
Anna Kalenkova
Jose A. Lozano
Rostislav Yavorskiy (Eds.)

5th International Conference, TMPA 2019
Tbilisi, Georgia, November 7–9, 2019
Revised Selected Papers

Tools and Methods
of Program Analysis

Communications in Computer and Information Science 1288

Communications
in Computer and Information Science 1288

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Anna Kalenkova • Jose A. Lozano •

Rostislav Yavorskiy (Eds.)

Tools and Methods
of Program Analysis
5th International Conference, TMPA 2019
Tbilisi, Georgia, November 7–9, 2019
Revised Selected Papers

123

Editors
Anna Kalenkova
University of Melbourne
Melbourne, VIC, Australia

Jose A. Lozano
Intelligent Systems Group, UPV/EHU
Donostia, Spain

Rostislav Yavorskiy
Tomsk Polytechnic University
Tomsk, Russia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-71471-0 ISBN 978-3-030-71472-7 (eBook)
https://doi.org/10.1007/978-3-030-71472-7

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5088-7602
https://orcid.org/0000-0003-0509-1821
https://doi.org/10.1007/978-3-030-71472-7

Preface

This volume contains the proceedings of the Fifth International Conference on
Software Testing, Machine Learning and Complex Process Analysis, TMPA-20191,
which was held on 7–9 November 2019 at Ivane Javakhishvili Tbilisi State University.

The conference attracted a significant number of students, researchers, academics,
and engineers working on different aspects of quality of software and different methods
and tools for program analysis. The broad scope of TMPA makes it an event where
researchers from different yet related domains such as static program analysis, software
testing, and process mining meet and exchange ideas. The conference allows specialists
from different fields to meet each other, present their work, and discuss both theoretical
and practical aspects of their research. Another important aim of the conference is to
stimulate scientists and people from industry to benefit from the knowledge exchange
and identify possible grounds for fruitful collaboration.

The program committee of the conference included 35 experts from leading insti-
tutions of Australia, Estonia, France, Germany, Italy, Japan, Russia, South Korea,
Spain, Sweden, the Netherlands, UK, and USA.

Out of 41 submissions only 16 papers were accepted for regular oral presentations.
Thus, the acceptance rate of this volume is around 39%. 18 papers that passed the
quality threshold were presented as posters, and the other submissions were rejected
completely. By default, each submission was single-blind reviewed by three reviewers,
experts in their fields, in order to supply detailed and helpful comments. The authors
of the accepted regular presentations had 4 additional months after the conference to
update and improve their papers and incorporate comments and suggestions they got
during the event.

The conference featured a tutorial on Petri Nets and Their Extensions by Irina
Lomazova and three invited talks:

– Applications of Computational Topology to Artificial Intelligence by Alexander
Gamkrelidze,

– Passive Testing Techniques in Practice by Ana Rosa Cavalli,
– Partial Specifications of Libraries: Applications in Software Engineering by

Vladimir Itsykson.

Besides, a panel discussion was organized to talk over AI in Software Testing,
Testing of AI Systems, Research Challenges in Complex Process Analysis, and other
topics of current interest for the community.

We would like to thank the authors for submitting their papers and the members
of the Program Committee for their efforts in providing exhaustive reviews. We would
also like to express special gratitude to all the invited speakers and industry
representatives.

1 https://tmpaconf.org/events/tmpa-2019/.

https://tmpaconf.org/events/tmpa-2019/

We are very grateful to the partners and sponsors of the conference: Ivane
Javakhishvili Tbilisi State University and Exactpro Systems. We are deeply thankful to
all the organisers and volunteers, whose endless energy was indispensable at all stages
of the conference project.

November 2020 Anna Kalenkova
Jose Lozano

Rostislav Yavorskiy

vi Preface

Organization

Program Committee Chairs

Anna Kalenkova University of Melbourne, Australia
Jose A. Lozano UPV/EHU, Spain
Rostislav Yavorskiy Higher School of Economics, Russia

Program Committee

Marat Akhin Saint Petersburg Polytechnic University, Russia
Mikhail Belyaev Saint Petersburg State Polytechnical University, Russia
Nikolaj Bjørner Microsoft, USA
Dmitry Boulytchev Saint-Petersburg State University, Russia
Franck Cassez Macquarie University, Australia
Adnan Causevic Mälardalen University, Sweden
Goran Frehse ENSTA Paris, France
Carsten Fuhs Birkbeck, University of London, UK
Roberto Giacobazzi University of Verona, Italy
Peter Habermehl LIAFA University Paris Diderot (Paris 7), France
Iosif Itkin Exactpro LLC, UK
Alexander Kamkin Institute for System Programming RAS, Russia
Max Kanovich University College London, UK
Victor Kuliamin Institute for System Programming RAS, Russia
Alexei Lisitsa University of Liverpool, UK
Irina Lomazova Higher School of Economics, Russia
Panagiotis Manolios Northeastern University, USA
Roland Meyer TU Braunschweig, Germany
Claude Michel Université Côte d’Azur, CNRS I3S, France
Mikhail Moiseev Intel, Russia
Uwe Nestmann TU Berlin, Germany
Nikolay Pakulin Pax Datatech PTE, South Korea
Silvio Ranise FBK-Irst, Italy
Paweł Sobociński Tallinn University of Technology, Estonia
Tachio Terauchi Waseda University, Japan
Dmitry Tsitelov Devexperts LLC, USA
Tim Willemse Eindhoven University of Technology, The Netherlands
Victor Zakharov Institute of Informatics Problems RAS, Russia
Vladimir Zakharov Lomonosov Moscow State University, Russia
Santiago Zanella-Béguelin Microsoft, UK

Organizing Committee

Anna-Maria Lukina Exactpro LLC, Russia
Elena Vasina Exactpro Systems LLC, Russia
Gia Sirbiladze Tbilisi State University, Georgia
Natia Sirbiladze Exactpro Systems LLC, Georgia
Zaza Tsiramua Georgian Technical University, Georgia
Zhanna Zabolotnaya Exactpro LLC, Russia

viii Organization

Contents

Keynote

Partial Specifications of Libraries: Applications in Software Engineering 3
Vladimir Itsykson

Full Papers

Chaotic Time Series Prediction: Run for the Horizon. 29
Vasilii A. Gromov

Machine Learning and Value Generation in Software Development:
A Survey . 44

Barakat J. Akinsanya, Luiz J. P. Araújo, Mariia Charikova,
Susanna Gimaeva, Alexandr Grichshenko, Adil Khan, Manuel Mazzara,
N. Ozioma Okonicha, and Daniil Shilintsev

The Conception of Strings Similarity in Software Engineering 56
Sergey Frenkel and Victor Zakharov

Multi-perspective Process Mining with Embedding Configurations
into DB-Based Event Logs. 68

Sergey A. Shershakov

On DB-Nets and Their Applications . 81
Marco Montali and Andrey Rivkin

Pre-processing Network Messages of Trading Systems into Event Logs
for Process Mining . 88

Julio C. Carrasquel, Sergey A. Chuburov, and Irina A. Lomazova

Time Series Classification Based on Visualization of Recurrence Plots 101
Lyudmyla Kirichenko and Petro Zinchenko

Relation Between Test Coverage and Timed Automata Model Structure. 109
Lukáš Krejčí, Jan Sobotka, and Jiří Novák

Random Graph Model for Structural Analysis of Online Communications . . . 121
Ivan Sukharev and Maria Ivanova

The Influence of Self-organizing Teams on the Structure
of the Social Graph . 130

Ilya Samonenko and Tamara Voznesenskaya

Making Bounded Model Checking Interprocedural
in (Static Analysis) Style . 142

Daniil Stepanov, Marat Akhin, and Mikhail Belyaev

Static Taint Analysis for JavaScript Programs . 155
Nabil Almashfi and Lunjin Lu

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports . . . 168
Anna Gromova, Iosif Itkin, and Sergey Pavlov

Building an Adaptive Logs Classification System: Industrial Report 182
Kirill Rudakov, Andrey Novikov, Anton Sitnikov, Eugeny Tsymbalov,
and Alexey Zverev

Short Papers

Development of the Test Suite with Formally Verified FSM Coverage:
A Case Study . 197

Iosif Itkin and Rostislav Yavorskiy

Generation of Test-Based Traces for Automated Partial Software
Specifications Extraction . 203

Inga Egorova and Vladimir Itsykson

Author Index . 209

x Contents

Keynote

Partial Specifications of Libraries: Applications
in Software Engineering

Vladimir Itsykson1,2(B)

1 Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29,
195201 Saint Petersburg, Russia

vlad@icc.spbstu.ru
2 JetBrains Research, Saint Petersburg, Russia

Abstract. The article presents a comprehensive approach to solving a number of
problems that arise during the design, development, debugging andmaintenance of
multicomponent applications. The approach is based on a created formalism that
allows specifying the structure and visible behavior of the component external to
the application.At the same time, themathematical approach used in the formalism
is based on the system of extended finite state machine, which allows analyzing
specifications in an acceptable time. For a programmer to set formal descriptions
of the components, the LibSL specification language is developed. It allows the
programmer to describe the specification of a component or a library in the form
that is understandable to the programmer, without going into the mathematical
basics of formalism. In this case, the interface of the library and its behavior,
which is visible from the outside, are set. The implementation details are not
included in the specification.

The presented formalism and language are used to solve a group of
topical software engineering problems: automated application porting, cross-
language integration of applications and libraries, detection of software errors
in multicomponent projects, detection of integration errors, automated testing of
multi-component applications, etc.

The paper demonstrates the use of formalism and language to solve these
problems, as well as shows other areas in which the approach can be effectively
applied.

Keywords: Partial specification of libraries · Library Specification Language ·
Software integration · Analysis of program

1 Introduction

The software design process has changed rapidly in recent years. Most modern software
applications are designed not as independent software products but as multi-component
systems that include their modules as well as third-party modules and libraries [1, 2].

This research work was supported by the Academic Excellence Project 5–100 proposed by Peter
the Great St. Petersburg Polytechnic University.

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 3–25, 2021.
https://doi.org/10.1007/978-3-030-71472-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_1&domain=pdf
http://orcid.org/0000-0003-0276-4517
https://doi.org/10.1007/978-3-030-71472-7_1

4 V. Itsykson

An increasing number of required functions are already implemented in a library and,
consequently, there is less need to develop custom modules to achieve the project goals.
This shift in focus in software design affects the requirements for software design and
building tools: tools that allow integration of components, conduct integration testing,
detect integration errors, etc. become more popular.

This paper provides an overview of the approach developed under the author’s guid-
ance, in which the above-mentioned and other problems are solved on the basis of a
designed formalism based on the system of interacting extended finite state machines.
The formalism that allows specifying interfaces of multicomponent systems and their
behavior is briefly described. Individual components of the system are described using
the developed domain specific language LibSL. Such descriptions are translated into the
internal formal representation of the tool. In the future, formalized representations of
components are used to solve one of the following software engineering tasks:

– porting an application from one library environment to another;
– approximation of libraries’ functions when performing the static analysis of pro-
grams;

– cross-language component integration;
– detection of application and component integration errors;
– specification extraction from software repositories;
– etc.

Every above-listed task is related to the design, development, analysis, reengineering,
or verification of multicomponent systems. This article describes the way to apply the
approach to all of the above-listed tasks.

The rest of the article is organized as follows. The second section discusses problems
that arise when designing, developing, and debuggingmulticomponent applications. The
third section describes the approach proposed by the author that allows solving problems
of designingmulticomponent systems. The fourth section is devoted to a brief description
of the formalism for the external libraries specification. The fifth section provides a brief
description of theLibSL specification language.The sixth section focuses on applications
of the proposed approach in five different areas of software engineering. Finally, the
seventh section summarizes the results and out-lines the areas for further research.

2 Problems with External Libraries

The current experience of distributing software libraries, unfortunately, does not help
streamline the interaction between parts of multicomponent software systems. The
following library distribution options are most common:

– distribution of the library “as is” without any relevant documentation;
– distribution of the librarywith some brief informal documentation. In this case, instead
of exhaustive detailed documentation describing all aspects of the library functioning,
the way of interacting with it, restrictions on input and returned data, the authors
provide only a brief informal description of the library key functions, without any
details about using API;

Partial Specifications of Libraries: Applications in Software Engineering 5

– distribution of the library with a brief description of API functions and data types
used;

– distribution of the library with several examples of its use.

All these options have common disadvantages – they do not allow getting a de-tailed
idea of the library functioning and the way of interaction with it.

To fully work with the library, it is necessary to know the following information:

– description of all data types used;
– description of data item values if specific values have a specific meaning;
– description of all API calls;
– description of the conditions under which specific library functions can be called;
– description of the library impact on the environment, that is, a list of application
objects that can be modified by the library;

– description of the library scenarios that include valid sequences of API function calls;
– etc.

For building highly reliable applications, it would also be useful to have a formal
description of the library properties listed above provided by the author to be able to
automatically check the integration correctness.

The result of this practice is the appearance of many program errors that occur, when
an external library is included in the application, and are related to the lack of the library
description and the absence of its formal description. These errors include:

– calling library API functions with incorrectly prepared input data;
– incorrect interpretation of data returned by library functions;
– incorrect sequence of library API function calls in the program;
– incorrect work with objects which state is affected by the library;
– using non-optimal methods for obtaining results due to the lack of suitable scenarios;
– etc.

In addition to direct errors resulting from incomplete documentation, some tasks are
impossible or difficult to perform due to the lack of a strict formal library description.
These tasks include:

– automatic creation of software interfaces to libraries for the possibility of using
libraries written in one programming language from programs in another program-
ming language;

– migrating applications from one to another library environment with the same or
similar functionality;

– adding library semantics to the application development tools (IDE) to implement the
functions of intelligent assistants that prompt the programmer with parameter types,
valid API calls, etc.

All these errors and limitations indicate the need for new approaches to documenting,
formalizing, and distributing libraries.

6 V. Itsykson

3 Approach

We offer a comprehensive approach to solving the problems of software integration,
based on the specifications formalization of external components. The approach is based
on the formalism for specifying the structure and behavior of an external component
or library. The main idea is that the formalism describes the library interface and the
behavior of library objects in detail and, at the same time, the behavior of the library API
functions is specified in an enlarged way, without describing implementation details and
only the externally visible behavior of functions is set.

For the programmer a more user-friendly mechanism is offered that is the domain
specific languageLibSL,which allows setting library specifications using amore familiar
tool – the program in a specialized language. At the same time, the proposed language is
independent of the library implementation language,which allows applying the approach
to a wide range of programming languages.

The proposed formalism and specification language offer several options for using
formal specifications in solving problems of program engineering:

– comparison of specifications with each other to determine the compatibility of
libraries;

– joint analysis of two specifications for the synthesis of the program conversion
algorithm;

– forming an approximation of the behavior of the library function based on specifica-
tions;

– automatic generation of tests based on specifications;
– synthesis, which is based on the specifications, of the wrappers and stubs to access
the library from other programming languages;

– using specifications as a reference oracles to analyze the behavior of the application;
– etc.

The following sections describe in more detail the formalism, the language of
modifications, and the application of the approach to solving various problems.

4 Formal Specifications of Libraries

When creating a new formalism for describing software components, there are sev-
eral aspects to consider. Firstly, a formalism should be powerful enough to be able
to describe most existing software libraries. Secondly, it should be simple enough to
perform automated analysis of library descriptions.

The full library specifications exhaustively describe the structure of library and the
behavior of its functions. Full specifications are extremely complex and cannot be used in
practice for specific applications. The proposed approach specifies not the full behavior
of a library, but the observable from the outside. However, implementation details and
otherminor aspects remainoutside the specification.Thus, the proposed approachdefines
partial specifications of libraries.

Partial Specifications of Libraries: Applications in Software Engineering 7

Partial specifications should describe the static and dynamic semantics of the library,
which in turn define the structure and behavior of a library. The elements of the static
semantics are:

– data types used in the library;
– library variables and objects;
– interface of the functions available in the public API.

The dynamic semantics includes:

– API function semantics (function behavior, function contracts, and function side
effects);

– behavior of the library itself (including its usage rules).

Libraries are described as a composition of automata, each of thembeing an extended
finite state machine [3]. Each automaton describes the behavior of a single library object.
The automaton states correspond to the object states, transitions correspond to API
function calls, and creating a new automaton is a side effect of calling API functions.
Each API function is characterized by a signature, a contract [4], high-level behavior,
and actions to perform (semantic descriptions).

Formally, the L library specification is defined as a tuple:

L = <F,B> (1)

– F – set of library functions
– B – behavioral description of library
A set of F functions defines the library public API:

F = {Fi} (2)

– Fi – concrete API function
Each specific Fi function is defined as a tuple:

Fi = <Name, Args, Res, Pre, Post, A, CondA, D, CondD> (3)

– Name – name of the function
– Args – set of the formal arguments of the function
– Res – result of the function
– Pre – preconditions of function
– Post – postconditions of function
– A – set of semantic actions performed by the function
– CondA – set of conditions for semantic actions
– D – set of launched child automata
– CondD – set of launch conditions for child automata
The B library behavior is defined by a set of automata:

B = {M,S1(q,P), . . . ,Sn(q,P)} (4)

8 V. Itsykson

– M – main automaton describing the behavior of the entire library
– Si – ith child automaton launched if certain conditions are fulfilled
– q – initial state of the child automaton
– P – optional parameter of the child automaton
A specific M or Si automaton is set by a tuple:

S = <Q, Q0, X, V, C, C
A, CD, T>

– Q – set of automaton states
– Q0 – set of automaton initial states
– X – set of automaton finish states
– V – set of internal variables
– C = {Ci} – set of function calls acting as stimuli, Ci is the call of an ith function; Ci

∈ F
– CA = { Ci

A} – set of semantic actions initiated by the function launch
– CD = {Ci

D} – set of child automata launched by the function
– T – transition relation.

For a more visual representation of specifications their graphical representation can
be used. Figure 1 presents a visual representation of the server-side TCP socket library
specification. Automaton L describes the behavior of the library itself, automaton P
corresponds to a server-side TCP socket intended for receiving connections from TCP
clients, and automaton S corresponds to a socket generated when receiving an incoming
request from the client and responsible for data exchange. The states of all automata are
shown as rectangles, and the final states when the automaton is destroyed are highlighted
in red. Transitions between automata states are represented by arcs marked with API
functions that activate these transitions. Creating instances of automata while executing
API functions is represented by dotted lines.

Fig. 1. A visual representation of the TCP server socket specification

For more information about formalism, see [5].

Partial Specifications of Libraries: Applications in Software Engineering 9

5 LibSL: Library Specification Language

The formalism presented in the previous section can be used to solve a number of
problems related to software quality as well as to automate many software engineering
tasks. However, the formalism that is convenient for automation cannot be used by
practical programmers, since it is over-formalized and operates with mathematic objects
rather than software objects.

In such cases, theory and practice use domain specific languages that are on the one
hand close to the object domain (in our case, library semantics), and on the other hand
are simple enough for practitioners to understand and to use (in our case, for software
architects and developers). To bridge the gap between theory and practice, the authors
developed the domain specific language LibSL (Library Specification Language), which
is briefly described in this section.

5.1 General Specification Structure

The LibSL specification is a declarative description of the structure and behavior of the
library, the specification structure is shown in Listing 1.

The specification begins with the keyword library (line 01), which specifies the
name of the library being described. This is followed by the import section (lines 02–
03), which implements the modular principle and provides the ability to create multi-file
specifications. Each special external component is specified by the statement import.
Lines 04–06 contain a section of semantic types starting with the keyword types. This
section declares all semantic types, which are essentially classic types of programming
languages, enriched with additional semantics defined with the help of annotations.
The automata specification section (lines 07–11) contains descriptions of all classes of
automata available in the library. Each automaton class is defined by the automaton
construction. The library API is described as the collection of public library functions
(lines 12–16). Each function is described by the keyword fun and contains the description
of the function signature and its behavior. The specification ends with the description
section of the description of global objects (lines 17–22), in which global variables are
set and instances of automata are created.

10 V. Itsykson

01 library <LibraryName>; // Name of the library
02 import <FileName>;
03 ...
04 types { // Semantic types
05 ...
06 }
07 automaton <AutomatonClass>: <Type> {
08 // Automaton description
09 ...
10 }
11 ...
12 fun <FunName>(<Params>): <Type> {
13 // API function description
14 ...
15 }
16 ...
17 var <VarName>: <Type> = <Value>;
18 // Global variables declaration
19 ...
20 var main: <Type> = new Main(<InitState>)
21 // Main automaton creation
22 …

Listing 1. Structure of specification

5.2 Semantic Types Descriptions

The semantic types section (Listing 2) provides several mechanisms for specifying
semantic types. Lines 02–04 show the definition of alias types according to the pro-
gramming language used. The types on the right side (int32, unsigned32) are built-in
types of the LibSL language, and their aliases on the left side correspond to a specific
programming language. Lines 05–08 show how to specify simple semantic types that
add semantic annotations to the ordinary types. For example, the SOCKET type is an int
type, enriched with the SOCKET annotationmeaning that a variable of this type contains
a socket descriptor. Lines 09–18 show the assignment of complex semantic types that
have separate value annotations in addition to the type annotation. These annotations
can be used when porting applications between libraries when different libraries use
different encoding of variable values.

Partial Specifications of Libraries: Applications in Software Engineering 11

02 int = int32;
03 unsigned = unsigned32;
04 byte = unsigned8;
05 SOCKET (int); // Socket type
06 BUFFER (*void); // Socket buffer
07 LENGTH (int); // Socket length
08 PROTOCOL_TYPE (int); // Socket protocol ID
09 SOCKET_TYPE (int) { // Socket type
10 STREAM: 1; // Stream socket
11 DGRAM: 2; // Datagram socket
12 RAW: 3; // Raw Socket
13 SEQPACKET: 5; // Stream packet socket
14 };
15 SIZE (int) {
16 ERROR: -1;
17 }
18 }

Listing 2. Example of semantic types description

01 types {

5.3 Automata Description

The automata description section (Listing 3) is intended for specifying classes of
automata that specify the behavior of libraries. Each automaton class is defined by
the name and type of the descriptor (bsd_socket and int, line 01, respectively). Extended
finite state machine used in formalism can contain additional state variables, in the
language such states are specified by the var construction (line 02). The states of the
automaton are set by the state and finishstate constructions (lines 03–07). The ordinary
states of the automaton are described bymeans of state, and finishstate describes the final
state of the automaton, after which it is destroyed. Automaton transitions are set using
shift constructions (lines 08–16). The first parameter is the initial state of the transition,
and the second is the final one. Two meta-variables are used: self means that the final
state is the same as the initial state (lines 12, 14, and 16), and any means that such a
transition exists in all states of the automaton (line 16). The third transition parameter
describes the transition activation condition. In libraries, the transition is activated by
calling any public API function. For example, in line 10, the socket goes from the Bound
state to the Listening state when the listen method is called from the main program.

12 V. Itsykson

01 automaton BSD_SOCKET: int {
02 var blocked: boolean;
03 state Created;
04 state Bound;
05 state Established;
06 state Listening;
07 finishstate Closed;
08 shift Create->Bound (bind);
09 shift Bound->Create (close);
10 shift Bound->Listening (listen);
11 shift Listening->Bound (close);
12 shift Listening->self (accept);
13 shift Established->Created (close);
14 shift Established->self (recv);
15 shift Established->self (send);
16 shift any->Closed (shutdown);
17 }

Listing 3. Example of an automaton description

5.4 API Functions Description

The API functions description section (Listing 4) is intended for specifying the interface
and behavior of functions included in the library API. The description of an individual
function begins with the fun keyword, followed by the function name (lines 01, 05, and
09). The function signature also contains a description of formal parameters and return
values (lines 01–02, 05–06, and 09–10). Both regular types and previously entered
semantic types can be used as type identifiers. If the function is associated with the
instance of an automaton, the automaton variable is annotated with the “@” character
(lines 05 and 09). The description of the visible behavior of a function is contained in
its body. Here internal variables of the automaton can be changed, new automata can
be created (lines 03 and 07), conditions can be checked (line 11), and semantic actions
can be performed (lines 12 and 14). The important feature of descriptions is the lack of
opportunities for organizing loops and recursions.

Partial Specifications of Libraries: Applications in Software Engineering 13

01 fun socket(domain: DOMAIN, type: SOCKET_TYPE,
02 proto: PROTOCOL_TYPE): SOCKET {
03 result = new BSD_SOCKET(Created);
04 }
05 fun accept(@s: SOCKET, addr: SOCK_ADDR,
06 addrlen: SOCK_LEN): SOCKET {
07 result = new TCP_SOCKET(Established);
08 }
09 fun send(@s: SOCKET, msg: BUFFER, len: LENGTH,
10 FLAGS: int): SIZE {
11 if (len > 0)
12 action SEND(s, msg, len);
13 else
14 action ERROR(Send01, “Parameter error”);
14 }

Listing 4. Example of API Functions Description

5.5 Global Objects Section

The global objects declaration and initialization section (Listing 5) is intended for declar-
ing, creating, and initializing global objects that are necessary for the library to function.
Line 01 shows an example of declaring the global variable stdout from the stdio library.
Lines 02–03 show examples of simultaneous declaration and initialization of variables.
Lines 04–05 show simultaneous declaration of the instance of an automaton and its
creation. Line 06 shows creating the instance of an automaton and its assigning to a
pre-declared automaton variable.

01 var stdout: int;
02 var errno: int = 0;
03 var status: int = 1;
04 var stdin: int = new File(Created, mRead);
05 var stderr: int = new File(Created, mError);
06 stdout = new File(Created, mWrite);

Listing 5. Example of Global Objects Section

For more detail information about LibSL language see [6].

6 Applications

The formalism and specification descriptions language presented in Sects. 4 and 5 are the
basis of a comprehensive approach developed under the author’s guidance for solving
several complex software engineering problems. The following paragraphs provide brief
descriptions of the areas of application of this approach.

14 V. Itsykson

6.1 Porting of Software

One of the challenges of software engineering is the software evolution. It is often
necessary to make changes to a developed and debugged project related to adding new
functionality, expanding the scope of its application, or changing the conditions for its
execution [7]. One of these changesmay be porting the application to a new environment,
in which the functionality of the application itself should not change, while the external
environment may differ significantly from the original one. Examples of such situations
can be, as follows:

– migration to a new operation system;
– migration to a new hardware platform (e.g. mobile);
– moving from the old version of the library to the new one;
– moving from one library to another with similar functionality;
– translation of the source code to another programming language;
– etc.

In all these cases, the new environment is represented by a set of software libraries
that perform similar functions but have a different interface, implementation, behavior,
and ways to interact with the application. In this case, the porting task is reduced to
modifying the original project from using old libraries to new ones (see Fig. 2).

Source Program

Old Library

Por ng

Target Program

New Library

Fig. 2. Porting of software to a new environment

Currently, this type of problems is solved in one of the following ways:

– if a project is moved to a new system environment (for example, another operating
system), cross-platform libraries are used;

– an intermediate software layer is developed, which is the interface between the initial
project and the environment;

– manual migration to a new environment is performed, and all the source code that
interacts with the environment is rewritten.

The main problems of these approaches are related to the need to perform many
manual routine operations: each old library API function call should be rewritten, taking
into account the syntax and semantics of a new one. However, the resulting application
requires all the quality assurance procedures, for example, a full testing cycle. This is

Partial Specifications of Libraries: Applications in Software Engineering 15

due to the fact that the rewritten application is a new software product, and all the results
of the previous original application quality assurance procedures cannot be used.

This fact is especially depressing, since the business logic of the main application
has not changed, but only the interaction with the environment has changed, so repeating
all the procedures for checking the quality of the application is seen as an inefficient
repeated waste of effort.

Using a formal approach based on library specifications, allows automating the
software migration process and maintaining the quality level of the source application
without the need for additional testing of the target application.

The common transfer algorithm in this case is as follows:

– creating the initial library specification (or using a previously created one);
– creating the target library specification (or using a previously created one);
– verifying compatibility of libraries on the basis of the analysis of compatibility
between the two specifications;

– in case of compatibility:

• creating the initial program model;
• conversion of the model in accordance with the specifications;
• generating the target application based on the converted model.

Two of the most science-intensive tasks listed are checking the compatibility of
specifications and converting models.

The scheme of the application porting process is shown in Fig. 3.

Fig. 3. The scheme of the application porting process

16 V. Itsykson

The resulting target application is semantically equivalent to the original application
by construction (we assume that the specifications of both libraries are correct). Thus,
it does not require additional quality assurance procedures, such as new testing.

According to this scheme, two research porting tools were implemented, one for
migrating C programs [8], and the other, more functional, for the Java programming
language [9]. Experimental studies were conducted to test the tools. For this purpose,
several artificially created projects and several open source code projects taken from
open repositories were ported. All projects were automatically converted according to
the specified algorithm, and the resulting projects showed their efficiency. The results
achieved demonstrate that the specification-based approach to porting is efficient.

6.2 Enhancements of Static Analysis

One of the key methods for ensuring the quality of software systems is the static analysis
[10]. Using the static analysis, a wide class of software errors, such as buffer overflow,
incorrect operation with pointers, resource leaks, working with uninitialized variables,
etc. can be detected. The peculiarity of the static analysis is the ability to detect software
errors without running the program under study, while, in some cases, high precision or
soundness of detection algorithms can be guaranteed.

A significant limitation of all static analyzers is the complexity of analyzing multi-
component programs, which occurs here for two reasons. Firstly, when all the procedures
and functions used are included in the analysis, an exponential explosion of the number
of program states occurs, which significantly increases the computational complexity of
the algorithms. Secondly, the source code of the libraries and components used is often
unavailable and, in this case, the analyzer faces significant uncertainty when analyzing
function calls, which leads to the sharp decrease in detection precision.

One of the methods for solving these problems is to replace all external functions in
the analysis with their simplified analogs – summaries. At the same time, the summaries
of the function behavior should be simple enough not to complicate the complexity of the
analysis. In addition, the summaries should be able to signal errors that occurred within
library functions. The formalism and specification language proposed in this paper can
be used to construct summaries of the behavior of external functions during the static
analysis.

One of themost promisingmethods of the static analysis is BoundedModelChecking
[11]. On its basis the Borealis [12] static analyzer was developed in the author’s research
group. Main stages of its functioning are:

– the transformation of the program source code into logical predicates;
– converting checking rules to logical predicates;
– converting function summaries (contracts, Craig interpolants) to logical predicates;
– building a complex predicate from all the simple ones mentioned above;
– solving of a complex predicate using SMT solver (Z3 [13], Boolector [14], etc.);
– interpreting the result obtained by SMT solvers and mapping it to the initial code.

The scheme of applying the approach is shown in Fig. 4. The integration of external
function specifications and the program model occurs when the internal model of the

Partial Specifications of Libraries: Applications in Software Engineering 17

Fig. 4. BMC static analyzer with library specifications

analyzer called PredicateState is formed. The example of the send function specifica-
tion from the BSD-socket library is shown in Listing 6. Lines 03–04 describe the valid
behavior of the function, and lines 05–06 show the error of parameters detection. In
the language, it is described using the semantic action ERROR. The predicate corre-
sponding to the detection of this error is integrated into the general complex predicate
of the program. If this predicate is resolvable, the error with the Send01 code will be
diagnosed, which means that when the program is running, the situation may occur, in
which incorrect parameters may be submitted to the send function input.

01 fun send(@s: SOCKET, msg: BUFFER, len: LENGTH, FLAGS:
02 int): SIZE {
03 if (len > 0)
04 action SEND(s, msg, len);
05 else
06 action ERROR(Send01, “Parameter error”);
07 }

Listing 6. Example of function specification

6.3 Cross-Language Integration

Often,when developing amulticomponent project, the programmer needs to use a library
written in a different programming language. If the author has not provided an interface to
the library in the required language, such cross-language integration becomes difficult or,
often, impossible. Thus, it is very important to have a mechanism that allows integrating
components written in different programming languages without additional effort. The
main requirements for such a mechanism are:

18 V. Itsykson

– transparency for the user application – no need to modify the application to adapt it
to the library;

– minimizing the writing of the additional code linking the application and the library;
– low overhead for linking the application and library, i.e. high performance of the
approach.

To solve this type of problem, the industry has developed several approaches that
can be divided into two groups. The first is to integrate the application and the library
via remote procedure call (RPC). The second is to integrate of the application and the
library via the foreign function interface (FFI).

Remote procedure call technologies [15] (for example, gRPC, Thrift, Rabbit-
MQRPC, Java RMI, Cap’n’proto, XML-RPC, etc.) provide the mechanism for transmit-
ting of the remote function call parameters and for returning the result via the network
environment. However, they all have significant limitations:

– necessity to manually write linking code;
– necessity to adapt software components in some cases (for example, to solve
serialization problems);

– low performance.

The foreign function interface mechanism (for example, libffi, JNI, SWIG, etc.)
is designed to coordinate semantics and function calling conventions between two
programming languages. The main limitations of this mechanism are:

– focus mainly on libraries written in the C programming language; other languages are
supported, but additional effort is required;

– need to write additional code and efforts to harmonize different memory manage-
ment models in different programming languages (for example, manual memory
management and garbage collection);

– in some cases need to adapt language runtime environments and virtual machines to
work in the same process.

To solve the problem of cross-language integration and to overcome the problems
that exist in these approaches, the approach based on formal library specifications was
developed. It is focused on the following tasks:

– to allow reusing of existing, well-tested and optimized software components and
libraries written for older languages from programs written in new languages.

– to allow adding new features implemented in modern languages to existing projects
written in older languages;

– to allow the above tasks to be completed without extensive knowledge of both
languages;

– to provide easy adaptation for new languages and libraries.

The main idea of the approach is to automate the generation of matching software
code based on formally defined library specifications. In this case, wrappers for remote

Partial Specifications of Libraries: Applications in Software Engineering 19

API functions are generated in the language of the main application, and the receiving
part of the remote library is generated in the language of the library. Library classes
are mapped onto automata, constructors and methods are mapped onto transitions. The
approach is implemented in the prototype of the LibraryLink cross-language integration
tool. The approach scheme is illustrated in Fig. 5.

Fig. 5. The approach to cross-language integration

To be able to use the approach for connecting libraries in a specific programming
language, the receiver core and receiver template for this language should be manually
developed once, the receiver code for a specific library will be generated automatically
on the basis of this library specification. To be able to use the approach from a specific
programming language, the wrapper core and wrapper template for this language should
be manually developed once, the wrapper code itself for accessing a specific library will
be generated automatically on the basis of this library specification.

The developed prototype has the following important properties:

– callbacks for libraries and inheritance are supported;
– the need for serialization is minimized by using the handle mechanism;
– semantic information from the specification is used to improve performance (caching
and pre-sampling);

– multithreaded applications and various memory management models are supported.

As a result, the approach implemented in the prototype has significant advantages
over those currently used. A comparison of the main approaches is presented in Table 1.

Currently, the cross-language integration tool is implemented as a pilot project.
Receiver cores and receiver templates have been created for C, Python, and Golang,
which provides the support for the libraries written in these languages. Wrapper cores
and wrapper templates have been created for Java, Kotlin, and Golang, which allows

20 V. Itsykson

using the approach from programs written in these languages. The approach has been
tested on several popular libraries: Requests (Python), Z3 (C), and Jennifer (Golang).
The achieved performance is up to 90,000 function calls per second and up to 270000
in pre-selected mode.

Table 1. Comparison of approaches to cross-language integration

Approach Wrapper/
receiver
creation

Wrapper /
receiver core
(language
support)

Serializa-
tion re-
quired

Memory
management
coordination

Caching and
prefetching

RPC Manually For each lan-
guage (N)

Yes Manually Manually

FFI Manually For each pair
of languages
(~N²)

No Manually Manually

LibraryLink Comparison
of ap-
proaches to
cross-lan-
guage inte-
gration

For each
language (N)

No Built-in Inferred from
a semantic
model

6.4 Integration Errors Detection

One of the most common problems when designing multicomponent applications is the
incorrect interaction between the application and the used library. The main reasons for
this are the lack of clear formal specifications for most libraries, which leads to many
software integration errors, which are described in detail in Sect. 2.

These integration errors can also be detected using a formal specification approach.
The essence of the proposed method is to use dynamic analysis to detect integration
errors. The library specification defines the reference behavior of the library and, in
fact, completely defines the protocol for interaction between the main application and
the library. To check compliance, the main program is started, and all actions related to
the interaction with the library are logged as an execution trace. The resulting trace is
checked for compliance with the reference behavior specified in the library specification.

In more detail, the dynamic analysis procedure consists of the following steps:

1. instrumentation of the program under study, controlled by the library specification
(specification-driven instrumentation);

2. running an instrumented program and recording the execution route;
3. analysis of the compliance of the trace to the specification.

Items 2 and 3 are performed repeatedly on various test data in order to check as many
execution paths as possible.

Partial Specifications of Libraries: Applications in Software Engineering 21

Instrumentation of the program under study is based on the analysis of the library
specification. Only the program elements that are directly involved in communicating
with the library are instrumented: library functions calls, modifications of library objects,
etc. In this case, not only the fact of the API function call is logged, but also all the param-
eters being passed, as well as the ID of the library object. This allows separating events
related to different objects in the same library in the future. Thus, the collected trace
contains all the necessary information for subsequent correctness analysis (postmortem
analysis).

Then the instrumented program is run on the test initial data, during its operation
a trace containing a detailed protocol for interaction between the application and the
library is recorded.

The saved trace is analyzed for compliance with the specification after the program
ends. To do this, the trace is filtered: events corresponding to a specific library object
are extracted from it. The resulting local trace is played back on the library model:

– pre-conditions are checked before API function calls;
– post-conditions are checked after API function calls;
– it is checked whether the API function call in the state of the library automaton is
valid.

If a discrepancy is detected it is added to the error report. This trace is played on the
model for all library objects found in the trace. This procedure is repeated many times
on different test suites in order to maximize the coverage of the interaction protocol with
the library. The scheme of the approach is shown in Fig. 6.

Fig. 6. The dynamic approach to detecting integration errors

Based on the described approach, a pilot tool was implemented that detects integra-
tion errors with external libraries in Java programs [16]. To do this, we created specifi-
cations for several libraries used in apache/incubator-netbeans repository projects. The
tool was tested on several artificially created projects and on more than 400 files from
the specified repository.

During the experiments, more than 300 integration errors were detected, most of
which were related to non-fulfillment of the library API function prerequisites and
resource leaks.

6.5 Specification Mining

The lack of formal specifications for most libraries is a serious problem when applying
all approaches based on specifications. As mentioned in Sect. 2, authors usually do not

22 V. Itsykson

accompany their libraries with formal specifications; at best, they can rely on a partial
informal description with usage examples. Programmers using a library can’t form a
formal specification for it either, because they don’t have comprehensive information
about its internal structure and functioning. The only way to get information for creating
specifications is to use the knowledge accumulated by the programming community.

The global programming community has implemented hundreds of millions of soft-
ware projects hosted by the authors in free repositories, such as GitHub, BitBucket, etc.
If the library that you need to use is not a new product, but has been actively used for
several years, then the open repositories can host hundreds of thousands or even millions
of projects that use this library. The experience of using the library in each project in
the form of a usage scenario demonstrates some knowledge about the functioning of
the library [17]. For example, there may be several ways to call library functions. When
such knowledge pools are combined with millions of others, a statistically significant
sample is obtained, which can be used for generalization in order to build a complete
specification of the library or part of it. It is natural that some projects may use the library
incorrectly, but such exceptions can be offset by a huge number of examples of incorrect
use of the library.

Our approach is currently limited to the Java programming language and projects
hosted in theGitHub repository. The essence of the approach for extracting specifications
from the open repositories is as follows:

– finding all projects located in GitHub repositories written in the Java programming
language and using the target library;

– uploading the found projects into the local storage.

For each uploaded project:

– project instrumentation for creating a complete trace of interaction between the
application and the library;

– analysis of the project for the presence of tests provided by the authors; if there are
no tests, they are generated by the system;

– running the project on the native or generated tests;
– collecting execution traces for each test;
– analysis of the received traces and generation of predicates.

Predicates collected fromall the uploadedprojects are converted into the specification
skeleton. The resulting skeleton contains a part of the specification derived from the
encountered usage scenarios when analyzing loaded projects. Then the specification can
be updatedmanually by the developer based on the analysis of the library documentation,
supplied usage examples, and the developer’s own experience.

6.6 Other Applications

The approach considered in this article is not limited to the applications described in
Sects. 6.1–6.5. There is also a group of actual software engineering problems that have
an effective solution based on formal library specifications.

Partial Specifications of Libraries: Applications in Software Engineering 23

Static Detection of Integration Errors
In Sect. 6.4, we introduced a method for dynamically detecting application and library
integration errors. Dynamic approaches in such problems are characterized by high
precision of error detection, but suffer from low soundness. To ensure complete detection,
static methods, such as formal verification or static analysis, are required to prove that
the application is correctly integrated with the library based on the comparison with the
specification.

Automated Specification Building Based on Library Source Code
Section 6.5 describes the approach that allows creating a library specification skeleton
based on the open repositories in the absence of the library initial code. If there is an
access to the library source code, there may be a solution of the problem of building
a library specification or part of it using the static analysis of its source code. If you
combine both approaches, the quality of the restored specifications will be significantly
higher.

Testing Applications for Environment Stability
One of the important tasks of software quality assurance is testing. In this case, it is
necessary not only to check the correct operation of the application on the correct data,
but also to test the operation of the application on the arbitrary data in order to assess
its stability. Fuzzing is usually used to solve this problem, in which the test data that
is fed to the application input is generated randomly. This may not be enough to fully
test the application for stability, but it is also necessary to fuzz the entire interaction
of the application with the external environment. To solve this problem, formal library
specifications can be used in this case, a mock is generated based on the formal library
specification, which completely replaces the connected library, executes the library con-
tract, and returns completely random data to the application. Having built the appropriate
infrastructure, the application can be placed in an environment where all its interactions
with the environment are simulated by the generated mocks, which will allow testing
comprehensively the application and detecting errors that lead to the application hanging
or falling.

Automatic Creation of Software Documentation
Formal specifications are directly related to the software documentation. The formal
specification of the library can be the basis for creating software documentation describ-
ing the functioning of the library. Based on the API function specification (function
signatures, behavior descriptions), you can automatically generate API function docu-
mentation templates. A behavioral description of the entire library can be the basis for
creating documentation for library usage scenarios. The created document templates can
then be added manually by the developer to get full documentation.

Extensions of Integrated Development Environments Functions
One of the most popular features of modern development environments is smart prompts
(auto completion) when typing software text. These suggestions are usually generated
by the environment on the fly, using the programming language grammar and struc-
tured comments of library functions (for example, Javadoc). The quality of hints can

24 V. Itsykson

be improved if the smart hint system also uses formal library specifications that contain
information about correct function call sequences. Thus, based on the context, it will be
possible to offer the programmer only those library functions that make sense to call in
accordance with the behavioral description of the library.

7 Conclusion

The article presents the approach to managing software integration based on formal
library specifications. The presented formalism is a compromise between fully func-
tional Turing-complete models that are difficult to analyze, and lightweight finite state
machines models that have application limitations. The power of the developed for-
malism is sufficient to describe the majority of existing software libraries. To support
formalism, the domain specific language LibSL was developed, which allows setting
library specifications in a human-readable form without going into the mathematical
aspects of formalism.

The developed formalism and language have been successfully applied or can be
applied to solve a wide range of software engineering problems:

– software porting;
– improving the characteristics of static analysis of projects that use external libraries;
– cross-language integration of applications and libraries;
– dynamic detection of integration errors;
– static detection of integration errors;
– directed fuzzing of library calls;
– automated extraction of specifications from projects located in the open repositories;
– automated creation of specifications based on the library initial code;
– automatic creation of software documentation;
– etc.

Experimental studies have shown the effectiveness of the approach for solving
specific problems of software engineering.

References

1. Barros-Justo, J.L., Benitti, F.B.V., Matalonga, S.: Trends in software reuse research: a tertiary
study. Comput. Stand. Interfaces 66 (2019)

2. Capiluppi, A., Stol, K.J., Boldyreff, C.: Software reuse in open source a case study. In: Koch,
S. (ed.) Open Source Software Dynamics, Processes, and Applications, pp. 151–176 (2013).
https://doi.org/10.4018/978-1-4666-2937-0.ch008. Accessed 23 Mar 2020

3. Alagar, V.S., Periyasamy, K.: Extended finite state machine. In: Alagar, V.S., Periyasamy, K.
(eds.) Specification of Software Systems. Texts in Computer Science, pp. 105–128. Springer,
London (2011). https://doi.org/10.1007/978-0-85729-277-3_7

4. Meyer, B.: Design by contract: making object-oriented programs that work. In: Proceed-
ings of the Technology of Object-Oriented Languages and Systems, TOOLS 25 (Cat. No.
97TB100239), Melbourne, Victoria, Australia, pp. 360–361 (1997)

https://doi.org/10.4018/978-1-4666-2937-0.ch008
https://doi.org/10.1007/978-0-85729-277-3_7

Partial Specifications of Libraries: Applications in Software Engineering 25

5. Itsykson, V.M.: Formalism and language tools for specification of the semantics of software
libraries. Aut. Control Comp. Sci. 51(7), 531–538 (2017). https://doi.org/10.3103/S01464116
17070100

6. Itsykson,V.: LibSL: a language for software components specification. Softw.Eng.5, 209–220
(2018). (in Russian). https://doi.org/10.17587/prin.9.209-220

7. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a retroactive study on the evolution
and migration of software libraries. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE 2012), Article 55, pp. 1–11.
Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2393596.
2393661

8. Itsykson. V., Zozulya, A.: Automated program transformation for migration to new libraries.
In: 2011 7th Central and Eastern European Software Engineering Conference (CEE-SECR),
Moscow, Russia, pp. 1–7 (2011). https://doi.org/10.1109/CEE-SECR.2011.6188463

9. Aleksyuk, A.O., Itsykson, V.M.: Semantics-driven migration of java programs: a practical
application. Aut. Control Comp. Sci. 52(7), 581–588 (2018). https://doi.org/10.3103/S01464
11618070027

10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn, p. 452.
Springer, Heidelberg (2005)

11. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking.
Advances in Computers. Academic Press (2003)

12. Akhin, M., Belyaev, M., Itsykson, V.: Borealis bounded model checker: the coming of age
story. In: Mazzara, M., Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 119–
137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_8

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78800-3_24

14. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_16

15. Nelson, B.J.: Remote Procedure Call. PARC CSL-81-9. Xerox Palo Alto Research Center.
Ph.D. thesis (1981)

16. Itsykson, V., Gusev, M.: Automation of library usage correctness detection. In: Proceedings
of SEIM Conference, St. Petersburg (2018)

17. Dallmeier,V.,Knopp,N.,Mallon,C., Fraser,G.,Hack, S., Zeller,A.:Automatically generating
test cases for specification mining. IEEE Trans. Softw. Eng. (TSE) 38(2), 243–257 (2012)

https://doi.org/10.3103/S0146411617070100
https://doi.org/10.17587/prin.9.209-220
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1109/CEE-SECR.2011.6188463
https://doi.org/10.3103/S0146411618070027
https://doi.org/10.1007/978-3-319-67425-4_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-00768-2_16

Full Papers

Chaotic Time Series Prediction: Run
for the Horizon

Vasilii A. Gromov(B)

National Research University Higher School of Economics, Pokrovskii boulevard, 11,
109028 Moscow, Russian Federation

stroller@rambler.ru

Abstract. The present article reviews some recent papers concerned with chaotic
time series prediction in the context of predictive clustering, and discusses in
greater detail some novel techniques designed to avoid ‘a curse of exponential
growth’ – errors grow exponentially depending on the number of steps ahead to
be predicted. These techniques are non-successive observations, combined with a
prognosis that employs already predicted values, the concept of non-predictable
points, and a quality assessment of clusters used. The approach discussed, allows
one to separate calculation into two parts: the first part, essentially larger, is per-
formed off-line, the second, immediate prediction routine, is carried out on-line.
This makes it possible to design fast and efficient prediction algorithms. A wide-
ranging simulation, suggests that the error term associated with the prediction
sub-model used, provided that clusters used to predict are chosen correctly, van-
ishes as the validation set size grows to infinity. Similarly, the error term associated
with an incorrect choice of clusters used to predict, decreases when a validation
set size increases.

Keywords: Time series prediction · A chaotic time series · Predictive
clustering · Cluster prognostic value

1 Introduction

Constant interest in chaotic systems and models expressed by researchers in various
fields [2, 8, 23–26, 28], is due to both the fundamental importance of non-linear phe-
nomena for natural and social processes description, and an inherent complexity of their
forecasting. The overwhelmingmajority of information systems are complex and thereby
tend to show chaotic behaviour. Mathematically, the problem to forecast such system
characteristics is a chaotic time series prediction problem. One should emphasize that
regular and chaotic time series, essentially differ, in that the latter features the prediction
horizon, which is the maximum number of steps ahead that one can make a prognosis.
Quite naturally, this quantity depends on a required maximum prediction error and a
time series observation accuracy. Since the prediction horizon is finite for chaotic time
series, and infinite for regular, it serves to distinguish the time series of these two types.
The prediction horizon is attributed to an exponential divergence of initially close tra-
jectories, due to the Lyapunov instability of chaotic time series [16, 22]. The exponent

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 29–43, 2021.
https://doi.org/10.1007/978-3-030-71472-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_2&domain=pdf
http://orcid.org/0000-0001-5891-6597
https://doi.org/10.1007/978-3-030-71472-7_2

30 V. A. Gromov

coefficient is called the highest Lyapunov exponent; for chaotic time series it is positive,
and it is readily calculated from a time series [16, 22].

The exponential divergence mentioned above, is also responsible for the exponential
error growth for multi-step prediction, and the highest Lyapunov exponent serves here
as the exponent coefficient also. This explains the fact that most papers dealing with
chaotic time series prediction, discuss results for a single step prediction only, whereas
the problem of multi-step prediction for chaotic time series is still unresolved.

It is worthy to stress that the exponential growth of prediction error is intrinsic to a
single prediction model for a chaotic time series, whereas, if one predicts using a set of
sub-models, the reverse may hold true. As it is very difficult to develop a single model
to predict a chaotic time series, it is quite natural to look for prediction methods that
are able to combine, either explicitly or implicitly, a set of sub-models corresponding to
various dynamic patterns observed in the series [3, 23, 24]. Of the known approaches,
predictive clustering [4] stands out as the most robust; here, the sub-models are based
upon clustered sequences of time series observations [5, 17, 32].

The present article reviews some recent papers concerned with chaotic time series
prediction, in the context of predictive clustering, and discusses in greater detail some
novel techniques designed to avoid ‘a curse of exponential growth’. These are non-
successive observations combined with a prognosis that employs already predicted val-
ues, the concept of non-predictable points [7], and quality assessment of clusters used
[10]. Actually, any prediction method to a significant number of steps ahead for chaotic
series involves prediction based on the values that are predicted themselves. Conse-
quently, it is extremely important to assess whether or not these predicted values are
reliable. The aforementioned concepts constitute a set of tools to estimate the reliability
– hence they are necessary to make a reliable multi-step prognosis.

The rest of the paper is organised as follows. The next section reviews recent advances
in the field. The following Sects. 3 and 4, presents the mathematical statement, the
problems under study, and introduce basic concepts and non-successive observations.
Section 5 outlines the prediction algorithm. Sections 6, 7 and 8 go on to describe the con-
cepts of non-predictable points and quality assessment. The following sections outline
a clustering method, and a method to estimate clusters’ prognostic values, and provide
the prediction results for the time series which are 1) generated by the Lorenz system,
and 2) associated with the Australian energy market. The prediction results are obtained
for a single prediction for various quality assessment techniques that makes possible
to compare them. The last two sections compare the results to those obtained by other
authors, and present conclusions.

2 Related Works

One way to decrease the mean prediction error for predictive clustering algorithms,
is to estimate prognostic values of the clusters at hand, with the employment of an
additional validation set, distinct from the training (used to generate these clusters)
and the testing (used to estimate ultimate prediction error). One may treat these cluster
prognostic values as method hyperparameters, as introduced by Goodfellow et al. [11],
with the sole difference that, for that case, the number of hyperparameters is equal

Chaotic Time Series Prediction: Run for the Horizon 31

to the number of clusters, and therefore is large. It is possible to estimate the cluster
prognostic value using, say, the mean prediction error (on the validation set) induced
by this cluster, or an invariant measure for the phase space region associated with this
cluster; the latter alternative allows excluding clusters corresponding to the remote and
unfrequented regions.

It is not necessary to present information about clusters prognostic values using
scalars, quite the contrary. It is possible to employ, for example, logical rules indicating
practicability of utilizing the cluster in question, to predict.

In either case, the prediction error is broken down into two terms. The first is associ-
ated with an incorrect choice of a cluster and, consequently, a sub-model to predict. The
second is that caused by a discrepancy between predicted and actual values, provided
the cluster is chosen correctly, that is, the chosen cluster is associated with the true space
phase region where the time series (trajectory) portion to be predicted is situated. The
latter term cannot be reduced for the clustering algorithm used – we consider it as a kind
of theoretical minimum error for a given clustering algorithm, prediction sub-model and
training samples size. However, one can delete clusters with lower prognostic values in
order to reduce the former. The totality of procedures aimed at reducing the second sum-
mand (at estimating prognostic values of clusters [hyperparameters]) is termed ‘quality
assessment’ for predictive clustering.

The present paper introduces a ‘quality assessment’ of clusters generated by a pre-
dictive clustering algorithm, and proposes several methods to solve this problem. To
compare different methods, we utilize a contribution of the first summand to the total
prediction error, as well as the number of non-predictable observations for a testing
set [7, 8], that is the observations the algorithm is unable to predict due to the lack of
the appropriate cluster. Let us stress, that the ability of any algorithm to detect non-
predictable observations is its great advantage. Actually, it is much better if an algorithm
‘honestly’ indicates that it is unable to predict properly at a certain point and does not
try to predict ‘forcibly’ - without indicating risk to use such predicted values.

Of fundamental importance is the ability of, and necessity for, a predictive clustering
algorithm to generate clusters, using not only the series to be predicted but also a group
of similar series that contains it.

Conventionally, predictive clustering researchers pursue two avenues of inquiry [1].
The first proposes that a time series is a single entity and a set thereof may be clus-
tered using various clustering techniques. The second one looks for typical dynamical
patterns (known as typical sequences [7–10], motifs [27], chunks [29], shapelets [30],
subsequences [1], etc.) either in a time series observed, or in a group of similar time
series. In what follows, we restrict our attention to the second line of investigation.

As discussed by E. Keogh and J. Lin [18], it serves no purpose to use the single
time series to be predicted to generate clusters; it is essential to utilize a set of all
other similar series. Papers concerned with the algorithms of pattern discovery, usually
explore techniques to generate a training set, using a series at hand, and to cluster it.
These parts of a predictive clustering algorithm are associated with concepts of data-
adaptation and algorithm-adaptation [21]. The data-adaptation concept allows use of
raw data, feature-based transformation of the data, and model-based transformation of
the data as well, to generate samples [1, 21]. Algorithm-adaptation places the primary

32 V. A. Gromov

emphasis on clustering algorithms and their adaptation to the forecasting problem: A
large part of previous studies deals with k-means, c-means (crisp and fuzzy) and the like.

Huang et al. [12] employ k-means in order to adjust it to seek for similar sections in
chaotic time series; the modified algorithm is dubbed TSkmeans (Time Series k-means).
Martinez-Alvarez and his colleagues [24] also uses k-means to predict chaotic time
series; the paper summarizes results by various investigators for forecasting of Aus-
tralia’s national electricity market prices – this bunch of series seems to become a sort
of benchmark to test various prediction algorithms for chaotic time series; an extended
version of the results may be found in [7]. Papers [13, 14] analyse spatio-temporal data
using a clustering technique grounded on the modified Euclidean distance capable of
taking into account hidden space and time patterns. Benitez et al. [3] examine ways to
extract typical patterns from series amassed by generating company; it is aimed at design-
ing algorithms of rational energy consumption; the authors use various modifications of
k-means.

The trouble with such algorithms is that, on the one hand, the structure of clusters
depend heavily on the metric used and, on the other hand, it, for most cases, requires
knowledge of the number of clusters before clustering [6]. The methods that employ
concepts and methods of graph/complex network theory are free, in some sense, of
these drawbacks. Ferreira and Zhao [6] propose to map time series sections into graph
vertices in order to apply then community detection algorithms. Gromov and Borisenko
[7] employ the modified Wishart algorithm to cluster sequences of observations [20];
the authors point out to correlation between clusters obtained and phase space regions
with higher values of invariant measure of the respective dynamical systems.

3 Time Series Prediction Problem

Given a set S of chaotic time series S = {
y(s)

} =
{
y(s)
0 , y(s)

1 , . . . , y(s)
ts

}
, s = 1..|S|, where

ts is the size of the s series, y
(s)
i is i-th observation of s-th series, and a series y = {yt},

estimate the value of an observation yt+K to minimise the prediction error.

I = minE(yt+K − ŷt+K)2 (1)

It is supposed that we know all observations of y up to and inclusive yt . In particular,
if K > 1, then the problem is called the multi-step (ahead) prediction problem.

If S = ∅, then one obtains a more conventional definition of prediction problems.
The definition (1) appears to be more convenient for predictive clustering as it allows
utilizing information from various time series. Actually, any predictive clustering algo-
rithm implies that one seeks motifs in the time series considered. A motif is a typical
sequence that emerges from time to time in a series. We assume here that all transient
processes in the system that generate the time series in hand have been completed, and
the time series reflects the trajectory movement in the neighbourhood of the attractor
of the dynamical system that generates the series. It is worth emphasizing that neither
the system nor its attractor is known, and the problem to reconstruct them is usually a
much more complicated problem than the prediction problem. For chaotic time series,
an attractor is usually a complex geometrical (fractal) set, called strange attractor. The

Chaotic Time Series Prediction: Run for the Horizon 33

second assumption is that the series meets Takens theorem conditions, and respectively,
one can analyse the attractor structure, using time series observations [16, 22].

As the trajectory of the systemmoves along the same area of the attractor frequently,
one can meet similar sequences in the time series. These sequences resemble the motif
associated with the respective area. If one reveals these areas, describes corresponding
motifs, and develops the simplest prediction models for each one, one makes it possible
to predict chaotic time series up to a considerable time limit [9]. The clustering method
presented below is employed to collect together sequences belonging to the same clus-
ter. The motifs are usually centres of such clusters. It is straightforward to extend this
approach to a set of time series S, just using all motifs that can be found in them.

4 Non-successive Observations

Usually, to ensure that Takens theorem conditions are satisfied, vectors are composed
from time series observations (z-vectors) [16, 22]: a d-dimensional z-vector is defined

as z(s)i =
(
y(s)
i , y(s)

i+1, . . . , y
(s)
i+d−1

)
. Conventional practice is to compose z-vectors from

successive observations. Surprisingly, z-vectors composed of non-successive observa-
tions according to a certain pattern, proved more efficient [7]. For the best prediction,
one should run over all or, at least, over a considerable portion of all reasonable pat-
terns, and single out the most appropriate clusters. Different attractor areas are associ-
ated with different clusters and corresponding motifs. The pattern is defined as a pre-set
sequenceof distances betweenpositions of observations, such that these (non-successive)
observations are to be placed on the successive positions in a newly generated sample
vector.

The vector, thus concatenated, generalises a conventional z-vector [16, 22], which
corresponds to the pattern (1, 1, . . . , 1) (m times). Thus, each pattern is a S−1-dimension
integer vector (p1, . . . , pS−1), pj ∈ {1, . . . ,Pmax}, j = 1 .. S − 1; the parameter Pmax

dictates themaximumdistance between positions of observations that become successive
in the vector to be generated. Thereby, the quantity S · Pmax refers to a kind of a memory
depth.

For predictive clustering, samples selected from the vectors of concatenated suc-
cessive observations (z-vectors), prove less efficient than those based on the vectors
concatenated according to various patterns [7]. This is attributed to the fact that vectors
of non-successive observations are able to store information about salient observations:
minima, maxima, tipping points and so on.

One should emphasize that each model mentioned above is an averaged represen-
tation of the clustered time series sequences, or alternatively, trajectories belonging
to the respective attractor area. Consequently, it leads to a decrease in the prediction
error due to averaging (the predicted values are obtained by using the cluster centres),
and simultaneously, to its increase, in virtue of the fact that the ‘chaotic’ exponential
growth is alleviated. The clustering method used strikes a compromise between these
two tendencies.

34 V. A. Gromov

5 Prediction Algorithm

Apredictive clustering algorithm is usually subdivided into three parts. Thefirst part anal-
yses a group of time series at hand in order to cluster sequences made of its observations,
according to predefined patterns, and then to use cluster centres as typical sequences.
The second, estimates clusters’ prognostic values and deletes clusters with low values.
Finally, the third provides a prognosis for the time series with the employment of the
obtained typical sequences (cluster centres).

The series are considered to be normalized. We used two different normalization
techniques. The first one suggests that an entire time series is normalized with the
employment of itsmaximumandminimumvalues,whereas the second technique implies
that sample vectors are normalized separately, using their own maxima and minima.
Hereafter, we refer to these techniques as global (G) and local (L) respectively. The latter
makes it possible to cluster, not typical amplitudes (as it takes place for the former), but
rather typical profiles.

To cluster generalised z-vectors, we employ the Wishart clustering method [31] as
modified by A. V. Lapko and S. V. Chentsov [20]. This method employs graph the-
ory concepts and a non-parametric probability density function estimator, of k-nearest
neighbours. Some problems associated with application of the algorithm to predict time
series are discussed in [7]. The algorithms to estimate clusters’ prognostic values are
discussed in the next section.

To predict time series values in the framework of the third part of an algorithm, the
centres of clusters (motifs) are calculated for all used patterns and obtained clusters. For
a given position to be predicted (for the time series in question), and for a given cluster,
one should take the following steps. Firstly, one composes a vector from time series
observations, according to the pattern used to generate the cluster, with the position
associated with the last vector element (respectively, undefined). Secondly, truncate the
vector and the cluster centre - all elements but the last ones are included in the truncated
vectors. Thirdly, calculate the Euclidian distance between the truncated observation
vector and the truncated cluster centre. One searches over all patterns and clusters in
order tofind the clusterwith theminimumdistance. If the distance is less than apredefined
vigilance threshold, then the centre of this cluster is employed to predict the observation,
namely, the last element of the centre is used as a predicted value for the position in
question. Otherwise, if the distance to any cluster available exceeds the threshold, the
dynamics are considered unidentifiable, and the observation is appended to the set of
non-predictable observations.

6 Non-predictable Points

Employing clustering techniques to reveal typical sequences and to predict time series
using the revealed sequences, the predictive clustering methods are sometimes unable to
find, for a given point to be predicted, any appropriate typical sequences to predict value
at this position. This happens when there are no cluster centres matching observations
from the time series section preceding this position. Hereafter such observations are
called unpredictable, and their number (related to the testing set size) is taken to be

Chaotic Time Series Prediction: Run for the Horizon 35

a measure of prediction quality, along with a prediction error averaged over all other
(predictable) observations of the testing set. It is worth stressing that this feature is
conventionally regarded as a limitation of predictive clustering, but it seems that it is
much better if an algorithm ‘sincerely’ warns that the point is unpredictable, than it
generates an erroneous prediction without warning.

7 Quality Assessment

The total prediction error can be broken down into the two terms. The first term results
from the incorrect choice of the active cluster, that is a cluster which centre is used to
predict. Consequently, it is possible to state the problem of estimating clusters’ prog-
nostic values in order to minimize the term associated with incorrect choice of the active
cluster, that is, the cluster engaged to predict the current observation (the first term).
The problem involves selecting a subset of clusters such that the total prediction error
(on the testing set) corresponding to the forecasting routine that employs this subset
only, is either minimal (the first statement) or less than a predefined threshold (the sec-
ond statement). Mathematically, the problem is formulated as follows. Let � is the
set of clusters employed to predict the time series in question; � ≡ {

G : � → R1
}
;

�̃(G, β) = {λ ∈ � : G(λ) ≥ β}. The problem is to find the estimator G∗ ∈ � and the
threshold value β∗ ∈ R1, β∗ > 0 (the first statement) in order to minimize prediction
error (on the testing set):

min I(Λ̃(G, β)) (2)

The second statement implies that one minimizes the number of clusters belonging
to Λ̃(G, β):

min
∣∣∣Λ̃(G, β)

∣∣∣ (3)

subject to constraint
∣∣∣I(Λ̃(G, β))

∣∣∣ ≤ γ, (4)

where γ is a parameter of the algorithm.
In the framework of the first statement, one places emphasis on the minimum pre-

diction error, while the second statement is concerned primarily with the speed to obtain
prediction results. In either case, this suggests reducing the number of clusters, or to
put it differently, the overall complexity of the prediction model under study (while
maintaining prediction accuracy). One cannot but make analogies of various methods
to reduce the complexity of regression models (for instance, AIC, BIC, GIC, and so on
[19]).

To solve the problem, an additional set (the validation) is introduced, under the
assumption that it differs from both the training and testing ones, and all three of them
are drawn from the same universal set.

36 V. A. Gromov

8 The Problem of Estimating Clusters’ Prognostic Values (Quality
Assessment)

Two techniques to estimate the values in question are considered. The first one suggests
that the prognostic value of k-th cluster is calculated as follows:

Qk(β) =
∑

i∈Sk
ei
eik

1

|Vi| , (5)

where ēi = 1
|Vi |

∑
i∈Vi eij, Vi is a set of clusters able to predict i-th observation with an

error less than β; Sk is the set of observations predicted by k-th cluster with an error less
than β; eij is a prediction error for i-th observation if j-th cluster is used to predict.

The second method to perform quality assessment, offers not to use a single charac-
teristic, but rather to extract knowledge fromdata about prediction errors for observations
of the validation set.

Namely, we define for k-th cluster (over the validation set):
dij is the minimum Euclidian distance between i-th observation and elements of k-th

cluster;
S(d)
i (β) =

{
y(s)
i : dij ≤ β

}
is the number of observations with the distance less than

β from j-th cluster;
mj is the number of times the cluster has been active;
nj is the number of times the use of the cluster would lead to the minimum possible

error.

Algorithm 2. The quality assessment routine with the replacement of the active cluster.

1. Initialization: For each S(d)
i (β) 	= ∅, Si(β) 	= ∅: mj ← 0, nj ← 0, i ← 0, j ← 0.

2. If dij ≤ β then S(d)
i (β) = S(d)

i (β) ∪ yi.
3. If eij ≤ β then Si(β) = Si(β) ∪ yi.
4. Find dimin = dik = min

j
dij; mk ← mk + 1.

5. Find eimin = eip = min
j

eij and the distance of dip; nk ← nk + 1.

6. j ← j + 1. If the list of clusters is not exhausted, then go to step 3.
7. i ← i + 1. If the list of observations is not exhausted, then go to step 2.

In what follows, we refer to these algorithms as to 1st and 2nd.

9 Numerical Results

The aforementioned clustering algorithm is applied to generate sampleswith the employ-
ment of all possible patterns of four elements with the maximum (minimum) distance
between neighbouring positions in the pattern equal to 10. So the number of patterns
used amounts to 10000. Each sample produces its own set of clusters, and then all sets
of clusters are merged into a single set.

The method discussed in the previous section, is applied to a time series generated
by the Lorenz system, to a set of noisy Lorenz series, and to a set of Australia’s national

Chaotic Time Series Prediction: Run for the Horizon 37

electricity market price series too. Throughout the paper, we stick to single-step predic-
tion. The highest Lyapunov exponent was calculated for all studied time series, with the
employment of the analogue method [16, 22].

To measure prediction error, we used three measures. They are the root mean square
error (RMSE), the mean average error (MAE), and the percentage of non-predictable
observations. All three measures are averaged over the testing set, which is used neither
for training nor for quality assessment.

The results obtained are presented in a uniformway for any series analysed. Namely,
after introductory information about the series, we present prediction errors for different
method versions in the form of a table. The table shows prediction errors corresponding
to various choices of normalization, clustering, and quality assessment routines. The
first column indicates a size of the validation set (the size of training set is usually the
same); the next two columns present information about the method used.

Fig. 1. Single-step prediction for Lorenz time series. Blue solid lines are associatedwith observed
data, whereas red dashed lines are associated with predicted values. Green discs represent non-
predictable points.

Namely, the second and third columns correspond to a normalization technique (G
is global and L is local), and a method to estimate clusters’ predictive values (quality
assessment; 1 is the quality assessment method based upon a scalar estimate of clusters’
prognostic value; 2 is the one based upon a replacement of the active cluster). The next
three columns present RMSE,MAE, and the percentage of non-predictable observations.
Finally, the last two columns display (for comparison) MAE and RMSE for the case,
when the true active cluster is known in advance (‘theoretical minimum’).

The method under study was applied to the series generated by the Lorenz system
[15, 22]. The Lorenz system with standard ‘chaotic’ parameters σ = 10, b = 8

3 , r = 28
integrated with the employment of Runge–Kutta’s fourth-order method (integration step
is equal to 0.05), yields a time series hereafter referred to as the Lorenz series.

The series in question, on the one hand, is a typical chaotic series (the highest
Lyapunov equals to 0.92 that is in agreementwith results byMalinetskii and Potapov [22]

38 V. A. Gromov

Table 1. Prediction errors for the Lorenz series

Size N QA RMSE (*10−2) MAE (*10−2) Non (%) MMAE
(*10−2)

MRMSE
(*10−2)

104 G 1 1.82 1.2 0.73 0.358 0.367

105 G 1 1.023 0.89 0.61 0.358 0.364

106 G 1 0.89 0.81 0.59 0.358 0.361

107 G 1 0.83 0.79 0.52 0.358 0.359

104 G 2 1.45 1 0.74 0.358 0.367

105 G 2 1.027 0.78 0.64 0.358 0.364

106 G 2 0.87 0.73 0.6 0.358 0.361

107 G 2 0.78 0.72 0.57 0.358 0.359

104 L 1 0.96 0.73 0.43 0.207 0.229

105 L 1 0.79 0.69 0.34 0.207 0.227

106 L 1 0.64 0.52 0.31 0.207 0.224

107 L 1 0.48 0.48 0.3 0.207 0.221

104 L 2 0.84 0.72 0.38 0.207 0.229

105 L 2 0.78 0.63 0.36 0.207 0.227

106 L 2 0.53 0.51 0.29 0.207 0.224

107 L 2 0.46 0.45 0.26 0.207 0.221

Size is the size of a training set; N is a normalization technique; QA is a quality assessment
algorithm;RMSE is a root-mean-square error;MAE is amean absolute error;Non is the percentage
of non-predictable observations (for the testing set);MMAE is theoreticallyminimalmean absolute
error; MRMSE is theoretically minimal root-mean-square error.

[see on p. 217]) and, on the other hand, is a conventional benchmark to test forecasting
procedures for chaotic time series.

For the Lorenz series, the first 3000 observations are discarded in order to ensure that
trajectory moves in the neighbourhood of the respective strange attractor. The testing
set for the series consists of 100000 observations, the training set consists of 100000,
while a validation set size is varied and, actually, are crucial parameters for the method
considered.

Figure 1 presents single-step prediction results for the Lorenz time series. The first
figure displays a typical time series section (of the testing set) and the respective predicted
values; blue solid lines are associated with observed data, whereas red dashed lines are
associated with predicted values. Green circles represent non-predictable observations.

The size of the training set is 100000 observations, that of the validation set is 107.
The percentage of non-predictable observations is 0.26%, RMSE is about 0.46%, while
the average prediction error for predictable observations is equal to 0.0045%. Table 1
shows prediction errors.

Chaotic Time Series Prediction: Run for the Horizon 39

The Wishart clustering technique, in conjunction with a local normalization routine
and the quality assessment method based upon a scalar estimate of clusters’ prognostic
values, proves the most efficient; however, it also proves the most time-consuming.
Another point of interest is the fact that the percentage of the clusters to be discarded to
obtain the best prediction, converges to a certain limit (around 19%) as the size of the
validation set increases.

To explore the potential to use clustering results obtained for a certain group of series
in order to predict distinct but similar series, we consider a set of noisy Lorenz series.
The training set is generated with the employment of the standard Lorenz series (see
above) of 100000 observations, while the validation and testing is generated using noisy
series. To generate these series, we add the white noise to a normalized standard Lorenz
series and then normalize again. The noise amplitude is a normal random variable with a
mean equal to 0.0 and a variance equal to 0.3. The series prove chaotic with the highest
Lyapunov varying from 0.98 to 1.23. The size of the training set is 100000; the size of
the testing set is 100000 (Table 2).

Table 2. Prediction error for a noisy series

Size N QA RMSE (*10−2) MAE (*10−2) Non (%) MMAE
(*10−2)

MRMSE
(*10−2)

104 G 1 21.82 16.37 18.69 4.05 4.21

105 G 1 16.83 14.38 18.51 4.05 4.15

106 G 1 13.89 9.32 15.13 4.05 4.12

107 G 1 11.63 7.56 14.69 4.05 4.09

104 G 2 17.45 15.29 16.54 4.05 4.21

105 G 2 12.64 13.26 15.34 4.05 4.15

106 G 2 11.87 8.74 14.97 4.05 4.12

107 G 2 10.87 6.87 13.78 4.05 4.09

104 L 1 23.48 15.98 15.31 3.89 4.19

105 L 1 18.64 15.33 14.11 3.89 4.11

106 L 1 15.17 13.69 13.68 3.89 4.01

107 L 1 12.77 12.83 12.97 3.89 3.94

104 L 2 19.89 15.67 14.84 3.89 4.19

105 L 2 18.21 14.88 13.72 3.89 4.11

106 L 2 14.63 13.15 13.03 3.89 4.01

107 L 2 12.35 12.19 12.56 3.89 3.94

The abbreviations are the same as for Table 1.

For that case, the best combination of techniques appears to be that of Wishart
clustering and the quality assessment by replacement of the active cluster. The optimal
percentage of clusters to be deleted for the quality assessment routine based upon a

40 V. A. Gromov

scalar estimate, in contrast to the previous case, does not converge to a fixed value. This
may be attributed to the fact that the training and the validation sets are of a different
nature (usual and noisy Lorenz series).

Finally, the method under study is applied to time series generated by electricity
prices in various settlements of the Commonwealth of Australia (Table 3).

Table 3. Prediction error for Australia’s national electricity market price

Size N QA RMSE (*10−2) MAE (*10−2) Non (%) MMAE
(*10−2)

MRMSE
(*10−2)

104 G 1 0.98 0.701 0.35 0.449 0.462

105 G 1 0.83 0.662 0.29 0.449 0.460

106 G 1 0.76 0.627 0.25 0.449 0.456

107 G 1 0.73 0.617 0.17 0.449 0.451

104 G 2 0.87 0.674 0.37 0.449 0.462

105 G 2 0.78 0.631 0.34 0.449 0.460

106 G 2 0.74 0.623 0.29 0.449 0.456

107 G 2 0.67 0.608 0.23 0.449 0.451

104 L 1 0.76 0.587 0.29 0.287 0.314

105 L 1 0.72 0.518 0.25 0.287 0.307

106 L 1 0.68 0.509 0.19 0.287 0.301

107 L 1 0.66 0.503 0.14 0.287 0.296

104 L 2 0.74 0.521 0.27 0.287 0.314

105 L 2 0.72 0.514 0.26 0.287 0.307

106 L 2 0.65 0.507 0.17 0.287 0.301

107 L 2 0.51 0.492 0.15 0.287 0.296

The abbreviations are the same as for Table 1.

10 Comparison with Published Results

Tables 4 and 5 exhibit results obtained by various methods; the tables are partially
borrowed from [24]; see also [7]. Let us stress, that prediction error for algorithms
proposed is lower than that of conventional soft-computing algorithms, provided the
points classified as non-predictable by the algorithm are excluded (their percentage is
usually lower than 1%), and is comparable with it, if these non-predictable observations
are predicted forcibly.

Chaotic Time Series Prediction: Run for the Horizon 41

Table 4. MER for some days of the year 2004 (Australia’s national electricity market – Price)

Day 5th June 17th June 20th June 21th June Average

ARIMA(%) 32.31 29.09 33.73 24.18 29.82

SVM(%) 18.09 13.31 17.11 19.2 16.93

PSF(%) 16.72 8.31 14.23 18.93 14.55

PCW(%) 1.94 1.72 1.32 1.94 1.73(0.42%, 1.78)

PCW(1)(%) 0.87 0.78 0.64 0.84 0.74 (0.18%, 0.77)

PCW(2)(%) 0.76 0.72 0.58 0.83 0.69 (0.24%, 0,71)

ARIMA– the best ARIMAmodel; SVM– support vectormachine; PSF – pattern sequenced-based
forecasting; PCW – predictive clustering using the Wishart algorithm [31]; PCW(1) – predictive
clustering using the Wishart algorithm with quality assessment based upon clusters’ prognostic
values; PCW(2) – predictive clustering using Wishart algorithm with quality assessment based
upon active cluster replacement; last column in parentheses is a percentage of non-predictable
observations and the error calculated provided the non-predictable observations are predicted
forcibly.

Table 5. MER for some weeks of the year 2004 (Australia’s national electricity market – Price)

Week First of
January

First of July First of
August

Third of
December

Average

DWT(%) 12.94 12.2 16.17 10.01 12.84

SVM(%) 23.37 15.0 36.18 33.74 27.08

PSF(%) 15.62 9.12 13.98 10.23 12.23

PCW (%) 1.33 1.47 1.28 1.11 1.30 (0,38%, 1,34)

PCW(1)(%) 0.96 0.78 0.83 0.62 0.76 (0,21%, 0,79)

PCW(2)(%) 0.89 0.81 0.74 0.59 0.72 (0,19%, 0,74)

The abbreviations are the same as for Table 4.

11 Conclusions

1. Predictions that uses already predicted values, the concept of non-predictable points,
and quality assessment of clusters employed, taken together, direct the way to
solution of the multi-step chaotic time series prediction problem.

2. Quality assessment procedure aimed at estimating clusters’ prognostic values and
deleting clusters with low ones (in the framework of predictive clustering) decreases
essentially predictive error both for benchmark and for real-word data.

3. A wide-ranging simulation suggests that the error term associated with prediction
sub-model used (provided that clusters used to predict are chosen correctly) vanishes
as a validation set size tends to infinity. Similarly, the error term associated with
incorrect choice of clusters used to predict decreases when a validation set size
increases.

42 V. A. Gromov

4. Prediction error for algorithms proposed is lower than that of conventional soft-
computing algorithms, provided the points classified as non-predictable by the algo-
rithm are excluded (their percentage is usually lower than 1%), and is compara-
ble with it, if these non-predictable observations are predicted forcibly. The best
variant is Wishart clustering algorithm in conjunction with local normalization and
replacement of the active cluster.

5. The approach discussed allows one to separate calculation into two parts: the first,
essentially larger, is performed off-line, the second, immediate prediction routine,
is performed on-line. This makes possible to design fast and efficient prediction
algorithms.

Acknowledgements. The author is deeply indebted to Mr. Joel Cumberland, HSE for the
manuscript proof-reading and language editing.

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering – a decade review.
Inf. Syst. 23, 16–38 (2015)

2. Al Zoubi, O., Awad, M., Kasabov, N.K.: Anytime multipurpose emotion recognition from
EEG data using a Liquid State Machine based framework. Artif. Intell. Med. 86, 1–8 (2018)

3. Benítez, I., Díezb, J.L., Quijanoa, A., Delgado, I.: Dynamic clustering of residential electricity
consumption time series data based on Hausdorff distance. Electr. Power Syst. Res. 140,
517–526 (2016)

4. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: 15th
International Conference on Machine Learning, pp. 55–63 (1998)

5. D’Urso, P., De Giovanni, L., Massari, R.: GARCH-based robust clustering of time series.
Fuzzy Sets Syst. 305, 1–28 (2016)

6. Ferreira, L.N., Zhao, L.: Time series clustering via community detection in networks. Inf.
Sci. 326, 227–242 (2016)

7. Gromov,V.A., Borisenko, E.A.: Chaotic time series prediction and clusteringmethods. Neural
Comput. Appl. 2, 307–315 (2015)

8. Gromov, V.A., Konev, A.S.: Precocious identification of popular topics on Twitter with
the employment of predictive clustering. Neural Comput. Appl. 28(11), 3317–3322 (2016).
https://doi.org/10.1007/s00521-016-2256-1

9. Gromov, V.A., Shulga, A.N.: Chaotic time series prediction with employment of ant colony
optimization. Expert Syst. Appl. 39(9), 8474–8478 (2012)

10. Gromov, V.A., Voronin, I.M., Gatylo, V.R., Prokopalo, E.T.: Active cluster replacement algo-
rithm as a tool to assess bifurcation early-warning signs for von Karman equations. Artif.
Intell. Res. 6(2), 51–56 (2017)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2015)
12. Huang, X., Ye, Y., Xiong, L., Lau, R.Y.K., Jiang, N., Wang, S.: Time series k-means: a new

k-means type smooth subspace clustering for time series data. Inf. Sci. 367–368, 1–3 (2016)
13. Izakian, H., Pedrycz, W.: Agreement-based fuzzy c-means for clustering data with blocks of

features. Neurocomputing 127, 266–280 (2014)
14. Izakian, H., Pedrycz, W., Jamal, I.: Clustering spatiotemporal data: an augmented fuzzy

c-means. IEEE Trans. Fuzzy Syst. 21(5), 855–868 (2013)

https://doi.org/10.1007/s00521-016-2256-1

Chaotic Time Series Prediction: Run for the Horizon 43

15. Jackson, E.A.: The Lorenz system: I. The global structure of its stable manifolds. Physica
Scripta 32(5), 469–475 (1985). https://doi.org/10.1088/0031-8949/32/5/001

16. Kantz, H., Schneider, T.: Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge (2004)

17. Kattan, A., Fatima, S., Arif, M.: Time-series event-based prediction: an unsupervised learning
framework based on genetic programming. Inf. Sci. 301, 99–123 (2015)

18. Keogh, E., Lin, J.: Clustering of time-series subsequences is meaningless: implications for
previous and future research. Knowl. Inf. Syst. 8(2), 154–177 (2004). https://doi.org/10.1007/
s10115-004-0172-7

19. Konishi, S., Kitagava, G.: Information Criteria and Statistical Modeling. Springer, New York
(2008)

20. Lapko, A.V., Chentsov, S.V.: Nonparametric information processing systems. Science,
Novosibirsk (2000)

21. Liao, T.W.: Clustering of time series data-a survey. Pattern Recogn. 38(11), 1857–1874 (2005)
22. Malinetskii, G.G., Potapov, A.P.: Modern problems of non-linear dynamics. Editorial URSS,

Moscow (2002)
23. Martınez-Alvarez, F., Troncoso, A., Riquelme, J.C.: Data science and big data in energy

forecasting. Energies 11, 3224 (2018)
24. Martınez-Alvarez, F., Troncoso, A., Riquelme, J.C., Riquelme, J.M.: Energy time series fore-

casting based on pattern sequence similarity. IEEE Trans. Knowl. Data 23(8), 1230–1243
(2011)

25. Obodan, N.I., Adlucky, V.J., Gromov, V.A.: Prediction and control of buckling: the inverse
bifurcation problems for von Karman equations. In: Dutta, H., Peters, J.F. (eds.) Applied
Mathematical Analysis: Theory, Methods, and Applications. SSDC, vol. 177, pp. 353–381.
Springer, Cham (2020). https://doi.org/10.1007/978-3-319-99918-0_11

26. Obodan, N.I., Adlucky, V.J., Gromov, V.A.: Rapid identification of pre-buckling states: a case
of cylindrical shell. Thin-Walled Struct. 124, 449–457 (2018)

27. Palit, A.K., Popovich, D.: Computational Intelligence in Time Series Forecasting. Theory
and Engineering Applications. Springer, New York (2005). https://doi.org/10.1007/1-84628-
184-9

28. Pérez-Chacón, R., Luna-Romera, J.M., Troncoso, A., Martínez-Álvarez, F., Riquelme, J.C.:
Big data analytics for discovering electricity consumption patterns in smart cities. Energies
11(3), 683 (2018)

29. Phu, L., Anh, D.: Motif-based method for initialization the k-means clustering for time series
data. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 11–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25832-9_2

30. Widiputra, H., Kho, H., Pears, R., Kasabov, N.K.: A novel evolving clustering algorithm with
polynomial regression for chaotic time-series prediction. Neural Inf. Process. 5864, 114–121
(2009)

31. Wishart, D.: A numerical classification methods for deriving natural classes. Nature 221,
97–98 (1969)

32. Zakaria, J., Mueen, A., Keogh, E.: Clustering time series using unsupervised shapelets. In:
12th International Conference on Data Mining, pp. 785–94. IEEE Computer Society (2012)

https://doi.org/10.1088/0031-8949/32/5/001
https://doi.org/10.1007/s10115-004-0172-7
https://doi.org/10.1007/978-3-319-99918-0_11
https://doi.org/10.1007/1-84628-184-9
https://doi.org/10.1007/978-3-642-25832-9_2

Machine Learning and Value Generation
in Software Development: A Survey

Barakat J. Akinsanya, Luiz J. P. Araújo(B), Mariia Charikova,
Susanna Gimaeva, Alexandr Grichshenko, Adil Khan, Manuel Mazzara,

N. Ozioma Okonicha, and Daniil Shilintsev

Innopolis University, Innopolis 420500, Russia
l.araujo@innopolis.university

Abstract. Machine Learning (ML) has become a ubiquitous tool for
predicting and classifying data and has found application in several prob-
lem domains, including Software Development (SD). This paper reviews
the literature between 2000 and 2019 on the use the learning models that
have been employed for programming effort estimation, predicting risks
and identifying and detecting defects. This work is meant to serve as a
starting point for practitioners willing to add ML to their software devel-
opment toolbox. It categorises recent literature and identifies trends and
limitations. The survey shows as some authors have agreed that indus-
trial applications of ML for SD have not been as popular as the reported
results would suggest. The conducted investigation shows that, despite
having promising findings for a variety of SD tasks, most of the studies
yield vague results, in part due to the lack of comprehensive datasets
in this problem domain. The paper ends with concluding remarks and
suggestions for future research.

Keywords: Machine learning · Software engineering · Literature
review

1 Introduction

The software has become an essential part of modern everyday life and has a
ubiquitous presence in diverse sectors including manufacturing, agriculture and
health industries, to mention a few [9]. Efficient software development is, there-
fore, essential for organisations and requires proper planning and execution to
generate high-quality software at appropriate time and cost. There are several
activities involved in this developmental process of software such as coding, test-
ing and management of the software development cycle. Not surprisingly, issues
may arise during the software life-cycle, including underestimation of necessary
programming effort, poor code and external aspects that implicate in risks to
the project [39]. These challenges hinder the growth of businesses since it is
considered the top priority for most organisations. The prediction, mitigation
c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 44–55, 2021.
https://doi.org/10.1007/978-3-030-71472-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_3

ML Applications for Software Development 45

and identification of response actions to issues during software development are
complex tasks often performed by human agents who use the information and
employ subjective expertise [19]. The support and automating of such tasks have
gained increasing attention in the literature. Researchers over the years have pro-
duced different ideas to enhance software development by introducing statistical
and regressional models. Some of the prevalent statistical models used for this
purpose include Bayesian networks [30], fuzzy logic [15] and system dynamics
and discrete event simulation-based models [42].

The use of machine learning (ML) techniques has become increasingly pop-
ular in the context of software development [36]. ML is a subfield of artificial
intelligence (AI) in which mathematical models identify patterns in the input
data and reach a conclusion judging by the data. Thus, such algorithms can
learn some information from the input (training data) and afterwards predict
the answer for new data (test data). ML techniques include supervised learning,
an approach characterised by the existence of prior knowledge of the input-
output mapping for a training set; unsupervised learning, which algorithms pro-
ceed with no labelled data, and reinforcement learning (reward-based approach)
[23]. There are two tasks supervised learning handles: regression (predicting a
continuous numerical value) and classification (assigning a label to an item).

Software development is a very complicated process which includes many
non-obvious things to consider when developing products. Reducing the number
of software failures is one of the most challenging problems in software produc-
tion. This survey aims to investigate different approaches and applications for
the use of ML in the software development process.

The remaining of this paper is summarised as follows. Section 2 presents
the main ML techniques employed for predicting and estimating programming
effort. Section 3 shows how these techniques can be used to mitigate risks to the
software project. Identifying software defects is performed in the Defects Section
(Sect. 4). A discussion of the main findings from studies on ML embedded into
software development processes is presented in Sect. 5. Suggestions for future
work is shown in Sect. 6.

2 Predicting Programming Effort

Software effort estimation has received attention since the late 1970s and has
been noticed to affect the workflow of the project and its overall success sig-
nificantly. Moreover, programming effort underestimation often leads to missed
deadlines and deterioration of the software quality. Effort overestimation, on the
other hand, is one of the reasons for project deceleration [28]. Many software
effort estimation methods have been proposed to accurately estimate effort as
a function of a large number of factors. The most widely employed methods
[36] include expert models and logical, statistical models (parametric models
SLIM, COCOMO; regression analysis), traditional machine learning algorithms
(Fuzzy Logic, Genetic Algorithms and Regression Trees) and Artificial Neural
Networks. According to [36], the coding effort is most often estimated in lines of

46 B. J. Akinsanya et al.

code (LOC), function points (FP) [13]; use case points (UCP) [1] or in labour
hours [45]. This section depicts the most common approaches for software devel-
opment effort estimation (SDEE) in the literature, as well as their characteristics.

The importance of accurate effort predictions and the demand for automation
of the estimation process have motivated the researchers to propose first para-
metric models in the early 80s. These models were then tested on the software
datasets comprised of the real industrial data of completed projects [21]. Accord-
ing to Srinivasan and Fisher, the three most prominent models are COCOMO,
SLIM and Function Points [39]. COCOMO and SLIM models rely almost exclu-
sively on source lines of code (SLOC) as a major input, while the function point
approach utilises the number of transactions and other few additional processing
characteristics (online updating and transaction rates). Despite being evaluated
on the available historical data (COCOMO dataset), the above models have
been proven to suffer from inconsistent performances due to the noisy nature
of software datasets [2]. Bayesian Networks (BN) is a statistical model used for
estimating Agile development effort [14]. Dragicevic, Celar and Turic outlined
the benefits of BNs, which include the capability of handling vast uncertainties
caused by the shortage of relevant information, subjective nature of a number
of metrics and difficulties in gathering them [14].

Another common technique for predicting effort is expert estimation, which is
suitable when the domain knowledge is not leveraged by the models [17]. Despite
its popularity, expert systems exhibit considerable human bias. One example of
such system is Planning Poker, a gamified baseline strategy for SDEE in Agile
environments in which developers make estimates by playing numbered cards.
In a study by Moharreri et al. Planning Poker was proven to overestimate in
40% of instances and was shown to have a very high MMRE score of 106.8%
[27]. Parametric models and expert systems are still widely used in industry and
studies; however, the need for better generalisation and overall performance has
driven the researchers to apply machine learning methods [39].

Case-based reasoning (CBR) and decision trees (DT) have been among the
most effective and researched ML models for SDEE [44]. Results of these models
are highly interpretable and are recognised as superior or at least compatible
with those of parametric and effort estimation models [5]. It was also asserted
by Wen et al. that CBR is more suitable than DTs for this task since it is
favourable towards smaller datasets, which is one of the biggest limitations in
SDEE research [44]. It is worth mentioning that ensemble models that different
methods are often used to gain even better precision. Moharreri et al. presented
experimental evidence that DT, coupled with Planning Poker, produce better
estimations than these models do on their own [27]. Genetic algorithms and fuzzy
logic have been used in ensemble models, primarily handling feature selection
and imprecise information provided in the datasets [44].

The idea of Artificial Neural Networks (ANNs, or simply NNs), a model that
has proven its potential and outperformed traditional ML methods in many
areas, was first proposed in the 1940s and inspired by biological neurons. ANNs
are an attractive approach due to their remarkable computational power: an

ML Applications for Software Development 47

ability to learn nonlinear relations, high parallelism, noise tolerance, learning
and generalisation capabilities [4]. The drawbacks of applying Neural Networks
are as follows: a necessity of large datasets, computational expensiveness and the
fact that the results are significantly less interpretable compared to traditional
machine learning methods [22]. However, there are some methods to overcome
this limitation of interpretability [40].

Comparative study of techniques such as regression tree, k-nearest neighbour,
regression analysis and neural networks when applied for software development
effort estimation has shown neural networks’ best estimation ability [22]. Further
consideration was given to neural networks by various researchers to emphasize
their superior capabilities in effort prediction [13]. Thus, neural networks based
models most often provide the best effort estimation compared to traditional
ML and their accuracy increases with the amount of data supplied [3].

3 Predicting Risks to the Project

Several aspects can affect and abuse the software development cycle. Predicting
risks is important because it helps to mitigate delays and unforeseen expenses
and dangers to the project. As it was mentioned in [12], software development
projects are more vulnerable to risks than other management projects as they
have more technical uncertainty and complexity. Most developers look for a
methodology to minimize the critical threats because the risk factor affects the
success or failure of any project.

Hu et al. identified the four main types of risks [16]: schedule: the wrong
schedule may break the development even at its very first stage; budget: the cor-
rect financing is a process that requires a careful consideration to avoid the risks
in software development; technical: developers changing or fixing the unexplored
code tend to make relatively large amount of mistakes before the details of the
task become crystal clear. Even if the damage of one mistake is minor, a number
of such errors can be a critical fact for the project; and management risks: risks
which may include the bad working environment, insufficient hardware reliabil-
ity, low effectiveness of the programming etc.

Wauters and Vanhouke proposed a method for continuously assessing sched-
ule risks which uses support vector regression which reads periodic earned value
management data from the project control environment, resulting in a more reli-
able time and cost forecasts [43]. The parameters of the Support Vector Machine
were tuned using a cross-validation and grid search procedure, after which a large
computational experiment was conducted. The results showed that the Sup-
port Vector Machine Regression outperforms the currently available forecasting
methods. Additionally, a robustness experiment has been set up to investigate
the performance of the proposed method when the discrepancy between training
and test set becomes larger.

Wauters and Vanhouke proposed a method for continuously assessing sched-
ule risks which uses support vector regression which reads periodic earned value
management data from the project control environment, resulting in a more reli-
able time and cost forecasts [43]. The parameters of the Support Vector Machine

48 B. J. Akinsanya et al.

were tuned using a cross-validation and grid search procedure, after which a
large computational experiment was conducted. The results indicated that Sup-
port Vector Machine Regression is superior to the currently utilizes techniques
for schedule risks prediction. The performance of the method has been checked
with a robustness experiment in which the discrepancy between training and
test set becomes larger.

Even a small number of technical mistakes could be a critical factor for the
project. In [38], machine learning classifiers have emerged as a way to predict
the existence of bugs in a change made to a source code file. The classifier
is first trained on software history data and then used to predict bugs. Large
numbers of features adversely impact scalability and accuracy of the approach.
This technique is applied to predict bugs in software changes, and performance
of Naıve Bayes and Support Vector Machine classifiers is characterized.

Management risks in software development are one of the most global types
of risks because if they exist, most of the time, they present the most prominent
damage. [12] aimed to predict the risks in software development projects by
applying multiple logistic regression. The logistic regression was used as a tool
to control the software development process. The logistic regression analyses can
grade and help to point out the risk factors, which were considerable problems
in development processes. These analytic results can lead to the creation and
development of strategies and highlighted issues, which are necessary to manage,
control and reduce the risks of error.

4 Predicting Defects

Software fault prediction is a process which involves the use of software metrics
and algorithms to detect software components prone to error. Testing is one
of the most crucial steps of the software development life cycle as it involves
a lot of time and effort. It is desirable to detect faults in software early in the
software development life cycle in order to reduce software testing costs. In recent
years, researchers have considered different approaches from machine learning to
improve the effectiveness of software testing. [29] introduces a model of software
testing which uses fault prediction to estimate cost-effectiveness.

In machine learning, the task of predicting which part of software prone
to fault is known to be a classification task. Classification is the process in
which the computer program learns from the data input given to it, alongside
algorithms known as machine learning algorithms and then uses this learning
to classify new observations. The idea behind these machine learning algorithms
is for machines to learn and be able to predict faults in the future. For this
learning to happen, they have first to identify the defects then classify them. In
research, software metrics are put in place to help identify the faults and test the
machine learning models. A lot of metrics are used, either method level metric
or class level metric. Among them are lines Of code (LOC), weighted methods
for class (WMC), coupling between objects (CBO), response for class (RFC),
branch count, unique operand and total operand.

ML Applications for Software Development 49

In the work of [11], Artificial Immune Recognition System (AIRS), an
immune-inspired supervised learning algorithm, was used to create a defect
model based on method-level metrics and Chidamber-Kemerer metrics suite.
[10] on other research work examined nine classifiers for each of the five public
NASA datasets. According to the research, the Naive Bayes algorithm provides
the best prediction performance for small datasets, while Random Forest is the
best prediction algorithm for large datasets. [35] compared four classifiers (Naive
Bayes, K-star, Random Forest and SVM). Random Forest classifier showed bet-
ter results for method level metric and SVM for class level metric. [24] used
Random Forest, Adaboost, Bagging, Multilayer Perceptron, VM, Genetic Pro-
gramming. Prediction models to estimate fault proneness using the dataset of
Open Source “Apache POI” (pure Java library for manipulating Microsoft doc-
uments). The best result is shown by Random Forest and bagging algorithm.

An important issue in designing machine learning models for software fault
detection is the imbalance of data sets. Most researchers focus on developing
models which solve this imbalance either by directly influencing the data or not.
[33] used the Asymmetric Kernel Principal Component Analysis Classification
(AKPCAC) method based off of the kernel principal component regression algo-
rithm proposed by [34] and Asymmetric Kernel Partial Least Squares Classier
(AKPLSC) method. [25] use Fuzzy decision tree, a hybrid of fuzzy logic and
decision tree which proves better than the decision tree approach.

In fault prediction studies, class level metric show better prediction perfor-
mance compared to method level metric [20]. The primary machine learning
algorithms used are Fuzzy Decision Trees, Random Forest, Bagging, AKPCAC,
SVM, Naive Bayes, Regression Trees and K-Star. SVM and Random Forests pro-
vide best fault prediction models as SVM produces the best accuracy in detecting
faults, and Random Forest is known to be suitable for massive datasets. On the
whole, a lot of research uses various software metrics and improved machine
learning algorithms to detect and predict faults.

Within development philosophies, DevOps is becoming an increasingly
adopted approach, and attention is rising in both industry and academia giv-
ing rise to new projects, conferences and training programs [6–8,26]. Consider-
ing that the DevOps toolchain generates a large quantity of data allowing the
extraction of information regarding the status and the evolution of a project,
this domain is emerging as particularly suitable for ML applications for SD. Our
team is currently working on the implementation of and an ML-based Anomaly
Detection System (ADS), and we expect the research community to focus on
this aspect increasingly.

5 Discussion

Machine learning techniques have been consistently used in the last decades to
provide some assistance for generating high-quality software and a smoother
development process. An overview of the literature shows that most of the
research has been focusing on the task of predicting both software quality or

50 B. J. Akinsanya et al.

error appearance. As a result, the software life-cycle is often shortened, and
the maintaining costs reduced. Moreover, by predicting the occurrence of risks,
project managers can mitigate delays and reduce the chances of project failures.
The implications and limitations of the use of these computational techniques
are discussed as follows.

The survey of the scientific papers on predicting programming effort has
shown that machine learning models are continuously gaining popularity in the
academic community. The complexity of applied algorithms is rising as more
researchers focus on Deep Learning and continue refining less sophisticated
ML models with optimisation algorithms [2]. The obtained results challenge
the claims of [18] that expert estimation is the most reliable method of effort
estimation. Instead, the study confirms the potential of ML models to provide
reliable solutions to SDEE problem, which was first suggested by [39] as early as
1995. Empirical evidence of ML models’ performance allows the developers to
have greater freedom in selecting various models and tailoring them to a specific
project. Subsequently, recent progress in the field encourages more and more
publications on the topic. However, when it comes to direct applications in the
industry, these models are not used as frequently as their reported performance
would suggest. For instance, among Agile practitioners, 63% use Planning Poker
as the primary estimation tool and 38% prefer expert estimation [41], despite
the results of [27]. The reasons behind this phenomenon are a few limitations of
the reviewed scientific papers that hinder the reliability of the results. Due to the
lack of large software datasets to use as training data, the studies cannot confirm
that their particular results will generalise to every real industrial project. Future
studies should attempt to gather information about recent software projects, as
the majority of currently considered datasets are outdated.

In the third section, we have wanted to consider the most popular types of
risks related to software development, which we have chosen from [16], and decide
which of them are more important for the development process. This information
should be taken into account when considering how to manage a software project
with minimal losses in the development process. We cannot decide which of these
risks are most significant, so, as it was said in [12], developers and managers
should take into account them all to design really good software project. Because
of the big difference between considered risks, we should use different methods
of Machine Learning. Further research is needed to observe a real IT project to
find out which of the risks (schedule, budget, technical and management) may
affect the development of the project the most negatively. We are also going to
find out which risks can be predicted to the maximum extent using Machine
Learning.

A substantial amount of research has been conducted with respect to predict-
ing faults and defects using machine learning. The results of the survey under-
taken show that in predicting faults, machine learning algorithms such as Naive
Bayes, K-star, Random Forest and Support Vector Machine have proven to be
very beneficial [20] and more favoured. Moreover, some researchers, such as [32]
and [31] suggest that Case-based reasoning approach using similarity functions

ML Applications for Software Development 51

such as Euclidean distance and Manhattan distance to determine the most sim-
ilar cases, yields encouraging results. While previous research failed to take into
consideration the problem of dataset imbalance [37], the outcome of the survey
demonstrates that the imbalance was accommodated. However, it is beyond the
scope of this study to specify the metrics which are relevant in predicting faults.
Further research has to make plans for generating new datasets as the available
ones, mostly NASA and PROMISE, were used severally.

Table 1. Machine Learning for Software Development in academic literature.

Reference Task ML model Data

Azzeh (2011) SEEa Decision Tree PROMISE and ISBSG datasets

Bardsiri and Hashemi (2017) SEEa Regression Trees, ANN ISBSG and NASA datasets

Baskeles, Turhan, and Bener

(2007)

SEEa Multilayer Perception,

Regression Trees, Support

Vector Regression

NASA and USC datasets

Catal, Diri, and Ozumut

(2007)

SFPb Artificial Immune Systems

paradigm

PROMISE dataset

Ceylan, Kutlubay, and Bener

(2006)

SFPb Decision Trees, Multilayer

Perception, Radial Basis

Functions

NASA dataset

Clemente, Jaafar, and Malik

(2018)

SFPb ANN, Random Forest,

Decision Trees, Naive Bayes,

SVM

SeaMonkey, Mozilla Firefox

Dragicevic, Celar, and Turic

(2017)

SEEa Bayesian Network Historical data

Hu et al. (2007) SRPc ANN, Support Vector

Machine

Questionnaire based data

Joseph (2015) SRPc ANN Oracle dataset

Karim et al. (2017) SFPb SVM, ANN, Naive Bayes,

Random Forest

PROMISE dataset

Kim and Lee (2005) SEEa ANN, Regression Tree ISBSG dataset

Marian et al. (2016) SFPb Fuzzy decision tree JEdit(version4.2), Ant(version

1.7)

Moharreri et al. (2016) SEEa Decision Trees, Random

Forest, Logistic Model Tree,

Naive Bayes

IBM Rational Team Concert data

Nassif et al. (2016) SEEa ANN ISBSG dataset

Panda, Satapathy, and Rath

(2015)

SEEa ANN Zia dataset

Perkusich et al. (2015) SFPb Bayesian Networks Case studies in software

companies

Ren et al. (2014) SFPb Partial Least Squares and

Kernel principal component

analysis

NASA and SOFTLAB datasets

Sharma and Singh (2017) SEEa ANN, Fuzzy logic, Genetic

Algorithms, Regression Trees

NASA, ISBSG, Desharnais and

COCOMO datasets.

Shepperd and Schofield

(1997)

SEEa Case-Based Reasoning Albrecht, Atkinson, Desharnais,

Finnish and MM2 datasets

Wright and Ziegler (2019) SEEa Neural Hidden Markov

Model, Deep Mixture Density

Networks

LGTM dataset

aSEE: Software Effort Estimation
bSFP: Software Fault Prediction
cSRP: Software Risks Prediction

52 B. J. Akinsanya et al.

The overview of the literature shows that some ML techniques, namely case-
based reasoning and neural networks, are particularly popular in this field, as
shown in Table 1. Case-based reasoning is favoured due to its ability to pro-
duce high accuracy given limited data, while neural networks are popular due to
their ability to learn complex functions and handle outliers [44]. The reported
results build on existing evidence of the usefulness of ML embedded into the
software development process. The reliability of such data, however, is affected
by the limited available data and the lack of a united and shared dataset. These
aspects indicate the need for the development of larger datasets that are rep-
resentative of current tendencies in software engineering to provide researchers
with quality training data and allow them to draw reliable conclusions. Future
studies should take into account recent developments in the field of ML, such as
reinforcement learning, convolutional and recurrent neural networks, providing
their applications to software development, which have been scarce to the best
of the authors’ knowledge.

6 Conclusion and Future Research

The presented survey showcases considerable progress in the field over the last
decades. Across three outlined subfields (effort estimation, risks and defects pre-
diction) ML models have been deployed and achieved satisfactory results that
are in the majority of cases comparable to traditional approaches or even surpass
them. Literature analysis has also established that increasing research interest in
this area provides practitioners with a variety of models to apply to their partic-
ular project. Given this abundance of models, comparative studies rarely reach
consensus about whether traditional regression, classification or Deep learning
approach is generally preferable in software development.

In the subfield of predicting risks to the software project regression models are
considered dominant over other ML models as well as state-of-the-art non-ML
methods. Expressly, the performance of Support Vector Machine is frequently
noted in regards to predicting schedule and budget risks. On the other hand,
defect prediction favours classification algorithms with Random Forest being one
of the most reliable models. Research in programming effort estimation initially
preferred regression models. However, recent breakthroughs confirmed superior
accuracy by Cascade Correlation Neural Networks.

Notable gaps in the current state of the research on the topic include investi-
gating the broader scope of applications for Artificial Neural Networks and rein-
forcement learning. Despite that ANNs have shown promising results in software
effort estimation, the research about their applications in two other subfields
have been rather scarce. A similar pattern is observed regarding Reinforcement
learning, which was not yet applied to any of the software development tasks
mentioned in this paper.

For future work, it is recommended that researchers attempt to use more
massive datasets and those that are more representative of the current state
of software engineering for the models’ assessment to be complete and reliable.

ML Applications for Software Development 53

Moreover, it is advised that closer interaction between academic and industrial
communities needs to be established to facilitate deployment of ML models on
real-world software projects.

References

1. Ajitha, S., Kumar, T.S., Geetha, D.E., Kanth, K.R.: Neural network model for
software size estimation using use case point approach. In: 2010 5th International
Conference on Industrial and Information Systems, pp. 372–376. IEEE (2010)

2. Azzeh, M.: Software effort estimation based on optimized model tree. In: Pro-
ceedings of the 7th International Conference on Predictive Models in Software
Engineering, p. 6. ACM (2011)

3. Bardsiri, A.K., Hashemi, S.M.: Machine learning methods with feature selection
approach to estimate software services development effort. Int. J. Serv. Sci. 6(1),
26–37 (2017)

4. Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing,
design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

5. Baskeles, B., Turhan, B., Bener, A.: Software effort estimation using machine learn-
ing methods. In: 2007 22nd International Symposium on Computer and Informa-
tion Sciences, pp. 1–6. IEEE (2007)

6. Bobrov, E., Bucchiarone, A., Capozucca, A., Guelfi, N., Mazzara, M., Masya-
gin, S.: Teaching devops in academia and industry: reflections and vision. CoRR
abs/1903.07468 (2019)

7. Bobrov, E., et al.: Devops and its philosophy: Education matters! CoRR
abs/1904.02469 (2019)

8. Bruel, J.-M., Mazzara, M., Meyer, B. (eds.): DEVOPS 2018. LNCS, vol. 11350.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06019-0

9. Casale, G., et al.: Current and future challenges of software engineering for services
and applications. Procedia Comput. Sci. 97, 34–42 (2016)

10. Catal, C., Diri, B.: Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem. Inf. Sci. 179(8), 1040–
1058 (2009)

11. Catal, C., Diri, B., Ozumut, B.: An artificial immune system approach for fault pre-
diction in object-oriented software. In: 2nd International Conference on Depend-
ability of Computer Systems (DepCoS-RELCOMEX 2007), pp. 238–245. IEEE
(2007)

12. Christiansen, T., Wuttidittachotti, P., Prakancharoen, S., Vallipakorn, S.A.O.: Pre-
diction of risk factors of software development project by using multiple logistic
regression. ARPN J. Eng. Appl. Sci. 10(3), 1324–1331 (2015)

13. Dave, V.S., Dutta, K.: Neural network based models for software effort estimation:
a review. Artif. Intell. Rev. 42(2), 295–307 (2012). https://doi.org/10.1007/s10462-
012-9339-x

14. Dragicevic, S., Celar, S., Turic, M.: Bayesian network model for task effort estima-
tion in agile software development. J. Syst. Softw. 127, 109–119 (2017)

15. Engel, A., Last, M.: Modeling software testing costs and risks using fuzzy logic
paradigm. J. Syst. Softw. 80(6), 817–835 (2007)

16. Hu, Y., Huang, J., Chen, J., Liu, M., Xie, K.: Software project risk management
modeling with neural network and support vector machine approaches. In: Third
International Conference on Natural Computation (ICNC 2007), vol. 3, pp. 358–
362. IEEE (2007)

https://doi.org/10.1007/978-3-030-06019-0
https://doi.org/10.1007/s10462-012-9339-x
https://doi.org/10.1007/s10462-012-9339-x

54 B. J. Akinsanya et al.

17. Jørgensen, M.: A review of studies on expert estimation of software development
effort. J. Syst. Softw. 70(1–2), 37–60 (2004)

18. Jørgensen, M.: What we do and don’t know about software development effort
estimation. IEEE Softw. 31(2), 37–40 (2014)

19. Jorgensen, M., Shepperd, M.: A systematic review of software development cost
estimation studies. IEEE Trans. Softw. Eng. 33(1), 33–53 (2006)

20. Karim, S., Warnars, H.L.H.S., Gaol, F.L., Abdurachman, E., Soewito, B., et al.:
Software metrics for fault prediction using machine learning approaches: a litera-
ture review with promise repository dataset. In: 2017 IEEE International Confer-
ence on Cybernetics and Computational Intelligence (CyberneticsCom), pp. 19–23.
IEEE (2017)

21. Kemerer, C.F.: An empirical validation of software cost estimation models. Com-
mun. ACM 30(5), 416–429 (1987)

22. Kim, Y., Lee, K.: A comparison of techniques for software development effort
estimating. SYSTEM, p. 407 (2005)

23. Lison, P.: An introduction to machine learning. Lang. Technol. Group (LTG) 1(35)
(2015)

24. Malhotra, R., Jain, A.: Fault prediction using statistical and machine learning
methods for improving software quality. J. Inf. Process. Syst. 8(2), 241–262 (2012)

25. Marian, Z., Mircea, I.G., Czibula, I.G., Czibula, G.: A novel approach for software
defect prediction using fuzzy decision trees. In: 2016 18th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.
240–247. IEEE (2016)

26. Mazzara, M., Naumchev, A., Safina, L., Sillitti, A., Urysov, K.: Teaching DevOps in
corporate environments. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS
2018. LNCS, vol. 11350, pp. 100–111. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-06019-0 8

27. Moharreri, K., Sapre, A.V., Ramanathan, J., Ramnath, R.: Cost-effective super-
vised learning models for software effort estimation in agile environments. In: 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
vol. 2, pp. 135–140. IEEE (2016)

28. Molokken-Ostvold, K., Jorgensen, M.: A comparison of software project overruns-
flexible versus sequential development models. IEEE Trans. Softw. Eng. 31(9),
754–766 (2005)

29. Monden, A., et al.: Assessing the cost effectiveness of fault prediction in acceptance
testing. IEEE Trans. Softw. Eng. 39(10), 1345–1357 (2013)

30. Perkusich, M., Soares, G., Almeida, H., Perkusich, A.: A procedure to detect prob-
lems of processes in software development projects using Bayesian networks. Expert
Syst. Appl. 42(1), 437–450 (2015)

31. Rashid, E., Patnayak, S., Bhattacherjee, V.: A survey in the area of machine learn-
ing and its application for software quality prediction. ACM SIGSOFT Softw. Eng.
Notes 37(5), 1–7 (2012)

32. Rashid, E.A., Patnaik, S.B., Bhattacherjee, V.C.: Machine learning and software
quality prediction: as an expert system. Int. J. Inf. Eng. Electron. Bus. 6(2), 9
(2014)

33. Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine
learning. J. Appl. Math. 2014 (2014)

34. Rosipal, R., Girolami, M., Trejo, L.J., Cichocki, A.: Kernel PCA for feature extrac-
tion and de-noising in nonlinear regression. Neural Comput. Appl. 10(3), 231–243
(2001)

https://doi.org/10.1007/978-3-030-06019-0_8
https://doi.org/10.1007/978-3-030-06019-0_8

ML Applications for Software Development 55

35. Shanthini, A., Chandrasekaran, R.: Applying machine learning for fault prediction
using software metrics. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(6), 274–284
(2012)

36. Sharma, P., Singh, J.: Systematic literature review on software effort estimation
using machine learning approaches. In: 2017 International Conference on Next
Generation Computing and Information Systems (ICNGCIS), pp. 43–47. IEEE
(2017)

37. Shatnawi, R.: Improving software fault-prediction for imbalanced data. In: 2012
International Conference on Innovations in Information Technology (IIT), pp. 54–
59. IEEE (2012)

38. Shivaji, S., Whitehead Jr., E.J., Akella, R., Kim, S.: Reducing features to improve
bug prediction. In: 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 600–604. IEEE (2009)

39. Srinivasan, K., Fisher, D.: Machine learning approaches to estimating software
development effort. IEEE Trans. Softw. Eng. 21(2), 126–137 (1995)

40. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Proceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 3319–3328. JMLR.org (2017)

41. Usman, M., Mendes, E., Börstler, J.: Effort estimation in agile software develop-
ment: a survey on the state of the practice. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, p. 12. ACM
(2015)

42. Uzzafer, M.: A simulation model for strategic management process of software
projects. J. Syst. Softw. 86(1), 21–37 (2013)

43. Wauters, M., Vanhoucke, M.: Support vector machine regression for project control
forecasting. Autom. Constr. 47, 92–106 (2014)

44. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine
learning based software development effort estimation models. Inf. Softw. Technol.
54(1), 41–59 (2012)

45. Wright, I., Ziegler, A.: The standard coder: a machine learning approach to
measuring the effort required to produce source code change. arXiv preprint
arXiv:1903.02436 (2019)

http://arxiv.org/abs/1903.02436

The Conception of Strings Similarity
in Software Engineering

Sergey Frenkel(B) and Victor Zakharov

Federal Research Center “Computer Science and Control” Russian Academy of Sciences,
Moscow, Russia

fsergei51@gmail.com, VZakharov@ipiran.ru

Abstract. Many tasks of modern software engineering, such as malware detec-
tion, attack recognition, Web Caching and Prefetching, etc., are based on the
concept of distance between various data sets, e.g. between the strings of sym-
bols. Such distances should express “similarity” between various data, e.g., the
degree of similarity (or dissimilarity) between a suspected program and benign
software.

In our previous works, some inequalities have been obtained that describe
upper and lower bounds on Normalized Edit Distance (NED) values in terms of
the Jaccard distance.

In this paper, based on this result we suggest and study the Averaged Nor-
malized Edit Distance (ANED) as a new similarity metric which can be useful in
classification-via-clustering problems. We show that ANED has well-interpreted
properties, on the base of which it is possible to define a metric subspace on the
strings space. The ANED based approximation can be used for various areas of
data clustering, but in this paper we demonstrate the experiments showing the rele-
vance of our approach to malware clustering for their detection issues. Traces used
in our experiments come from the KVMhypervisor Runtime Execution Introspec-
tion and Profiling (REIP) system based on Virtual Machine Introspection (VMI)
techniques to profile hooked Windows API calls.

Keywords: Similarity and distance · Software design for security · Malware
detection

1 Introduction

The problem of assessing the similarity of data sets for classification purposes oneway or
another appears in various problems of informatics, such as webCognitive Load analysis
[1], web caching and Prefetching [2], web context analysis, malware detection, attacks
recognition [3], etc. For the most part the similarity estimation is based on the concept of
distance between the data sets, which expresses the degree of similarity (or dissimilarity),
e.g. similarity of a suspected program to benign software [3]. Presently various similarity
metricswere suggested and used in data classification through-clustering tasks [4], one of
the most discussed is Jaccard distance JD (or easily connected with JD Jaccard similarity
Index (JI) JS = 1 − JD) measure. Another metric is the Edit Distance (ED), namely,

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 56–67, 2021.
https://doi.org/10.1007/978-3-030-71472-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_4

The Conception of Strings Similarity in Software Engineering 57

the minimal number of edit operations (delete, insert and substitute of a single symbol)
required to convert one sequence (string) to the other [4, 13]. In order to normalize the
ED to interval (0,1), the Normalized Edit Distance (NED) is often used [5, 6, 13].

The computational complexity of the NED is high, e.g., in comparison with the
commonly used Jaccard distance. Moreover, when computing Jaccard measure, one
can employ several approximation techniques, such as Locally-Sensitive hashing with
MinHash [4], to dramatically speedup the clustering, classification and identification,
what is absent for NED. Nevertheless, despite these difficulties, now ED/NED is seen
as a highly desirable measure of similarity (distance) in such areas as optical character
recognition, text processing, computational biology, cryptography etc., as it, from the
point of view of the Machine Learning community, is a more acceptable measure for
such complex structured information [7]. Note that ED-or-NED are often used not only
as a characteristic of proximity, but as the cost of automatically converting one line to
another for automatic language recognition/classification [8].

The analysis of the literature shows that although the researchers try to consider
semantics in the tasks of assessing the similarity of texts [9], often in the tasks of
programs developments, in particular, in the tasks of malware detection, the “similarity”
regarding the difference of the data (e.g., in the benign-malicious behavior estimation)
on an intuitive level only is considered, and accordingly, detection is carried out on the
basis of numerical characteristics that have no obvious links with the property of being
similar [9].

In the paper, we analyze some informal (and some formal as well) inferences from
using of Jaccard-based similarity measure suggested in [10] which is based on JI approx-
imation and reflects some properties of NED. We show, that under some insignificant
updating suggestedmeasure, it receives some property, enabling to reflect to some degree
semantics of the compared string forms. The reason of why we can consider a relation
between such different measures as Jaccard and NED is that the scope of our analytical
results is so-called the representing strings, which is a result of original (raw) textual
data shingling [4], taking into account that there is a solid evidence that these similarity
estimation results can be applied to raw strings that have representation by n-gram with
low repetitions (more explanations see in Sect. 3).

In general, the area of this paper refers to the range of such tasks for assessing
and using similarity measures for which the effectiveness of using edit distance can be
justified. Thus, what we do in this paper is to analyze to extent to which the applied
approximation allows one to reflect the semantical differences of two strings.

Briefly, the contribution of this paper in comparison with [10, 11] is:

– it is shown that the average value obtained by averaging over the interval of possible
NED values has specific properties that are different from both JD and NED, namely,
the possibility to take into account the explicit dependence on the difference in sizes
of the compared sets, the possibility of using the property of triangle inequality for
clustering different subsets of strings,

– the relationship between the values of the true values, and the approximate values
of JD, NED and their approximate estimates is shown, which can be useful when
choosing threshold values for the conditions for assigning to clusters,

58 S. Frenkel and V. Zakharov

– we show, in fact, that well-known similarity measures, formally calculated without
using any conditions for the semantics proximity of the objects being compared [9],
can be transformed intomeasuresmore sensitive to semantic differences, with compu-
tational complexity similar to Jaccard metrics, with ability to reflect (a greater extent)
the semantics differences of the compared data.

The rest of the paper is organized as follows. Section 2 is an analysis of the most
popular metrics from the point of view of their ability to reflect the semantical differ-
ences of the data compared. Note that talking about “semantics” in this paper we mean
simply the applied properties and goals of the compared data, without using any formal
definitions of semantics (see, e.g. [12]). For example, if we deal with malware detection
problem, we must think about how a similarity measure used for discrimination between
malicious and benign behavior and results of their execution.

Section 3 explains and analyzes themeasure of similarity suggested in [10]. Away to
overcome the triangular inequality violation of traditional NED is shown. The technical
aspects of the similarity measures computation are considered in Sect. 4. The results are
discussed in the Sect. 5 and in Conclusion.

2 Data Similarity Conception

Before solving the problem of approximating a NED, let us consider what basic require-
ments the similarity estimates shouldmeet. First of all, it must be based on awell-defined
mathematically notion distance in a space. Formally, distance (“distance in a space”) is
a function D with nonnegative real values defined on the Cartesian product X × X such
that D: X × X → R+. It is called a distance metric on X if for every x, y, z ∈ X:

D(x, y) = 0 iff_x = y (the identity axiom);
D(x, y) + D(y, z) ≥ D(x, z) (the triangle inequality);
D(x, y) = D(y, x) (the symmetry axiom).

A set X, which is provided with a metric, is called a metric space.
The similarity S(x, y) metrics considered as an inversion to the distance notion which

must follow these rule, but be greater, the smaller the differences between the objects x,
y, S(x; x) > S(x; y), x �= y, in particular.

Let us consider the case, when the data semantics imposes that the data to be some
strings of ordered symbols. The traces of API system calls are an example.

From the practical viewpoint, the similarity definition problem is a combination of
two subproblems: (i) what kind of similarity metric is most relevant to the compared
data, and (ii) given a query string Q, how to use a similarity metric to search with suitable
complexity (cost), in order to find all strings in a data set whose distances with Q is no
more than a given threshold.

Let us consider two the most popular measures of similarity.

Jaccard Distance. The Jaccard distance JD (or Similarity Index JS = 1 − JD) is often
used for strings similarity estimation despite its intended use for simple (not multi-!)
sets.

The Conception of Strings Similarity in Software Engineering 59

The Jaccard distance is JD(x, y) = |x � y|/|x ∪ y|, where � denoted the symmetric
difference between two sets x, y (that is x and y are considered as a unordered set of
symbols from a given alphabet). Correspondingly, Jaccard similarity metrics JS(x, y) =
1 − JD(x, y) = |x ∩ y|/| x ∪ y| is defind.

Thismetric can be interpreted as probability that randommapping by a hash-function
hi (different mappings for different i) do not repeat accidental collisions, that is proba-
bility Pr(hi (xi = yi)) = JS(x, y) + (1 − Js)/2k that a random permutation of the subsets
(substrings, in particular) produces the same values, k is the number of bits mapped by
the hash-function hi. The meaning of this consideration is that the probability that the
Minhash function [4] for two sets equals the JS of those sets, therefore there is a clear
interpretation of similarity. It is important that JS is a true metric in the space of sets
with such distance, as the triangle inequality holds. This is why it may be effectively
used in clustering algorithms. Moreover, in spite of obvious violation of the string’s
semantic, the using of Jaccard similarity is rather successful for clusterization of traces
for malicious code detection [9]. The appropriate result in these applications is possible
if the main difference between malicious and benign codes is the composition of system
calls and their parameters.

However, inmany cases, in view of the triviality of connection (noted above) between
the similarity of JS (or JD) and the structure and semantics of program behavior data
displayed in traces, an incorrect detection of the consequences of attacks is possible. For
example, in the very topical problem of detecting Replacement Attacks [3], JS of two
traces can incorrectly reflect the change of control graph (representing dependencies
between the system calls in the traces of the program execution [11]) because it takes
into account the difference in the number of systems calls only but not the sequence
of their interactions, since a significant change in the structure of the traces under the
influence of attacks can only slightly change the value of JS.

Most frequently, the text files are shingled into q-grams (sequences of q tokens/terms
from the text) [4, 14], see an example in the Sect. 3, therefore, the distances/similarities
are considered relatively to q-grams. That is Jaccard index on shingle sets S(d1), S(d2):
JS (d1, d2)= |S(d1)∩ S(d2)|/|S(d1)∪ S(d2)| is used, where d1, d2 are the texts compared.

Edit Distance. Edit (Levenshtein) distance (ED) [13] takes into account (to a certain
extent) the structure of compared symbol strings. It takes into account the location in
a trace where the characters do not match (number of “insertion” edit operations), the
location where the symbols of one string are missing in the other (number of “deletes”
edit operations), and reflects more correctly, for example, the fact that with a given class
of attacks, a slight change in the types of system calls (and, accordingly, a slight change in
JS) leads to a significant change in ED due to a change in the trace of structure. Thanks
to this, it, for example, increases stemming from the input strings being “repetitive”,
which means that many of their substrings are approximately identical, while JD may
be insensitive to such specific features of the structure.

This string similarity metric captures both similarities in the overall structure of the
two sentences being compared as well as some similarity between different word forms
[15].

But in general, ordering of objects in the strings compared (e.g., the ordering of web
objects in web caching and prefetching prediction task [2]) is not explicitly reflected in

60 S. Frenkel and V. Zakharov

the ED. Further, although ED computes the distance for string of different lengths, the
degree of influence of differences in these lengths on the value of ED is not reflected in
any way in calculation models. Besides, the above-mentioned ability to interpret JS as
the probability of the hash coincidence of the two sections of the two compared traces,
giving the possibility of a clear interpretation of their “similarity”, is impossible for the
ED.

So-calledNormalizedEditDistance (NED) can enhance to somedegree these aspects
of ED using.

Normalized Edit Distance as Similarity Metric. Normalized Edit Distance of two
strings x, y is [6]:

NED = ED(x, y)/max(|x|, |y|) (1)

and SimNED(x, y) = 1 − ED(x, y)/max(|x|, |y|), where SimNED(x, y) is Normalized
ED Similarity.

That is, a perfect match will have SimNED(x, y) of 1.0, and completely dissimilar
strings will be assigned a value of 0.0.

As it can be seen from (1), NED can be interpreted as a probability, that number of
the transformation of the maximal (of two) strings (as well as minimal string to maximal
one) requires ED(x, y) edit operations.

However, strictly speaking, there is no the effective hashing algorithm to allow an
interpretation of the probability as the probability of hash values (like for the JS) [14],
and the computation of ED and NED is time-consuming O(n2loglogn/log2n), while
there are efficient hashing based linear algorithms for approximating Jaccard distance
for large data sets. But, what is important, the specific of ED computation (complexity
increasing) is that in contrast to Jaccard (or Hamming) distance/similarity, when string
comparison consists only in comparing string characters (without regard to their position,
as in Jaccard, or standing at the same places in the strings, as for Hamming distance), it
is necessary to consider the alignment operations, as associated with the requirement of
minimal number of editing operations. This, in turn, ensures that amuch larger specificity
of the structure of strings is taken into account in terms of their similarity.

There is also the problem that in contrast to the JD, the normalized edit distance
NED does not satisfy to the triangle inequality, what may prevent computation-effective
clustering of the maliciousness (or benign, depending on algorithm of machine learning
based detection). Although so-called Generalized Edit (Levenshtein) Distance (GLD)
was suggested [16], for which the triangle inequality is fulfilled, however, its calculation
requires the selection of weights for the cost of performing editing operations, which can
significantly increase the computational cost, which is significantly higher compared to
JD.

3 Jaccard Distance-Based NED Approximation

Let us assume that we know a Jaccard similarity (or distance) between strings x and
y, which are considered as two sets of symbols corresponding their plain texts. How

The Conception of Strings Similarity in Software Engineering 61

could we approximate normalized edit distance NED(x, y)? An obvious hurdle in the
technique suggested, namely, using Jaccard as the basis for the approximation of NED is
that these metrics are based on different mathematical concepts. Jaccard is defined over
(unordered) sets, in which each different element appears only once, despite that it may
occur many times in different parts of the set (document, in particular). Edit Distance is
defined over strings and depends on the order of the symbols in the underlying strings.

In order to overcome the difficulties associated with this discrepancy, we confine the
argument to certain types of sets and strings, both derived from the original documents
(plain texts of the traces, in the case considered); the documents in question go through a
shingling process (which collects all the substrings of certain length of appearing in the
document), which is the first necessary stage in most of modern methods of similarity
estimation [4, 9, 10]. The outcome of the shingling process is sets of n-grams (with-
out repetitions), which will be used for computing Jaccard similarity (distance). Then,
we create representing strings of the sets by sorting and concatenating their elements
according to, say, lexicographic ordering, as described in Sect. 3.9.2 in [4]. As a result,
we get strings of n-grams (string over the alphabet of the n-grams) that are sorted and
has no repetitions.

For example, 3-gram of a fragment of API system calls trace, CreateFile, is.
Cre rea eat ate teF e Fi Fil ile.
These representing strings will be used for NED estimation. As it was shown in [10],

the difference between NED on pairs of original texts (strings) and NED of their n-grams
representation is decreased very fast as a function of the n-gram size, which proves the
possibility to use the representing strings instead of the original texts.

Our experiment results showed that it is possible to choose n-grams (3-gram and
more, we used up to 13-gram) that yield better than 7% average difference between the
NED over the original documents, and the NED over the representing strings.

Thus, it justifies our choice to concentrate in analyzing the representing string as
we do in the sequel. We note that in general, one may sample a given data set and tune
the length of the n-grams for the given data set, taking into account the correspondence
between the original document and representing strings, and then to proceeding with
the clustering of the representing strings. Thus, such consideration allows to consider
any data set as a string, and correspondingly, to define the problem of Jaccard based
expression of NED.

This result is understandable as the more n-grams size the more symbols must be
inserted/deleted/substituted on the same way as it requires ED computation algorithm
for the plain text.

In [10] we received inequalities for the NED in terms of Jaccard metric that impose
upper and lower bounds on the NED values:

1 − α ≤ NED(x, y) ≤ (1 + α)(JD(X, Y)/(2 − JD(X, Y)))

X, Y means the set of symbols, contained in the strings x, y (recall that we deal with
representing strings {x, y} obtained from original (raw) strings, that is JD is distance
between corresponding n-grams (Sect. 2), α = min(|x|, |y|)/max(|x|, |y|).

62 S. Frenkel and V. Zakharov

Let us averageNEDover the interval [1−α, (1+α)JD(x, y)/(2− JD(x, y))] (assuming
the uniform NED distribution within this interval). Then we received the averaged NED
depicted as ANED:

ANED(x, y) = (1 + α(JD(X, Y) − 1)/(2 − JD(X, Y)) (2)

Leaving for now aside the question of the accuracy and usefulness of this averag-
ing from the point of view of using strings for classification (for example, the traces
classification as malicious and benign programs), the first significant result is that we
express the average NED value through the values JD which are computed by the hashing
mentioned above.

ANED term α takes into account such an important factor of the editing distance as
the fraction of characters that you need to “insert\delete\replace” to convert the string
x to y (or vice versa). Accordingly, from the point of view of the program execution
semantics, the magnitude of the similarity metric is not simply reduced to the ratio of
the number of characters coinciding in them (n-grams, in particular), as is the case in
the Jacquard distance metric.

The relationships between the ratio of the pair strings length, their Jaccard distance
and the ANED are represented in Fig. 1.

Fig. 1. Relationship between Average Normalized Edit Distance, ratio of strings pair α, and
Jaccard Distance.

One of the very important Jaccard metric properties is (d1, d2, P1, P2)-sensitivity
[15], that is:

if JD(x, y) ≤ d1 then Prob [h(c) = h(y)] ≥ P1,
or, for Jaccard similarity:
JS(x, y) ≥ d2, then Prob[h(x) = h(y)] ≥ P2.
where h(x), h(y) –hash-function implementing given permutation.

This property provides the ability to use theMinHashing algorithm to a good approx-
imation of the estimate of the similarity of two sets [4]. Obviously, due to the uniformity
relationship between the average NED and JD, we can find that our average Normal-
ized editing distance (ANED) is also (d1, d2, P1, P2) -sensitive, which also indicates
possibility of approximation based on LSH.

The Conception of Strings Similarity in Software Engineering 63

3.1 About Triangular Inequality for NED

As noted above, the triangle inequality does not hold for NED (unlike JD and JS), i.e.
set of strings S with a given NED (also with SimNED) do not form a metric space. It
means that for each strings x; y; z ∈ S, it can be: SimNED(x, y) + SimNED(y, z) ≤
SimNEDD(x, z). Taking into account the formulae (1) we can formulate the requirement
that the subset {x, y, z} be a metric space with the metric SimNED(x, y):

1 − ED(x, z)/max(|x|, |z|) ≤ 2 − ED(x, y)/max(|x|, |y|) − ED(y, z)/max(|y|, |z|)
(3)

We can rewrite the condition (3) relatively ANED (2) in an obvious way and can see
that regardingANED, a similar analysis for formula (2) shows that there are (continuous)
regions {α, JD}, where, calculating JD(x, y), JD(y, z), JD(x, z) (and corresponding
“alphas” for each pairs) we can find different subsets of triads {x, y, z} for which the
triangular inequality is true. Note, that in practice the fact that for most pairs of traces
there are always natural signs of their disagreement, for example, the JS about zero (α
is considerably less that 1 as well) allows us to exclude a significant number of cases
from consideration, and increase the proportion of triads satisfying the triangle rule (see
Sect. 4).

Correspondingly, it is possible to implement the effective clustering with ANED as
a distance metric, say, using K-nearest Neighbour algorithm.

4 Similarity Model Validation

Now we demonstrate the rationality of our view on data set similarity estimation on an
example dealing with traces of malicious programs recognition mostly represented in
[10].

4.1 About Data Set

The data set is the records of the Windows API system calls of malware including a) the
timestamp; b) the function name; c) all parameter values, and d) the return value.

We considered the traces subset (gathered in Taiwan National University [10])
focused on important and significant Windows API calls related to a) Files and I/O
(Local file system), b) Windows System Information (Registry), c) Processes, and d)
Dynamic-Link Libraries (DLLs). The order of the API system calls is perfectly pre-
served. There was access to two sets of malware traces and one set of benign traces
are ready. The set has 272 malware samples (which fork 419 processes). According to
VirusTotal, their first-seen dates were from August 2009 to October 2014. The benign
data set contains about ten software (such as IE, Paint, Calc, CMD) of Windows XP and
Win7’s built-in software.

64 S. Frenkel and V. Zakharov

4.2 Similarity Metrics Measurement Issue

Similar traces can be grouped together using Locality Sensitive Hashing (LSH) in linear
timewith only a small increase in false negative results, hashes items into buckets several
times, such that:

– similar items are hashed into the same bucket with high probability,
– items that are not similar enough are hashed into a common bucket with low
probability.

Hence, there is a benefit of using a large number of buckets for maximizing the
probability of collision of similar items.

4.2.1 Similar Traces Finding

In accordance with LSH technique [4] items that are mapped to the same bucket are con-
sidered as candidates for being similar. But there are no any strong methods to compute
probabilities of real semantically-grounded similarity. In fact, JS is just the probability
that LSH maps two Jaccard-similar traces in the same bucket. When computing Jac-
card measure, one can employ several approximation techniques, such as MinHash, to
dramatically speedup the clustering, classification and identification.

The use the ANED estimation allows us to supplement the clustering technique
outlined in the next section, by a scheme, where LSH provides Jaccard similar strings
(traces) in the same clusters, (that allows us to check the NED for any item in the cluster,
without accurate ED computation), and another technique we use is MinHashing [4]
which is a compression method for sets of items that preserves the Jaccard similarity,
that allows to work with much shorter same-length MinHash signatures.

5 Experimental Results of ANED-Based Approximation and Their
Discussion

Figure 2 contains the main validation and explanatory data on topic of this paper. These
results were obtained for 55 pairs of malware trace by LSH with Minhash [10].

For improved efficiency the text items are MinHashed into signatures, then LSH is
performed on these signatures (integer vectors) using the banding technique [4].

First of all, note thatANEDwas computed by formula 2 not by accurate JD values, but
via its LSH-Minhash approximation. Certainly, this ismore interesting from the practical
point of view as LSH with Minhash allows reducing essentially JD computation cost,
that meet to the requirement to reduce NED cost computation as much as possible. It
can be seen, that the behavior of ANED (regarding the pairs of compared trace s and
ratios of their lengths α), computed by suggested approximation by ANED (star line),
is the same the accurate NED values (solid line) in terms of increasing and decreasing
values of both variables relative to the numbers of pairs and values to the ratio of their
lengths. Moreover, Fig. 2 shows a rather good approximation of the NED by ANED.

Let’s see how the given data allows to evaluate the fulfillment of the basic properties
of NED in its approximation of ANED, and also how it allows understanding some

The Conception of Strings Similarity in Software Engineering 65

Fig. 2. JD-based approximation of Normalized Edit Distance by ANED calculated through LSH
estimations of JD given the relationship between length of strings α.

possibilities to display certain properties of the semantics of words contained in the
compared lines in ANED. Since, for strings of approximately equal length, the number
of operations required to convert one string to another should be greater than the number
of mismatched words (characters) in both strings (since, replacing one character with
another (operation “substitution”) also requires the operation “delete”), it is obvious that
JD ≤ NED. As we can see for Fig. 2, for the pair of traces with lengths for pairs of
strings whose lengths are not dramatically different from each other (say, α > 0.8) this
relation also holds for ANED, in spite of that for ANED computation by formula (2)
LSH Minhash approximations of JD were used, not the JD exact values. It means that
the use of ANEDs corrects the situation when the use of Jaccard for sets with the same
character set but organized as strings of different lengths gives a zero distance value,
i.e., a complete match. At the same time, computational costs are equivalent to Jaccard
computational cost.

As mentioned in Sect. 2, the main question of our study is to preserve the semantics
of the similarity of the ED based measures despite the use of JD for ANED computation.
For example, API system calls “RegQueryValue” is often called sequentially in the
Windows program and without taking into account the values of its arguments, it may
not be possible to compare the equivalence of the traces of two different programs to

66 S. Frenkel and V. Zakharov

detect possible malicious behavior. In this case, the parameters may differ more than a
few characters, and the Jaccard distance for their n-gram representation can be close to
zero, while theNEDwill give significantly higher distance values, i.e. the probability that
one string (trace) transforms into another with probability which is equal to NED. As a
result, using ANED can provide clustering that learns from themalicious dataset without
any explicit descriptions of each malware or its class. Each hash table bucket, obtained
during JD computing as it mentioned above, is selected and used as its representative,
then the binary (malicious/benign) decision by comparing each trace query against all
medoids m1, m2,.., mk (corresponding to the buckets mentioned above). If its maximal
similarity to one of the medoids exceeds a predefined threshold t chosen as maxi=1, ..,:k
(ANED), then it is classified as malicious, otherwise it is classified as benign.

Some examples of buckets with computed average value of Jaccard and NED dis-
tances (as a threshold to be include in the bucket) and corresponding NEDs of shingled
and original texts:

Bucket #290, has 6 traces: JD = 0.320966, NED = 0.320051, NED(Orig. Text) =
0.290116, Bucket #437, has 5 traces: JD = 0.575048, NED= 0.575708, NED(Orig Text)
= 0.613325.

6 Conclusion

Many approaches to the similarity of different symbolic structures estimation are based
on edit Edit Distance notion. In this paper we showed that the average value obtained by
averaging over the interval of possible NED values has specific properties, namely, the
possibility to take into account the explicit dependence on the difference in sizes of the
compared sets, the possibility of using the property of triangle inequality for clustering
subset of strings, in dependence on ratio of their length and the mutual features of pair
of strings, expressed by Jaccard distance. That is the pairs (α, JD(x, y)) can characterize
some semantical important properties of the string pairs, e.g., that the similarity of two
traces x, y, is less than simple fraction of coincided symbols, as it takes place in the
Jaccard distance metric. It means that for the tasks for which the effectiveness of using
edit distance-based similarity have been justified, the edit distance-like measure can be
transformed into measure more sensitive to semantic differences, with computational
complexity like to Jaccard.

Acknowledgements. Research partially supported by the Russian Foundation for Basic Research
under grants RFBR 18–07-00669, 18–07-00576 and 18–29-03100.

References

1. Tracy, J.P.: Measuring cognitive load to test the usability of web sites. University ofMemphis,
Memphis, USA (2007)

2. Kallurkar, P., Sarangi, S.: pTask: a smart prefetching scheme for OS for intensive applications.
In: 49th Annual IEEE/ACM - International Symposium on Microarchitecture (MICRO-49),
15–19 October 2016, pp.1–12 (2016)

The Conception of Strings Similarity in Software Engineering 67

3. Ming, J., Xin, X., Lan, P., Liu, D., Mao, B.: Replacement attacks: automatically impeding
behavior-based malware. In: Malkin, T., Kolesnikov, V., Lewko, A., Polychronakis, M. (eds.)
ACNS 2015. LNCS, vol. 9092, pp. 497–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7_24

4. Leskovec, J.,Rajaraman,A.,Ullman, J.D.:MiningofMassiveDatasets.CambridgeUniversity
Press, Cambridge (2014)

5. Vidal, E., Marzal, A., Aibar, P.: Fast computation of normalized edit distances. IEEE Trans.
Pattern Anal. Mach. Intell. 17(9), 899–902 (1995)

6. Abdulalah, N., Arslani, I.: Efficient algorithms for normalized edit distance (2000). https://
citeseerx.ist.psu.edu/viewdoc/download;jsessionid=00C048E4B2B4BD190985960DC69
FED7F?doi=10.1.1.63.8070&rep=rep1&type=pdf

7. Kim, C.W.: NtMalDetect: a Machine learning approach to malware detection using native
API system calls. arXiv:1802.05412v2, 19 (2018)

8. Chakraborty, I., Das, D., Goldenberg, E., Koucky, M.: Saks, V.: Approximating edit distance
within constant factor in truly sub-quadratic time. arXiv:1810.03664 (2018)

9. Jang, J., Brumley, D., Venkataraman, B.S.: BitShred: feature hashing malware for scalable
triage and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 2011, 17–21 October 2011, pp. 309–320 (2011)

10. Dolev, S., Ghanayim, M., Binun, A., Frenkel, S., Sun, Y.S.: Relationship of Jaccard and
edit distance in malware clustering and online identification. In: Proceedings of NCA2017,
pp. 369–373 (2017)

11. Frenkel, , Zakharov, V.: Brief Announcement: Graph-based and probabilistic discrete models
used in detection of malicious attacks. In: Dinur, I., Dolev, S., Lodha, S. (eds.) CSCML 2018.
LNCS, vol. 10879, pp. 184–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94147-9_15

12. Dennal,A.,Benslimane, S.M.:ANewmeasure of the calculationof semantic distance between
ontology concepts. Int. J. Inf. Technol. Comput. Sci. 7, 48–56 (2015)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. In:
Soviet Physics Doklady, pp. 10–707 (1966)

14. Das, S., Pakray, P., Gelbukh, A.: Identifying semantic similarity using Levenshtein ratio.
In: Proceedings of 10th International Workshop on Semantic Evaluation SemEval-2016, 1
January 2016, pp. 702–705 (2016)

15. Yuana, P., Wang, H., Chea, J., Ren, S., Xu, H.: Dechang approximate string similarity join
using hashing techniques under Edit Distance constraints. J. Softw. 10(9), 2721–2730 (2014)

16. Yujian, L., Bo, L.: A Normalized Levenshtein distance metric. IEEE Trans. Pattern Anal.
Mach. Intell. 6(29), 1091–1095 (2007)

https://doi.org/10.1007/978-3-319-28166-7_24
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid%3D00C048E4B2B4BD190985960DC69FED7F%3Fdoi%3D10.1.1.63.8070%26rep%3Drep1%26type%3Dpdf
http://arxiv.org/abs/1802.05412v2
http://arxiv.org/abs/1810.03664
https://doi.org/10.1007/978-3-319-94147-9_15

Multi-perspective Process Mining
with Embedding Configurations into

DB-Based Event Logs

Sergey A. Shershakov(B)

National Research University Higher School of Economics,
20 Myasnitskaya st., 101000 Moscow, Russia

sshershakov@hse.ru

http://pais.hse.ru

Abstract. Process mining is a research discipline that offers methods
and tools for analyzing various processes. There are a variety of process
mining techniques that have in common the use of an event log as a start-
ing point for research. In most cases, it is a flat event log (for example,
in the form of a text file) containing prepared information about events.
Most information systems that work with large data use the technology
of relational database management systems (RDBMS) for their effective
storage and processing. Recently, there has been a trend towards greater
integration of RDBMSs with process mining tools. With the direct inter-
action of a process mining tool with a database, it becomes possible
to transfer part of the “costly” data preparation operations directly to
the RDBMS level. This work represents an approach in which an arbi-
trary database is considered as a direct data source for process mining;
that is, data are extracted without using intermediate flat logs and pro-
cessed directly by process mining algorithms. An approach is proposed
for translating event logs represented using RDBs into their abstract
representation. There is described a novel method for embedding trans-
lation schemes inside a database in the form of so-called configurations,
each of which corresponds to one data perspective/process view. This
allows getting instrumented self-described DB event logs and switching
between different embedded perspectives without rebuilding the logs.

Keywords: Process mining · DB event logs · RDBMS ·
Multi-perspective models

1 Introduction

Process mining is a research discipline that offers methods and tools for ana-
lyzing various processes [2,10]. Process mining is successfully applied in various

This work is supported by the Basic Research Program at the National Research Uni-
versity Higher School of Economics and the study was funded by RFBR according to
the Research project No. 18-37-00438 “mol a”.

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 68–80, 2021.
https://doi.org/10.1007/978-3-030-71472-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_5&domain=pdf
http://orcid.org/0000-0001-8173-5970
https://doi.org/10.1007/978-3-030-71472-7_5

Multi-perspective Process Mining with DB Logs 69

fields: research and optimization of business and technological processes, soft-
ware development [5,6,16,17,20], education, medicine, etc.

Currently, a large number of different process analysis techniques have been
developed in such disciplines as data mining (DM), machine learning (ML),
business process management (BPM), etc. All these techniques are united by
several key points. The most common are the use of an event log as a source of
data with which they work, and a process model, which can be both the resulting
and the input component of such a technique.

An event log is an entry point of any process mining task. Depending on a
specific task, a log can be used more or less intensively. Two types of event logs
are usually considered. 1) Artificial event logs are usually used in the develop-
ment of new algorithms or to study the behavior of existing algorithms, they
are generated in a special way (manually or with the help of special tools [13])
and contain data that have certain specific features. 2) Real-life event logs are
the result of the work of information systems that support a particular process,
or accumulate data that can be used for analysis after preprocessing. Real-life
event logs tend to contain a huge amount of data. This leads to the presence of
a number of issues, which should be considered while designing a log subsystem.

In most cases, the event log is a text file containing prepared information
about events. Examples of formats used to represent such files are: MXML [1],
XES [9], CSV, etc. Most of the tools currently developed for process mining are
focused on event logs and are presented in this form. However, some tools use an
internal representation to optimize the work with such logs. For example, such
systems accept a log file for input, import data from it, and store these data in
RAM. One of the main side effects of this approach is data duplication and size
limitation determined by the size of RAM available for the process.

Most information systems (IS) working with large data use various tech-
nologies for their efficient storage and processing. One of the most common
approaches is the use of relational database (RDB) technologies supported by
various DBMS systems. Such databases may contain information that allows the
analysis of related processes in various ways. This makes them an indispensable
source of data for process mining.

Formerly, the approaches associated with the use of databases in process
mining included various techniques for extracting and preparing these data in
the form of so-called flat event logs [4], that is, performing controllable export
of data from a database to an event log. Such flat logs could be directly used by
process mining tools. Recently, there has been a trend towards greater integration
of databases and RDBMSs with process mining tools. This is due to the fact that
with the direct interaction of the process mining tool with a database, it becomes
possible to transfer part of the “costly” data preparation operations directly to
the RDBMS level, while using well-established and time-tested approaches for
efficient storage and manipulation of large amounts of data.

In addition, the use of databases containing more information than required
for the “traditional” process mining expands the possibility of a multi-perspective
process analysis, which considers various aspects of a process or behavior of

70 S. A. Shershakov

a certain system from different sides [12]. Further we will call such databases
enriched databases (EDBs).

This work is devoted to the study of an approach in which an arbitrary
database is directly a data source for process mining, that is, data are extracted
without using intermediate models (flat logs) and processed directly by process
mining algorithms. A key feature of this work is the development of an approach
to translate event logs represented using RDBs into their abstract representation
used by process mining algorithms. Moreover, the translation of EBD into an
abstract event log can be carried out in many different ways, which generates
various abstract logs. A review of each such abstract log provides a separate
perspective for consideration, and many such abstract logs provide many per-
spectives used for multi-perspective analysis.

Another important feature of the work that distinguishes it from other works
on this topic is a new way of embedding translation schemes directly into a
database itself in the form of so-called configurations, which makes such an event
log self-describing and self-contained. This allows the end user to simplify the
work with such an event log by choosing an appropriate prepared configuration in
a tool that supports such event logs. Developing and adding new configurations,
in turn, is not a difficult task and can be performed directly by a data analyst
without the need to write software extensions.

The approach proposed in this paper is focused on the specific SQLite
RDBMS. However, it can be easily adapted to any other RDBMS with minor
modifications or even without them.

The remaining part of the paper is organized as follows. Section 2 gives an
overview of related work in the context of applying databases in the process
mining domain. Section 3 introduces main idea of relating a DB-based log and
an abstract log representation. An approach to embed perspective configurations
into DB logs together with some implementation details is discussed in Sect. 4.
Finally, Sect. 5 concludes the paper and discusses some directions for future work.

2 Related Work

One of the first works on relating logs presented in the form of relational
databases to process mining techniques was [22]. It proposes a method for
extracting a dataset for building fuzzy maps by preparing SQL queries and exe-
cuting them with the help of the embedded SQLite DBMS. In the work, the
SQLite database itself acts as an event log. The data generated and prepared
by SQL queries are available for the algorithm of construction of fuzzy maps
through independent components of the VTMine framework [11]. Such compo-
nents are part of the general scheme of DPMine [18,19] preprocessing and data
processing for building resulting fuzzy models.

In [22] there are is also an approach proposed for using the Cartesian product
operator of a data set extracted from a DBMS and mapped onto an abstract
event log to obtain event relations, a particular case of which is also known as
direct follow relations (DFR). Thus, for the first time an attempt was made to

Multi-perspective Process Mining with DB Logs 71

transfer part of the resource-intensive operations performed by a certain pro-
cess mining algorithm from a tool with which data analysis is performed to an
auxiliary component, which a DBMS is.

The work [4] describes a comprehensive theoretical relationship between
databases and flat event logs. This relationship is represented as an abstract
model based, in particular, on UML class models, Entity-Relationship models
and Object-Role Modeling models.

In [20], the authors use an event log presented in the form of a database.
To do this, the flat event log is converted to the SQLite database format, and
the database is normalized taking into account the subject area. The use of the
database is determined by the flexibility that it gives when performing projec-
tion of the event log relative to some perspective. The generated database is
used in the work in two ways. The first allows extracting a required perspec-
tive from the database by executing a corresponding SQL query. The extracted
data are saved as a flat event log and analyzed using process mining tools: vio-
lations of expected behavior are detected through examining the model. Such
violations are expressed in the form of anti-patterns and formulated in terms
of metrics that determine numerical relationships between individual events.
The found anti-pattern candidates are then “checked” by executing generalized
SQL queries. These queries are based on the technique of obtaining event rela-
tions/DFR described in [22].

The work [15] considers the use of process mining to study processes that
occur as a result of working with databases. Here, as the main data source
are used so-called database redo logs stored by some DBMSs for the purpose
of tracking a database operations that alter its state. This paper discusses a
configurable concept of a case or a process instance by setting relations between
a DBMS data model and an event log. Flat event logs are used as the latter. The
proposed method is elaborated in a subsequent paper [14]. There, the authors
propose a meta-model that allows combining a database and an abstract event
log. The implementation of such a metamodel is based on SQLite, which is
similar to how it was previously done in [22] and [20].

In [8], the authors discuss limitations of the then major XES standard [9] for
exchanging event logs and propose a new approach, Relational XES (RXES),
which completely maps a XES metamodel onto a relational database. The pro-
posed database meta-model takes into account the specifics of the event logs
from the point of view of process mining, but it is artificial, and the proposed
RelationalXES framework allows working only with databases of such a struc-
ture.

The previous work continues with [23]. It proposes a scheme according to
which the database is considered not only as a data source but also performs
preliminary processing of event logs: it determines DFR in a way similar to
that in [22] and [20]. In the subsequent work [7], the proposed approach for
determining DFR was refined to a special DBMS operator H2, which allows
optimization of SQL queries at the level of the DBMS engine.

72 S. A. Shershakov

One novelty of the paper as compared with the previous works is a definition
of a set of queries that instrument a DB with event data to turn it into a
prepared event log. Such an event log can be used with any process mining
algorithm in a general manner in contrast with [22], where defined queries extract
specific datasets to build only fuzzy map models. Another novelty is a method
for embedding a number of different perspective configurations inside a DB. This
allows switching between pre-defined perspectives by determining only a simple
query.

3 A Database Approach for Representing Event Logs

There are possible different strategies for extracting data from event logs. These
strategies are closely related to a specific problem and an algorithm used to solve
it. We highlight some points that influence a strategy for storing data in and
extracting data from an event log.

Slow IO Operations and Caching. For instance, some algorithms read an event
log sequentially and do not need to go back to the previous point. In this case
event data can also be extracted and processed from a serialized form of a log
sequentially. In contrast, other algorithms use the same event data multiple
times; thus, the use of the previous approach becomes inefficient from a time
perspective due to repetitive IO operations. This problem can be eliminated by
caching the event data, once read from a log, in RAM. Nevertheless, such an
approach also has its overheads; generally, the amount of RAM is much more
limited than the amount of persistent storage. Huge event logs simply cannot be
mapped onto RAM, so a more sophisticated approach is needed here.

Filtering and Making Projections. Event logs often contain data that can be
considered from different perspectives. Extracting a desirable perspective from
a log usually includes the following operations.

(1) Attribute mapping. The abstracted representation of an event log is a mul-
tiset of traces, where each trace is an ordered sequence of events. Normally,
a trace corresponds to a single instance of a process described by the log,
and each event corresponds to some activity in the context of such a process;
finally, ordering of events is done according to some time perspective.
At the same time, in reality, an event log is often given in the form of a
table with a number of various attributes related to the underlying process.
So, at this step, mapping of real attributes onto those related to the pro-
cess mining domain is needed. Three main attributes are case number/trace,
activity class and timestamp. More specific problem domains also provide
their attribute extensions. For instance, in the context of software process
mining [17], a number of additional attributes (related to method invoca-
tions, classes, services and so on) can be requested.

(2) Events filtering. According to a context, only some classes of event activities
have to be presented in an abstracted object model of a log [3]. Such filtering

Multi-perspective Process Mining with DB Logs 73

Table 1. A fragment of an event log

Inv_ID Unit_name Action Start_timestamp Complete_Timestamp

17 office init 2015-05-19 14:06:27 2015-05-19 14:16:13
17 acc doc 2015-05-19 14:20:01 2015-05-19 14:43:31
20 office mail 2015-05-19 14:25:49 2015-05-19 14:26:18
17 office decide 2015-05-19 14:45:27 2015-05-19 14:48:04
20 mng decide 2015-05-19 14:50:38 2015-05-19 14:55:36
21 mng init 2015-05-19 15:17:24 2015-05-19 15:19:07
21 office mail 2015-05-19 15:21:31 2015-05-19 15:24:58
21 acc check 2015-05-19 15:22:04 2015-05-19 15:23:19

is referred to as a horizontal projection. Another type, vertical projection, is
given by filtering only those traces that satisfy some criteria, for instance,
being not older than some timestamp. It is also possible to define a more
complex projection, which takes into account additional attributes. Filtering
can be quite an expensive operation, especially when the related data (e.g.
different events belonging to the same trace) are scattered along the whole
log.

3.1 An Abstract Event Log and an DB-Event Log

In process mining, the event log is usually treated in an abstract form. Since
one of the goals of this work is to compare the abstract form of the event log
and its specific representation using the DBMS, herefrom follow basic concepts
related to event logs and some other notations that are needed for explaining
the approach.

Definition 1 (Trace, Event Log). Let B(X) be the set of all multisets
over some set X. Let A be a set of activities. A trace is a finite sequence
σ = 〈a1, a2, ..., ai, ..., an〉 ∈ A+. By |σ| we denote trace length. L ∈ B(A+),
such that |L| > 0, is an event log. Here, |L| is the number of all traces.

Thus, we consider the abstract event log as a multiset of traces. In real life, an
event log is represented using a set of attributed events. As a running example,
we consider a fragment of an event log (Table 1). The columns of the table
correspond to the attributes of the events, the rows correspond to the individual
events. Such a table can be obtained in different ways. For example, it can
naturally correspond to a CSV file in which one text line corresponds to one table
row and represents an event, while the attributes of the events inside the line are
separated using a separator. Another way to get such a table is to linearize the
event log in XES format. In this case, one row of the table corresponds to one
event element of a XES file, and the event attributes correspond to the children
of the event element. Finally, such a table can correspond to a relation in a
relational database, which in turn can be represented using a DB table or a DB
view. Further, we consider exactly such an approach. To do this, we introduce
some notations from relational algebra.

74 S. A. Shershakov

Definition 2 (Attribute, schema, relation). Let Λ be a set of all possible
strings. Then, α = (λ,D) is an attribute, where λ ∈ Λ is the name of the
attribute α and D is its domain. By ξ = (α1, α2, ..., αn) we denote a schema,
which is an (ordered) set of attributes αi.

Let D1,D2, ...,Dn be domains (not necessarily distinct) of attributes
α1, α2, ..., αn of the schema ξ. Then R = (ξ,D) is a relation of these n attributes,
where ξ is the relation schema and D ⊆ D1 × D2 × ... × Dn is a subset of the
Cartesian product of the set of domains.

That is the relation R is a combination of a schema and a set of n-tuples,
each of which has its first element from the set D1, its second element from D2

and so on. By e = R[i] we will denote the i-th tuple e ∈ D, starting with 1, and
eλ will refer to the value of the attribute λ of tuple e.

The event log (Table 1) is represented in the database as a relation RL1 =
(ξ,D) (which can be either a DB table, a DB view or a result of executing
some SQL query), with the scheme ξ = ((Inv ID,N), (Unit name, Λ), (Action, Λ),
(Start timestamp,Datetime), (Complete timestamp,Datetime)), where N is the set
of natural numbers, used as a domain for the attribute “invocation id”; Λ
is used as a string domain for the attributes “unit name” and “action”;
Datetime represents a domain for the attributes “start timestamp” and “com-
plete timestamp”. The set of tuples D of the relation R is as follows:
R[1] = (17,"office", "action", 2015/05/19 14:06:27, 2015/05/19 14:16:13),
R[2] = (17, "acc", "doc", 2015/05/19 14:20:01, 2015/05/19 14:43:31), and so
on. The order in which tuplets of D appear matters.

3.2 Relating DB Event Logs and Abstract Event Logs

The mapping of a specific set of event data recorded in the database onto an
abstract event log is performed by executing SQL queries that prepare a dataset
of a certain structure.

Let DB = (R1, R2, ...) be a database including the relations R1, R2, ..., each
of which can be represented using a DB Table or a DB View. In this example
(Table 1), the database consists of a single relation: DBL1 = (RL1). Let Q be an
SQL query executed on a set of relations R̄ ∈ B(DB) of the database DB such
that R′ = Q(R̄). The result of this query is a (possibly empty) relation R′.

To map the database DBL1 = (RL1) onto the abstract event log L1, one
needs to set a perspective in it by defining a set of SQL queries and to determine
which attributes of the relation RL1 will act as a case/trace identifier, activity
and timestamp. The latter is needed to organize the events within the trace.

Suppose that in the relation RL1 each tuple represents one event record,
that is, a set of attributes associated with some event a ∈ A. For definiteness,
we assume that the table contains all 8 events that are available in the event log.

Next, we define the Perspective 1 as follows. Let attribute (Inv ID,N) serve
as a process case and, hence, determine a trace key. Thus, the relation RL1

contains three cases, namely the cases #17, #20 and #21, which are considered

Multi-perspective Process Mining with DB Logs 75

as three log traces. The trace #17 contains three events, the trace #20 contains
two events and, and finally, the trace #21 also contains three events.

Then we map one of the attributes onto activity and choose another one to
determine the order of events. This can be done in a number of possible ways.
For instance, let Perspective 1 be defined for the attribute Action as an activity
and the attribute Start timestamp as an ordering key. The resulting abstracted
log viewed from Perspective 1, hence, will be as follows (we provide action names
and by the indexes we denote tuple numbers of the corresponding events):

Lp1 = [〈init1, doc2, decide4〉, 〈mail3, decide5〉, 〈init6,mail7, check8〉] (1)

To obtain specific data sets corresponding to components of this abstract log
Lp1, we define the following SQL queries. Since an event log is a collection of
traces, there is a query Q1 (named qryl traces) to extract such a collection:

SELECT Inv_ID FROM Events GROUP BY Inv_ID

The result of the query Q1 is the relation RQ1 = (Inv ID,N), where
RQ1 [1]Inv ID = 17, RQ1 [2]Inv ID = 20, RQ1 [1]Inv ID = 21 (hereinafter for
brevity we will denote the values of the relations tuple by tuple, e.g. [RQ1] =
((17), (20), (21)), or simply [RQ1] = 〈17, 20, 21〉, if this does not create ambigu-
ity). This set can be enumerated by values of its elements. Each element of the
set is a key to extracting a corresponding trace by using the following query Q2

(named qryl get trace events):

SELECT Inv_ID as CaseID, Action as Activity, Start_timestamp as

Timestamp FROM Events WHERE CaseID = ?1 ORDER BY Timestamp

Here we use vertical projection—the selection of necessary attributes with
their renaming, and horizontal—filtering by event instance identifier (CaseID).
Then, the Start timestamp attribute in ORDER BY clause specifies the order of
events in every case. Using time-related attributes for this purpose is straightfor-
ward. There is a single parameter ?1 in WHERE clause. The parameter is assigned
where a specific trace is requested. For instance, by putting 17 as a value for
this parameter, the query returns a dataset containing the following events:
[RQ2] = ((17, "init", 2015-05-19 14:06:27), (17, "doc", 2015-05-19 14:20:01),
(17, "decide", 2015-05-19 14:45:27).) The inclusion of the Inv ID and
Start timestamp attributes in the resulting query is redundant, since, according
to Definition 1, the trace is an ordered sequence of events. This is achieved by the
following qryl get trace events query:

SELECT Action as Activity FROM Events

WHERE Inv_ID = ?1 ORDER BY Start_timestamp

The result of its execution is a relation consisting of one attribute with the
values 〈"init", "doc", "decide"〉.

To make available all operations applicable to the abstract event log, it is
necessary to define 15 named SQL queries and 3 parameters (the attribute names
trace, activity and timestamp). They return the total number of all events and
traces, some individual attributes of events, a trace or the log itself and so on.

76 S. A. Shershakov

SQLite
EventLog

IEventLog

IFilteredEventLog

Discovery
algorithmSQLite

DBMS

Algorithm
with context
log filtering

DBMS API

LDOPA APISQ3 DB
EventLog

Model

Filtered
Model

Fig. 1. The EventLog subsystem of the LDOPA library

The complete list of them can be found on the website1 of the LDOPA library [21]
implementing the proposed approach.

4 Implementation

The idea presented above is implemented as a part of the library LDOPA [21]
called EventLog.

The setting using the SQLite DB as an event source is illustrated in Fig. 1.
Here, the API of SQLite2, which is implemented as a small library, is embedded
directly to the EventLog subsystem of the LDOPA project. The most convenient
feature is that an individual database is represented as a single file; this rather
correlates to the “log as a file” idea.

The abstracted interface for event logs is represented as the IEventLog com-
ponent. This interface is implemented by the SQLiteEventLog component, which
uses the SQLite API for querying and extracting event data prepared in desir-
able projections. Then, these data are provided to algorithms in a standard form,
namely a log as a multiset of traces, a trace as a sequence of events, an event as
a collection of attributes.

There are several points behind this approach.

(1) Any complex structure of an existing database can be adapted to a desirable
process mining projection without any data transformation. This is achieved
by applying flexible features of SQL queries, which allows to apply attribute
mapping, record filtering, to join separate tables etc. Moreover, it is a rather
natural way to switch between different projections by applying different
SQL queries.

(2) All steps of the preprocessing stage are moved out from the LDOPA library
to a DPMS engine, for instance to the SQLite engine. It is rather clear that
all mature DPMSs are suited to manipulate big amounts of data in the most
effective way with the least overhead costs. In this way, instead of profiling
home-grown filtering implementations, one can apply a well-tuned DBMS
tool and simply use prepared datasets in process mining algorithms.

(3) It is possible to improve performance aspects of extracting data directly
at the DB side without any changes at the tool side, i.e. in a transparent

1 Available at https://prj.xiart.ru/projects/ldopa.
2 Available at sqlite.org.

https://prj.xiart.ru/projects/ldopa
https://sqlite.org/index.html

Multi-perspective Process Mining with DB Logs 77

way. This is achieved by creating additional indices for attributes that are
used in mapping to a process mining perspective (case id, activity, etc.).
Moreover, table indexing allows obtaining a logarithmically fast access to
random data in a log in comparison with the slow linear access provided by
plain text structures (including XML/XES and CSV files). Overhead here is
additional disk space to store the indices, but this cost is specifically cheap.

(4) Storing persistent data in a database is much more compact than in any
text format, due to the binary representation of data and avoiding storing
structure-handling elements.

4.1 Embedding Configurations into DB-Based Event Logs
to Obtain Multi-perspective Process Mining

We consider again the example discussed in Sect. 3.2. In expression (1) we have
an abstracted form of an event log projected to the Perspective 1. The standard
approach based on a flat event log implies the necessity to export data from
Table 1 as an individual log file, for instance persp1.xes. This log can also be
projected in another way. Let Perspective 2 this time use Unit name as an activ-
ity and Complete timestamp as an ordering key. Note, not only this projection
provides different attributes extracted from events, but the order of events (7
and 8) is also changed:

Lp2 = [〈office1, acc2, office4〉, 〈office3,mng5〉, 〈mng6, acc8, office7〉] (2)

Following the flat event log approach there is a need to export another pro-
jection from Table 1 as another file, persp2.xes correspondly. On the contrary,
by using an instrumented DB-event log, we only need to ajust a perspective
configuration only. To obtain data in accordance with this perspective, the
qryl get trace events query will change as follows:

SELECT Unit_name as Activity FROM Events

WHERE Inv_ID = ?1 ORDER BY Complete_timestamp

In general, for each perspective, one may need to redefine all of the above
SQL queries and the parameters associated with them. Above we gave an exam-
ple of such parameters, namely qryl traces and qryl get trace events. These
parameters can be configured/set directly in the SQLite EventLog component,
which allows certain flexibility. Nevertheless, configuring parameters in such a
way is a bit complicated and, what is worse, it separates an event log configura-
tion from event data. In order to eliminate this issue, we implemented an ability
to embed a log configuration directly into the DB log.

We define the perspective configuration as a relation of the form: RC =
(ξC ,DC) with the schema ξC = ((param, Λ), (value, Λ)) and the set of tuples DC

of the form: 〈("qryl trace", "SELECT Inv ID FROM Events GROUP BY Inv ID"), ...〉
Technically, this goal can be achieved by adding to the log’s database a

special table (e.g., named Config) containing such a configuration as a collection
of param-value pairs (Table 2). Any dataset that consists of at least two columns
with strings is suitable for this role. Such attributes must have predefined names

78 S. A. Shershakov

Table 2. Configuration table Config

param value persp
… … 0
qryl_traces SELECT Inv_ID FROM Events GROUP BY Inv_ID 0

qryl_get_trace_events
SELECT Ac on FROM Events WHERE Inv_ID = ?1 ORDER
BY Start_ mestamp 0

ev_act_a r_id Ac on 0
… …
qryl_traces SELECT Inv_ID FROM Events GROUP BY Inv_ID 1

qryl_get_trace_events
SELECT Unit_name FROM Events WHERE Inv_ID = ?1
ORDER BY Complete_ mestamp 1

ev_act_a r_id Unit_name 1
… … 1

“param” and “value”. This approach allows defining more than one perspective
configuration, for example, by setting the number or name of a perspective as a
separate attribute. For example, in Table 2, two configurations are defined with
numbers 0 and 1, which can be queryed from the database as follows (here the
parameter persp = 0 determines the perspective number):

SELECT param, value FROM Config WHERE persp = 0

The proposed approach underlies the following scheme for preparing and
instrumenting an event log in the form of a database using the SQLite EventLog
component of the LDOPA library.

1. Defining one or more process perspectives for extracting data from a specific
database in the form of a set of SQL queries and related parameters.

2. Creating a configuration table that stores the parameters of (a) perspective(s).
3. Connecting a database using the EventLog component by setting two config-

uration parameters: the name of the database file and the SQL configuration
query which extracts parameters of the current working perspective.

5 Conclusion

A new approach is proposed for the representation of data recorded in a database
in the form of an abstract event log. The data are retrieved according to a speci-
fied process perspective set by the user. The perspectives are embedded directly
in the event log in the form of perspective configurations, and then switching
between them is carried out at the stage of connecting the event log to pro-
cess mining algorithms by setting a simple SQL query. The proposed approach
is implemented as a component of the LDOPA library, for the configuration of
which two parameters are set: the database file name and the SQL configura-
tion query. Further work on the topic includes development of an appoach for
inheriting perspective configurations, which allows defining new configurations
by overriding only necessary parameters instead of specifying a complete set.

Multi-perspective Process Mining with DB Logs 79

References

1. van der Aalst, W.M.P., et al.: Business process mining: an industrial application.
Inf. Syst. 32(5), 713–732 (2007). https://doi.org/10.1016/j.is.2006.05.003

2. van der Aalst, W.: Process mining (2016)
3. van der Aalst, W.M.P.: Decomposing Petri nets for process mining. A generic

approach (2012)
4. van der Aalst, W.M.P.: Extracting event data from databases to unleash process

mining. In: vom Brocke, J., Schmiedel, T. (eds.) BPM - Driving Innovation in a
Digital World. MP, pp. 105–128. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-14430-6 8

5. Davydova, K.V., Shershakov, S.A.: Mining hierarchical UML sequence diagrams
from event logs of SOA systems while balancing between abstracted and detailed
models. Proc. Inst. Syst. Programm. RAS 28(3), 85–102 (2016)

6. Davydova, K.V., Shershakov, S.A.: Mining hybrid UML models from event logs of
SOA systems. Proc. Inst. Syst. Program. RAS 29(4), 155–174 (2017)

7. Dijkman, R., Gao, J., Syamsiyah, A., van Dongen, B., Grefen, P., ter Hofstede, A.:
Enabling efficient process mining on large data sets: realizing an in-database pro-
cess mining operator. Distrib. Parallel Databases 38(1), 227–253 (2019). https://
doi.org/10.1007/s10619-019-07270-1

8. van Dongen, B.F., Shabani, S.: Relational XES: data management for process
mining, pp. 169–176 http://ceur-ws.org/Vol-1367/#paper-22

9. Günther, C.W., Verbeek, E.: XES. Standard definition. TU/e, Den Dolech 2, 5612
AZ Eindhoven, P.O. Box 513, 5600 MB Eindhoven, 2.0 edn., 28 March 2014

10. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

11. Kim, P., Bulanov, O., Shershakov, S.: Component-based VTMine/C framework:
not only modelling. In: Kamkin, A., Petrenko, A., Terekhov, A. (eds.) Proceedings
of the 8th Spring/Summer Young Researchers’ Colloquium on Software Engineer-
ing, SYRCoSE 2014, pp. 102–107. ISP RAS (2014). http://syrcose.ispras.ru/2014/
files/SYRCoSE2014 Proceedings.pdf

12. Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, Department of
Mathematics and Computer Science, February 2018. proefschrift

13. Mitsyuk, A.A., Shugurov, I.S., Kalenkova, A.A., van der Aalst, W.M.P.: Generating
event logs for high-level process models. Simul. Model. Pract. Theory 74, 1–16
(2017)

14. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases
with process mining: a meta model and toolset. In: Schmidt, R., Guédria, W.,
Bider, I., Guerreiro, S. (eds.) Enterprise, Business-Process and Information Sys-
tems Modeling, pp. 231–249. Springer, Cham (2016)

15. de Murillas, E.G.L., van der Aalst, W.M.P., Reijers, H.A.: Process mining on
databases: unearthing historical data from redo logs. In: Motahari-Nezhad, H.R.,
Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 367–385. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23063-4 25

16. Rubin, V., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen, B.F.,
Schäfer, W.: Process mining framework for software processes. In: Wang, Q., Pfahl,
D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 169–181. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72426-1 15

https://doi.org/10.1016/j.is.2006.05.003
https://doi.org/10.1007/978-3-319-14430-6_8
https://doi.org/10.1007/978-3-319-14430-6_8
https://doi.org/10.1007/s10619-019-07270-1
https://doi.org/10.1007/s10619-019-07270-1
http://ceur-ws.org/Vol-1367/#paper-22
https://doi.org/10.1007/978-3-642-28108-2_19
http://syrcose.ispras.ru/2014/files/SYRCoSE2014_Proceedings.pdf
http://syrcose.ispras.ru/2014/files/SYRCoSE2014_Proceedings.pdf
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1007/978-3-540-72426-1_15

80 S. A. Shershakov

17. Rubin, V., Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Process mining
can be applied to software too! In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM, New York
(2014)

18. Shershakov, S.: DPMine/C: C++ library and graphical frontend for DPMine work-
flow language. In: Kamkin, A., Petrenko, A., Terekhov, A. (eds.) Proceedings of
the 8th Spring/Summer Young Researchers’ Colloquium on Software Engineering,
SYRCoSE 2014, pp. 96–101. ISP RAS (2014). http://syrcose.ispras.ru/2014/files/
SYRCoSE2014 Proceedings.pdf

19. Shershakov, S.A.: DPMine graphical language for automation of experiments in
process mining. Autom. Control. Comput. Sci. 50(7), 477–485 (2016). https://doi.
org/10.3103/S014641161607018X

20. Shershakov, S.A., Rubin, V.A.: System runs analysis with process mining. Model.
Anal. Inf. Syst. 22(6), 818–833 (2015)

21. Shershakov, S.: Enhancing efficiency of process mining algorithms with a tai-
lored library: design principles and performance assessment. Technical report,
National Research University Higher School of Economics (2018). https://
www.researchgate.net/publication/332869308 Enhancing Efficiency of Process
Mining Algorithms with a Tailored Library Design Principles and Performance
Assessment Technical Report

22. Shershakov, S.A.: VTMine framework as applied to process mining modeling. Int.
J. Comput. Commun. Eng. 4(3), 166–179 (2015)

23. Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling pro-
cess discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.)
SIMPDA 2016. LNBIP, vol. 307, pp. 53–77. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74161-1 4

http://syrcose.ispras.ru/2014/files/SYRCoSE2014_Proceedings.pdf
http://syrcose.ispras.ru/2014/files/SYRCoSE2014_Proceedings.pdf
https://doi.org/10.3103/S014641161607018X
https://doi.org/10.3103/S014641161607018X
https://www.researchgate.net/publication/332869308_Enhancing_Efficiency_of_Process_Mining_Algorithms_with_a_Tailored_Library_Design_Principles_and_Performance_Assessment_Technical_Report
https://www.researchgate.net/publication/332869308_Enhancing_Efficiency_of_Process_Mining_Algorithms_with_a_Tailored_Library_Design_Principles_and_Performance_Assessment_Technical_Report
https://www.researchgate.net/publication/332869308_Enhancing_Efficiency_of_Process_Mining_Algorithms_with_a_Tailored_Library_Design_Principles_and_Performance_Assessment_Technical_Report
https://www.researchgate.net/publication/332869308_Enhancing_Efficiency_of_Process_Mining_Algorithms_with_a_Tailored_Library_Design_Principles_and_Performance_Assessment_Technical_Report
https://doi.org/10.1007/978-3-319-74161-1_4
https://doi.org/10.1007/978-3-319-74161-1_4

On DB-Nets and Their Applications

Marco Montali and Andrey Rivkin(B)

Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{montali,rivkin}@inf.unibz.it

1 Introduction

The recent developments in the Business Process Management (BPM) com-
munity demonstrate a paradigmatic shift in the way complex systems are per-
ceived [2,4,11]. Now, the “language” for describing such systems should not only
consider both processes and (master) data dimensions, but also should be expres-
sive enough to talk about their interplay. The recently introduced formalism of
DB-nets [9] is an example of such language. DB-nets provide a new concep-
tual way of modelling complex dynamic systems that equally account for the
aforementioned dimensions, and where the data dimension considers both local
and persistent data. To correctly represent process and data dimensions in one
model, DB-nets combine two conventional approaches such as coloured Petri
nets (CPNs) with name creation and management, and relational databases.
More specifically, in a DB-net: (i) master data are represented using full-fledged
relational databases with constraints; (ii) the process logic as well as local data
are captured using a variant of CPNs extended with special places whose con-
tent corresponds to a view on top of the underlying database; (iii) the task logic
conceptually defines how the underlying database is updated. In this short paper
we briefly introduce the formalism of DB-nets, showcase its currently existing
applications and briefly discuss its future perspectives.

2 The Formalism

Here we provide a simplified definition of a DB-net by formalizing intro thee
conceptual layers the three abstractions described above. For a more detailed
definition refer to [9]. A db-net is a tuple 〈D,P,L,N〉, where:

• D is a type domain – a finite set of pairwise disjoint data types D = 〈ΔD, ΓD〉,
where ΔD is a value domain, and ΓD is a finite set of domain-specific (rigid)
predicates.

• P is a D-typed persistence layer – a pair 〈R, E〉 where: (i) R is a D-typed
database schema, i.e., a set of D-typed relation schemas R(D1, . . . ,Dn), with
Di ∈ D for i ∈ {1, . . . , n}; (ii) E is a finite set {Φ1, ..., Φk} of FO(D)1 sentences
(or queries) over R, modelling constraints over R.

1 First-order (FO) logic extended with data types.

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 81–87, 2021.
https://doi.org/10.1007/978-3-030-71472-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_6&domain=pdf
http://orcid.org/0000-0002-8021-3430
http://orcid.org/0000-0001-8425-2309
https://doi.org/10.1007/978-3-030-71472-7_6

82 M. Montali and A. Rivkin

• L is a D-typed data logic layer over P – a pair 〈Q,A〉, where Q is a finite set
of FO(D) queries over R, and A is a finite set of parametric atomic actions
specifying which facts to delete from (and/or to add to) the persistent stor-
age.2

• N is a D-typed control layer – a tuple 〈P, T, Fin, Fout, Frb, color,
query, guard, act〉, such that:

– P = Pc ∪Pv is a finite set of places partitioned into control places Pc and
view places Pv (decorated as , connect to transitions only with read
arcs).

– T is a finite set of transitions, such that T ∩ P = ∅.
– Fin is an input flow from P to T assigning multisets of inscriptions (over
D-typed variables) to input arcs.3

– Fout and Frb are respectively an output and rollback flows from transitions
T to places P assigning multisets of inscriptions to output arcs.

– color is a color type assignment over P , mapping each place p ∈ P to a
cartesian product of D-types.

– query is a query assignment mapping each view place p ∈ Pv to a query
Q ∈ Q, s.t. the color of p component-wise matches with the types of the
free variables in Q.

– guard is a transition guard assignment over T assigning to each transi-
tion t ∈ T a D-typed guard ϕ (i.e., a quantifier- and relation-free FO(D)
formula), that is defined over t’s input inscriptions.

– act is a partial function assigning actions from A to transitions from T .

While the input flow contains inscriptions that match the components of
colored tokens present in the input places, the output/roll-back flow can also
contain constants and special kind of variables called fresh, allowing to gener-
ate data values not already present in the net, nor in the underlying database
instance. Elements of inscription tuples can be referenced in transition guards
and action assignments (for instantiating action formal parameters with inscrip-
tion bindings).

Example 1. To demonstrate a simple DB-net model, let us consider a simplified
accommodation booking process in a travel e-commerce website. Using the web-
site, a user should be able to search for various options by specifying a city and a
period of stay. As soon as a suitable option is found, she is offered to complete a
booking form. Upon its completion, selected accommodation is getting booked.
Note that the website supports multiple user sessions running at the same time.
This can create a situation in which two users are completing forms for the same
accommodation option, but one of them is faster. The slower user then loses her
chance to get accommodation and has to search for another one.

The persistence layer stores background data as well as data that per-
sist across cases. In our scenario the website database comprises two relation
2 As in STRIPS, we assume that when the same fact is asserted to be added and
deleted during the same step, the higher priority is given to the addition.

3 An inscription is a tuple 〈e1, . . . , en〉 of D-typed elements, where each ei can be
either a variable or a constant.

On DB-Nets and Their Applications 83

Fig. 1. The control layer of a DB-net for online booking. Here, νs is a fresh variable
corresponding to a newly created session on the website, whereas c and p are two
unbounded variables simulating user input for selected city and period of stay. The
rollback output arc (corresponds to the rollback flow) is in red and decorated with an
“x”.

schemas: Available(ID : int, city : string, period : string) lists available accom-
modation options, whereas Booked(ID : int, city : string, period : string, data :
string) lists the booked ones. Each relation is equipped with a primary key
constraint defined on ID attributes.

We use view places to expose a portion of the persistence layer in the control
layer, so that each token in every view place represents one of the answers pro-
duced by the query attached to the place. Such tokens are not directly consumed,
but only read by transitions, so as to match the input inscriptions with query
answers. In our scenario we would like to have access to available accommoda-
tions from the website database. To this end, we use a query that is formally
defined as Qava(id, c, p):-Available(id, c, p). Its SQL counterpart is SELECT id, c,
p FROM Available. This query is then assigned to view place Available Accom-
modation in Fig. 1.

A transition in the control layer may bind its input inscriptions to the param-
eters of an action attached to the transition itself, thus providing a mecha-
nism to trigger a database update upon transition firing (and, maybe, conse-
quently change the content of view places). Here, the data logic layer provides
a functionality for booking accommodation for specified period p using action
book(id, c, p, u) (with four formal parameters) that, upon execution, removes
chosen accommodation with identifier id from the Available table, and then adds
a new entry with the same id and customer data u to the Booked table. Formally
it is specified using the following notation: book·del = {Available(id, c, p)} and
book·add = {Booked(id, c, p, u)}. In Fig. 1, book assigned to transition Finish
Booking graphically appears in the grey transition box.

Note that Finish Booking has one rollback arc connected to it. This arc
essentially models the aforementioned case of at least two users trying to book
the same accommodation. Indeed, when consequently firing Finish Booking with
two tokens carrying identical identifiers that correspond to the same accommo-
dation option, the second triggered update of book will violate the primary key
constraint of Booked , and the net will follow the compensation flow.

Execution Semantics. Let us briefly recall the execution semantics of DB-
nets, that has to simultaneously capture the progression of both persistence and

84 M. Montali and A. Rivkin

control layers. To this end, at each point in time, the persistence and control
layers are respectively associated with database instance I and marking m, in
which content of view places must be compatible with that of I (i.e., it is aligned
via queries assigned to view places). We shall refer to this as a DB-net snapshot,
denoted as 〈I,m〉. Next we informally define a transition enablement and a
transition firing in a given snapshot.

By analogy with CPNs, the firing of a transition t in a snapshot is defined
w.r.t. a so-called binding σ for t that substitutes all variables in the inscriptions
on the arcs incident to t and, possibly, formal parameters of an action signature
assigned to t with values from D. However, to properly enable the firing of t, the
binding σ must satisfy three conditions: (i) there should be enough of tokens that
mach inscriptions on the corresponding input arcs; (ii) the guard attached to t
has to be satisfied; (iii) all fresh variables should be substituted with values that
are pairwise distinct, and also distinct from all the values present in the current
marking, as well as in the current database instance.4 Now, if a transition is
enabled, it can be fired. The firing, instead, has a threefold effect. First, all tokens
in control places Pc are consumed according to matching input inscriptions.
Second, the instantiated action assigned to t is applied on the current database
instance I. Since actions are atomic (i.e., the respect transactional semantics),
one proceeds as follows. If the application is successful (i.e., the resulting instance
of the persistence storage satisfies the constraints from E), the database instance
is updated (commit); if not, it is kept unaltered (rollback). Third, tokens are
populated in target places according to output arc inscriptions and an output
flow, that is going to be Fout in the case of commit and Frb otherwise. Note that
the latter is virtually an example of how a net can alter its behavior based on
the manipulations with the persistent data.

All in all, the execution semantics of a DB-net is captured by a possibly
infinite-labeled state transition system that accounts for all possible executions
starting from their initial markings. While transitions in such LTSs model the
effect of firing nets under given bindings, their states are represented with DB-net
snapshots.

3 Current and Prospective Applications

DB-Nets for EAI. [12] studies an application of DB-nets to Enterprise Appli-
cation Integration (EAI). EAI defines a set of technologies and services for inte-
grating various applications in an enterprise using compositions of Enterprise
Integration Patterns (EIPs) and their extensions. EIPs are adopted by vari-
ous EAI system vendors in their proprietary integration scenario modelling lan-
guages. However, such languages are not grounded in any formalism, and thus
may produce integration models that are prone to design flaws. To minimize the
manual errors and allow for automatic analysis of the pattern correctness, EIPs
should be formalised.
4 Fresh variables is a typed analogue of ν-variables of ν-Petri nets [13]. They can
appear only in actions as well as inscriptions of output and rollback flows.

On DB-Nets and Their Applications 85

Our work revealed that more versatile modelling formalisms are in high
demand and, given growing interest in complex enterprise scenarios in which sev-
eral inter-related business processes are linked together via shared data objects
and events, DB-nets are very appreciated thanks to the conceptual tradeoffs they
realize. Moreover, it appeared that DB-nets exhaustively cover all the require-
ments for EIPs and their extensions mentioned in the most recent classifica-
tion suggested in [12]. We demonstrated how to model EIPs using DB-nets and
showed how such models can become operational in a prototype based on CPN
Tools (http://cpntools.org/) and its extension library Access/CPN. Unfortu-
nately, our work revealed that the verification of EIP models created in CPN
Tools using the state exploration tool falls short, since the latter becomes non-
operational in the presence of data generating third party extensions (i.e., those
that populate data/tokens into the net model). In order to still guarantee some
form of correctness, we opted for the validation via simulation. This, in turn,
proved to be quite efficient since CPN Tools offers a range of analytic features
(e.g., a generation of simulation performance reports) based on the simulation
toolkit.

One of the drawbacks of this approach is that the functionality provided by
CPN Tools and Access/CPN is rather limited and hampers fast and agile mod-
elling of data-aware processes. For example, there is no approach that would
allow for the on-the-fly specification of data acquisition functions (that, essen-
tially, model data injection via unbounded variables appearing in output flows
as well as action formal parameters of DB-nets). They must be implemented
per DB-net model directly in the Java code of its extension. In order to over-
come such limitations one could use Renew (http://www.renew.de/), proviso
that modelling and simulation remain the main objectives. Notably, Renew sup-
ports high-level Petri nets and provides tighter integration with Java.

Formal Verification. It is easy to see that our formalism is Turing-complete.
Nevertheless, given that DB-nets conceptually separate different aspects of a
dynamic system, the formalism itself becomes an interesting model for fine-
grained studies on how such aspects impact on undecidability and complexity
of verification tasks, and how should they be controlled to guarantee decidabil-
ity/tractability. For example, it is known that (un)decidability of reachability
can be affected by the presence of ordered vs. unordered data types as well as
(globally) fresh inputs [7], or by the presence of of negation in the queries used
to inspect the persistence layer as well as the arity of relation schemas contained
in it [1]. DB-nets do not only provide a comprehensive model to fine-tune all
such parameters, but also allow to study how they interact with each other. We
also consider the case in which, under certain state-boundedness restrictions that
apply both to the database and the net (a state-bounded DB-net is still allowed
to visit infinitely many different snapshots along its runs), one could show that
by following a similar procedure used in [8], decidability results are derivable for
model checking properties expressed in first-order variant of μ-calculus. Alterna-
tively, one can leverage results on the verification of infinite-state systems using
Satisfiability Modulo Theories (SMT) techniques. While these techniques typi-

http://cpntools.org/
http://www.renew.de/

86 M. Montali and A. Rivkin

cally only support verification of (variants of) safety properties, a large amount
of available tools can be used for testing DB-net encodings in different FO theo-
ries. We are currently working on the realization of both ideas. It would be also
interesting to study how to check or guarantee, using modeling strategies, that
a DB-net is state-bounded.

In [10] we have shown that one can isolate a fragment of DB-nets (with
the querying language being restricted to SELECT-FROM-WHERE SQL queries
with WHERE clauses using only conjunctions of atomic formulas) for which
there exists a bisimilar class of CPNs with prioritized transitions, name creation
and management, and provided a translation for constructing the latter. Even
though such class of CPNs differs from the more conventional one of Jensen [5]
by allowing variables range over infinite domains, one can realize the injection of
possibly fresh data values (the way it is done in DB-nets) directly in CPN Tools
using the Comms/CPN library. Note that one can then exploit the translation
to automatically construct a bisimilar CPN and inspect its state space using
CPN Tools, proviso that the generated state space is finite. The finitness can be
achieved by implementing a special abstraction technique directly in the net.

Finally, the formalism of DB-nets paves the way towards the formal analysis
of additional properties, which only become relevant when CPNs are combined
with relational databases. In particular two families of properties could be of high
interest. The first is related to rollbacks, so as to check whether it is always (or
never) the case that a transition induces a failing action. The second is related
to the true concurrency present in a DB-net, which may contain transitions that
appear to be concurrent by considering the control layer in isolation, but have
instead to be sequenced due to the interplay with the persistence layer (and its
constraints).

Modelling and Beyond. From the modeling point of view, DB-nets incorpo-
rate all typical abstractions needed in data-aware business processes. And exist-
ing tool support makes this formalism even more attractive for scenarios that
also require simulation. For example, considering that a simulation of DB-nets
produces a database instance populated by executing the control layer (and thus
implicitly reflecting its footprint), the formalism could provide novel insights into
the problem of data benchmarking [6], especially in the context of data prepara-
tion for process mining. Another interesting scenario has been recently proposed
by Lomazova and Carrasquel [3], in which they aim at using a variant of DB-nets
for modelling and validating trading systems. Interestingly, as the basis for their
validation approach, they suggest to use simulation together with conformance
checking from the domain of process mining. The latter is very challenging as
it considers a multi-perspective approach in which one has to take into account
the interplay between the net in the control layer (including its local data) and
the persistent storage.

On DB-Nets and Their Applications 87

4 Conclusions

In this paper we provided a short summary of the formalism of DB-nets. This for-
malism can be seen as the marriage of colored Petri nets and relational databases,
and can be used for modelling, enactment and verification of data-aware pro-
cesses. We also discussed current and prospective applications. Given the pre-
liminary theoretical results as well as studied use cases, we believe that the
formalism could find multiple applications in different modelling and simulation
settings, and also could be investigated towards more fine-grained verification
scenarios.

References

1. Abdulla, P.A., Aiswarya, C., Atig, M.F., Montali, M., Rezine, O.: Recency-bounded
verification of dynamic database-driven systems. In: Proceedings of PODS. ACM
Press (2016)

2. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process
analysis: a database theory perspective. In: Proceedings of PODS (2013)

3. Carrasquel, J.C., Lomazova, I.A.: Modelling and validation of trading and multi-
agent systems: an approach based on process mining and petri nets. In: Proceedings
of the ICPM Doctoral Consortium (2019). http://ceur-ws.org/Vol-2432/paper4.
pdf

4. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

6. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: reality check
for OBDA systems. In: Proceedings of EDBT, pp. 617–628. OpenProceedings.org
(2015)

7. Lasota, S.: Decidability border for petri nets with data: WQO dichotomy conjec-
ture. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp.
20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 3

8. Montali, M., Rivkin, A.: Model checking petri nets with names using data-centric
dynamic systems. Formal Aspects Comput. 28(4), 615–641 (2016)

9. Montali, M., Rivkin, A.: DB-Nets: on the marriage of colored Petri Nets and rela-
tional databases. Trans. Petri Nets Other Model. Concurr. 12, 91–118 (2017)

10. Montali, M., Rivkin, A.: From DB-nets to coloured petri nets with priorities. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 449–469.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 24

11. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 2

12. Ritter, D., Rinderle-Ma, S., Montali, M., Rivkin, A., Sinha, A.: Formalizing appli-
cation integration patterns, pp. 11–20 (2018)

13. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. Fundam. Inform. 88(3), 329–356 (2008)

http://ceur-ws.org/Vol-2432/paper4.pdf
http://ceur-ws.org/Vol-2432/paper4.pdf
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-030-21571-2_24
https://doi.org/10.1007/978-3-642-33606-5_2

Pre-processing Network Messages
of Trading Systems into Event Logs

for Process Mining

Julio C. Carrasquel1(B), Sergey A. Chuburov2, and Irina A. Lomazova1

1 National Research University Higher School of Economics, Myasnitskaya ul. 20,
101000 Moscow, Russia

{jcarrasquel,ilomazova}@hse.ru
2 Exactpro Systems, Lenina ul. 20, 156013 Kostroma, Russia

sergey.chuburov@exactprosystems.com

Abstract. Process mining is emerging as an important discipline for
the analysis, monitoring, and improvement of business and software pro-
cesses. Methods from process mining are based on the use of formal mod-
els and event logs, i.e., describing respectively the expected and observed
behavior of system processes. This approach can be leveraged by the
software testing industry for the log-based analysis of trading platforms.
In this light, this paper presents an approach to extract event logs for
process mining from network messages of trading systems. In particu-
lar, these messages are Financial Information Exchange (FIX) protocol
messages, which are related to trading sessions in order books.

Keywords: Process mining · Trading systems · Financial information
exchange (FIX) protocol · Event logs · Data pre-processing

1 Introduction

The reliability and robustness of stock trading platforms [10] is widely recognized
to be crucial for the stability and integrity of global financial markets [21]. The
rapid increase in the volume of transactional data, and the growing complexity
of the market rules and infrastructures have turned automated exchanges into
very large distributed systems, which present significant testing challenges [9].

Moreover, quality standards to meet, such as the minimization of latency
and overhead, make difficult the deployment of intrusive testing instrumenta-
tion within trading platforms. This is the reason why logs of these systems
are often employed as an alternative to analyze their behavior [12]. A recent
endeavor in this direction can be found in [11], where the authors propose a
(user-assisted) log analysis framework, powered by different data science tech-
niques. The framework is aimed to be a support for test engineers, providing

This work is supported by the Basic Research Program at the National Research Uni-
versity Higher School of Economics.

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 88–100, 2021.
https://doi.org/10.1007/978-3-030-71472-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_7

Pre-processing Network Messages of Trading Systems into Event Logs 89

them an understanding of system states and possible behavior deviations. As
an example, a practical experience using text analysis and clustering was also
introduced in [11] for the diagnosis of settlement and clearing systems.

The usage of logs for analyzing the behavior of trading systems matches
with the approach of process mining [4]. Methods from process mining take
as input the so-called event logs. An event log is related to a system process,
and it records a set of cases, such that each case represents an execution of
the process (a process instance). A case consists of events, where each event is
related to some process activity. Fueled by event logs, process mining methods
allow to construct process models from observed behavior (process discovery), to
diagnose deviations comparing logs against expected behavior described by formal
models (conformance checking) [3,5,14], and to analyze process performance
[13,15], among other capabilities. Research works have employed process mining
to analyze software systems behavior and the interaction of users [18–20].

Thus, process mining can be integrated within the analysis framework of
trading systems introduced in [11]. However, as Fig. 1 depicts, it is firstly required
to pre-process system data sources (either from logging components or captured
from network interfaces) into well-structured event logs that process mining
methods may leverage afterwards.

Fig. 1. The research scheme: from FIX messages to event logs for process mining.

This paper presents an approach to extract event logs for process mining
from network messages of trading systems. In particular, we consider Financial
Information Exchange (FIX) protocol messages [7]. FIX is a communication
standard widely adopted in large-scale trading systems. Besides, in this work we
focus on trading session processes in order books. These processes are carried out
within trading system cores, and their correct execution is determining. In order

90 J. C. Carrasquel et al.

books, submitted orders to buy or sell securities from market participants are
ranked and crossed for trading, typically supported by a matching engine (see
[10] for a detailed description of such processes). In such context, we present the
approaches for extracting two types of event logs, each of them with a different
notion of a case:

– Order-based event logs: Each case refers to the observed trace of an indi-
vidual order submitted by a market participant, i.e., from an event when
an order is submitted until an event in which such order is discarded, i.e.,
because it is filled, canceled, etc. Each case is identified by an order identifier.

– Order-Book-based event logs: Each case refers to the trading session of
a financial security in an order book, i.e., from a first to a last event during a
trading day related to orders trading a specific security. Each case is identified
by a security identifier.

In this way, process mining methods can leverage order-based event logs to
diagnose the behavior of executed orders, whereas using order-book-based event
logs it is possible to analyze states of order books. Based on the approaches
provided in this paper, we have developed a toolset (in Java programming lan-
guage) to extract these two types of event logs from FIX messages; the toolset is
available via [1]. The toolset includes a graphical interface to replay order-book-
based event logs. The interface also can be used for simulation purposes. The
results provided in this paper can be replicated to extract event logs for process
mining to analyze other components of trading systems, as well as using other
protocols similar to FIX.

The remainder of this paper is structured as follows. Section 2 introduces
some basics about the FIX protocol, as well as some basic features of the message
set used as input for extracting event logs. Section 3 describes the approaches to
extract event logs for process mining from FIX messages. Finally, Sect. 4 presents
some conclusions and future work.

2 The Financial Information Exchange (FIX) Protocol

The Financial Information Exchange (FIX) protocol [7] is a point-to-point com-
munication standard for exchanging trading-related messages. It operates at the
application layer over the TCP/IP stack. FIX is employed in many large-scale
trading systems operating worldwide such as in the National Association of Secu-
rities Dealers Automated Quotation (NASDAQ) [16], or in the London Stock
Exchange (LSE) [2]. In the following, we describe some basics of the protocol, as
well as we present an example of some basic features of a set of FIX messages.

Message format. A FIX message is a sequence of ASCII-encoded tag-value
pairs separated by the 0x01 control character; tags are integers indicating the
meaning of the value. Figure 2 depicts a message from a trader, with identifier
User1 (tag 49), to the trading system; The message can be read as follows: Tag
35 refers to the activity (message type) performed by the sender, i.e., the value

Pre-processing Network Messages of Trading Systems into Event Logs 91

Fig. 2. Example of a Financial Information Exchange (FIX) protocol message.

D stands for submit an order; tag 40 indicates which order type (market, limit,
stop, pegged, etc.) is submitted—in this case, it is a limit order (2); tag 59 refers
to the validity, i.e., how long this order will be alive—the value 0 stands for a
day order; tag 54 indicates whether the user wants to buy (1) or sell (0). Thus,
the user is submitting a day limit order configured to buy 40 stocks (tag 38)
of the security VTB24 (tag 55) at a stock price of 100 (tag 44).

Table 1. A subset of some FIX messages related to the handling of orders [7].

Message type 〈code〉 Description

Client-initiated messages

New order - single 〈D〉 Submit an order

Order cancel request 〈F 〉 Cancel an order

Order cancel mass request 〈q〉 Cancel multiple orders

Order replace request 〈G〉 Replace an order

System-initiated messages (notifications)

Execution report 〈8〉 Notifies a performed activity over an order

Order cancel reject 〈9〉 A cancel/replace request has been rejected

Order mass cancel report 〈r〉 A mass cancel request has been accepted/rejected

Protocol Layers and Message Types. The FIX protocol is divided in two
layers: a session and an upper application layer. The session layer handles the
maintenance of a session between a user and the system. Once a session is estab-
lished, the upper application layer in each entity is enabled to transmit. FIX
messages can be either session-level messages (logon, logout, heartbeat, etc.) or
application specific. The message type is indicated in tag 35 (as depicted in Fig.
2). Trading systems provide a large set of application-related message types,
i.e., for order handling, quote negotiation, market data subscriptions, etc. For
instance, Table 1 presents a subset of application message types related to the
order handling between clients and a trading system.

Message set for extracting event logs. As shown by Fig. 1, FIX messages
used to extract event logs are captured from a system network interface during

92 J. C. Carrasquel et al.

Table 2. Some features of a network message set captured during a trading day.

TCP Segments (including just control segments) 988803

Valid FIX Messages 552935

First message (event) sent at 18-02-2019 02:14:31

Last message (event) sent at 18-02-2019 17:29:06

Number of individual orders to buy or sell 64539

Number of financial securities being traded 1144

Number of distinct market participants 593

FIX Execution report messages 138392

a trading day. The messages are encapsulated in network packet payloads, i.e.,
TCP segments. For this reason, we implemented a parser used in the toolset
we developed (available via [1]) to extract FIX messages from TCP payloads.
As Table 2 exemplifies, it is possible to extract basic information from a set of
FIX messages, captured during a trading day, such as the total amount of orders
executed, number of securities traded, number of market participants, etc.

3 Extracting Event Logs for Process Mining from FIX
Messages

In this section we present approaches to extract event logs for process mining
from a set of FIX messages. A set of FIX messages captured during a trading day
contains the observed behavior of several trading system components, so event
logs of different processes may be extracted. In this work, we consider specifically
event logs related to the trading session process in order books, where orders from
market participants to buy or sell securities are submitted, ranked and crossed
[10]. We present techniques for extracting two types of event logs—order-based
and order-book-based event logs. On the one hand, in order-based event logs each
case is related to the trace of an individual order, so they allow to diagnose the
observed behavior of a given set of orders. On the other hand, in order-book-
based event logs each case refers to the trading session of a financial security
in an order book, so this type of event logs can be useful to analyze states of
order books. We point out that the performance in practice of these approaches
depends on the number of input FIX messages. Notice that we consider a set
of already captured messages (post-mortem data) and not online pre-processing,
which can be instead a subject for further research.

In the following, we introduce some basic definitions related to event logs for
process mining. Afterwards, we describe in detail the techniques for extracting
the two mentioned types of event logs.

Pre-processing Network Messages of Trading Systems into Event Logs 93

3.1 Basic Definitions

An event log L is a finite set of cases {c1, c2, ..., c|L|} related to a specific pro-
cess. Each case c ∈ L represents an execution of the process, and it consists
in an ordered sequence of events {e1, e2, ..., e|c|}. Each event e is related to the
occurrence of an activity a ∈ A, where A is the set of all activities. An event may
have a timestamp t and other domain-specific attributes. Below we define the set
of activities A for both types of event logs presented in this work. It represents
some of the activities executed over orders. The set is defined using the values of
the FIX tag 150 (of execution report messages) plus a submit activity (executed
when a participant submits an order using a new order 〈D〉 message).

A = {new, replace, reject, cancel, expire, trade, trade cancel} ∪ {submit}

3.2 Extraction of Order-Based Event Logs

Fig. 3. Order handling process as a transition system; the node with a small inbound
arrow represents the initial state, whereas nodes with small outbound arrows represent
the final states.

We consider the extraction of order-based event logs. An order-based event log
is related to handling process of individual orders. Each case in this log is an
observed trace for a specific order—from an initial event when an order was
submitted by a participant until an event when the order was discarded (because
it was filled, canceled, etc.). Figure 3 depicts the order handling process as a
transition system—nodes represent states of an order, whereas transitions denote
activities fired over such order. Each activity a belongs to the set A presented
previously indicating an activity fired over a specific order.

Algorithm 1 presents the procedure we implemented to extract an order-
based event log L given a time ordered set M of FIX messages. We extract
orders trading the same financial security, whose identifier secId is given as
input. We consider a relationship 1:1 between a FIX message and an event, so
in each iteration through the set M (ll. 2-35), a message m is used to create an

94 J. C. Carrasquel et al.

Algorithm 1: Extraction of Order-based Event Logs
Input: M, secId;
Output: L;

1 D ← ∅, L ← ∅, I ← ∅;
2 foreach m ∈ M do
3 if secId �= m.securityId then
4 continue;
5 endif
6 t ← m.transactT ime; // timestamp (tag 60)

7 s ← m.side; // tag 54

8 cid ← m.clOrdId; // client-side order identifier (tag 11)

9 p ← m.ordType = “market” ? “market” : m.price; // tag 44

10 msgType ← m.msgType; // tag 35

11 if msgType = “D” then
12 a ← “submit”;
13 s ← “ − ”;
14 q ← m.qty; // stock quantity to trade (tag 38)

15 e ← (cid, a, s, t, q, p, s);
16 D ← D ∪ {e}; // storing submit events to be added to cases

17 endif
18 if msgType = “8” then
19 id ← m.orderId; // (system-side) order identifier (tag 37)

20 a ← m.execType; // an activity from the set A (tag 150)

21 s ← m.ordStatus; // current order state (tag 39)

22 q ← m.leavesQty; // current stock quantity (tag 151)

23 tr ← null;
24 if a = “trade” ∨ a = “trade cancel” then
25 tr ← m.trdMatchId; // trade identifier (tag 880)

26 endif
27 if L.contains(id) = false then
28 c ← new case();
29 L.put(id, c);
30 I ← I ∪ {(id, cid)}; // relation of system and client order ids.

31 endif
32 e ← (id, a, s, t, q, p, s, tr); // create an event related to order id
33 L.get(id).add(e); // add the event into its corresponding case

34 endif
35 endfor
36 foreach e ∈ D do
37 foreach (id, cid) ∈ I do
38 if e.id = cid then
39 e.id ← id;
40 L.get(id).add(0, e); // place submit event at the case start

41 break;
42 endif
43 endfor
44 endfor
45 return L;

Pre-processing Network Messages of Trading Systems into Event Logs 95

event e. Thus, we use tag fields contained in the FIX messages to indicate states
and attributes of orders when events occur.

Two kind of messages are used in Algorithm 1: new orders〈D〉 and execution
reports〈8〉 (see Table 1). For each processed message m (ll. 2-35), if m is a new
order message, then a submit event is created with some initial order attributes.
Otherwise, if m is an execution report, then an event e is created, and added to
its respective case c in the log L identified by the order identifier (tag 37).

Each event e is structured as a tuple (id, a, s, t, p, q, s, [tr]) where: id is a
case (order) identifier (tag 37); a ∈ A is an activity executed (tag 150); t is a
timestamp (tag 60); s, q and p are the current state, size, and price of the order
after activity a fired (tags 38, 151, and 44); and s ∈ {buy, sell} indicates an
order side (tag 54); an event e also may have a trade identifier tr (tag 880) if
the activity a is a trade or a trade cancel—the motivation is to relate two events
referring to the same trade (or trade cancellation) in two distinct cases.

Notice that new order 〈D〉 messages do not contain the system-side order
identifiers that we use as case identifiers (tag 37), but just a client-side identifier
(tag 11). In Algorithm 1, both identifiers are extracted from execution report 〈8〉
messages to relate to which case each new order message (submit event) belongs.
Thus, submit events are added at the beginning of each case (ll. 36-44). Table
3 presents an event log extracted by Algorithm 1. It describes the execution
history of 4 limit buy orders and 1 market sell order in an order book. Figure 4
depicts a directly-follows graph, obtained using Disco [8], which summarizes the
observed behavior of orders in the event log of Table 3.

Table 3. An order-based event log consisting of 5 individual orders.

case order (id) activity (a) state (s) timestamp (t) size price side trade id

1 Pl submit – 07.536000 100 9.0 buy

1 Pl new new 07.537557 100 9.0 buy

1 Pl trade filled 07.581175 0 9.0 buy VE

2 Pm submit – 07.544000 100 8.9 buy

2 Pm new new 07.545718 100 8.9 buy

2 Pm trade filled 07.581175 0 8.9 buy VF

3 Pn submit – 07.565000 100 8.57 buy

3 Pn new new 07.566645 100 8.57 buy

3 Pn trade filled 07.581175 0 8.57 buy WG

4 Po submit – 07.572000 100 8.45 buy

4 Po new new 07.573880 100 8.45 buy

4 Po cancel canceled 11.236553 0 8.45 buy

5 Pp submit – 07.579000 400 market sell

5 Pp trade partially filled 07.581175 300 market sell VE

5 Pp trade partially filled 07.581175 200 market sell VF

5 Pp trade partially filled 07.581175 100 market sell WG

5 Pp cancel canceled 07.536000 0 market sell

96 J. C. Carrasquel et al.

4
4

1
1

3
3

1
1

1
1

1
2

5

3 2

submit\\-
5 (5)

new\\new
4 (4)

trade\\filled
3 (3)

cancel\\canceled
2 (2)

trade\\partially filled
1 (3)

Fig. 4. Directly-follows graph describing execution of orders recorded in Table 3.

Thus, order-based event logs are suitable to analyze the behavior of a set
of individual orders. Using this type of event logs it is possible to detect devia-
tions of specific orders, i.e., to detect non-allowed transition movements checking
against some reference model like the transition system in Fig. 3. Desired prop-
erties can be specified based on order attributes, i.e., using temporal logics [3],
to verify whether or not orders in an event log meet these properties.

3.3 Extraction of Order-Book-Based Event Logs

Order-based event logs are limited to diagnose the behavior of individual orders,
rather than capturing together how orders interact in an order book. The latter
is useful to analyze states of order books. Hence, in this part we consider order-
book-based event logs. In this type of logs, each case refers to a trading session
of a financial security in an order book, i.e., from a first to a last event during
a trading day involving the trading of a specific security. Each case is identified
by a security identifier (FIX tag field 48). Thus, the trade of several financial
securities during a trading day, each of them in a different order book, can be
recorded in an event log.

Each event e in an order-book-based event log LOB is defined as a tuple
(secId, a, t, o1, [o2], [tr]) where: secId is a case (security) identifier; a ∈ A is an
activity fired; t is a timestamp; o1 is an order involved in e, whereas o2 an optional
second order for events where two orders interact, i.e., in trade or trade cancel
activities; and finally, tr—an optional trade identifier. Orders o1 and o2 are tuples

Pre-processing Network Messages of Trading Systems into Event Logs 97

of the form (id, s, q, p, s) indicating an order identifier id, a current state s, size
q, price p, and a side s. For these attributes, we use the same correspondence of
FIX tags previously described for order-based event logs.

Let L be an order-based event log, i.e., obtained from a set M of FIX mes-
sages as explained in Sect. 3.2. Algorithm 2 extracts an order-book-based event
log LOB given L as input. We assume that orders in L may trade different secu-
rities, so events in L also have an attribute secId indicating the securities that
orders trade. As an example, Table 4 shows an event log LOB extracted by Algo-
rithm 2. This event log consists of just one case, the trading of a single financial
security in an order book, since it used the same data of orders for the log of
Table 3.

Algorithm 2: Extraction of Order-Book-based Event Logs
Input: L;
Output: LOB ;

1 E ← ∅, LOB ← ∅;
2 foreach c ∈ L do
3 foreach e ∈ c do
4 o1 ← (e.id, e.s, e.q, e.p, e.s);
5 o2 ← null;
6 E ← E ∪ { (e.secId, e.a, e.t, o1, o2, e.tr) }; // assume secId in e

7 endfor
8 endfor
9 E ← sort(E); // sort all events by timestamp and activity priority

10 foreach e1 ∈ E do
11 if e1.tr �= null then
12 foreach e2 ∈ E do
13 if e1.a = a2.a ∧ e1.tr = e2.tr then
14 o2 ← (e2.id, e2.s, e2.q, e2.p, e2.s);
15 e1.o2 ← o2; // merge together orders o1 and o2 in trade event

16 E ← E − {e2};
17 break;
18 endif
19 endfor
20 endif
21 if L.contains(e1.secId) = false then
22 c ← new case();
23 L.put(e1.secId, c);
24 endif
25 L.get(e1.secId).add(e1); // add event to corresponding trading session

26 endfor
27 return LOB ;

98 J. C. Carrasquel et al.

Table 4. Order-book-based event log, using the data of orders in Table 3. In this
example, there is just one case consisting of 14 events where 5 orders interact.

secId a t order 1 (o1) [order 2 (o2)]

id1 s1 q1 p1 s1 [id2] [s2] [q2] [p2] [s2]

1 submit 07.536000 Pl – 100 9.0 buy

1 new 07.537557 Pl new 100 9.0 buy

1 submit 07.544000 Pm – 100 8.9 buy

1 new 07.545718 Pm new 100 8.9 buy

1 submit 07.565000 Pn – 100 8.57 buy

1 new 07.566645 Pn new 100 8.57 buy

1 submit 07.572000 Po – 100 8.45 buy

1 new 07.573880 Po new 100 8.45 buy

1 submit 07.579000 Pp – 400 market sell

1 trade 07.581175 Pp partially filled 300 market sell Pl filled 0 9.0 buy

1 trade 07.581175 Pp partially filled 200 market sell Pm filled 0 8.9 buy

1 trade 07.581175 Pp partially filled 100 market sell Pn filled 0 8.57 buy

1 cancel 11.236553 Po canceled 0 8.45 buy

1 cancel 11.236553 Pp canceled 0 market sell

3.4 Replay of Order-Book-Based Event Logs

We have developed a graphical interface (see Fig. 5) to replay order-book-based
event logs, providing a convenient visualization of order book states (available
via [1]). For example, event number 10 in the event log of Table 4 presents the
situation of four buy limit orders, and a market sell order trading with the highest
ranked buy order. While order-book-based event logs do not present directly
such order book state, the replay capabilities of the interface show directly such
situation. The interface operates in two modes: either reading event logs from a
file, or receiving events in stream via sockets. The latter allows to connect the
interface with modelling and simulation tools.

Fig. 5. Interface prototype for replay and visualization of order book states.

Pre-processing Network Messages of Trading Systems into Event Logs 99

4 Conclusions and Future Work

In this paper, we presented an approach to extract event logs for process min-
ing from Financial Information Exchange (FIX) protocol messages of trading
systems. We present the extraction of two types of event logs: order-based and
order-book-based event logs. In order-based event logs each case refers to the
trace of an order. This allows to synthesize order behavior in process models,
and to verify if these orders hold some desired properties. In order-book-based
event logs, each case represents a trading session in an order book (related to a
single security). Order-book-based event logs can be replayed to analyze order
book states. We assumed independence between securities (isolated cases) for
reducing the complexity when analyzing and replaying order books states [17].
We selected as event attributes some major order features (state, size, price,
side, etc.). We studied event logs with two order types—limit orders and market
orders (the latter behave as aggressive limit orders). We also developed a pro-
gram (available via [1]) for extracting order book trading sessions such that all
orders involved are exclusively limit or market orders. Our research is dealing
with the construction of event logs for more complex scenarios integrating other
order types, i.e., pegged orders, orders with stop conditions, or with non-visible
quantities. Finally, it is of interest to integrate explicitly the behavior of market
participants in the logs. In such context, a line of our research [6] addresses the
development of a formal modelling language that can be suitable to describe the
dynamics of trading sessions in order books, integrating the interaction of market
participants. On the one hand, models based on such formalism may be useful
for simulation. On the other hand, the models are aimed to be compared against
event logs, like the ones presented in this paper, for conformance checking.

References

1. Laboratory of Process-Aware Information Systems (PAIS Lab) - Projects -
Modelling and Validation of Trading Systems. https://pais.hse.ru/en/research/
projects/tradingsystems

2. London Stock Exchange - MIT 202 - FIX Trading Gateway Issue 11 September
2018

3. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771 11

4. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

5. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-99414-7

6. Carrasquel, J.C., Lomazova, I.A.: Modelling and validation of trading and multi-
agent systems: an approach based on process mining and petri nets. In: van Don-
gen, B., Claes, J. (eds.) Proceedings of the ICPM Doctoral Consortium. CEUR
Workshop Proceedings, vol. 2432 (2019)

https://pais.hse.ru/en/research/projects/tradingsystems
https://pais.hse.ru/en/research/projects/tradingsystems
https://doi.org/10.1007/11575771_11
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7

100 J. C. Carrasquel et al.

7. FIX Community - Standards. https://www.fixtrading.org/standards/
8. Fluxicon: Disco. https://fluxicon.com/disco/
9. Government Office for Science (United Kingdom): The Future of Computer Trading

in Financial Markets: An International Perspective. Final Project Report (2012)
10. Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners.

Oxford University Press, Oxford (2003)
11. Itkin, I., et al.: User-assisted log analysis for quality control of distributed fintech

applications. In: IEEE International Conference On Artificial Intelligence Testing
(AITest), pp. 45–51. IEEE (2019)

12. Itkin, I., Yavorskiy, R.: Overview of applications of passive testing techniques.
In: Lomazova, I., Kalenkova, A., Yavorsky, R. (eds.) Modeling and Analysis of
Complex Systems and Processes (MACSPro). CEUR Workshop Proceedings, vol.
2478 (2019)

13. Jaisook, P., Premchaiswadi, W.: Time performance analysis of medical treatment
processes by using disco. In: 13th International Conference on ICT and Knowledge
Engineering (ICT Knowledge Engineering 2015), pp. 110–115 (2015)

14. Kalenkova, A.A., Ageev, A.A., Lomazova, I.A., van der Aalst, W.M.P.: E-
government services: comparing real and expected user behavior. In: Teniente,
E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 484–496. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74030-0 38

15. Mannhardt, F., Arnesen, P., Landmark, A.: Estimating the impact of incidents
on process delay. In: 1st International Conference on Process Mining (ICPM), pp.
49–56. IEEE (2019)

16. NASDAQtrader (FIX). https://www.nasdaqtrader.com/Trader.aspx?id=FIX
17. Protsenko, P., Khristenok, A., Lukina, A., Alexeenko, A., Pavlyuk, T., Itkin, I.:

Trading day logs replay limitations and test tools applicability. In: International
Conference on Tools and Methods of Program Analysis (TMPA 2014), pp. 46–53
(2014)

18. Rubin, V., Mitsyuk, A., Lomazova, I., van der Aalst, W.: Process mining can
be applied to software too! In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM (2014)

19. Sahlabadi, M., Muniyandi, R., Shukur, Z.: Detecting abnormal behavior in social
network websites by using a process mining technique. J. Comput. Sci. 10, 393–402
(2014)

20. Shershakov, S., Rubin, V.: System runs analysis with process mining. Model. Anal.
Inf. Syst. 22, 818–833 (2015)

21. U.S Securities and Exchange Commission: Commission Roundtable on Technology
and Trading: Promoting Stability in Today’s Markets (2012). https://www.sec.
gov/news/otherwebcasts/2012/ttr100212.shtml

https://www.fixtrading.org/standards/
https://fluxicon.com/disco/
https://doi.org/10.1007/978-3-319-74030-0_38
https://www.nasdaqtrader.com/Trader.aspx?id=FIX
https://www.sec.gov/news/otherwebcasts/2012/ttr100212.shtml
https://www.sec.gov/news/otherwebcasts/2012/ttr100212.shtml

Time Series Classification Based
on Visualization of Recurrence Plots

Lyudmyla Kirichenko(B) and Petro Zinchenko

Kharkiv University of Radio Electronics, Nauki ave. 14, Kharkiv 61166, Ukraine
lyudmyla.kirichenko@nure.ua

Abstract. Ordered data sets such as time series are found in almost all areas of
human activity from cardiograms and to cyberattacks. Classification of time series
is one of the most difficult tasks in data mining. In the article, a new method of
time series classification based on the construction of recurrence plots is consid-
ered. The time series is transformed into a matrix, which characterizes the recur-
rence of the time series states, and the matrix is presented as a black-and-white
image. Further, the convolutional neural network is used to classify the image. The
application of the method is demonstrated by examples of simulated time series.
A comparative analysis of the classification of noisy time series is carried out.
The dependences of the classification accuracy on the noise level of time series
are obtained. The results showed that the considered method has a high enough
classification accuracy at high noise levels.

Keywords: Time series · Noise · Classification · Recurrence plot ·
Convolutional neural network

1 Introduction

Most of the processes occurring in the human body, nature, society, science and tech-
nology are complex, partly or completely random and have non-linear relationship. In
practice, processes are presented in the form of corresponding time series, the properties
of which make it possible to judge the properties of the generating process. The task of
time series classification is one of the most difficult tasks of data mining. There are a
number of approaches to the classification of time series, most of which are based on
the calculation of various metrics between time series [1–5].

In the last few years, a number of studies have appeared in which the method of
recurrent plots is used to classify time series. The recurrence analysis is based on such
a property of the process as state repeatability, i.e. recurrence. In this case the recur-
rent properties of a time series are represented in the form of geometric structures and
allow you to visualize the dynamics of the series. Methods of recurrence analysis were
originally proposed in [6].

Over the past years, the recurrence plot method has been widely used for analyzing
stochastic time series of various nature [7–11]. With the development of machine learn-
ing, recurrence characteristics calculated from time series began to be used as features
for classification tasks [12–14].

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 101–108, 2021.
https://doi.org/10.1007/978-3-030-71472-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_8&domain=pdf
http://orcid.org/0000-0002-2780-7993
http://orcid.org/0000-0002-9119-7720
https://doi.org/10.1007/978-3-030-71472-7_8

102 L. Kirichenko and P. Zinchenko

Another approach to the application of recurrence methods for classification is the
time series recognition directly from the images of recurrence plots. Since the best
tools for recognition and classification of images are deep neural networks, a number of
researchers use them to classify recurrence plots [4, 15].

However, since such studies are fairly new, there has still not been enough attention
paid to classify noisy time series. The purpose of the presented work is to conduct a
comparative classification of noisy time series based on the visualization of recurrence
plots.

2 Method of Recurrence Plots

In recent decades, the traditional methods for studying time series has been significantly
replenishedwith themethods of the theory of nonlinear dynamics and chaos. In this case,
the time series is considered as the evolution trajectory of some nonlinear system. The
main point of application of nonlinear dynamics methods to the analysis of the dynamic
system trajectory is what the system attractor, containing all the information about the
dynamics and properties of the system, can be restored by only time realization [16, 17].

Recurrence analysis is one of such nonlinear dynamics methods used for time
series and it is a tool for detecting not obvious dependencies in the dissipative dynam-
ics. A recurrence analysis investigates the m-dimensional trajectory of a pseudo-phase
space constructed by time realization. The well-known Packard-Tackens procedure [16]
for constructing a pseudo-phase space from only realization allows one to restore the
attractor of a dynamic system:

F(t) = [x(t), x(t + τ), ..., x(t + mτ)],
where F(t) is m-dimensional pseudo-phase space, x(t) is time realization, τ is delay

time.
In turn, the recurrence plot is a projection of m-dimensional pseudo-phase space

onto a plane. Let the point xi corresponds to the phase trajectory x(t) that describes the
dynamical system inm-dimensional space at the timemoment t = i for i = 1, ..., N then
the recurrence plot RP is an array of points where a nonzero element with coordinates
(i, j) corresponds to the case when the distance between xj and xi less ε:

RPi,j = �(ε − ||xi − xj||), xi, xJ ∈ Rm, i, j = 1, ...N ,

where ε is the neighborhood size of the point xi,
∥
∥xi − xj

∥
∥ is distance between points,

�(·) is Heaviside function.
An important step in the construction of the recurrence plot is the choice of the dis-

tancemetric. Themost popular is Euclideanmetric, where the shape of the neighborhood
is a circle of radius ε and the maximum norm, where the shape of the neighborhood is a
square with a side ε. In many cases, the choice of norm is not fundamental, but for each
specific task it makes sense to experiment. The obvious fact is that for homogeneous
series, the Euclidean norm will be suitable, and in the case of heterogeneous, sharply
changing series, the maximum norm for which the neighborhood has a large area is more
appropriate.

Time Series Classification Based on Visualization of Recurrence Plots 103

In this work, when constructing recurrence plots, we used a one-dimensional phase
space m = 1, which allows us to significantly reduce the constructing time and the
Euclidean metric.

3 Convolutional Neural Network

Convolutional neural network (CNN) is a special architecture of artificial neural net-
works, aimed at efficient pattern recognition [18, 19]. It is a prototype of the visual
cortex. The visual cortex has the so-called simple cells that respond to straight lines at
different angles, and complex cells, the reaction of which is associated with the activa-
tion of a specific set of simple cells. For example, some neurons are activated when they
perceive vertical border, and some are horizontal or diagonal. All these neurons together
form a visual perception. The idea that specialized components solve specific problems
(like cells of the visual cortex that look for specific characteristics) is used in machine
learning.

Thus, the idea of convolutional neural networks is to alternate convolutional layers
and sub-sampling layers. The network structure is unidirectional (without feedbacks),
fundamentally multilayer. For training, standard methods are used, most often the back
propagation method of error. The function of activation of neurons can be different,
according to the task. The architecture of the network got its name because of the
convolution operation, the essence of which is that each image fragment is multiplied
by the matrix (core) of the convolution element by element, and the result is summed
and written to the same position in the output image.

The network works as follows. An image passes through a series of convolutional,
nonlinear layers, union layers, and fully connected layers, and output is generated. The
conclusion may be the class or probability of the classes that best describe the image.

The first layer in the CNN is always convolutional. It is a set of feature cards (these
are ordinary matrices), each card has a synaptic core (scanning core or filter). The size
of all cards of a particular convolutional layer is the same.

The core is a filter or window that slides over the entire area of the previous map
and finds certain signs of objects. For example, if the network was trained on faces, then
one of the cores during the learning process would give the greatest signal in the area
of the eye, mouth, eyebrow or nose, the other core could reveal other signs. The size of
the core is usually taken in the range from 3 × 3 to 7 × 7. If the size of the nucleus
is small, then it will not be able to highlight any signs; if it is too large, the number of
connections between neurons increases. Also, the kernel size is chosen so that the size
of the convolutional layer cards is even, this allows you to not lose information when
reducing the dimension in the subsample layer, described below.

When a picture passes through one convolutional layer, the output of the first layer
becomes the input value of the 2nd layer. After applying a set of filters after the first
layer, filters that represent higher level properties will be activated. The types of these
properties can be half rings (a combination of a straight border with a bend) or squares
(a combination of several straight edges). The more convolutional layers an image goes
through and the further it moves across the network, themore complex the characteristics
are displayed in the feature maps.

104 L. Kirichenko and P. Zinchenko

After convolutional layers, a pooling layer follows. It is also referred to as a down-
sampling layer. In this category, there are also several layer options, with maxpooling
being the most popular. This basically takes a filter (normally of size 2 × 22) and a
stride of the same length. It then applies it to the input volume and outputs the maximum
number in every subregion that the filter convolves around. The last type of layer is the
layer of an ordinary multilayer perceptron. The purpose of the layer is classification, it
models a complex nonlinear function, optimizing which improves the quality of recog-
nition. The output layer is connected to all neurons of the previous layer. The number
of neurons corresponds to the number of recognized classes.

Now we are ready to describe the overall architecture of our CNN. As depicted in
Fig. 1, the net contains eight layers with weights; the first five are convolutional and the
remaining three are fully-connected.

The output of the last fully-connected layer is fed to a 2-way softmaxwhich produces
a distribution over the 2 class labels. The neurons in the fully-connected layers are
connected to all neurons in the previous layer. Max-pooling layers, follow second and
fourth convolutional layer. The ReLU non-linearity is applied to the output of every
convolutional and fully-connected layer.

The first convolutional layer filters the 256 × 256 × 1 input image with 8 kernels
of size 5 × 5. The second convolutional layer takes as input the output of the first
convolutional layer and filters it with 16 kernels of size 4 × 4. The third convolutional
layer has 32 kernels of size 3 × 3 connected to the outputs of the second convolutional
layer. The fourth convolutional layer has 64 kernels of size 3 × 3. The fully-connected
layers have 1024 neurons each. For training the network was used Adam is an adaptive
learning rate optimization algorithm.

Fig. 1. Architecture of our convolutional neural network

4 Description of the Experiment and Results

As input time series in the work, we selected sinusoid time realizations with different
periods of oscillation and different degrees of noise. Such series are typical models of
real processes. We can present the time realization as the sum of a sinusoid component

Time Series Classification Based on Visualization of Recurrence Plots 105

and a noise one: X (t) = Y (t) + z(t), where Y(t) is time series, z(t) – additive noise.
As a value characterizing the ratio of signal to noise, the coefficient Snr was used
Snr = S[Y (t)]/S[z(t)], where S is standard deviation. By changing the coefficient Snr
we specify a different degree of noise in the time series.

To carry out the classification, the input time series were split into two classes. The
first class consisted of sinusoids, for which the frequencies varied in the range f 2 ± fR,
for the second class the frequency range was f 2 ± fR. The frequency choice to the sine
wave from the ranges f 1± fR and f 2± fR was carried out randomly. The values f 1, f 2,
fR, and Fdist = |f 1 − f 2| varied during the experiment.

Figure 2 shows plots of noisy sinusoids with different frequencies and different noise
degree. In this case, the length of the time series is 256 values. At the top of the Fig. 2,
sinusoids from the lower frequencies class with parameter Snr values = 1, 0.7 and 0.4
are presented. The bottom of Fig. 2 shows examples of sine waves from the second class
with the same values Snr.

Fig. 2. Noisy sinusoids of both classes with Snr = 1, 0.7 and 0.4

Figure 3 shows the recurrence plots corresponding to the time series of both classes.
On the left recurrence plots for time series without noise are shown, and on the right ones
with noise at Snr = 1 are presented. When classifying, the training sample consisted of
200 time series of two classes (100 for one class and 100 for another), each of length
256 values. The test sample also included 200 time series. Such values were chosen in
order to get the experimental conditions closer to typical real datasets.

Previously, recurrence plots of each time serie were obtained for input to the neural
network. Thus, we have moved from time series to images that a neural network should
recognize. A numerical experiment was conducted for different values of the parame-
ters f 1, f 2, fR, Fdist and Snr. Reseach have shown that without noise, the classes are

106 L. Kirichenko and P. Zinchenko

Fig. 3. Recurrence plots of time series without noise and with noise

distinguishable with an accuracy of 100% even when frequency ranges had a common
boundary at the value Fdist = 0.

Themain attention during the experiment was paid to increasing the noise level of the
time series, i.e. reduction ratio Snr. The classification results showed very good accuracy
at noise level Snr > 0.6. It should be noted that when decreasing Snr, the training time
of the neural network (the number of epochs) increased from about 10 to 30. It is easily
explained by the complexity of recognition at low values Snr.

Figure 4 presents a part of the test of recurrence plot sample that were fed to the input
of the classifier with noise level Snr = 0.7. This sample is already classified by the neural
network. At the top there are recurrence plots from the class with lower frequencies, and
at the bottom there are ones from the second class.

Table 1 presents the classification accuracy and the number of epochs depending on
the noise level Snr. It is worth noting that with an increase in size of the training sample
to 400 values, the classification accuracy at ratio = 0.4 Snr increases to 0.811.

Time Series Classification Based on Visualization of Recurrence Plots 107

Fig. 4. Classified recurrence plots of time series of both classes at Snr = 0.7

Table 1. Classification accuracy and number of epochs

Noise level Snr Accuracy Number of
epochs

1 0.992 10

0.7 0.967 14

0.6 0.945 17

0.5 0.778 24

0.4 0.66 29

5 Conclusion

In the work, a method for classifying time series based on the construction of recurrence
plots using the simple architecture of a convolutional neural network have been investi-
gated. A comparative analysis of the classification of noisy time series was carried out.
The dependences of the classification accuracy on the noise level were obtained. The
results showed that the considered method has a fairly high classification accuracy even
with a large degree of noise. The results of the work can be used for the classification of
time series of stochastic type by machine learning methods. In our future research we
intend to concentrate on classifying real time series from known datasets.

References

1. Esling, P., Agon, C.: Time series data mining. ACM Comput. Surv. 46(1), 1–34 (2012)
2. Ben, D: Feature-based time-series analysis. https://arxiv.org/abs/1709.08055. Accessed 07

Aug 2020
3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification

bake off: a review and experimental evaluation of recent algorithmic advances. Data Min.
Knowl. Discov. 31(3), 606–660 (2017). https://doi.org/10.1007/s10618-016-0483-9

https://arxiv.org/abs/1709.08055
https://doi.org/10.1007/s10618-016-0483-9

108 L. Kirichenko and P. Zinchenko

4. Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, Pierre-Alain.: Deep learning for
time series classification: a review. Data Min. Knowl. Discov. 33(4), 917–963 (2019). https://
doi.org/10.1007/s10618-019-00619-1

5. Buza, K.: Time series classification and its applications. https://doi.org/10.1145/3227609.322
7690. Accessed 07 Aug 2020

6. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. EPL
(Europhys. Lett.) 4(9), 973–977 (1987)

7. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plots-based
measures of complexity and application to heart-rate-variability data. Phys. Rev. E, 66(2),
026702-1–026702-6 (2002)

8. Marwan, N., Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex
system. Phys. Rep. 438(5–6), 237–329 (2007)

9. Zbilut, J.P., Zaldivar-Comenges, J.M., Strozzi, F.: Recurrence quantification based Liapunov
exponent for monitoring divergence in experimental data. Phys. Lett. A 297(3–4), 173–181
(2002)

10. Ngamga, E.J., Nandi, A., Ramaswamy, R., Romano, M.C., Thiel, M., Kurths, J.: Recurrence
analysis of strange nonchaotic dynamics. Phys. Rev. E 75(3), 036222 (2007). https://doi.org/
10.1103/PhysRevE.75.036222

11. Kirichenko, L.O., Kobitskaya, Y., Habacheva, A.: Comparative analysis of the complexity of
chaotic and stochastic time series. Radioelectr. Inform. Manag. 2(31), 126–134 (2014)

12. Kirichenko, L., Radivilova, T., Bulakh, V.: Classification of fractal time series using recur-
rence plots. In: 2018 International Scientific-Practical Conference Problems of Infocommuni-
cations. Science and Technology (PIC S&T), Kharkiv, Ukraine, pp. 719–724 (2018). https://
doi.org/10.1109/INFOCOMMST.2018.8632010

13. Michael, T., Spiegel, S., Albayrak, S.: Time series classification using compressed
recurrence plots. https://www.dai-labor.de/fileadmin/Files/Publikationen/Buchdatei/Publis
hed.pdf. Accessed https://doi.org/10.1145/3227609.3227690

14. Hatami, N., Gavet, Y., Debayle, J.: Bag of recurrence patterns representation for time-series
classification https://arxiv.org/abs/1803.11111v1. Accessed 07 Aug 2020

15. Hatami, N., Gavet, Y., Debayle, J.: Classification of time-series images using deep convolu-
tional neural networks https://arxiv.org/abs/1710.00886. Accessed 07 Aug 2020

16. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.)
Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer,
Heidelberg (1981). https://doi.org/10.1007/BFb0091924

17. Iwanski, J.S., Bredley, E.: Recurrence plots of experimental data: to embed or not to embed?
Chaos 8(4), 861–871 (1998)

18. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib,
M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge
(1995)

19. Ciresan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high perfor-
mance convolutional neural networks for image classification. In: Proceedings of the Twenty-
Second International Joint Conference onArtificial Intelligence, vol. 2, pp. 1237–124. (2013).
https://people.idsia.ch/~juergen/ijcai2011.pdf. Accessed 07 Aug 2020

https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1145/3227609.3227690.
https://doi.org/10.1103/PhysRevE.75.036222
https://doi.org/10.1109/INFOCOMMST.2018.8632010
https://www.dai-labor.de/fileadmin/Files/Publikationen/Buchdatei/Published.pdf.
https://doi.org/10.1145/3227609.3227690
https://arxiv.org/abs/1803.11111v1.
https://arxiv.org/abs/1710.00886.
https://doi.org/10.1007/BFb0091924
https://people.idsia.ch/~juergen/ijcai2011.pdf

Relation Between Test Coverage and Timed
Automata Model Structure

Lukáš Krejčí(B) , Jan Sobotka(B) , and Jiří Novák

Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2,
166 27 Prague, Czech Republic

{krejclu6,sobotja2,jnovak}@fel.cvut.cz

Abstract. This paper deals with problematics of structure of Timed Automata
models suitable for Model-Based Testing of automotive systems. Previous exper-
iments, primarily focused on the environmental models, have shown that their
structure does not significantly affect the coverage speed of testing process. How-
ever, similar questions regarding the observer part of the system model remained
open. This paper analyzes those remaining questions and focuses on uncovering
possible relation between an observer model structure and the quality of generated
test sequences according to multiple criteria. Goal of presented experiments is to
compare multiple modeling approaches and discover which one is most suitable
for automotive systems.

Keywords: Timed Automata · Model-Based · Testing · Structure · Coverage ·
Automotive · Hardware-in-the-Loop · HiL

1 Introduction

In latest decades, requirements for testing of automotive electronics systems during
their development are continually rising. Because of increasing complexity of a typical
System-under-Test (SUT) and time restrictions induced by limited resources, the testing
process itself poses a substantial challenge [1]. As manual design of test cases and test
specifications traditionally used in industry practice might lead to various subjective
errors, the employment of Model-Based Testing (MBT) methods into this process is an
asset.

The MBT is a technique of utilization of system and environmental models [2] in
order to automatically generate test cases and test suites. This process can be driven by
various criteria, characteristically related to the coverage of the SUT state space [3] or to
the SUT safety. In order to apply the principles of MBT on the area of integration testing
of automotive electronic systems, testing tool Taster [4] was introduced. The modelling
language used by Taster is based on Timed Automata network (defined by UPPAAL
team [5]) virtually divided into an environment and observer part. The environment part
is responsible for providing input stimuli to the SUT, and the observer part monitors the
SUT behavior and verifies its correctness.

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 109–120, 2021.
https://doi.org/10.1007/978-3-030-71472-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_9&domain=pdf
http://orcid.org/0000-0002-1733-5654
http://orcid.org/0000-0002-0275-2025
http://orcid.org/0000-0003-0782-1285
https://doi.org/10.1007/978-3-030-71472-7_9

110 L. Krejčí et al.

Nevertheless, introduction of theMBTbrings forth new issue – since creating amodel
of anSUT requires investment of time and effort, it’s necessary to create the systemmodel
in most appropriate way. Currently, different approaches of modeling of both parts exist.
Both the system environment and the SUT itself can be modeled in many ways – from
fully permissive models similar to the random generation of test stimuli to entirely
restrictive version allowing only specific test cases based on behavioral modeling [6].
Experiments presented in paper [6] have shown that both simple and complex modeling
approaches for modeling of SUT environment are comparable in terms of achieved state
space coverage. However, the experiments were focused only on coverage criteria and
didn’t cover the modelling of the observer part. In this paper, four different approaches
of environment and observer modelling of real automotive systems are compared and
evaluated with respect to multiple criteria.

2 Background

Experiments presented in this paper are based on the same case study used in previ-
ous experiments presented in [6], focused on the application of MBT applied on the
Hardware-in-the-Loop (HiL) integration testing of the control unit of car trunk doors.
The first part of the case study is the SUT model based on the system specification
extended by the model of the control unit of car keyless locking system for purpose of
experiments presented in this paper. In the second part of the case study, the Taster tool
was used for generating and executing test cases on the HiL testing platform, based on
the NI VeriStand and NI PXIe and abstracted away by the EXAM testing system. The
workflow diagram of the process is shown in Fig. 1. This paper deals with the model
part and the question of what the best modelling methodology is for both environment
and observer parts.

Fig. 1. Diagram of the MBT process using the Taster tool

The case study is focused on two cooperating car subsystems – the trunk doors control
unit responsible for operating the automatic trunk doors and keyless locking system
control unit responsible for correct function of car’s locks. Typical operations performed
on the locking system are unlocking and locking the car using the remote control or

Relation Between Test Coverage and Timed Automata Model Structure 111

door handle interaction with remote control in proximity. In the case of the trunk control
system, the typical performed operations are opening and closing of automatic trunk and
interrupting those operations using one of four trunk control buttons (remote control,
dashboard, internal and handle). Inputs of the SUT therefore consist of remote controller
position, the door handles, three remote control buttons, one dashboard button and two
trunk doors buttons (handle and internal).

During the evaluation of this case study, several questions regarding the modeling
techniques has been raised. Questions regarding the environment part of the system
models were covered by previous experiments presented in [6]. However, during the
experiments, new questions concerning observer part of the model were raised.

Original case study and previous experiments were using a SUT containing only
model of the trunk doors control unit. The observer part of the model was created
according to the specification of correct behavior of the trunk system and it was fixed
for all experiments. While this was sufficient for the purposes of original case study
and experiments, it was necessary to find suitable modeling principles for observer part
too, once the case study was to be extended with model of the keyless locking system.
Similarly to previous situation with environment modeling, multiple approaches for the
observer modelling existed and it was not clear, which modeling approach is the best.
Consequently, a new set of experiments had to be run.

The experiments presented in this paper are based on the same models as previously.
In addition to the two original sets of environment models, two different sets of observer
models were created. The first set consists of a single compound observer model and
represents the restrictive modelling approach. In the second set, both tested subsystems
(the trunk doors control unit and the keyless locking system) have separate synchronized
observer models. Both environment models were evaluated with respect to two sets of
environment models (restrictive and permissive) used in previous experiments on the
HiL testing platform. Test cases were generated by random strategy (selection of next
edge randomly froma pool of enabled transitions) and systematic strategy (targeting least
taken nodes and edges) in online way. The online approach generates test steps directly
during runtime as opposed to the offline approach, where test cases are generated in
advance.

3 Related Work

Analysis ofMBT approaches, as well measurement of testing efficiency in general, is not
straightforward taskwith standardizedmethodology. One of possibilities is experimental
comparison using some selected criterion or set of criteria. In the field of the MBT,
the coverage criteria of a system model are essential parameters [7]. Intuitively, they
describe how comprehensively the SUT was tested. Naturally, one of the goals of the
MBT [2] is to achieve the best possible model coverage in the minimal time, steps, or
similar quantitativemeasure. Regrettably, there is an infinite number of existing coverage
criteria [8, 9]. This work is based on subset called Structural Model Coverage Criteria
[7]. Specifically, coverage of all nodes, all edge, and all pairs of edges (i.e. paths of length
of two) are being used in the experiment. Authors of [10] demonstrate, how the structural
coverage criteria can be used for test generation using a model checker. The paper [11]

112 L. Krejčí et al.

reveals that utilization of the structural coverage criteria for supplementary guidance of
testing strategies can have a positive impact on the fault detection capability in black-
box testing. Additionally, if an SUT model is used in the context of Model-Driven
Development, i.e. when the model serves for generation of both SUT source codes and
test cases, the paper [12] shows a correlation between coverage of the model structure
and coverage of generated code achieved by the generated test cases. Consequently, that
shows importance of chosen criteria.

This paper works with the progress of coverage over time, just like previous exper-
iments presented in [6]. This progress is influenced by exploration algorithm and by a
model structure. In case of Taster, the model is explored by graph search techniques
[13]. Model is divided into environment and observer part, as it was mentioned in the
Background section. Observer part is concerned immutable, since it describes system
correct behavior. Similarly to works [14, 15], the experimental approach was chosen
to compare the impact of environment model structure to observer coverage progress.
None of the related papers contain results directly comparable with the results presented
in this paper.

4 Modeling Language

Asmentioned in Introduction, the developed testing tool is designated for testing of auto-
motive electronics system. Those systems are real-time and reactive, so it was necessary
to use modeling language fitting systems with those properties. Hence, the used mod-
eling language is based on the theory of timed automata, developed by UPPAAL team
[5], allowing to describe the modeled system as a network of Timed Safety Automata
(TSA) bound by a set of variables.

The original theory of Timed Automata (TA), described in [16], was extended by
UPPAAL team into the TSA (described [5]) by introduction of local invariant conditions
that ensure progress of each automaton in the system. A single TSA can be formally
defined followingly (described in [17]):

• A timed safety automaton A is a tuple A = (N, l0, E, I), where:

– N is a finite set of locations (i.e. nodes),
– l0 ∈ N is initial location,
– E ∈ N × B(C) × � × 2C × N is the set of edges and
– I: N → B(C) assigns invariants to locations.

• We shall write l → g, a, r, l′, when (l, g, a, r, l ′) ∈ E.
• A local invariant is a constraint x < n, x ≤ n, where n ∈ N.

Informally, TSA is an oriented graph containing states (one of them is initial) and tran-
sitions between them. Transitions are labeled by guard condition enabling its execution
and priorities affecting the probability of their execution.

A single TSA in an SUT model typically represents a separate model of a specific
SUT subsystem and is referred to as a template. An SUT model can contain one or

Relation Between Test Coverage and Timed Automata Model Structure 113

more instances of each template that represent one exact instance of tested subsystem.
Because the MBT principles require a model of the SUT environment, multiple TSA
are typically used for this purpose, providing input stimuli for the SUT. Interoperation
of individual automata within model can be synchronized using system of variables and
synchronization channels introduced by the UPPAAL team.

5 Models

In order to find most suitable modeling approach, two different model variants were
created for both SUT and its environment. Those model variants represent two main
modeling paradigms. First approach, referred to as simple, prefers division of the model
into multiple simple interoperating automata. Second approach, referred to as complex,
prefers utilization of only one, complex automaton. Both of those approaches were
applied tomodeling of theSUT (car trunkdoors and locking systems) and its environment
(driver).

5.1 Observer

The observer part of the model describes the correct behavior of the SUT according to
the specification and its purpose is to ensure correctness of a tested system. Typically, no
input stimuli for the SUT are provided by the observer part. In order to verify correctness
of the SUT, observer part contains so called invariant conditions checks. In the used
modeling language, those invariant conditions are encoded in nodes and are always
verified when an automaton enters given state.

Because observer part can cover multiple subsystems of the SUT, the difference
between simple and complex approaches primarily lies in separation of individual
subsystem. Both observer model variants are described in following subsections.

Simple Approach. In the simple observer approach, referred to asObS , each subsystem
is modeled by separate automaton. In the case study used in the experiments, this means
that there are two observer models – one for the locking system and one for the trunk
control system. The locking system model is shown on Fig. 2.

Fig. 2. The locking system observer model.

114 L. Krejčí et al.

The trunk control system model is similar to the common observer model used in
previous experiments presented in [6] and is shown on Fig. 3.

Fig. 3. The trunk system observer model.

Clearly, advantage of this approach lies in its clarity, as it allows to logically divide
the SUT model into separate subsystem. Moreover, it allows to capture the parallel
nature of a typical SUT. However, it creates additional requirements for synchronization
between models of individual subsystems.

Complex Approach. In the complex observer approach, referred to as ObC , both sub-
systems are modeled by a single automaton template. Therefore, both models presented
in previous section are merged into one describing complex behavior of combined
system. The complex observer model is shown of Fig. 4.

Fig. 4. The complex observer model.

Advantage of complex observer model is the centralization. Unlike in the case of the
simple approach, the correct behavior of the SUT is exhaustively described by a single
automaton template. Moreover, there is no need for additional synchronization. This
approach, however, introduces significant requirements on modeling and bad scalability
with increasing number of subsystems. Additionally, this modeling approach fails to
capture the parallel nature of theSUT,wheremultiple subsystems are operated separately.

Relation Between Test Coverage and Timed Automata Model Structure 115

5.2 Environment

In addition to two variants of observer model, two versions of environment models
were utilized in the presented experiment. The environmental part of the SUT model
represents manipulation with the SUT inputs, i.e. locking and trunk control buttons.

The key difference between both modeling approaches lies within separation of
models of individual inputs. Both variants presented in following sections are based on
the environment models used in the previous experiments (described in [6]).

Simple Approach. The simple environment model, referred to as EnvS , introduces a
separate automaton instance for each input (i.e. control buttons and remote controller
position). Therefore, the full environment model, composed of multiple timed automata
instances, represents the set of control inputs. Example of one of the automaton instances
is shown in Fig. 5.

Fig. 5. Example of a button model in the simple environment model.

Depending on chosen test run strategy (see section Experiment for overview of used
strategies), the simple environment model behaves as a car user, who is pressing buttons
randomly, systematically or with specific pattern, but always with defined timing.

Undoubtedly, the major advantage of the simple model is its simplicity. Modeling
the SUT environment in such way is not overly time consuming and might reduce time
required for creating an exhaustive SUT model. Disadvantage of this approach might be
creation of high number of unrealistic test cases.

Complex Approach. Just like in the case of the complex observer model, the complex
environment model, referred to as EnvC , consists only from a single automaton instance
representing a sensible car user. That means a user, who uses inputs (i.e. pushes buttons
and changes position of remote controller) correctly within the given context.

As this automaton represents a car user, it has ability of manipulate with the SUT
inputs encoded in the structure of the automaton itself. That additionally allows to
add timing information the SUT operations and make the test runs more realistic. The
complex environment model is shown in Fig. 6.

116 L. Krejčí et al.

Fig. 6. The complex environment model.

Another advantage of the complex model is ability to utilizeModel-Based Statistical
Testing (MBST). The MBST is a form of MBT, which additionally uses statistical
environment models [18]. Utilization of MBST could potentially provide even more
realistic test cases.

6 Experiment

The aim of the presented experiments was to compare all combinations of modeling
approaches of both observer and environment parts of the SUT model and find the
most suitable combination. Because of the varying model structure of individual model
variants, the structural model coverage was chosen as the primary comparison criteria.
Therefore, every modeling variant (i.e. element from the space defined as {ObS ,ObC}×
{EnvS ,EnvC}) was evaluated on the progress of coverage of nodes (CN), edges (CE) and
pairs of edges (CEP) over discrete time (i.e. number of executed test steps).

The experimental test runs were executed using the Taster tool. During their execu-
tion, the structural coverage data was progressively collected (i.e. CN , CE and CEP for
each discrete time point). The tests runs were driven by following strategies:

• Random strategy that choses executed transition randomly,
• Systematic strategy that always choses transition to least visited node, and
• Heuristic strategy that choses the least taken transitions with highest priority.

Relation Between Test Coverage and Timed Automata Model Structure 117

Results for each modeling variant and each testing strategy were obtained from
individual test runs, which duration was limited to one hour. This duration is sufficient,
as the length of simulation step in the Taster tool was set to 250 ms, which provides up
to 14400 test steps within a single test run.

7 Results

First evaluated criterion was the node coverage. While the node coverage is just an
elementary criterion, it’s still essential since the invariant checks are encoded in states
of individual automata. Graphs depicting the progress of node coverage for all model
variants and all three strategies is shown in Fig. 7.

Fig. 7. The node coverage progress.

The evaluated criterion was the edge coverage. Because all actions physically exe-
cuted with the SUT are bound to the edges in the system model, this criterion is vital.
Graph depicting the progress of edge coverage for all model variants and all three
strategies is shown in Fig. 8.

Last criterion analyzed in the experiment was the coverage of edge pairs, i.e. cov-
erage of paths of length of two. Since occurrence of some types of faults in the SUT
is conditioned by execution of operations in exact order, this criterion can be useful of
uncovering of such faults. Graphs depicting progress of the coverage of pairs of edges
for all model variants and all three strategies is shown in Fig. 9.

118 L. Krejčí et al.

Fig. 8. The edge coverage progress.

Fig. 9. The edge pairs coverage progress.

All criteria used in above graphs were always obtained from a single test run with
given strategy and model variant.

8 Conclusions and Future Work

In this paper, experiment comparing different modeling approaches was presented. The
modelling approaches, created as combinations of simple and complex models of both
observer (ObS , ObC) and environment (EnvS , EnvC) parts of the SUT, are described in
details in section Models. The experiment and used SUT models were based on the real
automotive system (trunk doors system and locking system). All SUT model variants
were compared according to the progress of the structural coverage criteria (node, edge

Relation Between Test Coverage and Timed Automata Model Structure 119

and edge pair coverage) using three different test generation strategies (random, heuristic
and systematic).

The acquired data, presented in previous section, show that the combination of ObS
and EnvS provides most stable results among all criteria and used strategies. The notice-
ably worse performance of variants with EnvC in the edge-based criteria is, however,
expected, as it is caused by the restrictive nature of the model – realistically modelled
driver cannot perform as many operations (and their combination) with the SUT as the
permissive model (EnvS). Additionally, the results suggest that fully complex model
variant (using ObC and EnvC) provides good results as well, with exception of edge-
based criteria and the systematic strategy. That is expected, because the ObC was made
with real usage of the SUT in mind. Worse results of this variant for edge-based criteria
are again caused by restrictive nature of the EnvC . The collected data also suggest that
the coverage of the observer model depends on the environment model structure, which
refutes the hypothesis suggested in [6].

The results show that the most permissive variant (i.e. combination of EnvS and
ObS) provides consistently good results among all used testing strategies and coverage
criteria. This implies optimistic conclusion – it is more beneficial to create simpler,
divided models, which are significantly easier to create and maintain. The results also
suggest that if more realistic test cases are required, the fully restrictive model set (i.e.
combination of EnvC and ObC) should be utilized instead. However, the maintenance
of two sets of models is problematic and, as explained before, the worse performance of
combination of EnvC and ObS in edge-based criteria is expected. Consequently, more
suitable variant is to maintain one simple observer model accompanied by one simple
environment model (for test cases with higher coverage) and one driver model (for
realistic test cases).

In first part of future research, presented results will be utilized to further expand
used case study with additional car subsystems and inputs, such as window control
subsystem, propulsion systems status, or intrusion detection. This continually growing
case study can be created thanks to the cooperation with our industrial partner. Later,
more accurate, behavioral model of car user will be obtained for utilization in the final
phase of testing process.

Second part of future research will be primarily focused on the Taster tool and its
further development. Presented experiments only utilized three basic strategies. There-
fore, it would be desirable to add support of other testing strategies. For example, there
is an ongoing research of testing strategy using machine perception and learning. All
new testing strategies will be experimentally evaluated on the extended case study.

Acknowledgement. This work was supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, projects Optimization methods for Model-Based Testing of automotive sys-
tems (grant No. SGS18/144/OHK3/2T/13) and Utilization of machine learning and biologically
inspired algorithms in Model-Based Testing of automotive systems (SGS19/071/OHK3/1T/13).
This support is gratefully acknowledged.

120 L. Krejčí et al.

References

1. Abelein, U., Lochner, H., Hahn, D., Straube, S.: Complexity, quality and robustness - the
challenges of tomorrow’s automotive electronics. In: 2012Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 870–871 (2012).

2. Peleska, J.: Industrial-strengthmodel-based testing – state of the art and current challenges. In:
Petrenko,A.K., Schlingloff, H. (eds.) Proceedings EighthWorkshop onModel-BasedTesting,
Rome, Italy, 17th March 2013, Electronic Proceedings in Theoretical Computer Science, vol.
111, pp. 3–28 (2013)

3. Groote, J.F., Kouters, T.W.D.M., Osaiweran, A.: Specification guidelines to avoid the state
space explosion problem (2015). https://doi.org/10.1002/stvr.1536

4. Sobotka, J., Novák, J.: Testing automotive reactive systems using timed automata. In: Pro-
ceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Application (IDAACS), pp. 510–513.
Ternopil National Economic University, Ternopil (2017)

5. UPPAAL Team, and others: UPPAAL 4.0: Small tutorial, November 2009. https://www.it.
uu.se/research/group/darts/uppaal/small_tutorial.pdf. Accessed June 2018

6. Sobotka, J., Krejčí, L.: Testing of automotive systems - complex vs. simple environment
models. In: 201816thBiennialBaltic ElectronicsConference (BEC). IEEEComputer Society,
(2018). ISSN 1736-3705. ISBN 978-1-5386-7312-6

7. Utting, M. (eds.): San Francisco: Chapter 4 - Selecting your tests. In: Practical Model-Based
Testing, pp. 107–137 (2007)

8. Utting,M., Pretschner, A., Legeard, B.: A taxonomyofmodelbased testing approaches. Softw.
Test. Verif. Reliab. 22(5), 297–312 (2012)

9. Weißleder, S.: Simulated satisfaction of coverage criteria on UML state machines. In: 2010
Third International Conference on Software Testing, Verification andValidation. IEEE (2010)

10. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using model check-
ers. In: Eighth Annual IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems-ECBS 2001. IEEE (2001)

11. Gay, G., Staats, M., Whalen, M., Heimdahl, M.P.E.: The risks of coverage-directed test case
generation. IEEE Trans. Softw. Eng. 41(8), 803–819 (2015)

12. Barasel, A., Conrad,M., Sadeghipour, S., Wegener, J.: The interplay betweenmodel coverage
and code coverage (2003)

13. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing strategies
for model-based mutation testing. Softw. Test. Verif. Reliab. 25, 716–748 (2015)

14. Gay, G., Rajan, A., Staats, M., Whalen, M., Heimdahl, M.P.E.: The effect of program and
model structure on the effectiveness of MC/DC test adequacy coverage. ACM Trans. Softw.
Eng. Methodol. 25, 25:1–25:34 (2016)

15. Belli, F., Beyazit, M.: Event-based mutation testing vs. state-based mutation testing – an
experimental comparison. In: 2011 IEEE 35th Annual Computer Software and Applications
Conference, pp. 650–655 (2011)

16. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP
1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0032042

17. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, Jörg.,
Reisig, Wolfgang, Rozenberg, Grzegorz (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

18. Böhr, F.: Model based statistical testing of embedded systems. In: Proceedings of 2011 IEEE
Fourth International Conference Software Testing, Verification and Validation Workshops,
pp. 18–25 (2011)

https://doi.org/10.1002/stvr.1536
https://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-540-27755-2_3

Random Graph Model for Structural
Analysis of Online Communications

Ivan Sukharev and Maria Ivanova(B)

National Research University Higher School of Economics, Moscow, Russia
ivan@sukharev.me, meivanova@outlook.com

Abstract. In this paper, we have explored the problem of social net-
works analysis using the theory of random graphs. The practical task
was to present a communication model that corresponds to the Habra-
habr users’ actions. We took comments under 61746 publications and
described the process of downloading them. Further, we used that infor-
mation to construct the new random graph model.

Keywords: Random graph theory · Social network · Social graph

1 Introduction

Social networking services collect information about their users. The potential
for scientific researches consists in the general profile information, connections
between users (friendship, belonging to a certain group, etc.), and the involve-
ment in open discussions. Data of this kind makes it possible to build a model of
social network growth, predict users’ needs, and even draw up their psychological
portraits [1].

A graph is the most convenient form of presenting the data in these cases.
Nodes are usually profiles, articles, or comments. Edges indicate connections
between them. This type of construction is called a social graph.

However, the use of social networking data has some disadvantages. Firstly, a
social graph articles can make the research objects’ personal information public.
Secondly, the growth of data arrays entails an increase in the processing costs.
Thirdly, the limited number of social graphs calls into question the statistical
reliability of the studies. Under such conditions, creating random graph models
and tools for their generation is a task that is gaining popularity [2].

The creation of synthetic data is being actively implemented; the relevance of
its use is still under consideration, though. Alessandra et al. [3] joined the discus-
sion by examining the successful results of generating random graphs compared
to a real data. Real graphs were selected in a size range from 30 thousand to 3
million edges based on the Facebook network. Only one of the six models con-
sidered is suitable for the work. The result of the study showed the ability of
random graphs to depict a real information picture.

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 121–129, 2021.
https://doi.org/10.1007/978-3-030-71472-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_10&domain=pdf
http://orcid.org/0000-0003-0157-3786
http://orcid.org/0000-0002-6167-6907
https://doi.org/10.1007/978-3-030-71472-7_10

122 I. Sukharev and M. Ivanova

2 Related Works

First let us introduce some notation. Let us define a social graph as a mathe-
matical object. Let Vn = {1, ..., n} be a set of graph vertices. Then a set of graph
edges for the set of vertices Vn is as follows.

En = {(i, j) | i, j ∈ Vn, i �= j} (1)

A graph is an ordered pair G := (Vn, E), where a set of edges is a subset of the
set of all edges E ⊂ En.

2.1 Erdos–Renyi Model

One of the most famous random graphs models was proposed by Erdos and
Renyi [4]. The graph generation process consists in constructing a set of edges
E for a given set of vertices Vn. The edge eij ∈ En is in the set of edges E of
a random graph with probability p ∈ [0, 1]. In their further article, Erdos and
Renyi [5] generalized the model. The constant probability p of the appearance of
an edge in a random graph was replaced by a function p ∈ [0, 1], which depends
on n. This type of a random graph is extensively applicable; that is why it is
popular.

2.2 Barabasi–Albert Growth Model

The advent of the Internet has given impetus to the development of graph theory.
Scientists Barabasi and Albert [6,7] were among the first to work with the new
network. They proposed a concept of scale-free networks, which is a basis of
a random graph growth model for the Internet. Subsequently, the model found
application in natural and social sciences (social, biological, transportation [14]).

A scale-free network is a graph where the degree distribution of the vertices
is described by a power-law, at least asymptotically.

Therefore, the probability of a vertex having k edges at large values of k is
proportional to k−γ :

P (k) ∼ k−γ (2)

Note that it is necessary to supplement the definition of the graph to describe
the model. A web graph is a graph where vertices are sites. We call links between
sites the edges. Barabasi and Albert [6] also presented the preferential attach-
ment method. According to its idea, new network members are more likely to
provide links to popular resources, with many attached edges, rather than less-
known ones.

The next model of a random graph [14] is the simplest implementation of
this idea. Initially moment, there is a connected graph on n vertices vi ∈ Vn.
Then a new vertex vn+1 is added. Then, with probability pi, there is an edge
between the new and the i-th vertices, where pi is calculated by the following
formula:

pi =
deg (vi)∑n

j=1 deg (vj)
(3)

Random Graph Model for Structural Analysis of Online Communications 123

Almost always a graph constructed according to such model has a small diameter.
It is approximately equal to:

diam Gn ∼

ln n

ln lnn
(4)

In 1999 the size of the Internet equaled to 107 [8]. According to the formula
given, this is equal to the diameter of an approximately 6 edges’ graph.

2.3 Nearest Neighbor Model

Another popular model—called the Nearest Neighbor algorithm—was presented
by Alessandra et al. [3]. It is based on the fact that two people who have a
common friend are likely to become friends too. A graph begins with one vertex
and the empty set of edges, gradually growing by the following rules:

1) With probability (1 − p), a new vertex joins a random vertex of the graph
and forms a new edge.

2) With probability p, a pair of vertices is selected. The nodes do not have a
common edge but are connected through a vertex adjacent to both. This pair
is joined by a new edge.

A graph constructed by such rules will be a scale-free network [3].
Vazquez [9] researched dependence of the power-law exponent γ on a param-

eter p ∈ [0, 1] and proved that γ ∈ [2,∞). The model does not allow us to obtain
a graph with a power-law exponent γ < 2.

According to [10,11], large social networks have a power-law degree distribu-
tion exponent of a social graph vertices in the range of 1.5 < γ < 1.75. Therefore,
there is a modified model [3] for the analysis of social networks. There is one
vertex and the empty set of edges. But we add a parameter k, which changes
the rules for the following:

1) With probability (1 − p), a new vertex joins a random vertex of the graph
and forms a new edge. In addition, two random vertices are selected k times
and connected by an edge, if there was not one before.

2) With probability p, a pair of vertices is selected. The nodes do not have a
common edge but are connected through a vertex adjacent to the both. This
pair is joined by a new edge.
The power-law degree distribution exponent γ can be smaller with an addition
of a new parameter [3].

3 Adaptation of the Barabasi–Albert Growth Model

Now let us find a random graph model that matches our data. We consider
models of random graphs with a degree distribution similar to that studied in
the models. Note that the graphs under consideration are trees: they do not

124 I. Sukharev and M. Ivanova

have cycles and loops. Therefore, the popular models will not work for us in the
original wording.

We propose a modified model of the Barabasi–Albert random graph, in which
we remove the possibility of cycles occurrence. At every moment, a new vertex
is added. It is connected by an edge with one random node. The probability
of choosing the node is directly proportional to the number of edges attached
to it. We add some parameter k to a root node degree, thereby increasing the
likelihood of joining it rather than a comment.

This modification is the simplest interpretation of the appearance of new
comments; therefore, it has a noticeable drawback. We noted that trees are
characterized by a long chain of nodes with the degree equal to 2 on the initial
data set. In this model, branch vertices rarely occur as there is no encouragement
for that. Our model encourages large vertices degrees. We come to a conclusion
that the closest to the real data values are those obtained for k = 3.

We should note that the resulting model has a degree distribution coefficient
γ ≈ 2. This is far from being the reality. We correct this inadequacy (shortcom-
ing) in one of the following chapters (see Sect. 5 below).

4 Habrahabr Comments

The professional blog Habrahabr1 is mainly a platform for the news and articles
on IT topics. Each registered user can publish new articles in various topics
(hereinafter “hubs”) and comment on them. An article can be simultaneously in
different hubs to cover several topics at once. All open communication of a blog
members takes place in comments to articles; therefore, they will be the subject
of the research.

Our task was to take comments under 61746 publications. Unfortunately, the
service administration could not give us a key token, since this technology did
not function correctly at that time. We used the python programming language
and the anaconda computer analysis package for downloading. To reduce the
amount of data uploaded, we considered a mobile version of the site. After the
first test, an overload protection system was discovered. Access to the resource
was closed for a long time after a thousand requests.

Requests library was used to resolve this problem. It imitates the behavior
of a real user when accessing the site pages via HTTP requests. Also, it allows
managing request headings, which we need to delete a body of cookies. Displayed
on the network, the IP address of the computer was changed with a help of the
Tor proxy servers [13]. The exit node [12] was changed with the help of the Stem
library after the limit of requests had been reached.

It is necessary to save small files with each other. A set of them will take up
more disk space than their actual total size. That is why our information was
stored in the SQLite database. Thus, the amount of the data downloaded was
10 GB, and the size of the database with comment graphs was 120 MB.

1 https://habr.com/.

https://habr.com/

Random Graph Model for Structural Analysis of Online Communications 125

Out of 61746 articles, we obtained 56003 of those with comments, that is,
90% of the users’ activity. The total amount of Habrahabr comments is 2116285.
Each article has 38 comments.

We construct the comment graph for each article. The root of the graph is
an article. We assume that a comment can be either a response to an article
or a response to someone else’s comment. Depending on this, we attach it(the
comment) either to the tree root or to the comment to which it refers. There does
not exist a possibility to delete a comment; therefore, such graph will always be
a connected tree. The graph scheme can be seen in Fig. 1.

Article

C1 C1 C1

C2 C2

Fig. 1. Comments tree

The path from the root to the node cannot be longer than ten edges in our
graph. This is a limitation based on the design of the service. New comments
are attached to the last previous node as soon as the limit is reached. Because of
that, we obtained a branched subtree that starting from the 9th node and has a
unit leaf lengths.

Approximately 24% of comments are attached to the article itself. 60% of
them have replies. That is 10% higher compared to all comments.

Let us determine the relevant random graphs models. A degree distribution
is a significant feature. In most social random graphs articles it is a power-law
degree distribution and our is not an exception. We use powerlaw library to find
a power-law exponent. The value of this parameter is γ ≈ 3.31.

5 New Random Graph Model

5.1 Algorithm Definition

Let us consider the shortcomings of the previous models (see Sect. 3 above) and
make the random graph closer to the real data. Firstly, let us show the philoso-
phy behind the model. With a certain probability p, a user will have a question
while reading an article and leave a comment under the news. Otherwise, with

126 I. Sukharev and M. Ivanova

probability 1−p, a comment will go in response to something already left earlier.
A user often happens to leave simple messages that no one answers. But some-
times quite the opposite occurs. In our model, we will take this into account by
random assigning a “weight” to each new comment. Successful comments appear
quite rarely, which should be reflected in the distribution of this random variable
by using the function φ.

Since a comment already has an answer, the probability of the question being
closed or transferred to the next level is quite high. Then we will give the weight
λ of the comment to a new answer under it. The model turns out to be a rather
natural interpretation of the commentator’s logic. Now let us show the exact
growth algorithm:

1. With probability p, a new vertex joins the root of the tree, that is, the article
itself. Its weight is recorded by the function φ, that is an indicator of interest
to this message among other users.

2. With probability of 1−p, a new vertex joins any vertex at random, except for
the root of the tree. The probability of joining each of them is proportional
to their weights. A new vertex takes up λ from the weight of the vertex to
which it is attached.

5.2 Model Fitting

Article

C1 C1 C1

C2 C2

Fig. 2. Parameter p estimation

The value of the first parameter p was calculated: 23.7% of all the vertices are
neighbors to the article (Fig. 2).

To find a second parameter, we show how its value affects a leaf type (Fig. 3).
When λ = 1, an entire weight of the vertex will go to the next level in the case
of joining an edge. This indicates appearance of long leaves without branching.
When λ = 0, a leaf will not go down beyond the second level and the nodes
degrees in the first level will quickly grow. The number vertices in different
branches of one leaf will directly depend on the value of this parameter, since

Random Graph Model for Structural Analysis of Online Communications 127

Article

C1

C2 C2C2C2 C2

Article

C1

C2

C3

Fig. 3. Parameter λ explanation

Fig. 4. The nodes weight distribution scheme

the vertices that attached not to the tree root do not initially have weight, and
take λ from the value of the previous vertex.

As shown in Fig. 4, the vertex that first joins the first-level comment takes
up λ of its weight. Further addition of new nodes will share this weight, but
the total amount will not change in any way. The probability of a new vertex

128 I. Sukharev and M. Ivanova

joining a certain subtree is directly proportional to its total weight. Therefore,
the subtree weight is proportional to the number of comments at the end of
the discussion. As a result, the ratio of the first joined C2-subtree comments
number to the C1-subtree comments number is proportional to λ. The value of
this parameter is λ = 0.7629.

The distribution of the random variable φ could be found from the subtree
comments number. We use scipy library for statistical testing. We find that the
random variable φ has an exponential distribution with the parameter equal to
0.53. This software tool also allows generating random numbers with a given
distribution, which opens an opportunity to build random graphs using our
model of any size. Note that this model produces trees with the power-law degree
distribution exponent γ ≈ 3.5, which turns out to be close to the real data.

6 Conclusion

We have considered the most popular random graphs models in the analysis of
social networks. We have built a new model based on the Habrahabr blog’s data.
The highest quality among all the known algorithms was implemented, since the
model was built based on the characteristics required. This topic is relevant and
is gaining popularity along with the open media development. Future research
may be directed towards an identifying of the discussion theme. For example,
by the type of comments distinguish whether the discussion is about politics or
on more common topics. Yet the issues of random graphs modeling of different
in structure social communities and creating more sensitive metrics on them are
still open.

References

1. Yoram, B., Michal, K., Thore, G., Pushmeet, K., David, S.: Personality and pat-
terns of Facebook usage. In: Proceedings of the 3rd Annual ACM Web Science
Conference, WebSci 2012, pp. 24–32. ACM, New York (2012)

2. Korshunov, A., et al.: Analysis of social networks: methods and applications. In:
Proceedings of the Institute for System Programming RAS, vol. 1, p. 26 (2014).
(in Russian)

3. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-
calibrated graph models for social network experiments. In: Proceedings of the
19th International Conference on World Wide Web. Raleigh, North Carolina, USA,
pp. 861–870. Association for Computing Machinery, New York (2010). https://doi.
org/10.1145/1772690.1772778

4. Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debrecen. 6, 290–297
(1959)

5. Erdos, P., Renyi, A.: On the evolution of random graphs. A Matematika Kutato
Intezet Kozlemenyei, V.A/1-2 (1960)

6. Barabasi, L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

7. Barabasi, L., Albert, R., Jeong, H.: Scale-free characteristics of random networks:
the topology of the world-wide web. Physica A281, 69–77 (2000)

https://doi.org/10.1145/1772690.1772778
https://doi.org/10.1145/1772690.1772778

Random Graph Model for Structural Analysis of Online Communications 129

8. Albert, R., Jeong, H., Barabasi, L.: Diameter of the world-wide web. Nature 401,
130–131 (1999)

9. Vazquez, A.: Growing network with local rules: preferential attachment, clustering
hierarchy, and degree correlations. Phys. Rev. 67, 056104 (2003)

10. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. Max Planck Institute for Software
Systems, Rice University, University of Maryland (2007)

11. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions in
social networks and their implications. Computer Science Department, University
of California at Santa Barbara (2009)

12. Dingledine, R., Mathewson, N., Syverson: Tor: the second generation onion router.
In: SSYM 2004 Proceedings of the 13th Conference on USENIX Security Sympo-
sium, San Diego, CA, 09–13 August, vol. 13, p. 21 (2004)

13. Shapiro, M.: Structure and encapsulation in distributed systems: the proxy prin-
ciple. In: International Conference on Distributed Computing Systems (ICDCS),
pp. 198–204. IEEE, Cambridge (1986)

14. Raigorodskii, A.: Models of random graphs and their applications to the web-graph
analysis. In: Braslavski, P., et al. (eds.) RuSSIR 2015. CCIS, vol. 573, pp. 101–118.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41718-9 5

https://doi.org/10.1007/978-3-319-41718-9_5

The Influence of Self-organizing Teams
on the Structure of the Social Graph

Ilya Samonenko and Tamara Voznesenskaya(B)

National Research University Higher School of Economics, Moscow, Russia
{isamonenko,tvoznesenskaya}@hse.ru

Abstract. In this paper, we study the evolution of a social graph struc-
ture under the leverage of various projects performed by self-organizing
teams. Suppose we have a group of specialists with different skills. Some
of the team members are acquainted with each other, which is expressed
by a social graph. We assume that each project requires a variety of
skills, therefore the group members form teams in order to have at least
one specialist with each skill required for the project. As a result of work
on the project, all team members get acquainted with each other, which
changes the social graph. In this paper, a model is proposed for this
process. Properties and characteristics of the model have been studied
analytically and via computer simulation.

Keywords: Social graph · Self-organizing teams · Evolving graphs ·
Saturated graphs

1 Introduction

The study of social networks is one of the key areas at the intersection of sociol-
ogy and computer science. The aim of our work is to study the changes in social
relations under the influence of self-organizing teams.

Suppose we have various specialists with different skills, some of which are
familiar with each other. We will describe acquaintances with an undirected
graph G = (V,E), where the set of vertices V denotes specialists, and the edges
E denote acquaintance (friendship) between them.

Specialists are going to carry out projects, and each project requires a variety
of skills. One specialist cannot complete a project because his/her skills are not
enough for the whole project. Therefore, they need to invite each other and team
up so that the team has at least one specialist with each skill required for the
project. As a result of work on the project, all team members get acquainted
with each other, which changes the social graph.

Each specialist can participate only in one team at the same time. After
completion of the project, he can take part in the work of a new team. Gradually,
new connections appear in the social graph, and the graph can become saturated
(a strict definition is given below).

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 130–141, 2021.
https://doi.org/10.1007/978-3-030-71472-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_11&domain=pdf
http://orcid.org/0000-0002-3063-4640
http://orcid.org/0000-0002-8258-2950
https://doi.org/10.1007/978-3-030-71472-7_11

The Influence of Self-organizing Teams on the Structure of the Social Graph 131

We investigate the number of such iterations necessary to make the graph
saturated on average and in the best case scenario. If specialists form the same
teams every time (worst case scenario), new connections will not appear.

There are quite a lot of researchers, who work at the social graphs and team-
building area.

In [5] the problem of efficient shortest-path query evaluation on evolving
social graphs is studied. The authors proposed “temporal” shortest-path queries:
they can refer to any time-point or time-interval in the graph’s evolution, and
corresponding valid answers should be returned. To efficiently support this type
of temporal query, the authors extend the traditional Dijkstra’s algorithm to
compute shortest-path distance(s) for a time-point or a time-interval.

Evolving graphs were introduced in [4]. The evolving graphs are a simple
model which aims at harnessing the complexity of an evolving setting as yielded
by dynamic communication networks. The authors exemplify its use through
the computation of shortest paths under different hypotheses in fixed-schedule
dynamic networks. Later this concept has been studied in other papers [1].

The problem of efficient query processing on an evolving graph sequence
and a solution framework called FVF were presented in [10]. Through extensive
experiments on both real and synthetic datasets, it was shown that our FVF
framework is highly efficient in evolving graph sequence query processing.

In [6] the strongly connected components (SCC) in evolving graphs with
geometric properties were studied. It was shown that SCC is NP-hard in case
the nodes are placed on a grid and two points are connected if the Euclidean
distance is equal or less than 2. On the other hand, it was proved that if the
underlying graph is a tree this problem can be solved in polynomial time.

A new algorithm based on clique percolation was developed in [8]. This algo-
rithm allows to investigate the time dependence of overlapping communities on a
large scale and as such, to uncover basic relationships characterising community
evolution. The authors focused on networks capturing the collaboration between
scientists and the calls between mobile phone users. They find that large groups
persist longer if they are capable of dynamically altering their membership, sug-
gesting that an ability to change the composition results in better adaptability.
The behaviour of small groups displays the opposite tendency, the condition for
stability being that their composition remains unchanged.

The study of the social graph structure of active Facebook users was carried
out in [11]. The authors compute numerous figures of the graph including the
number of users and friendships, the degree distribution, path lengths, clustering,
and mixing patterns. The results centre around three main observations. First,
a characterization of the global graph structure, determining that the social
network is nearly fully connected, with 99.91% of individuals belonging to a
single large connected component, and the confirmation of the ‘six degrees of
separation’ phenomenon on a global scale. Second, a studying the average local
clustering coefficient and degeneracy of graph neighborhoods. It was shown that
while the Facebook graph as a whole is clearly sparse, the graph neighborhoods
of users contain a surprisingly dense structure. Third, a characterization of the

132 I. Samonenko and T. Voznesenskaya

assortativity patterns present in the graph by studying the basic demographic
and network properties of users.

A rumour spreading in random evolving graphs was studied in [2]. The aim of
this paper is to analyze the Push protocol in dynamic networks. The authors con-
sider the edge-Markovian evolving graph model which captures natural between
the structure of the network at time t, and the one at time t+1. Precisely, a non-
edge appears temporal dependencies bet with probability p, while an existing
edge dies with probability q. In order to fit with real-world traces, the authors
mostly concentrate they study on the case where p = Ω(1

n) and q is constant.
They that, in this realistic scenario, the Push protocol does perform well, com-
pleting information spreading in O(log n) time steps with high probability.

In [9] take a close, empirical look at the degree-degree correlation structure
of social bipartite collaboration networks. The authors arise three questions in
this context. First, what is the structure of the bipartite network? Second, what
can be stated in general of the one-mode projection graph and its correlations?
Third, comparison of growing of a bipartite network model and a team assembly
model.

In [7] the authors investigate the origins of homophily in a large university
community, using network data in which interactions, attributes, and affiliations
are all recorded over time. The analysis indicates that highly similar pairs do
show greater than average propensity to form new ties; however, it also finds
that tie formation is heavily biased by triadic closure and focal closure, which
effectively constrain the opportunities among which individuals may select.

The research [3] examines the problem of team formation in social networks.
Agents, each possessing certain skills, are given tasks that require particular
combinations of skills, and they must form teams to complete the tasks and
receive payoffs. However, agents can only join teams to which they have direct
connections in the social network. The authors found a simple, locally-rational
team formation strategy can form team configurations with near-optimal earn-
ings, though this greedy hill-climbing search does converge to suboptimal local
maxima.

2 Model Description

Suppose we have n specialists V = {v1, . . . , vn}, some of whom are in acquain-
tance with each other. The acquaintance is described by an undirected graph
G = (V,E), so that the specialists vi and vj are acquaintance if and only if the
edge {vi, vj} ∈ E. Subset T ⊆ V that are vertexes of connected subgraph of G
will be called team.

In addition, there is a series of similar projects, and each project requires the
same set of skills. The set of skills is described by the vector α = (a1, . . . , ak),
where ai ∈ N. Each ai describes the total skill with the number i needed to
complete the project. Hereinafter, a project and a set of skills required for this
project we will be denoted by a single letter α.

The Influence of Self-organizing Teams on the Structure of the Social Graph 133

Each specialist also has some skills. This is described by the function:

π : V → Z
k
≥0,

where Z≥0 – denotes a set of non-negative integers. For the team T ⊆ V , their
common skill is defined as:

π(T) =
∑

v∈T

π(v)

We introduce a partial order on the set Z
k
≥0 � as follows:

(a1, . . . , ak) � (b1, . . . , bk) ⇔ ai ≤ bi, i = 1, . . . , k.

Denote by |α| the weight of the vector α:

|α| = |(a1, . . . , ak)| = a1 + · · · + ak

A team T ⊆ V can execute project α if:

α � π(T).

Such a team will be called complete.
Any specialist v (initiator) can form a new team T = {v} and start inviting

other specialists to this team. Any team member v ∈ T may invite to the team
T specialist u ∈ V \ T if:

1. they are acquaintance, i.e. {u, v} ∈ E;
2. specialist u not busy in any other team;
3. specialist u increases the skills required to complete a project: let α =

(a1, . . . , ak), π(T) = (b1, . . . , bk), π(u) = (d1, . . . , dk), if ∃i : ai > bi and
di > 0.

In addition, if a specialist is invited to the team, he/she necessarily agrees. As
a result of this process is either formed completed team T , such that α � π(T), is
either not formed and the team disbanded. The team initiator no longer attempts
to create a new team, but he can be invited to other teams. This process is non-
deterministic and it varies the sequence of initiators and invitations. A set of
completed teams Q = {T1, . . . , Tq} is formed as a result of a single run of this
model.

Further in this paper we fix set of specialists V , the skills function π and the
project α.

The following is pseudocode of a random function GetTeams(G), which
returns one of the possible sets of completed teams for the graph G, the given
skill function π and the project α. This function has several random operations
that can give different values for different function calls.

Description of variables and functions:

Initiators – a set of vertices that have not yet been initiators of any team.
NotInTeams – a set of vertices that do not belong to any one team.

134 I. Samonenko and T. Voznesenskaya

Teams – a set of competed teams.
AllNeighbors(x) – a set of vertices adjacent to the vertex x.
X.randomPop() – returns a uniformly distributed random element from the set
X and removes this element from the set X.
CreateRandomQueue(X) – equiprobable shuffles elements X and create a queue
of them.
Q.randomPush(X) – equiprobable shuffles elements X and adds them to the
queue Q.
Q.pop() – returns the first item in the queue Q and removes it from the queue.
isComplete(T) – checks if the team T is complete. This function depends on
the skill function π and the project α. But the values of π and α are fixed, so
for brevity we will not specify π and α as arguments of the functions GetTeams
and isComplete.
function GetTeams(G)

Initiators = V
NotInTeams = V
Teams = ∅
while Initiators
= ∅ do

x = Initiators.randomPop()
CurrentTeam = {x}
Queue = CreateRandomQueue(AllNeighbors(x) ∩ NotInTeams)
while (Queue
= ∅) OR (NOT Complete(CurrentTeam)) do

y = Queue.pop()
if π(y) \ π(CurrentTeam)
= ∅ then

Queue.randomPush(AllNeighbors(y) ∩ NotInTeams)
CurrentTeam = CurrentTeam ∪ {y}

end if
end while
if isComplete(CurrentTeam) then

Teams = Teams ∪ {CurrentTeam}
NotInTeams = NotInTeams \ CurrentTeam

end if
end while
Return Teams

end function
There are many random choices when the function GetTeams(G) is calling.
Denote by Runs(G) all possible scenarios of model runs for the graph G. For
each specific model run r ∈ Runs(G) we get a specific result of the function
GetTeams(G) – a set (possibly empty) of completed teams Q = {T1, . . . , Tq}.
Denote by GetTeamsr(G) the result of the function GetTeams(G) for a specific
model run r ∈ Ruins(G).

The Influence of Self-organizing Teams on the Structure of the Social Graph 135

3 Evolution of the Social Graph Structure

As a result of the project completed by team T = {v1, . . . , vr} all team members
acquainted to each other. Consequently, new edges {vi, vj}, 1 ≤ i < j ≤ r
appeared in the graph G. When the model starts again, it will work with the
changed graph.
For the graph G = (V,E) and the set of teams Q = {T1, . . . , Tq} graph Ĝ =
(V, Ê) we be called the extension of G by Q, where:

Ê = E ∪ {{u, v}|u, v ∈ Ti, u
= v, i = 1, . . . , q}.

We denote the extension G by Q through Extension(G,Q). We call an exten-
sion nontrivial if Extension(G,Q)
= G.

The triviality of the Extension(G,Q) = G means that all teams T ∈ Q are
cliques, i.e. all team members were acquainted with each other before the team
was created.

We call a graph G saturated if for any r ∈ Runs(G) we have:

Extension(G,GetTeamsr(G)) = G.

In other words, a graph is called saturated if its extension by any set of its
teams is trivial. Otherwise, we call the graph unsaturated.

The main results of this paper are the study of how the sequential extensions
of an unsaturated graph G make it’s saturated (Fig. 1).

4 Examples

(a) a. α = (1, 1, 1) (b) b. α = (1, 1, 1, 1) (c) c. α = (1, 1, 1, 1)

Fig. 1. Three social graph

Consider the examples of the model. For all the examples in the vertices indicate
the number of the skill that the vertex has. That is, if the label at the vertex v
is i, then π(v) = ei, where ei is a vector of zeros with 1 at position i.

136 I. Samonenko and T. Voznesenskaya

(a) a. The initial graph
(b) b. The result of satu-
ration procedure

Fig. 2. Graph saturation. α = (1, 1, 1)

For the graph in Fig. 2a there are four different sets of completed teams:

Q1 = {{v1, v4, v5}}, Q2 = {{v2, v4, v5}},

Q3 = {{v1, v4, v5}, {v4, v2, v6}} and Q4 = {{v1, v4, v6}, {v3, v5, v2}}.

For example, a single team of Q1 can be created if the initiator of v1 invites v4
and v5. However, no other team can be created.

For the graph in Fig. 2b there are three different sets of completed teams:

Q1 = {{v1, v2, v3, v4}, {v5, v6, v7, v8}},

Q2 = {{v4, v3, v2, v5}} and Q3 = {{v5, v4, v6, v7}.

For example, a single team of Q2 is created if the initiator v4 invokes v2, v3, and
v5. However, no other team can be created.

Moreover, for a given graph, the set L = {v3, v4, v5, v7} formally satisfies
the skill requirement: π(L) = α. However, the set L cannot be the result of
GetTeams(G) because any initiator at first invites its free neighbours. This
example shows that the considered problem differs from the problem of enumer-
ation of all connected subgraphs whose vertices cover a given set of values.

In Fig. 2c here is an example of a graph without completed teams.
The initial graph presented at Fig. 2a, and Fig. 2b shows the result of its

saturation procedure. For this graph, all sets of competed teams consist only
of one team, because we have only one specialist v3 with e3 skill. Consider
the saturation procedure: Q1 = {{v2, v3, v4}} (the initiator v3) adds the edge
{v2, v4}, Q2 = {{v2, v1, v4}} (the initiator v2) adds the edge {v1, v4} and Q3 =
{{v4, v2, v5}} (the initiator v4) adds the edge {v2, v5}, Q4 = {{v1, v4, v6}} (the
initiator v4) adds the edge {v1, v6}, Q4 = {{v3, v4, v6}} (the initiator v4) adds
the edge {v3, v6}.

The Influence of Self-organizing Teams on the Structure of the Social Graph 137

5 Results

Further results are obtained under the following assumptions:

– Each specialist has exactly one skill:

∀v ∈ V |π(v)| = 1

In particular, this means that any completed team T ∈ GetTeamsr(G) con-
sists of |α| specialists.

– At least three specialists are required to complete the project:

|α| ≥ 3

The case |α| < 3 is not interesting in terms of changing the social graph.
At |α| = 2 any team consists of two specialists who should know each other
before form this team. At |α| = 1 all projects are done by one specialist
without a team.

– Let α = (a1, . . . , ak). A pair of vertices {u, v} is called dummy if aj =
1, π(u) = π(v) = ej . The edge between a dummy pair of vertices is also
called a dummy. For example, in Fig. 2a the edge {v1, v2} is dummy. Dummy
edges are never used to form teams, so they can be excluded from the graph
without affecting the operation of the model.

– The graph G remains connected after removing the dummy edges. For a
disconnected graph, the problem is divided into independent problems for
each connected component.

– For the graph G there is at least one complete team, i.e.:

∃r ∈ Runs(G) : GetReamsr(G)
= ∅

Theorem 1. For any graph G = (V,E), there is a sequence of graphs G0, G1,

. . . , Gs, s ≤ |V |(|V |−1)
2 such that:

1. G0 = G;
2. Gi+1 = Extension(Gi, GetTeamsri

(G)) for some ri ∈ Runs(Gi);
3. Gs is saturated.

Proof. If G0 = G is not saturated, then there is a model run r ∈
Ruins(G0) such that Tj ∈ GetTeamsr(G0) is not a clique. Let G1 =
Extension(G,GetTeamsr(G)) and use similar reasoning to G1, and so on. Each
extension adds at least one edge to the graph. Hence for some s ≤ |V |(|V |−1)

2 we
get that Gs is saturated. ��
Theorem 2. The following statements are equivalent:

1. Graph G is saturated.
2. Graph G is complete without dummy edges.

138 I. Samonenko and T. Voznesenskaya

Proof. 1. → 2. Let T0 = {u1, . . . , uk} be some completed team for G. The graph
G is saturated, hence T0 is a clique. Let us denote by U the vertices of maximum
(by —U—) clique of G (without dummy edges) containing T0. If there are several
such cliques, then choose any. We prove that U = V .

Let V \U
= ∅. Choose v1 ∈ V \U such that there is an edge from v1 to some
vertex v2 ∈ U . This choice can be made due to the connectivity of the graph.
Consider any vertex v3 ∈ U such that the pair {v1, v3} is not dummy and prove
that there exists an {v1, v3} ∈ E.

Without loss of generality, we assume that:

π(v1) = π(u1), π(v2) = π(u2), π(v3) = π(u3).

Then the team T1 = {v1, v2, v3, u4, . . . , uk} is completed and possible con-
structed as follows. The initiator is v2 invites sequentially v1, v3, u4, . . . , uk. The
graph G is saturated, hence T1 is a clique and there is an edge {v1, v3} ∈ E. We
may chose any v3 ∈ U and prove than {v1, v3} ∈ E, hence v1 ∈ U . Therefore
U = V , which proves that G is a complete graph without dummy edges.

2. → 1. Any team is a clique, hence G is saturated. ��
The Theorem 2 gives a method to verify that a graph is saturated with com-

plexity O(n2). Let the function IsSaturated(G) determine whether the graph G
is saturated.

Let G be a social graph, we define a random variable γ(G), which equals to
the number of extensions needed to make the graph saturated:
function SaturationTime(G)

Counter = 0
while NOT IsSaturated(G) do

G = Extension(G,GetTeams(G))
Counter = Counter + 1

end while
Return Counter

end function

We call γ(G) the saturation time of the graph G. The value of the function
γ(G) is indeed a random variable because we randomly chose the set of teams
GetTeams(G). Now we prove the correctness of this definition: the probability
that the loop while will not complete is zero.

Indeed, let loop while is not complete, for some unsaturated graph G. This
means that after a sequence of nontrivial extensions, the graph G is transformed
to an unsaturated G′ and all subsequent extensions are trivial (do not changing
the graph G′). Consider all runs of the model Runs(G′) = {r1, . . . , rN}. Let pi

be the probability that ri has been started. Since the graph G′ is unsaturated,
there are Q ⊂ Runs(G′) for which G′
= Extension(G′, GetTeamsr(G′)) and
r ∈ Q. Hence the probability that the set of teams GetTeams(G′) will yield a
trivial extension is:

p = P (G′ = Extension(G′, GetTeams(G′))) = 1 −
∑

r∈Q

pr < 1.

The Influence of Self-organizing Teams on the Structure of the Social Graph 139

The probability that the loop while will work s times without changing G′

equals ps. Therefore, the probability of the loop while is not completed equals

lim
s→∞ ps = 0.

6 Simulation

This section presents the results of a computational estimation of saturation
time for some classes of graphs. We will consider random graphs with a given
probability of occurrence of an edge. As before, we will assume that for any
v ∈ V |π(v)| = 1. Will consider only projects of the form α = (a1, . . . , ak), where
all ai = 1, i.e. for each project you need exactly k specialists with different skills.
In addition, we assume that n is divided by k and for each skill there are exactly
n
k specialists with this skill.

Let p ∈ [0, 1] be fixed. Consider the function GetRandomGraph(n, p), which
randomly returns an undirected graph G = (V,E) with:

P ({u, v} ∈ E) = p.

As noted above, we consider the case in which for any v ∈ V has |π(v)| = 1.
Therefore, we can present the function π as an array of length |V | with values
in the set {1, . . . , k}:

π(vi) = eπ[i].

Now we describe the function GetRandomSocialGraph(n, k, p), which will ran-
domly return the skill function π and the undirected graph G, connected after
removing all the dummy edges.

The function ShuffleArray(A) – equiprobable shuffles the elements of the
array A.

The function IsSkillConnected(G, π) – checks is the graph G will be con-
nected after remove all dummy edges.
function GetRandomSocialGraph(n,k,p)

r = n
k

π = ShuffleArray([1, . . . , 1︸ ︷︷ ︸
r

, 2, . . . , 2︸ ︷︷ ︸
r

, . . . , k, . . . , k︸ ︷︷ ︸
r

])

G = GetRandomGraph(n, p)
while NOT IsSkillConnected(G, π) do

G = GetRandomGraph(n, p)
end while
Return G, π

end function
Thus, for fixed n, k, p we can obtain a random variable

γ(n, k, p) = SaturationT ime(GetRandomSocialGraph(n, k, p)),

which describes the saturation time of a random graph with n vertices, k skills,
and probability of acquaintance equals p.

140 I. Samonenko and T. Voznesenskaya

The Fig. 3 shows the results of computational experiments. We estimate the
mean value of γ(n, k, p) at n = 24, k = 3, 4, 6, 12 and the values of p at the
interval [0.1, 1] in increments equals 0.025.

Note that there is a random selection of the completed teams set
GetTeams(G) in function Saturation(G). The corresponding extension can be
trivial (does not change the graph) or nontrivial (changes the graph). Figure
3 shows the average saturation time (all extensions) as well as the number of
trivial and nontrivial extensions.

(a) n = 24, k = 3 (b) n = 24, k = 4

(c) n = 24, k = 6 (d) n = 24, k = 12

Fig. 3. Saturation time

References

1. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S., Bar-
beau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6 23

2. Clementi, A., et al.: Rumor spreading in random evolving graphs. In: Bodlaender,
H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 325–336. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4 28

3. Dykhuis, N., Cohen, P., Chang, Y.H.: Simulating team formation in social net-
works, pp. 244–253, September 2013. https://doi.org/10.1109/SocialCom.2013.42

4. Ferreira, A.: On models and algorithms for dynamic communication networks: the
case for evolving graphs. In: Proceedings of the ALGOTEL, January 2002

https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/978-3-642-40450-4_28
https://doi.org/10.1109/SocialCom.2013.42

The Influence of Self-organizing Teams on the Structure of the Social Graph 141

5. Huo, W., Tsotras, V.: Efficient temporal shortest path queries on evolving social
graphs. In: ACM International Conference Proceeding Series, June 2014. https://
doi.org/10.1145/2618243.2618282

6. Jarry, A., Lotker, Z.: Connectivity in evolving graph with geometric properties,
pp. 24–30, January 2004. https://doi.org/10.1145/1022630.1022635

7. Kossinets, G.: Origins of homophily in an evolving social network. Am. J. Sociol.
115, 405–450 (2009). https://doi.org/10.1086/599247

8. Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446, 664–667 (2007). https://doi.org/10.1038/nature05670

9. Peltomäki, M., Alava, M.: Correlations in bipartite collaboration networks. J.
Stat. Mech. Theory Exp. 2006 (2005). https://doi.org/10.1088/1742-5468/2006/
01/P01010

10. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R., Cheung, D.W.: Efficient pro-
cessing of shortest path queries in evolving graph sequences. Inf. Syst. 70,
18–31 (2017). https://doi.org/10.1016/j.is.2017.05.004. http://www.sciencedirect.
com/science/article/pii/S0306437916303374. Advances in databases and Informa-
tion Systems

11. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook
social graph. arXiv preprint 1111.4503, November 2011

https://doi.org/10.1145/2618243.2618282
https://doi.org/10.1145/2618243.2618282
https://doi.org/10.1145/1022630.1022635
https://doi.org/10.1086/599247
https://doi.org/10.1038/nature05670
https://doi.org/10.1088/1742-5468/2006/01/P01010
https://doi.org/10.1088/1742-5468/2006/01/P01010
https://doi.org/10.1016/j.is.2017.05.004
http://www.sciencedirect.com/science/article/pii/S0306437916303374
http://www.sciencedirect.com/science/article/pii/S0306437916303374

Making Bounded Model Checking
Interprocedural in (Static Analysis) Style

Daniil Stepanov1,2(B), Marat Akhin1,2, and Mikhail Belyaev1,2

1 Saint Petersburg Polytechnic University, St. Petersburg, Russia
{stepanov,akhin,belyaev}@kspt.icc.spbstu.ru

2 Jetbrains Research, St. Petersburg, Russia

Abstract. Bounded model checking (BMC) is one of the most inter-
esting and practical methods of software quality assurance; it converts
the program to a logical formula, which is checked for correctness using
SAT or SMT solvers. An inherent problem of BMC is how one does
interprocedural analysis, which is usually performed using function inlin-
ing. However, inlining greatly increases the size and complexity of the
resulting formula, making analysis close to impossible to perform in a
reasonable time. In this work we propose a method of interprocedural
BMC based on ideas from the related area of program static analysis; it
works by creating context-sensitive versions of formulae for interesting
safety properties, which are considerably smaller than formulae with full
inlining. We have implemented a prototype based on our approach in a
BMC tool called Borealis, evaluated it on a number of real-world pro-
grams and shown our approach to greatly improve analysis performance
and precision.

Keywords: Program analysis · Interprocedural analysis · Bounded
model checking · Context sensitivity

1 Introduction

Software development is a very complex and time-consuming process, where
software bugs may lead to undesirable and dangerous consequences. To reduce
these risks one may use different methods of program analysis, e.g., bounded
model checking (BMC). This method is a natural extension of traditional model
checking, where the program is translated to a formula in first order logic (FOL),
which is then sent to a specialized solver. The results of the formula checking may
be lifted back to the original program and used to reason about different safety
properties, such as null pointer dereferences or out-of-bounds array accesses.

One of the hardest problems in BMC is interprocedural analysis—how one
analyzes function calls inside other functions and represents them as a for-
mula [12]. The de facto standard approach is function inlining, when function
bodies are inserted at their corresponding call sites. Unfortunately, inlining often
makes BMC infeasible in practice, as it exponentially increases the size of the
resulting formula with the respective increase in processing time.
c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 142–154, 2021.
https://doi.org/10.1007/978-3-030-71472-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_12

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 143

An alternative to function inlining, widely used in program static analysis,
are context-sensitive analyses [17], which handle interactions between different
functions by capturing their calling contexts. One may use different approaches
to how calling contexts are collected and processed, which typically vary on the
types of analysis and safety properties in question.

In this paper we present an approach to interprocedural BMC, which borrows
the idea of context sensitivity from classic static analysis and applies it to BMC.
By traversing the call graph bottom-up in an adaptive manner, we capture the
function calling contexts w.r.t. their call sites, obtaining formulae smaller com-
pared to inlining while retaining much of its precision at the same time. In cases
when the behaviour is dependent on a sibling function call, we locally alternate
to top-down traversal and capture relevant information from such calls, which
is also incorporated in the formulae.

We have implemented a prototype of our approach based on the bounded
model checker Borealis [3], but it is general enough to be incorporated with
most other BMC tools [9,10,15]. We have also evaluated the prototype on a
number of real-world software projects and shown our approach to achieve an
efficient balance between the performance and the precision of BMC.

The rest of the paper is organized as follows. We lay the foundation of our
work by introducing bounded model checking and its implementation in Bore-
alis in Sect. 2. The core of our approach to interprocedural BMC is explained
in Sect. 3. The evaluation and related work are discussed in Sects. 4 and 5
respectively.

2 Bounded Model Checking Overview

As we noted earlier, BMC [7] is an extension of traditional model checking,
which tackles the state space explosion problem by limiting the length of pos-
sible paths it considers. For programs, this usually means unrolling loops to
bounded sequences of iterations and restricting function recursion. After that,
the unrolled program p is translated to a FOL formula φ(p), which is then com-
bined with a negated security property ¬ψ(q) (also translated to a FOL formula)
and checked for satisfiability by a SAT- or SMT-solver. If φ(p) ∧ ¬ψ(q) is unsat-
isfiable, it is impossible to falsify the security property, meaning it always holds
and the program is safe w.r.t. the property. Otherwise, we get a satisfying assign-
ment for the program variables, which can be interpreted as a safety-violating
counterexample.

Tools implementing such an approach are called bounded model checkers,
and they are usually based on some kind of program intermediate representa-
tion (IR). For the C programming language LLVM IR [13] is an IR which got
a lot of traction in recent years and is widely used in bounded model check-
ers [3,15]. LLVM IR is based on a typed meta-assembler with inherent support
for static single assignment (SSA) form and various program normalization and
optimization techniques, which make development of program analyses and ana-
lyzers more convenient.

144 D. Stepanov et al.

Fig. 1. An overview of Borealis analysis pipeline

Fig. 2. A simplified predicate state definition

We decided to base our work on a bounded model checker called Bore-
alis [3], as it is open source and freely available for research and modification.
An overview of how Borealis analyzes a program is shown in Fig. 1. In order to
facilitate the support of different SMT solvers, Borealis introduces yet another
level in between LLVM IR and SMT formula, called predicate state (PS). As PS
is the cornerstone of how Borealis represents a program, let us discuss it in more
detail.

A simplified PS definition1 is shown in Fig. 2; a PS is specialized to represent
the program code in a form most suitable for BMC, i.e., fully unrolled and
simplified, retaining only essential information about the program. As far as we
know, PS also can be efficiently (de)serialized, which is required for incremental-
style analyses.

1 This is a reduced version of PS definition from [3].

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 145

2.1 Interprocedural Analysis in BMC

In its most basic form BMC is an intraprocedural analysis; everything is done
in the scope of a single function, with no consideration for function calls. This
significantly lowers the precision of the analysis (i.e., we will encounter a lot
of false positives), however, BMC still is complete modulo loops (i.e., we will
not skip a possible bug, if all loops are sufficiently unrolled). This combination
of features makes basic BMC ill-suited to be used in real-world scenarios, as
developers value low false positive rates very highly [8].

To increase precision one needs to make BMC interprocedural; the standard
approach is to implement function inlining, when full function bodies are inserted
in place of all call sites. Compared to basic BMC, inlining gives us more precise,
but also much larger formula; for many programs the resulting formula becomes
infeasible to process using existing solvers. An alternative approach would be
to introduce context sensitivity, when functions are inserted at call sites not
concretely, but abstractly, usually as some form of calling contexts—descriptions
of how function input influences its output.

Context-sensitive analysis has been used in traditional static analyses for
quite some time now; however, its use in the context of BMC has been pretty
limited. In this paper we present an approach for interprocedural BMC, based
on context sensitivity, when the calling contexts are embedded as parts of the
resulting FOL formulae; as these embeddings are much smaller compared to full
function bodies, we end up with the overall smaller formula, speeding up the
analysis process.

3 Interprocedural BMC

With inlining the analysis would proceed top-down, from the function to its
callees, inserting function bodies in the process; as a result, we would end up
with an inflated function containing all other function bodies as-is. We propose
to do the analysis the other way around—bottom-up, from the points of inter-
est (e.g., possible bug locations) to the callers, collecting information relevant to
the safety checks as calling contexts, which are stored in the corresponding PS.
The resulting formula is then analyzed using traditional BMC approach. There-
fore, our algorithm is naturally divided into 2 phases: collect phase and analysis
phase. Let us consider these phases in more detail.

3.1 Collect Phase

The collect phase does the following: given a function F and its safety prop-
erty Q, it gathers argument-specific information, which is relevant to Q, from all
call sites of F . Informally, one can say we are building an context-sensitive inter-
procedural slice of how F is used in different parts of the program (traversing
the call graph bottom-up, from the callees to the callers) and how its arguments
influence Q. Algorithm 1 outlines how we collect the context-sensitive PS State
about function call Call w.r.t. safety property query Query.

146 D. Stepanov et al.

First, we check whether we have encountered a recursive call; if we did, we
conservatively stop the collect phase and return the result. In this work we did
not consider other strategies of dealing with recursion, this is one of the most
interesting directions of possible future work.

Second, we slice the function w.r.t. current query [20], removing all irrele-
vant parts. In many cases, this slice is usable as-is; if it contains nested calls
to other functions, however, their behaviour can impact the behaviour of the
current function either implicitly or explicitly. An example of such a situation is
presented in Listing 1.1. Depending on the result of get next index function,
we may or may not have an out-of-bounds error in line 6.

To accommodate these situations, we peek inside such nested functions and
attempt to understand whether or not they impact the safety property, in
essence, locally switching to a top down call graph analysis. Once again, there
are several approaches to it; we decided to opt for an approach presented in
Algorithm 2.

In our peek-inside algorithm we also utilize slicing of the nested function,
which in this case is used to retain only parts of this function relevant to its
caller and the corresponding query. To do that, we reformulate the query in the
context of the nested call and use it to guide the process by slicing w.r.t. its
arguments and return value. However, the analysis of a nested function may
itself encounter a dependency on this function’s nested calls or recursion. Once
again, we decided to use a conservative approach, and our peek-inside algorithm
always processes only one level of calls; in the future we would like to explore
how the different values of call depth influence the analysis performance.

Last, after we have processed all nested calls, we merge their PS into the
resulting State and continue to traverse the call graph. For every use (caller)
of the function, we update the query to include the calling context: parameter-
to-argument mappings and how the function’s return value is used. The collect
phase then analyzes the caller and merges the result to the final State.

Listing 1.1. Running program example which needs alternating call graph traversal

int get_next_index(int a) {
return a + 1;

}

void print_element(int* arr , int num) {
printf("arr=%i\n", arr[num]);

}

void print_next_element(int* arr , int num) {
int idx = get_next_index(num);
print_element(arr , idx);

}

int main(int argc , char* argv []) {
int a[] = {1, 2, 3};
print_element(a, 0);
print_next_element(a, 0);
return 0;

}

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 147

Algorithm 1. High-level collect phase algorithm
INPUT: Call (function call)
INPUT: Query (query)
INPUT: State (current state)
OUTPUT: state extended with bottom-up calling context of Call

1: function collectCallingContext(Call,Query, State)
2: if isRecursive(Call, State) then
3: return State
4: end if
5: Function ⇐ getFunction(Call)
6: StateUpdate ⇐ getQuerySlice(Function,Query)
7: for all NestedCall from getNestedCalls(StateUpdate) do
8: StateUpdate ⇐ peekInto(
9: NestedCall , Query,StateUpdate)
10: end for
11: State ⇐ mergeChain(State,StateUpdate)
12: for all Use from getUses(Function) do
13: UseQuery ⇐ getCallerQuery(Use, Query)
14: UseState ⇐ collectCallingContext(
15: Use, State,UseQuery)
16: State ⇐ mergeChoice(State,UseState)
17: end for
18: return State
19: end function

Let us zoom in on the following key components of our approach.

– slicing of the target function w.r.t. query (getQuerySlice)
– transformation of the query between callers and callees (getCallerQuery,

getCalleeQuery)
– merging of different PS (mergeChain, mergeChoice)

For the slicing implementation, we utilize the facilities provided by the Bore-
alis BMC tool; it works on PS and supports slicing a given PS w.r.t. another
query PS. As far as our knowledge goes, Borealis does advanced backward
slicing [20], taking into account pointer aliasing and different interprocedural
effects (e.g., changes to a value via a pointer passed to another function); this
means such a slice is safe, i.e., it is guaranteed to retain all parts of the program
relevant to the query PS.

For the alias analysis, Borealis slicing uses implementation based on well-
known Steensgaard algorithm [19], but done over the PS instead of the original
program. The authors state this approach is safe, as the collected aliases are
sound w.r.t. target PS.

To transform the query when moving between different contexts, we employ
a simple, but efficient technique: query Q is extended with the calling context,
i.e., we add expressions binding function parameters to the call arguments, and
function return value to the call assignment (if present). This technique is very

148 D. Stepanov et al.

Algorithm 2. Nested function peek-inside algorithm
INPUT: Call (function call)
INPUT: Query (query)
INPUT: State (current state)
OUTPUT: state extended with top-down calling context of Call

1: function peekInto(Call,Query, State)
2: Function ⇐ getFunction(Call)
3: CalleeQuery ⇐ getCalleeQuery(Call,Query)
4: StateUpdate ⇐ getQuerySlice(Function,CalleeQuery)
5: State ⇐ mergeChain(State,StateUpdate)
6: return State
7: end function

similar, for example, to how the bddbddb [11] static analyzer handles interpro-
cedural analysis; all calling contexts are encoded as-is, and the reasoning is done
via an efficient binary decision diagram (BDD) implementation. In our case,
instead of BDDs we build upon SMT solvers, which are well-suited to processing
such formulae [4].

Merging information from different PS actively uses their persistent nature
and compositability. Both mergeChain and mergeChoice simplify the resulting
PS and remove redundant parts of the formula, e.g., common prefixes present in
several alternative expressions are joined into one.

3.2 Analysis Phase

After the collect phase is complete, we end up with a PS representing all call-
ing contexts interesting w.r.t. the safety property Q. This PS corresponds to a
formula of the form P0 ∨ P1 ∨ . . . ∨ Pn, where Pi represents a particular calling
context. An example of such PS for our running example from Listing 1.1 is
shown in Listing 1.2.

Listing 1.2. Resulting predicate state for the running example
(BEGIN

<OR >(
@P free_var =0

)->(
main_ %0= alloca (3,(3 * 1)),
@I main_arraydecay=gep[inbounds](main_ %0 ,0+0+0),
num=0
arr=main_arraydecay

)->(
@I idxprom=cast(+ Integer (64), num),
@I arrayidx=gep(arr ,0+ idxprom)

),
<OR >(

@P free_var =1
)->(

main_ %0= alloca (3,(3 * 1)),
@I main_arraydecay1=gep[inbounds](main_ %0 ,0+0+0),
print_next_element_num=0

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 149

print_next_element_arr=main_arraydecay1
)->(

@I get_next_index_add =(print_next_element_num + 1),
print_next_element_call=get_next_index_add

)->(
num=print_next_element_call
arr=print_next_element_arr

)->(
@I idxprom=cast(+ Integer (64), num),
@I arrayidx=gep(arr ,0+ idxprom)

)
END)

In the example, function print element is called in two distinct contexts,
and the resulting choice PS contains two alternatives corresponding to these
contexts. A synthetic variable free var is used to identify calling contexts; if
an SMT solver produces a satisfying assignment for our safety property, the
values of free var can be used to find the exact context triggering a bug.

As the resulting formula can be represented as a set of formulae joined by
disjunction, there are 2 equivalent ways of processing it via an SMT solver:
either check it for satisfiability as one large formula or check each small disjunct
separately. However, despite being equivalent from the result point-of-view, they
are very different w.r.t. performance. Our experiments show the latter way to
be more performant in practice; we speculate this to happen, because the SMT
solver needs more time to preprocess the larger formula and additional efforts
to infer the disjuncts to be completely independent of each other.

4 Evaluation

We implemented our approach as an extension to the Borealis bounded model
checker. For the evaluation benchmark, we selected several small- and medium-
sized C language projects, shown in Table 1. We analyzed these projects in three
modes: basic intraprocedural BMC (intra), BMC with full inlining (inline) and
our interprocedural BMC approach (inter)2. The resulting bug reports have been

Table 1. Benchmark projects

Name SLOC Description Github name Commit

iputils 12k Set of tools for Linux networking iputils/iputils 1ef0e4c8

progress 1k Coreutils progress viewer xfennec/progress a52b47c1

reptyr 2k Tool for “re-ptying” programs nelhage/reptyr fe7a276d

mptun 1k Multi-path tunnel VPN cloudwu/mptun 78a6a220

pit 3.5k Cmd project manager michaeldv/pit 4d205578

linenoise 2k readline replacement antirez/linenoise 2eb49568

mdp 1.5k Cmd Markdown presentation tool visit1985/mdp d697dc51

2 The test machine had Intel Core i7-4790 3.6GHz processor, 32 GB of memory, and
Intel 535 SSD storage.

150 D. Stepanov et al.

summarized into the following reference parameters: number of bugs found and
the total analysis time. The results are presented in Table 2.

Table 2. Evaluation results

Project Time (min:sec) Bugs

Intra Inter Inline Intra Inter Inline

iputils 0:57 2:29 – 467 369 –

progress 0:28 3:50 80:00 85 54 50

reptyr 0:03 1:08 105:37 130 63 43

mptun 0:02 1:05 1:53 64 11 10

pit 0:09 0:51 26:01 313 269 250

linenoise 0:02 1:35 – 117 71 –

mdp 0:58 25:44 445:39 167 82 80

We can make the following conclusions from the numbers. First, in all cases
our interprocedural approach to BMC is more precise than the naive intraproce-
dural approach and has 100% recall compared to the full inlining; i.e., for three
sets of bugs Intra, Inter and Inline, it is true that Intra ⊃ Inter ⊃ Inline3.
Second, the interprocedural mode significantly outperforms the inlining by the
analysis time in all cases except for mptun4. Third, it also manages to success-
fully analyze all seven projects, whereas inlining fails to terminate in reasonable
time on two of the seven projects (iputils and linenoise).

The results support the practical applicability of our interprocedural app-
roach, which allows one to achieve reasonable analysis time and preserve much
of the precision of inlining.

4.1 Causes of Imprecision

One of the more interesting questions is: why does our approach not achieve
the same precision as full inlining? Our approach has the following sources of
possible imprecision.

The most important reason is our handling of recursion; if we encounter a
recursive calling context, we stop the analysis without any attempts to process
the recursion. This means in some cases we will not traverse the call graph far
enough to collect information needed to prove the safety property. Inlining, on
the other hand, starts top down and can iteratively inline recursive functions
until we have collected all information needed. Another cause of differences is
that our peek-inside algorithm from Sect. 3.1 goes inside only one level, whereas
inlining does not have such a limitation.
3 This was confirmed by analyzing the full bug reports, which are omitted for brevity.
4 It is important to note that for mptun interprocedural mode finds exactly the same
bugs as inlining, while being faster at the same time.

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 151

These two reasons can be summarized as a principled decision to restrict the
scope of call graph traversal, to simplify the approach and its implementation, so
that we can quickly check its real-world applicability. In our future work we may
explore how one may surmount these limitations by traversing the call graph in
a more comprehensive and intelligent way.

5 Related Work

5.1 Craig Interpolation

In the context of BMC, there already exists several ways of interprocedural
analysis. One of the better known ones is Craig interpolation [16,18]. The main
idea of Craig interpolation lies in finding Craig interpolants; for an inconsistent
pair of formulas (B,Q) in first-order logic, a Craig interpolant is a formula I
such that:

– B → I
– (I,Q) is also an inconsistent pair of formulae
– I contains only uninterpreted symbols common to B and Q

A Craig interpolant can be built for any inconsistent pair of formulae, and mod-
ern SMT solvers can create interpolants as a byproduct of the unsatisfiability
proof. An interpolant I of a function B w.r.t. a safety property Q may be con-
sidered an approximation of B and used in place of its call sites.

However, Craig interpolation has a number of limitations; the main one is
that the pair of formulas (B,Q) must be inconsistent for the interpolant I to
exist. In the context of BMC, this means an approximation may be constructed
only if the security property always holds for a given function, which makes this
approach ill-suited for many practical applications.

5.2 External Specifications

Another approach to interprocedural analysis in BMC is to forgo automatic func-
tion approximation and instead rely on external specifications provided by the
developer. This fact is one of the main downsides to this approach, as writing
specifications for any practical program may be as difficult as writing the pro-
gram itself [14], which makes this approach very hard to use in most practical
cases.

The first approach is based on using annotating comments to describe the
behavior of different code fragments, such as functions or loops. A good example
of such an approach is the ACSL language [6], which allows to specify additional
information about the behavior of whole functions or separate statements.

An alternative to specialized comments is to use an embedded DSL to
describe program behaviour. This approach requires less integration with the
target language compiler, however, it also has less declarative power (as embed-
ded DSLs are restricted by the host language). An example of such an approach

152 D. Stepanov et al.

is the Clang analyzer [1], which uses GCC-style attributes and assert calls to
enrich the program with additional semantics.

An external DSL is the most powerful approach in the family of external
specifications. As the DSL may be custom tailored to the needs of any given
analysis, this approach is the most flexible; however, it requires development of
said DSL, which may take a lot of additional time and effort. SLIC (Specification
Language for the Interface Checking), developed by Microsoft Research [5], is
an example of such an external DSL.

5.3 Interprocedural Analysis

As we stated before, our approach may be considered an attempt to apply inter-
procedural analysis techniques from the field of program static analysis to BMC.
The classic paper [21] describes a combination of two approaches to interpro-
cedural analysis—bottom up and top down—and shows how their combination
can be used to improve analysis performance and precision. Top-down analyses
start from a set of root functions in a program and go down, bottom-up analyses
begin from interesting points inside the program and proceed up. Our approach
was heavily inspired by this idea; however, as in the BMC case full top-down
analyses end up being similar to full inlining, we adopted a localized bottom-up
strategy (as described in Sect. 3.1).

Saturn [2] was one of the first static analysis system to support interproce-
dural analysis. It achieved this via the use of procedure summaries: specifically
crafted pieces of information about function behaviour which are used when
interprocedural analysis is needed. These summaries may also be attached to
specific types, global variables, etc. However, the summaries are not universal:
every interesting function behaviour and safety property needs to be extracted
by a separate analysis. Our approach adapts to safety properties being analyzed
without the need to change existing or create new analyses.

6 Conclusion

In this paper we presented a novel approach to interprocedural analysis in the
context of BMC. The approach is based on a combined bottom-up and top-down
call graph traversal, which only collects information relevant to the given safety
property. This allows us to avoid the excessive growth of the resulting SMT
formula common to function inlining, while also achieving good precision.

We implemented the proposed approach in a prototype plugin for Borealis
BMC tool and evaluated it on a number of projects. The results showed our
approach to have positive impact on both the performance and precision of BMC;
however, there are several topics we could explore further in our future work.

References

1. Clang static analyzer. http://clang-analyzer.llvm.org/ (2019). Accessed 20 Feb
2019

http://clang-analyzer.llvm.org/

Making Bounded Model Checking Interprocedural in (Static Analysis) Style 153

2. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, pp. 43–48. ACM
(2007)

3. Akhin, M., Belyaev, M., Itsykson, V.: Borealis bounded model checker: the coming
of age story. Present and Ulterior Software Engineering, pp. 119–137. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 8

4. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 146–162. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691617 9

5. Ball, T., Rajamani, S.K., Rajamani, S., Ball, T.: SLIC: a specification language
for interface checking (of c). Microsoft Research (2002)

6. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language. Preliminary Design,
version 1.4, 2008, preliminary edn. (2008)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Christakis, M., Bird, C.: What developers want and need from program anal-
ysis: an empirical study. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pp. 332–343. ACM,
New York (2016). https://doi.org/10.1145/2970276.2970347. http://doi.acm.org/
10.1145/2970276.2970347

9. Ivancic, F., et al.: Model checking C programs using f-soft. In: 2005 IEEE Interna-
tional Conference on Computer Design: VLSI in Computers and Processors, ICCD
2005, Proceedings, pp. 297–308. IEEE (2005)

10. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

11. Lam, M.S., et al.: Context-sensitive program analysis as database queries.
In: Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2005, pp. 1–12. ACM,
New York(2005). https://doi.org/10.1145/1065167.1065169. http://doi.acm.org/
10.1145/1065167.1065169

12. Landi, W.: Undecidability of static analysis. LOPLAS 1(4), 323–337 (1992)
13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-

ysis & transformation. In: CGO 2004, pp. 75–86 (2004)
14. Leavens, G.T., Clifton, C.: Lessons from the JML project. In: Meyer, B., Woodcock,

J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 134–143. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69149-5 15

15. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++
programs using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4 12

16. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34188-5 15

17. Sharir, M., Pnueli, A., et al.: Two approaches to interprocedural data flow analy-
sis. New York University. Courant Institute of Mathematical Sciences, Computer
Science Department (1978)

https://doi.org/10.1007/978-3-319-67425-4_8
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/1065167.1065169
http://doi.acm.org/10.1145/1065167.1065169
http://doi.acm.org/10.1145/1065167.1065169
https://doi.org/10.1007/978-3-540-69149-5_15
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1007/978-3-642-34188-5_15

154 D. Stepanov et al.

18. Smullyan, R.R.: First-Order Logic, vol. 43. Springer, Heidelberg (2012)
19. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 32–41. ACM (1996)

20. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

21. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. SIGPLAN Not. 49(6), 249–258 (2014). https://doi.org/10.
1145/2666356.2594328. http://doi.acm.org/10.1145/2666356.2594328

https://doi.org/10.1145/2666356.2594328
https://doi.org/10.1145/2666356.2594328
http://doi.acm.org/10.1145/2666356.2594328

Static Taint Analysis for JavaScript
Programs

Nabil Almashfi(B) and Lunjin Lu

Computer Science and Engineering Department,
Oakland University, Rochester, MI 48309, USA

{nalmashfi,l2lu}@oakland.edu

Abstract. Web applications have become an essential component of
many different fields. As a client-side scripting language, JavaScript
is ubiquitous across the web. Malicious JavaScript code can exploit
a user’s browser, cookies, and security permissions. In this paper, we
propose a static taint analysis approach for precise detection of taint-
style vulnerabilities, such as DOM-based Cross-site Scripting (XSS), in
JavaScript programs. The approach divides sinks into contexts to ensure
that untrusted data passed to a certain context has been sufficiently sani-
tized. We reengineered TAJS resulting in a new analyzer, TAJStaint, that
adopts the new approach and uses finite state automata as its abstract
string domain in order to track tainted flows more precisely. We run
TAJStaint on a set of real Web pages and show that TAJStaint can pre-
cisely detect taint-style vulnerabilities, especially those that are caused
by insufficient input sanitization.

Keywords: JavaScript · Static analysis · Abstract interpretation ·
Taint analysis

1 Introduction

JavaScript is primarily a scripting language and a top contender in real-world
usage. It can effectively be used to write large and complex applications due to its
flexibility and power. JavaScript code is written into an HTML page and it gets
executed at the client-side. With Web applications moving towards client-side
functionality and storage, exploitable JavaScript code exposes the user and even
the system on which the program is being executed to significant damage. One
of the top JavaScript vulnerabilities is DOM-based Cross-site Scripting (XSS)
which purely occurs on the client-side. This vulnerability takes place when a
client-side script reads data from a part of the DOM that can be controlled by
an attacker and executes it as valid JavaScript code. For example, a script may
read some data from the URL which enables the attacker to construct a URL
injected with malicious JavaScript code. If the data read from the URL is not
sufficiently sanitized, this code can be executed within the user’s browser and it
can perform various harmful actions. Therefore, sufficient input sanitization is
key in preventing this attack and strengthening program integrity.
c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 155–167, 2021.
https://doi.org/10.1007/978-3-030-71472-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_13

156 N. Almashfi and L. Lu

Taint analysis is a type of analysis that detects flows of data that violate
program integrity. It is a powerful technique designed to detect security vulner-
abilities, such as DOM-based XSS, through data flow analysis. Taint analysis
identifies taint sources and follows them into sink locations, looking for a trace
from source to sink that does not pass through a sanitizer. Taint sources are
program points that can be controlled by a malicious user whereas sinks are
program points where rendered data can be interpreted as executable code.

This paper presents TAJStaint, a reengineered version of TAJS [10]. TAJStaint

is an analyzer that performs static taint analysis for JavaScript programs using
data flow analysis. Our taint analysis is context-sensitive and is capable of accu-
rately detecting taint-style vulnerabilities. The main contributions of this paper
are the following:

• We propose a static taint analysis approach for precise detection of taint-style
vulnerabilities in JavaScript programs. The analysis is based on identifying
various rendering contexts in a Web page and it ensures that the data received
from tainted sources has been sufficiently sanitized for each context.

• We use an abstract string domain based on finite state automata to handle
dynamic property accesses in order to track taint more precisely and reduce
the number of false positives.

• Finally, we test TAJStaint on a set of real Web pages and show that TAJStaint

is capable of discovering taint-style vulnerabilities that are caused by unsan-
itized or insufficiently sanitized input.

The structure of this paper is as follows. Section 2 provides a background
introduction to TAJS and Web applications. Section 3 gives a motivating exam-
ple. Section 4 describes our taint analysis approach. Section 5 describes the
abstract string domain. Section 6 presents the evaluation results of our taint
analysis. Section 7 presents related work and Sect. 8 concludes.

2 Background

2.1 TAJS (Type Analyzer for JavaScript)

TAJS is a context-sensitive analyzer for JavaScript that supports the
ECMAScript language and parts of the DOM. It infers type information as well
as call graphs. TAJS constructs flow graphs to represent JavaScript program
code and performs the analysis on the flow graphs. The analysis is designed to
be sound and is based on the monotone framework using a lattice structure. The
lattice is based on constant propagation for all the primitive types of JavaScript
values. TAJS allows the call graph to be constructed on-the-fly to handle higher-
order functions and its heap abstraction is based on allocation sites.

2.2 Web Applications

A Web application is a client-server software that can be accessed via a Web
browser. It is often a combination of server-side scripts, written in languages

Static Taint Analysis for JavaScript Programs 157

such as PHP and ASP, and client-side scripts, written in languages such as
HTML and JavaScript. Server-side scripts run on a Web server and they handle
requests from the client such as the storage and retrieval of information. Client-
side scripts render this information on a Web browser.

In a typical Web application, a user sends a request to the Web server via a
Web browser. The Web server determines the appropriate application to handle
the request. The application processes the request and carries out the task which
may include the storage or retrieval of information from a database. The appli-
cation then sends the results to the Web server and the Web server responds
back to the user with the results.

In this paper, we focus on the client-side mechanism, particularly, HTML and
JavaScript. HTML is the standard markup language that describes the structure
of Web pages. It consists of a number of HTML elements that tell the browser
how to display the content of the Web page. HTML elements are represented by
opening and closing tags. The <html> element is the root element of an HTML
page. The <head> element contains meta information about the document. The
<title> element specifies a title for the document. The <body> element contains
the visible page content. The Document Object Model (DOM) is a programming
interface for HTML representing the Web page so it can be manipulated with
a scripting language such as JavaScript. JavaScript uses the DOM to access
the document and its elements. Finally, JavaScript code is inline in a <script>
element.

3 Motivation

Figure 1 is a simple Javascript program that is prone to DOM-based XXS
attacks. It illustrates some of the challenges faced by taint analysis when dealing
with the dynamic features of JavaScript. Particularly, the program shows the
necessity of choosing the right kind of sanitizers for each rendering context. In
addition, it demonstrates how imprecise string analysis can negatively affect the
precision of taint analysis when dealing with features such as dynamic property
accesses and property lookups via the prototype-chain.

The script starts by reading the value of param that is provided in the URL,
at lines 4–5. The document object (document) is an object that represents the
Web page and it allows JavaScript to access and manipulate the document ele-
ments. The location object (location) contains information about the URL and
the property href returns the entire URL. The script then defines two construc-
tor functions G, at lines 6–8, and K, at lines 11–13, where each constructor has
one property. Constructor functions are used to create objects of the same type.
At lines 9 and 15, two object of type G and K are created respectively. At line
10, property g1 of object g is assigned the value of unsafeData which is coming
from a tainted source. The value of property g.g1 is assigned to property k1 of
constructor K which indicates that each object of K will have its own copy of
the value of k1. At line 14, the prototype of constructor K is assigned a link to
object g. When a function is created, as well as objects, in JavaScript, JavaScript

158 N. Almashfi and L. Lu

1 <html><head><title> DOM -based XSS! </title></head>

2 <body><div id="d1"></div><div id="d2"></div>

3 <script>

4 var pos = document.location.href.indexOf("param=") + 6;

5 var unsafeData = document.location.href.substring(pos);

6 function G() {

7 this.g1 = new Object ();

8 }

9 var g = new G();

10 g.g1 = unsafeData;

11 function K() {

12 this.k1 = g.g1;

13 }

14 K.prototype = g;

15 var k = new K();

16 var c = k;

17 var d1 = document.getElementById("d1");

18 d1.innerHTML = k.g1; // unsafe

19 document.write("Click

Here "); // unsafe

20 var d2 = document.getElementById("d2");

21 d2.innerHTML = encodeForJS(encodeForHTML(k.k1)); // safe

22 document.write(lookup(c, "g", "1")); // unsafe

23 update(c, "k", "1");

24 document.write(lookup(c, "k", "1")); // safe

25 </script>

26 </body></html>

Fig. 1. A JavaScript program

engine creates a prototype property and attach it to that function or object. This
prototype property holds a link to another object which also has a prototype
property that holds a link to another object and so on until we reach an object
with its prototype property set to null. When trying to access a property of
an object, JavaScript engine checks the object, the prototype of the object, the
prototype of the prototype and so on until either the property is found or the
end of the prototype chain is reached. As a consequence, Object k has access to
all properties of object g via its prototype.

The Document method getElementById() at lines 17 and 20 returns an Ele-
ment object representing the element that has the ID attribute with the specified
value. The innerHTML property at lines 18 and 21 changes the content (inner
HTML) of an HTML element. The assignment of property k.g1 to sink field
d1.innerHTML at line 18 is clearly not safe because property g1 has not been
sanitized. However, the assignment at line 21 is safe because property g1 is suf-
ficiently sanitized by using encodeJS and encodeHTML following the prevention
rules in [1], further explained in Sect. 4.1.

Static Taint Analysis for JavaScript Programs 159

1 function lookup(o, s, p) {

2 while(p.length < N)

3 p = s + p;

4 return o[p];

5 }

1 function update(o, s, p) {

2 while(p.length < N)

3 p = s + p;

4 o[p] = "";

5 }

Fig. 2. Two functions that read and update properties of obj o

The function document.write(), at line 19, is a sink function that writes to the
document stream. It writes the HTML element a to the document and initial-
izes its ID property from a tainted source. The sanitizer function encodeURI()
encodes a Uniform Resource Identifier (URI). However, this function does not
encode the single quotation mark nor the equality sign which makes it possible
for a malicious user to insert the closing delimiter, in this case the single quota-
tion mark, and add more attributes to the a element. The following string can
pass the sanitizer and add a new attribute

9’ href=’http://www.site.com

To make clear how update() and lookup() work, we briefly introduce dynamic
property access. Property names in JavaScript can be accessed using either dot
notation or bracket notation. A property p of an object o, for instance, can be
accessed as o.p or o[“p”]. The property name must be a valid identifier when
using dot notation whereas it can be a variable, or an expression using bracket
notation.

The functions update() and lookup() in Fig. 2 dynamically constructs a
property name. The function update() updates the specified property whereas
lookup() returns the property value. The value of N is an integer and is unknown
at compile time. A sound but imprecise analysis can safely approximate p at line
3 in both functions to be any string and property p would point to all properties
of object o including properties in the prototype hierarchy. In our analysis, we
use finite state automata to track all possible strings a variable might hold during
execution. Therefore, the analysis can determine that property p is represented
by gn1, excluding all other properties, when the call to lookup() is made at line
22 making it unsafe. The call to update() at line 23 will update property k1 to
an empty string making the call at line 24 safe.

4 Taint Analysis

Static taint analysis is used to test for security vulnerabilities in programs. It
tracks data coming from untrusted sources that could cause security vulnerabil-
ities and follows them into sinks ensuring that all data are sufficiently sanitized.
In this section, we describe our approach to precisely detect taint-style vulnera-
bilities.

160 N. Almashfi and L. Lu

4.1 Rendering Contexts

There are many contexts in a Web page that can be reached and set via
JavaScript execution context. A malicious user may try to attack these contexts
from within JavaScript context and insert malicious code that can cause serious
damage such as stealing user information or simply break the application display
of data. User input can be inserted into several contexts in a Web page. As a
consequence, putting untrusted data safely into each context requires following
specific rules. Some characters that may be innocuous in one context can be sig-
nificant in another context and thus it is important to determine where the user
input ends up. The most common contexts in a Web page are JavaScript Con-
text (J SC), HTML Element Context (HEC), HTML Attribute Context (HAC),
HTML Event-handler Attribute Context (HHC), HTML URL Attribute Context
(HUC), and CSS attribute Context (HCC). Any context where data is inserted
into an HTML element, such as a div element, is a HEC context. HAC con-
text includes all locations where data are inserted into HTML attributes except
event-handler and URL attributes. Event-handler attributes trigger actions in
a browser when an event occurs. For example, onclick attribute triggers some
action specified by the developer when an HTML element is clicked. A URL
attribute sets a URL inside an HTML element and CSS attributes set the pre-
sentation of an element. The following lines of code illustrates all fives contexts:

1 <SCRIPT>JSC</SCRIPT>
2 <div id="HAC" style="HCC" onclick="HHC">HEC</div>
3

All these contexts can be accesses via JavaScript context using a number of
DOM methods.

There are certain characters that need to be encoded for each context to
ensure that the attacker can not insert the closing delimiter for that context and
inject malicious code. For instance, in order to sanitize the data inserted into
a HAC context, the characters (&, <, ”, ’) have to be encoded to prevent the
exit out of the HTML attribute and attempt to add additional attributes. In a
context such as HEC, we first need to HTML encode then JavaScript encode all
characters before inserting untrusted data into the context.

4.2 Analysis Rules

TAJStaint defines a set of rules that are used to check whether the application
being tested is vulnerable. Let S1 be the set of sources, S2 be the set of sanitizers,
and S3 be the set of sinks. Each rule is of the form (S1, S2, S3) where S1 ∈ S1,
S2 ∈ P(S2), and S3 ∈ S3. Sources are either functions or object properties
that can be controlled by the attacker. For instance, the property location.hash,
which returns the anchor part of a URL, is a source. Sinks are functions or
object properties where data are rendered and can be executed. For instance,
the function document.write(), which writes some text directly to the HTML
document stream, is a sink. Sinks are classified by TAJStaint according to their

Static Taint Analysis for JavaScript Programs 161

Table 1. Encoding mechanisms required for each context

JE HE UE
JSC – – –

HEC ✓ ✓ –

HAC – ✓ –

HHC – – –

HUC – ✓ ✓

HCC – ✓ ✓

contexts. A context C ⊆ {HEC,HAC,HHC,HUC,HCC}. Sanitizers are functions
that transform data as innocuous data by encoding harmful characters so they
can be safely passed to sinks. There are a number of encoding mechanisms that
sanitizers implement.

TAJStaint expects each sanitizer R to implement one or more out of the fol-
lowing three encoding mechanisms E: JavaScript encoding (J E), HTML encod-
ing (HE), and URL encoding (UE). Formally, R ∈ P(E = {J E ,HE ,UE}).
JavaScript built-in sanitizers are recognized by TAJStaint. However, sanitizers
that are from an external encoding library can be easily added to the default
specification as a set of pairs (X,Y) where X is the function name and Y ⊆ E. In
general, JavaScript encoding serves to stop malicious Javascript code from being
executed. HTML encoding serves to castrate HTML tags which are placed in
HEC and HAC contexts whereas URL encoding performs percent-encoding for
a component of a Uniform Resource Identifier to ensure that special characters
in the component do not get interpreted as part of another component.

Based on the defined rules, TAJStaint tracks flows of data from sources to
sinks to ensure that the data has been intercepted by a set of sanitizers in the
same rule. The rules defined in TAJStaint follows the rules specified by [1], which
is summarized in Table 1, in order to determine the kind of sanitizing needed
for each sink. For the J SC and HHC contexts, the primary recommendation by
[1] is to avoid inserting untrusted data into them because encodings might not
mitigate against DOM-based XSS. Therefore, we consider all flows of untrusted
data to these contexts to be invalid.

Example: The following is an example of the way rules are defined in TAJStaint.

S1 = {document.URL, location.href }
S2 = {{encodeForJS(), encodeForHTML()}}
S3 = {document.write()}

This rule states that document.URL and location.href are two sources of taint
and that the data flowing from these sources to sink document.write() need to
by intercepted by the two sanitizers encodeForJS() and encodeForHTML().

Abstract Domain For Taint. Tainted values may go through a number of san-
itizers that implement different encoding rules. We design a new abstract domain

162 N. Almashfi and L. Lu

in order to determine the kinds of encodings a tainted value has gone through. Let
T = {HTML-encoded, JavaScript-encoded,URL-encoded}. The abstract element
HTML-encoded indicates that the value has been HTML-encoded, JavaScript-
encoded indicates that the value has been JavaScript-encoded, and URL-encoded
indicates that the value has been URL-encoded. The abstract domain for taint
analysis is P(T) ordered by ⊇. Note that the least-upper-bound operation is ∩
and the greatest-lower-bound operation is ∪. Let String be the set of all possible
strings. Define

γT (HTML-encoded) = {HE(s) | s ∈ String}
γT (JavaScript-encoded) = {J S(s) | s ∈ String}

γT (URL-encoded) = {HU(s) | s ∈ String}

Define γ : P(T) → P(String) is defined as follows:

γ(T) = ∩ { γT (t) | t ∈ T }

It can be shown that (α, γ) is a Galois connection where α : P(String) → P(T)
is defined

α(S) = { t | t ∈ T ∧ S ⊆ γT (t) }

5 Handling Dynamic Property Access

The constant propagation domain used in TAJS and other related work is very
imprecise in dealing with dynamic property access. It is common that object
properties in JavaScript hold data coming from a tainted source. Furthermore,
object properties can also store function that can manipulate data in a way
that results in tainted information being stored or read from untrusted sources.
As discussed in Sect. 3, imprecise analysis can safely approximate p in Fig. 2 to
be any string and property p would point to all properties of object o includ-
ing properties in the prototype hierarchy. However, this broad approximation
will increase the number of false positives. To overcome the loss in precision,
TAJStaint uses a precise abstract string domain in order to precisely abstract
property names.

Abstract String Domain. TAJStaint associates every string variable with a
deterministic finite automaton that denotes the set of string values the variable
can have at runtime along with a widening operator [4].

Let M1 and M2 be two finite state automata. We can define the partial order
as the following:

M1 ≤ M2
def= L(M1) ⊆ L(M2)

Static Taint Analysis for JavaScript Programs 163

where ≤ is a preorder. This induces an equivalent relation ≡

M1 ≡ M2
def= L(M1) ≤ L(M2) ∧ L(M2) ≤ L(M1)

� def= ≤/≡ that is
[M1]≡ � [M2]≡ iff L(M1) ≤ L(M2)

We use a member of an equivalent class of ≡ as its representative and will not
distinguish between [M] and M .

The abstract string domain is defined by (DFAs/≡,⊥,,�,�). DFAs/≡ is
a set of equivalent classes. The bottom element ⊥ is the empty set ∅. The top
element is the set of all strings String. The least upper bound � of M1 and
M2 is the union of the languages L(M1) and L(M2). The greatest lower bound
� of M1 and M2 is the intersection of the languages L(M1) and L(M2). The
concretization function γ : DFA → P(String) is defined as follows:

γ(M) = L(M)

The abstraction function α : P(String) → DFA is defined as follows:

α(s) = �{s ⊆ L(M)}

6 Evaluation

In order to test TAJStaint and our approach to detect taint-style vulnerabilities,
we chose two sets of benchmarks on which we run the analysis. The first set is a
test suite designed by the authors of [8] which consists of over 140 micro bench-
marks. These micro benchmarks includes a combination of basic and complex
tests. The basic tests are made simple whereas complex tests are made more
advanced in that they include tainting lexically scoped variables, tainting vari-
ables that are interproceduraly aliased, overwriting sanitizers, accessing variables
through the arguments array, and accessing tainted data through the prototype
chain. The second set of benchmarks comprises 50 real Web sites chosen from
Alexa [2]. Typically, each Web site consists of a number of pages. We randomly
choose one page from each Web site and test for vulnerabilities.

As for the first set of benchmarks, TAJStaint was able to discover all exploits
in these tests. Table 2 shows the results of running the analysis on some of the
benchmarks in the second set. The second column contains the total number
of the true positives that were found in each Web page. The third column con-
tains the number of true positives that were caused by insufficient sanitization
for the context. As the results show, there is a number of true positives in
some Web pages that were introduced because of the wrong choice of sanitizers.
Many of these true positives were the cause of using the function encodeURI() in
the wrong context. Although it is recommended that developers use a security-
focused encoding library to properly implement prevention rules, many devel-
opers rely on the built-in JavaScript encoding functions to sanitize user input
and they seem unaware of the internal implementation of each function. Figure 3
shows the analysis time needed to complete the tests for each Web page which
is still considered within practical limits.

164 N. Almashfi and L. Lu

7 Related Work

In this section, we present the work related to static taint analysis for JavaScript
programs.

Table 2. True positives found by TAJStaint

Web page True positives Insufficient sanitization

A 4 0

B 4 4

C 4 1

D 3 2

E 3 3

F 2 2

G 1 1

H 1 1

I 1 1

J 1 1

K 1 0

L 1 0

Modern browsers have taken measures to prevent cross-site scripting (XSS)
attacks. They implement a strong Content-Security-Policy (CSP) that disables
the use of inline JavaScript. CSP is an added layer of security that allows server
administrators to control resources the user agent is allowed to load for a given
page. As a developer, you can specify the CSP through a HTTP response header
called Content-Security-Policy. In the case where the site doesn’t offer the CSP
header, browsers use the standard same-origin policy. Although, using CSP helps
detect and mitigate Cross Site Scripting (XSS), security is about defense in
depth. CSP is one layer of security and preventing Cross-site Scripting Attacks
vulnerabilities requires the sanitization performed on input. In addition, server
administrators still have the ability to disable CSP, causing the site to be vul-
nerable to attacks.

Guarnieri et al. presented ACTARUS [8], a static taint analysis for
JavaScript. ACTARUS builds a static representation of the program, consist-
ing of a call graph and a pointer analysis and perform a taint analysis of
JavaScript Web applications. ACTARUS also uses a storeless view of the heap
and the data-flow analysis carried out by ACTARUS is based on the notion
of an “access path”. The abstract string domain in ACTARUS is a constant
propagation domain that tracks a single concrete string resulting in loss of pre-
cision especially when dealing with dynamic property access feature. In addition,
ACTARUS does not differentiate between different rendering contexts.

Static Taint Analysis for JavaScript Programs 165

A B C D E F G H I J K L
0

5

10

15

E
xe
cu

ti
on

T
im

e
(s
)

Fig. 3. Analysis time (seconds) in TAJStaint

Guarnieri and Livshits proposed Gatekeeper [7], a mostly static approach to
enforce security and reliability policies in JavaScript programs. These policies
are expressed in the form of succinct declarative Datalog queries. Gatekeeper
implements points-to analysis for program understanding, and uses the analysis
to detect dangerous behavior. TAJStaint is also based on a points-to analysis and
contains advanced rules to handle different contexts.

Wei and Ryder presented blended taint analysis [19] that combines static
and dynamic analysis approach. In the Dynamic Phase, a web tester interacts
with the target website and the Execution Collector collects traces of each Web
page. These traces contains some information that is not statically known such
as recorded method calls, types of created objects, etc. Finally, a subset of traces
representing the program is selected. In the Static Phase, the JavaScript code
executed is identified and a call graph is created from the recorded calls. Next, a
static taint analysis is run on the program. Finally, solutions from different page
traces are combined into a single solution for that webpage. TAJStaint is purely
based on static analysis.

8 Conclusion

The dynamic nature of JavaScript makes it prone to errors and security vulner-
abilities that can be challenging to find. The widespread popularity of javascript
requires analysis tools to be precise and effective in helping developers secure
their code. In this paper, we introduced a new approach to analyze JavaScript
programs for the detection of DOM-based XSS vulnerability. Our analysis can
detect DOM-based XSS vulnerability more precisely. Results show that what
some developers think enough sanitization may not always be the case.

References

1. https://cheatsheetseries.owasp.org/cheatsheets/DOM based XSS Prevention
Cheat Sheet.html

2. https://www.alexa.com/topsites

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://www.alexa.com/topsites

166 N. Almashfi and L. Lu

3. Almashfi, N., Lu, L., Picker, K., Maldonado, C.: Precise string analysis for
JavaScript programs using automata. In: Proceedings of the 2019 8th International
Conference on Software and Computer Applications, ICSCA 2019, pp. 159–166.
ACM, New York (2019)

4. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27813-9 25

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

6. Goguen, J., Meseguer, J.: Security policies and security models. In: Proceedings of
the IEEE Symposium on Security and Privacy (July), pp. 11–20, July 2012

7. Guarnieri, S., Livshits, B.: Gatekeeper: mostly static enforcement of security and
reliability policies for JavaScript code, pp. 151–168, January 2009

8. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable JavaScript. In: Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2011, pp. 177–187.
ACM, New York (2011)

9. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for ajax intrusion
detection. In: Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, pp. 561–570. ACM, New York (2009)

10. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

11. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser
API in static analysis of JavaScript web applications. In: Proceedings of the 8th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
September 2011

12. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: Proceedings of the 14th Conference on USENIX Security
Symposium, SSYM 2005, vol. 14, p. 18. USENIX Association, Berkeley (2005)

13. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54807-9 12

14. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking
for points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol.
7313, pp. 435–458. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31057-7 20

15. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. In: Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2009, pp.
87–97. ACM, New York (2009)

16. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Krügel, C., Vigna, G.: Cross
site scripting prevention with dynamic data tainting and static analysis. In: NDSS
(2007)

17. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
2008 ACM/IEEE 30th International Conference on Software Engineering, ICSE
2008. IEEE Computer Society, Los Alamitos, May 2008

https://doi.org/10.1007/978-3-540-27813-9_25
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1007/978-3-642-31057-7_20

Static Taint Analysis for JavaScript Programs 167

18. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2007, pp. 32–41. ACM,
New York (2007)

19. Wei, S., Ryder, B.G.: Practical blended taint analysis for JavaScript. In: Proceed-
ings of the 2013 International Symposium on Software Testing and Analysis, ISSTA
2013, pp. 336–346. ACM, New York (2013)

20. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: an
automata-based approach. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.)
SPIN 2008. LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85114-1 21

https://doi.org/10.1007/978-3-540-85114-1_21
https://doi.org/10.1007/978-3-540-85114-1_21

Generation of Testing Metrics by Using
Cluster Analysis of Bug Reports

Anna Gromova1(B), Iosif Itkin2(B), and Sergey Pavlov1(B)

1 Exactpro Systems, 2nd Yuzhnoportovy Projezd 20A Str. 4, Moscow 115088, Russia
{anna.gromova,sergey.pavlov}@exactprosystems.com

2 Exactpro Systems, Suite 3.02, St Clements House, 27 Clements Lane,
London EC4N 7AE, UK

iosif.itkin@exactprosystems.com

https://exactpro.com

Abstract. One of the most significant challenges of defect reporting is
how to compute and predict the testing metrics. Any software develop-
ment project needs certain suitable testing metrics. Cluster analysis can
be used to generate them. The interpretation of the received clusters
helps to determine explicit and implicit characteristics of software test-
ing and development.

This paper describes several software solutions for clustering bug
reports. We have extracted bug reports related to three open-source
JBOSS projects and experimented using that data. Our experiments
demonstrate that effective results can be achieved in the area of defect
clustering. We provide the results achieved by using two clustering algo-
rithms: k-means and EM. Our research shows that the usage of the EM
algorithm generates more detailed information about the specifics of the
project than the usage of the k-means algorithm. So, EM gives a possi-
bility to create more diverse testing metrics suitable for project needs.

Keywords: Defect management · Bug report · Cluster analysis ·
Testing metrics

1 Introduction

According to a review of research conducted in the area of software defect report-
ing [31], predicting the testing metrics is currently one of the key problems in the
field. In this work, testing metrics are different from the test coverage metrics. A
group of testing metrics can be used to build a dashboard that project managers
or analysts review on a regular basis to maintain quality assessments, expert
opinions, and development and testing strategies. Testing metrics are the stan-
dard of measurement of the defect management process. There are many kinds
of metrics for testing: time to fix, which defects get reopened, which defects get
rejected, which defects get fixed, etc. The reviewed research has been mainly
aimed at predicting them. The ability to predict certain testing metrics should

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 168–181, 2021.
https://doi.org/10.1007/978-3-030-71472-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_14

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 169

result in getting a clearer picture of the risks associated with software defects,
which is something the project managers strive for. However, such metrics should
be generated according to project specifics. Such specifics occur due to the char-
acteristics of the software development cycle, the proprietary and the domain
aspects of the project.

This challenge can be resolved by conducting defect analysis because, on the
one hand, software weaknesses manifest themselves through defects while, on
the other hand, discovered and missed defects attest to the quality of testing.
However, it is not enough to evaluate only the statistical data such as priority,
resolution distribution or the number of reopened bugs, etc. This is due to the
fact that certain project characteristics can have some implicit dependencies.
For example, software defects found in some area of functionality under test can
require longer time to resolve, and it can affect the release policy, the testing
strategy, etc.

Cluster analysis helps to resolve this problem. A separate analysis of each
cluster helps to discover certain software development and testing problems or
some atypical situations. Testing metrics should allow tracking such problems
and/or situations to solve and/or prevent them.

This work extends our previous work on defect report clustering, in which
we only experimented with the k-means clustering algorithm and the Silhouette
and the Davies-Bouldin indexes [8]. In that work, we didn’t create any recom-
mendations about testing metrics, but only worked on cluster interpretation. In
contrast to our previous work, we have used the EM clustering algorithm in this
paper. We have substantiated the number of clusters by calculating Akaike and
Bayes information criteria. We have processed new projects, corrected the list
of attributes and ways to preprocess them. Our experimental data consists of
6,308 defect reports derived from three open-source projects related to JBOSS
software. In addition, this time we have not obfuscated the real values for all bug
attributes, so the results of our work presented in this paper are more under-
standable and meaningful. This work also presents the testing metrics that can
be helpful in testing and project management.

We claim the following contribution in this work:

– The approach to generation of testing metrics via clustering of defect reports.
– Enhancement of a set of attributes of defect reports.
– Empirical comparison of different clustering algorithms for the considered

task.

The remainder of this paper is organized as follows: in Sect. 2, we present
an overview of the related work; in Sect. 3, we describe the structure of a defect
report; in Sect. 4, we outline the process of clustering. Further, in Sect. 5, we
present the results of experimental evaluations of this technique; Sect. 6 discusses
threats to validity, and Sect. 7 comprises our conclusions.

170 A. Gromova et al.

2 Related Work

There are many researchers who deal with testing metrics predictions. This topic
is important for open-source projects due to the fact that such projects use bug
tracking systems (BTS) where bug reports can be posted by anyone. Effectively,
triaging bug reports is key to saving the time spent on addressing the defects.
Zimmerman et al. propose to predict defect reopening [34]. They analyse com-
ments, description, time to fix and the components describing the defects. Weiss
et al., Giger et al. and Marks et al. try to predict time to resolve [6,16,32]. They
consider a set of various attributes in order to evaluate significant factors. Guo
et al. investigate the particulars affecting which defects get fixed [10]. Yang et
al. propose to predict high-impact bugs which appear at an unexpected time or
location and cause more unexpected effects or break some pre-existing function-
alities and destroy the user experience [33]. Due to the fact that only a small
proportion of defects are high-impact ones, the researchers use imbalanced data
learning strategies. In order to resolve this task, they use two combinations: the
synthetic minority over-sampling technique + K-nearest neighbours and random
under-sampling + naive Bayes. Sabor et al. propose to predict bug severity [28].
They used stack-trace data in order to identify the severity level.

Defect clustering is described in a variety of academic papers. It is a popular
method for defining duplicates of defect reports [18], because clustering can
help to determine text characteristics [27]. Clustering the defects according to
a calculated bug duration can help to plan the testing workload [19]. Cluster
analysis also helps to triage and fix defects via aggregation of bug-reports [5,15].
Hammad et al. propose to use agglomerative hierarchical clustering in order to
identify the related bugs [1]. The researchers analysed such text attributes as
summary and description. The majority of them retrieve text data from bug
reports and miss other important boolean, numeric and categorical attributes
of software defects. As in the case of predicting the testing metrics, the tasks of
clustering are aimed at triage improvement.

A review of the related work demonstrates the importance of the task
of metrics prediction. The aforementioned researchers have analysed different
attributes of defect reports and have evaluated how they can influence the met-
rics. However, it is not yet obvious which testing metrics are more suitable
for which software development projects. When dealing with thousands of bugs,
this task is not easy as it requires discovering the necessary non-trivial indicators
which can characterize the project from a new perspective. In our previous work,
we proposed using cluster analysis in order to determine the project peculiarities.
In this work, we are considering how these discovered dependencies calculated
by different clustering algorithms based on an improved set of attributes can
help generate the testing metrics.

3 Background

Each bug report can be presented as a set of attributes. Bug reports were down-
loaded as XML files from the JIRA bug-tracking system. The defect dataset is

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 171

presented as follows: D = {d1, d2, . . . dj , . . . dn}, where dj is a defect, n is the
number of defects in the project.

For resolving a given task, each defect was described by the following
attributes: dj = {Priority, Resolution, was reopened, Time To Resolve, Count
Of Attachments, Count Of Comments, Area1, . . .Areak}, where k is the number
of defined areas of testing. We propose to use only closed and resolved defects
because only such bugs have the values of Resolution, Time to resolve, Count of
attachments, Count of comments, etc., known for a fact. For defects that have
not been closed or resolved, the values of these attributes are indefinite.

The improved list of attributes with their descriptions is presented below.
“Priority” attribute has an ordinal data type, and it is an absolute classifica-

tion [14]. It includes such values as “Blocker”, “Critical”, “Major”, “Minor”,
“Optional”, “Trivial”. This data should be mapped to integer values [14].
The “Resolution” attribute is a categorical variable. Its values are “Cannot
Reproduce”, “Done”, “Duplicate Issue”, “Explained”, “Migrated to another
ITS”, “Out of Date”, “Rejected”, “Resolved at Apache”, “Unresolved”, “Won‘t
Fix”. The “Resolution” values should be converted to indicator variables [22].
“Was reopened” is a boolean attribute and is an indicator of how thoroughly
the bug is described [30]. If a defect was reopened once, the attribute equals 1.

Time to resolve (TTR), count of comments and count of attachments are
numeric attributes. All of them should be normalized via the zero-mean normal-
ization (standardization) in order to resolve the problem of attributes having a
variance that is orders of magnitude larger than others, which might dominate
the objective function and distort results. This method standardizes the features
so that they are centered around 0 with a standard deviation of 1. The samples
are calculated as follows: z = (x − μ)/σ, where μ is the mean, and σ is the
standard deviation from the mean. These attributes are important indicators
[12]. Time to resolve is an indicator of how expensive a bug report is. Plenty of
comments is an indicator of insufficient defect description.

Area of testing is a boolean attribute, and it’s a group of software compo-
nents. If a defect belongs to this area, then attribute is equal to 1. Area of testing
can be calculated via text fields classification, like Summary and Components
[7], or via using regular expressions.

4 Approach

4.1 Objects

We extracted 6,308 bug reports of JBOSS projects from the JIRA BTS [26].
These projects are Application Server 7 [23] (AS7), JBoss Enterprise SOA
Platform [25] (SOA) and JBoss Enterprise Application Platform 6 [24] (AP6).
JBOSS is a popular instrument for building software applications. It is devel-
oping dynamically and includes a lot of useful components. JBOSS is an open-
source project community, so defect reports extracted from JBOSS are available
to anybody, which helps to reproduce the results of the approach. Some brief
information about these projects is presented in Table 1.

172 A. Gromova et al.

Table 1. Projects information

AS7 SOA AP6

Number of defects 2944 2298 1066

Number of areas of testing 15 10 15

Number of reopened defects 253 510 408

Time to resolve: min/max/mean 0/1792/39.535 0/1354/118.827 0/609/112.282

Count of attachments: min/max/mean 0/15/0.215 0/13/0.327 0/17/0.280

Count of comments: min/max/mean 0/83/2.909 0/34/4.535 0/126/7.280

The distribution of defect reports of projects is presented in Figs. 1, 2.

(a) AS7 (b) SOA (c) AP6

Fig. 1. Distribution of defect reports by the “resolution” attribute

As can be seen from Fig. 1, defects with some resolutions are really rare,
and new dummy features for these values will be useless. So, after one hot
encoding, we need to create new variables which include rare values. For exam-
ple, for project SOA, we create a new variable “Resolution Out of Date new”
that includes values “Resolution Out of Date”, “Resolution Deferred”, “Resolu-
tion Partially Completed” and a new variable “Resolution Won‘t Fix new” that
includes values “Resolution Won‘t Fix”, “Resolution Cannot Reproduce”, and
“Resolution Incomplete Description”. Similar transformations were made for
projects AS7 (new variables “Resolution Won‘t Fix new” and “Resolution Out
of Date new”) and AP6 (new variables “Resolution Won‘t Fix new” and “Res-
olution Migrated new”).

According to Fig. 2, each bar chart includes an “Other” value. This value
corresponds to the defects that have rare components or an unfilled field.

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 173

(a) AS7 (b) SOA (c) AP6

Fig. 2. Distribution of defect reports by the “area of testing” attribute

4.2 Clustering

Clustering task is to construct the set C = {c1, c2, . . . ck, . . . cg} where ck is the
cluster that contains similar objects from dataset D. For clustering, we used
k-means and EM algorithms. Therefore we compared the results received from
applying both algorithms for the three projects.

K-means helps to divide the points into clusters, so that the distances between
the different points in each cluster are minimized. The number of clusters in this
method should be predefined in advance. This helps the algorithm to build the
clusters’ centroids. The algorithm starts by selecting random centroids, then it
calculates distances between these centroids and the other points. After that, the
points are assigned to clusters according to the calculated distances. Then, the
algorithm recalculates the centroids and the distances. This procedure repeats
until all the data points end up in the same clusters as in the previous iteration.
The K-means algorithm has its advantages. It is faster than other algorithms (for
example, hierarchical clustering), especially if there is large number of variables.
In addition, it is conceptually simple and can be used in a broad number of
different scenarios [11].

The EM algorithm consists of two steps: an expectation (E) step and a max-
imization (M) step. The E step calculates an expectation of the likelihood by
including the latent variables as if they were observed, and the maximization (M)
step calculates the maximum likelihood estimates of the parameters by maxi-
mizing the expected likelihood found at the last E step. The parameters found
at the M step are then used to begin another E step, and the process is repeated
until convergence. We used EM because cluster assignment is much more flexible
in this algorithm than in k-means [3].

Also, we substantiated the number of clusters. We used the following criteria:
the silhouette method for k-means, Akaike and Bayes information criteria for
EM.

174 A. Gromova et al.

The Silhouette index allows to estimate the count of received groups (clusters)
[4]. The optimal number of clusters in this method is proved to be the maximum
value of the calculated indexes. Silhouette index is calculated for each point
according to its membership in any cluster:

SIi =
bi − ai

max(bi, ai)
(1)

Where ai is the average distance between point i and all other points in its
own cluster, bi is the minimum of the average dissimilarities between i and points
in other clusters. For Cluster Ck the mean silhouette is calculated as follows:

Sk =
1
n

∑

i∈I

SIi (2)

where n is the total number of points in cluster. The global silhouette index is
calculated as follows:

C =
1
K

K∑

k=1

Sk (3)

where K is the count of clusters.
Increasing the number of clusters in the EM model results in an increase in

the dimensionality of the model, causing a monotonous increase in its likelihood.
In order to avoid a situation when every data point is the sole member of its
own cluster, an Information Criterion is used for selection among models with
different number of parameters. It seeks to balance the increase in likelihood
due to additional parameters by introducing a penalty term for each parameter.
Akaike’s Information Criterion (AIC) [2] and Bayesian Information Criterion
(BIC) [29] are widely used for this.

The results of the validity criteria for k-means and EM are presented in
Figs. 3, 4.

(a) AS7 (b) SOA (c) AP6

Fig. 3. Results of the validity criteria for k-means

According to the received results, the optimal count for clustering of this
data from project AS7 is 3 and 15, from project SOA is 3 and 11, and from
project AP6 is 4 and 11.

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 175

(a) AS7 (b) SOA (c) AP6

Fig. 4. Results of the validity criteria for EM

All calculations including data extracting, data preprocessing and data clus-
tering were made with Python and its libraries such as pandas [17], scikit-learn
[21], numpy [20] and scipy [13].

5 Results

5.1 The Received Clusters

We calculated the centroids of clusters for k-means and the mean values of
clusters for EM for the three projects. All materials including the datasets, the
source code and the received clusters are hosted on Github [9].

According to zero-mean normalization, any value that is lower than 0 is lower
than the mean value; any value that is higher than 0 is higher than the mean
value. Therefore, the defects that have the “Time to resolve”, the count of attach-
ments and the count of comments lower than 0 can be called “inexpensive-to-
resolve”, since they don’t require a lot of human input or investment of time. At
the same time, if the “Time to resolve”, the count of attachments and the count
of comments are higher than 0, then we can consider these defects “expensive-
to-resolve” because the process of their fixing is resource-heavy.

Generally, k-means identifies three main clusters of bugs for the projects
under consideration. The first cluster is “inexpensive-to-resolve” defects. The
majority of defects belonging to this cluster has a “Major” priority and a “Done”
resolution. This cluster is the largest. The second cluster contains the “longest-to-
resolve” defects. The majority of defects belonging to this cluster has a “Minor”
priority and an “Out of Date” or a “Migrated to another IS” resolution. The last
and smallest cluster contains the bugs with a large number of collateral comments
and attachments. The priority of these defects is “Major” or “Blocker”, and their
time to resolve is longer than the mean. The resolution of this cluster may vary
and includes such values as “Rejected”, “Migrated to another IS”, “Won’t Fix”.
K-means clusters don’t have a definite area of testing. The algorithm helps to
determine the potentially problematic bugs, i.e. the defects that require human
and time resources. But K-means clusters are too large and don’t produce a
“fingerprint”.

In contrast to K-means, the EM algorithm identifies more clusters, and they
are more detailed. We revealed the following types of bugs:

176 A. Gromova et al.

– “inexpensive-to-resolve”,
– “longest-to-resolve”,
– “expensive-to-resolve”,
– “invalid”,
– “underestimated”.

Below, we consider the essence of each cluster type in order to demonstrate
what outputs can be made, based on clustering.

Half of the calculated clusters are “inexpensive-to-resolve” defects. The dif-
ference between defects that belong to these clusters is in the area of testing.
The majority of such bugs belonging to this cluster has a “Major” priority and
a “Done” resolution. Just like with K-means, these clusters are the largest.

A quarter of the received clusters is made up of “expensive-to-resolve”
defects. These clusters are small. They have a high value of “Time to resolve”
and a large number of collateral comments and/or attachments.

Similar to K-means, the EM algorithm has identified clusters of “longest-
to-resolve” defects as well. In case of, these clusters are characterized by such
resolutions as “Out of date” or “Migrated to another IS”. According to the clus-
tering results, an extremely high value of “Time to resolve” can be a consequence
of irrelevant or outdated defects.

There are few clusters of “underestimated” defects. They have a “Done”
resolution, but they have been reopened before. It is important to mention that
reopened bugs can be rare, or the reasons for their reopening can be more trivial
than the problem of the defect fixing process. But the “Time to resolve” value
is high for this cluster, which means that they have not been reopened suddenly
or accidentally. The “underestimated” bugs belonging to this cluster have a
“Major”, “Critical” and “Blocker” priority.

Finally, there are few clusters of “invalid” bugs. They have a low value of
”Time to resolve”, a small number of collateral comments and attachments and
such resolutions as “Won’t Fix”, “Rejected” and “Duplicate”. So these defects
can be considered “invalid” from the point of view of bug fixing. The resolution
on them is taken instantly and without additional discussions between devel-
oper(s) and QA engineer(s).

It is important to mention that each cluster corresponds to a certain area
of testing. For example, “invalid” bugs are connected to documentation and
configuration. Such defects occur because of misinterpretation of specifications
or incorrect environment settings on the part of QA engineers.

5.2 Generating Metrics via Cluster Interpretation

Through knowledge of the clusters’ “fingerprints”, the project managers and
QA team leads can generate new testing metrics. Based on the received EM
clusters, we distinguished the following testing metrics that are most essential
for designing the testing and the development strategies:

1. The number of underestimated defects. Underestimated defects are
important because they can lead to a situation when a Critical or a Blocker

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 177

bug can persist in the system for a long time and undermine software quality.
It is quite important to discover potential root causes of such situations.

2. The number of expensive-to-resolve/inexpensive-to-resolve defects.
The Project Manager can change the release decision when he or she knows
that a bug could be fixed within a certain time period. Knowing that, they
can either include this software feature into the next version of the software
or exclude it from the next version. This decision can be made due to the
knowledge of the number of expensive-to-resolve and inexpensive-to-resolve
defects.

3. The number of “invalid” defects. A high number of invalid defects can
help to evaluate the quality of testing. It can be useful to discover the areas
of testing where such defects can occur, in order to create recommendations
for QA engineers.

We excluded the “outdated” (aka “longest-to-resolve”) defects, because it is
quite difficult to predict possible software components which will become irrel-
evant for the current development tasks. We also excluded the “accidentally
reopened” defects because it is problematic to forecast the potential human ele-
ment in the testing process.

We investigated the characteristics of each cluster and built a scheme that
explains how metrics can be generated based on cluster specifics. The scheme is
presented in Fig. 5.

6 Threats to Validity

Threats to External Validity. While our experiments were designed to
demonstrate the usefulness of our approach of clustering defect reports produced
by different bug tracking systems, our results may not generalize to practice. For
example, our approach may not generalize to all BTS defect reports because we
have only considered JIRA projects. In order to mitigate this threat, we selected
defect attributes that are commonly used across many BTSs. They are not spe-
cific or belong to custom settings.

Threats to Internal Validity. These threats concern the changeability of
values of defect attributes. The chief threat here concerns the quality of the
data. The values, as submitted into the bug database, are not tracked during
the issue. In order to mitigate this threat, we selected only closed and/or resolved
defect reports because their values are set and are less likely to be changed. So,
we analyse the “final” statement of defect reports. But in our future work, we
are also planning to investigate the problem of defect report changes during the
bug life cycle.

178 A. Gromova et al.

Fig. 5. Generation of testing metrics

7 Conclusion

This paper is devoted to the clustering of software defects.
We propose to use cluster analysis of defects before predicting the testing

metrics. Cluster analysis helps to understand the nature of software defects and
determine new testing metrics or improve the existing ones. Our proposal is
proven by the experiment conducted with three JBOSS projects. Clustering of

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 179

the defects extracted from these projects allows seeing new possibilities in the
generation of testing metrics. Project managers and QA team leads can use the
metrics that are most suitable for any particular characteristics of their projects,
which make up the calculated cluster’s “fingerprints”. It can be more useful than
using any of the default metrics. Calculation and prediction of these metrics can
influence the release policy and the testing strategy. Thus, project participants
can change the release composition or the library composition for regression
testing.

We have used two clustering algorithms. The K-means allows conducting a
brief review of the project, while the EM allows getting a detailed picture. We
have also substantiated the number of clusters. For clustering, we improved the
set of defect attributes. Using the enhanced attribute set helps to consider the
clusters in-depth.

In the nearest future, we plan to analyse not only snapshot data, but also
data in the context of dynamic changes. It will allow us to discover more complex
dependencies.

References

1. Ahmed, A., Ghazali, R.: An improved self-organizing map for bugs data cluster-
ing. In: 2016 IEEE International Conference on Automatic Control and Intelligent
Systems (I2CACIS), pp. 135–140. IEEE (2016)

2. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hiro-
tugu Akaike. Springer Series in Statistics (Perspectives in Statistics), pp. 199–213.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1694-0 15

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

4. Desgraupes, B.: Clustering indices. Univ. Paris Ouest-Lab Modal’X 1, 34 (2013)
5. Fry, Z.P., Weimer, W.: Clustering static analysis defect reports to reduce mainte-

nance costs. In: 2013 20th Working Conference on Reverse Engineering (WCRE),
pp. 282–291. IEEE (2013)

6. Giger, E., Pinzger, M., Gall, H.: Predicting the fix time of bugs. In: Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engi-
neering, pp. 52–56 (2010)

7. Gromova, A.: Defect report classification in accordance with areas of testing. In:
Itsykson, V., Scedrov, A., Zakharov, V. (eds.) TMPA 2017. CCIS, vol. 779, pp.
38–50. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71734-0 4

8. Gromova, A.: Using cluster analysis for characteristics detection in software defect
reports. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp.
152–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4 14

9. Gromova, A.: Defect clustering. Github repository (2019). https://github.com/
AnkaGromova/DefectClustering/. Accessed August 2019

10. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and pre-
dicting which bugs get fixed: an empirical study of Microsoft windows. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering,
vol. 1, pp. 495–504 (2010)

https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-3-319-71734-0_4
https://doi.org/10.1007/978-3-319-73013-4_14
https://github.com/AnkaGromova/DefectClustering/
https://github.com/AnkaGromova/DefectClustering/

180 A. Gromova et al.

11. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. JSTOR Appl. Stat.
28(1), 100–108 (1979)

12. Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: Proceedings of
the Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, pp. 34–43 (2007)

13. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/

14. Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T.: Comparing mining algo-
rithms for predicting the severity of a reported bug. In: 2011 15th European Con-
ference on Software Maintenance and Reengineering, pp. 249–258. IEEE (2011)

15. Limsettho, N., Hata, H., Monden, A., Matsumoto, K.: Automatic unsupervised bug
report categorization. In: 2014 6th International Workshop on Empirical Software
Engineering in Practice, pp. 7–12. IEEE (2014)

16. Marks, L., Zou, Y., Hassan, A.E.: Studying the fix-time for bugs in large open
source projects. In: Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, pp. 1–8 (2011)

17. McKinney, W., et al.: Data structures for statistical computing in Python. In:
Proceedings of the 9th Python in Science Conference, Austin, TX, vol. 445, pp.
51–56 (2010)

18. Minh, P.N.: An approach to detecting duplicate bug reports using n-gram features
and cluster chrinkage technique. Int. J. Sci. Res. Publ. (IJSRP) 4(5), 89–100 (2014)

19. Nagwani, N.K., Bhansali, A.: A data mining model to predict software bug com-
plexity using bug estimation and clustering. In: 2010 International Conference
on Recent Trends in Information, Telecommunication and Computing, pp. 13–17.
IEEE (2010)

20. Oliphant, T.E.: A Guide to NumPy, vol. 1. Trelgol Publishing USA, Austin (2006)
21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
22. Raschka, S.: Python Machine Learning. Packt Publishing Ltd., Birmingham (2015)
23. Red Hat: Application Server 7 getting started guide. https://docs.jboss.org/

author/display/AS7. Accessed 21 Aug 2019
24. Red Hat: Product Documentation for JBoss Enterprise Application Plat-

form 6. https://access.redhat.com/documentation/en-us/red hat jboss enterprise
application platform/6/. Accessed 21 Aug 2019

25. Red Hat: Product Documentation for JBoss Enterprise SOA Platform 5. https://
access.redhat.com/documentation/en-us/jboss enterprise soa platform/5/.
Accessed 21 Aug 2019

26. Red Hat: System Dashboard. https://issues.jboss.org/secure/Dashboard.jspa.
Accessed 21 Aug 2019

27. Rus, V., Nan, X., Shiva, S.G., Chen, Y.: Clustering of defect reports using graph
partitioning algorithms. In: SEKE, pp. 442–445 (2009)

28. Sabor, K.K., Hamdaqa, M., Hamou-Lhadj, A.: Automatic prediction of the sever-
ity of bugs using stack traces. In: Proceedings of the 26th Annual International
Conference on Computer Science and Software Engineering, pp. 96–105 (2016)

29. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

30. Shihab, E., et al.: Predicting re-opened bugs: a case study on the eclipse project.
In: 2010 17th Working Conference on Reverse Engineering, pp. 249–258. IEEE
(2010)

31. Strate, J.D., Laplante, P.A.: A literature review of research in software defect
reporting. IEEE Trans. Reliab. 62(2), 444–454 (2013)

http://www.scipy.org/
https://docs.jboss.org/author/display/AS7
https://docs.jboss.org/author/display/AS7
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/6/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/6/
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/
https://access.redhat.com/documentation/en-us/jboss_enterprise_soa_platform/5/
https://issues.jboss.org/secure/Dashboard.jspa

Generation of Testing Metrics by Using Cluster Analysis of Bug Reports 181

32. Weiss, C., Premraj, R., Zimmermann, T., Zeller, A.: How long will it take to fix this
bug? In: Fourth International Workshop on Mining Software Repositories (MSR
2007: ICSE Workshops 2007), p. 1. IEEE (2007)

33. Yang, X.L., Lo, D., Xia, X., Huang, Q., Sun, J.L.: High-impact bug report iden-
tification with imbalanced learning strategies. J. Comput. Sci. Technol. 32(1),
181–198 (2017)

34. Zimmermann, T., Nagappan, N., Guo, P.J., Murphy, B.: Characterizing and pre-
dicting which bugs get reopened. In: 2012 34th International Conference on Soft-
ware Engineering (ICSE), pp. 1074–1083. IEEE (2012)

Building an Adaptive Logs Classification
System: Industrial Report

Kirill Rudakov1, Andrey Novikov2(B), Anton Sitnikov3, Eugeny Tsymbalov4,
and Alexey Zverev5

1 Faculty of Computer Science, High School of Economics, 20 Myasnitskaya str.,
101000 Moscow, Russia

2 SynData.io, 30a Leninskiy Avenue, 119334 Moscow, Russia
andreyn@syndata.io

3 Exactpro Systems, 71 Vazha Pshavela Avenue, Block 8, floor 4, Office 27,
0186 Tbilisi, Georgia

4 Skolkovo Institute of Science and Technology, 3, Nobelya str.,
121205 Moscow, Russia

5 Exactpro Systems, St Clements House 27, Clements Lane, London EC4N 7AE, UK

Abstract. This article outlines experience of instrumental log analy-
sis performed by industry QA company aimed at discovery of system
abnormal behaviour by early traces in its logs. Addressed issues include
dealing with massive logs, log line polymorphism, choosing appropriate
cluster size, stability of clusters while adding new logs, linking machine-
generated clusters to human understanding of “same type” and keeping
the system output clearly understandable.

1 Introduction

Testing high-load Fintech systems is a complex task, taking into attention fre-
quent code modification, parallel and concurrent execution, and massiveness of
traces produced. However, the financial and reputational impact of risks associ-
ated with undiscovered errors motivates for using every opportunity for effective
QA.

One of the majorly used approaches is Passive testing, where natural system
behavior (in production load or test environment) is observed by its traces, which
are analyzed 1) to check compliance with expectations and 2) to get a human
understanding of what is happening in the system.

In the area of code error discovery, a promising technique is to observe the
error (STDERR or alike) output produced by the system, as intuitively it should
contain traces of a considerable percentage of errors, including those not yet
known to users or testers. This is especially true for new errors, previously never
appeared and therefore immune to regression testing.

Challenges here are all around logs massiveness - typically up to millions of
log lines per working day. Still, a human QA engineer would argue that not all
of these logs may be of interest, and many of log lines represent essentially same

c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 182–194, 2021.
https://doi.org/10.1007/978-3-030-71472-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_15

Building an Adaptive Logs Classification System: Industrial Report 183

information, though looking different and not easily associated by an analyzing
algorithm.

In this paper, we discuss the experience gained and decisions taken while
designing an industrial error log analysis system used to analyze logs produced
by multiple Fintech high-load distributed applications (clearing and settlement).
We address the above-mentioned challenges and describe the final system design
as it is used after a lengthy try-and-adapt process.

2 Literature Overview

Modern large-scale systems describe their current state, the errors and warnings
within the log that arise from the various parts of the system pipeline [1,2]. The
amount and quality of generated logs vary depending on the application, and so
the means of processing and analysis differ.

Most of the log processing pipelines start with a pre-processing, with a goal
of preparing the raw data for further analysis by cleansing, filtering and unifying
the internal representation for the other parts of the pipeline [2,3]. If the further
problem in hand allows for a thorough offline analysis, one can use the template
extraction [4–6] and various NLP (natural language processing) techniques, such
as in [7], where the task of separating a template from variables is considered
as sequential data labeling. Various embedding techniques, such as word2vec [8]
and its variations [9] may also be applied [10].

In a large-scale application, online approaches are used to provide shallow
analysis, e.g., to detect anomalies, extract source or classify the logs. The algo-
rithm called “Spell“proposed in [11] is one of the streaming-type algorithms that
utilize the longest common subsequence approach. Another streaming algorithm
based on Fixed Depth Tree for online log processing is proposed in [12,13]. It
uses directed acyclic graphs to divide massive logs to disjoint log groups.

There are several approaches focused on log data enrichment, starting from
the semi-supervised approach [14] with a language model and topic modeling as
the tools for rapid processing, up to suggestions to log message improvement in
the code [15,16], as this affects the quality of analysis significantly [17].

A thorough analysis of existing solutions for parsing logs can be round in
review [18], where research and production tools were analyzed. According to
the report, many algorithms successfully cope with the presentation of unstruc-
tured logs in a structured manner, provided that the message structure is simple.
However, as the complexity of the log structure increases, the quality of separat-
ing template parts of the messages from the parameters drops significantly, which
means that the universal algorithm able to adapt to an arbitrary message struc-
ture is yet far from reality. Moreover, the authors note that the most significant
bottleneck in log analysis systems is slow performance of parsing algorithms.

Typical applications of logs analysis include the error analysis [19], system
behavior understanding [20], diagnostics of failures [15], and detection of anoma-
lies [21].

For anomalies search, there are three categories of methods generally
used: PCA-based approaches [22], invariant mining-based methods [23,24], and

184 K. Rudakov et al.

workflow-based methods [25]. A comprehensive review of the existing methods
of searching for anomalies based on log analysis may be found in [26], where an
attempt to formalize the process of searching for anomalies starting with parsing
of raw logs received from the system was made.

Recently, the methods based on deep learning have been actively used for log
analysis [9,21,27]. Neural networks here emerge as a promising tool for fast and
efficient anomaly prediction and log classification.

This paper describes a practical attempt to analyze massive amounts of logs
for QA purposes and build a framework which is simple yet robust enough to pro-
vide test engineers with understanding of system states, behaviour and changes,
as well as to provide insights on what components and modules require deeper
testing and investigation at the moment.

We describe a number of approaches tried - from the naive approach of
classifying raw log to three-layered data processing with parameters adjustment
to make clustering “good” from QA engineer point of view and compact enough
to make it observable.

This work aims at providing practical insight into what worked and what did
not, in application to the particular task of discovering new record types and
having informed control of the system behavior.

3 Business Context and Task

Our target user is a QA engineer/manager responsible for the correct operation
of a financial transactions system (trade, post-trade, or both) or its part. The
user reviews the logs during routine work on bug investigation and understands
the nature of most of the messages. However, due to the massiveness of logs,
it would be impossible to review the logs as a whole to get insight on what is
happening in the system.

To facilitate human understanding of logs, we introduce a notion of “error
class”. An error class is a set of log lines meaning essentially the same in human
understanding. Specific lines in class may differ by timestamps, IP addresses,
and other parameters. Sometimes a difference of messages within an error class
is substantial:

– Developers may change error output between versions
– Error descriptions produced by same code may come with different number

of parameters
– Some parameters are hard to universally tokenize, such as IDs that may look

much like IP addresses, or words. or number or a mixture.
– Sometimes absolutely different log lines mean the same for the QA engineer,

as they are traces of one situation.

If error classes are perfectly distilled, an engineer will mark some (usually
most) of them as “not interesting” as they normally appear, for example, on
system start. Others will be well known to him, and others will be new.

Building an Adaptive Logs Classification System: Industrial Report 185

A minimally viable product should allow answering the following questions:

– What new error classes (not known before) appeared today?
– What is the general picture of the day - what error classes appeared and how

many instances of each?
– What is the story of a particular error class - first appearance, basic appear-

ance statistics over time?

In the following parts of this article, we describe means and decisions to grasp
the error class through clusterization as close to human understanding of error
classes as possible.

As the primary result, we come to clusterization providing clusters that are:

– Stable over time. When we add logs from next days and update clusters, we
need to be sure that Cluster X today is the same error as Cluster X two weeks
ago.

– Big enough to make engineer work doable, even with million log lines per day.
– Close to human understanding of error classes. An error class may span across

several machine-generated clusters, but not vice versa.

In the closing part of this article, we describe the functioning of a resultant
clustering-based tool used by QA engineers to explore the error logs.

4 Data Structure

In this chapter, we describe the log structure from both applications that our
tool is working with.

For experiments, we retrieved two datasets of logs, one (further referenced as
A) from November 2018 to January 2019 inclusive, and the second (B) with logs
dated July 2019. The A data set contains 7.2M messages with length up to 15,000
characters (including error trace stacks). B data set contains 0.37M messages
with mean message length about 9 words (no error trace stacks). Log messages
are accompanied by supplementary information on the system with up to 42
fields in each message.

The information comprising each message (see Fig. 1) may be discerned into
three main categories:

– Timeline information. For every log message, this includes a timestamp; how-
ever, on the timeline such logs may form various structures based on period-
icity or event triggering. In some cases, statistical estimates of log appearing
time may be derived.

– Log text itself. It may include a stack trace, some of the system details, error
codes, or even some information on the error in executables, modules or lines
of code. This subject to further detailed analysis by templates or text mining
techniques.

186 K. Rudakov et al.

– Supplementary information. This may include out-of-log information such as
instance details, application details, and output type. Each of these properties
is naturally presented as a categorical variable. The pattern, in this case, may
be represented as a subset of the categories set. While most of aforementioned
works are focused on log text analysis, we would like to note that thorough
processing of supplementary data may help in classification and labeling on
the training stage; time-series analysis, on the other hand, may assist in the
task of anomaly prediction and system load estimation.

Fig. 1. Various kinds of log data.

We provide a general overview of the analyzed data to highlight some of its
properties.

First we analyzed the A dataset as described in the previous section. The
amount of information each message contains is related to its length, thus we
provide a cumulative number of logs with the length not exceeding a certain
value at Fig. 2a. 84% of all the log messages are as short as 600 characters; 92 %
of the logs have the length of under 6,000 characters, which allows us to focus
on the short messages first.

While every log message contains a text of warning, error or similar event,
the availability of supplementary information varies, see Fig.2b. The typical sup-
plementary fields are stream (STDOUT, STDERR), host, application, and some
others. Approximately one-third of the fields are mandatory for each message,
while another third of features are unavailable for most messages. The occurrence
of the rare features may indicate an anomaly in the system or data.

The available features have different label distribution (see Fig. 2c), which
encourages labels-based analysis to be performed. The message classification
procedure can benefit from discrete pattern mining on both training and infer-
ence stages. However, our preliminary analysis is focused on the text, which is
always available compared to supplementary information.

Another type of information we consistently have is timestamp. While time-
series analytics is an essential part of every tracking system, and the load peaks

Building an Adaptive Logs Classification System: Industrial Report 187

must be forecast and responded to promptly, one would expect to have some
daily or weekly patterns in it. However, we would like to illustrate (see Fig. 2d)
the fact that high load peaks may occur in different time windows during the
day or may not occur at all, due to stochastic nature of the log data.

Fig. 2. General overview of the data. a) Cumulative number of logs with length not
exceeding N . b) Data availability plot. c) Data diversity bar plot. d) Number of logs
grouped in 15-min intervals as a function of time for a few trading days.

The most important insight from the data we want to highlight is that while
log messages are dissimilar in time occurrences, label availability, and classes,
most of them (up to 84%) are short, with the length not exceeding 600 characters.
This encourages us to use in our analysis the more robust and straightforward
techniques for data processing based on string comparison algorithms. In this
way, for further experiments only text messages were used from B data set.

5 Raw Log Clustering

As the first step, we tried rather straightforward approach to get the visible and
usable result as fast as possible. On the one hand, this would deliver business
benefit fast. On the other, this was a foundation for establishing an evidence-
based dialogue with users necessary before trying more sophisticated methods.

We implemented K-means on raw (non-tokenized) strings with the number
of clusters around 100, which seemed to be reasonable from an expert point
of view. The daily launched algorithm would learn on previous three days and
report on any log line distant enough from any of existing cluster.

Although this approach led to fast results and, it showed the following limi-
tations:

– Clustering did not allow user assessments. Because of large size (hundreds
thousands of records each day), there was no means for a human to judge on
the quality of clustering and how it related to human understanding of an
“error class”.

188 K. Rudakov et al.

– There was no link between clusters calculated in different days. Although
clusterizations could be compared, there was no direct inheritance of clusters,
and certain patterns moved from cluster to cluster.

– The technique did not allow to make the whole log volume something tangible
for a QA manager.

The decisions taken after the first experiment were:

– Tokenize;
– Allow for the addition of new data to set of clusters;
– Make clusters compact enough so that one cluster represents only one error

class
– Make a hierarchy so that a user could comfortably browse clusters, mark some

of them as unimportant and others as important.

Tokenization led to a notion of “signature” (called by analogy with antivirus
software that catches viruses that have common DNA but are polymorphic). A
signature is represented by a string like “DATETIME — fatal error in aspx.py in
line NUM NUM IPADDR”. At this stage, we learned that in the UI, a signature
should always be accompanied with one example string implementing it, so that
a QA engineer understands it without a learning curve.

A search for suitable clustering led to trying several methods and comparing
their results. In the next chapter, we focus on two different approaches we used
for clustering.

6 Clustering Comparisons

In this chapter, we compare two different approaches for clustering on signatures:
template-based one and NLP-based pipeline on A data set.

The log data we observe contains a lot of user-sensitive information, such
as IDs and IP addresses with instance names, as well as time labels mixed in a
number of ways. Our basic pre-processing is focused on bleaching the messages
from this information.

6.1 Template-Based Approach

Here, we focus on short logs (with less than 600 characters), which make up the
majority of all messages. This approach, which is similar to an intermediate step
between log-hashing approach [28] and regular expressions is based on a brute-
force string comparison for all the logs. We consider two messages belonging
to two different templates if they differ by at least 20% of their content (in
the sense of total length of common non-intersecting substrings larger that three
characters). The log message which is different from its predecessors forms a new
template. This results in a greedy approach that runs through all the messages
and compares them with the templates that were already found.

While being time-consuming for the large data sets yet simple, this app-
roach results in a set of templates, which can be rapidly compared with each

Building an Adaptive Logs Classification System: Industrial Report 189

new message using the aforementioned string comparison or regular expres-
sions. However, we found 109 templates for a short messages, see Fig. 3 for
visualization.

Fig. 3. Dendrogram for the templates found. The distance metric used here is a
weighted length of common non-intersecting substrings larger that 3 characters.

6.2 NLP-Based Approach

While the previous approach is focused more on the short messages, here we do
not get rid of long log messages, investigating a broader set of data. The approach
is based on text vectorization with linear dimensionality reduction and further
clustering. This is a baseline model that will continue to improve.

As the first step, we pre-processed a random yet evenly sampled subset con-
sisting of 70K initial logs messages and tokenized them into a list of tokens with
only alphabet chars for each entity. At the second step, we trained the TF-IDF
model on the entire data set. During the training, we ignored the terms with the
document frequency less than 3. Also, we visualized the most frequent keywords
on a graph combining the TF-IDF model and horizontal visibility graphs (HVG)
[29]. These words are candidates to be significant features as they determine the
properties of clusters; also, they are intended to be used as visual tags by human
operators while drilling down into large sets of logs. (The graph visualization is
not included here to avoid disclosure of the customer sensitive information.)

After that, we applied our TF-IDF model and transformed the tokenized
data to a document-term sparse matrix, i.e., each textual member was converted
to 6,776-dimensional vector representation where each component is a TF-IDF
vocabulary term.

At the third step, we truncated the dimensionality from 6,776 into 25 with the
cumulative sum of explained variance ratio greater than 0.99 using the truncated
singular value decomposition (SVD) method. In other words, we applied the
technique inherent to latent semantic analysis (LSA) [30].

At the last step, we applied the K-Means clustering and assessed the resultant
cluster sets by the mean Silhouette Coefficient [31]. For the number of clusters
greater than 50, the silhouette coefficient value does not grow sharply. It can
be explained by large clusters splitting into more specific ones. We can see such
separation on Fig. 4a and Fig. 4b. Moreover, we can notice that the composition
changed slightly with increasing number of clusters, there are a few clusters
which contain more than a half members.

190 K. Rudakov et al.

Fig. 4. Visualization of obtained clusters using t-SNE [32] (right-side) and silhouette
score over their amount (left-side). a) 50 clusters. b) 90 clusters.

6.3 Approaches Comparison

Both approaches result in approximately 100 clusters in the data. Both clustering
algorithms are in good correspondence with each other, with an adjusted Rand
index [33] of 0.896 for 90 NLP-based clusters and 0.904 for 50 NLP-based clusters.

This outcome allows for the intuition that there are actually around 100 sub-
stantially different message types in human understanding. Further, this result
ensures that practically “good enough” classification is obtained for the initial
human understanding on the content of the logs. That understanding is to be
rectified on further steps of the methodology development.

7 Greedy Clustering with Cutoff by Jaccard Index

In this chapter, we outline the final clustering algorithm we implemented for this
tool. It addresses all the challenges, including cluster stability and correlation
to human understanding of an error. The aim was to develop an algorithm that
will allow retraining on new data without changing old clusters if there is no
user’s suggestion (to unite or divide the clusters).

The approach is the same for both log series and based on kind of greedy
clustering algorithm with the Jaccard coefficient as the metric. The Jaccard
coefficient was chosen because a log message structure is often not like natural
language. We decided to use a set of 1, 2, 3-g for each message and compare
Jaccard index for them.

At the first step, a data set should be split into training (historical) and
test (new day). Also, each message of a data set should be tokenized and trans-
formed into a set of 1,2,3-grams. Next, at the historical set the pairwise similarity

Building an Adaptive Logs Classification System: Industrial Report 191

matrix is calculated using Jaccard index and according to the indicated thresh-
old messages (sets) are collected in clusters. If there are messages that cannot be
attributed to the cluster (there are no pairs with similarity at least the thresh-
old) the message should be referred to “lonely rangers”. The density inside the
cluster cannot fall below the threshold. At the end of this step, nested list with
cluster members is received. At the new day set the same steps should be happen;
statistics on active and new clusters is also added. Prior “lonely rangers” can
form new clusters. Figure 5 outlines the working loop. The difference between
the number of clusters and ”lonely rangers” for full A data set and its split data
sets into one historical data set and batches of a new day are presented on Fig. 6.
According to the results, the proposed algorithm does not significantly reduce
the number of clusters and crucially increase the number of “lonely rangers” at
additional learning.

Fig. 5. Data analysis loop.

Fig. 6. Warm start learning of the model.

Compared to template-based and NLP-based approaches this algorithm gen-
erates more clusters including lonely rangers if the high threshold is set, but
changing the threshold utilizes the algorithm as an agglomerative clustering, so
that parent (larger) clusters can be generated. Moreover, the approach allows

192 K. Rudakov et al.

unite or divide clusters easier and assign ambiguous signatures to the appropriate
group.

The algorithm was implemented and deployed at lightweight WSGI web
application framework Flask with access for respective QA team. The appearance
of a developed tool is presented on Fig. 7 (to avoid disclosing client confidential
information some fields are blurred).

Fig. 7. Appearance of the developed tool. a) Historical clusters list. b) Detailed content
of the cluster. c) New clusters at a new day. d) Active clusters at a new day.

8 Conclusion

Log analysis for industrial-scale distributed financial software is an important
yet difficult part of the quality control process. Over a process of try-and-update
work, we have applied different data analysis methods to the project of testing
clearing and settlement systems. The main results are as follows:

– Logs unify massive amounts of records produced by many modules. Mod-
ules and configurations evolve and impact the output, making the log files a
changing system useful but difficult to analyze.

– The naive approach of clustering raw log data produces clusters with unclear
quality that cannot be assessed by a human. Moreover, these clusters tend
to move when new logs are added over time. So signature extraction and
clustering to dense and stable clusters is a crucial part of the analysis process.

– Clustering parameters should be adjusted in a way to make sure that a single
error class may span across several clusters, but all errors in a cluster represent
the same error. This is accomplished through close interaction with the system
users.

– For large systems, the number of so defined “good” clusters can be large.
In this case, they may be grouped to larger sets (“user clusters”) to make
them understandable. Part of user clusters will be then probably moved out
of attention as not interesting.

Building an Adaptive Logs Classification System: Industrial Report 193

The project is in its active phase. Our future plans include extending the
functionality of the log analysis framework as well as developing a consolidated
user interface, which will result in a stand-alone tool for user-assisted quality
control of distributed applications from different domains.

References

1. Haibo, M., Huaimin, W., Yangfan, Z., Lyu, M.R., Hua, C.: Toward fine-grained,
unsupervised, scalable performance diagnosis for production cloud computing sys-
tems. IEEE Trans. Parallel Distrib. Syst. 26(6), 1245–1255 (2013)

2. Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source soft-
ware. In: Proceedings of the 34th International Conference on Software Engineer-
ing, pp. 102–112 (2012)

3. Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M.R., Zhang, D.: Learning to log: helping
developers make informed logging decisions. In: Proceedings of the 37th Interna-
tional Conference on Software Engineering-Volume 1, pp. 415–425 (2015)

4. Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnauskas, R.: A search-
based approach for accurate identification of log message formats. In: Proceed-
ings of the 26th IEEE/ACM International Conference on Program Comprehension
(ICPC 2018) (2018)

5. Li, Y., Wang, Y., Zhang, Z., Wang, Y., Ma, D., Huang, J.: A novel fast and memory
efficient parallel MLCS algorithm for long and large-scale sequences alignments.
In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp.
1170–1181 (2016)

6. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight algorithm for mes-
sage type extraction in system application logs. IEEE Trans. Knowl. Data Eng.
24(11), 1921–1936 (2012)

7. Kobayashi, S., Fukuda, K., Esaki, H.: Towards an NLP-based log template genera-
tion algorithm for system log analysis. In: Proceedings of The Ninth International
Conference on Future Internet Technologies, p. 11. ACM (2014)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

9. Zhu, Y., et al.: LogAnomaly: unsupervised detection of sequential and quantitative
anomalies in unstructured logs. In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pp. 4739–4745 (2019)

10. Bertero, C., Roy, M., Sauvanaud, C., Trédan, G.: Experience report: log mining
using natural language processing and application to anomaly detection. In: 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE),
pp. 351–360. IEEE (2017)

11. Du, M., Li, F.: Spell: streaming parsing of system event logs. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 859–864. IEEE (2016)

12. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40. IEEE (2017)

13. He, P., Zhu, J., Xu, P., Zheng, Z., Lyu, M.R.: A directed acyclic graph approach
to online log parsing, arXiv preprint arXiv:1806.04356 (2018)

14. Li, G., Zhu, P., Chen, Z.: Accelerating system log processing by semi-supervised
learning: a technical report, arXiv preprint arXiv:1811.01833 (2018)

http://arxiv.org/abs/1806.04356
http://arxiv.org/abs/1811.01833

194 K. Rudakov et al.

15. Yuan, D., et al.: Be conservative: enhancing failure diagnosis with proactive logging.
In: OSDI 2012, pp. 293–306 (2012)

16. Fu, Q., et al.: Where do developers log? An empirical study on logging practices
in industry. In: Companion Proceedings of the 36th International Conference on
Software Engineering, pp. 24–33. ACM (2014)

17. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnos-
ability via log enhancement. ACM Trans. Comput. Syst. (TOCS) 30(1), 4 (2012)

18. Zhu, J., et al.: Tools and benchmarks for automated log parsing, arXiv preprint
arXiv:1811.03509 (2018)

19. Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems logs
to diagnose performance problems. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, p. 26. USENIX Association
(2012)

20. Glerum, K., et al.: Debugging in the (very) large: ten years of implementation and
experience. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pp. 103–116. ACM (2009)

21. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298 (2017)

22. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pp. 117–132. ACM (2009)

23. Lou, J.-G., Fu, Q., Yang, S., Li, J., Wu, B.: Mining program workflow from inter-
leaved traces. In: Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 613–622. ACM (2010)

24. Lou, J.-G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for
system problem detection. In: USENIX Annual Technical Conference, pp. 23–25
(2010)

25. Yu, X., Joshi, P., Xu, J., Jin, G., Zhang, H., Jiang, G.: CloudSeer: workflow mon-
itoring of cloud infrastructures via interleaved logs. In: ACM SIGPLAN Notices,
vol. 51, no. 4, pp. 489–502. ACM (2016)

26. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reli-
ability Engineering (ISSRE), pp. 207–218. IEEE (2016)

27. Brown, A., Tuor, A., Hutchinson, B., Nichols, N.: Recurrent neural network atten-
tion mechanisms for interpretable system log anomaly detection. In: ACM HPDC
(First Workshop On Machine Learning for Computer Systems) (2018)

28. Fu, Q., Lou, J.-G., Wang, Y., Li, J.: Execution anomaly detection in distributed
systems through unstructured log analysis. In: 2009 Ninth IEEE International Con-
ference on Data Mining: ICDM 2009, pp. 149–158. IEEE (2009)

29. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: exact
results for random time series. Phys. Rev. E 80(4), 046103 (2009)

30. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

31. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

32. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

33. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985).
https://doi.org/10.1007/BF01908075

http://arxiv.org/abs/1811.03509
https://doi.org/10.1007/BF01908075

Short Papers

Development of the Test Suite
with Formally Verified FSM Coverage:

A Case Study

Iosif Itkin1 and Rostislav Yavorskiy1,2(B)

1 Exactpro Systems,
Suite 3.02, St. Clements House, 27 Clements Lane, London EC4N 7AE, UK

iosif.itkin@exactprosystems.com
2 Tomsk Polytechnic University, Lenin Ave, 30, 634050 Tomsk, Russia

ryavorsky@tpu.ru

Abstract. This short paper presents an experience report on using
model-based testing approach for stock exchange software. A simplified
model of an order book is used for test suite generation. Then Z3 prover
is applied to prove the completeness of the created test suite in terms of
transition coverage of finite state abstraction of the system. During the
formal verification stage an error was found in the configuration of the
random test generation procedure.

Keywords: Software testing · Test generation · Test selection ·
Formal verification · Case study

1 Introduction

The paper presents a case study on model-based testing of stock exchange soft-
ware. Our goal is to create test suites with different coverage characteristics
aimed at testing an order book. An order book is a list of buy and sell orders for
a specific financial instrument organized by price level, see e.g. [6]. Our approach
combines system modeling, random test generation from the model execution,
and formal verification to ensure the completeness of the test suite with respect
to the model coverage. See [7] for the description of the method and [1] for a
similar approach.

The method of modeling with abstract state machines is described in [2]. The
developed model falls into the well-known class of extended finite state machines,
EFSM, see [5,8]. All the preconditions, postconditions and the state transition
functions are formulated within the scope of linear arithmetic, so the reachability
relation is decidable.

In Sect. 2 the simplified model of a single price order book is presented.
Section 3 describes the configuration of the random test generation algorithm and
the coverage characteristics of the created test suite. Section 4 gives an overview
of Z3 prover being applied to the created test suite to prove its completeness
c© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 197–202, 2021.
https://doi.org/10.1007/978-3-030-71472-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-71472-7_16

198 I. Itkin and R. Yavorskiy

in terms of of the coverage of finite state abstraction of the system, a graph
of hyperstates. Section 5 provides the summary of the work done and lessons
learned.

2 System Under Test and Its Model

2.1 The Modeling Restrictions

In order to illustrate our approach, we consider a simplified single price order
book model. The motivation is the following:

– Avoiding unnecessary details. Test suite development workflow for more com-
plex models would be exactly the same, so for the purpose of this paper a
simple model is sufficient.

– Non-disclosure agreements. By opting for a simplified model we reduce the
risk of disclosing sensitive information about our clients in financial software
sector.

– Suitability for testers. One of our goals is to show that even simple models
can produce quite meaningful test scenarios.

The modeling restrictions are the following.
First, we restrict the size of the order queue. Potentially, it could be arbi-

trarily large, but for the formal verification task it is preferable to impose an
upper bound, which leads to a simpler underlying theory. Our model is specified
in terms of a fixed number of state variables of the integer type and a transition
function which describes simultaneous updates of these variables.

Second, we consider a single price order book model. That means that all
buy and sell orders have the same OrderPrice parameter. Similarly to the pre-
vious restriction, it is important to have a fixed upper bound on the number of
trading price levels so that the model is in the EFSM class. The actual value
does not matter. We choose one level because of its more compact visualization
in MS Excel, see Fig. 1. Each table row presents a current system state, a ran-
domly generated input, precondition check results, and codes for current and
next hyperstates correspondingly. Each random scenario consists of 10 steps, so
the table presents a complete description of the system’s trace.

Third, the order trading volume is restricted to 9. Interval {1, 2, . . . , 9} seems
to be big enough to produce all reasonable scenarios. At the same time, small
values are more convenient for manual inspection of the generated test scenarios.
This restriction is used for random test generation only. For verification of the
completeness of the generated test suite, we assume that order volume could be
any positive integer.

2.2 Model State, Input and Transition Function

Under the restrictions specified above, the model state is characterized by four
integer variables: Bid2, Bid1, Ask1, Ask2. In any reachable state, if the book
is not empty, then one has either a queue of bids or a queue of asks. Since the
length of the queue is less than 3, one has four options:

Development of the Test Suite with Formally Verified FSM Coverage 199

Fig. 1. Random scenario for a single price level order book model in MS Excel

– the bid queue has length 2: Bid2 �= 0, Bid1 �= 0, Ask1 = 0, Ask2 = 0;
– the bid queue has length 1: Bid2 = 0, Bid1 �= 0, Ask1 = 0, Ask2 = 0;
– the ask queue has length 1: Bid2 = 0, Bid1 = 0, Ask1 �= 0, Ask2 = 0;
– the ask queue has length 2: Bid2 = 0, Bid1 = 0, Ask1 �= 0, Ask2 �= 0.

That could be easily generalized for any limit of the queue size and the
number of trading price levels.

The order book changes when a trade order arrives. The order has the fol-
lowing three parameters:

OrderType can be “Buy” or “Sell”;
OrderPrice indicates the intended trading price (worst acceptable case);
OrderVol is the order volume, the number of securities to be traded.

The transition function updates the state variables according to the standard
exchange trading rules, see e.g. [6]. VB code, which computes an update of the
state variable Bid1 is provided on Fig. 2. The other update functions are similar
to that one.

Function NextBid1(Bid2 , Bid1 , Ask1 , Ask2 , OrderType , OrderPrice , OrderVol)
If (OrderType="Buy") And (Bid1 =0) And (OrderVol >=Ask1+Ask2) Then

NextBid1 = OrderVol -Ask1 -Ask2
ElseIf (OrderType="Sell") And (Bid1 >0) And (OrderVol <Bid1) Then

NextBid1 = Bid1 -OrderVol
ElseIf (OrderType="Sell") And (Bid1 >0) And (OrderVol <Bid1+Bid2) Then

NextBid1 = Bid1+Bid2 -OrderVol
ElseIf (OrderType="Sell") And (Bid1 >0) And (OrderVol >=Bid1+Bid2) Then

NextBid1 = 0
Else:

NextBid1 = Bid1
End If

Fig. 2. VB code in MS Excel to compute the next value of the state variable Bid1

200 I. Itkin and R. Yavorskiy

2.3 Equivalence Classes of the System States

The concept of finite state machine (FSM) abstraction of a system is widely
used in testing [4]. It is defined in the following way. For a given set of finite
range state properties P1, . . . , Pn, we assume the system states s1 and s2 to be
equivalent if they satisfy the same subsets of the properties:

s1 ≈ s2 ⇐⇒ ∀i ≤ n(Pi(s1) = Pi(s2)).

A hyperstate is an equivalence class of the system states with respect to this
equivalence relation. The hyperstates are the nodes of the FSM graph. Given
two hyperstates h1 and h2, the FSM has edge (h1, h2) if there exist two system
states s1, s2 such that s1 ∈ h1, s2 ∈ h2, s1 is reachable, and for some input the
system makes a one-step transition from s1 to s2. In our case the properties are
based on the intervals for the values of the state variables, namely:

P1(Bid2, Bid1, Ask1, Ask2) = if Bid2 ≤ 1 then Bid2 else "m"
P2(Bid2, Bid1, Ask1, Ask2) = if Bid1 ≤ 3 then Bid2 else "M"
P3(Bid2, Bid1, Ask1, Ask2) = if Ask1 ≤ 3 then Bid2 else "M"
P4(Bid2, Bid1, Ask1, Ask2) = if Ask2 ≤ 1 then Bid2 else "m"

One can see that values of P1 and P4 are in {0, 1, m}, while values of P2 and
P3 are in the range of {0, 1, 2, 3, M}. Each hyperstate is naturally identified by a
5-symbols string, e.g. “00|M1” or “03|00”, where the first symbol is the value of
P1, the second symbol is the value of P2, etc., see the corresponding columns on
Fig. 1. Potentially, this FSM may have 225 nodes (= 3 × 5 × 5 × 3).

3 Random Test Generation

For the model described above, 10,000 random scenarios that satisfy the specified
preconditions were generated. That resulted in the discovery of 25 reachable
hyperstates and 224 links between them. This computational experiment has
been performed several times in order to collect the statistics, see Fig. 3.

Fig. 3. Time to discover hypergraph links: last ten (left) and percentage (right)

The chart on the left in Fig. 3 shows average and worst-case numbers (in
terms of the number of random scenarios) for the time to discover the last 10

Development of the Test Suite with Formally Verified FSM Coverage 201

links found. The chart on the right shows the time required to discover all found
hypergraph links. One can see that the complexity grows exponentially, so the
chances not to reach the 100% discovery rate are high.

Finally, we dismiss all the random scenarios except for those which are nec-
essary to cover all the transitions between hyperstates. That resulted in a test
suite consisting of 121 test scenarios with 10 steps each.

4 Verification of the Test Suite Completeness with Z3

The final step is to ensure that all the FSM hyperstates and links have been
successfully discovered during the random execution phase. We use Z3 solver [3]
to prove that there are no other possible transitions in the hypergraph besides
the discovered ones.

First, all the preconditions, the transition function and hyperstate definitions
have been translated into Z3, see Fig. 4.

Precondition_OrderType = Or(OrderType == 0, OrderType == 1)
Precondition_OrderVol = (OrderVol > 0)
Precondition_Bid = And(Bid1 >= 0, Bid2 >= 0, NextBid1 >= 0, NextBid2 >= 0)
Precondition_Ask = And(Ask1 >= 0, Ask2 >= 0, NextAsk1 >= 0, NextAsk2 >= 0)
Precondition_BidLimit = Implies(OrderType == 0, Bid2 == 0)
Precondition_AskLimit = Implies(OrderType == 1, Ask2 == 0)

Rule_NextBid2 = If(And(OrderType == 0, Bid1 > 0, Bid2 == 0),
NextBid2 == OrderVol ,
If(And(OrderType ==1, OrderVol >=Bid1), NextBid2 ==0, NextBid2 ==Bid2))

Fig. 4. A fragment of definitions of the preconditions and the transition function in
Z3py

Then, for each hyperstate Hi, the following statement was formulated:

Hi(s) & Pre(input) & Next(s, input, s′) & ¬Hi1(s
′)& · · · &¬Hik(s′), (1)

where s and s′ are the vectors of the state variables, input are input parame-
ters, Pre is the conjunction of all preconditions, Next formalizes the transition
function, and Hi1 , . . . , Hik are the hyperstates reachable from Hi with a direct
link.

By default, we expect that the formula (1) is unsatisfiable. To our surprise,
that was not always the case. Namely, for the hyperstate with the code 00|Mm
the following model was found by Z3:

Ask2 = 2,Ask1 = 4,OrderType = 0,OrderVol = 10,Bid1′ = 4,Bid2′ = 0,

which discovers a new transition “00|Mm → 0M|00” in the FSM. This
counter-example points to an error in the random test generation configura-
tion: our decision to restrict the trading volume parameter to 9 turned out to
be wrong.

202 I. Itkin and R. Yavorskiy

5 Conclusion

Our experience confirmed that even very simple models could be useful for test-
ing complex systems. An executable model allows one to generate test cases
with known outputs. Besides, FSM abstraction of the model helps in selecting
meaningfully different test scenarios from tons of randomly generated sequences.

There are at least two reasons why a test suite could be incomplete. First, the
time to discover reachable transitions between hyperstates grows exponentially,
so one is never sure when to stop. Second, the random test generation module
could be faulty.

In our case, Z3 prover has been used to assess the completeness of the devel-
oped test suite. Application of formal methods helped to find a flaw in the
configuration of the random test generation procedure.

References

1. Benjamin, M., Geist, D., Hartman, A., Wolfsthal, Y., Mas, G., Smeets, R.: A study
in coverage-driven test generation. In: Proceedings 1999 Design Automation Con-
ference (Cat. No. 99CH36361), pp. 970–975. IEEE (1999)

2. Börger, E.: The abstract state machines method for high-level system design and
analysis. In: Formal Methods: State of the Art and New Directions, pp. 79–116.
Springer (2010). https://doi.org/10.1007/978-1-84882-736-3 3

3. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

4. El-Far, I.K., Whittaker, J.A.: Model-based software testing. In: Encyclopedia of
Software Engineering (2002)

5. Kalaji, A., Hierons, R.M., Swift, S.: A search-based approach for automatic test
generation from extended finite state machine (EFSM). In: 2009 Testing: Academic
and Industrial Conference-Practice and Research Techniques, pp. 131–132. IEEE
(2009)

6. Preis, T., Golke, S., Paul, W., Schneider, J.J.: Multi-agent-based order book model
of financial markets. EPL (Europhys. Lett.) 75(3), 510 (2006)

7. Veanes, M., Yavorsky, R.: Combined algorithm for approximating a finite state
abstraction of a large system. In: ICSE 2003/Scenarios Workshop, pp. 86–91 (2003)

8. Wang, C.J., Liu, M.T.: Generating test cases for EFSM with given fault models. In:
IEEE INFOCOM 1993 The Conference on Computer Communications, Proceedings,
pp. 774–781. IEEE (1993)

https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-3-540-78800-3_24

Generation of Test-Based Traces for Automated
Partial Software Specifications Extraction

Inga Egorova and Vladimir Itsykson(B)

Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29,
195201 Saint Petersburg, Russia

isergegorova@gmail.com, vlad@icc.spbstu.ru

Abstract. Modern programmers’ society suffers from lack of reusable software
components specifications. Formal specifications can be restored in automated
way by analysis of existing client projects, code of which can be obtained from
publicly available software repositories such as GitHub. Such specifications can
be used for documentation, code generation and bug finding. The most qualitative
specifications can be restored with application of methods of dynamic analysis.
Existing approaches doesn’t support usage of client project tests for getting project
traces, though methods of client projects should contain correct templates of com-
ponents usage and some of them (unit and, partly, integration tests) also don’t
require user input. This paper reveals ways of getting possible application of pro-
vided and automatically created tests for software libraries formal specifications
inference. Both search-based, as well as feedback-directed automated test gen-
eration techniques, are reviewed, and proper technique for suggested inference
toolchain is chosen. Possible directions of further research are given.

Keywords: Formal specification inference · Software library · Test generation
techniques · Search-based test techniques · Random testing

1 Introduction

Nowadays the most common practice of development of new software implies inten-
sive usage of pre-developed third-party libraries and frameworks. As a rule, choice of
a specific library is based on programmer’s experience and on supplied documentation.
Unfortunately, the documentation often suffers from incompleteness and ambiguity. One
of the possible ways to withstand with such limitations is to apply formal library speci-
fications captured with usage of specific formal languages. Usage of such descriptions
isn’t limited only to educational purposes, they also can be utilized for automated bug
finding and code generation.

There exists a big quantity of both static and dynamic approaches to restore such
formal specifications grounded in analysis of software components client projects [1, 2].
A great number of the target projects can be found in free online repositories, such as
publicly available on GitHub. Dynamic approaches in general allow to get more compli-
cated and more qualitative specifications, however, at the same time, they need in traces,

© Springer Nature Switzerland AG 2021
A. Kalenkova et al. (Eds.): TMPA 2019, CCIS 1288, pp. 203–208, 2021.
https://doi.org/10.1007/978-3-030-71472-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71472-7_17&domain=pdf
http://orcid.org/0000-0002-9229-4493
http://orcid.org/0000-0003-0276-4517
https://doi.org/10.1007/978-3-030-71472-7_17

204 I. Egorova and V. Itsykson

containing calls of library methods, to get the work done. This requirement thoroughly
narrows the number of client projects which can be used to obtain specifications, because
usually full procedures of installation and run of mature projects require a lot of efforts
and can’t be realized in a fully automated way. Besides of it, most of the programs
require interaction with users, that also leads to inability of usage of them for automated
specification extraction. To overcome these restrictions, tests, either provided, or auto-
matically created, can be employed. Most of test-based traces will not have the listed
problems and so can be easily used for completion of the given task.

The objective of the research, presented in this paper, is to analyze existing ways to
get executable test files for library client projects that can be used for software libraries
specifications inference.

2 Strategies of Client Projects Tests Obtainment

Overall, there are 2 global strategies to get test-containing library client projects:

1. To download source code only for projects with sets of ready-to-use tests. Unit and,
partially, integration tests will be appropriate for our purposes due to their nature.
It’s should be noticed that tests should contain calls to the library methods;

2. To download all target projects and to generate tests automatically. The preferable
sources for tests creation still are not library’s methods, but methods of the library
client projects because they tend to encapsulate patterns of correct library’s methods
usage inside themselves;

2.1 Provided Tests

Despite of apparent simplicity of search tests-containing projects, there was found infor-
mation about the only heuristic-based project [3]. To analyze whether a particular project
contains tests, the authors suggest check if there are any files, which names contain “test”
template, if they are located inside a folder, which name obeys the same rule, and addi-
tional analysis of whether the packages of popular test frameworks are included in the list
of dependencies imported by the project classes is also held. After evaluating the project
for all heuristic criteria, the final result is formed on the basis of a majority vote. The
considered approach can be implemented, but it will not give any guarantees regarding
the quality of the obtained results (both false positive and false negative responses are
possible).

As one of the possible ways to improve quality of results can be seen usage of
software lifecycle support systems, such as Maven. In most situations, presence of the
tests in projects implemented on its basis can be easily analyzed by reading from their
configuration files addresses of the folders that should contain tests source code and
making attempts to access them. However, additional test source folders that can be
added dynamically (for example, using Maven plugins) which couldn’t be analyzed.
At the moment, this approach has not been implemented and may become a further
development of the work.

Analysis of sort of tests supplied is also an important task which should be
accomplished in case of choice of this strategy of obtainment of test-containing projects.

Generation of Test-Based Traces 205

2.2 Tests Generation

An alternative solution for getting the test-covered projects is an application one of test
generation techniques. Each of them implements one of the following approaches:

1. Random testing. Functions of program components during the testing are called
with random values of input variables. An important representative of this set of
techniques is the controlled random testing in which additional information is used
for input data generation. In particular, the driven by output random testing is a
widely known successor of it. This technique is taking into account previously used
historical data (to exclude incorrect and duplicate data) during the process of values
generation. Themost actively used and supported tool that implements this approach
is Randoop [4];

2. Search-based testing. Process of test generation is recognized as a decision of opti-
mization task. There are different objective functions (or their combination) can
be chosen, e.g., code coverage metric functions. One of the most actively used
approaches to find a decision of the given task is application of genetic algorithms.
One of most mature tool, implementing such approach, is Evosuite [5]. Currently
this tool is actively developed and supported and it won several SBST tool contests;

3. Symbolic testing. Program execution paths are represented as input value constraints.
A constraint solver enumerates states characterized by “on/off” derived restrictions
and generates various test input data. On top of this category of approaches only
academic prototypes of instruments have been developed. Such instruments only
allow generate test input data (tests themselves should be written manually). The
criteria for comparing code generation tools may be code coverage and ability to
detect errors.

Quality of tests, obtainable with application of listed approaches, can be estimated by
code coverage and ability to detect errors with use of them. There is no information about
systematic estimation of instruments according to the first criterion in papers. According
to the second criterion, Evosuite tool, realizing search-based technique, allows to get far
better results, than Randoop, which implementation is based on random testing: for the
same industrial application they reveals 56.4% and 38% of errors respectively [6].

3 Application of Test Generation for Specification Inference

3.1 Evosuite Tool

According to the results of analysis, presented in Sect. 2, the preferable tool for tests
generation is Evosuite.

Evosuite only needs binary files of the project and its dependencies as input. The
approach implemented by the tool is based on application of genetic algorithms tools
such as selection, crossbreeding, and mutation to the task of finding the optimal set of
tests. Test suites that should take part in formation of a new generation are selected on the
basis of values of the objective function. Several options for the objective function are
supported. All of them are based on standard metric code coverage assessments. When

206 I. Egorova and V. Itsykson

crossing, the selected sets of tests exchange separate tests. The mutation can be carried
out either by adding new, or by changing existing tests. To deal with unreliable tests (for
example, the tests that modify resources of operating system), the JDK state is controlled
and classes that implement interactions with the system resources are replaced.

Duration of the generation process is configurable (default value - 10 min).
As a result the tool under consideration produces test suites implemented with the

JUnit 4 framework.
Seems to be a perfect candidate itself, Evosuite still should be integrated to a specific

toolchain to get formal specifications restored. A fragment of chain, related to the test
generation, proposed by the authors of this paper, is presented in the Fig. 1. Trace
generation itself belongs to the phase “Execution trace production”.

Fig. 1. Inference of predicates, describing data restrictions.

Since as input Evosuite only requires binary files of the target project and its depen-
dencies and these data are available as a toolchain’s input, there is no need in adaptation
between actual and expected items. However, the phase of predicates generation requires
that input files should not use reflection mechanisms. It’s caused by the application of
the widely used Daikon tool for predicates generation. Thus, here the task of adaptation
the Evosuite output to the JUnit 3 form arises.

During experiments it was found that reflective calls are used, in particular, for test
initialization, therefore the implementation of such an adaptation is not possible.

3.2 Randoop Tool

As input, Randoop, like Evosuite, accepts a set of project binaries and their dependencies.
During the test generation process different possible sequences of calls of all public

methods of the classes-under-test are created, validated and classified. To get input data
for method calls, both predefined set of primitives and values, obtained by executing
earlier generated sequences, can be used. If the generated test is equivalent to the already
existing one, it’s discarded. In the process of further verification the generated test after
each new method call is checked against the given contracts. Based on the results of
these checks, the sequence may be classified as a regression or error-revealing test. If
the sequence is correct, but the resulting object is null or can be obtained through a one
of the previously generated call chains, as well as if it throws an exception, it will not
be further expanded.

Generation of Test-Based Traces 207

Working with unreliable tests can be carried out in the following modes:

1. Manual control. In case of generation of an unreliable test the tool should stop
execution and display a diagnostic message for the user who needs to find and
eliminate the cause of its occurrence;

2. Drop. Unreliable tests should not be displayed. This mode is inefficient, since a large
number of tests will be generated and discarded;

3. Conclusion. Flaky tests are displayed in a commented form; also diagnostic message
is issued about methods that might have caused the non-determinism.

The used lists of contracts and filters can be expanded. Generation duration is also
customizable. Value by default is 2 min.

The result of the tool are test files generated with usage of a selected version of JUnit
(in a such way absence of reflexive calls can be guaranteed). Therefore, the obtained
tests can be directly used for deriving predicates using the Daikon tool discussed earlier.

4 Conclusions

To recapitulate, nowadays since the widely adopted practice of software reuse, the indus-
try needs in qualitative software libraries specifications. Usage of formal specifications
can fulfill this requirement. Such specifications can be obtained automatically from
library client projects source code files and may be used for the generation of code and
documentation and also for bug finding.

The most qualitative specifications can be obtained by dynamic analysis of client
projects, but there is a bottleneck: only projects, containing entry point methods, are used
as inputs by reviewed approaches. This limitation can be overcome with use of client
project’s test methods – either developed by project authors or generated on top of client
project’s methods since they encapsulate templates of correct usage of components.
There exist several categories of test generation techniques. Tests of better quality can
be obtained with the search-based tool Evosuite. However, because of complexity of
the adaptation of instrument’s output to the needs of the next tool, the more suitable
feedback-directed tool Randoop was used to solve practical subtask of specification
inference related to tests obtainment.

Further development can include support of identification and use of tests, provided
with the client projects. To get over obstacles with test framework caused reflective calls
special driver class may be implemented. But tackling with reflective calls by client code
itself as well as tests classification, which is necessary for elimination of tests, requiring
interaction with users, aren’t such easy tasks and require additional exploration.

References

1. Egorova, I.S., Itsykson,V.M.: Surveyof staticmethods for partial software library specifications
extraction. Informatsionno-upravliaiushchie sistemy [Inf. Control Syst.] 6, 66–75 (2017). (In
Russian). https://doi.org/10.15217/issn1684-8853.2017.6.66

https://doi.org/10.15217/issn1684-8853.2017.6.66

208 I. Egorova and V. Itsykson

2. Egorova, I.S., Itsykson, V.M.: Review of dynamic methods for extraction of partial software
library specification. Informatsionno-upravliaiushchie sistemy [Inf. Control Syst.] 2, 67–75
(2018). (In Russian). https://doi.org/10.15217/issn1684-8853.2018.2.67

3. Gonzalez, D., Popovich, A., Mirakhorli, M.: TestEX: a search tool for finding and retrieving
example unit tests from open source projects. In: 2016 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Ottawa, ON, pp. 153–159 (2016)

4. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.
In: 29th International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
pp. 75–84 (2007)

5. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented software.
In: SIGSOFT/FSE 2011 - Proceedings of the 19thACMSIGSOFTSymposium on Foundations
of Software Engineering, pp. 416–419 (2011)

6. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An industrial evaluation of
unit test generation: finding real faults in a financial application. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), Buenos Aires, pp. 263–272 (2017)

https://doi.org/10.15217/issn1684-8853.2018.2.67

Author Index

Akhin, Marat 142
Akinsanya, Barakat J. 44
Almashfi, Nabil 155
Araújo, Luiz J. P. 44

Belyaev, Mikhail 142

Carrasquel, Julio C. 88
Charikova, Mariia 44
Chuburov, Sergey A. 88

Egorova, Inga 203

Frenkel, Sergey 56

Gimaeva, Susanna 44
Grichshenko, Alexandr 44
Gromov, Vasilii A. 29
Gromova, Anna 168

Itkin, Iosif 168, 197
Itsykson, Vladimir 3, 203
Ivanova, Maria 121

Khan, Adil 44
Kirichenko, Lyudmyla 101
Krejčí, Lukáš 109

Lomazova, Irina A. 88
Lu, Lunjin 155

Mazzara, Manuel 44
Montali, Marco 81

Novák, Jiří 109
Novikov, Andrey 182

Ozioma Okonicha, N. 44

Pavlov, Sergey 168

Rivkin, Andrey 81
Rudakov, Kirill 182

Samonenko, Ilya 130
Shershakov, Sergey A. 68
Shilintsev, Daniil 44
Sitnikov, Anton 182
Sobotka, Jan 109
Stepanov, Daniil 142
Sukharev, Ivan 121

Tsymbalov, Eugeny 182

Voznesenskaya, Tamara 130

Yavorskiy, Rostislav 197

Zakharov, Victor 56
Zinchenko, Petro 101
Zverev, Alexey 182

	Preface
	Organization
	Contents
	Keynote
	Partial Specifications of Libraries: Applications in Software Engineering
	1 Introduction
	2 Problems with External Libraries
	3 Approach
	4 Formal Specifications of Libraries
	5 LibSL: Library Specification Language
	5.1 General Specification Structure
	5.2 Semantic Types Descriptions
	5.3 Automata Description
	5.4 API Functions Description
	5.5 Global Objects Section

	6 Applications
	6.1 Porting of Software
	6.2 Enhancements of Static Analysis
	6.3 Cross-Language Integration
	6.4 Integration Errors Detection
	6.5 Specification Mining
	6.6 Other Applications

	7 Conclusion
	References

	Full Papers
	Chaotic Time Series Prediction: Run for the Horizon
	1 Introduction
	2 Related Works
	3 Time Series Prediction Problem
	4 Non-successive Observations
	5 Prediction Algorithm
	6 Non-predictable Points
	7 Quality Assessment
	8 The Problem of Estimating Clusters’ Prognostic Values (Quality Assessment)
	9 Numerical Results
	10 Comparison with Published Results
	11 Conclusions
	References

	Machine Learning and Value Generation in Software Development: A Survey
	1 Introduction
	2 Predicting Programming Effort
	3 Predicting Risks to the Project
	4 Predicting Defects
	5 Discussion
	6 Conclusion and Future Research
	References

	The Conception of Strings Similarity in Software Engineering
	1 Introduction
	2 Data Similarity Conception
	3 Jaccard Distance-Based NED Approximation
	3.1 About Triangular Inequality for NED

	4 Similarity Model Validation
	4.1 About Data Set
	4.2 Similarity Metrics Measurement Issue

	5 Experimental Results of ANED-Based Approximation and Their Discussion
	6 Conclusion
	References

	Multi-perspective Process Mining with Embedding Configurations into DB-Based Event Logs
	1 Introduction
	2 Related Work
	3 A Database Approach for Representing Event Logs
	3.1 An Abstract Event Log and an DB-Event Log
	3.2 Relating DB Event Logs and Abstract Event Logs

	4 Implementation
	4.1 Embedding Configurations into DB-Based Event Logs to Obtain Multi-perspective Process Mining

	5 Conclusion
	References

	On DB-Nets and Their Applications
	1 Introduction
	2 The Formalism
	3 Current and Prospective Applications
	4 Conclusions
	References

	Pre-processing Network Messages of Trading Systems into Event Logs for Process Mining
	1 Introduction
	2 The Financial Information Exchange (FIX) Protocol
	3 Extracting Event Logs for Process Mining from FIX Messages
	3.1 Basic Definitions
	3.2 Extraction of Order-Based Event Logs
	3.3 Extraction of Order-Book-Based Event Logs
	3.4 Replay of Order-Book-Based Event Logs

	4 Conclusions and Future Work
	References

	Time Series Classification Based on Visualization of Recurrence Plots
	1 Introduction
	2 Method of Recurrence Plots
	3 Convolutional Neural Network
	4 Description of the Experiment and Results
	5 Conclusion
	References

	Relation Between Test Coverage and Timed Automata Model Structure
	1 Introduction
	2 Background
	3 Related Work
	4 Modeling Language
	5 Models
	5.1 Observer
	5.2 Environment

	6 Experiment
	7 Results
	8 Conclusions and Future Work
	References

	Random Graph Model for Structural Analysis of Online Communications
	1 Introduction
	2 Related Works
	2.1 Erdos–Renyi Model
	2.2 Barabasi–Albert Growth Model
	2.3 Nearest Neighbor Model

	3 Adaptation of the Barabasi–Albert Growth Model
	4 Habrahabr Comments
	5 New Random Graph Model
	5.1 Algorithm Definition
	5.2 Model Fitting

	6 Conclusion
	References

	The Influence of Self-organizing Teams on the Structure of the Social Graph
	1 Introduction
	2 Model Description
	3 Evolution of the Social Graph Structure
	4 Examples
	5 Results
	6 Simulation
	References

	Making Bounded Model Checking Interprocedural in (Static Analysis) Style
	1 Introduction
	2 Bounded Model Checking Overview
	2.1 Interprocedural Analysis in BMC

	3 Interprocedural BMC
	3.1 Collect Phase
	3.2 Analysis Phase

	4 Evaluation
	4.1 Causes of Imprecision

	5 Related Work
	5.1 Craig Interpolation
	5.2 External Specifications
	5.3 Interprocedural Analysis

	6 Conclusion
	References

	Static Taint Analysis for JavaScript Programs
	1 Introduction
	2 Background
	2.1 TAJS (Type Analyzer for JavaScript)
	2.2 Web Applications

	3 Motivation
	4 Taint Analysis
	4.1 Rendering Contexts
	4.2 Analysis Rules

	5 Handling Dynamic Property Access
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Generation of Testing Metrics by Using Cluster Analysis of Bug Reports
	1 Introduction
	2 Related Work
	3 Background
	4 Approach
	4.1 Objects
	4.2 Clustering

	5 Results
	5.1 The Received Clusters
	5.2 Generating Metrics via Cluster Interpretation

	6 Threats to Validity
	7 Conclusion
	References

	Building an Adaptive Logs Classification System: Industrial Report
	1 Introduction
	2 Literature Overview
	3 Business Context and Task
	4 Data Structure
	5 Raw Log Clustering
	6 Clustering Comparisons
	6.1 Template-Based Approach
	6.2 NLP-Based Approach
	6.3 Approaches Comparison

	7 Greedy Clustering with Cutoff by Jaccard Index
	8 Conclusion
	References

	Short Papers
	Development of the Test Suite with Formally Verified FSM Coverage: A Case Study
	1 Introduction
	2 System Under Test and Its Model
	2.1 The Modeling Restrictions
	2.2 Model State, Input and Transition Function
	2.3 Equivalence Classes of the System States

	3 Random Test Generation
	4 Verification of the Test Suite Completeness with Z3
	5 Conclusion
	References

	Generation of Test-Based Traces for Automated Partial Software Specifications Extraction
	1 Introduction
	2 Strategies of Client Projects Tests Obtainment
	2.1 Provided Tests
	2.2 Tests Generation

	3 Application of Test Generation for Specification Inference
	3.1 Evosuite Tool
	3.2 Randoop Tool

	4 Conclusions
	References

	Author Index

