
The Conception of Strings Similarity
in Software Engineering

Sergey Frenkel(B) and Victor Zakharov

Federal Research Center “Computer Science and Control” Russian Academy of Sciences,
Moscow, Russia

fsergei51@gmail.com, VZakharov@ipiran.ru

Abstract. Many tasks of modern software engineering, such as malware detec-
tion, attack recognition, Web Caching and Prefetching, etc., are based on the
concept of distance between various data sets, e.g. between the strings of sym-
bols. Such distances should express “similarity” between various data, e.g., the
degree of similarity (or dissimilarity) between a suspected program and benign
software.

In our previous works, some inequalities have been obtained that describe
upper and lower bounds on Normalized Edit Distance (NED) values in terms of
the Jaccard distance.

In this paper, based on this result we suggest and study the Averaged Nor-
malized Edit Distance (ANED) as a new similarity metric which can be useful in
classification-via-clustering problems. We show that ANED has well-interpreted
properties, on the base of which it is possible to define a metric subspace on the
strings space. The ANED based approximation can be used for various areas of
data clustering, but in this paper we demonstrate the experiments showing the rele-
vance of our approach to malware clustering for their detection issues. Traces used
in our experiments come from the KVMhypervisor Runtime Execution Introspec-
tion and Profiling (REIP) system based on Virtual Machine Introspection (VMI)
techniques to profile hooked Windows API calls.

Keywords: Similarity and distance · Software design for security · Malware
detection

1 Introduction

The problem of assessing the similarity of data sets for classification purposes oneway or
another appears in various problems of informatics, such as webCognitive Load analysis
[1], web caching and Prefetching [2], web context analysis, malware detection, attacks
recognition [3], etc. For the most part the similarity estimation is based on the concept of
distance between the data sets, which expresses the degree of similarity (or dissimilarity),
e.g. similarity of a suspected program to benign software [3]. Presently various similarity
metricswere suggested and used in data classification through-clustering tasks [4], one of
the most discussed is Jaccard distance JD (or easily connected with JD Jaccard similarity
Index (JI) JS = 1 − JD) measure. Another metric is the Edit Distance (ED), namely,

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 56–67, 2021.
https://doi.org/10.1007/978-3-030-71472-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_4

The Conception of Strings Similarity in Software Engineering 57

the minimal number of edit operations (delete, insert and substitute of a single symbol)
required to convert one sequence (string) to the other [4, 13]. In order to normalize the
ED to interval (0,1), the Normalized Edit Distance (NED) is often used [5, 6, 13].

The computational complexity of the NED is high, e.g., in comparison with the
commonly used Jaccard distance. Moreover, when computing Jaccard measure, one
can employ several approximation techniques, such as Locally-Sensitive hashing with
MinHash [4], to dramatically speedup the clustering, classification and identification,
what is absent for NED. Nevertheless, despite these difficulties, now ED/NED is seen
as a highly desirable measure of similarity (distance) in such areas as optical character
recognition, text processing, computational biology, cryptography etc., as it, from the
point of view of the Machine Learning community, is a more acceptable measure for
such complex structured information [7]. Note that ED-or-NED are often used not only
as a characteristic of proximity, but as the cost of automatically converting one line to
another for automatic language recognition/classification [8].

The analysis of the literature shows that although the researchers try to consider
semantics in the tasks of assessing the similarity of texts [9], often in the tasks of
programs developments, in particular, in the tasks of malware detection, the “similarity”
regarding the difference of the data (e.g., in the benign-malicious behavior estimation)
on an intuitive level only is considered, and accordingly, detection is carried out on the
basis of numerical characteristics that have no obvious links with the property of being
similar [9].

In the paper, we analyze some informal (and some formal as well) inferences from
using of Jaccard-based similarity measure suggested in [10] which is based on JI approx-
imation and reflects some properties of NED. We show, that under some insignificant
updating suggestedmeasure, it receives some property, enabling to reflect to some degree
semantics of the compared string forms. The reason of why we can consider a relation
between such different measures as Jaccard and NED is that the scope of our analytical
results is so-called the representing strings, which is a result of original (raw) textual
data shingling [4], taking into account that there is a solid evidence that these similarity
estimation results can be applied to raw strings that have representation by n-gram with
low repetitions (more explanations see in Sect. 3).

In general, the area of this paper refers to the range of such tasks for assessing
and using similarity measures for which the effectiveness of using edit distance can be
justified. Thus, what we do in this paper is to analyze to extent to which the applied
approximation allows one to reflect the semantical differences of two strings.

Briefly, the contribution of this paper in comparison with [10, 11] is:

– it is shown that the average value obtained by averaging over the interval of possible
NED values has specific properties that are different from both JD and NED, namely,
the possibility to take into account the explicit dependence on the difference in sizes
of the compared sets, the possibility of using the property of triangle inequality for
clustering different subsets of strings,

– the relationship between the values of the true values, and the approximate values
of JD, NED and their approximate estimates is shown, which can be useful when
choosing threshold values for the conditions for assigning to clusters,

58 S. Frenkel and V. Zakharov

– we show, in fact, that well-known similarity measures, formally calculated without
using any conditions for the semantics proximity of the objects being compared [9],
can be transformed intomeasuresmore sensitive to semantic differences, with compu-
tational complexity similar to Jaccard metrics, with ability to reflect (a greater extent)
the semantics differences of the compared data.

The rest of the paper is organized as follows. Section 2 is an analysis of the most
popular metrics from the point of view of their ability to reflect the semantical differ-
ences of the data compared. Note that talking about “semantics” in this paper we mean
simply the applied properties and goals of the compared data, without using any formal
definitions of semantics (see, e.g. [12]). For example, if we deal with malware detection
problem, we must think about how a similarity measure used for discrimination between
malicious and benign behavior and results of their execution.

Section 3 explains and analyzes themeasure of similarity suggested in [10]. Away to
overcome the triangular inequality violation of traditional NED is shown. The technical
aspects of the similarity measures computation are considered in Sect. 4. The results are
discussed in the Sect. 5 and in Conclusion.

2 Data Similarity Conception

Before solving the problem of approximating a NED, let us consider what basic require-
ments the similarity estimates shouldmeet. First of all, it must be based on awell-defined
mathematically notion distance in a space. Formally, distance (“distance in a space”) is
a function D with nonnegative real values defined on the Cartesian product X × X such
that D: X × X → R+. It is called a distance metric on X if for every x, y, z ∈ X:

D(x, y) = 0 iff_x = y (the identity axiom);
D(x, y) + D(y, z) ≥ D(x, z) (the triangle inequality);
D(x, y) = D(y, x) (the symmetry axiom).

A set X, which is provided with a metric, is called a metric space.
The similarity S(x, y) metrics considered as an inversion to the distance notion which

must follow these rule, but be greater, the smaller the differences between the objects x,
y, S(x; x) > S(x; y), x �= y, in particular.

Let us consider the case, when the data semantics imposes that the data to be some
strings of ordered symbols. The traces of API system calls are an example.

From the practical viewpoint, the similarity definition problem is a combination of
two subproblems: (i) what kind of similarity metric is most relevant to the compared
data, and (ii) given a query string Q, how to use a similarity metric to search with suitable
complexity (cost), in order to find all strings in a data set whose distances with Q is no
more than a given threshold.

Let us consider two the most popular measures of similarity.

Jaccard Distance. The Jaccard distance JD (or Similarity Index JS = 1 − JD) is often
used for strings similarity estimation despite its intended use for simple (not multi-!)
sets.

The Conception of Strings Similarity in Software Engineering 59

The Jaccard distance is JD(x, y) = |x � y|/|x ∪ y|, where � denoted the symmetric
difference between two sets x, y (that is x and y are considered as a unordered set of
symbols from a given alphabet). Correspondingly, Jaccard similarity metrics JS(x, y) =
1 − JD(x, y) = |x ∩ y|/| x ∪ y| is defind.

Thismetric can be interpreted as probability that randommapping by a hash-function
hi (different mappings for different i) do not repeat accidental collisions, that is proba-
bility Pr(hi (xi = yi)) = JS(x, y) + (1 − Js)/2k that a random permutation of the subsets
(substrings, in particular) produces the same values, k is the number of bits mapped by
the hash-function hi. The meaning of this consideration is that the probability that the
Minhash function [4] for two sets equals the JS of those sets, therefore there is a clear
interpretation of similarity. It is important that JS is a true metric in the space of sets
with such distance, as the triangle inequality holds. This is why it may be effectively
used in clustering algorithms. Moreover, in spite of obvious violation of the string’s
semantic, the using of Jaccard similarity is rather successful for clusterization of traces
for malicious code detection [9]. The appropriate result in these applications is possible
if the main difference between malicious and benign codes is the composition of system
calls and their parameters.

However, inmany cases, in view of the triviality of connection (noted above) between
the similarity of JS (or JD) and the structure and semantics of program behavior data
displayed in traces, an incorrect detection of the consequences of attacks is possible. For
example, in the very topical problem of detecting Replacement Attacks [3], JS of two
traces can incorrectly reflect the change of control graph (representing dependencies
between the system calls in the traces of the program execution [11]) because it takes
into account the difference in the number of systems calls only but not the sequence
of their interactions, since a significant change in the structure of the traces under the
influence of attacks can only slightly change the value of JS.

Most frequently, the text files are shingled into q-grams (sequences of q tokens/terms
from the text) [4, 14], see an example in the Sect. 3, therefore, the distances/similarities
are considered relatively to q-grams. That is Jaccard index on shingle sets S(d1), S(d2):
JS (d1, d2)= |S(d1)∩ S(d2)|/|S(d1)∪ S(d2)| is used, where d1, d2 are the texts compared.

Edit Distance. Edit (Levenshtein) distance (ED) [13] takes into account (to a certain
extent) the structure of compared symbol strings. It takes into account the location in
a trace where the characters do not match (number of “insertion” edit operations), the
location where the symbols of one string are missing in the other (number of “deletes”
edit operations), and reflects more correctly, for example, the fact that with a given class
of attacks, a slight change in the types of system calls (and, accordingly, a slight change in
JS) leads to a significant change in ED due to a change in the trace of structure. Thanks
to this, it, for example, increases stemming from the input strings being “repetitive”,
which means that many of their substrings are approximately identical, while JD may
be insensitive to such specific features of the structure.

This string similarity metric captures both similarities in the overall structure of the
two sentences being compared as well as some similarity between different word forms
[15].

But in general, ordering of objects in the strings compared (e.g., the ordering of web
objects in web caching and prefetching prediction task [2]) is not explicitly reflected in

60 S. Frenkel and V. Zakharov

the ED. Further, although ED computes the distance for string of different lengths, the
degree of influence of differences in these lengths on the value of ED is not reflected in
any way in calculation models. Besides, the above-mentioned ability to interpret JS as
the probability of the hash coincidence of the two sections of the two compared traces,
giving the possibility of a clear interpretation of their “similarity”, is impossible for the
ED.

So-calledNormalizedEditDistance (NED) can enhance to somedegree these aspects
of ED using.

Normalized Edit Distance as Similarity Metric. Normalized Edit Distance of two
strings x, y is [6]:

NED = ED(x, y)/max(|x|, |y|) (1)

and SimNED(x, y) = 1 − ED(x, y)/max(|x|, |y|), where SimNED(x, y) is Normalized
ED Similarity.

That is, a perfect match will have SimNED(x, y) of 1.0, and completely dissimilar
strings will be assigned a value of 0.0.

As it can be seen from (1), NED can be interpreted as a probability, that number of
the transformation of the maximal (of two) strings (as well as minimal string to maximal
one) requires ED(x, y) edit operations.

However, strictly speaking, there is no the effective hashing algorithm to allow an
interpretation of the probability as the probability of hash values (like for the JS) [14],
and the computation of ED and NED is time-consuming O(n2loglogn/log2n), while
there are efficient hashing based linear algorithms for approximating Jaccard distance
for large data sets. But, what is important, the specific of ED computation (complexity
increasing) is that in contrast to Jaccard (or Hamming) distance/similarity, when string
comparison consists only in comparing string characters (without regard to their position,
as in Jaccard, or standing at the same places in the strings, as for Hamming distance), it
is necessary to consider the alignment operations, as associated with the requirement of
minimal number of editing operations. This, in turn, ensures that amuch larger specificity
of the structure of strings is taken into account in terms of their similarity.

There is also the problem that in contrast to the JD, the normalized edit distance
NED does not satisfy to the triangle inequality, what may prevent computation-effective
clustering of the maliciousness (or benign, depending on algorithm of machine learning
based detection). Although so-called Generalized Edit (Levenshtein) Distance (GLD)
was suggested [16], for which the triangle inequality is fulfilled, however, its calculation
requires the selection of weights for the cost of performing editing operations, which can
significantly increase the computational cost, which is significantly higher compared to
JD.

3 Jaccard Distance-Based NED Approximation

Let us assume that we know a Jaccard similarity (or distance) between strings x and
y, which are considered as two sets of symbols corresponding their plain texts. How

The Conception of Strings Similarity in Software Engineering 61

could we approximate normalized edit distance NED(x, y)? An obvious hurdle in the
technique suggested, namely, using Jaccard as the basis for the approximation of NED is
that these metrics are based on different mathematical concepts. Jaccard is defined over
(unordered) sets, in which each different element appears only once, despite that it may
occur many times in different parts of the set (document, in particular). Edit Distance is
defined over strings and depends on the order of the symbols in the underlying strings.

In order to overcome the difficulties associated with this discrepancy, we confine the
argument to certain types of sets and strings, both derived from the original documents
(plain texts of the traces, in the case considered); the documents in question go through a
shingling process (which collects all the substrings of certain length of appearing in the
document), which is the first necessary stage in most of modern methods of similarity
estimation [4, 9, 10]. The outcome of the shingling process is sets of n-grams (with-
out repetitions), which will be used for computing Jaccard similarity (distance). Then,
we create representing strings of the sets by sorting and concatenating their elements
according to, say, lexicographic ordering, as described in Sect. 3.9.2 in [4]. As a result,
we get strings of n-grams (string over the alphabet of the n-grams) that are sorted and
has no repetitions.

For example, 3-gram of a fragment of API system calls trace, CreateFile, is.
Cre rea eat ate teF e Fi Fil ile.
These representing strings will be used for NED estimation. As it was shown in [10],

the difference between NED on pairs of original texts (strings) and NED of their n-grams
representation is decreased very fast as a function of the n-gram size, which proves the
possibility to use the representing strings instead of the original texts.

Our experiment results showed that it is possible to choose n-grams (3-gram and
more, we used up to 13-gram) that yield better than 7% average difference between the
NED over the original documents, and the NED over the representing strings.

Thus, it justifies our choice to concentrate in analyzing the representing string as
we do in the sequel. We note that in general, one may sample a given data set and tune
the length of the n-grams for the given data set, taking into account the correspondence
between the original document and representing strings, and then to proceeding with
the clustering of the representing strings. Thus, such consideration allows to consider
any data set as a string, and correspondingly, to define the problem of Jaccard based
expression of NED.

This result is understandable as the more n-grams size the more symbols must be
inserted/deleted/substituted on the same way as it requires ED computation algorithm
for the plain text.

In [10] we received inequalities for the NED in terms of Jaccard metric that impose
upper and lower bounds on the NED values:

1 − α ≤ NED(x, y) ≤ (1 + α)(JD(X, Y)/(2 − JD(X, Y)))

X, Y means the set of symbols, contained in the strings x, y (recall that we deal with
representing strings {x, y} obtained from original (raw) strings, that is JD is distance
between corresponding n-grams (Sect. 2), α = min(|x|, |y|)/max(|x|, |y|).

62 S. Frenkel and V. Zakharov

Let us averageNEDover the interval [1−α, (1+α)JD(x, y)/(2− JD(x, y))] (assuming
the uniform NED distribution within this interval). Then we received the averaged NED
depicted as ANED:

ANED(x, y) = (1 + α(JD(X, Y) − 1)/(2 − JD(X, Y)) (2)

Leaving for now aside the question of the accuracy and usefulness of this averag-
ing from the point of view of using strings for classification (for example, the traces
classification as malicious and benign programs), the first significant result is that we
express the average NED value through the values JD which are computed by the hashing
mentioned above.

ANED term α takes into account such an important factor of the editing distance as
the fraction of characters that you need to “insert\delete\replace” to convert the string
x to y (or vice versa). Accordingly, from the point of view of the program execution
semantics, the magnitude of the similarity metric is not simply reduced to the ratio of
the number of characters coinciding in them (n-grams, in particular), as is the case in
the Jacquard distance metric.

The relationships between the ratio of the pair strings length, their Jaccard distance
and the ANED are represented in Fig. 1.

Fig. 1. Relationship between Average Normalized Edit Distance, ratio of strings pair α, and
Jaccard Distance.

One of the very important Jaccard metric properties is (d1, d2, P1, P2)-sensitivity
[15], that is:

if JD(x, y) ≤ d1 then Prob [h(c) = h(y)] ≥ P1,
or, for Jaccard similarity:
JS(x, y) ≥ d2, then Prob[h(x) = h(y)] ≥ P2.
where h(x), h(y) –hash-function implementing given permutation.

This property provides the ability to use theMinHashing algorithm to a good approx-
imation of the estimate of the similarity of two sets [4]. Obviously, due to the uniformity
relationship between the average NED and JD, we can find that our average Normal-
ized editing distance (ANED) is also (d1, d2, P1, P2) -sensitive, which also indicates
possibility of approximation based on LSH.

The Conception of Strings Similarity in Software Engineering 63

3.1 About Triangular Inequality for NED

As noted above, the triangle inequality does not hold for NED (unlike JD and JS), i.e.
set of strings S with a given NED (also with SimNED) do not form a metric space. It
means that for each strings x; y; z ∈ S, it can be: SimNED(x, y) + SimNED(y, z) ≤
SimNEDD(x, z). Taking into account the formulae (1) we can formulate the requirement
that the subset {x, y, z} be a metric space with the metric SimNED(x, y):

1 − ED(x, z)/max(|x|, |z|) ≤ 2 − ED(x, y)/max(|x|, |y|) − ED(y, z)/max(|y|, |z|)
(3)

We can rewrite the condition (3) relatively ANED (2) in an obvious way and can see
that regardingANED, a similar analysis for formula (2) shows that there are (continuous)
regions {α, JD}, where, calculating JD(x, y), JD(y, z), JD(x, z) (and corresponding
“alphas” for each pairs) we can find different subsets of triads {x, y, z} for which the
triangular inequality is true. Note, that in practice the fact that for most pairs of traces
there are always natural signs of their disagreement, for example, the JS about zero (α
is considerably less that 1 as well) allows us to exclude a significant number of cases
from consideration, and increase the proportion of triads satisfying the triangle rule (see
Sect. 4).

Correspondingly, it is possible to implement the effective clustering with ANED as
a distance metric, say, using K-nearest Neighbour algorithm.

4 Similarity Model Validation

Now we demonstrate the rationality of our view on data set similarity estimation on an
example dealing with traces of malicious programs recognition mostly represented in
[10].

4.1 About Data Set

The data set is the records of the Windows API system calls of malware including a) the
timestamp; b) the function name; c) all parameter values, and d) the return value.

We considered the traces subset (gathered in Taiwan National University [10])
focused on important and significant Windows API calls related to a) Files and I/O
(Local file system), b) Windows System Information (Registry), c) Processes, and d)
Dynamic-Link Libraries (DLLs). The order of the API system calls is perfectly pre-
served. There was access to two sets of malware traces and one set of benign traces
are ready. The set has 272 malware samples (which fork 419 processes). According to
VirusTotal, their first-seen dates were from August 2009 to October 2014. The benign
data set contains about ten software (such as IE, Paint, Calc, CMD) of Windows XP and
Win7’s built-in software.

64 S. Frenkel and V. Zakharov

4.2 Similarity Metrics Measurement Issue

Similar traces can be grouped together using Locality Sensitive Hashing (LSH) in linear
timewith only a small increase in false negative results, hashes items into buckets several
times, such that:

– similar items are hashed into the same bucket with high probability,
– items that are not similar enough are hashed into a common bucket with low
probability.

Hence, there is a benefit of using a large number of buckets for maximizing the
probability of collision of similar items.

4.2.1 Similar Traces Finding

In accordance with LSH technique [4] items that are mapped to the same bucket are con-
sidered as candidates for being similar. But there are no any strong methods to compute
probabilities of real semantically-grounded similarity. In fact, JS is just the probability
that LSH maps two Jaccard-similar traces in the same bucket. When computing Jac-
card measure, one can employ several approximation techniques, such as MinHash, to
dramatically speedup the clustering, classification and identification.

The use the ANED estimation allows us to supplement the clustering technique
outlined in the next section, by a scheme, where LSH provides Jaccard similar strings
(traces) in the same clusters, (that allows us to check the NED for any item in the cluster,
without accurate ED computation), and another technique we use is MinHashing [4]
which is a compression method for sets of items that preserves the Jaccard similarity,
that allows to work with much shorter same-length MinHash signatures.

5 Experimental Results of ANED-Based Approximation and Their
Discussion

Figure 2 contains the main validation and explanatory data on topic of this paper. These
results were obtained for 55 pairs of malware trace by LSH with Minhash [10].

For improved efficiency the text items are MinHashed into signatures, then LSH is
performed on these signatures (integer vectors) using the banding technique [4].

First of all, note thatANEDwas computed by formula 2 not by accurate JD values, but
via its LSH-Minhash approximation. Certainly, this ismore interesting from the practical
point of view as LSH with Minhash allows reducing essentially JD computation cost,
that meet to the requirement to reduce NED cost computation as much as possible. It
can be seen, that the behavior of ANED (regarding the pairs of compared trace s and
ratios of their lengths α), computed by suggested approximation by ANED (star line),
is the same the accurate NED values (solid line) in terms of increasing and decreasing
values of both variables relative to the numbers of pairs and values to the ratio of their
lengths. Moreover, Fig. 2 shows a rather good approximation of the NED by ANED.

Let’s see how the given data allows to evaluate the fulfillment of the basic properties
of NED in its approximation of ANED, and also how it allows understanding some

The Conception of Strings Similarity in Software Engineering 65

Fig. 2. JD-based approximation of Normalized Edit Distance by ANED calculated through LSH
estimations of JD given the relationship between length of strings α.

possibilities to display certain properties of the semantics of words contained in the
compared lines in ANED. Since, for strings of approximately equal length, the number
of operations required to convert one string to another should be greater than the number
of mismatched words (characters) in both strings (since, replacing one character with
another (operation “substitution”) also requires the operation “delete”), it is obvious that
JD ≤ NED. As we can see for Fig. 2, for the pair of traces with lengths for pairs of
strings whose lengths are not dramatically different from each other (say, α > 0.8) this
relation also holds for ANED, in spite of that for ANED computation by formula (2)
LSH Minhash approximations of JD were used, not the JD exact values. It means that
the use of ANEDs corrects the situation when the use of Jaccard for sets with the same
character set but organized as strings of different lengths gives a zero distance value,
i.e., a complete match. At the same time, computational costs are equivalent to Jaccard
computational cost.

As mentioned in Sect. 2, the main question of our study is to preserve the semantics
of the similarity of the ED based measures despite the use of JD for ANED computation.
For example, API system calls “RegQueryValue” is often called sequentially in the
Windows program and without taking into account the values of its arguments, it may
not be possible to compare the equivalence of the traces of two different programs to

66 S. Frenkel and V. Zakharov

detect possible malicious behavior. In this case, the parameters may differ more than a
few characters, and the Jaccard distance for their n-gram representation can be close to
zero, while theNEDwill give significantly higher distance values, i.e. the probability that
one string (trace) transforms into another with probability which is equal to NED. As a
result, using ANED can provide clustering that learns from themalicious dataset without
any explicit descriptions of each malware or its class. Each hash table bucket, obtained
during JD computing as it mentioned above, is selected and used as its representative,
then the binary (malicious/benign) decision by comparing each trace query against all
medoids m1, m2,.., mk (corresponding to the buckets mentioned above). If its maximal
similarity to one of the medoids exceeds a predefined threshold t chosen as maxi=1, ..,:k
(ANED), then it is classified as malicious, otherwise it is classified as benign.

Some examples of buckets with computed average value of Jaccard and NED dis-
tances (as a threshold to be include in the bucket) and corresponding NEDs of shingled
and original texts:

Bucket #290, has 6 traces: JD = 0.320966, NED = 0.320051, NED(Orig. Text) =
0.290116, Bucket #437, has 5 traces: JD = 0.575048, NED= 0.575708, NED(Orig Text)
= 0.613325.

6 Conclusion

Many approaches to the similarity of different symbolic structures estimation are based
on edit Edit Distance notion. In this paper we showed that the average value obtained by
averaging over the interval of possible NED values has specific properties, namely, the
possibility to take into account the explicit dependence on the difference in sizes of the
compared sets, the possibility of using the property of triangle inequality for clustering
subset of strings, in dependence on ratio of their length and the mutual features of pair
of strings, expressed by Jaccard distance. That is the pairs (α, JD(x, y)) can characterize
some semantical important properties of the string pairs, e.g., that the similarity of two
traces x, y, is less than simple fraction of coincided symbols, as it takes place in the
Jaccard distance metric. It means that for the tasks for which the effectiveness of using
edit distance-based similarity have been justified, the edit distance-like measure can be
transformed into measure more sensitive to semantic differences, with computational
complexity like to Jaccard.

Acknowledgements. Research partially supported by the Russian Foundation for Basic Research
under grants RFBR 18–07-00669, 18–07-00576 and 18–29-03100.

References

1. Tracy, J.P.: Measuring cognitive load to test the usability of web sites. University ofMemphis,
Memphis, USA (2007)

2. Kallurkar, P., Sarangi, S.: pTask: a smart prefetching scheme for OS for intensive applications.
In: 49th Annual IEEE/ACM - International Symposium on Microarchitecture (MICRO-49),
15–19 October 2016, pp.1–12 (2016)

The Conception of Strings Similarity in Software Engineering 67

3. Ming, J., Xin, X., Lan, P., Liu, D., Mao, B.: Replacement attacks: automatically impeding
behavior-based malware. In: Malkin, T., Kolesnikov, V., Lewko, A., Polychronakis, M. (eds.)
ACNS 2015. LNCS, vol. 9092, pp. 497–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7_24

4. Leskovec, J.,Rajaraman,A.,Ullman, J.D.:MiningofMassiveDatasets.CambridgeUniversity
Press, Cambridge (2014)

5. Vidal, E., Marzal, A., Aibar, P.: Fast computation of normalized edit distances. IEEE Trans.
Pattern Anal. Mach. Intell. 17(9), 899–902 (1995)

6. Abdulalah, N., Arslani, I.: Efficient algorithms for normalized edit distance (2000). https://
citeseerx.ist.psu.edu/viewdoc/download;jsessionid=00C048E4B2B4BD190985960DC69
FED7F?doi=10.1.1.63.8070&rep=rep1&type=pdf

7. Kim, C.W.: NtMalDetect: a Machine learning approach to malware detection using native
API system calls. arXiv:1802.05412v2, 19 (2018)

8. Chakraborty, I., Das, D., Goldenberg, E., Koucky, M.: Saks, V.: Approximating edit distance
within constant factor in truly sub-quadratic time. arXiv:1810.03664 (2018)

9. Jang, J., Brumley, D., Venkataraman, B.S.: BitShred: feature hashing malware for scalable
triage and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 2011, 17–21 October 2011, pp. 309–320 (2011)

10. Dolev, S., Ghanayim, M., Binun, A., Frenkel, S., Sun, Y.S.: Relationship of Jaccard and
edit distance in malware clustering and online identification. In: Proceedings of NCA2017,
pp. 369–373 (2017)

11. Frenkel, , Zakharov, V.: Brief Announcement: Graph-based and probabilistic discrete models
used in detection of malicious attacks. In: Dinur, I., Dolev, S., Lodha, S. (eds.) CSCML 2018.
LNCS, vol. 10879, pp. 184–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94147-9_15

12. Dennal,A.,Benslimane, S.M.:ANewmeasure of the calculationof semantic distance between
ontology concepts. Int. J. Inf. Technol. Comput. Sci. 7, 48–56 (2015)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. In:
Soviet Physics Doklady, pp. 10–707 (1966)

14. Das, S., Pakray, P., Gelbukh, A.: Identifying semantic similarity using Levenshtein ratio.
In: Proceedings of 10th International Workshop on Semantic Evaluation SemEval-2016, 1
January 2016, pp. 702–705 (2016)

15. Yuana, P., Wang, H., Chea, J., Ren, S., Xu, H.: Dechang approximate string similarity join
using hashing techniques under Edit Distance constraints. J. Softw. 10(9), 2721–2730 (2014)

16. Yujian, L., Bo, L.: A Normalized Levenshtein distance metric. IEEE Trans. Pattern Anal.
Mach. Intell. 6(29), 1091–1095 (2007)

https://doi.org/10.1007/978-3-319-28166-7_24
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid%3D00C048E4B2B4BD190985960DC69FED7F%3Fdoi%3D10.1.1.63.8070%26rep%3Drep1%26type%3Dpdf
http://arxiv.org/abs/1802.05412v2
http://arxiv.org/abs/1810.03664
https://doi.org/10.1007/978-3-319-94147-9_15

	The Conception of Strings Similarity in Software Engineering
	1 Introduction
	2 Data Similarity Conception
	3 Jaccard Distance-Based NED Approximation
	3.1 About Triangular Inequality for NED

	4 Similarity Model Validation
	4.1 About Data Set
	4.2 Similarity Metrics Measurement Issue

	5 Experimental Results of ANED-Based Approximation and Their Discussion
	6 Conclusion
	References

