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Preface

Euro-Par is an annual, international conference in Europe, covering all aspects of
parallel and distributed processing. These range from theory to practice, from small to
the largest parallel and distributed systems and infrastructures, from fundamental
computational problems to full-fledged applications. It also covers architecture, com-
piler, language, and interface design and implementation, as well as tools, support
infrastructures, and application performance aspects. The Euro-Par conference itself is
complemented by a workshop program, where workshops dedicated to more special-
ized themes, to cross-cutting issues, and to upcoming trends and paradigms can be
easily and conveniently organized with little administrative overhead.

This year, 11 workshop proposals were submitted, and after a careful revision
process, which was led by the workshop co-chairs, all of them were accepted. Three
workshops were withdrawn due to a low number of submissions, or due to the decision
to conduct the Euro-Par 2020 conference in the online format as a consequence of the
COVID-19 pandemic. Two more of them were cancelled after the review process.

The workshops took place on the two days before the Euro-Par conference and the
program included papers belonging to the following 6 online workshops:

1. Challenges and Opportunities of HPC Storage Systems (CHAOSS)
2. Workshop on Future Perspectives of Decentralised Applications (FPDAPP)
3. Workshop on Algorithms, Models and Tools for Parallel Computing on Hetero-

geneous Platforms (HETEROPAR)
4. Workshop on Parallel and Distributed Computing for Life Sciences: Algorithms,

Methodologies and Tools (PDCLIFES)
5. Workshop on Parallel Programming (PARAMO)
6. Workshop on Resiliency in High Performance Computing with Clouds, Grids, and

Clusters (RESILIENCE)

The total number of submissions was 51 from 15 different countries. Each workshop
had an independent program committee, which was in charge of selecting the papers.
The workshop papers received more than three reviews per paper on average (170
reviews in total). Out of the 51 submissions, 27 papers were selected to be presented at
the workshops. So, the acceptance rate was 53%.

The success of the Euro-Par workshops depends on the work of many individuals
and organizations. We therefore thank all the workshop organizers and reviewers for
the time and effort that they invested. The effort was specially intense this year due to
the pandemic situation. We would also like to express our gratitude to the members
of the Organizing Committee and the local staff, especially the volunteer students, who
helped us and successfully adapted to the new situation. Sincere thanks are due to
Springer for their help in publishing the proceedings. This volume includes the papers
of the 6 workshops organized into 4 track sections (FPDAPP, HETEROPAR, PARAMO,



RESILIENCE), and also a section called Complementary Papers that includes the 3 papers
from CHAOSS and PDCLIFES.

Lastly, we thank all participants, panelists, and keynote speakers of the Euro-Par
workshops for their contribution to a productive meeting. It was a pleasure to organize
and host the Euro-Par workshops 2020 in Warsaw.

November 2020 Bartosz Balis
Dora B. Heras

viii Preface



Organization

Euro-Par Steering Committee

Chair

Luc Bougé ENS Rennes, France

Vice-chair

Fernando Silva University of Porto, Portugal

Full Members

Marco Aldinucci University of Turin, Italy
Dora Blanco Heras CiTIUS, University of Santiago de Compostela, Spain
Emmanuel Jeannot Inria Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College London, UK
Thomas Ludwig University of Hamburg, Germany
Tomàs Margalef Universidad Autònoma de Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Francisco Fernández Rivera CiTIUS, University of Santiago de Compostela, Spain
Krzysztof Rządca University of Warsaw, Poland
Rizos Sakellariou University of Manchester, UK
Henk Sips Delft University of Technology, The Netherlands
Leonel Sousa University of Lisbon, Portugal
Domenico Talia University of Calabria, Italy
Massimo Torquati University of Pisa, Italy
Phil Trinder University of Glasgow, UK
Denis Trystram Grenoble Institute of Technology, France
Felix Wolf Technical University of Darmstadt, Germany
Ramin Yahyapour GWDG, Göttingen, Germany

Honorary Members

Christian Lengauer University of Passau, Germany
Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany



Euro-Par 2020 Organization

Co-chairs

Krzysztof Rzadca University of Warsaw, Poland
Maciej Malawski AGH University of Science and Technology, Poland

Workshops

Bartosz Baliś AGH University of Science and Technology, Poland
Dora Blanco Heras CiTIUS, University of Santiago de Compostela, Spain

Logistics

GlobalCongress

Additional Reviewers

Abdelhafez, Hazem
Antonelli, Laura
Barbara, Fadi
Campagna, Rosanna
Chasapis, Konstantinos
Cuomo, Salvatore
Dolz, Manuel F.
Faloci, Francesco
Guzzi, Pietro Hiram
Ito, Yasuaki
Lepore, Cristian

Mathà, Roland
Mehran, Narges
Mercanti, Ivan
Murgia, Maurizio
Nikolskiy, Vsevolod
Rodríguez-Sánchez, Rafael
Spadafora, Chiara
Takafuji, Daisuke
Thamsen, Lauritz
Vitaletti, Andrea



Contents

FPDAPP - Second International Workshop on Future Perspective
of Decentralised APPlications

Blockchain Utility in Use Cases: Observations, Red Flags,
and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Tommy Koens and Erik Poll

Ants-Review: A Privacy-Oriented Protocol for Incentivized Open
Peer Reviews on Ethereum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Bianca Trovò and Nazzareno Massari

Next Generation Blockchain-Based Financial Services . . . . . . . . . . . . . . . . . 30
Roberto Moncada, Enrico Ferro, Alfredo Favenza, and Pierluigi Freni

A Digital Voting System for the 21st Century . . . . . . . . . . . . . . . . . . . . . . . 42
Davide Casaleggio, Vincenzo Di Nicola, Michele Marchesi,
Sebastiano Missineo, and Roberto Tonelli

Trustless, Censorship-Resilient and Scalable Votings
in the Permission-Based Blockchain Model . . . . . . . . . . . . . . . . . . . . . . . . 54

Sebastian Gajek and Marco Lewandowsky

P2T: Pay to Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Fadi Barbàra and Claudio Schifanella

HeteroPar - 18th International Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous Platforms

Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector
Product on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

José Ignacio Aliaga, Hartwig Anzt, Enrique S. Quintana-Ortí,
Andrés E. Tomás, and Yuhsiang M. Tsai

High-performance GPU and CPU Signal Processing for a Reverse-GPS
Wildlife Tracking System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Yaniv Rubinpur and Sivan Toledo

Preparing Ginkgo for AMD GPUs – A Testimonial on Porting CUDA
Code to HIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Yuhsiang M. Tsai, Terry Cojean, Tobias Ribizel, and Hartwig Anzt



An Edge Attribute-Wise Partitioning and Distributed Processing of R-GCN
Using GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Tokio Kibata, Mineto Tsukada, and Hiroki Matsutani

Parallelization of the k-means Algorithm in a Spectral Clustering Chain
on CPU-GPU Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Guanlin He, Stéphane Vialle, and Marc Baboulin

Management of Heterogeneous Cloud Resources with Use of the PPO . . . . . 148
Włodzimierz Funika, Paweł Koperek, and Jacek Kitowski

An Open-Source Virtualization Layer for CUDA Applications . . . . . . . . . . . 160
Niklas Eiling, Stefan Lankes, and Antonello Monti

High Performance Portable Solver for Tridiagonal Toeplitz Systems
of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Beata Dmitruk and Przemysław Stpiczyński

HighPerMeshes – A Domain-Specific Language for Numerical Algorithms
on Unstructured Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Samer Alhaddad, Jens Förstner, Stefan Groth, Daniel Grünewald,
Yevgen Grynko, Frank Hannig, Tobias Kenter, Franz-Josef Pfreundt,
Christian Plessl, Merlind Schotte, Thomas Steinke, Jürgen Teich,
Martin Weiser, and Florian Wende

Implementation and Evaluation of CUDA-Unified Memory in Numba . . . . . . 197
Lena Oden and Tarek Saidi

ParaMo - Workshop on Parallel Programming Models
in High-Performance Cloud

Performance Evaluation of Java/PCJ Implementation of Parallel Algorithms
on the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Marek Nowicki, Łukasz Górski, and Piotr Bała

Parallelizing Automatic Temporal Cognitive Tool for Large-Scale Online
Learning Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Tianrui Jiang, Wenjun Wu, and Yanjun Pu

Experiments Using a Software-Distributed Shared Memory, MPI and 0MQ
over Heterogeneous Computing Resources . . . . . . . . . . . . . . . . . . . . . . . . . 237

Loïc Cudennec and Kods Trabelsi

On the Provenance Extraction Techniques from Large Scale Log Files:
A Case Study for the Numerical Weather Prediction Models . . . . . . . . . . . . 249

Alper Tufek and Mehmet S. Aktas

xiv Contents



Improving Existing WMS for Reduced Makespan of Workflows
with Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Ali Al-Haboobi and Gabor Kecskemeti

Resilience - 13th Workshop on Resiliency in High Performance
Computing with Clouds, Grids, and Clusters

Predicting Hard Disk Failures in Data Centers Using Temporal
Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Alessio Burrello, Daniele Jahier Pagliari, Andrea Bartolini,
Luca Benini, Enrico Macii, and Massimo Poncino

On the Detection of Silent Data Corruptions in HPC Applications Using
Redundant Multi-threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Diego Pérez, Thomas Ropars, and Esteban Meneses

A Comparison of Several Fault-Tolerance Methods for the Detection
and Correction of Floating-Point Errors in Matrix-Matrix Multiplication. . . . . 303

Valentin Le Fèvre, Thomas Herault, Julien Langou, and Yves Robert

Complementary Papers

Analysis of Genome Architecture Mapping Data with a Machine Learning
and Polymer-Physics-Based Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Luca Fiorillo, Mattia Conte, Andrea Esposito, Francesco Musella,
Francesco Flora, Andrea M. Chiariello, and Simona Bianco

A New Parallel Methodology for the Network Analysis
of COVID-19 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Giuseppe Agapito, Marianna Milano, and Mario Cannataro

HugeMap: Optimizing Memory-Mapped I/O with Huge Pages
for Fast Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Ioannis Malliotakis, Anastasios Papagiannis, Manolis Marazakis,
and Angelos Bilas

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Contents xv



FPDAPP - Second International
Workshop on Future Perspective
of Decentralised APPlications



International Workshop on Future
Perspectives of Decentralised Applications

(FPDAPP)

Workshop Description

Blockchain technologies (BCTs) make agreement amongst untrusted parties possible,
without the need for certification authorities. Proposed frameworks have been put
forward in sectors as diverse as finance, health-care, notarization, intellectual property
management, identity, provenance, international cooperation, social good, and security
to cite but a few. Smart contracts, i.e. self-enforcing agreements in terms of executable
software running on blockchains, have been developed in several contexts. Such an
under-definition computational model introduces innovative aspects such as the eco-
nomics and trust of the decentralized computation relying on the shared contribution of
peers and their decentralized consensus.

This third edition of FPDAPP offered a venue for presenting and discussing the
latest applications of BCTs, their technical aspects, the novel decentralized computa-
tion model, and the possible impact on society, business, and the public sector.

FPDAPP is traditionally hosted at Euro-Par, with the aim to foster cross-
fertilization between the blockchain and the distributed/parallel computing communi-
ties, which share several interests and can strongly contribute to each other’s
development.

FPDAPP 2020 received 10 papers for review. After a thorough peer-reviewing
process, with at least three reviews per paper, 6 papers were accepted for publication,
presented at the workshop, and published in this volume.

Due to the exceptional international situation due to the Covid-19 pandemic,
FPDAPP 2020 was held remotely, through video conferencing provided by the main
conference. We want to particularly thank the authors, reviewers, participants, the
program committee, and the Euro-Par organization for their efforts this year, which,
despite difficulties, contributed to maintaining the submission rate, the quality of the
papers, and the interest of the on-line presentations and discussion.
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Blockchain Utility in Use Cases:
Observations, Red Flags, and

Requirements

Tommy Koens(B) and Erik Poll

Radboud University, Nijmegen, The Netherlands
{tkoens,E.Poll}@cs.ru.nl

Abstract. On a global scale blockchain is persistently proposed in thou-
sands of use cases by corporates, governments, and academics. However,
there is a lack of systematic evaluation of these use cases and the utility
of blockchain. In this work we systematically evaluate fifteen use cases
that use blockchain. Based on our evaluation we observe six recurring
problems in these use cases. These problems either relate to the util-
ity of blockchain in the use case, or to how well-documented a use case
description is. We point out four red flags that, whenever they occur
in a use case description, signal that blockchain may be a sub-optimal
solution for that use case. Notably, one of these red flags indicates that
there are no clear requirements in the use case descriptions that warrant
the use of blockchain. We address this by proposing a set of requirement
templates for any use case that includes a transaction system.

Keywords: Blockchain · Use case · Evaluation · Red flags ·
Requirements

1 Introduction

It is estimated that global spending on blockchain reaches 9.2 billion US dollars
in 2021 [7]. Indeed, there is much attention from corporate institutions, govern-
ments, and academics to blockchain. Many use cases have been proposed that
use blockchain in, for example, healthcare [43], and cloud computing [33]. Such
use cases advocate blockchain as a solution to a particular use case problem.
There is, however, a lack of a systematic evaluation of use cases and the utility
of blockchain. To address this we make the following three contributions:

1. We systematically evaluate fifteen use cases that apply blockchain based on
a decision scheme which we improve. From our evaluation we observe six
recurring problems, including that there is a bias towards decentralisation,
fallacies on blockchain properties occur, and there are no requirements that
warrant the use of blockchain.

c© Springer Nature Switzerland AG 2021
B. Balis et al. (Eds.): Euro-Par 2020 Workshops, LNCS 12480, pp. 5–17, 2021.
https://doi.org/10.1007/978-3-030-71593-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71593-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-71593-9_1
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2. From these six observations we introduce four red flags. Raising such a flag sig-
nals that blockchain may be a sub-optimal solution for a use case; blockchain
is a sub-optimal solution when alternative technologies can be used. These
red flags also allow for a quick evaluation of a use case description. We apply
these red flags to the fifteen use cases and evaluate our findings.

3. Red flag 1 ‘no clear requirements’ is raised for all fifteen use case descriptions.
We argue that defining use case requirements must precede any technological
choice. We address this by proposing a set of requirement templates for any
use case that includes a transaction system.

2 Background

Bitcoin [30] and Ethereum [41] are two examples of a decentralised transac-
tion system. Both systems use blockchain to create a public and permissionless
ledger. This type of ledger allows for an unbounded number of pseudonymous
participants to reach consensus on the state of a ledger. By contrast, private and
permissioned ledgers, such as Corda [17], allow a select number of known partici-
pants to view the content of the ledger. Also, a select number of participants can
participate in creating and verifying transactions. In this research we evaluate
use cases that aim to use either Bitcoin or Ethereum. We use Bitcoin as an exam-
ple to describe a public and permissionless ledger because such a description is
sufficient for our research. In a public and permissionless ledger participants may
own one ore more tokens (e.g. bitcoins). Participants can propose a change of
ownership by means of transactions (txs). To prevent a participant from spend-
ing a token twice, transactions are bundled in a one megabyte (MB) block by
participants called miners. A miner that creates a new block attempts to solve a
difficult cryptographic puzzle which is easy to verify. The probability of solving
this puzzle increases with the amount of computational power a miner has. As
such, miners may form a mining pool in which they combine their computational
power.

Occasionally two miners find a block at the same time which may contain,
possible, conflicting transactions. Here the chain of blocks branches into a fork.
To address a fork, a rule in Bitcoin exists stating that only the chain with the
most cumulative work (i.e. a solved puzzle) is valid. If one of the branches is
extended by another block, then that branch becomes the new and valid chain,
and the shorter branch is discarded by all network participants.

Currently there are four main challenges with public and permissionless
ledgers. First, the transaction throughput in blockchain is limited. Bitcoin can
process 7 transactions per second. Although improvements have been proposed
for blockchain to increase transaction throughput, such as an increase in block
size or off-chain payments, these solutions could lead to centralisation [24]. Sec-
ond, some devices can not store the blockchain as it is too large, for example
IoT devices. Although this can be addressed by light-clients, it would also lead
to centralisation as a large group of nodes is now dependent on a small group
of nodes to update the ledger [15]. Third, transaction finality is probabilistic.
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There is a probability that a transaction will be removed from the ledger due
to the appearance of a fork. Only when time progresses there is an increased
probability that the transaction will remain on ledger. Fourth, transaction cost
may exceed the value of tokens being transferred in a transaction. This makes
that blockchain may not be suitable for specific use cases, for example, a use
case that deals with micro-transactions.

2.1 Blockchain Decision Schemes

Blockchain has been proposed in use cases where its usefulness is questionable.
To address this, decision schemes have been proposed to determine if blockchain
should be applied. We use the scheme by Koens and Poll [22] as they propose a
new scheme based on an evaluation of 30 of such schemes. They show that there
are contradictions between some of these schemes, whereas other schemes are
biased towards blockchain. Their scheme allows for determining if blockchain is
an optimal solution, and which alternative technologies can be used.

Their scheme involves nine conditions, where each condition either leads to
another condition or leads to a technology that is considered the optimal solution
for a use case. We briefly introduce these conditions in their respective order.

1. Need to store state? When state should not be stored then there is no need
for a database.

2. Is there a single writer? If only a single writer exists then a central database
can be used.

3. Need to control functionality? Controlling functionality is being able to deter-
mine which and how many functions a system can perform. For example,
determining how the data is stored in a database. If control of functionality
is required then a shared central database can be used.

4. Can you use a third party (TP)? If a third party can be used then a shared
central database can be used.

5. Is there transaction (tx) interaction? This refers to the interdependency
between transactions. For example, an account holding zero tokens can only
send tokens by means of tx2 once it receives tokens first from another trans-
action tx1. Transaction tx1 therefore must be stored on the ledger first before
transaction tx2 can occur. If there is no need for transaction interaction then
a distributed database should be used.

6. Are the participants known? This refers to if the identity of the participants
should be known in a use case. If the identity of the participants should be
known then the following question appears:

7. Can anyone join the network? If participants are known and anyone can join
the network, a permissioned ledger should be used, such as Ripple [4]. If the
participants are known and only a limited set of participants can join the
network, then a permissioned ledger such as Corda [17] should be used.

8. Transaction throughput matters? Blockchains currently can not process a
large amount of transactions per second [28], which may be a limitation for
a use case.
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9. Store large amount of data? Another limitation may be the need for storing
large amount of data. Blockchains currently can not store large amount of
data [28].

Our Improvements to the Decision Scheme. We make three improvements
to the scheme of Koens and Poll [22]:

1. We omit condition 3 from the scheme. A third party can be used if function-
ality needs to be controlled, which is related to the condition 4. If a third
party can not be used then functionality can not be controlled. Therefore,
the condition regarding the control of functionality is already included in the
condition of being able to use a third party.

2. We find that all use cases can use a third party. According to the decision
scheme a shared central database should be used. However, use cases 4 and 8
argue that the problem of the use case lies within centralisation itself. Even
though it would be technically feasible to use a third party in these use cases,
a third party seems not to be suitable because of trust issues. Therefore we
add another condition: a. Is a centralised solution based on a single third
party (TP) suitable?

3. Conditions 8 and 9 concern potential limitations of blockchain. Blockchain is
proposed as a solution when none of these limitations matter. Otherwise, there
currently is no solution available. However, these are not the only current
limitations, as discussed in Sect. 2, which is why we add two more conditions:
a. Transaction finality matters? and b. Transaction cost matters?

3 Related Work

In our research we make six observations, see Sect. 4.1. Observations 1–6 have
been made separately in the literature but are unrelated, for example in [10] and
[22] in which fallacies about blockchain and blockchain limitations are discussed
separately. In our work the six observations are a set of recurring problems in the
fifteen use cases. In addition, our observations support each separate observation
made in the literature. A description of the fallacies that occur, see Sect. 4, are
furthermore described in the literature, for example in [38]. In our research we go
beyond this description as we observe that these fallacies are used as a rationale
to apply blockchain, and we argue in Sect. 4 that these fallacies can not be used
as an argument for applying blockchain.

In Sect. 4.2 we propose and discuss four red flags. We did not find any existing
work that proposes similar red flags. Also, the observed relationship between red
flags 3 and 4 is new in the literature.

Use case requirements have been proposed for particular domains, such as
healthcare [43], and internet service architecture [33]. Other use cases require-
ments have been proposed that are set by an external party [31]. These require-
ments are limited to a specific use case that is using blockchain. In Sect. 4.3 we
propose a set of requirement templates. Our set of requirements can be used
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for any use case that includes a transaction system. This is useful because our
requirements can be used to 1. prevent raising any of the red flags, and 2. deter-
mine the feasibility of using blockchain.

4 Use Case Evaluation

We conduct our research based on the Design Science Research (DSR) methodol-
ogy. DSR is a research paradigm in which a researcher aims to answers questions
via the creation of artefacts, thereby contributing new knowledge to the litera-
ture [18]. Such artefacts may include models, methods, constructs, and design
theories [19]. In our research these artefacts are the red flags in Sect. 4.2 and the
requirement templates in Sect. 4.3. We use a case study as our research method
[14]. We use the improved version of the decision scheme, as discussed in Sect. 2,
to systematically evaluate fifteen use cases that use blockchain. All use cases
propose to use either the Bitcoin blockchain or the Ethereum blockchain. We
choose five use cases that apply blockchain in identity management, five use
cases in IoT, and five use cases in business process management, see Table 1. We
choose these topics as they are one of many application domains of blockchain
[1] and because we find these interesting, and because the use case address a
topic other than cryptocurrencies. Besides this, we aim to choose the use cases
randomly to prevent a bias in evaluating the use cases.

Table 1. Overview of use cases (UCs) evaluated

UC Author(s) Area of application

1 Zyskind et al. [44] Identity management

2 Augot [5] Identity management

3 Raju et al. [37] Identity management

4 Al-Bassam [2] Identity management

5 Liu et al. [25] Identity management

6 Huh et al. [21] Internet of Things

7 Özyilmaz and Yurdakul [32] Internet of Things

8 Manzoor et al. [27] Internet of Things

9 Huang et al. [20] Internet of Things

10 Alblooshi et al. [3] Internet of Things

11 Weber et al. [40] Business process management

12 Prybila et al. [36] Business process management

13 López-Pintado [26] Business process management

14 Haarmann [16] Business process management

15 Viriyasitavat [39] Business process management

We aim to answer all scheme questions for each use case. The results of our
evaluation are shown in Table 2, where Y stands for ‘yes’, N stands for ‘no’, and



10 T. Koens and E. Poll

U stands for ‘unknown’. Here, ‘unknown’ means that the use case description
does not provide an answer to the scheme question. In what follows we discuss
our evaluation in more detail.

Table 2. Decision scheme results per use case

Use cases

Scheme question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. Need to store state? Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

2. Is there a single writer? N N N N N N N N N N N N N N N

3. Can you use a third party?a Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

4. Is a TP solution suitable?a N N N N N N Y Y N N N N N N Y

5. Tx interaction? Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

6. Writers known? Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

7. Can anyone join the network? U U Y Y U U U U U N N Y U N Y

8. Tx throughput matters? U U U U U Y Y Y U U U Y Y U U

9. Store large amount of data? Y Y U Y Y Y Y Y Y N Y N N U U

10. Tx finality matters? U Y U U U U Y U U U U Y U U Y

11. Tx cost matters? U Y U Y U U U U U U Y U Y Y Y
aThe difference between questions 3 and 4 is discussed in Sect. 2.1

4.1 Observations from the Use Case Evaluation

From our evaluation we make the following six observations:

1. The descriptions of the use cases mention a downside of centralisation and
none of these descriptions mention a downside of decentralisation.

2. In all use cases fallacies occur on blockchain properties.
3. Some use case descriptions do not address the current blockchain limitations.
4. Blockchain is applied despite that the decision scheme (see Sect. 2.1) suggests

other technologies for all use cases.
5. None of the use cases consider other technologies other than blockchain.
6. Clear requirements that warrant the use of blockchain are not specified in the

use case descriptions.

Note that observation 1–3 relate to the solution proposed in the use case descrip-
tion. Observations 4–6 relate to the deficiencies of the solution in the use case
description. From these six observations we derive red flags, see Sect. 4.2. Also,
we address observation 6 by proposing a set of requirement templates derived
from observations 1, 2, and 5, in Sect. 4.3. Observations 3 and 4 are likely to be
avoided when these requirement templates are applied in use case descriptions.
In what follows we will discuss the observations in more detail.

Observation 1. The downsides of decentralisation are not discussed in any of
the fifteen use cases. The use cases that do not wish to use a third party men-
tion the downsides of centralisation, such as lack of trust between participants
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and a third party, lack of decentralisation, and lack of transparency. However,
long before the advent of blockchain it has been argued that there are downsides
of decentralisation [12]. In fact, Prud’Homme states that “... there are serious
drawbacks that should be considered in designing any decentralisation program”
[35]. A downside of fiscal decentralisation, for example, is that it may lead to dis-
parity and adversely affect the distribution of equity, it may jeopardise stability,
and it may undermine efficiency [35]. Note that these arguments are blockchain
agnostic as they were stated before blockchain was proposed by Nakamoto [30].
As these downsides are not discussed there appears to be a bias towards decen-
tralisation in the use cases. Such drawbacks should be discussed in the use cases,
as the downsides of centralisation are also being discussed.

Observation 2. In the use case descriptions fallacies occur on blockchain prop-
erties. Such fallacies may lead to misconceptions about the advantages and lim-
itations of blockchain [9]. The following fallacies occur in the use cases:

1. “Blockchain is immutable”. Smith [38], for example, argues that a blockchain
is not immutable. Indeed, a blockchain must be mutable as forks may occur,
as discussed in Sect. 2.

2. “Blockchain is fully decentralised”. Bitcoin and Ethereum are not fully decen-
tralised. In fact, the Bitcoin network is largely controlled by 8 mining pools,
and the Ethereum network is largely controlled by 5 mining pools [13]. This
centralisation contradicts the goal of the Bitcoin network [30], as now partic-
ipants have to rely on a few third parties processing payments.

3. “Blockchain does not include trusted third parties”. Blockchain networks are
largely dominated by a limited set of participants, see fallacy 2, and trust is
placed in these participants to not to collude.

4. “Blockchain is trustless”, and “blockchain increases trust”. Lemieux [23], for
example, argues that blockchain is a trusted chain of transactions. Also, fol-
lowing the description at fallacy 2, trust is placed in a small group of miners
to not to collude.

5. “Blockchain is scalable”. In contrast, one of the challenges of blockchain is its
transaction scalability [28], as discussed in Sect. 2.

6. “Blockchain is safe and credible”. The use cases do not provide a definition of
the terms ‘safe’ and ‘credible’. As such, there is no proof for this statement.

7. “Blockchain is anonymous”. All use cases propose to use either the Bit-
coin blockchain or the Ethereum blockchain. It has been shown that these
blockchains do not provide anonymity as identities can be retrieved [29].

Some of these fallacies are used as a rationale to support the use of blockchain
in the fifteen use cases. However, as these are fallacies they can not serve as an
argument for using blockchain. From observation 2 we derive requirements 5–8,
see Sect. 4.3.

Observation 3. The current blockchain limitations, as discussed in Sect. 2, are
not sufficiently addressed in some use case descriptions. There appear to be two
causes for this. First, blockchain limitations are ignored in the use case descrip-
tions. Second, blockchain limitations are addressed by introducing a centralised
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solution such as a private blockchain, or a cloud provider. From this observa-
tion we derive red flag 4 in Sect. 4.2. Observation 3 leads us to propose the
requirement templates 1–4 in Sect. 4.3.

Observation 4. The participants that update the database are known in all use
cases where a single third party is not wanted. For these use cases the improved
decision scheme, as discussed in Sect. 2, suggests a distributed ledger. However,
all fifteen use cases choose to apply a blockchain.

Observation 5. None of the use cases consider alternative technologies other
than blockchain. As decentralisation is a recurring theme in all fifteen use cases,
see observation 1, at least other technologies should be considered that also
achieve decentralisation such as a distributed ledger.

Observation 6. Clear requirements that warrant the use of blockchain are not
specified in the use case descriptions. In particular, scheme questions 8, 10 and
11 remain mostly unanswered, see Table 2. To address observation 6 we propose
a set of requirement templates for use cases that include a transaction system
in Sect. 4.3.

4.2 Red Flags

In this section we propose four red flags for use cases that use blockchain, and we
apply these red flags to the fifteen use cases. Blockchain may be a sub-optimal
solution for a use case when one of the following flags is raised:

1. There are no clear use case requirements in the use case description.
2. Other technologies than blockchain are not considered.
3. Current blockchain limitations are not addressed.
4. A centralised solution is introduced despite the use case description stating

the need for a decentralised solution.

Red flag 1 and 2 measure how well-documented use cases are, whereas red flag 3
and 4 provide technical insight in the utility of blockchain. Red flag 1 is derived
from observations 1 and 6, as discussed in Sect. 4.1. Red flag 2 is derived from
observations 4 and 5, red flag 3 is derived from observations 2 and 3, and red
flag 4 is derived from observation 3, We observe from Table 3 that for all use
cases almost all flags are raised.

Red flags 3 and 4 are closely related in the fifteen use cases. Red flag 3 is not
raised when current blockchain limitations are addressed, however, this raises red
flag 4 for six of the fifteen use cases as a centralised solution is introduced, for
example, a cloud provider. Red flag 4 is not raised when no centralised solution
is proposed, however, this raises red flag 3 for nine of the fifteen use cases as
the current blockchain issues are not addressed. The findings in Sect. 4.1, where
we argue that the use cases may also use other technologies, appear to support
the validity of raising these flags. This suggests that raising three of the four red
flags is a signal that blockchain is a sub-optimal solution for a use case.
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Table 3. Red flags raised in each use case

Red flag raised in use casea

Red flag 1 2 3 . 4 5 6 7 8 9 10 11 12 13 14 15

1. No clear requirements Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

2. No other tech. considered Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

3. Blockchain issues not addressed N Y N Y Y Y N Y N N N Y N N N

4. Introduction of a centr. solution Y N Y N N N Y N Y Y Y N Y Y Y
aY: the flag is raised for a use case. N: the flag is not raised.

4.3 Use Case Requirements

Red flag 1 ‘No clear requirements’ is raised for all fifteen use cases. As such, none
of the use case descriptions state clear requirements for the use of blockchain.
This is a concern as use case requirements have to be defined before choosing any
solution. Leaving the requirements implicit imposes a risk to the implementation
of the use case, as better solutions may be available. To address this concern
we propose a set of requirement templates. We derive requirements 1–4 from
observation 3, and requirements 5–8 are derived from observation 2, as discussed
in Sect. 4.1. These requirements can be used in any use case that includes a
transaction system to verify the feasibility of the use case.

Requirement Templates. Our requirement templates are based on the format
proposed in the standard textbook on requirements engineering [11]:
the<system>shall be able to<function><object>.

1. The <system> shall be able to process <...> transactions per second.
2. The <system> shall be able to store <...> MB of data.
3. The <system> shall be able to finalise transactions in <...> seconds.
4. The <system> shall be able to limit the cost of a transaction to a maximum

of <...> US dollar per transaction.
5. The <system> shall be able to provide a data storage that is <...>

– Mutable. Data stored can be modified and appended.
– Append-only. Data stored can only be appended.
– Immutable. Data stored can not be modified or appended.

6. The <system> shall be able to provide user identities that are <...>
– Known. The legal identity of a participant is known to all participants,

for example the true name of a person.
– Pseudonymous. The identity of a person is disguised by providing a false

name, for example a public key.
– Anonymous. The identity of a person being unknown.

7. The <system> shall be able to include at least <...> parties (for example, 1,
2, etc.) to use the <system>.

8. The <system> shall be able to distribute the capability of modifying the
database over <...> (for example, anyone, a limited set of participants)
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5 Limitations and Future Work

Our requirement templates are based on an analyses of use cases that are limited
to either Bitcoin or Ethereum. Potentially, additional or other requirements can
be proposed based on an analyses of use cases that use a blockchain other than
Bitcoin or Ethereum. Additional requirements may be derived from an analyses
of use cases in other domains, such as energy, health care, and finance. Evaluation
of additional use cases based on other decision schemes, for example [42] and
[34], could be preceded by using our red flags. Those findings may introduce new
red flags, and may support the validity of our red flags.

The need for decentralisation in the fifteen use cases is the opinion of those
that performed the research. Looking beyond that opinion, future research
should include the opinion of participants (such as consumers of a product) of
a use case, and to what extent they believe decentralisation should be applied.
Also, the meaning and consequences of decentralisation could be critically dis-
cussed in future work. Furthermore, a similar evaluation to our research could
be performed of decentralised solutions that are not blockchain based, such as a
Directed Acyclic Graph (DAG) [8] and Hashgraph [6].

6 Conclusion

In this research we systematically evaluate fifteen use cases that propose
blockchain as a solution. We argue that blockchain is a sub-optimal solution
for these fifteen use cases. With billions of US dollars spend on blockchain, this
is a concern, as blockchain may be a sub-optimal solution for other use cases, too.
We point out four red flags that, whenever they are raised, signal that blockchain
is a sub-optimal solution for that use case. Red flag 1, no clear requirements, is
raised for all fifteen use cases. We address this by presenting eight requirement
templates that can be applied to any use case that includes a transaction sys-
tem. With these templates, corporates, governments, and academics may become
more aware of the need for blockchain, or the lack of any such a need.
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26. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:
Caterpillar: a business process execution engine on the Ethereum blockchain. Softw.
Pract. Exp. 49(7), 1162–1193 (2019)

27. Manzoor, A., Liyanage, M., Braeke, A., Kanhere, S.S., Ylianttila, M.: Blockchain
based proxy re-encryption scheme for secure IoT data sharing. In: 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pp. 99–103.
IEEE (2019)

28. Meiklejohn, S.: Top ten obstacles along distributed ledgers path to adoption. IEEE
Security & Privacy 16(4), 13–19 (2018)

29. Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140 (2013)

30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

31. Neisse, R., Steri, G., Nai-Fovino, I.: A blockchain-based approach for data account-
ability and provenance tracking. In: Proceedings of the 12th International Confer-
ence on Availability, Reliability and Security, pp. 1–10 (2017)

32. Ozyilmaz, K.R., Yurdakul, A.A.: Designing a blockchain-based IoT with Ethereum,
Swarm, and loRa: the software solution to create high availability with minimal
security risks. IEEE Consum. Electron. Mag. 8(2), 28–34 (2019)

33. Park, J.H., Park, J.H.: Blockchain security in cloud computing: use cases, chal-
lenges, and solutions. Symmetry 9(8), 164 (2017)

34. Peck, M.E.: Blockchain world-do you need a blockchain? This chart will tell you if
the technology can solve your problem. IEEE Spectrum 54(10), 38–60 (2017)

35. Prud’Homme, R.: The dangers of decentralization. In: The World Bank Research
Observer, vol. 10, no. 2, pp. 201–220 (1995)

36. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business
processes utilizing the Bitcoin blockchain. Future Gener. Comput. Syst. 107, 816-
831 (2020)

37. Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J.S.: Identity management
using blockchain for cognitive cellular networks. In: 2017 IEEE International Con-
ference on Communications (ICC), pp. 1–6. IEEE (2017)

38. Smith, T.D.: The blockchain litmus test. In: 2017 IEEE International Conference
on Big Data (Big Data), pp. 2299–2308. IEEE (2017)

39. Viriyasitavat, W., Da Xu, L., Bi, Z., Sapsomboon, A.: Blockchain-based business
process management (BPM) framework for service composition in industry 4.0. J.
Intell. Manufa. 1–12 (2018)

40. Weber, I., et al.: On availability for blockchain-based systems. In: 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS), pp. 64–73. IEEE (2017)

41. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32 (2014)

http://arxiv.org/abs/2002.02819
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


Blockchain Utility in Use Cases: Observations, Red Flags, and Requirements 17
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1 Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France
2 Atomic Energy and Alternative Energies Commission (CEA), Frédéric Joliot

Institute for Life Sciences, NeuroSpin, Cognitive Neuroimaging Unit, Saclay, France
bianca.trovo@protonmail.com

3 MakerDAO, Community Development, London, UK
nazzareno@nazzarenomassari.com

Abstract. Peer review is a necessary and essential quality control step
for scientific publications but lacks proper incentives. Indeed, the pro-
cess, which is very costly in terms of time and intellectual investment,
not only is not remunerated by the journals but it is also not openly rec-
ognized by the academic community as a relevant scientific output for
a researcher. Therefore, scientific dissemination is affected in timeliness,
quality and fairness. Here, to solve this issue, we propose a blockchain-
based incentive system that rewards scientists for peer reviewing other
scientists’ work and that builds up trust and reputation. We designed
a privacy-oriented protocol of smart contracts called Ants-Review that
allows authors to issue a bounty for open anonymous peer reviews on
Ethereum. If requirements are met, peer reviews will be accepted and
paid by the approver proportionally to their assessed quality. To promote
ethical behaviour and inclusiveness the system implements a gamified
mechanism that allows the whole community to evaluate the peer reviews
and vote for the best ones.
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1 Introduction

Since the birth of Bitcoin [18] in 2008 as a peer-to-peer electronic cash system,
blockchain technologies have spread far beyond the sole cryptocurrency domain,
in particular after the implementation of general purpose smart contracts intro-
duced by Ethereum [32]. Besides a growing number of applications ranging
from De-Fi, healthcare, music industry, government, identity, to cite but a few,
blockchain technology has recently started to catalyse the attention of the sci-
entific community as well [7,24] with the promising potential of being a ‘game
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changer’ in outdated and broken scientific practices and leading towards open
science [2]. Indeed, scholars have pointed out how the intrinsic characteristics of
blockchain technology set the basis for a open science infrastructure [15] in which
decisional processes are transparent and therefore more democratically accessi-
ble to all the stakeholders (researchers, reviewers, funders, taxpayers). Those are:
the consensus algorithm [16], a deterministic computational trust that allows
for decentralization, for which there are no trusted third parties; the proof of
existence (PoE) that via cryptographic hashing and timestamping creates a digi-
tal footprint able to keep a traceable chronological record of research objects that
cannot be altered or retrieved (due to its property of immutability or append-
only) [15]. In particular, a ‘blockchainified science’ [3] could ‘reduce waste’ [10],
by disclosing each step in the research cycle to ‘scientific self-correction’ way
before the final publication step, and therefore help fixing the current repro-
ducibility crisis in science.

A thorny issue in the academic system that can - and we think it should - be
tackled by blockchain concerns the status and accreditation of peer review, the
core process of scientific validation currently facing a crisis [11]. In this paper we
propose a solution to the problem of reviewers recognition based on the principles
of tokenomics [14] and in line with the values of open science.

2 Background

2.1 Peer Review: Present Problems and Mild Solutions

Peer review is still the only quality control mechanism devoted to evaluating
scientific outcomes. The purpose of peer review is, to cite [11]: “improving the
quality of the published paper, determining the originality of the manuscript,
determining the importance of the findings, detecting fraud, and detecting pla-
giarism.”. However, the system is ‘flawed’ and outdated [25] and presents mul-
tifaceted issues [28], here reviewed.

A Slow Multi-Stage Process. The main issues affecting the effectiveness
of peer review is the delay between paper submission and journal acceptance
for publication. The traditional peer review process is centralized around the
journals’ editor(s). The author(s) submit the manuscript to the journal where
an editorial team assesses if the paper meets the scopes of the journal and
novelty criteria. If the editorial decision is to send the manuscript for review,
the handling editor personally selects potential reviewers. The authors’ identity
is usually known to the reviewer but the reviewers’ identity is hidden to the
authors or among the other reviewers themselves (single-blind review). Review-
ers independently conduct their reviews by exposing in their reports strengths
and weaknesses of the manuscript and sometimes substantially improving the
draft. Depending on if the decision is a major or minor revision, authors are
invited to re-submit a corrected or improved version of the manuscript. The
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same reviewers might be contacted again to continue the same peer review pro-
cess. This process can take multiple rounds and is a huge time investment both
for authors and reviewers. An analysis of all papers published in PubMed for a
time period of 30 years claims that the median review time is around 100 days
[19].

Lack of Recognition and Incentives. Peer reviewing is an invisible activity
purely conducted on voluntary basis, neither paid by the journals or officially
credited via standard scientific metrics (such as the ones that establish the
Impact Factor of an author). Thus, it does not lead to advancements in career
or help securing grants. Researchers are motivated to do peer review by a sense
of belonging and a desire to ‘give back’ to the community [30]. A major conse-
quence of not promoting incentives for the quality (and quantity) of peer reviews
is to either slow down publication of potentially good research which awaits for
validation [12] or let bad science be published through sloppy and uncritical
reviews.

Fraud and Misconduct. Due to the ‘publish or perish culture’ pressures,
unethical behaviour from reviewers has been occasionally reported, from abusive
behaviour towards authors [1,25] to identity fraud. Some studies have reported
an improvement in the transparency and civility of the review process when open
reports are released according to the standards of open peer review [5].

Social and Cognitive Biases. Given the fact that anonymity is usually asym-
metrically applied only for reviewers, many power related dynamics can influ-
ence the reviewers decision [26], such as gender or cultural discrimination and
social prestige of the institution. To solve this problem some journals have imple-
mented double-blind review process (the identity of both authors and reviewers
are masked) which seems to reduce the bias towards minorities.

Peer Reviews Need to Be... Reviewed. There is high variability in the
reliability and depth of reviews and a recurrent question is: “Who watches the
watchers?” [26].

Need for More Reviewers. There is a disproportion between the progressive
increase in journal publications and the number of experienced reviewers selected
for the task which demands an expansion of the reviewer’s pool including early
career scientists [1,30].

Some mild attempts to credit peer review have been handled without much
success by journals via attribution of virtual ‘badges’, certificates of performance,
citation in annual editorials [26] where performance, though, is assessed only in
terms of quantity of reviews but not quality [30].
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Partnering with publishers, the startup Publons1 provides a free metric ser-
vice for tracking, verification and recognition of publications, peer reviews and
journal editing in a single researcher identifier that showcases a record of scien-
tific activity and impact based on authors’ productivity.

3 System Concept

In this paper we propose Ants-Review, a new incentivisation mechanism built on
Ethereum that issues open peer reviews to validate scientific papers while pre-
serving the anonymity of its contributors. We imagine a final paper originating
from the peer review process as a complex system that emerges from the inter-
actions between the authors and the reviewers, a whole that is more than the
sum of its parts. Therefore, the name evokes an ant colony as a self-organising
organism in which all micro-contributions of the individuals emerge into complex
behaviour. The original proposal behind this paper can be found here [27]. Its
design and implementation are exposed in the following section.

3.1 Design

Incentivization and Recognition. A popular incentive model for open source
software (OSS) is represented by bounties. Bounties are prizes or monetary
rewards given for completing a task before a deadline [33]. Examples of such plat-
forms that allow funders (bounty backers) to pay developers (bounty hunters) for
open source contributions are Gitcoin2 and The Bounties Network3. Incentives
can be represented by tokens, units of values registered on the blockchain. In the
network of the scientific community reviewers provide a service and those who
consume it (authors, journals) should be able to contribute with tokens. The
amount of tokens reflects material and symbolic recognition of the performed
work that can be statistically quantified for author-level metrics measuring the
productivity and impact of a researcher. Thus, the system acts also as a repu-
tation builder.

Transparency and Re-Usability of the Records. The peer review history,
including reviewers’ recommendations and authors’ replies, should be openly
and permanently accessible to the community (in the form of ‘open reports’ of
open peer reviews) even before articles’ publication in order to make editorial
decisions more democratic and prevent waste of knowledge. Following the exam-
ple of models offered by journals peer review consortia, such as the Neuroscience
Peer Review Consortium4 and independent companies like ResearchSquare5 and

1 Publons. https://publons.com.
2 Gitcoin. https://gitcoin.co.
3 The Bounties Network. https://bounties.network.
4 Neuroscience Peer Review Consortium. http://nprc.incf.org.
5 ResearchSquare. https://www.researchsquare.com.

https://publons.com
https://gitcoin.co
https://bounties.network
http://nprc.incf.org
https://www.researchsquare.com
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Peerage of Science6, that provide a scientific peer review service, peer reviews in
Ants-Review will be transferable across journals (like in ‘cascading’ or ‘portable
peer reviews’).

Accountability via Pseudo-Anonymity. In order to counteract malicious
behaviour (see Sect. 2.1) affecting the integrity of the reviews but also to cor-
rectly attribute the intellectual contributions making sure there are no con-
flicts of interest, it is important to be able to track back the identities of the
contributors to a peer review report. This is possible if the platform acts like
a version control system where commits are permanent and their hashes times-
tamped. InterPlanetary File System (IPFS) [4] is a peer-to-peer hypermedia
protocol for storing data in a distributed file system over the internet which
guarantees data immutability and unique file identification via cryptographic
hashes. IPFS’ hashes are then stored inside the smart contracts’ state that is
timestamped into the Ethereum blocks where the transactions take place; there,
data remains unaltered and indelible. This notarization process is called proof of
existence (PoE) and allows manual verification of the existence of the document.

To prevent retaliation for negative peer reviews and to promote the participa-
tion of early researchers who might feel intimidated to judge the scientific work
of senior authors, the Ants-Review system maintains the privacy of both authors
and reviewers in a double-blind approach via Ethereum’s externally owned
accounts (EOA) addresses and zero-knowledge proof (ZKP), a cryptographic
method where a party can prove to another party the possession of certain
information, like a secret key, without revealing that information (see Sect. 3.2).

Inclusiveness via Gamification. As a final step we propose that all the com-
munity is involved in the process of peer reviewing by abolishing the editorial
selection process through ‘open participation’ (or ‘open interaction’, ‘open plat-
form’ [22,23]). In this way, the pool of reviewers is enriched and allows younger
researchers to get the appropriate training through interactive feedback. More-
over, peer reviews could be evaluated, commented, criticised by the other mem-
bers of the scientific community, enabling a virtuous loop of verification. An
interesting addition would be to introduce a rank of peer reviews resulting from
the community feedback via a voting process (see Sect. 4.1). It is conceivable
that the community members that engage in assessing the quality of peer reviews
could be incentivized as well. This solution would create a self-reinforcing ethical
behaviour where the fair evaluation of peer reviews would be also in the interest
of the agents at play.

3.2 Implementation

The Ants-Review Protocol is divided into different modules responsible for the
following functionalities, as shown in the flow-chart (see Fig. 1): AntsReview,

6 Peerage of Science. https://www.peerageofscience.org.

https://www.peerageofscience.org
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which manages access management and the core system (see Fig. 1(a, b, f, h));
Privacy, which maintains the anonymity of the system via AZTEC Protocol (see
Fig. 1(e)); Tokenomics, which manages the incentive mechanism of the system
(see Fig. 1(c, d, e, h)).

Agents in the platform are: issuers, peer reviewers, approvers and contribu-
tors (or Anters, members of the Ants-Review Community).

Fig. 1. Exagones represent the protocol’s smart contracts. Ellipse represents the smart
contract inherited by AntsReview. Clouds represent integrations into the protocol.
Rectangles represent the smart contracts’ libraries. a Core contract of the protocol
implementing a bounty system with the functions listed. b Module inherited by AntsRe-
view: it manages the access control of the protocol by adding and removing issuers and
peer reviewers. c Native token used in the protocol. It is linked to (a), (e) and to (d). d
Faucet to distribute ANTS on Kovan Testnet for testing purposes. e Integration with
Aztec Protocol to wrap (c) into zkANTS to implement private ANTS transactions on
Ethereum. f Integration with IPFS to upload papers, requirements and peer reviews
and store the hash as PoE into AntsReview (a). g Integration with ERC20 tokens like
Dai, and De-Fi services like MakerDAO DSR to be used in the protocol. h Library
used by the protocol for secure contract development with the modules listed.

AntsReview. AntsReview (see Fig. 1(a)), the core of the smart contracts writ-
ten in Solidity7, a contract-oriented programming language for writing smart
contracts that run on the Ethereum Virtual Machine (EVM), is deployed on

7 Solidity. https://solidity.readthedocs.io.

https://solidity.readthedocs.io
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Ethereum Kovan Testnet8. AntsReview implements a bounty-like system (based
on the StandardBounties contract9) where Alice (issuer) can issue an AntReview
with the function issueAntReview().

In order to create a transparent and openly accessible AntReview, Alice has
to complete a series of required tasks:

– upload of the files containing the requirements of the peer review and the
paper to be reviewed into IPFS, whose hash is stored into the Ethereum
blockchain as PoE;

– specification of a deadline in the form of a UNIX timestamp after which the
fulfillment will no longer be accepted;

– specification of the Issuers and an Approver to respectively modify the AntRe-
view and approve the peer reviews sent by the peer reviewers.

Alice or the issuers can at any time update the AntReview details (issuers, paper,
requirements, deadline) with the function changeAntReview() and add/remove
the approver with the functions addApprover() and removeApprover(). Anters
(contributors) can contribute to Alice’s AntReview with the function con-
tribute(), by specifying the amount of ANTS they are willing to send. Bob (peer
reviewer) can download the files relative to Alice’s paper and the requirements
of the peer review by leveraging the content-addressing feature of IPFS that
allows anyone to find the document using an IPFS explorer; subsequently, Bob
can submit a peer review before the deadline by fulfilling the AntReview created
by Alice, with the function fulfillAntReview(), by uploading the peer review on
IPFS, whose hash is stored into Ethereum blockchain as PoE. He can update
the peer review with the function updateReview() by uploading the new version
on IPFS. Ted (approver) can accept the peer review submitted by Bob with
the function acceptAntReview(), by specifying the amount of ANTS that will
be transferred as reward from the contract to Bob. If Alice’s AntReview does
not receive any peer review and the deadline expires, Anters can get a refund
with the function refund() for their contributions. In order to avoid residual
balance, Alice can withdraw ANTS from the AntReview’s balance, if the deadline
expires, with the function withdrawAntReview(), and the contract will transfer
the amount specified to Alice and update the balance.

Access management of the Ants-Review protocol is defined and controlled by
AntsReviewRoles (see Fig. 1(b)), implemented by leveraging AccessControl.sol
by OpenZeppelin Library10 that is used to define the Issuer and Peer Reviewer
Roles. AntsReviewRoles also integrates a circuit breaker design pattern via Paus-
able.sol by OpenZeppelin to allow the Pauser Role, granted by default to the
owner of the smart contracts, to pause (or unpause) all the functions in case of
a security emergency, such as an attack to the smart contracts.

8 AntsReview. https://kovan.etherscan.io/address/0x85be8F04482cBB920550d5469E
4dEdD6e1788121.

9 StandardBounties.sol. https://github.com/Bounties-Network/StandardBounties.
10 OpenZeppelin Library. https://openzeppelin.com.

https://kovan.etherscan.io/address/0x85be8F04482cBB920550d5469E4dEdD6e1788121
https://kovan.etherscan.io/address/0x85be8F04482cBB920550d5469E4dEdD6e1788121
https://github.com/Bounties-Network/StandardBounties
https://openzeppelin.com
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Privacy. The anonymity of an agent in the system is achieved in two ways: via
pseudo-anonymity, granted through Ethereum’s EOAs that can pseudo-obscure
the identity of the agent, and via private transactions allowed by AZTEC [31]
Protocol’s security layer.

Pseudo-Anonymity. EOAs in Ethereum are controlled via private keys. How-
ever, the privacy is limited by the fact that both the blockchain and its transac-
tions are public. Therefore, the details of the transactions are visible to anyone
by browsing a block explorer (such as Etherscan11) and are subject to data
mining that could extract value and identify users in the blockchain.

Private Transactions. AZTEC Protocol was conceived to enable privacy
on public blockchains. It uses zero-knowledge succinct non-interactive argu-
ment of knowledge (zk-SNARKs) [21] and homomorphic encryption [6] to val-
idate encrypted transactions. zk-SNARKs are ZKP that require no interaction
between prover and verifier; they are used inside the Ants-Review protocol via
the zkANTS token to allow private transactions between the agents. Future
developments will allow to leverage on permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge (PLONK) [9], a universal
zk-SNARK construction that reduces gas costs and improves scalability.

Tokenomics. Ants-Review integrates a few ERC20 12 tokens, each of whom
plays an integral role in the functioning and anonymity of the decentralized pro-
tocol. ANTS (see Fig. 1(c)) is the primary protocol token and can be staked into
an AntReview. It is implemented by inheriting ERC20.sol from OpenZeppelin
Library with name Ants-Review and symbol ANTS. A Faucet (see Fig. 1(d)) is
implemented to distribute ANTS token on Kovan Testnet for testing purposes.
zkANTS (see Fig. 1(e)) is a wrapper of ANTS that will be used inside the proto-
col to allow for private transactions among the agents of the protocol, preserving
their anonymity as well as the amount of the AntReview reward and the con-
tributions by the Anters. It will be implemented via AZTEC Protocol [31], that
uses a cryptographic engine, ACE.sol, a contract responsible for validating the
set of AZTEC ZKPs and performing any transfer instructions involving AZTEC
notes, minted into a zkAsset, that can be converted into ERC20 tokens. In order
to implement a zkAsset called zkANTS, zkAsset.sol, a contract implementation
of a confidential token that follows the EIP-1724 standard13 will be used as a
template to build an AZTEC-compatible asset.

The current state of the art of Ants-Review is represented by version 0.2.0
(MVP) live on Ethereum Kovan Testnet (see Supplementary Material).

4 Discussions

We have described how the Ants-Review protocol can solve the limitations of
the current peer review system (see Sect. 2.1). In particular, the lack of recog-
11 Etherscan. https://etherscan.io/.
12 EIP 20. https://eips.ethereum.org/EIPS/eip-20.
13 EIP 1724. https://github.com/ethereum/EIPs/issues/1724.

https://etherscan.io/
https://eips.ethereum.org/EIPS/eip-20
https://github.com/ethereum/EIPs/issues/1724
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nition, the lack of transparency, fraud and misconduct can be solved via the
Ants-Review Protocol (see Section AntsReview in Sect 3.2); the social and cog-
nitive biases can be counteracted via anonymity granted by AZTEC Protocol
(see Section Privacy in Sect. 3.2); the slowness of the process, the need for eval-
uation of the peer reviews themselves and the need for increasing the number of
reviewers can be worked out through the creation of the community of Anters.

4.1 Future Developments

An interesting aspect of the protocol is the double function of an AntReview
respectively as a bounty and as a pool to stake ERC20 tokens like Dai14. More-
over, the duration of peer reviews consents to connect the protocol to De-Fi
services with the possibility for the community to accrue interest over time via
MakerDAO Dai Saving Rate (Pot15) or Compound16, to cite a few. Therefore, an
ERC20 pool token would be automatically released by the protocol, represent-
ing the accrued interest on the Anters’ stake over time that can be traded, sold,
or held as the Anter desires. A Decentralized Autonomous Organization (DAO)
[17,29] could be formed in the future to allow ANTS stakers to participate in the
governance of important aspects of the protocol, from smart contracts upgrades
to minor changes in settings across the protocol.

Finally, a protocol upgrade inspired by Discover17, a Web3 browser by Sta-
tus18 and still under investigation would allow Anters to validate peer reviews
via an upvote/downvote system that will consent the protocol to automatically
pay out the reward to the reviewers based on the votes associated with their
peer reviews.

4.2 A New Community-Driven Standard?

As Tennant points out [26], a change is already happening in the publishing
industry, especially with new born publishers opening up the review process
(BioMed Central, ELife, Frontiers, PeerJ, F1000 Research). Recently, pre-print
servers, such as arXiv and biorXiv, started integrating peer review services
into their platforms: PREreview19, PeerCommunityIn20, Review Commons21,
PrePrint Review22 and the previously mentioned Peerage of Science. This dis-
sociation of initial scientific dissemination and scientific validation will force the
14 Dai. https://docs.makerdao.com/smart-contract-modules/dai-module/dai-detailed-

documentation.
15 Pot. https://docs.makerdao.com/smart-contract-modules/rates-module/pot-detail

ed-documentation.
16 Compound. https://compound.finance.
17 Discover.sol. https://github.com/dap-ps/discover/blob/master/contracts/Discover.

sol.
18 Status. https://status.im/.
19 PREreview. https://www.prereview.org.
20 PeerCommunityIn https://peercommunityin.org.
21 Review Commons. https://www.reviewcommons.org.
22 PrePrint Review. https://elifesci.org/preprint-review.

https://docs.makerdao.com/smart-contract-modules/dai-module/dai-detailed-documentation
https://docs.makerdao.com/smart-contract-modules/dai-module/dai-detailed-documentation
https://docs.makerdao.com/smart-contract-modules/rates-module/pot-detailed-documentation
https://docs.makerdao.com/smart-contract-modules/rates-module/pot-detailed-documentation
https://compound.finance
https://github.com/dap-ps/discover/blob/master/contracts/Discover.sol
https://github.com/dap-ps/discover/blob/master/contracts/Discover.sol
https://status.im/
https://www.prereview.org
https://peercommunityin.org
https://www.reviewcommons.org
https://elifesci.org/preprint-review
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publishing industry to adapt in order to keep up with the higher quality scien-
tific process offered by those alternative peer review platforms and justify their
added value [26]. In our proposal we also decoupled the peer review process from
the publishers giving it back to the scientific community and applying incentives
from tokenomics. We foresee that the future will evolve towards community-
driven peer reviews: peer reviews will be more and more independent from pub-
lishers [20], and researchers will be the ones seeking the papers to review to build
reputation within the community and not journals.

Enlarging the pool of reviewers to potentially an entire scientific community
and accelerating the whole process requires a standard for peer reviews [13]: for
example some aspects might be taken over by AI assistants (such as the Artificial
Intelligence Review Assistant (AIRA) [8] leaving to the reviewers the sole task
of evaluating the content of a paper. Building smart contracts for peer reviews
might accelerate this novel process of standardization. We hope that soon the
value of peer review as a public good will be recognized by research funders and
hiring committees.

5 Conclusion

In this paper we addressed a crucial problem within scholarly academic com-
munication: the peer review process. We have shown how blockchain technology
could provide an efficient and viable solution to open up possible directions for
a paradigm shift in scientific communication. We proposed an incentive mecha-
nism that could solve the problems of lack of acknowledgment and trust during
peer reviews. We exposed the architecture of our project for which we adopted
cutting-edge tools from the open source blockchain ecosystem.

Supplementary Material. Source code: https://doi.org/10.5281/zenodo.
3971044;
DApp: https://ants-review.on.fleek.co.
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Abstract. This paper explores the transition towards a paradigm in
which centralization and decentralization systems coexist in the provi-
sion of financial services. The blockchain technology application to the
financial industry is giving birth to Decentralized Finance (DeFi). The
transition is studied through a cross-chain analysis that allows to com-
pare different blockchain ecosystems characterized by diverse evolution
courses. The results show a path dependency linked to the first-mover
advantage of the Ethereum blockchain. The analysis also highlights the
emergence of new players that propose higher scalability opportunities
(e.g., Eos, Tezos) and different design choices in terms of governance.
This exploratory study also emphasizes the potential complementarity
between the standard financial system and DeFi, discussing the main
differences among the financial services provided on-chain and off-chain.

Keywords: Blockchain · Decentralization · Financial service ·
Decentralized finance · Cryptocurrency

1 Introduction and Underlying Rationale

The modern economic system works through the close interaction among cen-
tralized institutions such as governments, Central Banks (CBs), private banks
and stock exchanges, not exclusively restricted to national borders. The interde-
pendence of these actors concentrates risks, leading to domino effects whenever
a pillar of consolidated economic structures enters a crisis. The blockchain tech-
nology was born in response to one of the most severe economic meltdown in
recent decades: the 2008 financial crisis. This crisis accentuated some pains of
the economic system, such as lack of transparency, traceability and accountabil-
ity, as well as the need for better wealth distribution and a greater alignment of
incentives among the stakeholders of the financial ecosystem. Indeed, the first
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blockchain infrastructure was implemented in 2009, after the publication by
Satoshi Nakamoto [10] of the whitepaper that also gave birth to the first cryp-
tocurrency, the Bitcoin, proposing an innovative system capable of performing
peer-to-peer transactions with no need for trusted third party interventions.

After more than ten years, the blockchain ecosystem has considerably
evolved, hosting an increasing number of decentralized financial applications
built on numerous blockchain infrastructures. The environment composed of
all these applications is defined as Decentralized Finance (DeFi). In particular,
blockchain technology grants a transparent and trustless framework, departing
from the traditional financial system’s paradigm, allowing permissionless access
to various financial services, provided that an Internet connection is available.

Therefore, the decentralized nature of DeFi provides a unique solution to
solve three critical points of the centralized paradigm. Firstly, decentraliza-
tion eliminates the necessity of trusted third parties, diminishing the intermedi-
aries’ market power derived from the information advantage they develop over
transacting parties, leveraging their intermediation services [14]. Secondly, trans-
parency is granted since all users have access to transaction data stored on the
blockchains while still maintaining privacy (at least for public blockchains) [5].
Thirdly, DeFi can leverage the blockchain technology to foster financial inclu-
sion, providing the possibility to have access at least to essential financial services
(e.g., transaction account, savings deposit) [11].

For the DeFi ecosystem to exist, there must be a circulating medium of
exchange that we define as currency in the traditional system while in the DeFi
context, we call cryptocurrency. If, on the one hand, fiat money is generally under
the monopolistic control of CBs, on the other, cryptocurrencies represent a form
of unregulated and programmable digital money that is consensually accepted
by the community members of the blockchain [8]. New transactions, in turn, are
performed through the implementation of a consensus algorithm. Hence, it is on
the community and algorithm that the DeFi bases its functioning.

However, most financial services’ implementation needs the execution of
smart contracts, conceived by Nick Szabo in 1996 [15] and first implemented
on the Ethereum blockchain. Therefore, despite the massive innovative contri-
bution brought by Bitcoin’s creation, the birth of DeFi dates back to a later
time. In particular, smart contracts automatically trigger self-enforcing actions
arising from an agreement among two or more parties. Therefore, whenever the
terms set in the agreement are fulfilled, the lines of code contained within the
smart contract are executed, and the effects of the contract take place.

Since the first implementation of smart contracts, the DeFi ecosystem has
experienced relevant improvements, attracting increasing attention and capital
levels by users and developers. Indeed, despite the high volatility of cryptocurren-
cies, looking at the market capitalization of the principal tokens, the ecosystem
has achieved significant aggregated volumes, i.e., about 235 billion US dollar1.

1 The market capitalization is calculated as the product between the number of tokens
in circulation and the value of each token. The value aggregates the capitalization
of the top ten native blockchain tokens available in the market. Source: https://
coinmarketcap.com/ - accessed 15-05-2020.
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In this context, this paper presents an exploratory study of the next gen-
eration blockchain-based financial services. In particular, the analysis carried
out aims to trace the path outlined by DeFi, showing the present status of this
ecosystem, focusing on a cross-chain perspective. Therefore, the study addressed
in this work serves as a strategic observation point to comprehend future devel-
opments affecting the financial industry and the associated interaction between
centralized and decentralized environments. The paper’s main contribution lies
in delineating the features of DeFi and highlighting its relevance, outlining, for
the best of our knowledge, the first transverse representation of an infrastruc-
tures’ ecosystem to identify the DeFi progress and its future trends.

The paper proceeds as follows. Section 2 deals with blockchain technology
within the context of tokenomics. Section 3 presents a discussion about the
blockchain infrastructures analyzed in this study. The actual DeFi ecosystem
is presented within Sect. 4. Finally, Sect. 5 concludes the paper.

2 Blockchain Technology and Tokenomics

The blockchain represents a subset of the Distributed Ledger Technologies
(DLTs). All DLT platforms allow to record and share data across multiple stores,
each containing the same contents. Therefore, the community is responsible for
maintaining these records, distributed within a network of computer servers
called nodes. Three main features of the blockchain technology make its innova-
tive potential disruptive. Firstly, the ledger’s distributed nature eliminates inter-
mediaries by spreading control over the network among users. Secondly, since
the network is born distributed, the community needs to find consensus over new
data entries. The consensus protocol defines the rules that legitimize the entry
of new transactions into the ledger. Thirdly, the validation of new data entries
takes advantage of cryptographic methods designed by the platform’s developers.
Moreover, the consensus mechanism’s peculiarities and the cryptographic algo-
rithm determine many essential aspects of the blockchain infrastructure, such
as the degree of efficiency and power consumption [16]. Besides, the consensus
protocol creates a system of incentives that, in combination with the absence of
intermediaries, allow the platform to settle transfers of property rights that can
involve cryptocurrencies, as well as a wide variety of assets.

The cryptographic validation of transactions allows the introduction of the
concept of digital scarcity since property right transfers do not permit to create
copies of the exchanged assets. Indeed, if in the case of the Internet, information
abundance is due to high fixed costs and low marginal costs of production con-
sidering that information is costly to produce but cheap to reproduce [13], assets
traded on top of blockchain platforms cannot be replicated at will. Therefore,
blockchain technology has the potential to transform society and economy from
multiple perspectives through the development of new market design solutions.

Focusing on the financial services sector, blockchain infrastructures provide
lower entry barriers for users and developers. Moreover, the blockchain platforms
are characterized by alternative monetary policies for individuals who suffer
unstable economic conditions due to untrustworthy institutions.
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As stated before, the growth experienced by the DeFi ecosystem since the
implementation of smart contracts has attracted the attention of new developers.
In recent years, many blockchain platforms have been created with the capability
not only to execute smart contracts but also to develop decentralized applications
(dApps). One of the most fertile fields in terms of dApps development is DeFi,
through the conception of applications able to offer standard financial services,
often taking a step forward to propose innovative solutions to old-time needs.

In this context, the functioning rules of the blockchain infrastructures and
decentralized applications are set by developers during the platforms’ design.
Even though in most cases, the community has the power to modify relevant
aspects of the framework through internal voting, the laws that regulate on-chain
operation are designated in such a way as to achieve predefined objectives (e.g.,
total token supply, users’ incentive system). The main result of this dynamic is
the shift from economics towards tokenomics. Indeed, while in economics changes
are applied in a dynamic fashion by maneuvering key variables to approach
the desired objectives through the observation of the reaction of the system,
in tokenomics, innovation is put forward by designing the rules governing the
playground in a way that the stakeholders’ behavior aligns with the goal pursued
[7]. As a result, DeFi falls, by definition, within the field of tokenomics, allowing
users to have access to financial services through the exploitation of dApps and
to interact with the other members of the community to manage the ecosystem.

3 Blockchain Infrastructure Analysis

The fields of application of DLT and, in particular, blockchain technology are cer-
tainly not limited to cryptocurrencies and DeFi. Nevertheless, remaining within
this paper’s scope, this section presents the analysis of a series of blockchains
upon which the exploratory study on DeFi is based. This analysis aims to present
the technical scenarios within which the DeFi ecosystem has proliferated in the
last years, paving the way for subsequent research that wants to investigate the
conditions that favor and hinder the decentralized financial realm’s growth.

Figure 1 shows eight blockchains: Bitcoin, Ethereum, Tron, Stellar, Eos,
Tezos, Neo and Cardano. The selection criteria of the blockchains are essen-
tially three. The first one concerns the market capitalization of the blockchain’s
native tokens, while the second one has to do with the platforms’ nature. In
particular, the sampling concentrates on permissionless and public permissioned
platforms where DeFi has developed the most. Finally, the third one regards
the objectives of the blockchains. Indeed, the analysis focuses on platforms that
aim at reshaping the financial industry from multiple perspectives. Specifically,
the figure provides data about nine variables that aim to delineate the plat-
forms’ governance features, outlining the principal factors that make each of
them unique. First of all, the figure indicates the accessibility of blockchain
platforms since we can primarily distinguish between permissionless and per-
missioned blockchains. In the first case, users do not need any approval to join
or leave the network and have access to an identical copy of the ledger. In the
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second case, the nodes have to be pre-selected by a network administrator to join
and operate inside the community [8]. Moreover, permissioned blockchains can
also be divided into two other categories: public and closed (or private). While in
the public case, anyone can access and view the contents of the blockchain even
though only the pre-selected nodes can enable transactions, in the closed case,
the access is restricted to the components of the community and, in addition,
the transactions can be validated only by the blockchain administrator.

Fig. 1. Blockchain infrastructures analysed with respect to nine qualitative and quan-
titative variables.

Figure 1 also shows that all the blockchains selected are permissionless or
public. Only Cardano represents an exception since it incorporates both a cen-
tralized and decentralized governance layer. This criterion of selection follows
the logic according to which permissionless and public blockchain infrastructures
represent the real innovative contribution to the financial industry by decentral-
izing the services provided. Indeed, DeFi benefits, with respect to Centralized
Finance (CeFi), include transparency, autonomy (i.e., non-custodial manage-
ment of assets), financial inclusion and tradability (i.e., no requirements to com-
mit to entire high-value investment at once2) [1]. Conversely, financial services
supplied on permissioned and private blockchains do not significantly differ from
the CeFi paradigm except, in most cases, in terms of efficiency deriving from
more significant scalability opportunities [12].

The second variable deals with the consensus protocol, indicating the spe-
cific validation mechanism of new data entries in every blockchain analyzed.
2 In most cases, transactions conducted on blockchain platforms can involve purchases

and sales of portions of assets. For instance, the smallest unit of Bitcoin tradable
on the market is called a satoshi and corresponds to the one-hundred-millionth part
(100.000.000) of a Bitcoin, i.e., 0.00000001 BTC.
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Zhang and Lee (2019) [16], studying the main consensus protocols, distinguish
between probabilistic-finality and absolute-finality mechanisms. Proof-of-Work
(PoW), Proof-of-Stake (PoS) and Delegated Proof-of-Stake (DPoS) protocols fall
within the first category, while Practical Byzantine Fault Tolerance (PBFT) and
Ripple protocols belong to the second one. Moreover, they conclude that PoW,
PoS and DPoS are more suitable for public and permissionless blockchains than
PBFT and Ripple that, instead, apply better in a permissioned (private) frame-
work. In the context of DeFi, where platforms aim to attract the largest possible
number of users, one can expect that the relative blockchain infrastructures are
presumably based on probabilistic-finality consensus mechanisms.

Furthermore, as mentioned in Sect. 2, the consensus protocol of a blockchain
is also responsible for the platform’s efficiency, determining the number of
transactions performed per second (TPS). Generally, the more transactions a
blockchain can perform in a specific time frame, the less decentralized the
blockchain is since the consensus mechanism will be based on few consensus
nodes that support the platform’s wellness (e.g., Eos blockchain). Bach et al.
(2018) [3] carry out a comparative analysis of typical blockchain consensus pro-
tocols. They focus the analysis on different algorithmic steps of the consensus
mechanisms (e.g., scalability, the system of incentive and security), confirming
the indirect proportionality between efficiency and decentralization degree of
blockchain platforms by reporting TPS numbers of the high-profile blockchain
infrastructures (i.e., those with the highest market capitalization of native cryp-
tocurrencies).

The variables between the third and the fifth deal with characteristics directly
related to the native cryptocurrencies of the blockchains: the issuance method
(which differentiates between pre-mined tokens and mining activities regardless
the consensus protocol applied), the token symbol and the total supply of tokens.
In the issuance method, pre-mining activities are typically associated with Initial
Coin Offering (ICO) funding mechanisms. In particular, ICOs have emerged in
the last years as a novel instrument through which ventures sell tokens to fund
initial development, although no commitment is made to their future price [4].
Moreover, ICOs have allowed new blockchain platforms to trigger network effects
in relatively short times through the prospect of future positive revenues (e.g.,
Eos, Tezos and Cardano), instead of waiting for them to develop independently
(e.g., Bitcoin, Ethereum). The implementation of ICOs, in turn, also affects
design decisions regarding the total supply of tokens.

The variable blockchain uses highlights the main on-chain activities that, in
most cases, also involve developers’ attention (e.g., dApps deployment and smart
contracts). In the context of DeFi, as described previously, the development of
dApps and the implementation of smart contracts are of primary importance
to provide access to financial services, leveraging the blockchain technology’s
decentralized nature. The variable target audience, instead, identifies the main
actors who take advantage of the services provided on the blockchains. However,
note that, even though only individuals and businesses have been identified,
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this does not preclude other actors (e.g., institutional players) from fruitfully
exploiting the benefits deriving from the use of these frameworks.

The last two variables show the market capitalization of each blockchain’s
native cryptocurrency and the platforms’ creation year. In particular, concerning
the market cap, the values are expressed in US Dollars and are calculated as the
product between the number of tokens issued by the platform and the current
price per coin3. Moreover, the cryptocurrency market cap can also be used to
measure the volume of investors’ attention drawn by each blockchain. As a result,
the data presented within Fig. 1 shows how the Bitcoin blockchain has attracted
the largest amount of capital in the DeFi ecosystem (and, by extension, in the
blockchain environment), despite the inefficiency of its infrastructure compared
to other platforms (e.g., Eos, Stellar). Therefore, network effects still play a more
influential role within the blockchain ecosystem than infrastructure features (e.g.,
efficiency, power consumption) in attracting investors.

4 DeFi Ecosystem

In terms of financial services, the transition from the traditional financial indus-
try to DeFi is not straightforward. Moving from a centralized ecosystem to a
globally inclusive financial system, not all the features remain constant. Numer-
ous changes happen, creating a network characterized by more or less disruptive
elements concerning the standard environment. In this framework, this section
aims to present the actual DeFi ecosystem from a cross-chain perspective, high-
lighting the main differences between the financial services provided within DeFi
and those offered in the traditional financial system. The principal financial ser-
vices taken into consideration in this study are borrowing and lending, exchange,
deposit/asset management, derivatives and stablecoin issuance.

After having selected the platforms to analyze following the criteria described
in Sect. 3, the categories of financial services have been designated in such a
way as to encompass most of the financial operations carried out both in DeFi
and CeFi. The methodology applied results in a comprehensive framework of
the actual DeFi ecosystem that can also provide a strategic observation point
to observe future developments. For the best of our knowledge, this analysis
represents the first cross-chain study of the DeFi ecosystem within a context
where other studies generally refer to single-chain frameworks [2].

In the context of the eight blockchains presented in Sect. 3, Fig. 2 shows
the DeFi ecosystem in terms of services provided within each blockchain plat-
form. As stated earlier, most of the financial services offered by DeFi require the
implementation of smart contracts and specific protocols generally performed
by dApps. In this framework, the Bitcoin blockchain is the only one, among the
eight platforms analyzed, that does not allow to execute smart contracts and,
in turn, to develop dApps. However, as also discussed in the previous section,

3 Note that the source of this information is the same as indicated in footnote 1.
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given the Bitcoin’s impact in terms of network effects, which caused its consid-
erable appreciation since 2012, it represents one of the DeFi ecosystem’s corner-
stone. Moreover, the situation outlined by the figure below shows the monopolist
role played by the Ethereum blockchain inside the DeFi environment. Indeed,
Ethereum has generated strong network effects as in the Bitcoin case, being the
first blockchain to implement smart contracts and develop dApps.

Consequently, despite the relative inefficiencies compared to other plat-
forms, the positive feedback loops generated by the increasing dimension of the
blockchain environment in terms of dApps have always attracted more attention
by users and developers4. Nevertheless, more recent infrastructures (e.g., Eos,
Tezos) have started to expand their network in terms of the number of on-chain
dApps and financial services offered. Consequently, the effects deriving from the
emergence of other blockchains within the DeFi environment are twofold. First of
all, emerging platforms can attract on-chain users of other infrastructures, offer-
ing higher performances to face increasing scalability requirements. Secondly, a
more prosperous DeFi environment composed of many blockchains can bring to
an expansion of the decentralized network at the expense of the CeFi ecosystem.

Fig. 2. DeFi ecosystem survey across eight blockchain infrastructures.

Within the set of categories of financial services selected, payment gateways
were not mentioned since they can be considered as a standard integration of
deposit service granted by traditional financial institutions like private banks.
However, in the case of DeFi that principally makes use of cryptocurrencies,
4 However, it has to be considered that the Ethereum blockchain is planning to make

a change in the consensus mechanism from PoW to PoS to increase the efficiency of
the platform, as shown in Fig. 1 above.
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conditions may change. Indeed, since their price tends to fluctuate, it is not
easy to think of these tools as widespread means of payment. Instead, they
should be conceived as assets and, therefore, as digital assets utilized by users
to take advantage of the financial services made available by dApps. In this
context, the introduction of stablecoins has marked the DeFi ecosystem, since
they grant access to digital assets with minimal fluctuation rates and peg either
to fiat currencies (e.g., US Dollars) or to digital assets (e.g., USDC, TUSD).
Consequently, the launch of this type of tool has created an essential incentive
in moving simple payment transactions on the DeFi ecosystem.

In this framework, DAI represents the first stablecoin issued through the bor-
rowing and lending platform of MakerDAO, developed on top of the Ethereum
blockchain. Examples of fiat-backed stablecoins are SDUSD, provided by the Neo
blockchain through the dApp Alchemint, and ANCT, issued by AnchorUSD and
built upon the Stellar blockchain. On the other hand, instances of crypto-backed
stablecoins are EOSDT issued by the Eos blockchain and USDx provided by
dForce developed on top of the Ethereum blockchain.

Concerning borrowing and lending services, in DeFi, differently from CeFi,
the money deposited in platforms is used to finance borrowers without substan-
tial restrictions. Therefore, deposit activity collapses into borrowing and lending
category, since lenders can earn interests just depositing fiat money or digital
assets in the framework’s wallet (i.e., generating passive income). In particular,
dApps grant access to P2P lending platforms that use the money deposited by
users to finance borrowers provided that borrowers can over-collateralize their
loan (generally at 150%) with digital assets. Besides, these on-chain projects
allow potential borrowers also to become margin traders by virtue of the collat-
eral that they have to provide in order to apply for a loan.

The ease with which users have access to margin trading activities highlights
another important point of divergence between decentralized and centralized
ecosystems. Within CeFi, margin trading is characterized by elitist access, since
a potential trader usually needs a specific margin account and a minimum invest-
ment threshold. Moreover, to receive funds from brokerage firms, the trader must
be recognized as a trusted investor. Within the CeFi context, in addition, margin
calls take place whenever the trader’s margin account falls below the mainte-
nance margin level due to a consistent decrease in the value of the collateral
(i.e., the securities purchased spending the borrowed money). In DeFi, instead,
the collateral is represented by a certain amount of digital assets pre-deposited
by the borrowers. The margin call automatically occurs when these assets’ value
falls below a predefined threshold, via smart contracts, without the necessity of
trusted third party interventions. For this reason, within DeFi, we can talk about
permissionless initiation of margin calls and permissionless provision of margin
call liquidity [9]. Regarding the DeFi ecosystem, Fulcrum and Nuo represent two
examples of borrowing and lending dApps developed on top of the Ethereum
blockchain, which also offer margin trading services.

When it comes to exchanging activities, they can be considered the alter ego
of trading in the CeFi framework. Indeed, thinking of cryptocurrencies as digital
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assets, the exchange among native tokens of different blockchains represents an
investment choice to take advantage of rising and decreasing trends in the various
digital asset markets. Moreover, as also seen before, many dApps provide more
than one financial services. For instance, the dApp Nuo mentioned above grants
also access to exchange activities. Another interesting example is Tokenlon, an
exchange platform built on top of the Ethereum blockchain, which also issues
the token imBTC that is a derivative pegged to the value of BTC.

The dApps that deal with deposit and asset management are applications
that allow managing funds and digital assets. Indeed, in the DeFi ecosystem,
dApps are generally non-custodial, which means no specialized institution is
entitled to make financial and commercial decisions regarding assets belonging
to customers. Moreover, since asset management activities also include the pos-
sibility of transferring tokens from an account to another, payment activities can
be considered part of this category. In this context, Instadapp is an interesting
dApp, developed upon the Ethereum blockchain, that grants access to asset man-
agement activities and connects many DeFi protocols allowing users to interface
with a series of financial services. MakerDAO, Compound and Uniswap are three
examples of interconnections made available by Instadapp.

DeFi derivatives represent another exciting field of this growing financial
ecosystem. In the CeFi framework, derivatives are contracts among two or more
parts whose value depends on the underlying financial assets upon which the
parts have an agreement. As such, derivatives can be viewed as secondary securi-
ties, since they have no intrinsic value. Instead, in the DeFi environment, deriva-
tives represent synthetic tokens able to reproduce the underlying assets’ fluctu-
ations. In particular, DeFi derivatives are obtained through a set of practices
that fall within the asset tokenization field. One of the main applications of asset
tokenization is the wrapping process. This procedure allows to obtain wrapped
tokens, starting from an original token (e.g., ETH, BTC) through a transforma-
tion process carried out by smart contracts. The wrapping procedure also pro-
vides additional functionalities to the transformed tokens. A prominent example
of this type of activity is present on the Ethereum blockchain, and in partic-
ular, it is applied in the ecosystem of tokens based on the ERC20 (Ethereum
Request for Comment-20) standard. Indeed, the ERC20 standardized format
makes possible the interaction between users who own ERC20 tokens.

Moreover, it is also worth noting that user interaction also occurs across
different DeFi platforms (even though always developed upon the Ethereum
blockchain) that recognized the same standardized format. An example of asset
tokenization dApp is Chintai, built on top of the Eos blockchain, allowing busi-
nesses to issue, manage and trade tokenized assets. Another example of this
category is Digix, a dApp based on the Ethereum blockchain that issues tokens
pegged to the value of gold (i.e., 1 DGX = 1 g of real gold). Besides, also the
Tezos blockchain is entering the world of digital derivatives through the issuance
of wrapped BTC tokens, named tzBTC [6].

Finally, Fig. 3 summarizes the information collected within the study, show-
ing how, just a few years after the first execution of smart contracts in 2014,
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the DeFi ecosystem is expanding across the blockchain environment. Therefore,
whenever a box that connects a financial service with a blockchain is colored, at
least one dApp provides that specific service upon the related infrastructure.

Fig. 3. DeFi ecosystem map across eight blockchain platforms.

5 Conclusion and Next Steps

The exploratory study about next generation blockchain-based financial ser-
vices presented in this work allows understanding how and towards which way
the financial industry is evolving. The blockchain technology application in this
sector has brought to the creation of an ecosystem composed of dApps able to
reproduce standard financial services and go a step further, proposing innovative
solutions for this industry’s evolution. The results presented describe a rapidly
changing ecosystem, actually driven by the Ethereum blockchain and followed
by prominent projects with broad potential in terms of efficiency and ecosys-
tem prosperity. Therefore, the study addressed in this work provides a strategic
observation point to better comprehend the future developments affecting the
financial industry. This exploratory study also represents an initial step within
the research field that treats the transition from centralized to decentralized sys-
tems. Further analysis will focus on a multiple perspectives’ study with the aim
to define which degree of complementarity among centralization and decentral-
ization can maximize their respective strengths and minimize the weaknesses.
Therefore, subsequent work will broaden the research horizon to in-between real-
ities that present combinations of decentralized and centralized governance layers
while preserving the blockchain’s principles. This type of analysis will enhance
comprehension about the future perspectives of DeFi, delineating the profile of
potential future successful actors in the next-generation financial industry.
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Abstract. We present Terminus, a voting system based on blockchain
technology. Terminus relies on technology solutions pioneered by Monero,
a privacy-focused Blockchain, and on specifically designed operational
procedures: this guarantees full anonymity of the vote and addresses
several concerns of digital voting systems. Terminus was tested at an
event of an Italian political movement, and will be used to carry out
polls to drive some of the political decisions of this movement. We also
introduce an evaluation framework for DLT voting systems, and use it
to compare existing systems.

Keywords: e-voting · DLT · Monero

1 Introduction

Voting is an action we perform in several different situations: some examples
are song contests (e.g., Eurovision), reality shows (e.g., Big Brother), associa-
tions/councils (e.g., residents meeting), company’s decisions (e.g. shareholders
meeting) or politics (e.g., country elections). Wherever allowed, digital voting
systems have been introduced as tools to make it easier for voters to express
their choice and to reduce the huge costs of voting in person. However, most
digital voting solutions in use nowadays are centralized and affected by a num-
ber of problems (e.g., certification of results). Some solutions are available and
have been adopted in some cases on traditional online voting, but these are out
of scope of this paper.

Recently, the introduction of digital ledger technologies (DLT), and in par-
ticular of blockchain, led to a renewed interest in e-voting, because they provide
high levels of immutability, accessibility and reliability, and are typically open
source.
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In this paper, we analyze the key properties a remote digital voting system
must exhibit, and provide an evaluation framework to compare voting systems
based on DLT. Using this framework, we compared some of the most recent
and popular e-voting systems based on DLT, with our proposal of Terminus,
a voting system based on Monero technology, a privacy-preserving blockchain
able to guarantee a very high degree of anonymity [13]. We then describe Ter-
minus solution in deeper detail, and a live test which was performed after its
deployment.

2 Requirements of an E-Voting System

Voting systems can be used for a variety of purposes, from shareholders meet-
ings, to contests, to political voting – both non-binding and political election. A
common requirement is that only qualified voters can cast their vote, and that
this vote is counted just once. In most situations, voting must be anonymous,
and the voting system must guarantee this.

Though there is no accepted standard on how to evaluate an e-voting sys-
tem, several recent proposals reported evaluation criteria quite similar to each
other [7,10,14].

Starting from these criteria, we summarized them, resulting in the following
criteria a remote digital voting system must satisfy:

1. Immutability: No one can neither delete nor modify votes. Known also as
“Integrity” [7].

2. Egality: Each vote must be equal to each other (in some kinds of voting,
however, votes might be weighted). No voter can have his/her vote counted
more than once. Each voter must receive one and only one ballot.

3. Eligibility: Only the voter can add his/her vote; no one else can add votes.
4. Anonymity: No one must know what a voter has voted for, unless specified

otherwise. Known also as “Privacy” [10], [14].
5. Blindness: During the voting session, no one must know where the votes are

going to. In other words, results must not be visible in real time. Known also
as “Fairness” [10], [14] or “Data Confidentiality and Neutrality” [7].

6. No forgery: Ballots cannot be forged, and their number must be exactly
equal to the number of voters. This property can be further detailed (for
instance, prescribing that a voter cannot vote more than once), but here we
will consider it as a single criterion.

7. Verifiability: Auditors – or even voters themselves – must be able to verify
that the number of ballots is exactly equal to the number of voters, that
each voter has received one and only one ballot, and that votes are correctly
counted. Known also as “Auditability” [7].

8. Cost: Deployment, management and maintenance cost are reasonably low.
Known also as “Affordability” [14].

9. Scalability: The system is able to manage very many voters, even political
elections.
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We added three more criteria to the above quoted ones, targeted to practical
implementation and usage of the e-voting system. They are the 10. Stabil-
ity of the approach, that is the probability that the system is long-lived, the
11. Openness of the system – it must be open source, or with inspectionable
code, a feature very important to get the needed trust that the system always
works properly – and the presence of 12. Actual use cases, or at least test
demonstrators, of the system.

Using these criteria, we defined a framework to evaluate e-voting systems
based on DLT, especially targeting political elections.

Each criterion is evaluated using an integer scale from 1 to 5, meaning that
the criterion is:

1. unsatisfied or poorly satisfied.
2. only partially satisfied.
3. fairly satisfied, but it might be better.
4. satisfied for the most part.
5. totally satisfied.

It would be possible to further weight by importance these criteria, but to
the purposes of this work we assume that all criteria have the same weight. The
actual comparative evaluation of existing voting system and of our proposal is
reported in Sect. 5.

3 Existing E-Voting Systems Based on DLT

Despite the interest and the promises of DLT for implementing better voting
systems, the number of actual systems in advanced development, or already
deployed, is not high. Among these, the most popular and mature DLT voting
systems we found are: Agora, Vocdoni, Voatz, Follow My Vote, Polys and Colony.

Agora [1] is a project started in 2015 by a Swiss-based voting technology
company which developed an end-to-end verifiable voting solution for govern-
ments and institutions. Bryan Ford, who served as the Director of the Lausanne’s
Swiss Federal Institute of Technology (EPFL) Decentralized and Distributed
System Lab (DEDIS) gave a key contribute. Agora is maintained by a team
of cryptographers of Losanna Institute of Technology already accustomed with
blockchain technology. It runs on a custom blockchain with various architectural
levels and with three main components: Skipchain, Cotena and Valeda. Skipchain
manages consensus, with high throughput and efficient transaction validation.
Cotena is the component which stores cryptographic Skipchain proofs. Valeda
validates Skipchain and Cotena data by means of cryptographic proofs. The
Cotena layer is also used to anchor the system to the Bitcoin blockchain, since
Cotena periodically stores a hash of the most recent Skipblock in a Bitcoin trans-
action OP RETURN opcode, which enables anyone to verify that all data remained
unaltered. Agora’s architecture has different interconnected layers, is quite com-
plex and is anchored to the Bitcoin blockchain. Agora piloted the first test of
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Blockchain voting in a national government vote during Sierra Leone Presiden-
tial Elections in 2018, where results were counted on blockchain separately from
official counting after the vote took place on paper ballots.

Vocdoni [6], which in Esperanto translates to “to give voice”, is perhaps the
most advanced among DLT voting systems, being very recent, and based on sys-
tematic usage of Zero Knowledge proofs. Vocdoni aims to build a general-purpose
voting system, seen “as a collective signaling mechanism that gives cryptographic
guarantees about its integrity and its outcome”. Its architecture is quite com-
plex. The voting is handled by a Tendermint blockchain called “vochain”. Data
integrity is provided by Ethereum blockchain, data availability is provided by
IPFS/Swarm. To date, we are not aware of real use cases of Vocdoni.

Voatz [5] is one of the first voting systems, and is that with most real use
cases, being used by several counties and states in the USA. It is based on an
app able to perform biometric identification of the voter. The e-voting process
is quite traditional, but is registered on the Voatz blockchain, built using the
HyperLedger blockchain framework. The Voatz blockchain is permissioned, run
by selected nodes managed by the stakeholders of the election, such as the major
political parties, NGOs, non-profits and independent auditors, etc. Voatz app-
roach is proprietary, and has been security audited by independent third parties.

Follow My Vote (FMV) [3] is an open-source project based in USA whose
code is available on GitHub. Most of the code is written in Python language,
and the system is based on BitShares blockchain. The system provides the voters
the possibility to monitor election results in real time and also to consequently
act in order to change their mind according to partial results and to change the
previous vote. Depending on the election rules this feature can be turned off.
Voters register with an ID card issued by a public authority and receive a ballot
for voting on the specific election they qualify to vote in. It uses a Registrar to
pair the ID Key with a Blinded Token for anonymous voting.

Polys [4] is a Russian voting system based on Ethereum technology. It is in
advanced development, but with already several use cases because the use of its
beta version is presently free. The system is patented and proprietary, though
they plan to release also an open source version. The voting is performed on
a permissioned Ethereum blockchain, with added nodes managed by “trusted
representatives” (TR) of the voting organization, or of interested parties. The
vote anonymity is guaranteed by a Shamir’s Secret Sharing schema involving
private keys generated by the TRs, which is used to encrypt votes. The voting
choices are in turn obscured with homomorphic encryption using the exponential
ElGamal cryptosystem. Voters are provided of an app to generate their private
key, and cast their unique vote after exchanging information with TRs nodes.
Once cast, it is impossible to change one’s vote. If the number of voters is high,
homomorphic decryption can have performance issues, though they can be solved
by partitioning the voters across different voting systems which run concurrently.

Colony [2] is peculiar among the considered platforms, because it is more a
platform for community collaboration, rather than a true voting system. It is
completely based on Ethereum, and is aimed to manage the polls of decentralized
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communities working on this blockchain. For this reason, it does not support
anonymous voting, but only blind voting, until the poll is closed and the votes
are revealed.

The literature includes many other proposals of voting systems based on
DLT. However, despite the fact that some of these look quite sound and innova-
tive, they are still under study or development. A recent paper on an e-voting
system reports and describes some of these works [14]. Finally, it is worth quoting
that Estonia performs e-voting using a traditional system, but with the register
of voters stored on a blockchain (ksi blockchain) to ensure their integrity and to
protect them against insider threats.

4 Our Proposal, the Terminus Platform

Work on Terminus started in 2017, as a way to use blockchain technology to
increase transparency and trust of the Rousseau voting platform, used by the
Italian 5-star Movement to ask its members to define political decisions.

The use of a public blockchain was quickly ruled out, because of its cost and
voting recording time. In fact, the cost is linked to the price of the underlying
cryptocurrency and on the number of transactions to be processed, and is way
too volatile. The recording time too can be subject to unpredictable delays. For
instance, November and December 2017 saw a major congestion of the Bitcoin
network. Transactions remained unconfirmed for several days, if not eventually
disappearing from the mempool [8].

So, we opted for a hybrid permissioned blockchain solution. In such solution:

– Sealers are nodes run by pre-authorized separate entities, which can create
(“seal”) transaction blocks. In addition, by choosing anonymous blockchain
technologies, such as Monero or Zcash, sealers cannot distinguish data in
the underlying transactions, thus preventing a malicious sealer to effectively
tamper the voting session.

– Supporters are secondary nodes which can be run by everyone. They have
access to the blockchain: they cannot create blocks, but can watch them and
be aware if something suspicious happens.

– Rules could be put in place so that a subset of supporter nodes are eventually
promoted to sealer nodes.

This approach resembles the dynamics existing at the United Nations Secu-
rity Council. A set of predetermined sealer nodes (akin to the UN Security
Council 5 permanent members) and a set of supporter nodes that are temporar-
ily promoted to sealer nodes (akin to the UN Security Council 10 non-permanent
members).

As the underlying blockchain to run the platform, we chose the technology
behind Monero as the most suitable one for a digital and remote voting system.
As a cryptocurrency, Monero proved its strength in highly adversarial environ-
ments. It has an extreme degree of privacy protection, and its community strives
to increase it even further. We are by far not the first ones to think that the
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technological prowess behind Monero can be applied to voting. In fact, we took
inspiration from the CryptoNote protocol [13] (on which Monero is based) that
uses an optimized version of the Ring Signature scheme described by Fujisaki and
Suzuki [11]. The key application mentioned in the paper is actually anonymous
voting.

We believe in anonymity first: this must be the main key pillar of any digital
voting solution. It is important to stress that anonymity is native to the Monero
protocol, and it is very well battle-tested. Other technologies, such as Bitcoin,
try to achieve anonymity by adding second layers (e.g., Lightning Network);
however, as of today, such incremental approaches do not provide the same
guarantees as of native solutions. Table 1 reports a summary of the key features
a digital voting solution must satisfy, along with their technical solutions. Roles
(such as Administrator and Custodian) are described in the following section.

Table 1. The key features a digital voting solution must satisfy.

Key feature Solution

No external entity can
add/remove/modify votes

Native to blockchain technologies

No one must know what a voter has
voted (anonymity)

Ring Signatures of voters

No one must know where the votes
are going to (results must not be
visible in real time)

Stealth address of Vote Receivers +
Vote Receivers private keys safe
management by external Custodians

Ballots cannot be forged, and its
number must be the same of voters

Blockchain tokens generated before
voting session begins

Each voter must receive one and only
one ballot

Blockchain tokens sent by the
Administrator to voters before voting
session begins

Auditor must be able to verify the 2
points above (number of ballots ==
number of voters; each voter has
received one and only one ballot)
without relinquishing anything in
voter anonymity and vote visibility

Auditor has access to voters view
keys, thus verifying that
Administrator has indeed sent one
token to each voter

No voter can have his/her vote
counted more than once

Native to blockchain technologies

Each vote must be equal to each other Token fungibility

We forked what at the time was the stable version of Monero (v0.13.0.4). In
our permissioned solution, we removed all transaction fees (i.e., they were set
to zero) and all their relative checks. Also, for the sake of scalability, regarding
the consensus protocol we opted for a Proof-of-Authority (PoA) approach with
pre-approved sealer nodes.
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Before the voting session, all sealer nodes start mining at startup with
same fixed-difficulty (100), and block rewards are sent to a special wallet called
“Admin wallet”. Only a total of N vote tokens (where N is the number of Voters)
are created. In our solution, 1 forked XMR equals to 1 vote token.

The Admin Wallet initially hoards the N tokens of the permissioned
Blockchain, to be used as vote tokens; then, before the voting session starts,
the Admin Wallet distributes each vote token to the N Voters, creating N trans-
actions of 1 forked XMR as amount. Our system uses one blockchain for each
voting session: this prevents people from using unspent vote tokens of a previous
election in a new one. In addition, in order to further guarantee that no addi-
tional vote tokens are created, during a voting session block rewards are zeroed
out. Also, if, by any chance, a “disturber” Voter sends a fractional token value
to the Vote Receiver, such vote will not be counted.

We then introduced a few tweaks on the wallet side in order to allow vote
transactions to be mined. To this purpose, we forked what at the time was the
stable version of Monerujo (v1.10.10), a high-quality Monero light wallet [12].

We also created a dashboard where the Administrator can distribute the
vote tokens (before the voting session starts), and can calculate results, without
having to perform all the operations from the command line (after the voting ses-
sion is over). For sake of demonstration, for the Proof of Concept the dashboard
also allowed the Administrator to create Vote Receivers keys, and start/end the
voting session: these are aspects that can be solved through improvements as
discussed in later Sect. 6.

4.1 Roles in the System

Terminus voting process makes use of several roles, which are key to ensure
voting fairness and trust. These roles are:

– Voters: the people who vote. In a real-world paper voting analogy, Voters
are akin to electors.

– Vote Receivers (for ease of readability, also simply called “Receivers”):
entities who receive the votes. In a real-world paper voting analogy, Vote
Receivers are akin to candidates.

– Administrator: entity which, before voting session begins, grants one ballot
to each Voter. In a real-world paper voting analogy, Administrator is akin to
poll clerks that give a ballot to each eligible voter.

– Auditor: entity which ensures no foul play is done by the Administrator. In
a real-world paper voting analogy, Auditor is akin to scrutineers that ensure
there is no malpractice. Any Voter might also be an Auditor.

– Custodians: entities which, before voting session begins, create Receivers
private keys, publish Receivers public keys, but cannot show Receiver private
keys. In a real-world paper voting analogy, Custodians are akin to militaries
that protect the ballot box to be closed till the end.

– Sealer Nodes: Entities which run the underlying blockchain software solu-
tion and can create (“seal”) blocks. In a real-world paper voting analogy,
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it is a combination of poll clerks and scrutineers that ensure no vote is
added/deleted/modified during the voting session.

– Supporters: entities which run the underlying blockchain software solution
but can only watch.

4.2 Voting Process

Before starting the voting session, the network must be configured. To this pur-
pose, it is needed to setup a minimum number of Sealer Nodes, able to run the
permissioned blockchain. For evaluation purposes, 5 nodes are enough, possibly
located on the cloud, running a modified version of “monerod”, the Monero dae-
mon software. Real polls would require a bigger number of Sealer Nodes, each
managed by an independent organization, in order to ensure the stability and
trust of the system.

Before each session, the Vote Receivers are set up. The Administrator had
access to a server where, through a simple dashboard, s/he will:

1. Create Vote Receivers wallets
2. Start a voting session
3. Enable Voters
4. Stop a voting session
5. Calculate results

Presently, the Administrator keeps locally all the Vote Receivers keys. Of
course, this is not acceptable in a real-life voting system: the proper way to
address Vote Receiver key management is discussed in later Sect. 6 with the
introduction of a custodial system.

The voting session needs that voters install on their smartphones and use an
application. Each voter must create a Voter wallet, send the Voter wallet address
to the Administrator, receive a vote token by the Administrator, and eventually
send the vote token to one of the admissible Vote Receivers (voting options).

After the voting session, the results are processed by simply counting the
number of tokens received by each Vote Receiver.

4.3 Proof of Concept

On March 10, 2019, at Villaggio Rousseau in Milan we showcased a simple
Proof of Concept: voters were asked to pick one of four choices of food they
would have liked to eat at the end of the event. Each of the food choices (pizza,
apple, oranges, sweets) had a Vote Receiver wallet associated to them. There was
only one voting session, and at the end results were published. Had additional
voting sessions been scheduled, the whole process would have been recreated
from scratch (i.e., “one voting session, one blockchain”).

Before starting the voting session, we had to configure the network. For
demonstration purposes, we setup 5 instances of a modified version of monerod
on AWS. We bound the daemon on localhost and linked directly every Sealer to
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every other one through SSH tunnels. At the end, we had a total of 20 tunnels
(5 nodes, with 4 connections each).

For this demonstration, the Vote Receivers were:

1. Pizza Margherita
2. Apples (Mele)
3. Oranges (Arance)
4. Sweets (Caramelle)

The voting session lasted 1 h (from 10:00 am to 11:00 am). During such
time, 67 attendees of Villaggio Rousseau volunteered to install and use on their
Android phones the voting wallet. Each attendee (“Voter”) created a Voter wal-
let, sent the wallet address to the Administrator, received a vote token by the
Administrator, and sent the vote token to one of the four Vote Receivers.

Fig. 1. The results of the demonstration voting session (in Italian).

At 11:00 am on March 10, the Administrator stopped mining on each node,
thus terminating the voting session. Results were immediately announced by
publishing the balance of each Vote Receiver wallet. A total of 67 Voters took
part to the 1-h voting session demonstration. 53 of them actually cast a vote.
The output of the vote is shown in Fig. 1. By the way the system has been
designed, there is no way of knowing who the 14 people who did not cast their
vote were.

5 Comparative Evaluation

Using the framework reported in Sect. 2, we evaluated the voting systems
reported in Sect. 3, together with Terminus. We were unfortunately unable to
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actually install, use and test these systems, except for Terminus. So, the evalua-
tion is based on the information gathered collecting the information on the Web
site of these systems, and on other Web sources.

The evaluation was made by polling seven blockchain app programmers,
working at our department or at other firms, and taking the median value of
the answers. The result is reported in Fig. 2. There is no room for a thorough
discussion of these results. Basically, the scores of the voting systems do not
differ much. The most advanced systems – Agora, Vocdoni, Voatz and Polys –
are somewhat penalized for being very complex and, with the exception of Voc-
doni, quite closed. FMV and Colony are quite simple, and are not intended for
large-scale, anonymous, blind voting. Terminus was conceived to be simple, easy
to manage and scalable, hence the good score.

Fig. 2. Comparative evaluation of the considered voting systems, using the proposed
framework.

Clearly, there are strong threats to the validity of the comparative analysis.
The main threat is that the evaluation of most systems is not based on testing
the actual system, but on information gathered on the Web. Another threat is
the obvious bias of the authors, though we tried to be as impartial as possible.
Nevertheless, we believe that this evaluation might be a good starting point for
demonstrating the usefulness of the proposed evaluation framework for DLT-
based voting systems.

6 Discussion and Further Improvements

So far, we have discussed the core of the technology behind Terminus. Though,
in order for the system to achieve important properties of voting systems, some
operational procedures must be introduced.
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For example, in order to prevent visibility of voting trends, it is not enough
to rely on Vote Receivers stealth addresses. In fact, if a Vote Receiver has access
to his/her private keys, s/he can see in real-time the voting session results: s/he
might decide to leak results, or take advantage of this knowledge. All of this can
be effectively solved by introducing the role of Custodians: that is, independent
people in charge of protecting secrets. Let’s consider N Custodians, and a safe
environment where Vote Receiver private keys are created. These keys are then
split into N shares using algorithms such as Shamir’s Secret Sharing, and a
threshold of M (M ≤ N) is set. That is, it would require at least M Custodians
to be able recreate the Vote Receivers private keys. The corresponding Vote
Receivers public keys are generated along with the private keys, and they can
obviously be shared with the world so that Voters know where to send their
transaction to. Such custody schemes are today well used in the cryptocurrency
world to protect wealth [9]: they involve safe procedures and hardware (e.g.
HSM), which can be also directly applied in this case.

Additional operating procedures, not necessary but useful, would require the
Voter to share his/her view keys with the Administrator, and the Administrator
to share them to the whole public. This way, any Voter can - on his/her own -
verify that the number of ballots created by the Administrator is indeed correct
(no ballot forgery) and that each Voter has received one and only one ballot.

Further improvements regard voting session termination. Voting session dura-
tion must be known, and cannot be extended. For example, if it is set to last
12 h, and the system creates blocks every 10 s, then the last block of the voting
session must be block number 4,319. The sealers won’t mine any block greater
or equal to number 4,320.

A big issue which is not addressed in this work, and by any of the other
considered voting system, is its ability to prevents or mitigate the risk of buying
and selling votes. This bribing problem also exists in traditional remote voting
(as in the case of voting via physical mail), and in other electronic voting systems.
In fact, it is very easy to sell a vote in systems that use ballot paper and mail,
or to sell a username and a password. The proposed solution opens up ways to
mitigate the issue, and will be the main focus of future research and developments
of the solution.

Finally, it is also worth mentioning that Terminus relies on the concept of
digital identities, which must be created beforehand. Digital Identities Manage-
ment goes beyond the scope of this voting system; however, appropriate solutions
may be integrated on Terminus and improve the overall platform, both in Voter
experience and in its reliability.

7 Conclusion

In this paper we described the issues of e-voting platforms using blockchain
(DLT) technology, and the quality criteria such platforms should exhibit. From
these criteria, an evaluation framework for these platforms is introduced and
applied. We also presented Terminus, a new e-voting platform based on the
privacy-preserving blockchain technology of Monero.
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The elements of innovation, compared to the state of the art, are that this,
to our knowledge, is the first paper explicitly targeted to analyze and com-
pare DLT-based voting systems. Moreover, compared with existing and proposed
approaches, Terminus aims to be much simpler, open and yet very scalable. This
is obtained with a solution which is solid, auditable and tamper-proof, and main-
tains total voters’ anonymity.

Future work will be performed in two directions. The first is to extend and
tune our evaluation framework, including weighting of the criteria. We will also
evaluate more voting systems, using a panel of experts and a Delphi technique
approach. The second direction is to make the needed improvements to Termi-
nus, especially on the consensus protocol and protection against denial-of-service
attacks or spam voting. We will also examine the introduction of the possibility
to vote more than once, keeping as valid only the last vote. This would improve
the resistance against voting bribery or blackmailing.

Acknowledgements. The Terminus platform was developed with a grant by Asso-
ciazione Rousseau. The evaluation framework was funded by Sardegna Ricerche,
project “CriptoVoting” (RICERCA 2-26), POR FESR 2014-2020, Asse 1, Azione 1.1.3,
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Abstract. Voting systems are the tool of choice when it comes to settle
an agreement of different opinions. We propose a solution for a trustless,
censorship-resilient and scalable electronic voting platform. By leverag-
ing the blockchain together with the functional encryption paradigm, we
fully decentralize the system and reduce the risks that a voting provider,
like a corrupt government, does censor or manipulate the outcome.
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1 Introduction

In many countries, the de facto mechanism to realize democratic choices are
votings. It is well-known that voting systems are subjected to attacks, which
threaten democratic decision-making [10]. This includes vote-buying, ballot-
stuffing, destruction or invalidation of ballots, mis-recording of votes, aggravating
the voting access or tampering with the electronic voting machines [9,11]. The
commonality of all these threats is to affect the outcome of the voting. For impor-
tant decisions (e.g. presidential or shareholder elections) one tries to reduce the
threats by recruiting trusted helpers and the engagement of neutral observers.
These entities are appointed by a central authority, like the government or a
corporation, and are crucial to the election process. Centralized trust is fragile.
Even if their implementation is cost-efficient, the history has shown that central
authorities can misuse their responsibility and power to influence the outcome
of an election to their favor.

1.1 Previous Work

Electronic voting systems and their security properties have been actively studied
in the research community, since their introduction in the celebrated work of
Chaum [3,5,15]. Due to their scalability and fault-tolerance properties [4], it
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Table 1. Comparison of different e-voting protocols in the blockchain.

Properties [21] [13] [22] [29] [20] This work

Fairness ✗ ✓ ✗ ✓ ✓ ✓

Eligibility ✓ ✓ ✓ ✓ ✓ ✓

Privacy ✓ ✓ ✓ ✓ ✓ ✓

Individual verifiability ✓ ✓ ✓ ✓ ✓ ✓

Universal verifiability ✓ ✓ ✓ ✓ ✓ ✓

Trustlessness ✗ ✗ ✓ ✗ ✓ ✓

Scalability ✗ ✗ ✗ ✗ ✗ ✓

Receipt-Freeness ✗ ✗ ✗ ✓ ✗ ✗

Coercion-Resistance ✗ ✗ ✗ ✗ ✗ ✗

Vote Type Any Any Yes-no Any Any Any

turns out that the blockchain is a promising tool for electronic voting systems
[7]. Even if blockchain-based e-voting systems come with some compromises
[14,24], their main advantage is the provision of a tamper-proof way to achieve
a publicly verifiable consensus that makes it interesting even for governmental
institutions, which aim to extend the involvement of citizens in local community
decisions [28]. It has been verified in practice that particular solutions are able
to handle hundreds of thousands of voters [18].

A lightweight solution for an Etherium-based e-voting protocol, which focuses
on reducing trust against the voting provider, is given by Lai et al. [20]. Their
protocol works in a way that key managers have to agree on a common key
using secret sharing techniques, which is then used by eligible voters to create
obfuscated addresses for available candidates. In order to prevent double voting,
a one-time ring signature has to be created by every voter. Because ballots are
stored as normal transactions to obfuscated addresses within the network, veri-
fication and tallying has to be processed off-chain by every interested party after
the key managers publish their secret keys. The fact that expensive computa-
tions have to take place outside the blockchain in order to reduce gas costs may
exclude low power devices from verifying the results. Liu et al. propose a voting
protocol within the permissioned and permissionless blockchain model [21]. A
voter casts a ballot by encrypting the vote with the organizer’s public key before
the inspector signs it. The system thus assumes to trust both parties not to vio-
late ballot and voter privacy. An implementation based on the blockchain frame-
work Ethereum is given in [2]. With regard to today’s gas prices and Ethereum’s
throughput, the system is unsuitable for frequent or large-scale elections. Hard-
wick et al. propose a voting scheme in the permission-based blockchain model,
satisfying the basic notions of fairness, eligibility, privacy and verifiability [13].
Their protocol uses the blockchain as a transparent ballot box. The system relies
on a central certification authority to authenticate voters and give permission to
access the network. Hence, an authority when byzantine, breaks the link between
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voter identity and vote and therefore violates the ballot privacy. Their imple-
mentation within a private Ethereum chain requires a non-negligible amount of
gas per vote, which makes the approach less appealing for frequent votings like
in DAOs. McCorry et al. propose a variant of the Open Vote Network (OVN)
in the permissionless blockchain model [22]. The OVN is a self-tallying protocol,
which avoids a central counting authority. A self-tallying protocol converts tal-
lying into an open procedure, which allows any voter or a third-party observer
to perform the tally computation once all ballots are cast. This removes the role
of a tallying authority from an election as anyone can compute the tally with-
out assistance. Unfortunately, self-tallying protocols have a fairness drawback as
the last voter can compute the tally before anyone else, which results in both,
adaptive and abortive issues. Moreover, the protocol is limited to boardroom
votes, where board members take a yes-no decision. Their implementation in
Ethereum shows suitable gas costs for 40 voters, but does not scale with larger
numbers. Yu et al. propose a platform-independent approach [29]. To achieve
the comprehensive goal, the authors employ Paillier encryption to enable bal-
lots to be counted without leaking candidature information in the ballots. To
leverage the homomorphic property for summation of votes, an administrator
decrypts the plain text sum. If byzantine, the administrator can use the same
decryption key to decrypt each encrypted ballot and break the ballot privacy. A
proof-of-knowledge is employed to convince the voting system that the ballot is
valid without revealing its content. Linkable ring signatures are used to ensure
that the ballot is from one of the valid voters, while no one can trace the owner
of the ballot. To this end, a voter needs to download the public keys of all other
voters, which entails a space allocation linear in the number of voters. Their ref-
erence implementation in Hyperledger Fabric allows handling millions of voters,
provided that they are grouped in sufficient batches.

A comparison of the above mentioned e-voting schemes by their properties
can be found in Table 1.

1.2 Our Contribution

We propose a solution for a trustless voting system based on Hyperledger Fabric
[1]. By trustless, we mean a system in which byzantine parties, including the
voting organizer, are unable to manipulate the outcome of an election. A bit
more precisely, malicious organizers are prevented from opening ballots before
the official tallying. We leverage techniques from functional encryption [26] and
implement decentralized off-chain opening oracles in order to allow voters to
encrypt their votes and store them secretly within the blockchain. This tech-
nique already leads to censorship-resilience of the cast votes, as the blockchain
guarantees the immutability of the storage. Off-chain oracles, like for example
time-triggered servers, open the encrypted ballots by writing their decryption
keys into the blockchain. Only if a sufficient subset of keys, matching a pre-
defined quorum policy, has been stored, the blockchain or any other auditing
entity is capable of opening and publicly tallying the ballots. This way we fully
decentralize the opening phase and lift the byzantine fault-tolerance properties
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of blockchains to the off-chain perimeter. Furthermore, we introduce off-chain
anonymizer oracles, which cooperatively unlink the encrypted vote from the
user’s identity and enforce the eligibility to cast a single vote. To instantiate
the oracles, we leverage techniques from threshold blind signatures [17], which
allows us to scale the byzantine fault-tolerance of the voting system by making
adjustments to the threshold parameter. Only if the eligible voter receives suffi-
cient signatures from the anonymizer oracles, she can unblind and reconstruct an
anonymous voting credential, which is necessary to submit her encrypted vote.

2 Preliminaries

2.1 Trust Model

Our goal is to provide a platform in which voters are not required to put their
trust in the honest behavior of individual system components, a property to
which we refer as trustlessness. Our approach to provide such a trustless vot-
ing system is built upon the decentralization of critical security components
and entities. For example, we decentralize the need to trust a single eligibility-
controlling entity, and by leveraging threshold blind signatures, we distribute
the voter admission process over several authorities. At the same time, we also
ensure that each voter is only able to cast a single ballot. Further, we make use of
distributed multi-authority functional encryption to prevent that a single author-
ity is able to open ballots without prior agreement of other authorities. Another
aspect of our trustless voting system leverages the blockchain as a distributed
ballot box and tamper-resistant tallying entity. The blockchain operating prin-
ciple ensures that no malicious node is able to add or remove ballots, or write a
wrong decryption result to the blockchain, on its own. While public blockchains
are considered as trustless networks, we decide to use a hybrid between pub-
lic and (trusted) private blockchain, because of performance reasons. However,
we claim that with the permission-based blockchain Hyperledger Fabric, this
trustlessness also holds to some degree [27]. With a proper selection of voting
providers which host the peer nodes, e.g. well-known companies, the trust can
be minimized as it can be assumed that they do not help each other tampering
with the data and risk their reputation in the process.

2.2 Cryptographic Building Blocks

In order to protect the voter’s privacy, we use a decentralized multi-
authority functional encryption system with inner-product functionality,
for short, decentralized inner-product predicate encryption DIPPE =
(DIPPE.GlobalSetup,DIPPE.AuthSetup,DIPPE.KeyGen,DIPPE.Encrypt,DIPPE.
Decrypt). The reason of using this scheme is to ensure that no single author-
ity is able to decrypt, and therefore break the secrecy of the ballot, on her own.
For our prototype we use the scheme of Michalevsky et al. [23] as it best fits our
need for an adaptive secure scheme with excellent decryption performance that
doesn’t scale with the number of authorities.
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To implement the voter’s eligibility check, we utilize a t-out-of-n thresh-
old blind signature scheme TBS = (TBS.ParGen,TBS.KeyGen,TBS.Sign,
TBS.Verify). We require the blindness property to prevent that authorities make
conclusions about the voter’s identity as soon as the ballots are published to the
blockchain. In addition, we use the threshold property to prevent that voters
request more than one signature from distinct authorities and therefore con-
tradict our one–person–one–vote approach. For our implementation we use the
scheme of Kuchta et al. [19]. While the base version of this scheme requires a
trusted dealer, the TBS.KeyGen can be completely decentralized through a dis-
tributed key generation protocol [12]. For formal definitions we refer the reader
to the appropriate articles.

3 System Model

Key Authority (Opening Oracle): There exists a set of nKA off-chain key
authorities KA := {KA1, . . . ,KAi, . . . ,KAnKA

}, with each KAi owning an
identity IKAi

:= {skKAi
, pkKAi

, certKAi
}, consisting of a private key, public

key and certificate. Key authorities fulfill two tasks within the voting system.
First, for every voting vid, where KAi has been registered as a responsible
key authority, the authority creates a new key pair (pkKAi,vid, skKAi,vid)
consisting of public and private key. While the private key is kept secret,
the public key is published to the blockchain. The second task relates to the
opening process. In order to open the encrypted ballots, every responsible key
authority KAi has to generate a decryption key skKAi,vid,v using the private
key skKAi,vid and a policy vector v, and sends it to the blockchain.

Signer Authority (Anonymizer Oracle): There exists a set of nSA off-chain
signer authorities SA := {SA1, . . . , SAi, . . . , SAnSA

}, with each SAi possess-
ing an identity ISAi

:= {skSAi
, pkSAi

, certSAi
}, consisting of a private key,

public key and certificate. Main task of the signer authority SAi is to create
a signature σvid,Vi

over a ballot for an eligible voter Vi. To prevent a double
voting attack, each SAi keeps track of already issued signatures.

Registrar: There exists a set of nR off-chain registrars R := {R1, . . . , Ri,
. . . , RnR

}, with each Ri owning an identity IRi
:= {skRi

pkRi
, certRi

} that
consists of a private key, a public key and a certificate issued by an organi-
zation of the network. A registrar’s main responsibility is the registration of
new votings at the system.

Voter: There exists a set of nV off-chain voters V := {V1, . . . , Vi, . . . , VnV
},

with each Vi possessing two types of identities. First, an individual voter iden-
tity IVi

:= {skVi
, pkVi

, certVi
} and second, an anonymous identity Ianon :=

{skanon, pkanon, certanon}, which is shared between all voters. Both identi-
ties consist of a certificate and a pair of public and private key. While IVi

is uniquely bound to a voter and can be used to authenticate herself, the
intention of Ianon is to protect the privacy of the voter. Since we operate in
a permission-based blockchain model, every request has to be signed by an
authorized identity of the network. We use this approach of a shared iden-
tity, which can only be used to submit ballots to the blockchain, to bypass the
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membership check and to disguise the real origin of the request. To participate
at a given voting vid, the voter fetches the corresponding voting description
from the blockchain, casts an encrypted ballot, gets enough signatures from
the signer authorities and submits all together to the blockchain.

Peer: There exists a set of nP peers P := {P1, . . . , Pi . . . , PnP
}, with each peer

Pi owning an identity IPi
:= {skPi

, pkPi
, certPi

} consisting of a certificate
and a pair of public and private key. Peers are part of Hyperledger Fabric and
are mainly responsible for maintaining the distributed ledger. Further, they
provide the communication endpoint for all off-chain entities in the system.
The application functionality is included within their smart contracts and can
be invoked by appropriate entities.

Ordering Service (Orderer): There exists a set of nO ordering nodes O =
{O1, . . . , OnO

}. The ordering service is a modular component of Hyperledger
Fabric and its main responsibility is the block creation process. It collects all
transactions and sorts them into blocks. At the time of writing this article the
recommended decentralized ordering service is based on RAFT [25], which is
only crash-fault-tolerant. An orderer that tolerates byzantine errors is already
planned for a future release.

Organization: There exists a set of nOrg organizations Org = {Org1, . . . , Orgi,
. . . , OrgnOrg

}, with each Orgi owning a key pair consisting of public and pri-
vate key. Organizations are superior entities within the context of Hyperleder
Fabric. Every network participant whether it is a client or a peer, has to
obtain a signed certificate from an organization in order to operate within
the network.

4 Protocol

The voting system consists of four protocols: Setup, Pre-Voting, Voting and
Tallying.

4.1 Setup

Preparation of the Hyperledger Fabric Network. This step encompasses
the creation of the cryptographic material for organizations, smart-contracts
and common configuration (genesis block) required to bootstrap the network
peers. As this is standard process we refer the reader to the Hyperledger Fabric
documentation [16].

Preparation of Off-Chain Entities. In order to operate within the
permission-based blockchain, each network participant has to obtain a digital
certificate from an organization. The certificate encompasses information such
as the public key, a type (registrar, voter, . . . ) to limit the operation set and
possibly other metadata of the entity. During this step, each organization may
also verify the physical identity of the requester. Details of the issuance policy
as well as the decentralized implementation of the certification protocol (e.g.
through an MPC protocol [6]) are out of scope.
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Registration of Signer Authorities. In order to fulfill their special purpose
of ensuring the voter’s eligibility, signer authorities need to perform an additional
set up of the threshold blind signature scheme. Due to our focus on a decentral-
ized voting platform, signer authorities, across organizational boundaries, start
by engaging the common execution of the TBS.KeyGen(·) algorithm, with out-
put the set of secret keys skTBS,SAi

for each signer authority SAi and public key
components, which form the common public key pkTBS. Note that in order to
be completely decentralized, the preceding execution of a distributed key gener-
ation protocol may be necessary. Public key components are then stored within
the blockchain (Fig. 1).

Fig. 1. Protocol flow of our voting system. Due to clarity of presentation, the setup
protocol is left out. Components of Hyperledger Fabric are summarized as blockchain
(BC) and its state is assumed to be known by every party.

4.2 Pre-voting

Register Voting. In our system, a registrar Ri is capable of scheduling new
votings. To do so, the registrar sends a signed request containing metadata like
vid, title, expiration date, a set of eligible voters, a set of possible choices opt and
a policy π, which specifies a set of responsible key authorities, to the blockchain.

Authorize Voting. Trustlessness within our system relies on the decentral-
ization of critical entities. In case of key authorities this approach ensures that
there is no single authority, which is capable of opening the encrypted ballots
on her own. Now, in this sub-protocol the virtual ballot box is prepared. There-
fore, every key authority KAi, mentioned within the policy π of a registered
voting, generates a new functional encryption key pair {skvid,KAi

, pkvid,KAi
} ←

DIPPE.AuthSetup(pp, i) using the public parameters pp of the scheme. While the
private key skvid,KAi

is stored locally, the public key pkvid,KAi
is distributed

to a blockchain peer in a signed request. If the blockchain is able to verify that
the requesting key authority is part of the voting policy, it accepts and links the
public key to the voting description, which is stored within the blockchain.
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4.3 Voting

Cast Ballot. To cast a new ballot, the voter Vi first fetches the appropriate vot-
ing description from the blockchain and calls ballotvid,Vi

← DIPPE.Encrypt(pp,x,
optvid,Vi

) using her choice optvid,Vi
∈ opt, the public keys {pkKAm,vid}m∈π, a

policy vector x derived from the policy π, and the scheme’s public parameter pp.
In order to prevent double voting, the ballot ballotvid,Vi

has to be signed by a
set of at least t signer authorities. Note that the signing of the voter’s ballot has
to be done blindly in order to disguise associations from the ballot to the voter.
The signer authorities check whether the voter is eligible to participate at the
voting vid and if that is the case, Vi with input her encrypted ballot ballotvid,Vi

and the set of signer authorities engages in the protocol TBS.Sign(·), while in
the end Vi obtains a signature σvid,Vi

and all participating signer authorities
learn nothing about the ballot. Further, signer authorities locally keep track of
already issued blind signatures and in consequence, a valid signature can only
be obtained once per voter Vi and voting id vid.

Submit Ballot. The voter now votes by submitting the ballot ballotvid,Vi

together with the signature σvid,Vi
to the blockchain. Note that it is mandatory

for a voter at this point, to utilize her anonymous identity Ianon in order to sign
the request to the blockchain. Otherwise, it breaks the voter’s privacy as soon
as the ballot is opened. The blockchain accepts the ballot if TBS.Verify(pkTBS,
ballotvid,Vi

, σvid,Vi
) outputs 1.

4.4 Tallying

Unlock Ballots. In order to unlock an expired voting, key authorities have to
send decryption keys to the blockchain. To do so, each responsible key authority
KAi first fetches the voting description from the blockchain, and generates a
decryption key skKAi,vid,v ← DIPPE.KeyGen(pp, i, skKAi,vid, {pkKAm,vid}m∈π,
vid,v) using its own private key skvid,KAi

, the public keys {pkKAm,vid}m∈π of
all responsible key authorities, and an attribute vector v derived from the policy
π. The decryption key skKAi,vid,v is then distributed to the blockchain. The
blockchain verifies that the key authority KAi is indeed responsible for this
voting and if that is the case, the blockchain links the decryption key to the
stored voting description.

Finalize Voting. Up to now, the blockchain contains all encrypted ballots
and the corresponding decryption keys from the key authorities. So the final
step is the actual decryption. This is a transparent, either automated or trig-
gered process, which takes place within the peer’s smart contract. During this
step, the choice optvid,Vm

of voter Vm is revealed by calculating optvid,Vm
:=

DIPPE.Decrypt(ballotvid,Vm
, {skKAi,vid,v}) and the result is stored within the

blockchain. With all ballots now open, the tallying can be performed by anyone.
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5 Security Analysis

In this section, we analyze and informally argue security of our voting system.

Ballot Privacy: Ballot privacy means that an adversary is not able to reveal
the way, a specific voter has voted. Our system ensures ballot privacy due to
the fact that voters submit their ballots using a distinct anonymous identity,
which is shared between all voters and therefore disguises the real user behind
it. Even if ballots, which are stored within the blockchain, become publicly
visible, an inference to a specific voter can not be established anymore. In
order to prevent double voting, a ballot has to be submitted together with a
signature over the ballot, created by a set of signer authorities. The blindness
property of the threshold blind signature scheme ensures that even a (minor-
ity) set of malicious signer authorities is not able to learn the structure of
the ballot and as a consequence, break the privacy as soon as the ballot is
published to the blockchain.

Fairness: Fairness means that an adversary is not able to obtain intermediate
results of a voting before its expiration date. This property is ensured within
our system as long as no majority of malicious key authorities collude. The
reason is that all ballots, which enter the system, are encrypted client-side
using an IND-CPA secure functional encryption scheme and in order to open
ballots, which are stored within the blockchain, decryption keys from multiple
key authorities are required.

Eligibility: The eligibility property limits the voting attendance to voters that
are entitled to it. Each voter within our system possesses a digital identity,
which she obtains in exchange to a proof of her real identity. When registering
a new voting at the system, a registrar is able to define the set of voters that
are able to participate. The enforcement of the eligibility property is then
performed by the signer authorities as they only create signatures in exchange
for a proof of identity, for voters whose name is on the list.

Verifiability: Verifiability means that interested parties are able to validate
that results are correctly tallied. Here, we differentiate between two types of
verifiability.
Individual Verifiability: Individual verifiability means that every distinct
voter is able to assure herself that the own ballot was correctly counted.
Our system benefits from the fact that the decryption (ballot opening) is a
transparent process, which is done by the smart contract. During this step, all
necessary decryption keys are made public. Furthermore, voting data never
leaves the blockchain and Hyperledger Fabric prevents that smart contracts
are changed on single peers in order to manipulate the outcome.
Universal Verifiability: Universal verifiability allows every interested party
to verify the election result. The same argumentation, which was given for
the individual case, is also applicable for the universal one. Every party that
mistrust the result, is able to recalculate the outcome by decrypting and
tallying the stored ballots herself.
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Receipt-Freeness and Coercion-Resistance: The two properties of receipt-
freeness and coercion-resistance are closely related to each other, as they
enable protection against coercion or profit intentions of the voter, e.g. vote
buying. Receipt-freeness, basically, is the absence of information of the voter
that can be used to prove to an attacker the way she voted. Coercion-
resistance assumes a stronger attacker, which not only cooperates with the
voter in form of sharing secret information, but is also able to adaptively
interact with the voter by preparing messages for her [8]. Our system is vul-
nerable to such type of attacks, due to the fact that all encrypted ballots
are stored publicly within the blockchain. If the voter cooperates with an
attacker by providing the random coins, which are used to encrypt the ballot,
the attacker is able to make associations between the voter and her choice as
soon as the ballots are opened.

Double-Voting-Resistance: Double-voting is the threat in one–person–one–
vote systems that a voter is able to submit more than just one ballot. In our
system, double-voting is prevented as long as a majority of signer authorities
act honestly. The reason is that a ballot can only be submitted in combination
with a valid signature, issued by a set of signer authorities. Signer author-
ities, however, will only issue signatures once for every eligible voter. We
require that the used threshold blind signature scheme fulfills the unforge-
ability property, which prevents that valid signatures can be illegitimately
cast by unauthorized entities.

Censorship-Resistance: Our system is censorship-resistant in the sense that
there is no solely responsible voting provider that is able to manipulate the
outcome of the voting by adding undetected forgeries, declining to accept bal-
lots from voters or even hiding ballots from the counting process. This follows
from the fact that the blockchain itself is immutable and allows modifications
only if a quorum of voting providers agree.

Reliability: Attacks on the voting system in order to force malfunction or even
the destruction of submitted ballots, and in consequence a change in the
outcome of the election, are an actual threat. The fact that our voting system
is built on top of a decentralized blockchain ensures protection against data
loss, as a copy of the database is stored redundantly on each peer.

6 Conclusions and Future Work

In this paper, we proposed a trustless, censorship-resilient and scalable electronic
voting system based on Hyperledger Fabric. Our system allows the parametriza-
tion of the number of peers in order to decrease the required tallying time of the
ballots. A preliminary performance evaluation showed that Hyperledger Fab-
ric is basically a good choice for such a system, because the smart contract
hardly limits the performance of the underlying voting program. When consid-
ering large-scale votings like for example, the federal election 2017 in Germany
with around 61,69 million eligible voters, our voting system needs approximately
8,77 h to perform the whole counting process with 512 peers (single-threaded on
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3,60 GHz CPU) per organization, which is within the time frame of traditional,
manual tallying processes. As future work remains a completion of the system,
as it is only partially implemented up to this point and further, a performance
analysis using the BFT based orderer. It would be interesting to investigate opti-
mizations that can be applied, e.g. faster schemes and finally, a formal security
analysis is still pending.
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Abstract. We present Pay To Transport (P2T), a protocol that lets
customers buy an item remotely in an atomic, privacy preserving and
trustless manner. P2T needs only basic features of a blockchain scripting
language and does not need any tracking systems, arbitrator or deposit to
preserve its security properties. For this reason the protocol can be imple-
mented on any permissionless blockchain, regardless of its scripting lan-
guage, without additional trust. Merchants’ and transporters’ addresses
are public, but in P2T the parties never pay those addresses directly.
Therefore P2T maintains the privacy of customers, merchant and trans-
porters.

Keywords: Blockchain · Transportation · P2SH · Bitcoin · Privacy

1 Introduction

As humans, we exchange value for goods since the specialization of labor. Value
has been represented in many forms, for example using gold, money and even
rocks. We started doing it physically in markets, and recently we moved to remote
exchanges using online web-stores. Remote exchanges are undoubtedly useful,
less physically hazardous and more convenient and efficient with respect to the
previous in-person method, but the shift to remote exchanges had undesired
consequences.

One of those consequences is the de facto loss of privacy and security. Today,
services that centrally collect and store users’ data have a far wider reach for
sharing that data than they had before the internet. Third-party services can
use data both for legitimate and non-legitimate purposes, and an aggressive
sharing of data increases the probability of non-legitimate uses. Examples of
non-legitimate uses are unfair prices or insurance premiums, stigmatization of
people and, in the worst case, the unfair punishment of people in non-honest
states [4]. Furthermore, any service that stores data centrally is potentially the
target of malicious attacks. In this regard, then, private data is a liability for
both the user giving it and the service collecting it. We claim that it would be
better for all the parties involved not to have the data in the first place.
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Nowadays, people can use blockchains to exchange value in a more (but not
completely) private manner to defend themselves from some of these attacks,
but there is not a private or anonymous method or protocol for the shipping of
some good from the merchant to the customer: generally the shipping still forces
customers to share their personal data (e.g. their address or their identity) with
the service they are buying from. The result is that people still have to trust
services not sharing their data with other data collectors even if they use a
blockchain based payment system.

Proposed methods to exchange goods using a blockchain for both the
exchange of value and the shipment agreement still require private data sharing
or additional trust. For example, some methods rely on tracking and the result
of tracking is posted on a blockchain [3]. Generally, this involves external objects
(typically a GPS) to signal the position of the package. In those settings, the
GPS operates like some form of trusted oracle. This is both a trust and a pri-
vacy problem. In fact, both the company supplying the product and the client
receiving it have to trust that nobody tampered with the GPS. Furthermore,
a throwaway GPS sensor can be more expensive than the purchased item the
transporter is carrying: this makes transportation costs higher than the item’s
cost. Therefore GPS-based tracking are not feasible for inexpensive items.

Our contribution. To solve the current lack of privacy, security and trust in
delivery systems, we present a protocol that doesn’t require sharing private data
but is still secure against non-honest participants. More specifically, our contri-
butions are:

– We present Pay to Transport, denoted as P2T, a protocol that lets a merchant
M and a customer C to remotely exchange value (coins) for goods using any
permissionless blockchain;

– We analyze P2T and informally prove how the protocol respects the proper-
ties presented in Sect. 3, including privacy, atomicity and trustlessness, even
without any arbitrator or deposit;

– We present a proof-of-concept implementation1 which uses the Bitcoin block-
chain.

The paper proceeds as follows. In Sect. 2 we present the literature on the topic of
delivery transportation using a blockchain. In Sect. 3 we introduce the concepts
needed to understand the protocol. In Sect. 4 we introduce the protocol using
only one transporter. In Sect. 5 we analyze P2T and then we conclude.

2 Related Works

While there are multiple papers about the use of a blockchain system on a supply
chain (see e.g. [7] for a survey), we decided to analyze only those papers that
explicitly study the use of a transporter.

1 See code at https://gitlab.com/disnocen/pay-to-transport.

https://gitlab.com/disnocen/pay-to-transport
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2.1 Proof of Delivery

In [6], Hasan et al. analyze what they call a Proof of Delivery system to trade
and track sold items between two parties. The system relies on five agents. The
first three agents are directly involved with the shipment of the item and they
are the Seller, the Buyer and the Transporter. The others are external parties
not directly involved in the exchange, they overview the process. Those are
the Arbitrator and the Smart Contract Attestation Authority. The Arbitrator
is a trusted third party involved in case of a dispute and solve the issues off
the chain. The smart contract authority is responsible to attest that the smart
contract complies with the terms and conditions signed by the involved parties
in the agreement form. Each involved party puts an equal deposited collateral
which he risks to lose if he behaves maliciously.

In the solution proposed by the authors the third parties (the arbitrator and
the SC authority) are not prevented from colluding with one of the parties. In
particular, the arbitrator handles the data off chain, so there is no transparent
way to inspect his judgment. Furthermore, both the systems require that all
parties, arbitrator and the smart contract authority included, know both the
physical address and blockchain address of the buyer, so privacy is not guaran-
teed.

2.2 Lelantos

The solution proposed by Al Tawi et al. [2] also uses a smart contract deployed
by the Lelantos system itself to manage the shipment. A single smart contract is
used by all customers, merchants and couriers. A customer C is able to redirect
shipment between different couriers by using a specific smart contract function.
C sends new delivery addresses in encrypted form using the long term public
key of the currently designated delivery courier. The public keys are vouchered
by Lelantos itself.

The customer C does not declare in advance which couriers he will use. Fur-
thermore, C won’t contact any Currier before the shipment. While this process
achieve anonymity for the customer C, the Lelantos protocol is interactive and
requires both C and all the delivery couriers to pay attention to the delivery
smart contract.

3 Preliminaries

Labeled Wallets and Derived Blockchain Addresses. It is possible to create mul-
tiple public/secret key pair (and therefore addresses) starting from a single
secret, called base. An example of this behavior is given, e.g. in the Bitcoin
blockchain, from BIP32 address generation format [10]. The wallet generates
new addresses starting from the base and a label. Therefore it is possible to
index those addresses via the label.

In this paper we use the label format of [5]. Given a secret (private) key sk
and a generation point g in the elliptic curve, the public key pk is computed as
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pk = gsk. The couple (sk,pk) is the base in our wallet. The derived key pair
with label x from base (sk,pk) is written as (sk[x],pk[x]) an it is given by

sk[x] := sk + H1(x) pk[x] := pk + gH1(x)

where H1 is (the numerical representation of) the hash function implemented
in the blockchain. For example H1 in Bitcoin is the SHA256, while H1 in Tezos
is Blake2b2. We call sk[x] the derived secret key and pk[x] the derived public
key. Blockchain addresses are derived in a deterministic way using particular
encoding Enc(·) of the hash of the public key. So if P is the address generated
by the public key pk, then the derived address is

daddr(P, x) = Enc(H2(pk[x]))

where H2 is generally different from H1.

Conditional Transactions. It is possible to make transactions that include con-
ditional statements based on time (or block numbers): one branch of the trans-
action is used if it is redeemed before a certain time (or a certain block); the
other branch is used if it is redeemed later. Throughout the paper we denote
these as conditional transactions. It is possible to build conditional transactions
for the majority of the blockchains, including Bitcoin and derivatives, Ethereum
or Tezos. In the repository of this paper, we put a way to build conditional
transactions in the case of Bitcoin transactions.

In P2T we use two kinds of conditional transaction constructions between
non-trusting parties A and B: conditional transactions with secrets and without
secrets. One way to build transactions that use secrets is through hash-lock
contracts [1]. In short, given pre-computed secret s and hash h = H(s), where
H(·) is a hash function, the party who builds the transaction (say A) adds
the presentation of the preimage of h among the conditions to redeem that
transaction. The other participant (say B) must then reveal the secret s (such
that h = H(s)), in addition to putting his signature, to redeem the transaction. A
hash-lock contract can be put in either (or both) of the branches of a conditional
transaction.

More formally, let v be the value (sometimes called amount) of a trans-
action and let the string x be a particular encoding of the order placed by
the customer C. Then, given i = 1, 2, s and h as above we denote with the
ordered 5-tuple (A,B, v, t, (h, i)) the conditional transaction toward the address
daddr(PA, x) with secret s which is redeemable by:

2 Although there are multiple hash functions implemented in Tezos, including SHA256,
the Blake2b function is used for the most important cryptographic operations (such
as signature checks). See the code at the URL https://gitlab.com/tezos/tezos/-/
blob/master/src/lib crypto/secp256k1.ml.

https://gitlab.com/tezos/tezos/-/blob/master/src/lib_crypto/secp256k1.ml
https://gitlab.com/tezos/tezos/-/blob/master/src/lib_crypto/secp256k1.ml
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1. a multisig3 between parties (A,B), i.e. by using a joint signature with the
keys related to addresses daddr(PA, x) and daddr(PB , x), before time t, or

2. the signature of party A alone using the private key relative to address
daddr(PA, x) after time t .

If i = 1, then the hash-lock contract is put in the first branch of the transaction.
Otherwise, if i = 2, the hash-lock contract is in the second branch. Finally, note
that not all conditional transactions use secrets in P2T. In those cases we will
write (A,B, v, t, null) or more simply (A,B, v, t)

Transportation Protocol Properties. Using the terminology explained in Table 1.1
of [9] we want P2T to satisfy the following cryptographic properties:

– Privacy: keeping information secret from all but those parties that are autho-
rized to see it

– (Customer) Anonymity: the customer is able to conceal his identity
– Entity Authentication: corroboration of the identity of an entity
– Receipt: acknowledgment that information has been received;
– Confirmation: acknowledgment that services have been provided
– Plausible Deniability: an external party can not prove that a customer

C bought an item I from a merchant M and it has been delivered by a
transporter T without the active collaboration of at least one of those parties.

Similarly to [6] we also focused on these logistic properties:

– Punctuality: every action and deliver has a maximum allowed time
– Honesty: following the protocol is the most rewarding behavior
– Atomicity: no party involved can lose money even if other parties misbehave

Finally we want P2T to satisfy this property:

– Trustlessness: it is not necessary for one participant to trust the others

In Sect. 5 we show how the P2T protocol satisfies all these requirements.

Notation. Parties are addressed with their initial letter, e.g. the merchant is
denoted by M . In the previous sections we already introduced the notation for
keys, addresses and conditional transactions. We explain here the notation used
for the time constraints.

Given an ordered couple of parties (P,Q) and a transporter T , we denote
with δPQ

T (an estimate of) the time that T needs to go from the pick up point of
P to the pick up point of Q. Note that in principle going from P ’s pick up point
3 Even if in some blockchains such as Ethereum, there is no concept of multisigna-
ture, it is still possible to build smart contracts that have functions behaving like
a multisignature. See for example https://github.com/unchained-capital/ethereum-
multisig. Furthermore, in other blockchains it is possible to create aggregate sig-
natures that act as a multisignature but leaving only one signature as blockchain
footprint, further increasing privacy. See for example [8].

https://github.com/unchained-capital/ethereum-multisig
https://github.com/unchained-capital/ethereum-multisig
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to Q’s one can be different from going from Q’s pick up point to P ’s. For this
reason the couple (P,Q) is ordered and δPQ

T �= δQP
T . Because the transporter has

to wait at his pick up point for the customer or others to take the package, we
put εT the maximum time that T can wait before he returns the package. We
also put δ̃PQ

T = δPQ
T + δQP

T + εT as the whole time that T needs to go from P ’s
pick up point to Q’s and back plus the waiting time. Of course δ̃PQ

T = δ̃QP
T , but

we will use both notations. We use δ̃PQ
T when T goes from P to Q and then he

goes back to P and vice versa. This lets us be more explicit in the description of
all the time constrained payments needed to support the fact that C can refuse
the delivered package in the end.

4 Transportation Protocol

The P2T protocol involves three parties: a merchant M , a customer C and a
transporter T . Public keys pkM and pkT and blockchain addresses PM and PT

of M and T respectively are public and known in advance to all the parties (e.g.
those information are in the contact internet pages of the parties). Note that a
protocol for the shipment of a product from M to C is different from a protocol
for returning that product after the acceptance of the delivered package: in this
paper we focus only on the shipment protocol. Therefore the shipped package
can be accepted or refused by C on the spot only. Of course, it is possible to
adapt this protocol in case of a product return, treating it as a shipment from
C to M , but this is not discussed here (Fig. 1 and 2).

Fig. 1. Phases one and two of the Basic Protocol with One Transporter. 1. C pays M
the transportation costs, 2. T physically goes to M , pays M and receive the package

Broadly speaking, the P2T protocol works as follows. The transporter T goes
to merchant M , pays M the cost of the item (ad interim payment) and takes charge
of the package. The transporter then brings it to his own pick up point (e.g. T ’s
company headquarters). Finally, customer C goes to T ’s pick up point, pays T the
cost of the item plus transportation costs and takes his package. C does not have
to reveal his own physical address nor his identity to perform these actions.
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Algorithm 1. Basic protocol
1: C decides on I and M
2: C and M engage T , C accepts cT
3: T generates r, T computes R := H(r)
4: T sends R to C
5: C pays cT to M
6: CT1: C sends conditional transaction (C, T, cI , t1 + δ̃TM

T , (R, 1))
7: CT2: T sends conditional transaction (T, M, cI − cT , t1 + δTM

T , null)
8: M gives package to T and at the same time CT3: T and M send conditional

transaction (M, T, cI − cT , t1 + δ̃TM
T + δTM

T , (R, 2))
9: if C accepts the package then
10: C and T spend CT1 (so T releases r)
11: M spends CT3 using r
12: else
13: T brings package back to M
14: T and M send money from CT3 to T ’s address
15: end if

Since a system of “simple” transactions (e.g. P2PKH in Bitcoin or transac-
tions between Externally Owned Accounts in Ethereum) would not give sufficient
guarantees to any of the parties involved, we based every passage of coins and
product on time constraints and spendability conditions (see Sect. 3), coded in
the transactions. Building transactions this way, we accomplish two things. On
the one hand we accomplish a traceable coordination of multiple parties without
using external tracking devices. On the other hand, C doesn’t need to be on line
after the first payment to M and from that payment on the P2T protocol is
non interactive from his point of view. This is a huge advantage for C since in
this way he can use a device once (for example a public computer in a library)
without the need to subsequently check the status of his order.

Fundamental steps of the P2T protocol are summarized in pseudo-code in
Algorithm 1 and it works as follows. Customer C decides to buy an item I at time
t0 from the webstore of the merchant M , and he needs I to be shipped to a place
which is more close to him. We assume that the cost for the item is cI , and through-
out the protocol the cost of the transportation is assumed to be cT for each chosen
transporter T . An order from C can have multiple information, such as the item’s
identification number, the item’s quantity or the maximum date of delivery which
we denote as t2 (see below for a constraint on t2). C is required also to provide
a blockchain address PC both as the (only) identification for that shipment and
to prove he has enough coins to pay for the item I. On the other hand, C is not
required to provide a delivery address nor any other identifying information. We
emphasize that a blockchain address created specifically for this trade cannot be
considered as an identifying element for the customer C. In fact, assuming that C
is keen on maintaining its privacy, this address can be funded using the particular
technologies of blockchain projects. Examples are the z-shielded transactions in
Zcash, the use of a large number of mixins in Monero, CoinJoins or similar tech-
nologies in Bitcoin or, in general, the use of mixers. Furthermore, this address is
used directly only once, so there is no risk of address reuse.
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Based on the information provided by C, M and C agree on a transporter
T 4. During the agreement, C specifies what we call the minimal required zone
(MRZ). A MRZ is the minimal information needed by T to estimate delivery
costs and date of delivery. For example, if T charges the same delivery costs and
estimates the same delivery time for a whole country, then C communicates only
the country where he intends to pick up the item I. Therefore by the agreement
T must take the item I from M and take it to his pick up place before date
t2. Here t1 + δ̃TM

T − εT ≤ t2 ≤ t1 + δ̃TM
T where t1 is the occurrence of the first

payment from C to M (see below for details). Of course, if C and M agree on
T , they also agree on the additional costs cT . All parties M , C and T provide to
each other some contact information for possible notifications, e.g. for the arrival
of the package at T ’s pick up place5. As soon as T has been decided and engaged
in transport, T generates a random number r and creates R = H(r) where H is
a hash function. T sends R to C using the contact information provided before.
R is the puzzle for the secret, as described in Sect. 3.

After this step, M checks that there are at least cI + cT funds in PC
6 and

if so M creates a bill contract x that he sends to C. In x there are some static
information about M , i.e. information that persists for more than one order,
and some dynamic information regarding the specific order. In particular, the
address PT of T is included in x. C verifies that the information on x are sound
and if he agrees on them he sends the equivalent of cT to address daddr(PM , x).
We call this transaction the non-redeemable commitment transaction of C and
it is done at time t1. This payment represents three things about C: it is a proof
that C controls the funds in address PC , it is a proof that C accepts all terms
written in x and, being non redeemable by C, it is an incentive not to spam M
with fake requests which would result in a DoS attack.

Fig. 2. Possible endings of the Basic Protocol with One Transporter. 3a. C physically
goes to T and if the package is intact, then C accepts it and pays T , 3b. otherwise, if
C refuses the package, T gives M the package back while M returns T his money.

4 T can be chosen from a billboard or by some convention between the merchant M
and T himself.

5 The contact information should not reveal identity of C. For example C can use a
throwaway e-mail address or a burner phone.

6 The merchant M can do that because the blockchain is public.



74 F. Barbàra and C. Schifanella

When the merchant M receives the payment from customer C, he is sure
that C has serious intentions in buying the object, but he does not know any-
thing about T . For this reason M sends H(x) to T waiting for his commitment
transaction.

Before doing that, T needs a commitment from C, so C sends another com-
mitment transaction, this time to T . This commitment transaction is different
from the previous one because it is redeemable by C. This is a (C, T, cI , t1 +
δ̃TM
T , (R, 1)) conditional transaction with secret R in the first branch of the

transaction (see Sect. 3) and we call it CT1. C has to do this payment before
time t1 + δTM

T , otherwise T cannot go to M in time and T risks to delay the
whole shipment process. In case C is too slow to pay, T decides to abort the
protocol and notifies other parties. In case T can commit to M , he sends cI − cT
coins to address daddr(PT , x) doing a redeemable conditional commitment trans-
action without secret (T,M, cI − cT , t1 + δTM

T ) which we call CT2. M considers
valid T ’s coin transfer only if the transaction is built in the way described above,
otherwise M aborts the protocol and notifies C of that.

After the merchant M saw the payment, he produces and physically prints a
visual representation V (e.g. a QRcode) of H(x) and use it to seal the package.
At time t1 + δTM

T , T can take this package with item I inside it from M . If M
is not malicious, the package of item I is in perfect conditions and T verifies
that V is the visual representation of H(x) (recall that T has received H(x)
before to create address daddr(PT , x)), both M and T sign the transaction from
daddr(PT , x) to daddr(PM , x). This is a (M,T, cI − cT , t1 + δ̃TM

T + δTM
T , (R, 2))

conditional transaction CT3 with secret R in the second branch. At this stage,
M has received (but cannot use yet) cT + (cI − cT ) = cI coins, so the merchant
has received the full price of the item I and the item is shipped. The second
conditional transaction with a secret is done to account for the case in which C
could refuse the package.

T takes the package to his pick up point. When T and C physically meet at
T ’s pick up point, C checks that the package is intact, that the seal V is not
broken and that it represents H(x). If that is case, then C and T spends their
conditional transaction CT1 sending funds to an address belonging to T . This
way T has to reveal r such that R = H(r) and M can use it to spend CT3. On
the other hand, if there is some problem with the package, C refuses the package
and T has to bring it back to M . T is sure he can have his coins back because
of the conditional transaction CT3.

5 Analysis

Privacy and Anonymity. From C’s point of view, P2T is highly private. In
fact, the customer C provides to the merchant M and the transporter T only
a public key with funds and a geographical zone (the MRZ) where he intends
to pick the package. Depending on the blockchain method used, the source of
funds can be obfuscated in a way to detach it from the real identity of C (see
Sect. 3). Therefore P2T satisfy also customer anonymity. Note that privacy and
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anonymity comes at a cost for C. M could steal funds of C and never give
him any product, gaining cT . While this is the case, we assume C won’t use
merchants or transporters that have any or a bad reputation for big payments.
On the other hand, even if C loses funds, he only loses transportation costs.
Still, this is better than today’s policy for which C must pay the whole cost
in advance, and therefore he risks losing both the cost of the item cI and the
delivery cost cT .

Authentication and Deniability. In the P2T protocol there is an intrinsic authen-
tication method. In fact, the public addresses and keys of the merchant M and
the transporters T are public and the payments are made to addresses deriving
from those public keys using the homomorphic properties of the construction
of the addresses. The fact that the entities are able to spend these funds in
the derived addresses is proof of their identity. Furthermore, since all entities
use derived addresses and not their publicly accessible addresses, an external
observer cannot prove that the parties involved have completed a particular
exchange thanks to the hardness of the discrete logarithm problem assumption7.
Therefore all parties can plausibly deny their involvement in an order.

Confirmation and Receipt. The use of the blockchain and the particular way
parties following the protocol build the addresses and transactions gives both
the receipt and confirmation of orders and payments. Furthermore, by following
the state of the blockchain the entities involved can track the state of the order
by seeing which payments have been already done.

Punctuality. This also provide the punctuality property of P2T: time constraints
in the transactions force parties to respect all prearranged times or they risk
losing funds.

Atomicity and Honesty. Transactions are constructed taking into account the
possible dishonesty of each participant. Since every transaction is atomic, if a
participant does not respect the protocol (that is, he is not honest), he does
not receive the coins that would be due to him. Each participant is therefore
encouraged to be honest. In other words, following the protocol is the most
rewarding behavior.

Trustlessness. In P2T, participants do not have to trust the others. This is due
to the particular constructions of the transactions. We analyze the protocol from
the point of view of each of the participants.

From the point of view of the merchant M , there is no way to lose both
the money and the product. In fact, once the product has been given to the
transporter T , the transaction CT3 assures the merchant that (if customer C
accepts the package) he will be able to spend his coins. This is because M

7 This is the underlining assumption for the construction of public keys on all
blockchain projects.



76 F. Barbàra and C. Schifanella

supervises the creation of this transaction (M and T are in the same place at
the same time) and can verify that the hash placed by T is the same as the
one in transaction CT1. Furthermore M will know about the preimage of the
hash the moment T redeems CT1. If, on the other hand, C does not accept the
product, theoretically T may decide not to return the package to M . But this
would not be a rational choice for T . The transporter, in fact, does not know
what is contained in the package (therefore a priori may not be interested in the
article) and he is therefore encouraged to return it in order to redeem the money
stuck in the multisig with M .

As far as the transporter T is concerned, he is interested in not losing the
money invested to earn the transport commissions. T cannot lose money in CT2
(its first transaction) since it is atomic and T only executes it after CT1 has
been confirmed. T risks losing money in CT3 if C doesn’t accept the package
and M doesn’t show up for the return. In this case the time-lock would expire
and M could redeem the transaction. This is not possible because M must also
solve the hash-lock contract, and to solve it M needs the preimage revealed by
T . T reveals this secret only if C accepts the package. In this regard, note that if
the secret had been created by C, T would not have had the same assurances. In
fact, given the anonymity of C, he and M could be the same entity, or colluding.
If that were the case, then C could refuse the package and M could still redeem
the coins in CT3 because he is aware of the preimage.

Finally, C doesn’t need to trust anyone too. Once the shipping costs have
been paid (which C agrees to lose if the package is refused) C creates and sends
the atomic transaction CT1. On the scheduled date, C goes to the pick up point
of T and decides whether to accept the package and sign the transaction with T
or to refuse the package. In this latter case, C only has to wait for the time-lock
to expire in order to use its coins again: in the meantime T cannot spend them
because they are in a multisig.

6 Conclusion and Future Works

We present P2T, a payment protocol for the exchange of coins and physical
goods. P2T is trustless, privacy preserving and preserves the anonymity of cus-
tomers without using external tracking systems, arbitrators or deposits. The
protocol uses mechanisms common to all blockchain protocols, so that it is pos-
sible to implement it in all these projects. We implemented a proof of concept
that uses the Bitcoin blockchain and that can be found online. In addition to
privacy and anonymity, the protocol satisfies other properties such as plausible
deniability and encourages participants’ honesty by using atomic transactions.
In the future we intend to extend the treatment of the P2T protocol by giving
a more formal analysis of these properties. We also plan to extend the protocol
to use more than one transporter and to include the inverse case of the return
of a product. In fact, a protocol for the return of the product would mirror the
proposed one by exchanging the roles of the merchant and the customer, keep-
ing that of the transporter the same. In the future version of P2T, payments
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can make use of the payment channel such as Lightning Network (on Bitcoin)
or Raiden Network (on Ethereum). The implementation on payment channels
would make payments faster and increase privacy since most transactions would
never appear on blockchain.
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Abstract. We contribute to the optimization of the sparse matrix-
vector product on graphics processing units by introducing a variant
of the coordinate sparse matrix layout that compresses the integer rep-
resentation of the matrix indices. In addition, we employ a look-ahead
table to avoid the storage of repeated numerical values in the sparse
matrix, yielding a more compact data representation that is easier to
maintain in the cache. Our evaluation on the two most recent genera-
tions of NVIDIA GPUs, the V100 and the A100 architectures, shows
considerable performance improvements over the kernels for the sparse
matrix-vector product in cuSPARSE (CUDA 11.0.167).

Keywords: Sparse matrix-vector product · Sparse matrix data
layouts · Sparse linear algebra · High performance computing · GPUs

1 Introduction

The sparse matrix-vector product (SpMV) is a fundamental operation for the
iterative solution of sparse linear systems since it is usually the computationally
most expensive building block in stationary schemes as well as Krylov subspace
methods [10].

The SpMV is, in general, a memory-bound operation which means that its
performance is strongly determined by the memory access volume and the access
pattern dictated by the algorithmic realization of the kernel and the memory
bandwidth of the target computer architecture. In this context, the irregularity of
the memory accesses turns the parallel optimization of SpMV into a challenging
task.
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A particular factor which directly influences the implementation and (par-
allel) performance of SpMV is the data layout of the sparse matrix. The coor-
dinate format (COO) [10] is likely the most intuitive layout: for each non-zero
matrix entry, this scheme maintains a 3-tuple with the entry’s row and column
indices and its numerical value. The compressed sparse row format (CSR) [10] is
a flexible alternative that reduces the indexing overhead with respect to COO by
storing only starting/ending indices (pointers) for each matrix row, while keep-
ing the same information for the column indices and values as COO. A plethora
of application-specific sparse matrix layouts have been proposed over the past
decades; see [2–5,8,9] among many others. In general, these solutions deliver
high performance for some problem domains and/or computer architectures but
perform poorly and/or require expensive transformations of the matrix format
for others.

In [7] we introduced a balancing parallelization scheme for GPUs optimized
for matrices with an irregular row distribution of the non-zero entries. In brief,
this scheme: 1) is based on the standard CSR format; 2) requires an inexpensive
pre-processing step; and 3) consumes only a minor amount of additional memory
compared with significantly more expensive GPU-specific sparse matrix layouts.
The new balancing approach departs from the conventional parallelization across
matrix rows by instead distributing the workload evenly among the thread teams
while avoiding race conditions via atomic transactions with efficient support by
hardware in recent GPU architectures. In [6], we extended the idea to the COO
format, showing that the resulting kernel is superior to some of the most popular
SpMV implementations based on both COO and CSR.

In this paper, we continue our effort towards the optimization of SpMV on
GPUs by making the following contributions:

– We propose orthogonal (independent) enhancements of the balancing COO-
based scheme in [7] that result in a compressed storage format for the matrix
data (indices and values), thus reducing the memory traffic and improving
performance.

– We develop a high performance realization of this scheme for the most recent
generations of NVIDIA GPUs (Volta and Ampere).

– We provide a complete evaluation of the new kernel in comparison with
highly optimized implementations of SpMV, based on COO and CSR, from in
NVIDIA cuSPARSE (those in CUDA 11.0.167). Following standard practice,
this analysis is performed both from the perspective of memory consumption
and GFLOPS (billions of floating-point arithmetic operations, or flops, per
second).

The idea of compressing the indexing information to reduce the pressure on
memory bandwidth is not original. In this sense, our approach is slightly related
to the compressed sparse blocks (CSB) format [3], which partitions the sparse
matrix into a regular grid of sparse blocks, each of which is stored in CSR format
with the block indices compressed as offsets to a reference. In comparison, we
also maintain the indices as offsets, encoded using a shorter number of bits.
However, our scheme is based on COO instead of CSR; we divide the nonzero
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matrix entries (instead of the matrix itself) into regular chunks; we couple this
partitioning with a balanced workload distribution for GPUs; and we also explore
the compression of the numerical data using a look-ahead table.

The rest of the paper is organized as follows. In Sect. 2, we review the COO
format and introduce our new balancing and compressed variant for GPUs based
on it. In Sect. 3, we evaluate a standalone implementation of the new scheme for
SpMV in comparison with the GPU kernels in NVIDIA cuSPARSE. In addition,
in that section, we also assess the impact of the scheme when the SpMV kernel
is integrated into the biconjugate gradient stabilized method (BICGSTAB) [10].
Finally, in Sect. 4, we offer some concluding remarks and a brief discussion of
open research lines.

2 Balanced and Compressed SpMV

2.1 COO Format

Consider the SpMV y := A · x, where A is an n × n sparse matrix with nz

non-zero entries and x, y are both vectors with n components. The COO format
employs three vectors: say a, i and j, each of dimension nz, to maintain the
values of the non-zero elements of the matrix and their row and column index
coordinates, respectively. In a direct parallelization of the COO-based SpMV on
a GPU, each thread operates with a single nonzero element of the matrix, per-
forming the multiplication with the corresponding entry of x, and using atomic
operations to accumulate the partial result on the appropriate component of y.
The performance of this initial approach can be improved if each thread com-
putes several elements of the result vector, as typically 2 or 4 elements suffice for
the compiler to aggregate enough memory access operations to overlap transfer
and arithmetic operations. The excerpt of CUDA-like code in Listing 1.1 illus-
trates this approach for a COO-based SpMV with A stored using vectors a, i,
and j. There each thread computes K accumulations of the form yi := yi+aij ·xj ,
involving K nonzero matrix elements. Note that, for simplicity, we assume that
nz is an exact multiple of B ·K, where B denotes the number of threads per block.
Otherwise, the matrix can be padded with explicit zero elements.

In practice, the number of iterations in the loop of the SpMV kernel in List-
ing 1.1 is small, and the whole loop should be unrolled to attain high perfor-
mance. For that purpose, it is convenient to pad each matrix row with zeros so
that its dimension becomes an exact multiple of K.

A second “loop” is implicit in the GPU code as the B threads of a block
perform the operations for a chunk of B · K matrix elements. In current NVIDIA
GPUs, the number of threads in a block is limited to 1,024 and must be over
192 for good performance. The compromise value B = 256 is rather optimal and
provides some advantages from the perspective of the compression technique
introduced in the next subsection.

Finally, a third (outermost) “loop” is also implicitly present, for the �nz/(B ·
K)� thread blocks. With this approach, the GPU hardware scheduler will dynam-
ically assign blocks to each chunk of the matrix. This is important because the
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1 #define W 32 // Warp size
2 #define B 256 // Number of threads per block
3 #define K 4 // Number of elements per thread
4
5 void SpMV(int n, int nz, int *i, int *j, double *a, double *x, double *y)

{
6 cudaMemset(y, 0, sizeof(double) * n);
7 int nc = nz / (B * K);
8 dim3 tb(W, B / W);
9 SpMV_kernel <<<nc, tb >>>(i, j, a, x, y);

10 }
11
12 __global__ void SpMV_kernel(int *i, int *j, double *a, double *x, double

*y){
13 int p = blockIdx.x, q = threadIdx.y * W + threadIdx.x;
14 double v = 0.0;
15 for (int l = 0; l < K; l++) {
16 int t = (p * B + q) * K + l;
17 v += a[t] * x[j[t]];
18 }
19 int row = i[p * B + q];
20 atomicAdd(y + row , v);
21 }

Listing 1.1. CUDA code for the SpMV with a simple balancing parallelization
scheme and A stored in coordinate format.

execution time of the threads can be quite different given the variations in the
access cost to the vectors x and y. The reason is that, although each thread pro-
cess the same number of elements, the matrix pattern can result in very different
cache hits and misses during the accesses to the input vector x. Also, the order-
ing of the matrix elements can introduce an important number of cache misses
in the update of the result vector y. In addition, atomic operations must be
used to avoid race conditions in this update. Although atomic primitives have
efficient support in modern GPU hardware, they introduce contention among
the threads introducing further variations to the execution time.

In principle, the COO format does not enforce any specific ordering of the
matrix elements. However, a random ordering will result in poor locality during
the accesses to the result y. In contrast, a row-major ordering (such as that used
in CSR) renders excellent locality during the same accesses, but with higher con-
tention among threads. To avoid this, a segmented scan is implemented using
the intra-block communication primitives available on NVIDIA’s GPU. The frag-
ment of CUDA code in Listing 1.2 shows this reduction. There, the variable v
stores the values that have to be accumulated and the variable row their corre-
sponding row indices.

This solution mimics the highly parallel variant of the classic prefix sum: each
thread communicates the accumulated value as well as the row index for that
value to the thread in the next level of the hierarchy. The accumulation continues
if the received row index matches the index of the row assigned to the receiving
thread. Assuming a row-major ordering (i.e., consecutive row indices), the thread
with the lowest identifier participating in the accumulation of elements for each
row accumulates the partial products for all the products in that row. Only this
thread issues a global memory access operation to write the final value to the
main memory.



Balanced and Compressed Coordinate Layout 87

1 #define W 32 // Warp size
2 for (int l = 1; l < W; l *= 2) {
3 int s = __shfl_down_sync (0 xffffffff , row , l);
4 double t = __shfl_down_sync (0 xffffffff , v, l);
5 if (row == s && threadIdx.x + l < W) v += t;
6 }
7 int prev = __shfl_up_sync (0 xffffffff , row , 1);
8 if (threadIdx.x == 0 || row != prev) atomicAdd(Y + row , v);

Listing 1.2. CUDA code that performs the accumulation on y.
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Fig. 1. Diagram of a segmented scan of 8 elements using 8 threads

Figure 1 shows a reduced example using only 8 threads. The first column
represents the contents of the row variable in each thread and the last column
corresponds to the result vector y. The columns in between show the value of v
at each step of the loop. Each arrow represents the messages sent among threads,
using a dotted line when the received value is not added because it comes across
a row boundary. The solid arrows are atomic additions to y in main memory.

This reduction scheme requires 11 communication operations for adding the
values for all rows compared with 5 communications in a regular reduction which
only computes one sum. Therefore, it is only sub-optimal when the matrix ele-
ments processed by a warp pertain to the same row. However, this case is avoided
by the compression technique introduced in the next subsection.

2.2 Compression

Following the balanced thread distribution, each block of threads processes
exactly a chunk of B · K nonzero elements of the sparse matrix. If the matrix
elements are ordered row-wise and, by columns inside each row, (as is the case in
the CSR format,) each chunk will likely present a significant number of repeated
row indices in vector i as well as clustered column indices in vector j. In addi-
tion, for some applications, many of the matrix values are repeated. For these
reasons, it may be beneficial to use different encodings for each chunk, reducing
(compressing) the amount of memory required to store the sparse matrix. This
approach avoids thread divergence as the same format is used for all the elements
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in a chunk. At the same time, the compression level may not be optimal as it
needs to account for the values accessed by several threads.

To implement this compression, a handful of auxiliary vectors are required,
all of the length �nz/(B · K)� (that is, vectors with one element per chunk). The
first vector contains a 1-byte entry per block to specify which particular format
is used for that block. Table 1 shows a summary of the possible encodings for
a matrix with double precision (DP) floating point data. The row index and
element value combinations can be represented by a single bit each, while the
column index requires two bits in each 1-byte entry of the vector.

Table 1. Possible encodings of the chunk data for DP data.

None 8 bits 16 bits 32 bits 64 bits

Row index × ×
Column index × × ×
Element value × ×

Two additional integer vectors then contain the baseline (reference) row and
column indices of the elements in the chunk, which correspond to those for the
top-leftmost nonzero entry of the sparse matrix in the chunk. Finally, as the
space occupied by distinct chunks will be often different, a vector of integers is
used to point to the start of each chunk.

Instead of the three original COO vectors (i, j and a), the data of the matrix
elements in a chunk are maintained in a blob (Binary Large OBject), with the
B row indexes first; followed by the B · K column indexes; and finally the B · K
values. Those blobs are stored contiguously in memory with no alignment issues
provided B and B · K are both integer multiples of 8 for DP data (or 4 for single
precision values). The values of i and j are stored as offsets relative to the
baseline element of the chunk.

For B ≤ 256, the row index is encoded using one byte only as most matrices
contain at least one element per row. If this is not the case, each empty row
is padded with an explicit zero element. If the whole chunk corresponds to a
unique row, it is not necessary to store any value for the individual elements,
and a regular sum reduction is used instead of the segmented scan. Depending
on the nonzero pattern of the matrix, the column index is encoded using 8,
16, or 32 bits. For sparse matrices arising in non-graph applications, the non-
zero entries in a row usually appear in clusters, allowing to use fewer bits to
encode the column indices. While converting the matrix, a lookup table (LUT)
is built containing the 256 most frequent values. If all value entries in the chunk
are covered by the LUT, only one byte per element is used to index the right
element in the LUT instead of storing the actual floating point values.

Figure 2 shows an example corresponding to a small chunk (B = 8 and K = 1)
in compressed COO format. The original COO data is represented left of the
arrow and the different elements in the compressed COO format on the right.
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In this figure, each column from the blob corresponds to the respective original
vector. The first column contains the (row) i indices as an offset to the row
baseline. Similarly, the second column contains the (column) j indices as an
offset to the column baseline. Finally, the third column contains an index to the
LUT where the double precision values are stored. The values of the row and
columns offsets are different for each chunk/element but the LUT is common to
the whole matrix.
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Fig. 2. Example of one chunk in Compressed COO format. In the last column, row/col.
baseline specify the offset to be added to the first/second index of each block to obtain
the corresponding i/j index; and LUT contains the different values encountered in
vector a, which are indirectly referenced via the third entry of the blob.

3 Experimental Results

3.1 Setup and Memory Savings

For the experimental evaluation of the new compressed realization of SpMV,
we selected 60 test matrices from the Suite Sparse Matrix Collection [1]. The
chosen benchmarks have row/column dimensions larger than 900,000 and arise
in a variety of scientific problems excluding graph applications. (Although the
adjacency matrices associated with graphs have excellent compression properties,
we do not consider them to be interesting use cases for the SpMV kernel as there
are more efficient algorithms for graph manipulation.) The test matrices along
with some key properties are listed in Table 2.

Figure 3 visualizes the memory overhead of COO and Compressed COO with
respect to CSR, assuming a DP floating point representation for the numerical
values with all three formats, and a 32-bit integer representation for the indices
in CSR and COO. There are some matrices with clustered indices/repeated
numerical entries where the compression schemes are especially efficient and,
as a result, Compressed COO uses less memory than CSR. For the rest of the
matrices, except in two cases, the overhead of Compressed COO over CSR is
always smaller than that of regular COO.
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Table 2. Test matrices

Matrix n nz nz/n Matrix n nz nz/n

1. af shell10 1,508,065 52,259,885 34.7 31. Geo 1438 1,437,960 60,236,322 41.9

2. atmosmodd 1,270,432 8,814,880 6.9 32. Hamrle3 1,447,360 5,514,242 3.8

3. atmosmodj 1,270,432 8,814,880 6.9 33. Hardesty1 938,905 12,143,314 12.9

4. atmosmodl 1,489,752 10,319,760 6.9 34. Hook 1498 1,498,023 59,374,451 39.6

5. atmosmodm 1,489,752 10,319,760 6.9 35. HV15R 2,017,169 283,073,458 140.3

6. audikw 1 943,695 77,651,847 82.3 36. kkt power 2,063,494 12,771,361 6.2

7. bone010 M 986,703 23,888,775 24.2 37. ldoor 952,203 42,493,817 44.6

8. bone010 986,703 47,851,783 48.5 38. Long Coup dt0 1,470,152 84,422,970 57.4

9. boneS10 M 914,898 18,489,474 20.2 39. Long Coup dt6 1,470,152 84,422,970 57.4

10. boneS10 914,898 40,878,708 44.7 40. memchip 2,707,524 13,343,948 4.9

11. Bump 2911 2,911,419 127,729,899 43.9 41. ML Geer 1,504,002 110,686,677 73.6

12. cage14 1,505,785 27,130,349 18.0 42. nlpkkt120 3,542,400 95,117,792 26.9

13. cage15 5,154,859 99,199,551 19.2 43. nlpkkt160 8,345,600 225,422,112 27.0

14. circuit5M dc 3,523,317 14,865,409 4.2 44. nlpkkt200 16,240,000 440,225,632 27.1

15. circuit5M 5,558,326 59,524,291 10.7 45. nlpkkt240 27,993,600 760,648,352 27.2

16. Cube Coup dt0 2,164,760 124,406,070 57.5 46. nlpkkt80 1,062,400 28,192,672 26.5

17. Cube Coup dt6 2,164,760 124,406,070 57.5 47. nv2 1,453,908 37,475,646 25.8

18. CurlCurl 3 1,219,574 13,544,618 11.1 48. Queen 4147 4,147,110 316,548,962 76.3

19. dgreen 1,200,611 26,606,169 22.2 49. rajat31 4,690,002 20,316,253 4.3

20. dielFilterV2real 1,157,456 48,538,952 41.9 50. Serena 1,391,349 64,131,971 46.1

21. dielFilterV3real 1,102,824 89,306,020 81.0 51. ss 1,652,680 34,753,577 21.0

22. ecology1 1,000,000 4,996,000 5.0 52. StocF-1465 1,465,137 21,005,389 14.3

23. ecology2 999,999 4,995,991 5.0 53. stokes 11,449,533 349,321,980 30.5

24. Emilia 923 923,136 40,373,538 43.7 54. t2em 921,632 4,590,832 5.0

25. Flan 1565 1,564,794 114,165,372 73.0 55. thermal2 1,228,045 8,580,313 7.0

26. Freescale1 3,428,755 17,052,626 5.0 56. tmt unsym 917,825 4,584,801 5.0

27. Freescale2 2,999,349 14,313,235 4.8 57. Transport 1,602,111 23,487,281 14.7

28. FullChip 2,987,012 26,621,983 8.9 58. vas stokes 1M 1,090,664 34,767,207 31.9

29. CurlCurl 4 2,380,515 26,515,867 11.1 59. vas stokes 2M 2,146,677 65,129,037 30.3

30. G3 circuit 1,585,478 7,660,826 4.8 60. vas stokes 4M 4,382,246 131,577,616 30.0

We ran all the following experiments in this section using DP arithmetic on
two distinct generations of NVIDIA accelerators:

– A V100 GPU with compute capability 7.0, furnished with 16 GB of main
memory, 128 KB L1 cache per streaming processor, and 6 MB of L2 cache.
The bandwidth to memory bandwidth is 900 GB/s and the theoretical peak
performance is 7.8 DP TFLOPS.

– An A100 GPU with compute capability 8.0, equipped with 40 GB of memory,
1.5 GB/s main memory bandwidth, and a theoretical peak performance of
19.5/9.7 DP TFLOPS with/without DP tensor cores, respectively.

All the codes were compiled using CUDA version 11.0.167.
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Fig. 3. Memory overhead with respect of the CSR format using DP arithmetic.

3.2 Performance of SpMV

We first compare the computational efficiency of our realization of SpMV against
the codes in NVIDIA cuSPARSE. This native library from NVIDIA offers three
routines for this computational kernel, two based on CSR and one based on
COO. In the following comparisons, we include only the default CSR SpMV
algorithm from cuSPARSE as the second CSR-based variant delivers very similar
performance for the chosen test matrices. We do not include results for other
formats, such as ELL or Hybrid-ELL, which were available in earlier versions of
cuSPARSE but are no longer included in the last version of the library.

Figure 4 shows the performance evaluation of NVIDIA’s codes against our
Compressed COO implementation which applies the memory-reduction tech-
niques described in Sect. 2 to diminish the indexing overhead for the row/column
indices as well as data values. The results in the figure, in terms of GFLOPS,
show a large performance improvement using Compressed COO for matrices
with clustered indices/repeated values. Concretely, we are able to achieve up to
170/250 GFLOPS on the V100/A100 GPUs, respectively. While the compressed
COO almost always outperforms the cuSPARSE COO and the cuSPARSE CSR
kernels (except for a few outliers where the performance is on par or negligibly
lower), the median speed-up over its competitors is 1.4× and 1.25–1.3× on the
V100 and the A100 GPUs, respectively. Even though the median speed-up over
cuSPARSE CSR and cuSPARSE COO is almost identical, we note that the per-
formance ratios for the distinct problems are more consistent when comparing
the COO formats.
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Fig. 4. Performance of the new compressed realization of SpMV against those in cuS-
PARSE on NVIDIA V100 and A100 GPUs (left and right, resp.)
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3.3 Effect on BICGSTAB

We next evaluate the impact of the new compressed kernels for SpMV when
integrated into an iterative solver for sparse linear systems based on a Krylov
subspace method. For this purpose, we select a BICGSTAB implementation
based on CUDA. In the comparison, the BiCGSTAB solver employs the three
different SpMV realizations analyzed in the previous subsection: compressed
COO, cuSPARSE CSR, and cuSPARSE COO. For a performance comparison,
we execute a fixed number of iterations and measure the GFLOPS for the lin-
ear systems constructed from the same test cases selected for the standalone
evaluation of SpMV.
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Fig. 5. Performance of the BICGSTAB solver with the new compressed realization of
SpMV against those in cuSPARSE on NVIDIA V100 and A100 GPUs (left and right,
resp.)

Our experiments with the BiCGSTAB solver using the three SpMV ker-
nels show that the performance benefits of the faster SpMV kernel execution
carry over to the BiCGSTAB solver. The acceleration of the BiCGSTAB solver
depends on the specific problem and how much the SpMV kernel contributes to
the overall runtime cost. In that sense, the speed-ups of BiCGSTAB correlate to
a scaled version of the SpMV speed-up values reported in Fig. 4, damped with
the problem-specific ratio between SpMV kernel cost vs. BiCGSTAB solver cost.
In the end, equipping the BiCGSTAB solver with the compressed COO SpMV
kernel improves the overall iterative solver performance for virtually all problems
with a median speed-up of about 1.2× on both architectures, see Fig. 5.

4 Concluding Remarks and Future Work

We have adopted our previous balancing approach for SpMV to (virtually)
divide the matrix contents into chunks (blocks) of nonzero entries of the same
size; map these to the thread blocks; and prevent race conditions via efficient
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atomic operations. On top of this technique, in this work, we have proposed
a new compression scheme that reduces the amount of indexing information
that is associated with a COO-based realization of SpMV while maintaining
the balanced distribution. For this purpose, the indices of each entry inside the
same chunk are maintained as offsets with respect to a baseline row/column
index pair, allowing the use of 8-bit encodings for the row indices, and 8/16/32-
bit encodings for the column indices depending on the chunk. In addition, the
observation that the numerical values in the sparse matrices arising in scientific
applications present a considerable number of repetitions, motivates the design
of a compression scheme that employs a look-up table.

The experimental results show the benefits of the new format, demonstrating
a consistent advantage over the native implementation of the SpMV kernel in
NVIDIA’s cuSPARSE (CUDA 11.0.167) on the V100 and A100 GPUs.

The matrix format in this paper can be extended to support more efficient
encodings. For example, matrix values could be stored in different precisions. Or
even not stored at all for graph adjacency matrices that contain a large number
of entries equal to one. Furthermore, the presented format is suitable for very
large-scale matrices that require 64-bit indices.
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Abstract. We present robust high-performance implementations of
signal-processing tasks performed by a high-throughput wildlife tracking
system called ATLAS. The system tracks radio transmitters attached
to wild animals by estimating the time of arrival of radio packets to
multiple receivers (base stations). Time-of-arrival estimation of wide-
band radio signals is computationally expensive, especially in acquisition
mode (when the time of transmission of not known, not even approxi-
mately). These computation are a bottleneck that limits the throughput
of the system. The paper reports on two implementations of ATLAS’s
main signal-processing algorithms, one for CPUs and the other for GPUs,
and carefully evaluates their performance. The evaluations indicates that
the GPU implementation dramatically improves performance and power-
performance relative to our baseline, a high-end desktop CPU typical of
the computers in current base stations. Performance improves by more
than 50X on a high-end GPU and more than 4X with a GPU plat-
form that consumes almost 5 times less power than the CPU platform.
Performance-per-Watt ratios also improve (by more than 16X), and so
do the price-performance ratios.

Keywords: GPU · CUDA · Digital signal processing · Arrival-time
estimation

1 Introduction

ATLAS is a reverse-GPS wildlife tracking system, targeting mostly regional
movement patterns (within an area spanning kilometers to tens of kilometers)
and small animals, including small birds and bats [18,21]. ATLAS is a mature
collaborative research effort: 6 systems have been set up and are operating in
5 countries on 3 continents. The first system has been operating for about 6
years almost continuously and has produced ground-breaking research in Ecol-
ogy [4,20].

ATLAS tracks wild animals using miniature radio-frequency (RF) transmit-
ting tags attached to the animals [17,19]. The transmissions are received by
ATLAS base stations that include a sampling radio receiver and a computer
c© Springer Nature Switzerland AG 2021
B. Balis et al. (Eds.): Euro-Par 2020 Workshops, LNCS 12480, pp. 96–108, 2021.
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running Linux or Windows. The computer processes RF samples to detect trans-
missions from tags and to estimate the time of arrival (ToA) of the transmissions.
It reports the reception times to a server via an internet connection, usually cel-
lular. The server estimates the location of a tag from ToA reports of the same
transmission by different base stations [21].

The signal processing that ATLAS base stations performs is computationally
demanding and is one of the main limiting factors of the throughput of the system
(the number of tags that it can track and the number of localizations per second
that it can produce). The signal-processing algorithms were initially optimized
for single-threaded on CPUs, but no significant effort has been made to exploit
multiple cores effectively.

This paper presents a new implementation of the ATLAS signal-processing
code1 designed to effectively exploit graphical processing units (GPUs). Our aim
in developing this implementation was to significantly improve the throughput
of the system and to reduce the power consumption of base stations. Reduced
power consumption reduces the cost and complexity of base stations that rely on
solar and wind energy harvesting, such as those deployed in the shallow Wadden
sea; it is not particularly important in base stations connected to the power
grid. High throughput is useful in most base stations. As part of this project, we
also exposed a little more parallelism in the original CPU implementation, but
it was not our intention to make it as parallel as possible, because that would
have little value to users (who should use the GPU implementation) and would
necessitate replacing our simple single-threaded task scheduler with a complex
concurrent one.

We also evaluate the performance of both the (slightly improved) CPU code
and the new GPU code on real recorded data. The evaluations, performed on
two CPU platforms and on three GPU platforms, show dramatic improvements
relative to our baseline, a high-end desktop CPU that is typical of the comput-
ers in current base stations. The improvements are both in terms of absolute
performance (more than 50X with a high-end GPU and more than 4X with a
GPU platform that consumes almost 5 times less power than the CPU plat-
form), in terms of performance-per-Watt ratios (more than 16X), and in terms
of price-performance ratios. However, because we did not attempt to achieve
top multicore performance on CPUs, these results should not be taken as fair
comparisons of the hardware platforms; they are meant mainly to demonstrate
the level of performance that is achievable on such tasks on GPUs using a single-
threaded scheduler coupled with GPU data parallel tasks.

2 Background

ATLAS tags transmit a fixed unique pseudorandom packet every second, 2 s, 4 s,
or 8 s. The packets are 8192-bit long and the bitrate is around 1 Mb/s. The data
1 The current CPU and GPU versions of the code are available, along with the data

files requires to run the code, at http://www.tau.ac.il/∼stoledo/Tools/atlas-dsp-
heteropar2020.zip.

http://www.tau.ac.il/~stoledo/Tools/atlas-dsp-heteropar2020.zip
http://www.tau.ac.il/~stoledo/Tools/atlas-dsp-heteropar2020.zip


98 Y. Rubinpur and S. Toledo

is frequency modulated (FSK); ATLAS can also use phase modulation, but this
is beyond the scope of this paper (see [12] for details). The sampling receiver
in each base station sends a continuous stream of complex RF samples, usually
at 8 or 8.33 Ms/s, to a computer. The samples are placed in a circular buffer.
A high-level scheduler repeatedly extract a block of samples from the buffer
and processes it. The size of the circular buffer allows for processing delays
of more than 10 s; this simplifies the scheduler and the signal-processing code
considerably relative to in-order stream processing with hard deadlines.

The signal processing aims to detect whether packets from specific tags
appear in the block, to estimate the precise (sub-sample) time of arrival (ToA)
of each packet, to estimate the (relative) power of the packet, and to estimate
a signal-to-noise ratio that is correlated with the variance of the ToA estimate.
This data is sent to a server that estimates the locations of the tags [21].

The scheduler creates two kinds of tasks for the signal-processing code.
Searching-mode (acquisition-mode) tasks process blocks of 100 ms and try to
detect packets from all the tags that have not been detected in the past few
minutes. The set of tags to search for can consist of over 100 tags. Since all tags
transmit on one or two frequencies, the FSK demodulation step is performed
only once or twice per block of samples, but the number of pseudorandom codes
that must be correlated with the demodulated signals can be over 100. Tracking-
mode tasks aim to detect an 8 ms packet from one particular tag in a block of
about 12 ms of samples. These tasks perform demodulation and correlate the
demodulated signal with one pseudorandom code.

Normally, the scheduler allocates 50% of the processor’s time to searching
and 50% to tracking, in an amortized sense, simply to avoid starvation of one of
the tasks. If one of the queues is empty, all the processing resources are devoted
to the other queue.

The scheduler is sequential; it generates one task at a time and performs it
to completion, devoting to it all the cores except for one that handles incom-
ing samples. This simplifies its algorithms but places all the responsibility to
efficiently utilize multiple cores to the signal-processing code.

Graphics cards (GPUs) that can run general-purpose code, sometimes called
GPGPUs, have emerged as effective accelerators of computationally-intensive
tasks [9]. This paper focuses on GPUs produced by the market leader, NVIDIA.
NVIDIA GPUs contains a large number of simple cores (execution units) under
the control of a smaller number of instruction schedulers. In the Jetson TX2
GPU, for example, 256 cores are organized into warps of 32 cores that are con-
trolled by a single instruction scheduler. The warps are organized into streaming
multiprocessors (SMs; two in the TX2). All the cores in a warp perform the same
operation at the same time, so the code must exhibit a high degree of data par-
allelism. Larger NVIDIA GPUs use the same basic structure, but with different
numbers of cores and SMs. Many NVIDIA GPUs can only operate directly on
data stored in the GPUs memory, not in the computer’s main memory. NVIDIA
GPUs have a memory hierarchy that includes a small block of so-called shared
memory that is private to an SM; on the TX2, its size is 64 KB. Data-movement
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engines called copy engines in the GPU move data between main memory and
GPU memories and within GPU memories.

NVIDIA GPUs run programs written in CUDA, an extension of the C lan-
guage. CUDA programs express GPU computations using an abstraction called
a kernel. A kernel operates on a small piece of data (say one element of an input
array and one element of an output array). CUDA programs invoke kernels on
entire arrays concurrently.

3 Signal Processing in ATLAS

The signal-processing building blocks that are performed on each task are as
follows:

1. Conversion of the complex RF samples, represented by pairs of 16-bit integers,
to a single-precision (float) complex vector x. The complex samples are usu-
ally element-wise by a complex input vector l representing a local-oscillator
signal, to shift the center frequency so that transmissions are centered at zero.
That is, we replace x ← x � l (for all i, xi ← xi · li).

2. Next, a bandpass FIR (finite impulse response) filter, represented here by a
circulant matrix that HBP, is applied, to produce y ← HBPx. We use filters
with 200 coefficients.

3. Two short (8 samples) matched filters are applied to y, one that represent a
single-bit (chip) period at the frequency representing a 1 symbol and one that
represent a single-bit period at the frequency that represents a 0 symbol. We
denote their outputs by f1 = H1y and f0 = H0y.

4. The vectors f1 and f0 are used to demodulate the transmission in two different
ways, with and without normalization,

d = (|f1| − |f0|) � (|f0| + |f0|) , u = (|f1| − |f0|)
(elementwise absolute value, elementwise subtraction and addition, and ele-
mentwise division). These signals are real.

5. The algorithm applies exactly the same steps to a replica of the transmis-
sion we are trying to detect, a synthetic noise-free zero-padded signal r(c)

that represents an FSK packet with the same modulation parameters and a
pseudo-random bit sequence c. The resulting demodulated vector is denoted
d(c); it is computed once and stored. The lengths of d, u and d(c) are identical.

6. We cross-correlate d with d(c). The cross correlation vector is also real.
7. We compute the value and location j of the maximum of the absolute value

of the cross correlation vector, j = arg maxi

∣
∣xcorr(d, d(c))

∣
∣. The elements of

xcorr(d, d(c)) around j are subsequently interpolated to estimate the arrival
time of the incoming signal. We also compute quantities that are used to esti-
mate the signal-to-noise ratio (SNR) and the power of the signal. Assuming
that the nonzero part of d(c) spans its first n elements, we compute

wc =
n∑

i=0

d
(c)
i di+j , q =

n∑

i=0

d2i+j , and pc =
n∑

i=0

d
(c)
i ui+j .
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For details on how power and SNR are estimated and how they are used,
see [12,15].

4 High-Performance Design and Implementations

We use algorithms that minimize the operation counts that the signal-processing
building-blocks perform. In particular, we use the fast-Fourier transform (FFT)
to compute cross-correlation and to apply FIR filters with many coefficients, so
xcorr(d, d(c)) = ifft(fft(d)�fft(d(c))). We compose FIR filters that are applied in a
sequence (HBPH1 and HBPH0) and we use FFTs to apply long FIR filters (filters
with many coefficients). We use the overlap-add method to apply medium-length
filters and cross correlations. This reduces the operation count from Θ(m log m)
to Θ(m log n) when applying a filter of length n to a block of m RF samples.
We pad inputs to lengths that are a product of small integers, usually 2, 3, and
5; this ensures that applying FFT is as inexpensive as possible.

We also use high-performance implementation principles in both the CPU
implementation in C and in the GPU implementation in CUDA. In most cases
the principles are applicable to both implementations; we highlight the differ-
ences when this is not the case.

We use comprehensive high-performance FFT libraries to compute FFTs.
On CPUs, we use FFTW [7]; on GPUs, we use NVIDIA’s cuFFT. The imple-
mentations allocate arrays when they are needed and reuse them aggressively.
In general, they are never released. For example, demodulation of a block of RF
samples of a certain size is always done using the same temporary arrays; for
other sizes, we use other arrays. This reduces memory-allocation overheads and
allows us to preplan all the FFT calls (both FFTW and cuFFT requires calls to
be planned in order to achieve high performance). Allocated arrays are aligned
on cache-line boundaries in the CPU implementation and are allocated in GPU
memory in the GPU implementation. Auxiliary vector, like fft(d(c)), are com-
puted when needed but stored indefinitely, to avoid recomputation. Loops are
aggressively fused in the CPU implementation and kernels are aggressively fused
in the GPU implementation. This reduces data movement (e.g., cache misses)
and allows elimination of some temporary arrays. On the GPU, a library called
CUB [13] enables fusion of kernels with reductions (e.g., sums), which are other-
wise challenging to implement efficiently in CUDA. In the CPU implementation,
we batch cross correlation operations: a single call to FFTW computes many
cross-correlation vectors. This exposes “embarrassing” parallelism (completely
independent operations) that FFTW should be able to easily exploit, at least in
principle.

CUB uses shared memory to achieve high performance; it requires the caller
to allocate this memory, which our code does. In kernels that do not use CUB we
do not use shared memory because they implement low data-reuse data-parallel
operations over large vectors. cuFFT might also use shared memory, but if it
does, it allocates it internally.
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5 Experimental Evaluation

This section presents our experimental evaluation of the effectiveness of GPUs
for our task, in terms of both performance and energy efficiency.

5.1 Methodology (Test Data)

To test the codes, we modified the CPU-based DSP C code so that it stores all
its inputs and outputs in files. We then ran the ATLAS base station code in
an ad-hoc mode (that is, not as part of a localization system) on a computer
connected to a USRP B210 sampling radio and configured the base station to
detect a tag that was present in the room. This produced files that contained the
RF samples that were processed in both searching and tracking mode, inputs
that represent filter coefficients and the signal to correlate with, and the outputs
of the signal-processing algorithms.

Next, we wrote a C program that reads these files, calls the signal processing
routines on the recorded data, measures their running time and optionally the
power consumption of the computer and its components, and stores the results in
files. The program can use the recordings in both single-code single-RF-window
mode and in batch mode that processes many codes in one call. The former is
typical of tracking mode and the latter of searching mode. The program checks
that the returned results are identical, up to numerical rounding errors, to those
returned by the full base station run that detected the tag correctly. This ensures
that all the results that we report represent correct executions of the algorithms.
The code then stores the running times and the power measurements, if made,
to log files.

We also tested that the new CUDA-based code works correctly when called
from Java through the JNI interface and detects transmissions from tags and
their arrival times. This test was performed on the Jetson TX2 computer
described below and the same URSP B210 radio.

5.2 Platforms

We evaluated the code on several platforms using both the CPU code and the
GPU code.

Our baseline is a small form-factor desktop computer, representative of those
currently used in ATLAS base stations, with an Intel i7-8700T CPU. This CPU
has 6 physical cores running at clock frequencies between 2.4 and 4 GHz and
thermal design power (TDP) of 35 W. This CPU was launched in Q2 2018 and
is fabricated in a 14 nm process. The computer ran Linux kernel version 5.3. We
compiled the code using GCC version 7.5. Both our code and FFTW version
3.3.8 were compiled using the optimization options that are built into FFTW.
The code that was produced ran slightly faster than code compiled with only
-O3 -mtune=native.

Our main target is a low-power Jetson TX2 computer [2,6], which has a 256-
core NVIDIA Pascal GPU, four ARM Cortex-A57 cores and two ARM Denver2
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cores, launched in Q2 2017 using a 16 nm process. The Cortex-A57 cores were
designed by ARM and the Denver2 cores were designed by NVIDIA for higher
single-threaded performance; both use the same 64-bit ARMv8 instruction set.
It also has 8 GB of memory that both the CPU and GPU can access, with
59.7 GB/s memory bandwidth. The TX2 ran Linux kernel 4.9.140-tegra. We
used nvcc version 10.0.326, CUDA library 10.0.130, gcc 7.4.0, and FFTW 3.5.7.
CUB version 1.8.0 was used on all platforms.

We measured power consumption on the TX2 using two ina3221 cur-
rent sensors built into the TX2 module and a third built into the mother-
board [5]. Each sensor senses current on three different rails, and all the mea-
surements are available by reading special files exposed by the driver under
/sys/bus/i2c/drivers/ina3221x. The values that we report are the maximum
value observed during the computation.

The power-vs-performance profile of the TX2 can be adjusted by turning
cores on or off and by changing their clock frequency. NVIDIA defined several
standard modes, which we use below in our tests. Table 1 describes these modes.
The nominal TDP of the TX2 ranges from 7.5 W for the highest power effi-
ciency mode, to 15 W for the highest performance modes. Both the TX2 module
and the motherboards include power sensors that we use to measure the power
consumption directly in our tests.

Table 1. Standard power modes on the Jetson TX2.

Mode name Denver2 cores A57 cores GPU frequency

Max-Q — 4 × 1.2 GHz 0.85 GHz

Max-P All 2 × 1.4 GHz 4 × 1.4 GHz 1.12 GHz

Max-P ARM — 4 × 2.0 GHz 1.12 GHz

Max-P Denver 2 × 2.0 GHz — 1.12 GHz

Max-N 2 × 2.0 GHz 4 × 2.0 GHz 1.30 GHz

We also ran the GPU code on two additional platforms. One is an NVIDIA
GeForce 1050 GTX GPU. This GPU uses the Pascal architecture, 640 cores
running at 1.455 GHz, and 2 GB of RAM. The TDP is 75 W. It was plugged
into a desktop running Windows 10 with a quad-core Intel i5-6500 CPU; we
used CUDA 10.1, nvcc version 10.1.168, Microsoft’s C++ compiler (cl) version
19.00.24210 for x64. The last GPU platform that we used is an NVIDIA Titan
Xp GPU. This GPU also uses the Pascal architecture and has 3840 cores running
at 1.582 GHz. It has 12 GB of memory and a high-bandwidth memory interface.
The thermal design power is 250 W. It was plugged into a server with a 10-core
Intel Xeon Silver 4114 CPU running Linux. We used CUDA and nvcc 10.0.130
and gcc 4.9.2.

http://www.sys/bus/i2c/drivers/ina3221x
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5.3 Results
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Fig. 1. The performance of the DSP code on one CPU core (left) and its speedup
on multiple cores. The vertical bars show the minimum and maximum values over 10
experiments, and the actual data points are median results of the 10 experiments. The
number of RF windows is 10 in the searching experiments and 100 in the searching
experiments.

Figure 1 shows the performance of our C implementation on the baseline plat-
form, which has an Intel i7-8700T CPU. We present the performance in terms of
the ratio of processing time per pattern relative to the length of the RF window.
That is, if the code takes 1 s to process one 100 ms window of RF samples and to
correlate the demodulated signal with 16 different code patterns, then we report
the performance as (1/16)/0.1 = 0.625. A ratio of 1 implies that the base station
can search for one tag continuously, that searching for 2 tags would drop 50%
of the RF samples, and so on. A ratio of 0.1 implies that the station can search
continuously for 10 tags without dropping any RF sample, and so on. Lower is
better.

The results on one core (Fig. 1 left) show that the performance per pattern
improves significantly when we process multiple patterns in one window of RF
samples (which is how the experiment was structured, since this is typical given
how ATLAS systems are usually configured). This is mostly due to the amorti-
zation of the cost of demodulation over many patterns. The graph on the right
in Fig. 1 that using 2 or 3 cores improves performance relative to using only
one core, but the improvement is far from dramatic or linear. Using 4 or more
cores actually slows the code down relative to 2 or 3 cores. The parallelization
in the CPU code is only within FFTW and it does not appear to be particularly
effective in this code, perhaps due to the length of the FFTs.

Performance on the TX2 is excellent on the GPU but poor on the CPU, as
shown in Fig. 2. Our CUDA code running on the TX is about 4.3 times faster
than the single-core i7 code and about 3 times faster than the i7 multicore runs.
However, even at the highest performance mode, the TX’s CPU cores perform
about 4 times worse than the i7.
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Fig. 2. Searching performance on the Jetson TX2 on both the ARM cores (left) and
the GPU (right) under four standard power configurations.
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Fig. 3. Power consumption during searching tasks (left), broken down by system com-
ponent, and approximate total energy consumption during searching with 16 patterns,
normalized to the largest energy expenditure (right). Both graphs show the data for
searching on either the CPU or the GPU of the Jetson TX2 and under four standard
power configurations. The rated accuracy of the power sensors is 2% for values above
200 mW and 15% for smaller values.

We also measured the power consumption of the TX2 while it was running
our code. The results, shown in Fig. 3, indicate that when running the GPU
code, the GPU is the largest power consumer, but the memory and other parts
of the system-on-chip (most probably the memory interface) consume a lot of
power, about 50% of the total. The CPU and IO interfaces also consume power,
but not much. In the C-code runs, the GPU is essentially off; the CPU, memory,
and system-on-chip are the largest power consumers. The graph on the right in
Fig. 3 shows that the CUDA code is about 10 times more energy efficient than
the C code running on the CPU, for the same task.
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Fig. 4. The performance of two desktop GPUs, a low-end (and somewhat old) GeForce
GTX 1050 and a high-end Titan Xp.

Figure 4 shows that our CUDA code is also very effective on desktop and
server GPUs. A low-end GPU 12.8 times faster than a single x86 64 desktop
core that is 2 years newer. A server GPU is 51.4 times faster than the desktop
CPU.

6 Related Work

Alawieh et al. [1] and Hendricks et al. [10] compare the performance of several
types of compute nodes, including GPUs, CPUs, and FPGAs, in the context
of RF ToA estimation, with application to a location estimation system called
RedFIR. Their requirements are more demanding, in the sense that RedFIR
requires real-time processing of a stream of samples, whereas we buffer samples
for a few seconds and use a priority scheduler to simplify the signal-processing
code. It is well known that real-time scheduling on GPUs is challenging [22];
our scheduler allows ATLAS to avoid the difficulty. Also, RedFIR does not rely
on periodic transmit schedules, whereas ATLAS reduces the computational load
by tracking tags rather than just searching for them. Finally, signal processing
in RedFIR is a bit simpler than in ATLAS because they use PSK transmitters,
not FSK transmitters. Belloch et al. [3] and Kim et al. [11] present acoustic
localization systems that exploit GPUs for ToA estimation.

Our use of cuFFT follows the advice of Střelák and Filipovič [16, Sect. 2.5].
Other CUDA FFT libraries [8,14] appear to be no longer maintained.

7 Discussion and Conclusions

We have shown that by implementing the DSP functionality of an RF time-of-
arrival transmitter localization system in CUDA, we can improve the acquisition
(searching) throughput of the system by a factor of 4 while reducing power
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consumption by a factor of 5 or so relative to a baseline single-core C code, even
though the C code has been carefully optimized. Table 2, which summarizes the
characteristics of our test platforms (as well as of a few newer platforms) show
that higher-end GPUs can improve throughput dramatically higher, at the cost
of higher power consumption, and sometimes also higher cost. The throughput
of tracking modes also improves on GPU platforms.

Table 2. A comparison of GPU platforms. Column 3 shows the number CPU and
GPU cores. The 5th column shows the TDP of the platform, either the overall power
consumption or, if marked by a +, of only the device itself. The cost in USD is only
indicative, and again shows either the total system cost or, when marked by a +, the
cost of the device. The rightmost column shows the throughput, defined as the number
of codes (tags) that can be searched for without dropping any RF samples, assuming
batches of 128 and windows of 100 ms each; this also assumes that only 50% of the
time is devoted to searching, the rest to tracking. The performance of the i7 processor
assumes that only one of the six cores are used.

Device Launch Cores Fab W USD tput

i7-8700T Q2 2018 6 × x86 14 nm 35+ 1000 6

Jetson TX2 Q2 2017
6 × ARM

+256
16 nm 7.5–15 1000 26

GeForce GTX 1050 Q2 2016 +384 14 nm 75+ 110+ 77

Titan Xp Q2 2017 +3840 16 nm 250+ 1200+ 315

Our baseline code does not effectively exploit multicore CPU platforms, even
though it relies heavily on a (high-quality) parallel multicore FFT library; this
alone does not deliver good parallel speedups, perhaps due to the modest size of
the tasks. It is likely that a careful parallel multicore implementation, perhaps
in OpenMP, can the performance of the C code on multicore CPUs. However,
this would entail programming that is at least as complex as our CUDA imple-
mentation, and it would still not attain the maximum performance of the GPU
code or its power-performance ratio.
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Abstract. With AMD reinforcing their ambition in the scientific high
performance computing ecosystem, we extend the hardware scope of the
Ginkgo linear algebra package to feature a HIP backend for AMD GPUs.
In this paper, we report and discuss the porting effort from CUDA,
the extension of the HIP framework to add missing features such as
cooperative groups, the performance price of compiling HIP code for
AMD architectures, and the design of a library providing native backends
for NVIDIA and AMD GPUs while minimizing code duplication by using
a shared code base.

Keywords: Portability · GPU · CUDA · HIP

1 Introduction

Over the last decade, GPUs have been established as the main powerhouse in
leadership supercomputers [1]. GPUs have proven valuable components to accel-
erate computations not only for machine learning workloads, but also for numeri-
cal linear algebra libraries powering computational science [2]. As of today, AMD
and NVIDIA are considered the main GPU manufacturers. In the past, software
efforts primarily focused on NVIDIA GPUs due to the comprehensive CUDA
development environment and the common adoption in HPC centers. With the
next leadership supercomputers deployed in the US National Laboratories being
equipped with AMD GPUs [2], and the US Exascale Computing Project’s mis-
sion to provide math functionality on the leadership systems, we extend the
scope of the Ginkgo library to feature an AMD GPU backend.

In this paper, we report and discuss the effort of porting a CUDA-focused
library to the HIP ecosystem. We elaborate on the use of the perl-based script
provided by AMD that aims at simplifying the transition process, its pitfalls
and flaws. We also assess the performance HIP-based code achieves on NVIDIA
architectures when compiled using NVIDIA’s nvcc compiler.
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Transitioning a code base from one architecture to another, and platform
portability in general, is an important problem in the software technology ecosys-
tem. In particular, the number of adopters and contributors of community soft-
ware scales only in the presence of good platform portability. The effort of port-
ing a software stack to new architectures is, for example, described for molecular
dynamics algorithm in [7], and for the solution of finite element problems in [12].
Concerning performance portability, the authors of [11] compare the algorithm
performance for CUDA, HC++, HIP, and OpenCL backends.

Compared to previous work, we highlight that this work contains the follow-
ing novel contributions:

– We discuss the porting of linear algebra kernels from CUDA to HIP.
– We add technology to the HIP ecosystem that is lacking but needed, e.g., a

subwarp cooperative group concept with shuffle operations.
– We compare the performance of HIP and CUDA kernels coming from the

same code base and providing the same functionality.
– Up to our knowledge, Ginkgo is the first open-source sparse linear algebra

library supporting several matrix types (Coo, Csr, Sellp, Ell, Hybrid), solvers
(CG, BiCG, GMRES, etc.), preconditioner (block-jacobi) and factorization
(ParILU and ParILUT) on AMD and NVIDIA GPUs.

– We ensure full result reproducibility by archiving all performance results.

Before providing more details about the porting effort in Sect. 3, we recall
some background information about CUDA and HIP in Sect. 2. We present the
results of the experiments of the same kernels being compiled by CUDA and
HIP in Sect. 4. We conclude in Sect. 5 with a summary of this paper.

2 Background

2.1 Compute Unified Device Architecture - CUDA

NVIDIA developed the CUDA programming model and the corresponding nvcc
compiler enabling developers to write kernels for GPU architectures using the C
or C++ programming language. Also, NVIDIA provides several math libraries,
like cuBLAS, cuSPARSE, and cuSOLVER containing ready-to-use numerical
algorithms and core functionalities allowing users to easily develop a parallel
application without writing device kernel functions.

In Listing 1.1, CUDA uses global as the declaration specifier to tell the
compiler this function runs on a GPU and uses execution configuration syntax
(<<< >>>) to represent the configuration of grid and block dimensions, execution
stream, and dynamically-sized shared memory. Moreover, developers can provide
additional information at compile-time to optimize the execution performance
like launch bounds to limit the register usage.
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1 template <int value >
2 __global__ void dummy_kernel(const int num , int *__restrict__ array) {
3 // kernel_code
4 }
5 int main() {
6 // allocation of memory and calculation of grid/block_size
7 dummy_kernel <4> <<<dim3(grid_size), dim3(block_size) >>>(num , array);
8 return 0;
9 }

Listing 1.1. CUDA kernel launch syntax.

2.2 C++ Heterogeneous-Compute Interface for Portability - HIP

As a counterpart to NVIDIA’s CUDA ecosystem, AMD more recently developed
the GPU compute programming language and library ecosystem “RadeonOpen-
Compute” (ROCm). ROCm is the first open-source HPC platform for GPU
computing shipping with several math libraries, like rocBLAS, rocSPARSE, roc-
SOLVER, etc. This enables users to develop GPU-ready applications in ROCm
like in the CUDA ecosystem.

Aside from ROCm, AMD also provides a HIP abstraction that can be seen as
a higher layer on top of the ROCm ecosystem, enveloping also the CUDA ecosys-
tem. The idea behind HIP is to increase platform portability of software by pro-
viding an interface through which functionality of both, ROCm and CUDA can
be accessed. Obviously, this would remove the burden of converting or rewriting
code for different hardware architectures, therewith also reducing the mainte-
nance effort for libraries supporting several backends.

In Listing 1.2, HIP uses the same declaration specifier global like CUDA,
but a different execution configuration syntax. HIP handles kernels featuring
template parameters with the macro HIP KERNELS NAME. Although HIP
also provides the launch bounds flag for kernel optimization, the effect differs
from the CUDA ecosystem due to the architectural differences between AMD
and NVIDIA GPUs.

1 template <int value >
2 __global__ void dummy_kernel(const int num , int *__restrict__ array) {
3 // kernel_code
4 }
5 int main() {
6 // allocation of memory and calculation of grid/block_size
7 hipLaunchKernelGGL(HIP_KERNEL_NAME(dummy_kernel <4>), dim3(grid_size),
8 dim3(block_size), 0, 0, num , array);
9 return 0;

10 }

Listing 1.2. HIP kernel launch syntax.

2.3 Difference Between AMD and NVIDIA GPUs

The primary technical difference between AMD and NVIDIA GPUs is the num-
ber of threads that are executed simultaneously in a wavefront/warp. In NVIDIA
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GPUs, a warp contains 32 threads, in AMD GPUs, a wavefront contains 64
threads. This difference potentially impacts all other parameter configurations
and has to be taken into account when designing kernels and setting thread
block size, shared memory and register usage, and compute grid size for valid
parameter settings and optimal kernel performance.

Less relevant for the kernel design and parameter choice is that GPUs differ
in the number of multiprocessors accumulated in a single device and in the
memory bandwidth. While these are still relevant for kernel optimization, they
rarely impact the correctness of a kernel design. We elaborate on the optimization
of kernel parameters in Sect. 3.5.

As of today, AMD’s ROCm ecosystem – and the HIP development ecosys-
tem – still lacks some key functionality of the CUDA ecosystem. For example,
HIP lacks a cooperative group interface that can be used for flexible thread
programming inside a wavefront, see Sect. 3.3.

3 Porting CUDA Functionality to the HIP Ecosystem

Next, we report and discuss how we ported Ginkgo’s GPU functionality avail-
able for CUDA backends to the HIP ecosystem. To understand the technical
realization, it is however useful to first elaborate on Ginkgo’s design.

3.1 Ginkgo Design

A high-level overview of Ginkgo’s software architecture is visualized in Fig. 1.
The library design collects all classes and generic algorithm skeletons in the
“core” library which, however, is useless without the driver kernels available
in the “omp”, “cuda”, and “reference” folders. We note that “reference” con-
tains sequential CPU kernels used to validate the correctness of the algorithms
and as reference implementation for the unit tests realized using the googletest
[6] framework. The “include” folder contains the public interface. Extending
Ginkgo’s scope to AMD architectures, we add the “hip” folder containing the
kernels in the HIP language, and the “common” folder for platform-portable
kernels with the intention to reduce code duplication, see Sect. 3.2.

To reduce the effort of porting Ginkgo to AMD architectures, we use the
same base components of Ginkgo like config, binding, executor, types and
operations, which we only extend and adapt to support HIP.

– config: hardware-specific information like warp size, lane mask type, etc.;
– binding: the C++ style overloaded interface to vendors’ BLAS and sparse

BLAS library and the exception calls of the kernels not implemented;
– executor: the “handle” controlling the kernel execution and the ability to

switch the execution space (hardware backend);
– types: the type of kernel variables and the conversion between library vari-

ables and kernel variables;
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Fig. 1. The Ginkgo library design overview. The components added when extending
the scope to AMD GPUs are the “HIP” and the “Common” modules.

– operations: a class aggregating all the possible kernel implementations such
as reference, omp, cuda and hip, which allows to switch between implemen-
tations at runtime.

Moreover, some components are not officially supported by vendors, e.g. com-
plex number atomic add1 on CUDA and HIP, and warp-wide cooperative groups
on HIP. For the functionality missing in both vendor ecosystems, we implement
CUDA device functions providing the functionality and apply the work flow
listed in Algorithm 1 to generate corresponding HIP kernels. For components
missing only in one vendor ecosystem, we implement kernels providing the same
functionality in the other ecosystem. In particular, as the HIP ecosystem cur-
rently lacks the warp-wide cooperative groups we make heavy use of, we imple-
ment device functions that provides this functionality for AMD architectures,
see Sect. 3.3.

3.2 Avoiding Code Duplication

Despite the fact that the HIP ecosystem allows to compile the kernels for both
AMD and NVIDIA GPUs, we currently plan to still provide native support
in the CUDA ecosystem. This choice is motivated by the wider adoption of
CUDA in the high performance computing community on the one side, and the
unclear future of this functionality remaining in the HIP ecosystem on the other
side. A third reason is that preserving native CUDA support allows to utilize
novel CUDA-specific technology, e.g., dynamic parallelism. Extending Ginkgo

1 A complex atomic add involves separate real and imaginary atomic add and thus is
not strictly an atomic operation, as no ordering between the individual components
of multiple complex atomic operations is guaranteed.
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to AMD GPUs, a primary goal was to avoid a significant level of code duplica-
tion. For this purpose, we created the “common” folder containing all kernels and
device functions that are identical or the CUDA and the HIP executor except
for kernel configuration parameters (such as warp size or launch bounds). These
configuration parameters are not set in the kernel file contained in the “com-
mon” folder, but in the files located in “cuda” and “hip” that are interfacing
these kernels. This way we can avoid code duplication while still configuring the
parameters for optimal kernel performance on the distinct hardware backends.

3.3 Cooperative Groups

CUDA 9 introduced cooperative groups for flexible thread programming. Coop-
erative groups provide an interface to handle thread block and warp groups and
apply the shuffle operations that are used heavily in Ginkgo for optimizing
sparse linear algebra kernels. HIP [3] only supports block and grid groups with
thread rank(), size() and sync(), but no subwarp-wide group operations like
shuffles and vote operations.

For enabling full platform portability, a small codebase, and preserving the
performance of the optimized CUDA kernels, we implement cooperative group
functionality for the HIP ecosystem. Our implementation supports the calcula-
tion of size/rank and shuffle/vote operations inside subwarp groups. We acknowl-
edge that our cooperative group implementation may not support all features of
CUDA’s cooperative group concept, but all functionality we use in Ginkgo.

The cross-platform cooperative group functionality we implement with shuffle
and vote operations covers CUDA’s native implementation. HIP only interfaces
CUDA’s warp operation without sync suffix (which refers to deprecated func-
tions), so we use CUDA’s native warp operations to avoid compiler warning
and complications on NVIDIA GPUs with compute capability 7.x or higher. We
always use subwarps with contiguous threads, so we can use the block index to
identify the threads’ subwarp id and its index inside the subwarp. We define

Size = Given subwarp size

Rank = tid % Size

LaneOffset = �tid % warpsize / Size� × Size

Mask = ∼ 0 >> (warpsize - Size) << LaneOffset

where tid is local thread id in a thread block such that Rank gives the local id
of this subwarp, and ∼0 is a bitmask of 32/64 bits, same bits as lane mask type,
filled with 1 bits according to CUDA/AMD architectures, respectively. Using
this definition, we can realize the cooperative group interface, for example for
the shfl xor, ballot, any, and all functionality:

subwarp.shfl xor(data, bitmask) = shfl xor(data, bitmask, Size)

subwarp.ballot(predicate) = ( ballot(predicate) & Mask) >> LaneOffset

subwarp.any(predicate) = ( ballot(predicate) & Mask) != 0

subwarp.all(predicate) = ( ballot(predicate) & Mask) == Mask
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Note that we use the ballot operation to implement any and all operations.
The original warp ballot returns the answer for the entire warp, so we need
to shift and mask the bits to access the subwarp results. The ballot operation
is often used in conjunction with bit operations like the population count (pop-
count), which are provided by C-style type-annotated intrinsics popc[ll] in
CUDA and HIP. To avoid any issues with the 64bit-wide lane masks on AMD
GPUs, we provide a single function popcnt with overloads for 32 and 64 bit
integers as well as an architecture-agnostic lane mask type that provides the
correct (unsigned) integer type to represent a (sub)warp lane mask.

1 template <int Size , typename ValueType >
2 __global__ void reduce(ValueType *__restrict__ data , int inner_loops) {
3 auto local_data = data[threadIdx.x];
4 for (int i = 0; i < inner_loops; i++) {
5 + auto group = tiled_partition <Size >( this_thread_block ());
6 #pragma unroll
7 - for (int bitmask = 1; bitmask < Size; bitmask <<= 1) {
8 + for (int bitmask = 1; bitmask < group.size(); bitmask <<= 1) {
9 - const auto remote_data = __shfl_xor(local_data , bitmask , Size);

10 + const auto remote_data = group.shfl_xor(local_data , bitmask);
11 local_data = local_data + remote_data;
12 }
13 }
14 data[threadIdx.x] = local_data;
15 }

Listing 1.3. Reduce kernel. Green part is cooperative group implementation, and red
part is legacy implementation

Fig. 2. Ginkgo’s cooperative groups vs. legacy functions for different data types on
V100 (left) and RadeonVII (right). (Color figure online)

To assess the performance of our cross-platform cooperative group imple-
mentation, we use the local reduction kernel shown in Listing 1.3 that utilized
either the vendor’s legacy functionality (red) or Ginkgo’s cross-platform coop-
erative group interface (green). In Fig. 2, we report the runtime needed for 100
reduction operations (after a warm-up phase of 10 reductions) on NVIDIA’s
V100 GPU and AMD’s RadeonVII GPU. To exclude the overhead of the kernel
launch and memory operations, we run the kernel executing “inner loops” reduc-
tions (line 4 of Listing 1.3) for “inner loops = 1000” and “inner loops = 2000”
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and report the runtime difference. This way, we can isolate the runtime needed
for the warp-wide reduction by excluding the overhead of the kernel launch
and memory operations. The results identifies Ginkgo’s cross-platform cooper-
ative group implementation as competitive to the vendor’s native implementa-
tion. Both implementations use the same strategy for the reduction operation,
and both implementations execute the reduction loop (line 7–12 of Listing 1.3)
exactly log2(Size) times. For the execution time for different values of Size,
the theoretical performance ratios are log2(4)

log2(64)
≈ 0.333 on the RadeonVII and

log2(4)
log2(32)

= 0.4 on the V100. In the experimental evaluation, we observe average

ratios runtime(Size=4)
runtime(Size=64) = 0.360 and runtime(Size=4)

runtime(Size=32) = 0.394 for the RadeonVII
and the V100 GPUs, respectively.

3.4 Porting via the Cuda2Hip Script

For easy conversion of CUDA code to the HIP language, we use a script based
on the hipify-perl script provided by AMD with several modifications to meet
our specific needs. First, the script generates the target filename including
the path in the “hip” directory. Then AMD’s hipify-perl script is invoked to
translate the CUDA kernels to the HIP language, including the transforma-
tion of NVIDIA’s proprietary library functions to AMD’s library functions and
the kernels launch syntax. Next, the script changes all CUDA-related header,
namespace, type and function names to the corresponding HIP-related names.
By default, the script hipify-perl fails to handle namespace definitions. For
example, the hipify-perl script changes namespace::kernel<<<...>>> (...)
to namespace::hipLaunchKernelGGL(kernel, ...), while the correct output
would be hipLaunchKernelGGL(namespace::kernel, ...). Thus, the script
ultimately needs to correct the namespaces generated by the hipify-perl script.

3.5 Porting Workflow

In Algorithm 1, we sketch the workflow we use for porting Ginkgo’s CUDA
backend to HIP. Step 1 introduces a set of variables to represent the architecture-
specific parameters such as the warp size (32 on CUDA devices, 64 on AMD
devices) and optimization parameters. Step 2 moves the identical kernel codes
into the “common” folder we introduced in Sect. 3.2. We include the code in the
“common” folder after setting the configuration variables in Step 3 and Step 4.
Step 5 runs the script Cuda2Hip script detailed in Sect. 3.4 to generate the
corresponding hip files. Ultimately, we modify the hip “config” file in Step 6.
After completion of these steps, the validity and correctness of the porting effort
is tested. This is realized by invoking Ginkgo’s unit test framework that employs
googletest to check the correctness of the high performance kernels – in particular
also the CUDA and HIP backends – against the reference kernels.

We note that Ginkgo’s cross-platform cooperative group extension presented
in Sect. 3.3 dramatically reduces backend-specific implementations and allows to
use a shared kernel in “common” for both, the NVIDIA and the HIP backend.
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Algorithm 1: Ginkgo’s porting workflow
1: Use a variable to represent the architecture-specific parameters
2: Move all shared code into a “common” file
3: Set the architecture-specific parameters before including a “common” file
4: Include the “common” file
5: Use the Cuda2Hip script for converting the code
6: Modify the hip file “config” to support different architectures

3.6 Porting Statistics for Ginkgo

With the setup and tools described, extending the scope of Ginkgo to cover
also AMD GPUs is a smooth process. We acknowledge that some kernels that
are heavily tuned for performance needed additional attention, most notably
the multiprecision block-Jacobi kernel [4]. Aside from this, the addition of the
HIP ecosystem required slight modifications to the library architecture, most
importantly the addition of the “common” module containing the kernels that
are identical up to parameter settings for the CUDA and the HIP ecosystems.
In the left figure of Fig. 3, we visualize how existing code lines are relocated and
new code lines are added when extending Ginkgo’s scope to support also HIP.
The exact number of code lines contained in the distinct modules of the extended
Ginkgo library are listed in the right table of Fig. 3. We note that about one
third of the code base is shared between the CUDA and the HIP executor, and
that by creating the “common” folder we actually avoided duplicating 4,000 lines
of code. The other modules each contain about 5,000 lines of code. While most
submodules are comparable in size, the more significant differences for “base”
and “component” stem from the differing comprehensiveness of the ecosystems
and possibilities of architecture-specific optimization.

Module common cuda hip
base 112 1435 1176
component 919 467 589
matrix 1617 1908 2048
factor 262 159 165
precond 395 356 375
solver 780 1071 1038

Fig. 3. Left: Reorganization of the Ginkgo library to provide a HIP backend for AMD
GPUs. Right: (Physical) Lines of code in the “common”, “cuda”, and “hip” modules
of the Ginkgo library, ignoring the unit tests.
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4 Experiments

To assess how well the HIP ecosystem interfaces to the CUDA technology,
we compare HIP code compiled for NVIDIA GPUs with native CUDA code.
More precisely, we apply the porting workflow we described in Sect. 3 to high
performance sparse linear algebra kernels of Ginkgo’s CUDA backend, and
compare the performance of the generated HIP code when being compiled for
NVIDIA GPUs with the original kernel performance. We run our experiments on
NVIDIA’s V100 (SXM2 16 GB) [8] with cuda 9.2.148 and hip 3.1.20044–3684ef8
(which is the latest version on Jan. 31 2020). We compare the Sellp, Coo, and
cuSPARSE/hipSPARSE (Splib Csr) SpMV kernels, and the Conjugate Gradi-
ent Solver employing the Sellp SpMV kernel for the Krylov subspace generation
using either CUDA and HIP on the same device. For result reproducibility, we
archive all performance results in a public repository2. We evaluate the perfor-
mance of the Ginkgo SpMV for more than 2,800 matrices from the SuiteSparse
Matrix Collection [10]. We run two iterations for warm-up and ten iterations to
obtain average performance values.

Fig. 4. Sellp SpMV (left) and Coo SpMV implemented in CUDA or HIP.

On the left-hand side of Fig. 4, we evaluate the performance for Ginkgo’s
Sellp SpMV kernel, which does not use atomic operations. On the right-hand
side of Fig. 4, we do the same comparison for Ginkgo’s Coo SpMV kernel which
does rely on atomic operations. Running on NVIDIA’s V100 GPU, one would
expect to see small overhead of the HIP code interfacing CUDA code compared
to native CUDA code. While this may prove true for most problems, we see
some outliers where using the native CUDA implementation results in significant
performance benefits. Surprisingly, for some test cases the HIP kernels achieve
significantly better performance – even though HIP ultimately compiles with
NVIDIA’s nvcc compiler. The generated PTX code indicates that the differences
may be attributed to slightly different types of load instructions being emitted,
which in turn use different caches.
2 https://github.com/ginkgo-project/ginkgo-data/tree/V100 cuda hip.

https://github.com/ginkgo-project/ginkgo-data/tree/V100_cuda_hip
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Fig. 5. Performance comparison for vendors’ Csr SpMV (left) and 1,000 iterations of
Ginkgo’s CG solver (right).

In Fig. 5 we do the same experiment for the vendors’ Csr SpMV (left-hand
side) and 1,000 iterations of Ginkgo’s Conjugate Gradient (CG) solver using
Ginkgo’s Sellp SpMV (right-hand side). For the vendors’ Csr SpMV comparison
on the left, the performance differences reflect only the overhead of the invocation
of cuSPARSE by hipSPARSE. In the CG performance comparison on the right,
we observe up to 15% performance degradation coming from the aforementioned
differences in code generation. This is in accordance with Philip C. Roth [9] who
compares the performance of CUDA and HIP for the scalable heterogeneous
computing (SHOC) benchmark [5].

Fig. 6. Left: Performance variance for outliers in Sellp SpMV kernel analysis (Fig. 4).
All performance is normalized to the mean performance of the CUDA backend, CUDA
performance in red, (relative) performance of the HIP backend in blue. Right: Perfor-
mance statistics for all test cases and all kernels/algorithms. (Color figure online)

As some of the performance differences in Fig. 4 are significant, we investi-
gate in Fig. 6 (left) the mean and variance of the 20 most significant outliers
in the Sellp SpMV analysis in Fig. 4 (left). These statistics are collected from
over 20 runs, each averaging the kernel characteristics over 100 invocations.
Acknowledging the reproducibility of these outliers, we emphasize that they are



120 Y. M. Tsai et al.

still almost negligible when considering the complete test suite of more than
2,800 test matrices: The performance ratio statistics on the right-hand side of
Fig. 6 reveal that the performance means for all functionalities are just slightly
below 1.0. Furthermore, 50% of the test cases show less than 3% performance
difference, and 90% of the test cases show less than 10% performance difference.
This reveals that HIP introduces only negligible overhead when comparing to
CUDA-native code.

5 Conclusion

We elaborated how we extend the hardware scope of the Ginkgo linear algebra
package to feature a HIP backend for AMD GPUs. We discussed the porting
effort, and how the use of a shared code base reduces to minimize code dupli-
cation in a library providing native backends for NVIDIA and AMD GPUs. We
also detailed the addition of functionality currently lacking in the HIP ecosys-
tem and evaluated the performance price of compiling HIP code for NVIDIA
architectures. We found that a significant portion of sparse linear algebra ker-
nels allows for good platform portability. In future, we will create a Intel GPU
backend and compare the porting process with the HIP backend integration.
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Abstract. R-GCN (Relational Graph Convolutional Network) is one of
GNNs (Graph Neural Networks). The model tries predicting latent infor-
mation by considering directions and types of edges in graph-structured
data, such as knowledge bases. The model builds weight matrices to
each edge attribute. Thus, the size of the neural network increases lin-
early with the number of edge types. Although GPUs can be used for
accelerating the R-GCN processing, there is a possibility that the size of
weight matrices exceeds GPU device memory. To address this issue, in
this paper, an edge attribute-wise partitioning is proposed for R-GCN.
The proposed partitioning divides the model and graph data so that R-
GCN can be accelerated by using multiple GPUs. Also, the proposed
approach can be applied to sequential execution on a single GPU. Both
the cases can accelerate the R-GCN processing with large graph data,
where the original model cannot be fit into a device memory of a sin-
gle GPU without partitioning. Experimental results demonstrate that
our partitioning method accelerates R-GCN by up to 3.28 times using
four GPUs compared to CPU execution for a dataset with more than
1.6 million nodes and 5 million edges. Also, the proposed approach can
accelerate the execution even with a single GPU by 1.55 times compared
to the CPU execution for a dataset with 0.8 million nodes and 2 million
edges.

Keywords: GPU · R-GCN · GNN · Graph data · Knowledge base

1 Introduction

In recent years, it is expected that the next step of deep learning would be
responding to the various structured data. Indeed, conventional deep learning
models typically use data represented in Euclidean space. Meanwhile, one of
new streams of deep learning is to use graph-structured data, which is repre-
sented in non-Euclidean space, such as GNNs (Graph Neural Networks) [7]. An
algorithm applying CNN (Convolutional Neural Networks) for graph-structured
data, called ConvGNNs (Convolutional GNNs), demonstrates practical results
[3,4].
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R-GCN (Relational-Graph Convolutional Network) [6] is a derivative model
of ConvGNNs and aims at filling in a lack of knowledge base. Missing data in
a knowledge base can be classified into two types. One is a lack of attributes
of nodes, and the other is a lack of links between nodes, called edges, on the
graph. The edges have relational types of two nodes in some cases. Considering
the edge types, R-GCN builds weight matrices for each type and direction (i.e.,
in and out of node) of edges. When predicting latent node attributes or edges on
GNNs, the scalability problems always lie on. It is challenging to parallelize the
model or graph processing of R-GCN using multiple GPUs for accelerating the
execution. Particularly, R-GCN has a specific issue of scalability, because the size
of weight matrices increases linearly with the number of edge types in addition
to the number of nodes when these features are defined as one-hot vectors. There
is a possibility that the size of weight matrices exceeds GPU device memory. To
address this issue, in this paper, we propose a method to partition the graph-
and-model simultaneously on R-GCN in order to accelerate the model training
using one or more GPUs for large graph-structured datasets. More specifically,
a node-wise partitioning was already used for [3,10], in this paper we propose
an edge-wise partitioning method.

This paper is organized as follows. As related work, GNNs are overviewed,
and especially R-GCN is detailed in Sect. 2. Section 3 describes the proposed
method, and Sect. 4 shows its evaluation results. Conclusions and future work
are discussed in Sect. 5.

2 Related Work

In this section, the overview of ConvGNNs is presented. R-GCN model is then
described as a target of the proposed partitioning method.

2.1 ConvGNNs

GNNs are formulated by aggregation layer and combination layer [8]. The aggre-
gation layer defines how to aggregate adjacent nodes’ features. The combination
layer defines a method to concatenate the result of the aggregation layer and
a target node’s feature. The l-th aggregation layer’s output a

(l)
v , and the l-th

combination layer’s output h
(l)
v for the target node v are defined as follows:

a(l)
v = AGGREGATE(l) ({h(l−1)

u : u ∈ N(v)}), (1)

h(l)
v = COMBINE(l) (h(l−1)

v , a(l)
v ), (2)

where N (v) is a set of adjacent nodes of node v, a
(l)
v is an aggregated feature

vector of adjacent nodes, and h
(l)
v is a feature vector of the node v at l-th layer.

In ConvGNNs, their weight matrices are updated with those multiplied by the
adjacent node’s feature vectors. For example, the l-th aggregation layer and the



124 T. Kibata et al.

l-th combination layer of GraphSage [5], one of ConvGNNs, are formulated as
follows:

a
(l)
v = MAX({W (l)

a · h(l−1)
u ,∀u ∈ N (v)}), (3)

h
(l)
v = W

(l)
h · [h(l−1)

v , a(l)
v ], (4)

where Wa and Wh are weight matrices for aggregation and combination layers,
respectively. MAX is an element-wise max-pooling and the combination layer
represents a linear mapping. Such approaches have a problem with the size of
graph-structured data. Especially when GPUs are used for the acceleration of
the model training, the graph-structured data are required to be partitioned
into smaller batches. In GraphSage, a node-wise partitioning is applied to solve
the problem. The technique to make batches is based on node sampling located
around the target nodes, for example, by random walk. As a result, the graph is
divided into batches so that each batch can be fit into a GPU device memory.
Pinsage [10], an extension of GraphSage, is an item recommendation system
for a web-scale graph-structured data, which is composed of three billion nodes
and 18 billion edges with data-parallel processing using multiple GPUs, where
these GPUs share the same parameters and operate different batches. The size
of batches is determined based on the sampling range. GIN [8] is another GNN
that has shown a stable and high prediction accuracy. Several ConvGNNs have
been extended to make predictions in relational graphs [9].

2.2 R-GCN

Fig. 1. Example of relational graph.

The R-GCN model aims to complete a lack of information on a knowledge
base. Figure 1 illustrates an example of a knowledge base, composed by a triplet
(subject, predicate, and object). In Fig. 1, the graph data contains information
that “(Mark) (Play)s (Football).” Knowledge base requires two prediction tasks:
entity clustering and link prediction. The entity clustering task corresponds to
the prediction of Mark’s occupation, “Employee.” Completing the link “Live”
from “Mark” to “Yokohama” is one of the link predictions. Note that it needs to
consider edge directions and types. R-GCN introduces these edge attributes to
conventional GCNs.



Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 125

R-GCN models have weight matrices Wr, which are corresponding to each
edge attribute r. A set of weight matrices takes edge types and directions into
account. Also, W0 is defined as self-loops’ weight matrix that is a feed-forward
from the previous layer. More specifically, a hidden vector hv of a node v on an
(l + 1)-th layer can be calculated as follows [6]:

h(l+1)
v = σ(

∑

r∈R

∑

u∈N r
v

1
cv,r

W (l)
r h(l)

u + W
(l)
0 h(l)

v ), (5)

where N r
v is a set of adjacent nodes connected to node v with edge attribute

r. cv,r is a normalization factor for normalizing the difference of node degree,
and generally it is defined as cv,r = |N r

v |. We here define two sublayers: matrix-
operation layer and adding layer. The matrix-operation layer is in charge of the
computation of 1

cv,r
W

(l)
r h

(l)
u and W

(l)
0 h

(l)
v . The adding layer executes the other

operations. The loss function for a model training is defined as follow:

L = −
∑

i∈Y

K∑

k=1

tv,k lnh
(L)
v,k , (6)

where L is the number of hidden layers, tv,k is the k-th cluster’s label on node
v, and hv,k is the k-th entry of the network output for the node v. Y is a set
of nodes that have labels. For the model training, there are two regularization
methods to reduce the number of learnable parameters. With the regularization
of basis-decomposition [6], weight matrices Wr are defined as follows:

Wr =
B∑

b=1

a
(l)
r,bV

(l)
b . (7)

This regularization means that weight matrices are defined as a linear combina-
tion of basis transformations V

(l)
b ∈ R

d(l+1)×d(l)
with coefficients ar,b dependent

on each edge attribute r. Also, weight matrices consume the memory only when
the operation is executed on a layer that is related to the weight matrices. How-
ever, the size of weight matrices, used at the same time, increases proportionally
to the number of edge attributes. Thus, the model has a scalability issue, espe-
cially under the condition where initial node features are set as one-hot vectors.
As a result, it needs to partition both a graph and a model for acceleration with
GPUs, as well as typical deep learning models.

3 Proposed Method

In this section, we introduce our edge attribute-wise graph partitioning method
and a graph-and-model simultaneous parallel execution on R-GCN.
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3.1 Edge Attribute-Wise Partitioning

In Sect. 2.2, we mentioned that the partitioning of both the graph and model
is required to use GPUs for accelerating R-GCN execution with a large graph-
structured data, because GPU device memory size is strictly limited. Generally,
for executing deep learning on a GPU, the total size of a model and training
data necessarily fits into the GPU device memory size. However, in the case of
R-GCN model, the weight matrices Wr are required for each edge attribute r,
which means that the model size increases proportionally to the number of edge
attributes. This is an inherent scalability issue of R-GCN, which is different from
other ConvGNNs. There are two ways of partitioning for fitting data and model
sizes into GPU device memory: node-wise partitioning and edge attribute-wise
partitioning. The node-wise graph partitioning is one of the existing solutions
[3,10] to resolve the scalability problem on GNN models, making some batches by
sampling adjacent nodes around target nodes. In this paper, on the other hand,
we propose an edge attribute-wise partitioning to give a solution for the size of
graph data as well as the size of the model. The benefit of the edge attribute-wise
partitioning over the node-wise partitioning is as follows. Although the node-wise
partitioning mainly aims at data-parallel computing, the partitioning results in
an overlapping of weight matrices between submodels on R-GCN. In the worst
case, the submodels’ size is not reduced, and thus the scalability problem on R-
GCN model would not always be solved. Meanwhile, the proposed edge attribute-
wise partitioning aims at dividing a graph into some subgraphs in such a way that
each edge attribute is exclusively divided. Here, each submodel should only have
a weight matrix corresponding to the edge type that each subgraph has. Thus
the size of the submodels is always scaled down. The memory space complexities
of their weight matrices for input, hidden, and output layers are O(|Ri||Vi||H|),
O(|Ri||H||H|), and O(|Ri||H||O|), respectively, where |Ri| is the number of edge
attributes on the i-th subgraph, |Vi| is the number of nodes on the i-th subgraph,
|H| is the number of hidden units, and |O| is the dimension of output. We notice
that there is no difference in the learning outcome between the division and the
non-division implementations.

Figure 2 illustrates the concept of the graph partitioning, which is executed
for a graph with four edge attributes. At first, a parent graph, i.e., the original
graph data, is partitioned into portions, each having exactly one edge attribute.
Subgraphs are finally constructed by assembling any of the portions. We propose
two methods for grouping the portions into subgraphs. The first method that
considers the number of edges in each subgraph and the second method that
considers the number of edge attributes in each subgraph. In the first method,
portions are distributed into subgraphs, minimizing the difference in the number
of edges in subgraphs. In the second method, we sort portions in descending
order by the number of edges. The sorted portions are assigned to one of the
subgraphs in ascending order (subgraphs 1 to N) and then those in descending
order (subgraphs N to 1) repeatedly. Here, we regard the portion including self-
loops as a subgraph in distinction from others to reduce the size of submodels.
The size of weight matrices depends on the number of nodes when initial node
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features are defined as one-hot vectors of local node IDs in each subgraph. Since
the self-loop exists in all the nodes, the number of nodes in a self-loop subgraph
is equal to that of the parent graph. A subgraph, including self-loops, increases
the number of nodes in the subgraph, resulting in a larger submodel. To avoid
this, we distinguish the self-loops from the others.

Fig. 2. Example of edge attribute-wise partitioning for graph with four edge attributes,
making two subgraphs.

3.2 Graph-and-Model Simultaneous Partitioning

In this section, we propose the implementation of R-GCN using multiple GPUs.
We note here that R-GCN has huge weight matrices when training a large graph
data, especially on the input layer, because the scale grows proportionally with
the numbers of nodes and the edge attributes. The edge attribute-wise parti-
tioning can reduce not only batch sizes in the graph but also the size of weight
matrices in each submodel. We introduce the following parallel and sequential
implementations:

1. CPU+MultiGPUs setting: parallel execution using multiple GPUs, and
2. CPU+1GPU setting: time-multiplexed sequential execution using a single

GPU.

Figure 3 shows an execution flow on a matrix-operation layer of R-GCN under
the CPU + MultiGPUs setting. In the execution, at first, subgraphs are gener-
ated by the edge attribute-wise partitioning. Then, the features of subgraphs
are transferred to GPUs. In each GPU, weight matrices corresponding to the
subgraph’s edge attributes are set by computation of basis-decomposition reg-
ularization, and then the results are returned to a host CPU. In addition, the
subgraph with only self-loops is operated on one of the GPUs by sharing this
GPU with another subgraph. After that, the results are copied to the parent
graph before executing. Then, the adding layer is executed for the parent graph.
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Fig. 3. Execution flow on a matrix-operation layer before an adding layer.

Figure 4 illustrates the execution to create weight matrices in each submodel.
By the basis-decomposition regularization, the base matrices V should be shared
with all the GPUs to make each set of weight matrices. That is a reason why basis
transformations V is replicated to the other GPUs. Then, each GPU prepares the
set of weight matrices corresponding to a transferred subgraph, by computing a
replica of V and edge attribute coefficients ar. CPU + 1GPU is also based on the
edge attribute-wise partitioning. With this setting, each subgraph is transferred
into a single GPU, and the submodel is executed on the GPU sequentially. We
evaluate the execution time for the two implementations: CPU + MultiGPUs
setting and CPU + 1GPU sequential execution setting.

Fig. 4. Creating submodels on a matrix-operation layer under the basis-decomposition
regularization condition, and distributing subgraphs on each GPU.

4 Evaluations

In this section, we evaluate the effectiveness of our proposal, the graph-and-
model simultaneous partitioning on R-GCN. The evaluation environment is
shown in Table 1.
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Table 1. Execution environment.

OS Ubuntu 16.04.6 LTS

CPU Intel Core i7-6800K (6C) 3.40GHz
GPU NVIDIA GeForce GTX 1080Ti (11GB GDDR5X)
DRAM 32GB

4.1 Baseline

Implementation. We evaluate the execution time for model training by com-
paring three implementations with one or more GPUs to CPU only setting.
Three implementations are as follows:

1. GPUonly where all the parameters and graph data are allocated on a single
GPU without CPU,

2. CPU + MultiGPUs setting using 2–4 GPUs based on the model and graph
simultaneous partitioning, and

3. CPU + 1GPU setting using a single GPU sequentially based on the model-
and-graph simultaneous partitioning.

The second and third settings were introduced in Sect. 3.2. We use Pytorch
as a deep learning framework. Also, DGL (Deep Graph library) [1] is used for
operations on the graph-structured data, such as an aggregation of node infor-
mation. As a baseline, we use a DGL’s tutorial code for the implementations of
CPU setting and GPUonly setting. In this paper, R-GCN model has two layers
with 16 hidden units for BGS and 10 hidden units for AM and a random graph.
Also, we set the number of basis transformations as 40, and we use SGD as the
optimizer.

Datasets. We use three datasets: BGS, AM, and a random graph. BGS and
AM are provided in Resource Description Framework format [5], and the ran-
dom graph is generated with the Barabasi-Albert model [2]. Table 2 lists their
parameters: the numbers of nodes, edge attributes, edges, labeled nodes, and
classes. The datasets are preprocessed to fit DGL graph format and R-GCN
model. Firstly, self-loops are added to graph data. In addition, the edges of the
graph data are duplicated by considering edge directions. The number of edge
attributes on the graph data becomes twice the original dataset by this prepro-
cessing. In the graph, distant nodes which are more than three-hop away from
the target node are pruned, because we assume a 2-layer model in which the
three-hop away nodes do not affect outputs of the target nodes. We delete edges
whose edge attributes are applied for less than 150 edges in the case of AM.

4.2 Result of Graph Partitioning

The proposed graph partitioning method is used to generate the subgraphs.
Here, the number of nodes is related to the scale of the submodels in the input
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Table 2. Datasets: BGS, AM, and random graph.

BGS AM Random graph

# of nodes 333,845 1,666,764 800,000
# of edge attributes 103 120 100
# of edges 916,199 5,196,085 2,399,998
# of labeled nodes 146 1,000 400
# of classes 2 11 8

layer under the condition where the initial node features are defined as one-hot
vectors. The number of edges determines the computation cost, and the number
of edge attributes is proportional to the scale of the submodel. In this paper, we
partition graphs and models into subgraphs in two ways as proposed in Sect. 3.1.
In Sect. 4.3, the execution time of R-GCN is evaluated with GPUs while changing
the number of subgraphs. Tables 3 and 4 show the results of partitioning each
graph-structured data into four subgraphs and a subgraph that has only self-
loops. We found that the way considering the number of edge attributes in each
subgraph can minimize the size of weight matrices on each GPU. Thus, this
approach is used in the following experiments.

Table 3. Parameters of subgraphs when applying edge attribute-wise partitioning,
considering the number of edges in each subgraph.

(a) BGS

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 205,111 279,072 171,265 84,573 333,017
# of edges 457,470 457,467 457,407 457,534 333,017
# of edge attributes 34 35 85 40 1
(b) AM

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 1,013,531 1,073,744 1,118,582 915,739 1,203,676
# of edges 2,598,224 2,598,221 2,598,263 2,598,414 1,203,676
# of edge attributes 26 40 102 72 1
(c) Random graph

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 656,908 651,308 656,959 663,528 800,000
# of edges 798,697 785,283 798,684 817,332 800,000
# of edge attributes 50 49 50 51 1
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Table 4. Parameters of subgraphs when applying the edge-attributes partitioning,
considering the number of edge attributes in each subgraph.

(a) BGS

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 177,298 145,554 258,285 286,893 333,017
# of edges 460,080 460,080 454,859 454,859 333,017
# of edge attributes 49 49 48 48 1
(b) AM

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 986,425 986,250 1,035,928 1,035,928 1,203,676
# of edges 2,901,669 2901,669 2,294,892 2,294,892 1,203,676
# of edge attributes 60 60 60 60 1
(c) Random graph

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self

# of nodes 657,309 644,850 650,788 657,179 800,000
# of edges 799,962 799,962 800,036 800,036 800,000
# of edge attributes 50 50 50 50 1

4.3 Execution Time

Table 5 shows a summary of the execution time. Although the datasets were
also executed with GPUonly setting, the out of GPU memory occurred in the
cases of AM and random graph. Especially for AM, the size of weight matrices
on the input layer was over 17GB, which explicitly demonstrates the neces-
sity of the proposed model partitioning on R-GCN model with a large graph
data. This motivates us the graph-and-model partitioning. Also, we remark that
CPU + 4GPUs setting can accelerate the model training for all the datasets com-
pared to CPU setting: 3.88 times for BGS, 3.28 times for AM, and 2.60 times
for the random graph. We notice that in the backward phase for updating the
parameters, CPU + 4GPUs setting is advantageous. On the other hand, in the
forward phase, its advantage is not as much as in the backward phase, because
the data transfer overhead becomes significant. Please note that, if a target graph
data is small enough to execute GPUonly setting, this setting is the best choice.

Figure 5 shows the results of CPU + MultiGPUs setting and CPU + 1GPU
setting while changing the number of GPUs and the number of graph divisions,
respectively. Note that the out of memory occurred in the case of AM. We found
firstly that the growth in the number of GPUs improves the performance. For
BGS, the acceleration rate increases from 3.42 (CPU + 2GPUs) to 3.88 times
(CPU + 4GPUs) compared to CPU setting. For the random graph, the acceler-
ation rate increases from 2.48 (CPU + 3GPUs) to 2.60 times (CPU + 4GPUs)
compared to CPU setting. The reason for the small increase in speed by increas-
ing the number of GPUs is due to the processing of the aggregation layer on
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Table 5. Mean training times (Forward, Backward, and Full) per epoch [sec] for exe-
cutions on CPU, GPUonly, and CPU+4GPU settings.

BGS AM Random graph

Forward CPU 1.26 4.86 1.94
GPUonly 0.049 N/A N/A
CPU+4GPU 0.80 3.68 1.34

Backward CPU 7.78 37.07 9.92
GPUonly 0.003 N/A N/A
CPU+4GPU 1.53 9.11 3.21

Full CPU 9.06 41.92 11.86
GPUonly 0.052 N/A N/A
CPU+4GPU 2.33 12.78 4.55

Fig. 5. Execution time per epoch [sec] of BGS and random graph for
CPU+MultiGPUs settings with 2–4 GPUs and CPU+1GPU settings with 3–6 divi-
sions. The number of divisions is defined as the number of subgraphs except for their
self-loop subgraph, and *N/A indicates the out of memory occurred during execution.

CPU and feature exchange between the parent graph and subgraphs. Although
the performance of the CPU + 1GPU is inferior to CPU + MultiGPUs setting,
this setting accelerates the execution time by up to 2.38 and 1.55 times for BGS
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and the random graph, respectively, compared to CPU setting. We remark that
our proposal can accelerate R-GCN even with a single GPU for training R-GCN
model for a large graph. We also found here that the number of divisions is
related to the performance, and minimizing the number of divisions can improve
the performance. In the forward phase, the computation results are accumulated
on a GPU and consume the memory capacity. As a result, CPU + 1GPU setting
with three divisions for the random graph introduces the out of memory even
though the execution on CPU + 3GPUs setting has been successfully done.

5 Conclusions

In this paper, we presented an edge attribute-wise graph partitioning and the
graph-and-model simultaneous partitioning method on R-GCN to accelerate
using one or more GPUs with large graph-structured data. Experimental results
with CPU + MultiGPUs setting show that it can accelerate the model training
of R-GCN with AM dataset with over 1.6 million nodes, 5 million edges, and
120 edge attributes. Besides, the CPU + 1GPU setting outperforms CPU setting
by 1.55 times for a dataset with 0.8 million nodes, 2 million edges, and 100 edge
attributes even with a single GPU. The result opens up possibilities to acceler-
ate training R-GCN by using one or multiple GPUs, each having limited device
memory capacity. As future work, we need to consider smaller batches with fine-
grained mini-batch execution scheduling to release the memory allocation more
frequently to utilize the GPU device memory more efficiently.
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Abstract. k-means is a standard algorithm for clustering data. It con-
stitutes generally the final step in a more complex chain of high quality
spectral clustering. However this chain suffers from lack of scalability
when addressing large datasets. This can be overcome by applying also
the k-means algorithm as a pre-processing task to reduce the input data
instances. We describe parallel optimization techniques for the k-means
algorithm on CPU and GPU. Experimental results on synthetic dataset
illustrate the numerical accuracy and performance of our implementa-
tions.

Keywords: k-means algorithm · Spectral clustering · Heterogeneous
CPU-GPU computing

1 Introduction

Clustering refers to the process that aims at revealing the intrinsic structure
of data by automatically grouping data instances into meaningful subsets called
clusters. The intra-cluster similarity is supposed to be high while the inter-cluster
similarity should be low. It is one of the most important tasks in machine learning
and data mining and has numerous applications, such as image segmentation
[16], video segmentation [17], document analysis [9], etc.

The k-means algorithm [13] is one of the most widely used clustering meth-
ods. It is a distance-based method that can efficiently find convex clusters, but
it usually fails to discover non-convex clusters. It also relies on an appropriate
selection of initial centroids to avoid being stuck in local minima solutions.

Spectral clustering [14] has gained popularity in the last two decades. Based
on graph theory, it embeds data into the eigenspace of graph Laplacian and
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then performs k-means clustering on the embedding representation. Compared
to classical k-means, spectral clustering has many advantages. First, it is able
to discover non-convex clusters. Then, it has no problem of initialization and
can lead to a global solution. Furthermore, one can exploit the unique “eigengap
heuristic” [12] to estimate the number of clusters if the clusters are distinctly
separated. Finally, spectral clustering algorithms have the potential to be effi-
ciently implemented on HPC platforms since they require substantial linear alge-
bra computations that can be processed using existing HPC libraries. However,
spectral clustering has in general a computational cost of O(N3) where N is the
number of data instances [20]. This can be a critical issue when dealing with
large-scale applications where N can be of order 106 or even larger. To overcome
this difficulty, some researchers reduce the computational complexity of spectral
clustering through methodological changes, e.g., power iteration clustering [11].
It is also possible to use approximation or summarization techniques so that
only a small subset of data is involved in the complex computation, e.g., spar-
sification [4], Nyström approximation [6], or representatives extraction (using a
preliminary k-means step)[20]. Moreover, another powerful way is to accelerate
spectral clustering on parallel and distributed architectures, where using CPU-
GPU heterogeneous platforms is particularly attractive because it combines the
strengths of both processors. Specifically, CPUs are efficient in performing tradi-
tional computation tasks and have much more memory space than GPUs, while
GPUs provide high performance in mathematically intensive computations.

We are interested in proposing a general CPU-GPU-based implementation
of spectral clustering that can address large problems. There are several related
studies. Zheng et al. [22] present a parallelization of spectral clustering and imple-
ment it on CPU and on GPU separately, but the performance for calculating
the affinity matrix remains to be improved and the situation is not considered
when a matrix is too large to be loaded into the device memory. Sundaram and
Keutzer [17] apply spectral clustering for long term video segmentation on a
cluster of GPUs. However, their implementation is dedicated to video segmenta-
tion and there is no measurement of speedup. Jin and JaJa [8] present a hybrid
implementation of spectral clustering on CPU-GPU platforms for problems with
a large number of clusters, but the considered datasets are of medium size and
the eigensolver performance appears limited.

In this paper, we consider the parallelization of the processing chain of large-
scale spectral clustering by combining the use of representatives extraction with
hybrid CPU-GPU computing. The main contributions of this paper are opti-
mized implementations on CPU and GPU for the k-means algorithm, which are
two steps of the global processing chain of spectral clustering. To our knowledge,
most of the existing works related to parallel k-means algorithm on CPU (e.g.,
[3,10]) and on GPU (e.g., [3,5]) do not consider the issue of numerical accuracy
that may occur in the update phase due to the propagation of round-off errors
and that can lead to poor clustering quality. In this paper we address both high
performance of the algorithm and numerical accuracy in the update phase of
k-means clustering.
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The remainder of this paper is organized as follows. Section 2 describes the
computational chain for spectral clustering. In Sect. 3 we present our parallel
implementations of k-means algorithm on CPU and GPU with the related opti-
mizations. The experimental evaluation of our code is then presented in Sect. 4
and we conclude in Sect. 5.

2 A Computational Chain for Spectral Clustering

Spectral clustering has many slightly different algorithms. Here, we present the
main steps of spectral clustering according to [12,14]. Given a set of N data
instances of Dim dimensions: x1, ..., xN in R

Dim that are supposed to be grouped
into kc clusters, the three main steps of spectral clustering are the following (see
also the right part of Fig. 1):

1. Construct the similarity matrix S. The similarity graph, which can be
represented by an N × N similarity matrix S, is used to model the simi-
larity between data instances. ε-neighborhood, k-nearest neighbors, and full
connection are three common ways to construct the similarity graph [12].
The first two ways yield typically sparse similarity matrix while the last
one generates dense matrix. The degree matrix D is a diagonal matrix that
can be easily derived from S with di =

∑N
j=1 sij . The unnormalized graph

Laplacian is defined as L = D − S and can be further normalized as the
symmetrix matrix Lsym = D−1/2LD−1/2 [12]. Some other researchers define
Lsym = D−1/2SD−1/2 that is normalized from S [14].

2. Compute the first kc eigenvectors e1, ..., ekc
of graph Laplacian Lsym.

Here, by saying “the first kc eigenvectors”, we refer to the eigenvectors corre-
sponding to the kc smallest eigenvalues if graph Laplacian is normalized from
L, or the kc largest eigenvalues if normalized from S. Let E denote the N ×kc
matrix containing the kc eigenvectors as columns, then form the matrix T by
normalizing each row of E to 1.

3. Perform final k-means clustering. Each row of T can be considered as
the embedding representation in R

kc of the original data instance with the
same row number. Therefore, performing k-means clustering on the rows of
T allows to obtain the kc clusters of original data instances.

It can be seen that spectral clustering involves linear algebra computations,
especially in the first two steps. This can be achieved using GPU computing and
specifically some highly optimized CUDA libraries provided by NVIDIA, such
as cuBLAS, cuSPARSE, cuSOLVER and nvGRAPH [15] or a public domain
library like MAGMA [18]. If a matrix is sparse, e.g., the similarity matrix for
ε-neighborhood graph or k-nearest neighbors graph, we can use the cuSPARSE
library. The cuSOLVER library can be used for eigenvector computations in
spectral clustering. Furthermore, the nvGRAPH, a library dedicated to graph
analytics, contains an API for spectral clustering. However, the API has two
important limits. First, it requires the number of clusters as an input in the
configuration of spectral clustering (which, in practice, may be difficult to know
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Fig. 1. Data flow for our complete spectral clustering chain

in advance). Second, it assumes that the similarity matrix (in CSR format) is
already prepared, which can be computationally expensive for a general problem.

In view of the limits identified previously in related studies and in NVIDIA
solutions, we propose a strategy for parallelizing the complete spectral cluster-
ing chain on CPU-GPU heterogeneous architectures as shown in Fig. 1: The first
step of the data flow illustrated in Fig. 1 allows to reduce significantly the vol-
ume of N input data, extracting kr representatives via k-means algorithm [20].
Typically, we have kc � kr � N . Each data instance is associated with the
nearest representative. Then the kr representatives are transferred from host to
device and spectral clustering is performed on GPU on these representatives to
find the kc clusters, taking advantage of the CUDA libraries discussed earlier. In
particular, it is possible to use either the cuSOLVER or the nvGRAPH Spectral
Clustering API for the computation of eigenvectors. The latter also encapsulates
the final k-means clustering step. The clustering result for the kr representatives
is transferred from device to host, and finally we obtain the cluster labels of N
data instances according to the attachment relationships in the first step.

Moreover, some heuristic methods for the automatic estimation of kc such as
[12,19,21] can also be applied by using the eigenpairs calculated with or without
the kr representatives approach.

3 Optimizing Parallel k-means Algorithm

In this section, we present the standard k-means algorithm and then describe
our parallel and optimized implementations on CPU and GPU, including the
inherent bottlenecks and our optimization methods especially for the step of
updating centroids.

3.1 k-means Algorithm

The k-means algorithm is a distance-based iterative clustering method. Algo-
rithm 1 describes the main steps. The inputs are supposed to be a dataset
containing N instances in Dim dimensions, and the desired number of clusters
K. The first step consists in selecting K initial centroids from the dataset, either
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Algorithm 1: k-means algorithm
Inputs: N data instances in Dim dimensions, K: nb of clusters
Outputs: Cluster labels of N data instances

1 Select K initial centroids;
2 repeat
3 ComputeAssign routine;
4 UpdateCentroids routine;

5 until stopping criterion;

randomly or in a heuristic way (see [1]). Then the algorithm repeats two routines,
ComputeAssign and UpdateCentroids, until reaching the stopping criterion. The
ComputeAssign routine computes the distance between each instance and each
centroid, where the distances are measured using the Euclidean norm. For each
instance, we compare the distances related to different centroids and assign the
instance to the nearest centroid. In addition, we track the number of instances
that have different assignments (i.e. cluster labels) over two consecutive itera-
tions. The UpdateCentroids routine calculates the means of all instances that
are assigned to the same centroid and updates the centroids. The stopping crite-
rion can be either a maximal number of iterations, or a relatively stable result,
i.e., when the proportion of data instances that change of label is lower that a
predefined tolerance. The outputs are the cluster labels of all data instances.

3.2 Parallel Implementations

The parallelization of the k-means algorithm on CPU is achieved by using
OpenMP and auto-vectorization and by minimizing cache misses. The GPU
code is developed in CUDA. We minimize data transfers between CPU and
GPU using pinned memory for fast transfers. Specifically, the data instances to
be clustered are transferred from CPU to GPU at the beginning of program,
then a series of CUDA kernels and library functions are launched from CPU to
perform k-means clustering on GPU, finally the cluster labels are transferred to
CPU. For the coalescence of memory access, we need to transfer the transposed
matrix of data instances. We also transpose the matrix of centroids on GPU,
but the overhead is insignificant since it is typically a small matrix. Moreover,
in order to check the stopping criterion, at each iteration we need to transfer to
CPU the number of instances that change of label, but the price of this transfer
is negligible. Besides, we set the optimal sizes for grids and blocks of threads.
The CPU code can be used for the preliminary step that extracts representa-
tives while the GPU code can serve as the third step of the spectral clustering
algorithm (see Fig. 1). In both codes, we minimize data storage and access by
integrating distances computation and instances assignment into one routine
(ComputeAssign).

This ComputeAssign routine exhibits a natural parallelism, leading to a
straightforward parallel implementation, both on CPU and GPU, not detailed
in this paper. Conversely, the UpdateCentroids routine appears more difficult
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to be efficiently parallelized and is a source of rounding errors due to reduction
operations.

Effect of Rounding Errors. For implementations both on CPU and GPU,
when using large datasets and floating-point numbers with single precision (32-
bits arithmetic), we encountered the problem caused by rounding errors that
derive from the finite representation capacity of floating-point numbers in par-
ticular when adding two numbers of very different magnitudes. In the Update-
Centroids routine, the algorithm needs to calculate the sum of data instances
in each cluster and then divide the sum by the number of instances in the clus-
ter. Therefore, when a large number of instances are added together one by one
naively, the accumulation of rounding errors that may occur finally deteriorates
the clustering quality (see [7] for an illustration of the effect of rounding errors).
On the other hand, using double precision (64-bits arithmetic) can reduce the
effect of rounding errors to a satisfying level of accuracy in our use case, but
the computational cost is higher (see e.g., [2]). To preserve the performance of
computing in single precision while minimizing the effect of rounding errors, we
developed a two-step method as follows.

Two-Step Method for UpdateCentroids Routine. We split data instances
into a certain number of packages of similar size, then calculate the sum within
each package (first step), and compute the sum of all packages (second step).
By choosing an appropriate number of packages, we can avoid adding numbers
of significantly different magnitudes and obtain satisfactory numerical accuracy.
We illustrate hereafter how to efficiently parallelize this method on CPU and
GPU.
1 #pragma omp parallel {
2 ... // Declare variables , reset count and cent to zeros
3 q = N / P; r = N % P; // Quotient & Remainder
4 // Sum the contributions to each cluster
5 #pragma omp for private(pack) reduction (+: count , cent)
6 for (int p = 0; p < P; p++) { // Process by package
7 ... // Reset pack to zeros
8 ofs = (p < r ? ((q + 1) * p) : (q * p + r)); // Offset
9 len = (p < r ? (q + 1) : q); // Length

10 for (int i = ofs; i < ofs + len; i++) { // 1st step reduction
11 int k = label[i]; // - Count nb of instances in
12 count[k]++; // OpenMP reduction array
13 for (int d = 0; d < Dim; d++) // - Reduction in thread

private
14 pack[k][d] += data[i*Dim + d]; // array
15 }
16 for (int k = 0; k < K; k++) // 2nd step reduction
17 for (int d = 0; d < Dim; d++) // - Reduction in OpenMP
18 cent[k][d] += pack[k][d]; // reduction array
19 }
20 // Final averaging to get new centroids
21 #pragma omp for
22 for (int k = 0; k < K; k++) // Process by cluster
23 for (int d = 0; d < Dim; d++)
24 cent[k][d] /= count[k]; // - Update global array
25 }

Listing 1.1. Two-step UpdateCentroids routine on CPU
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Suppose that we divide N data instances into P packages and perform reduc-
tions in two steps, the CPU implementation code is displayed in Listing 1.1. We
use both private and reduction clauses in OpenMP directive on line 5, to paral-
lelize the outer loops of the 2 reduction steps, while inner loops are compliant
with the main requirements of auto-vectorization (accessing contiguous array
indexes and avoiding divergences) engaged with -O3 compilation flag.

For parallel implementation on GPU, we exploit shared memory, dynamic
parallelism and multiple streams to achieve better performance. The Update-
Centroids routine is split into two steps: UpdateCent S1 computing the sum of
instance values within each package (step 1) and UpdateCent S2 computing the
values of new centroids (step 2). As shown in Listing 1.2, by using dynamic par-
allelism (CUDA threads creating child threads), the host code is simplified to
two parent kernel launches. Each parent grid is small and contains only nb of
streams threads (one thread per stream).
1 cudaMemset (...); // Reset G_count , G_pack to zeros
2 // nS1 & nS2 : nb of streams for Step1 & Step2
3 UpdateCent_S1_Parent <<<1,nS1 >>>(G_label , G_pack , G_data_t , G_count);
4 UpdateCent_S2_Parent <<<1,nS2 >>>(G_pack , G_cent_t , G_count);

Listing 1.2. Host code of the 2-step solution on GPU for UpdateCentroids routine

The parent kernel and child kernel of step 1 are exhibited in Listing 1.3.
Each thread in UpdateCent S1 Parent kernel processes several packages on its
own stream (created on line 42), and launches one child grid per package of data
instances (lines 47–57). Each child grid contains nb of instances per package × nb
of dimensions per instance working threads, and child grids launched on different
streams run concurrently as long as there are sufficient hardware resources in
the GPU. This strategy allows to optimize the GPU usage independently of the
number and size of packages. Thus, the number of packages is constrained only
by the rounding error problem. The cudaStreamDestroy (line 58) ensures that
this stream will not be reused to launch other threads, while the parent thread
will only end when all of its child threads are finished.

In UpdateCent S1 Child kernel, by using shared memory, the expensive
atomicAdd operations are performed by every block instead of every thread,
hence are reduced significantly (Listing 1.3, lines 31 and 33). Specifically, threads
in the same block calculate the local sum by block size at first, then all the local
sums are added together through a few atomicAdd operations.
1 // Child kernel of UpdateCentroids Step1
2 __global__ void UpdateCent_S1_Child(int pid , int ofs , int len , int *G_label

,
3 T_real *G_pack , T_real *G_data_t , int *G_count

){
4 __shared__ T_real shTabV[BSYD][BSXP]; // Tab of instance values
5 __shared__ int shTabL[BSXP]; // Tab of labels(cluster

Id)
6 // Index initialization
7 int baseRow = blockIdx.y * BSYD; // Base row of the block
8 int row = baseRow + threadIdx.y; // Row of child thread
9 int baseCol = blockIdx.x * BSXP + ofs; // Base column of the

block
10 int col = baseCol + threadIdx.x; // Column of child thread
11 int cltIdx = threadIdx.y * BSXP + threadIdx.x; // 1D cluster index
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12 // Load the values and cluster labels of instances into sh mem tables
13 if (col < (ofs + len) && row < Dim) {
14 shTabV[threadIdx.y][ threadIdx.x] = G_data_t[row*N + col];
15 if (threadIdx.y == 0) shTabL[threadIdx.x] = G_label[col];
16 }
17 __syncthreads (); // Wait for all data loaded into the sh mem
18 // Compute partial evolution of centroid related to cluster number ’

cltIdx’
19 if (cltIdx < K) {
20 T_real Sv[Dim] = {0.0}; // Sum of values in each dimension
21 int count = 0; // Counter of instances
22 // - Accumulate contributions to cluster number ’cltIdx’
23 for (int x = 0; x < BSXP && (baseCol + x) < (ofs + len); x++) {
24 if (shTabL[x] == cltIdx) {
25 count ++;
26 for (int y = 0; y < BSYD && (baseRow + y) < Dim; y++)
27 Sv[baseRow + y] += shTabV[y][x];
28 }
29 }
30 // - Save the contrib. of block into global contrib. of the package
31 if (blockIdx.y == 0 && count != 0) atomicAdd (& G_count[cltIdx], count);
32 for (int d = 0; d < Dim; d++)
33 if (Sv[d] != 0.0) atomicAdd (& G_pack[d*K*P + K*pid + cltIdx], Sv[d]);
34 }
35 }
36

37 // Parent kernel of UpdateCentroids Step1
38 __global__ void UpdateCent_S1_Parent (...) {
39 int tid = threadIdx.x; // Thread id
40 if (tid < P) {
41 ... // Declare variables and stream
42 cudaStreamCreateWithFlags (&s, cudaStreamDefault);
43 q = N / P; r = N % P; // Quotient & remainder
44 np = (P - 1) / nS1 + 1; // Nb of packages for each

stream
45 Db.x = BSXP; Db.y = BSYD; Db.z = 1; // BSXP: Block X-size for

package
46 Dg.y = (D - 1) / BSYD + 1; Dg.z = 1; // BSYD: Block Y-size for dim
47 for (int i = 0; i < np; i++) {
48 pid = i * nS1 + tid; // Package id
49 if (pid < P) {
50 ofs = (pid < r ? ((q + 1) * pid) : (q * pid + r)); // Offset
51 len = (pid < r ? (q + 1) : q); // Length
52 Dg.x = (len - 1) / BSXP + 1;
53 // Launch a child kernel on a stream to process a package
54 UpdateCent_S1_Child <<<Dg,Db ,0,s>>>(pid , ofs , len , G_label , G_pack ,
55 G_data_t , G_count);
56 }
57 }
58 cudaStreamDestroy(s);
59 }
60 }

Listing 1.3. Device code on GPU for step 1 of UpdateCentroids routine

A similar strategy is used to implement step 2 of our complete solution on
GPU. Each thread of the parent grid processes several packages, and creates child
grids on its own stream. Each child grid is in charge to update the K × Dim
centroid values with the contribution of its package. So, it contains K × Dim
threads, each one executing only few operations and one atomicAdd (shared
memory is not adapted to and not used in step 2 computations). Again, using
dynamic parallelism and multiple streams has allowed to speedup the execution.
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4 Experimental Evaluation

The experiments have been carried out on a server located at CentraleSup-
elec (Metz campus). This server has two 10-core Intel(R) Xeon(R) Silver 4114
processors at 2.2 GHz, and a NVIDIA GeForce RTX 2080 Ti containing 4352
CUDA cores. The CPU code is compiled with gcc version 7.4.0 (with -O3 flag)
to have parallelization with OpenMP, vectorization on AVX units and various
optimizations. The GPU code is compiled with CUDA version 10.2. Moreover, to
use dynamic parallelism in CUDA (see Sect. 3.2) we need to adopt the separate
compilation mode: generating and embedding relocatable device code into the
host object, before calling the device linker.

As benchmark, we use a synthetic 4D dataset created in Python. It con-
tains 50 million instances uniformly distributed in 4 convex clusters (12.5 mil-
lion instances in each cluster). Each cluster has a radius of 9 and the centroids
are supposed to be (40, 40, 60, 60), (40, 60, 60, 40), (60, 40, 40, 60) and (60,
60, 40, 40), respectively, in the way that the k-means algorithm would not be
sensitive to the initialization of centroids and would not be trapped in local
minimum solutions. However, due to the intrinsic errors of generating pseudo-
random numbers and the rounding errors of floating-point numbers, it appears
the calculated centroids could have a deviation of order 10−4 from the ideal ones.

In our benchmark, we iterate the algorithm while any data instance is
attached to a new centroid (tolerance = 0, see Sect. 3.1). Since the number
of iterations on CPU and GPU can vary depending on independent selections
of initial centroids and on the numerical precision, we are more interested here
in the elapsed time per iteration than the overall execution time. The most
important results in our tables are highlighted in boldface.

In Table 1, we evaluate the k-means clustering on CPU by comparing
the average numerical error of final centroids and the elapsed time per iteration
by varying the number of threads, the arithmetic precision, and the number of
packages. The column “Loop” represents the whole of two k-means routines. We

Table 1. k-means clustering on CPU (synthetic dataset)

Threads Precision Nb of
packages

Numerical
error

Init time
(ms)

Time per iteration (ms) Nb of
iterations

Overall
time (ms)

Compute-
Assign

Update Loop

1 thread Single 1 3.009794 0.009 591.47 152.31 743.78 12 8925.37

10 0.244048 0.012 616.94 151.19 768.12 5 3840.61

100 0.000745 0.008 594.13 152.36 746.49 6 4478.95

1000 0.000746 0.018 588.39 153.88 742.27 6 4453.64

Double 1 0.000741 0.009 631.58 171.11 802.69 6 4816.15

40 threads
(40 logical
cores)

Single 1a 3.009794 0.194 67.47 165.96a 233.43 6 1400.77

10b 0.244047 0.178 72.50 27.96b 100.46 5 502.48

100 0.000746 0.197 63.06 21.13 84.19 6 505.34

1000 0.000746 0.201 61.62 13.90 75.52 6 453.32

Double 1 0.000741 0.139 76.55 208.04 284.59 6 1707.68
a1 package −→ 1 task during main computations −→ only 1 working thread
b10 packages −→ 10 tasks during main computations −→ only 10 working threads
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observe that using a certain number of packages in the UpdataCentroids routine
reduces the numerical error in single precision. In our case, using 100 packages is
enough for achieving the same numerical accuracy as in double precision. Using
single precision instead of double precision decreases the elapsed time.

We give in Table 2 the accuracy and performance results of k-means clus-
tering on GPU. Using packages reduces the effect of rounding errors, and this
reduction is enhanced by using the shared memory that allows initial local reduc-
tions. The routine UpdateCentroids is the most time-consuming routine on GPU
while ComputeAssign represents a small proportion of the runtime. In our GPU
implementation, we optimize the configuration of grids and blocks of threads.
Table 3 shows an example of how block configuration affects the performance
where we set BLOCK SIZE Y (BSYD in listings) to 4 (the number of dimen-
sions of the synthetic data). Note that the centroids initialization and most of
data transfers are performed only one time, hence their impact on the whole
runtime decreases with the number of iterations. The elapsed time for regular
transpositions of some small data appears negligible (Table 2).

Table 2. k-means clustering on GPU (synthetic dataset)

Precision Nb of
pack-
ages

Numerical
error

Overhead time (ms) Init
time
(ms)

Time per iteration (ms) Nb of
itera-
tions

Overall
time
(ms)Transfer Transpose Compute-

Assign
Update Loop

Single 1 0.000992 81.15 0.15 2.64 1.96 13.77 15.73 5 162.59

10 0.000760 81.13 0.12 2.75 1.96 13.58 15.54 5 161.70

100 0.000739 81.18 0.19 2.74 1.97 13.29 15.26 5 160.41

1000 0.000741 81.11 0.29 2.65 1.98 14.07 16.05 5 164.30

Double 1 0.000741 81.13 0.14 2.65 8.98 32.05 41.03 5 289.07

Table 3. Influence of block size on performance

BLOCK SIZE X for packages Time of Update per iteration (ms)

(BSXP in listings) 100 packages 1000 packages

16 15.65 18.36

32 13.29 14.07

64 17.62 18.92

Table 4 demonstrates the impact of GPU optimization on the running time
of UpdateCentroids. Compared to the näıve implementation with many atomi-
cAdd operations, using shared memory reduces significantly the execution time
for different number of packages. The dynamic parallelism also improves the
performance in the case of 100 packages and 1000 packages but it degrades the
performance for 10000 packages. This is because the GPU hardware resources are
not fully concurrently exploited when there are a large number of small packages
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to be processed on the default stream. Therefore, introducing multiple streams
could contribute to the concurrent use of hardware resources and consequently
reduce the execution time, which is clearly demonstrated in the case of 10000
packages. The combined use of dynamic parallelism, shared memory and streams
achieves very good performances for a general number of packages.

The speedups for the two routines of k-means and the resulting full iteration
are displayed in Table 5. For the k-means loop, the best speedup obtained (com-
pared with the sequential implementation) is about ×10 on CPU using 40 logical
cores and almost ×50 on GPU (which is 5 times faster than on CPU using 40
logical cores). For the ComputeAssign routine we achieve much higher speedups
(around ×300) on GPU than on CPU while the speedups for the UpdateCen-
troids routine are similar on CPU and GPU.

Table 4. Impact of GPU optimization on the execution time of UpdateCentroids

Optimization on GPU Time of Update per iteration (ms)

100 packages 1000 packages 10000 packages

Näıve 241.15 261.72 513.37

Dynamic parallelism 94.52 97.63 3155.18

Shared memory 17.05 23.47 88.14

Dynamic parallelism & Shared memory 13.39 14.13 2368.82

Shared memory & Streams 15.28 19.71 70.42

Dynamic parallelism & Shared memory & Streams 13.29 14.07 29.19

Table 5. Speedups of k-means routines on synthetic dataset (single precision)

Speedup CPU 40 threads vs. 1 thread GPU vs. CPU 1 thread GPU vs. CPU 40 threads

100 packages 1000 packages 100 packages 1000 packages 100 packages 1000 packages

ComputeAssign ×9.42 ×9.55 ×302.06 ×297.42 ×30.06 ×31.15

Update ×7.21 ×11.07 ×11.46 ×10.94 ×1.59 ×0.99

Loop ×8.87 ×9.83 ×48.93 ×46.25 ×5.52 ×4.71

5 Conclusion and Future Work

We have proposed parallel implementations on CPU and GPU for the k-means
algorithm, which is a key component of the computational chain for spectral clus-
tering on CPU-GPU heterogeneous platforms. We have addressed via a two-step
reduction the numerical accuracy issue that may occur in the phase of updating
centroids due to the effect of rounding errors. Our GPU implementation employs
dynamic parallelism, shared memory and streams to achieve optimal perfor-
mance for updating centroids. Experiments on a synthetic dataset demonstrate
both numerical accuracy and parallelization efficiency of our implementations.

In this paper we have used only a synthetic dataset but as future work we plan
to evaluate our parallel k-means algorithms on real-world datasets and compare
our implementation with other existing ones. In particular we expect to obtain
higher speedups in high-dimensional datasets or those containing a large number
of clusters, where the phase of computing the distances is more significant.
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Abstract. Reinforcement learning has been recently a very active field
of research. Thanks to combining it with Deep Learning, many newly
designed algorithms improve the state of the art. In this paper we present
the results of our attempt to use the recent advancements in Reinforce-
ment Learning to automate the management of heterogeneous resources
in an environment which hosts a compute-intensive evolutionary pro-
cess. We describe the architecture of our system and present evaluation
results. The experiments include autonomous management of a sample
workload and a comparison of its performance to the traditional auto-
matic management approach. We also provide the details of training
of the management policy using the Proximal Policy Optimization algo-
rithm. Finally, we discuss the feasibility to extend the presented approach
to other scenarios.

Keywords: Reinforcement learning · Heterogeneous cloud resources ·
Automatic management · Proximal policy optimization

1 Introduction

Many software systems designed nowadays exploit the cloud computing infras-
tructures which offer high availability, security and the flexibility to allocate the
resources on-demand. The last factor often drives the decision to implement a
specific system using cloud resources as it allows to greatly reduce the costs of
running a distributed application. Such elasticity unfortunately requires paying
the price of designing the application to handle scaling events, e.g. changing the
number of virtual machines (horizontal scaling) or adding or removing RAM,
CPU or storage (vertical scaling). Deploying the application requires also cre-
ating a policy which will define the conditions under which the system should
be scaled and which resources should be utilized in such a case. It might be
possible to create a configuration which will work correctly over a long period of
time if the environment shows stable seasonal usage patterns. Unfortunately, in
many cases such patterns do not exist, what calls for using an automatic scaling
policy. We can define it as a dynamic process [...] that adapts software config-
urations [...] and hardware resources provisioning [...] on-demand, according to
the time-varying environmental conditions [6].
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The area of the Reinforcement Learning (RL) techniques has been explored
for a long time [12,22]. Initially the techniques and algorithms from this cate-
gory could be only used in relatively simple problems. Handling more complex
domains became possible with recent advancements in, e.g. computer games [18],
robot control [11] or the game of Go [21]. One of the main drivers of progress
has been the application of Deep Learning in various forms: Deep Q Learning
[17], Asynchronous Actor-Critic Agents (A3C) [19], Proximal Policy Optimiza-
tion [20]. One of the main advantages of the mentioned methods is the ability
to learn through observing and interacting with an environment which is similar
to or the same as the one the agent is going to operate in. Such an approach
allowed to achieve results which have surpassed the performance of humans.

Such successes suggest that applying Deep Reinforcement Learning (DRL)
in other domains can also render good results. One such area is the automatic
scaling of distributed applications deployed to heterogeneous cloud resources.
The cloud infrastructure becomes the environment where an automatic agent
operates, its state becomes the state which is subject to change. Cloud vendor
API calls become the actions the agent can potentially execute. Measurements
and metrics which can be used to determine the mentioned state are driven by
the technologies used to implement the application and thanks to that are well
defined. The goals of the system are also clear (e.g. reducing RAM consumption,
CPU load, request latency, cost of resources) what helps to translate them into
a reward function. Such a reward function becomes the feedback mechanism for
the agent and allows to evaluate the impact of executed actions. Thanks to that,
the agent does not need to rely on any prior knowledge and can use a process of
trial-and-error experiments to discover the optimal management policy.

In our previous work [10] we have demonstrated how to leverage the described
ideas to create a system capable of automatic scaling of homogeneous cloud
infrastructure hosting a CPU-intensive workload. In this paper we extend this
approach to heterogeneous cloud resources: the system can adjust not only the
amount of resources but can also decide on the features of the added resources.
The training does not require providing any additional information about the
managed system or specifying resources capabilities. All decisions are derived
from the experience gained from simulations. The system has been implemented
as an extension to Semantic-Based Automatic Monitoring and Management
(SAMM) monitoring software [9].

The paper is organized as follows: in Sect. 2 we overview related work, Sect. 3
describes the design and architecture of the environment and Sect. 4 explains the
policy training procedure. Section 5 discusses the design of the experiment and
description of the environment it was executed in. Section 6 provides the exper-
iment results and discussion. Section 7 summarizes our research and outlines
further work.

2 Related Work

Minimizing the monetary cost of cloud resources while maintaining business
requirements (sometimes defined through Quality-of-Service metrics) is a very



150 W. Funika et al.

complex task and has been an active research area for years. There are many
different approaches that can be used depending on the conditions of the envi-
ronment which should be managed. The most distinctive approaches include:
rule-based control [7,14] (action execution occurs when a condition defined a
priori is met, search based optimization [16,24] (decisions form a large, finite
search space and choosing among them is treated as a search problem), control
theory-based [4] (control theory mechanisms are used to make a decision).

There have been a number of attempts to apply Reinforcement Learning
techniques, which can be classified as search based optimization. In [23] authors
explore applying variants of the Q-learning algorithm to provisioning cloud
resources. They focus on a horizontally scaling infrastructure used to handle
a stream of requests defined in a benchmark dataset. They demonstrate that a
policy can be first trained using a simulator and then applied to a real cloud
environment. In [6] a system for automatic traffic optimization (AuTO) is pre-
sented. Authors implement it with the use of the Deep Deterministic Policy Gra-
dient (DDPG) training algorithm, which utilizes two neural networks: the actor
(responsible for making decisions) and the critic (used to evaluate the actor’s
decisions). The first one consists of two fully-connected hidden layers with 600
neurons each. The second one reuses those and adds an additional layer on top.
Such a model is used to demonstrate the performance and adaptiveness of the
discussed approach to the control of dynamic traffic. In [10] we demonstrated
how a similar algorithm, the Proximal Policy Optimization (PPO) [20], can be
used to horizontally scale cloud resources. The implementation has been limited
to control resources of a single type.

Reinforcement Learning

One of the more active areas of research in machine learning is the Reinforcement
Learning (RL) [13,22]. Its primary focus is to discover a policy for agents which
autonomously take actions within a specific environment. The policy maximizes
a reward whose value is returned to the agent. The process of training an agent
relies on executing a series of actions. After each of them the agent observes their
consequences and builds up its own knowledge. The knowledge of the agent is
built from observing the consequences of its actions. There is no supervising
entity providing feedback on how taking a certain action is better than taking
others. This distinguishes this approach from supervised learning. RL is also
different than unsupervised learning which focuses on discovering the internal
structure of a collection of unlabeled data.

Over the years many different approaches to RL were proposed. We can
broadly categorize them as:

– Online and offline which differ in when the agent’s policy is changed. In case
of the online approach, an update happens after every step, in the offline
case - after the full episode (i.e. when the training scenario is finished, the
environment needs to restart and the reward is presented to the agent).
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– Model-based and model-free which differ in how the environment is modeled
by the agent. In the former approach an explicit model is created (e.g. through
reward estimations or specification of state transitions), in the latter one -
creating such a model is not necessary (the decision making process assumes
that it is sufficient to have a sample of information about state transitions).

Combining Deep Learning techniques with the model-free approach became
popular recently and resulted in creating so called Deep Reinforcement Learning
(DRL). In this approach, neural networks can be used to create an approxima-
tion of a function which is a part of an algorithm (e.g. the Q-function in [17]).
Alternatively, in case of policy gradient methods, neural networks can be used
directly as the policy functions. The training process adjusts their weights (Θ)
based on the gradient of an estimated scalar performance objective function
J(Θ) in respect to those policy parameters:

Θk+1 = Θk + α∇ΘJ(Θk) (1)

where Θk denotes policy’s parameters in the k-th iteration of the training
process. The performance is usually understood as the reward returned from
environment. There are multiple versions of policy gradient optimization. In our
research we focus on the Proximal Policy Optimization (PPO) [20].

The aim of the algorithm is to calculate the parameter update in such a
way, that it ensures that the difference to the previous version of the policy
is relatively small. This goal is achieved through modification of the objective
function. It is defined as follows:

J(Θ) = LCLIP (Θ) = Et [min(rt(Θ)At, clip(rt(Θ), 1 − ε, 1 + ε)At)] (2)

where Et denotes calculating average over a batch of samples at timestamp
t, At is an estimator of the advantage function which helps to evaluate which
action is the most beneficial in a given state. rt marks probability ratio rt(Θ) =

πΘ(at|st)
πΘold

(at|st)
in which πΘ(at|st) denotes the probability of taking an action a in

state s by a stochastic policy and Θold are the policy parameters before the
update. The clip(rt(Θ), 1 − ε, 1 + ε) function keeps the value of rt(Θ) within
some specified limits (clips it at the end of the range) and ε is a hyperparameter
with a typical value between 0.1 and 0.3.

In our previous research [10] we experimented with a number of policy gra-
dient methods (Vanilla Policy Gradient, Proximal Policy Optimization, Trust-
Region Policy Optimization) out of which the PPO rendered the best empirical
results in the automated resources management.

3 Architecture

From a high-level perspective, the system under discussion creates a feedback
loop in which the policy interacts with the environment under management. Its
complete architecture is presented in Fig. 1.
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Fig. 1. Components of the discussed system. Arrows denote interactions between them.

The loop starts with collecting measurements about the resources which take
part in executing the workload. Each of them is configured to start reporting
relevant measurements as soon as it becomes online. The measurements often
differ in their nature what influences how often their values are provided, e.g.
the amount of free RAM and CPU usage is reported every 10 s while the virtual
machine (VM) count - once per minute. To simplify the implementation of col-
lecting of those raw measurements, we introduced the Graphite monitoring tool
[2]. Graphite aggregates all the collected values into a single interval to create
a consistent snapshot of the environment. This interval in our case is set to one
minute.

Next, the measurements are collected by the SAMM experimental monitoring
and management system [9]. SAMM enables experimenting with new approaches
to management automation. It allows to easily add support for new types of
resources, integrate new algorithms and technologies and observe their impact
on the observed system. In our case, after retrieving raw data points, SAMM
calculates values of the following metrics: ratio of allocated cores, average CPU
utilization, 90th percentile of CPU utilization, average RAM utilization, 90th
percentile of RAM utilization, ratio of jobs waiting for processing to the number of
jobs submitted, ratio of jobs waiting for processing to the number of jobs submitted
in the last monitoring interval. They are being used to describe the current state
of the cloud environment and are further passed to the Policy Evaluation Service.
After a decision is taken, SAMM uses cloud vendor’s API to implement it. It
takes into the account the constraints of the environment (e.g. resource changes
are adjusted to adhere to the warm-up and cool-down restrictions).

The Policy Evaluation Service provides decisions on how to change the allo-
cation of resources based on the results of evaluation of the observed system
state. The decisions are made according to the policy trained with the use of the
PPO algorithm. The results of the evaluation may include: starting a new small,
medium or large VM (deficient resources are used to handle the workload given
the current system state), removing resources - shutting down a small, medium,
large VM (excessive resources is used given the current state of the system),
doing nothing (a proper amount of resources is allocated).
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One should remember that not always it is possible to immediately execute
an action. This process is always subject to environment constraints. We might
need to wait for a while because: the system is in a warm-up or cool-down (a
period of inactivity to allow to stabilize the metrics after the previous action has
been executed), the previous request might still be being fulfilled, the request
failed and needs to be retried in some time. In order to be able to train a policy
which can cope with such limitations, those factors need to be involved in the
simulation used for training.

The described system makes a few assumptions about the workload it helps
to manage:

– processing is organized into many independent tasks,
– the number of tasks which are yet to be executed can be monitored,
– the tasks which have been interrupted before finishing (e.g. in case the pro-

cessing VMs are shutdown) are rescheduled,
– the tasks are considered idempotent, i.e. executing them multiple times does

not change the end result,
– resources used to generate the workload are not under automatic management

(prevents from accidental termination of the workload).

Fulfilling the monitoring requirements may require introducing extensions to
the software which generates the workloads and instrumenting resources which
are used to create tasks.

4 Policy Training

One of the main challenges in the design of an autonomous management sys-
tem is organization of the training process. Using an environment with real
cloud resources would be the best solution. Unfortunately, with this approach
the cost of creating a DRL policy becomes a major disadvantage. The training
algorithm needs to go through multiple iterations of interacting with the man-
aged system and observing its responses. Especially at the beginning the actions
chosen for execution might be quite random, what can easily destabilize the
observed application, even make it completely unusable for the end users. Since
such a situation is unacceptable in a production system, the training requires a
separate, duplicate environment. This increases the overall cost of running the
system. To avoid this issue, we decided to use a simulation as an isolated, safe
training environment. Regardless of the decisions made, their consequences are
not applied to any production system. This allows experimenting even with the
actions that may lead to catastrophic events. Using a simulator allows to signifi-
cantly cut the computational monetary cost of training resources compared with
the actual system. Since a simulation is isolated, the process can be replicated
and parallelized to allow for evaluation of multiple agents at the same time.
The flow of time in a simulation can be changed what allows to reduce the time
required to conduct training. The behavior of the environment and the workload
are fully deterministic and can be easily repeated if needed.
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The policy training process has been implemented using a separate environ-
ment depicted in Fig. 2.

Fig. 2. Components of the training system; arrows denote interactions between them.

The simulator has been implemented following the results of our prior
research [10]. The main process utilizes the CloudSim Plus simulation frame-
work [8]. To decouple it from other components and allow for easy reuse, it is
additionally wrapped with the interface provided by the Open AI Gym frame-
work [5]. This helps to easily launch experiments with various RL algorithms
independently of the presented architecture.

We simulated a single datacenter capable of hosting Virtual Machines (VMs)
of three types: small, medium and large. Their specification followed the con-
figuration of Amazon’s large (2 core CPU and 8 GB of RAM), xlarge (4 core
CPU and 16 GB of RAM) and 2xlarge (8 core CPU and 32 GB of RAM) EC2
instances. Each simulation started with 1 virtual machine of each type active
and run until all the scheduled tasks were completed (there was an artificial
deadline). We attempted to use a few different workloads. The best results in
training were achieved by using a set of 1551 jobs generated specifically for the
purpose of our experiment. The jobs were organized into 21 batches (10 batches
of 100 and 11 batches of 50 jobs) submitted every 8 min. Every job requested
360 s on a single CPU core. The final job has been added 30 min after the final
batch what ensured that there is always a cool-down period of time at the end.
We considered such workload typical in our sample environment.

The training objective was defined as maximizing the following reward func-
tion: F (TS , TM , TL, TQ) = −(TS ∗ 0.2 + TM ∗ 0.4 + TL ∗ 0.8 + 0.036 ∗ TQ)
which was the negative cost of resources used for processing. TS , TM , TL denote
the number of hours of running small, medium or large VMs (with an hourly
cost respectively $0.2, $0.4 and $0.8). The reward included paying penalties for
missing SLA targets, $0.036 for each of TQ hours spent by tasks waiting for exe-
cution. Waiting time or waiting queue size was not limited. In order to reduce
the training time, the simulation time was speeded up sixty times. The train-
ing algorithm followed the Proximal Policy Optimization procedure described in
Sect. 2. The progress of training (reward obtained in the subsequent simulations)
is depicted in Fig. 3.
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Fig. 3. Policy training progress - reward obtained in subsequent simulations.

5 Experiment Design

In order to evaluate our approach, we designed an experiment in which we wanted
to compare our policy to another algorithm. The overall objective was to perform
sample computations while limiting the cost of the used cloud resources.

As a sample workload, we have used the pytorch-dnn-evolution tool [3]. This is
a tool which attempts to discover an optimal structure of a Deep Neural Network
(DNN ) to solve a given problem (e.g. categorize images in a given set) using a
co-evolutionary algorithm. Such an approach can be used for domains where
supervised learning techniques can be used, i.e. there are well defined training
and test datasets. Unfortunately, due to the size of those datasets, in many
such problems, evolution-based methods are costly and time consuming. The
evaluation of individuals (complete DNNs), which is required for the evolution
process to progress, includes training them over the mentioned large datasets. To
mitigate this issue, the co-evolutionary algorithm interleaves two evolutionary
processes: the first one which attempts to find the hardest to solve small subset of
the large training dataset, the second one which evolves the DNNs and uses the
small subset in the individual evaluation. Reducing the amount of data required
to conduct the evaluation allows to greatly speed up the comparison between
individuals and enables using the evolutionary approach.

This algorithm produces a high number of relatively small tasks. They are
independent from each other and can be easily processed in parallel on a cluster
of machines. Workload scheduling is resilient to task failures and reschedules
tasks in case processing them have not succeeded. The capacity of the job queue
is in practice infinite thanks to small size of a single job description. Those fea-
tures help to implement support for scaling events: each virtual machine used
to conduct training can be safely shut down at any time. New machines can be
added and start processing the evaluation tasks without additional configura-
tion. The number of tasks varies over time, which allows to potentially reduce
the cost of running the evolutionary process by reducing the amount of the used
resources (VMs) when the demand for resources drops. In our case, the evolu-
tionary process tries to find an optimal architecture of neural network which
recognizes hand written digits. We have ran 20 iterations of evolution over a
population of 32 individuals and 16 fitness predictors (subsets of 2000 images
from the large training set). The evaluation of a single neural network comprised
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the training over 10 iterations of a given fitness predictor. The MNIST dataset
[15] has been used as the training set from which subsets are selected.

As a compute infrastructure we have used the Amazon Web Services Elastic
Compute Cloud (AWS EC2) [1]. The managed environment consisted of three
Auto Scaling Groups groups of m5a.large, m5a.xlarge and m5a.2xlarge virtual
machines which could have up to 10 instances each. All VMs were running in the
US North Virginia region and in the same availability zone to avoid the problems
with network latency added by multi-zone setups. The workload driver, together
with SAMM and Graphite, have been running on a separate VM.

To provide a reference point for the results obtained with the use of the
presented policy, we also attempted to manage the pytorch-dnnevo workload
with the use of a rule-based policy configured within the Auto Scaling Group.
This cloud vendor feature starts and stops virtual machines based on the CPU
usage or currently running machines. A new machine is started whenever the
metric value is higher than a pre-defined threshold. If the value drops below the
threshold, one of the running machines is terminated. We found empirically that
a threshold value of 75% average CPU usage renders the best results.

6 Experiment Results

In Fig. 4 we present the course of the experiment. We show how many virtual
machines of different types were active at a given point in time compared to
what was the actual number of jobs waiting for processing. The shape of the
charts (the steps) is caused by an artificial delay introduced after executing an
action (the cool-down period).

The overall results of the experiment are as follows: the experiment runtime
was 173 min with the cost of resources equal to $8,67 for the PPO-trained policy,
and respectively 149 min and $9,95 for the threshold-based approach. The first
policy had a slower execution (by 16,1% - 24 min) but a lower resources cost (by
12,9% - $1.28). The cost of the additional infrastructure is the same in both cases
(an additional VM to host other elements of the system). The main objective
of the policy was to conduct the computations while minimizing costs. In that
context, the PPO-trained policy rendered better results. It traded additional
processing time for lowering the overall cost or resources.

The PPO-trained policy maintained a similar number of VMs of all types
running most of the time. Occasionally it would attempt to reduce the amount
of small VMs what seemed to be a result of pauses between submitting jobs of
subsequent evolution iterations. However, those drops would get quickly com-
pensated. The number of medium and large machines was relatively stable. The
threshold-based policy was more eager to introduce changes and was able to
launch machines of different types in the same time. As soon as the processing
load was decreasing, it started to reduce the amount of used resources. It seemed
that most of the time all resource types were treated similarly (the number of
small, medium and large VMs was increased and decreased in the same time).

We acknowledge that this might not be a fully fair comparison, e.g. it might
be possible to fine tune the threshold to avoid the described initial slow-down.
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(a) Policy trained with use of PPO

(b) Threshold-based policy

Fig. 4. Number of started VMs in context of jobs waiting in the queue.

Alternatively, using multiple rules and thresholds might achieve even better
results. This experiment shows, however, that the use of a PPO-trained pol-
icy renders results which are on-par with a well established approach. Using a
RL-based policy has an advantage of being able to take into account multiple
factors without having to specify some special parameters for each of them, e.g.
the thresholds. The training process was flexible and can be easily reused to
create policies for other, similar workloads.

7 Conclusions and Further Research

In this paper we have presented a novel approach to automating heterogeneous
resource allocation. We proposed an architecture of a monitoring system which
exploits recent advancements in the Deep Reinforcement Learning field. Through
an experiment the AWS Elastic Compute Cloud, we explained how to train a
policy with use of the PPO algorithm and deploy it to a real-world cloud infras-
tructure. We demonstrated that using such a policy can render better results
comparing with a traditional threshold-based one. However, depending on the
amount of the managed resources due to the additional cost of the additional
VM, the overall improvement might be reduced. The DRL based approach also
had other advantages (no manually set thresholds, easy including multiple deci-
sion factors, easy reuse in context of similar applications).

The approach we have used to train the policy delivered good results. The
resulting policy could manage a sample AWS-based infrastructure. Using a simu-
lator allowed to run many more interactions with a simulated environment than
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it would be possible in a real environment. In the same time the cost of training
has been greatly reduced comparing to running a copy of a production version
of the managed application.

We have identified some issues which require further work. Our resource
allocation policy was unable to react to changes in the environment fast enough.
It was limited by having to wait through the grace period and was capable of
starting or stopping only a single VM at a time. In line with our expectations, the
policy was able to make good decisions only in situations, to which it was exposed
in the prior training (e.g. was very slow to shutdown the unused resources after
the workload stopped completely).

We plan to continue the work on extending the described approach. Further
work includes adding a policy improvement loop which would allow to dynami-
cally adjust the policy to a changing workload and would remove the requirement
of training the policy prior to the deployment. We also aim to extend the range
of available actions to enable adding or removing more resources at once.
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Abstract. GPUs have achieved widespread adoption for High-
Performance Computing and Cloud applications. However, the closed-
source nature of CUDA has hindered the development of otherwise com-
monly used virtualization techniques. In this paper, we evaluate the fea-
sibility of building a GPU virtualization layer that isolates the GPU
and CPU parts of CUDA applications to achieve better control of the
interactions between applications and the CUDA libraries. We present
our open-source tool that transparently intercepts CUDA library calls
and executes them in a separate process using remote procedure calls.
This allows the execution of CUDA applications on machines without
a GPU and provides a basis for the development of tools that require
fine-grained control of the GPU resources, such as checkpoint/restore
and job schedulers.

Keywords: GPU · Virtualization · CUDA · Remote execution

1 Introduction

Hardware accelerators continue to attract significant interest in the cloud- and
High-Performance-Computing (HPC) fields. Today, a growing number of clusters
employ GPUs as hardware accelerators, because of the high peak performance
and efficiency they offer at a reasonable cost [1,6]. The reason for these advan-
tages is the optimization of GPUs for application profiles that are common in
many computing applications: Highly parallel programs that use similarly exe-
cuting threads to process large amounts of data. This leads to clusters with
GPUs having better energy efficiency and a higher performance/price ratio than
those without GPUs [6]. As power efficiency is increasingly becoming a limiting
factor for performance [4,18], GPUs will certainly play an even more important
role in future high performance systems. Despite this, they are rarely integrated
into otherwise commonly used virtualization techniques that have the ability to
improve availability and utilization of resources by allowing dynamic allocation
and/or restriction of computing resources [5,8].
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Fig. 1. A GPU virtualization layer (in gray) is an enabler for several techniques that
increase flexibility, utilization, or fault tolerance of clusters.

GPU virtualization is challenging because of the tight integration between
user-level code and the device driver that manages the interaction between CPU
and GPU. As accelerator devices, GPUs are able to execute programs similarly
to CPUs, but require to be controlled by CPU code. Thus, a GPU application
consists of a CPU part and a GPU part. The CPU part consists of a process
that interacts with the GPU driver to provide the GPU part with input data,
to launch the GPU code and to collect the computation results. Furthermore,
GPUs have on-board memory that is separate from the main memory accessi-
ble by the CPU. To distinguish the two memory types, we stick to the CUDA
terminology of calling the GPU memory device memory and the CPU memory
host memory. While there are several frameworks that developers might use to
create GPU applications [12], CUDA is most commonly used for the implemen-
tation of computing applications. CUDA consists of several software layers with
multiple APIs, that provide different abstraction levels for the interaction with
the GPU, most notable the CUDA runtime library and the lower-level driver
library. NVIDIA keeps the implementation of these libraries proprietary. This
significantly hinders the research on novel GPU virtualization techniques for
which the interaction of applications with the GPU devices has to be manipu-
lated. Nevertheless, this paper focuses on NVIDIA GPUs and CUDA, as these
products are the most commonly used for computing tasks1.

1 The Top500 list (https://www.top500.org/) from November 2019 that ranks the
fastest HPC clusters contains no cluster that uses GPUs from different vendors.

https://www.top500.org/
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The virtualization of GPUs involves inserting a virtualization layer between
CUDA applications and the GPU device. Conceptually, the CUDA application
uses a virtual GPU instead of the real device, thus decoupling the CPU part
of the application from the GPU part. This allows complete control of the
interactions between CUDA applications and the GPU, thus enabling several
usage scenarios for GPUs that are not possible with standard NVIDIA tools (see
Fig. 1). GPU virtualization enables remote execution, i.e., the sharing of GPUs
by multiple CUDA applications, which may be located on different systems. This
makes a cluster setup possible, where GPUs are concentrated on a few nodes,
instead of being homogeneously distributed across all nodes. With such a setup,
a higher GPU utilization is achievable because the amount of GPU and CPU
resources assigned to jobs is flexible [16]. Furthermore, the fine-grained control
of the computing resources assigned to individual CUDA applications allows
the implementation of custom schedulers that can balance, limit and track the
use of GPU resources. Different CUDA applications may then be isolated from
the influence of other processes on the system, in respect of performance and
resources. GPU virtualization is also a requirement for the implementation of
checkpoint/restart schemes for CUDA applications, where the execution state is
saved and may be restored later. Checkpoint/restart requires virtualization for
the ability to record the interactions with the GPU driver. During the execu-
tion of GPU code, the NVIDIA driver exhibits a changing internal state, which
cannot be trivially reconstructed without knowledge of past driver interactions.
Checkpoint/restart may be used to increase the flexibility and fault tolerance of
clusters and to facilitate task migration thereby enabling dynamic load balanc-
ing [8].

This paper presents a virtualization layer that enables the realization of these
scenarios. It is able to fully control the usage of GPU resources of CUDA appli-
cations, thus allowing redirection, manipulation and recording of device inter-
actions, while CUDA applications stay unaware of the virtualization. The rest
of the paper is structured as follows: In Sect. 2, we provide an overview of the
current state of research into GPU virtualization. Section 3 presents the imple-
mentation of our virtualization layer. We evaluate our solution in Sect. 4 and
finally draw a conclusion in Sect. 5.

2 Related Work

There has been some previous work on the virtualization for CUDA applications.
However, for most virtualization solutions no source code is available and others
support only outdated CUDA versions.

rCUDA allows CUDA application to use GPUs installed in a remote sys-
tem [3], as shown in Fig. 1a. This is achieved by replacing the CUDA APIs
with alternatives that forward CUDA API calls of local applications to a remote
machine either via a TCP connection or via Infiniband verbs. rCUDA supports
the driver API and the runtime API as well as several higher-level CUDA APIs,
such as cuDNN, cuSOLVER and cuBLAS. The runtime API is re-implemented
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using the driver API, making the implementation of new API functions work-
intensive as there is not always a clear driver API counterpart to runtime API
functions. The tool achieves memory bandwidths that are comparable with
native CUDA executions, when a sufficiently fast interconnect is used [14]. The
most recent release does only support CUDA 9.0 and may therefore not be used
with GPUs from the Turing generation. rCuda is not open-source and the authors
make only a small amount of implementation details available, making detailed
evaluation of the approach and code reuse impossible. The authors target users
who want to remotely execute existing applications and therefore do not require
source code access. However, not being open-source makes rCuda impossible to
use for research into advanced virtualization strategies such as those shown in
Fig. 1.

Another GPU virtualization approach is DS-CUDA [13], which targets a
scenario where a cloud provides the GPU resources for local CUDA applications.
Similarly to rCuda, DS-CUDA uses a client-server architecture, where API calls
in a CUDA application are forwarded to a server that interacts with the GPU
devices. For the communication DS-CUDA can use RPC or Infiniband verbs.
The authors increase the reliability of GPU calculations by allowing redundant
calculations, where API calls are performed on multiple GPUs and repeated if
they have different results. DS-CUDA is licensed under a GPLv3 license and
supports version 6 of the CUDA toolkit. This means GPUs newer than from the
Pascal generation are not supported by DS-CUDA. Furthermore, the tool is not
actively developed anymore.

vCUDA uses runtime API interception and redirection to provide GPU access
to virtual machines [15]. Similarly to the previous tools, vCUDA redirects API
calls of CUDA applications in the virtual machine to a server process running
on the host which in turn forwards them to the CUDA driver. However, vCUDA
only supports CUDA version 1.1, which predates support for any data center
grade GPU from the Tesla line of products. Additionally, the source code of
vCUDA is not available anymore.

The CUDA Multi-Process Service (MPS) enables multiple GPU jobs to be
executed concurrently, thus increasing GPU utilization compared to the case
where only a single application may occupy a GPU at any given time [11]. MPS
achieves this by replacing the CUDA APIs with a client-server structure, where
client processes send GPU tasks to a server who manages the concurrent access
to the GPUs. MPS uses named pipes and domain sockets for this communi-
cation. Limitations of MPS include incomplete support for all CUDA features,
a limited amount of client-server connections and only a simple job scheduler.
Furthermore, MPS is not open-source thus making customizations and reuse
impossible.

None of the previously discussed solutions represents an open-source virtu-
alization solution for GPUs that supports the latest GPU generation. In this
paper, we present a novel tool that offers all the benefits of previous work, while
supporting the latest GPUs and being released under an open-source license.2

2 The code is available at https://github.com/RWTH-ACS/cricket.

https://github.com/RWTH-ACS/cricket
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3 GPU Virtualization for CUDA Applications

The goal of our virtualization solution for GPUs is to offer a basis for the devel-
opment of resource management strategies that require control over how applica-
tions use computing resources. A key requirement is that the code has to be pub-
lished under an open-source license to allow researchers to reuse and build on top
of the existing code. Furthermore, many scenarios require transparency or binary
compatibility, that is, original CUDA application code cannot be required to be
modified, as their source code might not be available. A transparent solution also
means that applications remain unaware of the virtual nature of the execution
environment. The improved flexibility and control introduced by virtualization
is not allowed to come at the cost of large performance overheads. Another
requirement is support for the latest GPU generation and CUDA toolkit3.

GPU virtualization requires the insertion of a virtualization layer in the GPU
software stack. The task of this virtualization layer is to separate the CUDA
application from the real device and manage the interactions between both. The
virtual device used by applications may differ from the real device, e.g., they
may be located on different machines or the computing resources of the virtual
device may be limited. We achieve the separation by splitting the GPU and CPU
parts of CUDA applications into separate processes. Instead of directly accessing
GPU resources, CUDA applications use Remote Procedure Calls (RPC) to send
requests to an RPC server that is responsible for the management of the available
GPUs.

The remaining chapter introduces details about our implementation and the
rationale behind design choices that had to be made.

3.1 The CUDA Software Stack

CUDA offers multiple ways of interfacing applications with the GPU driver:
High-level primitives, the runtime API and the lower level driver API. At which
level the virtualization layer is inserted requires careful consideration. The ideal
point for this would be between driver API and NVIDIA driver, as this way all
software layers above the driver would be unaware of the virtualization, thus
achieving full transparency to any GPU application (Fig. 2). However, due to
the closed-source nature of the NVIDIA driver and the API implementations,
there is not enough information available to implement this approach.

Fig. 2. With default setting the CUDA runtime API is linked statically. It loads the
driver API dynamically during startup using dlopen and dlsym.

3 As of writing the latest GPU generation and CUDA version are Turing and CUDA
10.2.
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Going one layer up the software stack, the next possible point of separation is
at the CUDA driver API. However, as a result of undocumented interactions, the
driver API cannot be cleanly separated from the runtime API. Consequently, a
virtualization layer at the driver API level does not allow the use of the original
runtime API on top of it. Because of these complications, we opted to implement
a virtualization layer that may be inserted at the levels of either the runtime
API or the driver API. CUDA applications may use one of the virtualization
layer positions depending on whether they use the runtime API or the driver
API. While involving more work, this has the benefit of completely isolating the
user code of the CUDA application from any internal state of the CUDA APIs,
as interactions between the APIs are hidden behind the virtualization layer. For
applications that use the runtime API, one API call often necessitates multiple
driver API calls. Therefore, virtualization at the position of the runtime API
requires less communication, making it beneficial for performance.

A prerequisite for the insertion of the virtualization layer is that the replaced
CUDA API library is linked dynamically to the CUDA application. This is
because with dynamically linked libraries the library code is loaded during the
startup of the application, making the replacement of the library code possible.
With statically linked libraries the library code is inserted into the application
binary at compile time. The replacement of statically linked code requires tech-
niques such as instrumentation, which introduce significant performance degra-
dation [7,10].

With dynamic linking, we can intercept the calls to library functions and
replace them with our own code by replacing the linked object with a different
one that exports the same symbols. Using this technique, we achieve the insertion
of our virtualization layer by loading a replacement library that overwrites the
function symbols of the original CUDA API libraries.

3.2 Isolation with Remote Procedure Calls (RPCs)

After library calls have been intercepted, they have to be forwarded to the real
GPU. For this, an RPC server process waits for incoming GPU resource request
from CUDA applications, executes them and passes the results back to the origi-
nal application. Unlike other approaches, such as rCUDA, we execute the original
API function even for the runtime API and do not re-implement the runtime
API using the driver API. We use the Transport Independent Remote Proce-
dure Calls (TI-RPC) implementation of the Remote Procedure Call Protocol
Specification Version 2 [17] as a basis for this communication.

The replacement library that inserts the virtualization layer, uses a library
constructor to set up the connection to the RPC server process. Our virtualiza-
tion layer supports connections via either a domain socket or a TCP socket. A
TCP connection enables the use of a GPU that is installed in a different system
than where the CUDA application runs. The RPC server process is also real-
ized by launching the CUDA application binary and loading a dynamic library
at startup. The library constructor for the RPC server only waits for incom-
ing RPC requests and never launches the original main function. By using a
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Fig. 3. Replacing the runtime API with RPC code allows separating the CUDA appli-
cation from the internal state of both runtime and driver APIs.

dynamic library instead of building a standalone server application, the server
process has access to the GPU code, the code for launching kernels, and the
CUDA initialization functions, which the CUDA compiler inserts into the appli-
cation binary. Because the management of these resources is not documented,
using the original binary enables us to initialize CUDA and launch kernels as if
writing a normal CUDA application.

Some CUDA API functions return pointers to internal resources, e.g., point-
ers to device memory and internal data structures. These pointers are only
intended for passing to the CUDA APIs and user programs should not derefer-
ence them directly. Instead of collecting and copying the internal data structures
from the RPC server process to the CUDA application, we pass only the raw
pointer values, ignoring the fact that they reference address spaces in a dif-
ferent process. This way, for most API functions the virtualization layer needs
to transfer only a small amount of data for parameter and return values. In
contrast, the cudaMemcpy class of API functions is often used to transfer large
amounts of application data between host and device memories. Using our RPC
approach, we have to first copy this data from the CUDA application to the
RPC server, which copies it to the GPU memory. When the CUDA application
is launched on the same system as the RPC server, we can avoid this additional
copy operation by using shared memory. Using Infiniband IBverbs, our virtual-
ization layer is able to use RDMA in case the CUDA application and the RPC
server execute on different systems. However, these optimizations require setting
up the shared memory or RDMA memory segments during the allocation of the
host memory from which a transfer originates. Therefore, increasing the transfer
performance using shared memory or IBverbs only works for applications that
allocate host memory using the cudaHostAlloc function, which is originally
intended to request pinned memory from which CUDA can perform faster copy
operations to device memory.

Figure 3 summarizes how requests to a virtual GPU occur. A CUDA API call
in the CUDA application is redirected to our replacement library. The library
implements all CUDA API functions with procedures that execute a remote
procedure call to the server process. There, the request is executed using the
original API function of either the runtime or driver APIs. The server collects the
results and sends them back to the CUDA application, where they are returned
to the original program.
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4 Evaluation

For the evaluation we use one system equipped with two Intel Xeon Gold 6128
CPUs and Tesla P40 and Tesla T4 GPUs and one node with two AMD Epyc
7301 CPUs and no GPUs. Both nodes are connected via a Gigabit Ethernet
and an Infiniband 100 Gb/s link using Mellanox MCX556A-ECAT ConnectX-5
Adapter Cards. Unless otherwise noted, we are using the Infiniband Link with
IP over Infiniband (IPoIB) for the communication between the nodes. While
we confirmed the compatibility of our virtualization layer with the previously
mentioned GPUs, the performance impact of virtualization is independent of
the specific GPU. Therefore, this section presents results only for the Tesla
T4, as it is from the latest generation. All measurements have been performed
using version 10.2 of the CUDA toolkit. We compare the execution time of
several applications when using our virtualization solution to the case where no
virtualization is employed. Additionally, we performed several micro benchmarks
to assess potential sources of overhead.

4.1 Benchmarks

The virtualization layer introduces overhead as a result of the communication
between CUDA applications and the RPC server. To analyze the impact of this
overhead on CUDA applications, we evaluate our virtualization layer with two
of the example applications distributed with the CUDA Toolkit and two third-
party application. The matrixMul application performs a series of densely filled
matrix-matrix multiplications without repeatedly copying the data between host
and device. The nbody application is a physics simulation that computes the
gravitational interaction between a configurable amount of bodies. hotpsot from
the Rodinia Benchmark Suite [2] is a thermal simulation application that solves
differential equations. DPsim is a real-time capable power system simulator for

Fig. 4. Execution time overhead based on 25 averaged runs on a Tesla T4.
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Fig. 5. CUDA API overhead based on 100 averaged runs on a Tesla T4.

dynamic phasor and electromagnetic transient simulations [9]. The variety of
considered applications shows our virtualization layer supports a set of CUDA
features is sufficient for productive use.

Figure 4 compares the reference execution time of the applications without
virtualization with our virtualization layer using a domain socket connection,
a local loopback TCP connection and a remote TCP connection between two
systems. It shows a low overhead due to the virtualization layer for matrixMul,
nbody and dpsim. For hotspot, the remote execution introduces an overhead
of approx 25%. This is because of all applications hotspot transfers the largest
amount of memory between host and device memories, resulting in the trans-
fer bandwidth reduction of the virtualization layer having a higher impact on
the execution time. The matrixMul applications mostly launches kernels and
performs only a few other calls to the CUDA API. The low overhead for this
application thus shows that kernel dispatches are not significantly slowed down
by the virtualization layer.

For all applications, the execution times when communicating locally via a
domain socket are larger than when communication via a local TCP socket,
suggesting that the RPC implementation is not as efficient for domain sockets
as it is for TCP sockets. Remote executions across the IPoIB connection of the
considered applications have comparable performance to local executions. This
shows, that with modern high speed interconnects the data transfer between
systems has a smaller performance impact than the virtualization layer itself for
data-intensive applications such as hotspot.

4.2 Micro Benchmarks

To quantify the impact the virtualization layer has on the execution time of
calls to the CUDA API, we measure the latency of two typical CUDA API func-
tions in different virtualization scenarios. cudaMalloc allocates a region of device
memory and represents a commonly used API function. cudaGetDeviceCount
returns the number of GPUs available to the CUDA API. As such, this function
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requires the transfer of only a single integer, resulting in almost all latency being
due to communication delays.

For both API functions we measure an overhead between 11.4 to 36µs when
using the virtualization layer. This increase is due to the execution of additional
code and copying of parameters and results that is necessary for the redirection of
API calls. While the impact of the virtualization layer on individual functions is
comparatively large, most applications do not perform a high number of CUDA
API calls. For example, the previously considered applications nbody, hostpot
and DPsim perform 72, 10 and 72 API calls, respectively. Only matrixMul per-
forms a higher amount of 10033, while still showing only a small overhead due to
the virtualization layer (see Fig. 4a). Instead of performing more calls to CUDA
functions with increasing problem sizes, most applications require the transfer
of more data between host and device memory. Therefore, the CUDA API func-
tions responsible for transferring data between host and device memories also
require an analysis.

Figure 6 shows the achieved memory transfer bandwidth for the reference
case and with our virtualization layer using local and remote communication.
The virtualization layer decreases the bandwidth for transfers from and to the
GPU, as a result of the additional data transfer between CUDA application and
RPC server. The previous observation that the RPC implementation is not able
to fully utilize the bandwidth of domain sockets is here again visible. When
the pinned memory API is used on local data transfers, our virtualization layer
avoids the additional transfer by instead using shared memory. Therefore, the
performance for this case is comparable to the reference case of using the pinned
memory API without virtualization (see Fig. 6a and Fig. 6b).

Fig. 6. Memory transfer bandwidth based on 100 averaged runs of bandwidthTest

application from the CUDA toolkit.
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When client and server reside on different computing nodes the interconnect
bandwidth limits the overall transfer bandwidth up to approx. 1.2 GB/s (see
Fig. 6c and Fig. 6d). Using Gigabit Ethernet we measure a bandwidth of approx-
imately 112 MB/s for device to host transfers and 114 MB/s for host to device
transfers, which is close to the maximum bandwidth of Gigabit Ethernet. How-
ever, using the IPoIB interconnect the virtualization layer does not fully utilize
the available interconnect bandwidth. Even when using IBverbs for the transfer,
the achieved bandwidth is below the interconnect capacity and lower than in
the reference case without virtualization. While further optimization efforts into
increasing the achieved bandwidth seem promising, the application evaluation
showed already low additional overhead on the overall execution time for remote
execution compared to local execution.

5 Conclusion

The virtualization solution for GPU devices presented in this paper provides a
basis for future research on advanced task management techniques, which may
increase flexibility, utilization, and fault tolerance. Our virtualization layer is
fully transparent to CUDA applications, i.e., requires no source code modifica-
tions or recompilation. This is despite the closed-source nature of the CUDA
software that makes the development of virtualization solutions for GPUs diffi-
cult. By intercepting CUDA API calls and redirecting them to a separate pro-
cess, we achieve isolation and full control of GPU resources used by applications.
Even though the virtualization layer increases the individual CUDA API func-
tions latency and reduces memory transfer bandwidths, this incurs only a small
overhead to the overall execution time of CUDA applications. The overhead
when communicating across different systems is mainly due to the bandwidth
limitations of the considered Gigabit Ethernet interconnect. Thus, faster inter-
connects, such as 10 Gigabit Ethernet or Infiniband should be able to increase
the memory transfer bandwidth. Because we publish our code under an open
source license, others may customize and reuse it to implement software that
addresses the growing need for increased flexibility in HPC clusters.
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Abstract. We show that recently developed divide and conquer par-
allel algorithm for solving tridiagonal Toeplitz systems of linear equa-
tions can be easily and efficiently implemented for a variety of modern
multicore and GPU architectures, as well as hybrid systems. Our new
portable implementation that uses OpenACC can be executed on both
CPU-based and GPU-accelerated systems. More sophisticated variants
of the implementation are suitable for systems with multiple GPUs and
it can use CPU and GPU cores. We consider the use of both column-
wise and row-wise storage formats for two dimensional double precision
arrays and show how to efficiently convert between these two formats
using cache memory. Numerical experiments performed on Intel CPUs
and Nvidia GPUs show that our new implementation achieves relatively
good performance.

Keywords: Tridiagonal Toeplitz systems · Parallel algorithms ·
Vectorization · Portability · OpenACC · Hybrid systems

1 Introduction

Tridiagonal Toeplitz systems of linear equations appear in many theoretical
and practical applications. For example, numerical algorithms for solving bound-
ary value problems for ordinary and partial differential equations reduce to such
systems [13,15]. They also play an important role in piecewise cubic interpolation
and spline algorithms [4,14]. There are several methods for solving such systems
(the review of the literature can be found in [5]). Rojo [10] proposed a method for
solving symmetric tridiagonal Toeplitz systems using LU decomposition of a sys-
tem with almost Toeplitz structure together with Sherman-Morrison’s formula
and this approach was modified to obtain new solvers for a possible parallel
execution [7,9].

In [5] we proposed a new divide and conquer parallel algorithm for solving
such systems using the splitting T = LR + P , where L, R are bidiagonal and P
has only one non-zero entry. We showed how to reduce the number of necessary
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synchronizations and use SIMD extensions of modern processors. Our OpenMP
(version 3.1) implementation of this method achieved very good speedup on Intel
Xeon CPUs (up to 5.06) and Intel Xeon Phi (up to 29.45). While this approach
can be further improved using more sophisticated vectorization techniques such
as the use of intrinsics [1,8,11], it will result in a loss of portability between dif-
ferent architectures. OpenACC is a standard for accelerated computing [2,6]. It
offers compiler directives for offloading C/C++ and Fortran programs from host
to attached accelerator devices. Such simple directives allow marking regions of
source code for automatic acceleration in a portable vendor-independent man-
ner. However, sometimes it is desired to apply some high-level transformations
of source codes to achieve better performance [2,6,12]. Marked sources can be
compiled for a variety of accelerators and parallel computers based on multicore
CPUs. It is also possible to use OpenACC and OpenMP together to utilize CPU
and GPU cores at the same time.

In this paper, we present a new portable OpenACC-based implementation
of the algorithm that can be used on both CPUs and GPU accelerators with-
out any changes in the source code. We also show how to use both OpenACC
and OpenMP to utilize multiple GPUs, as well as implement the algorithm for
hybrid systems. We study its performance on Intel Xeon CPUs and three Nvidia
GPUs architectures: Kepler, Turing, and Volta. We consider both column-wise
and row-wise storage formats for two dimensional arrays and show how to effi-
ciently convert arrays between these two formats using cache memory to ensure
coalesced access to device’s global memory. We also discuss which format is more
suitable for CPU-based and GPU-accelerated architectures.

2 Parallel Algorithm

Let us consider a tridiagonal Toeplitz system of linear equations Tx = f of the
following form

⎡
⎢⎢⎢⎢⎢⎣

t2 t3
t1 t2 t3

. . .
. . .

. . .

t1 t2 t3
t1 t2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

...
xn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f0
f1
...
...

fn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

For the sake of simplicity we assume that n = 2k, k ∈ N. The matrix T can be
decomposed as

T =

⎡
⎢⎢⎢⎢⎢⎣

1
α 1

. . .
. . .

α 1
α 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎡
⎢⎢⎢⎢⎢⎣

β t3
β t3

. . .
. . .

β t3
β

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
R

+

⎡
⎢⎢⎢⎢⎣

t3α 0 . . . 0

0 0
...

...
. . .

...
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

, (2)
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where α = (t2 + sign(t2)
√

(t2)2 − 4t1t3)/(2t3) and β = t2 − t3α. Using (2) we
can rewrite the Eq. (1) as follows

⎡
⎢⎢⎢⎣

x0

x1

...
xn−1

⎤
⎥⎥⎥⎦ = (LR)−1

⎡
⎢⎢⎢⎣

f0
f1
...

fn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
v

−t3αx0 (LR)−1

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
u

(3)

or simply x = v − t3αx0u. Then the solution to (1) can be found using:
{

x0 = v0
1+t3αu0

xi = vi − t3αx0ui, i = 1, . . . , n − 1.
(4)

In order to solve (1) we have to find two vectors v and u, solving two systems
of linear equations with the same coefficient matrix, namely LR. The solution
to a system of linear equations LRy = d can be found in two stages. First, we
solve Lz = d, and then Ry = z. This can be easily done using the following
simple sequential algorithm based on the two recurrence relations:

{
z0 = d0
zi = di − αzi−1, i = 1, . . . , n − 1,

(5)

and {
yn−1 = zn−1/β
yi = (zi − t3yi+1)/β, i = n − 2, . . . , 0.

(6)

This simple sequential algorithm can be efficient only for small values of n
because it does not utilize the underlying hardware of modern processors, namely
multiple cores and vector units. In order to obtain an efficient parallel algorithm
for solving (5) let us consider the following divide and conquer method. First, we
choose two integers r, s > 1, rs = n, and rewrite L in the following block form:

L =

⎡
⎢⎢⎢⎣

Ls

B Ls

. . .
. . .

B Ls

⎤
⎥⎥⎥⎦ , Ls =

⎡
⎢⎢⎢⎣

1
α 1

. . .
. . .

α 1

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 α
... 0 0
... . .

. ...
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎦

. (7)

Let us define:

ek = (0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0)T ∈ R
s, k = 0, . . . , s − 1,

and split d, z into vectors di = (dis, . . . , d(i+1)s−1)T , zi = (zis, . . . , z(i+1)s−1)T ∈
R

s, for i = 0, . . . , r − 1. Then Lz = d can be rewritten as follows:
{
z0 = L−1

s d0

zi = L−1
s di − αzis−1L

−1
s e0, i = 1, . . . , r − 1.

(8)
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Similarly, in case of the upper bidiagonal system Ry = z, assuming the same
as previously, we get the following block form of R:

R =

⎡
⎢⎢⎢⎢⎣

Rs C

Rs
. . .

. . . C
Rs

⎤
⎥⎥⎥⎥⎦

, Rs =

⎡
⎢⎢⎢⎢⎣

β t3

β
. . .

. . . t3
β

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎣

0 . . . . . . 0
... . .

. ...

0 0
...

t3 0 . . . 0

⎤
⎥⎥⎥⎥⎦

. (9)

Analogously to (8), we get the following formula to find y:
{
yr−1 = R−1

s zr−1

yi = R−1
s zi − t3y(i+1)sR

−1
s es−1, i = r − 2, . . . , 0.

(10)

The algorithm for solving LRy = d based on (8) and (10) comprises two
main stages (A and B), each consisting of three steps, has a lot of potential
parallelisms. All vectors L−1

s di, i = 0, . . . , r − 1, can be found in parallel (Step
A1). Indeed, when we form the matrix D = [d0, . . . ,dr−1], all columns of X =
L−1

s D can be found using the following vector-recursive formula:

Xi,∗ ← Di,∗ − α ∗ Xi−1,∗, i = 1, . . . , s − 1, (11)

where Xi,∗ and Di,∗ denote i-th rows of X and D, respectively. Then we can find
the last entry of each vector zi, i = 1, . . . , r − 1, sequentially (Step A2) applying
(8). Finally, again in parallel, we calculate s−1 remaining entries of z1, . . . , zr−1

(Step A3). In the case of (10) we proceed similarly. If Z = [z0, . . . , zr−1], then
Z ← R−1

s Z can be found (Step B1) using:

Zi,∗ ← (Zi,∗ − t3 ∗ Zi+1,∗)/β, i = s − 2, . . . , 0. (12)

Then during the sequential part (Step B2) we find first entries of each yi, i =
r−2, . . . , 0, and finally (Step B3) we use (10) to calculate in parallel all remaining
entries of Y = [y0, . . . ,yr−1]. The algorithm should be applied twice to find
vectors v and u, respectively. Then we use (4) to find the solution to (2). Note
that (4) can be easily vectorized and parallelized.

3 OpenACC-Based and Hybrid OpenMP+OpenACC
Implementations

The algorithm for solving (2) presented in Sect. 2 can be easily implemented
using OpenACC. Parallel steps A1, A3, B1, B3 can be vectorized and parallelized
using parallel loop constructs. It means that the execution of the independent
loops will be distributed among gangs that work in SIMD mode utilizing available
hardware. The steps A2 and B2 are sequential and should be executed by a single
gang. Figure 1 (left) shows our OpenACC implementation of the steps A1, A2,
A3 using the column-wise storage format for the matrix X stored as a double
precision array. This format is the most natural because there is no need to do
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Fig. 1. OpenACC implementations of the parallel algorithm based on (8) using column-
wise storage (left) and row-wise storage (right)

any data transfers after choosing specific values of r, s. Unfortunately, this format
does not allow to use of coalesced memory access to global memory of devices [3]
during the steps A1 and B1. Thus, one can expect that the performance of the
implementation using such storage format can be much worse compared to the
implementation using the row-wise storage format (Fig. 1, right). In this case,
all references to global memory are coalesced. Figure 2 shows simple parallel
loops that can be used to convert between column-wise storage and row-wise
storage. Unfortunately, such conversion between formats can significantly reduce
the overall performance because of non-coalesced memory access.

Fig. 2. Simple conversion between considered column-wise and row-wise array storage
formats using OpenACC parallel construct



High Performance Portable Solver for Tridiagonal Toeplitz Systems 177

column-wise storage row-wise storage

cache memory

s

r

s

r

BSIZE

V L

Fig. 3. Conversion from column-wise to row-wise array storage using device cache
memory

In order to improve the performance of the implementation let us consider
a more sophisticated method for conversion between column-wise and row-wise
storage formats that uses cache memory to ensure coalesced memory access
(Fig. 5). Each gang of BSIZE threads is responsible for reading a block of
V L×BSIZE elements from the array stored column-wise using coalesced mem-
ory access and writing it to the cache memory. Then such a block is moved
to a new array stored row-wise. Figures 3 and 4 explain how to do it. A gang
of threads operates on a sequence of V L blocks of V L × NC elements, where
V L × NC = BSIZE. Each column of such a block is loaded by V L threads,
where V L is the size of a warp [3]. As soon as all blocks are in the cache memory,
all threads within a gang write rows of BSIZE elements into global memory.
Devices coalesce such global memory access issued a warp into as few transac-
tions as possible to minimize DRAM bandwidth [3]. Finally, it should be noted
that in both cases (i.e. column-wise and row-wise storage formats) the steps
B1, B2, B3 have been implemented similarly to excerpts of the source code
shown in Fig. 1. Computations according to (4) have been implemented using
acc parallel loop construct.

Figure 6 shows how to use OpenMP and OpenACC to utilize two GPUs. Two
halves of the arrays are stored row-wise in global memories of GPUs. We create
two OpenMP threads, each responsible for controlling one GPU. GPUs share
data via host memory. The array shared data is allocated on the host and each
GPU has its copy of this array. The update self construct is used to update
data on the host, while update device updates device memory. It is necessary to
synchronize threads using the omp barrier construct. This approach can also be
applied to utilize GPU and CPU cores at the same time. Figure 7 shows the idea
of hybrid implementation using OpenMP and OpenACC. CPU is responsible for
finding r1 first columns, while GPU is used to find further r2 columns, where
r1+r2 = r. Note that in this case, OpenMP nested parallelism should be enabled
[8].
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Fig. 4. Conversion of a V L × BSIZE block stored column-wise to row-wise storage
performed by a single gang of threads (V L = 32, BSIZE = 256)

Fig. 5. OpenACC implementation of the conversion from column-wise to row-wise
using device cache memory
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Fig. 6. Data distribution and general processing scheme for two GPUs

Fig. 7. Hybrid implementation for host (OpenMP) and GPU (OpenACC)

4 Results of Experiments

All experiments have been carried out on four different target architectures which
are modern accelerated systems allowing OpenACC and OpenMP programming
models. Multicore is a server with two Intel Xeon E5-2670 v3 (totally 24 cores
with hyper-threading, 2.3 GHz), 128 GB RAM, running under Linux with CUDA
10.0 and Portland Group PGI compilers and tools version 19.4 with OpenMP
and OpenACC support. Kepler is just like multicore, with NVIDIA Tesla
K40m GPU (2880 cores, 12 GB RAM). Similarly, Volta is just like multicore,
but with NVIDIA Tesla V100 GPU (5120 cores, 32 GB RAM). Finally, Turing
is a server with Intel Core i7 (totally 4 cores with hyper-threading, 3.0 GHz),
24 GB RAM, NVIDIA GEFORCE RTX 2080 SUPER GPU (3072 cores, 8 GB
RAM) running under Linux with CUDA 10.0 and PGI compilers.

We have tested three versions of our OpenACC-based implementation. The
first one uses column-wise storage. The next two implementations rely on row-
wise storage using the simple conversion between formats (Fig. 2) and the
more sophisticated method (Fig. 5) that utilizes cache memory, respectively.
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Table 1. Multicore: execution time for the best values of r and speedup of column-
wise method over the sequential Thomas algorithm

n Thomas alg. Seq. alg. OpenMP Column-wise Row-wise Row-wise with cache Speedup

r Time r Time r Time r Time

215 0.0011 0.0016 26 0.0005 25 0.0007 29 0.0084 28 0.0026 1.55

216 0.0020 0.0029 27 0.0008 26 0.0009 210 0.0085 28 0.0043 2.18

217 0.0039 0.0054 28 0.0014 26 0.0013 210 0.0089 210 0.0057 3.04

218 0.0077 0.0104 24 0.0025 27 0.0019 211 0.0096 211 0.0076 4.05

219 0.0148 0.0186 26 0.0032 28 0.0026 211 0.0102 211 0.0077 5.68

220 0.0284 0.0362 26 0.0048 28 0.0040 211 0.0133 211 0.0108 7.03

221 0.0564 0.0741 26 0.0092 29 0.0076 211 0.0177 211 0.0160 7.39

222 0.1134 0.1528 28 0.0199 210 0.0179 211 0.0411 211 0.0308 6.34

223 0.2249 0.3030 28 0.0431 210 0.0405 212 0.0968 212 0.0671 5.55

224 0.4478 0.6055 28 0.0879 210 0.0865 214 0.1859 212 0.1368 5.18

225 0.8939 1.2097 26 0.1512 211 0.1728 214 0.3629 211 0.2754 5.17

226 1.7859 2.4179 26 0.2809 213 0.3480 214 0.7270 211 0.5540 5.13

227 3.5695 4.8255 26 0.5385 214 0.6983 213 1.4673 215 1.0915 5.11

228 7.1368 9.6747 28 1.0314 214 1.4021 214 2.9030 212 2.1780 5.09

229 14.2987 19.3526 28 2.0027 215 2.8156 215 5.8509 212 4.3571 5.08

230 28.5449 38.7018 29 3.9222 215 5.6348 215 11.6869 216 8.8644 5.07

On multicore (Table 1) we have also tested the OpenMP version of column-
wise implementation compiled with the PGI compiler, the sequential Thomas
algorithm, the algorithm based on sequential formulas (5), (6) and the simple
automatic parallelization of (4).

Fig. 8. NVIDIA Visual Profiler result for two GPUs
implementation

Tests have been per-
formed for various prob-
lem sizes and values of
the parameter r. Because of
global memory limitations,
in case of Kepler and Tur-
ing, the biggest problem
size is n = 228. We have
observed that the best per-
formance is achieved when
r is O(

√
n), and then the

performance differs slightly.
Tables 1, 2, and 3 show the
results obtained for the best
value of r. Table 2 also con-
tains the results obtained for
our OpenMP+OpenACC implementations (i.e. for two GPUs and hybrid one uti-
lizing GPU and CPU cores). Moreover, it shows the order of the relative error
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Table 2. Kepler: relative error and the execution time for the best values of r. ∗ -
results obtained using the hybrid implementation

n Error Kepler 2×Kepler

Column-wise Row-wise Row-wise with cache Row-wise with cache

r Time r Time r Time r Time

215 10−14 29 0.0012 29 0.0012 28 0.0011 28 0.0013

216 10−14 29 0.0018 210 0.0016 29 0.0016 29 0.0016

217 10−14 210 0.0023 210 0.0018 210 0.0022 210 0.0025

218 10−15 210 0.0032 211 0.0025 210 0.0030 210 0.0031

219 10−15 210 0.0045 211 0.0034 210 0.0040 210 0.0044

220 10−16 211 0.0062 211 0.0047 211 0.0054 211 0.0056

221 10−16 211 0.0095 212 0.0069 211 0.0079 212 0.0082

222 10−16 212 0.0152 212 0.0108 212 0.0115 212 0.0112

223 10−16 212 0.0249 213 0.0180 212 0.0181 212 0.0173

224 10−15 212 0.0481 213 0.0334 213 0.0296 213 0.0241

225 10−14 212 0.0926 214 0.0715 213 0.0511 213 0.0384

226 10−14 212 0.1938 214 0.1636 213 0.0950 214 0.0607

227 10−13 215 0.4599 214 0.3276 214 0.1802 214 0.1029

228 10−13 216 0.9259 214 0.6757 214 0.3614 215 0.1856

229 10−12 – – – – 216 1.2689∗ 215 0.3491

230 10−11 – – – – 216 2.7807∗ – –

achieved when solving the system of linear equations that arises for second order
ordinary differential equations y′′(x) − py′(x) − qy(x) = g(x), where x ∈ [a, b]
and y(a) = A, y(b) = B.

We can observe that column-wise storage is the best for multicore and in
this case, there is no need to perform conversion to row-wise storage. Thus,
such conversion should be performed only if any GPU device is present. It can
be easily checked using the acc get num devices() function from OpenACC
Runtime Library. It means that the source code will work properly on GPU-
accelerated and non-accelerated systems without any changes.

Our OpenACC implementation compiled for non-accelerated multicore sys-
tems achieves good speedup over the sequential Thomas algorithm (up to 7.39)
and its performance is about 65% of the performance achieved by our OpenMP-
based implementation [5]. Thus, if we only consider CPU as the target architec-
ture, the use of OpenMP is a better choice. In most cases for all tested GPUs, the
implementation using row-wise storage achieves much better performance than
the version using column-wise storage. We can also observe that the use of cache
memory allows to speedup conversion between considered storage formats, espe-
cially on Kepler. In this case, the version using row-wise storage is more than
50% faster for bigger problem sizes. In the case of Turing and Volta, the use of
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Table 3. Turing and Volta: the execution time for the best values of r.

n Turing Volta

Column-wiseRow-wise Row-wise with cacheColumn-wiseRow-wise Row-wise with cache

r Time r Time r Time r Time r Time r Time

215 28 0.0007 29 0.0007 29 0.0007 28 0.0007 29 0.0006 29 0.0006

216 29 0.0009 29 0.0009 29 0.0009 28 0.0010 29 0.0009 29 0.0010

217 29 0.0010 210 0.0009 29 0.0010 29 0.0010 210 0.0008 210 0.0009

218 210 0.0014 210 0.0012 210 0.0014 29 0.0013 210 0.0010 210 0.0012

219 210 0.0019 211 0.0016 211 0.0021 210 0.0017 210 0.0014 211 0.0017

220 211 0.0027 212 0.0023 211 0.0027 210 0.0023 210 0.0018 211 0.0022

221 211 0.0037 212 0.0032 212 0.0040 211 0.0031 210 0.0025 212 0.0030

222 211 0.0057 213 0.0050 212 0.0057 211 0.0043 210 0.0034 212 0.0043

223 212 0.0090 213 0.0085 212 0.0090 212 0.0061 210 0.0052 213 0.0061

224 212 0.0147 214 0.0154 213 0.0150 212 0.0090 210 0.0087 213 0.0095

225 212 0.0260 213 0.0322 213 0.0264 212 0.0152 210 0.0169 214 0.0155

226 212 0.0460 214 0.0700 214 0.0447 212 0.0274 210 0.0387 214 0.0260

227 213 0.0846 215 0.1938 214 0.0801 213 0.0463 210 0.0850 215 0.0455

228 213 0.1653 216 0.3927 214 0.1569 214 0.0995 210 0.1804 215 0.0799

229 - - - - - - 214 0.2622 215 0.3973 215 0.1793

230 - - - - - - 215 0.5849 216 0.7926 216 0.3454

cache memory is profitable for bigger problem sizes. It should be noticed that the
performance on all considered GPUs significantly outperforms the performance
achieved on multicore. Thus, the use of our hybrid implementation is profitable
for bigger problem sizes, i.e. when the GPU memory capacity is exceeded (see
Table 2, the results marked with “∗”). Our implementation for two GPUs scales
very well (see Table 2, 2×Kepler) without significant performance overheads
(Fig. 8). It should be noticed that the timing results do not take into account
the time needed to copy data between host and GPUs. However, solving consid-
ered systems is, in most cases, a part of a larger problem. The implementation
achieves the performance of 6.6 GFLOPS on multicore and 68.4 GFLOPS on
Volta what is far from the peak performances of those architectures, but is nor-
mal for problems where the ratio of the number of memory references to the
number of arithmetic operations is O(1). Finally, let us observe that the relative
error of the solution obtained by the parallel algorithm is acceptable.

5 Conclusions and Future Work

We have presented the new portable OpenACC-based implementation of the
solver for tridiagonal Toeplitz systems of linear equations. Numerical experi-
ments show that column-wise storage is the best for CPU-based architectures
and it achieves good speedup (up to 7.39) over the sequential Thomas algorithm.
In most cases for all tested GPUs, the implementation using row-wise storage
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achieves much better performance than the version using column-wise storage
and the use of cache memory allows to improve its performance. Moreover, all
considered GPUs outperform CPU-based systems. We have also shown how to
use OpenMP and OpenACC together in order to obtain the implementation
suitable for systems with multiple GPUs or hybrid systems. In the future, we
plan to study the numerical properties of the method, especially its stability.
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1 Introduction

Simulations of physical systems described by partial differential equations
(PDEs) are the cornerstone of computational science and engineering. The ever-
growing need for computational performance due to the increasing number and
scale of simulations has led to the rise of different and heterogeneous parallel
computing platforms, ranging from multi-core CPUs to massively parallel dis-
tributed systems and from SIMD vector units to GPUs and FPGAs. Adapting
complex simulation algorithms to and implementing them efficiently on these
different architectures is a demanding task requiring in-depth computer science
knowledge that is usually not directly available to numerical mathematicians
and computational engineers. Consequently, many large scale simulation codes
address only a narrow and often traditional range of computing environments,
missing the performance opportunities offered by new architectures.

In this paper, we present the HighPerMeshes embedded DSL that provides
an abstraction layer to C++ application developers to implement efficient mesh-
based algorithms for PDE problems on unstructured grids. The focus of the
DSL is on finite element (FE) and discontinuous Galerkin (DG) or finite vol-
ume (FV) discretizations to address iterative and matrix-free solvers as well as
time-stepping schemes. Large parts of PDE simulation problems thus can be
covered. HighPerMeshes draws heavily on the C++17 standard and template
metaprogramming for genericity and extensibility. Additionally, compile-time
information through template parameters can benefit the code generation for
specific target architectures.

The following other software projects address PDE computations on unstruc-
tured grids: Traditional library approaches such as deal.II [1], DUNE [3], or
Kaskade 7 [7] focus on application building blocks and usually provide a rather
explicit parallelization based on threads or MPI, providing one or a few selected
back ends such as PETSc [2]. High-level DSLs such as FEniCS [16] or FreeFEM [10]
on the other hand, allow to specify PDE problems in very abstract notation and use
code generation techniques to create efficient simulation programs. The projects
closest in scope and intention are the OP2 [17]/PyOP2 [20] and Liszt [6] DSLs, by
providing interfaces to execute local compute kernels on unstructured meshes and
to access data associated with different mesh entities. These approaches depend
on C++, Python, and Scala code transformation and compilation techniques [19].
In contrast, we rely on template metaprogramming methods.

2 The HighPerMeshes Domain-Specific Language

Picking the right abstraction level is central for every DSL or library interface
targeting mesh-based algorithms for PDEs. It needs to provide idioms for speci-
fying the algorithmic building blocks on an abstraction level that is high enough
to be mapped efficiently to different computing environments. Furthermore, it
should be detailed enough to allow implementing a wide range of established
or yet to be developed discretizations schemes and numerical algorithms. The
HighPerMeshes DSL aims at providing abstractions on a level that is just high
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enough to allow for an efficient mapping to sequential and multithreaded CPU
execution, distributed memory systems, and accelerators. On this level, the core
components of mesh-based PDE algorithms include mesh data structures, the
association of Degrees of Freedom (DoFs) to mesh entities such as cells and ver-
tices, and the definition of kernel functions that encapsulate local computations
with shape functions defined on single mesh cells or faces.

2.1 Mesh Interface

Computational meshes decompose the computational domain Ω ⊂ R
d into sim-

ple shapes such as triangles or tetrahedra by which PDE solutions can be repre-
sented. Unstructured meshes do so in an irregular pattern that can be adapted
to complex geometries or local solution features in a flexible way. Unlike for
structured meshes, neighborhood relations between these cells are not implied
by the storage arrangement of their constituting vertices, but are usually defined
through connectivity lists that specify how they are made up of vertices. There-
fore, the storage efficiency of unstructured meshes can be very low if the specifics
of the hardware architecture are not taken into account. Similarly, when access-
ing or iterating over mesh entities (cells, faces, edges, and vertices for d = 3), the
memory structuring and arrangement of, e.g., geometrically neighboring entities
can be critical to performance and present optimization targets on the mesh
implementation for different architectures.

The construction of a mesh in the HighPerMeshes DSL starts from a set of
vertices V = {vm ∈ R

d} and a set C = {in|n = 0, . . . ,#cells−1} of connectivity
lists in ⊂ {0, . . . , |V | − 1} representing the cells in the mesh.

Users can create meshes by providing V and C directly or by using one of
the available import parsers for common mesh data files. Each i ∈ C references
into the vertex set V to encode an entity of the cell dimensionality dcell ≤ d.
Sub-entities or constituting entities like edges and faces correspond to index sets
j ⊂ i ∈ C that are deduced according to a particular scheme that is specific
to the entity type. All entities are stored in a (dcell + 1)-dimensional set data-
structure using their index sets. The mesh manages a lookup table which for each
entity holds the IDs of all its constituting entities with one dimension lower, and
another with the IDs of all incident super-entities, if present.

Users of the DSL can define their own entity types by implementing the
interfaces EntityTopology and EntityGeometry. The two interfaces define the
base functionality that is needed by the DSL, e.g., to navigate through all the
different entities in the mesh or provide face normals. Entity-specific extensions
can be added easily, which enhances the usability of the DSL.

For the hierarchical definition of entities as an affiliation of sub-entities,
EntityTopology and EntityGeometry must know the actual type of their imple-
mentation for explicit instantiations, e.g., requesting or providing information
about entities of different dimensionality.

On top of the mesh implementation is the mesh partitioning, which is needed
for work distribution in the parallel context. The PartitionedMesh type inherits
all functionality and state from the Mesh type. It selects from C a subset of the
entities in the mesh and redirects this subset to the Mesh base type.
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Iterator ranges over entities of any valid dimension can be created by the
mesh and any valid entity through

template <int Dimension >
EntityRange <Dimension > GetEntities () {..}.

Both EntityT and (Partitioned)Mesh extend this functionality in different
ways, thereby enabling the user of the DSL to query topological and geometrical
information inside and outside of the kernel functions.

2.2 Buffer Types for Storing Coefficient Vectors

PDE solutions are generally discretized using finite-dimensional ansatz spaces
and are represented by coefficient vectors with respect to a certain basis. In FE,
FV, and DG methods, the basis functions are associated with mesh entities and
have a support contained in the union of the cells incident to their entity. The
mapping of coefficients, or Degrees of Freedom (DoFs) to storage locations and
access to them depends on the target architecture and may involve nontrivial
communication. Therefore, the DSL provides buffer types for coefficient vector
storage to relieve the user from these considerations.

Depending on the ansatz space, a particular number of basis functions is
associated with mesh entities of different dimensions. Therefore, the number of
coefficients ηd̃ associated to entities of dimension d̃ ∈ {0, . . . , dcell} has to be
specified when constructing a buffer. Additionally, global values as coefficients
of the constant basis function can be stored, e.g.,

Runtime hpm {..};
auto dofs = MakeDofs <1,1,1,1,2>(); /* η = {�ηd̃, 2} = {1, 1, 1, 1, 2} */

auto buffer = hpm.GetBuffer <float >(mesh ,dofs);

for dcell = d = 3. The buffer holds one value of type float for each node, edge,
face, and the cell itself. Two additional entries are provided for global values.

DoFs are accessed through a “local-view object” (lv in Listing 1, line 7)
inside kernel functions. These local views are a tuple of implementation-defined
objects that are accessible with the GetDof function, which requests DoFs of a
certain dimension. This is necessary because access patterns may provide DoFs
associated with mesh entities of different dimensions.

Given a data access pattern (Sect. 2.3) and a specific entity—typical program
executions loop over all or a subset of the entities in the mesh, one after the
other—the corresponding local view makes for a linearly indexable type inside
the kernel function, thereby hiding data layout and storage internals.

2.3 Iterating over the Mesh with Local Kernels

In the PDE solver algorithms that we target, a significant part of PDE compu-
tation on meshes involves the evaluation of values, derivatives, or integrals on
cells or faces, and is therefore local. This allows for various kinds of paralleliza-
tion, depending on the target architecture. Typically, these local calculations
in space are embedded into time-stepping loops or iterative algorithms, which
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imply dependencies based on the data access patterns of the kernels. With a
scheduler that suitably resolves these dependencies, additional parallelism can
be exploited by partially overlapping subsequent time steps.

In HighPerMeshes, the application developer specifies the calculations as
local kernels at entity granularity and invokes a dispatcher to take care of their
parallel execution and scheduling. Line 1 of Listing 1 shows the definition of a
distributed dispatcher that uses the command line arguments to set up its envi-
ronment. The advantage of using this dispatcher model is a complete separation
of parallelization techniques and kernel definitions. The interface is technology-
agnostic and does not require knowledge about parallel programming.

The dispatcher’s Execute method takes a number of kernels to be executed as
its arguments. If required, those arguments might be supplemented by a range of
time steps, as shown in line 3 of Listing 1, in order to iterate the defined sequence
of kernels more than once in the specified range. Each kernel must define a
range of entities to iterate over. To enable flexible parallelization strategies, the
DSL does not guarantee a processing order for these entities. For example, the
function call mesh.GetEntityRange<CellDimension>() in line 5 specifies that
the dispatcher iterates over all cells. ForEachEntity in line 4 defines an iteration
over all entities in that range. Here, HighPerMeshes provides another option:
ForEachIncidence<D> iterates over all sub-entities of a certain dimension D for
the entities in the given range.

The kernel requires a tuple of access definitions, as seen in line 6. Access def-
initions specify the mode (any of Read, Write, and ReadWrite) and the access
pattern for the DoF access. This allows the scheduler to calculate dependencies
between kernels, thereby avoiding conflicting DoF accesses in scatter operations
despite parallelization. Access patterns determine the DoFs relevant for the cal-
culation by specifying a set of mesh entities incident or adjacent to the local
entity. Cell in line 6 means that the kernel requires access to the DoFs from the
given buffer that are associated with the local cell, as frequently used in DG
methods. Other common access patterns involve a local cell and all of its inci-
dent sub-entities, usually encountered in FE methods, or the two cells incident
to a face for flux computations in DG or FV methods. While HighPerMeshes
aims at providing all access patterns necessary for common kernel descriptions
in FE or DG methods, they can be easily extended by providing the required
neighborhood relationship in the mesh interface.

Lastly, the user must define a kernel to be executed (line 7). It must be a
callable that takes the specified entities, time steps, and a local-view object lv
as its arguments. The latter allows access to the requested DoFs.
1 DistributedDispatcher dispatcher{argc ,argv };
2 dispatcher.Execute(
3 Range {100},
4 ForEachEntity (
5 mesh.GetEntityRange <CellDimension >(),
6 tuple(Write(Cell(buffer))),
7 []( const auto& cell ,auto step ,auto& lv) { /* kernel body */ }));

Listing 1. Example of a dispatcher definition and kernel execution.
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3 Using the DSL

In this section, examples and code segments are presented to illustrate the meth-
ods described in Sect. 2 and to explain their use. Further information about the
algorithms and examples can be found in the public repositories1,2.

3.1 Matrix-Free Solver for the Poisson Equation

For illustrating the usage of the DSL, the elliptic Poisson problem

−Δu = f in Ω ⊂ R
3, u = 0 on Γ ⊂ R

3 (1)

with homogeneous Dirichlet boundary conditions is solved by a matrix-free con-
jugate gradient (CG) method [11,21]. By discretizing (1) with linear finite ele-
ments on a tetrahedralization of Ω, i.e. with one DoF per vertex, a system
Ax = b of linear equations is obtained [5]. Since A is symmetric and posi-
tive definite, its solution is the minimizer of the convex minimization problem
F (x) = 1

2xTAx − bTx → min.

Fig. 1. Code segment for right-hand side computation.

In order to solve this equation system, the right-hand side (rhs) b must be
assembled. This is done using the buffer datatype and the loop ForEachEntity,
which iterates over the vertices of each cell (in this case, tetrahedra) and stores
the corresponding value in the buffer (Fig. 1 code line 8). The homogeneous
Dirichlet boundary conditions can be built into the rhs here as well. To solve the
system, a matrix-free CG iteration is used. Its main algorithmic building block
is the computation of matrix-vector products Ax. Instead of assembling A and

1 https://github.com/HighPerMeshes/highpermeshes-dsl.
2 https://github.com/HighPerMeshes/highpermeshes-drts-gaspi.

https://github.com/HighPerMeshes/highpermeshes-dsl
https://github.com/HighPerMeshes/highpermeshes-drts-gaspi
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performing linear algebra operations, we assemble the product Ax directly by
evaluating

sj =
∫
C

∇φi∇φj dC

︸ ︷︷ ︸
A(i,j)cell

· xj (2)

per cell and with φ∗ as shape functions (see line 9 of Listing 2). The same pro-
cedure is used for all further matrix-vector products. Finally, the result can be
saved into a file and visualized using, for example, ParaView.

1 auto AssembleMatrixVecProduct =
2 ForEachEntity (cells , tuple(Vertex(s)),
3 []( const auto& cell) {
4 auto& indices = cell.GetTopology ().GetVertexIndices ();
5 for (int col = 0; col < ncols; ++col) {
6 for (int row = 0; row < nrows; ++row) {
7 float a_ij = .. // set a_ij using shape functions
8 s[indices[col]] += a_ij * x[indices[row ]];
9 }}

10 });

Listing 2. Example of a matrix-free computation.

3.2 Discontinuous Galerkin Time Domain (DGTD) Maxwell Solver

Here we sketch an implementation of a Maxwell solver based on the DGTD
numerical scheme [9,12]. An initial value problem is solved in the time domain
in a free space mesh with perfect electric conductor (PEC) boundary conditions.
The user can modify the code accordingly if field sources, materials, or absorbing
boundaries are needed. The simulation domain is discretized in a triangular or
tetrahedral mesh, which is used as an input. Then, DoFs or calculation points
are created within the cells, depending on the ansatz order specified by the user.
For example, a three-dimensional simulation with third-order accuracy requires
20 DoFs in each cell to represent the unknown fields. The right-hand sides of
Maxwell’s equations are evaluated during Runge-Kutta time integration at each
time step according to the DGTD method formulation

Ė = D × H + (M)−1F (ΔE − n̂ · (n̂ · ΔE) + n̂ × ΔH) (3)
Ḣ = −D × E + (M)−1F (ΔH − n̂ · (n̂ · ΔH) + n̂ × ΔE) (4)

Here D × H and D × E are the curls of the magnetic and electric fields.
Correspondingly, M is the mass matrix, F the face matrix, ΔE,ΔH are field
differences between the neighboring cells at the interfaces, and n̂ the face normal
[9]. The first term (the curls) involves only cell-local DoFs and is therefore called
“volume kernel” (see Listing 3).
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1 auto volumeKernelLoop = ForEachEntity (cells ,
2 tuple(Read(Cell(H)),Cell(rhsE) ,..),
3 [&]( const auto& cell ,..,auto& lv){
4 Mat3D D = cell.GetGeometry ().GetInverseJacobian () *2.0;
5 ForEach(numVolumeNodes ,[&]( const int n){
6 const auto& H = GetDofs <3>(get <0>(lv));
7 Mat3D dH;
8 ForEach(numVolumeNodes ,[&]( const int m) {
9 dH += DyadicProduct (derivative[n][m],H[m]);

10 });
11 auto& rhsE = GetDofs <3>(get <1>(lv));
12 rhsE[n] += Curl(D,dH);
13 // code for rhsH: analogue to rhsE
14 });
15 });

Listing 3. Code segment for the Maxwell volume kernel.

The second term in (3, 4), the “surface kernel,” (see Listing 4) stems from a
surface integral over the cell’s faces, and involves those DoFs from within the two
incident cells located on these faces. Calculating the surface kernel requires some
operations provided directly by the DSL, e.g., GetNormal(). The implementation
complexity of DG on unstructured meshes comes from the access or mapping to
the neighboring cells DoFs in order to calculate fluxes across faces as described
in (3, 4). This access is performed with the data structure NeighboringNodeMap
(line 12 in Listing 4), which provides the corresponding index for the DoFs in
the local view.
1 auto surfaceKernelLoop = ForEachIncidence <2>(cells ,
2 tuple(Read(ContainingMeshElement (H)),
3 Read(ContainingMeshElement (E)),
4 Read(NeighboringMeshElementOrSelf (H)),
5 Read(NeighboringMeshElementOrSelf (E)),
6 Write(ContainingMeshElement (rhsE))),
7 [&]( const auto& cell , const auto& face ,..,auto& lv){
8 const auto& H = GetDofs <3>(get <0>(lv));
9 // buffer access to E, nH , n, E, rhsE is analogous

10 auto& NeighboringNodeMap {DgNodeMap.Get(cell ,face)};
11 int faceIndex = face.GetTopology ().GetLocalIndex ();
12 auto faceUnitNormal = face.GetGeometry ().GetUnitNormal ();

13 auto edg = (face.GetGeometry ().GetNormal () *2.0/
14 cell.GetGeometry ().GetAbsJacobianDeterminant ()).Norm ()

*0.5;
15 ForEach(numSurfaceNodes ,[&]( const int m){
16 const auto dH = edg*Delta(H,nH ,m,NeighboringNodeMap );
17 const auto dE =
18 edg*DirectionalDelta(E,nE ,face ,m,NeighboringNodeMap );
19 const auto fluxE = (dE -(dE*faceUnitNormal )*

faceUnitNormal +CrossProduct(faceUnitNormal ,dH));
20 ForEach(numVolumeNodes ,[&]( const int n){
21 rhsE[n] += LIFT[face_index ][m][n]*fluxE;
22 });
23 });
24 });

Listing 4. Code segment for the Maxwell surface kernel.
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3.3 Finite Elements for Cardiac Electrophysiology

The excitation of cardiac muscle tissue is described by electrophysiology models
such as the monodomain model

u̇ = ∇ · (σ∇u) + Iion(u,w), (5)
ẇ = f(u,w),

where σ is the conductivity, Iion is the ion current that forms together with the
gating dynamics f(u,w) the membrane model. The simplest FitzHugh-Nagumo
membrane model defines Iion(u,w) = u(1−u)(u−a)−w and f(u,w) = ε(u−bw)
with 0 < a, b, ε < 1 [4,15,23].

The method of lines [22] discretizes the monodomain model (5) first in space
and then in time. For the discretization of space, we use linear finite elements
again, leading to the system

Mu̇ = σAu + M · Iion(u,w)
ẇ = f(u,w)

with mass matrix M and stiffness matrix A. For time discretization, the forward
Euler method

ut+1 = ut + τ
(
M−1σAut + Iion(ut, wt)

)
︸ ︷︷ ︸

u̇:=ud

, wt+1 = wt + τf(ut, wt) (6)

is widely used in cardiac electrophysiology due to its simplicity and its stability
for reasonable step sizes τ [18].

In order to avoid inverting the globally coupled mass matrix, the row-sum
mass lumping technique is applied to M [13]. This yields a diagonal approxi-
mation Ml of M and allows for efficient, explicit formation of M−1

l to be used
in (6) instead of M−1, and matrix-free storage in vector form. The right-hand
side ut including the matrix-vector product Aut is assembled directly as in (2)
without forming A:
1 auto fwEuler = ForEachEntity (
2 mesh.GetEntityRange <0>(),
3 tuple(Vertex(u), Vertex(Read(u_d))),
4 [&]( const auto& vertex , auto step , auto& lv) {
5 auto& u = GetDofs <0>(get <0>(lv));
6 auto& u_d = GetDofs <0>(get <1>(lv));
7 u[0] += tau * u_d [0];
8 });

Listing 5. Code example of an implementation of a first-order solver (forward Euler).

3.4 Distributed Scalability Experiments

In this section, we analyze the distributed scalability of the matrix-vector prod-
uct (Listing 2), the volume kernel (Listing 3), and the surface kernel (Listing 4).



194 S. Alhaddad et al.

The experiments were executed on a cluster, where each compute node consists
of two sockets. Each socket contains an Intel Xeon Gold 6148 “Skylake” CPU,
which has 20 cores and a base frequency of 2.4 GHz. Hyper-threading is deac-
tivated. The nodes are connected on a 100 Gb/s Intel Omni Path network. All
experiments were executed with 20 threads per socket, as the scalability of our
threading approach on a single compute node has already been shown [8].

(a) Acceleration with ACE’s thread pool

(b) Acceleration with OpenMP

Fig. 2. Speedup for iterating over the specified kernels on a mesh with 400,000 tetra-
hedra and 1000 time steps on an increasing amount of sockets compared to executing
the same kernels on one socket. The evaluated back ends use ACE’s thread pool (a) or
OpenMP (b).

We conducted the experiments for 1000 time steps on a synthetic mesh of
400,000 tetrahedra. Such a setup represents a typical problem size targeted by
the distributed dispatcher. For mesh partitioning, we use the Metis library [14].

Figure 2 shows the speedup over a single node for the distributed dispatcher
when either scheduling tasks to ACE’s thread pool or accelerating tasks with
OpenMP for an increasing amount of compute nodes. As a baseline for each
experiment, we measure the execution time with both back ends on a single
socket, i.e., 20 cores, and use the faster one. For 640 cores, the back end feeding
threads to ACE’s thread pool achieves better speedups for the matrix-vector
product with a speedup of 21.19. The volume and surface kernels achieve a
better speedup in the case of OpenMP acceleration, with a speedup of 27.94 and
28.98, respectively. Furthermore, the volume and surface kernels scale better
than the matrix-vector multiplication because they are more compute-intensive.
They iterate over 20 DoFs instead of just one. To achieve this kind of scalability,
the dispatcher requires a sufficient workload.
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The results show that HighPerMeshes allows an efficient distribution of
matrix-free algorithms. They also show that the provided abstractions are not
tailored to a specific back end. Instead, both reference implementations achieve
similar speedups, thus showing that the language is portable to different tech-
nologies.

Conclusion

HighPerMeshes is an embedded DSL that provides high-level abstractions for
iterative, matrix-free algorithms on unstructured grids. It is a powerful tool
enabling users to run simulations and implement their own modifications for
complex multi-scale problems from a broad range of application domains.

The data structures and procedures provided by HighPerMeshes allow effi-
cient parallelization and distribution as shown by our implementation of a dis-
patcher that distributes kernels with the help of GASPI, ACE, and OpenMP.
This gives the user the opportunity to take advantage of complex parallelization
techniques and task scheduling without being an expert on parallelization, saving
implementation time and effort on one side, and offering flexibility for different
computing platforms without the need for code modification on the other side.
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Abstract. Python as a programming language is increasingly gaining
importance, especially in data science, scientific, and parallel program-
ming. With the Numba-CUDA, it is even possible to program GPUs
with Python using a CUDA like programming style. However, Numba is
missing support for CUDA-unified memory, which can help to simplify
programming even more and allows dynamic work distribution between
GPUs and CPUs. In this work, we implement and evaluate the support
for unified memory in Numba. As expected, the performance of unified
memory is worse than using explicit data transfers, but can outperform
the performance of the implicit methods provided by Numba. Addition-
ally, using unified memory can help to reduce the Python interpreter
overhead and therefore help to improve the performance of small prob-
lem sizes. The use of system-wide atomic can help to improve the work
distribution between GPU and CPU, but when using more CPU threads
the performance suffers under the Python global interpreter lock (GIL).

Keywords: GPU · Python · Unified memory · Numba

1 Introduction

In the early days of information technology, the exorbitant costs of machines
eclipsed all other accompanying costs, especially for programming these
machines. However, the exponential growth in computing speed and the increas-
ing complexity of software systems ensured that the circumstances were reversed.
Many organizations found that their software development costs began to exceed
the hardware costs.

A sign of this development is the continuing trend towards the use of dynamic
scripting languages. Although these are not compatible with compiled languages
and considerably slower, but the development costs can be reduced [14]. One
language that is popular in this context is Python.

To compensate for the speed disadvantages of the scripting language, perfor-
mance critical numerical calculations are written in compiled languages, either by
using pre-compiled libraries like numpy or scipy, or by using bridge technologies
like cython. However, the desire to carry out mathematical calculations directly
in Python is obvious [2]. They enable the rapid development of prototypes and
their iterative improvement on an algorithmic level. In fact, the greatest and
c© Springer Nature Switzerland AG 2021
B. Balis et al. (Eds.): Euro-Par 2020 Workshops, LNCS 12480, pp. 197–208, 2021.
https://doi.org/10.1007/978-3-030-71593-9_16
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most efficiently exploitable optimization potential is usually to be found in the
higher-level algorithms of a calculation, whereas low-level optimizations often do
not yield a profit in relation to the effort involved [16].

A possibility to create high-performance code for numerical calculations
directly in Pythonis provided by the Python extension module Numba [9]. Numba
is a just-in-time compiler that allows the translation of selected computationally
intensive Python functions into optimized machine code. The execution speed
of these functions is similar to pre-compiled code of other languages [1]. Numba
supports the parallelization of Python code and often requires only minor code
changes. In addition, Numba-CUDA can also be used to program NVIDIA GPUs.

Since GPUs have their own local memory, data must be exchanged between
the system memory and the device memory. Numba-CUDA uses a very simple
implicit mechanism by default. It copies all data used before a calculation into
the device memory and back after completion of a kernel. If this is done explic-
itly in the program code, however, the complexity of the programs and the port-
ing effort for existing algorithms increase. If, on the other hand, the data transfer
is implicitly performed, the speed can suffer depending on the efficiency of the
transfer.

With unified memory, the CUDA platform offers a technology that allows
avoiding unnecessary data transfers and explicit memory management [7]. Uni-
fied memory provides a uniform virtual address space between system and device
memory. On newer GPUs, the data transfer between the physical storage is com-
pletely transparent due to a demand paging mechanism implemented at driver
and hardware level.

However, unified memory currently is not supported in Numba. In this work,
we extend Numba-CUDA to support unified memory, in order to allow efficient
implicit memory management. We evaluate our implementation in terms of per-
formance and compared with other memory management provided by Numba-
CUDA.

2 Background

In this section, we will give a short overview of the technical background of
unified memory and Numba.

2.1 Numba

Numba is a just-in-time compiler working at the level of individual functions in
Python. The primarily intention is to accelerate numerical calculations. Unlike
other JIT compilers for interpreted languages, Numba is not designed to produce
machine code that necessarily works in the same way as the interpreter. Instead,
Numba uses knowledge about the internals of data types to compile the Python
code into simpler machine code. As a result, Numba only supports a subset of
Python that is tailored to the scope of numerical calculations. However, thanks
to this, Numba achieves execution speeds similar to compiled C code.
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The compilation starts by converting the Python byte code into an immedi-
ate representation, called Numba IR. On this, the type interference is performed.
If the type of each value can be inferred, the code is lowered to LLVM, which
is then used to create the final machine code. In addition to the generation of
JIT compiled CPU functions, Numba supports, in similar way, the generation
of CUDA kernels for execution on the GPU. Because of the highly parallel pro-
gramming model of CUDA, CUDA kernels under Numba differ in some aspects
of CPU functions. For example, when calling a kernel, the thread grid must be
explicitly specified, similar to C-CUDA.

The compilation process for CUDA kernels is essentially the same as for
CPU-functions. The generated NVVM-IR is a modification of the of the LLVM
IR code [4]. This intermediate code is translated by the LLVM-based proprietary
library libNVVM to CUDA PTX-assembly code. When using NumPy arrays for
CUDA-kernel input and output, Numba will implicitly transfer data between
the host and the device without additional instructions. To allow explicit control
over the memory, Numba provides so-called device arrays and functions. This is
similar to regular C-CUDA programming using CUDA-copy functions.

2.2 Unified Memory in CUDA

CUDA integrates allocated device memory into the virtual address space of the
host system, whereby each memory address is unique [3]. However, this alone
does not yet allow every processor (or GPU) to access every memory region, but
only local memory. One way to overcome this limitation is to use CUDA with
mapped memory. This allows the GPU to access areas of host memory directly,
but does not allow the CPU to access GPU memory.

With CUDA 6.0 and Kepler-generation GPUs, the CUDA memory model has
been extended to include managed memory or unified memory, which allows all
processors equal access to all data in an uniform virtual address space, regardless
of the physical location. The advantage of this technology is primarily simplified
programming, since explicit data transfer between host and device are omitted.
On older GPUs, explicit data transfer was handled in the background.

Unified memory on newer GPUs is based on the demand paging mechanism.
If a memory page is accessed, which is not currently in main memory, a page
fault occurs and the operating system takes the necessary actions to make the
page available. The unified memory works in a similar way. If the GPU accesses a
memory page that is physically located in the host memory, a page fault occurs,
which is handled by the GPU by transferring the respective page to host memory
On Power9 systems, the same mechanism also works in the opposite direction,
when the CPU accesses GPU memory. Such CPU-side page faults are hardware
technically only possible since the introduction of the Pascal on architecture on
Power9 system and also require operating system support, which is currently
only available on Linux.



200 L. Oden and T. Saidi

On systems that do not support GPU page faults, pages owned by the CPU
are instead written to the respective GPU pages when a kernel is started and
written back, if the kernel is completed.

With newer GPU-architectures, the system has been further refined so that,
for example, pages are not necessarily transferred from one memory to the other
during the first access, but only when a certain number of accesses has been
exceeded.

3 Related Work

Unified memory was evaluated by different groups. In [10], the speed of unified
memory with CUDA 6 and GPUs of the Kepler generation is examined. In almost
all cases unified memory leads to significant performance losses. The authors
consider the simplifications achieved by unified memory as marginal and only
saw a benefit when using more complex data structures.

In [11] a consistent speed disadvantage of around 10% is found in the use of
unified memory with GPUs of the Kepler generation. They attribute the perfor-
mance losses on the one hand to the redundant transfer of data by the unified
memory runtime system and on the other hand to the overhead of handling page
faults.

Since its introduction with CUDA 6 and the Kepler architecture, unified
memory has experienced some improvements. In [8] unified memory was evalu-
ated on modern Pascal- and Volta-GPUs. This work also came to the conclusion
that the use of unified memory is generally associated with significant perfor-
mance losses. However, for memory oversubscribing use cases, unified memory
allows a strong reduction of complexity in the memory management.

In [6] a benchmark suite, Chai, designed for heterogeneous computations, is
introduced. Using these benchmarks, the workload distribution between CPUs
and GPU generally shows a speed gain compared to a CPU-only or GPU-only
calculations. Furthermore, it was found that the use of unified memory in con-
junction with system-wide atomic operations for synchronisation has a clearly
positive effect on performance.

As Python is widely used in scientific programming, different papers deal
with the performance for parallel applications written in Python, including the
use of GPUs. In [15] the same application is evaluated in Python/Numba and
CUDA/Fortran. In [12] a detailed analysis of Numba is provided, but the authors
do not provide a detailed comparison to C-CUDA. In [13] we compared the per-
formance of C-CUDA and Numba-CUDA, but mainly focus on the performance
of the compute kernels. The memory transfer between GPUs and CPUs was not
considered.

4 Implementation of Unified Memory in Numba-Cuda

Unified memory simplifies programming by eliminating the need for explicit
memory transfers between different physical memories. This means, the distinc-
tion between host arrays (i.e. normal NumPy arrays) and device arrays should be
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repealed. Additional, System-wide atomic operations should be made available
in Numba, on both sides, CPU and GPU to allow work distribution. The imple-
mentation should fit well into the programming interface of Numba and make
as few adjustments as possible to port existing programs. The current version of
the patch is available as gist on github.1

4.1 Managed Memory Arrays

The CUDA driver provides the function cuMemAllocManaged() to allocate man-
aged memory. CPython allows a program-wide exchange of the used memory
allocation functions through user-defined variants [17]. A simple solution could
simply replace any memory request in Python with cuMemAllocManaged(). This
would mean that each newly created NumPy array is automatically allocated in
managed memory. This approach has a certain elegance at first glance, but also
has a large number of problems.

Access to the CUDA driver API is only possible after loading a corresponding
extension module, unless you modify the Python interpreter itself. This means,
memory blocks from different systems must be managed, which is a time- con-
suming task. Additionally, this approach is not compatible with non-Linux sys-
tems or GPUs of the pre-Pascal era. Therefore, we introduce a new array class,
which allocates and stores data in a unified memory block instead of host mem-
ory (normal numpy array) or GPU memory (device memory class). This avoids
the problems listed above and only used data are stored in managed memory.

To ensure universal usability, we implemented a new array class, called Man-
agedArray, as a derived class of numpy.ndarray. This allows the usage like a
normal NumPy array without further effort. In particular, managed arrays can
be used directly in Numba and Numpy CPU functions.

When a new instance is initialized, the required memory for the data is
allocated using cuMemAllocManaged() and passed as a buffer object to the
superclass. The buffer object automatically frees the memory with cuMemFree()
when the last reference to the object is removed. Besides of this modifications,
all other functions can be inherited from the original numpy array superclass
and no further modifications are needed. In an application, the allocation of a
memory array must be replaced with the new class. To prevent Numba from
making a automatic copy of the data to the GPU when a kernel is called, the
class is marked the with cuda memory . Listing 1.1 shows how the new class
can be used to created manged device arrays.

Listing 1.1. Example of unified memory allocationd in Numba

numba . cuda . managed array ( shape , dtype=np . f l o a t , order=’C ’ )
numba . cuda . managed array l ike ( ary )
numba . cuda . to managed ( ary )

1 https://gist.github.com/LenaO/7d7cf6ec1822f3375d1b8a6b4ec1914e.

https://gist.github.com/LenaO/7d7cf6ec1822f3375d1b8a6b4ec1914e
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4.2 Global Atomic Functions

Numba supports some atomic operations for CUDA kernels, such as atomic
fetch and add by using numba.cuda.atomic.add(). The analysis of the IR
and PTX (cuda assembly) code generated by Numba shows that these atomic
operations have a GPU-wide validity rang. This means the atomicity is guar-
anteed for all other threads of the same GPU, but not with the host or
other GPUs. To enable system-wide atomic operations, a PTX command like
atom.sys.op.type has to be generated. The current, official version of LLVM
supports system-wide atomic operations by special IR commands of the form
llvm.nvvm.atom.gen.sys.∗. Since Numba uses the non-open source LLVM based
library libNVVM for PTX code generation, we investigated the support of these
commands. We learned that the LLVM system wide atomics used with CUDA
version 10.1 were not recognized.

As an alternative we identified the use of inline assembler expressions in
the intermediate code. This means that instead of an NVVM IR command, the
appropriate PTX code is embedded directly The IR code thus loses abstraction,
but there are no disadvantages in practical application.

The newly introduced system-wide atomic operations are oriented to the
already existing operations. For CPU functions, Numba does not support any
user-addressable atomic operations or other synchronization mechanisms at all,
as Numba primarily relies on semi to fully automatic parallelization of loops.
The implementation of atomic operations for CPU code turned out to be sim-
ple. Numba simply needed to be extended to generate the LLVM IR command
atomicrmw. The semantics of the CPU functions correspond to those of the GPU
variants (see Listing 1.2).

Listing 1.2. Example of atomic usage on the CPU and GPU

numba . cuda . atomic . system . add ( ary , idx , va l )
numba . atomic . add ( ary , idx , va l )

5 Evaluation

In this section, we evaluate the performance of our unified memory implemen-
tation in CUDA-Numba. All benchmarks were executed on an NVIDIA Tesla
V100 GPU, which is equipped to a node with two IBM POWER9 processors
(8 cores per core). We used CUDA 10.1.105. This system has full support for
all unified memory features. We evaluate the performance of Unified Memory in
Numba and explain the behavior compared to the same methods in C-CUDA
applications.

5.1 Micro-Benchmarks

In the first step, we implemented three synthetic benchmarks. These benchmarks
do not perform any usefull computation, but serve the purpose of transferring
data between host and device. The tests emulate the memory access patterns of
typical application scenarios.
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– data transfer full - In this benchmark, we first initialize an array on the host.
A GPU kernel performs a simple calculation on this array and writes the result
back. The CPU verifies the result. For this test, all data must first be copied
into GPU memory and transferred back after the computation is completed
for verification. The data volume, that is transferred is independent of the
memory management method, as all used data is modified on the GPU.

– data transfer partial - This benchmark uses three arrays. Two provide input
data and are initialized on the host side. The GPU reads data from input
vectors and writes the result to the output vector. The hosts requires these
data to verify the result.

– data transfer multikernel - In this test, two GPU kernels are executed suc-
cessively. It uses one array. The second kernel uses the results of the first as
input. The result of the second kernel is written to this array and the result
is evaluated on the CPU. A suitable memory management avoids the data
transfer between the execution of the two kernels.

For these benchmarks, five different memory management variants imple-
mented and compared for Numba-CUDA

– Implicit : Only ordinary NumPy arrays are used. The data transfer is carried
out automatically by Numba.

– Explicit : Device arrays are used and copy operations between Host and device
explicitly triggered. Data is only copied when it is required.

– Explicit pinned : Similar to explicit, but the host arrays are allocated on pinned
memory

– Smart : Numba Smart arrays are used, which perform the data transfer auto-
matically as in the implicit case, but should use more intelligent mechanism
to avoid unnecessary copying.

– Managed : Unified memory arrays are used.

Note that smart arrays are deprecated, but we still use them here to compare
the performance. We also implemented C-CUDA versions of the benchmarks,
using the explicit, pinned and managed memory.

5.2 Micro-benchmark-Performance

Figures 1, 2 and 3 show the performance of these benchmarks in Numba. For
small array sizes, up to around 64 kByte, the managed array class shows quite
good performance compared to the other methods. For the partial and multi-
kernel benchmark, the performance is almost comparable to the pinned memory
and much better than for smart arrays or the implicit variant.

For larger arrays, however, this changes. For the full data transfer benchmark,
our managed array class performs significantly worse than all other variants. For
the partial- and multi-kernel benchmark, only the implicit variant is worse than
the manged class. This is as expected, since for the partial and multi kernel
benchmark the implicit version copies unnecessary data.
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Fig. 1. Full data transfer Numba performance

Fig. 2. Partial data transfer Numba performance

Fig. 3. Multikernel data transfer Numba performance

Fig. 4. Full data transfer C performance
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The performance of the managed class for large arrays is worse than using
explicit copies/This is the expected behavior from previous work evaluating man-
aged memory. Still, there are some results that are surprising, especially when
comparing the results of the Numba benchmarks with the C-CUDA benchmarks.

The results of the full data transfer benchmark for C-CUDA are shown in
Fig. 4. The differences between the managed memory and the explicit variants
are larger than for Numba, even for smaller arrays. Furthermore, the runtime of
the C-CUDA variants is significantly shorter than the Numba version, especially
for small arrays.

It is surprising that the smart array variant performs significantly worse than
the explicit variant, since the number of copy operations performed should be
the same We used the Nvidia profiling tool nvprof to understand this behavior
better. For the partial benchmark, three copy operations are required: The two
input vectors are copied to the device and the output vector is copied back. The
implicit class requires six copy operations, since always all vectors are copied in
and out. The smart class requires four copy operations: all vectors are copied in,
but only the result is copied back. The additional copy explains the performance
difference for the smart array class. For the multi-kernel benchmark, the same
applies: the smart array class copies the data from GPU to host between the
two kernel calls, although the data are not required on the host.

Fig. 5. Timeline of the CUDA-API calls for the different versions of the full-data
transfer benchmarks (4 kByte array)

Figure 5 shows the timing of CUDA API-function calls for different versions
of the full data transfer benchmark. This allows us to better understand the
differences between the Numba version and the C versions. For this size, there is
only a small difference between pinned and unpinned memory. Additional, the
smart class behaves similarly to the implicit case. Therefore and, due to lack
of space, we refrain from the presentation of these. We use CUDA-events to
measure the timing, so we show the API calls starting with the recording of the
first event and synchronising the second event.

By using implicit or smart data transfer, a cudaMalloc operation is required
before the kernel is started. Using smart or Numpy arrays, only the host memory
is allocated when a new array is created. Numba has a lazy deallocation policy,
so these vectors are not freed when the function ends (instead there is a garbage
collection that regularly releases all vectors together). Still, there is no reuse of
allocated memory beyond the lifetime of an array.
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The runtime of the calls to actual CUDA-API are similar for the C-Cuda and
Numba versions, and the kernel have a similar runtime. However Numba versions
have much more time passing between calls. The C-Cuda version usually has less
than a microsecond between two API calls, while the Numba version sometimes
requires more than 100 ms.

One reasons for this is the Python interpreter overhead. Although the same
compiled CUDA-functions and kernels are called, using python everything in
between is handled by the interpreter. Especially with small array sizes this
overhead is much higher than the actual runtime of the kernel and the data
transfer.

This shows one advantage of unified memory in Numba: Because fewer func-
tion calls are needed (no copy functions), the interpreter overhead is much
smaller. Therefore we see a comparable performance for the whole benchmark
for small sizes compared to the explicit case and a better performance than using
implicit or smart copies. For larger arrays, however, this advantage increasingly
fades into the background. The Python overhead remains constant, while the
copy times and kernel runt times increase. Since the kernel runtime increases
significantly when using unified memory (as every access to a new memory page
triggers a page fault), the performance of unified memory is also significantly
worse in our Numba benchmarks.

5.3 Work Distribution Using Atomic Operations

In order to use the new possibilities for work-sharing between several process
units (PU), we transferred a benchmark from the Chai Benchmark Suite [6] to
Numba. The Chai benchmarks are particularly suitable for computations based
on the division of work in heterogeneous systems.

We selected the RSCD benchmark as an example. It calculates the RANSAC
algorithm [5], which is an iterative method for estimating mathematical models
on the basis of incorrect measured values. The benchmark distributes the work
between PUs by dividing the input data. We implemented two the variants of
the benchmark in Python/Numba:

– rscd d. Uses discrete memory and explicit data transfer. The partitioning of
the input data is carried out static, according to a specified CPU-to-GPU
ratio α.

– rscd u. All PUs use the same memory for input and output, using manged
memory. The workload is distributed dynamically, using atomic operations.

The use of unified memory the elimination of initial data partitioning, mul-
tiple keeping of variables and the final merging of results reduces the code com-
plexity. The code of the variant rscd u is significantly simpler than the variant
rscd d. We increased the size of the problem from the original vector by about
factor 10 to generate more computational effort. Figure 6 shows the results. The
problem with the Chai benchmark is that it was developed primarily for embed-
ded systems. On our high performance GPUs, splitting the work between GPU
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and host always leads to a worse result than if the calculation is done on the
GPU only (this is also true for the C-CUDA version of the benchmark). We have
used a small alpha of 0.01 for the static distribution. Even with this distribution,
in which the CPUs only do 1% of the work, the performance is worse than when
the job is only run on the GPU. This is similar to the distribution achieved when
using dynamic distribution.

Fig. 6. Results of the Chai benchmark

The benchmark benefits in most configurations clearly from the use of unified
memory. Using only GPU the runtime of variant rscd u is 31% lower than that
of the variant rscd d. One of the reasons for this is certainly also that the
problem size of the Chai benchmark is comparatively small, and many of the
effects explained in the previous chapter play a role here. However, the use of
atomic operation reduces the number of kernel invocations and thus the Python
interpreter overhead.

The runtime of the unified memory benchmark increases, if more CPUs are
used. One reason is CPython is not able to execute Python code in parallel
in several threads simultaneously. The Global Interpreter Lock (GIL) ensures
that only one thread of Python code is executed at a time. All other threads
can execute only external non-Python code at the same time. As a result, the
overhead of calling a JIT-compiled Numba function for the CPU threads are
summed up, since the GIL is not unlocked until the JIT compiled machine code
is called up. This requires further optimazation in future work.

6 Conclusion

In this work we have implemented and evaluated the support of unified memory
in Numba. Unlike the use of C-CUDA, there are cases where unified memory can
help to improve performance by reducing the number of function calls and thus
the overhead of the Python interpreter. However, this is only true for small prob-
lem sizes and if many context switches between GPU and Python are required.
This is especially true for work sharing benchmarks between GPU and CPU,
where the use of atomic operations allow a simple work distribution between
CPU and GPU.

In a next step we want to evaluate the performance on embedded devices
like the Jetson series. Although there is less support for unified memory here,
we believe that they benefit even more from unified memory and the reduced
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overhead. We also want to implement more features in Numba to improve the
use of GPU memory, like the memory hints.
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Workshop Description

ParaMo is a forum for researchers working on programming models, networking,
resource management, and runtime to solve the problems on parallel computing in
high-performance cloud. The notion of cloud computing has changed the way we
utilize computing resources. Since High-Performance Computing (HPC) has long
suffered from under- or over-utilization of resources, many HPC researchers are trying
to adapt HPC applications to the cloud environment. With proper adaptation, HPC
applications are able to enhance their resource utilization ratio and scalability by using
virtualized and on-demand resources in clouds. When we discuss HPC in clouds, we
should discuss the parallel programming models as well. Various parallel programming
models and their frameworks (e.g., MPI, OpenMP, OpenCL, CUDA, and MapReduce)
have been proposed for parallel computing. For example, the MapReduce program-
ming model has been used for various big data processing applications since it helps to
reduce the complexity of problem parallelization such as decomposition, communi-
cation, and scheduling. However, a parallel programming model should be carefully
selected for HPC applications to achieve high performance and efficient resource usage
because their target hardware architectures (e.g., many-core, GPU, InfiniBand, etc.) are
different as well as the abstraction levels. For example, MapReduce may not be a
suitable choice of parallel programming model for a large-scale graph data processing
problem. In addition, since traditional parallel programming models, such as MPI, are
implemented for a single-tenant cluster environment, applying these models to HPC
applications in the cloud is challenging in terms of resource management.

The second International Workshop on Parallel Computing Models in High-
Performance Cloud (ParaMo 2020) was held as a virtual event in Warsaw, Poland. The
workshop was organized in conjunction with the Euro-Par annual international con-
ference. The format of the workshop was the technical presentation of research papers.
Around twenty people attended the online sessions.

This year, we received ten articles for review, from European and Asian countries.
After a thorough peer-reviewing process, we selected five articles for presentation at
the workshop (50% acceptance ratio). The review process focused on the quality of the
papers, their innovative ideas, and the soundness of the presentation.

We would like to thank the ParaMo Advisory Committee, the Program Committee,
and the sub-reviewers, who made the workshop possible. We would also like to thank
Euro-Par for hosting our community, and the Euro-Par workshop chairs, Prof. Bartosz
Baliś and Prof. Dora Blanco Heras, for their help and support.
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Abstract. Cloud resources are more often used for large scale comput-
ing and data processing. However, the usage of the cloud is different than
traditional High-Performance Computing (HPC) systems and both algo-
rithms and codes have to be adjusted. This work is often time-consuming
and performance is not guaranteed. To address this problem we have
developed the PCJ library (Parallel Computing in Java), a novel tool for
scalable high-performance computing and big data processing in Java. In
this paper, we present a performance evaluation of parallel applications
implemented in Java using the PCJ library. The performance evaluation
is based on the examples of highly scalable applications that run on the
traditional HPC system and Amazon AWS Cloud. For the cloud, we have
used Intel x86 and ARM processors running Java codes without changing
any line of the program code and without the need for time-consuming
recompilation. Presented applications have been parallelized using the
PGAS programming model and its realization in the PCJ library. Our
results prove that the PCJ library, due to its performance and ability to
create simple portable code, has great promise to be successful for the
parallelization of various applications and run them on the cloud with a
similar performance as for HPC systems.

Keywords: Cloud computing · Parallel computing · Performance
evaluation · Java · PCJ · HPC · Cloud

1 Introduction

Cloud computing, despite its quite long presence and stable position on the mar-
ket differs from High Performance Computing (HPC). While both target large
scale workloads with scalability being the main factor, this target is achieved
differently.
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HPC is concerned with the vertical scalability. Typical workflow may be
conceived as a single application processing extremely large datasets in paral-
lel, with data being shared by the compute nodes. Therefore network perfor-
mance becomes a limiting factor, with advancements in the networking tech-
nology being crucial for the successful parallelization of workloads [38]. Cloud
computing can be connected with horizontal scalability. Here a problem can be
effortlessly divided into a number of independent sub-problems, each susceptible
to being solved in a self-contained manner. Multiple instances of a given appli-
cation run in concert, with their number being dynamically adjusted to account
for the current system’s load [38].

HPC and cloud computing, therefore, try to achieve a different type of scal-
ability. To achieve their aim, both techniques use their types of optimized hard-
ware. The feasibility of choosing one or the other depends on the particular
application’s requirements. However, there is increasing interest in finding solu-
tions that bridge HPC and cloud computing. New solutions have to be open
to new programming languages utilized, inter alia, by Big Data and Artificial
Intelligence communities as well. To address this problem, we have focused on
the usability of Java for HPC applications. Usage of well-established industrial
language opens the field for easy integration of both workload types. The PCJ
library (Parallel Computing in Java) [25] fully complies with core Java standards,
therefore, the programmer does not have to use additional libraries, which are
not part of the standard Java distribution. Thus user is free from the burden
of installing (properly versioned) dependencies, as the library is a single self-
contained jar file, which can be easily dropped into the classpath.

In the previous works, we have shown that the PCJ library allows for the easy
and feasible development of computational applications as well as Big Data and
AI processing running on supercomputers or clusters. The performance compar-
ison with the C/MPI based codes has been presented in previous papers [22,26].
The extensive comparison with Java-based solutions including APGAS (Java
implementation of X10 language) has been also performed [27,31].

In this paper, we contribute by focusing on the performance of selected appli-
cations run on the Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
using both Intel and ARM architectures. The ultimate aim is to show the feasibil-
ity of using Java and the PCJ library for the development of parallel applications
run on the cloud. The results have been compared to the state of the art HPC
system, namely Cray XC40 equipped with the Intel processors.

Intel architecture is available at AWS since the beginning, the ARM archi-
tecture has been added at the end of 2018 [2]. In this case dedicated proces-
sors designed for AWS are used, called AWS Graviton, that are modified ARM
Cortex-A72 processor [42]. AWS continues to develop its own ARM proces-
sors and recently announced AWS Graviton2 processors to be available in new
instance types [3].
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2 Related Work

The interest in joining the traditional HPC computing and exploiting the poten-
tial of the cloud has already been growing for some time. It has been noted that
while the HPC paradigm offers great computing capabilities, the cloud offers
elasticity and dynamic allocation of resources on a scale unseen before. There is
a growing influx of competent engineers that specialize in DevOps and are well-
acquainted with microservices, virtualization, and the contenerization of software
(with tools like Kubernetes or Docker). On the other hand, traditional HPC was
concerned mainly with languages like C or Fortran, which are now decreasing
in popularity. Moreover, the divergence between traditional HPC workloads and
emerging new ones could already have been observed in the case of Big Data
processing or Artificial Intelligence applications. They are implemented in lan-
guages like Java or Scala which, up to now, were out of interest of the HPC
community.

MPI, which is the basic parallelization library, is also criticized because of
the complicated API and difficulty in programming. Users are looking for easy
to learn, yet feasible and scalable tools more aligned with popular programming
languages such as Java or Python. They would like to develop applications using
workstations or laptops and then easily move them to large systems including
HPC-based peta- and exascale ones or to deploy them on a cloud.

Cloud has been already recognized as a way for provisioning tailored-to-fit
computational resources for medium-sized HPC workloads [15]. It was found
that it is especially well-suited for communication-intensive applications (up to
low processor count) and embarrassingly parallel ones (up to high processor
count) [14].

PCJ library deviates from the standard scientific message-passing paradigm
and instead opts to use the PGAS model. The model aims to present the pro-
grammer with an abstraction of unified memory view, even when in fact it is dis-
tributed among the computer nodes. The PGAS model is supported by libraries
such as SHMEM [10], or Global Arrays [20] as well as by specialized languages or
dialects, such as UPC [6] (C-based), Fortran [33], X10 [9] or Chapel [8]. PGAS
systems differ in the way the global namespace is organized.

The perspective language is, amongst others, Java due to its popularity and
portability. Java has good support of threads since the beginning. The paral-
lelization tools available for Java include threads and Java Concurrency which
have been introduced in Java SE 5 and improved in Java SE 6 [29]. There are also
solutions based on various implementations of the MPI library [7,40], distributed
Java Virtual Machine [4] and solutions based on Remote Method Invocation
(RMI) [19]. We should also mention solutions motivated by the PGAS approach
represented by Titanium [41]. Titanium defines new language constructs and has
to use a dedicated compiler which makes it difficult to follow recent changes in
Java language.

The APGAS library for Java [37] adds asynchronism to the PGAS model by
adopting a task-based approach. The parallelization and distribution concepts
are the same as those of IBM’s parallel language X10. Program execution starts
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with a single task. Later, any task can spawn any number of child tasks dynam-
ically synchronously or asynchronously. In either case, the programmer must
specify an execution place for each task. Inside each place, tasks are automat-
ically scheduled to workers. The place-internal scheduler is implemented with
Java’s Fork/Join-Pool [30].

Yet another solution for writing high-performance HPC applications, that
incorporates the PGAS programming paradigm is PCJ library described in next
section.

3 The PCJ Library

PCJ [1,25] is an open-source Java library that does not require any language
extensions or special compiler. The user has to download the single jar file (or
use build automation tool with dependency resolvers like Maven or Gradle) on
any system with Java installed.

The PCJ library is designed to support the application running on the multi-
core, multinode systems. The programmers are provided with the PCJ class with
a set of methods to implement necessary parallel constructs. All technical details
like threads administration, communication, and network programming are hid-
den from the programmers. The intranode communication is implemented using
the Java Concurrency mechanism. The object sent from one thread to another
has to be serialized, and then deserialized on the other thread and stored in mem-
ory. This way of cloning data is safe, as the data is deeply copied – the other
thread has its copy of data and can use it independently. The communication
between nodes uses standard network communication with sockets. The network
communication is performed using Java New IO classes (i.e. java.nio.*). The
details of the algorithms used to implement PCJ communication are described
in the [25].

The PCJ library provides necessary tools for PGAS programming including
threads numbering, data transfer and threads synchronization. The communi-
cation is one-sided and asynchronous which makes programming easy and less
error-prone. With a relatively simple set of methods, programmers can easily
implement data and work partitioning best suited to the problem they are solv-
ing. Instead of modifying the problem to fit the given programming model, the
user optimally implements his algorithm using the PCJ library as a tool to
expose parallelism.

The PCJ library has won the HPC Challenge award in 2014 and has already
been used for the parallelization of multiple applications. A good example is a
communication-intensive graph search from the Graph500 test suite. The PCJ
implementation scales well and outperforms Hadoop implementation by the fac-
tor of 100 [28,34]. PCJ library was also used to develop code for the evolution-
ary algorithm which has been used to find a minimum of a simple function as
defined in the CEC’14 Benchmark Suite [17]. Recent examples of PCJ usage
include parallelization of the sequence alignment [23,24]. PCJ library allowed
for the easy implementation of the dynamic load balancing for multiple NCBI-
BLAST instances spanned over multiple nodes. The obtained performance was
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at least 2 times higher than for the implementations based on the static work
distribution. Another example that uses the PCJ library is an application for
calculating the parameters of C. Elegans connectome model [13,32] that uses
differential evolution algorithm.

4 Experimental Setup

The cloud used is the Amazon AWS EC2. We have used the instances in the
Europe (Frankfurt) region (eu-central-1 ).

We have used t2.xlarge instances equipped with Intel(R) Xeon(R) CPU E5-
2686 v4 processors (2.3 GHz). Each instance consists of 4 vCPUs, 16 GB RAM.
The network performance is described as moderate, what translates into about
1 Gbps network bandwidth. The instances’ operating system is Amazon Linux 2
AMI 2.0.20200207.1 x86 64 HVM gp2 with additionally installed OpenJDK Run-
time Environment Corretto-11.0.6.10.1 implementation of JVM.

Due to the increasing popularity of ARM processors, we have also used
a1.xlarge instances equipped with AWS Graviton Processors (2.3 GHz) featuring
64-bit ARM Neoverse cores designed by AWS and optimized for performance and
cost. Each instance consists of 4 vCPUs, 8 GB RAM with EBS disk storage. The
network bandwidth is up to 10 Gbps. The instances’ operating system is Ama-
zon Linux 2 LTS Arm64 AMI 2.0.20200207.1 arm64 HVM gp2 with OpenJDK
Runtime Environment Corretto-11.0.6.10.1 implementation of JVM.

The next two AWS EC2 instance types are: a1.4xlarge and a1.metal. Both
instances are almost identical to a1.xlarge instance types, but each instance
consists of 16 vCPUs (or 16 CPUs in bare metal type, where the physical cores
are directly used) and 32 GB RAM. All other setups have been the same as for
a1.xlarge instances.

For the reference, we have used the performance results obtained using a typ-
ical HPC system such as the Cray XC40 system at ICM (University of Warsaw,
Poland). The computing nodes are homogenous. Each node is equipped with
the two 12-core Intel Xeon E5-2690 v3 processors (2.60 GHz) with hyperthread-
ing available (2 threads per core) and 128 GB RAM. Cray Aries interconnect
is used for communication. The operating system on nodes of Cray XC40 was
SUSE Linux Enterprise Server 12. The Oracle Java 1.8.0 51 implementation of
Java Virtual Machine was used. The choice of Cray XC40 systems is motivated
by the recent announcement of the first exascale systems which will be a con-
tinuation of such architecture [39].

All systems use the PCJ library in version 5.0.8 for parallel execution. The
source code was compiled into bytecode on the local machine, and the compiled
version was transferred to computing systems. The applications were run on the
systems without any modification.

5 Performance Results

This section describes three applications with performance evaluation made on
different hardware systems. Selected applications have various execution pro-
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file: CPU bound (DES decryption, Subsect. 5.1), communication bound (FFT,
Subsect. 5.2) and Big Data type (WordCount, Subsect. 5.3). Such selection allows
us to test different aspects of application performance including computation,
communication, and I/O.

5.1 DES Decryption

Hidden text decryption is an example of the CPU intensive, trivially parallel
problem which can be solved in different ways. The DES encryption can be
decrypted using a brute force algorithm, therefore we have used implementation
based on the analysis of all possible encryption keys. In our example, the hid-
den text is decoded with usage of the various keys using the DES algorithm.
If the decoded text contains a given pattern, the text is treated as properly
decoded. The keys are generated to cover all possible combinations of a given
key length and the workload is divided equally between available processors. For
the encryption key of length n there are 2n possible combinations. Usually, the
search is stopped while matching key is found, but for our performance tests, we
have tested a whole range of keys.

Fig. 1. The performance of the parallel decryption run on the Cray XC40 and AWS
Cloud (x86 and ARM processors). The PCJ and thread based implementations are
presented. The 26-bit key was used.

The decryption algorithm has been implemented in Java using different par-
allelization tools and methods. In all cases SealedObject from javax.crypto pack-
age has been used to store keys and to perform decryption of the hidden text.

Different implementations have been tested:

SealedDES – Java threads implementation. The work is distributed among
vanilla Java threads and each thread is processing a subset of keys. At each
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loop iteration new SealedObject is created. This implementation is limited
to the single node (i.e. single JVM). Full source code is available on GitHub
at [5].

PCJ SealedDES – PCJ implementation developed based on the Java threads
implementation. The work is distributed among PCJ threads in the same
manner as for the SealedDES. Full source code is available on GitHub at [16].

PCJ DesDecryptor – modified PCJ implementation. The single SealedObject

is created for each PCJ thread and is reused for all iterations of the main
loop. Full source code is available on GitHub at [21].

The performance results are presented in Fig. 1. The limited scalability
of Java threads implementation is visible. The PCJ SealedDES implementa-
tion scales much better, up to thousands of cores, depending on the key size.
The improved PCJ implementation removes multiple SealedObject creation per-
formed in each iteration of the main loop. This significantly reduces memory
operations as well as Garbage Collector invocations. As a result, code performs
about 3.5 times faster and scales to the larger number of cores.

The best performing implementation (i.a. PCJ DesDecryptor) has been run
on the AWS cloud. Scalability is very good, but, as presented in Fig. 1, overall
performance for the AWS cloud is lower than for Cray XC40. The difference is
higher for a1 instances which reflects performance difference between x86 and
ARM processors.

5.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is used as a benchmark for communication-
intensive parallel algorithms. The most widely used implementation is based
on the algorithm published by Takahashi and Kanada [36]. The PCJ imple-
mentation is based on the Coarray Fortran 2.0 [18]. It uses a radix 2 binary
exchange algorithm that aims to reduce interprocess communication: firstly, a
local FFT calculation is performed based on the bit-reversing permutation of
input data; after this step all threads perform data transposition from block to
cyclic layout, thus allowing for subsequent local FFT computations; finally, a
reverse transposition restores data to is original block layout [18]. The commu-
nication is localized in the all-to-all routine that is used for a global conversion
of data layout, from block to cyclic and vice verse. The implementation details
are described in [26]. Full source code is available on GitHub at [11].

The PCJ implementation of FFT has been run on a Cray XC40 system
and AWS cloud using a different number of threads. Because of the exchange
algorithm, the number of threads was a power of 2 which, in the case of Cray
XC40, resulted in partial utilization of the computing nodes. In the Fig. 2 we
have presented application speed (i.e. number of floating-point operations per
second) which is a standard performance measure used for FFT. The FFT code
runs faster on Cray XC40 and scales up to several PCJ threads. The scalability is
better for larger arrays as it was presented in the [26]. The AWS cloud shows also
good scalability. The results obtained with 16 threads running on each processor
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are similar for ARM (Graviton) and x86 processors. For a smaller number of
threads (4 per processor) the code runs faster on x86 architecture. However,
with the increase of the number of nodes, the performance becomes similar for
both ARM and x86 processors. One should note, that performance of the AWS
cloud (x86 processors) and Cray XC40 are almost the same for the small number
of threads (up to 4). In this case, code is running on a single node and is not
using interconnect. This reflects the nature of the FFT application which is
communication bound and therefore performance is limited by the bandwidth
of communication channel rather than by CPU speed. Cray XC40 is equipped
with faster interconnect which results in better performance of communication
bound applications.

Fig. 2. The performance of the parallel FFT run on Cray XC40 and Amazon EC2
cloud for both x86 and arm64 (AWS Graviton) processors. The length of the array
used for FFT is 220. The performance is plotted in GFlops (higher value means better
performance).

5.3 WordCount

WordCount is traditionally used to showcase the basics of the map-reduce pro-
gramming paradigm. It works by reading an input file line-by-line and counting
individual word occurrences (map phase). The reduction is performed by sum-
ming the partial results calculated by worker threads.

In the PCJ code, each line of input text is divided into words and each thread
saves partial results to its shareable global variable. For simplicity, the code does
not perform any further preprocessing (like stemming or lemmatization). After
this phase, a reduction occurs with thread 0 as root. No overlap between the
two phases is facilitated. The results presented hereinafter use a simple serial
reduction scheme. For better results, a hypercube-based reduction can be used,
as presented in our other works [28]. Full source code and sample input data are
available on GitHub at [12].
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Fig. 3. The performance (execution time) of the WordCount benchmark run on AWS
cloud and Cray XC40 in the weak scalability mode.

For the performance tests, we have used ISO 8859-1 encoded text of the orig-
inal French version of Georges de Scudéry’s Artamène ou le Grand Cyrus [35].
The tests were performed in a weak scalability regime resulting in the processing
10 MB file by each thread.

Results presented in Fig. 3 show similar scalability for the code run on both
Intel and ARM processors. Once more, the code executed on the Cray XC40
runs 2 times faster compared to the AWS cloud. Good performance of ARM
instances compare to the x86 comes mainly form EBS disk storage.

6 Conclusions

Results presented here show the feasibility of Java language to implement parallel
applications running on the AWS cloud. The performance results, compare to
state of the art HPC system (Cray XC40) are good, especially that code used
is, due to the portability of Java, exactly the same. The PGAS programming
model implemented by PCJ library allowed for easy implementation of a various
parallel schema to run both on the HPC and cloud resources.

This was possible due to the PCJ library which brings parallel capabilities
of the PGAS programming model to Java. The PGAS model, available mainly
for C and Fortran, has been successfully used to implement many HPC appli-
cations, but it has not been widely used for Java. As presented in the paper,
the PCJ library fills this gap and allows for easy development of scalable par-
allel applications for both Cloud and HPC architectures without the need for
recompilation.

Moreover, the presented performance of the ARM processors, shows that
they become a feasible alternative to x86 architecture.



222 M. Nowicki et al.

Acknowledgment. This research was carried out with the support of the Interdisci-
plinary Centre for Mathematical and Computational Modelling (ICM) the University
of Warsaw providing computational resources under grants no GB65-15, GA69-19.
The authors would like to thank CHIST-ERA consortium for financial support under
HPDCJ project.

References

1. PCJ homepage. http://pcj.icm.edu.pl. Accessed 12 Feb 2020
2. Barr, J.: New – EC2 Instances (A1) Powered by Arm-Based AWS Graviton Pro-

cessors. AWS News Blog, 26 November 2018. https://aws.amazon.com/blogs/aws/
new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/. Accessed
18 Feb 2020

3. Barr, J.: Coming Soon – Graviton2-Powered General Purpose, Compute-
Optimized and Memory-Optimized EC2 Instances. AWS News Blog, 3 Decem-
ber 2019. https://aws.amazon.com/blogs/aws/coming-soon-graviton2-powered-
general-purpose-compute-optimized-memory-optimized-ec2-instances/. Accessed
18 Feb 2020

4. Bonér, J., Kuleshov, E.: Clustering the Java virtual machine using aspect-oriented
programming. In: AOSD 2007 Proceedings of the 6th International Conference on
Aspect-Oriented Software Development (2007)

5. Carey, N.: Parallel DES Key Cracker Benchmark: SealedDES implementation -
source code. https://github.com/ncarey/Parallel-DES-Key-Cracker-Benchmark/
blob/a760f6412495eb186a6dea53fa0aab1ed3546732/source/SealedDES.java.
Accessed 12 Feb 2020

6. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.:
Introduction to UPC and language specification. Technical Report CCS-TR-99-
157, IDA Center for Computing Sciences (1999)

7. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like message
passing for Java. Concurrency: Pract. Experience 12(11), 1019–1038 (2000)

8. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

9. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: ACM SIGPLAN Notices, vol. 40, pp. 519–538. ACM (2005)

10. Feind, K.: Shared memory access (SHMEM) routines. Cray Research (1995)
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Abstract. With the advent of Massive Online Open Courses (MOOCs),
the data scale of student learning behavior has significantly increased. In
order to analyze these datasets efficiently and present on-the-fly intelli-
gent tutoring to online learners, it is necessary to improve existing learn-
ing analytics tools in a parallel and automatic way. We introduce Auto-
matic Temporal Cognitive (ATC) model to describe temporal progress
of online learners and evaluate their mastery of course knowledge. As
a complex dynamic Bayesian network model, it often causes high com-
putational overhead of training the ATC model via Probabilistic Pro-
gramming tools. The time-consuming Monte Carlo sampling adopted
by the mainstream implementations renders parameter fitting for the
model a slow execution process. To address the issue, this paper pro-
poses to transform the ATC model into the form of nonlinear Kalman
filter and presents a new parallel ATC tool based on the Spark framework
with the method of Unscented Kalman Filter (UKF). This tool improves
the ATC model by using a parallel UKF method with the capability of
automatically estimating the parameters in the whole sequential process.
Experimental results demonstrate that this tool can achieve the fast exe-
cution speed and greatly improve the robustness of training parameters
on different sizes of real educational data sets.

Keywords: Learning analytic · Nonlinear state-space model · Kalman
filter · Spark framework · Probabilistic programming

1 Introduction

With the development of Internet, online education has greatly increased in
both scale and quality. Therefore, more and more students take part in MOOCs
courses, which leads to large scale learning behavior data. Learning analytics
tools are widely used to estimate the students’ knowledge state through mining
their learning behavior data in online educational systems. There are plenty of
tools for learning analytics such as Cognitive Diagnosis Model [1,2] and Knowl-
edge Tracing Model [3]. Among them, Automatic Temporal Cognitive Model
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(ATC) [4] can accurately trace a student’s latent knowledge state during his
skill acquisition process. Based on the ATC model, developers can build intelli-
gent tutoring services to provide students instant feedbacks or recommendations
for their study, and generate assessment reports daily to enable class instructors
to quickly evaluate study process. Given the significant increase in the scale of
students and dynamics of in-class enrollment, it is important to design an effi-
cient and robust ATC-based intelligent tutoring algorithm for online education
systems.

ATC model is a unified and integrated framework that can automatically
discover a multiple-dimensional cognitive model and formulate a dynamic learn-
ing process over longitudinal student data. This framework enables us to trace
the nonlinear dynamic change of multi-dimensional skills including skill improve-
ment and forgetting during a student’s learning process. Moreover, based on it,
we can automatically build the cognitive model through student performance
data to describe the latent skill vector (Q-matrix [5]) for educational content.

Currently, there are two main problems regarding the ATC parameter tuning
and execution efficiency. The first one is how to configure the parameters with
their proper probability distribution. Generally, the training result of parameters
may have some noise which is probably caused by slip and guessing during the
assessment-taking process of students. Because the ATC is essentially a dynamic
Bayesian network, it is necessary to adopt Probabilistic Programming [6,7] to
infer its parameters. The second problem is how to improve the execution effi-
ciency. The increase in the amount of data often results in longer fitting time for
the ATC model. When the data scale reaches tens of thousands of students, the
training process can last for several hours or even days. In the field of learning
analytics, there are some tools available for speeding up the training process
of cognitive learner models, such as Parallelizing Bayesian Knowledge Tracing
Tool [8]. Unfortunately, none of them can be applied to the ATC model because
their approaches are constrained in the linear state-space framework of Hidden
Markov Process, which cannot model nonlinear dynamics in dynamic cognitive
skills. As a result, this computation problem for the ATC model hinders the on-
the-fly learning analytics in online education platforms that often must handle
many learning behavior event records on daily basis.

In this paper, we introduce a Kalman-Filter-based Automatic Parallel
(KFAP) tool for parameter estimation of the ATC model. This new tool regards
the ATC model as a nonlinear random process and thus uses Singular Value
Decomposition-Unscented Kalman Filter (SVD-UKF) to estimate its parame-
ters. Based on the Spark framework, KFAP parallelizes the execution of SVD-
UKF computation. The major contributions of KFAP tool in our paper include:
(1) Improvement in speed and stability: Using Unscented Kalman Filter to fit
parameters of dynamic Bayesian network instead of MCMC (Markov Chain
Monte Carlo) sampling, which makes the EM (Expectation Maximization) algo-
rithm applicable. Thanks to it, ATC model has a huge acceleration.
(2) Improvement in scale of data: Parallelizing the implementation of SVD-UKF
for ATC based on the Spark framework, which makes big data analysis possible.



Parallelizing Automatic Temporal Cognitive Tool 227

2 Related Work

2.1 Automatic Temporal Cognitive Model

Automatic Temporal Cognitive Model (ATC) [4] is a new cognitive learner model
by integrating essential psychometric components of Cognitive Diagnosis Model
(CDM) and Knowledge Tracing (KT) Model.

CDM is a kind of cognitive diagnosis techniques that aims to predict student
performance by discovering student states from the response of their exercises. It
contains Item Response Theory (IRT) [9], Deterministic Inputs, Noisy-and gate
model, and so on. IRT describes the basic relation between the probability that a
student can correctly answer an exercise and his mastery of relevant knowledge.
It provides a logistic function to model the probability of getting a correct answer
using the parameters including proficiency, difficulty, and discrimination, which
is defined as formula:

psq = f (αq (θs − βq)) (1)

where αq means the question discrimination, βq is the question difficulty, θs
is the student proficiency and f denotes the sigmoidal function mapping the
calculation result of the student skill and question parameters to 0 and 1.

KT is proposed by AT Corbett and JR Anderson [3]. It detects an individ-
ualized sequence of exercises to the student based on the probability estimates.
Based on this approach, they introduced Bayesian Knowledge Tracing (BKT)
using the hidden Markov chain. The classic BKT framework can only describe
temporal learning process centered around single-dimensional knowledge con-
cepts.

To overcome the limitation of CDM and BKT, we propose ATC model as
a general dynamic Bayesian network in [4]. ATC is a unified and integrated
framework to automatically discover a multiple-dimensional cognitive model
and formulate a student model over longitudinal student data. This framework
enables us to trace the dynamic change of multi-dimensional skills including skill
improvement and forgetting for the student learning process. Moreover, based
on the framework, we can automatically build the cognitive model through stu-
dent performance data to describe the latent skill vector for educational content.
Although the complexity of the ATC model ensures better performance in ana-
lyzing student learning process, it brings a new challenge in the aspect of model
training. The nonlinearity in the ATC model makes it impossible to adopt Expec-
tant Maximization in parameter estimation in the same way as Hidden Markov
Model based BKT. Instead, it must rely upon the slow MCMC sampling of prob-
abilistic programming for dynamic Bayesian network. As a result, Stan [10] is
used to train the ATC model by sampling different combination of parameters
and selecting the best optimal result.

2.2 Parallel Algorithm in Model Optimization

Expectation-Maximization (EM) algorithm is an iterative algorithm used for
maximum likelihood estimation containing hidden variables. Many parallel algo-
rithms for EM computation have been proposed, such as a generic parallel
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implementation of the EM algorithm for computer vision in parallel distributed
memory environments [11] and the fast parallel implementation of EM on
NVIDIA GPUs using CUDA [12]. Based on the work of Pedro, Cui [8] applied
the parallel algorithm in three distributed frameworks including Graph Lab [13],
Piccolo and Spark [14]. Hunter implemented a large-scale online Expectation
Maximization with Spark Streaming for low-latency applications [15,16]. Davier
et.al introduced the parallel EM algorithm without improvement for Generalized
Latent Variable Models and evaluated the overall gain in different CPU environ-
ments [17]. In the field of Probabilistic Programming Language (PPL), Masegosa
et al. implemented a toolbox for scalable probabilistic machine learning with a
special focus on massive streaming data [18]. Within PPL, most research efforts
mainly focus on the majorization design during the sampling process. However,
the way of sampling has an inborn property of instability that its performance
heavily depends on the initial point. There is no clear standard to guarantee the
convergence of sampling results delivered by the algorithms.

Among knowledge-related models, DJ Cook, LB Holder, G Galal, R Maglothin
proposed an algorithm in parallel graph-based knowledge discovery [19]. Robert
J. Hilderman suggested the method of parallel knowledge discovery using domain
generalization graphs [20]. Unfortunately, to the best of our knowledge, none of the
above publications are suitable for ATC. These researchers didn’t present good
solution to the problem of optimizing parameters in ATC, which is a nonlinear
probabilistic programming model, with large number of data sets.

2.3 Kalman Filter and Its Extension for Nonlinear Dynamic
Systems

Kalman Filter (KF) is a general algorithm for state-space models, which is able
to infer latent variables by using a series of observations and estimating a joint
probability distribution over the variables for each timeframe. KF can cope with
the circumstance when the observation sequence contains statistical noises and
other inaccuracies. The typical KF assumes the Gaussian distribution and lin-
ear system in target models. When the transmission function becomes nonlin-
ear, modified KF solutions such as Extended Kalman Filter (EKF), Unscented
Kalman Filter (UKF), Particle Filter (PF) and Deep KF method [21], have to
be applied for nonlinear transformation.

UKFuses a series of samples to approximate the probability density function. It
takes several key points to express one state and gives a weight to every point. Dur-
ing the calculation, it transforms these key points and determines the new distribu-
tion with them. UKF has a stability issue where a covariance matrix is non-positive
definite matrix. Influenced by conditions and model disturbances, when the vari-
ance matrix loses the property of positive definition, the Cholesky decomposition
algorithm in the traditional UT transform cannot sample the Sigma point, result-
ing in program interruption and poor stability. To solve this problem, a method
named Singular Value Decomposition (SVD) can be integrated into the UKF as
SVD-UKF [22]. The new algorithm ensures the positive property of the variance
matrix via SVD and deliver more robust results.
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3 Kalman-Filter-Based Automatic Parallel Tool for ATC
Model

The ATC model is a nonlinear state-space model that consists of two main parts:
skill embedding for item response and temporal change in skill level.

(1) Skill embedding for item response: Given the ability of student s
and the difficulty of an exercise i, the model can decide the probability ps,i that
present the probability of s has a correct response on i. We combine latent skill
embedding for personalized lesson sequence recommendation [23] and IRT [24]
to construct its item response function as formula (2, 3):

qs,i =
−→
θ s · −→a i

‖−→a i‖ − ‖−→a i‖ (2)

ps,i = Pr
(
Rs,i = 1 | −→

θ s,
−→a i

)
= φ (qs,i) (3)

φ is the logistic function convert the possibility between 0 and 1. θs is the vector
which represents the ability of each skill of student s. Vector ai represents the
required skill level of exercise i , Rs,i is the result of the response of s on i.
(2) Temporal change in skill level: Given the ability θs,t of student s at
time t and the improvement li that the exercise i can offer, we can calculate
the ability θs,t+1) of student s at time t + 1, which can be expressed as formula
(4, 5):

θs,(t+1),n ∼ N
(
μs(t+1),n, σ2

)
(4)

μs(t+1),n = (θs,t,n + li,n ∗ φ (qs,i)) ∗ f(Δt) (5)

where θs,t,n means the able of the n−th skill in the dimension of θs,t. li,n means
the value of the n− th dimension of the vector li. The forget coefficient f(Δt) is
relevant to Δt where Δt is the interval between timestep t and timestep t + 1.
Because the transmission function (Eq. 4) represents a Wiener process, KF can
be used to estimate the parameters of the ATC model. In order to accelerate the
calculation of KF, many methods have been proposed, such as Parallelized sigma-
point KF [25] and decentralized structures for parallel KF [26]. However, due to
the fact that KF is a matrix-based operation, these methods mainly focus on the
acceleration of matrix optimization, which gives little benefit to the improvement
of the overall efficiency of model training. In our case, the improvement with pure
parallelization in the matrix operation is much less significant compared with
the effect of KF parallelization over the large scale of students.

Since the ATC model contains a non-linear transition function, UKF should
be applied to process the process of parameter estimation. We choose SVD-
UKF to avoid the non-positive definite matrix. Given the inherent independent
learning behavior of online students, we decide to build Kalman-Filter-based
Automatic Parallel (KFAP) tool containing the method SVD-UKF based on the
Spark framework. With the help of it, EM algorithm can be used instead of slow
MCMC sampling in STAN. The KFAP structure is illustrated as Fig. 1.
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Fig. 1. Sketch map of parallelizing method

The total training process in the KFAP tool is divided into four stages,
including sequence extraction, initialization and distribution of data, calculation
with SVD-UKF, collection of results and EM calculation. The original learning
sequence data comes from the online data collection system regularly. The orig-
inal sequence usually contains useless information and needs to be cleaned. The
detailed steps are shown as following:
Step1: Extract the answer sequence from the original sequence data. Then,
divide the data by student ID. In each student’s answer sequence, sort it by
chronological order. Finally, Step 1 provides plenty of answer sequences and
each sequence represents the time series data of answers of one student.
Step2: After getting the time series data, random values are assigned to the
initial capacity of learners and the coefficient of difficulty of assessments. Spark
can be used and answer sequences will be distributed to computational nodes.
Each node receives only a small part of sequence set. Thus, there is no need to
worry about how large the scale of online data is because they are divided into
little portion marked with learner.
Step3: With the initial capacities of learners and the coefficient of difficulty of
assessments, the model can use the recursion formula that depicts the transfor-
mation of the capacity of learner with his answer sequence. KF needs two parts
to calculate: the formula of transition and the formula of emission. After some
transformation of ATC, here comes the formula that is suitable for SVD-UKF:

θt = g (θt−1) + η, η ∼ N (0, Q) (6)

yt = h (θt) + ε, ε ∼ N (0, R) (7)

g (θt) = (θt + lt) ∗ ft (8)

h (θt) = Φ

(
θt · aT

i

‖ai‖ − ‖ai‖
)

(9)
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Among formula (6, 7, 8, 9), φ is logistic function. Vector θt ∈Rk represents
the ability of each skill of student s at the timestep t. Vector ai ∈Rk repre-
sents the required skill level of exercise i. The value yt is the predicted value at
the timestep t. The coefficient ft is the effect on forgetting of student s from
timestep t to timestep t + 1. The model uses SVD-UKF [22] in this step for the
nonlinearity of transition and the robust process. With its help, the model can
trace the transformation data of each learner during his whole learning process.
Finally, KFAP gives the cross-entropy value of each answer sequence.
Step4: After step3, this model accumulates all cross-entropy and regard this
sum as the loss function. With the help of this function, the Expectation Max-
imization Algorithm (EM), which was introduced by T.K. Moon [27] for more
than 20 years is applied. The final procedure is to estimate the model parameters
by maximizing the following objective function:

L(ω) = LogLikelihood =
∑
S

∑
Ls

log P (R | θ0,D,G,Q,R) (10)

4 Experiments

4.1 Datasets

The experiments run two real datasets to test KFAP. OLI Biology dataset1 was
collected from Open Learning Initiative online course of biology from 2012 to
2014 include 5186 learners and 4831 unique assessments, with different learning
modules such as Lipids, Meiosis, Proteins and so on. Our experiment datasets
take each module as an independent input. Students’ correct rates of responses
range from 70% to 95%. Tsinghua University Web Learning dataset is acquired
from Tsinghua University MOOC platform. It contains both global and univer-
sity open learning classes. There are many types of data, including classroom
lectures, classroom assessments, interaction with multimedia, and after-school
assessments. So far, a total of millions of pieces of learning behavior data have
been collected. In the experiment, its data has been divided into different courses.

4.2 Improvement During Fitting Process

In the experiment, the model can get the estimation of a student whether he or
she can give a correct response to certain assessment. In Fig. 2, one can observe
AUC2 and Log-Likelihood (loglike) at each iteration of gradient descent. Figure 2
shows that after about 10 times of iterations, the rising trend of the loglike curve
slows down. Then, the AUC curve keeps up with the loglike curve and stabilizes
at about 0.82, which represents a favorable performance of estimation.

1 https://pslcdatashop.web.cmu.edu/Project?id=115.
2 Area Under Curve: a value between 0 and 1 that measures the discriminative ability

of a binary classifier.

https://pslcdatashop.web.cmu.edu/Project?id=115
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Fig. 2. AUC and loglike performance dur-
ing the ATC parameter fitting process

Fig. 3. Comparison of the AUC perfor-
mance of KFAP and Stan Sampling

4.3 Execution Time and Robustness

Stan is a state-of-the-art tool for statistical modeling and high-performance sta-
tistical computation. Because of the stochastic nature of sampling, Stan is insta-
ble and its result has plenty of randomness. Application of Kalman Filter can
effectively reduce the execution time consumed during the period of optimizing.
Figure 3 compares the AUC performance between the sampling in Stan and
KFAP for ATC model training. In order to get AUC values during different
execution moments, we set the break points between several gradient descent
processes and export AUC values in KFAP. In the case of running Stan, we
repeat the experiments for multiple times with different iteration sampling dura-
tions. The increase in sampling time will extend execution time. With the testing
data, AUC acquired by KFAP quickly achieves a satisfactory performance and
becomes stable after 2–3 h. In contrast, Stan performs in a very unstable way
with the initial iterations. One can see that the AUC of Stan sampling ranges
from 0.1 to 0.7 during 10000–20000 s. With such a high uncertainty, it takes
much longer time for Stan to prepare and optimize its performance. In Zone I
of 3, before Stan has run sufficient rounds of sampling, its performance heavily
depends on the initial sampling point, which has more uncertainty than Zone
II. When the sampling points are accumulated in Zone II, AUC tends to reach
a better status than Zone I and generate a probability to express a rough esti-
mation of the optimal parameters. As a contrast, with the KF and gradient
descent, KFAP can quickly converge to the local optimal result since the first
few of iterations.

4.4 Acceleration with Spark Framework

Spark can distribute a big volume of operations to many executors. Figure 4
shows the variation tendency of execution time with increasing number of execu-
tors. In this experiment, a dataset (9k rows) of 445 students is chosen and execu-
tion time is sampled by 10 iterations during the fitting process. The curve shows
clearly that KFAP can significantly reduce the execution time with the increase
in the number of executors. Figure 5 displays the time consumption with dif-
ferent sizes of datasets (with 4k, 8k, 12k and 16k rows) in different number of
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executors (iteration time = 5). KFAP keeps achieving a good performance when
the scale of datasets become larger. As each executor can work more efficiently
with the increase in datasets, KFAP is suitable to be extended to large-scale
datasets.

Fig. 4. Execution time with different
clusters

Fig. 5. Execution time with different
datasets

Another comparison is made between the efficiency of the model training
running on a single machine and on a Spark framework. The single machine
contains a CPU of Intel E3-1246, with 8 GB allocated memory. The Spark cluster
has 10 machines, 71 cores (with 1 core of master), 372 GB memory (with 20 GB
of master). Because of sufficient memory in Spark framework, the algorithm can
design more intermediate variables in order to reduce the execution time. The
detailed parameters are shows in the Table 1:

Table 1. The specification of computing node of two methods

Method CPU Process speed Cores Processor Memory

Single machine E3-1246 v3 3.5 GHz 1 1 8 GB

Spark framework Spark with E3-1246 v3 3.5 GHz 71 71 372 GB

We trained the ATC model with the datasets both on the single machine
and parallel implementation with Spark. Figure 6 shows the improvement of
execution time with/without Spark boost. In fact, the model with the Spark
framework can utilize more CPU cores and larger memory, thus resulting in
significant improvement in terms of running speed especially with the large-scale
datasets.

Table 2 chooses 4 different modules (A: Mitosis, B: Carbohydrates, C: Meio-
sis, D: Lipids) from OLI Biology and shows the final result and its execution
time of KFAP, indicating that the KFAP tool can ensure the excellent AUC per-
formance for the ATC model. With the increase in the scale of learning datasets
increases, we can correspondingly add more computing cores in the Spark frame-
work to speed up the model training process.
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Fig. 6. Improvement of execution time with Spark

Table 2. Performance with different datasets

Dataset size N:student N:assessment Log-likelihood AUC Iteration Execution time(s)

8541 445 12 −3159.69 0.94 87 5933

18547 436 45 −7859.17 0.82 31 5316

2878 71 18 −1015.50 0.82 69 4523

2904 65 45 −1214.04 0.75 41 4256

5 Conclusion

In this paper, we propose a Kalman-Filter-based Automatic Parallel (KFAP) tool
for the ATC, which is implemented on the Spark framework and adopts Singular
Value Decomposition-Unscented Kalman Filter. The two major improvements
of KFAP includes: (1) Using Unscented Kalman Filter to substitute for Stan,
which makes the EM algorithm to fit parameters possible. (2) Paralleling imple-
mentation of SVD-Unscented Kalman Filter tool for the ATC model based on
the Spark framework. Experimental results confirm that our system achieves
performance improvements in both execution time and the robustness of the
model training process. Our future work includes generalization of the KFAP to
other nonlinear state-space models and investigation into deep Kalman filters.
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Abstract. Distributed heterogeneous computing systems escalate the
problem of choosing the appropriate programming model. Programming
models such as message passing are efficient but require low-level man-
agement of communications. Higher level of programming such as shared
memory are convenient for the application design but they usually have
performance issues. With the recent development of distributed heteroge-
neous systems and new protocols to access remote memories, there is an
opportunity for distributed shared memory systems to offer a satisfying
level of abstraction while not giving up on performance. In this paper a
video processing application is written using MPI, 0MQ and an in-house
software-distributed shared memory (S-DSM) backend and deployed over
a set of heterogeneous computing boards. Results show that 0MQ imple-
mentation is the most efficient but at the price of writing the application
with the targeted platform in mind. The S-DSM implementation runs
up to 2 times faster than the pure OpenMPI implementation and com-
petes with 0MQ when the data granularity is small.

Keywords: Heterogeneous computing · Distributed computing ·
Distributed shared memory · Message passing

1 Introduction

Heterogeneous systems are now prevalent in everyday technology including
embedded devices, autonomous vehicles, high-performance computing architec-
tures and cloud infrastructures. They offer the possibility to build a specific plat-
form for specific needs in terms of functionality, power processing and energy
consumption. However such architectures are complex to program because they
escalate the classical problem of hybrid computing in which each resource type
exhibits a specific programming interface. Some of these heterogeneous systems
are distributed, composed by a mix of heterogeneous computing nodes intercon-
nected by a network, without physical shared memory. For example, microservers
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are built upon a backplane that provides networking capabilities, power supply
and extension slots to host heterogeneous boards such as high-end processors,
low-power processors, many-core processors, GPU and FPGA. A common way of
programming such platforms is to rely on the message passing paradigm, using
popular libraries like MPI and ZeroMQ. With message passing the developer
has to manually manage shared data, keep track of their location and initiate
the transfers. Another possibility is to use computing frameworks, mainly based
on dataflow and workflow programming paradigms such as StarPU. Finally, it
is possible to deploy a software-distributed shared memory (S-DSM) that aggre-
gates remote physical memories into a global logical space. The system is in
charge of transparently managing shared data and is a step towards single sys-
tem image (SSI). Using S-DSM allows to conveniently design the application
as a regular Posix-like parallel application. S-DSM have been studied from the
late eighties with networks of workstations [12], clusters [1], computing grids
and clouds [8] and more recently with heterogeneous platforms [6,7]. However it
is a common understanding that S-DSM offers poor performances in compari-
son to message passing, because of the abstraction layer that comes with a price.
This explains why S-DSM has never really been used in HPC systems, except for
DSM implemented using cache-coherent hardware such as in the Tilera/Mellanox
Tile GX many-core processor and further developments in cache coherent inter-
connects. However these hardware DSM are static by design, usually limited
to processors or small homogeneous clusters with dedicated high-performance
networks and not prone to be deployed on distributed heterogeneous architec-
tures. Software-DSM are more portable than hardware DSM, they can cope with
dynamicity and reconfiguration of the platform and they offer a higher level of
abstraction for the application. A few work in the literature evaluate the per-
formance of using a S-DSM compared to message passing. In 1997, Scales and
Gharachorloo [17] provide some benchmarks between the Oracle 7.3 distributed
database running on 2 DEC AlphaServer 4100 SMP (4 processors) and the Ora-
cle database running on top of the Shasta S-DSM. Results show that using the
S-DSM is 2 to 4 times slower than the baseline version. In the late nineties, Bader
and Jaja [2] compare the CVM [10] S-DSM to MPICH over the DEC AlphaServer
2100 system, using up to 8 nodes. Results show that MPICH outperforms CVM
by a factor of 10. In the early 2000, Werstein et al. [19] evaluate the Tread-
Marks [1] DSM together with the PVM and MPI message passing frameworks
over a Beowulf cluster composed by 32 Intel Pentium III nodes. Results show that
the performance of DSM is poorer than PVM and MPI especially when scaling
up. However, using the Mandelbrot computing kernel the DSM competes with
PVM and MPI. In 2011, Dimakopoulos [18] compares data transfer overheads
between MPI and the MOME [8] and MOCHA [11] S-DSM over a 16-node Sun
Fire x4100 cluster. Results show that MPI is faster by a factor of 6 to 8 compared
to S-DSM. All these results instigate a cold reception whenever a Yet Another
S-DSM is submitted to the HPC community. Furthermore, S-DSM systems pre-
sented in the literature rarely compare the performance of applications running
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over the S-DSM with the same application running over a message passing frame-
work. With the recent development of high-performance networks, the specifica-
tion of new remote access protocols such as one-sided communications, RDMA,
RoCE, PGAS, OpenCAPI, CCIX, Gen-Z, CXL, there is a renewal of interest in
shared memory systems [5,13,16] to unify memory accesses between CPU, GPU,
general-purpose accelerators, FPGA and non-volatile memories. Unlike homoge-
neous computing clusters, such distributed heterogeneous systems require more
complex development and tight optimizations to obtain performances. With clas-
sical MP-based implementations this complexity is directly exposed to the user.
Today S-DSM can play a role not only by offering an abstraction layer, but also
by bringing optimization and smart decision for data management directly in
the runtime. In the Grappa [14] S-DSM proposed in 2015 the authors show that
porting over the S-DSM several computing frameworks such as MapReduce and
GraphLab can run up to 1.33 faster than the baseline implementations on a
128-node AMD Interlagos cluster using a Mellanox Infiniband interconnect. In
this momentum of renewal, the Argo [9] DSM proposes new coherence mecha-
nisms that allow to match or exceed MPI implementations of some SPLASH and
NAS benchmarks running onto a cluster of 128 AMD Opteron NUMA nodes.
Note that Argo is implemented on top of MPI to manage remote connections.
These are promising results, being the demonstration that a S-DSM can perform
better than other MP-based implementations. It also advocates for the use of
high-level programming models without giving up on performance. The main
contribution of this paper is to report on the ins and outs of writing an applica-
tion using message-passing and S-DSM. We start from an application specifica-
tion and we elaborate different implementations to compare performance over a
distributed heterogeneous computing platform. These implementations include
the well-established message-passing OpenMPI runtime, the lightweight ZeroMQ
(0MQ) message-passing runtime and an in-house S-DSM [3,4] built upon Open-
MPI and designed to study data management over heterogeneous architectures.
Results show that the S-DSM implementation outperforms the pure OpenMPI
implementation by a factor 2 and get close to the ZeroMQ implementation per-
formance for data-sets with smaller granularity.

2 Implementations of a Video Processing Application

In this work we consider a video processing application that has been used to
experiment and showcase several distributed heterogeneous computing platforms
such as the Christmann RECS|Box microserver [15]. This application opens a
video stream, either from a file or a camera, decodes the frames, distributes the
frames to remote processing tasks and encodes the processed frames back to a file
or a live display. The computing kernel is a 3 × 3 convolution used for edge detec-
tion. From this specification we have implemented three versions based on MPI,
ZeroMQ and the S-DSM. These versions share the exact same code in C, except
for data management. Figure 1 illustrates the communication sequences between
the input task, the processing tasks and the output task for the different imple-
mentations. MPI and ZeroMQ implementations are quite straightforward and
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Fig. 1. Transferring and accessing frames in MPI, 0MQ and S-DSM.

are similar to a split-join dataflow, using multiple producer-consumer patterns.
The S-DSM implementation is more complex (inner communications occurring
between S-DSM servers are not represented here) because each access to a shared
data triggers multiple communications between S-DSM servers and applications
tasks, according to the data coherence protocol. The MPI implementation gen-
erates around twice as much messages as ZeroMQ, and the S-DSM generates
10 times more messages than ZeroMQ.

MPI. The global behavior of the MPI implementation is as follows: 1) the pro-
cessing task sends a control message to the input task to indicate they are ready
to take a job, 2) the input task sends a control message with job information
followed by the input frame to the processing task and 3) once the frame has
been processed, the processing task sends a control message followed by the pro-
cessed frame to the output task. When deploying more than one processing task,
it implements an eager scheduling in which tasks that run faster are whiling to
process more frames than the others. This implementation is based on simple
MPI concepts including synchronous and asynchronous version of Send for send-
ing messages, Probe and Wait for checking if a message is available and a com-
munication is completed and Recv to receive a message. We do not use collective
primitives nor advanced group communication operations. There are three vari-
ants of the code: 1) Synchronous single buffer means that a single buffer is used
on the input task to send frames to the processing tasks. Synchronous means
that the input process waits for the completion of the Send operation before
decoding and sending the next frame. 2) Asynchronous single buffer allows the
input task and the processing tasks to not wait for the completion of the Send
operation, allowing local parallelism between the user code and the MPI runtime
(e.g. decode next frame, process next frame while sending the previous one). 3)
Asynchronous multiple buffers means that one buffer is allocated on the input
task per processing task, allowing to drastically increase the parallelism between
frame decoding and the management of communications in the MPI runtime. In
these experiments we use the OpenMPI 3.x runtime because of its popularity
and the possibility to compile the source code without a glitch onto different
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Linux distributions (Ubuntu, Debian, Raspbian, Lebian) and processors (Intel
Core i7, Arm Cortex) deployed in our heterogeneous platform.

ZeroMQ (0MQ). ZeroMQ is a lightweight message passing framework released
around 2010. It offers a low-latency implementation of sockets based on commu-
nication patterns instead of basic message passing. There is no logical process
overlay built on top of the communication sockets such as communicators and
ranks for MPI. Therefore, when connecting to a distant node, the IP address or
hostname must be known, which is platform-dependent and less elegant. ZeroMQ
is expected to be more efficient than MPI notably because there is no node boot-
strapping, peer discovery and group communication overlay management. In this
implementation of the video processing application, a request-reply REQ-REP
communication pattern is used between the input task (acting as a server, REP)
and the processing tasks (acting as clients, REQ). The resulting interaction
makes the processing tasks ask the input task for the next frame to compute. As
for the MPI implementation, it implements an eager scheduling of frames onto
processing tasks. The PUSH-PULL communication pattern is used between the
processing tasks (PUSH ) and the output task (PULL) in order to collect the
results. Note that this pattern implements fair-queuing which explains it cannot
be used between input and processing tasks because it would evenly distribute
frames onto processing tasks, hence not implementing an eager scheduling.

S-DSM. The shared memory implementation is based on the S-DSM presented
in 2017 in Cudennec [3]. This S-DSM relies on the OpenMPI 3.x runtime in order
to manage the underlying peer network and message delivery. It is organized as
a super-peer topology made of a peer-to-peer network of S-DSM servers for
cache and metadata management, and a set of clients to run the user code. The
coherence protocol is a 4-state (MESI) home-based protocol. Shared data are
stored into atomic pieces of data called chunks. The S-DSM provides a regular
interface for accessing chunks and performing distributed synchronizations. It
also introduces an event-based programming language in which it is possible to
subscribe to chunks in order to be notified whenever the chunk has been modified,
as in a publish-subscribe communication pattern [4]. In this implementation
of the video processing application, frames are stored in the shared memory:
for each processing task a shared input buffer and a shared output buffer are
allocated in the S-DSM. The input task writes incoming frames into the input
buffer of a ready task. The processing task gets notified, reads the frame from
its input buffer and write the processed frame into its output buffer. The output
task gets notified that a new result is available, it reads the frame and checks for
frame reordering before sending to the output. The resulting application layout
is close to a dataflow, which is indeed a common way of implementing dataflow
runtimes over shared memory.
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Table 1. Platform description and number of nodes (#) used in the experiments.

Node Processor Cores RAM Storage Network #

Gateway Intel Core i7 6800K 6 64GB SSD Gb Ethernet 1

Raspberry Pi 3B+ ARM Cortex A53 4 1GB SD USB 2.0 2

Odroid XU4 ARM Cortex A15/A7 4/4 2GB SD USB 3.0 1

Odroid XU3 ARM Cortex A15/A7 4/4 2GB SD USB 2.0 1

HiKey Kirin 970 ARM Cortex A73/A53 4/4 6GB UFS USB 3.0 2

Nvidia Jetson TX2 Denver/ARM Cortex A57 2/4 8GB eMMC Gb Ethernet 1

Adapteva Parallella ARM Cortex A9/Epiphany 2/16 1GB SD Gb Ethernet 0

Table 2. Calculating the ideal number of processed frames per node type using the
Pthread implementation (theory, no communications). Note that we use two RPI and
two Kirin boards in our experiments, which is taken into account when calculating the
ideal number of processed frames. The effective number of processed frames observed in
the experiments are given for MPI, S-DSM and 0MQ for each node type. Deviation is
the cumulative distance with the ideal number of processed frames (smaller is better).

Core i7 TX2 XU3 XU4 Kirin 970 RPI 3B+ Deviation

HD

Time per frame (s) 0.041 0.131 0.145 0.219 0.153 0.341

Normalized to RPI 8.317 2.603 2.351 1.557 2.228 1

Ideal (nb of frames) 506 158 143 95 136 61 0

MPI (nb of frames) 178 180 131 152 175 153 680

S-DSM (nb of frames) 490 226 65 92 119 92 262

0-MQ (nb of frames) 196 166 147 151 160 158 620

UHD-1

Time per frame (s) 0.103 0.353 0.597 0.864 0.463 1.202

Normalized to RPI 11.669 3.405 2.013 1.391 2.596 1

Ideal nb of frames 590 172 102 70 131 51 0

MPI (nb of frames) 173 179 127 158 172 159 834

S-DSM (nb of frames) 475 228 66 94 124 93 330

0-MQ (nb of frames) 196 166 146 157 160 157 800

UHD-2

Time per frame (s) 0.342 1.363 2.091 3.478 4.260 4.625

Normalized to RPI 13.523 3.393 2.211 1.329 1.085 1

Ideal nb of frames 717 180 117 70 58 53 0

MPI (nb of frames) 355 237 118 118 120 119 724

S-DSM (nb of frames) 453 234 70 98 126 99 622

0-MQ (nb of frames) 752 123 40 79 99 58 268

3 Results

The hardware platform is a small cluster of heterogeneous computers and devel-
opment boards connected to a Gigabit Ethernet switch. Table 1 describes the
node types of the platform and the number of nodes that are used in the fol-
lowing experiments. These nodes are representative of the hardware that can
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be integrated within HPC microservers, cloud infrastructures and platforms for
autonomous vehicles, albeit the form-factor of the resulting setup and the poor
network performance for some of the nodes connected via Ethernet over USB.
In all experiments, a processing task is deployed on each node and the two input
and output tasks are co-located on the Core i7 Gateway node. In the specific
case of a S-DSM deployment, a S-DSM data server is deployed on the Core i7
node. When deploying the configuration with 4 servers, 3 additional servers are
deployed on the Nvidia TX2 and the two Odroid XU3 and XU4 nodes.

Ideal Computation Time. It is possible to evaluate the ideal computation
time of the application by measuring the time it takes to run the computational
kernel on each node. This information is used to calculate the contribution of
each node in the global computation, without considering network communica-
tions and other input-output operations. Table 2 presents the processing times
measured on each node type to run a convolution (stencil 3 × 3). The frame size
follows the HD, UHD-1 and UHD-2 standards and the corresponding frame rep-
resentation sizes are 2 MB, 8 MB and 33 MB (as for a 256 bits, greyscale frame).
Processing times do not include input and output operations on local storage to
read and write the frame. The ideal computation time of the application when
running on the whole platform can be calculated because the convolution kernel
is not data-dependent, which means that its complexity does not depend on the
input data, therefore making the convolution processing deterministic. Table 2
presents the results step-by-step. The first step is to calculate the normalized
performance of the node, taking the Raspberry Pi 3B+ as reference (RPI perfor-
mance is set to 1). For example, the normalized performance of the Core i7 for
UHD-2 indicates that the Core i7 computes more than 13 times faster than the
RPI. The second step is to calculate the workload coefficient per input data-set.
This can be done using the following equation (note that we do not use the
Adapteva Parallella board and that there are two RPI and two Kirin boards in
the setup):

α ∗ (Pi7 + PTX2 + PXU3 + PXU4 + 2 ∗ PKirin + 2 ∗ PRPI) = NB FRAMES

With Pn the normalized performance of node type n, NB FRAMES the num-
ber of frames in the input video and α the unknown workload coefficient.
In the following experiments, the HD, UHD-1 and UHD-2 video samples are
taken from the ‘3DMark Port Royal Demo’ benchmark, with a total of 1296
frames for HD, 1298 for UHD-1 and 1306 for UHD-2. The α workload coeffi-
cient is therefore 60.9 for HD, 50.6 for UHD-1 and 53.0 for UHD-2. The last
step is to calculate the ideal number of processed frames per node type using
the following formula: NB Framesn = α ∗ Pn. From this result it is possi-
ble to calculate the ideal global processing time using the following formula:
GLOBAL TIME = max(NB Framesn∗TIME PER FRAMEn). This gives
20.8 s for HD, 61.3 s for UHD-1 and 247.0 s for UHD-2. This ideal processing
time does not include overheads such as distributing the computation over a
network, managing the communication buffers and processor caches.
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Comparing Implementations Performance. The three main implementa-
tions of the video processing application (OpenMPI 3.x, S-DSM and ZeroMQ
4.x) have been deployed on the heterogeneous platform and evaluated using the
three video samples (HD, UHD-1 and UHD-2). Results are given in Fig. 2 and can
be compared to the ideal computation time. The S-DSM implementation gener-
ates around 39000 messages at the MPI level, the MPI implementation generates
around 6500 messages and the ZeroMQ implementation generates around 3900
messages. The ZeroMQ implementation is the fastest for each data-set, and even
more when dealing with bigger data: the global computing time is smaller when
processing UHD-2 frames (568 s) than UHD-1 frames (731 s). While being a
counter-intuitive result, it is usually explained by the adequacy between data
granularity and the management of network and processor caches. By default,
the ZeroMQ runtime sets the capacity of communication pipes, also called High-
Water Mark, to 1000 messages (or even no limit for early versions of the runtime)
which leads to memory overflow and a segfault on nodes with limited phys-
ical memory such as the Raspberry Pi. In these experiments, the High-Water
Mark is set to 10 which allows the proper termination of the application with all
data-sets. It also prevents from cache pollution that acts as a performance killer
on several nodes. The latter point being one of the main reason why ZeroMQ
performs significantly better than the other MPI-based implementations. A sec-
ond counter-intuitive result is that the S-DSM implementation (over MPI) is
performing better than the regular MPI implementation. For HD and UHD-1 it
even gives results close to the ZeroMQ implementation. Four configurations of
the S-DSM are used, as a combination of enabling or not the logging of events
(stats logging) and deploying a single or 4 metadata and cache servers. Stats
logging generates around 240000 events per run that are stored in the physical
memories of the nodes before being dumped into files at the end of the com-
putation. This implies a significant overhead, while mandatory to finely analyze
the S-DSM behavior. Using 4 metadata and cache servers let the S-DSM system
balance access requests to shared data among different nodes, hence being more
responsive. One of the main reason the S-DSM performs better than MPI is
because of the parallelism of data it introduces, similar to a pipeline: each time
a shared data is modified, it is sent to the S-DSM servers, and not to the input
buffer of another processing task. Therefore, processing nodes do not have to
undergo all incoming data, but rather ask for them in a on-demand basis thanks
to the S-DSM programming model. For small data-sets (HD and UHD-1), the
best MPI implementation computation time is more than 2 times slower than
the best S-DSM configuration computation time. For UHD-2, the async multi-
ple buffers implementations performances are close to the S-DSM, revealing the
importance of manually managing the communication buffers to increase the
parallelism degree. However, it is very far from the ZeroMQ performance, which
is quite a surprise as it relies on the same programming model.

Influence on User Code. The user code can be split into two parts: the pro-
cessing time which is the time spent in the computing kernel, and the waiting
time which is the time spent between the end of a kernel call and the beginning
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of the next call. This waiting time includes operations to asynchronously send
the previously processed frame to the output task and to synchronously retrieve
the next incoming frame. This is a relevant indicator to know if frames are deliv-
ered just in time and to identify a data starvation crisis. Figure 3 presents the
cumulative processing and waiting times for the best MPI, S-DSM and ZeroMQ
implementations. Labels on top of bars represent processing times divided by
waiting times. Beware of this representation: the global processing time of the
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application as shown in Fig. 2 is the consequence of particular intricacies of indi-
vidual processing and waiting times, and cannot be compared to a simple sum of
processing and waiting times. There are several conclusions based on this figure.
First, the cumulative processing time of ZeroMQ is close to the ideal cumula-
tive processing time which means that the frames have been wisely dispatched
to the computing nodes and that the ZeroMQ runtime does not interfere with
the computing capabilities. Second, the S-DSM performance is close to ZeroMQ
for HD and UHD-1 data-sets despite a higher cumulative processing time. As
a counterpart, the cumulative waiting time is smaller which indicates that the
S-DSM runtime was able to deliver data in a more efficient way than ZeroMQ.
In that case, increasing the size of communication pipes (High-Water Mark,
HWM) for ZeroMQ might decrease the cumulative waiting time but at the price
of increasing the memory footprint, degrading the processing performance and
even getting a memory overflow as discussed previously. Therefore, there is a
trade-off to find when setting an arbitrary value for HWM, which is not accept-
able for a regular user. Finally, the pure MPI implementation reveals important
processing and waiting times with the three data-sets.

Load Balancing. One of the main reason the cumulative processing times and
waiting times are increasing comes from a poor load balancing of frames onto
computing resources. The three implementations are all based on eager schedul-
ing of frames onto computing resources. Therefore, the effective load balancing of
frames is a direct consequence of the underlying communications and data man-
agement runtime. It is possible to compare the effective scheduling of frames
in the experiments with the ideal number of processed frames as presented in
Table 2. The Core i7 node is the most powerful node and should process more
frames than the other nodes. However in all the experiments the Core i7 node
is far from processing the expected number of frames. The cumulative distance
from the ideal number of processed frames shows that for the smaller data-sets
(HD and UHD-1) the S-DSM is able to manage a better load balancing than
MPI and ZeroMQ while for a larger data-set (UHD-2) ZeroMQ offers the best
load balancing which finally explains why processing UHD-2 is faster than UHD-
1. Communication runtimes such as MPI and ZeroMQ are complex distributed
software. The inability to achieve a proper load balancing for the smaller data-
sets might be the consequence of smart mechanisms against message delivery
starvation, which leads to a fair distribution of frames among the nodes instead
of favoring the Core i7 node as expected. Note that this underlying behavior is
hidden to the application developer. Despite being implemented over MPI, the S-
DSM has better load balancing, which can be explained by the important mix of
control and data messages exchanged between several nodes whenever accessing
a frame in the shared memory. Therefore the communication pattern to access
a frame is more complex and more resilient to specific runtime arbitration.
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4 Conclusion

Software-distributed shared memory adoption in high-performance computing
systems is conditioned upon reaching acceptable performances. In this work,
a distributed application has been written over message passing and S-DSM
frameworks and deployed over an heterogeneous platform. Results show that
the S-DSM implementation is faster than the pure MPI implementation and
competes with the lightweight ZeroMQ implementation for small granularity
data sets. It appears that the MPI runtime is designed and optimized for super-
computing architectures with strong assumption on hardware capabilities (pro-
cessor speed, amount of physical memory and networking performance). With
the development of distributed heterogeneous architectures, these assumptions
are not reliable, especially with low-power processors and embedded devices. In
such a context, the S-DSM is able to introduce intermediate storage places which
prevents from the overload of communication buffers on processing nodes. The
management of such intermediate storage places is transparent for the applica-
tion, which is inherent to the S-DSM approach compared to message passing
frameworks. Several conclusions come with this work: 1) lightweight message
passing (0MQ) is faster but at the price of specializing the application to the
platform, 2) the OpenMPI runtime is not optimized for running onto low-power
processing boards, and 3) S-DSM overhead is getting smaller compared to mes-
sage passing, as the hardware is becoming more complex to deal with. Therefore,
while probably still not being fully adapted to large-scale homogeneous clusters,
this work shows that S-DSM is a serious contender to leverage the computing
capabilities of distributed heterogeneous architectures and their applications.
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Abstract. Day by day, severe meteorological events increasingly highlight the
importance of fast and accurate weather forecasting. There are various Numerical
Weather Prediction (NWP) models worldwide that are run on either a local or a
global scale to predict future weather. NWP models typically take hours to finish
a complete run, however, depending on the input parameters and the size of the
forecast domain. Provenance information is of central importance for detecting
unexpected events that may develop during model execution, and also for taking
necessary action as early as possible. Besides, the need to share scientific data
and results between researchers or scientists also highlights the importance of
data quality and reliability. In this study, we develop a framework for tracking
The Weather Research and Forecasting (WRF) model and for generating, storing,
and analyzing provenance data. We develop a machine-learning-based log parser
to enable the proposed system to be dynamic and adaptive so that it can adapt
to different data and rules. The proposed system enables easy management and
understanding of numerical weather forecast workflows by providing provenance
graphs.By analyzing these graphs, potential faulty situations thatmayoccur during
the execution of WRF can be traced to their root causes. Our proposed system has
been evaluated and has been shown to perform well even in a high-frequency
provenance information flow.

Keywords: Machine learning-based provenance extraction · Numerical weather
prediction models · Provenance · Provenance analysis ·Weather forecast models

1 Introduction

The importance of fast and reliable weather forecasting in today’s world continues to
increase. Today,we almost always takeweather conditions into account beforewe decide
on a journey or any other kind of activity. Because of global warming, there is a sig-
nificant increase in the number of extraordinary weather events. Weather events such
as hurricanes, floods, high winds, etc. can cause large-scale loss of property and life if
the necessary measures are not taken. In this context, faster and more accurate weather
prediction becomes more crucial. This makes it necessary for meteorologists, scientists,
and researchers to work together, share the input/output data they use, and exchange the
results obtained.
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Various Numerical Weather Prediction (NWP) models are run each day in different
meteorology organizations across the world to make weather forecasts. These models
mathematically simulate the atmosphere and the oceans and calculate such parameters
as temperature, pressure, wind speed, etc. by processing data primarily used for mete-
orological purposes, such as radar/satellite data and/or observation data gathered from
weather observation stations. NWP models are usually run more than once every day at
regular intervals. However, data collected from the aforementioned scientific measure-
ment devices are very diverse, both in format and in size. Therefore, the management
of data quality, reusability, and reliability become more complex and difficult. In this
respect, the need for systematic provenance is gaining importance, especially in scientific
studies [1].

Provenance is defined by the W3C consortium in its PROV specification [2] as all of
the entities, events, and persons that have some impact on the process of generating a data
product, which can be used to assess the quality and reliability of the data. Modifications
to the data, the methods used in the production process, and metadata for reproducing
the same data can be included in the definition of provenance.

In this study, theWeather Research and Forecasting (WRF) model, one of the widely
used NWPmodels, is used. WRF is an open-source NWPmodel widely used worldwide
by meteorologists and researchers. Being open-source and having large community
support can be considered as the advantages of the model. The WRF model is used for
weather forecasts by meteorological organizations in many countries across the world,
including Turkey.

The WRF model, as well as other NWP models, take input parameters such as the
boundary information of the prediction domain, and the resolution at which the predicted
values are to be calculated.When themodel starts to run it usually takes hours to produce
its results, depending on the input parameters. Most of the time, it is not possible to
intervene in the course of model execution. To be able to evaluate the correctness of the
model outputs after its completion, it is of great importance to track the processing steps
that took place during the generation process. In this way, whether an error occurred in
the prediction phase and, if so, the location of the cause can be easily detected.

The main motivation for this study is to address the lack of capability for provenance
support in WRF model software, a widely used numerical weather prediction model.
The WRF model is composed of several executable programs, each of which generates
some particular log outputs. Other than that, there is no structured provenance generation
or storage in any phase of a complete execution cycle. These raw log outputs are just
free-form text lines containing various levels of information about the execution details.
The contents of a log file that a specific WRF program produces can change, even from
one version of the program to the next.

The main contribution of this study is to address the aforementioned motivating
points and provide methodologies for machine learning-based ways of provenance col-
lection for WRF model software. We investigate WRF, and we analyze the log files
generated in the course of its execution. We develop a machine learning-based parser,
which utilizes classification algorithms and eliminates the need for a rule database to be
present as a prerequisite.
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Log analysis is one of the commonly used methods to obtain provenance informa-
tion. However, the quality of the provenance information produced in this method is
both highly dependent on the level of detail of the log files and on what percentage
of log lines containing provenance it can capture. In our previous work [3], we devel-
oped a rule-based log parser to extract provenance information from WRF logs. This
approach was based on a rule database that utilized a list of special keywords, which
helps the log parser distinguish those lines containing provenance information. These
keywords were predetermined manually. In this study, we propose a novel approach to
provenance extraction from log files, which is based on machine-learning techniques.
In this approach, a classification model is constructed by training on various log files
before deployment. Here, the machine learning-based parser eliminates the need for a
rule database at the expense of a small percentage of provenance loss.

The paper is organized as follows. Section 2 provides a literature review. Section 3
presents a brief overview of the Weather Research and Forecasting (WRF) model.
Section 4 briefly mentions the PROV specification. Section 5 explains detailed infor-
mation about the proposed methodology for machine learning-based provenance parser.
In Sect. 6, the implementation details of the prototype system are explained. In Sect. 7,
the performance tests on the proposed framework are mentioned and the test results
and evaluations are discussed. Finally, in Sect. 8, the results obtained in the study are
summarized.

2 Literature Review

Both storage and computing capacities of computer systems are increasing day by day,
so computer systems are being used more frequently by all scientific disciplines to
solve problems that require complex calculations and/or require the processing of large
volumes of data. The scientific programs developed within the scope of these scientific
studies are generally developed by scientists from their own disciplines, so the priority
of the developers is to produce algorithmically correct solutions to scientific problems.
For this reason, scientific programs generally do not have an integrated provenance
infrastructure.

Simmhan et al. propose a general-purpose framework in their work in 2006, which
allows provenance information to be compiled from data-driven scientific workflows
[4]. They try to define the requirements for systems that collect data and workflow
provenance. They also develop a standalone tool, Karma [5], as a prototype for the
collection, representation, and storage of provenance data. Karma then evolves into the
PROV compliant Komadu [6] framework that is used in this study as the provenance
storage backend. This provenance framework is tested on the Linked Environments for
Atmospheric Discovery (LEAD) project by Droegemeier et al. [7]. LEAD is a meteo-
rological research and training project that is Service-Oriented Architecture-SOA based
and designed to enable operations such as access, pre-processing, assimilation, manage-
ment, analysis, data mining, visualization, etc. to be easily applied, independent of the
format and the location of the data. Karma is workflow-oriented and needs a workflow
orchestrator. Therefore, it needs each discrete event (workflow step) to be defined and
implemented as an SOA-service. SOA-based architectures have been studied in detail
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in different studies such as [8–10]. In our study, we focus on numerical weather forecast
models, particularly WRF, and make no modifications to the scientific source code. Our
approach does not require a workflow orchestrator. We analyze log outputs and make
inferences about the internal steps of the execution.

In 2013, Jensen et al. proposed a provenance framework to be used in the process-
ing of satellite data [11]. NOAA and NASA instrument data from satellites are beamed
down to locations where they are gathered and then sent for processing. Jensen et al.
used the Karma tool as the backend provenance storage and retrieval in their proposed
framework and developed an adaptor to extract provenance-related activities from appli-
cation log files. The Karma provenance system uses an extension of version 1.1 of the
Open Provenance Model (OPM) [12] for its data model for external communication.
Shu et al. conducted a similar case study on the modeling and analysis of provenance
data in hydrological models [13]. They present a provenance model for the representa-
tion of provenance information in streamflow forecasting. For this purpose, they extend
the Open Provenance Model to satisfy the requirements for their case. There exist var-
ious other provenance-based systems utilizing the Karma tool [21–23]. In our study,
the provenance representation and data model are fully compatible with the W3C con-
sortium’s PROV specification, which defines a common provenance framework that is
independent of a specific domain.

However, to the best of our knowledge, weather prediction/atmosphere modeling
systems that are run either on a global or a regional scale bymeteorological organizations
or byuniversities or research institutionswithin the scopeof scientific researchorweather
forecasting are not capable of producing, storing and analyzing systematic provenance
records. The Global Forecast System (GFS)1 is a non-open source numerical weather
prediction system that includes a globalmodel runby theUnitedStates’NationalWeather
Service (NWS). It is workflow-based and composed of multiple workflow components
(data assimilation, forecast model, post-processing, etc.). Bernardet et al. proposed an
infrastructure, NWP Information Technology Environment – NITE, for scientists to
configure, launch, and track experiments with various NWP models including GFS.
The main goal is to record the provenance of codes, scripts, and configuration files,
and inputs related to an experiment, so that it can be reviewed and reproduced [14].
ECMWF’s Integrated Forecasting System (IFS)2 has its own workflow management
system, ecFlow. Each workflow must be defined as task suites.

In this study, we have designed a provenance/tracking system for the open-source
WRF model that is used by most meteorological organizations in different countries
across the world. The log files produced during the execution of the WRF model are
analyzed, and lines containing provenance information are filtered in the first stage. In
the second stage, the corresponding provenance notifications are generated and recorded
in a provenance database in the background according to the information in the filtered
lines. In our earlier work [3], we proposed a rule-based log parser to extract provenance
information from these log files. The parser utilized a rule database that consists of a
list of special keywords to distinguish lines containing provenance information. In this

1 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.
2 https://www.ecmwf.int/en/research/modelling-and-prediction.

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ecmwf.int/en/research/modelling-and-prediction
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study, we introduce a novel approach to filtering log files. In this approach, line filtering
is achieved by machine-learning methods.

Text classification by machine-learning algorithms has been used in countless areas
such as search engines [15, 16], social media platforms [17], indexing, and emotion
analysis in texts [18, 19]. We utilize various text classification algorithms inside the
machine learning-based log parser. This way, our tracking and provenance analysis tool
can run on different log files when filtering the lines containing provenance in WRF log
files without the need for a rule base.

3 The Weather Research and Forecasting Model Components
and Data Products

TheWRF model is an open-source software package consisting of various sub-modules
and used for atmosphere modeling and weather forecasting. These sub-modules are
broadly divided into four groups: 1-WRF Pre-processing System (WPS), 2-WRFModel
Core, 3-WRF Data Assimilation (WRFDA), 4-Post-Processing Tools.

The input/output files used, and the temporary/intermediate/final files created
throughout an execution cycle of the Weather Research and Forecasting Model are
shown in Fig. 1. More detailed information about each phase can be found in Section
III of our previous paper [3].

Fig. 1. WRF components and data products pipeline

The final results file contains various meteorological parameter values (temperature,
humidity, pressure, wind speed and direction, precipitation, etc.) calculated for each
horizontal and vertical grid point, depending on the resolution of the forecast region.
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Fig. 2. The general architecture of the proposed system and basic data flow

Figure 2 illustrates the main components of the WRF model and the overall
architecture of the provenance collection and presentation modules.

4 PROV-O Provenance Standard

The PROV specification [20] is a family of general-purpose documents recommended by
theW3C consortium for modeling, representing, storing, and transferring of provenance
data in a standard way independent of the discipline. While PROV-DM defines a basic
data model for provenance data, PROV-N defines a provenance notation that people can
understand. Besides, PROV-XML defines the framework of an XML schema so that
provenance data can be stored and transferred in accordance with the PROV-DM data
model, while PROV-O provides the necessary definitions to be able to create provenance
ontologies by expressing the PROV data model with the help of OWL 2 Web Ontology
Language.

Since the PROV specification is intended to provide a common provenance frame-
work that is independent of a specific discipline, there are only three basic concepts and
basic relationships that can be established between those concepts: Activity, Entity, and
Agent.

According to the PROV specification, an entity can be anything physical, digital or
conceptual, or a real or virtual thing. An activity is defined as anything that takes place
in a given period of time and that carries out certain operations on entities. Operations
such as processing, transforming, changing, using, or generating an entity are examples
of activities. An agent is generally defined as anything that has certain responsibilities
concerning entities or activities. An agent may be an entity or an activity.

5 Proposed Methodology

There are various approaches to obtainingprovenance information.Thefirst is themanual
labeling approach. This method is not effective since it requires a high amount of labor
and time. It is also error-prone because it is human-handled.
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Fig. 3. Machine learning-based approach to provenance collection from WRF modules

The second approach is to modify the source code to make it produce provenance
records automatically. However, the disadvantages of this method are the lack of access
to the source code of the software at hand, the need to recompile the code after the
changes to the source code, as well as the additional errors this may cause.

A third method sometimes referred to as scavenging, is to examine sources such
as various log files that are generated during the execution of programs and to extract
provenance information from these sources. Even if it may lack a configurable debug
level setting or enough information for a complete provenance, this approach is more
applicable to most use cases than the other two methods.

In our previous work [3], we introduced an alternative approach that utilized both
the scavenging method and the instrumentation of the shell script files. These are exter-
nal shell scripts that are not part of the WRF software. They just invoke the required
WRF components and insert the related provenance information into the log file. In that
previous work, we proposed a rule-based provenance extraction method where the rules
must be maintained manually by the programmer to adapt the parser to different log
files. In this study, we investigate the use of supervised learning algorithms to model
the provenance data and predict the type of provenance notifications. Here, machine-
learning algorithms are employed during the analysis of log lines produced by the WRF
model. In other words, lines containing provenance information are predicted by using
text classification methods.

Figure 3 shows the component diagram of the machine learning-based provenance
collection methodology that we have developed. To illustrate the testing of the machine
learning algorithms, the following supervised learning algorithms are used to classify
lines containing provenance information: Logistic Regression, Naive Bayes, Random
Forest, and Multilayer Perceptron.

Data Pre-processing: Using N-gram frequency profiles, one can provide a simple data
representation to categorize text files for a wide range of classification tasks. N-gram
frequency profiles are a commonly used approach in text classification. An N-gram is
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usually referred to as an N-character slice of a longer string. To illustrate testing of the
text classification for provenance data, in this study, we simply use N-word frequency
profiles and take into account 1-word string for data representation.

Feature indexes in “feature_index:value” pairs indicate the index numbers that are
automatically assigned, starting from 1, to each different word in the log file in the order
they are encountered. The value number in “feature_index:value” pairs indicates the
frequency of the word in the log line. In this study, the value part is assigned as 1 in all
samples, since only the term existence is considered rather than the term frequency in
the scope of the study.

Training Dataset: Note that, classification algorithms require a training data set to
construct classification models. In this study, we created a labeled dataset for WRF
log files. We created a training dataset by scanning each line and checking whether it
contains any of the provenance data and determine the type of provenance relationship.
The training dataset is constructed by manually examining sample log files obtained
from the WRF scientific program modules.

In the pre-processed log files after N-gram conversion, the first value in each row
represents the label of the class to which that row is assigned. The class labels that start
from zero, indicating an irrelevant line, and will go up to the total number of different
types of provenance relationships, incrementing by one. We use the following possible
provenance relationships as labels according to the PROV-O Specification: used, was-
GeneratedBy, wasAssociatedWith, wasInformedBy, wasAttributedTo, wasDrivedFrom,
actedOnBehalfOf .

Model Construction: Model construction is performed with a training set of log files
before the system is deployed. The log file is given as input to the machine learning
algorithms to train a classification model. In the scope of the study, we constructed
various machine-learning models by using Logistic Regression, Naive Bayes, Random
Forest, and Multilayer Perceptron algorithms.

Provenance Notification Prediction: The classification process for the new WRF log
lines is performed based on the constructed models. Each model predicts one class label
from the available multi-class labels. After the prediction phase, the Adaptor constructs
a provenance notification with the appropriate provenance relationship and sends it to
the provenance repository. We discuss the evaluation of the prediction tasks in Sect. 7.

The proposed approach can be used in the same way to analyze the log files of
different Numerical Weather Prediction models other than the WRF model, without
requiring software development.

6 Prototype Implementation

To illustrate the testing of the proposed system, we developed a prototype. The machine
learning-based provenance parser is designed as a middle layer software between the
WRF software and the provenance repository software. For the repository, we used a
PROV-O compatible provenance storage technology, Komadu Service.
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In this study, Turkish State Meteorological Service3 provided the computational
facilities and input atmospheric data for running the WRF model. We obtained the log
files from various runs of the WRF model and used them in the testing of the proposed
provenance extraction methodologies. The WRF model is run with the highest possible
debug_level to minimize any possible missing provenance information.

PROV-DM, an XML-based W3C PROV specification, is used for modeling
provenance information obtained from provenance extraction software.

The implementation of the machine-learning algorithms used in this study is done
by using the MLlib (Machine Learning Library) library of Apache Spark4, an open-
source cluster-computing engine developed within the Apache Software Foundation.
The classification algorithms in the MLlib library accept files of LIBSVM format as
input. LIBSVM is a sparse feature vector notation, a file format with rows representing
a feature vector that is composed of “attribute_index:value” pairs separated by a space
character. We investigated the performance of the prototype and discussed the results in
the next section.

7 Performance Evaluation

To evaluate the performance of the proposed system, various experiments are conducted.
All of the system components are implemented in Java language. A working prototype
of the system is deployed on two virtual machines running on top of a computer with
a Windows 10 operating system, Intel Core i7 4720HQ CPU, and 8 GB RAM. One of
the virtual machines features Ubuntu 12.04 as the guest operating system, where the
Komadu Service runs stable. The other virtual machine uses Ubuntu 16.04, where the
WRF runs smoothly. Both virtual machines have 4 GB of RAM and two CPU cores.
The Java version used is JDK 1.8.0.

The proposed system’s classification performance in terms of accuracy and preci-
sion/recall metrics is evaluated. To illustrate the testing of the parser, various classifica-
tion algorithms are picked up from different categories. The Logistic Regression algo-
rithm is selected among regression-based classifiers. Naive Bayes is picked up among
Bayesian classifiers. The random forest algorithm is selected as a representative of tree-
based classifiers. Finally, multilayer perceptron is picked up from neural network-based
classifiers.

Three different versions of log files are used in the experiments for the evaluation of
classification performance. One of these files is generated by the WRF model executed
with debug_level 100 while the other two are generated with debug_level 150. The
summary statistics of these log files are given in Table 1. ‘Dictionary size’ in the table
refers to the total number of distinct words in the corresponding log file.

Raw log files must first be converted to LIBSVM format to be input to the classifica-
tion algorithms. For this purpose, log lines are converted to feature vectors by using the
Apache Spark machine-learning library’s CountVectorizer and CountVectorizerModel
classes. Then, static class labels are determined for multi-class classification. Afterward,

3 https://www.mgm.gov.tr.
4 https://spark.apache.org/mllib.

https://www.mgm.gov.tr
https://spark.apache.org/mllib
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Table 1. Summary statistics of log files used in experiments

File name log_100 log_100_v1 log_100_v2

debug_level 100 150 150

Total number of rows 28,159 83,444 141,831

Total number of words 121,246 898,786 1,716,024

The average number of words per line 4.30 10.77 12.10

Dictionary size 842 3,235 3,283

data in LIBSVM format are input to Logistic Regression, Naive Bayes, Random Forest,
and multilayer perceptron algorithms, and classification models are trained.

To evaluate the performance of the classification process, the classification accura-
cies of the algorithms are examined. Each test procedure is repeated 100 times for each
algorithm-log file combination, and the average with the standard deviation of clas-
sification accuracy is calculated. A 10-fold cross-validation approach is chosen for the
evaluation methodology. Each log file is randomly split into 10 subsets of approximately
equal size. Each time, a different subset is selected as the test set, and the remaining
subsets are used for training. The overall performance metric for a specific log file is
calculated by taking the average of the results calculated for each one of the 10 subsets.
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Fig. 4. Accuracy and precision results for multi-classification

We evaluated all the algorithms’ multi-class classification performance in terms
of accuracy and precision metrics and the results can be seen in Fig. 4a and Fig. 4b,
respectively.We notice that all algorithms seem to have achieved very high classification
accuracies and performed with high precision and high recall. Therefore, we argue that
successful provenance extraction can be conducted without the need for a ruleset.

As a last note, the size and the contents of the log files produced by the WRF model
may show some variations depending on the parameters, such as the size of the region to
be predicted or the length of the prediction period. However, when different log files are
examined, it can be seen that they generally have a common pattern and a high degree
of similarity. For this reason, it is observed that the machine-learning models achieve
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very high performance on various log files obtained after running the WRF model with
different initial parameters, such as time periods or prediction regions.

8 Conclusion

In this study, we investigate amachine learning-based approach to provenance extraction
from log files of scientific applications. In this approach, supervised learning algorithms
are used to model the provenance data and predict the type of provenance relationships.
Here, machine-learning algorithms are employed during the analysis of log lines pro-
duced by the WRF model. To obtain different provenance relationships from the log
lines, multi-classification is utilized. The results indicate that successful provenance
extraction can also be conducted by utilizing machine-learning algorithms without the
need for a ruleset. Hence, the use of machine-learning algorithms for log parsing for
provenance can eliminate the need for a rule database.

To facilitate testing of the system, we developed a prototype implementation and
made it available as open-source software at the GitHub repository. The system is imple-
mented with Apache Spark’sMLLIB library, fromwhich the Logistic Regression, Naive
Bayes, Random Forest, and multilayer perceptron algorithms are applied for multi-class
classification. The trained models are run on the sample log files, and it is observed that
they perform well even on log files containing a large number of lines.
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Abstract. Scientific workflows are increasingly important for complex
scientific applications. Recently, Function as a Service (FaaS) has emerged
as a platform for processing non-interactive tasks. FaaS (such as AWS
Lambda and Google Cloud Functions) can play an important role in pro-
cessing scientific workflows. A number of works have demonstrated their
ability to process these workflows. However, some issues were identified
when workflows executed on cloud functions due to their limits (e.g., state-
less behaviour). A major issue is the additional data transfer during the
execution between object storage and the FaaS invocation environment.
This leads to increased communication costs. DEWE v3 is one of the Work-
flow Management Systems (WMSs) that already had foundations for pro-
cessing workflows with cloud functions. In this paper, we have modified
the job dispatch algorithm of DEWE v3 on a function environment to
reduce data dependency transfers. Our modified algorithm schedules jobs
with precedence constraints to be executed in a single function invocation.
Therefore, later jobs can utilise output files generated from their prede-
cessor job in the same invocation. This reduces the makespan of workflow
execution. We have evaluated the improved scheduling algorithm and the
original with small- and large-scale Montage workflows. The experimental
results show that our algorithm can reduce the overall makespan in con-
trast to the original DEWE v3 by about 10%.

Keywords: Scientific workflows · Cloud functions · Serverless
architectures · Makespan

1 Introduction

A scientific workflow application consists of a large number of dependent jobs
with complex precedence constrains between them, e.g. Montage [5], Cyber-
Shake [4], and LIGO [1]. These applications need large resources for processing
such as cloud computing. Moreover, they require Workflow Management Sys-
tems (WMS) such as Pegasus [3] and Kepler [2] for handling the jobs. These
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WMSs help to keep the applications constraints by following a specific order of
processing and ensuring the availability of data dependencies.

Function as a Service (FaaS) is a commercial cloud platform (e.g. AWS
Lambda) for running distributed applications with highly scalable processing
capabilities. FaaS platforms often have significant limitations on individual invoca-
tions e.g., temporary storage and memory. Several studies (e.g., [6,13]) have inves-
tigated whether large-scale scientific workflows can be executed on function plat-
forms in spite of their limitations. They execute scientific workflows in functions
by sending a set of jobs to be run in each function invocation. When invocations
complete successfully, FaaS services remove all temporary files due to their storage
space limits (e.g., 500 MB in case of Lambda). Thus, output files (which can act as
data dependencies for other jobs) resulting from the invocations need to be trans-
ferred to an object storage. Unfortunately, this leads to increased communication
costs. As a result, the total workflow execution time (makespan) will be longer due
to more dependency movement than on non-function based platforms.

[11] presented a prototype for workflows on cloud functions. In [6] the DEWE
v3 is introduced that is also able to process scientific workflows using AWS
Lambda and Google Cloud Functions (GCF). DEWE can process scientific work-
flows in three different execution modes: traditional cluster, cloud functions, and
hybrid mode (combining the other two modes). Both mentioned WMS solu-
tions were evaluated with the Montage workflow (which is a compute- and data-
intensive, astronomy focused scientific application). Testing with smaller Mon-
tage workflows does not show significant differences with regards to makespan.
Larger scale ones show the deficiency of these previous approaches though: their
scheduling algorithm sends jobs to functions without considering job precedence
requirements. Jobs with precedence could be sent as a single set for their corre-
sponding function invocation. Thus large scale montage exhibits the problem of
increased makespan due to more frequent dependency transfers.

We have changed the scheduling algorithm of DEWE v3 to reduce data depen-
dency transfers. Our improved algorithm schedules jobs with precedence require-
ments to be executed in a single function invocation. It schedules a predecessor
job with its successor jobs that have no other predecessor jobs to the same shard
to run in the same function invocation. As a result, we moved some workflow man-
agement behaviour inside the functions, as these functions now need to assure the
job ordering when they process them. Consequently, successor jobs can utilise the
output files generated from their predecessor job in the same function invocation.
This will ensure we don’t need to transfer the dependencies to the object store
prematurely. We can schedule jobs with precedence constraints in a single shard.
Because they will be captured in order by the shard and Lambda. Subsequently,
Lambda will be immediately getting these jobs in a single batch.

We have evaluated our approach with AWS Lambda as our target platform.
AWS offers Kinesis for queueing tasks to particular functions. Function instances
have their own queues (called shards). When a function completes its current
task, Lambda will pull all or some of the jobs with precedence requirements
based on its batch size and the sequence of the jobs on a shard. Consequently,
the remaining jobs will be waiting on the shard for the next Lambda invocation.
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In our experiment, we have evaluated our improved approach and the original
DEWE v3 with the 0.10◦ and 6.0◦ Montage workflows. The 6.0◦ workflow can be
considered large-scale as it has a total of 8,586 jobs with a data dependency size
of 38 GB. In addition, DEWE has already shown a large amount of re-transfer
data behaviour. We used the small 0.1◦ workflow to show that our approach
does not alter the performance. Due to Lambda’s limitations, some files cannot
be processed in functions, for these we used one sufficiently sized VM.

The experimental results show that our improved system can outperform
DEWE v3 in most cases. At best, in contrast to the original, we have 10%
shorter makespan. This demonstrates that our improved scheduling algorithm
can reduce the execution time of scientific workflows on the Lambda platform.

The remainder of this paper is structured as follows. In Sect. 2, we will present
background knowledge and related works. In Sect. 3, we will explain the improved
algorithm and how we changed DEWE v3. We evaluated our improvements and
contrasted it to the original algorithm in Sect. 4. Finally, Sect. 5 concludes the
paper and suggests some future works.

2 Background Knowledge and Related Works

2.1 Background Knowledge

A workflow can be modelled as a Directed Acyclic Graph (DAG) that consists
of a set of jobs which follow a specific order in processing. The vertices represent
the workflow jobs and the edges represent data dependencies between these jobs.

Executing workflows on IaaSs leads to the challenge of determining the num-
ber of VMs to back the workflow’s jobs. There are different numbers of jobs in
each phase of the workflow which all could require different levels of computing
resources. In order to speed up the workflow execution, we can add more VMs
for processing the jobs in a certain phase. However, this may lead to a resource
under-utilization issue for other phases. Unless the workflow management system
is capable of dynamically reducing the number of backing VMs.

AWS presented Lambda1 in 2014 while Google introduced cloud functions
(GCF2) in 2016. The advantage of using cloud functions is the dynamic automa-
tion of resource provisioning by scaling up or down based on the workflow exe-
cution requirements. Moreover, the billing interval for cloud functions is based
on 100 ms while recently Amazon and Google have changed the interval billing
of virtual machines from per-hour to per-second. The function is stateless and
its runtime environment is instantiated and terminated for each function invo-
cation. Additionally, Microsoft and IBM have presented their own versions of
FaaS that are Microsoft Azure Functions3 and IBM OpenWhisk Functions4.

1 https://aws.amazon.com/lambda/.
2 https://cloud.google.com/functions/.
3 https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview.
4 https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started.

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started
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If workflows are executed on one of the above FaaS systems, the dynamic
management of backing VMs becomes unnecessary by WMSs as FaaS systems
include automated resource management in the background. Therefore, the num-
ber of concurrent invocations into the infrastructure can more closely follow the
actual workflow’s demands.

[10] presented an evaluation for the following serverless computing providers:
Amazon, Microsoft, Google, and IBM. They tested the function platforms by
invoking CPU, memory, and disk-intensive functions. They found that at the
time of writing, Amazon’s was better. In addition, they also pointed out that
computing with cloud functions is more cost-effective than virtual machines due
to zero delay in booting up new resources. In addition, they also pointed out
that costs only get charged for the function’s actual execution time rather than
paying for the idle periods as well for virtual machines. As a result, we have
chosen Lambda to run workflows due to its efficiency and effectiveness comparing
with other platforms.

2.2 Related Works

[11] suggested five different architectures for executing scientific workflows on
the cloud. It presented a prototype for serverless computing that integrated
the HyperFlow engine with GCFs and AWS Lambda. It designed to investigate
the feasibility of executing compute- and data-intensive scientific workflows on
cloud functions. It was tested with 0.25◦ and 0.4◦ Montage workflows and they
found the approach highly promising. In addition, in [12] they presented the
same prototype and tested it with the same previous montage workflows as
well as a 0.6◦ Montage workflow. They run 0.6◦ as the largest workflow due
to Lambda limits for the temporary storage 500 MB. Their approaches also
manifest the deficiency with large-scale workflows that causes increased data
dependency transfers.

[6] developed a more advanced system called DEWE v3 that is able to process
scientific workflows on three different modes: traditional cluster, cloud functions,
and a hybrid mode that combines the two. They evaluated it with small- and
large-scale Montage workflows. The system has demonstrated the ability of cloud
functions to run large-scale scientific workflows with complex precedence con-
strains. However, it uses a scheduling algorithm that batches jobs to Lambda
without considering jobs with precedence requirements to run in a single Lambda
invocation. As a result, more data dependency transfers can occur during execu-
tion between storage service and the Lambda invocation execution environment.
Thus, this leads to increased communication costs.

[9] outlined the challenges for executing scientific workflows on a server-
less computing platform. They proposed a Serverless Deadline-Budget Workflow
Scheduling (SDBWS) algorithm that was modified to be applicable for function
platforms. It was tested with the small-scale 0.25◦ Montage workflow on AWS
Lambda. The algorithm used different memory sizes for Lambda based on the
deadline and budget constraints assigned by the user. In addition, the function
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resource is selected depending on the combined factors: cost and time. Their app-
roach also exhibits the deficiency with large-scale workflows that causes increased
data dependency transfers.

[13] presented work for evaluating three cloud function platforms which are
Lambda, GCF, and OpenWhisk (from IBM). They evaluated the platforms with
a large-scale (over 5000 jobs in parallel) bag-of-tasks style workflow. The experi-
mental results showed that Lambda and GCF can provide more computing power
if one requests more memory, while OpenWhisk is not offering an important dif-
ference. Consequently, cloud functions can provide a high level of parallelism for
workflows with a large number of parallel tasks at the same time. However, they
experimented with a bag-of-tasks approach where they did not consider data
dependency transfers.

3 Improving an Existing Workflow Management System

DEWE v3 has three different execution modes including a cloud functions mode
that we targeted to implement our approach on it. The functions mode runs
workflows on FaaS platforms such as AWS Lambda. Inside this mode, we modi-
fied the AWS Lambda specific job dispatch algorithm to reduce data dependen-
cies transfer. In the next paragraphs, we will put our modifications in context,
then we will discuss our approach in detail.

The DEWE v3 system reads the workflow definition from an XML file. After
the definition is loaded, the job binaries and input files are uploaded to Ama-
zon S3. In the beginning, all jobs that have no predecessor jobs are scheduled
to Amazon Kinesis stream into a common job queue. The scheduling algorithm
works by predecessor jobs triggering their successor jobs when they are com-
pleted. Moreover, the Lambda function pulls a set of jobs from the Kinesis
shards based on the Lambda’s batch size. Therefore, the maximum amount of
jobs in a single function invocation will be limited by the batch size. Depending
on configuration, Kinesis can have one or more shards. Each shard acts as an
independent queue for a particular function instance. Therefore, the number of
parallel Lambda invocations is equal to the number of shards in Kinesis. By
increasing the number of shards, DEWE v3 can speed up the execution time of
scientific workflows. Figure 1 shows the original algorithm of DEWE v3 that we
will compare it with our improved algorithm.

Many challenges are exposed when workflows executed on cloud functions due
to different constraints. Firstly, functions have some limits such as the amount
of compute, memory, and storage resources that can use them to run and store
functions. For instance, Lambda needs to delete all the temporary files when
a set of jobs are successfully executed due to its storage space limit 500 MB.
Therefore, more data dependencies transfer occur during the execution between
object storage and the function invocation environment, leading to more com-
munication costs. Secondly, functions are stateless leading to the requirement
that the output data files must be stored on an external service.
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Fig. 1. The scheduling steps of the original algorithm with a sample workflow example.

3.1 Proposed Approach

We started to implement our approach in DEWE v3 to lessen data dependency
transfers and to reduce the makespan of the workflow execution. We choose
DEWE v3 as the foundation because it was the closest existing open source
WMS to our goals. We changed its job dispatch algorithm to improve its data
dependency transfers. We moved the following workflow management behaviour
inside shards and the Lambdas. Jobs with precedence constraints will be sent to
the same Kinesis shard (in the order they need to be executed). Subsequently,
each shard will assure the sequence of the jobs in processing by Lambda. To
guarantee strictly increasing ordering, we have sent jobs serially to a shard.
Additionally, we used the SequenceNumberForOrdering parameter that guaran-
tees the order of jobs on a shard5. Next, Lambda will receive a batch of jobs
based on its batch size to run them sequentially in a single invocation. But
before starting any job on the Lambda, each job will read its data dependencies
from the S3 storage and then storing again the output files to it. Moreover, run-
ning jobs sequentially in a single Lambda invocation will benefit our improved
algorithm that it must preserve the dependence constraints. Finally, if there are
remaining jobs on the shard, they will wait for the next Lambda invocation for
executing.

We extended the (LambdaWorkflowScheduler) class of DEWE v3 that dis-
cussed previously. The extension called the (LambdaShardWorkflowScheduler)
class where we modified the (setJobAsComplete) method to be called by the
(jobCompleted) method. It schedules each predecessor job with its successor
jobs that have no other predecessor jobs. Afterwards, Lambda will pull all or
some of the jobs with precedence requirements based on its batch size and on
their order on a shard. In addition, the remaining jobs will be waiting on the
shard for the next Lambda invocation.

Algorithm 1 shows the pseudo-code of the improved algorithm for scheduling
a workflow. Here we explain the steps of the improved scheduling algorithm.
However, step 1 and step 6 are already in the DEWE v3 algorithm but we
will explain them to show the content. Step 2: it reads the XML file of the

5 https://docs.aws.amazon.com/kinesis/latest/APIReference/API PutRecord.html.

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
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Algorithm 1. The improved scheduling algorithm.
1: procedure Scheduling jobs(T,KS)
2: Read the workflow definition (dag.xml)
3: T ← job, KSn ← Kinesis − shard, Ln ← Lambda − function
4: numJobs ← number − of − batch, maxBatch ← Lambda − batch − number
5: flag ← max − batch − number, loadBalancing[] ← numberJobs − to − shard
6: Schedule all jobs that have not predecessor jobs (Ti)
7: if (Ti has completed processing) then
8: KSn=select a shard with the minimum number of receiving jobs
9: numJobs = 0

10: for each successor job of Ti do
11: Tj ← successor − job − of − Ti
12: Remove Ti as a predecessor job from Tj
13: if (Tj has no other predecessor jobs) then
14: schedule Tj to KSn to run on Ln
15: numJobs = numJobs + 1
16: while (Tj has successor jobs) do
17: if (The successor job has only one predecessor job Tj) then
18: Remove Tj as a predecessor job from its successor job
19: Schedule the successor job of Tj to KSn to run on Ln
20: numJobs = numJobs + 1
21: end if
22: if (numJobs == maxBatch) then
23: flag = true
24: break
25: end if
26: end while
27: end if
28: if (flag == true) then
29: loadBalancing[n] = loadBalancing[n] + numJob
30: KSn=select a shard with the minimum number of receiving jobs
31: flag = false
32: numJobs = 0
33: end if
34: end for
35: loadBalancing[n] = loadBalancing[n] + numJob
36: end if
37: end procedure

workflow definition. Step 3: we denote T, KSn, and Ln for jobs, Kinesis shards,
and Lambda functions respectively. Step 4: we symbolize numJob for counting
the number of batch jobs that will be sent for each shard in order to be less or
equal to the number of a batch size of Lambda (maxBatch). Step 5: we denote
flag as a boolean value to alert when the number of jobs that need to send them
to shard be equal to the number of a batch size of Lambda. In addition, we
symbolize loadBalancing as an array to count the jobs that send to each shard
in order to balance the workload across Kinesis shards. Step 6: at the beginning
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Fig. 2. The scheduling steps of the improved algorithm with a sample workflow
example.

of the scheduling, all jobs that have not predecessor jobs will be scheduled across
Kinesis shards without their successor jobs such as job 1 in step 1 of Fig. 2 and
Fig. 1. In Step 7, if a predecessor job completed the execution, then in step 8: the
algorithm will select a shard with the minimum number of receiving jobs among
all shards. Step 10: it will traverse all successor jobs of the completed job and in
step 12: each successor job will remove the completed job as a predecessor job.
Next, in steps 16–21, each predecessor job will be scheduled with its successor
jobs that have no other predecessor jobs. For example, job 2 schedules with its
successor jobs 4 and 5 on the same Kinesis shard as illustrated in step 2 of
Fig. 2. Additionally, job 3 schedules with its successor job 7 on the same Kinesis
shard. But job 6 has not been scheduled with its predecessor () because it has
two predecessors (jobs 2 and 3). Steps 22–25 are to stop sending jobs to shard
due to reaching the maximum number of a batch size of Lambda. Steps 28–31
are to count the jobs that send to each shard. In order to balance the workload
across Kinesis shards that is leading to balanced use of all Lambda instances.
Moreover, step 30 is to select another Kinesis shard with the minimum number
of receiving jobs among all shards to continue scheduling the remaining jobs of
the workflow.

Figure 2 shows the steps of the improved scheduling algorithm while Fig. 1
illustrates the steps of the original algorithm. In Step 1, both algorithms have the
same assignment to a shard. Step 2 is the difference between Fig. 2 and Fig. 1. In
the original algorithm, step 2 as only jobs 2 and 3 are ready and assigned them
to shards. While in the improved algorithm, we schedule all these jobs with their
successor jobs (4, 5, and 7) except job 6 that has two predecessor jobs (2 and
3). Jobs will be captured in order based on our previous discussion by the shard
and Lambda. Where we can put jobs with precedence constraints in a single
shard. Subsequently, Lambda will be immediately getting these jobs in a single
batch. When jobs 2 and 3 are completed execution in the original algorithm,
they will trigger their successor jobs (4, 5, 6, and 7) in step 3 of Fig. 1. Finally,
both algorithms have completed the execution of jobs in step 4.
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4 Evaluation

In this section, we have evaluated the improved algorithm by comparing its
results with the original algorithm. We tested them with a 0.1◦ and a 6.0◦ Mon-
tage workflows (an astronomy application). We have selected Montage because
the previous studies used Montage as well and it allows easier comparison
between with past results. Montage was also used for different benchmarks and
performance evaluation in the past [7].

First, we tested the Montage workflow degrees by considering the data depen-
dencies between jobs. We placed the Montage workflows on the S3 storage bucket
for reading/writing by Lambda. We run the workflow management system on
the virtual machine as a management node, where the VM is t2.micro instance
as a free tier with 1 vCPU 2.5 GHz, Intel Xeon Family, and 1 GiB memory. In
our experiment both systems were evaluated on the same platform configuration
as follows:

1. The Lambda Memory sizes were: 512, 1024, 1536, 2048 and 3008 MB
2. The Lambda execution duration was 900 s.
3. The batch size of the Lambda function was 10.
4. The Kinesis shard number was 2.

Figure 3 shows the makespan of both systems. Our improvements outperform
the original DEWE v3 system in most cases in these small scale experiments.
While the makespan of the improved system is worse than DEWE v3 for the
memory 512 MB. Because testing with smaller Montage workflows does not show
significant differences with regards to makespan. Memory size will impacts the
makespan of workflow execution: if the user has a large-scale workflow, send-
ing more jobs to Lambda will need a higher memory size. CPU is allocated
proportionally based on the memory size where the greater size provides more
computing power. Our observations here are in alignment with [13]: the lesser
memory the Lambda functions have the lesser computing capabilities they have
as well.

4.1 Large-Scale Evaluation

We tested both systems with the 6◦ Montage workflow with data dependencies
on Lambda. In this configuration, Montage is a large-scale, compute- and data-
intensive scientific workflow that contains a total of 8,586 tasks, 1,444 input data
files, and 22,850 intermediate files, with a total size of 38 GB. It contains short
jobs such as mProjectPP, mDiffFit, and mBackground while there are six long
jobs: mConcatFit, mBgModel, mAdd, mImgtbl, mShrink, and mJPEG. All the
short and long jobs are executed on Lambda except the mAdd jobs which are
executed on a single virtual machine. The VM is needed because the size of the
input/output files for mAdd exceeds the temporary storage space offered in a
single Lambda function invocation. The makespan of the large-scale workflow
execution of both systems is shown in Fig. 4. In this experiment, both systems
were evaluated on the same platform configuration as follows:
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Fig. 3. The execution time of the both systems with a 0.1◦ Montage workflow with job
dependencies running on different Lambda memory sizes.
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Fig. 4. The execution time of both systems with a 6◦ Montage workflow with job
dependencies running on 3 GB Lambda memory size.

1. The Lambda Memory size was 3008 MB
2. The Lambda execution duration was 900 s.
3. The batch size of the Lambda function was 20.
4. The Kinesis shard number was 30.
5. The virtual machine was t2.xlarge that executed mAdd jobs with its features:

16 GiB of memory and 4 vCPUs.

We used 2 shards for the first experiment because it used a small-scale work-
flow. While we used 30 shards for the second experiment because it used a
large-scale workflow. In addition, we cannot increase the number of shards to
indefinitely because some jobs need to execute as single-thread jobs such as mBg-
Model and mAdd. Figure 4 shows the reduction in makespan for the 6◦ Montage
workflow. Because scheduling jobs with precedence constraints to be executed
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in a single function invocation shows the gains. As a result, the improved algo-
rithm can reduce data dependency transfers to speed up the overall makespan
of workflow execution as illustrated in Fig. 4.

5 Conclusion

In this paper, we have presented an improvement of the job dispatch algorithm of
DEWE v3 to reduce data dependency transfers. DEWE v3 is one of the Workflow
Management Systems (WMSs) that provides three different execution modes:
traditional cluster, cloud functions, and hybrid mode. Our improved algorithm
schedules jobs with precedence constraints to be executed in a single function
invocation. Therefore, successor jobs can utilise the output files generated from
their predecessor job in the same invocation. This has the potential to reduce
the makespan of workflow execution. We have evaluated the improved scheduling
algorithm and the original algorithm with small- and large-scale Montage work-
flows. The experimental results show that the improved algorithm can reduce
the overall makespan in contrast to DEWE v3 by about 10%.

In future work, we will extend the improved algorithm to run on heteroge-
neous memory sizes of cloud functions to reduce the execution time and cost.
Moreover, we will extend a Workflow Management System (WMS) tool for the
DISSECT-CF [8] simulator in order to be able to simulate the execution of
scientific workflows in more reproducible and controlled environments.
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Abstract. In modern data centers, storage system failures are major
contributors to downtimes and maintenance costs. Predicting these fail-
ures by collecting measurements from disks and analyzing them with
machine learning techniques can effectively reduce their impact, enabling
timely maintenance. While there is a vast literature on this subject,
most approaches attempt to predict hard disk failures using either clas-
sic machine learning solutions, such as Random Forests (RFs) or deep
Recurrent Neural Networks (RNNs). In this work, we address hard disk
failure prediction using Temporal Convolutional Networks (TCNs), a
novel type of deep neural network for time series analysis. Using a real-
world dataset, we show that TCNs outperform both RFs and RNNs.
Specifically, we can improve the Fault Detection Rate (FDR) of ≈7.5%
(FDR = 89.1%) compared to the state-of-the-art, while simultaneously
reducing the False Alarm Rate (FAR = 0.052%). Moreover, we explore
the network architecture design space showing that TCNs are consis-
tently superior to RNNs for a given model size and complexity and that
even relatively small TCNs can reach satisfactory performance. All the
codes to reproduce the results presented in this paper are available at
https://github.com/ABurrello/tcn-hard-disk-failure-prediction.

Keywords: Predictive maintenance · IoT · Deep learning · Sequence
analysis · Temporal Convolutional Networks
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1 Introduction

The storage systems of modern data centers can easily include from thousands
to millions of hard disk drives. Therefore, despite single hard drives having a
very high Mean Time To Failure (MTTF), storage system failures remain one of
the main contributors to data center downtimes and maintenance costs [15,17].
One solution to reduce the impact of such failures is to resort to predictive
maintenance techniques, where disks operations are continuously monitored. An
alarm is raised whenever a drive is predicted to fail shortly, hence allowing timely
maintenance actions (replacement of the hard drive, data integrity restoration,
etc.) [1–3,14,18,19].

Most hard disk producers adopt Self-Monitoring Analysis and Reporting
Technology (SMART) as the tool to enable predictive maintenance [4]. SMART
consists of the periodic collection of a set of measurements (SMART features)
during disk operation, including temperature, seek and read errors, reallocated
sectors, etc. These features are then analyzed to determine the likelihood of
failure, typically with data-driven approaches based on machine/deep learning
models. In particular, most state-of-the-art methods are either based on Random
Forests (RFs) or Recurrent Neural Networks (RNNs) [1–3,14,18,19].

Recently, however, many works [5,12] have demonstrated the superiority
of Temporal Convolutional Networks (TCNs) for time series analysis. TCNs
are particular types of 1-dimensional Convolutional Neural Networks (CNNs),
including specific architectural elements (causality and time-dilation) to better
adapt to time series. In [5,12], TCNs have been shown to outperform the more
expensive and complicated RNNs in many sequence modeling tasks.

In this paper, we assess the effectiveness of TCNs for predicting hard disks
failures. To the best of our knowledge, this is the first work to consider Temporal
Convolutional Networks for this task. The contribution of this work is three-fold:
i) we describe a comprehensive analysis of the imbalance management of the
failure prediction in hard drives, demonstrating that using a Synthetic Minority
Over-sampler improves the performance of up to 43.5% for different classifi-
cation algorithms. ii) We show that the proposed TCN can outperform both
RFs and RNNs for failure prediction, mostly thanks to the excellent long-term
memory of these networks, which allows them to benefit from a long history of
input data. Specifically, with a 90-days input window, we can improve the Fault
Detection Rate (FDR) by ≈7.5% compared to state-of-the-art methods, while
simultaneously reducing also the False Alarm Rate (FAR) to 0.052%. iii) We
explore the architectural design space to provide a family of models that offer
different trade-offs in terms of processing complexity and memory occupation
versus performance. In doing so, we also show that TNCs are consistently supe-
rior to RNNs for a given size or complexity. The codes used in all the analysis
are public at https://github.com/ABurrello/tcn-hard-disk-failure-prediction.

https://github.com/ABurrello/tcn-hard-disk-failure-prediction
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2 Background and Related Works

2.1 Temporal Convolutional Networks

The main layer type included in TCNs is a particular 1-D Convolution, with two
differences compared to standard CNNs:

(1) Causality, which implies that each layer output is produced looking only at
past samples, i.e. ytN is obtained from the convolution of xtI with tI ≤ tN .

(2) Dilation, which is the fundamental element behind the success of these
nets. Rather than performing convolution on a contiguous time-window of
input samples, dilation inserts a fixed step between convolution inputs, thus
increasing the receptive field, while keeping the number of parameters low.

Formally, a 1-D causal dilated convolution is computed as:

ym
T = Dilated-Conv (x) =

N−1∑

n=0

K−1∑

t=0

xn
T−d t · Wn,m

t

where x is the input feature map and y the output feature map, T the time
index, W the weights matrix, N the number of input channels, m the output
channel, d the dilation parameter, and K the filter size.

2.2 Backblaze Dataset

Our experiments target a real-world hard drive dataset from Backblaze [4], which
contains hard drives from many vendors. As [1,18] pointed out, different disk
models require dedicated training since they are characterized by different failure
modes. Therefore, we focus on one of the most represented models, the Seagate
ST300DM001, comprising data between 2014 and 2017, with a high number of
failures, i.e. 1009. The dataset is composed of 90 SMART features collected daily,
and the date of failure of the drive, if any. It includes a total of 3828 hard drives
of the selected model, resulting in more than one million samples. For each of
the 1009 failed hard drives, we assigned the failed label to samples in the last
week, as suggested in [18]. With this labeling, the algorithm will learn to predict
whether a given hard drive will fail in the upcoming week.

Table 1 summarises the main characteristics of the dataset, highlighting the
strong class imbalance that is intrinsic in the problem (only 0.60% of the samples
are labeled as failed).
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Table 1. Dataset summary.

Dataset Backblaze [4]

Model ST300DM001

# of Hard Disks 3828

# of failed Hard Disks 1009

# of non-failed Hard Disk 2819

Non-failed class samples 1.25M

Failed class samples 7k (0.69%)

# of SMART features (total/after feature sel.) 90/18

2.3 Related Works

Two main formulations of hard disk predictive maintenance have been proposed
in the literature, i.e. Failure Prediction (FP) and Remaining Useful Lifetime
(RUL) estimation. In FP, predictive maintenance is addressed as a classifica-
tion problem. The goal is to predict in advance the occurrence of a failure in
the monitored drive. RUL estimation, instead, considers the issue as regression
and tries to predict the remaining healthy operating life of the target drive [1].
Researchers have been attempting to approach both formulations with different
machine learning models. In [3], the authors perform FP with Random Forests
(RFs), Support Vector Machines, Gradient Boosted Trees, and Logistic Regres-
sion, applied to pre-processed SMART features. They also propose to periodi-
cally switch algorithms based on their performance in the previous period. RFs
are used for fault prediction also in [18], where the authors focus mostly on
using online learning to adapt their model to the variance of SMART features
over time. Other works have addressed hard disks predictive maintenance using
different flavors of deep Recurrent Neural Networks (RNNs), mostly using the
Long-Short Term Memory (LSTM) architecture. RNNs have been used for both
failure prediction [19] and RUL estimation [2,14]. The authors of [1] propose
to simultaneously perform FP and RUL estimation with a single multi-target
LSTM. Interestingly, [2] shows that RFs outperform LSTMs on both continuous
and quantized RUL estimation. Moreover, the authors of [14] also experiment
with using a standard Convolutional Neural Network (CNN) to estimate the
RUL but obtain worse results than those achieved with an LSTM.

3 Methods

In this section, we describe the steps of the pipeline applied to the data to
distinguish between failed and healthy hard drives. First, we apply a feature
selection stage, followed by the split of train and test data. A re-sampling of the
training dataset is then used to manage the strong class imbalance. We conclude
with the classification through our proposed Temporal Convolutional Network.
Figure 1 depicts the whole flow of our process, described in the next paragraphs,
to assess the status of a hard drive from its SMART values.
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Fig. 1. Pipeline of our method. From raw SMART features to failure prediction.

3.1 Feature Selection

Before classification, we exclude redundant and irrelevant features from the
dataset. This step is crucial to reduce the processing time while also increas-
ing the prediction performance. Therefore, we propose a novel three-step feature
selection process to reduce from 90 to 18 the features used during classification:

Step 1. Each SMART attribute is characterized by a raw and a normalized
value. The latter is a vendor-specific normalization of the attribute,
computed to obtain a similar distribution of features across different
hard drive models. However, for a single model, the raw and normalized
values are strongly correlated (Pearson’s coefficient |r| > 0.99, p-value
< 0.001). Therefore, we removed all normalized attributes from our
analysis, reducing the features from 90 to 45.

Step 2. We removed all the attributes which have more than 60% of NaN in
their values, reducing the features from 45 to 25.

Step 3. To verify the effective predictive power of each attribute, we applied
a two-coiled t-test with a significant p-value < 0.001. After the test,
we selected only attributes that resulted significant for the distinc-
tion between failed and non-failed samples, obtaining the final set of
18 features.

Finally, we normalize the 18 features selected using a Min-Max scaler to avoid
bias towards features with larger values:

xnorm =
x − xmin

xmax − xmin

3.2 Imbalance Management

As anticipated, the failed class is strongly under-represented in our dataset
(0.69%). For this reason, the authors of many prior works [2,3,18] propose a
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random under-sampling of the majority class to reduce the ratio, λ, between the
majority and minority class:

λ =
Nn

Nf

where Nn is the number of the non-failed samples and Nf of the failed ones. The
typical target λ range is [1, 20].

In this paper, we propose to use a more advanced imbalance management
technique, i.e. a Synthetic Minority Oversampler (SMOTE). The reader can find
details on SMOTE, which are out of the scope of this paper, in [7]. In Sect. 4.2 we
show that using SMOTE with a fixed λ = 20 yields better results compared to
those obtained without imbalance management or with random under-sampling.

3.3 TCN Architecture

Fig. 2. Topology of the proposed Temporal Convolutional Network.

The TCN architecture used in this work combines dilated 1-D convolutions with
max-pooling layers to create a modular structure that progressively reduces
the time-length of the input while increasing the number of channels. We
designed the network to increase the receptive field through convolutional layers
while consuming the time dimension. Note that the architecture is composed of
repeated identical blocks, as typical in many modern networks, e.g. for computer
vision [10,16]. The whole structure is shown in Fig. 2.

The network stacks three convolutional blocks to extract time-relationships
between inputs. The three blocks comprise two dilated 1-D convolutions with a
3 × 1 filter and d = 2, 2, 4, respectively, followed by Relu activations and batch
normalization. Each block increases the number of channels to 32, 64, and 128,
respectively. A final pooling layer halves the time dimension after each block
(filter 2 × 1, stride = 2). At the end of the network, three Fully Connected
layers with dropout classify the input sequence. A detailed description of the
dilated convolutions can be found in [5]. The max-pooling, strided-convolutions,
and linear layers are conventional [13].
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4 Experimental Results

4.1 Experimental Setup and Metrics

To benchmark our approach, we compared it to the Random Forest of [18] and
the LSTM proposed in [1] on the dataset introduced in Sect. 2.2. These two
methods are representative of the two most common approaches to hard drives
failure prediction in the state-of-the-art. The RF is composed of 30 trees, while
the LSTM network has a layer of 384 recurrent neurons followed by two fully
connected layers. We refer to [1,18] for further details on the architectures. Note
that while the Random Forest receives as an input a single day by construction
[18], both the LSTM and the TCN can manage time windows of different lengths.
For our experiments, we consider window dimensions between 4 and 90 days.

We use randomly stratified sampling, with 70% of the data used to train all
the algorithms and the remaining 30% for testing. On the training dataset, we
perform internal validation to search for the best parameters set for the TCN.
In detail, we used a batch size of 256 and a learning rate of 0.001, the Adam
optimizer, and a decaying factor for the learning rate of 10 every 20 epochs. The
maximum number of epochs has been set to 200, using a plateau on the training
accuracy of the last 10 epochs as an early stop criterion.

The prediction performance is measured in terms of the following metrics:
(1) Fault Detection Rate (FDR), i.e. the ratio between the samples predicted as
failures and all the real failures, a.k.a. recall ; (2) False Alarm Rate (FAR), i.e. the
ratio between the samples wrongly predicted as failures and all the non-failure
samples; (3) Precision, i.e. the ratio between the correctly predicted failures and
all the predicted failures; (4) F1-score, i.e. the harmonic mean between precision
and recall. All metrics should be maximized except the FAR, which should be
minimized. All results are given as mean ± standard deviation, averaging the
last 5 models from the training of the networks, or 5 different Random Forests.

4.2 Comparison of the Sampling Techniques

Our first set of experiments targets the different re-sampling methods used for
the management of class imbalance. In Fig. 3, we compare three approaches,
namely SMOTE, random under-sampling, and “All” (no re-sampling), using
both our TCN and the state-of-the-art methods. For the latter, we apply the
same pipeline as for our algorithm, replacing only the final classification step.
A window of 30 days has been used in these experiments1. As the graph of
Fig. 3 demonstrates, not applying any re-sampling techniques results in a very
poor FDR from 12% to 28%, lower compared to the application of the random
under-sampling/SMOTE for all the three classification algorithms. Moreover,
although the random under-sampling guarantees a good FDR, it causes the FAR
to increase by a factor of 9×/20× compared to the previous case. On the other

1 For this input window size, the TCN achieves a FDR similar to the RF, but the
following experiments show that the TCN FDR improves for longer inputs.
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Fig. 3. Effect of different re-sampling methods on the performance of the three classi-
fication algorithms.

hand, SMOTE maximizes the FDR for the TCN and the LSTM (for the RF, the
FDR is less than 1% lower than with random-undersampling), while achieving
a FAR on the TCN and the RF only 1.65×/1.75× higher compared to not
applying re-sampling. Overall, the F1-score of the TCN, LSTM, and RF using
SMOTE increases of 20.48%, 38.5%, and 9.08% compared to not re-sampling
and of 21.38%, 43.5%, and 17.16% compared to the random under-sampling.

Therefore, we use the SMOTE to re-sample our training dataset in all the
following experiments.

4.3 Algorithms Comparison

Figure 4 shows the performances of LSTM and TCN with respect to the length
of the input data used as input. Note that the RF has been executed on single
day input samples as in its original work [18] since it intrinsically doesn’t support
the analysis of time series. Both the LSTM and our TCN demonstrate better
performance by using more days in the input signal. However, for both FDR and
FAR, the TCN is capable of taking more advantage from a longer input window.
In particular, compared to an input window of size 24, on which the LSTM and
the TCN achieve a similar FDR (79.21% vs. 80.23%), the LSTM increases its
FDR by less than 2.5% when using a window of 90 days, while the TCN reaches
FDR = 89.1%, with an improvement of 8.87% compared to the 24 days case.

Table 2 summarises the comparison of the three methods: the TCN proposed,
the LSTM of [1], and the RF presented in [18]. Note that all three algorithms
exploit the same steps of pre-processing, differing only in the classification step.
When using 90 days of history, the TCN surpasses the competitors by 7.49%
(RF) and 7.55% (LSTM) in FDR, achieving slightly lower FAR (0.052 vs. 0.063).
We use the F1-score to give an idea of the overall comparison between the
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Fig. 4. LSTM and TCN performance for different input window sizes.

Table 2. Performance comparison of the three algorithms.

RF [18] TCN – 90 days LSTM [1] – 90 days

FDR [%] 81,55 ± 0,40 89,10 ± 0,57 81,61 ± 0

FAR [%] 0,063 ± 0,003 0,052 ± 0,004 0,387 ± 0

Precision [%] 89,92 ± 0,47 91,00 ± 0,69 54,8 ± 0

F1-Score [%] 85,52 ± 0,22 90,05 ± 0,13 65,5 ± 0

three methods. Our TCN achieves an average F1-score of 90.05%, compared
to the 85.52% obtained by the RF and the 65.5% of the LSTM (the reached
performance in our work are almost equal to the ones presented by the authors
of the referenced papers). Note that both [1,2] already showed that RF often
outperforms LSTM for this kind of task.

These better metrics would directly translate into monetary savings, e.g.
for cloud storage providers. Focusing on the FDR, i.e. the number of correctly
predicted hard drives failures, we can see that our algorithm mispredicts only 1
failure over 10, compared to the 2 errors over 10 made by the other methods.
Considering a realistic cloud storage using a Redundant Array of Independent
Disk (RAID) [8] with hot-spare disks, we can link the FDR to a reduction in the
number of spare drives with a 1:1 relationship, e.g. 80% FDR allows to reduce
the number of the spare disks by 80%. Hence, halving the failure mispredictions
implies decreasing by a factor of 2× the extra cost for the redundancy in the
data center.

4.4 Model Size Exploration

Finally, inspired by the results in [10], we analyze the impact of the size of
the proposed TCN by applying a width multiplier and a depth multiplier to
increase and decrease the number of channels per layer and the number of layers.
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Fig. 5. FDR, FAR and F1 for varying TCN and LSTM model sizes.

Consequently, we increase or reduce both the network size and the number of
operations performed for each classification.

Specifically, we regulate the depth of the network considering six models with
{1, 2, 3, 4, 5, 6} convolutional blocks respectively (labeled TCN1 in Fig. 5).
Convolutional blocks after the third are identical to the first three described in
Sect. 3.3 and use 128 channels, d = 4, and full padding, but do not include any
time dimension reduction. Then, we also multiply the number of channels of
each layer by {0.125, 0.25, 0.5, 1, 2, 4}, keeping the default depth of 3, creating
six additional models (TCN2 in Fig. 5).

For comparison, we also explore variations of the state-of-the-art RNN archi-
tecture using either one or two stacked LSTM layers and {32, 64, 128, 258, 384,
512} hidden layer dimensions. In Fig. 5, we label single-layer models LSTM1 and
two-layer models LSTM2. We train all TCNs and LSTMs with identical hyper-
parameter settings. We do not report any exploration for the Random Forest,
since increasing the number of trees does not improve the performance.

Figure 5 shows the FAR, FDR, and F1 score of the twenty-four models con-
sidered in this exploration. On the x-axis, the plots report either the number of
Multiply-and-Accumulate (MAC) operations or the number of parameters of the
corresponding models. The first conclusion that can be drawn from this explo-
ration is that the TCN with channel multiplying factor (CMF) = 1 and three
layers (the default structure presented in the paper, shown as a green dot in the
figure) is the smallest model that saturates performance, and therefore repre-
sents a good trade-off point. Increasing the model size further does not cause a
dramatic increase in performance. We obtain the best performance using CMF
= 2, reaching an F1 score of 90.9%, only 0.8% better compared to the base
architecture. We also note that with progressively bigger architectures, the FAR
is almost constant (min 0.44, max 0.55), while we can observe an increase of the
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FDR of nearly 30%. Hence, we conclude that small TCNs are sufficient to extract
features that distinguish well the not-failing category. On the other hand, larger
and deeper networks are needed to identify failing hard drives correctly, due to
the wide range of possible failure modes.

Importantly, for a similar number of MAC operations or parameters, the
proposed TCN versions almost always outperform the LSTMs. In particular, the
top-right plot of Fig. 5 shows that LSTM architectures are never Pareto optimal
in terms of F1-score versus the number of MAC operations. When considering
the number of parameters (bottom-right plot), the trend is similar; the only
exception is represented by architectures with less than 55k parameters, which,
however, reach a F1-score lower than 70%, insufficient for an accurate monitoring
system.

5 Conclusions

We have shown that TCNs can outperform state-of-the-art methods for hard
disk failure prediction. This improvement is mostly thanks to their excellent
long-term memory, which allows them to take advantage of long input time-
windows. We have also shown that, for TCNs, applying SMOTE before training
helps to improve the FDR while keeping FAR contained. In our future work,
we will use TCNs also for RUL estimation, and experiment with unsupervised
training to tackle the class imbalance problem. Moreover, this work has shown
that small and low-complexity TCNs can still achieve good performance (e.g.
the model with CMF=0.25 in Fig. 5 has 32×/160× fewer parameters/MACs
than the biggest TCN, while achieving a decent F1 score of 80.3%, and a FAR
<0.1%). This result could allow the execution of TCN-based inference in emerg-
ing ultra-low-power MCU architectures, which despite being performance- and
memory-limited, offer specific HW and SW features for the execution of tiny ML
models [6,9,11]. Our result, combined with these new architectures, could allow
the embedding of the TCN in the HDD controller, enabling a scenario in which
each hard drive autonomously provides fault prediction alarms to the system.
Investigating this scenario will also be part of our future work.
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Abstract. This paper studies the use of Redundant Multi-Threading
(RMT) to detect Silent Data Corruptions in HPC applications. To under-
stand if it can be a viable solution in an HPC context, we study two
software optimizations to reduce RMT performance overhead by reduc-
ing the amount of data exchanged between the replicated threads. We
conduct experiments with representative HPC workloads to measure the
performance gains obtained through these optimizations, and the error
detection coverage they achieve. In the best case, when running on a
processor that features Simultaneous Multi-Threading, our results show
that the overhead can be as low as 1.4× without significantly reducing
the ability to detect data corruptions.

Keywords: HPC · Silent data corruptions · Redundant
multi-threading

1 Introduction

Silent Data Corruptions (SDCs) are alterations of data that go undetected by
the hardware. These soft errors are usually attributed to external causes, such
as high energy particles that may strike transistors and induce a bit-flip in the
memory, the caches or the registers of the processor [12]. Such data corruptions
may lead to a crash failure (e.g., a pointer corruption leading to an invalid
memory access), or lead to a wrong application output in the worst case.

As supercomputers keep increasing in scale, concerns about SDCs become
more serious [1,12,13]. This problem is exacerbated by the current technology
trends in processor architectures (e.g., increased number of computing cores
or near-threshold voltage) that aim at improving energy efficiency, but also
increase the probability of SDCs. Error Correcting Codes (ECC) are usually
used to detect and correct soft errors in main memory. However, such solutions
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are probably too expensive, both with respect to energy and performance, to be
generalized to all caches and processor registers [3].

Several directions are explored to deal with SDCs in supercomputers, each
of them having advantages and pitfalls. Some works propose to apply replica-
tion at the level of processes [5]. Solutions based on data analysis have also
been proposed [2]. In this paper, we study an alternative approach: Redundant
Multithreading (RMT). RMT detects SDCs at the level of threads. Hence, it
can be cheaper than process replication. However, existing software-based RMT
solutions [8,14,16] have major limitations. Either they induce a high perfor-
mance overhead or they assume very infrequent interactions with other threads
or processes, which is typically not a valid assumption with MPI applications.

The main factor that limits the performance of existing RMT solutions is
the cost of communicating between threads to compare the output of their exe-
cution [8]. In software-based RMT, a leading thread has to send the result of
each operation it executes to its sibling trailing thread that detects soft errors
by comparing the values it receives with the result of its own operations. The
single-producer/single-consumer (SPSC) queue involved in this communication
is central to the performance of RMT.

This paper studies three directions to improve the performance of RMT
approaches for HPC. First, it explores the possibility of using Simultaneous
Multithreading (SMT) to improve the performance of RMT. The evolution of
the hardware (e.g., increased number of cores in processors) makes it difficult for
some applications to make good use of all the processors resources [10], thus we
think it is worth considering this possibility. Second, we evaluate two solutions
to reduce the amount of data that are exchanged between the leading and the
trailing RMT threads: i) aggregating multiple produced values together before
testing them for SDCs; ii) only testing a subset of the program variables, the
ones that are identified as having the potential to corrupt a state outside of the
thread context (we call this approach selective checking).

We present a detailed evaluation of these optimizations using two represen-
tative benchmarks. Our experiments evaluate the performance of the optimiza-
tions. Experiments with fault injection are also used to estimate the impact on
the coverage offered by RMT. The main conclusion from our experiments is that
RMT could be a viable solution for SDC detection at least for some HPC appli-
cations. The results obtained with the selective checking optimization show that,
when taking advantage of SMT hardware threads, the overhead compared to a
non-protected execution can be as low as 1.4×, without significantly degrading
the error coverage compared to a standard RMT approach.

The paper is organized as follows: Sect. 2 presents the problem of soft-error
detection and the related work. Section 3 describes the studied RMT technique
and the optimizations. Section 4 presents the evaluation results.
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2 Background

2.1 Detecting Soft Errors

This paper considers the case of soft errors due to external causes, such as high
energy particles that may invert the state of transistors. These errors are unpre-
dictable by nature. More specifically, we consider soft errors that are not detected
by the hardware. Such a soft error might lead to a crash (e.g., a memory ref-
erence corruption may generate an invalid memory access), or might go totally
undetected: these are silent data corruptions (SDCs). Soft errors can affect differ-
ent components of a computing node including the main memory, the processor
caches, and the processor registers.

Commonly, mechanisms at the hardware level, such as Error Correcting
Codes (ECC) and parity bits, are used to protect the main memory and the
processor caches [13]. Hence, most often, DRAM and caches are considered safe
contrary to the processor registers and the combinational logic [12]. This is the
kind of soft errors we are dealing with in this paper.

In today’s systems, detecting SDCs has to be done at the software level. In the
HPC context, approaches based on process replication have been proposed [5]:
each process of the application is replicated and the outputs of sibling processes
are compared to detect differences. Such a technique can detect SDCs with high
precision, but it is costly as it doubles the amount of resources required to run
the application. An alternative is to rely on data analysis to detect unexpected
variations in the values of some program variables [2]. Such solutions induce
much less overhead than process replication. However, they are only applicable
if the data changes in a predictable way, which is not always the case [3].

In this paper, we explore solutions based on thread-level replication to detect
SDCs. Such a solution is an alternative to process replication that is expected to
be cheaper. Namely, thread-level replication only replicates the computation and
not the data. On the other hand, this implies that thread-level replication can
only work under the assumption that the memory of the processor is reliable.

Two approaches to thread-level replication exist, ILR (Instruction Level
Redundancy) and RMT (Redundant Multi-Threading). ILR duplicates the
instructions inside a single thread and compares the results before every write to
memory [6]. RMT duplicates each application thread into a leading and a trailing
thread and compares the output to detect SDCs [8,14,16]. Both approaches have
advantages and drawbacks. The most appropriate time to run a comparison in
ILR is always right after the values have been computed when they are still in the
registers of the processor. Since values are produced by two different threads in
RMT, comparison checks are more costly. Hence, state-of-the-art ILR techniques
are more efficient than best RMT solutions today [6]. However, RMT offers a
higher degree of flexibility regarding when to run comparison checks compared
to ILR [16], and more opportunities for performance optimizations. Hence, our
goal is to explore the potential of RMT approaches in an HPC context.
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2.2 Redundant Multi-threading

In RMT approaches, the sibling threads use a Single-Producer-Single-Consumer
queue (SPSC) to exchange the values they are generating, to be able to compare
them. Hence the performance of RMT depends on the performance of the queue
and on how the threads synchronize through this queue.

The synchronization over the queue can be synchronous, asynchronous or
semi-synchronous. In a synchronous approach, the trailing thread needs to
acknowledge the leading thread before any write is made to the memory, which
induces a huge performance overhead [16]. On the other hand, in a fully asyn-
chronous approach, performance is promoted over safety [8]. But leaving SDCs
undetected for some period of time could result in an uncontrolled propagation
of the error to other parts of the application, and lead to an unrecoverable state
(for instance, if corrupted data would be saved in a checkpoint).

The semi-synchronous approach aims at limiting the synchronization
between threads without compromising safety [14]. In this approach, the threads
progress most of the time asynchronously and an acknowledgment is sent by the
trailing thread to the leading thread only when volatile variables, i.e., variables
that must never get corrupted, are modified. A volatile variable is a variable
that may be modified in ways unknown to the soft-error detection technique
or have unknown side effects [16]. HPC applications include many accesses to
volatile variables (I/O operations, MPI function calls) which limits the perfor-
mance improvements that can be gained from the semi-synchronous technique.

Another direction to improve RMT performance is to work on the SPSC
queue efficiency. Hence, batching has been proposed to improve the performance
of SPSC queues [9]. However, fixed-size batching can only be applied with an
asynchronous technique. Using batches with a semi-synchronous communica-
tion pattern could lead to a deadlock when the leading thread is waiting for an
acknowledgment from the trailing thread, while the trailing thread is waiting
for the current batch to be full to start processing data. Hence the most suit-
able solution for semi-synchronous RMT is to use a dynamic batching strategy
where the leading thread can decide to terminate a batch early if a synchronous
communication is required. According to our experiments1, the queue algorithm
proposed by Wang et al. [14] is the best queue to implement semi-synchronous
RMT. Hence, we consider this solution as baseline for our evaluation.

3 Solutions to Improve RMT Performance

To assess the potential of RMT with HPC applications, our study aims at explor-
ing the impact in terms of performance and reliability of different optimizations
that could be applied to such a technique. At the hardware level, we consider
the impact of Simultaneous Multithreading (SMT). We leverage SMT’s ability
to run sibling threads on the same physical core. At the software level, we study
two optimizations that can be applied to the RMT approach to reduce the stress

1 Results not included in the paper due to the limited space.
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on the SPSC queue and, thus, improve performance. In this section, we start by
providing details about the vanilla RMT algorithm that we use as baseline for
our study. Then we present the two optimizations that we propose to evaluate.

3.1 Vanilla Semi-synchronous RMT Algorithm

Our baseline algorithm is designed based on the solution proposed by Wang
et al. [14]. To obtain efficient communication between sibling threads, they use
delayed buffering and lazy synchronization. Delayed buffering means that data
are buffered on the producer with the help of a local index and only when K values
have been enqueued, the data are made visible to the other thread. Lazy syn-
chronization means that the algorithm avoids checking directly shared variables
on each enqueue/dequeue operation, but iterates based on local indexes when
possible [14]. Our implementation of this solution, that we call vanilla-RMT
hereafter, defines the following API that includes 6 methods:

– Produce() is called by the leading thread to send a value to the trailing
thread. It does not require an explicit acknowledgment. This method is used
for asynchronous communication.

– Consume() is called by the trailing thread to read the next value from the
queue and check for a soft error. This method is also used for asynchronous
communication.

– Produce Volatile() is a blocking method called by the leading thread to
enqueue a value and wait for an acknowledgment from the trailing thread
before continuing.

– Consume Volatile() is called by the trailing thread to dequeue a value that
requires an explicit acknowledgment and sends that acknowledgment.

– Produce Drt() is used to sent data directly from the leading to the trailing
thread without any soft-error verification.

– Consume Drt() is used by the trailing thread to receive a value that is not
computed locally from the leading thread.

We illustrate the use of this API through the example presented in Fig. 1.
Figure 1a shows the original code snippet. The foo function computes the sum
of the elements of a vector x passed as parameter. The result is stored in the
local variable l. Then a MPI call is made with l as input parameter and g as
output. Finally, g is returned by the function.

Figure 1b and c illustrates the transformed code that is executed by the
leading thread and the trailing thread respectively with RMT. The first thing to
mention is that since l is an input parameter of a library function call at line 9, it
makes it a volatile variable. Hence, our RMT approach has to guarantee that this
variable is not altered by a SDC before calling the MPI function, and so the lead-
ing and the trailing threads respectively have to call Produce Volatile() and
Consume Volatile() at line 8. The intermediate values of variable l produced
at line 5 are also checked for correctness, but since these intermediate values can
only alter the local state of the thread, they are checked asynchronously using
Produce() and Consume() calls at line 6.
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1 foo(x[]) {
2 g = 0, l = 0
3

4 for (i in 0 : x.lenght) {
5 l += x[i] ∗ x[i]
6

7 }
8

9 MPI Call(l, g)
10

11 return g
12 }

(a) Original Code

1 foo leading(x[]){
2 g = 0, l = 0
3

4 for (i in 0 : x.length) {
5 l += x[i] ∗ x[i]
6 Produce(l)
7 }
8 Produce Volatile(l)
9 MPI Call(l, g)

10 Produce Drt(g)
11 return g
12 }

(b) Leading thread code

1 foo trailing(x[]){
2 g = 0, l = 0
3

4 for (i in 0 : x.length) {
5 l += x[i] ∗ x[i]
6 Consume(l)
7 }
8 Consume Volatile(l)
9 //MPI Call(l, g)

10 g = Consume Drt()
11 return g
12 }

(c) Trailing thread code

Fig. 1. Example of RMT code replication

We should point out that each synchronous exchange (calls to * Volatile()
functions) makes the leading thread spin-wait for the trailing thread acknowledg-
ment. Since the former might have already enqueued several non volatile values,
it has to hold until all of them are verified for correctness. Therefore, a volatile
store implies that the whole execution so far is checked for integrity.

In a RMT approach, instructions and functions calls that correspond to writes
to volatile variables should not be replicated [6,8,14,16]. We would not want to
print twice a value to the console, or send data twice to a neighbor node. Hence,
such calls are only made by the leading thread, as illustrated in line 9 of Fig. 1c.
Since the outputs of such calls are required by the trailing thread to continue its
execution, these outputs are directly transfered from the leading thread using
Produce Drt() and Consume Drt() calls, as illustrated in line 10.

3.2 Optimization Techniques for RMT

We present the three techniques studied to improve the performance of RMT.

Leveraging Simultaneous Multi-threading. Most recent processor archi-
tectures implement simultaneous multithreading to increase the degree of paral-
lelism in multicore processors. SMT allows having 2 or more threads concurrently
executing in the same physical core [11]. It makes a single physical processor
appear as (at least) two logical processors. The physical execution resources are
shared and the architecture state is duplicated for the logical processors.

The limited scalability of some HPC workloads with SMT threads has been
highlighted in several studies [10]. On the other hand, placing a leading thread
and its corresponding trailing thread on SMT hardware threads of the same
physical core can help to improve the performance of the communication between
them, as they will share the same L1 cache. Leveraging SMT for soft-error detec-
tion has been proposed in the seminal paper by Reinhardt and Mukherjee [11]
but this solution was relying on dedicated hardware. The impact of SMT on
RMT has been evaluated in [14] with negative results. As we show in Sect. 4, the
conclusions can be different on more recent hardware.
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Aggregation of Values. The first software technique we propose to evaluate
aims at reducing the contention of the queue between the leading and the trail-
ing thread by aggregating several values together and to compare the aggregated
values to detect SDCs. This approach was originally proposed by Mitropoulou et
al. [8]. Obviously this approach can only be applied to asynchronous communica-
tion. We evaluate this idea using the sum (+) operator as aggregation operator.
In [8], the authors propose to aggregate 2 values together. We study a general-
ization of this idea where K values can be aggregated, with K being a power of
2 to be able to compute a modulo very efficiently using bit-wise operations2.

It should be pointed out that using aggregation could potentially weaken
soft-error detection. First, if more than one value is corrupted, there is a small
chance that 2 bit-flips or more would compensate each other and go undetected.
Second, there is a risk of overflow when computing the aggregated value.

Selective Checking. The second software technique that we evaluate aims
at reducing the contention on the queue by limiting the number of values that
are checked for correctness. This idea has already been proposed in the context
of ILR [7,15]. By definition, writes to volatile variables are the points where a
thread could make a data corruption visible to the outside world. As such, we
propose to only check values that are stored in these variables. We refer to this
optimization as selective checking.

Applying this technique to the example of Fig. 1 would lead to only check the
final value of l for correctness at line 8. Obviously, with such an approach, there
is also a risk of weakening the detection capabilities of the RMT technique. We
evaluate this point during our experiments.

4 Evaluation

Our evaluation aims at assessing the efficiency that can be achieved when using
an RMT approach to detect SDCs in HPC applications. More specifically, for
the three optimizations described in Sect. 3.2, we want to evaluate: i) the per-
formance improvement that can be obtained compared to the vanilla RMT app-
roach presented in Sect. 3.1; ii) the reduction of the capacity of RMT to detect
SDCs that they may induce.

4.1 Software Used for Evaluation

RMT Implementation. The implementation of the RMT technique described
in Sect. 3.1 has been made in C. The optimizations presented in Sect. 3.2 have
been applied to this code base. Special care has been taken to properly align
variables and to pad the data structures to avoid any false sharing.

2 The results presented in Sect. 4 are obtained with K = 16. Our tests showed that
this the value that leads to the best performance for our applications.
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(a) CoMD (b) HPCCG

Fig. 2. Performance of RMT with optimizations (Aggreg: Performance of RMT with
aggregation; SC: Performance of RMT with selective checking)

To evaluate the performance of RMT with existing applications, we directly
modified the code of the applications to create the leading and trailing threads
and to insert API calls when required. Automatically replicating an application
for RMT using a compiler approach has already been done in other works [8,14,
16]. Our work focuses on evaluating the efficiency of RMT approaches.

Benchmarks. To run our analysis, we select two applications, HPCCG and
CoMD from the Mantevo benchmark suite. HPCCG is representative of finite ele-
ment methods while CoMD is an implementation of classical molecular dynamics
algorithms. We work with the MPI version of these applications.

4.2 Performance Evaluation

The first part of our evaluation focuses on the performance of RMT techniques.
We start by presenting the experimental setup used for the evaluation. Then
we evaluate the impact of the two software optimizations described in Sect. 3.2.
Finally, we evaluate the impact of using SMT threads.

Experimental Setup. All experiments presented below are run on a node
equipped with 2 Intel Xeon E5-2630L v4 processors (Broadwell architecture)
and 128 GB of RAM. Each processor features 10 physical cores with two Hyper-
Threads per core. The applications are compiled using the highest level of opti-
mization activated (-O3). The presented results are average execution times over
10 runs (with error bars representing the standard deviation).

For the two applications, the problem size considered for the evaluation is
the following: a global problem size of 1.28∗108 for HPCCG and a total number
of atoms of 2.4565 ∗ 106 for CoMD.

Performance Impact of the Software Optimizations. Figure 2 presents
the performance of the different versions of RMT with the two tested appli-
cations. The applications are executed with 20 MPI ranks. This corresponds
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to running one process per rank in the non-replicated execution and leads to
the best performance for these applications with the considered problem sizes3.
The presented results are normalized execution times with the non-replicated
execution as baseline.

We first focus on the results when the leading and the trailing threads of
each process are executed on different cores (labeled Different Cores). When
RMT is applied, we have 40 threads to execute in total4, which we pin in such a
way that the leading and the trailing threads are on a different core but on the
same NUMA node.

Comparing the performance of the vanilla RMT approach to the perfor-
mance when optimizations are applied, we observe that the optimizations lead
to significant performance improvements. Aggregation leads to 18% and 20% of
improvements compared to the default RMT approach with CoMD and HPCCG
respectively. The selective checking achieves even better performance: 63% for
CoMD and 50% for HPCCG.

The obtained performance also show that the vanilla RMT approach induces
a very high overhead: a 6.7× slowdown for CoMD and a 3× slowdown for
HPCCG. We conclude from these results that such an approach is not viable
for SDC detection in HPC applications. On the other hand, with selective check-
ing, the slowdown reduces to 2.5× for CoMD and to 1.5× for HPCCG. The
slowdown could still be too high with CoMD but with HPCCG, the overhead
becomes promising and might also even be competitive against ILR techniques
[6], where the overall overhead across all applications5 is 2×. Indeed, in an app-
roach based on full process replication [5], one can expect to achieve a smaller
slowdown but at the cost of duplicated the amount of computing resources used
to run the application.

Performance Impact of SMT. In Fig. 2, the data labeled Hyper-threads
correspond to the configuration where the leading and trailing threads of each
rank are collocated on the same physical core. The results show that a (limited)
performance improvement is always observed. It ranges from 6.2% to 11.6%.
Hence, when this approach is combined with selective checking, the slowdown
reaches 2.3× for CoMD and 1.4× for HPCCG6.

4.3 Reliability Evaluation

In a second set of experiments, we evaluate the ability of RMT to detect soft
errors when the proposed performance optimizations are used. We identify two
3 Trying to take advantage of the SMT threads by running 40 ranks in the non-

replicated run does not provide any performance improvement.
4 We also tested configurations with 10 ranks when RMT was used to have one thread

per core. In most cases the performance were equivalent to the results with the
default configuration.

5 Tested applications in [6] are part of different benchmark suites than ours.
6 These results are not specific to the selected problem size. They remain equivalent

for other problem sizes in both applications.
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No RMT Vanilla Aggreg. SC
Benign 29.7 31.2 28.6 31.2
Err. detected 0 63.5 66 48.1
Corrupted 66 0 0 13.6
Crashed 4.3 5.3 5.3 5.2
Timeout 0 0 0.1 1.9

(a) Detection of errors inserted in dot
product method (in %)

No RMT Vanilla Aggreg. SC
Benign 91.5 66.1 61.6 93
Err. detected 0 27.3 31.8 0.5
Corrupted 1.5 0 0 0
Crashed 7 6.6 6.6 6.5
Timeout 0 0 0 0

(b) Detection of errors inserted in
HPCCG (in %)

Fig. 3. Performance of RMT with optimizations (Aggreg: RMT with aggregation; SC:
RMT with selective checking)

aspects that can be impacted by changes in the RMT technique with respect to
soft errors: i) the capacity of detecting errors might be altered; ii) the probability
of experiencing an error might change.

Ability to Detect Soft Errors. To test soft-error detection, we use FlipIt,
an LLVM-based soft-error injection tool for HPC applications [4]. For these
experiments, we consider the HPCCG application.

We configured FlipIt to inject a single fault (bit flip) in each execution and
we ensure that one fault will be randomly injected in each execution. We allow
faults to be injected in arithmetic and control instructions, but not in pointer
type instructions because inserting bit flips in these instructions often simply
leads to a crash, which is not an interesting case for our evaluation.

In all experiments, HPCCG is run with a single rank, and we deactivate all
compiler optimizations to be able to simply relate the executed instructions to
the source code described in C. Furthermore, to have a comparable distribution
of injected errors in the tests of the RMT techniques and simplify the analysis,
we run the tests in the following way: i) We use the same seed for the random
number generator that is used to define the sequence of errors that are injected
over the different tests for each technique; ii) We configure FlipIt to inject errors
only in the application code (and not in the RMT code that can vary in number
of instructions depending on the optimization that is used).

In a first step, we focus on the HPCCG routine that computes a dot product
between two vectors. This routine is very similar to the one presented in Fig. 1
with local values computed during each iteration of a loop, and the final result
of being a volatile variable. Table 3a presents the results of the test. For each
configuration, 5000 runs of HPCCG have been executed. We identified 5 possible
outcomes for a run: Benign (the execution terminated correctly despite the bit
flip), Error detected (by the RMT technique), Corrupted (the application
returned a wrong result – a SDC occurred), Crashed (for instance due to an
illegal memory access), Timeout (the execution did not terminate).

Several observations can be made based on the results presented in Fig. 3a.
First, it should be noted that HPCCG is rather robust to soft errors injected in
that part of the code since about 30% of the executions lead to the correct results
in all configurations. On the other hand, 66% of the injected errors lead to an



300 D. Pérez et al.

SDC that corrupted the final result of the application with the non protected
version of HPCCG. Our default RMT implementation was able to detect all the
SDCs as expected. When applying the optimizations, it is important to notice
that the RMT version using aggregation was able to detect all SDCs, while 13%
of the executions were corrupted with selective checking (SC). This illustrates
the trade-off that SC provides: a significant performance improvements at the
cost of a reduced error coverage.

Some results presented in Fig. 3a can be a bit surprising at first sight. For
instance, there are a bit more executions that terminate correctly with the
default RMT approach or when the SC optimization is applied. Also, the ver-
sion of RMT with aggregation detects more errors than the version without
optimizations. We found out that all these inconsistencies have the same root
cause. They relate to the case where a corruption leads to access an incorrect
memory address when loading a value of the vectors used as input of the dot
product. Depending on the layout of the data in memory, the incorrect memory
address might be not valid (leading to a crash) or might be a valid address which
contains a value (which might corrupt the result of the computation or not).

Figure 3b presents the results of the tests when we allow bit flips to be injected
in any instruction of the application code. The first thing to observe is that most
of the executions of the non-protected version terminate correctly. This implies
that HPCCG is in general robust to soft errors. We can also notice that in
this case, the SC approach does not experience any corrupted result. The results
with the default RMT approach and with the aggregation optimization show that
many of the benign errors are detected as soft errors. These are not false positive
in the sense that real soft errors were detected, but it is still counter-productive
since executions that would have otherwise terminated correctly got interrupted.
The results obtained with the SC optimization illustrate another advantage of
this approach. Since SC only verifies writes done to volatile variables, it almost
never detects these benign errors, allowing more often the execution to termi-
nate correctly. We also ran tests where the bit flips are only inserted in the
most significant bits. The obtained results are qualitatively equivalent the one
of Table 3b with less benign faults being observed.

Probability of Experiencing a Bit-Flip. The results obtained during our
evaluation illustrate the trade-offs that are obtained with the different RMT
approaches. The SC approach allows reducing the performance compared to the
other approaches. On the other hand, it has a negative impact on the ability
of RMT to detect SDCs. This is a drawback as it provides a weaker guarantee
regarding the validity of the final result of an execution. But it can also be a big
advantage as it much less often interrupts an execution because of a detected
soft error that would not have corrupted the final result.

To have a full comparison of the RMT approaches, we should also take into
account the impact of each approach on the probability to experience a soft error.
The duration of the execution and the total number of instructions executed by
the applications, are two parameters that can influence this probability. From
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this point of view, the SC approach is a clear winner. The results presented in
Sect. 4.2 show the execution with SC can be up to 63% faster than the default
RMT approach. Using the Linux tool Perf, we also measured to total number of
instructions executed during several runs of HPCCG with the three approaches.
We observed that the SC solution reduces the number of instructions to be
executed by about 12% compared to the default approach (while the aggregate
optimization has not impact on this number). A dedicated analysis would be
required to understand the impact of these numbers on the real probability of
experiencing soft errors in HPC applications.

5 Conclusion

The paper studies the use of RMT to detect SDCs in HPC applications. To
improve the performance of RMT, we evaluate two techniques to reduce the
amount of data that need to be exchanged between the replicated threads:
aggregation and selective checking. Our evaluation with representative work-
loads shows that selective checking, which consists in only verifying for correct-
ness the content of variables that can impact the global state of the application,
is a promising solution. When running on a multicore processor that features
SMT threads, it leads to a performance overhead that can be as low as 1.4×
while still ensuring a good error coverage. As future work, we plan to study in
details the impact of these optimizations on the probability of experiencing a
soft error, to better understand the trade-offs that they offer.
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Abstract. This paper compares several fault-tolerance methods for the
detection and correction of floating-point errors in matrix-matrix mul-
tiplication. These methods include replication, triplication, Algorithm-
Based Fault Tolerance (ABFT) and residual checking (RC). Error cor-
rection for ABFT can be achieved either by solving a small-size linear
system of equations, or by recomputing corrupted coefficients. We show
that both approaches can be used for RC. We provide a synthetic pre-
sentation of all methods before discussing their pros and cons. We have
implemented all these methods with calls to optimized BLAS routines,
and we provide performance data for a wide range of failure rates and
matrix sizes.

Keywords: Resilience · Matrix-matrix multiplication ·
Algorithm-based fault tolerance (ABFT) · Residual checking (RC) ·
Silent errors

1 Introduction

Reliable computing has become a key challenge when deploying applications
on large-scale platforms. These platforms are confronted to many errors striking
during execution. These errors are due to the extremely large number of floating-
point operations executed by the parallel applications that are deployed on such
platforms. Indeed, the probability of facing a corrupted floating-point operation
is proportional to the number of such operations that are executed [8]. Even
if each processor exhibits a low individual error rate, the probability of several
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errors striking during the execution of the parallel application becomes very high
with millions of cores running in parallel for a few days, or even hours.

There are very few ways to ensure that a whole application has executed
without error. The only general-purpose method is to replicate the execution
and to compare the results of both executions. If they do not coincide, an error
has been detected, and the application must be executed a third time. To avoid
a-posteriori re-execution, triplication can be enforced, which allows for error cor-
rection in addition to error detection, using a simple majority vote. However,
triplication is even more costly than replication, which already requires half the
resources to execute redundant operations. Fortunately, many scientific applica-
tions heavily rely on scientific kernels from numerical linear libraries, and much
of their floating-point operations are executed within these kernels. For most
linear algebra kernels, application-specific methods have been devised for error
detection and correction, with a much lower cost than replication. The most
prominent application-specific approaches are Algorithm-Based Fault Tolerance
(ABFT) and Residual Checking (RC), which we describe in full details in Sect. 2.
Both ABFT and RC are known to enable error detection, but ABFT has received
much more attention because it is also deployed for error correction. In theory,
ABFT can correct up to k errors with 2k+1 checksums [13,16,17]. However, the
numerical instability of floating-point ABFT currently limits its usage to correct
one or two errors within a kernel.

In this paper, we revisit the Residual Checking (RC) approach, and show
that it can be an efficient alternative to ABFT for error detection and correc-
tion. In particular, we focus on providing a transparent hardened version of some
operation: the API, as exposed to the user, does not change, but the result is
checked (and corrected if needed) before it is returned to the user. This creates a
problem for ABFT, as the efficiency of the technique lies in mixing the user data
and the redundant data used for failure detection and correction (see Sect. 2.2).
RC can be implemented without modifying the API of the original computation
kernel (see Sect. 2.3), which is a key advantage from a software engineering per-
spective. Another drawback of ABFT compared to RC is the lack of flexibility.
By construction, ABFT uses a fixed number of checksums chosen a priori, say
2k + 1, and will fail if more errors than k errors strike during the kernel. On the
contrary, RC adapts the number of verifications on the fly, as a function of the
number of errors found.

We adopt a somewhat narrow focus and only deal with protecting matrix-
matrix multiplication from floating-point errors. Matrix-matrix multiplication is
the archetypal linear kernel and is at the heart of several linear solvers, hence it
is one of the most important kernels to study. Assessing the efficiency of residual
checking for matrix-matrix multiplication will lay the foundations for the study
of a full dense linear algebra library. The major contributions of this paper are
the following:

• A synthetic comparison of several fault-tolerance methods for error detection
and correction in matrix-matrix multiplication, with novel approaches for RC;
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• A publicly-available prototype implementation of all the methods, with calls
to optimized BLAS kernels;

• A comparative assessment for a wide range of failure rates and matrix sizes.

2 Methods

2.1 Replication

The first approach to detect computational errors is also the only systemic app-
roach that can apply to any algorithm: it consists in replicating computations,
and checking that both executions produce the same result. In the context of
mutable data, this also implies to work on a copy of the data to compute, in
order to enable the replicated computation [12]. There are multiple ways to
implement replication: the computations can be executed sequentially, one after
the other, at any level of granularity, or in parallel. Ultimately, the replication
process provides two copies of the output of the computation and these copies
are compared bit-to-bit, to detect errors.

Any error detected can then be resolved with a voting process: more replicas
are computed, and if (at least) two output results converge on a same result,
this result is considered valid. The probability that two computation errors pro-
duce the same result is considered negligible, since errors are supposed to be
independent and identically distributed random variables.

2.2 ABFT

ABFT is an approach introduced in [10], that leverages mathematical properties
of the algorithm to introduce redundancy in the data and thus allows to detect,
and sometimes locate and correct errors during a computation. Applied to the
matrix-matrix multiplication of the C ← AB as an example, where A is n-by-
n and B is n-by-n, the main idea of ABFT is to extend the matrix on which
the operation is applied with checksum vectors that are pre-computed before

the matrix-matrix multiplication. This gives Aextended as
(

A
Ac

)
with Ac =

vT A, Bextended as
(
B Br

)
with Br = Bw where w and v are checksum gen-

erator vectors. Once A and B have been augmented, we perform the matrix

multiplication
(

C C(r)

C(c) C(α)

)
←

(
A

A(c)

)(
B B(r)

)
, and we see that we must

have the following relations

C(r) = Cw and C(c) = vT C and C(α) = vT Cw. (1)

Therefore, a way to check that the entries of C have been correctly computed
is to check that the equalities in Eq. (1) hold. With this scheme, we can, for
example, guarantee to detect any single error in C. (In other words, if no more
than one entry of C is corrupted, then this scheme will detect the error.) Note
that w and v does not have to be vectors, but they can also be block of vectors,
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The whole realm of error correction codes (e.g. Reed Solomon error correction
code) is now at our doorstep since for each row Ci of C, we have computed Ci and
its checksum with respect to w, Ciw, and so not only can we detect errors, but
we can also locate and recover errors. Using Reed Solomon error correction code,
for example, we can detect, locate, and recover k errors with 2k + 1 checksums
(provided that we use an appropriate encoding block of vectors w). However, the
Reed Solomon algorithm is notoriously unstable in finite precision arithmetic [6]
and does not enable one to recover from many errors or to handle long vectors.

For detection, in practice, one row checksum of the form Ciw is often enough
to detect errors in any row of C, Ci. We simply check whether Ciw = C

(r)
i . This

check can fail if the error vector introduced in C is orthogonal to w. However,
this is unlikely. Tolerance of the order of machine precision has to be added to
the check. Indeed, we only intend to detect errors that are larger than the errors
made by the round-off errors of the numerical computation. So we check, for
example, that ‖C(r) − Cw‖2 ≤ 10u‖A‖fro‖B‖fro‖w‖fro, where u is the machine
roundoff and the number “10” is taken arbitrarily [9]. A standard way to locate
errors is to use “coordinate checkpointing”. So if the row checksum C

(r)
i is not

Ciw and the column checksum C
(c)
j is not vT Cj then we conclude that the entry

cij is false. Once an error is located, we can either recover the cij through the
redundancy introduced by the checksum and therefore solving a system of linear
equations with unknown cij , this leads to the method ABFT-solve, or we can,
in the case of matrix-matrix multiplication, simply recompute the entry cij from
the ith row of A and the jth row of B, this leads to the method ABFT-recomp.

One advantage of Reed Solomon is that it enables locating and correcting via
checksum only on the rows or only the columns, while coordinate checkpointing
would need both row and column checksums. For matrix-matrix multiplication,
it is convenient to maintain both checksums, while for other linear algebra oper-
ations, this is not always natural. Now, how to choose v and w? In the case
ABFT-solve, Chen and Dongarra [5,6] showed that taking random matrices
enable to recover the solution with high probability during the linear solve to
recover the corrupted entries. While less critical, it does seem a good idea to also
take random vectors v and w for ABFT-recomp.

As for the overhead, we see that to encode and compute with k checksums
with k � n is O(n3) flops, the cost to detect, locate and recover � errors is
O(n2�) flops. Therefore the cost (in term of flops) of recovery is theoretically
negligible compared to the cost of computation.

2.3 Residual Checking (RC)

A closely related method is RC, which exploits the fact that checking the cor-
rectness of the result of a computation is usually easier than computing it. In
short, still using the C ← AB matrix-matrix multiplication as an example, to
check at low cost whether C is correctly computed, one can compute, on the one
hand, Cw and, on the other hand, A(Bw) and check whether these two vectors
are similar. And, not surprisingly, the two methods ABFT and RC share similar
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characteristics: (1) Low cost, (2) if w is in the nullspace of C − AB, the error
matrix, then we will not detect the errors, however this is unlikely, etc. Hence RC
is very similar to ABFT. Historically RC was introduced with “error detection”
in mind only. So you would perform the computation, use RC to detect errors,
and then redo the computation if any error is detected [14,15]. RC has long
be thought to only be able to detect errors, and not able to locate and correct
errors. For example, Prata and Silva [14] writes: “We left out of our comparison
one aspect where ABFT would do better than RC, namely fault localization and
error recovery, (RC has no such capability).” Actually, in very much the same
way as ABFT, RC is able to detect, locate and correct errors. The two methods
(ABFT and RC) are essentially similar and have the same capabilities.

2.4 Differences Between ABFT and RC

There is a fundamental principle difference between RC and ABFT. Given some
input, an algorithm computes some output such that a relation is true. For exam-
ple, given A, (1) LU factorization: compute P , L, and U such that PA = LU ,
(2) QR factorization: compute Q, R such that A = QR, (3) SVD decomposition:
compute U , Σ, and V T such that A = UΣV T . RC finds a quick way to check
whether this final relation holds. For example, given a vector x, (1) check that
P (Ax) = L(Ux), (2) check that Ax = Q(Rx), (3) check that Ax = U(Σ(V T x)).
If the relation does not hold, then RC has succeeded in detecting an error. If the
relation holds, then RC has succeeded in assessing (with high probability) the
correctness of the result.

On the contrary, ABFT starts with checksums on the initial data, and main-
tains the consistency of the checksums along the algorithm. So the checksums are
being modified as the data is being modified so that current data is consistent
with current checksum. As a side comment, the difference above explains why
that it is easier to derive RC for many more algorithms than for ABFT. (In a few
lines, we gave RC for three algorithms, and for ABFT, we barely explained how
this concretely worked.) However, in the case of matrix-matrix multiplication
and linear algebra in general, once RC and ABFT algorithms are implemented,
the differences are not so clear any longer, and we find that the algorithms are
often very close. We describe the design space as having three dimensions.

Dimension 1: Appending Checksums or Leaving Checksums Separate.
The checksums (for example Ac) can either (case 1ab) be appended to the main
matrix (e.g. as extra rows to A) or (case 1rc) left as separate independent
blocks of vectors. On the one hand, for RC, the checksums are naturally separate
from the matrices. On the other hand, ABFT has been presented with both
possibilities. RC is always 1rc. ABFT can be 1ab (e.g., [2,10]) or 1rc (e.g., [18]).

One advantage of leaving the checksums separate from the matrices is to not
change the data structures of the original (non fault-tolerant) code. This is much
easier to accomplish from a software engineering point of view. One advantage
of appending the checksum is to call kernels only once (on the extended data
structure). The computation on the checksums is then processed at the same
time as the computation on the main matrix. This can be much faster.



308 V. L. Fèvre et al.

Dimension 2: Computing Checksums on Input Data Before Compu-
tation or After. If we compute the initial checksums before the matrix-matrix
multiplication, we call this 2ab. If we compute the initial checksums after the
matrix-matrix multiplication, we call this 2rc. The main distinction between 2ab
and 2rc is not really when we compute checksums, but more whether we “can”
recompute initial checksums after the main operation. Recomputing the initial
checksums after the computation means that we are storing the input data, and
we are not overwriting in the initial data with computation. In Numerical Linear
Algebra, this is a significant constraints since we often have one operand that is
in/out. If we perform 2rc, we must use backup (copy) of all in-out operands.

It seems that, in the literature, ABFT always compute the initial checksums
before the computation. One advantage to compute the checksums after is to
compute as many initial checksums as needed by the number of errors, which
is useful to lower the overhead, and to avoid making any assumption on the
maximum number of errors that will be encountered.

Dimension 3: Detect+Recompute or Detect+ Locate+Lazy-Recom-
pute or Detect+Locate+Solve. Case 3rc: detect errors, and recompute the
whole computation if some errors are detected 3rc. Case 3lo: detect errors,
locate errors and recompute only the corrupted entries (also called lazy recom-
putation in [18].) Case 3ab: detect errors, locate errors and recover the corrupted
entries from the redundant information in the checksum, we call this 3ab.

For 3lo and 3ab, in this paper, the localization is done through “coordi-
nate checkpointing”. 3lo assumes that entries can be recomputed somewhat
easily from only the input data, and maybe some non-corrupted entries. It
is not obvious that there are many kernels for which this is possible. Matrix-
matrix multiplications is one such kernel. For 3ab, assuming that we can locate
the errors, (through coordinate checkpointing, for example,) Chen and Don-
garra [5,6] showed that taking random matrices enable to recover the solution
with high probability during the linear solve to recover the corrupted entries.

Reed-Solomon encoding enables 3ab with either a row checksum or a column
checksum, it does not require both row and column checksum. This is very
useful for some operations. (Not matrix-matrix mutiplication though.) However
the checksum block of vectors v and w are extremely ill-conditioned and leads
to numerically unstable codes. We note that 2ab +3ab is the only way (in this
design space) to overwrite in/out operands during the computation and recover
from errors. All other methods needs to copy and store in/out operands to extra
memory space to be able to recompute from the input in case an error occurs.

Which Dimension Distinguishes ABFT vs RC. Dimension 1: we can dis-
tinguish ABFT and RC by defining ABFT as appending checksums to matrices,
and RC as having checksum separate from matrices. Dimension 2: we can dis-
tinguish ABFT and RC by defining ABFT as computing the initial checksums
before computation, and RC as computing the initial checksums after computa-
tion. Dimension 3: we can distinguish ABFT and RC by defining RC as detect-
ing and maybe locating errors, and following a detection by recomputation, and
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defining ABFT as recovering the corrupted entries, after detection and location,
from the redundant information contained in the checksum.

3 Related Work

Multitudinous papers have been published on replication, ABFT and RC. A
surveys on ABFT is provided in [3]. Due to lack of space, we refer to the extended
version [11] for a more comprehensive overview. We have selected below a small
set of closely related works, which we classify in Table 1 according to the criteria
given in Sect. 2.

Table 1. Taxonomy of related work

Reference 1ab 2ab 3ab 1rc 2rc 3rc 3lo

[10][4]∗ [2]∗ � � �
[14][7] � � �
[1] � � �
[18] � � �

∗errors are failures and therefore the detection and
localization of the error is known

4 Experiments

4.1 Implementations

We implemented variants of all the techniques discussed above. The implementa-
tion is in C, relying on the BLAS kernels for all linear algebra operations (namely
GEMM and GEMV), and each hardened routine provides the same API as the
GEMM routine defined by BLAS, but implements a different error detection and
correction strategy. Here is the list of the six routines that we implemented, and
that we compare in Sect. 4.3:

• NoFT is a reference point, and is a direct call to the GEMM routine provided
by the BLAS library, without any error checking nor correction strategy.

• Replication uses the most simple (and systematic approach): replication, as
described in Sect. 2.1: the GEMM operation is computed twice, then resulting
elements are compared one by one, and if an error is detected, the entire
operation is computed a third time. Elements are then selected by a simple
majority vote, and if no majority can be obtained for some element, the
operation is applied again, until a pair of matching results can be found.
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• ABFT-solve (=1ab +2ab +3ab) is the traditional ABFT method: the input
matrices are copied into larger matrices, that are extensions of the inputs
with a fixed number of column and row checksums. These checksums are
computed from the initial data, and the GEMM operation is applied on the
extended matrix. After it completes, we check the checksums to detect errors.
If errors are detected, a linear system of equations is solved [2,4,13,16,17] to
compute the corrected values, and the resulting matrix is copied in the output
parameter.

• ABFT-recomp (=1ab +2ab +3lo) follows the same strategy as ABFT-
solve to detect errors, but the matrix is extended with a single column and
row as checksums. By crossing the columns in which the row-checksum is
incorrect and the rows in which the column-checksum is incorrect, we extract
a number of suspected wrong results, and we recompute only these elements
from the input data. The result is checked (iterating another step of re-
computation if needed), and copied back into the output parameter.

• RC-solve (=1rc +2rc +3ab) uses the RC to compute the checksums (see
Sect. 2.3): the GEMM operation is computed, and once it is computed, a
single column checksum is generated randomly, and the routine compares
how applying the output of GEMM on it differs from applying the two input
matrices. If the result differs in any element, there is at least an error on
the corresponding row(s). Additional checksums are then generated, until a
system of linearly independent equations can be formed. That system is solved
to correct the errors.

• RC-recomp (=1rc +2rc +3lo) uses the same approach as RC-solve, until
the correction phase is reached. When this is the case (there is at least one row
with errors), a row-checksum is computed (as the column checksum was), and
by crossing the row-checksum errors and the column-checksum errors, we can
approximately locate suspected error locations. These elements of the output
matrix are recomputed from the initial data to patch the result matrix which
is returned by the routine.

4.2 Setup

For introducing errors in the operations, we use a parameter r which is the error
rate of one floating-point operation. We compute the probability for an element
to be erroneous, knowing it is the result of m operations: P = 1 − (1 − r)m and
we modify each element that has been drawn to be corrupted by multiplying the
element by a factor randomly chosen between 0.5 and 1.5, after doing the com-
putation. We first apply this modification on all the elements of the matrix after
the GEMM operation, with m = 2n−1, because there are n multiplications and
n − 1 additions per element when multiplying square matrices of size n. Then,
for the recomputed elements of RC-recomp and ABFT-recomp implemen-
tations, we set m = 2n − 1 for each element that is recomputed from scratch
and we check again the result. For RC-solve and ABFT-solve, m = c2 where
c is the number of corrupted columns in the matrix. Finally for Replication,
m = 2n−1 for each element of every new matrix computed. In each experiment,
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the maximum duration of the hardened operation is bounded by 4 iterations
of the applied check / correct procedure, and if the matrix is still corrupted at
this point, the operation is considered failed. ABFT-solve needs one additional
parameter which is the number of checksums to add to the matrix: we set it to
2 × 2N3r as 2N3r is the expected number of failures during the computation
and we want a margin to tolerate more errors in bad scenarios. If ABFT-solve
cannot solve the system of equations, the operation is considered as failed.

We run the experiments with 16 cores out of a 20-core Intel Xeon CPU
E5-2650 v3 at 2.30 GHz, with 64 GB of memory hosted at the University of
Tennessee. The code is compiled with GCC 9.2.0, and the BLAS kernels where
provided by Intel MKL version 2019.3.199. We evaluate both the sequential
and multi-threaded versions of the algorithms. We run 100 iterations of each
combination of implementations and parameters (the matrix size N and the
error rate r) and we average the execution times of the different parts of the
algorithm. DGEMM is the time spent doing the main operation (and subsequent
DGEMMs for Replication); Check is the time spent computing the checksums
and finding the location of the errors; Correct is the time spent recomputing
or solving the systems depending on the chosen implementation. We report the
execution times when each of the 100 iterations succeeds; otherwise, we report
the number of failed iterations. As a reference, we show the time to execute a
GEMM on a N ×N matrix without fault tolerance nor failure injection under the
name NoFT. The source code of the implementations used for the experiments
is available at https://github.com/vlefevre/abft-rescheck.
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Fig. 1. Sequential (left) and multi-threaded (right) algorithms, error rate of 10−9.

4.3 Results

Figure 1 describes the detailed execution of our 6 implementations for an error
rate r = 10−9 and a varying matrix size N . The first thing to notice is that
replication is always the less efficient technique. Indeed, even without failures,
two full DGEMM operations need to be executed to detect failures. Moreover,
every time there is at least one error during the computation, we need to compute
the resulting matrix a third times to correct it. It is enough to correct in most
cases but the cost of a DGEMM operation, especially in sequential, is much
bigger than the cost of a detection and the ensuing correction at this error rate.

https://github.com/vlefevre/abft-rescheck
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The overheads of detecting and correcting errors for all methods but Repli-
cation remain small, even when the matrix size (thus the number of errors)
increases: there is only a small proportion of the output matrix that is cor-
rupted, and thus the amount of recomputation or the size of the linear problem
to solve to correct are small. Recomputation-based approaches, however, out-
perform significantly system-solving approaches.

The multi-threaded case shows the same characteristics overall, except the
check time of Replication is significantly increased, relative to the duration of
the GEMMs. As checking for Replication is a memory-bound problem, when
all the cores access the memory simultaneously, the memory bus becomes the
bottleneck and limits parallel efficiency. When N increases, both RC-solve and
ABFT-solve are likely not to correct everything within 4 re-executions as the
correction is done by solving linear systems of size c, the number of corrupted
columns, hence with O(c3) flops. For a given error rate, increasing N will increase
both the number of columns and the probability that it is corrupted. Thus the
number of operations involved in the solve phase can quickly grow (c2 compared
to 2n − 1) and require more iterations to finish. ABFT-solve also does not
always correct for small error rates or small matrix sizes (see Table 2). As the
margin on the number of checksums to add is smaller, it becomes easy to have
more errors than what we estimated despite the factor 2 to the expected number
of failed operations. This risk is managed by the RC-solve implementation as
the checksums are computed after failures hit the initial DGEMM operation,
and thus the exact minimal number of checksums is used.

Table 2. Number of failed iterations (over 100) for parameters used in Fig. 1, 2.

Implementation ABFT-solve RC-solve

Error rate r 10−10 10−9 8 × 10−9 10−8 8 × 10−9 10−8

Matrix size N 3000 500 750 1000 1250 3000 3000 3000 3000

Sequential 4 2 23 0 7 1 3 11 78

Multi-threaded 3 2 24 4 3 0 4 15 81

Figure 2 shows the same measurements, but with a fixed problem size (N =
3000) and a varying error rate. The Solve-based approaches do not produce
results at 8 × 10−9 and 10−8 error rates in the sequential case, and ABFT-
solve only produce an output in a very long time in the multithreaded case
with an error rate of 8 × 10−9. As the number of columns including errors gets
closer to N , the size of the system to solve becomes closer to the size of the
original matrix. Since errors can also impact these computations, with a higher
probability, the solve-based approaches fail, leading to repeated iterations of
the correction process. For low error rates, RC-recomp and ABFT-recomp
are the two best performing algorithms and behave very similarly. The main
difference between them is that RC-recomp is easier (1) to set up since the
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Fig. 2. Sequential (left) and multi-threaded (right) algorithms, matrix size 3000.

check is done after the main computation and does not depend on the algorithm
(for detection) and (2) to use as a blackbox for the user with no conversion of
data needed. This last point is important as a user-friendly library would take
as input N ×N matrices and ABFT needs to add some extra steps to compute a
bigger matrix with the checksums in it. The additional memory allocations and
copies can quickly increase the execution time and memory footprint, if only a
few DGEMM operations are done in a row.

However, as the error rate increases, the recomputation-based approaches
start to show slower corrections. This is particularly visible in the multi-threaded
case: Replication eventually outperforms RC-recomp and ABFT-recomp.
To explained this: first, Replication’s efficiency is independent from the error
rate, because errors hit independent elements in the 3 computed matrices; sec-
ond, as the number of errors in the matrix gets closer to N2, the recomputation
algorithm is less efficient than re-doing a fully optimized GEMM: it implements
a parallel loop over the failed elements of sequential dot products. In the multi-
threaded case, this is less efficient than recomputing the entire GEMM.
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Fig. 3. Performance of the algorithms for r = 10−9 (left) and r = 10−8 (right).

We sum up these results in Fig. 3. We represent here the performance of the
operations, as the ratio between 2N3 (the number of floating point operations in
a GEMM) and the execution time of the sequential algorithms. It is clearly visible
that the error rate has no influence on Replication while ABFT-recomp and
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RC-recomp are the two best performing algorithms and their performance is
equivalent. We also see that their performance stays close to that of NoFT as
long as both r and N do not become too big. See the extended version [11] for
a similar figure where the matrix size is fixed and the error rate is varied.

5 Conclusion

In this paper, we have reviewed and compared ABFT and Residual Checking
(RC) for detecting and correcting floating-point errors in matrix multiplication.
On the theoretical side, we have detailed both methods, their variants, their
common characteristics and their differences. On the practical side, we have
implemented two variants for error correction in each method, one based on
solving a small linear system, and one based on recomputing only corrupted
elements, using coordinate checksumming to locate them. An extensive experi-
mental comparison reveals similar execution times for the core of each method,
but ABFT requires to embed the checksum in the user data in order to benefit
from the high performance kernel implementation, while RC does not. The flex-
ibility of RC becomes very important when error rates are high, because RC can
adapt a posteriori to the number of errors encountered within each particular
execution. ABFT requires a fixed number of checksums which will rarely match
the exact number of errors striking in a given run. This overhead is acceptable
when the number of errors is smaller than expected, but it leads to the failing of
the method when the number of errors is higher than this threshold. To summa-
rize, we point out that RC can be extended to correct silent errors in addition
to detecting them, in a flexible and adaptive way, and without the burden of
the extra memory allocation required by ABFT. Future work will be devoted to
extending the approaches to other linear algebra kernels, and to protect from
memory corruptions in addition to floating-point errors.
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Hlavička, J., Maehle, E., Pataricza, A. (eds.) EDCC 1999. LNCS, vol. 1667, pp.
419–436. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48254-7 28

16. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

17. Roy-Chowdhury, A., Banerjee, P.: Algorithm-based fault location and recovery for
matrix computations on multiprocessor systems. Trans. Comput. 45(11), 1239–
1247 (1996)

18. Smith, T.M., van de Geijn, R.A., Smelyanskiy, M., Quintana-Ort́ı, E.S.: Towards
ABFT for BLIS GEMM. Tech. Rep. 76, FLAME Working Note, June 2015

https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1007/3-540-48254-7_28


Complementary Papers



Complementary Papers

The Euro-Par workshops presented in this volume were selected out of submissions
made in February. Given the special circumstances as a consequence of the COVID-19
pandemic, the number of submissions was lower than usual, specially for two of the
workshops. In fact, the final number of papers accepted by their respective program
committees was found to be too low by the Euro-Par workshop organization committee
to deserve their organization at the conference. However, even though these two
workshops were not formally organized, the papers were also presented for the interest
of the audience. We call these papers “complementary papers”.

Here is the list of complementary papers:

– “HugeMap: Optimizing Memory-mapped I/O with Huge Pages for Fast Storage”.
Ioannis Malliotakis, Anastasios Papagiannis, Manolis Marazakis and Angelos Bilas.
Presented at the PARAMO workshop.

– “A New Parallel Methodology for the Network Analysis of COVID-19 Data”.
Giuseppe Agapito, Marianna Milano and Mario Cannataro. Presented at the
PDCLIFES workshop.

– “Analysis of Genome Architecture Mapping Data with a Machine Learning and
Polymer-Physics-based Tool”. Luca Fiorillo, Mattia Conte, Andrea Esposito,
Francesco Musella, Francesco Flora, Andrea Maria Chiariello and Simona Bianco.
Presented at the PDCLIFES workshop.

We would like to thank the organizers of the workshops which attracted and
selected these complementary papers for their work. Their dedication fully contributed
to the overall quality of the scientific program of the Euro-Par workshops. We would
also like to thank the organizers of the hosting workshop ParaMo, who included one of
these complementary papers in their program, providing the authors with the scientific
visibility they deserve. Finally, we would like to express our commitment to providing
all participants, the authors as well as the attendees, with the best environment for their
scientific advances. The committees of these two workshops are detailed below.



Organization

Workshop on Challenges and Opportunities of HPC Storage
Systems (CHAOSS)

Organizing Committee

Michael Kuhn University of Magdeburg, Germany
Kira Duwe University of Magdeburg, Germany
Margaret Lawson University of Illinois at Urbana-Champaign,

USA
Jay Lofstead Sandia National Laboratories, USA
Johann Lombardi Intel Corporation, France

Program Committee

Konstantinos Chasapis DDN, France
Andreas Dilger Whamcloud, Canada
Kira Duwe University of Magdeburg, Germany
Wolfgang Frings Jülich Supercomputing Centre, Germany
Elsa Gonsiorowski Lawrence Livermore National Laboratory, USA
Anthony Kougkas Illinois Institute of Technology, USA
Michael Kuhn University of Magdeburg, Germany
Margaret Lawson University of Illinois at Urbana-Champaign,

USA
Jay Lofstead Sandia National Laboratories, USA
Johann Lombardi Intel Corporation, France
Jakob Lüttgau German Climate Computing Center, Germany
Anna Queralt Barcelona Supercomputing Center, Spain
Yue Zhu Florida State University, USA



Parallel and Distributed Computing for Life Sciences:
Algorithms, Methodologies, and Tools (PDCLifeS)

Organizing Committee

Laura Antonelli National Research Council of Italy, Italy
Salvatore Cuomo University of Naples Federico II, Italy

Program Committee

Andrew Adamatzky University of the West of England, UK
Stefano Berrone Politecnico di Torino, Italy
Mario Cannataro Università Magna Graecia, Catanzaro, Italy
Claudia Di Napoli National Research Council, Italy
Daniela di Serafino Università della Campania “Luigi Vanvitelli,”

Italy
Sébastien Limet Université d’Orléans, France
Lucia Maddalena National Research Council, Italy
Mario Nicodemi Università degli Studi di Napoli Federico II,

Italy
Domenico Talia Università della Calabria, Italy
Nicola Tonellotto University of Pisa, Italy
Carsten Trinitis Technical University of Munich, Germany
José Carlos Valverde University of Castilla-La Mancha, Spain
Pierangelo Veltri Università Magna Graecia, Italy



Analysis of Genome Architecture Mapping Data
with a Machine Learning

and Polymer-Physics-Based Tool

Luca Fiorillo , Mattia Conte, Andrea Esposito, Francesco Musella, Francesco Flora,
Andrea M. Chiariello(B) , and Simona Bianco(B)

Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli,
Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy

{chiariello,simona.bianco}@na.infn.it

Abstract. Understanding the mechanisms driving the folding of chromosomes
in nuclei is a major goal of modern Molecular Biology. Recent technological
advances in microscopy (FISH, STORM) and sequencing approaches (Hi-C,
GAM, SPRITE) enabled to collect quantitative data about chromatin 3D architec-
ture, revealing a non-random and highly specific organization. To transform such
tremendous amount of data into valuable insights on genome folding, heavy com-
putational analyses are required. Here, we study the performances of PRISMR,
a computational tool based on Machine Learning strategies and Polymer Physics
principles, to explore genome 3D structure from Genome Architecture Mapping
(GAM) data. Using such data, we show that PRISMR can successfully reconstruct
the 3D structure of real genomic regions at various length scales, from mega-base
sized loci towhole chromosomes. Importantly, the inferred structures are validated
against independent Hi-C data. Finally, we show how PRISMR can be effectively
employed to explore differences between experimental methods.

Keyword: Chromatin organization ·Machine learning · GAM

1 Introduction

In cell nuclei, chromosomes are organized in a very complex architecture. In recent
years, the three-dimensional (3D) structure of chromosomes has been investigated by
novel, sophisticated technologies. These include sequencingmethods – such as Hi-C [1],
GenomeArchitectureMapping (GAM) [2], SPRITE [3] - able to detect contacts between
pairs of DNA sites genome-wide; microscopy techniques, measuring distances between
loci in specific DNA regions [4, 5]. The huge amount of data produced by all these
technologies has shown that the 3D organization of chromosome, far from being random,
plays a key role for gene activity and transcriptional regulation [6–8]. For instance, it
has been shown that chromosomes segregate in specific territories inside nuclei [9]
and functional loops occur between promoters and enhancers [10]. Also, interactions
are enriched within specific, mega-based sized regions (named topologically associated
domains or, shortly, TADs [11, 12]). At larger scales, higher-order spatial patterns like
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metaTADs [13] or A/B compartments [1] are found and span tens of mega-bases or
entire chromosomes. All these structural features are strongly linked to genome activity
[14–16]. However, many aspects of DNA 3D organization remain unclear and the key
mechanisms leading to the formation of loops, TADs and so on are currently debated.

To explain the chromosome folding patterns in a coherent framework, Polymer
Physics models have been proposed and provided insightful information on chromatin
architecture and its folding mechanisms [17, 18]. Furthermore, their combination with
the above-mentioned experimental data allowed to increase the accuracy of the descrip-
tion of real genomes. On the other hand, heavy computational efforts are needed to
achieve reliable 3D reconstructions [19] and complex computational procedures based,
e.g., on Monte Carlo or Molecular Dynamics (MD) simulations, have been developed
[20–22].

In the present work, we show how the computational method PRISMR (polymer-
based recursive statistical inferencemethod) [21], based on Polymer Physics laws, can be
applied onGAMdata to infer the 3D structure of chromatin.We summarize the backbone
features of the PRISMR algorithm and shortly review its performances when applied on
Hi-C data. Since notable computational power is required to the procedure, as massive
parallel MD simulations are performed, we describe the usage of High Performance
Computing (HPC), involved as in typical other applications [19]. Then, we show how
the method can be generally extended to work with different experimental technologies
and focus on its application on GAMdata [23]. To test the performances of the approach,
we show the results from the model of a 6 Mb locus around the Sox9 gene in mouse
embryonic stem cells (mESC, GAM data from [2]). Overall, the 3D structures derived
by PRISMR successfully reproduce the input GAM data and match independent Hi-C
experimental data [12]. Then, we describe the application of PRISMR on the entire
chromosome 7 in mESC [23] and show how the inferred structure can be employed to
study the relationship of genomic regions of interest with the surrounding environment.
Finally, we briefly discuss how the 3D structures derived in-silico by PRISMR can
be used to benchmark experimental technologies as GAM and Hi-C, highlighting the
potential role that such computational approaches can have in helping the design of
experiments. More generally, in this contribution we highlight how the combination of
Theoretical Physics, Molecular Biology experimental data and powerful HPC resources
allow investigating 3D genome architecture with an increasing level of accuracy [18].

2 The PRISMRMethod and Its Extension for GAM Data

2.1 Overview of the PRISMR Method

The PRISMR method is a computational tool designed [21] to derive the 3D structure
of a genomic locus starting from experimental data containing its structural features
(Fig. 1a). Specifically, PRISMR employs experimental data detecting the pattern of
contacts among DNA sites of the considered locus. To deconvolute the architectural
information encoded in the data and produce physically meaningful structures, PRISMR
is informed with the principles of a Polymer-Physics model of chromatin. Here we use
the Strings&Binders Switch (SBS) model [24], but any other could be, in principle,
employed. The SBSmodel is based on the biological scenariowhere diffusivemolecules,
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as transcription factors (TFs), bind to theDNAstring and drive its folding. It describes the
DNA filament as a self-avoiding walk polymeric chain where diffusive particles called
binders can attach. Binders can only interact with specific beads of the polymeric chain,
known as binding sites, and they can attach tomore than one binding site simultaneously.
In this way, binders allow for the formation of loops between distal polymer sites, driving
the spatial conformation of the chain. In general, different types of binding sites can be
used with homotypic interaction, i.e. binders can only anchor to the cognate binding
sites. The different types of binding sites can be schematically visualized as different
colors and all the same colored binding sites along the chain define a binding domain.
The number of colors of an SBS polymer, the arrangement of binding sites along the
chain and the concentration of their respective binders determine the folding properties
of the polymer model, that is its possible equilibrium 3D configurations [19, 25, 26].
The equilibrium configurations can be employed as proxy for the real conformations of
a genomic locus in nuclei.

Fig. 1. a) Outline of the PRISMR method [21]. Informed with a Polymer-Physics model of
chromatin, PRISMR finds the best polymer to describe a given genomic region. This is done by
a Machine Learning approach, i.e. training the polymer model over specific experimental contact
data of the region, as Hi-C [1] or GAM [2]. b) To use PRISMR on GAM data, an algorithm
simulating the GAM experimental method on 3D polymer structures was prepared. Briefly, cell
nuclei are modelled as spheres, each one containing a 3D structure. A random plane is generated
to simulate a real GAM nuclear profile (NP) for every sphere. Beads inside the simulated NP are
counted and hence the segregation frequencies extracted (see text). Finally, the co-segregation
frequencies whereby two beads were found in the same simulated NP are arranged in the in-silico
co-segregation matrix. Adapted from [23].

Given aDNA locus of interest, PRISMRaims to find the best polymermodel describ-
ing it, that is the best number and arrangements of colors for the SBS polymer chain. The
input of PRISMR is the experimental contact data associated to the locus. Typically, they
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are arranged in a matrix containing the contact frequencies between any pairs of DNA
sites. Using a Simulated Annealing Monte-Carlo procedure, PRISMR scans through
the huge space of all possible SBS polymer models minimizing a cost function H that
measures the difference between the input data and the model contact matrix.

Once the best polymer model is found, its equilibrium 3D structures are obtained
by massive parallel Molecular Dynamics (MD) simulations. Typically, the polymer is
prepared in a SAW state inside a simulation box and binders are randomly placed in
the environment. The simulation is then performed until thermodynamic equilibrium is
reached. This is repeated for a large number (hundreds) of independent polymers, so to
eventually obtain an ensemble of equilibrium 3D structures. The parameters used (such
as the profile of the homotypic bead-binder interaction, the concentration of binders and
binding affinity) are described in classical polymer physics studies [27] and are widely
used in the field [28, 29].

In order to deal with the large number of particles of an SBS system (typically
103 ÷ 104 for a few mega-base sized locus) and to produce a reliable statistical sam-
pling of the configurations space, High Performance Computing (HPC) resources are
needed. To give a sense of the resources involved, a single run with a generic software
optimized for parallel computing (as LAMMPS [30]) requires in general a number of
processors ranging from8 to 64,with a time limit of at least 24–48 h, necessary to achieve
thermodynamic equilibrium. Additionally, as said, about hundred independent runs are
performed to get the final equilibrium ensemble. So, the production of an ensemble of
3D structures through MD simulations is the most computational demanding step and
makes the use of HPC one of the key tools for the overall strategy.

The PRISMR procedure has been proven successful in reproducing Hi-C data [26,
31, 32], in predicting the impact of mutations and structural variants [21, 33] and in
explaining cell-to-cell structural variability as recently detected in microscopy [34]. We
will review in the next sections how PRISMR can work successfully also on GAM
data [23]. We recall that other methods have also been developed to reconstruct 3D
genome structure, e.g. using polymer models informed with epigenetic data [35, 36] or
optimization procedures of restraints given directly by the contact data [37, 38].

2.2 The in-silico GAM Algorithm

As explained above, the cost function of PRISMR compares the input experimental
contact matrix with the matrix of the polymer model. Thus, it requires an algorithm
capable to extract a contact matrix from the 3D structures of a given polymer model
and, specifically, the contact matrix must be of the same kind of the input. Hence, for
the application on GAM data, an algorithm simulating the generation of a GAM matrix
from polymer structures was prepared.

In GAM experiments [2] a random nuclear profile (NP) is cut from each cell of a
population. The genomic content of each NP is then sequenced and all the DNA loci are
counted. A locus caught in a NP is defined as segregated. Hence, the segregation table is
extracted, i.e. a table whereby the loci found for each NP are reported. From this, the co-
segregation frequencies for pairs, triplets etc. of loci in the same NP can be derived. The
pairwise co-segregation frequencies are usually arranged in the co-segregation matrix.
To account for biases as different sequencingmappability, co-segregationmatrices can be
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normalized, e.g. with the linkage disequilibrium normalization D’ [23]. These matrices
can be used as input for PRISMR to find the best polymer structures of a given DNA
region.

In order to adapt the PRISMR procedure on GAM data, we realized an in-silico
version of the GAM pipeline [23]. Precisely, we model cell nuclei as individual spheres
containing a polymer 3D structure (Fig. 1b). Then, a plane with random orientation is
generated in each sphere and all the beads of the polymer distant from the plane less
than a threshold are counted as segregating. This step simulates the NPs extraction and
sequencing. Then, the in-silico segregation table is generated, the co-segregation fre-
quencies are computed and arranged in a co-segregation in-silicomatrix, and eventually
normalized. The threshold distance from the random plane is set according to the thick-
ness of experimental NPs [2] and the sphere radius is fixed to match typical cell radius
estimates taken from mESC cells [2]. In mESC, cell nuclei can be well approximated as
spheres, while, for other cell lines, different nuclear geometries can be implemented.

3 The Sox9 Locus Explored with GAM Data

To test PRISMR on GAM data, we focused on the Sox9 locus in mESC (data from
[2]), i.e. a 6 Mb long region centered around the Sox9 gene (chr11:109–115 Mb, mm9
genome assembly). Specifically, we applied PRISMR on both the co-segregation and D’
normalized GAM data of the Sox9 locus at 40kb resolution (see Fig. 2a, b, top matrices).
The comparison between the PRISMR GAM matrix with the input experimental data
is very good in both the co-segregation and D’ applications (Fig. 2a, b), as witnessed
by the high values of the Pearson (r) and the Stratum Adjusted (scc) [39] correlation
coefficients (r = 0.93 and scc = 0.96 for the co-segregation matrices, while r = 0.86
and scc = 0.97 for the D’ case). These values, together with the visual inspection of
the matrices, show that PRISMR results effective on GAM co-segregation as well D’
normalized data. To test the robustness of the procedure, we compared the polymer
models obtained from the two cases (co-segregation and D’). Importantly, the two best
SBS polymers have the same number of colors and appear to have similar arrangements
of the binding sites (Fig. 2a, b middle panels). Indeed, we computed the genomic overlap
q between the binding domains in the two models, defined as the normalized integral
along the locus of the product of the number of their binding sites. We find that the most
overlapping domains (equally colored in Fig. 2a,b) have an average overlap q = 0.70.
As control, we did the same for bootstrapped binding domains, getting q = 0.47, which
is significantly lower (p-value = 3e−6, Mann-Whitney U test). This implies that the
PRISMR procedure is robust, as it derives compatible polymer models when fed with
raw or normalized GAM data. Also, this indicates that the SBS best polymer can work
as a solid model for the 3D structures of a given genomic region.

We then generated a population with up to 5 * 102 equilibrium configurations for
the polymer model trained on the co-segregation GAM data, using massive parallel MD
simulations.Minute computational details of the simulations can be found in [23]. To test
the accuracy of our GAM-derived polymer structures, we computed the contact matrix
[26] from them, that is the matrix containing the frequencies whereby pairs of beads are
in contact. The contact between two beads is called when their distance is less than a
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Fig. 2. As first application on GAM data [23], PRISMR was run over the data [2] of the Sox9
locus (chr11:109–115 Mb) of mESC at 40 kb. a) PRISMR is fed with the experimental GAM
co-segregation matrix of the locus. In each of these cases, we obtained the best SBS polymer
model (Fig. a, b, middle diagrams) and the corresponding in-silicoGAMmatrix (Fig. a, b, bottom
matrices. On the top the experimental matrix, on the bottom the PRISMR derived matrix. Color
bars indicate the percentiles of the matrices. In the middle, the binding domains found by PRISMR
along the best SBS polymer of the locus are shown. The comparison between the two matrices is
good (r = 0.93 and scc = 0.96), as proof of PRISMR effectiveness. b) Same as in panel a), but
the input experimental matrix is the D’ normalized [2] GAMmatrix of the Sox9 locus. Again, the
comparison between experiment andmodel is nice (r= 0.86 and scc= 0.97). The binding domains
found by PRISMR in this case (middle) and those found in the co-segregation case (panel a) have
an average overlap q = 0.70 (see text). This is significantly higher than a random control case
(p-value 3e−6, Mann-Whitney U test), meaning PRISMR inference is very robust to the input
data. c) To further test the solidity of PRISMR, we considered the 3D structures derived from
the co-segregation GAM matrix and extracted an in-silico Hi-C matrix from them (top), using
an algorithm developed in [26]. We compare this matrix with independent Hi-C data of the same
locus [12] (bottom). Strikingly, we get good similarity (r = 0.90 and scc = 0.51). Adapted from
[23].
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threshold [26]. Such in-silico contact matrix is compared with completely independent
Hi-C data [12] for the same Sox9 genomic locus in mESC, at 40 kb resolution. The
comparison reveals good agreement (Fig. 2c), with r= 0.90 and scc= 0.51. This result
further supports the robustness of our computational approach when used on GAM data
and, importantly, supports the accuracy in the description of the Sox9 locus from the
produced 3D structures.

4 The Chromosome 7 Explored with GAM Data

Here, we show the application of PRISMR trained on GAM data for the entire chro-
mosome 7, in mESC (data from [2]). We used D’ GAM data at 250 kb resolution. In
line with the previously discussed results, the experimental D’ (Fig. 3a, top) and the
PRISMR in-silico (Fig. 3a, bottom) matrices are similar, with r = 0.67 and scc = 0.96,
showing that PRISMR achieves good results even for a system with higher complexity
than a locus. As before, from the best SBS polymer (Fig. 3a, middle panel), a popula-
tion of 5 * 102 equilibrium 3D configurations was derived by use of MD simulations
[23]. In Fig. 3b an example of 3D configuration of chromosome 7 is shown, colored
according to the color scheme reported in Fig. 3a. From the population of 3D structures,
relevant information about specific loci can be extracted, such as the relative location of
biologically interesting regions with respect to the architecture of the overall chromo-
some. In this way, it is possible to reveal systematic tendencies to localize in peripheric
or internal positions and, therefore, the possibility to form contacts with other chro-
mosomes. Knowing the preferred contact pattern can be fundamental to understand the
impact of mutations occurring on the studied region. We performed this analysis for the
mouse orthologue of the human 16p.11.2 locus (chr7: 133.84:134.24 Mb, mm9 genome
assembly), which is an interesting region for biomedicine since its mutations (as dupli-
cations or deletions) have been associated to the autism disorder [40, 41]. In Fig. 3b
the 16p.11.2 locus is marked in red and appears to localize in a peripherical position.
To quantitatively understand the preferential localization of the 16p.11.2 locus across
all the polymer structures, we computed the distribution of the distance (r) between the
locus center of mass and the center of mass of the whole chromosome. Specifically,
working with a 250 kb resolution, we took the center of mass of a 2 Mb segment around
the 16p.11.2 locus (chr7:133–135 Mb, mm9 genome assembly). Then we normalized
dividing by the gyration radius of the chromosome (location ratio r/Rg, Fig. 3c). A
location ratio larger than 1 indicates a peripheral position, while a value lower than 1
would imply a more internal position inside the chromosome structure. In Fig. 3c we
show the distribution of location ratios obtained from the population of structures. We
compare against a control case computed for other 300 random loci, all 2Mb sized. The
two distributions are not compatible (p-value= 0.01, Mann-Whitney U test), as the his-
togram of 16p.11.2 is shifted toward higher values. This suggests that the 16p.11.2 tends
to be more peripheral than the control. Furthermore, in 10% cases the location ratio of
the 16p.11.2 is greater than 1.5, i.e. located in the very periphery of the chromosome.
This suggests such locus can give raise to important and functional contacts with other
chromosomes nearby. Deeper studies as this, with PRISMR used on increased resolved
data, could lead to the rigorous tracking of the contact network for the 16p.11.2. Finally,
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Fig. 3. The PRISMR method was used on the D’ normalized GAM data [2] of the chromosome
7 in mESC [23] at 250 kb resolution. a) The input experimental matrix of the chromosome is
compared against the PRISMR one. Visually and quantitatively they are similar to each other (r
= 0.67 and scc = 0.96). In the middle, the binding domains found along the polymer model of
the chromosome are reported. b) An example of 3D structure inferred by PRISMR is shown. The
polymer is colored according to the bar in panel a), under the top matrix. In red, a 2 Mb region
(chr7:113–135Mb) containing the mouse orthologue of the human 16p.11.2 locus (chr7:133.85–
134.24 Mb). c) An example of usage of the PRISMR derived 3D structures. The distribution
(blue) of the location ratio r/Rg (see text) of the 16p.11.2 mouse orthologue locus across all
PRISMR structures is plotted against a control distribution (gray), showing the location ratio for
300 randomly chosen loci of the same size. The distributions are not compatible (p-value = 0.01,
Mann-Whitney U test), so that the 16p.11.2 location ratio results shifted toward higher values,
indicating more likelihood to be peripheral in the chromosome architecture than the control.
This suggests the 16p.11.2 mouse orthologue can establish significant contacts with adjacent
chromosomes. Adapted from [23]. (Color figure online)

we note that for both the control case and the specific 16p.11.2 locus, the ratio between
standard deviation and the average value is rather high (approximately 36%), hinting
that there is a significant structural variability in the conformations. This is in agreement
with recent experimental findings highlighting the high degree of structural variability
of specific loci among different cells [4, 34, 42].
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5 PRISMR-Derived Structures to Compare Different Technologies

In this last section,wecompare the results of thePRISMRapproachondata fromdifferent
experimental technologies. To this aim, we consider the ensemble of 3D structures of the
Sox9 locus inferred by PRISMR fromGAM data [23] and the ensemble of 3D structures
of the same locus derived from Hi-C data in another study [26]. The two in-silico
populations of structures can be compared rigorously and could be used to understand
the differences between the Hi-C and GAM technologies in detecting information about
DNA 3D organization [43].

Fig. 4. The structures derived byPRISMRcanbe interestingly employed to compare experimental
technologies, as Hi-C [12] and GAM [2]. a) Examples of 3D structures for both the Hi-C and
GAM derived cases are shown. Structures are colored according to bar in the bottom, which
follows the TADs detected in [12]. These examples of configurations are visually comparable to
each other. b) The distribution of the gyration radius across the 3D structures is computed. The
GAM distribution (red) and the Hi-C distribution (blue) have the same shape, yet the former is
shifted to the left, suggesting higher average compaction. Interestingly, such difference could be
explored to understand if it reveals differences in howHi-C andGAM«see»DNA 3D organization
[43]. Adapted from [23]. (Color figure online)

For instance, given the 3D structures from Hi-C and GAM, we can compare their
geometry by computing the average distance matrix, containing the average Euclidean
distances between each possible pair of polymer beads. Comparison between the Hi-C
and GAM derived distance matrices reveals good agreement, with r ~ 0.95 and scc ~
0.60. Conversely, intrinsic differences between the technologies can lower the agreement
between the inferred structures at deeper detail than the average distances and could be
further explored [43]. In Fig. 4a we show examples of structures taken from the two
ensembles and they look, overall, qualitatively similar. The distributions of the gyration
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radius are quite similar to each other too (Fig. 4b), although GAM structures exhibit
slightly lower values.

6 Conclusions

We have shown that PRISMR, a Machine Learning computational method that com-
bines Polymer Physics and data from different experimental methods, can be effectively
employed to infer the possible 3D structures of real genomic regions. Among the possi-
ble datasets today available, this can be achieved using Genome Architecture Mapping
(GAM) data, a recent technique based on sectioning cell nuclear profiles and sequenc-
ing their genomic content [2]. We have described the application of PRISMR on GAM
data for a 6 Mb locus in mouse embryonic stem cells [2] and showed that PRISMR
successfully reproduced the input data. Furthermore, the GAM-derived 3D structures
are then used to generate an in-silico contact matrix which results compatible with inde-
pendent Hi-C data [12], supporting the generality and robustness of the computational
approach. Next, we showed that the procedure can be extended to study systems with
higher complexity as entire chromosomes. So, we generated a population of structures
describing chromosome 7 using again GAMdata in mESC [2]. Taking advantage of that,
we studied the radial position of the mouse orthologue of the 16p.11.2 locus and found
a general trend to localize in the peripherical region of the chromosome, with possible
implications on its regulation. Finally, we tested the robustness of the 3D reconstruction
by comparing the structures inferred fromGAM [2] and Hi-C data [12] of the Sox9 locus
and found that both models yield similar results. Differences in the polymer population
likely reflect intrinsic differences between the two experimental technologies [43].

The perspective is that sophisticated computational tools combiningMachine Learn-
ing, Polymer Physics and massively parallel Molecular Dynamics simulations, such as
the PRISMR method, will become more and more effective to interpret the constantly
increasing amount of data generated by experimental technology, shedding light on the
mechanism regulating genome folding.
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Abstract. Coronavirus disease (COVID-19) outbreak started at Wuhan,
China, and it has rapidly spread across the world. In this article, we present
a new methodology for network-based analysis of Italian COVID-19 data.
The methodology includes the following steps: (i) a parallel methodology
to build similarity matrices that represent similar or dissimilar regions
with respect to data; (ii) the mapping of similarity matrices into networks
where nodes represent Italian regions, and edges represent similarity rela-
tionships; (iii) the discovering communities of regions that show similar
behaviour. The methodology is general and can be applied to world-wide
data about COVID-19. Experiments was performed on real datasets about
Italian regions, and they although the limited size of the Italian COVID-19
dataset, a quite linear speed-up was obtained up to six cores.

Keywords: COVID-19 · Network analysis · Parallel computing

1 Introduction

The global pandemic is caused by a new coronavirus named Severe Acute Respi-
ratory Syndrome CoronaVirus 2 (SARS-CoV-2) [16], which was first discovered
in December 2019 in China [14]. In six months, COVID-19 has spread to more
than two hundred countries, infected millions of people and it caused about
tens of millions of deaths. COVID-19 has become a global pandemic not only
because SARS-COV-2 is new without an effective treatment, but also because
it is transmissible from person to person. On March 12, 2020, the World Health
Organization (WHO) announces COVID-19 outbreak as a pandemic.

COVID-19 has been recognized in Italy starting from January 31, 2020, [7].
The spread of the disease started from the northern regions of Italy, Lombardy
and Veneto on February 21, 2020. From the northern regions of Italy, the disease
spread very quickly to the nearest regions and then to the rest ones.
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The aim of this study consists of providing a network-based representation of
the behaviour of Italian regions with respect to COVID-19 outbreak. To do this,
we design an analysis pipeline to model Italian COVID-19 data, daily provided by
the Italian Civil Protection, as networks and to perform network-based analysis.
We collected data in the period from February 24th to June 7th, 2020. At first,
for each type of data, we evaluate the similarity among pair of regions by using
a statistical test, i.e. Wilcoxon Sum Rank Test, and according to this, we built
similarity matrices (one for each Italian COVID-19 data measure released by
Italian Civil Protection). To improve the computation of the similarity matrices,
we implemented a parallel methodology. The parallelization of the similarity-
matrices calculation is a problem of allocating independent tasks to parallel
processors.

In literature, different works recur to network-modelling to analyze COVID-
19 data, and most of them recur to network-based representation of data for the
application of predictive models. For example, Reich et al. [11] implemented the
COVID-19 spread by using SEIRS (Susceptible-Exposed-Infectious-Recovered-
Susceptible) agent-based model on a network; Kuzdeuov et al. [6] implemented
a network-based stochastic epidemic simulator that models the movement of a
disease through the SEIR states of a population; Kumar [5] presents a network-
based model for predicting the spread of COVID-19.

To the best of our knowledge, our work is the first study that provides a
network-based representation and visualization of COVID-19 data at the regional
level and applies network-based analysis to discover communities of regions that
show similar behaviour by using a parallel methodology.

The first step of the methodology involves the calculation of the similarity
matrix between each pair of regions. This is an easy target for coarse-grained
parallelization since all elements of the similarity matrix are independent. We
obtain the tasks by considering the input data as a matrix An×m with n rows
and m columns, from which to extract the squared-blocks SB (i.e., squared
sub-matrices between pair of regions) to compute the similarity matrices.

The second step consists in converting the SBs in a network where the nodes
represent the Italian regions, and the edges connect statistically similar regions.
Finally, we extracted subgroups of regions that form communities based on
similarity point of view. The proposed methodology is targeted for multiple
CPUs/Cores shared-memory machines.

The main contributions of the paper are: i) a parallel preprocessing method-
ology to improve the multiple pair-wise comparison between Italian regions, ii)
a network-based representation of COVID-19 diffusion similarity among regions
and, iii) a graph-based visualization to underline similar diffusion regions, that
have a similar diffusion pattern of the disease.

The rest of the paper is organized as follows: Sect. 2 discusses the background
on community detection, Sect. 3 presents the implemented pipeline to analyze
Italian COVID-19 data, Sect. 4 discusses the results. Finally, Sect. 5 concludes
the paper.
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2 Background

As a modelling framework, the complex network model has been applied in dif-
ferent fields such as biology, computer science, communication. Once modelled,
the network is analysed using some of the many algorithms designed for graph
mining. In general, the networks are featured by a heterogeneous structure with
specific properties. In particular, the structure presents a heterogeneous distri-
bution of edges that identified the presence of the community. A community
presents a group of nodes high densely interconnected respect to the rest of
the network [4]. Regardless of the nature of the network, community conveys
very important information for the understanding of structural properties. So,
community detection in networks is one of the most popular topics in network
analysis. In literature, there are many different community detection algorithms.

For example, WalkTrap [10] is a hierarchical clustering algorithm that applies
a distance measure based on random walks. Initially, WalkTrap computes the
distances between all adjacent nodes in the network. Then, it starts with a
node and randomly selects a neighbour of the current node; it merges them in
a community, and it updates distances between communities. The idea is that
short random walks tend to stay in the same community.

MarkovCluster algorithm [13] works by simulating a stochastic (Markov) flow
in a weighted graph, where each node is a data point, while the adjacency matrix
stores the edge weights.

Fast Greedy algorithm [2] uses a basic greedy approach [15] starting by single
nodes and it joins pairs of ones to form communities.

Louvain [1] includes a community aggregation step to improve communities
detection process. The algorithm joins a node with each one of its neighbours
community according to the increasing of modularity, otherwise the node stays
in its original community.

Spinglass [12] algorithm is based on physical spin glass models. The algorithm
aims to find ground state of a spin glass model on the basis that the edges should
connect nodes of the same spin state.

3 Parallel Analysis Pipeline

We designed the analysis pipeline with the goal to investigate clusters of Italian
Regions with similar behaviour with respect to data provided by the Italian Civil
Protection.

The analysis pipeline includes the following steps:

1. Building of similarity matrix. In the first step, the similarity matrix is built.
The matrix enters the similarity among pairs of regions respect to an Ital-
ian COVID-19 data measure. The similarity is computed by performing the
Wilcoxon Sum Rank statical test. Thus, the (h, k) value of the similarity
matrix M for data A, e.g., Intensive Care data, is the p-value of statistical
test obtained by applying the test on the Intensive Care measures of region
h with respect to region k. Lower p-value implies that regions are dissimilar
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with respect to that measure. Otherwise, higher p-value implies that regions
are similar with respect to that measure. We used the significance threshold
of 0.05, thus matrices report only the p-values such that: p-values >= 0.05,
while p-values < 0.05 are mapped to zero.

2. Mapping similarity matrices to networks. The second step consists of the
building networks starting from the similarity matrices. We map each matrix
M(h, k) to a network N, where nodes represent the Italian regions and an edge
connects two regions (h, k) if the p-value in the similarity matrix is greater
than the significance threshold of 0.05. Edges are weighted with the p-value.

3. Community detection. The third step consists of the detection of communities
on the network by applying an appropriate community detection algorithm.
For each network, we extracted subgroups of regions that form a community
on the basis of similarity point of view.
Figure 1 shows the main steps of the parallel analysis pipeline.

Fig. 1. The main steps of the parallel analysis pipeline.

4 Results

We applied the designed pipeline to analyze the Italian COVID-19 data by con-
sidering the period from February 24 to 7 June.

4.1 Input Dataset

The present analysis was carried on the Italian dataset on COVID-19 available at
the https://github.com/pcm-dpc/COVID-19 database, provided by the Italian
Civil Protection. The dataset consist of the following data collected daily:

– Hospitalised with Symptoms, the numbers of hospitalised patients that
present COVID-19 symptoms;

– Intensive Care, the numbers of hospitalised patients in Intensive Care Units;
– Total Hospitalised, the total numbers of hospitalised patients;
– Home Isolation, the numbers of subjects that are infected and in isolation at

home;
– Total Currently Positive, the numbers of subjects that are coronavirus posi-

tive;

https://github.com/pcm-dpc/COVID-19
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– New Currently Positive, the numbers of subjects that are daily coronavirus
positive;

– Discharged/ Healed the numbers of subjects that are healed from the disease;
– Deceased, the numbers of dead patients;
– Total Cases, the numbers of subjects affected by COVID-19;
– Swabs, the numbers of swab test carried on positive subjects and on subjects

with suspected positivity.

The data are daily provided for each Italian region.

4.2 Parallel Building of Similarity Matrices

In order to build similarity matrices for Italian COVID-19 data, we performed
the Wilcoxon Sum Rank Test. The analysis is performed by using R software
[8]. We performed the Wilcoxon test to compute a pair-wise comparison among
regions with the goal of evidence statistically similar distributions among them.
The pair-wise similarity computation can be executed in parallel since it is an
embarrassingly parallelizable task. The problem can be defined as follows: given
a matrix A(n×m) with n rows and m columns, where each elements is denoted
as aij with 1 ≤ i ≤ n and 1 ≤ j ≤ m. The matrix A is virtually split in p
Square-Blocks SB, where p is the number of available cores, and it is used to
balance the workload among the processors/cores available. A SB is built for
each couple of regions, and for all the available COVID-19 data (Hospitalised
with Symptoms, Intensive Care data, Total Hospitalised, Home Isolation, Total
Currently Positive, New Currently Positive, Discharged/Healed, Deceased, Total
Cases, Swab). In particular, the main steps necessary to build the similarity
matrices are:

1. Partitioning the matrix A in p SquareBlocks SB, to balance the workload
among the cores/CPUs available.

2. create independent threads whom is assigned a SB, so that each slave can
independently compute its part of the similarity matrix;

3. each computed SB is added to the similarity matrix.

The parallel methodology is currently implemented as a multi-threaded
Python application using the threading library. The experiments were performed
on a workstation equipped with a Pentium i7 2.3 GHz CPU, 16 GB RAM and
a 512 GB SSD disk.

The speed-up (S) is defined as the ratio of the time taken using a single
processor (T (1)) over the time measured using n processors (T (n)) (see Eq. 1).

S(n) =
T (1)
T (n)

(1)

Figure 2 reports the speed-up obtained by analyzing italian COVID-19 data
using 1, 2, 4, and 6 cores, respectively.

Analyzing Fig. 2, it is worth noting that the speed up tends to decrease by
increasing the number of computational cores. This is due to the low volume of
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Fig. 2. Figure shows the speedup obtained by the proposed methodology using 1, 2,
4, 6 cores. Blue line represents the linear speed up, whereas the orange line indicates
the speed up of the proposed COVID-19 analysis pipeline. (Color figure online)

available COVID-19 data to analyze; in fact, increasing the number of computa-
tional cores, the time spent to communicate and synchronize between computa-
tional cores, is more expensive than the time necessary to perform computation,
leading to low values of speed-up.

4.3 Parallel Mapping Similarity Matrices to Networks

The nodes of the networks are the Italian regions, and the edges link two
regions (nodes) with similar trend according to significance level (p-value >
0.05) obtained from Wilcoxon test, otherwise (p-value < 0.05) there is no con-
nection among nodes. The network analysis is performed in parallel by using the
igraph library [3]. Results show that according to the type of data, a significant
difference exists (p-value less than 0.05) among some regions while for others, it
is possible to highlight statistically similar distributions.

4.4 Community Detection

With the goal to identify which regions form a community from the similarity
point of view, we applied Walktrap community finding algorithm [10] on the
networks, to identify densely connected subgraphs. The extracted communities
from Italian COVID-19 networks in the observation period (from February 24th
to June 7th, 2020) are reported in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
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Fig. 3. Communities in Hospitalised with Symptoms Network.

Fig. 4. Communities in Intensive Care Network.

Fig. 5. Communities in Total Hospitalised Network.
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Fig. 6. Communities in Home Isolation Network.

Fig. 7. Communities in Total Currently Positive Network.

Fig. 8. Communities in New Currently Positive Network.
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Fig. 9. Communities in Discharged/Healed Network.

Fig. 10. Communities in Total Cases Network.

Fig. 11. Communities in Deceased Network.
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Fig. 12. Communities in Swabs Network.

The results highlight different community structures consisting of groups of
regions with similar trends with respect to different data. In fact, each network
related to different Italian COVID-19 data presents different detected communi-
ties. Furthermore, the regions that form the communities vary according to the
diverse data. For example, Lombardia forms a single community in Hospitalised
with Symptoms Network (Fig. 3), Total Hospitalised Network (Fig. 5), Total Cur-
rently Positive Network (Fig. 7), New Currently Positive Network (Fig. 8), Dis-
charged/Healed Network (Fig. 9). Otherwise, in Intensive Care Network (Fig. 4)
and Swabs Network (Fig. 12), Lombardia forms a community together with
Veneto. In Home Isolation Network (Fig. 6), a community is composed by Lom-
bardia, Emilia, Marche. In Total Cases Network (Fig. 10) and Deceased Network
(Fig. 11), Lombardia forms a community with Lombardia, Emilia, Marche and
Veneto. This means that the Italian regions behaved differently with respect to
ten different data provided by civil protection. Further analysis about commu-
nities in Italian COVID-19 data and their temporal evolution can be found in
[9], where a sequential version of this methodology has been used.

5 Conclusion

We proposed a new parallel methodology for network-based representation of
COVID-19 similarity among regions and theri graph-based visualization, with
the aim to underline similar diffusion regions. We identified similar Italian regions
with respect to the available COVID-19 data, and we mapped these ones in
different networks. Finally, we performed a network-based analysis to discover
communities of regions that show similar behaviour. The experiments performed
on real datasets show good speed-up. As future work we plan to implement an
R package that incapsulates the presented pipeline.
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Abstract. Memory-mapped I/O (mmio) is emerging as a viable alter-
native for accessing directly-attached fast storage devices compared
to explicit I/O with system calls. Mmio removes the need for costly
lookups in the DRAM I/O cache for cache hits, as they are handled in
hardware via the virtual memory mechanism. In this work we present
HugeMap, a custom mmio path in the Linux kernel that uses huge
pages for file-backed mappings to accelerate applications with sequen-
tial I/O access patterns or large I/O operations. HugeMap uses huge
pages to reduce CPU processing in the kernel I/O path compared to
regular mmap. We explore the benefits and trade-offs of huge pages in
HugeMap using microbenchmarks, IOR, and an in-house persistent key-
value store designed for mmio. Our experiments show up to 3.7× higher
throughput and up to 4.76× lower system time, compared to regular page
configurations.

Keywords: Memory-mapped I/O · mmap · Huge pages · Fast storage

1 Introduction

Today, the common approach to access persistent data (e.g., a file or device) is to
use read/write system calls. To improve I/O latency and throughput, the Linux
kernel uses DRAM caching in the form of a page cache. In addition, applications
often employ user-space DRAM caches that allow for custom policies and reduce
system call overead, which can further increase performance.

Another approach to access persistent data is to use memory-mapped I/O
(mmio) i.e., Linux mmap. The user can map a file into the process virtual address
space. If the requested page is not mapped, a page fault occurs, the kernel
allocates a free page, reads the data from the device or file, and updates the
page table. The user can access data using regular load/store instructions. Under
memory pressure, the kernel evicts I/O pages to reclaim DRAM space.
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c© Springer Nature Switzerland AG 2021
B. Balis et al. (Eds.): Euro-Par 2020 Workshops, LNCS 12480, pp. 344–355, 2021.
https://doi.org/10.1007/978-3-030-71593-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71593-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-71593-9_27


Optimizing Memory-Mapped I/O with Huge Pages for Fast Storage 345

Mmio provides several benefits compared to explicit I/O, e.g., read/write
system calls. With explicit I/O, every I/O operation, including hits, requires an
explicit cache lookup which introduces CPU overhead, even if the cache is main-
tained in user space [6]. On the other hand, mmio removes cache lookups for
hits. In this case, if a page is cached, a valid translation in the page table exists
and the cache lookup is handled in hardware by the Memory Management Unit
(MMU). Additionally, mmio allows for application-specific optimizations. It can
remove the serialization and deserialization in the common path: Applications
access data using load/store instructions and this facilitates using the same for-
mat for both in-memory and on-device data. Furthermore, it eliminates memory
copies between user and kernel space as opposed to system calls. Given these
advantages, there are several attempts to use mmio in data intensive applica-
tions [10].

A disadvantage of mmio is that it produces small-sized I/Os to the under-
lying storage devices. This stems from the fact that the default page size is 4
KB. This significantly reduces I/O performance for sequential accesses. In addi-
tion, although this is not a significant issue for random accesses [10], being able
to issue large I/Os can still improve performance by reducing overheads in the
kernel I/O path. To generate large write I/Os, Linux tries to merge smaller
I/Os for consecutive device blocks into larger requests, which incurs CPU over-
head. In particular, many HPC applications are designed to issue large I/Os. In
these cases, the 4 KB page granularity introduces overhead due to the increased
number of page faults.

In this paper, we present HugeMap, a custom mmio path in the Linux ker-
nel that uses huge pages for file-backed mappings. Our goal is to generate large
I/Os where possible and accelerate sequential accesses. Today, x86 64 processors
support both 2 MB and 1 GB huge page sizes. In the rest of this paper we con-
sider only huge pages of size 2 MB, as this page size is enough to achieve peak
device throughput. Currently, Linux supports huge pages only for anonymous
mappings (i.e., not backed by a file or device), which are mainly used for mem-
ory allocation (i.e., malloc) [2]. We extend the mmio path with a preallocated
buffer of huge pages used only for file-backed mappings, including optimizations
for prefetching and fault-around operations. Additionally, we remove merges and
complex asynchronous write-backs in the write path. Thus, the CPU processing
needed in the common path is reduced, as we show in our evaluation. Our opti-
mizations in the write path also benefit the msync system call that synchronizes
the memory with the device for file-backed memory mappings. Finally, using
huge pages reduces TLB pressure. Huge pages require a single TLB entry for a
2 MB contiguous memory area, whereas the same memory area would require
512 TLB entries of 4 KB small pages. This is an important effect as TLB size
does not increase proportionally with DRAM size.

We evaluate HugeMap using microbenchmarks, IOR [8], and Kreon [10], an
in-house persistent key-value store. Our results show that HugeMap achieves
up to 54% and 3.7× higher throughput for sequential reads and writes respec-
tively, relative to the corresponding regular page configurations.
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2 Background

Linux Huge Pages: The Linux kernel offers two distinct alternatives for huge
pages: transparent huge pages (THP) and HugeTLB pages. THP [14] uses sets of
512 sequential, 4 KB pages which are asynchronously and aggressively promoted
to a 2 MB huge page by the khugepaged kernel daemon. Under conditions of
memory pressure, huge pages are demoted back to sets of 512, 4 KB pages and
memory compaction is performed. The behaviour of khugepaged with respect
to page promotion, demotion, and scanning of base page sets, as well as the
activation or deactivation of THP are controlled via the sysfs pseudo-filesystem.
THP is currently only supported for anonymous mappings and tmpfs/shmem,
therefore, we cannot directly use this mechanism over an underlying device/file.

Upon a page fault in the Linux kernel, the function handle mm fault is central
to the fault handling process. In the Linux kernel, a module can register a custom
page fault handler for a specific Virtual Memory Area (VMA). This is done
through the virtual memory operations struct (vm operations struct), a member
of the vm area struct (virtual memory area struct). The vm operations struct
contains a function pointer field for handling huge page faults. The Linux kernel
calls this handler for huge page faults only in the case where THP is enabled.
To bypass these kernel restrictions, THP is activated with the intent of setting
the necessary flags for our huge page fault handler to be called; however, huge
pages are explicitly allocated by HugeMap through the alloc pages function for
the DRAM page pool. Therefore, the huge pages allocated by HugeMap are
not actually handled by khugepaged, which only scans sets of 4 KB pages; all
huge page operations, such as evictions, swaps, and write-backs are handled by
HugeMap.

HugeTLB pages [13] are anonymous huge pages residing in kernel space,
in a separate pool. These pages must be statically allocated by the user via the
HugeTLB pseudo-filesystem (hugetlbfs). A user with the necessary privileges can
then mount these pages on a pseudo-filesystem of type hugetlbfs with the mount
command and use them with mmap. Due to their static and predefined nature,
applications need to be purposely optimized to efficiently use HugeTLB pages.
Additionally, as HugeTLB pages only use anonymous mappings and cannot be
swapped out under memory pressure, they are not well suited for data intensive
applications over fast storage devices.

FastMap: FastMap [11] is an optimized mmio path in the Linux kernel that
provides a scalable manner to access fast storage devices in multi-core servers. In
order to achieve scalable performance, FastMap uses three main optimizations:
(1) It maintains clean and dirty pages in separate per-core data-structures, (2)
it uses full reverse mappings to keep track of which page tables map a specific
page, and (3) it provides a dedicated DRAM cache for increased scalability and
to reduce interference with the Linux page cache. FastMap supports only 4 KB
pages. HugeMap extends FastMap to use 2 MB pages and also provides specific
optimizations for huge pages.
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3 Design

In this section we outline the design of HugeMap, which creates a custom mmio
path in the Linux kernel from the user down to the device. We implement
HugeMap as a dynamically loaded kernel module, operating transparently to
the user, either directly over the device, or over an underlying filesystem. This
is determined at load-time, through the ioctl interface.

HugeMap uses a pre-allocated and configurable in size pool of huge DRAM
pages (2 MB). To avoid interfering with the Linux kernel page cache, HugeMap
maintains a separate memory pool. To provide an efficient page allocation
scheme, we use per-core free lists. When the local free list is empty, we steal
an empty page from another core. We always return a page to the free-list from
which we originally allocated it. Similar to the Linux kernel page cache, we use
a radix tree to keep track of pages that are cached by HugeMap. This radix tree
contains both clean and dirty pages, provides lock-free lookups by using Read
Copy Update (RCU), and requires locking for updates.

Furthermore, we keep dirty pages in a separate red-black tree, sorted by page
device offset. To separate metadata for dirty pages, we require that a page fault
occurs for every write in a read-only page. To achieve this, regardless of the user
assigned mmap flags, we create read-only mappings in the page table. In the case
of a write, an additional page fault occurs that marks the page dirty and inserts
it into the red-black tree. In the case where the first access to a page is a write,
for optimization purposes we combine these steps and avoid the additional page
fault. Keeping the dirty pages sorted in a separate data structure allows us to
have efficient msync and write-back mechanisms.

When there are no free pages for allocation to serve a page fault, an eviction
occurs. In this case we free only clean pages. We have to update the page table,
invalidate the associated TLB entries and free the page. It is also necessary to
periodically write-back dirty pages to the underlying file/device, so as to have
clean pages available to serve page faults. In HugeMap, the write-back converts
a dirty page to a clean page by writing the page data into the backing device.
Furthermore, it has to update the page table to mark the entry as read-only and
invalidate the associated TLB entry. A set of threads asynchronously perform
these tasks in order to always have clean pages available for eviction. The write-
back process is triggered once the amount of dirty pages exceeds 75% of all
pages in the page pool. In both eviction and write-back operations the page
selection policy is LRU. For this purpose, we keep separate queues for clean and
dirty pages. This approach also reduces contention by allowing evictions and
write-backs to proceed concurrently.

In the case of sequential accesses, the utilization of huge pages reduces the
number of page faults by 2MB/4KB = 512×. Furthermore, it also reduces the
complexity of write-back and msync operations. In these cases, for 4 KB pages
we are forced to perform I/O merging to generate large I/Os from sequentially
indexed pages, which is a CPU intensive process. In the case of 2 MB pages there
is no need to produce even larger I/Os as (i) it is enough to achieve peak device
throughput and (ii) even the Linux kernel does not support issuing larger I/Os
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for fast storage devices. Huge pages also reduce the overhead of TLB shootdowns.
During a TLB shootdown, a core sends a TLB invalidation to all other cores by
using inter processor interrupts (IPIs), which cause large overheads and limit
scalability [1]. As these invalidations occur in larger granularity, their overhead
is less pronounced.

Finally, we provide an efficient msync operation. In this case we need to write
all dirty pages to the underlying device. With huge pages, this operation always
produces 2 MB requests without any merges. Furthermore, we need to move all
dirty pages from the dirty queue to the clean queue, update page table entries
marking each entry as not writable and dirty, and then invalidate the associated
TLB entries. To retrieve all dirty pages, we iterate over the red-black tree. We
remove pages from the red-black tree in a batched manner, rather than one at
a time, at the end of the msync operation.

Huge Page Fault Handling Path: In this section we present the full path of
the huge-page fault handling mechanism in HugeMap. In the event of a page fault,
HugeMap first searches the radix tree to check if the requested page already exists
in the DRAM cache. If we find the page in the radix tree, then the requested
page contains valid data and no I/O is required. Furthermore, it also resides in
the appropriate clean or dirty queue. In this scenario, we only update the page
table entry with the correct mapping.

If the requested page is not present in the radix tree we try to allocate a free
page from the free lists. If we find a free page, we add it to the clean queue, issue
an I/O to the underlying device, add the page to the radix tree and finally update
the page table, without a TLB invalidation. If we cannot find a free page, we
evict a configurable amount of clean pages (we use 16 in our evaluation). Eviction
first removes the page from the clean queue, the radix tree, and the page table;
then, after a TLB invalidation it inserts the page in the free list.

Write-back threads asynchronously write dirty pages to the backing store,
remove pages from the red-black tree, move them from the dirty queue to the
clean queue, update the page table and finally, perform TLB invalidations for
the associated pages.

Finally, if a write request is issued to a read-only page, the page is already
present in the page table as read-only. Thus, the page is moved from the clean to
the dirty queue and is inserted to the red-black tree. Last, the associated page
table entry is updated and the corresponding mapping is marked as writable,
without requiring a TLB invalidation. Figure 1 showcases the algorithm followed
by the huge-page fault handler.

Implementation: HugeMap is built over FastMap [11] and provides a user
interface for accessing both block devices and file systems. In both cases we use
our custom mmap function. All other requests, including read/write calls, are
forwarded to the underlying device or file system. Implementation-wise, the uti-
lization of huge pages over devices/files presents a few caveats besides the need
to enable THP as explained in Sect. 2. Most notably, one may allocate 2 MB
of contiguous memory by calling alloc pages with the proper order argument,
however, the kernel still allocates a set of 512, 4 KB pages. To treat these pages
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Fig. 1. Huge page fault mechanism

as a single entity (huge page), it is necessary to refer to the page set only through
the first page in the 2 MB range. The corresponding struct page is treated as a
“representative” for the huge page and is used by the various data structures of
HugeMap, as well as the I/O requests issued to the underlying device. Further-
more, the GFP COMP flag is used on page allocation to mark the page set as
compound [5], similarly to the existing kernel huge page mechanisms.

We also note that HugeMap uses the pgoff field of the vm fault struct for
several purposes. vm fault is the struct used to pass information to a page fault
handler regarding a page fault. The pgoff field describes the offset of the page
fault from the beginning of the device/file, expressed in pages. HugeMap inser-
tions and lookups to the page radix tree use it as a key, while the round-robin
selection of a per-core clean and dirty page list also relies on it. Additionally, we
require the page offset to issue I/O requests to the proper base device sector/file
offset. The pgoff field is, however, expressed in multiples of 4 KB pages both
for regular and huge page faults, meaning that all page faults are 4 KB page
aligned. Thus, one must adjust it in order to issue 2 MB aligned I/O requests
to the underlying device/file. In our case, this was accomplished by applying a
proper bitmask to the pgoff field, so that the offset points to the beginning of
a 2 MB page set. Presently, our implementation supports defining the page size
at compile time via a preprocessor macro. Thus, our module can also work with
regular (4 KB) pages as described in Sect. 2. We use this setup for our evaluation.

4 Methodology and Evaluation

Our testbed consists of a dual-socket server that is equipped with two Intel(R)
Xeon(R) CPU E5-2630v3 CPUs running at 2.4 GHz, each with 8 physical cores
and 16 hyper-threads for a total of 32 hyper-threads. The storage device of the
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server is a PCIe-attached Intel Optane SSD DC P4800X series with 375 GB
capacity. This server is equipped with 256 GB of DDR4 DRAM at 2400 MHz
and run CentOS v7.3, with Linux kernel 4.14.72. We disable swapping and CPU
frequency scaling to reduce variability in our measurements. In all cases we run
the experiments three times and report averages.

First, we use a custom microbenchmark that mmaps a block device and issues
I/O accesses (memcpy) using multiple threads. It supports both sequential and
random accesses. As HugeMap only supports regular (4 KB) and huge (2 MB)
pages, we only evaluate sequential accesses with a single and multiple threads.

Furthermore, we use the Kreon [10] key-value store for our evaluation. Kreon
is a persistent key-value store that trades random device I/O patterns for lower
CPU consumption. This is possible as modern storage devices (e.g. SSDs and
NVMe) provide high I/O throughput even with small I/Os under high concur-
rency. Kreon relies on mmap to interact with storage. It uses a log for allocations,
Copy-On-Write (CoW) for persistence and provides scalable insert and lookup
operations by using fine-grained locking. The use of the log produces a sequential
write access pattern for insert (or update) only workloads; this type of pattern
is well-suited to benefit from the use of huge pages.

How does HugeMap perform with sequential I/O patterns? Figure 2
shows how mmap performs with an increasing number of threads under differ-
ent configurations. We compare HugeMap (both with regular and huge pages)
with Linux mmap. For Linux we use the madvise system call to inform the
kernel of the expected I/O pattern. We use both the MADV RANDOM and
MADV SEQUENTIAL options. The latter does aggressive read-ahead that can
potentially improve sequential performance.

For HugeMap with regular pages and Linux with MADV RANDOM we see
similar throughput. As we increase the number of threads we observe higher
throughput. This happens because of the higher queue depth in the device.
Both Linux and HugeMap achieve peak throughput with 16 or more threads.

HugeMap with huge pages and Linux with MADV SEQUENTIAL, with 2
or more threads both achieve peak device throughput. With 32 threads, huge
pages result in about 12% higher throughput compared to the configurations
with regular pages. This shows that high device queue depth is not enough to
achieve peak device throughput. Finally, with 1 thread HugeMap achieves 54%
higher throughput compared to Linux with MADV SEQUENTIAL. Although
in Linux the aggressive read-ahead also results in large reads from the device, it
requires a page fault per 4 KB, rather than 2 MB in the case of HugeMap.

Table 1 shows device performance for all the previously discussed cases, using
32 threads. With huge pages (or aggressive read-ahead) we achieve the peak
device throughput of about 2.5GB/s. Thus, high concurrency to the device is not
enough to achieve peak throughput. In all cases we have 100% device utilization.
Finally, HugeMap for a sequential pattern requires a page fault per 2 MB, instead
of 4 KB (i.e., 512× fewer page faults). This results in lower CPU overheads and
larger concurrency to the device (i.e., higher queue depth).
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With mmap a write to a page results in a read-modify-write operation, as
the kernel does not know if a page contains useful data. On sequential writes
over HugeMap using 32 threads, huge pages result in a 3.7× higher throughput
compared to regular pages, with the former achieving throughput equal to 1526
MB/s and the latter 412 MB/s.

Specifically, for the write-only microbenchmark (Table 1), due to the read-
modify-write operation we observe both reads and writes. HugeMap with huge
pages always generates 2 MB I/O requests, with minimal CPU processing. Thus,
HugeMap with huge pages achieves 4.5% and 3.44% higher read and write
throughput respectively compared to regular pages. This stems from the fact
that with regular pages, all read requests are 4 KB and merging is performed
for the write requests. The average request size is 11.38 sectors. In that case the
greater number of page faults and the CPU-hungry I/O merging does not allow
the microbenchmark to reach 100% device utilization. Finally, HugeMap with
huge pages provides 74.5× higher I/O queue size.

Fig. 2. Throughput scalability for a
read-only microbenchmark

Fig. 3. Execution time breakdown for
an insert-only workload with Kreon

Table 1. Device performance for a microbenchmarks performing read or write opera-
tions with 32 threads. Write operations incur page reads as well.

Read (MB/s) Write (MB/s) avg rq (sectors) avg qz util (%)

HugeMap 4 KB reads 2261 – 8 32.2 115

HugeMap 2 MB reads 2527 – 256 351 100

Linux (MADV RND) reads 2277 – 8 28.7 114

Linux (MADV SEQ) reads 2543 – 256 31.2 101

HugeMap 4 KB writes 273 286 10.4 2.3 32.5

HugeMap 2 MB writes 1229 985 256 170 100

avg rq: Average size of requests issued to device

avg qz: Average queue length of requests issued to device

util: Percentage of CPU time in which I/O requests were issued to device

How does HugeMap impact CPU consumption? In this section we exam-
ine how much HugeMap affects CPU consumption for both read-only and write-
only microbenchmarks. Figure 4a shows the execution time breakdown for the
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(a) Read-only (b) Write-only

Fig. 4. Microbenchmark execution time breakdown.

(a) IOR Checkpoint (b) IOR Restore

Fig. 5. CPU time breakdown for IOR.

Table 2. Device performance for IOR Checkpoint (left) and Restore (right).

xput (MB/s) avg rq (sectors) avg qz util (%)

Read/write 1963 2490 413 257 700 14.5 96 98

mmap (THP) 1940 1743 253 8.9 529 4.1 91 98

mmap (no THP) 1928 1741 257 11.8 479 3.9 90 97

HugeMap 1892 2507 429 257 30 73.2 86 98

read-only microbenchmark. In both HugeMap with regular pages and Linux
with MADV RANDOM system time is about 10%. In the case of Linux with
MADV SEQUENTIAL, system time is 2.3% and in the case of HugeMap with
huge pages system time is 0.14%. In all cases the majority of execution time
is iowait time, which means that the device is the bottleneck. Reducing system
time leaves more CPU processing capacity for the user application.

Figure 4b shows that for the write-only microbenchmark the use of huge pages
in HugeMap reduces the percentage of system time from 94.37% to 20.39%. As
we use a microbenchmark in this case the user time in both cases is very low
(below 1%). The remainder of system time in the case of huge pages goes to
iowait and idle time. This means that an even faster storage device will result
in even better performance.
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Does HugeMap improve checkpoint and restore in HPC? We use the
IOR [8] parallel I/O benchmark to evaluate the advantages and drawbacks of
HugeMap regarding CPU usage and device utilization compared to read/write
system calls (without THP) and Linux mmap (with and without THP). We ran
experiments on our testbed using an NVMe Optane device. We use two different
scenarios in this case. The first scenario is Checkpoint, in which 8 processes
concurrently write to the NVMe device, for an aggregate write size of 160 GB,
or 20 GB per process. This scenario aims to emulate saving the program state in
a large scale parallel system. The second scenario is Restore, where 8 processes
concurrently read the previously written files from the NVMe device, in order
to emulate the system restoring itself to a previously saved state. We use 50 GB
of main memory in both benchmarks and this includes all page mappings. We
report the average over 5 repetitions of each scenario. Before each benchmark
the kernel page cache is completely cleared so that no previously cached page is
available.

Table 2 showcases these results. The left columns correspond to the Check-
point scenario. In this case we observe that read/write system calls achieve the
higher throughput, with Linux mmap following closely in performance. HugeMap
achieves 3.75% lower throughput compared to read/write system calls which is
close to the maximum achieved throughput. The columns on the right contain
the results for the Restore scenario. In this case, we can see that mmap achieves
43% lower performance compared to read/write system calls. On the other hand,
for Restore, HugeMap shows the highest performance out of all configurations,
with a 44% and 0.6% improvement compared to Linux mmap and read/write
system calls respectively.

Figure 5a demonstrates the execution time breakdown for the Checkpoint
scenario. Here we see that HugeMap requires slightly greater system time com-
pared to read/write system calls (11% compared to 6%) to achieve almost the
same performance, while also enjoying the benefits of mmio. Figure 5b shows
the CPU breakdown for the Restore scenario. In this case, HugeMap achieves
9× lower system time compared to read/write system calls and 18.5× compared
to mmap. Combined with the improvement in throughput, it becomes apparent
that HugeMap provides the best behaviour for this scenario.

Does HugeMap benefit key-value stores? Finally, we use Kreon in order
to provide a more realistic evaluation under a more complex workload. We use
YCSB [4] benchmark with an insert-only workload and a dataset of 10M entries
(about 10 GBs of keys and values). We provide enough DRAM to ensure that
data fits in memory. This experiment examines the impact of 512× fewer page
faults on YCSB throughput and the balance of system and user CPU time.

Our benchmarks indicate that with huge pages Kreon achieves 89.5% higher
throughput in terms of ops/s, 1.99Mops/s compared to 1.05Mops/s with regular
pages. Figure 3 shows that huge pages reduce system time from 30.8% to 6.5%.
On the other hand, user time increases from 52.7% to 88%. In both cases iowait
percentage is the same and the idle percentage is low compared to user and
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system pages, we reduce system time and we leave more CPU processing capacity
for the user application, i.e. Kreon and YCSB.

5 Related Work

We briefly review prior work related to huge page management and mmio for
fast storage devices. Ingens [7] and Hawkeye [9] provide several optimizations
for anonymous page mappings in Linux, mainly in the path of promotions and
demotions of regular to huge pages and vice-versa. They modify the THP mech-
anism in Linux (Sect. 2) and currently operate only on anonymous mappings.
HugeMap on the other hand focuses on file/device backed huge page mappings,
which are significantly different from anonymous mappings. DI-MMAP [15] is a
custom mmio path in the Linux kernel that tries to optimize it for HPC applica-
tions. It uses a dedicated DRAM cache and also provides a FIFO-based eviction
policy that is optimized for this type of applications. The authors in [12] opti-
mize the mmio path in the Linux kernel. The main improvements are in the case
of free page allocation and Vectored I/O that optimize write operations, thus
showing that fast storage can be used to efficiently extend the available DRAM
size. FastMap [11] shows that the Linux mmio path suffers from scalability lim-
itations with more than 8 threads and provides an evaluation for both storage
applications and for extension of DRAM over fast storage devices. In all cases,
regular (4 KB) pages are used. HugeMap uses FastMap and demonstrates the
benefits of huge pages in storage applications. The authors in [3] propose the use
of read-ahead mechanisms to provide increased throughput for sequential access
patterns. We also provide optimizations for sequential access patterns, however,
we use huge pages for this purpose. Our approach not only generates larger I/O
requests but also reduces the number of page faults and TLB misses.

6 Conclusions

In this paper we present HugeMap, a custom memory-mapped I/O path inside
the Linux kernel that uses only huge pages for I/O operations. Our approach
achieves peak device throughput for sequential I/O patterns. HugeMap reduces
system time by (1) reducing the number of page faults and TLB invalidations
to one per huge page, and (2) reducing the need to perform I/O merging during
page write-back. We evaluate HugeMap with microbenchmarks, IOR, and the
Kreon persistent key-value store. Our results show that HugeMap improves I/O
throughput by up to up to 3.7× and reduces system time by up to 4.76×.
Although we do not explore this further, we believe that HugeMap can eventually
support a hybrid approach, combining regular and huge pages dynamically.
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