
HighPerMeshes – A Domain-Specific
Language for Numerical Algorithms

on Unstructured Grids

Samer Alhaddad1, Jens Förstner1, Stefan Groth2, Daniel Grünewald3,
Yevgen Grynko1, Frank Hannig2(B), Tobias Kenter1, Franz-Josef Pfreundt3,

Christian Plessl1, Merlind Schotte4, Thomas Steinke4, Jürgen Teich2,
Martin Weiser4, and Florian Wende4

1 Paderborn Center for Parallel Computing and Department of Computer Science
and Department of Electrical Engineering, Paderborn University,

Paderborn, Germany
2 Hardware/Software Co-Design, Department of Computer Science,

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
{frank.hannig,stefan.groth}@fau.de

3 Fraunhofer Institut für Techno- und Wirtschaftsmathematik,
Kaiserslautern, Germany

4 Zuse Institute Berlin, Berlin, Germany

Abstract. Solving partial differential equations on unstructured grids is
a cornerstone of engineering and scientific computing. Nowadays, hetero-
geneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-
efficient and computationally demanding simulations. We developed the
HighPerMeshes C++-embedded Domain-Specific Language (DSL) for
bridging the abstraction gap between the mathematical and algorithmic
formulation of mesh-based algorithms for PDE problems on the one hand
and an increasing number of heterogeneous platforms with their different
parallel programming and runtime models on the other hand. Thus, the
HighPerMeshes DSL aims at higher productivity in the code develop-
ment process for multiple target platforms. We introduce the concepts
as well as the basic structure of the HighPerMeshes DSL, and demon-
strate its usage with three examples, a Poisson and monodomain prob-
lem, respectively, solved by the continuous finite element method, and
the discontinuous Galerkin method for Maxwell’s equation. The mapping
of the abstract algorithmic description onto parallel hardware, including
distributed memory compute clusters, is presented. Finally, the achiev-
able performance and scalability are demonstrated for a typical example
problem on a multi-core CPU cluster.

Keywords: Domain-specific language · Numerical algorithms ·
Unstructured grids · Parallel computing

c© Springer Nature Switzerland AG 2021
B. Balis et al. (Eds.): Euro-Par 2020 Workshops, LNCS 12480, pp. 185–196, 2021.
https://doi.org/10.1007/978-3-030-71593-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71593-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-71593-9_15

186 S. Alhaddad et al.

1 Introduction

Simulations of physical systems described by partial differential equations
(PDEs) are the cornerstone of computational science and engineering. The ever-
growing need for computational performance due to the increasing number and
scale of simulations has led to the rise of different and heterogeneous parallel
computing platforms, ranging from multi-core CPUs to massively parallel dis-
tributed systems and from SIMD vector units to GPUs and FPGAs. Adapting
complex simulation algorithms to and implementing them efficiently on these
different architectures is a demanding task requiring in-depth computer science
knowledge that is usually not directly available to numerical mathematicians
and computational engineers. Consequently, many large scale simulation codes
address only a narrow and often traditional range of computing environments,
missing the performance opportunities offered by new architectures.

In this paper, we present the HighPerMeshes embedded DSL that provides
an abstraction layer to C++ application developers to implement efficient mesh-
based algorithms for PDE problems on unstructured grids. The focus of the
DSL is on finite element (FE) and discontinuous Galerkin (DG) or finite vol-
ume (FV) discretizations to address iterative and matrix-free solvers as well as
time-stepping schemes. Large parts of PDE simulation problems thus can be
covered. HighPerMeshes draws heavily on the C++17 standard and template
metaprogramming for genericity and extensibility. Additionally, compile-time
information through template parameters can benefit the code generation for
specific target architectures.

The following other software projects address PDE computations on unstruc-
tured grids: Traditional library approaches such as deal.II [1], DUNE [3], or
Kaskade 7 [7] focus on application building blocks and usually provide a rather
explicit parallelization based on threads or MPI, providing one or a few selected
back ends such as PETSc [2]. High-level DSLs such as FEniCS [16] or FreeFEM [10]
on the other hand, allow to specify PDE problems in very abstract notation and use
code generation techniques to create efficient simulation programs. The projects
closest in scope and intention are the OP2 [17]/PyOP2 [20] and Liszt [6] DSLs, by
providing interfaces to execute local compute kernels on unstructured meshes and
to access data associated with different mesh entities. These approaches depend
on C++, Python, and Scala code transformation and compilation techniques [19].
In contrast, we rely on template metaprogramming methods.

2 The HighPerMeshes Domain-Specific Language

Picking the right abstraction level is central for every DSL or library interface
targeting mesh-based algorithms for PDEs. It needs to provide idioms for speci-
fying the algorithmic building blocks on an abstraction level that is high enough
to be mapped efficiently to different computing environments. Furthermore, it
should be detailed enough to allow implementing a wide range of established
or yet to be developed discretizations schemes and numerical algorithms. The
HighPerMeshes DSL aims at providing abstractions on a level that is just high

HighPerMeshes 187

enough to allow for an efficient mapping to sequential and multithreaded CPU
execution, distributed memory systems, and accelerators. On this level, the core
components of mesh-based PDE algorithms include mesh data structures, the
association of Degrees of Freedom (DoFs) to mesh entities such as cells and ver-
tices, and the definition of kernel functions that encapsulate local computations
with shape functions defined on single mesh cells or faces.

2.1 Mesh Interface

Computational meshes decompose the computational domain Ω ⊂ R
d into sim-

ple shapes such as triangles or tetrahedra by which PDE solutions can be repre-
sented. Unstructured meshes do so in an irregular pattern that can be adapted
to complex geometries or local solution features in a flexible way. Unlike for
structured meshes, neighborhood relations between these cells are not implied
by the storage arrangement of their constituting vertices, but are usually defined
through connectivity lists that specify how they are made up of vertices. There-
fore, the storage efficiency of unstructured meshes can be very low if the specifics
of the hardware architecture are not taken into account. Similarly, when access-
ing or iterating over mesh entities (cells, faces, edges, and vertices for d = 3), the
memory structuring and arrangement of, e.g., geometrically neighboring entities
can be critical to performance and present optimization targets on the mesh
implementation for different architectures.

The construction of a mesh in the HighPerMeshes DSL starts from a set of
vertices V = {vm ∈ R

d} and a set C = {in|n = 0, . . . ,#cells−1} of connectivity
lists in ⊂ {0, . . . , |V | − 1} representing the cells in the mesh.

Users can create meshes by providing V and C directly or by using one of
the available import parsers for common mesh data files. Each i ∈ C references
into the vertex set V to encode an entity of the cell dimensionality dcell ≤ d.
Sub-entities or constituting entities like edges and faces correspond to index sets
j ⊂ i ∈ C that are deduced according to a particular scheme that is specific
to the entity type. All entities are stored in a (dcell + 1)-dimensional set data-
structure using their index sets. The mesh manages a lookup table which for each
entity holds the IDs of all its constituting entities with one dimension lower, and
another with the IDs of all incident super-entities, if present.

Users of the DSL can define their own entity types by implementing the
interfaces EntityTopology and EntityGeometry. The two interfaces define the
base functionality that is needed by the DSL, e.g., to navigate through all the
different entities in the mesh or provide face normals. Entity-specific extensions
can be added easily, which enhances the usability of the DSL.

For the hierarchical definition of entities as an affiliation of sub-entities,
EntityTopology and EntityGeometry must know the actual type of their imple-
mentation for explicit instantiations, e.g., requesting or providing information
about entities of different dimensionality.

On top of the mesh implementation is the mesh partitioning, which is needed
for work distribution in the parallel context. The PartitionedMesh type inherits
all functionality and state from the Mesh type. It selects from C a subset of the
entities in the mesh and redirects this subset to the Mesh base type.

188 S. Alhaddad et al.

Iterator ranges over entities of any valid dimension can be created by the
mesh and any valid entity through

template <int Dimension >
EntityRange <Dimension > GetEntities () {..}.

Both EntityT and (Partitioned)Mesh extend this functionality in different
ways, thereby enabling the user of the DSL to query topological and geometrical
information inside and outside of the kernel functions.

2.2 Buffer Types for Storing Coefficient Vectors

PDE solutions are generally discretized using finite-dimensional ansatz spaces
and are represented by coefficient vectors with respect to a certain basis. In FE,
FV, and DG methods, the basis functions are associated with mesh entities and
have a support contained in the union of the cells incident to their entity. The
mapping of coefficients, or Degrees of Freedom (DoFs) to storage locations and
access to them depends on the target architecture and may involve nontrivial
communication. Therefore, the DSL provides buffer types for coefficient vector
storage to relieve the user from these considerations.

Depending on the ansatz space, a particular number of basis functions is
associated with mesh entities of different dimensions. Therefore, the number of
coefficients ηd̃ associated to entities of dimension d̃ ∈ {0, . . . , dcell} has to be
specified when constructing a buffer. Additionally, global values as coefficients
of the constant basis function can be stored, e.g.,

Runtime hpm {..};
auto dofs = MakeDofs <1,1,1,1,2>(); /* η = {�ηd̃, 2} = {1, 1, 1, 1, 2} */

auto buffer = hpm.GetBuffer <float >(mesh ,dofs);

for dcell = d = 3. The buffer holds one value of type float for each node, edge,
face, and the cell itself. Two additional entries are provided for global values.

DoFs are accessed through a “local-view object” (lv in Listing 1, line 7)
inside kernel functions. These local views are a tuple of implementation-defined
objects that are accessible with the GetDof function, which requests DoFs of a
certain dimension. This is necessary because access patterns may provide DoFs
associated with mesh entities of different dimensions.

Given a data access pattern (Sect. 2.3) and a specific entity—typical program
executions loop over all or a subset of the entities in the mesh, one after the
other—the corresponding local view makes for a linearly indexable type inside
the kernel function, thereby hiding data layout and storage internals.

2.3 Iterating over the Mesh with Local Kernels

In the PDE solver algorithms that we target, a significant part of PDE compu-
tation on meshes involves the evaluation of values, derivatives, or integrals on
cells or faces, and is therefore local. This allows for various kinds of paralleliza-
tion, depending on the target architecture. Typically, these local calculations
in space are embedded into time-stepping loops or iterative algorithms, which

HighPerMeshes 189

imply dependencies based on the data access patterns of the kernels. With a
scheduler that suitably resolves these dependencies, additional parallelism can
be exploited by partially overlapping subsequent time steps.

In HighPerMeshes, the application developer specifies the calculations as
local kernels at entity granularity and invokes a dispatcher to take care of their
parallel execution and scheduling. Line 1 of Listing 1 shows the definition of a
distributed dispatcher that uses the command line arguments to set up its envi-
ronment. The advantage of using this dispatcher model is a complete separation
of parallelization techniques and kernel definitions. The interface is technology-
agnostic and does not require knowledge about parallel programming.

The dispatcher’s Execute method takes a number of kernels to be executed as
its arguments. If required, those arguments might be supplemented by a range of
time steps, as shown in line 3 of Listing 1, in order to iterate the defined sequence
of kernels more than once in the specified range. Each kernel must define a
range of entities to iterate over. To enable flexible parallelization strategies, the
DSL does not guarantee a processing order for these entities. For example, the
function call mesh.GetEntityRange<CellDimension>() in line 5 specifies that
the dispatcher iterates over all cells. ForEachEntity in line 4 defines an iteration
over all entities in that range. Here, HighPerMeshes provides another option:
ForEachIncidence<D> iterates over all sub-entities of a certain dimension D for
the entities in the given range.

The kernel requires a tuple of access definitions, as seen in line 6. Access def-
initions specify the mode (any of Read, Write, and ReadWrite) and the access
pattern for the DoF access. This allows the scheduler to calculate dependencies
between kernels, thereby avoiding conflicting DoF accesses in scatter operations
despite parallelization. Access patterns determine the DoFs relevant for the cal-
culation by specifying a set of mesh entities incident or adjacent to the local
entity. Cell in line 6 means that the kernel requires access to the DoFs from the
given buffer that are associated with the local cell, as frequently used in DG
methods. Other common access patterns involve a local cell and all of its inci-
dent sub-entities, usually encountered in FE methods, or the two cells incident
to a face for flux computations in DG or FV methods. While HighPerMeshes
aims at providing all access patterns necessary for common kernel descriptions
in FE or DG methods, they can be easily extended by providing the required
neighborhood relationship in the mesh interface.

Lastly, the user must define a kernel to be executed (line 7). It must be a
callable that takes the specified entities, time steps, and a local-view object lv
as its arguments. The latter allows access to the requested DoFs.
1 DistributedDispatcher dispatcher{argc ,argv };
2 dispatcher.Execute(
3 Range {100},
4 ForEachEntity (
5 mesh.GetEntityRange <CellDimension >(),
6 tuple(Write(Cell(buffer))),
7 [](const auto& cell ,auto step ,auto& lv) { /* kernel body */ }));

Listing 1. Example of a dispatcher definition and kernel execution.

190 S. Alhaddad et al.

3 Using the DSL

In this section, examples and code segments are presented to illustrate the meth-
ods described in Sect. 2 and to explain their use. Further information about the
algorithms and examples can be found in the public repositories1,2.

3.1 Matrix-Free Solver for the Poisson Equation

For illustrating the usage of the DSL, the elliptic Poisson problem

−Δu = f in Ω ⊂ R
3, u = 0 on Γ ⊂ R

3 (1)

with homogeneous Dirichlet boundary conditions is solved by a matrix-free con-
jugate gradient (CG) method [11,21]. By discretizing (1) with linear finite ele-
ments on a tetrahedralization of Ω, i.e. with one DoF per vertex, a system
Ax = b of linear equations is obtained [5]. Since A is symmetric and posi-
tive definite, its solution is the minimizer of the convex minimization problem
F (x) = 1

2xTAx − bTx → min.

Fig. 1. Code segment for right-hand side computation.

In order to solve this equation system, the right-hand side (rhs) b must be
assembled. This is done using the buffer datatype and the loop ForEachEntity,
which iterates over the vertices of each cell (in this case, tetrahedra) and stores
the corresponding value in the buffer (Fig. 1 code line 8). The homogeneous
Dirichlet boundary conditions can be built into the rhs here as well. To solve the
system, a matrix-free CG iteration is used. Its main algorithmic building block
is the computation of matrix-vector products Ax. Instead of assembling A and

1 https://github.com/HighPerMeshes/highpermeshes-dsl.
2 https://github.com/HighPerMeshes/highpermeshes-drts-gaspi.

https://github.com/HighPerMeshes/highpermeshes-dsl
https://github.com/HighPerMeshes/highpermeshes-drts-gaspi

HighPerMeshes 191

performing linear algebra operations, we assemble the product Ax directly by
evaluating

sj =
∫
C

∇φi∇φj dC

︸ ︷︷ ︸
A(i,j)cell

· xj (2)

per cell and with φ∗ as shape functions (see line 9 of Listing 2). The same pro-
cedure is used for all further matrix-vector products. Finally, the result can be
saved into a file and visualized using, for example, ParaView.

1 auto AssembleMatrixVecProduct =
2 ForEachEntity (cells , tuple(Vertex(s)),
3 [](const auto& cell) {
4 auto& indices = cell.GetTopology ().GetVertexIndices ();
5 for (int col = 0; col < ncols; ++col) {
6 for (int row = 0; row < nrows; ++row) {
7 float a_ij = .. // set a_ij using shape functions
8 s[indices[col]] += a_ij * x[indices[row]];
9 }}

10 });

Listing 2. Example of a matrix-free computation.

3.2 Discontinuous Galerkin Time Domain (DGTD) Maxwell Solver

Here we sketch an implementation of a Maxwell solver based on the DGTD
numerical scheme [9,12]. An initial value problem is solved in the time domain
in a free space mesh with perfect electric conductor (PEC) boundary conditions.
The user can modify the code accordingly if field sources, materials, or absorbing
boundaries are needed. The simulation domain is discretized in a triangular or
tetrahedral mesh, which is used as an input. Then, DoFs or calculation points
are created within the cells, depending on the ansatz order specified by the user.
For example, a three-dimensional simulation with third-order accuracy requires
20 DoFs in each cell to represent the unknown fields. The right-hand sides of
Maxwell’s equations are evaluated during Runge-Kutta time integration at each
time step according to the DGTD method formulation

Ė = D × H + (M)−1F (ΔE − n̂ · (n̂ · ΔE) + n̂ × ΔH) (3)
Ḣ = −D × E + (M)−1F (ΔH − n̂ · (n̂ · ΔH) + n̂ × ΔE) (4)

Here D × H and D × E are the curls of the magnetic and electric fields.
Correspondingly, M is the mass matrix, F the face matrix, ΔE,ΔH are field
differences between the neighboring cells at the interfaces, and n̂ the face normal
[9]. The first term (the curls) involves only cell-local DoFs and is therefore called
“volume kernel” (see Listing 3).

192 S. Alhaddad et al.

1 auto volumeKernelLoop = ForEachEntity (cells ,
2 tuple(Read(Cell(H)),Cell(rhsE) ,..),
3 [&](const auto& cell ,..,auto& lv){
4 Mat3D D = cell.GetGeometry ().GetInverseJacobian () *2.0;
5 ForEach(numVolumeNodes ,[&](const int n){
6 const auto& H = GetDofs <3>(get <0>(lv));
7 Mat3D dH;
8 ForEach(numVolumeNodes ,[&](const int m) {
9 dH += DyadicProduct (derivative[n][m],H[m]);

10 });
11 auto& rhsE = GetDofs <3>(get <1>(lv));
12 rhsE[n] += Curl(D,dH);
13 // code for rhsH: analogue to rhsE
14 });
15 });

Listing 3. Code segment for the Maxwell volume kernel.

The second term in (3, 4), the “surface kernel,” (see Listing 4) stems from a
surface integral over the cell’s faces, and involves those DoFs from within the two
incident cells located on these faces. Calculating the surface kernel requires some
operations provided directly by the DSL, e.g., GetNormal(). The implementation
complexity of DG on unstructured meshes comes from the access or mapping to
the neighboring cells DoFs in order to calculate fluxes across faces as described
in (3, 4). This access is performed with the data structure NeighboringNodeMap
(line 12 in Listing 4), which provides the corresponding index for the DoFs in
the local view.
1 auto surfaceKernelLoop = ForEachIncidence <2>(cells ,
2 tuple(Read(ContainingMeshElement (H)),
3 Read(ContainingMeshElement (E)),
4 Read(NeighboringMeshElementOrSelf (H)),
5 Read(NeighboringMeshElementOrSelf (E)),
6 Write(ContainingMeshElement (rhsE))),
7 [&](const auto& cell , const auto& face ,..,auto& lv){
8 const auto& H = GetDofs <3>(get <0>(lv));
9 // buffer access to E, nH , n, E, rhsE is analogous

10 auto& NeighboringNodeMap {DgNodeMap.Get(cell ,face)};
11 int faceIndex = face.GetTopology ().GetLocalIndex ();
12 auto faceUnitNormal = face.GetGeometry ().GetUnitNormal ();

13 auto edg = (face.GetGeometry ().GetNormal () *2.0/
14 cell.GetGeometry ().GetAbsJacobianDeterminant ()).Norm ()

*0.5;
15 ForEach(numSurfaceNodes ,[&](const int m){
16 const auto dH = edg*Delta(H,nH ,m,NeighboringNodeMap);
17 const auto dE =
18 edg*DirectionalDelta(E,nE ,face ,m,NeighboringNodeMap);
19 const auto fluxE = (dE -(dE*faceUnitNormal)*

faceUnitNormal +CrossProduct(faceUnitNormal ,dH));
20 ForEach(numVolumeNodes ,[&](const int n){
21 rhsE[n] += LIFT[face_index][m][n]*fluxE;
22 });
23 });
24 });

Listing 4. Code segment for the Maxwell surface kernel.

HighPerMeshes 193

3.3 Finite Elements for Cardiac Electrophysiology

The excitation of cardiac muscle tissue is described by electrophysiology models
such as the monodomain model

u̇ = ∇ · (σ∇u) + Iion(u,w), (5)
ẇ = f(u,w),

where σ is the conductivity, Iion is the ion current that forms together with the
gating dynamics f(u,w) the membrane model. The simplest FitzHugh-Nagumo
membrane model defines Iion(u,w) = u(1−u)(u−a)−w and f(u,w) = ε(u−bw)
with 0 < a, b, ε < 1 [4,15,23].

The method of lines [22] discretizes the monodomain model (5) first in space
and then in time. For the discretization of space, we use linear finite elements
again, leading to the system

Mu̇ = σAu + M · Iion(u,w)
ẇ = f(u,w)

with mass matrix M and stiffness matrix A. For time discretization, the forward
Euler method

ut+1 = ut + τ
(
M−1σAut + Iion(ut, wt)

)
︸ ︷︷ ︸

u̇:=ud

, wt+1 = wt + τf(ut, wt) (6)

is widely used in cardiac electrophysiology due to its simplicity and its stability
for reasonable step sizes τ [18].

In order to avoid inverting the globally coupled mass matrix, the row-sum
mass lumping technique is applied to M [13]. This yields a diagonal approxi-
mation Ml of M and allows for efficient, explicit formation of M−1

l to be used
in (6) instead of M−1, and matrix-free storage in vector form. The right-hand
side ut including the matrix-vector product Aut is assembled directly as in (2)
without forming A:
1 auto fwEuler = ForEachEntity (
2 mesh.GetEntityRange <0>(),
3 tuple(Vertex(u), Vertex(Read(u_d))),
4 [&](const auto& vertex , auto step , auto& lv) {
5 auto& u = GetDofs <0>(get <0>(lv));
6 auto& u_d = GetDofs <0>(get <1>(lv));
7 u[0] += tau * u_d [0];
8 });

Listing 5. Code example of an implementation of a first-order solver (forward Euler).

3.4 Distributed Scalability Experiments

In this section, we analyze the distributed scalability of the matrix-vector prod-
uct (Listing 2), the volume kernel (Listing 3), and the surface kernel (Listing 4).

194 S. Alhaddad et al.

The experiments were executed on a cluster, where each compute node consists
of two sockets. Each socket contains an Intel Xeon Gold 6148 “Skylake” CPU,
which has 20 cores and a base frequency of 2.4 GHz. Hyper-threading is deac-
tivated. The nodes are connected on a 100 Gb/s Intel Omni Path network. All
experiments were executed with 20 threads per socket, as the scalability of our
threading approach on a single compute node has already been shown [8].

(a) Acceleration with ACE’s thread pool

(b) Acceleration with OpenMP

Fig. 2. Speedup for iterating over the specified kernels on a mesh with 400,000 tetra-
hedra and 1000 time steps on an increasing amount of sockets compared to executing
the same kernels on one socket. The evaluated back ends use ACE’s thread pool (a) or
OpenMP (b).

We conducted the experiments for 1000 time steps on a synthetic mesh of
400,000 tetrahedra. Such a setup represents a typical problem size targeted by
the distributed dispatcher. For mesh partitioning, we use the Metis library [14].

Figure 2 shows the speedup over a single node for the distributed dispatcher
when either scheduling tasks to ACE’s thread pool or accelerating tasks with
OpenMP for an increasing amount of compute nodes. As a baseline for each
experiment, we measure the execution time with both back ends on a single
socket, i.e., 20 cores, and use the faster one. For 640 cores, the back end feeding
threads to ACE’s thread pool achieves better speedups for the matrix-vector
product with a speedup of 21.19. The volume and surface kernels achieve a
better speedup in the case of OpenMP acceleration, with a speedup of 27.94 and
28.98, respectively. Furthermore, the volume and surface kernels scale better
than the matrix-vector multiplication because they are more compute-intensive.
They iterate over 20 DoFs instead of just one. To achieve this kind of scalability,
the dispatcher requires a sufficient workload.

HighPerMeshes 195

The results show that HighPerMeshes allows an efficient distribution of
matrix-free algorithms. They also show that the provided abstractions are not
tailored to a specific back end. Instead, both reference implementations achieve
similar speedups, thus showing that the language is portable to different tech-
nologies.

Conclusion

HighPerMeshes is an embedded DSL that provides high-level abstractions for
iterative, matrix-free algorithms on unstructured grids. It is a powerful tool
enabling users to run simulations and implement their own modifications for
complex multi-scale problems from a broad range of application domains.

The data structures and procedures provided by HighPerMeshes allow effi-
cient parallelization and distribution as shown by our implementation of a dis-
patcher that distributes kernels with the help of GASPI, ACE, and OpenMP.
This gives the user the opportunity to take advantage of complex parallelization
techniques and task scheduling without being an expert on parallelization, saving
implementation time and effort on one side, and offering flexibility for different
computing platforms without the need for code modification on the other side.

Acknowledgments. This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) within the collaborative research project “HighPer-
Meshes” (01IH16005). The authors gratefully acknowledge the funding of this project
by computing time provided by the Paderborn Center for Parallel Computing (PC2).

References

1. Arndt, D., et al.: The deal.II library, version 9.1. J. Numer. Math. 27(4), 203–213
(2019)

2. Balay, S., et al.: PETSc (2019). https://www.mcs.anl.gov/petsc
3. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific com-

puting. Part II: implementation and tests in DUNE. Computing 82(2), 121–138
(2008). https://doi.org/10.1007/s00607-008-0004-9

4. Dauby, P., Desaive, T., Croisier, H., Kolh, P.: Standing waves in the FitzHugh-
Nagumo model of cardiac electrical activity. Phys. Rev. E 73(2), 021908 (2006)

5. Deuflhard, P., Weiser, M.: Adaptive Numerical Solution of PDEs. Walter de
Gruyter, Berlin (2012)

6. DeVito, Z., et al.: Liszt: a domain specific language for building portable mesh-
based PDE solvers. In: Proceedings of Conference on High Performance Computing
Networking, Storage and Analysis (SC 2011), p. paper 9. ACM (2011)

7. Götschel, S., Schiela, A., Weiser, M.: Kaskade 7 - a flexible finite element toolbox.
Comp. Math. Appl. 81, 444–458 (2020)

8. Groth, S., Grünewald, D., Teich, J., Hannig, F.: A runtime system for finite element
methods in a partitioned global address space. In: CF 2020: Proceedings of the 17th
ACM International Conference on Computing Frontiers. ACM (2020). https://doi.
org/10.1145/3387902.3392628

https://www.mcs.anl.gov/petsc
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1145/3387902.3392628
https://doi.org/10.1145/3387902.3392628

196 S. Alhaddad et al.

9. Grynko, Y., Förstner, J.: Simulation of second harmonic generation from photonic
nanostructures using the discontinuous Galerkin time domain method. In: Agrawal,
A., Benson, T., De La Rue, R.M., Wurtz, G.A. (eds.) Recent Trends in Compu-
tational Photonics. SSOS, vol. 204, pp. 261–284. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55438-9 9

10. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265
(2012). https://freefem.org/

11. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear
systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications. Springer, New York (2008). https://doi.org/
10.1007/978-0-387-72067-8

13. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Ele-
ment Analysis. Courier Corporation (2012)

14. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. (SISC) 20(1), 359–392 (1998)

15. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction
method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approx-
imate irregular domain. J. Comput. Phys. 293, 252–263 (2015)

16. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential
Equations by the Finite Element Method. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-23099-8

17. Mudalige, G.R., Giles, M.B., Reguly, I., Bertolli, C., Kelly, P.H.J.: OP2: an active
library framework for solving unstructured mesh-based applications on multi-core
and many-core architectures. In: Proceedings of Innovative Parallel Computing
(InPar), pp. 1–12 (2012)

18. Puwal, S., Roth, B.J.: Forward Euler stability of the bidomain model of cardiac
tissue. IEEE Trans. Biomed. Eng. 54(5), 951–953 (2007)

19. Rathgeber, F., et al.: Firedrake: automating the finite element method by compos-
ing abstractions. ACM Trans. Math. Softw. (TOMS) 43(3), 24:1–24:27 (2016)

20. Rathgeber, F., et al.: PyOP2: a high-level framework for performance-portable sim-
ulations on unstructured meshes. In: Proceedings of the 2nd International Work-
shop on Domain-Specific Languages and High-Level Frameworks for High Perfor-
mance Computing (WOLFHPC), pp. 1116–1123. ACM, November 2012

21. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM (2003)
22. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation

Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cam-
bridge (2009)

23. Sermesant, M., Coudière, Y., Delingette, H., Ayache, N., Désidéri, J.A.: An electro-
mechanical model of the heart for cardiac image analysis. In: Niessen, W.J.,
Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 224–231. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3 27

https://doi.org/10.1007/978-3-319-55438-9_9
https://doi.org/10.1007/978-3-319-55438-9_9
https://freefem.org/
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/3-540-45468-3_27

	HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids
	1 Introduction
	2 The HighPerMeshes Domain-Specific Language
	2.1 Mesh Interface
	2.2 Buffer Types for Storing Coefficient Vectors
	2.3 Iterating over the Mesh with Local Kernels

	3 Using the DSL
	3.1 Matrix-Free Solver for the Poisson Equation
	3.2 Discontinuous Galerkin Time Domain (DGTD) Maxwell Solver
	3.3 Finite Elements for Cardiac Electrophysiology
	3.4 Distributed Scalability Experiments

	References

