
Series Editor: T. Scheper
Advances in Biochemical Engineering/Biotechnology 177

Christoph Herwig
Ralf Pörtner
Johannes Möller   Editors

Digital 
Twins
Applications to the Design and 
Optimization of Bioprocesses



177
Advances in Biochemical
Engineering/Biotechnology

Series Editor

Thomas Scheper, Hannover, Germany

Editorial Board Members

Shimshon Belkin, Jerusalem, Israel
Thomas Bley, Dresden, Germany
Jörg Bohlmann, Vancouver, Canada
Man Bock Gu, Seoul, Korea (Republic of)
Wei-Shou Hu, Minneapolis, MN, USA
Bo Mattiasson, Lund, Sweden
Lisbeth Olsson, Göteborg, Sweden
Harald Seitz, Potsdam, Germany
Ana Catarina Silva, Porto, Portugal
Roland Ulber, Kaiserslautern, Germany
An-Ping Zeng, Hamburg, Germany
Jian-Jiang Zhong, Shanghai, Minhang, China
Weichang Zhou, Shanghai, China



Aims and Scope

This book series reviews current trends in modern biotechnology and biochemical
engineering. Its aim is to cover all aspects of these interdisciplinary disciplines,
where knowledge, methods and expertise are required from chemistry, biochemistry,
microbiology, molecular biology, chemical engineering and computer science.

Volumes are organized topically and provide a comprehensive discussion of
developments in the field over the past 3–5 years. The series also discusses new
discoveries and applications. Special volumes are dedicated to selected topics
which focus on new biotechnological products and new processes for their synthesis
and purification.

In general, volumes are edited by well-known guest editors. The series editor and
publisher will, however, always be pleased to receive suggestions and supplemen-
tary information. Manuscripts are accepted in English.

In references, Advances in Biochemical Engineering/Biotechnology is abbreviated
as Adv. Biochem. Engin./Biotechnol. and cited as a journal.

More information about this series at http://www.springer.com/series/10

http://www.springer.com/series/10


Christoph Herwig • Ralf Pörtner • Johannes Möller
Editors

Digital Twins

Applications to the Design and Optimization
of Bioprocesses

With contributions by

E. Anane � C. Appl � F. Baganz � T. Becker � M. Canzoneri �
M. N. Cruz Bournazou � A. De Luca � D. Eibl � R. Eibl �
D. Geier �H. Haße � C. S. S. Hajian � J. Harttung �V. C. Hass �
B. Hitzmann � V. Jossen � S. Junne � K. B. Kuchemüller �
J. Möller � A. Moser � P. Neubauer � O. Paquet-Durand �
R. Pörtner �B. Schumm �R. Sollacher � I. Steinke �R. Takacs �
R. Takors � M. Thalhofer � N. Weißenberg � R. Werner �
A. Yousefi-Darani � J. Zieringer



Editors
Christoph Herwig
Institute of Chemical, Environmental and
Bioscience Engineering
Vienna University of Technology
Wien, Austria

Ralf Pörtner
Institute of Bioprocess and Biosystems
Engineering
Hamburg University of Technology
Hamburg, Germany

Johannes Möller
Institute of Bioprocess and Biosystems
Engineering
Hamburg University of Technology
Hamburg, Germany

ISSN 0724-6145 ISSN 1616-8542 (electronic)
Advances in Biochemical Engineering/Biotechnology
ISBN 978-3-030-71655-4 ISBN 978-3-030-71656-1 (eBook)
https://doi.org/10.1007/978-3-030-71656-1

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-71656-1


Preface

This book is divided into two volumes that together provide an overview of the latest
advances in the generation and application of digital twins in the field of bioprocess
design and optimization. Both tasks have undergone significant transformations over
the past few decades, moving from data-driven approaches into the twenty-first
century digitalization of the bioprocess industry. Moreover, the high demand for
biotechnological products calls for smart and efficient methods during research and
development, as well as during tech transfer and routine manufacturing. In this
regard, one promising tool is the application of digital twins, which offer a virtual,
also known as “in silico”, representation of the bioprocess. They mostly reflect the
mechanistic of the biological system and the interactions between process parame-
ters, key performance indicators, and product quality attributes in the form of
mathematical process models of diverse nature. Furthermore, digital twins allow
us to use computer-aided methods to gain an improved process understanding, to test
and plan novel bioprocesses, and to efficiently monitor and control them.

In Volume 1 “Digital Twins: Tools and Concepts for Smart Biomanufacturing,” a
special focus is given to the needs, expectations, and challenges of digital twins in
the manufacturing industry. The first chapters focus on the development of digital
twins, their economic assessments and the regulatory aspects during industrial
implementation. Then, different tools incorporating digital twins are discussed for
the design, scale-up, and optimization of bioprocesses.

Volume 2 “Digital Twins: Applications to the Design and Optimization of
Bioprocesses” discusses the usage of digital twins in bioprocesses. First, different
concepts for digital twin-guided design of experiments are shown, followed by
examples for the online implementation of digital twins for bioprocess control
strategies. Then, a broad overview about the challenges and opportunities of the
implementation of digital twins into existing and newly planned operating value
chains are reviewed and their role in the bio(pharma) industry is discussed. In the
end, more insights into bioprocesses hydrodynamics and related cellular responses
are shown focusing on computer-based methods.
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In summary, both volumes provide a diverse and up to date overview about
digital twins from well-known scientific and industrial experts. A special focus in
each chapter is given to the definition of a “digital twin” due to the individual
author’s opinion. We believe that both volumes provide a comprehensive compen-
dium of current activities towards the digitalization of bio-manufacturing from
research and development up to the final industrial scale. The editors are grateful
for the support of all the excellent contributors, the series editor Prof. Thomas
Scheper, Institute of Technical Chemistry, University of Hannover (Germany), and
the publishers who have made both volumes possible.

Wien, Austria Christoph Herwig
Hamburg, Germany Ralf Pörtner

Johannes Möller
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Abstract Typically, bioprocesses on an industrial scale are dynamic systems with a
certain degree of variability, system inhomogeneities, and even population hetero-
geneities. Therefore, the scaling of such processes from laboratory to industrial scale
and vice versa is not a trivial task. Traditional scale-down methodologies consider
several technical parameters, so that systems on the laboratory scale tend to quali-
tatively reflect large-scale effects, but not the dynamic situation in an industrial
bioreactor over the entire process, from the perspective of a cell. Supported by the
enormous increase in computing power, the latest scientific focus is on the
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application of dynamic models, in combination with computational fluid dynamics
to quantitatively describe cell behavior. These models allow the description of
possible cellular lifelines which in turn can be used to derive a regime analysis for
scale-down experiments. However, the approaches described so far, which were for
a very few process examples, are very labor- and time-intensive and cannot be
validated easily. In parallel, alternatives have been developed based on the descrip-
tion of the industrial process with hybrid process models, which describe a process
mechanistically as far as possible in order to determine the essential process param-
eters with their respective variances. On-line analytical methods allow the charac-
terization of population heterogeneity directly in the process. This detailed
information from the industrial process can be used in laboratory screening systems
to select relevant conditions in which the cell and process related parameters reflect
the situation in the industrial scale. In our opinion, these technologies, which are
available in research for modeling biological systems, in combination with process
analytical techniques are so far developed that they can be implemented in industrial
routines for faster development of new processes and optimization of existing ones.

Graphical Abstract

Keywords Bioprocess scale-up, Process analytical techniques, Process modeling,
Scale-down

1 Status of Bioprocess Scale-Down: The Need
for a Model-Based Design

Studies on the scale-down of bioprocesses have received much attention in recent
years. On the one side, this is due to an increasing implementation of the concept of a
circular bio-economy. Within this framework there is a boost in new processes and
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strategies. In the field of biotechnological production of basic chemicals and
biocatalysts, the reactor volumes are getting steadily larger to ensure the necessary
yields. Newly conceived processes must be robustly feasible on a large scale [1]. On
the other side, in the field of biopharmaceutical production, product yields in the
reactor originally had a lower priority for originator products compared to the costs
incurred in downstream processing. The expiry of many patents and the develop-
ment of generic or biosimilar products has led to a price pressure that companies can
only counteract with very efficient and less variable bioprocesses. Additionally, the
implementation of single-use strategies, especially in connection with the lower
power input in single-use bioreactors, introduces scaling phenomena, i.e. imperfect
mixing issues already at much smaller scales, i.e. in reactors with 1–5 m3 [2]. Still,
the main reason for the increased interest in scale-down investigations are failures,
lower yields, higher batch-to-batch variability, or even changes in the product
quality of processes performed in industrial scale. The difficulties to predict the
outcomes at this scale, the large number of unexpected responses of cells to different
environments, and the impossibility of computer based tools to foresee the changes
on the phenotype throughout scales based on laboratory data are the driving forces
behind scale-down popularity [1].

The discrepancy between laboratory- and industrial-scale fermentation processes
results from heterogeneous environments in large-scale bioreactors due to the
limited volumetric power input and geometric issues, which result in longer mixing
times associated with the increasing volumes at industrial scale, compared to
laboratory scale bioreactors [3]. The effects of such process inhomogeneity on
microbial physiology and product syntheses, including the quantity and quality of
recombinant products, have attracted much attention in the bioprocess research
community, due to the mostly unforeseeable impacts of the heterogeneities on
process efficiency, e.g. by the accidental incorporation of non-canonical amino
acids into the product [4].

In the past three decades, various forms of single-compartment and multi-
compartment scale-down bioreactors have been developed to study scale-up effects
in fermentation processes [3]. This development, however, is accompanied by a
constant discussion about the extent, to which these systems really reflect the
conditions at an industrial scale. Concrete proposals for procedures for scaling
down a process to laboratory scale have only been developed in recent years, see,
e.g. [5], but are generally very sophisticated and therefore unsuitable for broad
application.

In parallel, during the last years, there has been a phenomenal increase in the use
of high-throughput (HT) miniaturized bioreactor systems for strain screening and
bioprocess development, which has significantly reduced the times required for early
bioprocess development. These new powerful laboratory tools require, however,
new methods for planning, performing, and evaluating these highly parallel exper-
iments. The systems are no longer treatable by manual methods – therefore, standard
methods of design, mathematics and statistics, modeling and process engineering as
they have been used in other disciplines for a long time have to be implemented and
adapted in the field of bioprocessing. Intuitively, when dealing with large data sets,
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highly automated systems and closely interconnected devices, concepts like Internet
of Things (IoT) and Digital Twin come to mind. Beyond the hype around Digital
Twins, its history and modern definition are closely related to High-Throughput
Bioprocess Development. The term Digital Twin emerged in the field of Product
Lifecycle Management to increase the efficiency in product and process develop-
ment [6]. Mathematical models, used for process monitoring (observers) in feedback
loops, for approximate optimal control applications (MPC), or even in real-time
optimization have existed for quite some time now [7]. Yet, the extension of these
methods including IoT, big data, and fully autonomous systems might require a new
terminology [8].

The Digital Twin, envisioned as a mirror image (an exact copy) of the physical
system that follows the complete lifecycle of the product from idea to manufactur-
ing, is possible only if (1) an exact representation of the system in mathematical
equations is at hand and (2) the current state of all relevant elements of the real
system can be fully monitored through real-time data. In bioprocess development,
building a Digital Twin implies joining High Throughput, Omics, PAT, Machine
Learning, Bioprocess Automation, and Bioprocess Systems Engineering tools to
enable the development and operation of a biomanufacturing plant with a perfect
copy of all units from the molecular/intracellular level up to large-scale dynamics.
Such a Digital Twin is clearly far beyond the capabilities of current technologies.
Still, it defines a clear roadmap that shows the relevance of the integration of
different fields and tools to maximize the efficiency of bioprocess development.
Mathematical models, which form the basis of digital twins, support all fields of
biotechnology and bioprocess engineering [9]. This includes biochemical systems
[10], systems biology [11], metabolic engineering [12], flux balance analysis [13],
synthetic biology [14], and bioinformatics [15]. A good overview of applications of
mathematical models, as well as a proof of their slow advance in bioprocess
engineering is given by Jay Bailey [16]. Nevertheless, the complexity of biological
systems poses difficult challenges to the direct use of advanced mathematical
techniques in bioprocess development [17].

The complexity of the underlying metabolic and physiological phenomena
demands large nonlinear equation systems with a large number of unknown and
often time-variant parameters. The existing methods are too complex and computa-
tionally expensive for application in biotechnology [18–20]. Compared to general
applications in engineering [21–24], biotechnological applications typically lack
sufficient data, as well as process understanding [25–27].

Finally, the advances in artificial intelligence, especially in data-driven learning
tools, offer incredible possibilities, but need to be adapted to the specific needs of
bioprocesses, which have peculiarities (e.g., evolution of the biological system [28]),
broad population distributions, very complex chemical composition and complicated
(metabolic) reaction networks that are not present in mechanical or chemical pro-
cesses [12]. Nevertheless, such mathematical tools have greatly contributed to our
understanding of the interactions between the organism and the constraints of growth
in bioreactors, as well as the elucidation of otherwise obscure intracellular
processes [13].

4 P. Neubauer et al.



The problem is, however, that these tools and concepts, namely scale-down
bioreactors, high-throughput mini bioreactors, and model-based tools, have mainly
developed in parallel, with little or no interaction among them. In fact, scale-down
bioreactors are still operated as standalone, low-throughput devices [3]; and the
benefits of mathematical models are not fully exploited in both scale-down and high-
throughput systems [29]. Therefore, the actual challenge is to combine these very
special techniques such that they can work together efficiently.

In this work, we discuss the current state of process development focusing on
scale-down, the typically underestimated milestone. We discuss existing experimen-
tal tools, sensor technologies, and latest advances in computational methods for
the design of scale-down investigations. Next, we demonstrate the issues related to
the current decoupled efforts to address process development. Finally, we describe
the required steps to reach a proper integration of all tools to create a digital twin of
the bioprocess development procedure together with its potential and future
applications.

2 The Digital Twin in Bioprocess Development

The answer to the current challenges in advanced bioprocess development (see
Fig. 1) is a digital twin that covers all developmental stages and allows an efficient
and effortless transfer of knowledge and information throughout the complete
process [30]. Thus, the term “digital twin” covers more than just the mathematical
model of a single component of the process. With regard to industrial bioprocesses,
“digital twins” can describe the biological system itself or parts of the system,
e.g. the three-dimensional structure of the protein product. They can also describe
phases of process development, such as strain screening, different scales of the
fermentation process and downstream operations, and in final production they can
be used for the design or installation of a production plan, as well as for the control of
the actual manufacturing process including its optimization.

The required advances in automation, process analytical technologies (PAT), and
computer-aided tools for bioprocess monitoring and control are available [31]. The
main challenge in building a functional digital twin is the difficulty in harmonizing
these existing technologies through standardized communication protocols and data
management systems. Such a digital framework tightly embedded into the highly
automated experimental systems and production facilities through PAT and
advanced mathematical modeling tools can build the path for knowledge transfer
between the whole bioprocess development workflow.

Scale-up and scale-down present arguably the most descriptive examples for the
challenges of knowledge transfer as well as its relevance in bioprocess development
[32, 33]. Scaling is basically an effort to transfer the information generated in one
stage to another aiming to maximize the generation of relevant knowledge for the
industrial process [17].

Potential of Integrating Model-Based Design of Experiments Approaches and. . . 5



In biotechnology, scale-down is eminent to assure the generation of relevant-to-
process knowledge in lab scale. As discussed further below, the variation to the
cellular response caused by the bioreactor stresses cannot be predicted without
extensive experimental information under proper conditions. That is, the experi-
ments at lab scale must create the proper environment, to emulate industrial condi-
tions which are unfortunately difficult to predict beforehand due to the highly
complex interaction between the organism(s) and the bioreactor. Scale-up is the art
of extracting knowledge from experimental data to translate it into an efficient
manufacturing strategy. This process is as challenging as scale-down for the same
reasons: insufficient data on the underlying dynamics of the bioprocess and the lack
of a proper mathematical translation of the information throughout scales. In both
cases (scale-up and scale-down), purely data-driven methods fail to understand the
complex interactions between the organism(s) and the distinct bioreactor environ-
ment, generating unrealistic predictions for the next scales and corroborating the
risks of extrapolating black-box models [34, 35]. On the other side, highly complex

Fig. 1 The role of the digital twin in advanced bioprocess development. Integration of scales, units,
and disciplines. From bottom to top, automated hardware (the physical system), device integration,
data transfer and handling, and model-based optimization tools for scale-up and scale-down
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mechanistic models offer important insights into the system [36, 37], but require
process data that is very expensive, if at all obtainable.

There is no doubt that the high complexity of living organisms, especially in
connection with their flexible information networks, which have been developed in
millions of years of evolution, is the main challenge in modeling biological pro-
cesses, and hence the reason why purely in silico development methodologies are
doomed to fail [17]. Natural organisms have been so successful in surviving
unfavorable conditions as they are characterized by genetic and metabolic hetero-
geneity between the individuals in a population. This increases especially under
stress conditions in an effort to maximize the chance for some to survive
[38]. Bioprocesses on an industrial scale (1) contain highly heterogeneous cell
populations and (2) induce a constantly changing environment that sets the organ-
isms under a high stress due to the inhomogeneities in the reactor. It is for this reason
that advanced experimental facilities, sensor technologies, and mathematical model-
ing must be tightly integrated into a digital twin framework to finally achieve
development times comparable to other industries [39–43]. The predictions at the
digital level require a continuous re-calibration and evolving mathematical descrip-
tion to cope with the unpredictable behavior of living systems as well as efficient
strategies to design and operate the experimental campaigns [29]. Most importantly,
these models also reflect the dynamic development of the heterogeneity of the
population and take statistical uncertainties into account in order to account for
possible batch-to-batch variations on an industrial scale and be robust in terms of
their prediction.

3 Inhomogeneities in Industrial-Scale Bioreactors
and Their Influence on the Biological System

Bioprocess development is usually started in shaken cultures, traditionally in shake
flasks, or more recently in parallel microwell plates where only a few endpoint
measurements are possible [44]. Nowadays there is a great interest in implementing
the final strategy, the fed-batch method, very early in the development process. For
this purpose, various methods have been developed in the past years, which make
this possible despite the small volumes [45].

Although this represents a significant advance on the traditional approach, the
methodologies can vary greatly depending on the applied system. Substrate feeding
can be either continuous or intermittent (pulse-based), and the controllers for the
continuously measured parameters (e.g., pH value and dissolved oxygen) can be set
differently, if these parameters are adjusted at all. If, as discussed above, we assume
that the culture is highly sensitive to the process conditions – and thus the product
formation is influenced accordingly – it is necessary to set these parameters so that
the conditions are similar to those on an industrial scale.

Potential of Integrating Model-Based Design of Experiments Approaches and. . . 7



This is important, especially for the development of biopharmaceuticals, where
drug substance for clinical trials may be produced as early as the laboratory
development phase, or in early pilot plant phase under cGMP guidelines. Once
regulatory clearance is obtained, the process is then scaled up to industrial condi-
tions. Two important points must be considered here: (1) the product quality
characteristics affecting the efficacy of the biopharmaceutical candidate must com-
ply with the specifications defined during clinical trials and (2) the process must be
economically feasible whilst producing sufficient quantities to supply the market.
Unfortunately, the increase in size has many implications for the process conditions
inside the bioreactor. That is, if an 80 L bioreactor is scaled up to 10,000 L whilst
maintaining a constant power input per unit volume, the mixing time increases
3 times, the impeller tip speed doubles, and the shear forces increase almost
10 times [46]. Oldshue showed that a scale-up design to satisfy mass transfer
(constant Kla criterion) from a 75 L pilot scale process to a 95,000 L production
scale would increase the shear rate by 180%, whereas maintaining a constant shear
rate between the two scales could only produce 40% of the mass transfer require-
ments of the culture in the large scale [47]. The most common consequence is an
inevitable increase in mixing times of up to 200 s in larger-scale bioreactors (since
scale-up is mostly based on Kla, P/V, impeller tip speed) [48].

In addition to the increased mixing times, fed-batch processes are fed with
concentrated substrates at localized feeding points, which are mechanically fixed.
The longer mixing times and the localized addition of highly concentrated viscous
substrates lead to the formation of concentration gradients in the bioreactor
[49, 50]. Cells that are traversing these gradients respond in many ways, by the
varied distribution of metabolic fluxes due to the changed uptake rates in different
positions of the bioreactor, and by specific gene expression profiles which include
both specific responses and general stress adaptation. The specific reaction of an
individual cell depends not only on its metabolic state and the current phase in the
cell cycle, but also on its specific historical situation, i.e. what conditions it has
experienced previously in the dynamic course of time [51]. This is currently being
investigated using fluid dynamic models by simulating cell lifelines. The sum of all
of these affects the fermentation efficiency in terms of yields and overall process
robustness.

When the characteristic time of relevant cellular processes (translation, cell
division) is close to the mixing time in large-scale bioreactors, there is a measurable
influence of gradients on the growth and metabolic behavior of the culture
[46, 52]. The inefficient mixing in large-scale bioreactors leads to the creation of
spatial concentration pockets of relevant process parameters, such as substrate
(glucose), dissolved oxygen, acidity, and temperature. Furthermore, GMP
manufacturing processes suffer from the rigidity of the process due to the difficulty
in using validated equipment for such studies, especially when the characterization
study requires minor retrofitting of the bioreactor, such as installing extra sensors. In
cases where bioreactor characterization has been done, companies consider the data
as confidential; therefore, the information is not available to the scientific research
community.

8 P. Neubauer et al.



Substrate Gradients In fed-batch cultures, the existence of excess substrate zones
in the broth defeats the purpose of this tight control for the fraction of the culture that
comes into contact with these zones. The exposure of the culture to zones of higher
substrate concentrations has direct consequences on the uptake capacities of the cells
for this substrate [51, 53]. As a result, the excess substrate zones may cause the cells
to grow at the maximum specific growth rate, which may plunge organisms such as
E. coli and Saccharomyces cerevisiae into overflow metabolic states as reported in
numerous studies [51, 54–56]. The high metabolic flux of glucose through the
glycolysis which is favored by high affinity uptake systems, i.e. low KS values,
also leads to the accumulation of NADH-H+, and thus to a higher rate of respiration.

As a consequence, the high metabolic activity in the feeding zone can also lead to
oxygen limitation if the biochemical reduction of oxygen by the cells is faster than
the limited diffusion of oxygen into the cultivation medium. It is likely that the
uneven distribution of the substrate due to feeding is the main cause for the dissolved
oxygen gradients, besides the uneven fluid-dynamic distribution of the gas bubbles.
The dissolved oxygen problem which is basically caused by the inherently low
solubility of oxygen in fermentation broths [49] becomes even greater in processes
with pellet forming organisms (oxygen gradient in the pellet) or shear-sensitive cells
(limited sparging to prevent shear stress caused by the bursting of gas bubbles) [57].

Temperature Gradients Temperature gradients are among the least studied scale-
up effects in bioprocess development. Although it is clear from a microbiological
point of view that small temperature fluctuations of a few degrees have a major
impact on cellular reactions and that, from a process engineering perspective, precise
temperature control in industrial bioreactors is a serious problem, to the best of our
knowledge, there is no information about local temperature profiles in industrial
bioreactors, nor have experiments been performed in scale-down simulators to
simulate the effect of perturbing temperatures on a process.

pH Gradients pH gradients are recently gaining attention in the bioprocess
research community. Simen et al. investigated the effect of ammonia pulses (shifts
in pH) in E. coli cultivations and observed a higher maintenance energy and the
activation of over 400 genes in response to the pH gradients [58]. pH gradients are
also relevant in industrial-scale batch cultivations of lactic acid bacteria. This has
been revealed by combined approach by the use of multiple pH probes and a
computational fluid dynamic model coupled with a kinetic model for a process of
Streptococcus thermophilus in a 700 L pilot scale bioreactor [59]. Recently, we also
could demonstrate by two- and three-compartment bioreactor cultivations that such
pH oscillations affect the cocci chain length and decrease the growth rate in
S. thermophilus cultures (manuscript in preparation). Also in CHO fed-batch
bioprocesses pH perturbations decrease the cell viability and increase lactate accu-
mulation [60]. Also pH oscillations have been recently demonstrated to affect
product accumulation in a cell line specific manner [61].

Carbon Dioxide Gradients In microbial cultivations, a recent study of CO2/
HCO3

� gradients in Corynebacterium glutamicum showed no significant impact
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of these stresses in the physiological response of the organism, although there was a
marked increase in the expression of certain genes, upon genomic analysis [62]. In a
recent report, E. coli cells exposed to CO2 levels above 70 mbar CO2 partial pressure
in the inlet gas led to reduced biomass yields and rapid accumulation of acetate, even
under non-overflow and fully aerobic conditions [63].

Interaction Between Multiple Gradients Finally, the results of Limberg and
colleagues show that when pH gradients are coupled to oxygen limitation,
C. glutamicum loses its robustness against dissolved oxygen fluctuations [64],
leading to yield losses of up to 40%. This implies that the study of concentration
gradients in fermentation should be conducted in a multi-faceted manner, to consider
all possible gradients and the necessary combinations among them to arrive at a more
holistic conclusion for each strain. There is also a close correlation between pCO2

levels, pH, base addition, and osmolality in large-scale CHO cell cultures which
affect the metabolic lactate shift (transition from lactate production to lactate con-
sumption) [65, 66].

4 Framework for Bioprocess Scale-Down Studies

4.1 Characterization of the Large Scale

A good characterization of the large-scale bioprocess is important to conclude proper
scale-down experiments which really imitate the large scale (see Fig. 2). Since the
scale-down data is only as good as the environment it mimicked, it is absolutely
necessary to characterize both the cellular state and specific heterogeneity (gradient
profiles) in the larger scale. Standard analytical methods of the medium and gas
composition and the derivation of cell specific rates need to be complemented by
direct monitoring of the physiological state of the cells. A proper scale-down
methodology should be based on the similarity of cellular responses, all at the
level of metabolism, protein expression, and population heterogeneity between
laboratory and industrial scale. In order to avoid false conclusions and to reduce
the risk of scale-up, robustness analyses must be used to assess the final batch-to-
batch variability. This complex problem can only be solved if digital approaches
(digital twin) can be coupled with a large number of experiments.

In the past, there were a large number of approaches to simulate these gradients
occurring in the industrial bioprocess in scale-down systems, see reviews by
Neubauer and Junne [3], Lara et al. [46], Delvigne and Noorman [67]. All these
systems achieve oscillating conditions regarding the specifically investigated param-
eters, i.e. the specific parameters which were the focus of the investigators. Different
priorities were set depending on the specific approach. In multi-compartment reac-
tors, the dominant parameter is the residence time distribution in different compart-
ments where cells are located within a defined period of time. In more-compartment
stirred tank systems, the zones are characterized by a previously defined state, e.g. in
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which a defined pH value is set in each of the reactors [68]. When using plug-flow
reactors, a gradient is established within the system. Then, the sampling in different
positions along the plug-flow reactor also allows an insight into the time course of
the cellular reactions [69, 70]. In contrast to multi-compartment systems, scale-down
simulators with a pulse-based feeding are easier to establish and to run in parallel.
Parameter control, however, may be more difficult to achieve due to the restriction of
the feeding profiles. Since the feeding profile is easy to change (e.g., distance
between the feed pulses), pulse-based systems also seem to be well applicable for
robustness analyses. Alternative approaches, in which installations (e.g., plates
between the different stirrers to restrict the tangential flow [71]) are realized in a
laboratory reactor to extend the mixing time to the order as it is measured in the large
reactor, can, in individual cases, reproduce the industrial process quite well, but are
technically more complex.

4.1.1 Monitoring of the Cellular State Across Different Scales

The most successful scale-down methodology will maintain the physiological state
of cells across lab and industrial scales. Naturally, it is the most suitable pre-requisite
to obtain similar results, and should be considered as scaling parameter, although the
examination of the physiological cell status is not easy to quantify with suitable
measures. The impact of gradient formation on physiology has to be investigated
with the measurement of sensitive parameters, e.g. the energy charge, stress response
factors, and the respiratory activity, among others [68, 72–74]. Additionally, the
physiological state may vary from cell to cell, which demands the consideration of
population heterogeneity. It has been observed several times that gradient formation
in fed-batch cultivation mode has an impact on population heterogeneity [75]. It
adds additional parameters that lead to different phenotypes in culture (Fig. 3).

In natural habitats, mainly the cell cycle, cell ageing, and epigenetic regulation are
known to have a great impact on the evolvement of phenotype diversity [77]. Sto-
chastically asymmetric growth and mutation events drive the formation of sub-
populations, which might be even better adapted to a previous change in an
environment. Nevertheless, these events usually lead to lower yields in processes,
which are conducted in bioreactors [78]. The role of cell cycling on the development
of subpopulations in industrial bioprocesses, however, is not clear yet, while it was
found out that the dominant driver for different protein concentrations, and thus
various metabolic activity, is the growth rate in Pseudomonas putida [79].

In particular, singe-cell based and sensitive volumetric measurement techniques
can provide new information about the impact of gradients on the cellular viability
and metabolic activity and the formation of subpopulations independently of the
scale-down system. Suitable monitoring technologies in combination with a physi-
ological understanding of stress responses support the identification of the suitable
scale-down conditions, as it puts the cell in the center of the investigation of
consequences of gradient formation in the liquid phase. Such technologies, including
proper accompanying off-line measurements, allow one to properly model the stress
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response and provide a basis for systems biology interpretation, which deepens the
methodological understanding of cellular responses in the large-scale environment.

So far, investigations have shown that the exposure of cells to gradients leads to a
higher population heterogeneity under scale-down conditions. This was examined in
particular for protein concentrations in E. coli [80]. It was found that the dynamics of
glycolysis might play an important role in the development of non-growing sub-
populations [81]. One way to observe this evolution of subpopulations with suffi-
cient accuracy and time-resolution is the creation of a strain with a reporter protein
that can be quantified by fluorescence, which enables the application of
fluorescence-assisted characterization of single cells, and eventually cell sorting
[38, 76]. For example, the green fluorescence protein can be used, if coupled to
automated sampling, eventually coupled with a multiplexer, and spectroscopic
methods like flow cytometry, for a statistically proven detection of subpopulations
[82]. In P. putida cultivations, the change in DNA content in individual cells was
investigated under different environmental growth conditions with flow cytometric
analysis at various dilution rates in chemostat experiments. The impact of oxygen
deprivation, solvent exposure, and iron availability on DNA replication was also
investigated [83]. The application of flow cytometry and cell staining to characterize
population subgroups was described in several other studies as well [76, 84]. Never-
theless, this is a challenging technique to apply in bacteria due to their size. In
bacteria, the quantification based on fluorescence is subject to genetic noise [75],
which in this case might not be predominantly affected by large-scale cultivation

Fig. 3 Parameters that are putative effectors on the formation of subpopulations. Examples for
microbial cultivations are own observations, further described in [76]
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conditions, but constantly present across scales. The results, however, would be
biased by the noise, if the samples measured are not enough to ensure a statistically
valid distribution. Nevertheless, the methodology is suitable to understand the
effects of gradients on cell viability and vitality while a large amount of cells can
be examined in a considerably short time. While the possibility of the application of
fluorescent markers represents an approach mostly on the expression level, cell
staining can be used to investigate several cellular components, including the
quantification of metabolite concentrations. If accumulated intracellularly, metabo-
lite concentrations can be used to assess population heterogeneity as well, if the
metabolite can be quantified with sufficient accuracy in individual cells. Flow
cytometry is able to quantify the accumulation of intracellular lipids in microbial
cells, and thus identify subpopulations of different lipid contents [85], e.g. with Nile
Red or Bodipy® stains. The accumulation of lipids and also other components might
correlate with changes in macromorphology of organisms. The measurement of lipid
content with optical methods can lead to conclusions about metabolic activity of
individual cells. This has been shown for heterotrophic algae, which accumulate to
large extent polyunsaturated fatty acids in lipid droplets. While using light micros-
copy and 3-dimensional holographic microscopy, the individual lipid storage in cells
was measured based on their individual cell size [86]. With rapid image analysis
using trained software, image acquisition can be performed in flow cells that are
connected to a cultivation. Automated workflows that offer considerably fast anal-
ysis of populations similar to flow cytometry are feasible, without the requirement of
staining.

Besides intracellular product accumulation, the macromorphology can provide
suitable information about the cell status and the impact of gradient formation on
it. It was examined that the cell size of S. cerevisiae cultures changed with the degree
of environmental heterogeneity in a three-compartment scale-down reactor
[87]. This happened in parallel to growth reduction and side metabolite
accumulation with a concomitant change of the sterol content, in comparison with
homogeneous growth conditions. Cells showed a diverse macromorphology under
scale-down cultivations, which supports the hypothesis that population heterogene-
ity is rather increased under growth in gradients. A morphologic response of cells to
scale-down cultivation conditions can also lead to agglomeration due to stress
response. Although the macromorphology of individual cells may stay unchanged,
the secretion of side products or proteins supports the agglomeration of cells.
Observations with laser-light back-reflection for cell particle size measurement
indicated the formation of clumps of C. glutamicum, when exposed to oscillatory
oxygen supply, either in a scale-down reactor concept (three-compartment reactor)
or in shake flask cultures with interrupted shaking [88]. Agglomeration under
fluctuating oxygen availability was postulated to be a result of increased secretion
of biofilm forming metabolites, e.g. in Mycobacterium tuberculosis and E. coli
cultures in connection with oxidative stress response [89, 90].

In case of filamentous organisms, macromorphological similarity across scales is
often achieved only if the shear force regime is maintained. Mechanical shear forces
as they appear close to the stirrer can lead to filament disruption, with consequences
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on growth and secretion profiles. Up to now, however, the change of
macromorphology due to scaling effects, e.g. an oscillating shear force regime, has
not been investigated thoroughly. Nevertheless, it can be assumed that the
macromorphology of filamentous organisms will change in comparison with the
lab scale if the exposure time to high-shear forces is diminished, like it most
probably is in large-scale cultivations at high cell densities and elevated viscosities,
where large residence times exist in different compartments. The knowledge that
exists so far about how a changed shear force regime influences the process
performance [91, 92] leads to the assumption that macromorphology is an important
parameter to consider while choosing a suitable scale-down system. Alternating
shear forces can be achieved by interrupted stirring, which usually couples low-shear
stress to oxygen limitation in stirred tank reactors, or in multi-compartment reactors,
in which low-shear and high-shear regimes are applied at similar gas mass transfer
rates. The application of other reactor systems beyond stirred tanks can support the
investigation of consequences of low-shear forces on the macromorphology, phys-
iology, and overall process performance as recently described for clavulanic acid
production with Streptomyces clavuligerus in shaken bioreactors. Secretion of
clavulanic acid was strongly diminished while thicker filaments were observed
[93]. Consequently, morphological monitoring in an automated manner [94] is a
promising technique to identify crucial characteristics for growth and product
formation under specific environmental regimes.

Finally, macromorphological heterogeneity can be modeled to describe the
response of a cell to environmental perturbations. In silico prediction of physiolog-
ical population heterogeneity was conducted by a combination of computational
fluid dynamics (CFD) and a cell cycle model of P. putida [95]. It was observed that
72% of the cells switched between standard and multifork replication and 52.9%
showed higher than average adenosine triphosphate (ATP) maintenance demands
(12.2%, up to 1.5 fold). Such an approach, however, requires sufficient knowledge
of the interaction between gradient formation and consequences for the
macromorphology of a population. This still represents a bottleneck as the time
frequency with which morphological changes are measured might be inadequate to
achieve a sufficient accuracy while correlating the response to specific regulatory
events in a cell. In recent years, however, many more techniques like in situ
microscopy and others are being developed rapidly. It is hoped that they become
more applicable in biotechnological processes operating at elevated cell densities.
The impact of gradients in the liquid phase on the formation of phenotypic hetero-
geneity can be investigated also if spectroscopic methods are coupled to microfluidic
devices, when the growth of single cells can be monitored constantly [96]. The
aforementioned methodologies will increase the possibility for the consideration of
heterogeneity in population balance models and their integration in the description of
consequences of gradient formation. So far, the few attempts rely on physiological
measures, e.g. the adaptation to substrate excess [97, 98], but investigations will
benefit from the additional consideration of macromorphological characterization
data in future.
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4.1.2 Combination of CFD Approaches with Mechanistic Models
(Euler–Lagrange) to Describe the Large Scale

Computational fluid dynamics has been traditionally used to describe the flow under
defined conditions, as a way of characterizing the heterogeneous conditions in large-
scale bioreactors. With the increasing computational power it is possible to imple-
ment in such CFD approaches cellular reaction kinetics. For the first time this
interaction between the intracellular state of the individual cells of the population
and the turbulent flow field in the bioreactor has been realized by Lapin et al.
[99]. This so-called Euler–Euler approach considers gas, liquid, and biophase as a
continuum and is an answer to the very complex simulation, which is dependent on
the definition and resolution of the reactor into flow cells. Later, the pioneering paper
by Lapin et al. [100] was the first approach to couple a CFD model of a bioreactor
with a Lagrangian approach for the combined solution of flow patterns and cellular
kinetics.

In this Lagrangian–Euler approach the liquid phase is treated as a continuum
(Euler) and the dispersed phase is tracked using Lagrangian representation. While
this modeling approach was first used in gas–liquid simulations, here cells with their
specific metabolic reaction network were described as discrete entities. With these
models, individual cells are monitored with respect to their experience of local
environments in relation to the fluid-dynamic distribution and pathways within the
bioreactor. This kind of structured-segregated approach realizes that the individual
history of a biological entity determines their reaction. With a big computational
power this can be realized also in a three-dimensional turbulent field. This approach
allows one to get an indication of the heterogeneity in the biotic and abiotic phases of
the reactor and it considers the individual history of the cells as important for its final
response. By tracking the pathway of a single particle over time it is possible to
derive lifelines of a big number of cells and thus draw conclusions for regimes,
i.e. conditions which should be represented in scale-down experiments.

In summary, the use of mathematical descriptions of large-scale bioreactors by
the combination of Euler–Lagrangian approaches is very illustrative and has made
major progress during the last years.

However, there are some limitations:

1. Due to calculation expense it is not possible to consider realistic amounts of cells.
Current computational approaches consider approx. 100,000 cells, which is
enough to see and follow the population dynamics. Currently this number of
cells is fixed. However, it would be interesting to consider growth and an increase
in cell number over time.

2. The cellular models and the parameters used in these studies are mostly derived
from continuous experiments (mostly chemostats), i.e. from experimental condi-
tions which do not reflect the large scale. Thus, as discussed above, the reactions
in a real reactor may be totally different. Therefore urgent approaches and
methods which describe how a cellular model can be derived and parameterized
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are needed. In our opinion, there is a need to look for alternative approaches
which are easily applicable and better reflect the large-scale situation.

3. Due to the very high computing power, which is needed to solve these Euler–
Lagrangian models with a reasonable resolution, the current models cannot
describe the process dynamics over time, but only represent a very narrow time
point of the cultivation. Nevertheless, this kind of simulations, e.g. if they are
performed at different time points of a cultivation can provide important infor-
mation to plan scale-down experiments.

4. Current models only consider the liquid phase. The implementation of the gas
phase would additionally need much computing power and in our opinion it
would be very laborious to validate these models.

5. An important characteristic of living systems in connection with their adaptation
to the environment is the heterogeneity in a population. Physiological (i.e.,
metabolic) and genetic heterogeneity ensure the survival of a population of
cells if environmental changes occur (stress phenomenon) and has been described
historically as the survival of the fittest. As growth in a bioreactor is related to
different stresses in different phases of a process and as additional perturbations
that occur in large-scale bioreactors add a further stress layer, the population
heterogeneity in a bioprocess is an important feature, which needs to be moni-
tored and can be used for a validation of similarity between different process
scales.

As a consequence, every scale-down approach needs to start with a good under-
standing of the large scale especially in view of the cellular response dynamics.
Furthermore, these cellular response dynamics must be reduced in mathematical
models, the so-called digital twins, to the characteristics essential for the process
scale-down. Finally, methods need to be implemented which help to validate the
quality of the scale-down – and this is only possible by measurements.

4.2 Execution of Scale-Down Experiments

4.2.1 Combination of Scale-Down Experiments with Model-Based
Approaches

As shown in the scale-down scheme in Fig. 1, the characterization of the larger-scale
bioreactor environment is followed by transferring the environmental blueprint to
the laboratory-scale simulator in which the actual scale-down experiments are
executed. To achieve this transfer, the digital twin of the bioprocess should contain
model units that adequately describe the physiology of the cells, as well as the
cultivation process and geometric analysis of the bioreactors involved. These details
should be digitally embedded into the definition of the scale-down model (Fig. 1).
Thereafter, the application of the modeling framework (digital twin) in the context of
scale-down experimentation can take two forms: (1) the design of the scale-down
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experiments and (2) the interpretation of the data from scale-down experiments.
These two branches of application are presented in the following sections, with
respect to the state of the art, as reported in current literature and future perspectives.

Model-Based Design of Scale-Down Experiments

The concept of scale-down experiments developed in the past 3 decades usually
involves creating one type of stress (e.g., dissolved oxygen limitation, excess
substrate, excess metabolite concentrations, and perturbations in pH) in the scale-
down simulator. However, considering an actual larger-scale bioreactor, concentra-
tion gradients arise from mixing effects in a 3-dimensional space, combined with the
uptake of substrates and release of metabolites by cells. Moreover, the type of
gradients are always coupled and may co-exist (e.g., pH-oxygen-substrate gradients)
in the larger bioreactor. Therefore, at best, the scale-down simulators are only a gross
estimate of the actual environments in large bioreactors. Additionally, the fraction of
cells exposed to a given gradient in a large-scale bioreactor has been variable in the
definition of the scale-down model. In multi-compartment scale-down simulators,
this has been in the range of 10%–30%, whereas in pulse-based single-compartment
simulators, the total population is subjected to the stresses, without population
subgroups. Notwithstanding these challenges, important physiological responses
have been reported by researchers using these physical approximations of larger
bioreactors. In this light, experimental set-ups for scale-down studies can improve
greatly when they are combined with the ideas of digitalization in the industry
4.0 era.

The scale-down model, defined on the blueprint of the environmental heteroge-
neity of the larger scale, will contain process specifications such as the gradient
profiles, zone definitions with defined boundaries, residence time distributions,
magnitudes of gradients, frequencies and other experimental inputs that should be
implemented in the simulator. With such a scale-down model in hand, the scale-
down experiment can be designed on a computer, and results of the design sent to
intelligent equipment (pumps, pipettes, agitators, liquid handlers, etc.) to control a
small-scale bioreactor to mimic the blueprint of the larger-scale bioreactor. That is,
mixed-gradient zones, containing excess substrate with acidic pH, or limited oxygen
with high hydrodynamic stress, or any desired combination of gradients can be
created with the model, and the size of the zone and its frequency/duration can be
varied randomly to more closely resemble actual gradient dynamics in the larger
scale. A step in this direction is the work of Anane et al. [29] who used a mechanistic
model of E. coli [101], in combination with a mechanistic description of the gradient
profiles of a multi-compartment scale-down bioreactor [1] to calculate glucose
pulses in high-throughput scale-down experiments. The outputs of the two models
were integrated into the operation scheme of the high-throughput system to repro-
duce heterogenous glucose conditions in minibioreactors. The calculated glucose
pulses were commensurate with the physiology of the strain, as the pulse sizes were
derived from uptake capacities and physiological limits of the strain, as well as
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mixing effects in the scale-down bioreactor. The authors reported significant yield
losses, incorporation of non-conventional amino acids into the recombinant protein
product and accumulation of metabolites in response to the calculated gradients.

Although these results were similar to observations in other non-model-based
scale-down approaches [69, 102, 103], the added advantage of using the model was
the flexibility of stress definition, in which one parallel experimental set-up was used
to implement six different stress zones in the scale-down system, which otherwise
could not be done manually.

A further advancement of this concept is the application of models to design
intelligent scale-down experiments. In all the previously discussed scale-down
methods, the researcher sets out a prior design space, within which the stresses
and gradient profiles are pre-defined (manually or using a model) and executed
during the experiment. The use of digital twins to advance scale-down design should
involve designing the stresses as the experiment runs. In other words, the nature of
gradients to be imposed on the culture at time point t2 will depend on its state at time
point t1. This will prevent overestimating or underestimating the magnitude of
gradients, as well as the exposure time of the cells to a given gradient. Such an
adaptive re-design technique was employed by Cruz Bournazou and colleges in
designing optimal experiments to maximize information content for model param-
eter identification [40, 104]. Although no scale-down efforts were made in these
works, the authors demonstrated the ability to re-define feed regimes based on the
current state of the culture and model predictions for a given time window. Such a
model-based adaptive system can easily be employed to execute dynamic scale-
down experiments.

The addition of digital twin concepts to the definition of the scale-down model
offers flexibility of stress definition, automation, and a high turnover in experimental
throughput, to drive the digital revolution in bioprocess engineering, as discussed by
Neubauer et al. [30]. The few pioneering works published so far point in the future
direction where mathematical methods, in the form of digital twins, will help to
design more informative and smart (scale-down) experiments, to move away from
the traditional, commonly used static design of experiment (DoE) paradigm.

Model-Based Interpretation of Scale-Down Data

Scale-down bioreactors offer important insights into cellular behavior under hetero-
geneous fermentation conditions of larger-scale bioreactors. The data is usually
interpreted at the macroscopic level, by comparing metabolite, substrate, and growth
profiles to cultivations under homogeneous conditions. In a few studies, derivative
indices (e.g., specific uptake rates, yield coefficients) have been calculated from the
raw scale-down data to support the interpretation of the data, e.g. in [105]. A few
extensions of the data space in scale-down experiments involve molecular level
analysis. For instance, Simen and co-workers used transcriptomics data from an
STR-PFR scale-down bioreactor to monitor different gene expression levels under
short-term and long-term substrate fluctuations in E. coli culture [58]. In another
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study, quantitative metabolomics was used to monitor the consumption of amino
acids in scale-down cultivations of Bacillus megaterium expressing green fluores-
cent protein. The metabolomics results from the scale-down conditions were then
used to design a better feed composition for the process [106].

It is important to note that a strain’s response to heterogenous environments in a
scale-down bioreactor is the total sum of its molecular level responses. What if a
particular response characteristic, such as accumulation of non-conventional amino
acids or de-activation of acetate cycling (accumulation of acetate) in E. coli could be
traced to particular metabolic pathways and mechanisms? What if data from a scale-
down bioreactor could be used to trace specific metabolic fluxes of a clone as it is
exposed to various concentration gradients? Such information would be useful, not
only in strain engineering, but also in designing efficient processes at industrial
scale. Advanced modeling of scale-down data, i.e. fitting mechanistic and dynamic
metabolic models to data from scale-down cultivations can reveal specific pathways
that are active under given heterogeneous conditions. This is offcourse assuming that
the parameterization of the model includes such metabolic and physiological indices.
The flux terms to be fitted to the scale-down data should be an integral part of the
building of the cell model (Fig. 1). Again, Anane et al. [29] fitted data from parallel
scale-down cultivations of E. coli under multiple glucose gradient conditions to a
mechanistic model describing the process and the strain. The authors found that the
different responses of the strain to the gradients translated directly into different
values of the parameters of the model. Therefore, the model expanded on the primary
data of the scale-down experiment, and expanded the interpretation of the available
data for better process and strain design. In a similar study, Janakiraman and
co-workers used multi-variate data analysis techniques to interpret scale-down data
[107]. Their aim was to establish comparability between scale-down cultivations in
Ambr15® minibioreactors and cultivations in 15,000 L manufacturing scale, by
applying principal component analysis to the scale-down datasets. By employing
this model-based approach, they were able to clearly identify that the runs in both
scales were statistically similar to each other, a conclusion that would have been
difficult to draw by looking at the raw scale-down data.

For digital twins to be applicable in this sense, there are a few pre-requisites the
model of the bioprocess must fulfill: (1) the parameter estimates in the cell model
must be subjected to rigorous validity and uncertainty tests, as presented by Anane
et al. [18]. The reported parameter values should always be accompanied by
confidence intervals at valid significance levels, to be able to derive biological
meaning from the model results. (2) The model should be just as detailed as is
necessary for its application. As pointed out by Gábor and Banga [108], the
parsimony principle should always be applied in building the model: i.e., the number
of parameters should not be more than those required to describe the process in its
simplest form [108, 109], and (3) the model should be constantly updated to include
the most recent research findings in cell physiology and metabolism. The physio-
logical accuracy of the model should be ascertained by subject matter experts in the
field, which may not necessarily be the modeler (mathematician).
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4.2.2 High-Throughput Execution of Scale-Down Experiments
in Parallel Cultivation Systems

High-throughput experiments in parallel cultivation platforms have become com-
mon in bioprocess development laboratories. In the past decade, there has been an
exponential increase in the adoption of these systems for early bioprocess develop-
ment [45, 110, 111]. At the same time, due to Quality-by-Design (QbD) guidelines,
there has been an increasing demand to fully characterize bioprocesses at the
development phase, to forestall unforeseen consequences of the final process,
upon scale-up [112, 113]. This requirement demands that all conditions, including
actual large-scale process conditions are considered and tested in the early develop-
ment phases of the process. Therefore, the question of whether cultivations in
minibioreactors are adaptable to mimic concentration gradients and the heteroge-
neous environments that exist in large-scale bioreactors has become very important,
and should be addressed.

A few studies conducted in high-throughput cultivation systems that consider the
heterogeneous conditions of larger bioreactors are reported in the literature. As
described above, Janakiraman et al. [107] matched the volumetric aeration rates
(vvm) between parallel Ambr15® cultivations of CHO cells and a 15,000 L
production-scale bioreactor. They used this criterion to mimic the carbon dioxide
profile of the production bioreactor in the minibioreactor cultivations, which led to
similar productivity and product quality profiles in both the 15 ml bioreactors and the
15,000 L scale. In another study, Velez-Suberbie et al. [114] used the power per unit
volume (P/V) as a scale-down criterion to compare Ambr15 cultivations of E. coli
with 20 L bioreactor cultivations [114]. Perhaps the most comprehensive work in
this regard was reported by Anane et al. [29], who used model-calculated glucose
pulses to induce both dissolved oxygen and glucose gradient zones in 15 ml parallel
minibioreactors. A key aspect of their work was the use of robotic liquid handling
stations and mechanistic models in the operation of the scale-down set-up. These
smart equipment were interphased with the minibioreactors, such that model outputs
describing specific gradient conditions could be implemented in selected
minibioreactors by the robotic system. Their results in E. coli fermentation devel-
opment showed significant accumulation of non-conventional amino acids in the
recombinant protein product, as well as accumulation of acetate in the scale-down
cultivations, when compared to cultivations under homogeneous conditions.

The results of scale-down cultivations as performed in high-throughput
minibioreactor systems so far show that it is possible to mimic large-scale environ-
mental conditions in miniaturized bioreactors. Particularly, the physiological
responses of both E. coli and CHO cells to the induced heterogeneous conditions
in minibioreactors, as discussed above, is a proof of concept that gradient profiles
that are relevant in industrial-scale cultivations can be reproduced in milliliter scale
for scale-down studies. However, the adoption of enabling technological methods,
such as robotic liquid handling stations and mechanistic modeling is fundamental for
the successful operation of such minibioreactor facilities as scale-down platforms.
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The adoption of such parallel cultivation systems and their combination with robotic
liquid handling stations will ensure that a large number of gradient profiles, defined
in the scale-down model, can be tested in a single parallel run. Additionally, such
high-throughput systems can be used for strain screening under conditions that are
amenable to the larger scale, to select the most robust strain for further development
and scale-up.

5 General Conclusions and Perspectives

The lead times of biotechnological products, especially biopharmaceuticals, from
discovery to market, can be up to 15 years [30]. Although other issues such as
clinical trials may contribute to this time, bioprocess development and troubleshoot-
ing scale-up problems are key contributors to the lengthy lead times. The use of
parallel cultivation systems and robotics has, undoubtedly, reduced these process
development times significantly [45, 110]. Prior to screening, the development of
strains is nowadays performed in a high-throughput manner, e.g. with the use of
standardized genetic methods [115] and non-targeted high-throughput strain engi-
neering [116]. Thus, the bottleneck of a faster overall bioprocess development is
shifted from strain engineering to screening and cultivation development. The use of
parallelized minibioreactor systems for both screening and upstream process devel-
opment, as demonstrated in different studies [29, 107, 114], will greatly relieve this
bottleneck, and ensure that a potential bioprocess reaches production within the
earliest possible times. Additionally, the framework of screening under scale-down
conditions and the associated methods will not only facilitate rapid bioprocess
development, but also ensure a consistent and efficient cultivation process develop-
ment by taking into account all the possible cultivation conditions that would be
encountered upon process scale-up.

Digital twins have become an integral part of bioprocess development and
process control. Particularly, the high degree of parallelization and automation of
the development process, the integration of PAT and the requirements for a higher
robustness of the processes in connection with an improved process control could
only be realized through the comprehensive implementation of mathematical and
statistical methods. Thus, the current challenge lies especially in the fusion of the
individual tools into a uniform overall system.

The application of new possibilities that arose from the ongoing development of
sensor technology and the corresponding data processing allows a stronger consid-
eration of cell-to-cell variation and cellular features as scaling parameters. Such
technologies, including proper accompanying off-line measurements, allow one to
properly model stress responses and provide a basis for the integration of systems
biology knowledge to deepen the methodological understanding of cellular
responses in a large-scale environment. This can support the identification of suitable
scale-down systems with the cell status as scaling factor as it represents the central
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location for the product synthesis. It fosters the application of population balances
and their integration into model-based descriptions of scale-up effects.
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Abstract Rising demands for biopharmaceuticals and the need to reduce
manufacturing costs increase the pressure to develop productive and efficient
bioprocesses. Among others, a major hurdle during process development and opti-
mization studies is the huge experimental effort in conventional design of experi-
ments (DoE) methods. As being an explorative approach, DoE requires extensive
expert knowledge about the investigated factors and their boundary values and often
leads to multiple rounds of time-consuming and costly experiments. The combina-
tion of DoE with a virtual representation of the bioprocess, called digital twin, in
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model-assisted DoE (mDoE) can be used as an alternative to decrease the number of
experiments significantly. mDoE enables a knowledge-driven bioprocess develop-
ment including the definition of a mathematical process model in the early devel-
opment stages. In this chapter, digital twins and their role in mDoE are discussed.
First, statistical DoE methods are introduced as the basis of mDoE. Second, the
combination of a mathematical process model and DoE into mDoE is examined.
This includes mathematical model structures and a selection scheme for the choice of
DoE designs. Finally, the application of mDoE is discussed in a case study for the
medium optimization in an antibody-producing Chinese hamster ovary cell culture
process.
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Abbreviations

A Average
Amm Ammonium
ANOVA Analysis of variance
BBD Box-Behnken design
CCC Central composite circumscribed
CCD Central composite designs
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CCF Central composite face centered
CCI Central composite inscribed
CHO Chinese hamster ovary
D Determinant
DoE Design of experiments
E Eigenvalue
G Global
Glc Glucose
Gln Glutamine
GMP Good Manufacturing Practice
I Variance
Lac Lactate
LHSD Latin hypercube sampling design
mAb Antibody
max Maximum
MBDoE Model-based design of experiments
mDoE Model-assisted design of experiments
min Minimum
PAT Process analytical technology
QbD Quality by design
VPA Valproic acid

Nomenclature

α Distance to center point (-)
βi Unknown constants (-)
εi Random error (-)
γ Constant antibody production rate (mg cell�1 h�1)
μ Cell-specific growth rate (h�1)
μd,max Maximum death rate (h�1)
μd,min Minimum death rate (h�1)
μmax Maximum growth rate (h�1)
ci Concentration of component i (mmol L�1)
di Desirability function (�)
D Overall desirability function (�)
i Index (�)
k Factors (�)
kLys Cell lysis constant (h�1)
KS,i Monod kinetic constant for component i (mmol L�1)
Li Lower acceptable response (�)
n Steps (�)
qAmm Ammonium formation rate (mmol cell�1 h�1)
qGlc Glucose formation rate (mmol cell�1 h�1)
qGln Glutamine formation rate (mmol cell�1 h�1)
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qi,max Maximum uptake rate of component i (mmol cell�1 h�1)
qLac Lactate formation rate (mmol cell�1 h�1)
qLac,uptake Uptake rate of lactate (mmol cell�1 h�1)
qLac,uptake,max Maximum uptake rate of lactate (mmol cell�1 h�1)
qmAb Antibody formation rate (mmol cell�1 h�1)
R2 Coefficient of determination (�)
Ui Upper acceptable response (�)
xi Independent variables (�)
Xt Total cell density (cells mL�1)
Xv Viable cell density (cells mL�1)
Vi Viability (�)
YAmm/Gln Yield coefficient of ammonium formation to glutamine uptake (�)
yi Response (�)
YLac/Glc Yield coefficient of lactate formation to glucose uptake (�)

1 Introduction

The demand for highly effective pharmaceuticals has risen continuously over the
past decades [1, 2]. From 2015 to 2018, 129 different biopharmaceuticals have been
approved by the EU and the US government, representing the highest number of
approvals in a 4-year period since the first biopharmaceuticals were introduced in the
end of the twentieth century [3]. In 2018, a total of 374 approved biopharmaceuticals
were available, including 316 with different individual active ingredients and current
active registrations [4]. Trends for the future indicate a growing market share of up to
50% of the top 100 pharmaceuticals to be bio-based [5], predominantly monoclonal
antibody-derived medicinal substances, followed by hormones and blood-related
drugs [4]. Simultaneously, the development costs of biopharmaceuticals have
increased drastically (620% from 1980 to 2013) [6]. As a result, processes become
more complex and intensified, which is further increased by, e.g., changing from
simple batch to more complex fed-batch or perfusion processes. The number of
process variables to be monitored and their complexity have also increased. Finally,
the requirements for quality management and documentation (good manufacturing
practice –GMP) have also increased to guarantee quality [7]. For the design of novel
bioprocesses, the process analytical technology (PAT) initiative and quality by
design (QbD) philosophy require an improved understanding of the drug
manufacturing processes [8].

Statistical design of experiments (DoE) methods have become common practice
in process development within QbD [9]. However, induced by the explorative
approach of DoE, the selection of the experimental design as well as the definition
of the boundaries of factors is user-dependent. Furthermore, the definition of the
parameter space is particularly critical. This is usually done heuristically, suggesting
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that non-ideal experimental settings are not necessarily identified and the parameter
space has to be iteratively reduced step by step. Narrowing down the design space by
using statistical DoE requires a lot of time and experimental effort, especially in
cases where a high number of relevant factors are targeted. At the same time, the
experiments can be limited in their information content, constraining the outcome of
the optimization studies [8–10]. This generally results in a small increase in process
knowledge only.

To reduce the number of experiments and increase the process understanding
during the design and optimization of bioprocesses, a novel model-assisted design of
experiments (mDoE) concept was recently introduced [11–13]. It combines the
benefits of statistical DoE with a mathematical process model as a virtual represen-
tation of the bioprocess, called a digital twin. Although the term “digital twin” has
not yet been defined across different parts of the industry, in bioprocesses they are
intended to be a virtual counterpart of the bioprocess for the entire life cycle of the
biopharmaceutical production process. In the context of mDoE, digital twins consist
of a mathematical process model, which have gained increased importance in the last
decades. They can be applied to design [14–16], control [17–19], and optimize
[20, 21] biopharmaceutical production processes. The main intention of a mathe-
matical model is to find solutions by analyzing the model in order to propose targeted
experiments [22]. As they contribute to a scientific understanding of the process
variables and their impact on the final product, mathematical process models in the
field of biopharmaceutical production processes are now considered to be a sustain-
able part of QbD [7, 12, 23, 24].

2 Design of Experiments Methods

Even if traditional trial-and-error and one-factor-at-a-time methods are still used,
advanced statistical DoE methods are applied more frequently in the field of
biopharmaceutical process development [25–27]. They can be used for the statistical
and systematic planning of experiments for hypothesis testing and/or the optimiza-
tion of process variables (namely, “factors”) with regard to the desired outcome,
called “response” (e.g., product titer, product quality) [7, 28, 29]. In general, the
process development based on DoE methods leads to a certain reduction in the
number of experiments to be done in practice compared to one-factor-at-a-time
approaches. In the context of designing biopharmaceutical production processes,
they were used in the upstream as well as in the downstream part. As an example for
the design of a bioprocess, Zhang et al. (2013) implemented a screening design to
identify active parameters for the development of a serum-free medium for the
cultivation of a recombinant CHO cell line. Afterward, the process parameters
were optimized, and a fed-batch strategy was designed [30]. As an example for the
part of product purification, Horvath et al. (2010) used a screening design with eight
experiments to determine the effect of different process parameters on the isoelectric
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point of a therapeutic antibody expressed in CHO cell culture. The pH, temperature,
and the time of the temperature shift were significant. These factors were evaluated
in three levels in a concluding response surface design to optimize the isoelectric
point [31].

Statistical DoE methods are solely based on user-defined selections of the exper-
imental design and the definition of factor limits, including the definition of exper-
imental variables and their evaluated levels [8, 32, 33]. This can lead to error-prone
decisions, iterative re-adjustments of the experimental space with several rounds of
costly and time-intensive experiments, and even to a design that simply cannot be
implemented [7]. Expert knowledge is required to select suitable boundary values
for process development and optimization using DoE [7, 34–36]. Therefore, the
combination of digital twins with DoE in mDoE offers a novel tool for the
knowledge-driven development of bioprocesses.

2.1 Screening Designs

Screening designs are intended to identify the significantly influencing factors from a
list of many potential factors [33, 37]. Therefore, different experimental designs can
be used. The most commonly used designs, called full factorial, factorial fractional,
as well as Plackett-Burman designs, are discussed.

2.1.1 Full Factorial Designs

A full factorial design can be used to examine the main effects and interactions of
one or more factors on the respective response. The design consists of two or more
factor levels and k-factors, resulting in at least a 2k-design [38, 39]. Exemplary, the
full factorial design for three factors is given by a 23-design plan, shown in Fig. 1a.

2.1.2 Reduced Full Factorial Designs

In order to reduce time-consuming and costly experiments in the case of a large
number of factors, incomplete designs, like fractional factorial and Plackett-Burman
designs, can be chosen. The fractional factorial designs, representing a reduced form
of the two-level factorial design, are based on the assumption that higher-value
interactions are irrelevant. This results in a 2k-n-design, whereby the 2k-design is
reduced by n steps [38, 40, 41]. A reduced form of the previously mentioned 23-
design plan, a fractional factorial 23-1-design, is shown in Fig. 1b. Plackett-Burman
designs, a special form of the two-level fractional factorial designs, are suitable if the
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focus is on the investigation of the main effects and interactions can be disregarded
[40]. However, a mixing of the effects can occur [38, 41].

2.2 Optimization Designs

In order to maximize a response, the levels of the influencing factors are optimized in
so-called optimization designs. Therefore, the most known designs, like the central
composite, Box-Behnken, optimal, and space-filling designs, are briefly introduced
in the following.

FFactor A

Factor C

Factor B

---

--+

++-

+--

+-+

+++-++

-+-

23-factorial 23-1-fractional factorial

Central Composite Face CenteredCentral Composite Inscribed

Box-Behnken D-Optimal Latin-Hypercube-Sample

Central Composite Circumscribed

A B

C D E

F G H

Fig. 1 Geometrical representation for screening (a, b) and optimization designs (c–h) and optimi-
zation designs with three factors (Factor a, Factor b, and Factor c). Dots represent the recommended
experiments. The gray dots are the star points, and the black dots are the central points. All designs
are examined at two levels (+ and -)
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2.2.1 Central Composite Designs

Central composite designs (CCDs) are built from factorial 2k- or fractional factorial
2k-n-designs. Additionally, center and star points (marked gray) are augmented,
allowing the estimation of curvature. In general, three variations of CCD exist,
which differ in range settings of their factors. Figure 1 C–E illustrates the relation-
ships among these variants. Depending on the variant, the design is spherical,
orthogonal, rotatable, or face centered [28, 38, 42].

2.2.2 Box-Behnken Designs

Box-Behnken designs (BBDs; see Fig. 1f) are based on the combination of a
two-level factorial design with a balanced incomplete or partial block design
[43]. They are nearly rotatable and require an examination on three levels for each
factor, resulting in a field with distinct resolution of interactions and quadratic effects
[44]. However, for a large number of factors, this implies a poor estimation of the
two-factor interactions [43].

2.2.3 Optimal Designs

With optimal experimental designs, the experimental space can be restricted, and
user-specific settings can be made. There are a large number of optimization criteria
to distribute points in the experimental space. The most frequent representatives are
average (A)-, determinant (D)- (shown in Fig. 1g), eigenvalue (E)-, global (G)-, and
variance (I)-optimality. If the coefficients of the regression model are of interest, then
A-, D-, and E-optimal plans are used. G- and I-optimality, however, refer to the fitted
regression model [38].

2.2.4 Space-Filling Designs

Traditional experimental designs, such as the CCDs, BBDs, and the optimal exper-
imental designs, often create experiments close to the factor boundaries. This can
cause areas of free space, which are not examined and only minimize noise
[45]. However, to minimize bias, space-filling designs can be used. In this case,
possible experiments are randomly distributed in the individual spaces. An example
of such designs is the Latin Hypercube Sample Design (LHSD), which fills the room
evenly, allowing for a large number of factors and levels to be used (Fig. 1h). The
experimental space is filled in such a way that there is an even distribution in the
entire factor space or the maximum distance between the design points is minimized.
However, the corners of the factor space are left out obtaining this information would
only be possible by extrapolation [41, 46].
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2.3 Examples and Challenges of Conventional DoE

In this part, challenges of conventional DoE are discussed focusing on specific
studies. A number of possible applications of screening and optimization designs
are shown in Table 1.

Plackett-Burman designs are common designs for screening experiments. They
are used, e.g., to identify the effects of amino acids and other components in
conventional cell culture media formulations. Lee et al. [47] developed a serum-
free medium for the production of erythropoietin by suspension culture of recombi-
nant CHO cells, identifying six active determinants (glutamate, serine, methionine,
phosphatidycholine, hydrocortisone, and pluronic F68) for cell growth. 79% of the
erythropoietin titer achievable in the medium supplemented with 5% dialyzed fetal
bovine serum were reached in the serum-free medium. However, 80% confidence
levels were used to achieve useful statements, and some of the significant variables
are obscure (e.g., pluronic F68) [47]. Chun et al. [48] used a full factorial design to
identify effective growth factors in culture medium. Four growth factors were
investigated on 2 levels, resulting in the implementation of 16 experiments. Impor-
tant growth factors were identified. However, no center points were investigated;
thus no curvatures could be detected [48]. Rouiller et al. [49] investigated six CHO
cell lines in two different cultivation media to which six components were added in
three different levels to develop a process for the production of monoclonal

Table 1 Different designs for screening and optimization of CHO cultivation processes

Design Opportunities Challenges Reference

Plackett-
Burman

Development of a serum-free medium
for the production of erythropoietin by
suspension culture of recombinant
Chinese hamster ovary cells

Confidence levels of 80%
and obscure significant
factors

[47]

Factorial Identification of the demand for growth
factors in the initial medium design,
serum-free adaptation, stability analysis,
and scale-up

No investigation of center
points

[48]

Fractional
factorial

Investigation of the effect of medium
and feeding components on the main
quality characteristics of a monoclonal
antibody

Variation in statistical
variance and different
regression models

[49]

Optimal
(D-optimal)

Development of a cultivation feeding
protocol (feeding volume, starting point,
time of shift in temperature, and
osmolality)

High number of experi-
ments to be performed
experimentally

[34]

CCD Optimization of the concentration and
temporal addition of valproic acid
(VPA) in three different CHO cell lines

[50]

BBD Optimization of the amino acid combi-
nations to determine the most effective
concentration in the feed

[51]
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antibodies. A two-stage fractionated factorial design with six factors was
implemented, and various regression models were used to identify the active vari-
ables [49]. This resulted in 384 experiments to be performed, which was only
possible by using a deep well plate system. Nevertheless, there were variations in
statistical significance, and possible active variables have to be tested on a larger
scale [49].

The amount of experiments to be performed can be seen as the main challenge in
using optimization designs as well. The most commonly used optimization design is
CCD. Yang et al. (2014) used a CCD to optimize the concentration and timing of
valproic acid (VPA) addition to the cultivation of three different CHO cell lines
[50]. Even the investigation of two factors for one cell line results in eight experi-
ments. Torkashvand et al. (2015) optimized the concentrations of four amino acids
(aspartic acid, glutamic acid, arginine, and glycine) in the feed using a BBD. The
factors were investigated at 3 levels, resulting in 29 experiments to be implemented
[51]. Duvar et al. (2013) developed a feeding protocol for a fed-batch CHO culti-
vation. The choice of a D-optimal experimental design resulted in 18 experiments
with 4 factors (feeding volume, starting point, time of shift in temperature, and
osmolality) [34].

For the previously mentioned studies, the planned experiments in statistical DoE
result in identifying active parameters and optimization of the bioprocess. However,
there are still challenges, and the implementation of statistical DoE can lead to time-
consuming and costly rounds of experiments, especially if they are implemented in
fed-batch mode. Furthermore, the heuristic selection of, e.g., the parameter settings
or the design selection is seen critically. These rely on user-defined settings and
mostly require a lot of time and experimental effort. But, as the investigation of
various studies has shown, no adequate justification for the choice of an experimen-
tal design is provided. In addition, in conventional DoE only the experimental
endpoints are examined, and therefore only the integral of it is judged. The entire
time trajectory, with, e.g., metabolite formation or substrate uptake, is hardly
reflected.

3 Model-Assisted Design of Experiments

The combination of statistical DoE with mathematical process models is a novel
tool – enabling a knowledge-driven bioprocess development in the context of QbD.
Using this method, the abovementioned limitations of DoE methods can be avoided,
and the design as well as the optimization of bioprocesses can be improved.
However, in contrast to the chemical industry, bioprocess design on the basis of
mathematical models is not yet well established in biopharmaceutical manufacturing
processes with mammalian cells [52]. According to experiences of the authors from
discussions and projects, the use of model-based innovative methods for process
development has so far failed due to different reasons:
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• It is based on the lack of knowledge of the potential and limits of model-based/
model-assisted methods and “bad experiences” with them (e.g., due to unrealistic
expectations).

• There is a lack of method integration for a consistent development strategy, which
can be adapted to existing work processes, a suspected high (modeling) effort and
doubts about the transferability of methods and models to other processes.

• The qualification profile of the involved personnel does often not fit (required:
biotechnology, process technology, modeling, and statistics).

An additional challenge is the application of models on complex metabolic
pathways of mammalian cells regarding cell growth and product formation. In
addition, models targeting the metabolism of cell cultures demand more effort than
those applied in chemical or microbial processes. Even if mathematical models are a
promising tool for the development of stable processes that comply with the princi-
ples of QbD, examples have so far only been published in the field of product
purification and polishing [8]. Nevertheless, Möller et al. (2018) and Abt et al.
(2018) showed that model-assisted and model-based DoE methods have great
potential for the development of process strategies and makes the process develop-
ment more knowledge-based [7].

General differences between model-based and model-assisted DoE methods are
due to the aim of the recommended experiments. Model-based DoE (MBDoE) [53–
55] is used to supply valid experimental data for a precise model structure and model
parameter identification, where the conventional statistical DoE could fail
[56]. Uncertainties are key information in MBDoE, as model and data imperfections
cause undesirable variations in model parameters and simulation results. This
variation drives the MBDoE methodology, where it manifests itself as optimal
experimental settings (e.g., measurement principle, sampling rate, inputs/stimuli)
and informative data [55, 57]. However, uncertainties cause a discrepancy between
computed and experimental outputs leading to suboptimal or even meaningless
experimental designs for model parameter adaptation. To overcome these problems,
a sequential approach, as shown in [7], has proven to be very effective by increasing
the robustness of the MBDoE against parametric uncertainties [58–60].

In model-assisted DoE, a process-related target (i.e., product titer) is optimized,
and the model supports in the evaluation and recommendation of DoE designs. A
structure for a model-assisted DoE concept is shown in Fig. 2. At first, a mathemat-
ical process model is used to describe, e.g., the growth, the substrate, and metabolite
concentrations as well as the productivity of a specific cell line. Therefore, the model
is adapted to first cultivation data (Fig. 2, Box 1), e.g., based on literature and/or
existing knowledge. The evaluated data should be used to cover typical known
effects, e.g., inhibitions or limitations. Certainly, the number of experiments that can
be performed at this stage, preferably in small scale, such as shaking flasks or deep
well plates [11–13], is usually limited. However, only a few experiments are
required to generate the mathematical model, as shown in the case study (see Sect.
4). Accordingly, the number of experiments in mDoE is still less than the number of
experiments to be performed in statistical DoE. Based on these data, model
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parameters are adapted (Fig. 2, Box 2). Afterward, a statistical DoE design (see Sect.
2) is chosen (Fig. 2, Box 3). A scheme to select a design is explained in Sect. 3.2. The
model is then used to simulate the responses for each previously planned experiment
(Fig. 2, Box 4). Subsequently, the initial DoE is evaluated with respect to the defined
factor boundaries as well as the experimental design (see Fig. 2, Box 5). This enables
the testing of different designs, boundary conditions, optimization criteria, and factor
as well as response combinations in silico before experiments are experimentally
performed. This can be used to evaluate the mDoE method as well as boundary
conditions and significantly reduce the number of experiments. Additionally, differ-
ent designs can be chosen and computationally evaluated using the model
simulations.

25

2. Adaptation of model parameters
Definition of initial parameter values

Adaptation of model parameters

Calculation of goodness of fit

1. Mathematical process modeling

•Prior knowledge about strain/cell line

•Kinetic linkage of metabolic pathways

• Incorporate into targeted process model

3. Experimental design

•Definition of design (see scheme)

•Test of boundary values for factors

•Consideration of constraint

Simulation of planned experiments
4. Simulation of experiments

Calculation of responses

Recommendation of 
experiments

Experimental data, e.g., 
medium screening, test 

experiments

?

Determination of response surface plots

5. Evaluation of planned design

Data analysis as in statistical DoE

Adjustment of factor boundary levels and
recommendation of few experiments

Definiton of optimization criteria

Fig. 2 Structure of the model-assisted design of experiments concept [11, 61]
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3.1 Digital Twins in Model-Assisted Design of Experiments

As already discussed, the term “digital twin” is still not sufficiently defined and has
different meanings in different parts of industry. Historically, it is a computational
model of a machine tool or a mechanical manufacturing site, and it is used to handle
the increased complexity [8]. In the bioprocess industry, digital twins progressively
include multiple parts of the manufacturing steps and their interaction [9]. They are
intended to be a universal tool for the entire life cycle of a bioprocess, whereby the
digital twins are virtual counterparts to the processes. They enable predictive
manufacturing, meaning that bioprocesses can be analyzed, optimized, forecasted,
and controlled [62]. The complexity of digital twins highly depends on the desired
focus of application, and they can be based on a variety of complex structures as
data-driven models, artificial neural network, or mathematical process models
[22, 24].

With respect to the application of mDoE, the mathematical modeling in the initial
phase of process development is, in the author’s opinion, the starting point for
knowledge integration into a digital twin for the entire life cycle of the bioprocess.
The mathematical process model in the digital twin incorporates the process under-
standing, for which the degree of model complexity can be increased stepwise
throughout the performed studies, as represented in Fig. 3. In this context, the
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Fig. 3 Usage of the mDoE in bioprocess design and optimization as well as the development of a
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model structure should be kept as simple as possible in the initial process design
phase and should then be extended if more data becomes available or novel
biological effects are identified.

In the application of digital twins within mDoE (see Fig. 3) during process design
and optimization with only a low number of available data, they structurally include
rather simple mathematical process models. These are based on the formulation of
mathematical links (i.e., equations) between cell growth, metabolism, and
corresponding product formation [63]. If partial mechanistics are unknown, they
can be modeled to gain a systematic understanding, although they might not be
measurable (e.g., in systems biology) [17, 41]. Such a mathematical process model
mainly works as an initial starting point to obtain a deeper process understanding
during the bioprocess life cycle.

3.1.1 Mathematical Model Structures

Mathematical modeling has already been the subject of controversial discussions in
recent years, and several models of varying complexity have been described in
literature [64–66]. In the early phases of bioprocess development, the mathematical
models used in mDoE mainly consist of simple model structures and should then be
extended stepwise. The model parameters considered should be determinable by
simple experiments since these include known mechanistics (e.g., ammonia forma-
tion based on glutamine uptake). It is favorable if models used for process optimi-
zation are applicable to a broad range of bioreactor scales [12, 64, 67]. Although the
application of mathematical process models for the development of sophisticated
processes has many advantages, it is still not commonly applied in bioprocess
development. Reasons for this include the variety and complexity of mathematical
models, e.g., different mechanistics and quality of predictions (recently reviewed in
[64]). Due to the complexity of biological processes, simple models might be
unsuitable for representing real phenomena. However, it has been suggested that
the growth of a cell line follows the same kinetics regardless of the cultivation
method, such as batch and fed-batch processes [65]. Nevertheless, even with com-
plex models, the behavior of cells may change, and predictions can differ from
observed behavior. Reasons are the inadequate precision of the approximated model
coefficients and the complexity during the determination of the model parameters.
Therefore, a compromise between the accuracy of the model and the required
experimental effort for the determination of the parameters needs to be agreed on
for each application [68].

Bioprocess-related mathematical models are either classified according to the
description of the biophase, which is seen as an engineering-type approach or
based on the implemented model structure (e.g., neural networks, fuzzy logic).
This chapter focuses on biophase-classified models, which are historically sorted
according to their structural complexity, as shown in Fig. 4. Even if this classifica-
tion was made in the 1990s, it is still valid for the class of models here discussed.
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Unstructured and unsegregated models describe the biophase as one component
and use kinetic equations to describe their interaction and response to the environ-
ment, e.g., the effect of glucose concentration on bulk cell growth. They are widely
applied for industrial applications and are state of the art [69]. It is advantageous that
the model parameter estimation is based on only a few measured concentrations
[70]. Moreover, a method for their knowledge-driven development was recently
reported by Kroll et al. (2017) [23]. With the development of novel analytical
methods, structured and unsegregated models were developed. The cellular prop-
erties are reflected by average cells with the same physiological, morphological, and
genetic identity [71–73]. They aim to describe intracellular metabolic pools in
otherwise average cells. Most examples try to examine the intrinsic complexity of
cell metabolism. Lei et al. (2001) described the growth of Saccharomyces cerevisiae
based on glucose and ethanol using two modeled pools, which describes the
catabolism and anabolism, respectively [74]. Moreover, a six-compartment model
for microbial and mammalian cell culture was recently introduced to reduce the
modeling effort as a basis for digital twins [75]. Flux balance analysis, mostly used
in systems biology, is additionally associated with the structured model class
[76, 77].

In unstructured and segregated models, different separated cell populations are
modeled with the description of the metabolism by bulk kinetic equations [78]. The
scope of application is broader, leading to the determination of cell culture quality
and gaining an understanding of the cell cultivation process. Exemplary, cell-cycle-
dependent population balance models were introduced [22, 24, 78, 79]. Therefore,
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different cell-cycle-dependent growth rates, metabolic activity, and DNA replication
rates are modeled, and metabolic regulations were studied, but the degree of
complexity and computational power increases significantly from a few seconds to
multiple hours. Hence, they require a comprehensive knowledge of the mechanisms
and more data to estimate the model parameters. Segregated and structured models
describe the nature of cell cultures with individual single-cell metabolism and their
interaction with the medium. Sanderson et al. (1999) introduced a single-cell model
that describes the interaction of 50 components in the medium, cytoplasm, and
mitochondria for an antibody-producing CHO cell line [80]. Other examples could
be found for baculovirus-infected insect cell cultures [81] and the amino acid
metabolism of HEK293 and CHO cells [82]. However, the computational power
and amount of data required to estimate the model parameters are still considerable,
which can limit their industrial application.

3.2 Recommendations on the Selection of Designs for mDoE

The choice of an experimental design significantly influences the implementation of
DoE and mDoE. Usually, the selection of a design depends on basic settings
(number of factors, number of factor steps, the regression model, and the number
of test runs) and design-specific properties (block formation, orthogonality, and
rotatability). However, as the investigation of various studies has shown, in most
references less information for the choice of an experimental design is provided.
DoEs are mostly selected based on heuristics within a given scientific field, and there
is no guided decision-making workflow yet. Based on the author’s understanding, a
scheme (Fig. 5) is presented in the following to assist in the selection of appropriate
DoE designs in the field of bioprocess engineering. This scheme was developed
based on literature and is seen to assist in the selection of DoE designs within mDoE
[8, 11, 12].

Due to their favorable properties, CCDs and BBDs are most frequently used for
optimization [39]. If settings are adjusted individually, optimal designs should be
used. As a result of the low computational effort, the D-optimal design has become
generally accepted among the optimal designs [38]. Therefore, commercial software
tools for creating optimal designs are often limited to the D-optimal design
[83]. However, the I-optimal designs are sometimes recommended [39, 83]. If a
large area of the factor space is to be covered, it is recommended, e.g., to combine the
LHSD with an optimal design. This results in a better distribution of points across the
factor space and reduces both bias as well as noise [45].

In the first decision-making level, the number of investigated factors k is used.
Except for BBDs, which require at least three factors, the number of factors can be
selected as desired [38, 41, 84]. Typically, three to six factors are used for processes
optimization [38]. In the case of a high number of factors and the use of insignificant
factors, the LHSD is recommended. This is enabled by the random distribution of
experiments. Hence, if one or more factors appear not to be important, every point in

44 K. B. Kuchemüller et al.



the design still provides some information regarding the influence of the other factors
on the response [41]. However, in bioprocesses the number of factors is significantly
larger than the observations. Therefore, domain knowledge as used in mDoE is
needed, captured on models as additional constraints to the system.

On the next level, the desired regression model is defined. Generally, the use of a
quadratic regression model is recommended, since higher-order regression models
lead to an increasing number of unknown coefficients and can lead to an overfit
[38, 41]. For CCDs und BBDs, a quadratic regression model is used by default,
whereas for optimal designs, the regression models can be user-defined. If the
regression model cannot be defined, the LHSD can be used [39].

quadra�c
user-

specific

53

user-
specific

user-
specific

2 k 6 
high

high
k = 3 - 4 k 6

unknown

La�n Hypercube Sampling Design

•Almost orthogonal and weak correla�on

•Room filling without overfi�ng

•No repe��on of experiments

Box-Behnken Design

•Quadra�c effects are

not orthogonal

•Almost rotatable

•Wide confidence interval

Central Composite Design

•Orthogonal and rotatable

•Quadra�c effects correlate

•Lack of Fit-Detec�on

Op�mal Designs

•Not orthogonal 

•Design space irregular

•Expert-knowledge necessary

Factors k

Regression 
model

Runs

Factor levels

Design for 
mDoE

Fig. 5 Scheme for selection of designs in mDoE

Digital Twins and Their Role in Model-Assisted Design of Experiments 45



The number of runs is taken into account at the penultimate level. BBD is most
efficient with three or four factors. Compared to other designs, they require the least
number of runs [44]. However, even with optimal designs, the number of experi-
ments can be user-defined and thus minimized. Only a model-dependent minimum
number must be included. For a quadratic regression model with four factors, e.g.,
the minimum number is 15, one term for the intercept, four linear terms, four purely
quadratic terms, and six cross-product terms must be taken into account. In the BBD
or CCD, the number of runs varies between 25 and 30, depending on the number of
center points [85]. LHSDs, on the other hand, require a large number of experiments
to fill the space and are therefore mainly used for computer simulations [86–88].

Finally, the choice of factor levels is decisive. In order to evaluate designs
optimally, they require at least three levels per factor [43]. In the BBD, the factors
are examined at three levels. However, no factor-level combinations are investigated
at the corner points, and thus, only a low prediction quality for extrema is available
[89]. LHSDs are also not suitable for the investigation of extrema [41]. The CCDs
contain five levels per factor [28]. In the optimal designs, the factor levels can also be
set user-specifically and combined as desired. However, it can happen that very few
test points are generated in the middle of the test area, which means that no
statements can be made concerning this area [38].

The selected design can then be implemented experimentally or in the mDoE (see
Sect. 4.3). It should be noted that the application of the selection scheme (Fig. 5) is
not limited to mDoE solely and it can be generally applied for the selection of DoE
designs.

4 Case Study: mDoE for Medium Optimization

As previously mentioned in Sect. 3.1, digital twins are used within the mDoE
concept to simulate and evaluate statistical DoE designs in silico. The application
of mDoE with a strong reduction in the number of experiments has been shown so
far for medium optimization, fed-batch design, and scale-up studies for antibody-
producing CHO cells, algae, and yeasts [11, 12, 61, 90]. During these studies, the
process understanding is stepwise increased and captured in the digital twin (i.e.,
mathematical process model). In the following, the application of mDoE is exem-
plarily discussed for the reduction of the factor boundary values for the optimization
of the glucose and glutamine concentrations in an antibody-producing cell culture
process. The specific workflow applied in this study is shown in Fig. 6.

In this case study, the dynamics of the bioprocess are modeled first, and the model
parameters are based on a few experimental data points. Then, the boundary values
of experimental designs are defined, and experimental settings are planned. Each
planned experiment is simulated, the responses (e.g., maximal product titer) are
calculated, and the response surfaces are determined. Based on these response
surfaces, the initially defined factor boundary values and the planned experiments
are evaluated, and only a few experiments are recommended to be performed. This
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results in a significant reduction in the number of experiments to be performed. This
example shown in the following is based on our previous publication, and more
details can also be found in Möller et al. (2019) [11]. This medium optimization is
only a small part of a process development workflow, which could be implemented
from medium optimization over fed-batch design to scale-up using mDoE [12]. This
resulted in the evolution of the digital twin, as briefly explained in Sect. 4.6.

4.1 Mathematical Process Model

In this case study, an unstructured, non-segregated saturation-type model was used
as virtual representation of the bioprocess. The mathematical model from literature
[19] was adapted and modified to describe the dynamics of cell growth and metab-
olism of antibody-producing CHO DP-12 cells in batch mode (see Table 2). This
model was chosen due to its simple model structure and the opportunity to estimate
all the model parameters from just a few shaking flask cultivations.

4.1.1 Batch Process Model as Digital Twin

According to the mDoE workflow (Fig. 2, Box 1), the mathematical process model is
used to simulate the growth of the CHO DP-12 cells. It is based on the linkage of the
main substrates glucose (cGlc) and glutamine (cGln) as well as the main metabolites
lactate (cLac) and ammonium (cAmm) to describe the behavior of the cells (Xt, total
cell density, and Xv, viable cell density). Cell growth is modeled with kinetic
parameters KS,i (i ¼ Glc, Gln), a maximal growth rate (μmax), a cell lysis constant
(KLys) of dead cells, and a minimal (μd, min) and a maximal death rate (μd, max). Since
no inhibition of cell growth could be detected in batch mode, inhibitory components
were not considered in the model. Therefore, the calculation of the specific growth
rate μ (Eq. 9, in Table 2) and specific death rate μd (Eq. 10, in Table 2) is based on a
Monod-like structure of the substrates glucose and glutamine, with only the substrate
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Fig. 6 Workflow of the upcoming chapters of the medium optimization in the case study
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with the lowest concentration being relevant for growth. The cell-specific uptake
rates of glucose and glutamine depend, in contrast to the growth, only on the current
glucose and glutamine concentration (Eqs. 4, 5, 11, 12, in Table 2). However, the
uptake rate of glucose is reduced at low concentrations. The concentrations of lactate
and ammonium are proportional to the uptake rates of glucose (lactate) or glutamine
(ammonium) (Eqs. 6, 7, 13, 15, in Table 2) and are linked with the yield coefficients
(YAmm/Gln and YLac/Glc). In case of glucose concentrations below 0.5 mmol L�1, a
shift of lactate production to lactate uptake was considered (Eq. 14, in Table 2). The
antibody production (Eqs. 8, 16, in Table 2), according to Frahm et al. [19],
describes the production proportional to the viable cell density. However, glucose
concentrations below 1 mmol L�1 stop the antibody production (Eq. 17, in Table 2).

4.1.2 Adaption of Model Parameters

The initial experiments for modeling were based on the previous publications of
Beckmann et al. [91] and Wippermann et al. [92] with the same medium and cell
line. Biological experiments were performed in quadruplicates, the data were aver-
aged, and the model was adapted as well as model parameters estimated (Fig. 2, Box
2). This initial adaption and the further use of the mathematical model in mDoE can
be seen as the starting point into a digital twin. Therefore, the model parameters were
adapted. To compare and evaluate the quality of adaption, the modeled simulations
and cultivation data were plotted and the coefficient of determination calculated. If
the values tend to 1, the behavior of the cells could be represented with high
accuracy. However, the area, which should be optimally displayed, should be

Table 2 Mathematical process model in batch mode, modified from [19]

Balance equations Kinetic links

Biomass
dX v

dt ¼ μ� μdð Þ ∙ X v (1) μ ¼ μmax ∙
cGlc

cGlcþKS,Glc
∙ cGln

cGlnþKS,Gln
(9)

μd ¼ μd,min þ μd,max ∙
KS,Glc

KS,GlcþcGlc
∙ KS,Gln

KS,GlnþcGln
(10)dX t

dt ¼ μ ∙ X v � K Lys ∙ X t � X vð Þ (2)
dVi
dt ¼

dXv
dt ∙ X t�XV ∙ dXvdt

X t
2 (3)

Substrates and metabolites
dcGlc

dt ¼ �qGlc ∙ X v (4) qGlc ¼ qGlc,max ∙
cGlc

cGlcþkGlc
∙ μ

μþμmax
þ 0:5

� �
(11)

dcGln

dt ¼ �qGln ∙ X v (5) qGln ¼ qGln,max ∙
cGln

cGlnþkGln
(12)

dcLac
dt ¼ qLac ∙ X v (6) qLac ¼ Y Lac,Glc ∙ cGlc

cLac
∙ qGlc � qLac,uptake (13)

cGlc < 0:5 mmolL�1 : qLac,uptake ¼ qLac,uptake,max (14)
dcAmm

dt ¼ qAmm ∙ X v (7) qAmm ¼ Y Amm,Gln ∙ qGln (15)

Antibody
dcmAb

dt ¼ qmAb ∙ X v (8) qmAb ¼ γ (16)
cGlc < 1 mmol L�1 : dcmAb

dt ¼ 0 (17)
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focused on. The goal could be a high cell density; therefore the representation of the
stationary phase and the death phase is not important. This must be taken into
account during the evaluation. Alternative measures are detailed explained in liter-
ature, e.g., [93, 94].

The simulation with the adapted model parameters is exemplary shown for cell
growth and antibody production in Fig. 7. The exponential cell growth, the transition
to the stationary phase, and the death phase could be simulated with an accuracy of
R2 ¼ 0.96 (Fig. 7a). The antibody concentration increases until Xv decreases after
approx. t¼ 144 h and was estimated with a high accuracy of R2 ¼ 0.98 (Fig. 7b). By
this, the previous knowledge is captured into the model structures, and the model
parameters reflect the cell behavior, which could further be used in mDoE.

4.2 Selection of Experimental Design

The determination of a suitable design is essential for the most appropriate evalua-
tion of the mDoE and thus the optimization of the respective process, as can be seen
in Fig. 2, Box 3. Therefore, a design for the mDoE was chosen considering the
scheme in Fig. 5. In the first decision-making level of the scheme, the number of
investigated factors k, which are two in this case study, was examined. Since BBD
requires the use of at least three factors and LHSD is recommended for a high
number of factors, only the CCD and optimal experimental designs remain. Then,
the regression model was considered. For both, CCD and optimal designs, the
recommended quadratic regression model can be used, although this is not adjust-
able for CCD. Therefore, no further restriction has yet been possible on the basis of
this level. Finally, the third level can be used to select the design. At this level the
number of runs is taken into account. Since the number of runs should be set
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individually, the CCD was discarded, and an optimal experimental design was
chosen.

Experiments were designed with suitable DoE software (in this study, Design-
Expert 9, Statcon, USA), and each experimental factor combination of the experi-
mental design was simulated (MATLAB). In the simulated design (20 experiments,
D-optimal design), the initial glucose concentration was varied between 20 and
60 mmol L�1. This corresponds to a 50% increase/decrease of the glucose concen-
trations related to the standard medium formulation as reported in Beckmann et al.
[91] and Wippmann et al. [92]. These studies did not focus on the optimization of the
batch-medium composition as aimed in this study. Glutamine concentrations typi-
cally applied in batch media range from 2 mmol L�1 up to 8 mmol L�1. The factor
range of the initial glutamine concentration was, therefore, widely defined between
2 and 12 mmol L�1.

4.3 Simulation of Experiments

Each planned factor combination (Fig. 8a-d) and the corresponding responses
(Fig. 8b, c, e, and f) were simulated using the mathematical model (as described in
Fig. 2, Box 4). As can be seen in Fig. 8, the concentration range of the substrates
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(Fig. 8a, d) causes a maximum cell number between 8 � 106 cells mL�1 and
15 � 106 cells mL�1 (Fig. 8b). The maximum antibody concentration lies in a
range between 75 mg L�1 and 380 mg L�1 (Fig. 8e). The simulated concentrations
for lactate and ammonium range between 12 mmol L�1 to 35 mmol L�1 and
2 mmol L�1 to 11 mmol L�1 (Fig. 8c, f). By simulation, the time course is also
determined, which is not the practice in typical experimental DoEs.

4.4 Evaluation of Planned Design

Out of the simulations, the maximal simulated values of Xv, cLac, cmAb, cAmm were
exported as responses to generate response surface plots (Design-Expert 9). The
simulated responses were treated in the same way as data from experiments. For this
purpose, no data transformation was applied, and after analysis of variance
(ANOVA, all hierarchical design mode, quadratic process order), an internal RSM
was set up with a maximal significance value of 0.05. As can be seen in Fig. 9,
different shapes of the response surface plots were determined, and their individual
optimum is different, e.g., Xv is maximal for high initial glucose and glutamine,
while cmAb is high, regardless of the glutamine concentration. Such interaction could
hardly be predicted before and was only possible through the simulations. After
defining the RSM for each response, user-defined constraints for medium optimiza-
tion were chosen (displayed in Fig. 9). The constraints were chosen to maximize Xv

above a minimal Xv of 10
7 cells mL�1. Furthermore, cmAb should be maximized. The

constraints for the metabolic waste products were defined based on the literature data
with respect to cell growth and product quality. High lactate concentrations were
shown to correlate with a reduced integral of viable cell density and a reduced
product titer at day 14 in pH-controlled shaking flask cultivation with added sodium
lactate [95]. Lactate concentration below 20 mmol L�1 is considered to not harm cell
growth and productivity, whereby lactate concentration higher than 40 mmol L�1

was shown to harm CHO cell growth [96]. Therefore, a maximal cLac of 30 mmol L�1

was defined as the upper constraint, and the lactate concentration was minimized
below this value to avoid potential lactate inhibition. The ammonium concentration
was defined to be minimized. This was motivated based on the following under-
standing of its impact on product quality, even if it was not measured. Andersen et al.
(1995) identified that the sialylation of a granulocyte colony-stimulating factor was
significantly reduced by ammonium concentrations over 2 mmol L�1 [97]. Ha et al.
(2015) investigated the mRNA expression levels of 52 N-glycosylation-related
genes in recombinant CHO cells producing an Fc-fusion protein and observed a
decrease of the protein production and the viable cell density after an addition of
10 mmol L�1 ammonium chloride. Simultaneously, the sialic acid content and the
acidic isoforms were reduced after 5 days of cultivation [98].
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Subsequently, an objective (i.e., desirability) function di was calculated for each
response yi individually, based on the user-defined constraints as lower acceptable
response Li and the upper acceptable response Ui.

di yið Þ ¼
0 if yi < Li

yi � Lið Þ
Ui � Lið Þ if Li < yi < Ui

1 if yi > Ui

2
664

3
775 ð18Þ

di(yi) is 0 if the optimization criteria is not fulfilled, and di(yi) tend toward 1 if the
optimization is highly desirable. The multidimensional optimization problem is
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reduced with the multiplication of the different desirability function values di(yi) to
one overall desirability D:

D ¼
Yn
i¼1

di yið Þ ð19Þ

The overall desirability function was calculated for the constraints mentioned and
is shown in Fig. 10.

Glutamine concentrations higher than approximately 10.5 mmol L�1 and glucose
concentrations above 52 mmol L�1 result in a optimization criteria D ¼ 0. The
optimization criteria were also not reached below 4 mmol L�1 glutamine and
21 mmol L�1 glucose. The performance of these experiments would be time- and
cost-intensive, without providing sufficient knowledge. In this way, multiple con-
straints were considered and only a small area (5 of the 20 evaluated factor
combinations) results as suggested experimental space with D> 0. Only this 5 factor
combinations of the 20 evaluated would increase the process understanding.

4.5 Comparison to Experimentally Performed Design

The usage of mDoE allows the a priori evaluation and reduction of the boundary
values if mechanistic links could be formulated beforehand. The reduced experi-
mental space was selected within the estimated desirability function (Fig. 10). Based
on the evaluation of Fig. 10, the boundary values for the initial glucose concentration
were defined between 52.5 mmol L�1 � cGlc � 32.5 mmol L�1. The initial
glutamine concentration has to be between 10 mmol L�1 � cGln � 6 mmol L�1.
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After the evaluation of the boundary values of the initially planned design, a new
D-optimal design was planned (see Fig. 5) within the reduced design. Therefore,
16 experiments in a D-optimal design based on the reduced boundaries were planned
and experimentally performed as well as simulated. The experimentally performed
design was realized in 16 parallel shaking flask cultivations (approximately ten
samples per cultivation). For the evaluation of the DoE in mDoE, the responses
were only simulated. Both designs (experimental performed and simulated) were
statistically evaluated, and the response surfaces were estimated. Both desirability
functions were calculated due to the maximization of the antibody concentration and
the minimization of the ammonium concentration and are shown in Fig. 11.

The evaluation is performed by the executing person, e.g., rely on their individual
experience or user-defined constraints (device settings, etc.). Optimal starting con-
centrations in the upper right corner (high glucose as well as low glutamine con-
centrations) were recommended with D ¼ 0.87 for the simulated design (Fig. 11a)
and nearly the same for the experimentally performed design (D ¼ 0.70). These
small differences are typical when comparing the simulated results with uncertainty-
based experimental results. No further experiments needs to be performed outside of
this area, since the outer experimental space was evaluated beforehand using the
digital twin (Sect. 4.4). Compared with the full experimental performed design,
mDoE results in a reduction of 75% in the number of experiments (4 experiments for
modeling vs. 16 experiments in experimental DoE).

The combination of model-assisted simulations with statistical tools can be used
to decrease the experimental effort during medium optimization studies. Further-
more, the modeling study itself leads to an increase of the process understanding,
which is part of QbD. No heuristic restrictions with several iterative rounds were
necessary, because the mathematical process model incorporates the known factors
and interactions and their dynamics in DoE. Furthermore, DoEs are typically based
only on endpoints, and different responses and endpoints can be tested using the
kinetic model.
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4.6 Further Development of the Digital Twin in Process
Development Workflow

The evolution of the mathematical process model as digital twin is part of mDoE,
as briefly focused in the following. As shown in Fig. 12, an unstructured, unsegre-
gated model was initially adapted and modified to describe the dynamics of cell
growth and metabolism of antibody-producing CHO DP-12 cells for the purpose of
medium optimization in batch mode (Sect. 4.1). The model incorporated known
mechanistic links for CHO cells, and the initial data for modeling was based on just
four experiments, and optimal conditions for the medium composition were
identified [11].

The complexity of the digital twin could be further increased during the process
development workflow. The mathematical model was expanded by metabolic inhi-
bition terms to optimize cell growth and productivity in fed-batch mode [11]. There-
fore, the digital twin was used to optimize the concentration of glucose as well as
glutamine in the feed, the feeding rate, and the start of feeding. After optimizing the
medium composition and fed-batch strategy, the digital twin was used in model-
assisted scale-up to evaluate the bioprocess dynamics during process transfer and
scale-up computationally [12]. Therefore, the mathematical model was extended by
model parameter probability distributions, which were determined at different bio-
reactor scales due to measurement uncertainty. Finally, the quantified parameter
distributions were statistically compared to evaluate if the process dynamics have
been changed and the former optimized fed-batch strategy was successfully scaled
up to 50 L pilot scale. The application in these different processes has deepened the
knowledge and thus steadily increased the complexity of the digital twin [11, 12].
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Fig. 12 Process development workflow in context to the digital twin
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5 Conclusion and Outlook

In this chapter, the mDoE concept for the combination of mathematical process
models with DoE was described. The most commonly used designs were examined,
and one representative study was described in detail. The role of a digital twin was
discussed and applied to a medium optimization case study using mDoE. A math-
ematical process model as a starting point for digital twin was adapted to four
experiments, and widely distributed boundary values for a DoE were evaluated
using model predictions instead of laboratory experiments. The reduced experimen-
tal spaces were experimentally performed (DoE) and compared to the simulated DoE
(mDoE). The same optimal conditions were found, and the further development in
different steps of a process development workflow was described. Finally, the
development of a digital twin and its use in mDoE can be seen as a useful tool in
decision-making for process development and optimization with DoE in QbD.

Statistical DoE can still be used for initial screening studies and can also lead to
process optimization in several rounds. Compared to conventional DoE, mDoE
supplies a more knowledge-based development of bioprocesses. Due to the mathe-
matical model in mDoE, challenges in DoE can be avoided. The mathematical model
can be used for simulating the entire time trajectory with, e.g., metabolite formation
uptake. Hence, not only endpoints of experiments are examined. Thus the knowl-
edge about the process can be increased. Furthermore, domain knowledge is
required and can be captured as additional constraints to the system, leading to a
focused screening or optimization of bioprocesses using the mathematical model as a
digital twin in mDoE.

Currently, the mDoE approach is tested for algae, yeasts, and cell culture. Further
applications of digital twins and mDoE can be seen in the field of cell therapeutics,
e.g., in the treatment of previously untreatable diseases as tumor diseases, brain
insult, and chronic infections. Since, the production of cells is still mainly performed
in static culture systems (e.g., T-flasks), it is difficult to provide a sufficient quantity
of patient-specific cells. A digital twin in combination with mDoE could be used to
build up an understanding of the process and, e.g., scale-up to enable fast and
efficient proliferation of stem and immune cells.
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Abstract New innovative Digital Twins can represent complex bioprocesses,
including the biological, physico-chemical, and chemical reaction kinetics, as well
as the mechanical and physical characteristics of the reactors and the involved
peripherals. Digital Twins are an ideal tool for the rapid and cost-effective develop-
ment, realisation and optimisation of control and automation strategies. They may be
utilised for the development and implementation of conventional controllers
(e.g. temperature, dissolved oxygen, etc.), as well as for advanced control strategies
(e.g. control of substrate or metabolite concentrations, multivariable controls), and
the development of complete bioprocess control. This chapter describes the require-
ments Digital Twins must fulfil to be used for bioprocess control strategy develop-
ment, and implementation and gives an overview of research projects where Digital
Twins or “early-stage” Digital Twins were used in this context. Furthermore,
applications of Digital Twins for the academic education of future control and
bioprocess engineers as well as for the training of future bioreactor operators will
be described. Finally, a case study is presented, in which an “early-stage” Digital
Twin was applied for the development of control strategies of the fed-batch cultiva-
tion of Saccharomyces cerevisiae.

Graphical Abstract Development, realisation and optimisation of control strate-
gies utilising Digital Twins

Digital Twin

Bioprocess

Evalua�on of control result

Transfer to bioprocess

Op�mised Control 
Strategy

Control Strategies

Control target is achieved

Improvement of control 
strategy

Transfer of preselected control 
strategy to Digital Twin

Keywords
Bioprocess, Control strategy development, Digital Twin, Operator training simulator
(OTS)
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Abbreviations

AMBC Advanced and model-based control
CHO Chinese hamster ovary (mammalian cell)
DCU Digital control unit
DLL Dynamic link library
DO Dissolved oxygen
DoE Design of experiment
EtOH Ethanol
GUI Graphical user Interface
MPC Model predictive control
NMPC Nonlinear model predictive control
OLFO Open-loop-feedback-optimal strategy
OTS Operator training simulator
P Product (Ethanol)
P Proportional (P-controller)
P&ID Piping and instrumentation diagram
PCS Process control system
PI Proportional integral (PI-controller)
PID Proportional integral derivate (PID-controller)
RQ Respiratory quotient
S Substrate (Glucose)
SSF-BC Simultaneous saccharification, fermentation, and biocatalysis
STR Stirred tank reactor
X Dry biomass density (S. cerevisiae)

1 Introduction

The development of control strategies for bioprocesses poses huge challenges for
process engineers. The need for new tools that can help with this task, therefore, is
enormous. Optimisation of controllers during production runs is usually exceedingly
difficult or even impossible. Thus, bioprocess operation must be interrupted for
control optimisation. Interruptions of a production run, as well as inadequate control,
can lead to immense financial losses, which must be avoided. A promising approach
to this issue is the application of Digital Twins. The development or optimisation of
control strategies may be performed using this tool, thus leading to a shortened start-
up time for the newly developed or optimised bioprocess control scheme.

In the early 2000s, the Digital Twin concept was first applied in mechanical
engineering [1–3]. Digital Twins are often seen as virtual representations of physical
systems and can map the entire life cycle of the physical system [2]. Various authors
already published definitions of the term Digital Twin [1–5]. This chapter and
Chapter: Moser, Appl, Brüning, Hass “Mechanistic Mathematical Models as a
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Basis of Digital Twins for process optimization”, which is also in this book series are
mainly based on the definition given by El Saddik [3]:

Digital twins are (. . .) digital replications of living as well as non-living entities that enable
data to be seamlessly transmitted between the physical and virtual worlds.

For further explanations refer to Chapter: Moser, Appl, Brüning, Hass “Mecha-
nistic Mathematical Models as a Basis of Digital Twins for process optimization”,
which is also in this book series.

This chapter covers Digital Twins for the development, optimisation and realisa-
tion or implementation of bioprocess control strategies on a real process that
correspond to the Digital Twin definition given by El Saddik [3], as well as operator
training simulators (OTSs), which are considered by the authors to be “early-stage”
Digital Twins. Although OTSs are mainly used for training purposes, they also offer
enormous potential for bioprocess development, similarly to Digital Twins. OTSs
are usually adapted to the real process during development or when there are
significant changes in the real process.

In the last section of this chapter, a case study is presented where an “early-stage”
Digital Twin was used to develop process control strategies for the fed-batch
cultivation of Saccharomyces cerevisiae (S. cerevisiae) in a stirred tank reactor
(STR).

2 Advanced Bioprocess Control Development, Realisation
and Optimisation Using Digital Twins

Initial approaches for the application of Digital Twins as a tool for control strategy
development have been successfully established in the chemical industry [4–7]. Due
to the recognised potential, the application of Digital Twins as a tool for the
development of control strategies is also gaining increasing interest for bioprocesses.

Within this chapter, the suitability of Digital Twins for the development, optimi-
sation and realisation of bioprocess control strategies will be highlighted. First, the
general approach when using Digital Twins for the development of control strategies
is outlined. Subsequently, the requirements that Digital Twins must fulfil to be used
as a tool for the development of control strategies and which challenges control
engineering must overcome in the case of bioprocess control are described. Finally,
in the presented case study, application examples for the utilisation of Digital Twins
for bioprocess control strategy development are described.

2.1 General Approach

In the author’s opinion, the quality of Digital Twins is of utmost importance for the
development of control and automation strategies [8]. The basis of applicable Digital
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Twins is a dynamic mathematical model, which can map the biological, chemical
and physical phenomena of the real process in detail [9]. This dynamic mathematical
process model should be coupled to a graphical user interface (GUI) [9]. Users can
monitor and make changes to the virtual process using graphical icons in the GUI.
From the author’s point of view, it is advantageous, if the structure of the GUI
corresponds to the process control system (PCS) on the physical counterpart. The
Digital Twin GUI is a functional image, derived from the P&ID (piping and
instrumentation diagram) flow chart of the real bioprocess and thus, also serves as
a realistic replica of important parts of the control and automation model. A realistic
GUI of a Digital Twin can, therefore, be used to check the usability (including
typical operating errors), as well as the control and automation of the real bioprocess.
The model of a Digital Twin is parameterised based on real process data to represent
the behaviour of the physical process [10]. Another possibility to keep Digital Twin
and the real process as identical as possible is an online and at-line data connection
between the “twins”. This enables the adaption of the Digital Twin using online and
at-line data, which is particularly useful if the real process frequently changes its
characteristics.

During process development or optimisation, Digital Twins can be used for the
following applications:

1. Determination of suitable controller types.
2. Improvement of controller performance.
3. Improvement of the overall process performance through appropriate process

control strategies.

If, for example, suitable controllers (e.g. for temperature, dissolved oxygen or
product concentration) should be designed, the controller type can be selected based
on simulations with the Digital Twin. An early step in controller selection should be
the definition of appropriate control targets [8]. When controlling the temperature of
a bioreactor, such control targets are, e.g., a short rise time, a high control accuracy
(especially important for temperature-sensitive organisms, particularly mammalian
cells) or a low overshoot. For example, the conventional proportional integral
derivative (PID) control can be compared to a more complex nonlinear model
predictive control (NMPC) by applying them to a Digital Twin. If both control
strategies yield equally good control results, PID control would be preferred,
because it is cheaper and easier to handle.

Once a control strategy has been able to control the virtual process satisfactorily,
the results are transferred to the real process. The transfer of the developed control
strategy from the Digital Twin to the real process may be further simplified if the
Digital Twin and the real process are linked to the identical PCS [8].

To illustrate the general approach of process control design utilising a Digital
Twin, the case study in Sect. 4 presents the selection and optimisation of suitable
control strategies for the cultivation of S. cerevisiae.
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2.2 Design of Digital Twins as Control Strategy
Development Tools

To utilise a Digital Twin for the development of both conventional (e.g. single loop
PID control) and advanced control (e.g. multivariable controllers, model predictive
control), it must fulfil specific requirements that have to be considered during the
design process of the Digital Twin. According to Hass [11], desirable characteristics
of a functionally useful Digital Twin include realistic simulation of the biological,
physical and chemical processes, accurate representation of automation and control
actions and a GUI with a similar “look and feel” to that of the real plant [11]. Math-
ematical models used in Digital Twin development are classified broadly as mech-
anistic, non-mechanistic or hybrid models [9, 10, 12]. In this context, a model refers
to a mathematical representation of certain aspects of a real-world object or phe-
nomenon. Non-mechanistic models use sets of experimental data to represent
observed phenomena by fitting parameters based on the available datasets. Mecha-
nistic models seek to represent experimental observations based on the underlying
biological, chemical, and physical mechanisms occurring in the system. Mechanistic
models offer excellent predictive capabilities beyond the original experimental
conditions used for model development. By contrast, non-mechanistic models only
offer very restricted predictive capabilities [2, 9–12]. Mathematical modelling for a
Digital Twin involves several key steps. The first step is a definition of the process
using appropriate diagrams and charts. A process flow diagram and a piping and
instrumentation diagram (P&ID) are excellent starting points for system definition
[10, 13, 14]. Ideally, verbal process description and expected modelling targets
including levels of model accuracy are specified at this stage. Following system
definition, appropriate mathematical models that sufficiently describe the physical,
biological, and chemical processes in the system are formulated based on literature
research [9, 14]. To structure the process model, it has been suggested to divide the
model into smaller sub-models. One approach is the shell model introduced by
Blesgen et al. [15, 16] and extended by Hass et al. [17]. In this case, the overall
mathematical model of the Digital Twin is divided into a biological sub-model,
physico-chemical sub-model, a reactor sub-model, a plant and peripheral sub-model
as well as a control and automation sub-model (see also Chapter: Moser, Appl,
Brüning, Hass “Mechanistic Mathematical Models as a Basis of Digital Twins for
process optimization”, which is also in this book series). Depending on the require-
ments of the Digital Twin, the shell model can be extended or reduced in complexity.

2.2.1 Software Tools for the Design of Digital Twins

Further steps in Digital Twin development include model implementation using
suitable tools, model parameterisation and finally model validation using experi-
mental data. Several modelling tools for the development of Digital Twins are
readily available and easy to use, but they do not provide the flexibility and
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adaptability needed to model all aspects of bioprocesses, as they were originally
designed for modelling of chemical processes. With the increasing focus on
bioprocess development, significant effort has been invested in the development of
model libraries for bioprocess unit operations in recent years. Software systems for
parameter estimation and computation of algebraic and differential equations pro-
vide a user-friendly and adaptable environment for model development and imple-
mentation of Digital Twins [9–11].

For the design of Digital Twins or “early-stage”Digital Twins that can be used for
the development, optimisation and realisation of control strategies, there are already
a variety of software packages available. Table 1 lists a selection of vendors and
associated software products and summarises the most important features of the
respective software packages. Most of the Digital Twin development tools listed are
designed for the chemical industry (e.g. UniSim Competency Suite [18] or
IndissPlus [19]), but some are also suitable for the development of bioprocess Digital
Twins (e.g. WinErs/C-eStIM [20, 21], PerceptiveAPC [22] or TMODS [23]).

2.3 Control Strategies for Bioprocesses

The multi-phase system in a bioprocess sets highest demands on measurement and
control technology [32–34]. To maintain optimal conditions for the entire process,
the composition of the liquid phase (e.g. medium), the suspended gas phase
(e.g. oxygen, carbon dioxide) and the dispersed solid phase (e.g. cells, cell assem-
blies, enzymes) must be monitored continuously [32]. Furthermore, complex
dynamics showing a wide range of time constants make it difficult to control the
process without sufficient process knowledge [32]. For example, the induction of a
gene through a temperature shift or the addition of a chemical inducer affects the
process several minutes after the expression of the desired protein because the
formation of a metabolically active protein will cause a time delay. This kind of
knowledge must be available and utilised for successful bioprocess control based on
detailed process analytics [32–35].

The choice of control strategies mainly depends on the selected bioprocess and
the available reactor type [33, 34]. In general, controllers are divided according to
continuous (e.g. PID control, soft sensor control) and discontinuous behaviour
(e.g. model predictive control (MPC) or nonlinear model predictive control
(NMPC)) [34]. Controllers with continuous behaviour calculate and transmit con-
tinuous control signals based on the current process characteristics [34]. Among the
best-known continuous controllers are the “conventional” controllers like two-point-,
three-point-, proportional- (P-), proportional-integral- (PI-) or PID-controllers. Con-
trollers with discontinuous behaviour only calculate control signals or profiles at
specific process points [34].

As an example, conventional control strategies such as PI or PID control are
generally used to control temperature [34]. In many cases, the control system should
be able to maintain the desired setpoint, due to the rather weak influence of
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Table 1 Digital twin development tools for the process industry (adapted from [10])

Vendor Software package Key features (according to the vendors)

Aspen
Technology

Aspen OTS Framework
[24]

▪ Data communication links handle the
exchange of data and commands
▪ User interfaces support different views of
the application for operators, engineers and
training instructors

DuPont Industrial
Biosciences

TMODS [23] ▪ Fully customised to match plant configura-
tion, conditions, compositions, control
schemes, safety interlocks and GUIs

Honeywell UniSim Competency
Suite [18]

▪ Customisable framework for a structured
operator competency management system
▪ Interactive, navigable, panoramic 2D field
operator training environment based on high-
resolution photographs of the facility

Ingenieurbüro
Dr.-Ing. Schoop
GmbH

WinErs/C-eStIM [20, 21] ▪ Modular process automation system
▪ Provides a flexible, process control and
simulation system suitable for industrial,
didactical and research applications
▪ Complete process monitoring and operation
via a user-editable GUI
▪ Simple graphical editing of controls and
simulations via block structures, logic plans
and GRAFCET with no prior programming
knowledge required

Wood Group
(John Wood
Group)

ProDyn [25] ▪ Offers off-the-shelf and customer-specific
solutions
▪ Operator training and learning systems,
abnormal situation management, and process
troubleshooting
▪ Can be used to develop and test plant
procedures

NovaTech NovaTech Ethanol Train-
ing Simulator, D/3 DCS
[26]

▪ Allows breweries, biofuels facilities, and
other process plants to develop real-to-life
plant simulations
▪ Training on complex process control tech-
niques and correcting behavioural patterns
▪ Trend visualisation, process analytics and
control loop performance monitoring and
optimisation

Outotec HSC Sim [27] ▪ Various simulation and modelling applica-
tions based on independent chemical reactions
and process units
▪ Graphical flowsheet and spreadsheet type
process unit models

Perceptive
Engineering

PerceptiveAPC [22] ▪ Tools for monitoring, analysis or predictive
control, in a logical, intuitive interface, for both
batch and continuous processes
▪ Training module and easy-to-use templates
to tune and validate the right controller (also
model-predictive control (MPC)) for the
process

(continued)
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disturbances. More complex processes, such as the enzymatic hydrolysis of ligno-
cellulosic biomass, can be significantly improved by using advanced temperature
control. In this process, endoglucanase and exoglucanase are used, which show a
different temperature optimum. If model-based temperature control is applied in this
case, enzyme-specific temperature gradients can be operated, reducing the consump-
tion of enzymes and significantly increasing the yield of the desired product [36].

Table 2 lists common control variables (e.g. temperature, pH value or dissolved
oxygen (DO)) of bioprocesses with their most used control strategies.

Simple control tasks can be treated using conventional controllers. For more
demanding control tasks, such as concentration control, the use of advanced and
model-based control strategies such as MPC or NMPC has been suggested [34, 35,
48, 49]. The choice of suitable control strategies is not only dependent on the
controlled variable. If, for example, DO control is considered, on-off feedback,
PID control or more complex model-based control like MPC is used depending on
the requirements. In the subsequent sections, some advanced control strategies will
be described that may be developed and tuned utilising Digital Twins.

Table 1 (continued)

Vendor Software package Key features (according to the vendors)

Protomation BV Protomation OTS [28] ▪ A real-time dynamic model that covers the
complete operating window
▪ Allows accurate simulation and training in
the entire operating range of the plant (from
start-up conditions up to normal operation and
upset conditions)

CORYS IndissPlus [19] ▪ Models based on first principles of chemical
engineering with rigorous thermodynamics
calculation and physical component properties
database
▪ Can accurately represent plant start-up and
shutdown, in addition to a variety of design
and abnormal operating conditions

Siemens SIMIT OTS [29] ▪ Based on the dynamic modelling of the plant
▪ Flexible modelling is possible, the process
can be emulated as a whole or in parts

SimGenics SimuPACT [30] ▪ The integrated software platform enables
engineers to develop high fidelity, full-scope
power and process plant simulators
▪ Intuitive GUI which allows engineering
analysis and operator training on the same
simulation platform

Yokogawa Yokogawa OTS [31] ▪ OTS constantly synchronises with the plant
control system
▪ Able to predict plant internal states and plant
responses, contributing to optimised plant
operations
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2.3.1 Advanced and Model-Based Control Strategies

Advanced and model-based control strategies (AMBC) like NMPC are of great
interest in the case of processes with fast dynamics because these controllers reduce
the response time [34]. They do not operate just based on the current state of the
system, instead, the control action is based on the calculated evolution of the system.
AMBCs utilise integrated mathematical process models for the prediction of future
process behaviour. At the end of each sampling period, the future course of the
control trajectory is optimised using a process model [34]. The control trajectory that
fulfils the chosen optimisation criterion best is then applied to the real process [34].

The use of AMBC has already been investigated for different bioprocesses in
several research works. For fermentations of S. cerevisiae NMPC was used to
maximise the ethanol (EtOH) yield by controlling the glucose solution feed rate
[42]. For the fed-batch cultivation of Chinese hamster ovary (CHO) mammalian
cells, a glucose concentration fixed setpoint control was implemented and tuned to
enhance product quality and reduce costs [43]. To enhance the sugar concentration
in a cellulose hydrolysation process in a stirred tank reactor, NMPC was applied to
control the feed rates of substrate and cellulase enzymes solutions [50]. Furthermore,
temperature and humidity gradients of solid-state fermentation were controlled by
NMPC [51].

In all listed research works the use of AMBC resulted in higher product concen-
trations at lower resource demands as compared to processes with conventional
control strategies.

2.3.2 Open-Loop-Feedback-Optimal (OLFO) Control Strategy

A special form of AMBC is the open-loop-feedback-optimal (OLFO) strategy
[52, 53]. The OLFO controller belongs to the class of adaptive NMPCs. It consists
of a process model, a model parameter identification part, and an optimisation part
(see Fig. 1). Model parameters are estimated frequently based on available online
and/or offline data. The updated model parameters are passed on to the optimisation

Table 2 Control strategies for key variables in bioprocesses

Control variable Applied control strategy

Temperature PI control [34], MPC [36], NMPC [37]

pH PI control [38]

DO On-Off-Feedback control [34], PID control [34],
Cascade Control [38], MPC [34]

Flow rate (nutrient media, etc.) PI control [38]

Pressure PI control [38]

Concentration (substrate, product, etc.) PI control [39], fuzzy control [40], NMPC [41–43],
OLFO [44–47]
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part, where process trajectories like substrate feeding profiles are calculated. Several
optimisation criteria, such as maximised product concentrations, may be
implemented in the controller. The OLFO control strategy has been investigated in
a receding horizon [8, 53] and a moving horizon version [45, 47] for bioprocesses.

The OLFO strategy is particularly superior to other process control strategies if
the processes are in an early development phase and have not yet been optimised.
The performance of the OLFO algorithm for suspension cell cultures has already
been demonstrated by Witte et al. [53], Frahm et al. [45–47] and Li et al. [44]. In the
case study presented in Sect. 4.2.3 the application of the OLFO control strategy for
fed-batch cultivation of S. cerevisiae will be explained in more detail.

2.4 Digital Twin Based Development, Realisation
and Optimisation of Control Strategies for Bioprocesses

In the early to mid-1980s, first OTSs representing “early-stage” Digital Twins were
used for operator training in the chemical, nuclear and energy industries. In the late
1980s and early 1990s, the implementation of OTSs in the chemical industry
evolved from pioneering work to common practice [54]. Today, Digital Twins are
widely used in industries with high capital investment, complex processes and

Fig. 1 Structure of the Open-Loop-Feedback-Optimal (OLFO) control strategy [53]
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severe consequences of plant or operator failure such as the offshore oil and gas
industry [7, 54, 55]. Older educational facilities for training in the oil and gas
industry were based on physical copies of the control room, which are expensive
and no longer needed [54]. Almost simultaneously with the first appearance of
Digital Twins in the chemical industry, they were used as a tool for control strategy
development [54]. In the beginning, these were relatively simple control engineering
tasks, but they became more complex with the advancing development of Digital
Twins [54, 55].

Dudley et al. (2008) [7] described the use of a Digital Twin of a pebble bed
modular reactor plant for the development and testing of control strategies before
using them on the real plant. He et al. (2019) [4] described the use of a Digital Twin
for the Tennessee Eastman benchmark process. Effectiveness and performance of
the Digital Twin in the development of control strategies were demonstrated in the
presence of realistic fault scenarios. Three types of process faults, i.e., sensor faults,
actuator faults and process disturbances were investigated and the corresponding
fault size and temporal behaviour were discussed. All simulation studies and numer-
ical results indicated that the proposed configurations are valid for safe operations in
the event of a process fault. Zhang et al. (2019) [6] described the use of a Digital
Twin for carbon emission reduction in intelligent manufacturing. Here, the plants’
carbon emission is predicted by the Digital Twin model. A carbon emission control
strategy was then optimised utilising the Digital Twin, to minimise exhaust gas
emissions.

Compared to chemical processes, the application of Digital Twins for
bioprocesses is still in its infancy. Thoroughness is required for modelling
bioprocesses since a wide variety of parallel reactions take place at the same time.
Even small changes of key process variables, such as pH or temperature, may have
an immense influence on the kinetics [33].

Pörtner et al. (2011) used an “early-stage” Digital Twin for the optimisation of
process control strategies for mammalian cell cultivations [56]. The developed
bioprocess simulator is a digital replica of the cultivation of mammalian cell lines
in a small scale STR. The bioprocess simulator was used to simulate the impact of
various constant feed rates of glucose and glutamine during fed-batch on cell density
and antibody concentration of a mammalian cell line. The feed rates were deter-
mined by design of experiments (DoE) methods. By using the bioprocess simulator,
the cultivation process could be optimised in a considerably shorter time and fewer
experiments compared to process control optimisation on the real process.

In a contribution by Hass et al. [17] the utilisation of an industrial biotechnology
OTS was presented. Control strategies that were developed using a new bioethanol
plant OTS illustrated the potential for enhanced resource efficiency and reduced
energy consumption. According to the authors, the potential savings in raw materials
have a direct impact on the long-term profitability of the bioethanol plant and enable
a reduction of operating costs. By using the OTS, the time course and dynamics of
the entire plant could be analysed and subsequently optimised using new process
control strategies. Performing such a study on a real plant would have been overly
complex and expensive, if not impossible.
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3 Digital Twins as Training and Educational Tools

Digital Twins or “Digital Twin-like” simulators may also be used in industry to train
reactor and plant operators and in academia to educate future control and process
engineers. In this context, Digital Twins are usually referred to as OTSs [9–11, 57].

OTSs became increasingly popular since the mid-twentieth century, for the use in
various sectors, including the chemical and related industries [10, 54]. The reason
was the increasing complexity of process engineering plants with sophisticated
automation and process control strategies placing enormous demands on the skills
of the process operators [10, 54]. Several papers were published reviewing the
development and use of OTSs in the chemical process industry [54, 58, 59].

OTSs offer the possibility to train future reactor operators and bioprocess engi-
neers in a very practical way without carrying out the real process. Even actions to
compensate process malfunctions may be trained safely. Impairments on ongoing
production processes due to training are avoided. OTSs can be described as “early-
stage” Digital Twins.

The development and use of OTSs particularly for bioprocesses are beginning to
attract increasing academic interest [10]. Several research groups have investigated
the applications of OTSs for bioprocesses. The common premise of the presented
research works confirms experiences from the chemical industry. Model-based
OTSs are an efficient means to improve the training experience of students and to
increase plant operators skills in handling complex bioprocesses [13, 14, 16, 60, 61].

Table 3 gives an overview of already existing OTSs for bioprocesses.
Hass et al. [17] developed one of the earliest OTSs for a complex biorefinery

process. OTSs were created for the bioethanol fermentation and the distillation
process. Also, a separate biomass power plant training simulator was developed.
The mathematical process models were created and implemented using the FOR-
TRAN programming language [65]. The process control software WinErs [20] was
used to link process control and the simulation models. PCS-like GUIs were
developed to obtain full operator training simulators. Functions were implemented
to simulate the processes at different speeds depending on the desired training target.
The different OTSs were designed for the training of students as well as industrial
operators in the handling of biorefineries and biomass power plants. Encouraging
training outcomes were reported [10, 17].

A research project by Gerlach et al. [61] presented an OTS for the training of
bioengineering students and plant operators on the operational procedures and
production skills required in recombinant protein production processes. To enable
the model to accurately represent the complex relations of factors in a recombinant
protein production process, the authors outlined that several metabolic interactions
affecting biomass yield, productivity and cellular viability need to be mapped in the
OTS model. To maintain numerical efficiency, a trade-off between model complex-
ity and accuracy had to be found by capturing the most important metabolic
processes in the OTS model, without the model being cumbersome and numerically
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Table 3 OTS applications for bioprocesses and biorefineries [10]

Application Development tools Validation Reference

Conceptual design of
2-step biodiesel synthesis
process (theoretical
120,000 t per year capac-
ity biorefinery)

Aspen plus dynamics
Aspen OTS framework

Unknown Ahmad
et al. [62]

30 L jacketed batch reac-
tor hydrodynamic and
thermal behaviour
parameterisation

Unisim design Simulated temperature
profiles compared with
laboratory reactor tem-
perature measurements

Balaton
et al. [63]

Anaerobic biogas pro-
duction in a 10 L labora-
tory reactor

FORTRAN (biological
and physico-chemical
sub-models)
WinErs (reactor and plant
sub-models, plus auto-
mation, process control
and GUI)

Experimental data from
literature validated with
simulation results

Blesgen
and Hass
[16]

Bioethanol production
from S. cerevisiae (15 L
STR) and green fluores-
cence protein production
using E. coli (6 L
fed-batch bioreactor)

Biological and physico-
chemical models inte-
grated into WinErs as
dynamic link libraries
(DLLs)

Substrate consumption,
product formation and
biomass yields were
compared between labo-
ratory reactor and simu-
lator runs

Gerlach
et al. [57]

Large-scale commercial
bioethanol process (reac-
tors ranging in size from
30,000 L to 280,000 L)

Process models written in
C++ were implemented
as DLLs in WinErs

Model validation not
presented

Gerlach
et al. [14]

Integrated cultivation and
homogenisation for
recombinant protein pro-
duction in a 10 L STR

Process models written in
C++ were implemented
as DLLs in WinErs

Substrate consumption,
product formation and
biomass yields were
compared between labo-
ratory reactor and simu-
lator runs

Gerlach
et al. [64]

Integrated wastewater
biodegradation and
membrane filtration in a
10 L submerged mem-
brane bioreactor (SMBR)

The biological model was
written and implemented
in Pascal, while process
automation and GUI were
developed using Delphi
2009

Experimental data from
literature validated with
simulation runs

González
Hernández
et al. [60]

Describes the develop-
ment of a coding frame-
work combined with a
commercial process con-
trol software for rapid
process model develop-
ment in chemical and
biochemical engineering

eStIM coding framework
used for biological and
process model develop-
ment and WinErs is used
for automation and pro-
cess control

Experimental data from
S. cerevisiae production
compared with simula-
tion results

Hass et al.
[65]

Bioethanol production,
crossflow filtration and
rectification column

Process models written in
C++ were implemented
as DLLs in WinErs.

Laboratory fermenter,
membrane filtration unit
and distillation runs were

Hass et al.
[17]

(continued)
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difficult to calculate. The effectiveness of OTS training for the education of bioen-
gineering students was evaluated with promising results [10, 61].

Another possible application of OTSs is their use for training in the context of
control engineering. Currently, training in control engineering is frequently theoret-
ical and abstract, since investigations of different control strategy behaviour in real
processes are difficult, time and cost-intensive and the number of available plants for
training is limited. With the help of Digital Twins or other simulation tools, a wide
variety of control strategies may be investigated in a short time and their impact on
bioprocess performance can be demonstrated. In future, applications of OTSs will
become even more diverse. New control strategies may be tested first on the OTSs.
This guarantees safe operation of the real plant. Furthermore, full plant process
control and operation strategies may be developed and optimised based on OTSs or
Digital Twins.

4 Case Study

The objective of this case study, which is based on a work of Appl et al. [8], is to
demonstrate the methodology and advantages of Digital Twins for the development
of bioprocess control strategies using a fed-batch cultivation of S. cerevisiae as an
illustrative example. Two process control strategies (respiratory quotient
(RQ) feedback control and OLFO control) were developed and optimised using
the “early-stage” Digital Twin “Simultaneous saccharification and fermentation
simulator” (SSF-BC-Simulator). The target for both control strategies was to max-
imise the dry biomass concentration (S. cerevisiae) in a cultivation time of 48 h.

4.1 Digital Twin “SSF-BC-Simulator”

The Digital Twin “SSF-BC-Simulator” is a further development of the
“BioProzessTrainer” [33, 66]. It is used to train bioengineering students for the
operation of bioprocesses as well as a control strategy development tool.

Table 3 (continued)

Application Development tools Validation Reference

(15 L laboratory bioreac-
tors used for EtOH
production)

GRAFCET used for
developing automation
sequences

used to validate simulator
runs

Mammalian cell line cul-
tivation with the produc-
tion of antibodies in 2 L
laboratory bioreactors

Process models written in
FORTRAN were
implemented as DLLs in
WinErs

Experimental data from
mammalian cell line cul-
tivation compared with
simulation results

Pörtner
et al. [56]
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The Digital Twin can map the starch hydrolysis, the cultivation of S. cerevisiae
and the whole-cell biocatalysis of ethyl (S)-3-hydroxybutyrate from ethyl acetate in a
small scale STR (Biostat C, 20 L, B. Braun). The development of the “SSF-BC
Simulator”was carried out using the procedure described in Sect. 2.2. The integrated
dynamic mathematical model was written in C++ and was implemented in WinErs
[20, 65]. Using the Digital Twin, it is possible to accelerate the simulation of the
bioprocesses up to 100-fold. The Digital Twin can be monitored and operated via the
GUI shown in Fig. 2.

The GUI in Fig. 2 presents the process equipment (e.g. reactor, feed tanks, etc.) as
well as all measured value displays (e.g. temperature, pH value, DO, etc.) and all
essential functions of the control system (e.g. temperature or DO control) to the user
of the Digital Twin. Behind each measured value display or control button,
sub-models represent the real measuring or control instrument. The reactor proper-
ties and the biological process are mapped in the dynamic mathematical model of the
Digital Twin. The GUI is part of the control and automation model within the Digital
Twin. To use the Digital Twin for the development, optimisation and realisation of
control strategies, it is therefore important that the GUI corresponds to the PCS of the
real process with high similarity.

4.1.1 Parameterisation of the Digital Twin “SSF-BC-Simulator”

For the parameterisation of the dynamic mathematical process model implemented
in the Digital Twin “SSF-BC-Simulator”, a variety of parameterisation experiments
were carried out, using batch and fed-batch cultivations.

The procedure of model parameterisation will be illustrated using a dataset from a
laboratory experiment where an aerobic fed-batch cultivation was carried out in a
small scale STR (Biostat C, 20 L, B. Braun). The temperature was controlled at
30�C, the pH value at 4.5 and the DO at 10%. At the beginning of the cultivation, a
nutrient medium was supplied in the STR (Batch medium). After the batch phase of
the cultivation, a fed-batch nutrient medium was fed to the STR (see Table 4).

During the cultivation process, the following state variables required for process
monitoring and process control were measured (see Table 5).

After the experiment was carried out, the model of the Digital Twin “SSF-BC-
Simulator” was parameterised using the Nelder-Mead simplex algorithm, written in
R [67], to adjust the values of selected parameters to match the simulated with the
measured data satisfactorily.

Figures 3 and 4 present the measured state variables of the fed-batch S. cerevisiae
cultivation in a small scale STR compared to the simulated time courses of the
Digital Twin (after parameterisation).

Figure 3 shows that in the batch phase of the experiment (0–7 h), glucose was
consumed. Ethanol (EtOH) was formed, which was subsequently metabolised again
(diauxic growth). The biomass density shows a slight increase during the batch
phase. After the substrate feed has been activated (7–25 h), the dry biomass
concentration increases to a value of more than 30 g L�1. At a processing time of
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25 h, the substrate feed was increased by a factor of almost 10, which resulted in an
increase of the glucose concentration to more than 10 g L�1. An increase in the
ethanol concentration to more than 45 g L�1 was observed, due to the Crabtree
effect. The high ethanol concentration inhibited the growth of S. cerevisiae and the
dry biomass concentration stagnated at a level of 30 g L�1. After the substrate feed
has been reduced, the glucose concentration decreased to nearly 0 g L�1, followed

Table 4 Nutrient media composition

Component Batch medium (g L�1) Fed-batch medium (g L�1)

Glucose 5.0 300

Yeast extract 0.6 40

Peptone from soy 0.6 40

Ammonium sulphate 0.6 40

Table 5 Measured state variables during the parameterisation experiment

Measured state variable Abbreviation Unit

Substrate (glucose) concentration S g L�1

Product (EtOH) concentration P g L�1

Dry biomass (S. cerevisiae) concentration X g L�1

Fed-batch medium feed rate FeedS mL min�1

Oxygen in the exhaust gas O2 %

Carbon dioxide in the exhaust gas CO2 %

Fig. 3 Comparison of measured data (exp) from a small scale STR with simulation results (sim), S:
substrate (glucose) P: product (EtOH), X: dry biomass concentration (S. cerevisiae). The bottom
figure shows substrate feed profile
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by ethanol consumption down to a concentration of 15 g L�1. However, after 22 h of
process time, no further biomass growth could be observed.

In Fig. 4 it can be seen that these effects are also reflected in the measured exhaust
gas values. Special attention should be paid to the course of the RQ value (see Sect.
4.2.2 for details). At the beginning of the batch phase (0–3 h), the RQ rises to a value
above 3, indicating ethanol formation. After the initial phase, the RQ value dropped
below 1, now indicating ethanol consumption. At the beginning of substrate feeding,
a parallel increase in CO2 formation and O2 consumption can be observed, thus
indicating good aerobic growth of S. cerevisiae. During this phase, the RQ settled at
a value around 1.0. From a processing time of 25 h, the substrate feed was strongly
increased. In this period a large increase in CO2 formation can be seen, however, the
consumption of O2 increases only slightly, leading to an RQ value of above 3. This
high RQ value again indicates the formation of ethanol, which is confirmed by the
offline ethanol concentration measurements. At the end of the cultivation, both the
formation of CO2 and the O2 consumption value dropped close to zero, indicating
weak metabolism and poor growth. These observations confirm that particularly the
RQ-value is a valuable indicator for various metabolic effects as also stated
previously [68].

Fig. 4 Comparison of measured exhaust gas data (CO2, O2) and calculated RQ values from a small
scale STR experiment (exp) with simulation results (sim). The bottom figure shows substrate feed
profile
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4.1.2 Digital Twin “SSF-BC-Simulator” for the Development of Control
Strategies

To ensure that the Digital Twin is suitable for the development of control strategies
for the cultivation of S. cerevisiae, it must be able to represent the time courses of the
experimental data described in Figs. 3 and 4. These time courses do not have to be
simulated exactly, but the associated effects must be reproduced. For the develop-
ment of the RQ feedback control strategy utilising the Digital Twin, it is important
that exhaust gas measurements, RQ value time course and associated effects can be
mapped. For the development of the OLFO controller with the Digital Twin, it is
necessary to simulate the course of the concentrations of substrate, product and
biomass and the corresponding effects.

Figure 3 shows that the time course of the measured variables can be mapped by
the Digital Twin with a high agreement. Also, ethanol formation due to the Crabtree
effect can be represented by the Digital Twin (0–3 h and 25–33 h). It is also clearly
recognisable that high ethanol concentrations inhibit the growth of the cultivated
S. cerevisiae strain in the simulation (30–52 h).

Figure 4 illustrates that the time courses of the measured exhaust gas values can
almost be exactly reproduced by the Digital Twin. Also, in the simulation, an
increase in the RQ value occurs if ethanol is formed due to the Crabtree effect
(0–3 h and 25–33 h). Furthermore, at the end of the simulated cultivation, almost no
CO2 is formed or O2 is consumed, corresponding to a low growth rate.

The results presented in Figs. 3 and 4 illustrate the high potential of the Digital
Twin for the development of an RQ feedback control strategy and an OLFO strategy
for the cultivation of S. cerevisiae. In the presented study, the control target was to
maximise the dry biomass concentration (S. cerevisiae). To achieve this target, it is
important to dose the substrate feed in such a way that the cells are sufficiently
supplied with glucose. However, overdosing substrate may lead to ethanol formation
(Crabtree effect), which then might cause growth inhibition.

4.2 Digital Twin Based Development of Control Strategies
for the Cultivation of S. cerevisiae

During process control strategy development, the different strategies were first
applied to the “SSF-BC-Simulator”. Simulations with varying controller designs
and tunings were then carried out on the Digital Twin until the desired controller
performance was achieved. Afterwards, the experimental validation of the control
strategies on the real plant took place. If the control result was still unsatisfactory,
further controller improvements were tested using the Digital Twin, before validat-
ing the controllers on a real cultivation process. By using the Digital Twin, many
complex experiments in the STR with elaborate preparation, execution and analysis
could be avoided in the development of the control strategies, which resulted in a
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resource-saving of over 50%. Also, the acceleration mode of the Digital Twin
offered a significant reduction in development time.

4.2.1 Experimental Setup

To realise a smooth transfer of the control strategies between the “twins”, the Digital
Twin and the small scale STR were connected to the identical process control system
WinErs [20], in which also the controllers were implemented (see Fig. 5).

Since both, the real STR and the Digital Twin were connected to the identical
PCS, the control strategies could be quickly and variably applied and transferred to
the real and simulated process. Both the PCS and the control strategies (RQ feedback
and OLFO) were realised in separate coupled WinErs projects, which leads to high
compatibility.

4.2.2 Development of Respiratory Quotient (RQ) Feedback Control
for the Cultivation of S. cerevisiae

The RQ feedback control strategy is an established soft sensor control strategy used
for fed-batch cultivations of S. cerevisiae [68]. To ensure optimal growth of
S. cerevisiae the RQ should be kept close to a value of 1.0. For the determination
of the RQ value, the composition of the exhaust gas from the reactor during the
cultivation is measured using a gas analyser (SIDOR, Sick). The RQ value can be
calculated from the measured mole fractions of O2 and CO2 in the supply air and the
exhaust gas (Eqs. 1–3),

yi,0 ¼ 1� yO2,0 þ yCO2,0

� � ð1Þ
yi,1 ¼ 1� yO2,1 þ yCO2,1

� � ð2Þ

RQ ¼
yCO2,1 ∙

yi,0
yi,1

� �� �
� yCO2,0

yO2,0 � yO2,1 ∙
yi,0
yi,1

� � ð3Þ

where yi,0 is the mole fraction of inert components in the supply air, yi,1 is the mole
fraction of inert components in the exhaust gas, yO2,0 is the mole fraction of O2 in the
supply air (assumption: 0.2096), yO2,1 is the mole fraction of O2 in the exhaust gas,
yCO2,0 is the mole fraction of CO2 in the supply air (assumption: 0.00035) and yCO2,1

is the mole fraction of CO2 in the exhaust gas.
To realise the RQ feedback control strategy a PI controller was chosen. Based on

the difference between the RQ value and RQ setpoint, the PI controller calculated the
appropriate substrate feed and transmitted it to the bioreactors digital control unit
(DCU) every 5 min.
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In the development process of the RQ feedback control strategy on the Digital
Twin, various RQ value setpoints were tested, the controller parameters (gain,
integration time) of the PI controller were adjusted and the transfer intervals of the
calculated substrate feed rates to the DCU were varied. Furthermore, different ratios
of glucose and nitrogen sources in the feed medium were investigated. To achieve
the predetermined control target of 50 g L�1 after a processing time of 48 h, four
simulations on the Digital Twin were performed.

The transfer of the RQ feedback control strategy to the real process took place
after simulations on the Digital Twin yielded a dry biomass concentration of more
than 50 g L�1 within 48 h. Then, the RQ feedback control strategy was experimen-
tally validated on the real cultivation process in the small scale STR. The results of
the real RQ feedback-controlled cultivation of S. cerevisiae in a small scale STR are
presented in Fig. 6.

Figure 6b shows that the substrate feed (FeedS) started at 3 h. At this time, the
batch phase was finished and the RQ Feedback controller was switched on. After
that, the mean substrate feed rate increased steadily up to 18 h. The addition of
nutrient medium leads to a steady increase in dry biomass concentration up to
25 g L�1 (Fig. 6a). Figure 6c shows that both, O2 consumption and CO2 formation,
increase during the first 18 h. The resulting RQ value stabilises to a value close to
1.1. After a processing time of 18 h, the RQ value increased to a value of up to
6, resulting in a substrate feed rate, controlled to the set minimum value of
0.05 ml min�1. When the substrate was depleted, the RQ value dropped below 1.1
again (approx. 25 h), the substrate feed rate started to increase. At processing times

Fig. 6 Results of an RQ feedback-controlled S. cerevisiae cultivation in a STR
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of 43 h and 47 h, the same effect observed at 18 h can be seen in an attenuated form.
One explanation for the sudden increase in the RQ value is the composition of the
nutrient medium. Among other components, yeast extract was used as a nitrogen
source, which contains high amounts of both nitrogen and carbon. The fraction of
residual yeast extract in the medium was rather high, leading to an accumulation of
carbon sources and thus to an increasing RQ value due to the Crabtree effect. In the
Digital Twin model, the carbon component in the nitrogen sources was not consid-
ered, which is why this effect could only be recognised in the real experiment.
Despite this limitation of the Digital Twin model, an RQ feedback control could be
developed based on the Digital twin, leading to more than 50 g L�1 dry biomass
concentration in the real process, with less than 10 g L�1 ethanol produced within
48 h.

It took about 2 days to develop the RQ feedback control for the cultivation of
S. cerevisiae on the Digital Twin (simulations, controller adaptations). Real cultiva-
tion of 48 h in an STR, including preparation and evaluation, is expected to take
about 1 week. If, instead of the simulations on the Digital Twin, real cultivations had
to be carried out during the control strategy development process, the development
time would have been extended to up to 3 weeks. Besides the significant time
savings, the consumption of resources (nutrient media components, energy, etc.)
was also significantly reduced due to the reduced number of real cultivations.

4.2.3 Development of Open-Loop-Feedback-Optimal (OLFO) Control
for the Cultivation of S. cerevisiae

The principle of the OLFO control strategy has been described in Sect. 2.3.2. The
suitability of the “SSF-BC-Simulator” as a tool for the development of the OLFO
control strategy for the cultivation of S. cerevisiae was illustrated in Fig. 3, Sect. 4.1.

The core of the OLFO controller is a relatively simple mathematical model for the
cultivation of S. cerevisiae, which is different from the process model within the
presented Digital Twin. The controller model is limited to map the consumption of
glucose and nitrogen, the growth of S. cerevisiae and the formation of the side
product ethanol. The mathematical OLFO controller model was adapted based on
either measured (real process) or simulated (Digital Twin) concentrations of sub-
strate (glucose), product (ethanol) and biomass density (S. cerevisiae). In the opti-
misation part of the OLFO controller, substrate feed rate trajectories were optimised
at several points during the real or simulated (Digital Twin) process using the
adapted mathematical process model, where the adaption was based on the data
available up to the actual processing time. The substrate feed rate trajectory yielding
the highest concentration of dry biomass at the end of the simulated cultivation
(OLFO process model) was transferred to the PCS at each time point of model
adaption and process optimisation.

During controller development using the Digital Twin, six simulations were
carried out in total. After each simulation, the simulated cultivation results were
evaluated and the control strategy was adjusted to approach the control target
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(50 g L�1 dry biomass concentration within 48 h). The result of the first OLFO
controlled simulated cultivation of S. cerevisiae is presented in Fig. 7.

In the first OLFO controlled Digital Twin cultivation of S. cerevisiae, only a low
dry biomass concentration of 4 g L�1 could be achieved within the processing time
of 48 h, due to low substrate feed rates (max. 0.03 mL min�1) determined by the
OLFO controller. A detailed analysis revealed an ethanol inhibition in the mathe-
matical process model already starting at less than 5 g L�1. Consistently, the OLFO
controller calculated low substrate feed rates to avoid ethanol formation. However,
the resulting low glucose concentration limited growth.

Increasing the ethanol inhibition constant in the mathematical process model to
approx. 30 g L�1 led to an increase in the final simulated dry biomass concentration
(15 g L�1). However, the set control target could not yet be achieved. Based on
subsequent simulations with the Digital Twin, further controller model adjustments
such as modifying the metabolic rates related to the Crabtree effect, adjustments of
uptake rates, etc. were performed. The intervals for model adaptation and subsequent
substrate feed optimisations were varied and different compositions of the nutrient
medium were examined via simulations with the Digital Twin.

In the sixth OLFO controlled cultivation simulated on the Digital Twin, the set
control target eventually was exceeded by reaching a final biomass density of
80 g L�1 within 48 h (Fig. 8) and less than 10 g L�1 ethanol.

The resulting OLFO controller (developed on the Digital Twin) was transferred to
the real process for experimental validation. Figure 9 shows the results of the OLFO
controlled S. cerevisiae cultivation.

In the OLFO controlled real cultivation, a dry biomass concentration of more than
50 g L�1 was achieved within 48 h. Both, the substrate feed rates (Fig. 9b) and the

Fig. 7 Result of the first OLFO controlled simulated cultivation of S. cerevisiae using the Digital
Twin “SSF-BC-Simulator”
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dry biomass concentration (Fig. 9a) increase steadily over the entire process time.
The ethanol concentration never exceeded 20 g L�1.

It took about 2 weeks to develop the OLFO control for the cultivation of
S. cerevisiae on the Digital Twin (simulations, controller adaptations). Real cultiva-
tion of 48 h in an STR, including preparation and evaluation, is expected to take

Fig. 8 Sixth OLFO controlled cultivation of S. cerevisiae on the Digital Twin “SSF-BC-
Simulator”

Fig. 9 OLFO controlled S. cerevisiae cultivation in a 20 L STR (Biostat C, B. Braun)
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about 1 week. If, instead of the simulations on the Digital Twin, real cultivations had
to be carried out during the control strategy development process, the development
time would have been extended to up to 2 months. Besides the significant time
savings, the consumption of resources was also significantly reduced due to the
smaller number of real cultivations.

4.2.4 Case Study Discussion

This case study demonstrated the enormous potential of the Digital Twin “SSF-BC-
Simulator” to support the control strategy development and optimisation for the
cultivation of S. cerevisiae. By utilising the Digital Twin, it was possible to effec-
tively develop both control that uses online values (RQ feedback control) and control
that uses offline values (OLFO control). By conducting simulations using the Digital
Twin, real experiments could be avoided that would have been associated with the
consumption of resources and time. By using the Digital Twin, an estimated amount
of resources of about 60% and time of about 50% could be saved in the development
process of both control strategies compared to conventional control strategy
development.

In this case study, we were able to demonstrate the beneficial utilisation of Digital
Twins for the development, optimisation and realisation of bioprocess control
strategies. An important prerequisite for the Digital Twin utilisation for control
development is the validation of a high accuracy in mapping the bioprocess
dynamics.

The presented Digital Twin “SSF-BC-Simulator” is also capable of mapping the
enzymatic process of starch hydrolysis as well as the biocatalysis of ethyl (S)-3-
hydroxybutyrate. For these processes various control strategies will be developed in
future, supported by the Digital Twin.

5 Conclusion and Future Perspectives

This chapter demonstrated the enormous potential of Digital Twins or “early-stage”
Digital Twins as a control strategy development tool and their application to
bioprocesses. The use of Digital Twins enables the development of advanced
controllers that increase the efficiency of bioprocesses. By accelerated and parallel
running simulations on the Digital Twin, the development time is drastically reduced
compared to conventional control strategy development. In the past, production
usually had to be interrupted to investigate the dynamic behaviour of the
bioprocessing plant under consideration, as well as the dynamics of different con-
trolled systems, which is necessary for the development of control strategies. By
using Digital Twins, the production plants can remain in operation during controller
development and optimisation. The presented case study demonstrates a rapid and
effective controller transfer to the real plant as soon as the new controllers have been
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successfully developed utilising the Digital Twin. An ideal process operation not
only requires well-designed and tuned controllers but also well-trained plant oper-
ators. This can be achieved using OTSs that may be considered as “early-stage
Digital Twins”. From the further development of OTSs, educational Digital Twins
have emerged, which are characterised by the following features:

1. High fidelity representation of biological, physico-chemical and chemical
kinetics.

2. Detailed technical simulation of the reactor environment including peripheral
equipment.

3. Realistic investigation of various control strategies.
4. Accelerated and resource-saving simulation (digital experimentation and

training).

As new advanced bioprocessing plants are put into operation worldwide, the
challenge of covering the need for suitably qualified operators to run these plants will
increase. Educational Digital Twins are an effective tool to meet this challenge. In
the future, simple and cost-effective educational Digital Twin development tools are
required to adequately handle the additional complexities present in bioprocesses.
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Abstract In the era of technology and digitalization, the process industries are
undergoing a digital transformation. The available process models, advance sensor
technologies, enhanced computational power and a broad set of data analytical
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techniques enable solid bases for digital transformation in the biopharmaceutical
industry.

Among various data analytical techniques, the Kalman filter and its non-linear
extensions are powerful tools for prediction of reliable process information. The
combination of the Kalman filter with a virtual representation of the bioprocess,
called digital twin, can provide real-time available process information. Incorpora-
tion of such variables in process operation can provide improved control perfor-
mance with enhanced productivity.

In this chapter the linear discrete Kalman filter, the extended Kalman filter and the
unscented Kalman filters are described and a brief overview of applications of the
Kalman filter and its non-linear extensions to bioreactors are presented. Furthermore,
in a case study an example of the digital twin of the backer’s yeast batch cultivation
process is presented.

Graphical Abstract A digital twin of a bioreactor mirrors the processes of the real
bioreactor. It contains the physical parts, the process model and prediction algorithm
to predict the bioprocess variables. These values could be used for optimization and
control of the process.
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Abbreviations

A State transition matrix
B Process input transition matrix
C Measurement model
CKF Cubature Kalman filter
EKF Extended Kalman filter
EnKF Ensemble Kalman filter
F Jacoby matrix of f()
f() Non-linear function describing the process change
FIA Flow injection analysis
H Jacoby matrix of measurement model
h() Measurement model
KF Kalman filter
P Estimation error covariance matrix
p Model parameter vector for estimation
Q Process noise covariance matrix
R Measurement noise covariance matrix
t Time
UKF Unscented Kalman filter
v Measurement noise vector
w Process noise vector
x State variables vector
x(t) State variable at continuous time k
x[k] State variable at discrete time k
xf,[k] Filtered state variable at discrete time k
z Measurement vector

1 Introduction

Bioprocesses are described as biological systems that are non-linear, complex and
unsteady; thus development of precise control systems in order to achieve robust
product quality and productivity can be challenging. The control of these processes
can be significantly improved by online process monitoring followed by corrective
actions. In this context, bioprocess digital twins are helpful tools.

Digital twins are virtual representations of the production process which enable
pre-emptive process control by using online data to predict the process outcome in
advance. They convert the physical process to a smart process and thus achieve the
ultimate goal of the digital transformation. This enables unprecedented possibilities
for timely and automated intervention to provide critical decision support during
process development [1].
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Digital twins mainly consist of a mathematical model which describes the
dynamic behaviour observed in a biochemical reactor and a prediction or self-
learning algorithm which estimates the cellular component concentrations and the
process parameters that cannot be described mechanistically [2, 3].

Bioprocess mathematical models may generally be categorized into algebraic
equations and dynamic models. Algebraic equations are developed from mass and
component balances, from mass or heat transfer laws or even from elemental
balances. Dynamic models usually consist of dynamic balances of conserved quan-
tities in combination with kinetics to describe rate expressions as functions of the
state variables. Detailed description of mathematical modelling of bioprocesses is
covered by previous authors in greater details than space allows here [4–7]. The goal
of this chapter is to highlight state estimation methods with a specific focus on the
Kalman filter and its non-linear extensions.

For linear systems, the Luenberger observer and the Kalman filter, whose 60th
anniversary occurred in 2020 [8], are the most applied methods for estimating
parameters and process variables that cannot be measured directly. In the area of
non-linear systems, particle filtering (PF), high gain observers, non-linear extensions
of the Kalman filter such as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) and many others have been proposed. However, due to the
simple structure and low computational effort of non-linear extensions of the
Kalman filter, these methods have gained more interest, and many research studies
have been dedicated to the implementation of such filters for state and parameter
estimation in bioprocess technologies. The main objective of this chapter is to
discuss the applications of different Kalman filter algorithms in bioprocess technol-
ogies. Therefore, this chapter is organized as follows: in the next section, a brief
overview of the Kalman filtering theory and its non-linear extensions will be
discussed. Applications of the Kalman filter for the supervision of cultivation
processes will be given in the third section, followed by a case study evaluating
the implementation of an extended Kalman filter for developing a digital twin of the
backer’s yeast batch cultivation process. In the last section, a conclusion is
presented.

2 Kalman Filtering Theory and Its Non-linear Extensions

The Kalman filter is a set of mathematical equations that provides an efficient
computational solution of the least-squares method when the considered system is
linear and the uncertainties are modelled by Gaussian random variables. When the
system state dynamics is non-linear, then certain linearization methods are applied.
The most prominent of these algorithms are the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF), invented independently by several research
groups. Different extensions of the Kalman filters differ in the way the estimation
error is calculated. A brief overview of these methods are as follows.

98 A. Yousefi-Darani et al.



2.1 The Kalman Filter

The Kalman filter is used to provide optimal estimates of unmeasured states for time
varying linear systems in the presence of noise by combining information from a
process mathematical model with online process measurements. The process model
defines the evaluation of the state from time k�1 to time k as:

x k½ � ¼ Ax k�1½ � þ Bu k�1½ � þ w k�1½ � ð1Þ

where x is the state vector, u is the process input and w is the Gaussian process noise
vector that is assumed to be zero-mean with the covariance Q. Matrix A relates the
state at the previous time step k�1 to the state at the current step k, matrix B relates
the control input to the state variables x.

The process model is paired with the measurement model that describes the
relationship between the state and the measurement at the current time step k as:

z k½ � ¼ Cx k½ � þ v k½ � ð2Þ

where z is the measurement vector and v is the Gaussian measurement noise vector
which is assumed to be zero-mean with the covariance R. Matrix C relates the state to
the measurement z[k]. Since the measurements does not exhaustively inform on the
current situation of the process, the KF aims to provide an estimate of the process
state at time k, given the initial state of x0, the measurements and the information of
the system.

The Kalman filter algorithm consists of two steps which are summarized as
follows:

• Prediction step (time update): Using the initial condition, the process model is
used to predict the state variables and the estimation error covariance’s until the
first measurement is available.

x k½ � ¼ Ax k�1½ � þ Bu k�1½ � ð3Þ
P k½ � ¼ AP k�1½ �AT þ Q ð4Þ

In the above equations, x[k] is the state variables estimate at time k which is
deduced from a previous estimation of the state x[k 2 1] at time k�1. The new term
P is called the state error covariance matrix which encrypts the error covariance of
the predicted state values. P[k] is the new prediction error covariance matrix at time
k and P[k 2 1] is the previous estimated error covariance matrix at time k�1.
Whenever a measurement is available, a correction step is performed:

• Correction step (measurement update): In this step the predicted model estimates
are combined with the measured values to provide corrected estimates.
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x f , k½ � ¼ x k½ � þ K k½ � z k½ � � Cx k½ �
� � ð5Þ

P f , k½ � ¼ P k½ � 1� K k½ �C
� �2 þ K2R ð6Þ

K k½ � ¼ P k½ �CT Rþ CP k½ �CT
� ��1 ð7Þ

The measurement prediction error, reflects the discrepancy between the true
measurements z[k] and the predicted measurements Cx[k]. The difference of both is
multiplied by the so called Kalman gain and used to update the estimated state
variables. Therefore the filtered state variables xf, [k] are obtained. In the similar
manner, the filtered estimation error covariance Pf, [k] is obtained. K[k] is chosen to
minimizes the estimated error covariance

dP f

dK
¼ 0 ð8Þ

The measurement error variance must be compared with the estimation error
variance to see how the filter is acting. For this purpose, a very rough treatment is
necessary:

If R � CP[k]C
T then K � C�1 and xf, [k] � C�1z[k]; so the filtered is almost

determined by the measured.
If R� CP[k]C

T then xf, [k]� x[k]; the filtered value is almost the estimated one and
no influence of the measurement will be obtained.

With the filtered values as initial condition the simulation of the process as well as
the estimation error covariance’s can be carried out until the next measurement is
obtained and everything repeats again. The flow chart of the Kalman filter algorithm
is presented in Fig. 1.

Prediction

(�me update)
Filtering

(measurement update)

State variables 
&

es�ma�on error covariances

Filtered

values
Estimated

values

When new measurment is avalableWhen no measurment is avalable

Fig. 1 The flow chart of the Kalman filter algorithm
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2.2 Continuous-Discrete Extended Kalman Filter

As described in the previous section, the Kalman filter addresses the general problem
of trying to estimate the state of a process that is governed by a linear differential
equation system. In non-linear dynamic systems, the process model or the measure-
ment model cannot be determined with multiplication of vectors and matrices. For
such systems, a linearization should be performed. The linearization can be
performed by different methods. The essential difference among different versions
of the Kalman filters (extended Kalman filter, unscented Kalman filter and ensemble
Kalman filter) consists in how they calculate the estimation error. A Kalman filter
that linearizes about the current mean and covariance is referred to as an extended
Kalman filter (EKF). A non-linear dynamic system can be described by the follow-
ing differential equation:

dx tð Þ
dt

¼ f x tð Þ, u tð Þð Þ þ w tð Þ ð9Þ

With discrete measurements that are:

z k½ � ¼ h x t k½ �
� �� �þ v k½ � ð10Þ

The differential equation provide the continuous part, the measurements are the
discrete part, where f is a non-linear function of the state variables x and the control
input u. The non-linear function h in the measurement equation relates the current
state to the measurement z[k]. w and v are, respectively, the process noise vector and
the measurement noise vector. These noises are assumed to be zero mean, white, and
independent of each other, with respective covariance matrices Q and R.

To calculate the estimation error covariance matrix, the following differential
equations have to be solved in parallel to the state differential equation.

dP tð Þ
dt

¼ F tð ÞP tð Þ þ P tð ÞFT tð Þ þ Q ð11Þ

Here the Jacobian matrix is used, which is given by the following equation:

F ¼ ∂f
∂x

����
x tð Þ, u tð Þ

ð12Þ

The filtering is performed as follows:

K k½ � ¼ P tkð ÞHT tkð Þ H tkð ÞP tkð ÞHT tkð Þ þ R
� ��1 ð13Þ
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x f t k½ �
� � ¼ x t k½ �

� �þ K k½ � z k½ � � h x t k½ �
� �� �� � ð14Þ

P f t k½ �
� � ¼ I � K k½ �H k½ �

� �
P t k½ �
� �

I � K k½ �H k½ �
� �T þ K k½ �RKT

k½ � ð15Þ

where H[k] is the Jacoby matrix of h[]:

H k½ � ¼ ∂h
∂x

����
x k½ �

ð16Þ

Correspondingly to the KF algorithm, the EKF algorithm consists of two main
parts including prediction step and the correction step.

As mentioned above, the basic framework for the EKF involves state estimation
of a non-linear dynamic system. However, in some cases, prediction of xk requires
coupling both state estimation and parameter estimation [9]. Here a process model
parameter p(t) is considered to be time dependent and can be estimated by adding the
parameter as an additional state variable whose differential equation is then given as

dp tð Þ
dt

¼ 0 ð17Þ

At every time step, the current estimate of the parameter p(t) is used in the
measurement filter. In the joint estimation method, model state variables and
model parameters are included in a single joint state vector. Parameter estimation
evolves in time along with state estimation, as observations are assimilated [10].

Other alternatives for parameter estimation with the KF include calibrating
parameters outside the KF calculation with an outer optimisation routine [11–13],
and parameter estimation in steady-state KF calculations where observations are
climatological averages over the entire time period of interest [14], but in both of
these two approaches the parameter estimation part of the calculation considers all
observations at once rather than sequentially.

2.3 Other Non-linear Extensions of the Kalman Filter

As mentioned previously, when the system is non-linear and can be well approxi-
mated by linearization, then the EKF is a good option for state estimation; however
EKF is not optimal if the system is highly non-linear, this is because only the mean is
propagated through the non-linearity [15]. The unscented Kalman filter (UKF) is
another non-linear extension of the Kalman filter which is a discrete time filtering
algorithm. The UKF utilizes the unscented transformation for computing approxi-
mate solutions to the filtering problems.

A general framework for state estimation based on the UKF for this state space
model is presented as follows:
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In the first step, the initial values for the state and covariance estimation have to be
set. Following this, the recursive estimation is performed by the prediction and
correction steps. Within the prediction step, a priori state and covariance estimation
utilizing the process model is performed. Using the unscented transformation, a set
of sigma points are chosen. These sigma points characterize the current probability
density function. Each point from the sigma matrix is propagated through the
process model to calculate the estimations of state variables and the error covariance.
Following this, a correction step is preformed when a measurement is received. This
leads to the estimations of the filtered state variables and the filtered error covariance
by calculating the Kalman gain.

The UKF has been used in various fields for non-linear sate estimations. However
a couple of alternative approaches have emerged over the last few years, namely, the
ensemble Kalman filter (EnKF) and the cubature Kalman filter (CKF) which are
widely used when the process model is of extremely high order and non-linear, the
initial states are highly uncertain and a large number of measurements are available
[16, 17].

Similar to the UKF, the EnKF and CKF select a set of sample points (sigma
points) in order to deal with the non-linearity of the system. In high-dimension
systems, the weights of the sigma points in the UKF are prone to be negative, leading
to low estimation accuracy.

In EnKF the error covariances are estimated approximately using an ensemble of
model forecasts. The main concept behind the formulation of the EnKF is that if the
dynamical model is expressed as a stochastic differential equation, the prediction
error statistics, which are described by the Fokker–Plank equation, can be estimated
using ensemble integrations, and the error covariance matrices can be calculated by
integrating the ensemble of model states [16].

The cubature Kalman filter uses the spherical–radial cubature rule to generate
some weighted sampling points to approximate integral in Bayesian estimation. A
brief overview of the unscented Kalman filtering and sigma point filtering in general
are given by van der Merwe [18].

3 Application of Kalman Filters in Bioprocess Monitoring

Here 41 recent published articles [19–60] in the period of 1991–2020 on application
of the Kalman filter and its extensions for state and parameter estimation in
bioprocesses are discussed. Due to space limitation, only some of the reported
articles are presented in Table 1. The table is organized by classifying the articles
into different categories, which include the type of the Kalman filter and the applied
process model, the type of microorganism and the cultivation process mode, the
measured process variable(s) and the objective of the filtering algorithm. This table
would help understanding how the Kalman filter was explored chronologically to
date. It should be mentioned that in some works more than one Kalman filter
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Table 1 Extended Kalman filter application for cultivation processes

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

Extended
Kalman fil-
ter/experi-
mental
application

Batch cultiva-
tion/E. coli

Dissolved
oxygen mass
balance

Noise filtering
from
dissolved
oxygen
measurements

Dissolved
oxygen

Lee et al.
[19]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Material bal-
ance equation
with Monod
growth rate
kinetics

Parameter
estimation and
substrate
prediction

Glucose con-
centration with
FIA

Hitzman
et al. [32]

Kalman fil-
ter/experi-
mental
application

Batch cultiva-
tion/
S. cerevisiae

Ideal stirred
tank reactor
model with
Monod
growth kinet-
ics (glucose
and ethanol as
limiting
substrates)

Noise filtering
from
predicted
bioprocess
variables

Biomass, glu-
cose, and eth-
anol (with
ultrasonic
velocity)

Cha and
Hitzmann
[36]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

A model for
an ideal
stirred tank
reactor in
combination
with Monod
growth
kinetics

Noise filtering
from
predicted
glucose

Glucose con-
centration with
flow injection
analyses (FIA)

Arndt and
Hitzmann
[37]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Cybernetic
model of
Jones and
Kompala

Filtering out
noise from the
feed stream

Dilution rate
or the gas–liq-
uid mass
transfer coeffi-
cient for
oxygen

Patnaik
[39]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/E. coli

General
dynamic
model of bio-
reactors with
Monod
growth
kinetics

Parameter
estimation and
biomass
prediction

Dissolved and
exhaust oxy-
gen and car-
bon dioxide

Rocha
et al. [40]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
Bordetella
pertussis

A model with
two parame-
ters which are
calculated
using separate
experiments

Estimation of
specific
growth rate,
biomass, and
oxygen mass
transfer

Dissolved
oxygen

Soons
et al. [42]

(continued)
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Table 1 (continued)

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

Unscented
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
hybridoma cell
culture

Overflow
metabolism
model

Noise reduc-
tion from
predicted
values

Predicted spe-
cific uptake
and produc-
tion rate

Henry
et al. [41]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Ideal stirred
tank reactor
model with
Monod
growth
kinetics

Parameter,
biomass, and
glucose
prediction

Glucose con-
centration with
FIA

Klockow
et al. [43]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/E. coli

General
dynamic
model of bio-
reactors with
Monod
growth
kinetics

Estimation of
biomass, glu-
cose, and
acetate

Dissolved
oxygen and
carbon dioxide

Veloso
et al. [44]

Unscented
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod
growth
kinetics

Estimation of
biomass and
substrate
concentrations

Dissolved
oxygen and
carbon dioxide

Jianlin
et al. [46]

Unscented
Kalman fil-
ter/
simulation

Fed-batch/
hybridoma cell

Material bal-
ance equation
with Monod
growth
kinetic

Prediction of
acetate and
glucose
concentration

Biomass and
dissolved
oxygen

Dewasme
et al. [48]

Extended
Kalman fil-
ter/
simulation

Batch cultiva-
tion/
S. cerevisiae

Unstructured
model for
alcoholic fer-
mentation
with
immobilized
cells using
Monod
growth
kinetics

Estimation of
product, sub-
strate, and
biomass
concentrations

Glucose and
ethanol

Popova
et al. [49]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod

Estimation of
substrate and
biomass
concentrations

Substrate and
biomass con-
centration with
NIR
spectrometer

Krämer
and King
[54]

(continued)
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algorithm are examined. More detailed description of each category for all publica-
tions is presented in the following part of this section.

3.1 Type of Kalman Filter

According to the type of Kalman filter algorithm, the literature presented indicates
there exist a considerable number of articles on implementation of EKF for state and
parameter estimation. More than 60% of the applications (28 articles) have
implemented EKF algorithms for their process. This is due to the fact that the
cultivation process of microorganisms is a complex non-linear biochemical process
and the EKF is a well-known state estimation method for non-linear systems. The
linear Kalman filter which is almost exclusively used for state estimation in linear
systems have also been used by some authors (3 articles). Although the EKF shows
good prediction results and is widely used in literature, it presents some disadvan-
tages. It is reliable for systems which are almost linear on the time scale of the update
intervals; it requires the calculation of Jacobians at each time step, which may be
difficult to obtain for higher order systems; it does linear approximations of the
system at a given time instant, which may introduce errors in the estimation, leading
then the state to diverge over time [9, 15]. For instance, in continuous or fed-batch

Table 1 (continued)

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

growth
kinetics

Unscented
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
with Monod
growth
kinetics

Biomass and
specific bio-
mass growth
rat estimation

Oxygen
uptake and
CO2formation
rate

Simutis
and
Lübert
[55]

Sigma point
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod
growth
kinetics

Estimation of
substrate and
biomass
concentrations

Substrate and
biomass con-
centration with
NIR
spectrometer

Krämer
and King
[57]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Material bal-
ance equation
with Monod
growth rate
kinetics

Ethanol pre-
diction and
state
estimation

Temperature,
do and sub-
strate
concentration

Lisci and
Tronci
et al. [60]
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cultivations, despite continuous supply by a feed, the substrate concentration can
drop to zero as the cell takes it up very fast. In such cultivations, linearization in the
time and measurement update can lead to significant inaccuracies in the process,
while the EKF assumes a certain probability for substrate concentrations below zero,
even though this is physically impossible [54]. Therefore in recent years, application
of other non-linear extensions of the Kalman filter is used. For example, Fernandes
et al. [54] have implemented an UKF algorithm in order to estimate glucose and
glutamine from biomass, lactate and ammonia measurement during fed-batch culti-
vation of hybridoma cells. The predictions were compared to the ones obtained with
an EKF; they have reported the UKF achieves better level of accuracy. Krämer and
King [57] have implemented a UKF in fed-batch cultivation of S. cerevisiae for
noise filtering from predicted biomass values with NIR spectrometer. In another
study, the same authors [54] have implemented an EKF for the same process. The
authors have reported accurate predicted values in both studies; however there is no
comparison between the two methods. Other types of the non-linear Kalman filtering
method have also been reported in literature. Zhao et al. [53] have implemented a
CKF for incorporating delayed measurements of biomass, substrate, and product
concentration in fed-batch cultivation for penicillin production. Bavdekar et al. [47]
have implemented an EnKF for overcoming delayed measurements of biomass,
substrate and ethanol concentration in fed-batch cultivation of S. cerevisiae.
Addressing the same delay problem Klockow et al. [43] complemented a ring buffer
by an EKF and got satisfied results.

In order to indicate which Kalman filter extension describes the process better,
numerical simulation runs are required. According to this perspective, a closer look
to the presented articles indicates that most studies (31 articles) had relied on
practical applications and simulation studies have been reported only 12 times.

3.2 Microorganism

Regarding the type of microorganism, the articles show that the majority of the
research has focused on applying the Kalman filter or its extensions for state or
parameter estimation during the cultivation of S. cerevisiae (19 articles) and E. coli
(7 articles). The importance of these microorganisms for the biopharmaceutical
industry is widely recognized, as E. coli and S. cerevisiae are the most important
host microorganism used to produce recombinant proteins [58]. In addition,
S. cerevisiae is also widely used for the production of the backers yeast as well as
wine and beer. Only a few articles demonstrate state estimation in the cultivation
process of other microorganisms. For instance, some authors have implemented state
estimation methods for prediction of substrate and product concentration during
cultivations of Candida utilis [30], Penicillium chrysogenum [46, 53] and
Kluyveromyces marxianus [34].
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3.3 Cultivation Mode

From an operational point of view, cultivation of microorganisms can be performed
in batch, fed-batch and continuous modes. In fed-batch cultivation modes, set point
control of the substrate concentration by manipulating the input flow rate is a matter
of particular economic and scientific interest. In order to have an efficient control
system, sufficient knowledge about the process state variables is required, which can
be achieved by the state estimation methods such as the Kalman filter or its
extensions. Therefore, previous studies have almost exclusively focused on the
application of state estimation methods for fed-batch cultivations (34 publications).
However, online monitoring and estimation of state variables in batch cultivations is
also crucial in order to monitor the state and if necessary may improve it to achieve
high productivity over the process. For instance, controlling the level of dissolved
oxygen (DO) in the fermentation broth, effects the rate of microbial metabolism.
Accordingly, Lee et al. [19] have implemented an EKF for noise filtering of
dissolved oxygen measurements which were used for controlling the DO levels in
batch cultivation of E. coli. This approach and, more generally, online monitoring
and state estimation of variables in batch cultivations remain briefly addressed in the
literature.

3.4 Bioprocess Phase

Mixing of medium and pre-cultures are performed during upstream processing phase
and separation and purification of the product from biomass is performed during the
downstream processing phase. In order to optimize cell growth and maximize the
product yield, online monitoring and a tight control is required during both phases.
The presented articles show there have been numerous studies to investigate the
application of state estimation methods during the cultivation phase (39 papers).
However, the articles indicate that only two authors had examined the application of
Kalman filtering methods for state and variable estimation in downstream
processing. For efficient and robust process development in the downstream
processing phase, knowledge of the location and concentration of the product and
key contaminants is also crucial. Holwill et al. [28] have used a low technology
detection system involving the measurement of rate of change of absorbance at a
single wavelength after addition of reagent to a representative sample stream. This
provided online data detailing the performance of a continuous precipitation process.
This information as well as a mathematical model which describes the fractional
protein perception were fed into a control algorithm which was programmed to
maintain predefined set points by feedback control through adjustments to the
overall feed saturation. The Kalman filter was used for estimating the parameters
of the model. Feidl et al. [59] developed a state estimation procedure for estimation
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of antibody concentration by combining information coming from kinetic model and
a Raman analyser, in the frame of an extended Kalman filter approach (EKF).

3.5 Measurement Device

An overview of measurement devices that are appropriate for the operation of
bioprocesses is presented by Sonnleitner [61]. More specific details of different
types of sensors and their measurement principles can be found in literature
[62, 63]. The literature presented indicate that in E. coli cultivation, most authors
have employed DO and CO2 measurements from the exit gas or glucose measure-
ments using flow injection analysis as the measurement in the Kalman filter algo-
rithm. On the other hand, in S. cerevisiae cultivations, besides DO, CO2 and glucose
measurements, biomass measurements have also been widely applied. For example,
Dewasme et al. [48] applied biomass measurements for their KF during an E. coli
cultivation.

3.6 Process Model

According to the articles presented, the general mass balance equations are the most
common mathematical approach used for describing the process in state observing
algorithms. An overview of typical models applied to bioprocesses is presented by
Chhatre [64]. A wide variety of growth kinetics are developed for modelling of
particular bioprocesses. The Monod growth model [65] is the most applied method
for calculating the growth kinetics of microorganisms; it corresponds to a rational
function in which the specific growth rate μ is only a function of a single limiting
substrate concentration and is subjected to substrate saturation when S � Ks.

μ ¼ μmax
S

Ks þ S
ð18Þ

where μmax is the maximum specific growth rate, Ks is the Monod half-saturation
constant, and S is the concentration of the limiting substrate. In the mentioned
articles, all of the authors, which were growing S. cerevisiae and E. coli, have
implemented the Monod growth kinetics. A modified Monod model was applied
by Patnaik [35, 38] which is described in detail by Henson and Seborg [66] or Jones
and Kompala [67]. Application of other methods for calculating the growth kinetics
such as the Contois growth model [68] has also been reported. A feature of the
Contois growth model is that growth rate depends upon the concentrations of both
substrate and cell mass with the consequence that an inhibition is present at high cell
concentrations. This growth kinetic has been implemented in a process model
describing the growth behaviour of Penicillium chrysogenum in fed-batch
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cultivations. A modified Contois model was applied by Jianlin et al. [48] and Zhao
et al. [53] in an UKF and CKF algorithm for biomass and substrate prediction,
respectively. The growth rate can also be represented by artificial neural networks.
However this kind of models is not applied often in combination with a KF. Zorzetto
and Wilson [27] have applied a hybrid model in an EKF algorithm which is based on
the theory of limited respiratory with using artificial neural network for predicting
the growth rates during fed-batch cultivation of S. cerevisiae.

Most of the process models which are reported in literature and are used in the
Kalman filter algorithms are considered to be ideal stirred tank reactors, whereas
production-scale operations are corrupted by noise. This problem is more sever in
large-scale operations than in laboratory-scale fermentations [35]. This can describe
why all applications of state estimation methods presented in Table 1 are performed
in laboratory-scale bioreactors (most cultivations are performed in a 2–5 L bioreactor
and one cultivation [57] have been performed in a 22 L bioreactor).

4 An Extended Kalman Filter for the Monitoring of a Yeast
Cultivation

The integration of gas sensor array data in a non-linear state estimator has not been
discussed previously in the literature. Yousefi-Darani et al. [69] have designed and
implemented a model-based calibrated gas sensor array for online measurement of
ethanol concentration in batch cultivation with the yeast S. cerevisiae. However the
predicted values are only available every 5 min. Therefore in this work, in order to
have continues values of ethanol concentration as well as the values of biomass,
glucose and the maximal growth rates, we have implemented an EKF. In addition,
the whole estimation producer could be considered as a digital twin of the baker’s
yeast batch cultivation process, which could be used for process optimization and
control.

4.1 The Cultivation Process

The cultivation of Saccharomyces cerevisiae (fresh baker’s yeast, Oma’s Ur-Hefe)
was carried out in a 2.5 L bioreactor (Minifors, Infors HT, Bottmingen, Switzerland)
with a vessel of stainless steel working volume of 1.35 L equipped with a temper-
ature (set point of 30�C) and pH (set point pH ¼ 5) control unit. The aeration and
agitation rates were kept constant at 3.5 L min�1 and 500 rpm, respectively. For the
pre-culture, 5 g of the baker’s yeast was suspended into 100 mL medium containing
0.34 g L�1 MgSO4�7H2O, 0.42 g L

�1 CaCl2�2H2O, 4.5 g L
�1 (NH4)2SO4, 1.9 g L

�1

(NH4)2HPO4, 0.9 g L�1 KCl. The inoculation was performed after 10 min of
shaking. The same medium supplemented with glucose to a final concentration of
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5 g L�1 as well as 1 mL L�1 trace elements solution (0.015 g L�1 FeCl3�6H2O,
9 mg L�1 ZnSO4�7H2O, 10.5 mg L�1 MnSO4�2H2O, and 2.4 mg L�1 CuSO4 5H2O)
and 1 mL L�1 vitamin solution (0.06 g L�1 myoinositol, 0.03 g L�1

Ca-pantothenate, 6 mg L�1 thiamine HCl, 1.5 mg L�1 pyridoxine HCl, and
0.03 mg L�1 biotin) was used for the cultivation. The experimental setup is
presented in Fig. 2.

4.2 EKF Algorithm

The EKF uses discrete measurements of ethanol from the gas sensor array and
estimates continuous online values of ethanol, biomass and glucose concentrations
as well as the maximal growth rates in S. cerevisiae batch cultivation. A detailed
description of the working principle of the EKF is presented in Sect. 2.2.

The EKF was implemented using the software Matlab® 2019a (version 9.6.0); the
“Symbolic Math” toolbox (version 8.3) was used to calculate the estimation error
covariance differential equation matrix (25 equations). For all calculations, a normal
office PC (Intel Core® i5 8,500 with 8 GiB of RAM) with Window 10 was used. For
the simulation, the system of in total 30 (5 + 25) differential equations was solved
numerically using the explicit, Runge–Kutta-based ode45 method from Matlab. The
Matlab code can be found in the appendix.

Gas sensor array 
and sampling
system

On-line gas
sampling outlet

H2SO4

off-line
sampling port

Temperature
probe

NaOH

Air inlet

Bioreactor 
control unit

Bioreactor 

PH probe

S�rrer

Fig. 2 Overview of the experimental setup
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4.3 Online Ethanol Measurements

The online ethanol measurements were performed in a self-developed system
equipped with commercially available metal oxide semiconductor (MOS) gas sen-
sors (TGS 822, TGS 813 and MQ3). The sensors were located in a measuring
chamber with a volume of 250 mL and operated in two cycles: a measurement
cycle and a washing cycle. During the measurement cycle, the headspace gas was
pumped into the measurement chamber for 10 s at a flow rate of 400 mL min�1 with
a diaphragm pump (Schwarzer Precision, Essen, Germany). Then the chamber was
flushed by pure oxygen for regeneration. A peak-shaped measurement signal is
obtained, which was evaluated by using a chemometric model, which is described
in detail in the literature [69]. Therefore, every 5 min a new ethanol measurement
value is used by the Kalman filter. Figure 3 presents a schematic diagram of the
online ethanol measurement system and the EKF for continuous state variables and
parameter estimation.

Note that the EKF was carried out after the experiments were performed. The
results, however, carry over to a true online application where the data is not
analysed or modified in retrospect.

Con�nues predicted process 
state & parameters

Ethanol [g L
-1

] (every 5 min)

State variables 
Es�ma�on error covariances

Filtered

values

Estimated

values

if no measurment

is avalable

if new measur ment

is avalable

Raw 
signals

Flow meter

Micro controller
(ADC)

Oxygen

signal
pre-processing

PCAchemometric 
model

feature 
extrac�on

Pre-processed signal

Peak height & area

First principle component

Extended Kalman filter

On-line ethanol predic�onSampling system and gas sensor array

Off gas

Pump Gas out

Biomass [g L
-1

]

Ethanol [g L
-1

] 

Glucose [g L
-1

] 

max, G [h
-1

]

max, E [h
-1

]

Bioreactor

Fig. 3 Schematic diagram of the online ethanol measurement system and the EKF for continuous
state variables and parameter estimation
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4.4 Offline Measurements

For offline analysis, samples were regularly taken from the bioreactor and placed in
pre-weighed and pre-dried micro centrifuge tubes. For biomass determination, the
sample without supernatant were dried for 24 h at 103�C and after cooling for 30 min
weighed. Using the filtrated supernatant (pore size filter, 0.45 μm, polypropylene
membrane, VWR, Darmstadt, Germany), glucose and ethanol were determined by
HPLC (ProStar, Variant, Walnut Creek, CA, USA); injection of 20 μL into a Rezex
ROA-organic acid H+ (8%) column (Phenomenex, Aschaffenburg, Germany) and
operated at 70�C with 5 mM H2SO4 as an eluent at 0.6 mL min�1

flow rate; software
GalaxieTM Chromatography (Varian, Walnut Creek, CA, USA). The offline values
were not used during the estimation of the state variables and are only taken to show
that the estimates are accurate.

4.5 State Equations of the Cultivation Process

As bioreactor an ideal stirred tank reactor was assumed. As state variables, the
biomass, glucose and ethanol concentrations as well as the maximal specific growth
rate on glucose and ethanol were applied. Therefore, the following state equations
are obtained:

d
dt

X

G

E

μmax ,G

μmax ,E

2
6666664

3
7777775
¼

μG þ μEð ÞX
� μG
YGX

X

μG
YGE

� μE
YEX

� �
X

0

0

2
6666666664

3
7777777775

ð19Þ

were μG and μE are given as

μG ¼ μmax ,G ∙G
KG þ G

ð20Þ

μE ¼ μmax ,E ∙E
KE þ E

∙ 1� μG
μmax ,G

� �2

ð21Þ

As one can see from the state equation, the Kalman filter is used to estimate the
maximum specific growth rate on glucose μmax, G and on ethanol μmax, E. The
importance of the specific growth rate for the assessment of a cultivation is discussed
by Galvanauskas et al. [70].
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The extension to the ordinary Monod model for μE is applied, so that the
transformation from glucose consumption to ethanol consumption is modelled. In
Tables 2, 3, and 4 the parameters of the model as well as the initial values for the
state equations and the initial values of the estimation error covariance are presented.

The Matlab code as well as the measured off- and online data of this example can
be found in the appendix.

4.6 Results

In Fig. 4 the online and offline measured values of ethanol, the offline measured
values of biomass and glucose as well as all the Kalman filter estimated values of all
three bioprocess variables can be seen.

Figure 4 indicates the typical diauxic growth pattern of baker’s yeast on glucose
is obtained. First the glucose is consumed and biomass and ethanol are produced,

Table 2 Parameter values used for the simulation model

Parameter Value Description

KG 0.1 gL�1 Monod constant glucose

KE 0.1 gL�1 Monod constant ethanol

YGX 0.17 gg�1 Conversion factor glucose to biomass

YGE 0.46 gg�1 Conversion factor glucose to ethanol

YEX 0.6 gg�1 Conversion factor ethanol to biomass

Table 3 Initial conditions for the extended Kalman filter

Parameter Value Description

Xt ¼ 0 2.4 gL�1 Initial biomass
concentration

Gt ¼ 0 5.0 gL�1 Initial glucose
concentration

Et ¼ 0 0.1 gL�1 Initial ethanol
concentration

μmax, G 0.14 h�1 Initial maximal
growth rate on
glucose

μmax, E 0.07 h�1 Initial maximal
growth rate on
ethanol

Pt ¼ 0 0:02 g2L2 0 0 0 0

0 0:02 g2L2 0 0 0

0 0 0:02 g2L�2 0 0

0 0 0 0:02 h�2 0

0 0 0 0 0:02 h�2

0
BBBBBB@

1
CCCCCCA

Initial estimation
error covariance
matrix
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then ethanol is converted to biomass. The offline measurements and its
corresponding estimated values fit quite well together as can be seen in Table 5.

The root mean squared error of prediction (RMSEP) of glucose is 0.12 g L�1. The
ethanol offline values during glucose consumption are mostly higher than the online
measured and the predicted ones; in overall their RMSEP is 0.14 g L�1. All ethanol
online measurements seems to be a little bit shifted in time compared to the offline
values, which might indicate the time delay due to gas transport from the fermen-
tation broth through the headspace of the reactor to the measurement system. The
biomass has a RMSEP of 0.12 g L�1, but the highest deviation can be seen shortly
after ethanol is used as substrate. The values shortly before ethanol consumption
might not be predicted accurately, because the model describing the switching from
glucose to ethanol might be suboptimal.

In order to investigate the influence of the measurement frequency on the
performance of the EKF, we decreased the measurement frequency of the online
ethanol measurements to one per hour. The results of the estimated values with the
EKF are presented in Fig. 5.

Still the overall behaviour of the estimated values is the same. However, the
sampling frequency has an influence on the corrections of the estimated state during
filtering. Larger step changes are observed in the estimated values whenever a new
measurement is available. However, even if the sampling frequency is changed to
one per hour, the overall behaviour is predicted well.
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Fig. 4 Online and offline values for biomass, glucose and ethanol as well as EKF estimates for
these values

Table 5 Prediction error of
EKF values compared to
offline measurements

Glucose Ethanol Biomass

RMSEP 0.12 g L�1 0.14 g L�1 0.12 g L�1

Error 5.6% 2.8% 6.2%

R2 0.96 0.99 0.97
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Obviously with a higher sampling frequency, these step changes are smaller.
Nevertheless, with a 5 min sampling time, the EKF was able to follow the true states
of the system with a reasonably small error. More detailed information about the
influence of the sampling frequency on the accuracy of the Kalman filter estimates
can be found in literature [71, 72].

The EKF was also used for predicting the specific growth rates and their maxi-
mum values.

In Fig. 6 the estimated maximum specific growth rates with respect to glucose
μmax, G and ethanol μmax, E as well as specific growth rates itself (μG and μE for
glucose and ethanol respectively) are presented.

After inoculation, the specific growth rate and its maximum value with respect to
glucose are increasing from 0.14 h�1 to more than 0.18 h�1. However shortly
thereafter they decrease again. This indicates the high sensitivity of the estimation
values due to the measurement noise variance R and the process noise variance with
respect to μmax, G, which is Q [4]. The smaller the R and the higher the Q [4], the
more the estimated values will rely upon the measurements and as a consequence the
filtered values might be changed, if the measured and estimated values deviate from
each other. The more glucose is consumed, the larger will be the difference of μmax, G
and μG, due to the Monod growth kinetics. If the glucose is almost depleted, the
extension to the Monod model on ethanol contributes to increasing growth on
ethanol. Shortly after 2 h cultivation time, the transition from glucose to ethanol as
substrate takes place. The maximum specific growth rate on ethanol μmax, E, which
has not changed during the growth on glucose starts to increase. According to the
typical Monod behaviour, before ethanol is depleted, due to the low substrate
concentration, μmax,E should be almost constant while μE should be increasing.
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Fig. 5 Online (every 1 h) and offline values for biomass, glucose and ethanol as well as EKF
estimates for these values
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However this is not observed in Fig. 6 which is due to the fluctuation of the measured
and estimated ethanol concentration.

5 Conclusion

In this chapter, the working principles as well as an overview of Kalman filter
applications for state and parameter estimation in bioprocesses has been presented.
Regarding the type of the Kalman filter, since most biotechnical processes are
non-linear, non-linear versions of the Kalman filter, specifically the EKF, are
the most applied algorithm among other extensions of the Kalman filter. However
the UKF is getting attention in recent years. The results in literature indicate that the
UKF algorithms deliver more accurate estimates of the parameters and state vari-
ables compared to EKF algorithms.

In spite of the apparent success of Kalman filters for state and parameter estima-
tion in lab-scale bioreactors, the integration of Kalman filters into industrial systems
is not very widespread while most of the process models mentioned in literature
consider noise-free ideal fermentations, whereas production-scale operations are
corrupted by concentration gradients and disturbance. Accordingly, more efforts
are required towards performing simulation studies in order to model and validate
proper mathematical models associated with complex non-ideal bioprocesses.

Despite the numerous examples on state estimation methods for biotechnological
processes in literature, the research on implementing Kalman filters for state
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118 A. Yousefi-Darani et al.



estimation in downstream processing remain rather limited. The advancement in
state and parameter estimation methods in downstream processes leads to better
knowledge of the location and concentration of the product and key contaminants,
which are essential for process optimization and control.

So far most of the Kalman filter algorithms are implemented for monitoring
fed-batch cultivations; however more attention is required for real-time implemen-
tation of the Kalman filter algorithms for controlling the feed rate and substrate
production in these cultivations. Further efforts are also required towards implemen-
tation of state estimation methods in batch and continuous cultivations.

From the presented literature, it could be concluded that the non-linear extensions
of the Kalman filter are powerful tools for state estimation in bioprocesses; therefore
they could be used for digitalization of bioprocesses. Accordingly, in a case study, a
digital twin of the baker’s yeast batch fermentation process was developed by using
a dynamic non-linear model of the process as well as an EKF algorithm. The
proposed method gives the possibility to predict glucose, ethanol and biomass
concentrations simultaneously from the only available infrequent online measure-
ments of ethanol concentration. The accuracy of the estimated biomass and substrate
production are in line with other studies which have also implemented an EKF
algorithm for monitoring the baker’s yeast cultivation [32, 49]. However, in our
application the maximal specific growth rates on glucose and ethanol are also
estimated. As a consequence, the rapid and precise estimation of these variables
could increase the overall knowledge integration in the digital twin of the process.

Overall, the unique advantage of online monitoring and in general digital twins of
bioprocesses is that they could play critical roles in bioprocess development such as
supporting problem solving in manufacturing, reducing effort in setting up a control
strategy and accelerating process performance by taking corrective actions automat-
ically and in real time.

Appendix

Extended Kalman filter Matlab code: Online state prediction of batch yeast cultiva-
tions based on ethanol gas sensors.

%Initialization
clear; close all; clc;
sympref('AbbreviateOutput', false);
%Variable and parameter definition
%Symbols for symbolic math calculations
syms G E X P t real
syms Y_gx Y_ge Y_ex mu1 mu2 K_M_G K_M_E real
%Variables / Parameters
initX = [2.5; 6; 0.2; 0.15; 0.08]; % initial state (Biomass,
% Glucose, Ethanol)
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initP = diag([0.1,0.02, 0.02,0.2,0.02]); % initial process estimation
% covariance matrix
init = [initX; initP(:)]; % combined initial value
%vector
% for the odesolver
H = [0 0 1 0 0] % observation matrix
H = 1	5

0 0 1 0 0
Q = diag([0.001,0.001,0.001,0.001,0.001]) % process noise covariance
%matrix

R = 0.05 % measurement noise
%covariance matrix
K1 = 0.1; % Monod konstant glucose
K2 = 0.1; % Monod konstant ethanol

%estimated parameter values
Ygx =0.15; % Yield glucose -> biomass
Yge =0.34; % Yield glucose -> ethanol
Yex =0.43; % Yield ethanol -> biomass
%Process model
%Monod terms
mue1 = mu1*G / (G+K_M_G);
mue2 = mu2*E / (E+K_M_E) * (1 - mue1/mu1);
%Model OD
dS = sym(X * [...

( mue1 + mue2) ;... % Biomass
-mue1/Y_gx ;... % Glucose
( mue1/Y_gx*Y_ge - mue2/Y_ex) ;... % Ethanol
0; % mue1
0; % mue2
]);

%Jacobian of Model with respect to state variables
F = jacobian(dS,[X,G,E,mu1,mu2])
P matrix
P = sym('P',[5,5])
dP = F * P + P*F'+Q
%Simulation / State prediction and filtering
%Replace all symbolic parameters with their respective numeric values
F = subs(F, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
dS = subs(dS, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
dP = subs(dP, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
%Assemble all differential equations into a vector of 12 elements
%(3x state, 9x P)
OdeSys = matlabFunction([dS(:);dP(:)],'Vars',{t,[X; G; E; mu1; mu2;
P(:)]});
%load measurement values from file:

load BC2_eth_pred.mat % Ethanol sensor
%measurements
load BC2.mat % Offline values for

%Simulate the process from one ethanol gas measurement time to the next:
t0 = 0;
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MC = zeros(0,5); %store filtered states in these variables
SimState = zeros(0,5);
SimTime = [];
for i = 1:numel(timeE)

tspan = [t0 timeE(i)];
[T,state] = ode45(OdeSys, tspan, init); % simulate / solve model

PS = state(end,1:5)'; % predicted state

MS = ME(i); % measured state
P = reshape(state(end,6:end),5,5); % process covariance

% matrix
K = P*H'/(H*P*H'+R); % kalman gain matrix
FS = PS + K * (MS-PS(3)); % filtered state
Pfilt = P-K*H*P ; % filtered process

% covariance matrix
init = [FS; Pfilt(:)]; % new initial condition
t0 = timeE(i); % new starting time for

% next iteration
% Save intermediate states for plotting

MC = [MC;FS'];
state(end,1:3) = NaN;
SimState = [SimState; state(:,1:5)];
SimTime = [SimTime; T];

end
%Results
%Plot the results in a presentable figure and save file to disk
f = figure("Position",[0,0,1600,640]);
subplot(1,2,1);
h = plot([0,time'],[initX(1:3)';M],'.','MarkerSize',20); % Plot
%measurements
set(h, {'color'},{'r'; 'g';'b'}); hold on;
h = plot(SimTime,SimState(:,1:3)); % Plot simulated values
set(h, {'color'}, {'r'; 'g';'b'});
plot(timeE,ME,'+b','MarkerSize',8); hold off; % Plot ethanol gas sensor
%values
ax = gca;
ax.FontSize = 14;
ax.FontName = 'Times';
ax.Position = [.05 .1 .4 .85];
ax.ActivePositionProperty = 'outerposition';
ax.GridLineStyle =':';
ax.GridAlpha = .7;
xlabel('time $/h$','interpreter','Latex',"FontSize",16);
ylabel('concentration $/\frac{g}{L}
$','interpreter','Latex',"FontSize",16); ylim([0 8]);
grid on; box off; grid(gca,'minor');
legend('Biomass offline','Glucose offline','Ethanol offline','Biomass
Kalman','Glucose Kalman','Ethanol Kalman','Ethanol gas
sensor','interpreter','Latex',"FontSize",12,"Color",[.9 .9 1 .9]);
subplot(1,2,2);
h = plot(SimTime,SimState(:,4:5)); % Plot mu values over time
ax = gca;
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ax.FontSize = 14;
ax.FontName = 'Times';
ax.Position = [.55 .1 .4 .85];
ax.ActivePositionProperty = 'outerposition';
ax.GridLineStyle =':';
ax.GridAlpha = .7;
ytickformat('%.2f')
set(h, {'color'}, {'r'; 'k'});
xlabel('time $/h$','interpreter','Latex',"FontSize",16);
ylabel('$\mu$ value $/\frac{1}{h}
$','interpreter','Latex',"FontSize",16);
grid on; box off; grid(gca,'minor');
legend('$\mu_1$','$\mu_2
$','interpreter','Latex',"FontSize",12,"Color",[.9 .9 1]);
annotation("arrow",[.55 .97],[.1 .1])
annotation("arrow",[.05 .47],[.1 .1])
annotation("arrow",[.05 .05],[.1 .98])
annotation("arrow",[.55 .55],[.1 .98])
saveas(f,'KalmanPred.svg','svg'); % save copy of figure to file

%Calculate Errors
SimTime = SimTime + ((1:numel(SimTime))*1e-10)';
SimValues = interp1(SimTime,SimState(:,1:3),time);
SSE = sum((SimValues - M).^2);
RMSE = sqrt(SSE/numel(time));
SQT = sum((M-mean(M)).^2);
RSq = 1-SSE./SQT;
T1 = table('Size',[3,3],'VariableTypes',
{'double','double','double'},'VariableNames',
{'Biomass','Glucose','Ethanol'},'RowNames',{'RMSEP','Error
%','R²'});
T1(1,:) = num2cell(RMSE);
T1(2,:) = num2cell(SSE./(max(M)-min(M))*100);
T1(3,:) = num2cell(RSq)
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Abstract The concept of digital twins has become increasingly popular in recent
years. To exploit their full potential, integration of systems and data across entire
value chains is required. Implementing digital twins to newly built plants or pro-
duction lines is challenging and even more complicated for currently operating
production processes or factories. This chapter reviews and discusses strategies
and tools to successfully implement digital twins into operating value chains in
bioprocess and related industries. Furthermore, the implementation is exemplified
with three recent case studies.

Graphical Abstract

Keywords Digital twin management systems, Ecosystems, Operating value chains,
Standardization

1 Introduction

Industry 4.0 (I4.0), the new industrial revolution, refers to the emerging trends of
digitization concepts for industries such as bioprocesses, food production, and
operation value chains. Initiated by the German government, I4.0 comprises con-
cepts and respective initiatives for digitalization and conception of modern goods
manufacturing [1]. I4.0 includes various approaches to the digitization of new as
well as the existing production processes. One central concept is the Digital Twin,
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which represents the virtual copy of the existing physical objects [2], these physical
entities are also called assets. Academicians have abbreviated Digital Twin as DT
[2, 3]. DTs can represent almost any aspect of an associated asset, ranging from
highly aggregated information to a detailed description of its components and
performance; even simulation models of assets can be part of a DT. The final result
depends largely on the use cases, which are addressed with the DTs.

Applying DTs to newly built plants or production lines is challenging and even
more complicated in operating production processes or factories. Heterogeneous
processes have various requirements, which result in different obstacles in
establishing a working Digital Twin Management System (DTMS), used to integrate
different DTs. Plants and their processes often evolve, which leads to complexity.
Inhomogeneous and even incompatible systems result in connectivity problems and
imprecise interrelations. Following Rosen et al. [4], DTs are not just a collection of
virtual objects, but require interrelations, connections, and structure within a DTMS
to leverage the full potential.

Connectivity, modularity, and autonomy are key enablers of DTs [4]. They
improve process development, production planning, process intelligence, production
execution, and the individualization of products and equipment. DTs connect the
virtual networks and systems with the real world. Furthermore, full trackability and
traceability, which are essential for food safety, become feasible. Artificial intelli-
gence (AI)-enabled concepts and technologies lead to state-of-the-art production
concepts and the establishment of production intelligence. Finally, DTs, together
with a DTMS, support companies to prepare for the challenges of I4.0. Kritzinger
et al. [3] categorize a DT into a Digital Model and a Digital Shadow based on the
level of integration. DTs comprise an automatic data flow between physical and
virtual objects. Their functionality depends on the accuracy of the underlying
semantic description, the assignment of relevant information, and a well-designed
structure in the DTMS. Therefore, suitable techniques and standards must be
applied. For example, the Asset Administration Shell (AAS) is a domain-
independent standard of the German Platform Industrie 4.0, which specifies how
to construct DTs, namely their data models and their interfaces, that allow efficient
interaction in Industry 4.0 scenarios. It is being developed as a standardized software
interface of any physical assets.

This chapter explains the strategies and tools to implement DTs into operating
value chains or industrial processes and demonstrates its successful implementation
with three case studies by analyzing the value chain, corresponding stakeholders,
and the process as well as the primary infrastructure. From the initial step with an
analysis of the stakeholder and DT goals to the final implementation, the chapter
includes all necessary steps for successful execution. Figure 1 provides a graphical
overview of the general implementation pathway which is outlined in the different
sections of this chapter.

Notably, the status quo associated with the development of the future desired
digitalized structure (DTs and DTMS) is illustrated. A physical model (physical
picture) and a data model (virtual picture) of the considered value chain are also
included showing the interrelations and interfaces among stakeholders. The physical
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Fig. 1 Step-by-step process of implementing digital twins into an operating production or value
chain
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model includes the original equipment such as machines, sensors, and actuators as
physical assets. The data model represents the advancement and comprises all data
points that can be acquired from the relevant components of the physical production
process. It also includes all management systems in the operating production process
that are part of the DTMS. Notably, the data model also consists of the individual
order of the DTs. In addition, this chapter reviews relevant standards that support the
establishment of an operating DTMS and highlights future opportunities.

2 Industrial Bioprocesses and Corresponding Value Chains

Biological transformation processes determine our daily life. Nature developed
various principles that are also applicable to industrial production processes. Process
engineers use different bioprocess-related, procedural techniques, e.g., fermentation,
to transform substrates to the desired consumer good. According to Liu [5],
bioprocesses are present in the following industrial areas: biomaterials, health,
biology, process industry, biofuel, and food. In particular, the production of food,
pharmaceuticals, and biotechnological goods requires elaborate bioprocesses.

For these reasons, bioprocesses are elementary parts of value chains. A value
chain adapts the production steps of a specific product to its ecosystem or the
company’s complete manufacturing process if only the corresponding parts of the
value chain are considered. In order to depict the industrial perspective in a reason-
able way, it is essential to evaluate the value chain as a whole. Thus, not only the
bioprocesses should be considered but all other unit operations involved. For the
production of bioproducts (e.g., food), several production steps are required. Exem-
plary processes in the food industry are the production of beer or yogurt, where
fermentations are fundamental for their production. This chapter outlines in Sect. 7
several case studies that belong to the food industry and corresponding logistics.

A complete overview of the production environment is necessary to guarantee
full interconnections of DTs within certain company areas or even among individual
companies. In particular, tracking and tracing must consider all elements of the value
chain.

3 Analysis of Operating Value Chains

A DTMS implementation usually starts with the value chain analysis of the associ-
ated ecosystem (Fig. 1). A value chain is analyzed by identifying the stakeholders,
the operating production lines, what physical and virtual components need to
comprise the DTMS, and the types of requirements. Subsequently, the use cases
and targets of the DTMS, including the interfaces and connections between the
stakeholders, need to be specified. Furthermore, the stakeholders’ technical and
virtual infrastructure must be analyzed. This helps in defining the process borders,

The Challenge of Implementing Digital Twins in Operating Value Chains 131



identifying the desired data points in the production process, and leading to overall
standardization. In-depth knowledge of these factors is necessary to create a big
picture of the entire structure of the DTMS (Fig. 2).

3.1 Stakeholders Analysis

Different stakeholders participate in the value chain and exert their influence. These
members or groups perform numerous tasks, are responsible for particular tasks in
the DTMS, and benefit from the system and associated tools. The stakeholder
analysis depends on environmental conditions such as regional requirements and
infrastructural conditions of a country (e.g., developing countries). The literature [6–
10] outlines several considerable requirements and provides approaches for
conducting a stakeholder analysis in compliance with the preexisting conditions.

Regarding a DTMS, stakeholders are distinguishable in company’s internal as
well as external groups. Internally, stakeholders include employees and managers
with a given responsibility (e.g., production manager, warehouse manager, and
quality manager). Externally, stakeholder groups consist of other companies (e.g.,
raw material suppliers), governmental organizations (e.g., food authorities), and
customers. Therefore, the following specific aspects must be considered for DTMS:

Fig. 2 Overview of value
chain analysis
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– Scope of the DTMS: Is it designed for internal purposes only, or will it also
involve the production processes of other companies in a business-to-business
solution (B2B)?

– What companies, associations, and authorities will take part in it?
– Who is involved in the production process in the company internally (e.g., quality

manager, operators, and logistics manager)?
– Is a business-to-customer (B2C) solution considered?

Following stakeholders’ identification and distribution of relevant tasks, a stake-
holder network is conceptualized. Figure 3 shows an exemplary bioprocess value
chain, relevant stakeholders, and associated tasks.

3.2 Use Case Specification

Use cases refer to specific application examples of the planned system (e.g., the
DTMS) and pursue specific goals. Additionally, they are ideal for testing the
functionality of the system and pave the way for further applications. However,
the actual reliability must be compared with all influencing parameters and always be
subjected to a critical review [11, 12]. Use cases comprise defined targets and
represent a system’s behavior according to the users’ requirements for reaching
those targets. These users are individuals or groups and represent stakeholders.
Each use case has distinct tasks and aims that must be achieved by applying a
specific procedure. Use cases indicate DTs’ responsibilities and are always named

Fig. 3 Sharing digital twin data with stakeholders in a Digital Twin Management Ecosystem and
corresponding tasks
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according to their primary goals. Concerning whole value chains, the product
trackability would be a model use case for implementing DTs. Besides, use cases
illustrate all likely scenarios when a stakeholder acts using the respective system.

Use cases for DT-based application scenarios are described for the current
situation (“As-Is”) or for the future (“To-Be”) and are designed with static (e.g.,
network diagrams) or dynamic (e.g., workflows) representations. They provide the
basis for deriving requirements and the subsequent solution design (software
development).

For defining use cases at a strategic and operational level, the following steps and
Fig. 4 describe a detailed systematic approach. This systematic approach provides a

Fig. 4 Process for identification, selection, and description of use cases
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comprehensive, condensed, multi-view, and consensual basis for quality-assured
requirements engineering as a basis for all subsequent tasks, from data modeling to
the development of DT-based software functions.

Step 1: Identification of Stakeholders and Use Cases

Based on a general understanding of the use cases, company internal stakeholders
as well as external stakeholders of the ecosystem are identified. They contrib-
ute to the methods described in the steps 2–9.

Methods: Virtual or face-2-face interviews, surveys, workshops with design
thinking, and creativity sessions

Results: Stakeholder table and use case characterization (short description)

Step 2: Definition of Strategic Business Impact for Use Cases

The current and future business impact for the identified use cases is analyzed.
Methods: Qualitative description and quantitative evaluation of strategic business

impact is analyzed within interviews and workshops. Hereby standardized
strategic issues (e.g. goals, benefits, and SWOT) and measurable criteria for
strategic ratings are used.

Results: Strategic use case business charter

Step 3: Prioritization and Selection of Focus Use Cases

The use case candidates from step 1 and 2 are prioritized based on the evaluation
results from step 2. Most attractive use cases are selected as focus use cases by
all stakeholders.

Methods: Prioritization and selection methods, e.g. scoring methods, AHP (ana-
lytic hierarchy process)

Results: Portfolio matrix and prioritized use cases

Step 4: Definition of Status Quo (As-Is) Use Cases – Static view of IT assets

Definition of a static IT network diagram of As-Is focus use cases showing all
relevant IT components (e.g., hardware, software), roles, actors, and their data-
input/output relations.

Methods: Design of a static use case entity-relationship-diagram
Results: Static IT network diagram: As-Is Use Case Representation

Step 5: Definition of Status Quo (As-Is) Use Cases – Dynamic view of IT assets

Development of a workflow diagram of As-Is focus use cases showing logical
sequence of activities of roles or actors, and their data input/output relations

Methods: Design of a use case specific workflow
Results: Dynamic IT workflow diagram: As-Is use case description

Step 6: Definition of Status Quo (As-Is) Use Cases – Data exchange view

Specification of data (e.g., data types, data attributes) exchanged by relevant
actors.

Methods: Interviews and workshops on further data concretization
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Results: As-Is data exchange table with detailed data specifications

Step 7: Definition of Future (To-Be) Use Cases – Static view of IT assets

Definition of a static IT network diagram of To-Be focus use cases (utilizing
Digital Twin) showing all relevant IT components (hardware, software), roles,
actors, and their data-input/output relations.

Methods: Design of a static use case entity-relationship-diagram
Results: Static IT network diagram: To-Be use case description

Step 8: Definition of Future (To-Be) Use Cases – Dynamic view of IT assets

Development of a workflow diagram of To-Be focus use cases (utilizing Digital
Twin) showing logical sequence of activities of roles or actors and their data
input/output relations

Methods: Design of a use case specific workflow
Results: Dynamic IT workflow diagram: To-Be use case description

Step 9: Definition of Future (To-Be) Use Cases – Data exchange view

Specification of data (e.g. data types, data attributes) exchanged by relevant
actors.

Methods: Interviews and workshops on further data concretization
Results: To-Be data exchange table with detailed data specifications

In summary, the collaboratively elaborated results of all steps of this systematic
approach provide a comprehensive and condensed basis (Big Picture, see Sect. 3.5)
for a systematic methodology from requirements engineering and data modeling to
the development of Digital Twin based software functions. Investment in infrastruc-
ture for digitalization must consider several highly ranked use cases: The return on
investment may be high, and the investment for implementing an additional use case
is usually not as significant as for establishing the infrastructure for the first use case.
Several attractive use cases can be achieved only if DT data is shared among
different stakeholders (Fig. 3).

3.3 Infrastructure Analysis

DTs are a sophisticated link between the virtual and the physical world, but their
implementation is application-specific [3]. However, the following are the minimum
requirements for the implementation:

– The digital environment (e.g., server and network structure)
– A standardized process
– Extent of automation level following the minimum requirements
– Definition of a minimum data structure for communication
– Expert, plant, machine, and product knowledge
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– Enabler technologies for physical system integration
– Definition of sensor, operational, and transactional data
– Definition of system granularity
– Connectivity of manual and automated tasks

Data sampling and communication must consider these minimum requirements in
the planning phase (Fig. 5). The production line is linked to other departments such
as administration, shipping, and other on-site facilities such as servers and databases,
e.g. by using cloud services. The communication might address external company
locations, sales partners, distributors, or suppliers. The all-inclusive DT is located in
the cloud and uses its services (e.g., for data storage, databases, and service apps).
The cloud and the DT (asset core) are linked to all aforementioned components. The
cloud provider is responsible for the final hosting in the cloud.

Fig. 5 A simple concept of essentials for IoT, edge computing, cloud computing, and Digital
Twins
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Furthermore, the communication structure is critical for extensive networking
within the company, enabling real-time data traffic between the DT and its counter-
parts (physical assets). A DTMS requires bidirectional communication. This inter-
relation can be implemented through a wired or wireless network and radio standards
such as 5G. Notably, the 5G standard is widening possibilities in creating local area
data networks to use mobile and rapid information exchange inside plants using
smart mobile devices [13]. A well-established network is essential for the DT to
share real-time data with physical assets such as control modules, sensors, machines,
and human–machine interfaces (HMI).

Data communication must follow common language, universal communication,
and standardized structure. The existing industrial communication protocols com-
monly used for process monitoring and control can be used for data communication.
In practice, owing to the numerous companies acting worldwide, more than one
format or communication protocol is commonly used in one production plant. Here,
converters may translate the data into a dominating protocol.

HMIs are the link between the human operator and the DT. They integrate human
intelligence and skills to improve efficiency [14]. By defining particular transfer
points in the physical systems, HMIs can be implemented into the DT, which adds
less automated or even offline modules to the system. Every manual input affects the
system’s consistency and should, therefore, be avoided.

The granularity of the DT can be determined within the network structure and
connectivity of the physical assets. A simple DT is limited to a particular physical
asset such as a product, administration task, single machine, or equipment. Increas-
ing the granularity of the DT increases the number of linked physical assets.
Therefore, DTs can be used to observe a single production process, or, according
to the automation pyramid of Siepmann [15], DTs can be linked to field, control,
process control, operating, and enterprise level. With increasing granularity, the
amount of data, network traffic, and computational calculations increases. These
details result in higher investment costs and thus lead to an improved process
resolution. A holistic DT is the objective of modern intelligent systems.

Fig. 6 Architecture of automation pyramid (Siepmann model based on DIN EN 62264 [15, 16]) in
context to Digital Twins (adapted from [17])
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Figure 6 shows the holistic approach of a cyber-physical system connected to the
DT according to the automation pyramid of Siepmann [15, 16]. On the left, 0–5
describe the automation pyramid separated into strictly hierarchical company levels:
0 is the sensor/actuator level, characterized by simple and rapid data sampling; 1 is
the field level, the interface to the production process; 2 is the control level; 3 is the
process control level; 4 and 5 are the plant management and company levels,
respectively, where production planning, production data acquisition, and order
processing are conducted. The pyramid of the DT is illustrated on the right. Levels
0–1 contain the physical assets, where level 0 includes actuators, sensors, and
equipment and level 1 provides additional functionality such as HMIs for the
DT. Level 2 contains communication and data servers. Level 3 is the gateway
between the physical assets and the DT, and all the other structures connected to
the system. Levels 2 and 4 communicate over the gateway, whereby level 4 supports
cloud-based databases with information from the physical assets and DT. Levels 0–4
allocate the required infrastructure for the DT. Level 5 consists of the digital core
asset, the DT with all necessary apps such as simulation, emulation, and modeling.
With increasing levels in the automation pyramid, the data flow increases. This
correlation offers extensive networking, thus enabling the full capability of the DT.

The connection of levels 1–3 in the DT pyramid is achieved in production lines
through hierarchy, whereby three levels of networking are distinguished: unit,
system, and system of system (SoS) level [18]. The unit level is the smallest element
and can comprise machine equipment, materials, or sensors. The system level is a
combination of multiple unit levels, which can communicate and control each other
by field bus, Ethernet, or 5G. SoS is composed of multiple system levels as in the
collaboration of multiple production lines and combines all data of the production
lifecycle.

3.4 Process Characterization

Process characterization requires a detailed analysis of all physical production
equipment (including sensors) and the procedures to identify all the production
parts that are linked with the product, or relevant for the supply of utilities (e.g.,
electricity, steam, and gases), or affect the process quality indirectly (e.g., cooling
systems and logistics). The production departments and floors relevant for imple-
mentation into the DTMS must be defined. Within these individual sections, iden-
tification of equipment and defining of the process borders ensure the assignment of
the process to the most appropriate subsections. Moreover, the defined process
borders help to model the correct process sequence in the DTMS and reduce its
overall complexity (Fig. 7).

In process engineering, a process consists of a sequence of several chemical,
physical, or biological unit operations [19, 20]. Each unit operation aimed to convert,
transport, or store raw materials or intermediates. Combining all process steps
ensures the production of the desired good and its packaging. Industrial production
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processes can be categorized as batch, continuous, and discrete manufacturing
[21]. A batch process represents a discontinuous production process that consists
of various unit operations. In contrast, a continuous process runs through production
without interruption, and raw materials and intermediates are processed by passing
each production stage. Discrete parts manufacturing illustrates the production pro-
cesses that create a specific quantity of intermediates. Once the specific quantity is
achieved, further processing occurs. Accurate classification of the process is essen-
tial for selecting the appropriate standards and identifying the key process steps (unit
operations).

Following the identification of all the relevant process components and their
classification into “with product contact,” “utilities-relevant,” and other markings,
their semantics must be defined. This terminology highlights the need for correct

Fig. 7 The different steps of process analysis with exemplary components
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naming or numbering of the components, description of the process task, classifica-
tion of the process relevance, and other designations that help in understanding their
role in the DTMS. For these instructions, all the existing process descriptions are
beneficial. Exemplary records are flow charts, SCADA-charts (Supervisory Control
and Data Acquisition), illustrations from management systems, and results of labo-
ratory management systems.

3.5 Composition of the Big Picture

The big picture provides the DTs’ structure and architecture and comprises the
DTMS as well as its connectors, functions, and the necessary physical model and
data model. It is an integrated complete high-level vision of the “To-Be” system,
depicting the desired future operation. It considers current trends (e.g., digitization),
historical social perspective (e.g., consumer demands), economic perspective (e.g.,
influence of the market), and forecast (e.g., influence of artificial intelligence; effects
of robots) as well as own objectives.

Fig. 8 Big picture of an exemplary DTMS with stakeholders
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Here, the DTMS forms the core element consisting of the cloud storage, the
relevant stakeholder interfaces, and the apps. In particular, the apps provide special
tools (e.g., analysis and predictive tools) that enable the full potential of the system.
Furthermore, it is important to link all participating elements to define the interrela-
tions within the process borders and between the individual parties. Its creation also
supports the comprehension of interrelations between stakeholders and inherent
assets. Figure 8 illustrates an exemplary big picture consisting of two different
companies by showing connections and data flows.

4 Standardization and Generation of Digital Twins

ADTMSmerges multiple production systems and data points, whose origin plays an
essential role because these data sets are of different quality and comprehensiveness.
The combination of various production lines, independent plants, and even different
companies results in different kinds of data sets. In the case of extensive data sets, a
reasonable junction in the DTMS is unfeasible. This aspect is confirmed by Weyer
et al. [22], who researched on modular, multi-vendor systems in the context of
Industry 4.0. Therefore, there is a high demand for standardization and relevant
norms. Furthermore, the use of a DTMS must comply with the corresponding
legislation, for example, hygienic requirements or work safety concepts. These
aspects are essential as a DTMS may also function as the basis for other concepts.

Standardization is a critical dimension of sustainable and efficient engineering.
Standards specify the design features of equipment, create comparability between
manufacturers, and help customers receive a safe product that complies with existing
legislation. According to the German Institute for Standardization (DIN, Deutsches
Institut für Normung e.V.) [23], standards are the universal language of engineering
and facilitate free movement of goods. In a DTMS, standards facilitate a comparison
of different data sets, production lines, plants, or even companies. They help create
individual DTs and their application in a DTMS. Finally, standardization also pro-
vides the language that facilitates the communication between DTs. Lu et al. [24]
emphasized the importance of standards for DTs by analyzing the state-of-the-art
manufacturing domains.

4.1 Overview of Existing Standards

International, continental, and national organizations define the standards for the
public. Globally, the International Organization for Standardization (ISO) for
technical standards and the International Electrotechnical Commission (IEC) for
standards with electrotechnical relevance function as the roof organizations. Cur-
rently, over 160 national standardization committees are members of the ISO
[25]. The complexity of a DTMS, especially in B2B or B2C relations, challenges
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standardization as new technologies are emerging. However, national and interna-
tional standardization organizations release new drafts for standards continuously.
The ISO has been developing a series of standards for DTs. The series will include
four different parts, definitions, suitable reference architectures, digital representa-
tion of physical manufacturing elements, and information exchange [26–29], and
define the framework of DTs. Another ISO standard under development focuses on
the visualization elements of DTs [30]. These standards are expected to gain
significance for implementing DTs in the future.

Standardization of DTs requires distinction between process and data standards.
Process standards must include definitions of physical objects such as equipment,
machines, or connectors (e.g., pipes). Production types must be defined, and
company-related properties standardized. Here, the International Society of Auto-
mation (ISA) and the American National Standards Institute (ANSI) offer suitable
standards for production processes. Notably, the three standard series ISA-88,
ISA-95, and ISA-106 include appropriate methods and tools for DT standardization
[21, 31–46]. The standardization process also supports the analysis of the basic
properties of a production line and its transferability into a DTMS.

With regard to data sets, different levels of the data hierarchy must be defined.
Following the German Electrical and Electronic Manufacturers’ Association
(ZVEI, Zentralverband Elektrotechnik- und Elektronikindustrie e. V.) [47], the
description of data sets emerges from the following aspects:

– Data type (e.g., real, bool, and array) and data format (e.g., XML and JSON)
– Data source (e.g., alarm value and measured value)
– Data semantics (e.g., manual or automatic process)
– Data display (e.g., numerical and curves)
– Aggregated illustration of data (e.g., faceplates and complex diagrams)
– Functional integration of data (e.g., controller and HMI link)

This ontology-driven approach helps the operator to understand the type of data
visible, its origin, and meaning. The DTMS requires a semantic web structure that
helps distinguish between DTs. Management execution systems (MES) can be
combined with DTs, which lead to a full MES-driven approach. The requirements
of management and control of the quality (ISO 9001), the energy (ISO 50001), and
occupational health and safety (ISO 45001) can extend DTMS appropriately and
create a comprehensive production system [48–50].

General management systems, as well as food safety, are feasible in a DTMS.
Here, requirements, limit values, or legislation are applicable to DTs. Food safety
management systems (e.g., ISO 22000), similar concepts and measures, such as
HACCP (hazard analysis and critical control points), are also associated with the
DTMS [51]. These supplements help monitor the hygiene and food safety status in
the production, train employees with customized instructions, and avoid or at least
react promptly in case of a food safety event. Moreover, authorities and audit
organizations are likely to participate in DTMS. The ISO facilitates corresponding
bodies and audits in this field [52]. If a DTMS focuses on tracing and tracking, ISO
suggests principles and basic requirements [53].
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4.2 Process Standardization

Given that a DTMS can be local or global, it is essential to identify and list all its
relevant components. Typically, this process analysis includes a complex mix of
various companies, plants, process types, equipment designs, connectors, and sen-
sors. This section outlines how this heterogeneity can be standardized. First, this
study helps to achieve a general application of the various processes into a DTMS.
Second, an appropriate standard of communication must be established in all
associated processes. The ISO offers suitable standards that are regularly updated.
It is necessary to identify what processes will be implemented into the DTMS (see
Sect. 3.4).

The main focus is on the process type. The ANSI/ISA-88 (or S88, SP88) covers
batch processes and contains four interdependent parts. The IEC and national
standardization organizations have published corresponding versions (e.g., IEC
61512-1 and DIN 61512) [54, 55]. The ISA-88 shows the possibilities of structuring
procedural systems and equipment in levels. A level organization helps in greater
flexibility and increased performance of the considered batch process. Part 1 [21]
includes the terminology as well as the definitions of the entire production process
and its modeling possibilities. Part 2 includes the structures of data and key com-
munication [31] (see also Sect. 3.3). Part 3 [32] treats product recipe models and
their method of definition. Part 4 [33] comprises the recording of batch production.
Other standards belonging to the ISA-88 explain the implementation (e.g., packag-
ing equipment), as well as recipe formats, and are also useful for developing DTMS
[41, 56].

For a DTMS’s basic construction and architecture, part 1 is the most critical
standard for batch processes. The physical model can be derived from this standard.
This model represents the physical structure and the essential connections of the
DTMS. Hierarchical levels create a structure that forms the entire production
process. From top to bottom, the physical model grows holistically – groups of
production parts in a lower hierarchy form a part of the subsequent higher level.
Thus, the entire production process is illustrated, and a logic structure of relevant
processes with the corresponding subgroups emerges. Any DT can be derived from
the emerging modeled structures; that is, each part of a hierarchy can also represent
its own DT.

Furthermore, virtual relations, which lead to the data model, are based on the
physical model. The physical model illustrates the rigid interrelations of batch
production. Figure 9 gives an overview of the selected terminology and levels of
the ISA-88, the assignment to specific physical production components, and the
adaption in a DTMS.

Following Fig. 9, the structure and process-related architecture of the DTMS can
be derived. The linkages between distinct DTs must be defined. For example, the
link between the two DTs is achieved through pipes or conveyor belts. If there are
valves that can monitor and record the time (e.g., timestamp of valve switching), the
batches are trackable and traceable.
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The ISA-88 focuses on process cell, unit, equipment module, and control module.
Terminology and background of enterprise, site, and area are defined in ISA-95. This
standard deals with the integration of the corporate and operational management
levels and is based directly on ISA-88. Besides batch production, it is also applicable
to continuous and discrete production processes. The ISA-95 consists of seven parts
including models, definitions, object model attributes, activity models, possibilities
of management operations, business-to-manufacturing transactions, messaging

Fig. 9 Application of the ISA-88 physical model to standardize a process and implementation into
a DTMS
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services, and an alias service model [34–37, 39, 40, 45]. The international version of
this standard is the IEC 62264, which is based on the works of ISA. With the help of
ISA-95, various management systems can be applied to the DTMS. It also helps plan
the access of various stakeholders or operators within the production process. In
combination with ANSI/ISA-101.01-2015 [46], the possible methods of
implementing HMIs help in the efficient control of the DTMS on-the-machine or
with mobile devices. An additional standard combines the implementation of ISA-88
and ISA-95 [44].

For continuous production, the ISA-106 offers an in-depth alternative [42, 43]. In
comparison to ISA-88 and ISA-95, this standard series offers elaborate physical
models that help organize even complex processes. For example, it defines a variable
state model as illustrated by a user with high flexibility.

4.3 Data Standardization

Industry 4.0 factories have physical machines, or components called assets,
connected to software that visualize the entire production line or make own deci-
sions. An asset is an organization’s physical entity having either a perceived or an
actual value [57]. For bioprocesses, these are machines or different plant facilities
and their parts.

Interoperability is the basis for I4.0 and ensures open and plural markets. It is
characterized by open standards. The German Platform Industrie 4.0 (PI4.0)
develops pre-competitive concepts and solutions for I4.0, implements them, and
participates in international standardization processes through more than 10 interna-
tional cooperation [58]. The PI4.0 AAS specification [59] is the basis for interoper-
ability and a DT standard. The intention is to become the central, standardized
“integration plug” of any asset to digital ecosystems, composed of multiple DTs.
Using an AAS, all relevant assets speak a common language, which eases integra-
tion. Any physical item that provides relevant data may become an asset and in turn
get an AAS. Therefore, it is considered as a data standard as well. For example, the
operating data of a plant and the production process can be standardized throughout
their life cycle by building AAS DTs, which may be integrated into a DTMS.

The data exchanged or made available via an AAS is described in a modular,
manufacturer-neutral format with formally described semantics. It does not prescribe
what data is provided, but how they are provided. The generic AAS data model is
defined using Unified Modeling Language (UML) class diagrams. Using an AAS,
the DTs data is organized into submodels. Therefore, the main classifications are as
follows:

– Submodels, which are either predefined entirely or may be described using a
standard pattern. An AAS may have any number of submodels.

– Properties, which can be used to define the submodels.
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Figure 10 illustrates the principal structure of submodels in the AAS standard and
the method of developing an AAS submodel for any model. The left panel displays a
simplified proprietary, that is, a nonstandard data model (named MODEL) of a
machine’s DT. Its instantiation is shown below, describing a concrete machine
m1. Only one attribute is displayed here to focus on the mechanisms of translating
this model to an AAS submodel.

The middle panel of Fig. 10 shows the simplified generic AAS model. The right
panel shows that this model is instantiated to build the given proprietary model. Each
submodel has an Internationalized Resource Identifier (IRI) [60], an idShort (often
being the last part of the IRI), descriptions (several pairs of language tags and strings
in that language are allowed), and a kind (being Type or Instance). A submodel is
composed of SubmodelElements. Different subclasses exist, such as Property, File,
and Collection (the latter are not shown).

For all attributes of the given model, an AAS Property can be added to the AAS
Submodel. A Property is a name–value pair with additional metadata. Here the
semantic annotation using its attribute semanticId is crucial for automatic interpre-
tation. In this example, an International Registration Data Identifier to an attribute
defined by the eCl@ss [61] standard is used. The eCl@ss dictionary contains
properties for product descriptions and service descriptions based on standardized
data formats conform to IEC 61360 [62]. Alternatively, an IRI referencing a standard
property of well-known ontologies is usable (e.g., https://schema.org/identifier). A
third alternative is to use own IEC61360 conformant so-called ConceptDescriptions,
stored within an AAS.

The last attributes are valueType and value. A value can only be set if
kind ¼ Instance. This context indicates that types and their instances appear

Fig. 10 Simple AAS submodel construction sample
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similarly, and only the attribute kind and the attribute value differ. DataTypeDef is
any XSD datatype [63], and ValueDataType is a value of such type.

Assets may be composed of other assets. In this case, a composite AAS is
constructed, which has a bill of material listing its parts. These assets may be
co-managed within the comprising AAS, or they may be self-managed, that is,
they all have their own AAS. Therefore, complex AAS structures can be built,
which may reflect the physical asset structuring.

The data model and the corresponding data can be serialized (i.e. automatically
transformed to), for example, as extensible markup language (XML), JavaScript
object notation (JSON), resource description framework (RDF), or open platform
communications-unified architecture (OPC-UA). The standard also defines all these
mappings. An AAS can be entirely transported as a so-called AAS extension
(AASX) package. Furthermore, a representational state transfer API (REST-API)
of an AAS is currently being defined and specified by PI4.0. It will be defined as
part 2 of the AAS specification [59], but is work in progress, and intends to
standardize the AAS interfaces.

Another module in the AAS information model is the attribute-based access
control (ABAC) based security model, which protects the AAS, e.g. its REST-
API. For each subject (role or user), it can be specified which object (submodels
or even properties) the user is allowed or denied to read or to modify using
expressions over attributes of the subject, the object, and the context.

The AAS specification does not provide methods to describe how a physical asset
can be connected with its AAS. Anything is allowed here, hidden to the AAS users.
Therefore, the AAS homogenizes the assets’ diversity in the real world by providing
a standard ecosystem plug.

4.4 Data Sharing Standards

DTs are a mature instrument for data collection and integration that can bridge media
disruptions between distributed systems [64]. A DT forms a central knowledge base
within a company and contributes to enhance business processes [64]. Although the
benefits of DTs are not limited to their use for internal company processes, they are
mainly used to monitor the internal processes. In this context, DTs are a suitable
instrument for sharing data with various stakeholders [65], which companies find it
increasingly important as data represents a strategic resource with economic
value [66].

In principle, the difference between exchange and sharing of data must be
recognized. Exchange of data occurs only in terms of vertical cooperation between
companies, where the optimization of value or supply chains is one of the objectives.
This type of data exchange is common and based on standards developed since the
introduction of electronic data exchange in the 1980s. Data sharing, however,
describes the vertical and horizontal collaboration between companies to achieve
common goals; for example, predictive maintenance through collaborative data
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sharing, in which both the company providing the data and that using it mutually
benefit through improved services and databases [59].

The shared DT is necessary for implementing collaborative data sharing. It is
based on the fundamental concepts of a general DT, which are characterized by the
integration of various data formats from distributed data storage and the description
of data with meta-information [67]. Following the definition of data sharing, a shared
DT describes the extension of the archetypical characteristic of a DT by the functions
of interoperable and sovereign use in collaborative networks. This extension
includes the standardized data model, which in turn includes the uniform description
of interfaces. The respective data model must enable manufacturer-neutral and cross-
company interoperability.

A shared DT is further characterized by the emphasis on security concepts and, in
this context, especially the concepts for data policy enforcement. Access control is
an essential tool for data policy enforcement for DTs and restricts the access to
functionalities and the asset model information of the DT [68]. However, data
sovereignty must be considered in the use of DTs in collaborative networks. It is
the ability of a natural or legal person to exercise exclusive self-determination over
the economic asset data [59] and based on the data policy enforcement on usage
control. In contrast to traditional access control, usage control regulates future data
usage by adding restrictions [69]. Access control, therefore, manages the rights to
collect data, while usage control determines how the recipient can use the data
[70, 71].

Within an enterprise, data security, accountability, and transparency are defined.
If data leaves the enterprise, additional security is required. For shared DTs, it must
be ensured that the company providing the data always retains sovereignty. There-
fore, the International Data Spaces Association (IDSA) [72] has developed a
reference architecture, which enables the secure and sovereign exchange of data
between trustworthy parties. It defines a technical infrastructure and a semantic set of
rules for data exchange and data usage in ecosystems. DIN SPEC 27070 [73], based
on the Industrial Data Spaces (IDS) reference architecture model, is the first global
and interoperable standard.

The AAS is a virtual digital and active representation of an asset and renders a
standardized I4.0 component in an I4.0 (eco)system composed of such building
blocks. For multilateral data exchange, the AAS offers an appropriate basis for
interoperability between the actors mentioned earlier through its upcoming stan-
dardization. The Fraunhofer Gesellschaft is currently working on the combination of
IDS and AAS (see Case Studies in Sect. 7). The AAS-REST-API will be realized as
an IDS Data App, which can be offered in an IDS App Store if necessary. IDS
messages contain AAS-compliant data with IDS references to resources available
via IDS. The ABAC of the AAS is synchronized with IDS Contracts and AAS
subjects with IDS Participants. The IDS is more focused on communication (data in
movement) and provides general interfaces but does not specify payload formats,
whereas the AAS standards are more concrete. In complex and automated I4.0
scenarios, new legal issues arise, currently being investigated in the legal testbed
project [74] in cooperation with IDSA and PI4.0.
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A combination of both concepts, the IDS and the AAS, likely ensures interoper-
ability between various stakeholders and respects individual data protection needs.
Both are industry-neutral approaches, also applicable to production systems. Their
combination is a reasonable basis for a shared DT. In particular, interoperability in
this context refers to the likelihood of simple migration to various cloud and edge
providers. The GAIA-X project [75] aims to enable such cross-cloud usage. In
general, GAIA-X forms a networked and provider-neutral data infrastructure that
enables secure storage (data in rest), sovereign exchange, and collaborative use of
data and services.

5 Integration of Models and Data Sources into
a DT-Compatible Platform

Integrating different data sources is a major advantage of implementing DTs. For
example, a product’s DT typically requires information from not only enterprise
resource planning (e.g., batch id and recipe), but also process control (e.g., the used
amount of supply material and produced product and resource consumption for the
product). Data can be integrated by storing information from different sources on a
specific platform, such as a cloud as well as an on-premise platform. An example of a
cloud-based platform is MindSphere™ [76], which has been used in the EIT Food
project “Digital Twin Management” (Sect. 7.1) [77]. The main advantage of using a
cloud-based platform is that there is no need for resources to maintain the
corresponding IT infrastructure and data backups and that the data is available
everywhere. Platforms need to include a user and access management as well as
IT security measures for the exchange of information.

A use case specification for a digitalization project may reveal the lack of data and
interfaces. This is particularly significant for brownfield installations with low-level
automation or connectivity and requires investments in the automation network,
additional sensors, and engineering of additional data points. Connecting various
data sources with the platform can be supported with suitable devices and software
modules. Automation components such as controllers need to connect to the plat-
form, as well as to a REST-API. Software tools require a connection to other sources
such as SAP systems.

Once the data is available on a platform, it can be used for visualization and
analysis. These apps can be created and provided as a service by any provider.
However, data access and analysis are simplified mainly by using a suitable data
model, providing a meaningful semantic description of the data on the platform.

DTs can also be used to increase the transparency of value chains. This is
achieved by sharing parts of DTs with business partners or authorities. Data owner-
ship must be respected by such a solution, for example, preventing data users from
accessing or even manipulating an owner’s data without consent. An excellent
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introduction to the different roles and some useful rules for data sharing can be found
in the EU code of conduct on agriculture data sharing [78].

For successful integration in terms of I4.0, the Reference Architecture Model
Industry 4.0 (RAMI 4.0) is a well-established guidance for implementation. It unifies
the most relevant aspects of the I4.0 architecture and represents the holistic life cycle
of assets. The RAMI 4.0 supports a uniform structure, wording, entire scope of I4.0,
and complex relationships in small and clear parts. The RAMI 4.0 model consists of
three dimensions: hierarchy, product life cycle, and architecture. Architecture is
subdivided into six layers: business, functional, information, communication, inte-
gration, and asset. In the information layer, different data models can be integrated
(e.g., submodels of asset administration shells), which get their data from the lower
levels (i.e., communication or asset), while the functional and business layer provide
the processing logic. Applied to bioprocesses, e.g. kinetic models can be integrated
with other data sources, and the functional layer can combine them accordingly.

Figure 11 displays the layers of PI4.0 architecture reference model RAMI 4.0,
which spans from real world to the information world. Between both worlds, there is
a gap in the current PI4.0 standards: The asset layer is the lowest layer in RAMI 4.0
and represents the assets of the physical world, such as a machine in a production
environment. The integration layer in RAMI 4.0 acts as a link between the real and
the information world and is not yet standardized as the higher layers. This gap can
be covered by the assistance of appropriate platforms.

6 Risk and Hurdles for a DTMS Implementation

Prior to the integration of a DTMS into operating plants, some major hurdles and
risks must be addressed. Section 3 and 4 explain and discuss several plant adapta-
tions scenarios in which risks could occur. According to Singh et al. [80] depending
on the aspect to be considered, the challenges or risks can be classified into several
groups: engineering, commercial, technology, and data challenges.

Fig. 11 RAMI 4.0 layers adopted from PI4.0 [79]

The Challenge of Implementing Digital Twins in Operating Value Chains 151



The engineering challenges and risks require standardization and hardware adap-
tion (see Sect. 4). It is necessary that all physical assets communicate with the DTMS
in one language. The integration of the DTMS with the automation systems of an
existing plant may require additional often unforeseen efforts, in particular if these
automation systems involve a proprietary solution or are lacking corresponding
interfaces. Increasing the complexity of the systems related to the implementation
of a DTMS is also a challenging task. To minimize risks, integration work must start
very early, so that problems that could arise can be resolved in time. A detailed work
plan must take foreseeable risks into account and provide a suitable buffer in terms of
effort and time.

Commercial issues can include data sharing difficulties with the stakeholders that
are part of the value chain. On the one hand, it offers a high level of synergy effects
and numerous benefits, but on the other hand, information sharing and ownership
could raise some challenging technological issues. In this context, Singh et al. [80]
mainly addressed company policies, the way of thinking of involved stakeholders,
and cultural differences. These difficulties and occurring issues can reduce the
effectiveness and overall benefit. Customs control regulations could also cause
delays and possibly additional costs in delivering the DTMS to the partners. Having
to take into account multiple food safety regulations across the world may exceed not
only the available resources for the project but also the complexity of the solution.
This can be avoided by focusing on highly relevant market segments and/or regions.

Technology challenges may increase costs and implementation time, e.g. for CPS
(cyber-physical system) implementations. An industrial CPS (ICPS) connects the
cyber and virtual world. Notably, the life cycle of ICPS components needs to be
clarified [81]. Often heterogeneous systems need to be integrated using different
technologies; they implement different standards or even have proprietary interfaces.
Moreover, communication or computation bottlenecks may occur when vast
amounts of data are collected from the automation systems. The technical require-
ments of the new primary framework for the DTMS require detailed planning.

A more fundamental challenge in the DTMS implementation is the data itself.
This requires intensive support through the highly complex and external communi-
cation across process and company borders. Secure system integration is a challenge
for any company, especially when interfacing other companies’ systems. Untrusted
interfaced systems outside the company are a security risk. All information exchange
should follow the common policies and possible threats have to be considered. The
information flow should be controlled to limit attack vectors like identity thefts or
privacy and security breaches. Information should also be validated and filtered. A
standardization of the system integration process based on the definition of security
requirements helps reduce these risks.

Internal data security must be redesigned based on these new demands. The
existing systems must be adapted to upcoming or future requirements and to new
security issues [82]. Data access control and even data usage control may be required
when data sovereignty needs to be enforced. It needs to be supported appropriately
by all involved systems. Moreover, the resulting new high-level of networking poses
a particular risk. Data loss can range from image damage to loss of company trade
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secrets or intellectual property. This can be a challenging step, due to unclear internal
and external communication channels at the beginning of the planning process. In
the planning phase, all potential weak points need to be considered.

Further data challenges include concepts like data acquisition, type, transfer
points, streams, database handling, big data storing, and data security. One potential
risk is that the data collected from plants or products are not adequately representing
the same concept. This can lead to, e.g., information available in digital twins being
incomplete or not up-to-date, and not being sufficient for, e.g., getting reliable results
from a root cause analysis. One possible solution is an overview of the treatment of
food safety issues, which helps identify relevant information, and allows for early
measures to provide this information, e.g., by installing new sensors and capturing
new relevant data. By early and detailed planning, this risk can be reduced. Espe-
cially these points show the challenges of a DTMS implementation. Nevertheless,
they are not unknown problems, and therefore they can be minimized by proper and
detailed planning in advance (Table 1).

Table 1 Selected examples of risks, hurdles, and corresponding solutions

Step Hurdles/current state Consequence/solutions

Stakeholders
analysis

Internal/external stakeholders; secu-
rity risks by external stakeholders

Face-2-face interviews, surveys,
workshops with design thinking, and
creativity sessions

Use case
specification

Analyze current and future business
impact for use cases, prioritize them,
define data and workflow including all
relevant components, both for current
and for desired situation

Interviews and workshops, qualita-
tive description and evaluation of
strategic business impact, SWOT,
scoring methods, AHP, business
process model and notation (BPMN),
UML

Infrastructure
analysis

Define minimum sensor, operational,
and transactional data in sufficient
granularity and define enabler tech-
nologies for physical system
integration

Select integration technology,
e.g. AAS, IDS, MindSphere

Process
characterization

Analyze all physical production
equipment and procedures, categorize
them by Fig. 7, e.g. batch, continuous,
and discrete.

How to support manual tasks by
HMIs
How to analyze the data (e.g., use of
AI)

Composition of
big picture

Integrated complete high-level vision
of the “To-Be” system, depicting
future operation

Abstraction, considers, e.g., current
trends, social and economic perspec-
tive and own objectives

Process
standardization

Many process standards, modeling
detail

Select one, e.g. BPMN, structured
according to ISA-88

Data
standardization

Many data standards, modeling detail Select one, e.g. UML, structured
according to PI4.0 AAS, serialized as
XML or JSON

Data sharing
standardization

Data exchange or collaborative data
sharing, access control and usage
control

DIN SPEC 27070, ABAC, IDS
Usage Control
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7 Case Studies

This section presents three case studies for implementing DTs in operating produc-
tion lines or entire value chains. The work was carried out in different research
projects in which the authors were actively involved.

7.1 Digital Twin Management: Implementation of a DTMS
in an Operating Production Process

The first case study originates from the EIT Food project “Digital Twin Manage-
ment” (DTM, 2018–2019) and was adapted from previous works [77, 83]. A DT
structure and a DTMS were implemented into the value chain of pudding produc-
tion, including the production of the required flavors. Thus, two different companies
and corresponding plants required a suitable connection within the DTMS. The
recipe for the pudding product included skimmed milk, flavors, sugar, fat, and
other ingredients. A producer of flavors manufactured the flavor ingredients and a
dairy plant was responsible for the actual pudding production. Figure 12 illustrates
the corresponding big picture, which includes the physical model and the data
model. Internally, in both companies, quality managers, warehouse managers, and
production managers aimed to participate in the DTMS. In addition to the two
companies, the stakeholder analysis identified three other major parties: authorities,
customers, and logistics. Notably, the authorities and customers benefit from the
DTMS via apps delivering suitable production data.

Process and structural characterization were first realized for the producer of
flavors. Moreover, an MES and data storage system existed in the process line.
The process type was batch related and comprised three different process sections:
warehouse, production, and storage. Each production step represents an individual
unit operation: juicing, filtering, and rectifying. According to the standards explained
in Sect. 4, they are declarable as units. In addition, various sensors that measure
temperature, pressure, and weight were identifiable. The system also registered
timestamps of several process starts and ends and was confirmed via HMIs. These
data points were declared as control modules according to the selected standards.
Manual transport helped connect between the units, and timestamps registered the
layover of a batch at a particular unit.

The dairy plant was also batch related and was equipped with various manage-
ment systems (MES, LIMS), historical data storage, and partially automated pro-
duction facilities. Five different process sections existed: warehouse, milk storage,
pudding production, cream production, and packaging. Pudding production was
targeted for the DT implementation. This process includes four steps: ingredient
mixing, homogenization, pasteurization, and packaging. The cream production
consists of fat storage, cream whipping, and cream storage. Both process sections
include various physical assets such as sensors (e.g., temperature, pressure, and pH)
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and actuators (e.g., motors and valves). The valves connected the individual sections
defining timestamps for the product section transfer. Furthermore, some extensions
could connect incompatible and non-standardized machines and sensors to the
DTMS. HMIs were also considered with a comprehensive documentation option
and included in the DTMS.

Two physical models were derived from the analysis of the companies and
processes. Given that the project aimed at tracking and tracing, only the equipment

Fig. 12 Big picture of the DT implementation in the supply chain of dairy production (adopted
from [77])
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and components with direct product contact were considered. Following further
analysis of the sensory and the structural conditions (especially IT-related struc-
tures), the two corresponding data models with all relevant data points for the DTMS
were created. These virtual models also comprise the actual DTs and their data. In
terms of the physical model, the DTs are classified in the correct production order
and with a suitable semantic designation. Owing to the progress in the production
within the value chain, the DT is continuously growing in terms of data equipment,
as new, relevant data points are added in each further process step related to the
physical model. Hence, the first DT in the value chain is the data poorest, while the
last DT receives the most and all relevant data points. Subsequently, all the models
were connected via appropriate interfaces and the respective analyzed stakeholders
were involved. The overall structure of all the components finally results in the big
picture, which shows the DTMS, the structure of the DTs, and the stakeholders
involved (Fig. 12). The big picture results in individual structures for each value
chain and must always be created anew. Furthermore, it provides a complete
overview of the architecture of the DTMS and apps for the stakeholders. It is the
crucial step in the implementation of a DTMS and has a considerable impact on its
functionality.

In this case study, DTs aimed to ensure full traceability and trackability along the
value chain. Besides, the connectivity between the companies, plants, production
areas, and process cells was reached. These measures support the use of PI4.0
potentials and the stakeholder participation. The connection of both companies
considered by the full big picture creates one DTMS that enables the complete
reconstruction of the processes.

7.2 Organic Supply Chains: Implementation of a DTMS
for Vegetable and Beef Supply Chains

The approach of the DTM project (Sect. 7.1) is also used and extended in the EIT
Food project “Organic Supply Chains” (OSC, 2019, ongoing) [84], which builds a
MindSphere™DTMS for vegetable and beef supply chains. The main objective is to
prove the organic status and safety of the produced food. The supply chains extend
from ordering and planning over processing to delivering to retailers. They connect
farmers, food producers, transporters, and retailers. Figure 13 presents an overview
of such a supply chain.

In the DTM project, all involved companies were project partners. Thus, all data
points and systems were accessible by them, and the complete production process
could be covered. In contrast, in the OSC project, only the retailers are currently the
project members, resulting in limited data and source system access. In the OSC
project, there is no concrete physical model of the farms with detailed specifications
of work centers and units for which DTs are requested. Instead, complex business
process models and notation models are used to define all the process steps. The
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relevant activities/work units and even the work centers were identified following
ISA-88. Organic supply chains have strong linkages and communication between
the process participants and the majority of the steps are manual. Moreover, the data
is complex, and the processes involve various communicating partners. Therefore,
detailed UML models are used in the OSC project and structured according to
ISA-88 hierarchies.

7.3 Shared Digital Twins

The Fraunhofer cluster of excellence “Cluster of Cognitive Internet Technologies
(CCIT)” [85] studies cognitive technologies for the industrial internet. Researchers
from multiple disciplines are developing key technologies for various levels along
the value chain, from sensors and intelligent learning methods for data processing up
to cloud technologies. Its Forschungszentrum Data Spaces (FDS) focuses on con-
cepts and technologies for sovereign industrial data exchange based on the IDS. An
integral aspect of the FDS is the cross-institutional cooperation between numerous
Fraunhofer Institutes collaborating on projects. One of these projects relates to the
integration of IDS Connectors and AAS and, accordingly, with the combination of
the information models and the security concepts of both approaches. It aims to
develop a shared DT based on the current and future standards for interoperability
and data sovereignty.

RIOTANA® (Realtime IoT Analytics) is a domain-independent IoT architecture
and DT that processes raw sensor data into key process indicators (KPIs) in real-
time, developed by Fraunhofer ISST [86]. It consists of sensor modules attached to
arbitrary assets (e.g., forklifts), which transmit their data via Message Queuing
Telemetry Transport (MQTT) to a backend, which can combine the sensor values
and calculate KPIs. The combination of a proprietary DT such as RIOTANA® with
IDS and AAS leads to a shared DT complying with the corresponding standards. The
data can be accessed by multiple participants in the ecosystem, while the data owner
retains full control over the data. The owner can define who can access and use the
data and for what purposes the data can be used. By using IDS, its usage control
mechanisms can be applied.

Figure 14 shows the architecture of the combination: on the right panel, as sample
assets, three forklifts f1–f3 are shown with attached RIOTANA® sensor modules,
which transmit their values to the RIOTANA®DT. The latter is now an IDS data app
in a service container and used to implement the standard AAS-REST-API, which
also is an IDS data app acting as the AAS wrapper for RIOTANA®. In this case
study, there is a composite forklift fleet asset with co-managed forklift assets.

The combination of AAS and IDS results in an architecture that requires the
mapping of the data models and security concepts: IDS messages contain
AAS-compliant data with references to IDS resources. The AAS-ABAC security
concept is combined with IDS contracts, which protect those resources. The
submodels of the AAS are protected by both mechanisms and may be subject to

158 R. Werner et al.



F
ig
.1

4
A
rc
hi
te
ct
ur
e
of

th
e
R
IO

T
A
N
A
-I
D
S
-A

A
S

The Challenge of Implementing Digital Twins in Operating Value Chains 159



IDS usage control. This approach is independent of RIOTANA®; it can be used to
convert any proprietary DT into a standard (AAS) sovereign (IDS) sharable DT by
providing an IDS-AAS wrapper. This also holds for proprietary DTs of production
processes and their parts and products. The use of established concepts and
approaches for interoperability and data security is, therefore, the basis for the design
of shared DTs.

8 Summary and Outlook

In I4.0, new types of cooperation have replaced rigid value chains. The boundaries
between country, industry, and company are being blurred. Plants, machines, and
products communicate autonomously in digital, globally connected networks.
Therefore, dynamic and self-optimizing ecosystems will emerge, which comprise
several decentralized stakeholders. In digital ecosystems, all relevant physical assets
must be integrated into the I4.0 environments to interact with each other. Everything
is mapped digitally and uniformly, ensuring transparency along the entire value
chain. Moreover, there are no instances of central control, but several decentralized
combined “building blocks.” In an open ecosystem, no stakeholder may assume a
monopolistic position. The core elements are DTs. There are various solutions:
exemplary platforms provide extensive solutions for integrating asset data into
DTs, ranging from hardware to software, but the solution is proprietary. On the
other hand, standardization approaches, such as the AAS, a key concept of the
German PI4.0, exist. It, however, does not provide or standardize any means to
connect the asset to the AAS and hence any mechanism can be used.

DTs and DTMS generate voluminous amounts of valuable data accessible and
processable, which enable several novel applications. The concept of DTs helps
determine the current state of a product along the entire product life cycle. Therefore,
the design of the DT must provide the communication between the DTs and with
complex architecture (e.g., management, administration, and planning services).
Individual machines or entire production lines are also represented by distinct DTs
(e.g., in the form of an AAS). However, the abundance of data often requires a strict
definition of system boundaries or requires data usage control in the global digital
ecosystem.

In bioprocesses and related industries, DTs enable a full digitalization with all
associated concepts and tools. Not only complete monitoring of the whole value
chain becomes possible but also tracking and tracing of the individual steps/units.
Bioprocess unit operations are concludable in distinct DTs, which allows optimiza-
tion, automated process monitoring as well as intelligent control and process state
prediction (e.g., early-warning system). In the future, even automated process as well
as product validation are feasible with the support of a comprehensive DTMS.
Especially, the resulting increased density of information related to the individual
assignments to DTs offers the company new possibilities for product and process
monitoring, to increase the scope of networking, and for integrating measuring
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points that previously had no real-time process connection. Using DTs and the
associated peripherals, all relevant information in the value chain, from raw material
producer over the bioproduct manufacturer (e.g., food or pharmaceutics) to con-
sumer, can be digitized. Concepts and strategies can be incorporated in the decision-
making and quality assurance of bioprocesses.

Approaches from the field of artificial intelligence are a sophisticated method to
structure and evaluate the copious data. Sharing information from DTs supplements
the DTs with information from other DTs in the B2B sector. Intelligent algorithms
can use the information gained from the data for production planning and control.
The combination of established simulation and optimization methods as well as the
methods from the field of artificial intelligence and machine learning represents a
future-oriented technology. Besides, by processing data, KPIs, or forecasts and
events information may be included in the optimal configuration of system param-
eters. Therefore, predictions or behavioral analysis can be applied, and in some
cases, repairs of equipment (e.g., fermenters, pumps) can be ordered before the
downtime occurs. The digital strategy Predictive Maintenance reduces downtimes
and associated costs [87, 88]. These predictions are also applicable to resources.
Thus, detailed planning of raw material orders can be conducted, or energy can be
smartly distributed within the company or, if necessary, diverted to the respective
consumer. Furthermore, a detailed production layout planning can be implemented
with the help of DTs, where all process resources are used in a time-optimized
manner [89]. Hygiene concepts, hygiene state of the equipment, and the hygienic
monitoring of associated cleaning concepts can be monitored by DTMS. Moreover,
structured DTs in a DTMS help distribute the planning between production units and
production systems, improved decision support by simulation models, production
unit planning, and automated execution of offers and orders [4].

The comprehensive data collected and evaluated supports documentation of the
entire life cycle. This aspect enables higher traceability and new analyses on quality
assurance. In particular, the cross-linking, distant from rigid linear hierarchies,
creates higher transparency and, thus, new approaches to monitor and analyze
processes. A holistic view of the production and the company leads to new means
and methods of standardization, which lead to higher efficiency. Plant or product
data can be processed directly in the cloud and provided in real-time, and any
deviations are detected swiftly. Accordingly, one of the main challenges is to find
the root cause of the event within an acceptable time frame and without much effort.
Here, machine learning-based anomaly detection can be used. This approach does
not directly lead to a root cause but helps identify conspicuous time ranges and
production batches. The DTMS and cloud platforms enable patterns to be recognized
through various evaluation algorithms and, thus, processes and products can be
evaluated in detail and autonomously.
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Abstract This chapter gives an industry perspective of how digital twins are
tangibly translated, implemented, and used in a biopharmaceutical environment.
Technical prerequisites and components including data modeling, the lifecycle,
and different skills which are required from people to be put together and collaborate
efficiently with digital twins are discussed with practical examples which have been
implemented in labs and in manufacturing.

Keywords 3D model, Biopharma industry, Connectivity, Contextualizing data,
Critical process parameters (CPP), Critical quality attributes (CQA), Data, Digital
twin, Healthcare, Holistic, Human factor, Laboratory, Lifecycle, Logistics,
Manufacturing, Ontologies, Operations, People, Physical asset, Predictive,
Prescriptive, Quality by design (Qbd), Research and development (R&D),
Self-driving, Sensors, Simulation, Supply chain, Taxonomies, Virtual Model,
VUCA

1 Introduction

A digital twin is the result of the convergence of two coexisting systems, the tangible
and real system of a living organism or a nonliving physical entity and its virtual
replica which is enabled by real-time data and underlying models through the use of
digital technologies.

Digital twins have the ability to provide a holistic understanding of the system by
building a network of dependencies between real-time data and their underlying
meta information.

Through the use of Internet of things (IoT), advanced data analytics, artificial
intelligence (e.g., machine learning, deep learning), and models (descriptive, pre-
dictive, and prescriptive) the digital twin becomes a living replicate of the physical
entity which adapts to real-time information coming from its originator. In the scope
of Biopharma, physical entities can range from a biological cell to a complete factory
or supply chain. Models should be formalized either as mathematical models or
algorithms in order to enable simulations.

So, considering a digital twin to be a real-time connected virtual-physical system
where physical reality and virtual models are continuously connected, we will
broadly have different levels of twins:

• The most basic digital twin establishes a one-directional relationship between a
fixed physical entity and a fixed virtual model providing real-time transmission of
physical parameters to the virtual environment for visualization, analysis, and
experimental design. Each side of the digital twin system is fixed in the sense that
only parameter values change. For instance, a digital twin of a bioreactor would
be fixed in the sense that the bioreactor does not change while parameters such as
cell density, temperature, pH, etc., would change.

• A more realistic approach in operational usage requires the virtual-physical
system to remain operational as changes are made to the structure either of the
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physical environment or the virtual environment models with bidirectional
exchange of information. Typical changes could include the size of a bioreactor,
variations of cell culture, and process parameter controls.

• Finally, a more advanced level provides the ability to simulate situations in the
virtual environment that can then be applied to predict evolution in the physical
environment and/or direct changes to the physical phenomenon. In the context of
Biopharma, digital twins’ potential scenarios would range from adapting control
strategies of cell fermentation to optimizing supply chain policies such as stock
levels of transport preferences. In this case, the digital twin is in a continuous
learning state (supervised or unsupervised).

2 Technical Prerequisites and Components of Digital Twins

2.1 Context

So, in a nutshell, a digital twin consists of: The physical or biological product, the
virtual manifestation, and the seamless and bidirectional connection between these
two elements. Prerequisites and components will increase as we build increasingly
sophisticated levels of twins.

The most essential prerequisite of a digital twin is to have an operational goal and
defined value. Key examples would be higher yield for a process, lower variability
and deviations, or better asset utilization. It is, however, one of the key missed
prerequisites in many projects.

For the first level, static physical entity and virtual model with one-directional
data connection, the main prerequisites are the following:

• Sensors on the physical system that can measure its state
• Connectivity to establish the link between the physical and virtual environment
• A virtual model of the physical assets (typically a 3D model in engineering

related scenarios but could be also more abstract such as cell models)

The second level of twin where we manage lifecycle changes of both physical
entity and virtual models requires the additional components:

• An asset framework to manage the relationship between sensors and the
virtual model

• Configuration management of the different components

And to complete the list, for the third level of twin where the virtual model takes
on a life of its own and starts being used to drive change in the physical entity, we
have these additional elements:

• A dynamic virtual model (that can evolve independently from the “real” system)
• Data from executions of the system in variable conditions
• Data modeling and ontologies
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There is also one additional prerequisite going across all three levels of twin with
increasing complexity:

• People

For each of these prerequisites, we will provide a basic overview, insights on why
they are required, and illustrations of common roadblocks to success in industrial
environments. Obviously, funding, be it through private means within companies or
through public subsidies, is also a prerequisite in most cases but this topic goes
beyond the scope of our investigation.

3 Major Prerequisites

3.1 Sensors

The basics of a digital twin being to create a common state between a physical reality
and a virtual representation, we need to have sensors that can measure the state of the
physical assets and provide that data.

Such sensors exist on most modern equipment and the growth of industrial IoT is
generating a lot of innovation making it easier to add additional sensors to existing
equipment. There currently exists a wide range of sensors that will capture the state
of a physical environment (temperature, pressure, pH, movement, flow, etc.) and we
increasingly see so-called software sensors that will analyze basic physical param-
eters and convert them into higher level measurements [1]. This will typically be the
case for measuring biological processes or using computer vision to extract complex
information.

The common roadblocks in this area will usually be converting the signal
obtained by the sensor into some useful information for the digital twin. Many
older sensors will provide an analog signal where a digital signal is required for our
twin. Another common case is where sensors are managed by a PLC that no one has
the appropriate competencies to use and the sensor information remains locked
within the PLC. Critical approaches to avoid these kinds of issues include defining
corporate standards for PLC/sensors upon purchase and implementation that ensure
such black boxes do not happen.

Beyond sensors, we shall also usually need data from standard Information
Technology solutions such as MES (Manufacturing Execution System), LIMS
(Laboratory Information Management System), ELN (Electronic Lab Notebook),
etc. However, these are generalizable as sensors where we have a human interme-
diate between the measurement system and the data capture which we would
generally try to avoid as we develop more sophisticated levels of digital twins. It
should be noted, however, that the sensors and measurement system only need to be
as good as the goal given for the twin and in many cases the required sensor quality
required for observability of the model can be quite low.
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3.2 Connectivity

One thing is to have measurements coming from a sensor, we also need to transmit
that data from the physical asset to the virtual environment.

Traditional approaches will include SCADA and wired networks with a historian
solution. Many players increasingly use variations of IoT boxes and standard mobile
networks such as wi-fi and to make the connection between automation and digital
environments while we are seeing mounting maturity of IoT network approaches in
different variations converging towards 5G [2].

In parallel, there are a lot of emerging solutions around Industrial IoT platforms
from most traditional industrial software players that make this connection between
the edge and digital platforms.

Whatever the solutions, usual complexities come from the interconnection of
multiple protocols originating in different worlds (automation vs IT vs telecom
mainly) and the variable interpretations of standards creating confusion and incon-
sistencies. Another major pitfall to avoid is in the translation and volumes of data in
different environments. The brutal reality of an analog sensor will usually over-
whelm digital infrastructures to make the right conversions and simplifications at the
right time in the process is critical. The virtual model will normally only require
these condensed data sets to be operational.

3.3 Virtual Model of Physical Asset

We need to create a reality of the physical asset as a virtual model. Otherwise, we are
no longer doing a digital twin, we are just doing data capture, analysis, and
simulation on measurements. In other words, the virtual model needs to be self-
sufficient to understand the system without having direct access to the physical
reality we are creating a twin for. For instance, traditional Information Technology
solutions such as ERP (Enterprise Resource Planning) have captured data on
manufacturing operations but only logically without any representation of the actual
physical factory and manufacturing equipment.

The representation of the physical asset as a virtual model will often take the form
of a 3D model using various CAD standards [3]. These models will under usual
conditions be produced by engineering teams designing the physical asset, integrat-
ing sub-models from the equipment providers contributing the various components
of the physical asset. A limited number of standards exist that are quite interoperable
at a basic level of modelization.

In this area, we start to see some major roadblocks appearing. Virtual models will
in many cases be considered proprietary Intellectual Property of the providers, both
engineering and equipment providers. It is therefore critical to ensure that initial
contracts include appropriate availability and use rights of such models. Another
more subtle roadblock is that these models are developed with a lack of transparency
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or respect of standards that basically make them unusable. Defining beforehand the
standards, naming conventions, hierarchies, etc., to follow are important elements of
success. The reality of today is that models are developed both by equipment
providers and by engineering companies, but nobody actually uses these models
beyond the short period of design and construction.

In other areas such as biological systems, 3D models are not the most efficient
way to represent the system and other approaches such as computational whole-cell
modeling are being used [4].

Having access to an open and programmable model where you can bring in and
display the measurements provided by sensors is a last and most important
constraint.

3.4 Asset Framework

As we move into more dynamic digital twins, we shall start seeing the need for an
additional prerequisite. In our basic solution, we would be manually making the
connection between a sensor and the corresponding objects of our virtual model.
However, this quickly becomes impractical as the number of sensors increases and
we start seeing evolutions of the different assets and models.

The key to overcome this challenge is through the use of an asset framework that
manages the overall plant and asset hierarchy and creates an abstraction layer
between the physical reality and sensors and the virtual models [5].

An asset framework is thus a hierarchical, contextualized, and digitized model to
describe all physical assets (including sensors) in the system and their relationships.
In this way, individual sensors and their measurements are not just data points but
acquire meaning within the digital twin system and become resilient to changes to
physical assets or models. A temperature sensor on a bioreactor remains as such even
if we move the bioreactor to another factory or upgrade the bioreactor.

Most solutions for connectivity include asset framework capabilities. The issue is,
however, double:

In many industrial environments, these asset frameworks were either not
implemented upon commissioning of the equipment or they have not been
maintained. Basic operations without digital twin initiatives can usually survive
without a good asset framework. Digital Twins without it will not remain operational
for long.

There will often be multiple asset frameworks, and these become inconsistent
over time if they were not so already from the start. It is not uncommon to find asset
frameworks in a historian, the ERP environment, MES, and an IoT platform
solution. All at the same time with variable standards.

The most obvious way out of this dead-end is to manage the asset framework not
as an element of a transactional system (Historian, ERP, etc.) but as true master data
within an MDM solution that will provide a single source of reference for other
systems. For most organizations, this will be a serious change.
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3.5 Configuration Management

Managing change is another prerequisite for a successful digital twin. It should be
obvious by now that a digital twin requires the synchronization of a lot of indepen-
dently moving parts. While this is of course theoretically possible to do manually it
quickly becomes complex and error prone.

Ensuring that changes are appropriately validated with the right workflows, that
adequate impact analysis is done beforehand, and that consistent configurations of
stable states are managed is a job by itself [5]. It will also typically require a
dedicated solution. Some companies have managed to develop this as a dedicated
solution but in most cases using a standard solution from the PLM world will be the
best answer.

No solution is perfect and not in this case either. Leveraging PLM solutions
usually developed in discrete industries has benefits but adapting these to the
conditions of a Biopharma industry remains a major challenge.

3.6 Dynamic Model

Up to now, we have remained within the limited ambition of having a virtual model
that continuously represents the physical environment. As we move beyond that into
an area where the virtual models start to have an autonomous existence and influence
on the physical environment, we start to create new prerequisites.

The virtual models need to be able to evolve by itself and influence backwards to
the physical world, which essentially means that it needs to contain a model whereby
it can:

• Enable simulations of system behavior without input from the physical environ-
ment. This will usually for a digital twin include a combination of mechanistic
and algorithmic models to cover behaviors of the physical assets and biopharma-
ceutical processes.

• Drive changes in the physical environment based on measurements and predic-
tive simulations. This will normally encompass a sophisticated process control
strategy and model that defines how you can interact with the physical reality.

The dynamic model is the combination of the two. Unsurprisingly this is a much
more open area where few solutions exist. Yet, having the depth of equipment and
process understanding required to design such models and control strategy is a
condition for building a useful digital twin. This is the moment where we start
using the digital twin not just for information but to actually influence operational
outcomes [6].

There are many potential pitfalls in this step. The standard process control
standards in operations today are far from the level required to be useful in a digital
twin context. Process characterization, understanding, and control will not be at the
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level of formalization to be automatically leveraged by a digital simulation. And on
the models for how the system operates, we are often faced with the competing
approaches of trying a bottom-up approach, component by component, that fails to
capture the system dynamics that actually defines what happens; and an end-to-end
heuristic model delivering insights and correlations devoid of any physical causality,
amplifying noise in measurements more than modeling the real world.

Success in this area requires a convergence of practices in different disciplines
which is still very emerging.

3.7 Data

Many digital twins fail due to a lack of data from previous runs of the target process
and equipment. Without enough volumes of data many of the modern machine
learning algorithms become unusable. While we have seen success from pure
mechanistic modeling in many discrete manufacturing operations (Automotive,
Aeronautics,. . .), in Biopharma we seem to still require real-world experiments to
provide the context for simulations.

Capturing data is not an issue by itself but there are two challenges:

• Providing experimental data requires several actual experimentations. For new
operations, this can only come from development activities. To be noted that
some industries have successfully created the ability to do virtual experimentation
(a case in point is autonomous driving where most major players have success-
fully created virtual playgrounds to increase the learning of the driving machine
learning model). In Biopharma, based on the complexity of the system we shall
most probably have to go in the direction of a mixed model.

• Beyond the measurement, you need to understand what it means and be able to
reuse it in different context. This is an overall question of appropriately “contex-
tualizing” data. In many cases data has been captured but without tracking the
different changes that were done to the system while doing experiments. Thus,
you need to “realign” those datasets to make them comparable. The different
capabilities discussed above in point IV. and V. are what helps you achieve this.

Generating data will in many cases be one of the longest parts of a digital twin
project or barriers to doing it.

3.8 Data Modeling and Ontologies

Good data modeling is always important for any kind of data analysis project. In
cases where we are manipulating complex data with high variability, it is critical to
raise the bar even more.
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Developing formal ontologies for the key data domains of the twin and leveraging
existing standard taxonomies is the current good practice for addressing this area [7].

The field is still emerging, so overcoming the two barriers of finding the right skill
sets and building on solid initiatives that will become industry standards is a key
challenge. An example of an initiative with such a potential is allotrope.org which is
building a complete framework of ontologies, taxonomies, and data modeling for
analytical test data.

Failing to do the appropriate effort in the early stages of a twin project might save
some time but as the twin model starts to evolve the increasing load of managing
changes to data model versions and realigning datasets to enable analysis across
experiments quickly becomes unsustainable and may completely break the project.

3.9 People

All projects require people of course but digital twins have specific constraints.
Looking at the list of prerequisites, you see that a lot of different competencies are
required to be put together and collaborate efficiently. Also, many of these experts
will need to work slightly outside their traditional comfort, some because the
interdependencies of the digital twin create additional stress on the technologies
and domains being applied.

Beyond this, there are also major mindset changes required to be successful. You
need people to trust data coming from the twin to change how they operate things.
This is less obvious than it might seem in many operational environments. Another
change in behavior that a digital twin will require is to move from an approach of
“Tests ! Hypothesis ! Confirmation” to an approach of “Simulation ! Hypoth-
esis ! Confirmation Test.”

4 Typical Lifecycle of a Twin

Building digital twins is complex, as it requires a deep understanding of the physical
entity and the synchronization of the virtual and physical side of the twin. That is
why digital twins generally go through iterations. If we investigate the case of digital
twins for industrial assets (production equipment, factories, supply chain,etc.) the
first step will generally start while designing a physical entity using CAD-type tools.
A relatively limited additional investment connecting sensor data to this virtual
model will then deliver a basic twin. In most cases, however, as the physical entity
enters operational life the two components will get out of sync and the digital twin
falls apart.

The second phase will then often be the development of a digital twin on an
existing physical phenomenon. The focus then becomes much more on the design of
a virtual model of this, both the 3D type modeling and more importantly dynamic
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modeling of the processes taking place in the physical entity. While in the first
approach the focus was on the design and construction of the physical entity here the
focus will usually be more on the understanding and optimization of the system with
a much stronger business goal. Having the experience of how the physical entity
operates and changes also makes it easier to construct the capabilities to manage
change in each component of the system. This kind of digital twin can then be
enriched to provide more predictive and simulation capabilities but once again it will
usually start hitting limitations.

Similar dynamics will exist in digital twins of biological systems but with the
added challenge of lower level of control over design and of understanding of the
physical entities internal mechanisms.

The ideal lifecycle is at a higher level of maturity where in the initial design equal
focus is given to the physical entity and the virtual model as well as their interac-
tions. This also requires designing into the system from the beginning of how the
virtual simulations can influence and direct the physical reality. In the case of
preexisting physical phenomena such as biology, this of course requires a very
deep understanding of that entity in order to formalize upfront what are the charac-
teristics of the physical phenomenon that can be influenced or controlled and
embedding in the virtual model a control strategy where outcomes of virtual
model simulations can be applied to the physical entity with a continuous
feedback loop.

5 Digital Twin: Potential Applications in Healthcare
and Biopharma Industry

Digital Twins acting as a digital replica for the physical object, product, and/or
service are the next source of competitive advantage for the Healthcare sector.

They are key to accelerate the move towards preventive and personalized medical
treatments by modeling reality with advanced analytics techniques in such a way that
problems can/will be predicted whether and when they occur, providing the time
necessary to treat the patient in advance.

Furthermore, digital twins can provide a safe (virtual) environment for testing the
impact of changes on the performance of a specific system or living body. This will
enable optimal solutions, as they imply minimal capital investment, but more
importantly will drastically limit risks which are obviously critical in the health
sector.

A digital twin can be designed and implemented to improve “care-delivery”
services, patient experience, and specific treatments as well as the overall Healthcare
value chain. The potentials are unlimited as today we are just “looking” at the peak
of the iceberg.

However, like in any technology, the misuse of digital twin can drive issues both
on the data privacy standpoint as well as accessibility of the potential solution that,
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due to the high cost of entrance, may drive inequalities vs patients. Hence, the need
for a strong governance body that would regulate the transparency of data usage,
data privacy, and type of personalized treatment.

Let us consider what it could mean for a single individual as a patient: the pairing
of the virtual and physical worlds allows analysis of real-time data and monitoring of
responses to treatments, as well as tracking the results of behavior and lifestyle
modification, to prevent any type of disease prior to their occurrence. For example, a
wearable sensor (iWatch, fitbit, Oura ring, etc.) could track a patient’s blood
pressure, body temperature and link that information, as well as data on the patient’s
lifestyle and genetic characteristics, to a digital twin. Consequently, a doctor can
develop and test upfront on the virtual twin the most suitable medical plan and
lifestyle recommendations that, upon positive confirmation, could then be
implemented on the “living” patient.

Another example, within the Healthcare industry, could come from virtualizing a
hospital system to create a safe environment in which to test the impact of potential
change on system performance. One of the most typical issues that hospitals face is
the dilemma between immediate availability of medicines, stock management due to
limited space, and the relative lifecycle of drugs that may create “expired medi-
cines.” A digital twin can simulate these complex scenarios and identify the right
trade-off between inventory on-hold and availability of medicines.

Furthermore, there are many potential use cases for digital twins in R&D and
OPERATIONS (Manufacturing and Supply Chain) including real-time monitoring,
simulation, modeling, and virtual (remote) control of physical assets. Digital twin is
playing a key role in manufacturing process development and many operations
processes optimization, in harmonizing products with processes and in defining a
holistic process control strategy and ultimately realizing the concept of “Quality by
design” (QbD). The QbD is a systematic approach in pharmaceutical drug develop-
ment to ensure predefined product quality by identifying and understanding the
impact of all critical process parameters (CPP) on all and critical product quality
attributes (CQA). The use of digital twins helps the pharmaceutical industry in
aiming for the reduction of drug development and manufacturing cost as well as
reducing the timelines for getting drug candidates to the patient.

The fast progress in IoT will certainly accelerate the adoption of this technology.
In fact, according to a recent Gartner research, 75% of the companies using IoT in
manufacturing will develop a Digital Twin within 12–18 months.

Finally, in the next section, we will make a deeper dive into two real case studies
of digital twins implemented in the pharmaceutical and healthcare industry.
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6 Digital Twin: Case Study from Merck KGaA Darmstadt,
Germany

6.1 Overall Approach

In order to maintain competitiveness in this “new world,”Merck KGaA, as a vibrant
Science and Technology company, has been significantly investing since several
years in digital technology for manufacturing and supply chain to pursue its vision of
“Self-Driving Supply Chains.”

We envisaged a Healthcare Supply Chain where the DEMAND is “automatically
predicted,” without any need of human intervention, through a combination of
Statistical Forecasting, based on machine learning, and Predictive Forecasting, based
on Real World Evidence data thanks to advanced analytics techniques able to integrate
structured and unstructured data, in order to derive a forward-looking signal.

Likewise, SUPPLY is “proactively prescribed,” through Control Towers (a sort
of center of expertise and decision-making for supply chains), based on Digital Twin
systems modeled by real-time information flows, enabling production synchroniza-
tion across the overall E2E network. This enables a LOGISTICS Distribution system
personalized, affordable, and agile.

Figure 1 illustrates this concept:
However, the journey towards the vision is made of a series of important steps,

one after the other, that enables a progressive development of the three key elements:
Technology, Process, and People.

Our recommended “journey” is made of four steps:

• Step 1 – Integrated Supply Chain: whereas we operate in a state of “REAL
TIME” End-to-End visibility of SC performance/KPI’s, gathered through online
descriptive dashboarding, all this supporting the IBP (Integrated Business Plan-
ning) process towards “One Number” concept.

• Step 2 – Predictive Supply Chain: this is the “FORWARD LOOKING” state in
which we are able to get a clear demand signal thanks to predictive capabilities
(killing Bullwhip effect).

Fig. 1 Self-driving supply chain concept
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• Step 3 – Prescriptive Supply Chain: moving towards the “DETERMINISTIC”
state whereas through the creation of DIGITAL TWINS, the reinforcement
learning AI solutions, we have supply planning “prescribed and recommended”
by the system (upon human final decision).

• Step 4 – Self-Driving Supply Chain: the last step in which the overall balancing of
supply vs demand as well as distribution and logistics is totally AUTONOMOUS.

Figure 2 shows the step-by-step approach:

6.2 What Is the Technological Backbone?

Nearly all Pharma companies (and not only) come from a world whereas “ERP is the
king.” ERP were the systems needed to reduce operational costs, to drive efficiencies
through effective data gathering, and to leverage synergies by standardizing pro-
cesses. While this is (was) generally true, true E2E-Supply Chain-level decision-
making was never enabled. Hence the key reason why the end-to-end digital supply
chain twin is an important milestone: these new systems do sit “above” any ERP or
data gathering source and their analytical layer provides prescriptive insights into the
interconnected decisions that are inherent in supply chains (Fig. 3).

At its core is a digital supply chain twin is:

• Connected outside-inside
• Gather and process info real-time (is always “ON”)
• Autonomous
• Intelligent

Fundamentally, such a system allows the flexibility for performing simulation
scenarios and modeling that can be evaluated without having to necessarily conform
to the design constraints of your current supply chain nor impacting the operational
activities.

As-is: Siloed

Retrospective

• Silos of raw data
• Limited visibility
• Inaccurate

Step 1
Integrated

Real-Time

• End2End visibility
• One Number
  Concept
• SINGLE source of
  Truth

Step 2
Predictive

Forward Looking

• Advanced Analytics
  Forecast
• Machine Learning

• Demand Sensing

Step 3
Prescriptive

Deterministic

• Al driven
  prescriptive supply

• Reinforcement
  Learning though
  DIGITAL TWIN

Step 4
Self Driving

Autonomous

• Al - Closed Loop
  (CLM)
• Deep Learning

• SDO
   interconnectivity

THE JOURNEY:

Fig. 2 The journey to implement the vision of a Self-Driving Supply Chain
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It is a journey from “Automation” where companies are increasingly automating
processes and eliminating losses towards “Augmentation” enabled by new cognitive
automation platforms drive value creation (Fig. 4).

However, this journey is “not exactly a walk in the park” and the two biggest
challenges to overcome are:

1. Ensure a very high level of MASTER DATA ACCURACY
2. Empower and support a strong CHANGE MGT PROGRAM

Connected &
Outside-In

TECHNOLOGICAL FEATURES

Autonomous

Real-Time &
Always-On

Thinking

Suppliers, External
Partners, Customers

Enterprise
Systems

External
Data

Fig. 3 The technological backbone and its features

Fig. 4 The journey from Automation towards Automation
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The first point, Master Data Accuracy, seems trivial but it is not. Indeed, any
digital solution becomes useless if data is not correct.

The second point implies the continuous “re-skilling” and “up-skilling” of the
supply chain people as new skills and mindset are required.

Effective Change Management is the crossroad between the success and failure of
any digital transformation.

We live in a “VUCA” (Volatility, Uncertainty, Complexity, Ambiguity) world
where tons of real-time data, better processing power, and more sophisticated
analytical algorithms are starting to create seismic shifts in how the supply chain
will operate today and in the future.

7 Digital Twin: Case Study from Sanofi

7.1 Objective

This initiative was developed by Sanofi and partially demonstrated at the Usine
Extraordinaire event took place in Paris in November 2018.

The objective was to improve operations of a cell culture production line with an
endpoint goal of reducing operational incidents leading to lost batches or release
delays and to improve overall productivity and yield of production.

7.2 Challenges

The two key challenges are (1) the creation of a model that could reliably simulate
the biomanufacturing processes, and (2) ensuring that the operational teams integrate
the use of the digital twin in daily activities and are confident with the outcome of the
virtual model.

For the first challenge, the main barrier quickly became the availability and
quality of data. As we started building models it became very apparent that the
data being used to run an industrial process on a daily basis was insufficient to train
and validate a model that could reliably replicate the process.

For the second challenge, the issue was different and caused the project to change
direction somewhat. While the initial focus was very much on the simulation model,
working with the operators it became clear we needed to take a much broader
approach where the digital twin was not just a sophisticated technology for a few
experts but a solution for the operators in their complete lifecycle experience from
training to operations and continuous improvement. Creating operational impact
from the digital twin required true operational familiarity and trust from the opera-
tional teams.
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7.3 Digital Twin Solution

The end approach consisted of (1) building a detailed 3D CAD model of the
production line facility and equipment, (2) designing a simulation model for each
of the production steps based on historical runs of the same process using key
production parameters and measurements and that could predict end-stage values
of key outcomes (yield and failed batch) in the initial phases of the step, and
(3) connecting sensor data from the process and analytical tests to the model to
visualize in context of the equipment.

A first use case was then averaging this model to develop training modules where
operators could learn how to operate the process and by themselves use the simu-
lation model to understand and learn how operations parameters and decisions
impacted the outcome of the biomanufacturing process.

This training experience then makes it much easier to leverage the twin in
operational conditions because the environment and types of decisions are already
familiar. Not only does the 3D model provide better training on how to operate an
equipment but better understanding of what is happening in the bioprocess increases
the right operational procedures.

The second use case was focused on providing shared real-time information on
production process status. We confirmed that in many cases the key data on
production status is not broadly shared, both because of basic information access
and because that data is often managed in technical environments requiring very
expert skills to understand its meaning. Providing easily understandable data in the
context of the twin is a key enabler in creating the shared understanding of status that
avoids operational issues caused by misunderstandings, lack of information, or
erroneous data transmission.

The third use case was to enable a set of key decisions on the shop-floor with
outcomes of twin predictions. The three main decisions targeted were:

• Decision to stop a batch early that would fail thereby enabling production to save
time and quickly restart a new batch

• Decision on timing to end a batch when optimal yield/duration has been hit
• Decision to adjust process control parameters (within the specification of course)

in order to optimize yield or avoid deviations and lost batches

7.4 Lessons Learnt

As stated above, integrating the human element of operations was a critical factor in
the direction that the twin project took. Creating the visual element of a 3D model
and training experiences was a key enabler in operations buy-in and support for the
more advanced use cases.

The human factor also drives the need to clearly define and prioritize the
operational decisions that the twin is aimed at enabling. It is of course possible to
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develop a digital twin for research investigations and broad exploration. However, in
an operational environment, the possibilities of a twin can quickly just become
information overload and create a lack of trust which is fatal for efficient usage.
Therefore, the type of work of proactively defining which decisions are aimed at
being enhanced and only focusing on them is a major success factor. If there are too
many options, the decisions quickly get evaluated based on the risk one might take
versus standard operations without a digital twin instead of the expected operation
upside.

Finally, we mainly targeted a modeling approach focusing sequentially on each
production step and using combinations of mechanistic and heuristic modeling.
While this has the benefits of targeted modeling activities that remain more easily
scoped and manageable, it has several caveats. The main issue is probably that as we
optimize each step sub-model, we are targeting an endpoint outcome that may
actually not be optimal for the end-to-end process. What we optimize for at each
step is only as good as our understanding of the overall process.

We explored end-to-end model development using machine learning approaches
and while promising it once again becomes apparent that higher volumes of data and
better quality are absolutely required for this approach.

8 Conclusion and Outlook

The digital twin approach is still in the emerging phase of its use within the
Biopharma industry. We have seen examples of use from process development to
manufacturing and supply chain. However, that is only the start and fascinating
opportunities also exist in other areas beyond industrial operations. A lot of ink has
already been spent around the notions of quantified self and biohacking, investigat-
ing possibilities where we take twin approaches to human individuals.

While raising many ethical questions there are also areas such as clinical trials
where such approaches would deliver unquestionable benefits. All levels of twins
can apply from just having real-time sensors continuously updating a digital replica
to the most sophisticated twin where we could do simulations, prediction of thera-
peutic impact.

The ultimate end goal for digital twin applications within Biopharma and
Healthcare would be to no longer have any need for conducting clinical trials on
living beings but already a first step would be to shift from an approach of doing
experiments and then looking for a model that would explain results to an approach
where we execute simulations on the twin to define a predicted best scenario and
then verify whether actual therapeutic conditions follow the parameters of the
predicted model.

In short, using experiments not to experiment but to validate the hypothesis
produced by twin simulations. While radical, one should remember this is already
the shift that has taken place in areas such as automotive where nearly all crash tests
are now simulated instead of being actually conducted with a prototype vehicle.
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In addition, the pairing of the virtual and physical worlds will enable a great step-
change towards preventive medicine in a personalized approach. Indeed, the track-
ing of real-time data, the possibility of analysis and monitoring of responses to
treatments in a virtual modeling twin, as well as tracking of the results of behavior
and lifestyle modification, will allow the personalized prevention of any type of
disease prior to their occurrence. And this is going to be a key breakthrough for
science and humanity.
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Abstract Human mesenchymal stem cells (hMSCs) are a valuable source of cells
for clinical applications (e.g., treatment of acute myocardial infarction or inflamma-
tory diseases), especially in the field of regenerative medicine. However, for autol-
ogous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies,
in vitro expansion is necessary prior to the clinical application in order to achieve
the required cell numbers. Safe, reproducible, and economic in vitro expansion of
hMSCs for autologous and allogeneic therapies can be problematic because the cell
material is restricted and the cells are sensitive to environmental changes. It is
beneficial to collect detailed information on the hydrodynamic conditions and cell
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growth behavior in a bioreactor system, in order to develop a so called “Digital
Twin” of the cultivation system and expansion process. Numerical methods, such as
Computational Fluid Dynamics (CFD) which has become widely used in the biotech
industry for studying local characteristics within bioreactors or kinetic growth
modelling, provide possible solutions for such tasks.

In this review, we will present the current state-of-the-art for the in vitro expan-
sion of hMSCs. Different numerical tools, including numerical fluid flow simula-
tions and cell growth modelling approaches for hMSCs, will be presented. In
addition, a case study demonstrating the applicability of CFD and kinetic growth
modelling for the development of an microcarrier-based hMSC process will be
shown.

Graphical Abstract

Keywords Computational Fluid Dynamics, Euler-Euler model, Euler-Lagrange
model, Human mesenchymal stem cells, Kinetic growth modelling, Microcarrier
technology, Single-use bioreactor

Abbreviations

CC Collagen-coated
CFD Computational Fluid Dynamics
DMEM Dulbecco’s Modified Eagle Medium
DSP Downstream processing
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ECM Extracellular matrix
bFGF Basic fibroblast growth factor
FBS Fetal bovine serum
GMP Good manufacturing practice
hASC Human adipose tissue-derived stromal/stem cells
hBM-MSC Human bone marrow-derived mesenchymal stem cells
hMSCs Human mesenchymal stem cells
hPL Human platelet lysate
HGF Hepatocyte growth factor
HSB Hemispherical-bottom bioreactor
LDA Laser Doppler Anemometry
LES Large Eddy Simulations
αMEM Modified Eagle Medium
MC Microcarrier
MCB Master Cell Bank
MRF Moving reference frame
OTR Oxygen transfer rate
PIV Particle Image Velocimetry
PS Polystyrene-based
RB Round-bottom bioreactor
RMSD Root mean square deviation
SIMPLE Semi-implicit method for pressure-linked equations
SM Sliding mesh
SU Single use
UCM Umbilical cord-derived mesenchymal stem cells
USP Upstream processing
VEGF Vascular endothelial growth factor
VOF Volume of fluid
WCB Working Cell Bank

Latin Symbols

Amn (mmol/L) Ammonium concentration
DO2 (m

2/s) Oxygen diffusivity
DR (m) Vessel diameter
EF Expansion factor
F (N) Force
Glc (mmol/L) Glucose concentration
h/HL Geometrical ratio between a certain height and the liquid

height
hR/DR Geometrical ratio between impeller installation height and

the vessel diameter (¼ off-bottom clearance)
HL (m) Liquid height
HL/D Geometrical ratio between liquid height and vessel

diameter
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kat (d
-1) Cell attachment constant

kdet (d
-1) Cell detachment constant

KAmn (mmol/L) Inhibition constant of ammonium
KGlc (mmol/L) Monod constant of glucose
KLac (mmol/L) Inhibition constant of lactate
Lac (mmol/L) Lactate concentration
N (rpm) Impeller speed
Ns1u (rpm) Lower limit of Ns1 suspension criterion
Ns1 (rpm) 1s or just suspended criterion (¼Njs)
PDL Population doubling level
P/V (W/m3) Specific (volumetric) power input
pAmn (mmol/cell/d) Specific ammonium production rate (growth-independent)
pLac (mmol/cell/d) Specific lactate production rate (growth-independent)
qAmn (mmol/cell/d) Specific ammonium production rate (growth-dependent)
qGlc (mmol/cell/d) Specific glucose consumption rate
qLac (mmol/cell/d) Specific lactate production rate (growth-dependent)
Re Reynolds number
r/R Dimensionless radial coordinates
tc (s) Contact time
tcir (s) Particle circulation times
td (d) Doubling time of cell population
tl (d) Lag or cell adaption time
tres (s) Particle residence time
utip (m/s) Impeller tip speed

u
! (m/s) Velocity vector in x-direction

Vmin (mL) Minimal working volume
Vmax (mL) Maximum working volume
v! (m/s) Velocity vector in y-direction

w
!
(m/s) Velocity vector in z-direction

XA (cells/cm2) Cell concentration on surface
Xmax (cells/cm

2) Maximum cell concentration on surface
XSus (cells/mL) Cell concentration in suspension
XV (cells/cm2) Cell concentration of viable cells (XSus + XA)
YLac/Glc (mmol/mmol) Lactate yield per glucose equivalent
YX/O2 (1/mmol) Yield coefficient/cells per mmol oxygen

Greek Symbols

α Cell adaption phase coefficient
αMC MC volume fraction
δGlc Step response in glucose balance to avoid negative glucose values

(δGlc ¼ 0 or 1)
ηL (Pa s) Dynamic viscosity of the liquid
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π Mathematical constant (� 3.1415)
ρL (kg/m

3) Density of the liquid
τnn (Pa) Local normal stress
τnt (Pa) Local shear stress
μ (1/d) Specific growth rate
μmax (1/d) Maximum specific growth rate

1 Introduction

The successful development and application of cell-based therapies have the poten-
tial to treat a number of currently incurable diseases and to improve patient care. It is
therefore not surprising that cell-based therapies have become increasingly impor-
tant in the field of regenerative medicine, as the expected revenue for 2020 of up to
US$ 6.09 billion indicates [1]. Special attention in the field of regenerative medicine
is currently being paid to human mesenchymal stem cells (hMSCs). This is unsur-
prising due to their existence in postnatal tissues (e.g., adipose tissue, bone marrow,
the umbilical cord), their high proliferation potential, and their immunosuppressive,
immunoregulating, migrating, and trophic properties and low ethical concerns. At
the beginning of 2020, 41 clinical trials involving hMSCs were registered (www.
clinicaltrials.gov). In addition to the large number of currently ongoing clinical
studies, 17 hMSC-based products have received marketing authorization to date
(see Table 1), demonstrating the need for reproducible and robust cell processing
methods. Product manufacturing takes place mainly with mesenchymal stem cells
derived from human bone marrow (hBM-MSC; 11 products), followed by adipose
tissue-derived stem cells (hASCs; 5 products).

In general, hMSC-based therapies can be broadly divided into two categories:
patient-specific therapies (autologous) and off-the-shelf therapies (allogeneic). From
an economic point of view, the allogeneic therapy approach seems to be the most
attractive option at present [2, 3]. However, independent of the therapy approach, an
in vitro expansion of hMSCs is required to deliver an effective therapeutic dose (1–5
million hMSCs/kg body weight [4–6]). The intention of the in vitro expansion step is
to manufacture a sufficient number of hMSCs under good manufacturing practice
(GMP) conditions and in a cost-effective manner. It is clear that in vitro manufactur-
ing of hMSCs is often difficult because the cells, which are the product, are directly
isolated from body tissue and are genetically unstable in vitro (e.g., cellular senes-
cence) [7]. In addition, significant differences in the cell yield, the proliferation rate,
and the differentiation potential have been found between different donors, as well as
for different ages of donor and health conditions [8–10]. Apart from the biological
variability of the cell material, hMSCs are also sensitive to environmental changes
and chemical and physical stresses [11, 12]. As a result, all these aspects place high
demands on the in vitro cell expansion process. MSC manufacturing is characterized
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by different manufacturing steps covering upstream processing (USP), downstream
processing (DSP), formulation, and fill and finish operations. Typical USP opera-
tions are the manufacturing of the Master Cell Bank (MCB) and Working Cell Bank
(WCB), seed cell production, and cell expansion at L-scale. DSP operations include
cell harvest, cell separation, washing as well as concentration procedures, and
medium exchange. Different economic studies have demonstrated that the USP,
and in particular the hMSC expansion, represents the main cost driver when exam-
ining the whole manufacturing process [3, 13, 14]. To reduce the number of
experiments and to increase the process knowledge during either the design and
development or the optimization phase, virtual representations of the hMSC pro-
duction process, so called “Digital Twins,” are helpful. These virtual models allow
an approximation of real process conditions, a fact that is particularly important for

Table 1 Available hMSC-based products (as of May 2020)

Medicinal
product Company Therapy/cell type Indication Market

Allostem AlloSource Allogeneic ASC Bone regeneration USA

Alofisel TiGenix-
Takeda

Allogeneic ASC Anal fistula in Crohn’s
disease

EU

AstroStem Biostar Autologous ASC Alzheimer’s disease Japan

aJointStem Biostar Autologous ASC Degenerative arthritis Japan

Cartistem Medipost Allogeneic UCM Degenerative arthritis Korea

Cupistem Anterogen Allogeneic ASC Anal fistula in Crohn’s
disease

Korea

Grafix Osiris
Therapeutics

Allogeneic
BM-MSC

Soft tissue defects USA

HearticellGram-
AMI

FCB
PharmiCell

Autologous
BM-MSC

Acute myocardial
infarction

Korea

Neuronata-R Corestem Allogeneic
BM-MSC

Amyotrophic lateral
sclerosis

Korea

OsteoCel NuVasive Allogeneic
BM-MSC

Spinal bone regeneration USA

OvationOS Osiris
Therapeutics

Allogeneic
BM-MSC

Bone regeneration USA

Prochymal Osiris
Therapeutics

Allogeneic
BM-MSC

Acute graft vs. host
disease

Canada

Stemirac NIPRO Corp Autologous
BM-MSC

Spinal cord injury Japan

Stempeucel Stempeutics Allogeneic
BM-MSC

Critical limb ischemia India

TemCell JCR Pharm. Allogeneic
BM-MSC

Acute graft vs. host
disease

Japan

Trinity Elite Orthofix Allogeneic
BM-MSC

Bone regeneration USA

Trinity Evolution Orthofix Allogeneic
BM-MSC

Bone regeneration USA
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the production of cell therapeutics, as, among other things, cell material (in an
autologous approach) may vary between batches. Process conditions must, there-
fore, be adapted to the biological starting material, increasing the complexity of the
production process. Here application of a “Digital Twin,” which combines biochem-
ical engineering data of the cultivation system with a mathematical model of the cell
growth, is beneficial, as it tests different process conditions in silico and subse-
quently proposes optimal parameter combinations for the hMSC production process.

2 In Vitro Expansion Approaches: Current Situation

For the clinical application of hMSCs, the in vitro expansion of the cells represents
an important step. Although recent studies have shown the difference in cell yield
depending on the hMSC source (e.g., bone marrow vs. adipose tissue), the required
therapeutic dose (1–5 million hMSCs/kg body weight) makes in vitro expansion
mandatory independent on the hMSC-type. Therefore, different systems and culti-
vation strategies have been developed over the years for the expansion of hMSCs,
which will be presented and discussed in the following sections.

2.1 Planar Approach (2D Cultures)

hMSCs are typically isolated by their capacity to adhere to plastic surfaces. There-
fore, the simplest way to expand hMSCs is the usage of plastic vessels, such as
T-flask or stacked plate systems, which allow for the expansion of the cells at
laboratory and pilot plant production scale for early-phase clinical trials [15]. Planar
expansion approaches in normal cell culture flasks (e.g., T-flasks) represent a cost-
efficient and easy-to-operate solution. Maximum cell densities for hMSCs from the
human bone marrow, the adipose tissue, and the umbilical cord have been reported
in the literature in the range of 0.05 to 1.0 � 105 cells/cm2 (PDL 2.8–7.4) for T-flask
cultures performed with serum-containing and serum-free cell culture medium (see
Table 2). Maximum cell densities for CellSTACK cultures were even reported in the
range of 2.5 to 4.2 � 105 cells/cm2 (¼1.59-2.67 � 109 cells) using hMSCs from the
bone marrow.

However, scale-up of such an hMSC expansion process would require a large
number of cell culture flasks, which is by any means neither economic nor ecologic.
Moreover, handling of multiple flasks in parallel is very labor and cost intensive
(increased facility footprint) and may result in high flask-to-flask variabilities. In
addition, the risk of contamination (e.g., bacteria, mycoplasms) is increased due to
the large number of open manipulations. Alternatives to the normal cell culture
flasks are stacked-plate or multi-tray culture systems, such as cell factories, which
significantly increase the efficiency of the cultivation step by using several layers per
cultivation system (up to 40-layer systems available). Thus, the absolute cell number
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per cultivation is significantly increased. Maximum cell densities have been reported
in the literature in the range of 0.4 to 4.2 � 105 cells/cm2 for hMSCs expanded in 5-
and 10-layer multi-tray systems with serum-containing and serum-free cell culture
medium (see Table 2). Due to the static nature of the multi-tray systems, there is
always the risk of gradients in pH and pO2 levels in the liquid phase, possibly
introducing heterogeneities that affect cell growth and quality (see Fig. 1).
Moreover, the lack of sensors in the systems does not allow the maintenance of
optimal set points for some physiochemical parameters (e.g., pH and pO2), resulting
in fluctuating conditions for the cells. The multi-tray systems are also not fully
closed, meaning that open manipulations are routinely performed, which require
clean room facilities and a class-A laminar flow hood for each manipulation.
Interestingly, to date the main reviews on hMSC clinical trials specify that clinical
grade cells have mainly been expanded in static 2D systems [6, 15, 21, 22]. However,

Table 2 Overview of hMSC expansions in different static, planar cultivation systems

MSC
type

2D cultivation
system Culture medium Cell density PDL Ref.

hBM-
MSC

T-flask (Greiner) αMEM + 15 % FBS 0.05-0.6 � 105 cells/
cm2

5.6 �
1.8

[10]

T-flask
(CellBIND)

Corning stemgro
hMSC

1.0 � 105 cells/cm2 4-5 [16]

CellSTACK-5 DMEM/αMEM +
hPL

0.4-0.9 � 105 cells/
cm2

n/a [6]

CellSTACK-10 BD Mosaic SFM 2.5 � 105 cells/cm2 n/a [17]

CellSTACK-10 DMEM + 10 % FBS 4.2 � 105 cells/cm2 n/a [17]

Nunc Cell Fac-
tory-4

αMEM + 10 % FBS 1.8 � 105 cells/cm2 4.9 [18]

hASC T-flask (Corning) UrSuppe SFM 0.7 � 105 cells/cm2 2.8-3.2 [19]

UCM T-flask (Sarstedt) DMEM + 10 % FCS 0.5 � 105 cells/cm2 4.9 [20]

CellSTACK-5 DMEM/αMEM +
hPL

1.6-1.8 � 105 cells/
cm2

n/a [6]

Fig. 1 Schematic representation of biochemical and physical parameters, which have an influence
on planar hMSC cultures
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in terms of GMP requirements, alternative procedures and cultivation systems, like
the spheroid- or microcarrier-based expansion in stirred single-use bioreactors, are
said to be the platforms for future cell therapeutic productions (see Sect. 2.2).

2.2 Dynamic Approach (3D Cultures)

As mentioned in Sect. 2.1, hMSCs are typically expanded under adherent conditions
as a monolayer in 2D culture systems. However, isolation and growth of hMSCs on
rigid tissue culture plastic have been described as promoting spreading of cells rich
in actin-myosin stress fibers [23, 24]. Indeed, the static 2D culture systems represent
an artificial environment which significantly differs from those of the MSC in vivo
niche. Therefore, different efforts have been made over the years to establish
dynamic 3D culture systems working with spheroids (see Sect. 2.2.1) or
microcarriers (see Sect. 2.2.2). In dynamic bioreactor systems (stirred, wave-
mixed, orbitally shaken, hollow fiber and fixed bed types), the culture medium is
continuously agitated to provide a uniform environment, preventing the formation of
physiochemical gradients and improving mass and heat transfer. Special attention is
currently being paid to SU versions, which significantly improve patient safety
[25]. Even though different studies have recently shown the applicability of SU
systems for MC-based hMSC production processes, challenges still exist.

For this reason, it makes sense to characterize the different bioreactor systems
using appropriate process engineering and cell cultivation technique methods prior
to usage or during process development, simultaneously assisting in the develop-
ment of a “Digital Twin.” Several studies have been published that provide engi-
neering parameters relating to mixing time, oxygen mass transfer, and power input
for various SU bioreactor types. However, when considering the heterogeneous
distribution of MCs, spheroids and hydrodynamics, and a detailed analysis of the
fluid flow pattern, the MC distribution and the cell growth become worthwhile.
Numerical methods, such as Computational Fluid Dynamics (CFD) and kinetic
growth models, are complementary methods to the experimental investigations
and increase the process knowledge of hMSC production methods. Thus, numerical
models can be used to support process development and scale-up.

2.2.1 Growth in Spheroids

hMSCs are often expanded in stirred SU bioreactors as self-assembling cell aggre-
gates or spheroids that mimic the in situ conditions. Thus, compared to 2D mono-
layer cultures, 3D structures consisting of multiple cell-to-cell contact points are
obtained. However, due to their heterogeneous nature, spheroids have been more
successfully employed to study complex 3D cell structures and cell differentiation
[26] than for hMSC mass expansion in stirred SU bioreactors, as indicated by the
limited number of publications in this area (see Table 3).
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The main motivation for growing hMSCs as spheroids is to avoid the use of
exogenous support materials, like scaffolds or MCs. Due to the absence of the
exogenous support material, the cells are allowed to arrange themselves similar to
living tissues [22, 31]. Cells self-assemble and interact under natural forces, permit-
ting them to generate their own extracellular matrix (ECM), which serves as support
for the cells to survive in suspension and to mimic the cell-to-cell and cell-to-matrix
signaling networks [32, 33]. Investigations by Edmonson et al. [34] have shown that
the cell morphology of hMSCs derived from spheroid cultures is comparable to
those in bodily tissues. In addition, Caron et al. [35] have demonstrated that a stable
hMSCs phenotype is retained in spheroid-based cultures, at least when only the
minimum definition of an hMSC is considered [36, 37]. A study by Cheng et al. [38]
highlighted that spheroid-derived hASCs exhibited lower cell senescence and a high
secretion of angiogenic growth factors (e.g., HGF, VEGF), which was found to be
beneficial for wound healing applications. Interestingly, several studies with
hBM-MSCs have found that the 3D structure of the spheroids leads to higher yields
of secreted immunomodulatory paracrine and anti-inflammatory factors (i.e., TSG-6,
stanniocalcin-1, prostaglandin E2) [39, 40], although this was highly dependent on
the cell culture medium formulation [41, 42]. The cell culture medium and its
formulation play a critical role in spheroid-based hMSC expansions. For example,
Zimmermann and McDevitt [41] found that hBM-MSCs expanded in serum-free cell
culture medium displayed a reduced expression of prostaglandin E2, indoleamine
2,3-dioxygenase, transforming growth factor-β1, and interleukin-6 when compared
with spheroids cultured in serum-containing cell culture medium. Since the cells are
forced to aggregate to form spheroids, the medium must also contain adhesive
molecules (e.g., laminins, integrins, E-cadherin, vitronectin) to facilitate cell-to-
cell attachment [43]. However, for GMP-compliant hMSC productions, these
recombinant human proteins represent a strong cost driver, which makes large-
scale manufacturing expensive [44]. In addition to biochemical parameters, physical
or process engineering parameters have a strong effect on the spheroid culture (see
Fig. 2).

For example, oxygen tension has been shown to play a fundamental role in the
spheroid formation. Spheroids generated in hypoxic conditions (2% O2) produced
higher amounts of ECM components (i.e., fibronectin, laminin, elastin) and higher

Table 3 Bioreactors operated with spheroids

MSC
type Bioreactor system N Medium Seeding Dmax. Ref.

hBM-
MSC

100 mL Techne
spinner

30
rpm

αMEM+15%
FBS

0.2 � 105 cells/
mL

135 μm [27]

125 mL Shake flask 80
rpm

SFM medium 1 � 105 cells/
mL

n/a [28]

125 mL Paddle
bioreactor

80
rpm

PPRF-msc6 0.5 � 105 cells/
mL

218 μm [29]

hASC 100 mL BellCo
spinner

70
rpm

αMEM+10%
FBS

6 � 105 cells/
mL

350 μm [30]
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amounts of growth factors (i.e., VEGF, bFGF) [45]. Therefore, spheroids are
effective for the tuning of specific cell features but limited in terms of cell prolifer-
ation. Bartosh et al. [39] have shown that proliferation-related genes are
downregulated in hMSCs upon aggregation. Thus, maximum cell densities in
spheroid-based cultures are limited to a certain spheroid size and to the number of
spheroids formed in the bioreactor, which limits their applicability for the hMSC
mass expansion. Moreover, large spheroids are exposed to diffusional limitations
(e.g., oxygen and nutrients), which is a major drawback in high cell density cultures.
Different studies have highlighted that spheroids exceeding 200–300 μm tend to
induce apoptosis or even undesired spontaneous differentiation due to nutrient or
oxygen limitations in the core of the spheroids [46–48]. Indeed, the size of the
spheroids can be controlled to a certain level by the fluid flow regime in a stirred
bioreactor, but this strategy provides another level of complexity, since spheroid
breakage procedures need to be introduced throughout the process. Various studies
have shown that the hydrodynamic stresses, the fluid velocities, and the Kolmogorov
length scale are very heterogeneously distributed in stirred bioreactors [12, 49, 50],
which may limit their effect on the spheroid size. Thus, spheroids are exposed to
fluctuating hydrodynamic stresses. Novel bioreactor designs are required that

Fig. 2 Schematic representation of biochemical and physical parameters that have an influence on
hMSC spheroid cultures
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provide homogenous shear stress levels for the formation and regulation of the
spheroid sizes. Such bioreactor development or design studies can be supported by
numerical models that allow for optimization of the fluid flow regarding these issues
(i.e., homogenous hydrodynamic stress distribution).

2.2.2 Growth on Microcarriers

In order to overcome the limitations of the 2D culture systems, in 1967 van Wezel
[51] developed the concept of MC-based cultivation systems. In these systems, the
cells are expanded on the surface of small solid particles suspended in the cell culture
medium by slow agitation. The MC-based expansion represents a unit operation in
which both monolayer and suspension cultures are brought together. The MC
surface is available for cell growth, while the mobility of MCs in the medium
generates a homogeneity that is similar to the suspension environment used in
traditional mammalian submerged cultures [52]. Thus, MC-based expansion sys-
tems offer the following advantages:

1. A high surface to volume ratio, which can be further increased by increasing the
MC concentration

2. A homogenous environment that allows various process parameters (e.g., pH,
pO2, substrates and metabolites) to be both monitored and controlled

3. A possible scale-up of the MC-based expansion process within a suitable biore-
actor series

4. Functionalization of the MC surface to improve cell attachment and in terms of
hMSCs to retain a high “stemness”

Different MCs, which are usually spherical, have been tested or even developed
over the years for the expansion of hMSCs (see Table 4). The MC types differ
greatly in size (90–380 μm), core material (e.g., polystyrene, cellulose, dextran,
gelatin), and surface coating (e.g., collagen, fibronectin, laminin, vitronectin). An
overview of commercially available MCs, including their material properties, can be
found in different reviews [15, 52, 53]. The core material and surface coating affect
not only the MC settlement and cell growth but also the impeller speed which is
required to hold the MCs in suspension and to guarantee sufficient mass transfer.
Rafiq et al. [54] and Leber et al. [55] screened different MC types in small-scale
bioreactors for hMSCs under predefined impeller speeds (Njs ¼ Ns1). Both found
significant differences in cell attachment, cell growth, glucose consumption, and
metabolite production depending on the MC type. They found that hBM-MSC grow
best on collagen-coated MCs from Solohill and Synthemax II and ProNectin F MCs
from Corning, something which comes as no surprise since these MCs are coated
with collagen and fibronectin, respectively. Both coatings are components of the
extracellular matrix, including the arginyl-glycyl-aspartic acid sequence which is
well-known to promote cell attachment and cell growth of fastidious cells [56]. Dif-
ferent studies have shown that the planar structure, including the material stiffness,
nanotopography, and local curvature, can impact cell proliferation, maintenance of
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phenotype, and differentiation [57, 58]. Thus, many efforts are being made to
develop GMP-grade biodegradable MCs. In general, cell attachment follows a
Poisson distribution, where cell-to-MC ratios of one, two, or three result in theoret-
ical probabilities of unoccupied MCs of 0.365, 0.135, and 0.05, respectively
[59, 60]. Thus, theoretical cell densities for inoculation are in the range of between
3 and 5 cells per MC. After the cell attachment phase (4–20 h) under static or
intermitted stirred conditions, every MC should have the same number of cells
attached to its surface. However, in practice, this is not the case. As investigations
by Ferrari et al. [61] have shown, suboptimal cell seeding results in the early
formation of MC-cell aggregates that impair cell growth and characteristics (see
Fig. 3). In addition, large MC-cell aggregates increase the risk of apoptotic cells due
to the limited diffusivity of oxygen and nutrients into these aggregates. In fact, the
impeller speed can be used to a certain extent to control such MC-cell aggregates, but
the hydrodynamic stresses required for this task may also affect the cell growth and
quality, especially of the outer cells. To minimize this risk, reliable models of the
culture systems (“Digital Twins”) are necessary.

In addition to the selection of a suitable MC, the cell culture medium and its
formulation also play a key role in the success of a MC-based cultivation. Many of
the conventional culture media used for the expansion of hMSCs are defined basal
media such as DMEM or α-MEM, which have to be supplemented with additives
such as (I) proteins that mediate adhesion to the MC surface, (II) lipids for cellular
anabolic purpose, and (III) growth factors and hormones to stimulate cellular
proliferation and phenotype maintenance (see Table 4). Even though the disadvan-
tages of serum are well-known, a lot of the hMSC cell culture media additionally
contain 5–10% FBS. The highest cell densities generated in serum-containing

Fig. 3 Schematic representation of biochemical and physical parameters that have an influence on
MC-based hMSC cultures
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medium (10% FBS) have been reported in the range of 0.14–0.65� 106 cells/mL for
cultivations in stirred bioreactors up to benchtop scale. Schirmaier et al. [62] and
Lawson et al. [63] reported maximum cell densities of up to 0.3 � 106 cells/mL for
cultivations in stirred bioreactors at pilot scale with a cell culture medium
supplemented with 10% hPL or 5% FBS. Jossen et al. [11] even reported maximum
peak cell densities of up to 1.25� 106 cells/mL for hMSCs from the adipose tissue in
spinner flask cultures with 5% FBS. A proven alternative to FBS is human platelet
lysate (5–15%). However, there is still a controversial discussion about whether the
cells retain their immunomodulatory properties and their full differentiation capa-
bilities [64–66]. Moreover, there is still a risk of human pathogens and their
components being poorly characterized. Therefore, there is a high level of interest
in serum- and xeno-free, chemically defined cell culture media. Various formula-
tions are now available on the market (e.g., Mesencult-XF, MSCGM-CD,
StemMACS MSC XF, etc.). The careful selection and supplementation of the XF
basal medium with suitable growth factors and hormones are important, especially
when working with MCs in stirred bioreactors. Special attention has to be paid to cell
attachment efficiency and shear stress sensitivity. It is an established fact that the
maximum cell densities (0.04–0.40 � 106 cells/mL) and expansion factors that have
been achieved in stirred bioreactors with xeno- and serum-free cell culture media are
still lower than those achieved in serum-containing medium (see Table 4). Heathman
et al. [67] reported a maximum cell density of 0.31� 106 cells/mL and an expansion
factor of 10 within 6 days of using PRIME-XV SF medium in a 100 mL BellCo
spinner flask. Carmelo et al. [68] even achieved a maximum cell density of up to
0.36 � 106 cells/mL but a slightly lower maximum expansion factor of 8 with the
StemPro MSC medium. Maximum cell densities of between 0.04 and
0.40 � 106 cells/mL were reported for the ATCC and MSCGM-CD medium in
the BioBLU 0.3c and BioBLU 5c bioreactor systems.

3 Computational Fluid Dynamics as a Modern Tool
for Bioreactor Characterization

Numerical methods, such as CFD, are widely used in the biotech industry to
investigate local properties (e.g., flow velocities, shear stresses) in bioreactors and
offer an alternative to experimental measurements (e.g., Particle Image Velocimetry
(PIV), Laser Doppler Anemometry (LDA)), which are often time-consuming and
expensive. Thus, it is unsurprising that CFD is also a valuable tool for the charac-
terization of bioreactor systems used for the production of cell therapeutics. In the
following section, a short overview of the basic principle of CFD and various
investigations described in the literature are presented. In addition, a case study
will be discussed that demonstrates the use of CFD for the characterization of two
spinner flask types used for the MC-based hMSC expansion.
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3.1 Modelling Approaches

The prediction of the fluid flow is based on solving mass, momentum, and energy
conservation equations. This concept includes balances of accumulation, net inflow
from convection and diffusion, and volumetric production within an infinitesimally
small volume element. For most of the bioprocesses performed in the biotech
industry, isothermal conditions (i.e., T � const.) can be assumed. As a result, the
energy balance can be neglected. The mass and momentum equations for incom-
pressible Newtonian media, which includes cell culture media, can be written as
shown in Eq. (1) (Continuity equation) and Eq. (2) (Momentum equation).

∂ρ
∂t

þ∇∙ ρu
!� �

¼ 0 ð1Þ

∂ ρu
!� �

∂t
þ∇∙ ρu

!
u
!� �

þ∇p�∇τ � ρg
! þ F

! ¼ 0 ð2Þ

Based on the balancing concept and the spatial discretization of the fluid domain,
local and time-dependent data (e.g., velocity gradients, hydrodynamic stress) can be
calculated and used for the bioreactor design, the bioreactor characterization, and the
process development. Thus, it is unsurprising that different modelling approaches
are described in the literature for the CFD-based characterization of bioreactors used
for the expansion of hMSCs (see Table 5). For example, Nienow et al. [71, 77],
Kaiser et al. [50], Berry et al. [77], and Schirmaier et al. [62] performed single-phase
simulations in the ambr 15, the disposable Corning spinner flask, the UniVessel SU
2L, and the BIOSTAT STR 50L based on a Reynolds-averaged Navier-Stokes
(RANS) approach in order to derive the fluid flow pattern and the hydrodynamic
stresses acting under different process conditions. The RANS approach simplifies the
formulation of the instantaneous velocities u by the sum of time-averaged velocities
u and their fluctuations u0, which reduces the computational efforts due to a lower
grid resolution. In contrast, Collignon et al. [79] used a Large Eddy Simulation
(LES) approach, which only resolves macroscopic eddies, for the fluid flow charac-
terization of a 250 mL mini-bioreactor, and their results were found to be in
accordance with experimental data. Detailed information about the different numer-
ical models can be found in high-grade textbooks [78–80]. The single-phase simu-
lations do not provide information about the MC distribution and their dynamics in
the system. As a result, Delafosse et al. [81], Kaiser et al. [50], and Jossen et al.
[11, 12] used a Euler-Euler approach in which the MCs were considered as second-
ary phase. However, this approach does not include discrete formulation of the
particle phase and, therefore, only provides information for the entire phase. For
this reason, Liovic et al. [82], Jossen et al. [12], and Delafosse et al. [83] described
the use of a Euler-Lagrange approach which provides a discrete particle formulation
and the tracking of individual particles in the bioreactor. Thus, they calculated the
circulation and residence times as well as the hydrodynamic stresses acting on
individual particles and used this information for process development and
characterization.
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3.2 Advanced Fluid Flow Characterization of Small-Scale
Spinner Flasks: A Case Study

In recent years, various publications in the scientific literature have demonstrated the
applicability of stirred SU bioreactors for the in vitro expansion of hMSCs. How-
ever, the in vitro expansion processes that provide clinically relevant cell numbers
were developed with cell culture media containing 10–20% FBS. The FBS made the

Table 5 Overview of studies dealing with CFD in order to characterize bioreactor systems for the
expansion of hMSCs

Simulation
type Bioreactor system Title Ref.

Single-phase
(RANS)

ambr 15 “The physical characterisation of a microscale
parallel bioreactor platform with an industrial
CHO cell line expressing an IgG4” and “Agi-
tation conditions for the culture and detach-
ment of hMSCs from microcarriers in multiple
bioreactor platforms”

[71, 84]

125 mL Corning
spinner

“Fluid flow and cell proliferation of mesen-
chymal adipose-derived stem cells in small-
scale, stirred, single-use bioreactors”

[50]

125 mL Corning
spinner

“Characterisation of stresses on microcarriers
in stirred bioreactor”

[77]

UniVessel SU 2L
and BIOSTAT STR
50L

“Scale-up of adipose tissue-derived mesen-
chymal stem cell production in stirred single-
use bioreactors under low-serum conditions”

[62]

Single-phase
(LES)

250 mL mini
bioreactor

“Large-Eddy Simulations of microcarrier
exposure to potentially damaging eddies
inside mini-bioreactors”

[85]

Multi-phase
(Euler-Euler)

125 mL Corning
spinner

“Fluid flow and cell proliferation of mesen-
chymal adipose-derived stem cells in small-
scale, stirred, single-use bioreactors”

[50]

UniVessel SU 2L “Modification and qualification of a stirred
single-use bioreactor for the improved expan-
sion of human mesenchymal stem cells at
benchtop scale”

[74]

1.12 L HSB
bioreactor

“Revisiting the determination of hydrome-
chanical stresses encountered by microcarriers
in stem cell culture bioreactors”

[81]

Multi-phase
(Euler-
Lagrange)

125/500 mL
Corning spinner

“Growth behavior of human adipose tissue-
derived stromal/stem cells at small scale:
Numerical and experimental investigations”

[12]

125 mL Corning
spinner

“Fluid flow and stresses on microcarriers in
spinner flask bioreactors”

[82]

20L RB bioreactor “Euler–Lagrange approach to model hetero-
geneities in stirred tank bioreactors – compar-
ison to experimental flow characterization and
particle tracking”

[83]
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cells more robust and protected against the various stresses (e.g., hydrodynamic
stresses, physiochemical stresses, etc.) that occur during the in vitro expansion [86–
88]. The focus of this case study is on the biochemical engineering characterization
of the Corning spinner flasks (SP100 and SP300) with numerical methods (single-
and multi-phase CFD simulations). Special emphasis is placed on the suspension
criteria (Ns1u and Ns1) which are investigated for their use in MC-based hMSC
expansions. The case study aims to highlight the use of CFD for the prediction of
biochemical engineering parameters and the establishment of a “Digital Twin” to
replicate real cultivation systems in silico. For this purpose, multi-phase simulations
with a continuum and discrete particle approach were performed, and time-
dependent hydrodynamic stresses were derived, based on the transient fluid flow.

3.2.1 Reactor Geometries and Model Approaches

The disposable Corning® spinner flasks (Corning, USA) were commercially avail-
able in two different sizes (125 and 500 mL; see Fig. 4). The rigid culture containers
were made from polycarbonate and were delivered pre-sterilized. The spinner flasks
were equipped with two angled side ports and a 70 mm or 100 mm top cap. The side
ports were used for gas exchange (O2, CO2) in a standard cell culture incubator.

The main geometrical features of the two spinner flasks are summarized in
Table 6. For all numerical investigations, the working volumes were 100 mL
(SP100) and 300 mL (SP300), resulting in HL/D ratios of 0.64 and 0.60, respec-
tively. Both spinner flasks were equipped with a paddle-like impeller consisting of a
blade and a magnetic bar. The impellers were directly mounted on the vessel lid and
were magnetically driven.

The fluid domain was modelled based on the geometrical data. Subdomains were
defined around the impellers in order to implement the impeller rotation using a
Moving Reference Frame (MRF) or Sliding Mesh (SM) approach. In general,
unstructured meshes consisting of tetrahedral elements (SP100 ¼ 712,060 CV,

Fig. 4 Small-scale SU Corning spinner flasks (125 and 500 mL) [89]. (a) Technical drawings with
the main geometrical dimensions (mm). (b) Picture of the spinner flasks
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SP300 ¼ 2,073,079 CV) were used. In addition, a boundary layer along the vessel
walls was implemented to improve the resolution of effects close to the vessel walls.
The CFD simulations were performed using the ANSYS Fluent finite volume solver.
The implemented pressure-based solver, with an absolute velocity formulation, was
used for all simulations. The walls were treated as non-slip boundaries with standard
wall functions. The liquid surfaces were treated as symmetry planes, with the fluid
velocities normal to the face set to zero. The MCs were implemented in the
simulations using (I) a Euler-Euler granular model or (II) a Euler-Lagrange
approach with discrete particle modelling and tracking. In general, water (ρL ¼
993 kg/m3, ηL ¼ 0.6913 mPa s at 37�C) and the MC beads (dp,mean ¼ 169 μm, ρp ¼
1,026 kg/m3) were considered in the models. The initialization of the MCs was
carried out either with settled beads (directly at the reactor bottom αMC up to 0.63) or
with beads that were homogenously distributed over the entire fluid domain. SIM-
PLE (semi-implicit method for pressure-linked equations) and phase-coupled SIM-
PLE algorithms were used for pressure-velocity coupling in the single- and multi-
phase models. All simulations were run in parallel and solved on a computational
cluster (up to 16 Intel Xeno® E5-2630 v4 CPU’s @ 2.2 GHz, 64 GB RAM).

3.2.2 Results from Single-Phase Modelling

As shown in Fig. 5a, b, the steady-state fluid flow profiles in the two spinner flask
types were similar due to their comparable geometrical ratios. In both cases, the
highest fluid velocities occurred at the edges of the impeller blades and in the
impeller wake. The maximum fluid velocities were slightly higher (�5%) than the
theoretical utip, which could mainly be attributed to numerical uncertainties. How-
ever, the observations are in agreement with literature data for disk stirrers. For
example, Stoots et al. [90] and Wollny [91] demonstrated that the peak tangential
velocities in the impeller wake can be up to � 1.4 (experimental) and � 1.5
(numeric) times higher than the impeller speed. An area with relatively weak fluid
velocities (u/utip< 0.1) was generated directly below the impeller (r/R� 0.3) in both
systems. Thus, this area represented a critical zone for MC sedimentation. The

Table 6 Overview of main geometrical features of the two Corning spinner flasks

125 mL Corning spinner (SP100) 500 mL Corning spinner (SP300)

Vmin mL 25 50

Vmax mL 100 300

DR mm 64 87

HL,max mm 41 52

dR mm 41 50

hR mm 8 8

HL/DR – 0.65 0.60

dR/DR – 0.65 0.58

hR/DR – 0.13 0.09
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observed MC transport from the outer part of the vessel to the vessel center was
mainly driven by the induced secondary flow. Similar findings were also reported by
Berry et al. [77], Liovic et al. [82], and Venkat et al. [92] in other types of small-scale
spinner flasks.

In addition to the stationary fluid flow, the time-dependent behavior of the fluid
velocities was simulated for both systems. Compared to the stationary flow field, the
occurrence of vortices at the back of the impeller blades becomes visible. According
to the definition of turbulence, these vortices occur stochastically and follow the
main fluid flow convectively. Similar findings were also reported by Ismadi et al.
[93] by means of PIV measurements of small-scale spinner flasks with a slightly
different impeller geometry (dR/D ¼ 0.88). The fluctuations in the fluid velocities
also become visible when analyzing the fluid velocities at different positions near the
impeller (see Fig. 6). It is obvious that after a certain number of stirrer rotations, a
“quasi-periodic” fluid movement was obtained. However, the fluctuations in the
lower part of the vessel were higher compared to those near the fluid surface. This
was not surprising because of the location of the impeller bar which periodically
crossed the different areas. Thus, higher fluid velocity gradients occurred in the
lower part of the spinner flasks and increased the local turbulences. However,
depending on the strength of the velocity gradients, an effect on the cells may be
possible. Berry et al. [77] showed that higher fluid velocity fluctuations can result in
local hydrodynamic stresses (10�3 to 10�1 Pa) for the cells in small-scale spinner
flasks which are up to three times higher.

Since a number of mathematical assumptions were used for the CFD modelling,
stereoscopic PIV measurements were performed to verify the CFD-predicted fluid
flow pattern (see Fig. 7). A detailed description of the experimental setup and
procedure for stereoscopic PIV measurements can be found in Jossen et al.
[12]. For a quantitative comparison of the individual velocity components, the

Fig. 5 Steady-state fluid flow inside the SP100 and SP300 [89]. The fluid flow pattern is presented
in the vertical mid-plane for Ns1u-criterion (SP100 ¼ 49 rpm (a), SP300 ¼ 41 rpm (b)) as a
combined vector and contour plot
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CFD-predicted and PIV-measured data were compared along dimensionless radial
coordinates (0.5–1.0 r/R) at an axial position of h/HL ¼ 0.1. The comparison of the
velocity components in the SP100 revealed only minor differences for v

!
(up to

7.5%) and w
!
(up to 8.7%). However, the CFD velocity profiles were well captured,

and the overall agreement of PIV and CFD was satisfactory, with findings consistent
with those of Kaiser et al. [50]. A comparison of the fluid velocities in the SP100 was

Fig. 6 Time-dependent courses of the fluid velocities at eight different locations within the SP100
[89]. (a) Schematic representation of the different locations within the SP100 (¼ 49 rpm Ns1u). (b)
Dimensionless fluid velocity at the different positions during stirrer rotation

Fig. 7 CFD model verification by experimental PIV measurements in the SP100 and
SP300 [89]. Quantitative comparison of CFD-predicted and PIV-measured fluid velocity compo-
nents (u!, v!, w!) in the SP100 (a) and SP300 (b)

206 V. Jossen et al.



only possible for r/R between 0.50 and 0.82 due to the pronounced curve of the
vessel surface. The differences between CFD and PIV can be accounted for by
measurement uncertainties based on optical phenomena (light refraction and distor-
tion) and the restricted measurement accuracy directly at the edges of the impeller
bar (pixel resolution of the camera chip). Thus, direct comparison to the fluid
velocities in direct proximity to the impeller is difficult. All three velocity compo-
nents in the SP300 were well captured by the PIV measurements. The greatest
differences (7.9–15%) were found for u! between r/R 0.70 and 0.85. Hence, it can
be concluded that the single-phase CFD model provides reliable fluid flow pre-
dictions in both spinner flask types.

3.2.3 Results from Multi-phase Modelling

Oxygen Mass Transfer

Oxygen represents a critical parameter in the cultivation of human cells because it is
essential for mitochondrial respiration and oxidative phosphorylation. Hence, the
determination of the oxygen mass transfer (OTR) represents an important aspect.
However, many of the small-scale bioreactor systems frequently used for the
expansion of hMSCs are not equipped with oxygen sensors, which makes it impos-
sible to experimentally determine the oxygen transfer. In such cases, multi-phase
CFD simulations can be used to estimate the oxygen mass transfer coefficient (kLa),
which is shown in the following representative for the SP100.

The multi-phase VOF approach, which takes the headspace into account, was
used for the prediction of the kLa in the spinner flasks. Figure 8 (a) shows the
stationary fluid flow pattern (N ¼ 49 rpm) obtained from the multi-phase VOF
model, without significant differences to that derived from the single-phase simula-
tions (see Sect. 3.2.2). This conformity between the single and multi-phase simula-
tions was due to the fact that the transport equations for mass and momentum were
corrected only at the phase boundary where both the liquid and the gaseous phase
were within the control volume. Since only low impeller speeds (�120 rpm) were
used in the SP100, marginal changes in the fluid surface with relative low interac-
tions between the liquid and gaseous phases occurred. As a result, the multi-phase
VOF model also provided reliable predictions for the fluid flow as well as the fluid
surface.

The calculation of the kLa value by means of CFD is usually performed in
surface-aerated systems using Higbie’s penetration model. In this approach, the
mass transport is modelled by surface renewal, whereby a characteristic contact
time between fluid elements and the phase boundary is calculated (see Eq. (3)).
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kL ¼ 2 ∙
ffiffiffiffiffiffiffiffiffi
DO2

π ∙ tc

r
ð3Þ

Since the fluid flow in the SP100 was mainly tangentially oriented, the contact
time was calculated based on the sum of the fluid velocities (w/o the axial component
v
!
) and the mean perimeter of the vessel (see Eq. (4)).

tc ¼ π ∙ dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
!2 þ w

!2
q ð4Þ

The specific interface area (a) was defined according to Zhang et al. [94] as the
area with a liquid volume fraction of αL¼ 0.5 divided by the total liquid volume (see
Eq. (5)).

a ¼ AαL¼0:5

VL
ð5Þ

Using this model approach, kLa values of between 2.6 and 4.2 h
�1 were predicted

for impeller speeds between 49 and 120 rpm (¼ utip 0.10–0.26 m/s). Compared to
experimentally measured kLa values (2.6–4.3 h

�1), which were measured in a SP100
specially equipped with an optical pO2 sensor, only minor differences were found.
Consequently, the multi-phase CFD model provided reliable predictions about the
oxygen mass transfer in the spinner flasks, especially due to the moderate fluid flow
conditions and the surface aeration.

Under consideration of the specific oxygen consumption rate
(0.22–2.5 � 10�17 mol/cell/s [89, 95, 96]) or a corresponding yield coefficient for

Fig. 8 Fluid flow pattern (a) derived from multi-phase CFD simulation and simulated cell growth
(qO2) based on data from CFD simulation (b)
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hMSCs in combination with the oxygen mass transfer, cell growth can be calculated
based on the oxygen consumption during the hMSC expansion process (see Eq. (6)).

dXMC

dt
¼ kLa c�O2 � cO2

� �
∙YX=O2 ð6Þ

An example of such an oxygen-dependent growth simulation, which was
performed with MATLAB, is shown in Fig. 8b. It is recognizable that the cell
density can be simulated based on the current oxygen concentration in the SP100
with a satisfactory accuracy. A good correlation (RMSD ¼ 0.05) was obtained
between the simulated and the experimental cell density which was measured offline
at the beginning and end of the cultivation.

Microcarrier Distribution Based on a Euler-Euler Granular Approach

In MC-based hMSC expansion processes, the sufficient suspension of the MCs is an
important aspect since a fully suspended state is desired [96–98]. However, since
hMSCs are sensitive to hydrodynamic stresses [99–105], the impeller speed and
corresponding power input are limited to a certain level, depending on the MC
concentration. Therefore, the characterization of the MC-distribution and the deri-
vation of the acting hydrodynamic stresses are important. One possible numeric
approach to obtain these data is the use of a Euler-Euler granularmodel in which the
two phases are considered as interpenetrating continua. Therefore, mass and momen-
tum are treated individually for each phase. Figure 9 shows an example of the
volume-weighted frequency distribution of the dimensionless MC solid fractions
(α/αmean) in the two spinner flasks for a MC solid fraction of 0.1% and for the
suspension criterion Ns1u (SP100 ¼ 49 rpm, SP300 ¼ 41 rpm). As expected, the
highest MC volume fractions were, in both cases, found directly below the impeller
in the weak mixing zone (r/R � 0.3; see also Sect. 3.2.2). This observation is not
surprising because of the definition of the Ns1u. The spatial position of the
CFD-predicted deposits agreed well with those made by Kaiser et al. [50]. They
also showed a good correlation of their data with experimental observations, which
demonstrates the applicability of the Euler-Euler granular model for the prediction
of the MC distribution in bioreactors. The CFD-derived volume-weighted frequency
distribution of the dimensionless MC volume fractions showed comparable MC
homogeneity for the two spinner flask types (see Fig. 9c). The fronting of the
distributions clearly indicates zones with low MC volume fractions. These zones
were mainly determined near the fluid surface, representing the sedimentation
boundary. The similar conditions at the vessel bottom can mainly be explained by
the same off-bottom clearance (hR ¼ 8 mm), whereas the MC distribution over the
entire vessel volume is mostly affected by the dR/D ratio. The results from the two
spinner flasks demonstrate that the Euler-Euler granular model provides reliable
predictions for MC distribution. However, due to the continuum formulation of the
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model, information on individual particles and their circulation and residence times
in different high shear zones cannot be obtained.

Microcarrier Tracking Based on a Euler-Lagrange Approach

Euler-Lagrange simulations allow the spatial distribution of discrete MC particles to
be derived. Based on this information, the circulation time (tcir.), the residence time
(tres.), and the hydrodynamic stresses acting on the particles can be calculated. Data
from such an Euler-Lagrange simulation is shown representatively in the following
figure for the SP100. Figure 10a, b shows an example of the fluctuating forces acting
on individual MCs during impeller motion. It is obvious that the acting forces
fluctuated in the order of 100. Thus, each particle has its own history in terms of
hydrodynamic stress, which means that some particles are exposed to a certain
hydrodynamic stress level longer and/or more often than others. Compared to the
Euler-Euler granular approach, which allows volume-weighted data to be derived,
the Euler-Lagrange approach gives a discrete description per MC.

The particle data can further be processed to derive the force distribution for
specific locations or to calculate the circulation and residence times. For this
purpose, the two spinner flask types were vertically divided into four zones (Δh/
HL � 0.25). Figure 11 exemplifies the SP100, showing the force distribution in the
four defined spinner segments. It is obvious that logarithmic normal distributions

Fig. 9 Contour plots of the dimensionless MC volume fraction (a, b) and volume-weighted
frequency distribution (c) at Ns1u (SP100 ¼ 49 rpm, SP300 ¼ 41 rpm)
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were obtained where highest forces occurred in the lowest segment. Thus, cells on
MCs were more stressed in the lowest spinner segment. This observation was also
supported by the fact that the highest probability of the presence of MCs was in the
lowest spinner segment. However, the effects of the hydrodynamic stresses in the
different zones depended heavily on the particle circulation and residence times,
demonstrating the dynamics and complexity of the systems. For this reason, circu-
lation times and residence times were calculated for each individual spinner segment
based on the particle tracking data and were subsequently averaged over the four
segments (see Table 7). As expected, the circulation times (2.7–11.5 s) decreased
proportionally to the residence times (0.74–4.94 s) as the impeller speed was
increased. Interestingly, the proportionality constants for the SP100 (¼ 0.54) and
the SP300 (¼0.49) were quite similar. This observation can be ascribed to the
comparable fluid flow conditions. The calculated mean forces were inversely pro-
portional to the circulation and residence times. This finding is not unexpected since
the specific power input, which can be calculated based on the torque acting on the
impeller during the CFD simulation, increased by approximately the 3rd power in
both spinner flask types. Interestingly, the mean values of particle forces did not
change significantly between the lower impeller speeds (N < Ns1u) and the two
suspension criteria, even though the circulation and residence times decreased by up
to 50%. Impeller speeds exceeding Ns1u and Ns1 resulted in a slight decrease of the
circulation times, although the related particle forces increased by exponents of
0.07–0.12 in respect of the resulting specific power input.

Comparable observations for the specific power input are also possible when
considering the local normal and shear stresses, which can be calculated according to
Wollny [91]. The volume-weighted mean values of the local normal and shear
stresses were in a comparable range in both spinner flask types for impeller speeds
between Ns1u and Ns1. Consequently, comparable conditions in terms of hydrody-
namic stresses can be expected for cultivations in the resulting specific power input
range of 0.3–1.1 W/m3. Another popular method for evaluating hydrodynamic stress

Fig. 10 Force acting on the MCs during the impeller motion. Time-dependent force diagrams are
shown representatively for two individual particles in the SP100 (N ¼ 49 rpm)
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is based on the Kolmogorov length scale, which can be calculated from CFD
simulations. While cells in suspension are assumed to only be affected by turbulent
eddies of comparable size, those growing on the surface of an MC appear to be more
shear sensitive. Croughan et al. [106] found that cell damage became significant
when the smallest turbulent eddies were approximately two-thirds of the size of an
MC. However, to apply Kolmogorov’s theory, the fluid flow must be very turbulent
(Re > 104). The flow in the two-spinner flasks can be described as moderately
turbulent. However, the calculated maximum dissipation rates were higher by a
factor of two in the impeller swept volume than in the bulk. As expected, the smallest
turbulent eddies were found for the highest tested impeller speeds, with values
between 30 and 47 μm. In terms of the suspension criteria, the minimum values
were predicted between 60 and 76 μm, which is much lower than the proposed
two-thirds MC size. In contrast, the volume-weighted mean values were slightly
higher than the MC size, which demonstrated that only a small proportion of the
turbulent eddies are comparable in size to the MCs. This lowers the risk that the MCs
might come into contact with these detrimental eddies. However, this fact also

Fig. 11 Force distributions in the different spinner segments
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depends heavily on the resulting circulation and residence times of the MCs. In both
cases, the mean volume-weighted values for the highest tested impeller speeds were
much closer to the detrimental theoretical value of 141 μm. Even though such eddies
occurred at the suspension criteria, the frequency with which the MCs were exposed
to such eddies was much lower due to the lower circulation times and residence
times.

3.2.4 Linking of CFD-Derived Data with Cultivation Studies

In order to link the CFD-derived engineering data with cell biological aspects,
cultivation studies in the two spinner flask types at different impeller speeds were
performed. The results of the cultivation studies with hMSCs from the adipose tissue
are summarized in Table 8. It is obvious that the different hydrodynamic stress levels
have a significant effect on the cell growth in both spinner flask types. Highest living
cell densities were achieved, of up to 1.68 � 0.36 � 105 cells/cm2 (¼ 6.25 �
0.35 � 105 cells/mL, EF 56) and 2.46� 0.16 � 105 cells/cm2 (¼ 8.77� 0.66 � 105

cells/mL, EF 81), in the SP100 and SP300 when working at Ns1u � N � Ns1 (SP100
¼ 49–63 rpm, SP300 ¼ 41–52 rpm). The peak living cell densities in the SP300
were on average up to 40% higher than those in the SP100. Although the two spinner

Table 7 Overview of the main biochemical engineering parameters derived from the CFD
simulations

N
[rpm]

utip
[m/s] Re

P/V
[W/m3]

tcir.
[s]

tres.
[s]

lλ
(a)

[μm]
τnt

(b)

[10�3 Pa]
τnn

(b)

[10�3 Pa]
F(c) [10-
5 N]

Corning 125 mL spinner (SP100)

25 0.05 715 0.07 11.5 4.9 130/
530

2.72/79 0.79/43 0.75

49
Ns1u

0.11 1,402 0.63 6.5 2.4 66/
228

5.39/169 1.15/108 0.85

60
Ns1

0.13 1,717 1.12 6.0 1.9 60/
191

6.62/211 1.32/138 0.91

120 0.26 3,434 7.56 4.0 0.9 30/
111

12.91/437 2.24/301 1.82

Corning 500 mL spinner (SP300)

20 0.05 841 0.05 10.0 4.2 136/
546

2.04/214 0.30/138 0.83

41
Ns1u

0.11 1,724 0.33 6.2 2.6 76/
295

4.00/481 0.69/362 0.89

52
Ns1

0.14 2,186 0.61 5.9 1.6 66/
282

5.00/679 0.87/473 1.04

100 0.26 4,204 3.70 2.7 0.7 47/
181

9.26/
1,350

1.70/872 2.10

aVolume -weighted minimum/mean values of turbulent Kolmogorov length scale
bLocal shear (τnt) and normal (τnn) stress for volume-weighted mean/maximum values
cMean values of acting particle force weighted by number
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flask types had comparable geometrical ratios, the hydrodynamic stresses in the
SP100 were higher at the suspension criteria. In fact, the absolute hydrodynamic
stresses over time were higher due to the lower circulation times, which increase the
risk that the cells on the MCs are more frequently exposed to detrimental stresses. At
the same time, the residence times, and therefore also the exposure times, of the MCs
to the hydrodynamic stresses were shorter, as the multi-phase simulations have
indicated. In both cases, the peak cell densities were in the same range as cell
densities measured in planar static cultures at maximum confluency (� 2.9 � 105

cells/cm2), in which the cells were expanded in parallel. This result indicates that the
cells cultivated at Ns1u � N � Ns1 are mainly restricted by the available growth
surface. In contrast, significant lower cell densities were achieved at lower and
higher impeller speeds. A peak living cell density of 1.05 � 0.06 � 105 cells/cm2

(¼ 4.49 � 0.06 � 105 cells/mL, EF 35) and 1.36 � 0.57 � 105 cells/cm2 (¼ 4.48 �
0.57� 105 cells/mL, EF 45) was determined for the SP100 and SP300 at 25 rpm and
20 rpm, respectively. These peak cell densities are up to 84% lower than those at
Ns1u � N � Ns1. This observation may have been caused by the higher amount of
sedimented MCs and the increased MC-cell aggregate formation (see also [12]). The
viability of the cells on the MCs was always >99%. This was not surprising as dead
cells detach from the MC surface. Thus, the increase in dead cells in the supernatant
depends on the cell detachment from the MC surface and the die-off of cell in the
supernatant.

Table 8 Summary of cultivation results with hMSCs from the adipose tissue in the SP100 and
SP300

N
[rpm]

Living Xmax [10
5

cells/cm2] EF
μ
[d�1] td [d]

qGlc [pmol/
cell/d]

qLac [pmol/
cell/d]

qAmn [pmol/
cell/d]

Corning 125 mL spinner (SP100)

25 1.05 � 0.06 35.0 0.6 �
0.0

1.1 �
0.1

13.2 � 2.3 20.7 � 2.7 8.8 � 0.3

49
Ns1u

1.67 � 0.12 55.6 0.7 �
0.0

1.0 �
0.0

10.6 � 1.6 35.2 � 1.9 6.1 � 0.4

60
Ns1

1.68 � 0.36 56.0 0.7 �
0.1

0.9 �
0.1

9.8 � 0.8 30.3 � 1.0 6.2 � 0.3

120 0.60 � 0.04 20.1 0.5 �
0.1

1.5 �
0.4

35.0 � 1.6 88.8 � 5.2 16.5 � 0.3

Corning 500 mL spinner (SP300)

20 1.36 � 0.57 45.2 0.5 �
0.1

1.3 �
0.1

21.0 � 0.9 28.6 � 9.9 14.7 � 0.2

41
Ns1u

2.46 � 0.16 81.9 0.7 �
0.0

1.0 �
0.0

15.5 � 0.6 40.6 � 1.8 10.6 � 0.5

52
Ns1

2.43 � 0.66 81.1 0.7 �
0.0

1.0 �
0.0

11.8 � 1.2 35.3 � 3.3 9.7 � 0.4

100 1.25 � 0.29 41.8 0.5 �
0.1

1.3 �
0.0

20.8 � 9.8 88.6 � 2.1 19.0 � 1.4
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By considering qGlc, it becomes clear that the lowest values were obtained for
impeller speeds in the range of Ns1u � N � Ns1 in both cases. This is due to the
efficient metabolization of glucose under these hydrodynamic conditions. The
calculated values for the hMSCs correspond to those determined by Rafiq et al.
[54] and Heathmann et al. [107] in different cell culture media. The highest qGlc
(21–35 pmol/cell/d) were found at the highest impeller speeds. The relationship
between the qGlc and the specific power input can be expressed by a statistical,
logarithmic function of 3rd order. Similar correlations were also found for qLac and
qAmn. However, such statistical correlations are only valid for the investigated P/V
range. Values of up to 193% and 170% higher than those in the spinner flasks at Ns1u

and Ns1 were determined for qLac and qAmn at the highest impeller speeds. These
higher values indicated that the cells are more stressed at higher impeller speeds as a
result of the higher hydrodynamic stresses. The different correlations obtained were
used as initial parameters for the cell growth modelling (see Sect. 4.2).

Figure 12a, b shows the relationship between the overall mean specific growth
rate and the specific power input and Kolmogorov length scale, respectively. The
parabolic curve profile of the specific growth rate shows optimal cell growth for Ns1u

�N � Ns1. For specific power inputs between 0.33 and 1.12 W/m3, maximum μ
between 0.70 and 0.74 d�1 were achieved. This function also correlates well with
literature data from other SU bioreactors. Similar relationships to the specific power
input were also established for the Kolmogorov length scale, where a linear relation
was found. Thus, CFD-derived hydrodynamic stress data can be used to find
correlations between biochemical engineering and cell cultivation aspects and to
define optimum cultivation conditions for MC-based hMSC expansion processes.

Fig. 12 Dependency of the specific growth rate on the CFD-derived specific power input (a) and
the Kolmogorov length scale (b) [89]. Data from other SU bioreactors were obtained from the
literature: UniVessel SU 2L [62, 74], UniVessel SU 2L modified [74], Mobius CellReady 3L
[89, 108], BIOSTAT STR 50 L [62, 89], BIOSTAT RM 2L [11], Mobius CellReady 3L [63], ambr
15 [109], 100 mL BellCo spinner [109], 250 mL DASbox bioreactor [73]
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4 Mathematical Growth Modelling of MC-Based hMSC
Expansions

The development of mathematical growth models to describe or predict hMSC
growth is gaining in importance. This is not surprising since the cell material is
often limited and isolated directly from the patient. Thus, the prediction of the cell
growth depending on patient data (e.g., age, health status) is an important aspect,
especially for autologous therapies. The following section gives a brief overview of
different growth models described in the literature for the expansion of hMSCs. In
addition, a case study is presented and discussed, which presents an unstructured,
segregated growth model for the expansion of hMSCs on MCs.

4.1 Modelling Approaches

Table 9 gives an overview of publications describing different model approaches for
the simulation of the hMSC growth. For example, Higuera et al. [110], Dos Santos
et al. [111], and Jossen et al. [12] used kinetic growth models based on Monod-type
kinetics. Higuera et al. focused in its formulation only on the substrate/metabolite
inhibition, whereas Dos Santos and Jossen et al. introduced terms that considered
cell contact inhibition. All models allowed the hMSC cell growth and substrate

Table 9 Overview of hMSC growth models described in the literature

Model type Title Ref.

Monod-type
kinetic models

“Quantifying in vitro growth and metabolism kinetics of human
mesenchymal stem cells using a mathematical model”

[110]

“Ex-vivo expansion of human mesenchymal stem cells: a more
effective cell proliferation kinetics and metabolism under hypoxia”

[111]

“Growth behavior of human adipose tissue-derived stromal/stem
cells at small scale: numerical and experimental investigations”

[12]

Population bal-
ance models

“Population balance modelling of stem cell culture in 3D suspen-
sion bioreactors”

[112]

“Experimental analysis and modelling of bone marrow mesenchy-
mal stem cells proliferation”

[113]

“A mathematical framework to study the effects of growth factor
influences on fracture healing”

[114]

“Modelling of in vitro mesenchymal stem cell cultivation,
chondrogenesis and osteogenesis”

[115]

Cellular automa-
ton models

“Population dynamics of mesenchymal stromal cells during culture
expansion”

[116]

“Expansion of adipose mesenchymal stromal cells is affected by
human platelet lysate and plating density”

[117]

Cell-based podia
model

“Spatial organization of mesenchymal stem cells in vitro – results
from a new individual cell-based model with podia”

[118]

216 V. Jossen et al.



consumption to be described based on the experimental setup investigated. In
contrast to the Monod-type models, Bartolini et al. [112], Mancuso et al. [113],
Bailon-Plaza et al. [114], and Geris et al. [115] used population balance models. For
example, Bailon-Plaza et al. [114] included different cell populations in their model
in order to describe not only hMSC proliferation but also chondrogenic and osteo-
genic differentiation. However, all models included parameters strongly influenced
by various biological aspects. A discrete formulation of the cells was given by
Schellenberg et al. [116] and Cholewa et al. [117], who both used cellular automaton
models to describe the hMSC cell growth. However, these models did not include a
metabolic description of substrate consumption and metabolite production, which
can have an inhibitory effect on the cell growth. Hoffmann et al. [118] developed an
individual cell-based model with podia, which is able to quantitatively describe the
spatio-temporal organization of MSC culture. They modelled discrete cells and
considered their orientation on a planar surface. Hence, the model considers the
effects of contact inhibition and the organization and orientation of the cell mono-
layer. However, the model does also not reflect the metabolization of different
substrates or the production of inhibitory metabolites.

4.2 Kinetic Growth Model for the MC-Based hMSC
Expansion: A Case Study

Based on theoretical considerations, an unstructured, segregated, simplistic growth
model was developed for the MC-based hMSC expansion in the SP100 and SP300.
Theoretically, the entire expansion process can be divided into four steps: (I) cell
sedimentation and initial attachment, (II) cell spreading and migration, (III) mitotic
cell division, and (IV) cell growth arrest due to contact or substrate inhibition, which
partially ran in parallel. The general concept of the growth model and the factors that
influence the MC-based culture are shown in Fig. 13. During the cultivation period,
the formation of MC-cell aggregates is promoted due to the increasing number of
cells per bead and periodic particle interactions. The rate of the MC-cell aggregate
formation is influenced by the frequency and strength of the hydrodynamic stresses.
However, the rate of MC-cell aggregate formation was not considered in the current
version of the MC-based growth model because the aggregation process is very
complex and depends on many physical and biological parameters. Due to the fact
that hMSC growth is anchorage-dependent, possible formation of spheroids in the
suspension was not considered in the model. This simplification was justified since
no spheroid formation was observed in the MC-based expansions. Thus, it can be
assumed that cells in suspension do not contribute to an increase in the overall cell
number, with cell growth restricted to the MC surface. To define the starting
conditions, it was assumed that initial cell attachment took place during the cell
attachment phase, which can be described by the attachment constant kat. After the
cells had attached themselves to the MC surface, a short cell adaption phase was
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considered before the cells began to proliferate. The cell adaption phase was
considered by introducing the coefficient α (see Eq. (7)),

α tð Þ ¼ tn

tln þ tn
ð7Þ

where tl defined the lag time or adaption time and the point at which α(t) is half of the
maximum. The exponent n affects the slope of f(α(t)). If n ¼ 1, α(t) is described by
Michaelis-Menten kinetics. Otherwise, a sigmoidal curve is obtained that becomes
steeper as n increases. Both variables can be obtained from experimental growth
studies.

The specific cell growth rate (μ) was calculated based on Monod-type kinetics.
Hence, glucose (Glc), lactate (Lac), ammonium (Amn), and the available growth
surface (Xmax) were considered to be influencing factors (see Eq. (8)). However,
investigations indicated that cell growth restriction based on maximum available
growth surface does not follow a normal Monod-type kinetic. This fact can mainly
be ascribed to cell migration during cell growth. Thus, the effect of the growth
surface restriction term becomes more significant towards the end of the cell growth
phase. For this reason, the exponent n was also introduced in Eq. (8).

μ ¼ μmax ∙
Glc

KGlc þ Glc

� �
∙ KLac

KLac þ Lac

� �
∙ KAmn

KAmn þ Amn

� �
∙ Xmax

n � XA
n

Xmax
n

� �
ð8Þ

The cell number on the MC surface (XA) increased through mitotic cell division
and the attachment of cells from the suspension (see Eq. (9)). However, this increase
in cell number was affected by the detachment of hMSCs from the planar growth
surface, which was accounted for by the detachment constant (-kdet).

Fig. 13 Schematic representation of different phases and influencing factors during the MC-based
expansion of hMSCs. The MC-based expansion can be divided into four phases: (I) cell sedimen-
tation/attachment, (II) cell spreading/migration, (III) mitotic cell division, (IV) MC-cell aggregate
formation and cell growth arrest, with some running in parallel
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dXA

dt
¼ α ∙ μ ∙XA þ kat ∙

Xmax
n � XA

nð Þ
Xmax

n ∙XSus � kdet ∙XA ð9Þ

However, the detachment constant �kdet is strongly affected by hydrodynamic
forces and is therefore variable for different specific power inputs. As mentioned
previously, cell growth in the suspension is negligible, and, therefore, changes in cell
concentration will only be affected by attachment to or detachment from the MC
surface (see Eq. (10)).

dXSus

dt
¼ kdet ∙XA � kat ∙

Xmax
n � XA

nð Þ
Xmax

n ∙XSus ð10Þ

Contrary to the growth restriction based on the specific growth rate, glucose
consumption was only limited by the glucose concentration itself (see Eq. (11)).
Consequently, glucose consumption was the result of the glucose uptake by the
mitotic cells and the maintenance metabolism of mitotic and non-mitotic cells (XV).
A step response (δGlc) was implemented in Eq. (11) to avoid negative glucose
concentrations.

dGlc
dt

¼ � 1
Y X

Glc

∙ α ∙ μ ∙ Xmax
n � XA

nð Þ
Xmax

n ∙XA � mGlc ∙ δGlc ∙XV ð11Þ

L-glutamine (Gln) consumption was not considered in this model since metabolic
measurements from the experiment indicated that Gln is not a limiting factor.
Moreover, UltraGlutamine (L-alanyl-L-glutamine) is used in most stem cell culture
medium for which the model was developed and had undergone a series of complex
degradation steps (i.e., (I) cleavage by extracellular peptidases and (II) degradation
of free L-glutamine or absorption into the cells and metabolization). The production
of lactate (Lac) and ammonium (Amn) was accounted for by Eqs. (12) and (13).

dLac
dt

¼ qLac ∙XA ∙ αþ pLac ∙XV ð12Þ
dAmn
dt

¼ qAmn ∙XA ∙ αþ pAmn ∙XV ð13Þ

The validity of the unstructured, segregated growth model was tested for
MC-based hMSC expansions in the SP100 and SP300 (each n ¼ 3), which were
performed at Ns1u (SP100 ¼ 49 rpm, SP300 ¼ 41 rpm). All growth-related simula-
tions were performed with MATLAB 2019b (MathWorks Inc.) where the model
equations were solved using the ode15s solver (Intel Core i-7 CPU @ 2.6 GHz,
32 GB RAM). Table 10 shows the parameters and the initial values for the growth
simulations which were derived from experimental cultivation studies.

Figure 14 shows the measured values and simulated timelines for the cell density
(a, c), as well as the substrate and metabolites (b, d). The simulated timelines show
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Table 10 Cell growth-dependent parameters used for the simulations of the MC-based hMSC cell
growth in the SP100 and SP300

Parameter Values Parameter Values

μmax 1/d 0.64–0.68 Lac mmol/L 0.0

Amn mmol/L 0.0 qAmn mmol/cell/d 6–19

Glc mmol/L 30.5 qGlc mmol/cell/d 9.8–35

kat 1/d 0.4–1.0 qLac mmol/cell/d 20–89

kdet 1/d 0.003–0.009 tl d 1.5–1.9

KAmn mmol/L 8–10 XA cells/mL 0

KGlc mmol/L 0.4 XSus cells/mL 10,800

KLav mmol/L 35–50

Fig. 14 Comparison of experimental (symbols) and simulated (line) data for cell density (a, c) and
substrate/metabolites (b, d). The growth simulations were performed for the SP100 (a, b) and
SP300 (c, d)

220 V. Jossen et al.



pleasing overall correlation with the values measured experimentally and demon-
strate the applicability of the unstructured, segregated growth model. By using
determined growth parameters from cultivation studies, the cell growth, glucose
consumption, lactate production, and ammonium production could be proficiently
approximated. The greatest deviations in cell density were in the range of 3–20% for
the cells in suspension and 4–24% for the cells on the MCs. The glucose, lactate, and
ammonium timelines also correspond to this pattern, even though the specific
substrate consumption and metabolite production rates were prone to errors. How-
ever, the models provide reliable predictions for the MC-based hMSC growth in the
two spinner flask types.

5 Conclusions and Outlook

In this review, the current state of the art of the in vitro expansion of hMSC and the
use of numerical tools to support the development of MC-based hMSCs expansions
as well as the establishment of “Digital Twins” have been presented. It has been
emphasized that different CFD model approaches are described in the scientific
literature which can be successfully applied for the characterization of SU bio-
reactors, especially for the process development of hMSC expansion processes.
The CFD case study presented clearly demonstrates that numerical models are
valuable tools for the biochemical engineering characterization of small-scale spin-
ner flasks, especially for the determination of parameters that are difficult to deter-
mine experimentally. A good correlation was always found between the parameters
predicted by the CFD and those measured experimentally. This observation was also
in agreement with the literature data. The Euler-Euler and Euler-Lagrange models
gave adequate predictions of the MC distributions within the spinner flask systems
and were correlated qualitatively with experimental observations. The Euler-
Lagrange approach allowed the calculation of particle histories due to its discrete
particle formulation, which can be combined with experimental cultivation studies.
Thus, Euler-Lagrange modelling should be favored in the future in order to derive
hydrodynamic stresses over time instead of volume-weighted data. The scientific
literature summarized also shows that different model approaches for the simulation
of the hMSC growth are available, even though only a few are applicable for the
MC-based growth simulation in a stirred bioreactor. The unstructured and segre-
gated growth model presented gives a good description of the MC-based hMSC
expansion process in the two spinner flask systems. Thus, MC-based hMSC cell
growth can be predicted. However, the further development of descriptive, or even
predictive, models for hMSCs will be important in the future for exact scheduling of
the preparation of the cell material and the subsequent autologous therapy.
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Abstract Eulerian-Lagrangian approach to investigate cellular responses in a bio-
reactor has become the center of attention in recent years. It was introduced to
biotechnological processes about two decades ago, but within the last few years, it
proved itself as a powerful tool to address scale-up and -down topics of bioprocesses.
It can capture the history of a cell and reveal invaluable information for, not only,
bioprocess control and design but also strain engineering. This way it will be
possible to shed light on the actual environment that cell experiences throughout
its lifespan. Lifelines of a microorganism in a bioreactor can serve as the missing link
that encompasses the biological timescales and the physical timescales. For this
purpose digitalization of bioreactors provides us with new insights that are not
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achievable in industrial reactors easily if at all, namely, substrate and product
gradients; high-shear regions are among the most interesting factors that can be
reproduced adequately with help of a digital twin. In this chapter basic principles of
this method will be introduced, and later on some practical aspects of particle
tracking technique will be illustrated. In the final section, some of the advantages
and challenges associated with this method will be discussed.
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1 Introduction

The physiological state of microorganisms and its impact on growth and product
formation are the result of complex interactions between the cellular environment
and the cells. Large-scale studies have shown that homogeneous culture conditions
are difficult to establish. This is expressed in the common correlation for stirred tank

reactors indicating that mixing time τmix is proportional to P
V

� ��1=3
(with P as power

input and V as volume) pinpointing to increasing mixing times with reduced power-
to-volume inputs. The latter occurs typically in large-scale bioreactors because of
limiting power supply, engines, gearings, etc. Nevertheless process engineering and
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bioreactor design may aim to create the least heterogeneous impact possible
[1]. Independent of the bioreactor type at hand, heterogeneities happen in large
scale, and as a result product loss seems inevitable while scaling up. Heterogeneities
expose cell to various stresses which will in turn translate to product loss. Trail
experiments in actual industrial bioreactors are not feasible at all, and that is one of
the main motivations of a “digital twin” of the bioreactor.

A digital twin allows us to investigate and locate the physical and biological
bottleneck. It enables the user to predict various scenarios in parallel saving signif-
icant resources. Once the digital twin of the bioreactor is validated, it can be
translated to a scale-down bioreactor that represents the imperfections of the larger
scale. This setup can be investigated to reveal the most significant biological
behaviors of the cell and ultimately providing the digital twin for the cell.

In theory once digital twins for the cell and for the bioreactor are available,
versatile optimization of bioprocesses would be carried out in only a fraction of the
time and resource. This offers the operator the choice between improving the
bioreactor, microorganism, and both.

2 Embedding Cells in Microenvironmental Heterogeneities
of Bioreactors

To predict cellular responses in large-scale bioreactors, two crucial prerequisites are
needed: (1) models simulating spatially resolved substrate availabilities, flows, and
mass transfer and (2) models translating microenvironmental heterogeneities into
proper cellular responses. Research of the last years enabled substantial improve-
ments in both fields, computational fluid dynamics and thorough experimental
studies, thereby providing the ground for large-scale prediction of microbial perfor-
mance a priori.

Large-scale bioreactor conditions need to be calculated, aiming at a spatial
resolution of mass, momentum, and energy balances via numerical simulations. In
particular, Navier-Stokes (NSE) and continuity equations representing the conser-
vation of momentum and mass should be solved. Basically, NSEs describe the
motion of viscous fluid flows with the fluids considered as a continuum rather than
colliding particles. Under the typical mixing conditions given, the occurrence of
turbulent zones is likely. They are integrated via additional transport equations
typically demanding for two additional equations depending on the models applied.
Turbulence is provoked by eddies which affect molecular diffusion, heat transfer,
and the mixing behavior. For flows involving heat transfer or compressibility, an
additional equation for energy conservation should be solved. Furthermore, the
balancing of individual species (particles or cells) that undergo mixing and reactive
changes requires the implementation of proper conservation terms. Depending on
the available computing power, simulations can range from direct numerical simu-
lation (DNS) via large eddy simulation (LES) to Reynolds-averaged Navier-Stokes
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(RANS) approaches. DNS yields to solve each individual turbulent structure,
whereas LES only directly solves the large energy-containing scales, while the
effects of the more universal small scales are modeled. RANS comprises time-
averaged flow equations which allow to simulate small- and large-scale eddies
with a minimum but still challenging computational efforts (for more details, see
[2]). Consequently, RANS simulations are often favored. They only require 1/100 to
1/10 computational efforts compared to LES [3] or DNS. Although RANS models
require several modeling assumptions and approximations, their predictive power is
sufficient for providing insight in reactor-scale substrate concentration gradients [4].

Many research projects have shown that cells react in a multiresponse, multilayer
fashion comprising the on- and offset of transcriptional regulation programs, as well
as proteomic and metabolic changes [5–11]. The latter are subject of state-of-the-art
approaches mirroring the instantaneous metabolic response on extracellular hetero-
geneities [12–16]. However, the consideration of transcriptional and translational
effects introduces different timescales of cellular response. Consequently, initiation
and execution may be spatially disconnected which differs fundamentally from the
instantaneous metabolic responses studied so far [17, 18]. Coupling cellular kinetics
with fluid dynamics consolidates the knowledge about microbial cell kinetics with
fluid dynamics and mass transfer in industrial scale bioreactors yielding to optimize
the design of both [16].

To investigate the consequences of environmental heterogeneities, proper model-
ing frameworks should link local variations with cellular and subcellular kinetics.
Mainly two different methods exist in computational fluid dynamic (CFD) to display
the adaptation of the cellular behavior to the environment: (1) population balance
models (PBM) [19–21] and (2) the Euler-Lagrangian method (EL) [12, 13, 15, 22–
25]. Both methods rely on the grid-based Euler approach to simulate the continuum
background, meaning the fluid surroundings of the particles. The grid-based method
relies on spatial volume discretization. Adjacent volumes are connected via transport
equations and are considered as homogeneous. Consequently, the following rule of
thumb holds true: the smaller the volumes or the finer the grid, the more realistic is
the output. An extensive study of mesh dependency on biological output has been
conducted by Kuschel and Takors [26].

In the PBM approach, microorganisms are considered as part of the continuum
with no erratic changes allowed [19, 27, 28]. Particles are grouped in classes, and a
predefined distribution range of particles is implemented via distribution density
functions. These equations are useful to determine relevant macroscopic properties
such as the interfacial area or the biomass-specific growth rate [12, 14, 29]. Hence,
PBMs represent a powerful modeling framework for the description of fundamental
properties that are characterized by distributions in a coarse timescale. However,
cellular adaptations may happen on different timescales than macroscopic fluctua-
tions and may show much more interactions than implemented in common PBMs.

To overcome those limitations, the Lagrangian method may be applied. Individ-
ual properties are assigned to each moving particle (e.g., biological cell). Notewor-
thy, these traits cause interactions with the environment receiving equal
environmental feedback. In essence, Euler-Lagrange approach (EL) tracks a given
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number of particles while fluctuating in the bioreactor, thereby recording interactions
with the environment. The dispersed phase can exchange momentum, mass, and
energy with the fluid phase. The approach renders considerably simpler when
particle-particle interactions may be neglected. This requires a fully diluted (volume
fraction <10%) dispersed second phase. Considering the case of biological cells as
moving “particles,” further simplifications are often assumed: As the observation
window of fluctuating cells is smaller than time constants of physical changes inside
the grids, cellular impacts on physical states inside the grid are often neglected.

Trajectories of an individual particle are predicted by integrating particle forces
which is coded in a Lagrangian reference frame. In essence, particle inertia is
balanced with forces acting on the particle. Typically, the Stokes number for a
microorganism (diameter: 5 � 10�6 m) is <0.01 giving rise to the fair assumption
that particles move with the flow possessing a negligible mass [12, 14]. Hence,
massless particles can be treated as ideal flow followers and immediately adapt to the
local flow velocity, and no force balance has to be solved, reducing the computation
time considerably [30]. However, if bulk velocity is the only motional source of
particles, they tend to get stuck in poorly or steadily mixed zones. To be precise, in
order to prevent trapping close to reactor surfaces or inside eddies, particle-
turbulence is modeled via the discrete random walk (DRW). Mimicking character-
istic circulation times in small eddies, random velocity is activated to enable particle
escape. The approach leads to temporary constant functions mirroring fluctuating
velocity impacts [30, 31].

A major challenge of the EL method is the significant computational burden. As
discussed in [32, 33], the computation time depends on the required time resolution
and the number of tracked particles. First, the broad range of timescales for meta-
bolic reaction and cellular adaptation [6, 17, 18] requires simulation of flow with fine
temporal resolution. For instance, time steps of milliseconds are needed to track
particles properly especially in highly agitated flows. Second, a large number of
particles may be required to fulfill the so-called ergodicity constraint, a prerequisite
for a sound biological readout. Too low numbers of tracked particles lead to artificial
spatial variations finally causing nonrealistic interpretations.

PBM and EL frameworks are usually applied for monophasic conditions
represented by the Euler phase. The dispersed phase typically comprises either
bubbles or particles, but not both in combination. However, tracking individual
cells in bubbled (aerated) bioreactors should be an attractive goal for future appli-
cation to analyze aerobic cultivations [11]. This may require a combination of both
methods outlined above, leading to an Euler-Euler-Lagrange formulation (EEL). In
detail, the fluid surrounding the bubbles and particles is calculated via the Euler
approach, while the interfacial area of the bubbles (for mass transfer) is derived with
the population balance method. Additionally, the history of cells may be recorded
via Lagrangian particle tracking.
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2.1 The Core Idea of Lifeline Analysis

After different methods have been addressed in the previous section, the focus is
now on implementing the EL framework in CFD. The basis for each simulation is
the geometry and the spatial discretization of its volume. To obtain high-quality
discretization, a so-called mesh, the geometry needs to be simplified by removing
edges, surface filets, and nonessential components. Accordingly, agitators and
baffles may be replaced by zero-thickness walls [34]. Commercial codes often
make use of orthogonal quality, aspect ratio, and skewness of individual grid cells
to qualify the mesh.

To simulate the continuum environment of a bioreactor, the Eulerian approach is
used together with a case-specific model. Most commonly, the RANS standard k-ε
model is chosen for stirred tank reactors [12, 14, 15, 35, 36]. As known, standard
RANS models work well in flow scenarios with lowly frequent changing mean flows
compared to high turbulence frequencies. However, the turbulent dissipation rate (ε)
is underestimated near the impeller tip but shows decent agreement in the bulk
[37]. Consequently, new methods of turbulence modeling combining advantages of
different models have been proposed, recently [38, 39]. In essence, they apply zonal
methods such as the RANS/LES approach. RANS and a subgrid-scale model (LES)
are used in different domains separated by sharp or dynamic interfaces. In general,
such hybrid models are useful to increase the accuracy where necessary but keeping
computational demands limited.

Convergence of the solution can be assumed if all residuals are below 10�5 and
oscillation in the mean velocity magnitude and bubble diameter (Parameter of
interest depend on the individual simulation) is below 1% [12, 14]. When steady
state is reached zero-thickness walls can be converted from wall to interface/interior
boundary conditions to prevent particle trapping when the frozen flow field assump-
tion is made. Although the solution is converged, the results might not be accurate.
To improve the accuracy of the simulation, the results need to be mesh-independent.
That means the results (e.g., ε, power number or velocity magnitude for stirred tank
reactors) do not vary significantly (below 5%) when the mesh density is increased.
Now, the mesh-independent mixing time may be used to validate the resulting flow
patterns, the simulated impeller power numbers, k, and ε profiles in the discharge
stream of the impeller. Noteworthy, simulated mixing times of non-aerated scenarios
are expected to be shorter than true mixing times of aerated processes.

As a result, a steady-state converged flow field is calculated that is not updated
during the particle tracking phase. Basically, the procedure mirrors the simplifying
assumption of massless cells neither interacting with each other nor with the
continuum surrounding. Accordingly, the history of cellular experiences recorded
in particle lifelines only monitors the interaction with fixed hydrodynamics and
concentration profiles. The latter may be established using black-box cellular uptake
kinetics [12, 14, 15]. Using nonstructured Monod-type kinetics, the biomass-specific
substrate uptake rate instantaneously adapts to the local concentrations. Hence,
reaction kinetics may even be embedded in the liquid phase to save computation
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time. In essence, this simplification mirrors the assumption of homogeneously
dispersed bacteria [12, 14]. Other more complex approaches using a structured
kinetic model coupled to the gradient in the Euler phase to directly determine the
intracellular state of the microbial cell have been applied but are limited due to their
computational demand [30, 36]. Monod-type kinetics are mainly valid for long-term
balanced growth which might hold true for a lab-scale chemostat to characterize a
strain but falls short when offering practical solution for industrial processes like a
substrate limited fed-batch [40–42]. In the case of overflow metabolism for baker’s
yeast, several structured models were employed in various scenarios some of which
include glycolytic oscillations in a population of yeast cells [36], continuous fer-
mentation of Saccharomyces cerevisiae [41], fed-batch fermentation with emphasis
on ethanol concentration of oxygen uptake rate, and questioning pyruvate dehydro-
genase’s role as a bottleneck enzyme [43], a cybernetic model for batch fermentation
[44]. Availability of such information encourages researchers to employ more
sophisticated kinetic models in their CFD simulations [32, 45].

To qualify whether or not statistically sufficient particles (cells) are tracked, the
ergodic theorem is typically applied. The criterion follows the fundamental idea that
a stochastic process proceeding in time converges to the same average as the average
of the entire system’s space. In other words, averages of state variables recorded in
lifelines should be the same irrespective whether one single particle is tracked for
endless time or a proper number is monitored for shorter intervals. In practice,
typically 105 particles are added (well distributed in space) and mixed, at least for
the duration of the mixing time to ensure a homogeneous distribution. Individual
experiences of each particle are recorded for further analysis.

Depending on the goal and timescale of the process, the readout frequency must
be appropriate to provide reasonable resolution (usually in the range of 10–30 ms).
As outlined above, particle slip with the convective fluid may be neglected which
basically reflects the very low Archimedes numbers of microbial cells [12, 14]. By
analogy, momentum transfer between the particles and the fluid phase is not
considered either, again reflecting the small masses of the cells (quasi-single
phase, [46]). Accordingly, so-called one-way coupled EL approaches are today’s
standard. On contrast, two-way coupled simulations considering the particle-
continuum interactions require very high computational demands that are hardly
applicable yet [47].

Even with many assumptions made, the system of equations resulting from
discretization is tremendous due to the facts that (a) it is a three-dimensional problem
and (b) a sufficiently large number of particles and time steps are required to achieve
a realistic and statistically sound description of the population. To keep the compu-
tational cost-feasible assumptions on operation type of the process, kinetics are taken
into account. To reduce the computational burden for simulation, multiphase simu-
lation is done in Eulerian frame [12, 14, 15, 36], or if it is known that oxygen is found
in excess quantities all over reactor and its volume fraction does not exceed 10%,
simpler approaches can be employed [13, 22–24]. Currently, the common approach
is to apply one-way coupling meaning that particles are affect by the flow field and
not the other way around [15, 25, 36]. Haringa et al. [13, 22–24] considered two-way
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coupling only for substrate concentration. As for the particle number, ergodic
theorem is explained later on in the chapter. All these assumptions should be
based on prior knowledge and by having the end in mind as too little detail will
result in inaccuracy and too much detail will result in unfeasible resource utilization.

2.2 How to Get Biologically Sound Readouts?

After tracking individual particles and their properties, the analysis may be
performed in a different environment, such as MATLAB. For clustering particle
properties, proper regimes must be defined first. For instance, critical substrate
concentration may be set as thresholds distinguishing different metabolic states. Or
critical ε values and critical ε frequencies may be defined to qualify shear stress for
susceptible cultures. Another point of view is to integrate a more complicated kinetic
model based on multiple substrates and by-product lifelines taking exposure statis-
tics into account which is an interesting view when investigating overflow metabo-
lism [26] and many more, etc. In combination with regime constraints, residence
time distributions of cells resting within the defined regime borders should be
studied, too [12, 14, 15].

Often, turbulent movements reveal very rapid regime changes for those particles
possessing properties contiguous to the rigid regime borders. The resulting artificial
regime changes bias residence time distributions and should be curated, accordingly.
Haringa et al. [12, 14] distinguished between three types of rapid variations: rapid
successive regime crossings, integral scale variations, and subgrid variations by
small eddies. Based on the work of Linkès et al. [48], eddy micro-mixing is not
limited in nonviscous fluids, which translates to assimilation timescale being orders
of magnitude larger than the timescale of the smallest turbulent structures which is
referred to as Kolmogorov timescale ν

ε

� �0:5
and therefore concluding that micro-

mixing is not a limiting step considering substrate assimilation (no effect on gradient
formation). The other two effects occur at the Lagrangian timescale when applying
the DRW model and might have an effect on substrate assimilation and gradient
formation. For a tractable analysis, the turbulent variations need to be smoothed
using appropriate filters, with a filter time step corresponding to the Lagrangian
timescale.

Alternately, to soften the hard boundary conditions (which do not exist in reality)
a second “boundary” (fuzzy) filter can be applied (e.g., filter amplitude of �0.01 in
concentration changes). Besides, investigating the influence of highly fluctuating
substrate availability on the cellular performance may be an interesting research
topic for future studies.

In general, sound knowhow about cellular metabolism and regulation is manda-
tory to qualify the readout of lifelines. From a fluid mechanics point of view in
reality, a fluctuation in a concentration can be as small as the Kolmogorov scales, yet
it is only limited to the time resolution of the digital twin of the bioreactor. The same
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holds true for the microorganism even with the extracellular fluctuations calculated;
the cellular response can only be representative if and only if it is based on real-life
behavior of the cell. The fact that the macro-twin (digital bioreactor) and micro-twin
(digital microorganism) go hand in hand has another advantage other than being
representative. The timescales indicate how fine the resolution of the computations
should be and hence allowing to a have an idea of what resources would be needed
beforehand. The main traits of interest in the biological side are associated with the
sensitivity of the organism to different occurrences and how fast and on what level
the response takes place. Another aspect to focus on is to evaluate the response
initiation and termination. Once this is set, the cellular machinery involved can be
included in the micro-twin with hopes of shedding light on the effect of complex
biological features on an industrial bioprocess. Accordingly, proper data are cru-
cially needed to develop a thorough mechanistic understanding [6, 11, 13, 49].

3 Lifeline Analysis in Practice

In this section readers will be introduced to an exemplified bioprocess for creating a
holistic idea of this particular EL concept in a practical manner. This will serve as a
foundation to highlight strengths and bottlenecks presented by the technique. It is
worth noting that the simulation environment (here: ANSYS Fluent 2019 R1) might
have some practical superiority to other software packages, but the basics remain the
same and are not software specific.

Figure 1 aims to illustrate how interconnected elements of a multiphase simula-
tion can be thereby disclosing the complexity of the network. On the one hand, one

Mass balances

Momentum balances

Heat balances

Phases
• Liquid phase: Newtonian or non-Newtonian

• Gas phase: PBM, bubble diameter

• Biomass phase (cell tracking)

Exchanges
• Mass transfer

• Heterogeneous reactions

• Drag force

• Lift 

• Turbulent interactions

• Turbulent dispersion

Fig. 1 Various sets of interacting equations which are of interest in a typical CFD simulation of a
multiphase bioreactor
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may yield to describe finest details which not only cause highest computational
effort but also highest likeliness of numerical instabilities and inaccuracies. On the
other hand, less complication equals less computational resources required.

Real applications always have to decide between those extremes finding the
proper compromise for the given problem. Examples of such simulations are abun-
dant in the literature and will not be further discussed here [2, 13, 15, 25, 46, 50, 51].

To realize the importance of this approach, we find it beneficial for the readers to
get familiar with the procedures of the method. Gradients are one of the most
significant aspects of large-scale fermentations. In first part the Eulerian gradients
are resolved and then the fate of the cells within these gradients is investigated.

3.1 Eulerian Simulation Setup

CFD simulations are carried out using ANSYS Fluent 2019 R1, and post processing
is conducted. The chosen bioreactor has 54 m3 equipped with two different Rushton
turbines (Fig. 2). The impeller on the bottom has eight blades, whereas the one on
top possesses six. For a more detailed schematic, refer to [13, 22–24].

k-εmodels are vastly used in the industry to simulate stirred tank reactors because
of their low burden on computational power needed and sufficient accuracy that they
provide. In this example, Eulerian model is used for multiphase simulation; for the
sake of simplicity, the broth is assumed to have characteristics of water, and for the
gas phase, air is chosen. Based on Haringa et al. [13, 22–24], a single bubble
diameter of 7 mm is set for the gas phase.

1.3m

3m

7.
7m

Fig. 2 Geometry of the investigated aerated baffled bioreactor prepared grid of 1,500,000
hexahesdrons for simulation
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To take drag force into account, the so-called Grace model [52] is employed
which tends to give a mathematically stable solution by offering physically accept-
able gas flow regimes.

For grid independence, three different meshed geometries with 500,000,
1,000,000, and 1,500,000 were compared based on the differences in turbulent
parameters k and ε (data not shown here). The procedure includes parameter
evaluation nearby the impeller, a location of outmost importance in stirred bio-
reactors. If the difference of aforementioned values is less than an acceptable
threshold (in our case 5%), the simulation is considered acceptably grid independent.

Because of the complex and transient flow fields reaching the usual thresholds of
maximum residuals,<10�6 is not possible without refining computational time steps
for a few orders of magnitude. The latter increases computational times almost
proportionally. Usually, as done here, pseudo-steady states are defined when solu-
tions converge below the given threshold and residuals of continuity fluctuate within
10�3

–10�4. To keep the setup simple, a moving reference frame (MRF) is employed
to set the agitation rate at 150 rpm.

3.2 Eulerian Simulation Outputs

Considering three probes (bottom, middle, top), for example, mixing times are
estimated about 40s as shown in Fig. 3. The oxygen transfer rate (1) is estimated
using the model of Lamont & Scott [53] to calculate the mass transfer coefficient (2):

OTR ¼ kL � a C�
O2

� CO2

� �
ð1Þ

where

kl ¼ 0:4�
ffiffiffiffi
D

p
� ε

ν

� �0:25
ð2Þ

ε is calculated from the CFD simulation, and the kinematic viscosity ν is that of
water which is around 10�6 m2/s at 25�C. D is the diffusion coefficient of oxygen in
water, 2.1 � 10�9 m2/s. Applying Henry’s law, all the variables needed to calculate
the OTR are accessible.

A variation of Monod kinetics [54] is assumed (3) to describe oxygen and glucose
dependency of growth (Table 1). In essence, growth is limited by the lowest
availability of each component. This approach performs better compared to models
which include the effect of multiple substrates by multiplication. This measure is
taken to avoid under prediction of growth and uptake rates where both substrates are
limiting.
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μ ¼ μmax �Min
CGlucose

KGlucose þ CGlucose
,

CO2

KO2 þ CO2

� �
ð3Þ

Glucose feed and gas flow rates are 0.11 mol/s and 0.21 kg/s, respectively. These
values are handpicked to put emphasis on the underlying gradients affecting the
specific regimes. Here, we characterize the microbial kinetics for a hypothetical
E. coli strain with respect to available glucose and oxygen concentrations and assign
regimes (Fig. 4).

Fig. 3 Mixing time estimation using three different probe locations (bottom) 0.2 m, (middle)
3.8 m, and (top) 7 m from the bottom of the tank

Table 1 Kinetic parameters
used to model substrate and
oxygen uptake rates

Kinetic parameter Value Ref.

Ks 22.2 μmol ∙ l�1 [55]

KO2 1.8 μmol ∙ l�1 [56]

μmax 0.5 h�1 [57]

qO2, max 0.5 g ∙ gx�1h�1 [58]

Yxs 0.5 gx ∙ g�1 [57]

Cx 55 gx ∙ l�1 [59]
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3.3 Lagrangian Setup

To introduce the Lagrangian phase, we should indicate the interactions between the
particles (here cells) and the background flow, first. A powerful tool is the Stokes
number (4) which gives indication of how particles follow the stream lines. It
basically indicates how fast a particle can adapt the changes in flow velocities.
Stokes number is the ratio of particle relaxation time (τp) to fluid flow timescale
(τfluid) decided by agitation rate N in a stirred tank (5). Even by speculating orders of
magnitude for particle diameter (dp), liquid viscosity (μ) and particle density order of
magnitude for particle relaxation time can be reasonably predicted (6). In case of
microbes in stirred tanks, St << 1 which means that cells can be approximated with
massless particles which follow the streamline. A consequence of weightlessness is
that randomness generated from turbulence will be undermined. Hence, superimpo-
sition by the onset of random walk option should be enabled.

St ¼ τp
τfluid

ð4Þ

τfluid ¼ 1=N ð5Þ

τp ¼
ρpd

2
p

18μliquid
ð6Þ

So far, those settings could be fixed using the already implemented tunings of the
software. However, fine tuning of the modeling tasks usually requires further inputs
such as specification of microbial kinetics and particle tracking via so-called user-

• Overflow metabolism
• Substrate limita�on
• Starva�on

• Full respiration
• Partial respiration
• No respiration

3m
7
.7

m

Fig. 4 Eulerian simulation outputs: oxygen concentration regimes indicating respiration in green,
partial respiration in magenta, anaerobic conditions in black (left), glucose concentration regimes
where overflow metabolism takes place are indicated with red, limitation zone with yellow, and
starvation compartment with blue (right)
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defined functions (UDFs). The approach is called “one-way” coupling illustrating
that particles do not affect the background flow field which is “frozen” in pseudo-
steady state. For this purpose 100,000 particles are introduced into the reactor.
Criteria for choosing the number of particles are discussed in the literature [14, 25,
30].

To analyze lifelines with respect to regime shifts, the common approach is to
consider the time duration between two consecutive regime transitions as the
individual retention time inside one regime. Accordingly, transitions may be cate-
gorized by six trajectories as shown in Fig. 5. For example, trajectory “e” accounts
for transitions from excess to limitation and back [13].

3.4 Lagrangian Readouts

Once trajectories are sorted, frequencies of retention times may be plotted and
analyzed to illustrate their significance. In accordance with the ergodicity criterion,
lifelines are recorded after one mixing time and for 10 mixing times thereafter
(Fig. 6). A practical approach to reduce computational times is to distribute particles
equally inside the bioreactor at the beginning.

As expected, short residence times largely contribute to the residence time
distributions. As shortest residence times basically represent artifacts, residence
time distributions must be filtered properly before further processing [12, 14]. How-
ever, lifelines of Fig. 7 still describe fair estimates of real, nonideal reactors. Their
impact on bioprocesses with elevated biomass concentration and/or high cellular
metabolic activity is of particular interest for bioprocess analysis.

For instance, one may wonder how simulation readouts may be translated into
wet-lab-scale-up simulators that mimic simulations already in lab scale. Figure 8
illustrates some putative settings following suggestions of Kuschel and Takors [26]
and Noorman [51]. Basically, the following compartments should be considered:

a b

c
d

e

f

• Overflow metabolism

• Substrate limitation

• Starvation

Fig. 5 Trajectories of
particles traveling through
overflow metabolism (red)
“O,” limitation (yellow) “L,”
and starvation zone (blue)
“S,” (a) OLO, (b) OLS, (c)
SLS (d) SLO, (e) LOL, and
(f) LSL
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• Full respiration
• Partial respiration
• No respiration

• Overflow metabolism
• Substrate limitation
• Starvation

3m

7.
7m

Fig. 6 Particles distribution over the tank volume: oxygen concentration regimes indicating
respiration in green, partial respiration in magenta, anaerobic conditions in black (left), glucose
concentration regimes where overflow metabolism is indicated with red, limitation zone with
yellow, and starvation compartment with blue (right)

Fig. 7 Residence time distributions for three compartment design
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1. A nonideal stirred tank with a bypass flow to imitate the smaller timescales and
dead zones to reproduce the spread of residence time distribution for
starvation zone.

Industrial

scale

reactor

Ideal scale-down reactors

a)

b)

c)

1990-2010

2010-2018

Realistic scale-down reactors

Fig. 8 Evolution of the scale-down bioreactor: (a) detection of the gradients sparked the interest in
scale-down bioreactors which in turn led to (b) a conventional approach of series of ideal bio-
reactors which laid the ground work for the next generation of (c) nonideal but more representative
scale-down bioreactor
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2. A stirred tank reactor to represent overflow metabolism compartment.
3. A nonideal stirred tank with a strong bypass flow of a nonideal plug flow reactor

with high dispersion to reproduce residence time distribution of limitation zone.

The implementation of such designs may face technical challenges in reality
finally causing well-balanced decisions between simulation agreement and hardware
constraints. In general, such designs are in line with multi-compartment bioreactor
settings already used in the labs [60–62]. Accordingly, the combination with CFD
calculations allows a quantitative estimate of how close lab performance mimics
large-scale conditions.

4 Scale-Down Examples and Methods from the Literature

As mentioned earlier, the scale-down procedure should be carried out with the end in
mind, and this results in various optimization targets based on the scenario of
interest. With this in mind, we briefly go through the literature to evaluate different
design goals addressed using this approach. One of the first applications of scale-
down can be seen from the work of George et al. [63] that was a two-compartment
scale-down with one stirred tank reactor (STR) connected to a plug flow reactor
(PFR). The impact of the overflow metabolism was investigated and to ensure such
condition substrate was fed at PFR entrance. One of the design considerations in
such setups is to maintain proper dissolved oxygen (DO) levels in the scale-down
reactor to prevent deviating from an industrial case. For this PFR should also be
aerated without major distributions in the flow pattern. The same setup was later
used to evaluate the effect of substrate heterogeneity of acetate formation [7]. One
way to achieve this is to use oxygen gas in PFR compartment to regulate the DO
levels. On a side note, other scale-down studies were carried before, but they simply
were not titled, so an example of this is the work of Sweere et al. [64] and Sweere
et al. [40] which was concerned with DO fluctuations by using STR compartments
while investigating the impact of the tubing. Hewitt et al. [59] took interest in
imperfections occurring at industrial scale in E. coli fermentations with high cell
density and STR-PFR scale-down reactor design. Enfors et al. [65] also used an
STR-PFR configuration to shed light on by-product formation in yeast for different
feeding locations in the scale-down reactor. With a different perspective, Delvigne
et al. [66] presented a stochastic approach to reproduce hydrodynamic flow fields in
the scale-down reactor based on residence time distribution for four different
configurations, namely, two STR-PFR with various PFR diameters, STR-2PFR
(parallel) and STR-2PFR (series). High flexibility and attractiveness of scale-down
approach resulted in its application in more complicated bioprocesses like algal
bioprocesses where fluid flow was simulated by CFD and the illumination was
included using the Monte Carlo method [67]. Even with only one or two compart-
ments at hand, a diverse range of designs can be generated from a single vessel with
fluctuating feed to an STR-PFR with mixing and aeration in PFR and, hence, provide
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access to specific metabolic data in industrial cases [68]. Versatility of scale-down
reactors allows them to shed light on new characteristics of the process from
repetitive short stimuli faced by cells [17] and cell cycle in a yeast fermentation
[27] to mammalian cell cultures with specific interest in strain rate and carbon
dioxide gradients [69]. Once it is determined that such systems are not representative
of the desired conditions, more complex designs are considered if need be [62].

5 Advantages and Considerations

In this section we briefly go through some of the reasons that made EL simulations
relevant in the scaling up and down. We will also discuss some of the key consid-
erations which should be address accordingly.

Compared to other methods that tend to address the question of heterogeneity, EL
offers intrinsically superior features compared to other methods. Although notice-
able attempts were made to equip CFD simulations with a PBM for different classes
of growth rate [21], including a microorganism’s history is one of the essential
aspects that encourage the use of EL simulations over PBMs. This can serve as a
valuable tool in evaluating transient phenomena. Another benefit of using cell
tracking is that it allows integrating of multiple variables in growth rate calculations
without any major compromise in calculation time [36].

A versatile tool such as EL should be handled delicately. Assumptions from a
wide spectrum of phenomena from turbulence to cellular heterogeneity and regula-
tory networks within the cell have to be modeled with utmost attention to balance the
numerical burden with biological accuracy. Since the pioneering work of [36],
significant efforts have been made to find a robust foundation for E-L simulations.
Here are some of the lessons learned along the way:

• Flow field considerations

Since the start of EL simulations in bioprocess engineering, computational
resources have become more abundant and yet still are not enough to complete a
fully coupled transient simulation in a matter of hours or days. Having said that it
might be the time for the scale-down engineering to revisit some of the basics, that
could improve the reality of the simulations [13, 22]. The state-of-the-art EL
simulations mainly take place in a stepwise fashion introducing some artifacts to
the solution, for instance, when the turbulence from a transient solution is frozen in a
snapshot. Accordingly, one may wonder about the validity of lifelines extracted at
that distinct time window. Still, even with such compromises, EL is offering
valuable insights especially to the heterogeneity within the bioreactor.

• Particle tracking considerations

One of the key points is to consider the coupling mechanisms between Eulerian
phases and the Lagrangian particle. Basic assumption is that the condition St < 0.01
holds true for a single cell, and hence it can be assumed that the cell itself has no
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effect on the flow. Currently the number of particles being tracked is in the order of
100,000–1,000,000 particles. This, on the one hand, forces the investigation to adapt
an extra assumption which is to associate a fix biomass to the Eulerian flow field and
consider simulating a quasi-steady state [15]. On the other hand, associating the
biomass with particles might introduce artificial concentration gradients especially in
the spatial locations that are less visited by the limited number of particles. In an
ideal scenario, it is desired to have a large enough set of particles that results in a
statistically stable gradient although if the number of particles is too large, apart from
computational resource limitations, it could be that a cluster of particles will be
present at the same cell where the limited number of cells will have access to the
substrate and the others will face starvation. This is of utmost importance for
coupling consumption to concentrations (two-way coupled metabolism). Among
other things, agglomeration is not considered, and the heterogeneities arising from
such agglomerations can be an interesting question to tackle by assuming the particle
as a swarm center point. Based on the final goal of the simulation, valid assumptions
are to be made so that most of the concerning happenings at reasonable numerical/
computational costs are revealed.

• Kinetic considerations

The choice of proper kinetic models depends on the traits of the microbe.
Particular focus should be given to the timescale of cellular response. Conventional
black-box, nonstructured kinetics typically initiate instantaneous microbial
responses with respect to substrate uptake, growth, etc. However, the consideration
of structured models additionally considering multiple cellular regulation levels
integrates delayed responses, most likely. The latter cause a spatial disconnection
of initiation and cellular response inside the bioreactor [2, 18]. Besides, even the
consideration of proper metabolic models reacting instantaneously on microenvi-
ronmental stimuli may be a challenging task. Modeling the cellular behavior by
lumped metabolic pools is considered a reasonable compromise to cope with the
complexity of metabolism [30, 36, 70]. It might be intriguing to employ data science
techniques like reduced order modeling to decide the features that have the most
impact on the behavior in the future. Especially in cases where biomass concentra-
tion is low enough to create a large limitation zone but larger enough to increase
oxygen sensitivity and resulting in unwanted overflow metabolism production [71–
73]. One can modify a lumped metabolic model in a way so that it also takes into
account the transient behavior of the population. An abstract illustration of
such models is shown in Fig. 9. Here, oxygen concentrations above three times
the affinity constant of oxygen [74] are assumed to supply enough oxygen to support
the utilization of substrate, which equals to maximum oxygen uptake rate of
the cell (qO2

¼ qO2,max
). In this region overflow metabolism is expected only

when the concentration of the substrate exceeds the respiration capacity

qs � YO=S > qO2,max

�
). This holds true for most of the bioprocesses that operate in

a way that guarantees the oxygen demand (> 30% DO concentration). This assump-
tion requires revisiting once the rheology is changed. With slight adaptions, it can be
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assumed that respiration capacity is dependent on oxygen availability itself. As
opposed to substrate depletion, some microorganisms still continue to grow in the
absence of oxygen. Investigation of oxygen gradients can help shed light on the
fluctuations of a single cell experience.

EL simulations have emerged within a bioprocess community to serve as a tool
for diagnosis, optimization, and design for both microorganisms and bioreactors
alike. It materializes when two digital twins of the bioreactor and microorganism
meet and offer new meaning, solutions, and challenges.

6 Conclusion and Outlook

Lifeline studies allow the analysis of large-scale heterogeneities with the eyes of the
cells which puts biological criteria into the foreground of strain and process engi-
neering as well as bioreactor design. Computational power is steadily improving
allowing the application of said method with ever increasing complexity and less
time. Hence it is time to further exploit this tool and making it an integral part of
bioprocess and bioreactor design. As such, it may even be used as a digital twin
allowing unprecedented insights into cellular needs. More sophisticated simulations
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Fig. 9 Regime map for aerated cultures based on respiration capacity. ms represents minimum
substrate concentration required for cell maintenance, and α is an arbitrary value
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are expected to use digital twins, taking another step toward dynamic simulations
which are widely used by the biotech industry and hence pave the way for real-time
simulations 1 day. Once these dynamic simulations are validated, it can be used
together with powerful tools like augmented reality to develop online monitoring
systems once the digital twin of the process is in place.
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Abbreviations and Nomenclatures

Abbreviations
CFD Computational fluid dynamics
DNS Direct numerical simulation
DO Dissolved oxygen
EL Euler-Lagrange
LES Large eddy simulation
NSE Navier-Stokes equations
PBM Population balance model
PFR Plug flow reactor
RANS Reynolds-averaged Navier-Stokes
STR Stirred tank reactor
UDF User-defined function

Nomenclatures
a Bubble surface
Cglucose Glucose concentration
CO2 Dissolved oxygen concentration
C�
O2

Equilibrium oxygen concentration
Cx Biomass concentration
dp Bubble diameter
D Diffusion coefficient
k Turbulent kinetic energy
kl Mass transfer coefficient
Kglucose Saturation constant for glucose
Koxygen Saturation constant for oxygen
N Agitation rate
P Bioreactor power input
qs Specific substrate uptake rate
qs, max Maximum specific substrate uptake rate
qO2

Specific oxygen uptake rate
qO2, max Maximum specific oxygen uptake rate
St Stokes number
V Bioreactor volume
Yx

s
Biomass yield

Yo
s

Oxygen yield
ε Turbulent kinetic energy dissipation rate
μ Growth rate
μmax Maximum growth rate
μliquid Molecular viscosity
ν Kinematic viscosity
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ρp Bubble density
τmix Bioreactor mixing time
τfluid Fluid timescale
τp Bubble timescale
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