers. It is possible that simulations with tractable toy models (e.g.
combining metabolism with other cellular processes; Molenaar et al., 2009; Weisse
et al., 2015), or new approaches, such as statistical thermodynamics applied to
metabolic dynamics (Cannon, 2014; Thomas et al., 2014), can provide headways
in this direction.

It has been a common practice to conceptualise metabolism within an adaptive
evolutionary framework and see it as a servant to achieving optimal biomass
production. Within this view, it is proposed that pathway dynamics can be under-
stood through supply–demand type relations (van Heerden et al., 2015; Hofmeyr
& Cornish-Bowden, 2000), where cell growth determines demand for biomass
precursors (and ATP), which is then delivered through pathways such as glycolysis.
This adaptive view has also given rise to the development of whole-genome scale
stoichiometric models of metabolism and their study through FBA and biomass
optimisation. In our view, and as noted also by others (Schuetz et al., 2007; Schuster
et al., 2008), this strong reliance on an adaptive evolutionary argument and ad hoc
constraints limits the FBA approach. Efforts are now being made to improve FBA’s
predictive power with the development of flux rate constraints that are based on
biophysical arguments (Mori et al., 2016), and with the development of approaches
that enable sampling of larger number of possible flux distributions rather than using
linear optimisation on a single objective to obtain a single flux distribution (Binns et
al., 2015). The former point is also being addressed with the recently developed
RBA, which assumes metabolism to be simultaneously optimised for maximum
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biomass production at minimum enzyme investment (Wortel et al., 2018; Goelzer &
Fromion, 2017; Flamholz et al., 2013; Schuster et al., 2011; Molenaar et al., 2009;
Holzhütter, 2004).

It remains to be verified if selection for fast or high-yield biomass production
is, or was, a dominant force on the evolution of metabolism and if the issue
of enzyme allocation is a widespread and evolutionarily relevant limitation. For
example, while unicellular organisms are shown to evolve rapidly under selection
for faster growth, selection for individual cell proliferation is certainly not the
dominant factor in the case of multicellular organisms, where cell collectives have
to limit their growth to achieve developmental constraints and requirements. Even in
the case of unicellular organisms, many environments only support extremely slow
growth (Jørgensen & Marshall, 2015) and selection for fast growth might never
become relevant. Similarly, the argument that minimisation of enzyme investment
being a strong factor shaping metabolic system evolution needs to be considered
carefully. While it is likely that cellular protein content has an upper bound, it is
less clear if cells are close to this upper bound to the extent that limits on enzyme
amount would directly influence metabolic fluxes, or if such effects would operate
equally for every enzyme or under different conditions (Brown, 1991). While some
studies indicate control architectures for transcriptional regulation of enzyme levels
to confer to optimality criteria (Chubukov et al., 2012), these were confined to
linear, biosynthesis pathways within metabolism. In contrast, global analyses of
metabolic systems suggest that enzyme levels are not necessarily tightly regulated as
metabolic fluxes change with changing conditions. For example, proteomics studies
have found that levels of different enzymes do not change as metabolic fluxes shift
(Goel et al., 2015; Metzl-Raz et al., 2017) and several experimental analysis pointed
to the importance of allosteric and thermodynamic regulation (Rossell et al., 2006;
Chubukov et al., 2013; Link et al., 2013; Gerosa et al., 2015; Machado et al., 2015;
Buffing et al., 2018) rather than transcriptional regulation of enzyme levels.

It has also been shown that the commonly pre-assumed tight linkage between
energy harvesting through catabolic pathways and biomass formation through
anabolic pathways is not necessarily observed and there are many instances of
significant ‘energy spilling’ (Russell & Cook, 1995; Dauner et al., 2001). In its
simplest form, such spilling can happen, and some of the harvested energy is
‘lost’ by the cell to drive chemical reactions. It has been largely documented
that the amount of harvested energy not converted into biomass is correlated to
some properties of the anabolic pathways, across many taxa and growth conditions
(Heijnen et al., 1992; von Stockar et al., 2006; Roden & Jin, 2011; Smeaton & Van
Cappellen, 2018) and this observed link has been used to couple the stoichiometry
of energy harvest and biomass synthesis, and successfully predict population growth
yields (González-Cabaleiro et al., 2015). However, a mechanistic understanding of
this correlation remains elusive.

Considering links to the pre-cellular metabolic systems, an alternative evolution-
ary view can be formulated that considers metabolic evolution as primarily being
shaped and constrained by thermodynamics and physicochemical factors (Vallino,
2010; Branscomb & Russell, 2013). Thus, these factors need to be included in



182 C. Johnson et al.

formulating both evolutionary ideas and dynamical models of metabolism. While
steady-state, stoichiometric models tried to include reaction thermodynamics as
additional constraints in their optimisation formulations (Flamholz et al., 2013;
Henry et al., 2007; Hoppe et al., 2007), dynamical simulations incorporating
thermodynamics are only recently being started to be explored in the context of
metabolism (Cannon, 2014; Cannon & Baker, 2017; Cannon et al., 2018; González-
Cabaleiro et al., 2013, 2015; Thomas et al., 2014).

We argue that it will be productive to reconcile the two evolutionary views on
metabolism; metabolism as a highly regulated system optimised solely for cell
growth vs. a self-organising system governed by thermodynamics and biophysical
factors. It is possible, for example, to consider that thermodynamically driven and
self-organising, early metabolic systems could have been stabilised by cell-like
structures, which could have then helped stabilise and perpetuate those metabolic
systems. There could be remnants of such feedbacks still evident in current-day
metabolic systems, where features that have emerged (and maintained) solely
due to thermodynamic and other physicochemical drivers are intertwined with
those that resulted from selection for increased biomass production rate or yield.
To this end, we note that considering metabolism as composed of interlinked
catabolic and anabolic pathways within a thermodynamic framework allows a
successful empirical description of cell growth and biomass yield (von Stockar et
al., 2006), and in certain cases, growth dynamics (González-Cabaleiro et al., 2015).
Similarly, explaining metabolic regulation seems to benefit from the synthesis of
regulatory mechanisms based solely on metabolite-driven effects, and those based
on transcriptional control of enzyme levels (Chubukov et al., 2014).

While many ideas and studies about metabolism concerns steady-state fluxes,
it is clear that metabolic dynamics are highly nonlinear and can readily give rise
to bistability and non-steady-state dynamics such as oscillations. Both of these
dynamical features are linked to higher functionalities, with bistability implicated
in dynamic switching of metabolic fluxes and oscillations linked to the regulation
of cell cycle (Lloyd et al., 2003; Papagiannakis et al., 2017), management of
superoxide generation during growth (Murray et al., 2007), and resilience and
communication in multicellular structures such as biofilms (Liu et al., 2015). Thus,
further study of metabolic dynamics, and their molecular driving mechanisms, can
provide important insights on how higher-level cellular and multicellular behaviours
arise and are maintained through metabolism. While it is possible that the emergence
of oscillations is intertwined with bistability (Martinez-Corral et al., 2018), one can
already note that the same metabolic ‘motif’ that can mediate bistability can also
readily be extended with additional features to mediate oscillations (as discussed
above). Interestingly, and as a side note, the association of simple metabolic
motifs with potentially complex nonlinear dynamics led to the suggestion that
engineering of enzymatic dynamics could be an ideal route for implementing
specific dynamics with biological systems (Arkin & Ross, 1994). Subsequent focus
in the then emerging field of synthetic biology, however, focused on engineering
of transcriptional regulation. It would be useful, in our view, to now reconsider
enzymatic systems from an engineering perspective, to use them to implement
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specific system dynamics (such as bistability). This would be facilitated by new
mathematical and experimental tools (such as ability to create multidomain proteins)
and by further exploring the biochemical and kinetic determinants of enzyme
reaction motifs that enable in them specific dynamics. In this context, identifying
allosteric interactions, as being done with emerging proteomic approaches (Li et al.,
2010; Piazza et al., 2018), and considering the resulting reaction motifs from these
interactions (Reich & Sel’kov, 1981) can allow us to better understand the role of
allosteric regulation in metabolic system evolution, either as a positive factor or as
something to be avoided (Alam et al., 2017). Finally, an electrochemical view on
metabolism (Berry, 1981; Zerfass et al., 2018) can allow interfacing and controlling
metabolism through such reaction motifs, for example, by controlling redox states
of conserved moieties to drive the dynamics of interlinked reaction cycles.

Experimental analysis of metabolic systems is constantly benefiting from the
application of omics and biophysical techniques, including metabolomics and imag-
ing. We argue that, as these new techniques develop, old ideas need also be revisited
with new tools. For example, thermodynamic information on many reactions within
metabolism are not available, and measurement of key physiological parameters
such as pH, respiration rate, or ATP/ADP ratio are still mostly lacking at the
single-cell level. Such single-cell measurements can be essential to develop better
understanding of cellular metabolism, which is implicated to show heterogeneities
within clonal populations (Nikolic et al., 2013, 2017; Yaginuma et al., 2014;
Rosenthal et al., 2018) and discover the key trade-offs arising from metabolic system
structure and dynamics. Single-cell analyses can also allow identifying metabolic
interactions within populations (Rosenthal et al., 2018), especially in populations
with an inherent structure, such as biofilms and tissue. This, in turn, can allow us to
make connections between metabolic dynamics and emergence of division of labour
and multicellularity (Liu et al., 2015). Within spatially organised systems, the role
of diffusion of metabolites, especially charged ones, across or within membranes
needs to be considered, as they can give rise to the formulation of new modes of
communication such as metabolite-driven electrochemical signalling (Prindle et al.,
2015). Finally, the analysis of metabolic systems under conditions of no growth,
but sustained viability, is another under-studied area, which can give better insights
into the connections between metabolism and other physiological processes, and in
particular membrane potential and cell division.

Evolutionary thinking can provide a canvas on which to evaluate findings
from metabolic systems and draw up new experiments. More specifically, the
use of evolutionary thinking and experiments for the identification of selective
trade-offs, physicochemical constraints, and ecology-evolutionary feedbacks can
provide insights into current-day metabolic systems. For example, the consideration
of possible feedbacks between ecological and evolutionary dynamics can help
us better understand the emergence of metabolic interactions within microbial
communities (Grosskopf et al., 2016). The consideration of trade-offs between
different selectable traits, on the other hand, can allow proposition of multistable
metabolic behaviours that might become embedded in the metabolism of different
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cell types in multicellular organisms. The advancement of an evolutionary thinking
in metabolic research can thus bear important insights into the future.
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Robustness and Evolvability
in Transcriptional Regulation

José Aguilar-Rodríguez and Joshua L. Payne

Abstract The relationship between genotype and phenotype is central to our
understanding of development, evolution, and disease. This relationship is known as
the genotype-phenotype map. Gene regulatory circuits occupy a central position in
this map, because they control when, where, and to what extent genes are expressed,
and thus drive fundamental physiological, developmental, and behavioral processes
in living organisms as different as bacteria and humans. Mutations that affect these
gene expression patterns are often implicated in disease, so it is important that
gene regulatory circuits are robust to mutation. Such mutations can also bring forth
beneficial phenotypic variation that embodies or leads to evolutionary adaptations
or innovations. Here, we review recent theoretical and experimental work that sheds
light on the robustness and evolvability of gene regulatory circuits.

1 Introduction

Two of the most fundamental properties of living systems are robustness and
evolvability (Wagner, 2005; Masel & Trotter, 2010). Robustness is the invariance
of a phenotype in the presence of environmental or genetic change. Evolvability is
the ability of a living system to generate phenotypic variation that is both heritable
and adaptive (Payne & Wagner, 2019). A large number of studies have focused
on elucidating the molecular mechanisms of both robustness and evolvability, and
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establishing the relationship between these two properties, at multiples scales of bio-
logical organization, ranging from the structural and functional properties of RNA
and proteins to the ability of a metabolic network to create biomass from nutrients.
The evidence from these studies suggests that robustness can facilitate evolvability.
Here, we review a subset of this large body of work, specifically highlighting studies
that have focused on the molecular mechanisms of robustness and evolvability
in transcriptional regulation. Specifically, we discuss mechanisms of robustness
against perturbations caused by genetic mutations (mutational robustness), rather
than mechanisms of robustness against nongenetic perturbations (environmental
robustness), although mutational robustness is correlated with environmental robust-
ness in many instances (de Visser et al., 2003; Lehner, 2010).

Most of the early studies on the robustness and evolvability of transcriptional
regulation were theoretical or computational (Kauffman, 1969; Wagner, 1996;
Bergman & Siegal, 2003). The reason for this is the enormous complexity of the
gene circuits (and their individual molecular components) that control when, where,
and to what extent genes are expressed. Advances in high-throughput technologies
are changing this picture, providing mechanistic insight into how transcriptional
regulation is robust to mutational change, yet able to bring forth new and beneficial
phenotypes. These studies, which are the focus of our chapter, are also validating a
long-standing body of theoretical work on the relationship between robustness and
evolvability in transcriptional regulation.

While there are multiple mechanisms of gene regulation acting at different
stages of information transmission from DNA to protein (Alonso & Wilkins,
2005; Keren et al., 2010; Pauli et al., 2011; Guttman & Rinn, 2012; Pelechano
& Steinmetz, 2013; Smith & Meissner, 2013; Tian & Manley, 2016; Zhao et al.,
2016), the fundamental spatiotemporal control of gene expression occurs at the
level of gene transcription. Transcriptional regulation drives essential physiolog-
ical processes—e.g., how cells respond to their environment (Ptashne & Gann,
2002)—, behavioral processes—e.g., mating in yeast (Tsong et al., 2006)—, and
developmental processes—e.g., embryonic patterning in diptera (Lawrence, 1992).
Transcriptional regulation is mediated by sequence-specific DNA-binding proteins
known as transcription factors (TFs). They regulate gene transcription by binding
short DNA sequences (6–12 base pairs) known as TF binding sites in the promoters
or enhancers of genes. The binding of a TF to a gene’s regulatory region may
activate or repress the transcription of that gene by promoting or blocking the
recruitment of the RNA polymerase to the transcription start site. The strength of
this regulatory effect is partly determined by the TF’s affinity for its site. Genes
coding for TFs typically represent 5–10% of the total number of genes in a given
genome (Madan Babu et al., 2006; Vaquerizas et al., 2009; Stormo & Zhao, 2010),
and their products can regulate the expression of other TFs, forming transcriptional
regulatory circuits that control gene expression in space and time. These circuits
occupy a central position in the mapping from genotype to phenotype, and drive
fundamental physiological, developmental, and behavioral processes in all living
organisms from bacteria to humans.
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In this chapter, we first review the mechanisms of mutational robustness and
evolvability in (trans-acting) transcription factors and their (cis-acting) DNA-
binding sites, that is, in the individual components of gene regulatory circuits. We
then review the more global mechanisms of robustness and evolvability that emerge
at the level of whole gene regulatory circuits.

2 Robustness and Evolvability of Gene Regulatory Circuit
Components

2.1 Robustness and Evolvability of Transcription Factors

Genotype of a TF: Amino acid sequence of the protein
Phenotype of a TF: Ability to bind DNA specifically and regulate gene transcription

One of the most useful and productive distinctions in biology is that between
genotype and phenotype, which can be defined at different levels of biological
organization, ranging from biological macromolecules to whole organisms (Wagner,
2011). In this section, we define the genotype of a TF as its amino acid sequence.
A TF can have multiple phenotypes. For example, its ability to bind a specific
short DNA sequence with a given binding affinity or its ability to recruit RNA
polymerases at a given rate.

TFs may have several functional domains—conserved protein segments that
can function independently, each with a different function (Bornberg-Bauer &
Albà, 2013; Stormo, 2013; Toll-Riera & Albà, 2013). TFs typically have just
one DNA-binding domain, which can function autonomously (Stormo, 2013).
Other TF domains are responsible for dimerization, with many TFs functioning
as homodimers or heterodimers. Finally, some TF domains mediate interactions
with other proteins to form large molecular complexes that regulate the rate of
transcription. For instance, many TFs have an activation domain that interacts
with the basal transcriptional machinery and coactivator complexes to initiate
transcription (Latchman, 2008). TFs can be classified into families based on the
structures and sequence similarity of their DNA-binding domains (Weirauch &
Hughes, 2011; Stormo, 2013). TFs from the same family have similar structures,
and thus bind DNA with the same overall geometry of interaction (Stormo, 2013).
TFs from the same family usually also have a common ancestry, and have diverged
through evolutionary processes such as gene duplication and species diversification.

2.1.1 The Robustness of the Protein Structure of Transcription Factors

While most protein mutations tend to be deleterious (Eyre-Walker & Keightley,
2007), the structure and biological activity of proteins are to some extent robust to
mutations. However, different proteins, and even different domains within a single
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protein, can vary widely in their level of mutational robustness. The robustness
of TFs against mutations has important implications for human disease, because
numerous Mendelian diseases are caused by mutations in TFs, especially in
homeodomain TFs (Veraksa et al., 2000). Similarly, somatic mutations in Cys2-His2
zinc finger (C2H2-ZF) domains are commonly mutated in cancer cells, thus likely
contributing to the transcriptional dysregulation that is characteristic of this disease
(Munro et al., 2018). Even among putatively healthy individuals, there are more
than 50,000 polymorphisms segregating in the human population that are found in
the DNA-binding domains of sequence-specific TFs (Barrera et al., 2016). Many of
these variants are likely to affect binding activity, and thus contribute to phenotypic
heterogeneity and disease. However, of 177 nonsynonymous polymorphisms chosen
because they are predicted to have an effect on TF activity, 40 were not found to
affect DNA binding and/or specificity in vitro (Barrera et al., 2016). This shows
how regulatory proteins can be robust to mutational change, including mutations in
their DNA-binding domains. This is further exemplified by the human basic helix-
loop-helix (bHLH) TF Max, which interfaces DNA with five amino acid residues.
Three of these positions can be mutated into any other amino acid without altering
binding specificity, although some amino acid substitutions in two of these three
positions modulate binding affinity (Maerkl & Quake, 2009). However, the general
rule is that mutations in the DNA-binding domains of TFs cause changes in binding
specificity (Cook et al., 1994; Mathias et al., 2001; Noyes et al., 2008; Aggarwal et
al., 2010; De Masi et al., 2011).

The activation domains of TFs are less conserved across species and less
structured than DNA-binding domains (Latchman, 2008). They are intrinsically
disordered domains. Activation domains are more robust against amino acid
replacements than DNA-binding domains (Majithia et al., 2016; Staller et al., 2018).
For example, the function of the human nuclear receptor PPARγ is less affected by
amino acid substitutions in its activation domain AF-1 than its DNA-binding domain
(Majithia et al., 2016). Strikingly, the activation domain is even less sensitive to
mutations than the “hinge” region connecting the DNA-binding domain to the
ligand-binding domain of this TF.

Many transcription factors cooperatively bind DNA with other protein factors.
Such interactions may alleviate the consequences of mutations in a TF’s DNA-
binding domain or mutations in its binding sites. Protein–protein interactions with
a different TF may stabilize the binding of a TF to particular genomic locations
while its protein–DNA interactions evolve gradually. For example, the conserved
interaction of Matα1 with Mcm1 may explain the dramatic changes in the binding
specificity of this regulator of mating type in ascomycete fungi over relatively
short evolutionary time scales (Baker et al., 2011). Similarly, the cooperativity
between Mcm1 and Rap1 can stabilize the binding of Mcm1 to weak binding sites
(Sorrells et al., 2018). Thus, interactions with protein partners can provide a source
of mutational robustness for both TFs and their binding sites.
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2.1.2 Robustness in Duplicated Transcription Factors

Gene duplication is one of the main forces shaping eukaryotic genomes (Zhang,
2003). Because gene duplicates (paralogs) are initially redundant, one of the copies
can act as a backup, compensating deleterious mutations in the other copy (Keane
et al., 2014). Therefore, gene duplication is an important mechanism of mutational
robustness (Gu et al., 2003; Conant & Wagner, 2004; Fares, 2015), and plays an
important role in the evolution of TFs (Babu & Teichmann, 2003; Teichmann &
Babu, 2004). Many paralogous TFs recognize the same or very similar sets of
binding sites in vitro (Weirauch et al., 2014), and they also bind many of the same
genomic regions in vivo (Hollenhorst et al., 2007), indicating that they may be
fully or partially redundant. Even distant TF paralogs can partially compensate
one another against loss-of-function mutations (Kafri et al., 2005; He & Zhang,
2006; Tischler et al., 2006). Additionally, TFs with similar binding specificities
tend to regulate sets of genes with similar biological functions. This may minimize
the negative consequences of the “cross-talk” that occurs when different TFs
bind similar sets of sites (Itzkovitz et al., 2006), or the negative consequence of
specificity-changing mutations in a TFs DNA-binding domain.

2.1.3 Many Transcription Factors Are Clients of the Molecular
Chaperone HSP90

A protein is classified as a client of HSP90 if it interacts physically with the
chaperone and if the inhibition of HSP90 function reduces protein client activity.
The most common protein clients of the eukaryotic chaperone HSP90 are TFs,
including nuclear steroid receptors, but also PAS family TFs, p53, STAT3, and
chromatin proteins such as trithorax (Taipale et al., 2010). BES1, a TF in the
steroid hormone pathway in Arabidopsis thaliana, is a client of HSP90, but its
closest paralog, BZR1, is not an HSP90 client. This difference in the client status
of two highly similar proteins facilitates a test of whether HSP90 can enhance the
mutational robustness of a TF. BES1 shows relaxed selection compared to BZR1
as expected if HSP90 allows BES1 to explore a greater fraction of genotype space
without losing function (Lachowiec et al., 2013). Similarly, HSP90 clients in yeast,
including many TFs, evolve faster than their nonclient paralogs, suggesting that
HSP90 can increase the mutational tolerance of its client TFs (Lachowiec et al.,
2013; Alvarez-Ponce et al., 2019).

2.1.4 The Evolvability of Transcription Factors

New gene expression patterns can evolve by changes in TFs and their binding sites
that lead to the rewiring of a gene regulatory circuit. However, the adaptive evolution
of a TF can be heavily constrained by both epistasis and pleiotropy. Epistasis
between different residues can severely restrict the evolutionary trajectories of any
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evolving protein (Starr & Thornton, 2016), including TFs, and mutations in a TF can
have strong pleiotropic effects on a regulatory circuit because all its gene targets can
be affected by changes in its binding specificity (Britten & Davidson, 1969; Stern,
2000; Carroll, 2005; Wray, 2007).

For these reasons, while there are clear cases of mutations in TFs contributing
to the adaptive evolution of gene regulation (Galant & Carroll, 2002; Ronshaugen
et al., 2002; Lynch et al., 2008, 2011), most studies of regulatory evolution
have focused on the evolution of cis-regulatory elements, such as promoters and
enhancers (Prud’homme et al., 2007; Carroll, 2008; Stern & Orgogozo, 2008).
However, some properties of a TF can promote its evolvability. For example, the
organization of TFs in functionally autonomous protein domains that can evolve
independently allows for the evolutionary emergence of new TFs by domain
rearrangement, including the gain or loss of protein domains, the shuffling of
already existing domains, and expansions or contractions in the number of a given
protein domain (Bornberg-Bauer & Albà, 2013). Such domain rearrangements in
TF families can lead to a major functional shift and the subsequent expansion of
new sub-families of TFs (Schmitz et al., 2016). Changes in TF function can be
mediated by either a change in DNA-binding specificity or changes in protein–
protein interactions with other TFs or signaling proteins. Together with gene
duplication, domain rearrangement was a potent force in the evolution of major
TF families (Schmitz et al., 2016), including bHLH TFs (Amoutzias et al., 2004;
Morgenstern & Atchley, 2018).

The robustness of a protein can facilitate the acquisition of novel functions
(Bloom et al., 2006). In other words, genetic robustness and evolvability can
be synergistic (Wagner, 2008). For example, the robustness of TFs due to the
existence of paralogous TFs can promote the evolution of novel adaptive regulatory
roles. Gene duplication can facilitate the evolution of TFs with divergent binding
specificities that control different sets of genes and facilitate adaptation to new
niches (Perez et al., 2014). A duplication of a Hox3 TF in two paralogs deep in
the lineage of Cyclorrhaphan flies allowed one of the two paralogs (Bicoid, Bcd)
to gain the important developmental role of controlling anterior-posterior patterning
in fly embryos (Stauber et al., 1999). After the emergence by duplication of Bcd,
this TF acquired at least two large-effect mutations that changed its DNA specificity
and played a major role in the evolution of this TFs controlling role during early fly
development (Liu et al., 2018). In combination with protein domain rearrangements,
and given enough evolutionary time, the diversification and expansion of TF
families can have deep evolutionary consequences, and it tends to be associated
with increases on organismic complexity, both morphological and in terms of the
number of cell types (Carroll et al., 2001; De Bodt et al., 2003; Irish, 2003; Levine
& Tjian, 2003; Degnan et al., 2009; Vaquerizas et al., 2009; Ruiz-Trillo et al., 2013;
Albertin et al., 2015; Schmitz et al., 2016).

C2H2-ZF TF are the most common class of TFs in metazoans (Vaquerizas et
al., 2009). The binding specificity of a C2H2-ZF domain is mainly conferred by
four DNA-contacting residues within the domain’s α-helix (Pabo et al., 2001). A
C2H2-ZF domain can bind a wide range of three or four base pairs. C2H2-ZF



Robustness and Evolvability in Transcriptional Regulation 203

TFs typically contain tandem arrays of these domains that bind contiguous DNA
sites, which allows this type of TFs the ability to recognize an incredibly large
diversity of DNA sequences of variable length (Basciotta et al., 2013). Domain
rearrangement and gene duplication have played an important role in the expansion
and diversification of C2H2-ZF TFs in animals (Schmitz et al., 2016). Even
without gene duplication, the binding specificities of C2H2-ZFs can change over
short evolutionary timescales. For example, one-to-one orthologous C2H2-ZF TFs
typically show divergence in their DNA-contacting residues across closely related
Drosophila species (Nadimpalli et al., 2015). The predicted DNA-binding speci-
ficities of these domains gradually change as a function of phylogenetic distance,
suggesting that single-copy TFs can diverge in their DNA-binding specificities via
small evolutionarily viable steps. Robustness may be behind this process of binding
specificity modifications in single-copy TFs. While the binding energy of other
eukaryotic C2H2-ZF TFs largely depends on base-contacting amino acids, C2H2-
ZF TFs from metazoans use non-base contacting amino acids to establish hydrogen
bonds with the phosphate backbone of DNA that increase their overall binding
energy (Najafabadi et al., 2017). These non-base contacting amino acids provide
robustness to mutations in base-contacting amino acids, which may have led to
the ability of single-copy C2H2-ZF TFs to rapidly diverge in binding preference.
This robustness of the C2H2-ZF domain may have played an important role in the
regulatory evolution not only of Drosophila but also of other metazoans, including
humans, where there is evidence of adaptive evolution in C2H2-ZF domains
(Emerson & Thomas, 2009). Similarly, robustness played a role in the evolution of
binding specificity in steroid receptors (Starr et al., 2017; Payne & Wagner, 2019).

Besides specificity-altering mutations in DNA-binding domains, gene regulation
can also evolve via mutations that change how TFs respond to upstream signaling
pathways. For example, a TF that plays an essential role during pregnancy, CEBPB,
changed its response to cAMP/PKA signaling from repression to activation due to
three amino acid replacements that affected phosphorylation sites in an internal
regulatory domain (Lynch et al., 2011). This novel function evolved coincident
with the evolution of pregnancy in placental mammals. The alteration of post-
translational modification sites is therefore an additional mechanism by which TFs
evolve. Such changes facilitate gene regulatory innovations in signaling-dependent
transcriptional circuits by altering the function of TFs in specific cell types, while
avoiding or minimizing deleterious pleiotropic effects on other cellular functions.

In sum, the regulatory proteins involved in transcriptional regulation often exhibit
robustness to mutation, which can facilitate evolvability.

2.2 Robustness and Evolvability of Transcription Factor
Binding Sites

Genotype of a cis-regulatory element: short DNA sequence
Phenotype of a cis element: molecular ability to bind a regulatory protein
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2.2.1 The Robustness of Regulatory Sequences

In the previous section, we reviewed how regulatory proteins can be robust
to mutational change, and how such robustness can enhance evolvability. The
regulatory regions that these proteins bind are also robust to genetic change, and
similarly their robustness can synergize with their evolvability. The very short length
of TF binding sites confers an additional source of robustness against mutations.
Shorter binding sites are less easily disrupted by mutations because they offer a
smaller mutational target, a benefit that comes at the expense of reduced specificity
(Stewart et al., 2012). However, TF binding sites can also be intrinsically robust to
mutations. TFs can specifically bind to dozens or hundreds of different short DNA
sequences (Sengupta et al., 2002; Berger et al., 2006; Badis et al., 2009; Wong
et al., 2013; Weirauch et al., 2014), and these sequences tend to be mutationally
interconnected to one another forming genotype networks of TF binding sites
(Payne & Wagner, 2014; Khalid et al., 2016; Aguilar-Rodríguez et al., 2018). In
such a genotype network, vertices represent DNA sequences with the ability to
specifically bind a particular TF, and two vertices are connected by a link if their
associated sequences differ by just a single small mutation, such as a point mutation.
The existence of genotype networks of TF binding sites implies that mutations to a
binding site will often create mutant sequences that are still able to bind the same
TF, thus conferring mutational robustness. Additionally, mutational neighbors in a
genotype network tend to have similar binding affinity for a given TF, indicating
that binding affinity is also robust to mutation (Payne & Wagner, 2014; Aguilar-
Rodríguez et al., 2017). This is important because changes in binding affinity can
lead to changes in gene expression (Kasowski et al., 2010; Shultzaberger et al.,
2010; Sharon et al., 2012), and both large (Giaever et al., 2002; Gerdes et al., 2003;
Dietzl et al., 2007; Hillenmeyer et al., 2008; Ramani et al., 2012; Hart et al., 2015)
and small (Dykhuizen et al., 1987; Dekel & Alon, 2005; Rest et al., 2013; Keren et
al., 2016) deviations from an optimal mean level of expression can be detrimental
to organismal fitness. However, some genes have a nonlinear fitness-expression
function with a plateau of maximal fitness for a wide range of expression levels
(Rest et al., 2013; Bergen et al., 2016; Keren et al., 2016; Duveau et al., 2017).
Therefore, the promoters of these genes are robust to many cis-regulatory mutations.
For example, nearly all mutations and polymorphisms in the promoter of the yeast
gene TDH3 have no significant effect on fitness in a rich medium containing glucose
(Duveau et al., 2017).

The robustness of TF binding sites allows the accumulation of genetic diversity
in binding sites, both within species (Aguilar-Rodríguez et al., 2017, 2018), and
between species (Weirauch & Hughes, 2010). Intra-specific variation in TF sites
is pervasive (Zheng et al., 2011; Garfield et al., 2012; Spivakov et al., 2012;
Khurana et al., 2013; Arbiza et al., 2013), and such differences often do not
impact the expression level of target genes (Kasowski et al., 2010; Zheng et al.,
2010). Similarly, over longer evolutionary time scales, regulatory sequences can
diverge considerably at the sequence level without a corresponding divergence at
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the phenotypic level of the gene expression patterns they control (Ludwig et al.,
2000; Odom et al., 2007).

Another important source for robustness of TF binding sites is the presence of
multiple binding sites for the same TF in close proximity to one another (Johnson
et al., 1979; Giniger & Ptashne, 1988; Carey et al., 1990; Thanos & Maniatis,
1995; Wasserman & Fickett, 1998; Krivan & Wasserman, 2001; Pfeiffer et al., 2002;
Ezer et al., 2015). These homotypic clusters of binding sites are common across all
domains of life (Lifanov et al., 2003; Gotea et al., 2010; Gama-Castro et al., 2011).
Mutations in a TF binding site can be compensated by the presence of nearby non-
mutated TF binding sites (Somma et al., 1991; Spivakov et al., 2012; Kilpinen et al.,
2013). This mechanism of mutational robustness has already been reviewed more
extensively elsewhere (Payne & Wagner, 2015).

However, TF binding sites are not robust to all mutations, and mutations in
these regulatory sequences can often be deleterious and cause disease (Musunuru
et al., 2010; Harismendy et al., 2011). Indeed, the majority of single-nucleotide
variants in DNA regulatory regions associated with different human diseases tend
to alter TF binding sites (Maurano et al., 2012). For example, de novo mutations
in DNA regulatory elements active in the human brain are associated with different
neurodevelopmental disorders and predicted to increase the binding affinity of the
binding sites in which they fall (Short et al., 2018). Mutations that fall in TF
binding sites can increase cancer risk (Pomerantz et al., 2009; Khurana et al., 2013;
Weinhold et al., 2014; Katainen et al., 2015; Melton et al., 2015). For example,
noncoding single-nucleotide variants associated to breast cancer can modulate TF
binding affinity resulting in transcriptional misregulation (Liu et al., 2017), which is
a hallmark of many cancer types (Lee & Young, 2013; Bhagwat & Vakoc, 2015).

2.2.2 The Evolvability of Regulatory Sequences

Substitutions in cis-regulatory sequences may produce novel gene expression
patterns associated to evolutionary innovations and adaptations (Wray, 2007;
Prud’homme et al., 2007). Single-base pair substitutions in a TF binding site can
change the regulatory control of a target gene from one TF to another (Payne
& Wagner, 2014; Aguilar-Rodríguez et al., 2018), and this may lead to profound
changes in development, physiology or behavior. For example, in rice, a single
mutation in the promotor of a C2H2-ZF TF gene reduces its expression by creating
a binding site for the transcriptional repressor MYB, and this change in expression
increases resistance against rice blast—a fungal disease that can cause significant
crop loss (Li et al., 2017). Standing genetic variation within TF binding sites can also
contribute to evolutionary adaptation. For example, a recent high-throughput precise
genome editing screen found that among 16,006 natural genetic variants in yeast,
572 variants with a significant fitness effect in glucose media were highly enriched
in promoters, particularly in TF binding sites (Sharon et al., 2018). The genetic
diversity accumulated within binding sites as a consequence of their robustness
to mutational change provides an ideal “testing ground” for new mutations by
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allowing the exploration of many different genetic backgrounds (Aguilar-Rodríguez
et al., 2017, 2018). Robustness is a way to explore new mutational neighborhoods
while preserving a phenotype, because it is almost always possible to transform
one site into another via a series of mutations that preserve TF binding. Some of
these new mutations may create binding sites for a different TF, which may lead
to adaptive changes in gene expression (Payne & Wagner, 2014). Therefore, the
genetic robustness of TF binding sites can synergize with their evolvability. For
example, a comparative analysis of two well-studied transcriptional repressors from
phages, showed that it was easier to evolve a cognate site from a non-cognate site
for the repressor whose cognate sites are more robust to mutations (Igler et al.,
2018). The structure of the genotype networks of TF binding sites furthers our
understanding of the “robust-yet-evolvable” nature of these DNA sequences. They
tend to be “small-world” (Watts & Strogatz, 1998; Aguilar-Rodríguez et al., 2018),
which indicates that binding sites tend to be highly clustered in genotype space
(robustness), but also that it is possible to traverse the network with just a few
mutations, thus providing efficient access to adjacent genotype networks of other
TFs (evolvability).

TF binding sites are short enough that it is possible to study their evolvability
comprehensively (Rowe et al., 2010; Jimenez et al., 2013). For example, one
can easily measure how strongly a TF binds tens of thousands of different DNA
sequences (Berger et al., 2006), and this information is available for thousands
of TFs from hundreds of species comprising multiple TF families (Weirauch et
al., 2014). Binding affinity is an important molecular phenotype because it is an
important contributor to a TFs ability to activate or repress a target gene, and
the gene expression patterns that emerge from such TF-DNA interactions embody
fundamental biological processes. The regulatory effect on gene expression of a TF
can be either fine-tuned or even radically transformed by affinity-altering mutations
in TF binding sites (Shultzaberger et al., 2010; Sharon et al., 2012). The mapping
of a DNA sequence to binding affinity can be described as an adaptive landscape
where one can study how mutation and natural selection can change the capacity
of a DNA sequence to bind a particular TF (Berg et al., 2004). A recent study
of more than a thousand such landscapes characterized their ruggedness using a
variety of measures and found that they are highly navigable via a Darwinian
process of mutation and selection, indicating that binding affinity—and thereby
gene expression—is readily fine-tuned via mutations in TF binding sites (Aguilar-
Rodríguez et al., 2017). These landscapes typically have just a single peak, and
these peaks tend to be accessible from any location in the landscape via mutational
pathways that increase monotonically in binding affinity. This type of smooth
landscape promotes the evolvability of TF binding sites because mutation can bring
forth beneficial phenotypic variation from any location on the landscape (Payne &
Wagner, 2019). Therefore, the navigability of these TF binding affinity landscapes
may have contributed to the enormous success of altering transcriptional regulation
as a way to generate variation and innovation throughout evolution.
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3 Robustness and Evolvability of Whole Gene Regulatory
Circuits

Genotype of a gene circuit: genes for TFs and cis-regulatory sequences
Phenotype of a gene circuit: spatiotemporal gene expression pattern

The genotype of a gene regulatory circuit comprises the DNA sequences that encode
the circuit’s constituent transcription factors, as well as the binding sites for these
factors in the promoters and enhancers of the circuit’s genes. The phenotype of a
gene regulatory circuit is its spatiotemporal gene expression pattern. Most of what
we know about the robustness and evolvability of regulatory circuits comes from
abstract computational models, such as Boolean circuits (Kauffman, 1969; Wagner,
1996). These studies have shown that there are many genotypes that have the same
phenotype, meaning that a large number of circuit configurations are capable of
driving the same gene expression pattern. Additionally, these genotypes tend to be
arranged as a genotype network, such that it is usually possible to mutate any one
regulatory circuit with a given phenotype into any other via a series of intermediates
that also produce the phenotype (Ciliberti et al., 2007a, b). Such genotype networks
confer robustness and evolvability to regulatory circuits, as they do at the level of
the circuit components.

Our understanding of the robustness and evolvability of regulatory circuits
continues to advance, with recent studies uncovering how circuit architecture
influences the robustness of gene expression patterns to variation in morphogen
production rates (Raspopovic et al., 2014; Li et al., 2018), how the robustness
of regulatory circuits makes their evolution contingent upon chance mutational
events (Starr et al., 2017), and how the evolvability of a regulatory circuit can
transcend that of its constituent components (Lagator et al., 2017). In addition, a
series of recent studies have shown how robustness and evolvability depend upon the
dynamical mechanism a circuit uses to generate its phenotype (Jiménez et al., 2015;
Schaerli et al., 2018), and how genotype networks facilitate “system drift,” which
enhances evolvability (Nocedal et al., 2017; Jaeger, 2018). These recent insights,
realized using a combination of increasingly sophisticated computational models
and experiments, are the focus of this section.

Gene regulatory circuits can produce the same gene expression pattern using
distinct dynamical mechanisms. For example, Cotterell and Sharpe (2010) produced
an atlas of regulatory circuits that interpret a morphogen gradient to produce a single
stripe of gene expression, using a model based on the gap gene circuit, which drives
segmental patterning in dipteran insects. This atlas includes circuits that produce
stripes using six distinct dynamical mechanisms—unique spatiotemporal patterns
of expression that all converge on a stripe. Analysis of the circuits employing each
dynamical mechanism revealed variation in mutational robustness, measured either
as the number of distinct circuit topologies, or as the volume of parameter space for a
specific topology, that produce a stripe. Thus, identical gene expression phenotypes
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can vary in their mutational robustness, depending upon the dynamical mechanism
used to generate the phenotype.

The underlying explanation for this phenomenon is that distinct genotype
networks are formed by the different sets of stripe-forming circuits with each
dynamical mechanism. This means that it is generally not possible to smoothly
transition via mutation from one dynamical mechanism to another. Jiménez et
al. (2015) explored the consequences of this genotype network fragmentation for
evolvability, defined as the ability of mutation to bring forth novel expression
phenotypes, such as spatial gradients, inverse stripes, or multiple stripes. They
found that evolvability is mechanism-dependent. Circuits using distinct mechanisms
differ not only in which phenotypes mutation can bring forth, but also in the
relative likelihood of mutations bringing forth such phenotypes. These findings
were recently validated with experiments using synthetic stripe-forming regulatory
circuits, in which random mutations to two circuits with distinct dynamical mech-
anisms produced different distributions of novel phenotypes (Schaerli et al., 2018).
Such mechanism-dependent evolvability is an example of evolutionary constraint,
in which circuits with the same phenotype, but different dynamical mechanisms,
differ in their ability to generate phenotypic variation via mutation.

A population of circuits with any one phenotype can accrue mutations that
alter the quantitative and qualitative features of the circuit, without affecting the
circuit’s gene expression phenotype. This phenomenon is referred to as system drift
(Weiss & Fullerton, 2000). For example, the final patterning output of the gap gene
circuit is conserved among Drosophila melanogaster and the scuttle fly Megaselia
abdita, two species that last shared a common ancestor approximately 180 million
years ago. In contrast, the dynamical mechanisms used to generate this phenotype
show significant quantitative differences (Wotton et al., 2015). Specifically, gap
domains appear more posteriorly and retract from the pole later in M. adbita
than in D. melanogaster. Analysis of a data driven mathematical model of gap
gene expression demonstrates that such system drift occurs because the set of
gap gene circuits that drive segmental patterning—even those employing distinct
dynamical mechanisms—are arranged as a genotype network (Crombach et al.,
2016). This permits the accumulation of mutations that affect the strength and
identity of a circuit’s regulatory interactions, without affecting the final patterning
phenotype. This also influences evolvability, because the potential for mutation to
cause phenotypic variation varies across a genotype network (Wagner, 2011).

Phenotype-preserving mutations can thus serve as stepping-stones for evolution-
ary innovations. Another example of this phenomenon is the fungal transcriptional
regulator Ndt80, a DNA-binding protein that is conserved across a large group
of fungal species that last shared a common ancestor approximately 300 million
years ago (Nocedal et al., 2017). Ndt80 is part of a regulatory circuit controlling
meiosis and sporulation in most of these species, but it controls the formation of
biofilms in Candida albicans. This shift in function resulted from system drift. This
is evidenced by a comparative analysis of six fungal lineages, which uncovered
extensive rewiring in the regulon of Ndt80, even in those lineages where the
function of Ndt80 had not changed (Nocedal et al., 2017). This rewiring facilitated



Robustness and Evolvability in Transcriptional Regulation 209

the exploration of new regulatory circuits, potentiating the evolution of the novel
phenotype of biofilm formation.

Such rewiring can be extreme. A comparative analysis of the regulatory circuits
controlling the conversion of galactose to glucose-1-phosphate in S. cerevisiae and
C. albicans provides an illustrative example (Dalal et al., 2016). In both species,
three GAL genes are needed for this conversion. In S. cerevisiae, these genes are
activated by the TF Gal4, whereas in C. albicans, they are activated by the TFs
Rtg1 and Rtg3. This rewiring primarily occurred via changes in the cis-regulatory
sequences of the GAL genes, which not only resulted in a qualitative change to the
structure of the circuit, but also to quantitative changes in the induction ratios of the
GAL genes and in their response to non-galactose signals. Some of these quantitative
changes may have been adaptive for S. cerevisiae, because they contribute to the
rapid fermentation of different sugars.

In sum, the robustness of gene regulatory circuits facilitates system drift, which
enhances evolvability. The extent to which system drift occurs can depend upon the
dynamical mechanism a circuit uses to generate its phenotype, which may constrain
evolvability. However, system drift need not preserve dynamical mechanism, and
some quantitative changes to dynamical mechanism may themselves be adaptive.

4 Concluding Remarks

While the idea behind genotype-phenotype maps can be traced back to the work
of Sewall Wright (1932) and John Maynard Smith (1970), the term genotype-
phenotype map (“genotype-phenotype mapping”) itself was only coined in 1970 by
Jim Burns (1970), who outlined the research goals of evolutionary systems biology
before the development of systems biology made it feasible. He recognized early on
the importance of integrating the mechanistic perspective of biochemistry, cell and
molecular biology within the unifying framework of evolutionary biology:

It is the quantitative phenotype, arising from the genotypic prescriptions and the environ-
ment, which is of critical importance for the cell’s survival and which therefore features
in population genetic theory. A study of this synthetic problem would thus, by providing
genotype-phenotype mappings for simple synthetic systems, help to connect two major areas
of biological theory: the biochemical and the population genetic.

The term “genotype-phenotype map” was re-introduced in 1991 by the devel-
opmental biologist Pere Alberch as a useful concept for the integration of genetics
into the study of the complex developmental processes that generate morphological
phenotypes such as the vertebrate limb (Alberch, 1991). Gene regulatory circuits
occupy a central position in the map that goes from a genome to the high-level
morphological phenotypes that interested Alberch.

In this chapter, we have reviewed the robustness of such circuits against
genetic change, and how such robustness may have contributed to the enormous
success of transcriptional regulation as a source of evolutionary novelty. We have
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explored some of the mechanistic causes for the robustness and evolvability of
transcription factors, the regulatory DNA sequences that they bind, and the gene
circuits that emerge from the complex interactions between transcription factors
and their binding sites. Space constraints do not allow us to review other molecular
mechanism of evolvability in transcriptional regulation, such as stochastic gene
expression that can promote evolvability by generating phenotypic heterogeneity
in isogenic populations (Payne & Wagner, 2019). Also, we have focused on
transcriptional regulation, although there are important levels of gene expression
regulation, such as regulatory noncoding RNA, alternative splicing, epigenetic gene
regulation, and protein posttranslational modifications. However, less is known
about the mechanisms of robustness and evolvability at these levels, or about how
they interact with the mechanisms reviewed here, although there is progress being
made in this area (Payne et al., 2018). In the foreseeable future, the concepts
and tools of evolutionary systems biology, aided by new technological advances,
will further our understanding of the mechanisms by which gene regulation is
robust to genetic change, yet capable of bringing forth evolutionary adaptations and
innovations.
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Understanding the Genotype-Phenotype
Map: Contrasting Mathematical Models

Isaac Salazar-Ciudad, Miquel Marín-Riera, and Miguel Brun-Usan

Abstract In this chapter, we review and compare existing theoretical models of
the relationship between genetic and phenotypic variation or genotype-phenotype
map (GPM). By doing that, we introduce the reader to concepts and assumptions
of evolutionary genetics and contrast them with concepts and models coming
from developmental biology. Although these two approaches can be regarded as
complementary to study the same underlying problem, phenotypic variation and
evolution, they contradict each other in a number of ways.

The evolutionary genetics models on the GPM consider genetic interactions but
not epigenetic interactions. This simplicity has been used to argue that they are the
most general (Wagner, Trends Ecol Evol 26: 577–584, 2011). We argue, in contrast,
that epigenetic factors are crucial to understand the GPM. We understand epigenetic
factors as nongenetic factors that are instrumental in building the phenotype during
development (Waddington, Beyond reductionism, 1968). We argue that models
including epigenetic factors exhibit features found in real GPMs that are not found
in purely genetic models. Since these features are widely found in real GPMs,
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no model can be considered general without those and, then, models including
epigenetic factors are more general than purely genetic models, even when the
details of the former are specific of certain types of phenotypes.

1 Introduction

The twentieth century can be seen as the century of genetics. We have learned that
phenotypes and most of their variation have, ultimately, a specific genetic basis. We
know what is at the bottom, the genome, and what is at the top, the phenome, but we
do not understand well enough the processes in between to explain which changes
at the genetic level lead to which specific changes at the phenotypic level (and why
to those changes and not to others). It is our perception, and that of many others
(e.g., Houle et al., 2010), that early twenty-first century biology would be, largely,
about understanding the genotype-phenotype map.

The genotype-phenotype map, or GPM, is simply the pattern of association
between each specific phenotypic variant and its underlying genetic variant. Its
domain of application is not fixed and, thus, one can talk of the GPM of an organism,
a part of an organism or even of a gene network affecting some aspect of the
phenotype.

A central tenet of developmental evolutionary biology is that the GPM is, at
least for the case of morphology, determined by embryonic development (Alberch,
1991). By morphology, we mean the distribution of cells and extracellular matrix,
ECM, in space. During the process of embryonic development, a single zygotic
cell gives rise to a functional organism characterized by a complex distribution
of cell types in space. If one defines morphology as the distribution of cells and
extracellular matrix in space, it follows that cells have to do things to change their
position from the early embryo to the adult. These things are the cell behaviors (cell
division, cell adhesion, cell contraction, etc.) and interactions, either mechanical or
chemical through cell–cell signaling. In other words, specific morphologies arise
in development because individual cells do specific things (e.g., divide, die, secrete
ECM) in specific places and times along development. Genes and gene networks
have an effect on morphology because they affect the spatiotemporal regulation of
these cell behaviors and interactions (Forgacs & Newman, 2005).

There is a complex interdependence between gene networks, cell behaviors, and
cell interactions (Salazar-Ciudad et al., 2003). On one hand, some of the gene
products in networks are extracellular diffusible signals. These can alter the behavior
and network dynamics of the neighboring cells that receive them. On the other
hand, changes in cell behaviors and cell mechanical properties lead to changes
in mechanical interactions between cells. These lead to changes in the shape of
the space in which these signals are diffusing (i.e., the embryo morphology). By
affecting this shape, biomechanics indirectly affect the spatial distribution of signals
and then which cells are receiving which extracellular signals. This, in turn, affects
which genes are expressed and where. In that sense, gene networks, signaling, and
biomechanics reciprocally affect each other.
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As a result of these interdependent interactions between gene networks and
cellular processes, gene expression, cell location, cell shape and ECM change over
time and space to produce the complex morphology of the adult.

Since morphology arises through complex networks of gene, cell, and tissue-
level interactions, it follows that single genes do not have intrinsic morphological
effects. In other words, no individual gene codes, or has the information, for a
specific phenotype or phenotypic variant. On the contrary, the morphological effect
of a gene, and by extension of genetic variation in it, is totally dependent on
the gene networks in which it is embedded and on the effect of these networks
on the cell behaviors and interactions by which morphology is built (Oster &
Alberch, 1981; Alberch, 1991). We call a gene network regulating cell behaviors and
mechanical properties a developmental mechanism (Salazar-Ciudad et al., 2003).
The cell behaviors and properties are also part of the developmental mechanism.

Natural selection is a crucial factor determining the direction of evolutionary
change. Natural selection, however, can only act by eliminating phenotypic variation
in each generation. Within an individual, the ultimate cause of phenotypic variation
is genetic and environmental variation (Griffiths, 2002). Which phenotypic variation
will arise from such genetic and environmental variation, however, is determined
by development since, as we come to discuss, development has a crucial role in
determining the GPM. It follows then that development, in addition to natural
selection, is crucial to understand the direction of phenotypic evolution (de Beer,
1930; Goldschmidt, 1940; Waddington, 1957; Alberch, 1982; Arthur, 2001; Salazar-
Ciudad, 2006a), at least for the case of morphological phenotypes.

In this chapter, we review existing models of the GPM. We aim to show that many
prevailing genetic models, although claiming to be general, fail to recreate some
fundamental properties of real GPMs. We will argue that this is largely because
they do not consider epigenetic factors (e.g., cell behaviors). Instead, phenotypes
are often conceptualized as arising purely from gene product interactions or even
from genes themselves. We will argue that it is only because of epigenetic factors
that complex multicellular phenotypes, or even just phenotypes, are possible at all.
Based on these premises, we will also argue that models including epigenetic factors
are not only more realistic, they also uncover general characteristics of real GPMs
that are simply invisible to purely genetic models.

In this article, we will focus on the GPMs for morphological phenotypes but
we will also discuss similarities between these GPMs and those studied at other
phenotypic levels. The article is arranged in sections: a section describing what we
mean by epigenetic factors, one section per each kind of GPM model and sections
describing each main difference between the models that include epigenetic factors
and the models that do not.
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2 Epigenesis and Epigenetic Factors

The concept of epigenetic factors has two meanings. An epigenetic factor can be
anything that is not in the DNA sequence (such as the patterns of methylation on
the DNA) but that is heritable and has a causal role in development, physiology or
any other biological process. Epigenetic is also the adjective of epigenesis (Haig,
2004) and, thus, epigenetic factor would be any “factor” related to epigenesis.
Epigenesis is one of the two alternative views Aristotle proposed about embryonic
development. Epigenesis is the view that during development new organization
arises from previously existing organization that was not equal or trivially similar
to it (Jablonka & Lamb, 2005; Müller, 2007). The other view is preformationism:
the view that nothing really new arises in development and that most body parts and
organization are already present, at a smaller scale, within the gametes.

At the most general conceptual level, development can be described as the
process by which specific arrangements of cell types, what we call developmental
patterns (Salazar-Ciudad et al., 2003), transform into other developmental patterns.
Over developmental time, these pattern transformations occur constantly and lead
from a simple developmental pattern, the zygote, to a quite complex one, the adult
organism. In that sense, embryonic development is in concordance with Aristotle’s
epigenesis, except that there is something that remains constant during development
and that is faithfully copied between generations: the genotype.

An example of an epigenetic factor, in the epigenesis sense, is the asymmetric
spatial distribution of many proteins and RNAs in the oocytes of many species
(Newman, 2011a). These distributions are relatively simple but most animals have
an asymmetry along the animal-vegetal pole and many of them have also asym-
metries along other axes (Gilbert & Raunio, 1997; Gilbert & Barresi, 2016). These
asymmetries are absolutely required for development, if they are experimentally
disturbed, embryos become spherically symmetric and their development gets
arrested very early (Kandler-Singer & Kalthoff, 1976; Gilbert & Barresi, 2016).
These spatial asymmetries arise from spatial asymmetries present in the gonads
of the parents, typically their cell-level apical-basal asymmetries (Bastock & St
Johnston, 2008), or are transferred to the oocyte from an apical-basally polarized
epithelium through short-range signaling (Neuman-Silberberg & Schupbach, 1993;
Roth & Lynch, 2009).

One may argue that the asymmetries in the mother’s gonads are due to gene
product interactions in the earlier development of the mother. This is indeed the
case, but these asymmetries in the mother’s gonad required also that the oocyte that
gave rise to the mother had the same spatial asymmetries, otherwise, the mother’s
development would have arrested early on. The spatial asymmetries in the oocyte
are, thus, not reducible to gene product interactions. This interdependence between
genetic and spatial epigenetic factors is not exclusive of multicellular organisms, but
applies to all organisms (Jablonka & Lamb, 2005).

Another example of epigenetic factors is the developmental patterns themselves
(see Figs. 1 and 2). Gene product interactions are crucial in determining which
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Fig. 1 Schema of the interplay between genetic and epigenetic factors along successive stages
of organismal development. The top row shows different developmental patterns, different
distributions of cell types in space, from the zygote to the adult of one organism and its parent.
In the case of the zygote, the developmental pattern comes from the asymmetric distribution of
gene products mediated by the mother during gametogenesis. The plot below shows the amount
of genetic and epigenetic accumulated change within an individual and between generations in
respect to the zygote. The genotype does not change per se during development, it is the interplay
between it and the epigenetic factors (solid and dashed arrows) that builds the developing organism.
This interaction (the arrows) should be understood, as discussed in the text, as different epigenetic
factors affecting where and when different genes get expressed, while at the same time, which
epigenetic factors are encountered in each time and place in the embryo depends on previous
genetic and epigenetic interactions (as the arrows abstractly depict)

developmental patterns arise from which previous developmental patterns, but so
are these previous developmental patterns themselves. The same developmental
mechanism (i.e., gene network plus cell behaviors and mechanical properties) can
lead to different final developmental patterns depending on which developmental
pattern it acts on (Salazar-Ciudad et al., 2000, 2003). In each developmental stage,
existing developmental patterns depend on previous gene product interactions acting
on previous developmental patterns. Thus, these patterns, starting from the asymme-
tries in the oocyte, are both a consequence and a cause of developmental dynamics.
In this process, genes and epigenetic factors are intricately interdependent, but not
reducible to each other.

Other epigenetic factors relevant for embryonic development include the
mechanical properties of cell collectives (Newman & Comper, 1990; Newman
& Müller, 2000) and basic cell behaviors such as cell division, cell adhesion,
apoptosis, extracellular signal secretion, etc. (Salazar-Ciudad et al., 2003). All these
factors are often regulated by gene products, but their existence is not due to, or
merely reducible to, genes or genetic interactions. In fact, many cells and tissue
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Fig. 2 Example of a genetic-epigenetic model. The figure shows, in the left, an initial develop-
mental pattern the model takes as input and the developmental mechanism it implements, top. In
the right, the resulting developmental pattern is shown (the output of the model). In the left, each
purple sphere represents the apical side of an epithelial cell and each sphere in blue the basal side.
In the developmental mechanism, positive gene regulation is shown by green arrows and negative
gene regulation by red arrows. Each sphere is a different gene product, gene product in red can
diffuse between cells. In the final developmental pattern, the colors show the expression of gene
2 in the developmental mechanism (yellow for the maximal expression and blue for the minimal
expression). The model is implemented in EmbryoMaker (Marin-Riera et al., 2016)

mechanical properties that are relevant to understand morphogenesis are also found,
in some rudimentary form, in other systems such as in liposomes devoid of proteins
(Newman & Comper, 1990). Gene interactions can then be seen as just a way to
more precisely regulate properties and behaviors that are intrinsic to cell clusters
(Newman & Müller, 2000). Understanding those cell properties and behaviors is
fundamental to understand development, as has been widely discussed (Newman &
Comper, 1990; Beloussov, 1998; Oyama, 2000; Newman, 2011b; Guillot & Lecuit,
2013) under different names and slightly different concepts: epigenetic mechanisms
(Newman & Müller, 2000), soft-matter properties (Newman & Comper, 1990),
developmental resources (Oyama, 2000), phenogenesis (Weiss & Fullerton, 2000),
and epigenotype (Waddington, 1942).

Epigenetic factors are heritable but their variation is usually not (Jablonka &
Lamb, 2005; Salazar-Ciudad, 2008). One could then argue that the epigenetic
factors are not necessary to understand the GPM. After all, the GPM is defined
as the association between genetic variation and phenotypic variation. However, as
we come to explain, genetic and epigenetic factors need to interact for complex
phenotypes and their variation to be possible at all. In other words, genetic variation
does not have phenotypic effects unless it affects some epigenetic factors. Thus, to
understand the phenotypic consequences of a genetic change, and then the GPM,
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the interaction between genetic and epigenetic factors needs to be considered too
(Waddington, 1968; Oster & Alberch, 1981).

3 GPM Models

Models about the GPM coming from an evolutionary genetics tradition do not
consider epigenetic factors (Wagner, 1994; Hansen & Wagner, 2001). In fact, it has
been claimed that these purely genetic models (Wagner, 2011) are the most general
because, allegedly, they make fewer assumptions and do not include epigenetic
factors that are always specific of certain phenotypic levels. In this chapter, we will
argue that purely genetic models are not more general, but more particular because
they do not exhibit some general features of real phenotypic variation and GPMs.
In addition, they make a number of simple but strong assumptions. When these
assumptions are considered explicitly, as we will do in this article, it becomes clear
that the purely genetic models are not more general than the models that consider
epigenetic factors.

4 Mendelian and Quantitative Genetics

The study of the GPM has not been central to evolutionary genetics and, by
extension, to the modern evolutionary synthesis, also called neo-Darwinism (Mayr
& Provine, 1980). Although it was very early recognized (Wright, 1932) that such
a map was likely to be complex, most models in evolutionary genetics assume or
require a simple GPM. Such an assumption may be justified depending on the
questions being addressed. Thus, for example, if the aim is to show that natural
selection can lead to the fixation of some alleles (i.e., some variants of a gene),
then one may ignore the GPM and consider only the average phenotypic effect of
an allele on the phenotype (Fisher, 1930). For more advanced questions, as we will
discuss, this assumption is not tenable.

Evolutionary genetics is based in population genetics. The way the relationship
between genetic and phenotypic variation is understood in population genetics,
is based on Mendelian genetics (Griffiths, 2002). Specific discrete phenotypic
variation was conceived to be associated with some particles in the nucleus, the
genes. Later on, these particles were found to be made of DNA (Griffiths, 2002).
Finding this association is a major achievement of twentieth century biology.
However, it is rarely the case that a discrete phenotypic character can be simply
associated with a gene as in Mendelian genetics. Even in the best cases, there
is substantial penetrance and expressivity: different proportions of the individuals
bearing a gene exhibit the corresponding phenotype and when they do it, they do it
to different degrees.
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Most characters do not depend on one but several genes, i.e., they are polygenic
(Griffiths, 2002). In that case, Mendelian genetics considers that each different
combination of alleles could be associated with a different state in that character,
a different variant phenotype. Mendelian genetics, however, has no way to tell
which these character states would be. In other words, Mendelian genetics can
tell us about the frequency of certain phenotypic states (e.g., a pea being green)
given that those states are statistically associated with specific combinations of
alleles, but it cannot tell us why some alleles are associated with some specific
character states, and it cannot tell us which character states, or phenotypic variation,
are possible (Alberch, 1982). This relevant information has to be found by other
means, i.e., observation or other theories. In essence, genes in Mendelian genetics
are defined based on their statistical association with phenotypic variants. However,
in some of the applications of Mendelian genetics that we will discuss, genes
become understood as actual bearers of the information necessary to build specific
phenotypes and phenotypic variants.

Quantitative genetics is a theory that aims at providing such information.
Quantitative genetics is concerned with the inheritance of quantitative characters or
traits. These are characters that can be described by continuous, rather than discrete,
values (e.g., weight, limb length). Quantitative genetics was originally conceived as
an extension of multilocus (i.e., polygenic) population genetics following the so-
called infinitesimal model (Rice, 2004), that in its turn, was based in Mendelian
genetics. According to this model, each phenotypic trait is determined by the
sum of the phenotypic effect of a large number of Mendelian loci (i.e., genes) of
small quantitative effect on the phenotype. In addition, loci’s phenotypic effects
are supposed to be additive. This means that the phenotypic effect of a locus is
independent from the effect of other loci. Thus, each different allele in a locus
(i.e., each variant of a gene) adds a value to the phenotype independently from
the other alleles in the other loci in the genome. Contrary to what we proposed
in the introduction, then, genes are conceived to have intrinsic phenotypic effects.
Note also that the assumption that the effects of alleles are small and independent
from each other is also a mechanistic assumption on how genes interact in order to
construct the phenotype.

The infinitesimal model leads to a clear view on which phenotypic variation
should be possible by genetic variation. This model is, thus, implicitly a model
about the GPM. Mutations would affect genes and lead to new alleles. These would
have slightly larger or smaller intrinsic phenotypic effects than their non-mutated
version. It is then assumed that the values of phenotypic traits are able to increase
or decrease by the replacement of old alleles by specific new alleles over time. This
simple model implies that, in principle, all quantitative traits should be able to vary
gradually and increase or decrease forever as long as there is selection acting on
them. Since the phenotypic effect of alleles is small and additive (independent) one
is assuming a linear GPM: small genetic changes lead to small phenotypic changes.

In practice, quantitative genetics uses information about the genetic relatedness
between individuals to estimate which proportion of the phenotypic variation
between these individuals is due to shared genetics. This information is based
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on genealogies or on direct information of the genotypes of individuals (such as
in GWAS studies) (Uricchio, 2020). The GPM is conceptualized through the G
matrix, the matrix of covariances between traits due to shared genetics (Lande &
Arnold, 1983). Describing the GPM through covariances is convenient if the GPM
is assumed to be linear. In such an approach, all traits can change indefinitely, but
not all of them are necessarily equally variable. Since some genes may be affecting
several traits at the same time these traits may not be able to vary independently
from each other.

It is important to note that although the quantitative genetics approach is
eminently statistical and claimed to be applicable to any phenotype (Roff, 2007),
the assumption of linearity implies that it should only be accurate when the GPM
is linear. When the GPM is nonlinear, quantitative genetics will still provide
predictions but these would often be inaccurate (Pigliucci, 2006; Milocco & Salazar-
Ciudad, 2020).

There is the general perception that the predictions of quantitative genetics are
experimentally accurate (Roff, 2007). Artificial selection experiments are usually
seen as supporting this perception (Roff, 2007). This evidence, however, exists only
for selection on single traits. Some authors claim that most studies only show that
the quantitative genetics approach works better than nothing since no alternative
approaches are used (Pigliucci, 2006). In addition, more general experiments
selecting for a trait and looking at the response in others or experiments selecting
for multiple traits at the same time are rare. The few studies that attempt that are
sometimes compatible with the expectations of multivariate quantitative genetics,
but some other times they are not (Roff, 2007).

5 Evolutionary Genetics Models on Epistasis

There are several theoretical models that are conceptually related to quantitative
genetics but that explicitly consider that the phenotypic effects of loci depend
on each other, although linearly (Barton & Turelli, 1987; Jones et al., 2004). As
an example, we will discuss one such model in some more detail: Hansen’s and
Wagner’s multilinear model (Hansen & Wagner, 2001). The multilinear model was
developed with the explicit intention of (quoting this original work; Hansen &
Wagner, 2001, p. 76):

The current body of theory in quantitative genetics lacks an operational theory of gene
interaction [ . . . ] The multilinear theory is [ . . . ] the only current suggestion that allows for
a systematic non-statistical way of incorporating gene interactions in quantitative genetic
theory.

The multilinear model bears an assumption about the GPM: The interactions
between gene effects are linear; changing the genetic background for a locus causes
a linear transformation of the effects of all substitutions at this locus. Thus, the
value of each trait is determined by a fixed phenotypic (iy) effect from each locus
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i, defined as the phenotypic change of a substitution in that locus in respect to an
arbitrary reference genotype, and a term multiplying all combinations of phenotypic
effects by an epistatic coefficient ε. This coefficient can be different for each gene
interaction (ijε for two loci interactions, ijkε for three loci interactions, etc.).
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Where a, b, c . . . are the successive traits conforming the phenotype. There
are a number of models that make similar linear assumptions (Zhivotovsky &
Feldman, 1992; Gavrilets & Dejong, 1993; Turelli & Barton, 1994; Nowak et al.,
1997; Wagner et al., 1997). Other than linearity, this model does not propose much
about how the GPM is (i.e., nothing is said about the distribution of the epistatic
coefficients or about whether epistasis happens between two, three or more loci
at the same time). However, the actual applications of the model do take more
detailed assumptions about the GPM: they assume that (Hansen et al., 2006; Fierst
& Hansen, 2010) all epistatic coefficients are equally likely to change by mutation.
In other words, since the coefficients in Eqs. (1) and (2) can acquire any arbitrary
value through mutations, the GPM is totally plastic to change in any direction over
generations. This is a common feature of the models based on quantitative genetics
(Barton & Turelli, 1987; Jones et al., 2004). These models consider that loci’s
phenotypic effects depend on each other but they assume that these dependencies
are free to change, over time, by mutation in any way. This is a sort of second-
order neo-Darwinism: Traits are not assumed to all be equally likely to change as in
the neo-Darwinian approach. There are genetic covariances between traits but these
covariances are free to change in any way by the accumulation of small adaptive
mutations. This is like applying the infinitesimal model to the evolution of the GPM
rather than directly to the evolution of the phenotype (Roff, 2000; Wagner et al.,
2007; Cheverud, 2007; Crow, 2010).

6 Wagner’s Model

Wagner’s purely genetic model (Wagner, 1994) has also been used to study the
evolution of the GPM and its effect on phenotypic evolution (Le Cunff & Pakdaman,
2012; Fierst, 2011; Pinho et al., 2012; Draghi & Whitlock, 2012). In contrast to
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Hansen’s model, this is a nonlinear model in which gene products regulate each
other expression. The phenotype is the level of expression of the genes in the
network.

The level of expression of a gene i in a given time t + 1, Si(t + 1), is a nonlinear
function, σ , of the sum of the regulatory inputs from each other gene j, wij, each
multiplied by the expression of those genes Sj(t).

Si (t + 1) = σ

[
N∑

i=1

wijSj (t)

]
(3)

The σ function is a sigmoidal function that it effectively acts as a threshold: it
gives −1 if its argument is smaller than 0 and 1 if its argument is larger than 0 (and
0 if its argument is zero). The matrix of all wij values effectively determines gene
network topology and the interaction strength between genes.

In Wagner’s model, the number of traits is the same as the number of genes. For
that model to be generally applicable to the GPM, it is required that the phenotype
can be explained, at least in its main features, solely on the bases of gene expression
levels. To explain the phenotype, thus, Wagner’s model still takes the idea that
genes have intrinsic phenotypic effects. In this case, simply, it is not the genes but
their expression that have intrinsic phenotypic effects. Thus, there are no epigenetic
factors nor space.

The main improvement of this model in respect to previous models is that there
are gene networks and that the gene interactions in this network are nonlinear.
Although this approach is an improvement over other purely genetic approaches,
it still fails to capture some important features of GPMs, as we later discuss.

7 Genetic-Epigenetic Models

In this section, we include those models in which the phenotype is understood to
arise from genetic factors, epigenetic factors and their interactions. The models
we will discuss in most detail are those of embryonic development. Most models
of embryonic development (e.g., Odell et al., 1981; Meinhardt, 1982; Jaeger et
al., 2004; Honda et al., 2008; Salazar-Ciudad & Jernvall, 2010; Zhu et al., 2010;
Osterfield et al., 2013) have some elements in common: gene networks, cells,
and some epigenetic factors in an explicit spatial context. These models always
include some initial developmental pattern (i.e., an initial condition), and often,
some cell behaviors (e.g., cell division, cell contraction, cell adhesion, etc.). There
is often the diffusion of extracellular signals in space. Similar models can be
applied to other phenotypic levels such as cell biology (Vik et al., 2011; Karr et al.,
2012), organ physiology (Noble, 2002; Gjuvsland et al., 2013) and neurophysiology
(Skinner, 2012; Goldberg & Bergman, 2011), RNA secondary structure (Schuster
et al., 1994; Schuster et al., 1994; Cowperthwaite & Meyers, 2007) and protein
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conformation (Silva et al., 2009; Ferrada & Wagner, 2012). Models at each
phenotypic level include epigenetic factors that are level-specific (e.g., cell signaling
and other cell behaviors, the rules of nucleotide base pairing in RNA models, or the
stereochemistry of amino acids in proteins).

In the case of development, most models focus on a specific organ and incorpo-
rate experimental information on the genetic, cellular, and other epigenetic factors
known to be important for that organ development, just to cite a few: epithelial
buckling (Odell et al., 1981), skin coat patterns (Meinhardt, 1982), early fly
segmentation (Jaeger et al., 2004), mammal blastulation (Honda et al., 2008), tooth
morphogenesis (Salazar-Ciudad & Jernvall, 2010), limb morphogenesis (Zhu et al.,
2010), and egg shape (Osterfield et al., 2013).

There are genetic-epigenetic models that are not specific to any organ but that
intend to apply to the whole of animal development (Hogeweg, 2000; Hagolani et
al., 2019). They implement basic equations for gene network dynamics, cell behav-
iors, extracellular signal diffusion, and cell mechanical interactions. One can then
explore the different GPMs arising from the theoretically possible developmental
mechanisms (Hogeweg, 2000; Marin-Riera et al., 2016; Hagolani et al., 2019).
With these models, it has been recently suggested that the development of complex
morphologies can be achieved if most cells in an embryo activate cell behaviors
(mostly cell division and contraction). For these complex morphologies to be also
stable (i.e., that they develop in the same way in spite of noise), it is required that
the embryo is partitioned in relatively small areas of gene expression where cell
behaviors are regulated differently (Hagolani et al., 2019). These models, however,
have not yet been applied to better understand the GPM directly.

One limitation of the genetic-epigenetic models is that there is no genotype as
such. There are parameter’s that specify the strength of some genetic interactions in
the model. Changes in the values of these parameters are usually used as proxies for
genetic variation but, in fact, the relationship between the values of these parameters
and genetic variation is likely to be quite complex since it may depend in process
such as protein folding, RNA folding, enzymatic catalysis, etc.

8 The Lattice Pattern Formation Model

The simplest genetic-epigenetic models, are those that include gene networks and
two epigenetic factors: the cell behavior of cell signaling, and the physical process
of signal diffusion in the extracellular space. These models are framed in a spatial
cellular context, e.g., a lattice of cells, and the phenotype of interest is the spatial
distribution of gene expression. There are several of those models (Mjolsness et al.,
1991; Jaeger et al., 2004; Cotterell & Sharpe, 2010; Jiménez et al., 2015; Rothschild
et al., 2016) but only one is being discussed here, the Salazar-Ciudad’s lattice model
(from here on just the lattice model), because it intends to be general (i.e., applying
to all animal development not to a specific organ) and it explicitly focuses in the
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GPM and in its evolution (Salazar-Ciudad et al., 2000, 2001a). In essence, this and
other models can be seen as adding epigenetic factors to Wagner’s model.

In this model, a number of nonmotile cells, each one including an identical
gene network, occupy different positions in a 2D regular lattice. Some of the
gene products are extracellular diffusible signals that affect gene expression in
neighboring cells. In the lattice model the (continuous) change in concentration of
a given gene product “i” in a given cell “j,” that is gij, does not only depend on the
gene network dynamics of that cell, but also on the contribution of diffusible gene
product coming from other cells:

∂gii

∂t
=

φ
[∑Ng

k=1wijgik

]

φ
[∑Ng

k=1wijgik

]
+ Km

− μgij + Di∇2gij (4)

As in Wagner’s model, wjk values determine the gene network topology and
the interaction strength between genes. The heaviside function × prevents negative
concentrations in the gene products (×(x) is such that if x > 0 then ×(x) = x and
if x ≤ 0 then ×(x) = 0). The first term is a Michaelis–Menten saturating function
with a Km coefficient. The degradation rate of the gene products is specified by the
μ parameter and Dl is the specific diffusion rate of the gene product l.

The model starts from a very simple initial developmental pattern in which only
one gene is expressed and only in a cell in the middle of the lattice (Salazar-
Ciudad et al., 2000). As a result of genetic interactions in the network, cell signaling
and diffusion, a new developmental pattern arises (i.e., new distributions of gene
expression in space). This developmental pattern is the phenotype in this model.
There is, thus, some basic morphology in the sense of the distribution of cell types
in space where cell types are described by their gene expression. Despite its relative
simplicity, lattice models have been used to study the segmentation mechanisms in
the early embryos of Drosophila and other insects (Salazar-Ciudad et al., 2001b;
Jaeger et al., 2004).

The main result of the analysis of the Salazar-Ciudad lattice model is that there
are a limited number of gene network topologies that can lead to pattern formation
(Salazar-Ciudad et al., 2000). In other words, most gene networks one could build
(for example by wiring genes at random as in Salazar-Ciudad et al., 2000) simply
do not lead to any changes in gene expression over space, no pattern, even if
they promote cell–cell signaling. Somehow there are mathematical constraints or
rules on which gene networks can lead to pattern formation. These rules exist,
however, because genes affect some epigenetic factors (e.g., the physical process of
extracellular signal diffusion). These epigenetic factors allow for phenotypes (i.e.,
patterns) to arise rather than just being assumed as in the purely genetic models.
These constraints simplify the study of the GPM, since one only needs to worry
about the GPM in this subset of topologies.
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9 Models Including Morphogenesis: The Tooth Model

The Salazar-Ciudad lattice and similar models including cell signaling are still
rather unrealistic models of the GPM for morphological phenotypes. First, because
morphological variation does not involve just differences in the location of gene
expression but also differences in the location of cells themselves and the former
cannot be defined without the latter unless one leaves morphology as such as
unexplained. Second, during development, cells not only signal to each other, they
also activate cell behaviors. In fact, cells only change their position, and thus
morphology, as a consequence of these other cell behaviors. There are a number
of specific models doing that (Odell et al., 1981; Honda et al., 2008; Salazar-Ciudad
& Jernvall, 2010; Osterfield et al., 2013) but most of them are only concerned with
wild-type phenotypes or with mutations of large phenotypic effect that are unlikely
to be found in natural populations due to their likely highly deleterious effects.

One exception is the tooth model (Salazar-Ciudad & Jernvall, 2010; Salazar-
Ciudad & Marín-Riera, 2013). This model integrates experimental knowledge on
how genes and cells interact in a specific system, the mammalian teeth, to reproduce
their development, their adult morphologies, and their variation. In addition, the
model is used to reproduce the multivariate and three-dimensional morphological
variation in natural populations. This allows to suggest which changes in develop-
ment, and possibly in which genetic pathways, may be responsible for the observed
patterns of micro-evolutionary phenotypic variation. This model also allows to
obtain some mechanistic understanding on why some morphological variation arises
and some other does not arise from mutations affecting development.

General models of development including many, or even most, cell behaviors
do exist (Hogeweg, 2000; Marin-Riera et al., 2016; Delile et al., 2017) but so far
their potential to address general questions about the GPM itself has not been fully
explored (except for two attempts, Hogeweg, 2000; Hagolani et al., 2019).

10 The Differences Between Purely Genetic Models
and Genetic-Epigenetic Models

Overall, genetic-epigenetic models provide a view on the GPM and the phenotypic
variation that differs from that of the purely genetic models in a number of
fundamental ways:
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10.1 Genetic-Epigenetic Models Reproduce Individual
Phenotypes and the GPM

The first difference is that in genetic-epigenetic models the phenotypes arise from
the modeling of specific epigenetic factors or even physical interactions (e.g.,
between gene products, between cells, between nucleotides; see Fig. 1 for an
example) while in the purely genetic models the phenotypes arise from the assumed
intrinsic phenotypic effect of genes and the distribution of genes among individuals
in a population. Wagner’s model is somehow in between because it simulates gene
product interactions but in order to be general it assumes that gene expression has
an intrinsic effect on the phenotype (i.e., it does not depend on epigenetic factors)
and that these can arise without considering the interactions between cells (i.e.,
Wagner’s model is a unicellular model).

In the genetic-epigenetic models, the GPM is studied by exploring which pheno-
types arise from which changes in its parameters. These models make assumptions
at the level of which genetic interactions and epigenetic factors are relevant to
explain the phenotype and its variation. Given these assumptions, the GPM arises
from the model, i.e., no assumptions are made directly on the nature of the
phenotype or the GPM. In the purely genetic models, in contrast, there are features
of the GPM that do not arise from the model, they are simply assumed, most notably
linearity and that genes have intrinsic phenotypic effects. This inevitably makes the
genetic-epigenetic models more general since they make fewer assumptions on the
nature of the GPM.

Genetic-epigenetic models often have enough realism as to be quantitatively
comparable with a real organ’s morphology (Odell et al., 1981; Meinhardt, 1982;
Jaeger et al., 2004; Harris et al., 2005; Honda et al., 2008; Newman et al., 2008;
Salazar-Ciudad & Jernvall, 2010; Osterfield et al., 2013; Moustakas-Verho et al.,
2014; Ray et al., 2015; Onimaru et al., 2016; Brun-Usan et al., 2017; Marin-Riera
et al., 2018).

It is relevant to note that genetic-epigenetic models reproducing population-level
phenotypic variation can also reproduce the statistical properties of the population
that purely genetic models aim at. All models have parameters, e.g., the diffusivity
of an extracellular signal in the lattice models that can be varied. This variation
leads, through the model, to phenotypic variation. Statistics can then be applied to
this variation, as it is done in population and quantitative genetics, and these can be
compared to the ones observed in natural populations (as for example in Salazar-
Ciudad & Jernvall, 2010; Milocco & Salazar-Ciudad, 2020).
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10.2 Epigenetic Factors Inform About the Space of Possible
Networks

Epigenetic factors provide informative rules on which networks are biologically
plausible. In the lattice model, for example, we have found that cell signaling
and signal diffusion allows for pattern formation but only for specific types, or
families, of gene network topologies (Salazar-Ciudad et al., 2000). In other words,
by including the epigenetic factor of signaling, we learn that not all gene network
topologies can be found in nature to perform a given function (e.g., lead to pattern
formation in lattices of cells). This is not the case in purely genetic models, not even
in Wagner’s model. Since these include no epigenetic factors, the space of gene
network topologies that can lead to plausible phenotypes is much larger. This is
relevant because different conclusions would be reached when studying one space
of gene networks or the other. For example, some studies (Wagner, 1996; Draghi
& Whitlock, 2012) claim that phenotypes become more robust to environmental
changes as a result of conservative natural selection (i.e., selection for a phenotype
to remain unchanged over generations). For that to occur there has to be many gene
networks that can lead to the same specific phenotype and they have to differ in
their environmental robustness. This is the case for Wagner’s model. This is not
necessarily the case in genetic-epigenetic models. In the genetic-epigenetic models
where this has been studied (Salazar-Ciudad & Jernvall, 2005; Hagolani et al.,
2019), many phenotypes are only possible for specific genetic-epigenetic networks
and for very specific values in their parameters. Conservative natural selection is,
thus, unlikely to increase environmental robustness by choosing among the networks
that can produce the same morphology. This is because there is not many of them
and they are not connected to each other by a small number of mutations. Thus,
the result that conservative selection increases robustness depends on a specific
unconstrained space of gene networks that does not seem to be realistic.

10.3 In Genetic-Epigenetic Models Not All Aspects
of the Phenotype Can Change

The third main difference between genetic-epigenetic models and purely genetic
models is that, in the former, not all aspects of the phenotype are equally likely
to change by mutation, and in fact, some aspects may not be changeable at all,
at least in the short term. This is a general property of genetic-epigenetic models
(Oster & Alberch, 1981), although it has been explicitly studied only in a subset of
these models (Hogeweg, 2000; Salazar-Ciudad & Marín-Riera, 2013; Crombach et
al., 2016; Verd et al., 2019). This coincides with the evo-devo view that, because
of how genes and epigenetic factors interact during development, some aspects of
morphology are more variable than others (Alberch, 1982; Horder, 1989). Similar
results are obtained in the GPM models of RNA and protein folding (Schuster et al.,
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1994). In this case, there are also many studies measuring how different phenotypes
are more or less likely to arise by mutations and how the same phenotype can arise
from different genotypes (Ahnert, 2017; Ferrada & Wagner, 2012).

As explained in the previous sections, the purely genetic models, except for
Wagner’s model, either assume that all aspects of the phenotype are equally likely
to change or have no way to explain why some aspects of the phenotype are more
variable than others, other than natural selection-based arguments. In addition, they
assume that all traits can change unlimitedly by mutation.

This difference implies that the genetic-epigenetic models provide a more general
depiction of the GPM and of the variability of the phenotype. In other words,
the purely genetic models only consider the possibility that all traits are equally
likely to vary while the genetic-epigenetic models can explain, even within a single
model (Salazar-Ciudad & Jernvall, 2005; Cotterell & Sharpe, 2010), many other
possibilities. Again, the purely genetic models do in fact make an assumption, that
all traits are free to vary indefinitely, that the genetic-epigenetic models do not
usually make.

10.4 Genetic-Epigenetic Models Can Explain Changes
in Phenotypic Dimensionality and Novelty

The fourth main difference between genetic-epigenetic models and purely genetic
models is related to the dimensionality of the phenotypic changes they can consider.
Quantitative and evolutionary genetics conceptualize the phenotype as a set of
quantitative traits. Although these approaches consider that the value of each trait
can vary without limit, they do not consider that the nature and number of these
traits can itself evolve (Müller & Wagner, 1991). In Hansen’s model, for example,
one has to specify the number of traits from the beginning and this number will not
change over time. In Wagner’s model, since each phenotypic trait is the expression
of a gene, the number of genes defines the dimensionality of the phenotype.

Evolution, however, cannot be reduced to quantitative changes in previously
existing traits. As an extreme example, it is clear that one cannot derive a human
from gradually changing the traits one could measure in a distant bacteria-like
ancestor: the nature and number of traits has dramatically changed in evolution.
This kind of changes are sometimes called, or related to the concept of, novelty
(Müller & Wagner, 1991).

In many genetic-epigenetic models, some novelty can arise. This is specially
evident in models that include cell division or growth since there are then new
traits being created over the time in the model. In the tooth model, for example,
mutations from one individual can lead to individuals with novel cusps. These are
due to simple changes on how strongly genes interact with each other or on how
strongly they affect cell division (Salazar-Ciudad & Jernvall, 2004, 2010). These
new cusps cannot be defined as arising from other cusps or as arising from some
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traits measurable in its ancestors: they arise where there was a feature-less flat area
on the tooth and the show no relationship to previously existing cusps.

Again the genetic-epigenetic models turn out to be more general since they do
not necessarily assume that variation occurs only as quantitative variation in existing
traits but can consider a much larger class of phenotypic changes.

10.5 Genetic-Epigenetic Models Can Explain How the GPM
Evolves

Ideally, any model on the GPM should give some hints about how the GPM itself
evolves, otherwise its utility is restricted to the short time scale in which the GPM
itself is not expected to evolve much. Here again, the differences between the two
approaches are fundamental. The purely genetic models have no way to address this
question other that assuming, as in the second-order neo-Darwinian view described
above, that all aspects of the GPM are equally likely to change by mutation and
that then, the GPM smoothly changes in the direction imposed by natural selection.
From this perspective past natural selection would be the only factor determining
the evolution of the GPM.

In the case of the genetic-epigenetic models, as explained, the nature of the
GPM arises from the genetic and epigenetic interactions included in the model.
The evolution of the GPM can then be studied by making changes in the genetic
interactions, i.e., the gene network. This approach has been taken in a number of
articles simulating evolution and development (Hogeweg, 2000; Salazar-Ciudad,
2001a; Salazar-Ciudad & Marín-Riera, 2013; Crombach et al., 2016; Hagolani et
al., 2019). Some of these articles show, for example, that the most parsimonious way
to evolve a complex phenotypes leads to a highly complex, non-linear GPM where
parts of the phenotype cannot vary independently (Salazar-Ciudad et al., 2001a, b).

Many other rules or trends of change in development and the GPM have been
hypothesized over the years, either based on models or not: constructional con-
straints on how developmental stages can be put onto each other over developmental
time (Alberch & Blanco, 1996), rules arising from the intrinsic material properties
of cells and tissues (Newman & Müller, 2000), from the structure of morphogenetic
fields (Webster & Goodwin, 1996) from the logic of gene networks (Kauffman,
1993) or from the limited number of ways in which genes and cells can be wired
to lead to pattern formation and morphogenesis (Salazar-Ciudad et al., 2000; Von
Dassow et al., 2000).
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11 Conclusions

From the previous discussion, it should become apparent that the genetic-epigenetic
models describe some important and general properties of GPMs that cannot be
described by models that do not include epigenetic factors. First, they explain
phenotypes and the GPM based on genetic interactions and epigenetic factors
without making assumptions on the nature of the GPM itself. Second, they restrict
the space of possible gene network topologies to the ones capable of performing
biological functions. Third, they can help to explain which directions of phenotypic
variation are more likely by genetic mutation and why. Fourth, they can explain
some novelty, and, thus, changes in the dimension of phenotypic variation. Fifth,
they can explain how the GPM itself evolves and, thus, they have a stronger
explanatory power in evolution.

We think that the generality of models should be measured based on the number
of features of reality they can reproduce. Purely genetic models cannot reproduce
many of the features of GPMs and, thus, should be considered non-general. Genetic-
epigenetic models are specific of a specific phenotypic level. In spite of that,
however, many of them reproduce more features of real GPMs than purely genetic
models. Thus, even if the details may differ between genetic-epigenetic models,
they should be regarded, overall, as a more general description of the GPM than
purely genetic models. This view has already been put in practice in some research.
Models of specific phenotypes, the tooth model, have been used as a general models
of evolution under realistically complex GPMs (Salazar-Ciudad & Marín-Riera,
2013; Milocco & Salazar-Ciudad, 2020). Other authors have gone even further and
suggested that secondary RNA structure models can be used to model evolution at
other phenotypic levels such as morphology because they capture crucial features
of the GPM that are not captured by purely genetic models (Fontana, 2002).
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Dynamical Modularity
of the Genotype-Phenotype Map

Johannes Jaeger and Nick Monk

Abstract An organism’s phenotype can be thought of as consisting of a set of
discrete traits, able to evolve relatively independently of each other. This implies
that the developmental processes generating these traits—the underlying genotype-
phenotype map—must also be functionally organised in a modular manner. The
genotype-phenotype map lies at the heart of evolutionary systems biology. Recently,
it has become popular to define developmental modules in terms of the structure of
gene regulatory networks. This approach is inherently limited: gene networks often
do not have structural modularity. More generally, the connection between structure
and function is quite loose. In this chapter, we discuss an alternative approach based
on the concept of dynamical modularity, which overcomes many of the limitations
of structural modules. A dynamical module consists of the activities of a set of genes
and their interactions that generate a specific dynamic behaviour. These modules
can be identified and characterised by phase space analysis of data-driven models.
We showcase the power and the promise of this new approach using several case
studies. Dynamical modularity forms an important component of a general theory
of the evolution of regulatory systems and the genotype-phenotype map they define.

1 Introduction: Modular Traits and the Genotype-Phenotype
Map

The question why organisms are able to evolve is one of the most fundamental and
unresolved questions in biology today. What kind of systems architecture permits
and facilitates the generation of adaptive variation? What are the indispensable
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characteristics of such an architecture? Modularity is one of the main candidates for
such a fundamental structural property of evolving systems. George Cuvier already
argued that the functional integration of parts implies that evolution cannot occur;
but since then, we have discovered modular elements at all levels of living systems
(Schlosser & Wagner, 2004; Callebaut & Rasskin-Gutman, 2005). At the molecular
level, genes and their regulatory sequences are thought to be organised in a modular
way. At the phenotypic level, the study of evolution relies on the subdivision of
the organism into individual characters or traits. These traits provide the foundation
for establishing character homologies and their phylogenetic relationships (Wagner,
2014).

Lewontin (1970, 1974) emphasises the “quasi-independence” of evolutionary
characters: they can be individuated through functional or structural criteria (see,
for example, Riedl, 1975), or in terms of their variational properties (Wagner &
Altenberg, 1996). In this sense, traits are functional, structural, and/or variational
modules (Fig. 1a). Without modularity limiting pleiotropic effects, selection for
specific characters would be impossible, and coherent description of evolutionary
processes would be unattainable. It may be that some features of an organism may
not be separable in this way,1but evolutionary theory at a minimum focuses attention
on the set of features that do exhibit a significant degree of quasi-independence. This
is why it is widely accepted that modularity is a prerequisite for evolvability, the
capacity to produce adaptive change (Dawkins, 1989; Wagner & Altenberg, 1996;
Pigliucci, 2008).

Herbert Simon (1962, 1973) argues further that “near-decomposability” is a nec-
essary property of complex adaptive systems that evolve under selective pressure. It
is characterised by the scarcity of strong interactions between systems parts. Near-
decomposability provides a powerful principle for plausible simplification—and
hence understanding—of complex adaptive systems by subdividing our explanatory
tasks into manageable chunks (Callebaut, 2005).

Character traits—considered as individuated features of an organism’s
phenotype—are generated by metabolic, physiological, and developmental
processes, which constitute a mapping from genotype to phenotype (Fig. 1b) (Burns,
1970; Alberch, 1991; Pigliucci, 2010).2These processes compose the epigenotype of
the organism (Waddington, 1942, 1953; Goodwin, 1982; Oster & Alberch, 1982).

1Gould and Lewontin (1979) use the human chin as an example to criticise the concept of character
traits as natural kinds. The chin is not individuated, since it develops from the interaction of two
different generative processes (the alveolar and mandibular growth fields), and thus cannot vary
independently from other features of the human skull.
2Actually, a more accurate view is to consider the central mapping to occur from phenotype to
phenotype over the life cycle of an organism. On this view, the genotype provides the parameters
of this dynamic map (rather than a source range as shown in Fig. 1b). Genotype space becomes
embedded in phenotype space. Here, we use the metaphor of the genotype-phenotype map as a
useful idealisation. It should not be interpreted in the sense that genotype space is physically or
logically independent of the phenotype space. Rather, it highlights the fact that we should focus
more attention on the processes that connect genotype and phenotype. Metaphors are only useful
as conceptual tools when applied within their proper limitations.
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Fig. 1 (a) Character traits are functional, structural and/or variational modules, each of which can
undergo adaptation quasi-independently of others. (b) This implies that the genotype-phenotype
map, consisting of the generative processes that produce traits, must also be structured in a modular
manner. The argument in this chapter shows that such modularity must occur at the level of the
epigenotype, which provides the bridge between genotype and phenotype space. With apologies to
the Coen Brothers, Leonardo Da Vinci, and Günter Wagner

Evolutionary change in a phenotypic trait requires corresponding changes in its
generative processes (Waddington, 1957; Wagner, 1989, 2014; Amundson, 2005).
Since phenotypic variability reflects variability in these processes, the genotype-
phenotype map must have a modular architecture as well. Needham (1933) coined
the term “dissociability” to describe that generative processes or subsystems are
to some degree separable from each other. This suggests that variation in a given
individuated trait can be mapped to specific modular subsystems of the epigenotype
(Fig. 1). In this chapter, we ask how this is best achieved.3After all, understanding
the modular architecture of the genotype-phenotype map is the key to reconnecting
phylogeny and ontogeny, a central aim of evolutionary developmental biology
(Needham, 1933; Waddington, 1957; Goodwin, 1982; Oster & Alberch, 1982; von
Dassow & Munro, 1999; Bolker, 2000; Wagner, 2007, 2014). Unfortunately, the
nature of modularity remains elusive.

The first difficulty is to precisely define what a module actually is. A general
definition should apply across a broad range of specific cases, types of modules,

3Another interesting question is how the modular structure of the epigenotype evolved in the first
place. This is an important and active field of investigation (reviewed in Wagner, 1996; Wagner
et al., 2007; see also Wagner, 2014). We will not pursue this question any further here.
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and levels of the organisational hierarchy (Bolker, 2000). In its broadest sense, a
module is “a unit that is a component part of a larger system and yet possessed
of its own structural and/or functional identity” (Moss, 2001, p. 91). The unit
could be any biological entity (a structure, a process, or a pathway) or collective
of entities with more internal than external cohesion (Raff, 1996; Hartwell et al.,
1999; von Dassow & Munro, 1999; Bolker, 2000; Callebaut, 2005; DiFrisco, 2018;
see also Collier, 1988, 2004). In this sense, modules can be considered biological
individuals (Hull, 1980). They can be delineated from their surroundings and their
behaviour and function emerges as a result of the integrated activity of their parts.
Modules require both tight internal cohesion (their “cohesion regime”; Collier,
1988, 2004; DiFrisco, 2018) and relative independence from other modules (cf.
Simon, 1962, 1973). They can be defined in terms of their reusability in different
contexts (Mireles & Conrad, 2018). Importantly, in the context of our argument,
modules must be extended in time: they must persist for long enough to exert their
effect (Callebaut, 2005). Finally, as the terms “near-decomposability” and “quasi-
independence” imply, modularity is a matter of degree (Wagner & Altenberg, 1996).
All modules interact with their context to some extent, usually in a structured and
hierarchical way (Needham, 1933; Riedl, 1975; Raff, 1996; Bolker, 2000).4

There are many different ways in which we can distinguish different types of
modules. Characters can quite obviously be considered morphological modules
(Lewontin, 1970, 1974), and we have already encountered variational modules as a
way to individuate traits (Wagner & Altenberg, 1996; Melo et al., 2016). Variational
modules are often also functional modules, as shared function implies an increased
tendency to co-vary (Wagner et al., 2007). Moreover, they are closely related to
the concept of an evolutionary module, which informs the notion of homology
and the unit-of-selection debate (e.g. Lewontin, 1970; Raff, 1996; Wagner, 1996,
2014; Brandon, 1999; Callebaut, 2005). Variational/evolutionary modules can be
distinguished from developmental modules (Wagner et al., 2007). The latter could
provide the basis for a general theory of development, and have received special
attention in the field of evolutionary developmental biology (evo-devo) (Raff, 1996;
von Dassow & Munro, 1999; Bolker, 2000). Other authors contrast morphological,
evolutionary, and developmental modules (Callebaut, 2005). Yet another classifica-
tion scheme segregates structural from developmental and physiological modules

4As a simple example of what is meant here, let us consider the understanding of social behaviour
in terms of interactions between individuals. In such a description, each individual is a module—
it has tight internal cohesion, with intrinsically determined principles, and relative independence.
However, social-level behaviour emerges from the interaction between modules (individuals), so
independence is necessarily limited. In this familiar context, there is clear explanatory benefit in
representing the population as a collection of quasi-independent individuals, even though one
could, in principle, argue that population-level dynamics are “nothing more than” the dynamics
of a collective physiology. This provides a simple example of what Simon (1962, 1973) means by
near-decomposability, illustrating its evident utility. Note that in this picture, individuals can be
thought of as structural, functional and variational modules, depending on the perspective being
taken, and the question being addressed.
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(Winther, 2001). In this thicket of classifications (Wimsatt, 2007), it is difficult to
still see the forest for the trees.

Let us therefore remember that we are interested in the modularity of the
genotype-phenotype map and how it relates to phenotypic evolution. Our aim is to
explain the modular structure of the genotype-phenotype map in causal-mechanistic
terms. Thus, we focus on functional modules, or quasi-independent subsystems of
the epigenotype, which are responsible for the generation of specific morphogenetic
patterns or phenotypic traits (Fig. 1). We must avoid falling into the trap of a
“transcendental argument” by simply postulating such modules (Brandon, 1999).
Functional modules have to be identified and characterised empirically. This is not
an easy task. It not only requires functional decomposition, but also reconstitution
of the integrated activity of modules by systems-level approaches. We review such
approaches that use structural and regulatory criteria as proxies for functional ones.
We discuss the severe limitations inherent in these criteria. This motivates us to
introduce a novel type of module, the dynamical module, which is empirically
identifiable in a wide range of developmental processes and intimately related
to function. We discuss methods to characterise such modules in formal models
and actual developmental systems. We briefly survey known dynamical modules
in evolution and development. We conclude that dynamical modules provide a
powerful new approach for the causal-mechanistic decomposition of the dynamic
and evolvable structure of the genotype-phenotype map, and argue that dynamical
modularity can be seen as the conceptual foundation for a new research programme
and theoretical perspective on developmental evolution.

2 Functional Modules

Our aim is a functional decomposition of the genotype-phenotype map, because it
is the only kind of decomposition that allows us to directly link evolving generative
processes to evolving morphological traits (Fig. 1). In this sense, we agree with
Hartwell et al. (1999, p. C47), who argue that functional modules are a “critical level
of biological organization.” These authors define a functional module as “a discrete
entity whose function is separable from those of other modules.” (ibid., p. C48).
Similarly, Mireles and Conrad (2018, p. 1) define a functional module as consisting
of “sets of elements that act together in performing some discrete physiological
function.” These definitions are as concise as they are unworkable since they leave
many crucial questions open. How do we define a function? What kind of discrete
entity are we looking for? And how do we identify such an entity in the context of a
complex regulatory system?5

5The difficulty of the problem can be illustrated with the following example: it is notoriously hard
to formally define the separable function of a “left back” in a football team, even if we have a
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For our present purposes, we adopt Cummins’ (1975) systems-oriented view of
biological functions. For our functional decomposition, we need to know which
components of a regulatory system have the capacity to contribute to a given feature
of the whole.6This contribution is their function.

What kinds of system components are we after? A common reductive approach
seeks a decomposition of the generative processes comprising the genotype-
phenotype map into a network of interacting elemental regulatory factors. These
factors can (but do not have to) be genes and their products. In this context, identi-
fying modular subsystems means identifying subnetworks (also called subcircuits)
that contribute to a specific function. This approach goes back to Bonner (1988)
who first proposed “gene nets” as discrete units of development.

The methods of molecular biology and genetics provide powerful experimental
tools to map individual genes, their products, and their interactions, to specific
functions.7For instance, Nüsslein-Volhard and Wieschaus (1980) performed a
mutagenesis screen that saturated the genome with mutational hits to identify the
set of genes involved in the determination of body segments in the early embryo of
the vinegar fly Drosophila melanogaster (Fig. 2a). Interactions between these genes
were then characterised by years of careful and systematic genetic and molecular
experimentation (e.g. Akam, 1987; Ingham, 1988). All of these experiments use
perturbation assays to determine the contribution of a factor (or an interaction) to
segment determination. This research programme led to many revolutionary new
insights into the genetic basis of development.8But did it also yield a satisfactory
characterisation of the segment-determination module?

The answer to this question is a clear and resounding no. Modules are not
only dissociable from other modules, but are also characterised by their internal
organisation. The components within a module interact, often in complex ways
involving regulatory feedback, to generate the activity that defines the module’s
function. Reductionist experimental approaches for mechanistic decomposition
(which attempt to infer pairwise regulatory interactions) are not best suited to
the task of reconstructing an integrated module from its genetic or molecular
components. They can only establish that a set of regulatory factors is necessary,
but not that it is also sufficient, to account for a given function. To make things
worse, it is impossible to unambiguously establish the nature and strength of

clear notion of what the role implies in practice. See https://en.wikipedia.org/wiki/Association_
football_positions for a good description of a complex network with adaptive functional modules.
6Other accounts of function in biology are the etiological account by Wright (1973), which is more
suitable to answer the question of why a given function evolved, or the organisational account
(e.g., Christensen & Bickhard, 2002; Mossio et al., 2009) which refines Cummins’ framework
by assessing how a component of a living system contributes to its self-maintenance and self-
production.
7We will focus on genetic and molecular approaches to functional modularity here. An alternative,
more formal and top-down, approach based on “phenotypic building blocks” has been proposed
by Mireles and Conrad (2018).
8Recognized by Nobel Prizes for Janni Nüsslein-Volhard and Eric Wieschaus in 1995.

https://en.wikipedia.org/wiki/Association_football_positions
https://en.wikipedia.org/wiki/Association_football_positions
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Fig. 2 The tools of genetics and molecular biology establish the necessity, but never the
sufficiency, of components and their interactions for a functional trait. (a) The functional role
of the segmentation gene network in the vinegar fly Drosophila melanogaster is to subdivide the
body plan into 14 segmental units. The segmentation gene network exhibits a complex hierarchical
regulatory structure: protein gradients encoded by maternal-coordinate genes activate gap genes,
which, in turn, activate pair-rule and segment-polarity genes. Lower levels in the hierarchy are
regulated by, but do not regulate, genes at higher levels. There is extensive cross-regulation within
each layer. (b) The exact structure of a regulatory network cannot be established by genetic and
molecular approaches alone. As an example, we show experiments which aim to establish the
regulatory effect of hunchback (hb) on Krüppel (Kr). The expression patterns of Kr in hb loss-
of-function mutants and mutants with hb overexpression are ambiguous in this regard. Anterior
expansion of the Kr domain in the mutant, and posterior displacement of its anterior domain
boundary upon overexpression indicate that hb has a repressive effect on Kr. At the same time,
Kr is weakened in the mutant, and expands posteriorly upon overexpression, which suggests
an activating effect. This could either be explained by different regulatory effects at different
concentrations of Hb protein, or by an indirect activation via knirps (kni), which is repressed by
hb while being a repressor of Kr. Which network topology is the correct one cannot be established
without additional evidence from quantitative and integrative approaches. See Jaeger et al. (2004a)
for discussion; Jaeger (2011) for references to the primary literature

regulatory interactions based on qualitative genetic evidence alone (Fig. 2b) (this
issue is discussed, at some length, in the Introduction of Jaeger et al., 2004a). These
limitations are fundamental, not merely practical (Isalan & Morrison, 2009; Isalan,
2009), but can be overcome with complementary systems-level and integrative
criteria for the definition and identification of functional modules.

We illustrate these difficulties using the example of character identity networks
(ChINs) (Wagner, 2007, 2014). ChINs are subnetworks whose function it is to
determine the character identity of specific traits. Character identity captures the
continuity of a trait in an evolutionary lineage, independent of its precise structure
or function. It contrasts with character state, which is defined by the specific size,
shape, or colour of a character. For example, “insect forewing” and “hindwing”
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are character identities, while “wing blade,” “haltere,” and “elytra,” represent
different states of these characters (Fig. 3). Being able to identify functional
modules responsible for character identity would yield a mechanistic explanation
for homology (Wagner, 2007, 2014). However, the concept of a ChIN is problematic
for the general reasons outlined above: the sufficiency of identified components and
the precise structure of the subnetwork cannot be established by genetic means
alone. In addition, it is rarely easy to pinpoint factors that exclusively contribute
to the identity, but not the state, of a trait. The same gene can contribute to both
aspects. Moreover, definitions of character identity and state are fluid and context-
dependent. Finally, different genes and interactions may be involved in generating
homologous trait identities in different lineages due to network drift (Weiss &
Fullterton, 2000; True & Haag, 2001; Wagner, 2011). All these issues highlight
that there is a fundamental problem of correspondence between this type of genetic
network and the functional traits they are supposed to explain, which is “neither
trivial nor presently soluble” (von Dassow & Munro, 1999; p. 317). On top of it all,
we will encounter an additional issue with explanations in terms of static network
structure in the next section. Taken together, this means that ChINs in particular, and
networks based on genetic and molecular decomposition in general, only provide
a very rough first sketch of a true decomposition of the genotype-phenotype map
in terms of functional modularity.9In the following sections, we look at different
approaches that aim to improve the quality of this sketch.

3 Structural Modules

We have argued in the last section that genetic decomposition needs to be comple-
mented with systems-level criteria to arrive at a satisfactory characterisation of an
integrated functional module. The most common approach is to use features of local
network structure (or topology) to identify subsystems. The idea is that the internal
cohesion of modules is reflected in the type and density of interactions among
components within and between subnetworks. We will call modules identified in
this way structural modules. This network-based definition is not to be confused
with modules that consist of actual physical structures such as protein complexes
(Winther, 2001).

We can use informal arguments or formal algorithms to identify structural
modules. A prominent example of an informal approach relies on computer
metaphors to characterise the developmental and evolutionary roles of subsystems
in gene regulatory networks. Through decades of sustained and painstaking genetic

9The problems raised here, and their relation to causal-mechanistic explanation in evolution
and development, are discussed in detail in DiFrisco and Jaeger (2019). Moreover, DiFrisco et
al. (2020) specifically address the problem of correspondence between genetic networks and
functional traits by introducing the concept of a character identity mechanism (ChIM), which
accommodates nongenetic components and interactions, multi-level causation, and network drift.
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Fig. 3 Character identity networks (ChINs) determine the identity, but not the state, of a character
trait. Insect wings are shown as an example. Fore-/hindwing: character identity. Morphology—
wing, haltere, elytra: character state. ChINs are activated by general positional information signals,
and then activate realiser genes (or differentiation gene batteries) that determine character state.
(After Wagner, 2007)

and molecular analysis, Eric Davidson and colleagues have characterised a large
regulatory network responsible for the specification of the endomesoderm and its
embryonic derivatives during early development in the sea urchin Stronglyocentro-
tus purpuratus (Davidson et al., 2002; Oliveri & Davidson, 2004). This network can
be divided into a hierarchy of subcircuits. The authors use an ad hoc combination
of functional criteria as a first step to achieve this. Genes are assigned to subcircuits
depending on their temporal expression profile (see Sect. 4 below), the specific
function they contribute to (e.g. endo- vs. mesoderm specification), and/or the
kind of transcription factors that bind to the regulatory sequences that govern their
expression (Oliveri & Davidson, 2004; Levine & Davidson, 2005).

The resulting set of subcircuits are then classified into kernels, plug-ins, and dif-
ferentiation gene batteries connected by input–output switches (Fig. 4a) (Davidson
& Erwin, 2006; Erwin & Davidson, 2009). Kernels are highly conserved subcircuits
involved in the specification of fundamental features of the body plan. Plug-ins are
also conserved to some extent, but contribute to different developmental processes
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in different lineages. Gene batteries comprise the downstream effector factors
responsible for cell differentiation and morphology. Switches represent connections
between modules. Mutational effects depend on where in this modular hierarchy
a mutation occurs: micro-evolution is driven by changes in differentiation gene
batteries, body plan evolution at higher levels (Davidson, 2011). In particular, plug-
ins can be co-opted into new functions by rewiring the switches that connect them
(Davidson & Erwin, 2006). Kernels, plug-ins, and gene batteries can be further
subdivided into a set of stereotypical minimal regulatory motifs (implementing
positive or negative feedback loops, for example), whose functions are supposed to
be derivable from their structure (Davidson, 2010, 2011; Peter & Davidson, 2011,
2017). In this analysis, structural arguments supplement functional criteria for the
classification of subcircuits and the identification of low-level regulatory motifs.

In addition to such pragmatic approaches, formal methods identify modules
based on local features of network structure. We briefly describe two prominent
methods that use complementary aspects of the definition of a module. Network
motifs are small subcircuits with a specific internal regulatory structure that
are detected through their statistical enrichment10in large, often genome-wide,
regulatory networks (Fig. 4b) (Shen-Orr et al., 2002; Milo et al., 2002; Alon, 2006,
2007). This approach is based on enrichment indicating functional relevance. It
assumes that the behaviour of the whole network can be understood as a composite
of the well-characterised dynamics of its component motifs. At the very least,
we are supposed to learn something about network function from the statistical
distribution of motif frequencies (Milo et al., 2004; Shellman et al., 2013). In
contrast, algorithms that detect community structure in network graphs rely on
differences in the local density of network connections (Girvan & Newman, 2002;
Radicchi et al., 2004; Newman, 2006; Newman et al., 2006; Fortunato, 2010).
This approach posits that nodes within a module “are joined together in tightly
knit groups, between which there are only looser connections” (Fig. 4c) (Girvan &
Newman, 2002, p. 7821). On this view, structural modules correspond to “cliques”
of densely connected network nodes (Alexander et al., 2009). While network
motifs are allowed to overlap, structural modules defined by community structure
usually consist of disjoint sets of nodes, although some algorithms yield overlapping
subcircuits as well (Palla et al., 2005). The two approaches can be combined to find
community structures of clustered network motifs (Benson et al., 2016).

As a means of exploring functional modularity, structural approaches have
shortcomings. The most obvious and consequential of these is that network structure
constrains, but does not determine function. Even very simple networks, considered
in isolation, can exhibit a range of qualitatively different dynamical behaviours
depending on the kind and strength of their regulatory interactions and the stability
of their components (Mangan & Alon, 2003; Wall et al., 2005; Ingram et al., 2006;

10A subnetwork with a given topology is considered as statistically enriched if it occurs more
frequently in a given network than in a randomly connected network with equivalent global
properties.
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Fig. 4 Structural modularity and its problems. (a) Eric Davidson and colleagues divide complex
networks into modules that represent conserved kernels, plug-ins (can be co-opted during evolu-
tion), and differentiation gene batteries, all connected by switches. Mutational effects depend on
where in this hierarchy they occur. (b) Network motifs are small networks with a given regulatory
structure. They are identified by their enrichment in complex regulatory networks (represented by
histogram, expected motif frequency shown as a dashed line). (c) Community structure identifies
modules by detecting differences in the density of interactions within and between them. (d,
e) Study of multifunctional circuits by Jiménez et al. (2017): (d) shows the two functions that
each circuit must perform. Lateral induction propagates a signal from its source across a tissue;
lateral inhibition leads to a salt-and-pepper pattern. (e) Structural modularity in multifunctional
circuits occurs along a spectrum: hybrid circuits are composed of completely disjoint modules for
each function; emergent circuits show overlap between modules. In extreme cases, the modules
performing each function are completely identical to each other. Hybrid circuits are an exception,
emergent circuits the norm. See text for details

Siegal et al., 2007; Payne & Wanger, 2015; Ahnert & Fink, 2016; Perez-Carrasco
et al., 2018; Page & Perez-Carrasco, 2018). In addition, network motifs can be
extremely sensitive to their temporal (Rosenfeld & Alon, 2003; Kim et al., 2011)
and network context (Kashtan et al., 2004; Dobrin et al., 2004; Mazurie et al.,
2005; Ingram et al., 2006; Solé & Valverde, 2006; Burda et al., 2011; Benson et
al., 2016; Gorochowski et al., 2018). The addition of a single regulatory interaction
can completely change the range of different dynamical behaviours a network can
implement (Perez-Carrasco et al., 2018; Verd et al., 2019). Indeed, such behavioural
diversity of regulatory networks is to be expected, and is central in generating
adaptive dynamics on developmental, physiological, and evolutionary scales. We
therefore cannot assume a network’s dynamics to be a straightforward composite of



256 J. Jaeger and N. Monk

the behaviour of its modular components. This is illustrated by a series of studies
that examined segmentation gene expression in Drosophila in terms of network
motifs. Despite claims to the contrary, none of these models were able to assign
specific patterning functions to motifs, or recover the correct temporal dynamics
of the whole system (Zinzen & Papatsenko, 2007; Ishihara & Shibata, 2008;
Papatsenko, 2009). Indeed, we are left with a massive explanatory gap between the
characterisation of structural modules and their biological function. Any approach
that presupposes a close connection between structural and functional modularity
in evolved systems is doomed to fail.11It is quite telling that even the most stalwart
defenders of the idea that structure determines function must rely on dynamical
models to understand the behaviour of their network (Peter et al., 2012; Peter &
Davidson, 2017).

A second limitation is that many regulatory networks are not structurally modu-
lar, even though they are evolvable (e.g. Crombach and Hogeweg, 2008) and exhibit
functional modularity (Alexander et al., 2009). This is beautifully illustrated by an
in silico screen that searched for small networks with multifunctional behaviour
(Jiménez et al., 2017). The screen proceeded in two steps: first, it identified topolo-
gies of minimal networks with intercellular signalling that generate both lateral
inhibition and lateral induction depending on the strength of regulatory interactions
(Fig. 4d). Second, they filtered the selected circuits for networks that can perform
both functions in the presence or absence of an external signal. The results indicate
two distinct kinds of multifunctional circuits (Fig. 4e). Hybrid circuits, on the one
hand, are the sum of their mono-functional structural modules: they use disjoint
sets of nodes for each function; emergent circuits, on the other hand, show overlap
between the nodes of different modules.12Most emergent circuits are only partially
modular in the structural sense and, in the most extreme case, the structure of both
functional modules completely coincide (Fig. 4e). Many multifunctional circuits are
emergent, and therefore only functionally, but not structurally dissociable. Methods
based on structural modules will fail for these circuits.

Finally, there is a fundamental conceptual problem with explanations in terms
of static network graphs that is essential for our argument. Static graphs cannot,
in principle, be causal-mechanistic explanations, because they are not extended in
time (Jaeger & Monk, 2015; Nicholson & Dupré, 2018; DiFrisco & Jaeger, 2019).
They cannot explain how the network progresses from initial conditions to output.
Causality and mechanism must be embedded in time. Modules must persist to exert
an effect (Callebaut, 2005). This requires us to search for explanations in terms

11This is in contrast to many engineered systems, which are designed and constructed specifically
to maintain simple and predictable relationships between structural and functional modularity.
Such simplicity is appealing, but cannot be expected to hold in naturally evolved networks.
12The emergent networks of Jiménez et al. (2017) should not be confused with emergent networks
as defined earlier by Salazar-Ciudad et al. (2000, 2001a, b). While “emergent” sensu Jiménez
indicates heavy overlap between functional modules, “emergent” sensu Salazar-Ciudad indicates
a flat network structure rich in regulatory feedback, which is contrasted to “hierarchical” networks
with a more layered and feed-forward topology.
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of the dynamics of modular systems. Dynamic modularity, however, poses its own
challenges, since process modules are much more ephemeral than structural ones
(Bolker, 2000).

4 Regulatory Modules

Probably the simplest way to identify dynamic modules in a gene regulatory
network is to look for factors with correlated or anti-correlated temporal expression
profiles (Eisen et al., 1998). Such co-expression clusters or synexpression groups are
called regulatory modules13(Tavazoie et al., 1999; Segal et al., 2003; Bar-Joseph et
al., 2003; Babu et al., 2004; Niehrs, 2004). Genes known to be functionally related
have products whose expression profiles tend to cluster together (Eisen et al., 1998;
Tavazoie et al., 1999). Inversely, evolutionary conservation of regulatory modules
can be used as indicator for functional relationships (Teichmann & Babu, 2002;
Stuart et al., 2003). Co-expressed genes often share common regulators, which
provides an additional criterion for module identification (Segal et al., 2003; Bar-
Joseph et al., 2003). This approach scales well to large networks, up to genome scale
(Babu et al., 2004; Bolouri, 2014). For our purposes, however, it is limited in two
important ways.

One problem is that the resulting network models are probabilistic and not
causal-mechanistic (e.g. Bolouri, 2014). This approach cannot move beyond cor-
relational evidence to predict specific mechanistic interactions. Regulatory modules
are purely statistical entities. The other problem with regulatory modules is that
they are too simplistic. The underlying assumption is that regulation is direct and
straightforward: correlated genes are co-activated, anti-correlated factors repress
each other. Both cases can be corroborated by finding binding sites for the shared
regulator. This should work well for differentiation gene batteries, which are by
definition co-regulated and co-expressed (see Sect. 3). It will fail, however, to
correctly circumscribe more complex upstream regulatory networks involved in
orchestrating cellular and developmental processes. As soon as more than two or
three factors are involved in the non-linear regulatory structure of such a network,
or as soon as the system is distributed over a spatially differentiated context,
indirect effects can create mechanistic interactions resulting in complex patterns
beyond simple correlations. Approaches based on correlated co-expression will fail
to identify such links.

13Segal et al. (2003) also call regulatory modules “module networks.” The terms are equivalent.
Since it is easy to confuse module networks with structural networks, we will not use the term here.



258 J. Jaeger and N. Monk

5 Dynamical Modules: Definition and Detection

Since our aim is to understand functional organisation, we are interested in the
full set of dynamics associated with a network architecture. Our starting point is
therefore this full set of dynamics, rather than the structure of the network, as
discussed above. We describe the dynamics of a network in terms of temporal
sequences of states, which define the system’s trajectories. The space of all possible
trajectories—a network’s phase space—has its own characteristic structure, and it is
this structure that we seek to interrogate (Strogatz, 2014). A central role is played by
attractors: specific state sequences that trajectories approach asymptotically (Jaeger
& Monk, 2014). These represent the possible long-term behaviours of the network.
Approaches that explore the structure of phase space and its constituent attractors
lead to the notion of dynamical modules.

Dynamical modules (also called dynamical subsystems)14provide a powerful
alternative to structural and regulatory modules. The idea of dynamical modularity
first appears implicitly but clearly in Stuart Kauffman’s “Origins of Order” (1993).
Kauffman’s earlier work on ensembles of Boolean network models (Kauffman,
1969, 1974, 1987) had revealed that such systems could be in an ordered or
“chaotic” state. “Chaotic” systems, in this context, do not settle into any stable
or repeating state within a realistic amount of time, and easily diverge from their
original attractor upon perturbation. In contrast, ordered systems exhibit few short
attractor cycles and tend to return to their original state after a majority of small
state perturbations.

Kauffman (1993) suggests that natural selection drives evolving networks into
the border region of the ordered regime (the “edge of chaos”). It does this by altering
the topology or density of regulatory interactions or the kind of logical functions
that are present in the network. Systems at the edge of chaos contain a large
connected component of nodes with ordered dynamics, which percolates around
“islands” of chaos. Only such networks exhibit behaviour that is complex, yet
controllable, just like biological systems. Perturbations do not travel widely across
components, but rather accumulate in the chaotic island they occurred in. Other
islands can accumulate their own perturbations relatively independently. Obviously,
Kauffman’s notion of a “chaotic island” corresponds to some kind of dynamical
module of the overall network.

A few years later, von Dassow and Munro (1999) defined a module as a develop-
mental subsystem manifesting quasi-autonomous behaviour. This definition is close
to what we mean by a dynamical module here, but is still too vague. A more explicit
argument appears in von Dassow and Meir (2004), which states that connectivity
is not sufficient: modules are units with their own intrinsic dynamics. An even

14Alexander et al. (2009) use the term “activity motifs” for dynamical modules as defined here.
We find this potentially confusing due to its similarity with “network motifs” (Alon, 2007). Unlike
network motifs, dynamical modules are not defined structurally or in terms of their enrichment
within a network.
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more specific definition was given by Irons and Monk (2007, pp. 1/2): “Rather than
being a protein complex or group of co-expressed genes [a dynamical] module can
be viewed as the temporal activity (dynamics) of a group of genes/proteins that
controls a specific function in different environmental conditions, cell types and/or
tissues. For example, the temporal activity of genes/proteins controlling progression
through the cell cycle (in many different environmental conditions and cell types)
can be viewed as a module” (see also Irons, 2009). Of course, this definition can be
extended to subsystem components that are neither genes nor proteins. Put slightly
differently, dynamical modules consist of the activities of a set of network nodes,
connected by regulatory interactions, that implement a particular type of behaviour
exhibited by the larger network they are embedded in (Verd et al., 2019). In the
words of Benítez and Alvarez-Buylla (2010, p. 11), such a module is based on a
“set of nodes and interactions that, being part of a larger network, may exhibit a
dynamic trait (e.g. a certain number of attractors) in a semi-autonomous way” (see
also Benítez et al., 2008, 2011). Dynamical modules can be derived from time-
series data (Alexander et al., 2009) or from dynamical computational models (Irons
& Monk, 2007; Siebert, 2009, 2011; Verd et al., 2019). They interact in a nested
and hierarchical way to generate the overall dynamical repertoire of a complex
regulatory network.

Dynamical modules also appear in the study of evolution. Newman and Bhat
(2008, p. 2) define a dynamic patterning module as “a set of molecules produced
in a cluster of cells, along with one or more physical effects mobilised by these
molecules so as to generate an aspect or alteration in the cluster’s form or pattern”
(see also Newman & Bhat, 2009; Hernández-Hernández et al., 2012). Dynamic
patterning modules are used to explain the role of self-organisation in the evolution
of early multicellular organisms and more recent developmental processes. The
emphasis here is on the interaction of regulatory networks (the “set of molecules”)
with their cellular and tissue context. Nevertheless, dynamic patterning modules are
developmental subsystems that are defined in terms of their dynamic behaviour. In
this sense, they are a subtype of dynamical module.

Dynamical modules are not as easy to detect as structural or regulatory modules.
To identify them, it is necessary to find patterns in the system dynamics that are
present as parts of a wide range of different behaviours of the whole system. They
typically do not correspond to clusters in network topology or expression dynamics.
The dynamical behaviour they generate can be complex, and assumes no simple
correlation between the expression profiles of module components. The fact that
dynamical modules are features of the whole dynamical repertoire of a system
is what makes their detection challenging. Irons and Monk (2007) introduce an
algorithm to identify dynamical modules given a set of discrete-state, discrete-time
attractors. These attractor states can be generated by a Boolean dynamical model, or
directly identified from experimental data. They capture the non-transient dynamical
repertoire of a system. Irons and Monk (2007) use a simple toy model to introduce
the method. A brief illustration of the approach will give us a precise understanding
of what a dynamical module is.
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Boolean networks consist of nodes and their interactions (Fig. 5a). At a given
time, each node can either be off (state 0) or on (1). The interactions between nodes
are defined by logical tables that connect all possible combinations of inputs to a
particular node with specific output states (Fig. 5b). Starting from a given initial
state, the system will go through a defined succession of transient states until it
reaches a stationary or cyclical attractor. A Boolean network has a finite number
of possible states, and so has the advantage that the full repertoire of attractors
(and the transient state sequences leading to them) can be enumerated. In this way,
one can generate the full set of attractor states, which are the starting point for the
identification of dynamical modules. Our toy model has four distinct attractors, three
of them cyclical, one stationary (Fig. 5c).

Given the set of attractors, the algorithm identifies subsets of nodes in the
network that exhibit a characteristic dynamic (i.e. time-sequence of states) that is
conserved in multiple attractors (Irons & Monk, 2007). To achieve this, it examines
partial states (states of a subset of nodes in the system) and their state sequences,
which are ordered sets of partial states in time. A partial state sequence occurs
in an attractor, if its partial states remain constant or continually cycle within an
attractor and there is no smaller partial state sequence that does the same. Based on
this, the algorithm finds a set of subsystems, which are maximal, nonoverlapping
partial state sequences that occur within the given set of attractors (Fig. 5d). Each
subsystem generates a typical dynamical behaviour. Put together, they compose
the overall behaviour of the whole network. It is important to emphasise that
subsystems often overlap in that they share nodes and interactions between each
other. Furthermore, subsystems can occur in different combinations in multiple
attractors. Therefore, neither their network graphs nor their dynamical functions
need be disjoint. Dynamical modules not only can, but are expected to show overlap
in both structure and function.

In addition to identifying modular subsystems, the algorithm can be used to
examine the hierarchical interactions among subsystems. A subsystem is hierarchi-
cally linked to another subsystem if its occurrence entails the occurrence of the other
in an attractor. It is said to trigger the other subsystem. By measuring the percentage
of perturbations within a subsystem that return to the original attractor, we can assess
the robustness of the whole network, as well as the internal and external robustness
of each module, that is, its response to internal or external perturbations.

Irons and Monk (2007) illustrate the biological application of their method using
a well-established Boolean model of the segment-polarity gene regulatory network
of Drosophila melanogaster (Albert & Othmer, 2003; Chaves et al., 2005). The
model consists of a regulatory network with 13 nodes representing interactions
between transcription factors and cell–cell signalling factors, which are distributed
over a parasegmental unit represented by a spatial domain of four cells (Fig. 5e, f).
This network shows no obvious structural modularity. The system has ten attractors,
only three of which correspond to observed gene expression patterns in the embryo
(Fig. 5g). Detection of dynamical modules yields a total of 19 subsystems, five
of which capture a large proportion of the system’s global dynamics (Fig. 5h).
These dynamical modules correspond to intercellular variants of core subsystems
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Fig. 5 Dynamical modules in Boolean network models. (a–d) Toy model, illustrating the algo-
rithmic detection of dynamical modules. Regulatory structure (a) is given by logical rules (b)
that determine the interactions between nodes. This results in multi-stable dynamics with four
attractors, shown as temporal sequences of states of the system (c). Dynamical modules correspond
to a set of subsystems that provide an optimal decomposition of the attractors (d). The attractors
are simple composites of these subsystems. (e–h) Application to the segment-polarity system of
Drosophila melanogaster (see Fig. 2a). (e) Segment-polarity genes produce an alternating pattern
of en and wg stripes across four cells within a segmental unit in the embryo. (f) Regulatory
structure of the segment-polarity network across two cells (indicated by dashed lines). Activating
interactions are shown by arrows, repressive interactions by T-bars. (g) The system contains three
attractors that correspond to empirically observed stable expression patterns (shown across all four
cells of a segmental unit). (h) Attractors can be decomposed into subsystems as in (c) and (d).
Five main subsystems explain most of the dynamics within the attractors shown in (g). These
subsystems consist of intercellular feedback circuits that show symmetries across several different
cell boundaries. See text for further detail. (After Irons & Monk, 2007)

for segment-polarity patterning that were identified in an earlier in silico screen for
robustness in continuous models of three-node networks (Ma et al., 2006). While
that screen was based on ad hoc assumptions about the functional core of the
network, the algorithm devised by Irons and Monk (2007) provides an unbiased
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identification of dynamical modules. Analysis of the hierarchical relationships
between subsystems revealed a symmetry in the system centred on the border
between the first and the second cell of the parasegment: every subsystem in cells
one and four has a counterpart in cells two and three with analogous regulation
(Fig. 5h). SLP (Fig. 5f) can be identified as the regulatory factor responsible for
setting up this symmetrical pattern. The example highlights how a network that is
not structurally modular can be subdivided into dynamical modules, and how the
analysis of these modules explains the functionality, that is, the switch-like bistable
behaviour of the whole system. The algorithm was also applied to a Boolean model
of the yeast cell cycle (Irons, 2009).

6 Dynamical Modules: Gradients, Gap Genes,
and the AC/DC Circuit

The algorithm for detection of dynamical modules developed by Irons and Monk
applies to networks with discrete-state spaces. While discrete-state models are
appropriate for some systems, continuous-state models (e.g. differential equations)
are preferable for processes involving gradual changes in regulator concentration.
Any generalisation of the algorithm to continuous states must overcome two
difficulties. First, information on multiple attractors of the system under study is
required to define dynamical modules. Second, a suitable measure of “equivalence”
of dynamics across attractors replaces the requirement that the dynamics of the
module are strictly conserved across sets of attractors. Patterning by morphogen
gradients provides many examples of gradual processes that require a continuous
approach (see Fig. 2a, top panel) (Wolpert, 1968, 1969; Jaeger et al., 2008;
Briscoe & Small, 2015). In these systems, target gene activation depends on the
spatiotemporal concentration distribution of the morphogen. Boolean models with
discrete on/off states are not suitable in this context. Can the notion of dynamical
modularity be extended to such continuous systems?

One particularly well-studied network that drives morphogen-based pattern
formation is the gap gene network of Drosophila melanogaster (Jaeger, 2011).
It constitutes the top-most regulatory layer of the segmentation gene hierarchy
we discussed in Sect. 2 (Fig. 2a). It is a relatively simple patterning system that
operates in a syncytial embryo without growth or rearrangements of tissue geometry.
Gap genes are activated by gradients of maternally expressed transcription factors;
in addition, they auto-activate and cross-repress each other, which results in a
staggered, overlapping arrangement of their expression domains (Fig. 6a). The study
we present results from a research programme to reverse-engineer the gap gene
system by fitting dynamic models of the network to quantitative spatiotemporal
gene expression data (Jaeger & Crombach, 2012; Chap. 4 by Crombach and
Jaeger, this volume). The topology of the gap gene network does not exhibit any
structural modularity. And yet, the system implements two clearly distinguishable

http://dx.doi.org/10.1007/978-3-030-71737-7_4
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dynamical regimes in the anterior versus the posterior of the embryo: while anterior
domain boundaries remain at a stationary position and are generated by switch-like
multistability, posterior boundaries shift over time and are driven by an underlying
damped oscillator (Fig. 6b) (Jaeger et al., 2004a, b; Manu et al., 2009; Ashyraliyev
et al., 2009; Crombach et al., 2012; Verd et al., 2017, 2018; Jaeger, 2018). Between
the two regimes, a bifurcation occurs (Manu et al., 2009; Gursky et al., 2011; Verd
et al., 2017, 2018). In the absence of a suitable algorithm, we took a pragmatic
approach to partition a continuous differential-equation model of this system into
dynamical modules.

Gap gene patterning does not require diffusion of gap gene products between
nuclei (Jaeger et al., 2004b; Manu et al., 2009; Verd et al., 2017). Consequently,
the system can be thought of as an ensemble of nucleus-specific gap gene networks,
each with a different set of maternal inputs. This provides an ensemble of dynamical
repertoires of the network which can be used to detect dynamical modules. Our
dynamical decomposition of the gap gene system is based on the observation that
patterning never relies on more than three out of four gap genes in any nucleus
within the trunk region of the embryo (Verd et al., 2019). This fact can be established
rigorously by simulating versions of the network in which one node or gene has been
eliminated, and measuring the sensitivity of the system to such in silico knockouts.
This approach identifies three distinct subsystems that drive gene expression in
the anterior, middle, and posterior of the embryo. These subsystems consist of
overlapping sets of genes that all share the same network structure: the AC/DC
subcircuit, which was first identified and characterised in the context of morphogen-
based patterning in the vertebrate neural tube (Fig. 6c) (Panovska-Griffiths et al.,
2013; Perez-Carrasco et al., 2018). AC/DC circuits are simple three-node networks
capable of producing oscillations and switch-like behaviour, depending on the
strength of their regulatory interactions (Panovska-Griffiths et al., 2013; Perez-
Carrasco et al., 2018; Verd et al., 2019).

Next, we examine the dynamical behaviour of each subcircuit with phase space
analysis (Strogatz, 2014), and compare it with the dynamical repertoire of the whole
gap gene system (Verd et al., 2019). This analysis reveals that each AC/DC circuit,
in its own region of influence, is capable of driving the same type of dynamics as
observed in the full system (Fig. 6b). AC/DC1, in the anterior, generates expression
domain boundaries through multistability: nuclei that express different gap genes
find themselves in different basins of attraction due to receiving different maternal
inputs. AC/DC3, in the posterior, implements a damped oscillator driving the
stereotypical succession of gap gene expression that generates the kinematic shifts
of domain boundaries over time. Since they drive a consistent dynamical regime
across their regions of influence, these circuits are structurally stable. In the middle,
AC/DC2 undergoes a bifurcation within its region of influence, just like the full
model. It exhibits switch-like behaviour anterior and damped oscillations posterior
of the bifurcation boundary. The bifurcation indicates that this circuit is in a state of
criticality, unlike the other two subsystems. The gap gene network is labile to change
in some aspects, but robust towards others, which is analogous to Kauffman’s notion
of the system being at the “edge of chaos” (Kauffman, 1993).
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Fig. 6 Modular decomposition of a continuous patterning system, the gap gene network in flies
(see Fig. 2a). (a) Regulatory structure of the gap gene network. Boxes indicate spatial position
of expression domains (anterior is to the left, posterior to the right). Repressive cross-regulation
between gap genes is indicated by T-bars; activation by maternal gradients and gap gene auto-
activation not shown. Two strong double negative (positive) feedback loops contrast with much
weaker repression between overlapping gap gene domains. (b) The system implements two distinct
dynamical regimes: in the anterior, domain boundaries are set by a multi-stable (switch-like)
dynamic, in which the states of nuclei in different domains are converging towards different
attractors (circles in box); in the posterior, nuclei cycle through a stereotypical succession of
gap gene expression (driven by a damped oscillator) before all converging to the same attractor
(indicated by circle with spiralling domains). Each nucleus starts from a different initial condition
(dependent on maternal inputs) and thus traverses a different segment of the circle. This results in
apparent (kinematic) shifts in the position of gap domains towards the anterior of the embryo,
while domains in the anterior remain stationary over time. (c) The gap gene network can be
decomposed into three AC/DC subsystems in the anterior, middle, and posterior of the embryo.
There is extensive overlap in nodes and interactions between these subcircuits. AC/DC circuits
reproduce the dynamics of the full system in their respective region of influence. Subcircuits are
either structurally stable, or critical (exhibiting a bifurcation within their region of influence).
AC/DC2 is critical in Drosophila, while AC/DC1 is critical in Megaselia (indicated by arrows).
See text for details. (After Verd et al., 2019)
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A number of points are worth noting about this type of dynamical decomposition.
It is a top-down approach, just like the algorithm presented in the last section,
using information on a range of different dynamical behaviours to partition the
network into interlocking subsystems. Each AC/DC circuit implements a subset
of behaviours of the full model. The behaviour of the full system corresponds to
a straightforward combination of its modules. In this sense, AC/DC subcircuits fit
perfectly into our definition of a dynamical module.15Each AC/DC circuit shares
two out of three genes with its neighbour (Fig. 6c). This makes the gap gene
network heavily emergent (Fig. 4e), which explains why it is not structurally
dissociable. Surprisingly, AC/DC modules do not cleanly separate into switch-like
or oscillatory behaviour. The bifurcation occurs within the region of influence of
AC/DC2. In this regard, dynamical decomposition is not trivial, and requires careful
mathematical analysis. In the absence of a formal approach, there are many valid
ways to decompose a system dynamically. How we identify subsystems depends,
to some extent, on our research question and assumptions. We illustrate this point
by comparing our dynamical decomposition with a bottom-up in silico screen that
identified core mechanisms for morphogen-based stripe (i.e. domain) formation.

Cotterell and Sharpe (2010) used an approach equivalent to Jiménez et al. (2017)
and Ma et al. (2006) (see also Ma et al., 2009) to search for minimal networks that
produce a spatial stripe in a non-growing tissue in response to a static morphogen
gradient. Their scenario resembles a simplified version of the gap gene system.
Their screen yielded six distinct core mechanisms for stripe formation, which can
be distinguished by their network topology and dynamical behaviour. Three of the
six mechanisms were novel; they have never been observed in an experimental
setting. Out of the other three, two can be mapped onto the gap gene network.
Surprisingly, the AC/DC circuit is not present, nor do any of the core mechanisms
match a subset of interactions within the AC/DC topology. The explanation lies
in the assumptions underlying the two different approaches to define subsystems.
Dynamical decomposition requires the subsystems to produce well-defined spatial
domains, and to reproduce the dynamical regimes observed in the full system.
This requirement is much more stringent than the one used by Cotterell et al. and
emphasises the importance of studying modules in their native network context.

7 Dynamical Modules Everywhere

We have argued that dynamical modules are more widespread in biological regu-
latory systems than structural ones. However, the only evidence we have presented
so far stems from three isolated case studies: the gap gene network (Verd et al.,
2019) and segment-polarity network (Irons & Monk, 2007) of Drosophila, as well

15Note that for Boolean networks, dynamical modules have dynamics that are strictly conserved in
multiple attractors; in the continuous-state gap gene system, each AC/DC circuit type corresponds
to an equivalence class of dynamics. This provides an illustration of how we can adapt techniques
developed in discrete-state systems to continuous-state systems.
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as the cell cycle of budding yeast (Irons, 2009). Dynamical modules are detectable
in whole-genome data sets (Alexander et al., 2009), but have not yet been formally
identified and characterised in developmental systems other than those mentioned
above. Plenty of evidence suggests that they will be in the near future. Here
we name a few likely candidates. The AC/DC circuit involved in patterning of
the vertebrate neural tube exhibits all the criteria to qualify it as a dynamical
module: within its region of influence, it is responsible for the main patterning
function of the system it is embedded in (Balaskas et al., 2012; Panovska-Griffiths
et al., 2013). Turing pattern generators compose another, very broad, class of
candidate dynamical modules (Turing, 1952; Meinhardt, 1982; Meinhardt & Gierer,
2010; Kondo & Miura, 2010; Marcon & Sharpe, 2012; Green & Sharpe, 2015).
Specifically, the core mechanism underlying proximo-distal and digit patterning
in the vertebrate limb, from shark fins to tetrapod appendages, can be seen as a
module that dynamically interacts with tissue geometry and morphogens within
the growing limb bud (Raspopovic et al., 2014; Onimaru et al., 2016). Various
systems driving cellular rhythms should be decomposable in terms of dynamical
modularity (Goldbeter, 1997; Novák & Tyson, 2008; Maroto & Monk, 2009). The
logical analysis in Irons (2009) could be generalised and extended to continuous
models of the cell cycle (see, for example, Chen et al., 2000, 2004; reviewed in
Tyson & Novák, 2015). Circadian oscillations provide another interesting case study
(Goldbeter, 1995; Asgari-Targhi & Klerman, 2018), for which Boolean models exist
(Akman et al., 2012) that are amenable to analysis with the algorithm by Irons and
Monk (2007). Dynamical modules have also been described in plants, particularly
in patterning the root and leaf epidermis in Arabidopsis thaliana (Benítez et al.,
2008, 2011; Benítez & Alvarez-Buylla, 2010). This diverse set of examples could
be extended as one wishes, but it should be apparent that dynamical modules are
omnipresent in cellular and developmental regulatory systems across the kingdoms
of life.

Upon closer inspection, a hierarchy of dynamical modules can be discerned.
Let us take the segmentation gene network of Drosophila as an example. This
network in its entirety can be considered a module. It governs a particular aspect of
the dynamics of pattern formation that is clearly discernible from other patterning
processes. The segmentation gene system can be further subdivided into maternal
co-ordinate, gap, pair-rule, and segment-polarity subsystems (Fig. 2a). Again, these
subsystems affect separable dynamic aspects of body patterning (Nüsslein-Volhard
& Wieschaus, 1980). They interact with other processes, such as those triggered
by homeotic genes that specify the identity of body segments (e.g. Akam, 1987;
Ingham, 1988). Our work on the gap gene system further divides the network down
to the AC/DC subcircuit (Fig. 6d) (Verd et al., 2019). Irons and Monk (2007)
partition the segment-polarity network into even smaller subunits of intercellular
feedback mechanisms (Fig. 5h). Dynamical decomposition reveals that the dynamic
repertoire of systems at higher levels in the hierarchy is dissociable into lower-level
dynamical regimes.

This hierarchy of dynamical modules bears striking similarities to the hierarchy
of morphogenetic fields from classical embryology (Gilbert et al., 1996). Especially
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for higher levels of the hierarchy, we can draw a close parallel between dynamical
modules and the field concept. The notion of a morphogenetic field was first
introduced by Theodor Boveri in 1910, and was further developed by biologists
such as Gurwitsch, Weiss, Harrison, and Needham, who refined its definition and
provided experimental support for field phenomena in embryology. In its original
meaning, the morphogenetic field is not an incipient undifferentiated tissue, but
rather a concept representing the interactions of localised developmental processes
to generate a robust pattern (Raff, 1996; see also Goodwin, 1982; Goodwin et al.,
1993; Webster & Goodwin, 1996). In this sense, it exhibits obvious similarities to
the notion of a developmental module: morphogenetic fields have a cohesive internal
regulatory structure and generate dissociable patterns (Needham, 1933). They
interact with other fields in a hierarchical and dynamic way: the primary embryonic
field, for example, yields to more organ-specific fields over time, which are refined
as embryogenesis proceeds (Raff, 1996). In essence, therefore, a dynamical module
is a formally defined representation of a morphogenetic field. And, as classical
embryology already recognised, morphogenetic fields are the foundational unit of
developmental process.

8 Evolutionary Implications

Dynamical modularity has important implications for evolution. We have explained
in the “Introduction” why modular traits require functional modularity in the
genotype-phenotype map as a prerequisite for evolvability (Wagner & Altenberg,
1996). We have argued in line with Simon (1962, 1973) that near-decomposability
(or dissociability, Needham, 1933) is a fundamental property of complex adaptive
systems. It enables modules to vary relatively independently, minimising off-target
pleiotropic effects, which accounts for the individuality of character traits (Wagner
& Altenberg, 1996; Wagner & Zhang, 2011). This kind of functional modularity
provides a causal-mechanistic explanation for character identity and homology
(Wagner, 2007, 2014). In Sect. 3, we have discussed how modules can be co-opted
into new pathways during evolution, generating innovative change (Raff, 1996; von
Dassow & Munro, 1999; True & Carroll, 2002; Davidson & Erwin, 2006; Erwin
& Davidson, 2009; Monteiro & Podlaha, 2009; Wagner, 2011). How do dynamical
modules fit into this picture?

First of all, quasi-independence of character traits implies functional modularity
in the generative processes or dynamics that constitute the underlying genotype-
phenotype map (Fig. 1) (e.g. Waddington, 1957; Goodwin, 1982; Wagner, 1989,
2014; Alberch, 1991; Amundson, 2005; Jaeger et al., 2012; Jaeger & Monk, 2014).
Different types of generative dynamics must therefore be identifiable and separable
in some sense. In engineered systems, dissociability is achieved through modular
structure: the components of a laptop screen, for example, map to the trait “display,”
while the components of the keyboard map to trait “input.” These traits can
evolve independently by altering the respective structural components. Integration
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is achieved by simple input–output maps between the different components. Some
aspects of living systems may have evolved to be like this. However, more generally,
we expect tighter structural integration, making it difficult to separate modules
at the level of network structure (Jiménez et al., 2017). Wimsatt (2007) calls
this type of integration “interactional complexity,” arguing that it is a natural
outcome of selective evolution. Dynamical modules capture the sense in which the
genotype-map of such systems can still be dissociated, even if it is not structurally
decomposable at all.

A key point is that a given structure (network) in genotype space corresponds not
to a single dynamical behaviour, but to a repertoire of different dynamic regimes.
This repertoire is captured by the set of attractors and their basins. Note that it is
typical, not unusual, that a dynamical system has multiple attractors for a single set
of parameters: which attractor is manifested depends on the initial and boundary
conditions (the context) of the network. In case of the gap gene network, for
example, the different attractors are selected by maternal inputs (Manu et al., 2009;
Verd et al., 2017, 2018). Dynamical modules give a functional decomposition of
the repertoire associated with a given structural network. They reveal the separable
aspects of the dynamics of the system. Dissociability in the dynamics is not simply
related to the decomposability of the structure. This is important in the context of
evolution because we can now explore how different dynamical modules respond to
changes in the genotype.

Jiménez et al. (2017), and our study of the gap gene system (Verd et al., 2019),
illustrate the sometimes extensive structural overlap between dynamical modules
(Figs. 4d, e and 6c). At first sight, we must assume that mutations affecting
genes or regulatory interactions involved in two or more modules are bound to
cause pleiotropic effects. This seems incompatible with limited pleiotropy and the
functional dissociability of modules. How can we explain this? The answer lies
in the fact that, despite their structural overlap, dynamical modules can show vastly
different sensitivities to mutational changes (Verd et al., 2019). In the case of the gap
gene network, for example, subcircuits AC/DC1 and AC/DC3 are structurally stable
and thus robust. In contrast, AC/DC2 is in a state of criticality, close to a bifurcation
boundary, and thus sensitive to even subtle changes in its regulatory interactions.
Accordingly, we observe that the overall dynamics and relative arrangement of gap
domains is strongly conserved, while the position of the boundary between stable
switch-like and shifting oscillatory dynamics differs markedly between Drosophila
and another dipteran species, the scuttle fly Megaselia abdita (Wotton et al., 2015;
Crombach et al., 2016). This suggests that AC/DC1 is the critical subcircuit in
Megaselia, while AC/DC2 is a structurally stable damped oscillator (Fig. 6c) (Verd
et al., 2019). This switch in criticality requires surprisingly few and subtle changes
in gap gene cross-regulatory interactions.

Such differential sensitivity to change is an important aspect of evolvability
that structural or regulatory modules cannot explain, since it requires a causal-
mechanistic understanding of the generative process that produces the pattern
(Goodwin, 1982; Jaeger et al., 2012; Jaeger & Monk, 2014). The surprising and
counterintuitive insight is that, even though genes and interactions are shared
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between modules, their effects on the dynamical behaviour of each module are
different. This provides an alternative explanation for limited pleiotropy. It corrob-
orates that the structure of networks and regulatory sequences does not necessarily
have to be modular to ensure dissociability of functional modules. In fact, struc-
turally more modular (hierarchical) networks can be dynamically less modular,
since network structure and the richness of a system’s dynamical repertoire are
only loosely associated. The prevalence of modular structures in the literature
may therefore result from ascertainment bias, rather than a true reflection of the
organisation of regulatory systems, because, modular networks and regulatory
structure are easier to detect and characterise than the dynamical modularity
described here.

The definition of dynamical module in Irons and Monk (2007) requires that a
module has a dynamical behaviour that is conserved in multiple different attractors.
If the module corresponds to a trait, then evolution can shift the system as a whole
to a new attractor, while preserving the trait in question. There is a set of attractors
for the whole system, which all incorporate the same subsystem for the trait to be
conserved. This subsystem can stay conserved, even if other aspects of the attractors
change during evolution. In this way, the decomposition of the dynamical repertoire
of a network into dynamical modules gives understanding of the evolutionary
potential of the system as a whole. The geometrical arrangement of attractors
and their basins in the phase space of the system determines the likelihood of
phenotypic transitions (Alberch, 1991; Jaeger & Monk, 2014). Transitions between
neighbouring basins are facilitated by large borders between them, while transitions
between attractor basins that do not border each other can only be indirect, through
intermediate phenotypes. In most cases, phase space geometry will be complex,
which means that systems with trivially dissociable genotype-phenotype maps
are rare. The norm will be maps that have multiple discernable aspects to their
dynamics that are “smeared” across overlapping regions of the network topology.
To achieve decomposition in these cases, we need to use techniques that interrogate
the dynamics in detail.

Finally, we have seen in Sect. 2 that the identification of subsystems responsible
for conferring character identity can provide a powerful conceptual foundation for
a mechanistic theory of homology (Wagner, 2007, 2014). We also highlighted why
both functional-genetic decomposition and approaches based on structural modu-
larity fall short of reliably identifying and delineating such subsystems. Dynamical
modules provide a powerful alternative. The dynamic behaviour of a subnetwork is
much more closely related to its function than its regulatory structure. Moreover,
dynamical modules provide a causal-mechanistic explanation of the generative
process underlying the trait, which accounts for its particular variational properties
(Altenberg, 1995; Wagner & Altenberg, 1996; Salazar-Ciudad, 2006). Dynamical
modules are morphogenetic fields. Therefore, morphogenetic fields, rather than
ChIN networks or structural modules, provide the causal-mechanistic foundation
for trait homology. This has always been the case, from classical embryology to the
present day (Gilbert et al., 1996). It strongly resonates with the concept of process
homology, introduced by Gilbert and Bolker (2001). Homology of process strives
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to identify “the ways in which homologous processes are regulated, replicated and
changed over time” with the aim “to better understand how changes in development
generate changes in morphology” (ibid., p. 10). Process homology is required to
make sense of modular functions. Dynamical modules are required to make sense
of process homology. The two go hand in hand.

9 Conclusions

Dynamical modules provide a powerful approach to characterise the morphogenetic
fields that form the causal-mechanistic basis for the functional modularity of the
genotype-phenotype map and the homology of character traits. Dynamical modular-
ity is much more closely related to function than structural or regulatory modules.
We demonstrated the practical feasibility of identifying and characterising such
modules in models of specific regulatory systems. We outlined promising candidates
for the identification of additional dynamical modules. Finally, we discussed the
evolutionary implications of our conceptual framework. The identification and
characterisation of dynamical modules is an essential component of any theory
aiming to mechanistically explain the origin and variability of character traits in
terms of the generative processes that produce them (Goodwin, 1982; Wagner &
Altenberg, 1996; Wagner et al., 2000).

Characterisation of dynamic modules not only requires decomposition by genetic
and molecular approaches, but also the reconstitution of their cohesive internal
structure and their coherent integrated activity using dynamical modelling. As von
Dassow and Munro (1999, p. 309) stated, mechanism is “an explanatory mode in
which we describe what are the parts, how they behave intrinsically, and how those
parts are coupled to each other to produce the behaviour of the whole.” This last
point is emphasised in the framework of dynamic mechanistic explanation (Bechtel
& Richardson, 1993; Bechtel & Abrahamsen, 2005, 2010; Bechtel, 2011, 2012)
which focuses on the ability of mechanisms to account for patterns of activity
and change over time. To understand these dynamic patterns we need models.
“[M]odeling provides understanding beyond that which is available from identifying
the parts, operations, and organization of the mechanism and mentally rehearsing
its functioning” (Bechtel, 2012, p. 244; see also von Dassow & Meir, 2004). This
approach is an explicit elaboration and refinement of Simon’s theoretical framework
of near-decomposability (Bechtel & Richardson, 1993; see also Callebaut, 2005).

As a practical caveat, we point out that it will always be challenging and laborious
to rigorously reverse-engineer dynamical modules, since this requires extensive
empirical evidence tightly combined with dynamical models of the regulatory
process under study. There are good practical reasons why structural approaches
have dominated the field: structural modules are relatively easy to identify. It may
well be that we have to confine dynamical decomposition to a limited sample of
tractable model systems. We are convinced that even such a limited sample would
yield interesting and generalisable insights into the causal-mechanistic principles
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underlying trait individuality, identity, and homology. These principles can be
used for the mechanistic interpretation of results from correlational approaches to
variational modules based on quantitative genetics (e.g. Wagner & Zhang, 2011;
Nunes et al., 2013). Combined, the two complementary methodologies yield a
powerful and general approach to the study of phenotypic evolution.

Another well-known pitfall is to confuse homology at the level of develop-
mental process with homology of characters. The hierarchical organisation and
robust behaviour of developmental modules implies that many different molecular
mechanisms can lead to the same dynamical behaviour and, therefore, phenotypic
outcome (Waddington, 1957; Oster & Alberch, 1982; Goodwin et al., 1993; Wagner,
2011; Jaeger & Monk, 2014). This means that evolution at the genotypic and
phenotypic level are at least partially dissociable (von Dassow & Munro, 1999;
Bolker, 2000; Gilbert & Bolker, 2001). An important consequence of dissociability
is network or developmental system drift16(Weiss & Fullterton, 2000; True &
Haag, 2001; Wagner, 2011; Pavlicev & Wagner, 2012). Regulatory mechanisms
can evolve quite freely by rewiring network connections, as long as the phenotypic
output of the process remains the same (see Wagner, 2011; Jaeger & Monk, 2014).
Process homology of dynamical modules must therefore be established at the level
of the epigenotype as the underlying mechanisms can vary considerably even if
the dynamics of the process are conserved (Fig. 1b). Even worse, entirely non-
homologous generative processes can produce homologous character traits. A good
example is insect segmentation: while many insects establish their segments in
parallel by partitioning the embryo into territories as in Drosophila, this mode of
segment determination is derived from an ancestral process that generates segments
sequentially through growth and terminal addition (Sander, 1976; Davis & Patel,
2002; Rosenberg et al., 2009; Lynch et al., 2012). The resulting segmented body
plan is undoubtedly homologous at the morphological level, yet the underlying
processes have diverged radically during evolution.

This provides both a challenge and an opportunity for the study of phenotypic
evolution: “[r]ather than view dissociability as a problem for comparative biologists
let us recognise it as an architectural feature of evolvable developmental systems,
a feature whose origins and consequences deserve attention” (von Dassow &
Munro, 1999). We mainly focused on the aspect of identifying and characterising
developmental modules, providing the basis for a new research programme for
developmental evolution. Our review of the existing literature on modularity
indicates this programme is best pursued by a combination of empirical research,
ensemble modelling approaches, and data-driven dynamical modelling. Empirical
research is necessary for functional decomposition to identify the components of
a dynamical modules. Decomposition is and remains an essential precondition
for the mechanistic study of phenotypic evolution. Ensemble approaches then
provide a map of regulatory possibilities, which helps us to frame our concepts
and questions. The study by Jiménez et al. (2017), for example, pointed us to

16Also called phenogenetic drift (Weiss & Fullterton, 2000; Weiss, 2005).
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the fact that most multifunctional networks may not be structurally modular,
and that structural modules are not required for functional modularity. These are
two important but highly counterintuitive conclusions. Finally, reverse-engineering
specific regulatory systems provides us with the link between functional evidence
from decomposition and the possibilities provided by ensemble modelling (Jaeger &
Crombach, 2012; Green et al., 2015; Chap. 4 of Crombach and Jaeger, this volume).
Together, these complementary approaches will yield a completely new level of
mechanistic understanding of the genotype-phenotype map, and its role in character
trait evolution.

References

Ahnert, S. E., & Fink, T. (2016). Form and function in gene regulatory networks: the structure of
network motifs determines fundamental properties of their dynamical state space. Journal of
the Royal Society Interface, 13, 20160179.

Akam, M. (1987). The molecular basis for metameric pattern in the Drosophila embryo. Develop-
ment, 101, 1–22.

Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica, 84,
5–11.

Albert, R., & Othmer, H. (2003). The topology of the regulatory interactions predicts the expression
pattern of the segment polarity genes in Drosophila. Journal of Theoretical Biology, 223, 1–18.

Alexander, R. P., Kim, P. M., Emonet, T., & Gerstein, M. B. (2009). Understanding modularity in
molecular networks requires dynamics. Science Signaling, 2, pe44.

Alon, U. (2006). An introduction to systems biology: design principles of biological circuits.
Chapman and Hall/CRC.

Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews. Genetics,
8, 450–461.

Altenberg, L. (1995). Genome growth and the evolution of the genotype-phenotype map. In W.
Banzhaf & F. H. Eeckman (Eds.), Evolution and biocomputation: computational models of
evolution. Springer.

Akman, O. E., Watterson, S., Parton, A., Binns, N., Millar, A. J., & Ghazal, P. (2012). Digital
clocks: simple Boolean models can quantitatively describe circadian systems. Journal of The
Royal Society Interface, 9, 2365–2382.

Amundson, R. (2005). The changing role of the embryo in evolutionary thought. Cambridge
University Press.

Asgari-Targhi, A., & Klerman, E. B. (2018). Mathematical modeling of circadian rhythms. WIREs
Systems Biology and Medicine, 11, e1439.

Ashyraliyev, M., Siggens, K., Janssens, H., Blom, J., Akam, M., & Jaeger, J. (2009). Gene circuit
analysis of the terminal gap gene huckebein. PLoS Computational Biology, 5, e1000548.

Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., & Teichmann, S. A. (2004). Structure
and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology,
14, 283–291.

Balaskas, N., Ribeiro, A., Panovska, J., Dessaud, E., Sasai, N., Page, K. M., Briscoe, J., & Ribes,
V. (2012). Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the
vertebrate neural tube. Cell, 148, 273–284.

Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., Gordon, D. B.,
Fraenkel, E., Jaakkola, T. S., Young, R. A., & Gifford, D. K. (2003). Computational discovery
of gene modules and regulatory networks. Nature Biotechnology, 21, 1337–1342.

Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.

http://dx.doi.org/10.1007/978-3-030-71737-7_4


Dynamical Modularity of the Genotype-Phenotype Map 273

Bechtel, W. (2012). Understanding endogenously active mechanisms: a scientific and philosophical
challenge. European Journal for Philosophy of Science, 2, 233–248.

Bechtel, W., & Abrahamsen, A. (2005). Explanation: a mechanist alternative. Studies in History
and Philosophy of Biological and Biomedical Sciences, 36, 421–441.

Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: computational mod-
eling of circadian rhythms as an exemplar for cognitive science. Studies in History and
Philosophy of Science, 41, 321–333.

Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: decomposition and localization
as strategies in scientific research. MIT Press.

Benítez, M., & Alvarez-Buylla, E. R. (2010). Dynamic-module redundancy confers robustness to
the gene regulatory network involved in hair patterning of Arabidopsis epidermis. Biosystems,
102, 11–15.

Benítez, M., Espinosa-Soto, C., Padilla-Longoria, P., & Alvarez-Buylla, E. R. (2008). Interlinked
nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis
epidermis: a dynamical spatial model. BMC Systems Biology, 2, 98.

Benítez, M., Monk, N. A., & Alvarez-Buylla, E. R. (2011). Epidermal patterning in Arabidopsis:
models make a difference. The Journal of Experimental Zoology Part B: Molecular and
Developmental Evolution, 316, 241–253.

Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex
networks. Science, 353, 163–166.

Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American
Zoologist, 40, 770–776.

Bolouri, H. (2014). Modeling genomic regulatory networks with big data. Trends in Genetics, 30,
182–191.

Bonner, J. T. (1988). The evolution of complexity by means of natural selection. Princeton
University Press.

Brandon, R. N. (1999). The units of selection revisited: the modules of selection. Biology and
Philosophy, 14, 167–180.

Briscoe, J., & Small, S. (2015). Morphogen rules: design principles of gradient-mediated embryo
patterning. Development, 142, 3996–4009.

Burda, Z., Krzywicki, A., Martin, O. C., & Zagorski, M. (2011). Motifs emerge from function in
model gene regulatory networks. Proceedings. National Academy of Sciences. United States of
America, 108, 17263–17268.

Burns, J. (1970). The synthetic problem and the genotype-phenotype relation in cellular
metabolism. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. III). Edinburgh
University Press.

Callebaut, W. (2005). The ubiquity of modularity. In W. Callebaut & D. Rasskin-Gutman (Eds.),
Modularity–understanding the development and evolution of natural complex systems. MIT
Press.

Callebaut, W., & Rasskin-Gutman, D. (2005). Modularity–understanding the development and
evolution of natural complex systems. MIT Press.

Chaves, M., Albert, R., & Sontag, E. (2005). Robustness and fragility of Boolean models for
genetic regulatory networks. Journal of Theoretical Biology, 235, 431–449.

Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004).
Integrative analysis of cell cycle control in budding yeast. Molecular Biology of the Cell, 15,
3841–3862.

Chen, K. C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., & Tyson, J. J. (2000). Kinetic
analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell,
11, 369–391.

Christensen, W. D., & Bickhard, M. H. (2002). The process dynamics of normative function. The
Monist, 85, 3–28.

Collier, J. (1988). Supervenience and reduction in biological hierarchies. Canadian Journal of
Philosophy, 14, 209–234.



274 J. Jaeger and N. Monk

Collier, J. (2004). Self-organization, individuation and identity. Revue Internationale de Philoso-
phie, 14, 209–234.

Cotterell, J., & Sharpe, J. (2010). An atlas of gene regulatory networks reveals multiple three-gene
mechanisms for interpreting morphogen gradients. Molecular Systems Biology, 6, 425.

Crombach, A., & Hogeweg, P. (2008). Evolution of evolvability in gene regulatory networks. PLoS
Computational Biology, 4, e1000112.

Crombach, A., Wotton, K. R., Cicin-Sain, D., Ashyraliyev, M., & Jaeger, J. (2012). Efficient
reverse-engineering of a developmental gene regulatory network. PLoS Computational Biology,
8, e1002589.

Crombach, A., Wotton, K. R., Jiménez-Guri, E., & Jaeger, J. (2016). Gap gene regulatory dynamics
evolve along a genotype network. Molecular Biology and Evolution, 33, 1293–1307.

Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.
Davidson, E. H. (2010). Emerging properties of animal gene regulatory networks. Nature, 468,

911–920.
Davidson, E. H. (2011). Evolutionary bioscience as regulatory systems biology. Developmental

Biology, 357, 35–40.
Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal

body plans. Science, 311, 796–800.
Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H., Minokawa, T.,

Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T., Livi, C. B., Lee, P. Y.,
Revilla, R., Rust, A. G., Pan, Z. J., Schilstra, M. J., Clarke, P. J. C., . . . Bolouri, H. (2002). A
genomic regulatory network for development. Science, 295, 1669–1678.

Davis, G. K., & Patel, N. H. (2002). Short, long, and beyond: molecular and embryological
approaches to insect segmentation. Annual Review of Entomology, 47, 669–699.

Dawkins, R. (1989). The evolution of evolvability. In C. Langton (Ed.), Artificial life: the
proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems.
Addison-Wesley.

DiFrisco, J. (2018). Biological processes: criteria of identity and persistence. In D. J. Nicholson
& J. Dupré (Eds.), Everything flows: towards a processual philosophy of biology. Oxford
University Press.

DiFrisco, J., & Jaeger, J. (2019). Beyond networks: mechanism and process in Evo-Devo. Biology
and Philosophy, 34, 54.

DiFrisco, J., Love, A. C., & Wagner, G. P. (2020). Character identity mechanisms: a conceptual
model for comparative-mechanistic biology. Biology and Philosophy, 35, 44.

Dobrin, R., Beg, Q. K., Barabási, A.-L., & Oltvai, Z. N. (2004). Aggregation of topological motifs
in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics, 5, 10.

Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proceedings. National Academy of Sciences. United States
of America, 95, 14863–14868.

Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks.
Nature Reviews. Genetics, 10, 141–148.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.
Gilbert, S. F., & Bolker, J. A. (2001). Homologies of process and modular elements of embryonic

construction. The Journal of Experimental Zoology Part B: Molecular and Developmental
Evolution, 291, 1–12.

Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental
biology. Developmental Biology, 173, 357–372.

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks.
Proceedings. National Academy of Sciences. United States of America, 99, 7821–7826.

Goldbeter, A. (1995). A model for circadian oscillations in the Drosophila period protein (PER).
Proceedings of the Royal Society of London B, 261, 319–324.

Goldbeter, A. (1997). Biochemical oscillations and cellular rhythms: the molecular bases of
periodic and chaotic behaviour. Cambridge University Press.

Goodwin, B. C. (1982). Development and evolution. Journal of Theoretical Biology, 97, 43–55.



Dynamical Modularity of the Genotype-Phenotype Map 275

Goodwin, B. C., Kauffman, S. A., & Murray, J. D. (1993). Is morphogenesis an intrinsically robust
process? Journal of Theoretical Biology, 163, 135–144.

Gorochowski, T. E., Grierson, C. S., & di Bernardo, M. (2018). Organization of feed-forward loop
motifs reveals architectural principles in natural and engineered networks. Science Advances,
4, eaap9751.

Green, J. B. A., & Sharpe, J. (2015). Positional information and reaction-diffusion: two big ideas
in developmental biology combine. Development, 142, 1203–1211.

Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm:
a critique of the adaptationist programme. Proceedings of the Royal Society London B, 205,
581–598.

Green, S., Fagan, M., & Jaeger, J. (2015). Explanatory integration challenges in evolutionary
systems biology. Biological Theory, 10, 18–35.

Gursky, V. V., Panok, L., Myasnikova, E. M., Manu, M., Samsonova, M. G., Reinitz, J., &
Samsonov, A. M. (2011). Mechanisms of gap gene expression canalization in the Drosophila
blastoderm. BMC Systems Biology, 5, 118.

Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular
cell biology. Nature, 402(Suppl), C47–C52.

Hernández-Hernández, V., Niklas, K. J., Newman, S. A., & Benítez, M. (2012). Dynamical pattern-
ing modules in plant development and evolution. The International Journal of Developmental
Biology, 56, 661–674.

Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11,
311–332.

Ingham, P. W. (1988). The molecular genetics of embryonic pattern formation in Drosophila.
Nature, 335, 25–34.

Ingram, P. J., Stumpf, M. P., & Stark, J. (2006). Network motifs: structure does not determine
function. BMC Genomics, 7, 108.

Irons, D. J. (2009). Logical analysis of the budding yeast cell cycle. Journal of Theoretical Biology,
257, 543–559.

Irons, D. J., & Monk, N. A. M. (2007). Identifying dynamical modules from genetic regulatory
systems: applications to the segment polarity network. BMC Bioinformatics, 8, 413.

Isalan, M. (2009). Gene networks and liar paradoxes. BioEssays, 31, 1110–1115.
Isalan, M., & Morrison, M. (2009). This title is false. Nature, 458, 969.
Ishihara, S., & Shibata, T. (2008). Mutual interaction in network motifs robustly sharpens gene

expression in developmental processes. Journal of Theoretical Biology, 252, 131–144.
Jaeger, J. (2011). The gap gene network. Cellular and Molecular Life Sciences, 68, 243–274.
Jaeger, J. (2018). Shift happens: the developmental and evolutionary dynamics of the gap gene

system. Current Opinion in Systems Biology, 11, 65–73.
Jaeger, J., Blagov, M., Kosman, D., Kozlov, K. N., Manu, M., Myasnikova, E., Surkova, S.,

Vanario-Alonso, C. E., Samsonova, M., Sharp, D. H., & Reinitz, J. (2004a). Dynamical analysis
of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics, 167,
1721–1737.

Jaeger, J., & Crombach, A. (2012). Life’s attractors: understanding developmental systems through
reverse engineering and in silico evolution. In O. Soyer (Ed.), Evolutionary systems biology.
Springer.

Jaeger, J., Irons, D., & Monk, N. (2008). Regulative feedback in pattern formation: towards a
general relativistic theory of positional information. Development, 135, 3175–3183.

Jaeger, J., Irons, D., & Monk, N. (2012). The inheritance of process: a dynamical systems approach.
The Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318B,
591–612.

Jaeger, J., & Monk, N. (2014). Bioattractors: dynamical systems theory and the evolution of
regulatory processes. The Journal of Physiology, 592, 2267–2281.

Jaeger, J., & Monk, N. (2015). Everything flows. EMBO Reports, 16, 1064–1067.
Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N., Manu, M.,

Myasnikova, E., Vanario-Alonso, C. E., Samsonova, M., Sharp, D. H., & Reinitz, J. (2004b).



276 J. Jaeger and N. Monk

Dynamic control of positional information in the early Drosophila embryo. Nature, 430, 368–
371.

Jiménez, A., Cotterell, J., Munteanu, A., & Sharpe, J. (2017). A spectrum of modularity in multi-
functional gene circuits. Molecular Systems Biology, 13, 925.

Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U. (2004). Topological generalizations of network
motifs. Physical Review E, 70, 031909.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22, 437–467.

Kauffman, S. A. (1974). The large scale structure and dynamics of gene control circuits. Journal
of Theoretical Biology, 44, 167–190.

Kauffman, S. A. (1987). Developmental logic and its evolution. BioEssays, 6, 82–87.
Kauffman, S. A. (1993). The origins of order: self organization and selection in evolution. Oxford

University Press.
Kim, M.-S., Kim, J.-R., & Cho, K.-H. (2011). Dynamic network rewiring determines temporal

regulatory functions in Drosophila melanogaster development processes. BioEssays, 32, 505–
513.

Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding
biological pattern formation. Science, 329, 1616–1620.

Levine, M., & Davidson, E. H. (2005). Gene regulatory networks for development. Proceedings.
National Academy of Sciences. United States of America, 102, 4936–4942.

Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.
Lewontin, R. C. (1974). The genetic basis of evolutionary change. Columbia University Press.
Lynch, J. A., El-Sherif, E., & Brown, S. J. (2012). Comparisons of the embryonic development of

Drosophila, Nasonia, and Tribolium. Wiley Interdisciplinary Reviews: Developmental Biology,
1, 16–39.

Ma, W., Lai, L., Ouyang, Q., & Tang, C. (2006). Robustness and modular design of the Drosophila
segment polarity network. Molecular Systems Biology, 2, 70.

Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, C. (2009). Defining network topologies
that can achieve biochemical adaptation. Cell, 138, 760–773.

Mangan, S., & Alon, U. (2003). Structure and function of the feed-forward loop network motif.
Proceedings. National Academy of Sciences. United States of America, 100, 11980–11985.

Manu, M., Surkova, S., Spirov, A. V., Gursky, V., Janssens, H., Kim, A. R., Radulescu, O., Vanario-
Alonso, C., Sharp, D. H., Samsonova, M., & Reinitz, J. (2009). Canalization of gene expression
and domain shifts in the Drosphila blastoderm by dynamical attractors. PLoS Computational
Biology, 5, e1000303.

Marcon, L., & Sharpe, J. (2012). Turing patterns in development: what about the horse part?
Current Opinion in Genetics and Development, 22, 578–584.

Maroto, M., & Monk, N. A. M. (Eds.). (2009). Cellular oscillatory mechanisms. Landes Bio-
science/Springer.

Mazurie, A., Bottani, S., & Vergassola, M. (2005). An evolutionary and functional assessment of
regulatory network motifs. Genome Biology, 6, R35.

Meinhardt, H. (1982). Models of biological pattern formation. Academic Press.
Meinhardt, H., & Gierer, A. (2010). Pattern formation by local self-activation and lateral inhibition.

BioEssays, 22, 753–760.
Melo, D., Porto, A., Cheverud, J. M., & Marroig, G. (2016). Modularity: genes, development, and

evolution. Annual Review of Ecology, Evolution, and Systematics, 47, 463–486.
Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., & Alon,

U. (2004). Superfamilies of evolved and designed networks. Science, 303, 1538–1542.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network

motifs: simple building blocks of complex networks. Science, 298, 824–827.
Mireles, V., & Conrad, T. O. (2018). Reusable building blocks in biological systems. Journal of

the Royal Society Interface, 15, 20180595.
Monteiro, A., & Podlaha, O. (2009). Wings, horns, and butterfly eyespots: how do complex traits

evolve? PLoS Biology, 7, e1000037.



Dynamical Modularity of the Genotype-Phenotype Map 277

Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In
S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: developmental systems
and evolution. MIT Press.

Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions.
British Journal of the Philosophy of Science, 60, 813–841.

Needham, J. (1933). On the dissociability of the fundamental processes in ontogenesis. Biological
Reviews, 8, 180–223.

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings. National
Academy of Sciences. United States of America, 103, 8577–8582.

Newman, M. E. J., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks.
Princeton University Press.

Newman, S. A., & Bhat, R. (2008). Dynamical patterning modules: physico-genetic determinants
of morphological development and evolution. Physical Biology, 5, 015008.

Newman, S. A., & Bhat, R. (2009). Dynamical patterning modules: a “pattern language” for
development and evolution of multicellular form. The International Journal of Developmental
Biology, 53, 693–705.

Nicholson, D. J., & Dupré, J. (2018). Everything flows: towards a processual philosophy of biology.
Oxford University Press.

Niehrs, C. (2004). Synexpression groups: genetic modules and embryonic development. In G.
Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution. University of
Chicago Press.

Novák, B., & Tyson, J. (2008). Design principles of biochemical oscillators. Nature Reviews.
Molecular Cell Biology, 9, 981–991.

Nunes, M. D. S., Arif, S., Schlötterer, C., & McGregor, A. P. (2013). A perspective on micro-evo-
devo: progress and potential. Genetics, 195, 625–634.

Nüsslein-Volhard, C., & Wieschaus, E. (1980). Mutations affecting segment number and polarity
in Drosophila. Nature, 287, 795–801.

Oliveri, P., & Davidson, E. H. (2004). Gene regulatory network controlling embryonic specification
in the sea urchin. Current Opinion in Genetics and Development, 14, 351–360.

Onimaru, K., Marcon, L., Musy, M., Tanaka, M., & Sharpe, J. (2016). The fin-to-limb transition as
the re- organization of a Turing pattern. Nature Communications, 7, 11582.

Oster, G., & Alberch, P. (1982). Evolution and bifurcation of developmental programs. Evolution,
36, 444–459.

Page, K. M., & Perez-Carrasco, R. (2018). Degradation rate uniformity determines success of
oscillations in repressive feedback regulatory networks. Journal of the Royal Society Interface,
15, 20180157.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435, 814.

Panovska-Griffiths, J., Page, K. M., & Briscoe, J. (2013). A gene regulatory motif that generates
oscillatory or multiway switch outputs. Journal of the Royal Society Interface, 15, 20180157.

Papatsenko, D. (2009). Stripe formation in the early fly embryo: principles, models, and networks.
BioEssays, 31, 1172–1180.

Pavlicev, M., & Wagner, G. P. (2012). A model of developmental evolution: selection, pleiotropy
and compensation. Trends in Ecology & Evolution, 27, 316–322.

Payne, J. L., & Wanger, A. (2015). Function does not follow form in gene regulatory circuits.
Scientific Reports, 5, 13015.

Perez-Carrasco, R., Barnes, C. P., Schaerli, Y., Isala, M., Briscoe, J., & Page, K. M. (2018).
Combining a toggle switch and a repressilator within the AC-DC circuit generates distinct
dynamical behaviors. Cell Systems, 5, 521–530.

Peter, I. S., & Davidson, E. H. (2011). Evolution of gene regulatory networks controlling body plan
development. Cell, 144, 970–985.

Peter, I. S., & Davidson, E. H. (2017). Assessing regulatory information in developmental gene
regulatory networks. Proceedings. National Academy of Sciences. United States of America,
114, 5862–5869.



278 J. Jaeger and N. Monk

Peter, I. S., Faure, E., & Davidson, E. H. (2012). Predictive computation of genomic logic
processing functions in embryonic development. Proceedings. National Academy of Sciences.
United States of America, 109, 16434–16442.

Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews. Genetics, 9, 75–82.
Pigliucci, M. (2010). Genotype-phenotype mapping and the end of the ‘genes as a blueprint’

metaphor. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 557–
566.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying
communities in networks. Proceedings. National Academy of Sciences. United States of
America, 101, 2658–2663.

Raff, R. A. (1996). The shape of life: genes, development, and the evolution of animal form.
Chicago University Press.

Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a
Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345, 566–570.

Riedl, R. (1975). Die Ordnung des Lebendigen: Systembedingungen der Evolution. Parey, Ham-
burg. (English translation: Riedl R (auth.), Jeffries RPS (transl.) (1978) Order in living systems:
a systems analysis of evolution. Wiley).

Rosenberg, M. I., Lynch, J. A., & Desplan, C. (2009). Heads and tails: evolution of antero-posterior
patterning in insects. Biochimica et Biophysica Acta, 1789, 333–342.

Rosenfeld, N., & Alon, U. (2003). Response delays and the structure of transcription networks.
Journal of Molecular Biology, 329, 645–665.

Salazar-Ciudad, I. (2006). Developmental constraints vs. variational properties: how pattern
formation can help to understand evolution and development. The Journal of Experimental
Zoology Part B: Molecular and Developmental Evolution, 306B, 107–125.

Salazar-Ciudad, I., Garcia-Fernández, J., & Solé, R. V. (2000). Gene networks capable of pattern
formation: from induction to reaction-diffusion. Journal of Theoretical Biology, 205, 587–603.

Salazar-Ciudad, I., Newman, S. A., & Solé, R. V. (2001a). Phenotypic and dynamical transitions
in model genetic networks I. Emergence of patterns and genotype-phenotype relationships.
Evolution & Development, 3, 84–94.

Salazar-Ciudad, I., Solé, R. V., & Newman, S. A. (2001b). Phenotypic and dynamical transitions in
model genetic networks II. Application to the evolution of segmentation mechanisms. Evolution
& Development, 3, 95–103.

Sander, K. (1976). Specification of the basic body pattern in insect embryogenesis. Advances in
Insect Physiology, 12, 124–238.

Schlosser, G., & Wagner, G. P. (2004). Modularity in development and evolution. University of
Chicago Press.

Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., & Friedman, N. (2003).
Module networks: identifying regulatory modules and their condition-specific regulators from
gene expression data. Nature Genetics, 34, 166–176.

Shellman, E. R., Burant, C. F., & Schnell, S. (2013). Network motifs provide signatures that
characterize metabolism. Molecular BioSystems, 9, 352.

Shen-Orr, S. S., Milo, R., Mangan, S., & Alon, U. (2002). Network motifs in the transcriptional
regulation network of Escherichia coli. Nature Genetics, 31, 64–68.

Siebert, H. (2009). Dynamical and structural modularity of discrete regulatory networks. In R.
J. Back, I. Petre, & E. de Vink (Eds.), Computational Models for Cell Processes (CompMod
2009) EPTCS (Vol. 6, pp. 109–124).

Siebert, H. (2011). Analysis of discrete bioregulatory networks using symbolic steady states.
Bulletin of Mathematical Biology, 73, 873–898.

Siegal, M. L., Promislow, D. E. L., & Bergman, A. (2007). Functional and evolutionary inference
in gene networks: does topology matter? Genetica, 129, 83–103.

Simon, H. A. (1962). The architecture of complexity. Proceedings. American Philosophical
Society, 106, 467–482.

Simon, H. A. (1973). The organization of complex systems. In H. H. Pattee (Ed.), Hierarchy theory.
George Braziller.



Dynamical Modularity of the Genotype-Phenotype Map 279

Solé, R. V., & Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? Trends
in Ecology & Evolution, 21, 419–422.

Strogatz, S. H. (2014). Nonlinear dynamics and chaos–with applications to physics, biology,
chemistry, and engineering. Westview Press.

Stuart, J. M., Segal, E., Koller, D., & Kim, S. K. (2003). A gene-coexpression network for global
discovery of conserved genetic modules. Science, 302, 249–255.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., & Church, G. M. (1999). Systematic
determination of genetic network architecture. Nature Genetics, 22, 281–285.

Teichmann, S. A., & Babu, M. (2002). Conservation of gene co-regulation in prokaryotes and
eukaryotes. Trends in Biotechnology, 20, 407–410.

True, J. R., & Carroll, S. B. (2002). Gene co-option in physiological and morphological evolution.
Annual Review of Cell and Developmental Biology, 18, 53–80.

True, J. R., & Haag, E. S. (2001). Developmental system drift and flexibility in evolutionary
trajectories. Evolution & Development, 3, 109–119.

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society B: Biological Sciences, 237, 37–72.

Tyson, J. J., & Novák, B. (2015). Models in biology: lessons from modeling regulation of the
eukaryotic cell cycle. BMC Biology, 13, 46.

Verd, B., Clark, E., Wotton, K. R., Janssens, H., Jiménez-Guri, E., Crombach, A., & Jaeger,
J. (2018). A damped oscillator imposes temporal order on posterior gap gene expression in
Drosophila. PLoS Biology, 16, e2003174.

Verd, B., Crombach, A., & Jaeger, J. (2017). Dynamic maternal gradients control timing and shift-
rates for Drosophila gap gene expression. PLoS Computational Biology, 13, e1005285.

Verd, B., Monk, N. A. M., & Jaeger, J. (2019). Modularity, criticality, and evolvability of a
developmental gene regulatory network. eLife, 8, e42832.

von Dassow, G., & Meir, E. (2004). Exploring modularity with dynamical models of gene
networks. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution.
University of Chicago Press.

von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: elements
of a conceptual framework for EvoDevo. The Journal of Experimental Zoology Part B:
Molecular and Developmental Evolution, 285, 307–325.

Waddington, C. H. (1942). The epigenotype. Endeavour 1: 18–20 (reprinted in 2012). International
Journal of Epidemiology, 41, 10–13.

Waddington, C. H. (1953). Epigenetics and evolution. In Symposia of the society for experimental
biology VII: evolution. Cambridge University Press.

Waddington, C. H. (1957). The strategy of the genes: a discussion of some aspects of theoretical
biology. Allen & Unwin.

Wagner, A. (2011). The origins of evolutionary innovations: a theory of transformative change in
living systems. Oxford University Press.

Wagner, G. P. (1989). The biological homology concept. Annual Review of Ecology and Systemat-
ics, 20, 51–69.

Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American
Zoologist, 36, 36–43.

Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews. Genetics, 8, 473–
479.

Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton University Press.
Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability.

Evolution, 50, 967–976.
Wagner, G. P., Chiu C.-H., & Laubichler, M. (2000). Developmental evolution as a mechanistic

science: the inference from developmental mechanisms to evolutionary processes. American
Zoologist, 40, 819–831.

Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews.
Genetics, 8, 921–931.



280 J. Jaeger and N. Monk

Wagner, G. P., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: the
evolvability of complex organisms. Nature Reviews. Genetics, 12, 204–213.

Wall, M. E., Dunlop, M. J., & Hlavacek, S. (2005). Multiple functions of a feed-forward-loop gene
circuit. Journal of Molecular Biology, 349, 501–514.

Webster, G., & Goodwin, B. C. (1996). Form and transformation: generative and relational
principles in biology. Cambridge University Press.

Weiss, K. M. (2005). The phenogenetic logic of life. Nature Reviews. Genetics, 6, 36–45.
Weiss, K. M., & Fullterton, S. M. (2000). Phenogenetic drift and the evolution of genotype-

phenotype relationships. Theoretical Population Biology, 57, 187–195.
Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: piecewise approximations

to reality. Harvard University Press.
Winther, R. G. (2001). Varieties of modules: kinds, levels, origins, and behaviors. The Journal of

Experimental Zoology Part B: Molecular and Developmental Evolution, 291, 116–129.
Wolpert, L. (1968). The French Flag problem: a contribution to the discussion on pattern

development and regulation. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol.
I). Edinburgh University Press.

Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. Journal
of Theoretical Biology, 25, 1–47.

Wotton, K. R., Jiménez-Guri, E., Crombach, A., Janssens, H., Alcaine-Colet, A., Lemke, S.,
Schmidt-Ott, U., & Jaeger, J. (2015). Quantitative system drift compensates for altered maternal
inputs to the gap gene network of the scuttle fly Megaselia abdita. eLife, 4, e04785.

Wright, L. (1973). Functions. Philosophical Review, 82, 139–168.
Zinzen, R. P., & Papatsenko, D. (2007). Enhancer responses to similarlly distributed antagonistic

gradients in development. PLoS Computational Biology, 3, e84.



Index

A
AC/DC circuit, 71, 74, 262–266
AC/DC module, 265
AC/DC subcircuit, 265, 266
Adaptability, 125, 126, 129
Adaptation, 23, 36, 42, 49–52, 55, 115–130,

141, 149, 150, 160, 166, 171, 179, 202,
205, 210, 247

Adaptation experiments, 121, 128
Adaptive dynamics, 55, 255
Adaptive evolution, 51, 121, 122, 141, 145,

180, 201–203
Adaptive functional modules, 250
Adaptive paths, 128
Adaptive routes, 127
Adaptive variation, 245
Aevol, 2, 8–11, 13, 15, 16
Alleles, 118, 123–125, 227, 228
Allosteric regulation, 167, 168, 171, 172, 175
Amino acid substitutions, 200
Anatomical homology, 106
Anatomical modules, 90, 91, 97
AND gate, 21
Aneuploidy, 122
Animal development, 232
Apical ectodermal ridge, 94
Appendages, 106, 266
A priori fitness criterion, 24
Arabidopsis thaliana, 201, 266
Archetype, 91, 139
Architecture, 2, 91, 115, 130, 142, 181, 207,

245–247, 258
Artificial evolving systems, 136
Artificial genetic code, 9
Artificial inducer, 21, 26–29

Artificial selection experiments, 229
Ascertainment bias, 269
Asexually reproducing population, 118
Assumption of linearity, 229
Asymmetric elements, 94, 105
Asymmetric inhibition, 138
Asymmetric spatial distribution, 224
Atlas of regulatory circuits, 207
Attractor, 29, 48, 59–84, 258–262, 264, 265,

268, 269
Attractor basins, 269
Auto-activate, 262
Auto-activation, 69, 71, 72, 76, 78
Autopod, 91–93, 95–97, 100, 102, 104, 105
Auto-regulation, 73
Avian digit identity problem, 106

B
Backcrossing, 123, 124
Bacterial evolution, 50
Bacteriophages, 144, 145, 147
Baker’s yeast, 126
Base-contacting amino acids, 203
Basins, 61, 73, 81, 263, 268, 269
Beneficial effect, 116, 119, 127
Beneficial mutation, 116–120, 122, 141,

144
Beneficial phenotypic variation, 206
Beneficial variant, 121, 123, 125
Bifurcations, 28, 73, 81, 93, 263–265, 268
Binding activity, 200
Binding affinity, 199, 200, 204–206
Binding specificity, 200, 202, 203
Biofilm formation, 209

© Springer Nature Switzerland AG 2021
A. Crombach (ed.), Evolutionary Systems Biology,
https://doi.org/10.1007/978-3-030-71737-7

281

https://doi.org/10.1007/978-3-030-71737-7


282 Index

Biological complexity, 2, 3, 8
Biological functions, 138, 201, 239, 250,

256
Biological individuals, 248
Biological organization, 249
Biological systems, v–vii, 3, 4, 7, 16, 19–31,

100, 136, 137, 147, 149, 182, 258
Bio-mechanics, 222
Biophysical constraints, 161, 175, 180
Biophysical drivers, 160, 175, 180
Biophysical modelling, 61
Bioproduction, 160
Bio-synthetic pathway, 120
Biotechnological applications, 160
Biotechnology, 130, 138, 149, 221
Biphasic shifts, 76
Bistability, 20–22
Bistable, 27–31, 71, 172–175, 182, 183

promoter, 29
switch, 20, 21, 26, 27, 31, 61
switching, 70

Blastoderm, 65, 68, 74, 77
Body segments, 62, 106, 250, 266
Boolean circuits, 207
Boolean networks, 258, 260, 261, 265
Bottom-up decomposition, 71–73
Bottom-up genome design, 148
Boundary conditions, 268
BSW model, 103, 105
Budding yeast, 117, 122, 127, 138, 146,

266

C
Canalized, 78
Candida albicans, 208
Carbon preference, 171–172
Carbon-sources, 28, 169–172, 176
Catabolic hierarchy, 172
Catabolic pathway switching, 171–172
Catalytic molecules, 42
Catalytic reaction network, 41–44, 50, 53
Catshark pectoral fin buds, 102, 104, 105
Causality, 256
Causal-mechanistic, 60, 249, 252, 256, 257,

267, 269, 270
Causal-mechanistic processes, 60, 249, 252,

256, 257, 267, 269, 270
Causal regulatory process, 70
Causal relationship, 90
Causal role, 224
Causative mechanisms, 175
Cell adhesion, 222, 225, 231

Cell behaviors, 222, 223, 225, 231, 232, 234
Cell-cell signalling, 260
Cell collectives, 181, 225
Cell contraction, 222, 231
Cell culture system, 103, 142
Cell cycle, 37, 175, 182, 259, 262, 266
Cell differentiation, 94, 254
Cell division, 138, 160, 183, 225, 231, 237
Cell mechanical interactions, 232
Cell metabolism, 23, 30, 160, 167
Cell physiology, 160
Cell polarization, 121, 138, 139
Cell types, 184, 202, 203, 222, 224, 225, 233,

259
Cellular behaviours, 168, 182
Cellular growth, 42, 176, 178
Cellular memory, 138
Cellular metabolism, 161, 176, 179, 181, 183
Cellular processes, 123, 128, 180, 223
Cellular states, 37, 42
Central dogma, 146
Chaperone, 129, 201
Character, 107, 160, 227, 228, 242, 246–248,

251–253, 267, 269–272
homologies, 246
identity, 107, 251–253, 267, 269
state, 228, 251, 253
traits, 246, 247, 253, 267, 270, 271

Character-identity networks, 107, 251, 253
Chemical gradients, 179
Chondrogenesis, 93
Chromatin factor, 129
Chromosome fusion, 146
Chromosomes, 143, 145–147, 149
Circadian oscillations, 266
Circuit topologies, 207
Cis-acting, 199
Cis-regulatory elements, 140, 202, 203
Clock-like mechanism, 94, 96, 100
Clogmia albipunctata, 61, 65–68, 71, 76–81
Clonal interference, vi, 115, 117, 118, 122,

130
Codon substitution, 144
Coevolution, 149
Co-expression clusters, 257
Common ancestor, 25, 26, 80, 90, 106, 107,

208
Community structure, 254, 255
Comparative analysis, 65, 71, 74, 82, 90, 206,

208, 209
Compartmentalization, 148–150
Compensatory evolution, 65, 76, 79, 81
Compensatory mutations, 120, 127, 128
Compensatory network drift, 82



Index 283

Compensatory trajectories, 127–128
Competitive-exclusion principle, 176
Complex adaptive systems, 246
Complex biological systems, 4, 19–31
Complex dynamics, 47, 62
Complex genetic circuits, 136
Complexity, vi, 1–16, 47, 60, 98, 149, 163,

198, 202, 268
levels, 7, 13, 15
ratchet, 13–16

Complex models, 2, 4, 7, 16
Complex morphologies, 223, 232
Complex networks, 2, 4, 138, 223, 250, 255
Complex organism, 7, 8, 12, 13
Complex regulation mechanisms, 7
Complex traits, 115, 123–126, 130
Computational bottleneck, 64
Computationally redesigned, 143, 145, 150
Computational models, 96, 103, 105, 136, 149,

207, 259
Conceptual innovation, 103
Conceptual platform, 94
Conceptual shift, 106
Conditionally essential genes, 126
Connectivity, 129, 162–164, 179, 258
Conservative natural selection, 236
Constrained variation, 139
Constructional constraints, 238
Constructive neutral evolution, 7
Contingency, 61, 80
Contingent, 6, 15, 74, 141, 207
Continuous patterning system, 264
Continuous state models, 262
Contre-effet Pasteur, 169
Controlled conditions, 5, 27
Control variable, 54
Cooperation, 149
Core mechanisms, 265, 266
Correlated co-expression, 257
Correlated temporal expression, 257
Correlational maps, 60
Cost functions, 63, 64, 69
Cost of generalism, 122
Crabtree effect, 169, 170
Criticality, 263, 268
Cross-feeding, 117, 170, 171
Cross-regulation, 78, 251, 264
Cross-regulatory interactions, 90, 268
Cross-repression, 76
Cross-talk, 201
Curse of dimensionality, 180
C-value enigma, 7
Cyclical attractor, 260
Cyclic reaction system, 174, 179

D
Damped oscillator, 73, 78, 263, 264, 268
Darwinian evolution, 4, 136
Data-driven, 96, 105, 208, 271
Data processing, 67
Decomposition, vii, 60, 70–75, 82, 249, 250,

252, 261, 263–266, 268–272
Degree distribution, 162
Degree of proportionality, 43
Degrees of freedom, 36, 47
Delay, 29–31, 75, 76
Deleterious gene perturbation, 123
Deletions, 8, 80, 120, 126–130, 144
Deletion strains, 126–128
Design principles, 138, 142
Determinability analysis, 68–70
Development, 53, 59, 90, 121, 136, 178, 198,

222, 246
Developmental concepts, 91
Developmental dynamics, 53, 61, 70, 90, 205,

225
Developmental evolution, 222, 249, 271
Developmental gene regulatory networks

(GRNs), 60, 81, 139–141
Developmental mechanisms, 68, 72, 93, 94,

104, 106–108, 223, 226
Developmental modules, 248, 267, 271
Developmental morphogen gradient, 142
Developmental patterns, 105, 224–226, 231,

233
Developmental phenomena, 90
Developmental processes, 60, 61, 198, 209,

249, 253, 257, 259, 267
Developmental regulatory networks, 60
Developmental resources, 226
Developmental stages, 68, 74, 225, 238
Developmental system drift, 62, 79, 271
Developmental systems, 59–82, 90, 249, 266,

271
Developmental time, 67, 68, 224
Differential diffusion, 98, 99
Differential-equation model, 263
Differential equation systems, 6
Differential sensitivity, 268
Differentiation gene batteries, 253–255, 257
Diffusion-driven instability, 90, 98, 99
Digital arch theory, 92–94
Digital organisms, 4, 5, 80
Digits, 45, 91–93, 95–97, 100, 101, 103, 105,

106, 266
forming regions, 93
patterning, 96, 101, 103, 266
primordia, 103
specification, 101



284 Index

Dimensionality, 180, 237
Dimension reduction, 35–56
Dimerization, 199
Diminishing returns epistasis, 116, 118, 119,

125, 129
Dipteran insects, 61, 62, 65, 78, 79, 207
Directed evolution, 136, 147, 150
Directionality, 37, 55
Discrete state models, 262
Disjoint modules, 255
Dissociability, 247, 267–269, 271
Distribution of fitness effects, 116, 117
Diversity, 15, 36, 86, 91, 121, 202, 203, 205,

255
DNA-binding domains, 199–201, 203
DNA-binding sites, 140
DNA-contacting residues, 202, 203
DNA editing tools, 149
DNA sequencing, 53, 89, 107, 139, 149, 198,

199, 203, 204, 206, 207, 210, 224
Domain boundaries, 71–74, 251, 263, 264
Domain rearrangements, 202
Dominant mode, 41–48, 54, 55
Double-negative feedback, 70, 72, 75
Double-negative regulatory logic, 142
Drift, 2, 4, 7, 13, 25, 29, 62, 74, 78, 79, 82,

106, 107, 207–209, 252, 271
Drosophila, 61, 66, 139, 203, 208, 233,

250, 251, 256, 260–262, 264, 266,
268, 271

Drosophila melanogaster, 61, 66, 208, 250,
251, 260–262

Duplications, 8, 15, 51, 80, 96, 100, 199,
201–203

Dynamical behaviours, 254, 255, 259, 260,
263, 265, 268, 269, 271

Dynamical decomposition, 263, 265, 266, 270
Dynamical mechanisms, 139, 207–209
Dynamical modularity, vii, 245–272
Dynamical module, 71, 73, 74, 249, 258–271
Dynamical network modularity, 82
Dynamical process, 41, 167
Dynamical regimes, 73, 263–266
Dynamical regulatory mechanism, 139
Dynamical repertoire, 259, 263, 269
Dynamical subsystems, 258
Dynamical systems, 4, 19, 29, 41, 42, 55, 61,

62, 73, 172, 268
Dynamical systems theory, 61, 73
Dynamics, 2, 23, 35, 60, 90, 136, 161, 207,

222, 246
of adaptation, 116
behaviour, 259, 269
fossil, 77, 78

mechanistic explanation, 270
patterning module, 259
patterns, 75, 259, 270
positional shifts, 71
trait, 259

E
Eco-evolutionary dynamics, 24–26
Ecological interaction, 117
Ecology-evolutionary feedbacks, 183
Edge of chaos, 258, 263
Effective population size, 118
Elementary flux modes, 178
Embryogenesis, 65, 267
Embryo morphology, 222
Embryonic development, 98, 142, 222, 224,

225, 231
Embryo staging, 67, 68
Emergent, 7, 43–47, 71, 160, 256, 265

circuits, 255, 256
networks, 256
phenomena, 90

Energy landscapes, 3
Energy production, 178
Energy spilling, 181
Engineering, vi, 59–82, 150, 161, 182
Enhancers, 198, 202, 207
Ensemble approaches, 60, 81, 271
Entropy maximisation, 176
Environment, 7, 8, 10, 11, 13–15, 23, 27, 30,

31, 42, 43, 52, 103, 115, 116, 122,
128, 141, 160, 164–167, 176, 179,
181, 198

Environmental adaptation, 36, 49–52
Environmental change, 37–40, 43–46, 48, 50,

51, 54, 197, 236
Environmental conditions, 13, 24, 28, 31,

36–41, 43, 45, 46, 48–50, 143, 171,
178, 256

Environmental fluctuations, 165
Environmental noise, 36
Environmental perturbations, 48
Environmental response, 37, 50–52, 55
Environmental robustness, 198, 236
Environmental stress, 39, 40, 54
Environmental variation, 36, 45, 223
Enzymatic reactions, 161–164, 173–175
Enzyme investment, 178, 181
Epigenesis, 224
Epigenetic factors, 224–227
Epigenetic gene regulation, 210
Epigenetic interactions, 225, 238
Epigenetic mechanisms, 226



Index 285

Epigenotype, 226, 246, 247, 249, 271
Epistasis, 2, 15, 16, 116, 118–121, 126, 129,

130, 140, 141, 201, 229–230
Epistatic coefficients, 230
Epistatic constraints, 81
Epistatic interactions, 128, 140
Escherichia coli, 21, 26–31, 38, 40, 51, 52,

116, 121, 128, 136, 139, 140, 142–145,
170–172

Essential genes, 126, 148, 149
Eukaryotic transcriptional regulation, 63, 79
Evolution, 1, 23, 35, 59, 91, 115, 135, 160,

201, 223, 246
Evolutionary advantage, 30
Evolutionary biology, 2–6, 16, 54, 135, 209,

222
Evolutionary changes, 47, 48, 50, 55, 247
Evolutionary characters, 246
Evolutionary concepts, 149
Evolutionary constraints, 4, 140, 146, 208
Evolutionary dimension reduction, 36, 45,

47–49, 54, 55
Evolutionary dynamics, vi, 5, 25, 43, 80, 117,

137–141, 183
Evolutionary genetics, 227, 229–230, 237
Evolutionary innovations, 205
Evolutionary lineage, 62, 75, 78, 251
Evolutionary methods, 4, 70
Evolutionary module, 248
Evolutionary origin, 2, 6, 164
Evolutionary pathways, 61, 79, 147
Evolutionary perspective, 29, 143, 160
Evolutionary potential, 36, 139, 150
Evolutionary process, 3, 7, 15, 42, 62, 80, 117,

120, 123, 199
Evolutionary response, 36, 52
Evolutionary robustness, 36, 41, 47
Evolutionary systems biology, v–vii, 2, 4, 22,

30, 35, 61, 62, 70, 81, 106–108, 150,
159–184, 209, 210

Evolutionary timescales, 203
Evolutionary trajectories, 80, 141, 201
Evolutionary transitions, 62
Evolution of complexity, 2, 6–10, 13, 15
Evolution rate, 36
Evolvability, vi, vii, 3, 6, 11, 13, 126, 197–210,

246, 267, 268
Evolvable, 7, 140, 141, 206, 249, 256, 271
Evolving morphological traits, 249
Evolving systems, 7, 11, 16, 136, 246
Expanded genetic code, 144, 145
Experimental artifacts, 27
Experimental biology, 107

Experimental data, 22, 23, 38, 40, 92, 98, 103,
105, 259

Experimental evidence, 31, 64, 75, 77, 103
Experimental evolution, vi, 5, 8, 10, 51,

115–130, 141
Experimental knowledge, 21, 234
Experimental measurements, 51
Experimental protocol, 67
Experiments, vi, 1, 2, 6–8, 10–13, 16, 17,

19–21, 24–28, 30, 31, 36, 38, 39, 49–54,
71, 81, 94–97, 100, 105, 106, 116, 117,
120–123, 127–130, 136, 144, 145, 147,
150, 151, 160, 164, 170, 174, 183, 207,
208, 229, 250, 251

Explanatory power, vii, 239
Explicit spatial context, 231
Exponential growth, 36, 55
Expression changes, 40, 49, 52, 54
Extended genetic codes, 137
Extended Turing model, 103
External conditions, 20, 24, 41
External gradients, 99, 103
External influx, 24
External signal, 256
Extracellular diffusible signals, 222, 233
Extracellular entropic gradients, 179
Extracellular matrix (ECM), 222, 223

F
Feedback, 2, 21, 22, 27, 70, 72, 75, 78, 108,

138, 142, 170–173, 176, 182, 183, 250,
254, 261, 264, 266

Feed-forward loops, 139, 140
Feed-forward topology, 256
Fermentation, 122, 169, 209
Fine-tuned, 26, 31, 141, 206
Fin radials, 91, 92, 105
Fins, 91–94, 101, 102, 104–107, 266
Fin-to-limb evolution, 91, 106
Fin-to-limb transition, vi, 94, 104, 106
Fitness, 2, 24, 41, 80, 115, 136, 204

benefit, 116
condition, 41
defects, 146
function, 80
landscape, 3, 4, 8, 15, 119–121, 124, 128
peak, 80, 120, 121
valley, 121, 129

Fixation, 121, 227
Fluctuating environments, 122, 141, 164, 165
Fluctuation, 35–56, 98, 104, 165
Fluctuation-response relationship, 35, 52–54



286 Index

Flux balance analysis (FBA), 178, 180
Flux-sensing, 171
Fly segmentation, 232
Forward modeling, 60, 61, 81
Frozen accidents, 15
Functional complexity, 11, 12, 14, 15
Functional conservation, 78
Functional criteria, 253, 254
Functional decomposition, 249, 250, 268, 271
Functional domains, 199
Functional identity, 248
Functionally autonomous, 202
Functionally redundant pathways, 178
Functional modularity, 250, 252, 254, 256,

267, 270, 272
Functional modules, 128–130, 248–252, 256,

269
Functional properties, 138, 167, 198
Functional trait, 251, 252

G
Gap domain boundaries, 72
Gap domain shifts, 71, 72, 78, 79, 81
Gap genes, 61–63, 65–75, 77–82, 207, 208,

251, 262–266, 268
domains, 264
expression, 65, 66, 68, 72, 75, 81, 263,

264
network, 62, 65–75, 77, 79, 80, 82,

262–266, 268
system, 62, 65, 66, 70, 71, 74–82, 263, 265,

266, 268
Gene batteries, 253–255, 257
Gene circuit models, 64, 68, 70, 72, 73
Gene circuits, 61–64, 68, 70, 72, 73, 75, 80,

198, 207, 208
Gene duplication, 15, 80, 199, 201–203
Gene duplication-divergence, 8, 15
Gene essentiality, 126
Gene expression, 28, 30, 38–41, 52, 61, 63,

65–70, 72–75, 77, 81, 93, 103, 104,
121, 123, 128, 139–141, 143, 149, 160,
198, 201, 204–208, 210, 223, 231–233,
256, 260, 262–264

changes, 40, 52
dynamics, 41, 81
levels, 39, 128
patterns, 61, 66, 67, 139, 201, 205–207,

260
stochasticity, 141

Gene interactions, vii, 66, 226, 229, 231
Gene mutation, 36

Gene network, 62, 65–66, 71–80, 82, 130, 222,
223, 225, 231–233, 236, 238, 239, 251,
262–266, 268

dynamics, 232, 233
topologies, 231, 233, 236, 239

Gene product interactions, 223–225, 235
Generalists, 122
Generalized negative epistasis, 119
Generative dynamics, 267
Generative processes, 246, 247, 250, 267–271
Gene regulation, vi, 20, 22, 42, 47, 53, 54, 63,

67, 72, 75, 77, 93, 167, 168, 171, 198,
202, 203, 210, 226

Gene regulatory circuits, 199–207, 209
Gene regulatory networks, 47, 60, 65, 68, 81,

96, 107, 137–140, 252, 260
Genetic, 3, 30, 36, 60, 90, 115, 136, 165, 197,

222, 250
architecture, 115, 130
assimilation, 36
backgrounds, 101, 116, 126, 128, 206, 229
basis of adaptability, 125
diversity, 204
epigenetic models, 226, 231–232, 234–239
evolution, 49, 50
factors, 231
interactions, 129, 225, 232, 233, 235, 239
models, vii, 5, 222, 223, 227, 230, 233–239
mutations, 54, 90, 107, 198, 239
networks, 129, 252
pathways, 234
perturbation methods, 75
regulatory mechanisms, 63, 82
response, 50–52
robustness, 202, 206
variants, 117, 123, 124, 205, 222
variation, 36, 37, 45, 49, 53, 54, 123, 124,

205, 223, 226, 228, 232
Genetically isolated, 144
Genome, 8, 51, 89, 117, 136, 161, 198, 222,

250
editing screen, 205
modifications, 147
packaging, 147
reshuffling, 150
wide editing tools, 143

Genomic complexity, 8, 11, 14, 15
Genomic rearrangements, 146
Genomic structure, 8
Genotype, 53, 60, 79, 80, 90, 97, 106, 108,

117, 120, 123, 124, 126–128, 130, 147,
198, 199, 201, 203, 204, 206–208, 224,
225, 229, 230, 232, 237, 246, 247, 268



Index 287

network fragmentation, 208
networks, 204, 206–208
space, 106, 201, 206, 246, 268

Genotype-phenotype (GP) mapping, 2, 3, 5,
8, 10, 90, 106–108, 209, 221–239,
245–272

Geometric model of adaptation, 116
Global asymmetric organizer, 94
Global dynamics, 260
Global proportionality, 35–56
Glucose, 21–24, 26–29, 31, 117, 121, 128, 161,

170, 172–174, 204, 205, 209
Glycolysis, 128, 170, 171, 174, 178, 180
Gradualism, 116
Grafting experiment, 96, 100
Growth, 23, 36, 65, 94, 117, 143, 164, 237,

246
condition, 117, 126, 181
deficit, 127
rate, 36–40, 42–46, 48–50, 52, 117, 126,

169, 170, 178
rate constraint, 36
recovery, 51, 52

H
Heat sensitivity, 124
Heat stress, 38–40
Heritable, 8, 125, 197, 224, 226
Heterochronic shifts, 68
Heterodimer, 199
Hierarchical interactions, 260
Hierarchical regulatory structure, 251
Hierarchical relationships, 262
Hierarchic networks, 256, 269
Hierarchy, 81, 171, 172, 248, 251, 253–255,

262, 266, 267
Historical contingency, 61
Hitchhiking mutations, 121, 122
Holometabolan insects, 66
Homeostasis, 150, 172
Homodimer, 199
Homologous relationship, 106
Homology, 68, 90–94, 104–107, 162, 246, 248,

252, 267, 269–271
Homology problems, 90, 91, 104, 106
Homotypic clusters of binding sites, 205
Host chassis, 136
Hubs, 129, 163, 164
Hybrid circuits, 255, 256
Hysteresis, 21, 27, 30

I
Identity, 94, 96, 100, 103, 104, 106, 107, 208,

248, 251–253, 266, 267, 269, 271
Image bioinformatics, 67
Immediate fitness, 24
Impossible experiments, 6, 7, 10–12
Individual effects, 119, 141
Individuated trait, 247
Infinitesimal model, 228, 230
Inhibition with positive feedback, 138
Initial conditions, 20, 53, 80, 99, 172, 231,

256, 264
Initial developmental pattern, 226, 231, 233
Innovation, 103, 203, 205, 208, 210, 226,

239
Input-output switches, 174, 253
Insect body segmentation, 62
Insect segmentation, 271
In silico evolution, vi, 23–31, 59–82, 164, 165
In silico evolutionary simulations, 61
In silico experimental evolution, 5, 8, 10
In silico modeling, 19, 20, 105
Integrated activity, 248, 249, 270
Interactional complexity, 268
Interactions, 2, 11, 20, 60, 90, 137, 166, 199,

222, 246
Intercellular interactions, 22
Intercellular signalling, 256
Interlinked reaction cycles, 183
Intermediate effect mutations, 116
Intermediate phenotypes, 269
Internal cohesion, 248
Internal constraints, 61
Internal organisation, 250
Internal regulatory structure, 254
Internal state, 19
Intracellular changes, 37
Intracellular metabolism, 22
Intracellular metabolite levels, 128
Intrinsically disordered domains, 200
Intrinsically robust, 204
Intrinsic phenotypic effects, 228, 231, 235
In vivo experimental evolution, 5
In vivo experiments, 105
Isogenic individuals, 53
Isogenic populations, 172, 210

K
Kinematic shifts, 263, 264
Kinetic parameters, 180



288 Index

L
Laboratory evolution, 36, 51–52, 55, 144, 147,

160
Lac operon, 20–31
Lactose operon, 20, 21
Large-effect mutations, 116, 121, 202
Large-scale models, 20, 21, 30, 31, 180
Lateral induction, 255, 256
Lateral inhibition, 255, 256
Lattice model, 232, 233, 235, 236
Le Chatelier principle, 50, 54
Limbs, vi, 89–108, 209, 228, 232, 266

buds, 92–97, 100, 103, 104, 266
morphogenesis, 232

Lineage explanation, 79
Lineages, 1, 5, 7, 8, 10, 62, 65, 66, 74–76,

78–82, 91, 92, 117–119, 121, 123, 124,
128, 202, 208, 251, 252, 254

Linearity, 41, 45, 220, 230, 235
Local interactions, 93, 94, 97–100
Local network structure, 252, 254
Locus, 38, 126, 228–230
Long-germband segmentation, 65, 74, 77
Long-term evolutionary responses, 36
Long-term evolution experiment, 170
Long term integration of immediate fitness,

24
Loss-of-function, 122, 123, 201
Low-dimensional slow manifold, 47, 54
Low-level regulatory motifs, 254

M
Mammalian teeth, 234
Manifold, 45–49, 54
Maternal activation, 69, 72, 76
Maternal-coordinate genes, 251
Maternal factors, 65, 72, 75, 78, 90
Maternal gradients, 65–67, 73, 264
Maternal inputs, 65, 72, 74, 75, 78, 81, 263,

264
Mathematical abstraction, 9
Mathematical modeling, 139
Mathematical models, 60, 173, 175, 208,

221–239
Mechanical explanation, 101
Mechanical properties, 222, 223, 225, 226
Mechanism-dependent evolvability, 208
Mechanisms, v, 7, 8, 15, 61, 63–65, 68, 71–73,

75–79, 82, 91, 93, 94, 96–108, 127,
139, 140, 161–164, 170, 171, 175, 179,
182, 197–199, 201, 203, 205, 207–210,
223, 225, 226, 232, 233, 252, 256, 265,
266, 270, 271

Mechanistic decomposition, 249, 250
Mechanistic explanation, vi, 62, 71, 76, 79,

170, 252, 256, 267, 269, 270
Mechanistic interactions, 257
Mechanistic theory, 269
Mechanistic understanding, 82, 181, 234, 268,

272
Megaselia, 61, 65, 66, 75–76, 208, 264,

268
Megaselia abdita, 61, 65, 66, 75–76, 268
Membrane potential, 160, 183
Mendelian disease, 200
Mendelian genetics, 227, 228
Metabolic evolution, 166, 181
Metabolic fluxes, 160, 161, 170–172, 176, 178,

181, 182
Metabolic gradients, 179
Metabolic networks, 2, 162–168, 171, 172,

180, 198
Metabolic overflows, 170
Metabolic pathways, 22, 129, 150, 178
Metabolic processes, 26
Metabolic regulation, 182
Metabolic shifts, 170
Metabolic system, 159–184

dynamics, 159–184
structure, 159–184

Metabolite regulation, 167
Metapterygium, 91, 104, 106
Metazoan patterning, 75
Methodological bottlenecks, 62, 82
Michaelis–Menten, 233
Micromass cultures, 101
Minimal medium, 39, 116, 128
Minimal motifs, 74, 138, 139
Minimal networks, 256, 265
Minimal regulatory motifs, 254
Minimal synthetic genome, 148
Mini-models, 21, 30, 31
Model fitting, 23, 67, 69–70, 82
Modeling artifacts, 77
Model predictions, 103
Model validation, 67, 77
Modern evolutionary synthesis, 227
Modular architecture, 247
Modular epistasis, 130
Modular hierarchy, 254
Modularity, vii, 2–4, 6, 73, 82, 162, 165, 166,

245–272
Modular structure, 129, 247, 249, 269
Modular subsystems, 247, 250, 260
Modular systems, 257
Modular traits, 245–249, 267
Modulations, 99, 101, 105, 106



Index 289

Modules, 71, 73–74, 90, 91, 93, 94, 97, 104,
128–130, 164–166, 246–272

Molecular biology, vi, 209, 250, 251
Molecular evolution, 151
Molecular mechanisms, 91, 197, 198
Molecular phenotype, 128, 206
Molecular ratchet, 71, 76
Morphogen, 66, 72, 94, 95, 98, 100, 103, 106,

139, 140, 142, 207, 262, 263, 265, 266
concentration, 98, 139
concentration gradient, 139
fluctuations, 98
gradients, 66, 94, 100, 103, 106, 139, 142,

207
Morphogen-based pattern formation, 262, 265
Morphogenesis, 67, 94, 226, 232, 234, 238
Morphogenetic fields, 238, 267, 269
Morphological modules, 248
Morphological phenotypes, 209, 223, 234
Morphological variation, 234
Morphologies, 29, 90, 102, 103, 105–107, 127,

222, 223, 232, 234–236, 253, 254, 270
Moth midge, 61, 65, 66, 77–78
Motifs, 2, 74, 138, 139, 166–167, 173, 174,

182, 183, 254–256, 258
Motility, 138, 160
Multicellular organisms, v, 55, 60, 130, 160,

181, 184, 224, 259
Multicellular systems, 94
Multicomponent models, 103
Multifunctional behavior, 74
Multifunctional circuits, 255, 256
Multilevel, v, 23, 31
Multilinear model, 229
Multilocus, 228
Multi-peaked fitness landscape, 120
Multiple local peaks, 121
Multiscale model, 8
Multiscale systems, 2, 3
Multi-stability, 27, 73, 167, 263
Multi-stable, 73, 76, 172, 183, 261, 263
Multi-stable switch, 20, 21, 26, 27, 31, 61, 73
Mutational neighborhoods, 206
Mutational operators, 8, 15, 29, 80
Mutational paths, 121, 128
Mutational robustness, 15, 198–201, 204, 205,

207, 208
Mutational routes, 120
Mutational target, 204
Mutational tolerance, 201
Mutational trajectories, 80, 81, 121, 123, 127,

128
Mutation and selection operators, 6
Mutation rate, 3, 10, 12–15, 43, 116, 118

Mutations, 2, 22, 36, 71, 90, 115, 139, 172,
198, 228, 254

Mutual activation, 42
Mutual inhibition, 42, 138
Mutual repression, 72, 78
Mycoplasma genitalium, 148
Mycoplasma mycoides, 148

N
Natural populations, 31, 234, 235
Natural selection, 1, 24, 26, 53, 121, 206, 223,

236–238, 258
Near-decomposability, 246, 248, 267, 270
Near-fatal gene perturbations, 123
Negative feedback loops, 254
Nested, 93, 259
Network, 2, 27, 41, 60, 90, 129, 136, 162, 198,

222, 250
analyses, 71, 162
context, 81, 265
drift, 78–79, 82, 252
dynamics, 60, 222, 232, 233
evolution, 62, 74, 76–79, 82
function, 166, 254
hubs, 129
modularity, 82, 165
motifs, 139, 166–167, 254, 255, 258
representation, 162, 165, 167
structure, 42, 60, 64, 68, 71, 74, 80, 130,

252, 254, 256, 263, 268, 269
topology, 231, 233, 251, 259, 265, 269

Neurophysiology, 231
Neutral drift, 29
Neutral evolution, 7, 28
Noise, 35–37, 45, 47, 53, 54, 167, 174, 232
Non-adaptive explanation, 29, 164
Non-adaptive mechanisms, 161
Non-base contacting amino acids, 203
Non-coding single-nucleotide variants, 205
Non-equilibrium, 30, 160, 161
Non-equilibrium thermodynamics, 176, 179
Non-genetic factors, 60
Non-genetic perturbations, 198
Non-linear dynamics, 168, 172, 182
Non-linear genotype-phenotype map, 238
Non-linear global optimization problem, 64
Non-modular network, 73
Nonmotile cells, 233
Non-natural amino acid (nnAA), 143–146
Non-supervised, 31
Nonsynonymous polymorphisms, 200
Novel functions, 144, 202
Novel phenotypes, 139, 208



290 Index

Novelty, 209, 237, 239
Numerical evolution, 41, 54
Nutrient uptake, 42

O
One-dimensional curve, 37, 40, 45
Ontogenetic processes, 60
Ontogeny, 247
Optimization problem, 63, 64
Ordered regime, 258
Ordinary differential equations (ODEs), 63
Ordinary least squares (OLS), 63
Organisational hierarchy, 248
Organismal fitness, 204
Organizers, 93, 94
Organizing center, 76
Organ physiology, 231
Orthogonality, 136
Oscillations, 98, 167, 172–175, 182, 263, 266
Osmotic stress, 38, 40
Overlapping domain, 78, 105
Over-represented motifs, 167

P
Pair-rule, 78, 81, 251, 266
Pair-rule genes, 65, 77
Parallel adaptive evolution, 121, 122
Paralogs, 201, 202
Parameter constraint, 103
Parameter curse, 19–31
Parameter space, 20, 29, 98, 99, 207
Parameter uncertainties, 21
Partially redundant, 201
Partial states, 260
Pathways, 2, 4, 22, 42, 61, 79, 96, 103, 120,

121, 128, 129, 142, 147, 150, 161,
162, 164–166, 169–172, 175, 176, 178,
180–182, 201, 203, 234, 248

Pathway switching, 171–172
Pattern formation, 55, 67, 70, 93–95, 98–100,

103–106, 138, 232–233, 236, 238, 266
Patterning mechanism, 96, 97, 100, 101
Patterning processes, 96, 104
Pectoral fins, 91–93, 102, 104, 105
Pentadactyl, 101, 105
Perfect fossil record, 5, 7, 10
Periodic spatial patterns, 90
Perspective, 29, 60, 74, 91, 126, 129, 143, 161,

179, 209, 238, 248, 249
Perturbation assays, 250
Perturbations, 38, 45, 47, 48, 53, 75, 96, 97,

103, 104, 123, 129, 137, 143, 165, 172,
198, 250, 258, 260

Phages, 140, 144, 145, 147, 206
Phase separation, 179
Phase space, 61, 81, 258, 269

analysis, 73, 263
topology, 64

Phenogenesis, 226
Phenome, 222
Phenomenological, 21, 23, 55
Phenotype, 5, 36, 60, 90, 128, 136, 174, 197,

222, 246
changeability, 36
evolution, 35–56, 230
fluctuation, 35–56

Phenotypic building blocks, 250
Phenotypic changes, 36, 38, 45–47, 49, 50, 52,

54, 140, 227, 228, 230, 237, 238
Phenotypic differences, 123, 125
Phenotypic dynamics, 35, 45, 47
Phenotypic effect, 80, 226–231, 234, 235
Phenotypic evolution, 35–56, 223, 230, 249,

271
Phenotypic fluctuation, 35–56
Phenotypic heterogeneity, 127, 141, 200, 210
Phenotypic outcome, 79
Phenotypic plasticity, 54
Phenotypic responses, 35–56
Phenotypic space, 36, 37, 45, 47
Phenotypic state space, 42
Phenotypic target, 9–12
Phenotypic trait, 53, 60, 228, 237, 247, 249
Phenotypic transitions, 269
Phenotypic variability, 60, 247
Phenotypic variation, 141, 197, 206, 208, 223,

226, 228, 234, 235, 239
Phylogenetic distributions, 165, 166
Phylogeny, 247
Physical processes, 129, 232, 233
Physico-chemical constraints, 183
Physiological dynamics, 23
Physiological processes, 183
Plasticity, 54, 107
Pleiotropic effects, 7, 202, 203, 246, 267, 268
Pleiotropy, 201, 268, 269
Plug-ins, 253–255
Point mutation, 15, 204
Polarity potential, 96
Polydactyly, 96, 97, 102
Polygenic, 228
Polymorphisms, 200, 204
Population, 2, 19, 43, 60, 115, 141, 170, 200,

227, 248
genetics, 4–6, 53, 209, 227, 228
heterogeneity, 21
size, 3, 10, 80, 116



Index 291

Positional information, 72, 91, 93, 94, 96, 97,
100, 101, 103–107, 142, 253

Positive epistasis, 120
Positive feedback, 21, 138
Positive feedback loops, 21, 22, 27, 70, 264
Positive fitness effect, 117
Positive selection, 29, 122
Post-transcriptional regulation, 67, 74
Posttranslational modification sites, 203
Power-law adaptation curve, 116
Predictive power, 105, 180
Predictive understanding, 175
Preferential attachment, 163
Primitive cells, 148
Principal components, 45, 46, 52, 54
Process, 3, 20, 41, 60, 93, 115, 136, 167, 198,

222, 246
homology, 270, 271
modules, 257

Processual perspective, 60
Progress zone model, 94, 95
Promiscuous functions, 166
Promoter function, 21–28, 30, 31
Promoters, 9, 21, 22, 25, 28–30, 123, 138, 140,

198, 202, 204, 205, 207
Proportionality, 35–56
Protein conformation, 231
Protein–DNA interactions, 200
Protein domains, 202
Protein dynamics, 23, 30
Protein interactions, 128
Protein mutations, 199
Protein posttranslational modifications, 210
Protein–protein interactions, 200
Pull-and-trigger, 71, 76

Q
Quadruplet codons, 145
Qualitative genetic evidence, 251
Quantitative changes, 79, 209, 237
Quantitative data, 67–68, 70
Quantitative expression, 36
Quantitative genetics, 6, 60, 227–230, 235, 271
Quantitative genetic tools, 125
Quantitatively measured, 140
Quantitative traits, 228, 237
Quantitative variation, 238
Quasi-autonomous behaviour, 258
Quasi-independence, 246, 267

R
Random drift, 4

Random mutation, 45, 116, 139, 208
Random networks, 43–46, 163
Random variations, 7
Ratchet mechanism, 8
Reaction dynamics, 43, 48
Reaction maps, 161, 162, 165
Reaction motif, 173, 174, 183
Reaction networks, 41–46, 50, 51, 53
Reaction paths, 43, 46
Rearrangements, 8, 9, 15, 146, 149, 202, 203,

262
Reciprocal sign epistasis, 120
Recombinant DNA technology, 123, 124
Recombination, 118, 125, 150
Recomposition, 60, 70, 75, 82
Reconnected networks, 142
Reconstitution, 249, 270
Redox reactions, 167, 168, 177
Reductionist experimental approaches, 250
Redundancy, 9, 69
Regime, 39, 41, 44, 49, 73, 125, 130, 173, 248,

258, 263–266, 268
Region of influence, 263–266
Regulation networks, 2, 42, 47, 53, 54
Regulatory circuits, vi, 20, 135, 198–209
Regulatory complexity, 60
Regulatory control, 205
Regulatory factors, 60, 77, 78, 250, 262
Regulatory feedback, 108, 250, 256
Regulatory interactions, 63, 68, 69, 72–74, 79,

80, 90, 171, 208, 250, 251, 254–256,
258, 259, 263, 268

Regulatory mechanisms, 61, 63, 64, 71–73, 75,
78, 82, 139, 140, 182, 271

Regulatory modules, 257–259, 268, 270
Regulatory network evolution, 79, 82
Regulatory networks, vi, 47, 59, 60, 62, 65, 68,

69, 74, 79, 81, 82, 96, 107, 137–143,
171, 251–257, 259, 260

Regulatory non-coding RNA, 210
Regulatory process, 62, 70
Regulatory proteins, 200, 203, 204
Regulatory regions, 140, 198, 204, 205
Regulatory sequences, 204–205, 207, 246, 253,

269
Regulatory structure, 61, 63, 251, 254, 255,

257, 261, 264, 267, 269
Regulatory systems, 62, 67, 73, 79, 140, 141,

171, 249, 250, 266, 269, 270, 272
Relative independence, 248
Relaxation, 45, 48, 54, 176
Relaxed selection, 201
Repeatability of adaptation, 117
Replicate lineages, 128



292 Index

Replication, 4, 5, 9, 90, 147, 149, 160
Repressilator, 138
Reproductive isolation, 145, 147
Resource balance analysis (RBA), 178, 180
Respiration, 122, 169–171, 183
Retinoic acid, 95
Reusability, 248
Reverse-engineering, vi, 59–82, 262, 270, 272
Rewiring, 42, 75, 142, 143, 201, 208, 209, 254,

271
RNAi knock-down experiments, 75
RNA polymerase, 22, 140, 145, 198
RNA secondary structure, 231
Robustness, vi, 2, 3, 6, 10, 11, 13, 15, 36, 41,

47, 53, 54, 64, 78, 91, 99, 103, 138, 139,
142, 164, 165, 197–210, 236, 260, 261

S
Saccharomyces cerevisiae, 122, 124, 126–127,

129, 141, 145, 149, 209
Saccharomyces uvarum, 127
Saturating response, 63
Scatter search, 64, 69, 82
Scuttle fly, 61, 66, 75–76, 208, 268
Sea urchin, 253
Secondary RNA structure models, 239
Segmental patterning, 72, 207, 208
Segmental units, 251, 260, 261
Segmentation gene expression, 73, 256
Segmentation gene hierarchy, 81, 262
Segmentation gene network, 251, 266
Segmentation mechanisms, 233
Segment polarity, 65, 81, 251, 260, 261, 266
Segment-polarity genes, 251, 260, 261
Segment polarity network, 261, 266
Selectable traits, 183
Selection, 1, 2, 4–9, 11, 13, 15, 22–24, 26,

29, 36, 42, 46, 47, 53, 60, 79, 117,
120–123, 125, 127, 136, 137, 141, 150,
163–165, 178, 179, 181, 182, 201, 206,
223, 227–229, 236–238, 246, 258

Selective pressure, 81, 123, 125, 170, 246
Self-forming coacervates, 179
Self-organizing, 259
Self-regulated, 129
Self-regulating emergent system, 160
Self-replicating systems, 148–149
Semiquantitative data, 68–70, 73, 77
Semisynthetic organism, 146
Sensitivity, 99, 124, 263, 268
Separatrices, 73
Sexual reproduction, 118

Shifting domains, 73
Short-germband segment determination, 65
Short-range signaling, 224
Short-term phenotypic dynamics, 35
Side effects, 29, 31, 136
Sigmoidal function, 231
Signaling centers, 94, 101, 103
Signaling-dependent transcriptional circuit,

203
Signaling gradient, 142
Signaling proteins, 202
Signal secretion, 225
Sign epistasis, 15–16, 119–123
Simple organisms, 7, 8, 12, 13, 15
Simulated annealing, 64
Single-cell analyses, 183
Single-cell model organisms, 136
Single-copy TFs, 203
Single small mutation, 204
Skeletal elements, 91, 94, 101–102, 104–105
Skeletal pattern formation, 93, 103, 104, 106
Skin coat patterns, 232
Slow modes, 54, 55
Slow protein dynamics, 23
Small adaptive mutations, 230
Small-effect mutations, 116
Small-world, 206
Smooth landscape, 206
Soft-matter properties, 226
Somatic mutations, 200
Spatial distribution, 222, 224
Spatial epigenetic factors, 224
Spatial expression patterns, 93
Spatial gene expression data, 67
Spatial information, 139
Spatially differentiated context, 257
Spatially explicit environment, 23, 123, 231
Spatially organised systems, 183
Spatial stripe, 265
Spatiotemporal control of gene expression,

198
Spatiotemporal gene expression, 63, 67, 68,

81, 139, 198, 207, 262
Spatiotemporal regulation, 222
Specialists, 122, 170
Species diversification, 199
Spontaneous pattern formation, 97
Sporulation efficiency, 146
Spot pattern, 99, 105
Standing genetic variation, 205
Starvation, 38–40
State perturbations, 258
State sequence, 258, 260



Index 293

State space, 24, 26, 37, 38, 40, 42, 46, 47, 52,
55, 262

Static network graphs, 256
Stationary attractor, 260
Stationary domain boundaries, 73
Stationary state, 37
Statistical mechanics, 36
Statistical physics, 52, 55
Steady-growth, 37–39, 55
Steady state, 27, 37, 39, 54, 73, 142, 172–174,

178, 182
Stochastic dynamical system, 29
Stochastic gene expression, 30
Stochasticity, 30, 141
Stochastic perturbation, 47
Stochastic reaction simulation, 42
Stoichiometric modelling, 180, 182
Stop codons, 143–145, 149
Streamlining, 7
Stress conditions, 39, 40, 49, 143
Stressful environmental conditions, 143
Stripe-forming, 139, 208
Stripe-like gene expression pattern, 139
Stripe pattern, 105, 139
Stripes, 65, 78, 81, 98–100, 105–106, 139–141,

207, 208, 261, 265
Stronglyocentrotus purpuratus, 253
Structural components, 268
Structural criteria, 246
Structural explanations, 64
Structural identity, 248
Structurally dissociable, 256
Structurally modular, 262, 272
Structurally stable, 263, 264, 268
Structural modularity, 255, 260, 262
Structural modules, 252–257, 269, 270, 272
Structural protein, 129
Structure-function relationship, 2
Stylopod, 91, 100
Subcircuits, 74, 250, 253, 254, 263–266, 268
Subnetworks, 250–252, 254, 269
Subsystems, 247, 249, 250, 252, 258–266,

269
Supply-demand, 180
Survivability, 122
Survival advantage, 141
Sustained viability, 183
Switch-like, 73–74, 262–265, 268
Switch-like activation, 63
Synexpression groups, 257
Synthetic biological designs, 136, 137, 139,

141
Synthetic biology, vi, 135–151, 182
Synthetic capsids, 147

Synthetic chromosome rearrangement
and modification by loxP-mediated
evolution (SCRaMbLE), 149, 150

Synthetic gene regulatory networks
(SynGRNs), 137–141

Synthetic genes, 137, 143, 146
Synthetic genomes, 143, 145, 148, 150
Synthetic karyotyping, 146–147
Synthetic lethal interactions, 126
Synthetic life forms, 146
Synthetic minimal genome, 147–148
Synthetic regulatory networks, 137–141
Synthetic rewiring, 142, 143
Synthetic stripe-forming regulatory circuits,

208
Synthetic systems, vi, 136–138, 150–151,

209
Synthetic viruses, 137, 147
System drift, 62, 79, 207–209, 271
Systems biology, v, vi, vii, 2–4, 6, 16, 19, 22,

27, 30, 35, 36, 60–62, 70, 81, 89–108,
150–151, 159–184, 209, 210

Systems level, vi, 82, 137, 175, 249,
251, 252

Systems-level questions, 130

T
TCA cycle, 128, 170, 174
Temporal behaviour, 159, 161
Temporal changes, 23
Temporal dynamics, 167, 171, 176, 256
Temporal sequences, 258, 261
Terminal limb deficiencies, 94
Tetrapod limb, 89–108
TF binding affinity landscapes, 206
TF binding sites, 198, 204–206
TF families, 202, 206
Theoretical biology, 97
Theoretical models, 21, 229
Theories, vi, 1, 7, 15, 20, 36, 37, 39–41, 55, 61,

62, 73, 90, 92–94, 97, 100, 101, 107,
116, 125, 162, 164, 176, 209, 228, 229,
246, 248, 269, 270

Thermodynamics, 50, 54, 170, 173, 175–177,
179–183

constraints, 182
equilibrium, 176
inhibition, 176
regulation, 181

Threshold dynamics, 174
Timescale, 54, 55, 200, 203, 204, 238
Time-series transcriptome data, 51
Time-variant system, 73



294 Index

Tissues, v, vii, 65, 74, 103, 183, 223, 225, 238,
255, 259, 262, 265–267

geometry, 262, 266
growth, 65

Tooth morphogenesis, 232, 234
Top-down, 62, 71, 73–74, 250, 265
Topologies, 61, 64, 74, 140–142, 207, 231,

233, 251, 252, 254, 256, 258, 259, 262,
265, 269

Toy metabolic models, 164, 176
Traits, 4, 36, 53, 60, 90, 115, 123–128, 130,

141, 183, 228–231, 237, 238, 245–249,
251–253, 259, 267, 269–272

identities, 252
individuality, 271

Trajectories, 5, 15, 61, 73, 80, 81, 121, 123,
127–128, 141, 201, 258

Trans-acting, 199
Transcriptional dysregulation, 200
Transcriptional misregulation, 205
Transcriptional regulation, vii, 63, 67, 74, 80,

181, 182, 197–210
Transcriptional regulatory circuits, 198
Transcription factor (TFs), 22, 65, 79, 129,

140, 142, 171, 198–207, 209, 210, 253,
260, 262

Transcription factor binding sites, 79
Transcription initiation, 9
Transcription start site, 198
Transcription termination, 9
Transcriptome analysis, 38, 39, 51
Transient, 30, 39, 73, 148, 260

behavior, 73
compartmentalization, 148
states, 260

Translation, 9, 144, 145
Triangle-shaped function, 9
Turing, A.M., 90, 91, 94, 96–108, 266
Turing mechanism, 91, 94, 97–107
Turing pattern generators, 266
Turing reaction-diffusion model, 96, 98
Turing systems, 98, 103, 108
Two-signal model, 95, 96

U
Ultimate cause, 2, 223
Ultrasensitivity, 174
Undesirable side effects, 136
Unexpected novel insights, 31
Unnatural base pair (UBP), 145, 146

V
Variability of character traits, 270
Variational modules, 247, 248, 271
Variational properties, 60, 246, 269
Variations, 4, 6, 7, 19, 22, 24, 25, 36, 37, 45,

49, 53, 54, 60, 78, 80, 91, 92, 123, 124,
127, 139, 141, 160, 172, 197, 204–208,
222, 223, 226–228, 232, 234, 235, 238,
239, 245, 247

Vertebrate, vi, 91, 93, 106, 209, 263, 266
limb, 209, 266
neural tube, 263, 266

Vinegar fly, 61, 66, 250, 251
Viral-like capsids, 147
Viruses, 137, 144, 147, 150

W
Waddington, C.H., 36, 81, 221, 223, 226, 227,

246, 247, 267, 271
Warburg effect, 169
Wavelength, 101, 104, 105
Weak binding sites, 200
Weighted least squares (WLS), 63, 69

Y
Yeast deletion collection, 126, 127

Z
Zeugopod, 91, 95–97, 100, 104
Zone of polarizing activity (ZPA), 93, 94, 96,

97, 100


	Preface
	Contents
	Of Evolution, Systems and Complexity
	1 Introduction
	2 Of Evolution, Systems and Complexity
	3 Of Complex Evolution Models
	4 Of Evolution of Complexity
	4.1 Introduction
	4.2 The Aevol Model
	4.2.1 Information Coding in Aevol

	4.3 Designing an Impossible Experiment
	4.4 Results: The Complexity Ratchet

	5 Conclusion
	References

	Modeling Complex Biological Systems: Tackling the Parameter Curse through Evolution
	1 Introduction
	2 Case Study: The lac Operon and Bistability
	2.1 Background: ``State of the Art''

	3 Eco-evolutionary Model of the lac Operon
	3.1 Analysis of the Eco-evolutionary Dynamics of the Model
	3.2 Internal Validation of the Model
	3.3 Experimental Validation of the Model Results
	3.4 Why Avoid Bistability?

	4 Discussion
	References

	Direction and Constraint in Phenotypic Evolution: Dimension Reduction and Global Proportionality in Phenotype Fluctuation and Responses
	1 Introduction
	2 Constraint in a Steady-Growth System: Global Proportionality Law
	3 Experimental Confirmation
	4 Global Proportional Changes in Gene Expression Beyond the Simple Theory 
	5 Emergence of Global Proportionality Through Evolution: Formation of a Dominant Mode
	5.1 Catalytic Reaction Network Model for Numerical Evolution
	5.2 Emergent Global Proportionality Through Evolution

	6 Evolutionary Dimension Reduction Hypothesis
	7 Global Proportionality Between Responses by Environmental and Evolutionary Adaptations
	7.1 Verification by the Reaction Network Model
	7.2 Experimental Confirmation by Laboratory Evolution

	8 Evolutionary Fluctuation-Response Relationship
	9 Discussion
	References

	Life's Attractors Continued: Progress in Understanding Developmental Systems Through Reverse Engineering and In Silico Evolution
	1 Introduction
	2 Reverse Engineering with Gene Circuits
	3 Challenges in Reverse-Engineering Gap Gene Networks
	3.1 Bottleneck No. 1: Quantitative Data
	3.2 Bottleneck No. 2: Model Fitting

	4 The Art and Science of Network Decomposition
	4.1 Bottom-up Decomposition into Regulatory Mechanisms
	4.2 Top-Down Decomposition into Dynamical Modules

	5 Drifting Shifts: The Evolution of the Gap Gene System
	5.1 The Scuttle Fly Megaselia abdita: Compensatory Evolution
	5.2 The Moth Midge Clogmia albipunctata: Shifts as Dynamic Fossils?
	5.3 Evolving Mechanisms and Network Drift

	6 Outlook: in silico Evolution
	7 Conclusion
	References

	Systems Biology Approach to the Origin of the Tetrapod Limb
	1 Introduction
	2 Homology Debates on Fins and Limbs
	3 Global Asymmetric Organization in Limb Development
	4 Turing Mechanism as Local Interactions
	5 Intertwining the Turing Mechanism and Positional Information in Limb Development
	6 Emergence of Homology by Coupling Turing Mechanism and Positional Information
	7 Evolutionary Systems Biology Toward the Genotype-Phenotype Mapping
	References

	Experimental Evolution to Understand the Interplay Between Genetics and Adaptation
	1 Understanding Adaptation by Experimental Evolution
	2 Experimental Evolution to Study Genes and Traits
	2.1 Evolving the Progeny of Crosses to Understand the Genetic Structure of Complex Traits
	2.2 Gene Essentiality and Evolvability
	2.3 Compensatory Trajectories After Gene Loss

	3 Outlook: Using Experimental Evolution for Systems Genetics
	4 Conclusions
	References

	Addressing Evolutionary Questions with Synthetic Biology
	1 Introduction
	2 Synthetic Regulatory Networks
	2.1 Exploring Network Design Space with Synthetic Regulatory Networks
	2.2 Exploring Evolutionary Dynamics with Synthetic Regulatory Networks

	3 Rewired Regulatory Networks
	4 Synthetic Genomics
	4.1 Extending the Alphabet of Life
	4.2 Synthetic Karyotyping
	4.3 Synthetic Viruses
	4.4 Designing a Synthetic Minimal Genome
	4.5 Synthetic Self-Replicating Systems in Cell-Like Compartments

	5 Outlook
	References

	An Evolutionary Systems Biology View on Metabolic System Structure and Dynamics
	1 Introduction
	2 Structural Features of Metabolic Systems
	2.1 Metabolic Maps as Graphs (Networks)
	2.2 Connectivity Within Metabolic Networks
	2.3 Modules in Metabolic Networks
	2.4 Network Motifs

	3 Dynamics of Metabolic Systems
	3.1 Overflow Metabolism and the Respiration-Fermentation Switch
	3.2 Carbon Preference and Catabolic Pathway Switching
	3.3 Oscillations and Bistability

	4 Evolutionary and Physical Drivers (and Constraints) on Metabolic Systems
	4.1 Thermodynamics
	4.2 Biomass and Energy Production
	4.3 Maintenance of Metabolic Gradients and Physicochemical Constraints

	5 Conclusion and Future Outlook
	References

	Robustness and Evolvability in Transcriptional Regulation
	1 Introduction
	2 Robustness and Evolvability of Gene Regulatory Circuit Components
	2.1 Robustness and Evolvability of Transcription Factors
	2.1.1 The Robustness of the Protein Structure of Transcription Factors
	2.1.2 Robustness in Duplicated Transcription Factors
	2.1.3 Many Transcription Factors Are Clients of the Molecular Chaperone HSP90
	2.1.4 The Evolvability of Transcription Factors

	2.2 Robustness and Evolvability of Transcription Factor Binding Sites
	2.2.1 The Robustness of Regulatory Sequences
	2.2.2 The Evolvability of Regulatory Sequences


	3 Robustness and Evolvability of Whole Gene Regulatory Circuits
	4 Concluding Remarks
	References

	Understanding the Genotype-Phenotype Map: Contrasting Mathematical Models
	1 Introduction
	2 Epigenesis and Epigenetic Factors
	3 GPM Models
	4 Mendelian and Quantitative Genetics
	5 Evolutionary Genetics Models on Epistasis
	6 Wagner's Model
	7 Genetic-Epigenetic Models
	8 The Lattice Pattern Formation Model
	9 Models Including Morphogenesis: The Tooth Model
	10 The Differences Between Purely Genetic Models and Genetic-Epigenetic Models
	10.1 Genetic-Epigenetic Models Reproduce Individual Phenotypes and the GPM
	10.2 Epigenetic Factors Inform About the Space of Possible Networks
	10.3 In Genetic-Epigenetic Models Not All Aspects of the Phenotype Can Change
	10.4 Genetic-Epigenetic Models Can Explain Changes in Phenotypic Dimensionality and Novelty
	10.5 Genetic-Epigenetic Models Can Explain How the GPM Evolves

	11 Conclusions
	References

	Dynamical Modularity of the Genotype-Phenotype Map
	1 Introduction: Modular Traits and the Genotype-Phenotype Map
	2 Functional Modules
	3 Structural Modules
	4 Regulatory Modules
	5 Dynamical Modules: Definition and Detection
	6 Dynamical Modules: Gradients, Gap Genes, and the AC/DC Circuit
	7 Dynamical Modules Everywhere
	8 Evolutionary Implications
	9 Conclusions
	References

	Index

