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Abstract

Particle spin polarization is known to be linked both to rotation (angular momen-
tum) and magnetization of many particle systems. However, in the most common
formulation of relativistic kinetic theory, the spin degrees of freedom appear only
as degeneracy factors multiplying phase-space distributions. Thus, it is impor-
tant to develop theoretical tools that allow to make predictions regarding the
spin polarization of particles, which can be directly confronted with experimental
data. Herein, we discuss a link between the relativistic spin tensor and particle
spin polarization, and elucidate the connections between the Wigner function and
average polarization. Our results may be useful for the theoretical interpretation
of heavy-ion data on spin polarization of the produced hadrons.

5.1 Introduction

In relativistic heavy-ion collisions, the produced matter is formed at extreme con-
ditions of high temperature and density [1]. The exact details of the evolution of
the resulting fireball are difficult to track, however, some generally accepted con-
cepts are typically assumed now. In particular, the evidence has been found that the
strongly interacting matter behaves as an almost perfect (low viscosity) fluid (for
recent reviews see, for example, Refs. [2,3]). During its expansion, when the system
is diluted enough, the matter undergoes a cross-over phase transition from a strongly
interacting quark-gluon plasma to a hadron gas (for systems with negligible baryon
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number density [4,5]). Shortly thereafter, the system becomes too dilute to be prop-
erly treated as a fluid, the interaction effectively ends, and produced particles freely
stream to the detectors (freeze-out).

The main purpose of relativistic hydrodynamics is to solve the four-momentum
conservation equation, ∂μTμν = 0, and the (baryon) charge conservation equation,
∂μ Jμ = 0, under some realistic approximations (i.e., with suitably chosen initial
conditions given by theGlaubermodel [6] or the theory of color glass condensate [7],
andwith a realistic equation of state obtained froman interpolation between the lattice
QCD simulations and hadron resonance gas calculations).

In this way, one obtains the four-momentum and charge fluxes at freeze-out.
These are space-time densities, which are not directly connected with the momen-
tum distributions (and polarization) measured by different experiments. The most
common way to link the stress-energy tensor and the charge flux at the freeze-out
to particle spectra makes use of a classical intuition [8]; namely, one assumes that
after the freeze-out the system is described well enough by the distribution functions
f (x, p) for (noninteracting) particles and the corresponding functions f̄ (x, p) for
antiparticles. Matching the stress-energy tensor and charge current with the corre-
sponding formulas from the relativistic kinetic theory, one can guess the form of the
distribution functions, and from that predict the final spectra.

The purpose of this contribution is to extend this formalism to include particle spin
polarization (for particles with spin 1/2). In the next section, we show the limitations
of the traditional kinetic theory in relation to particle polarization degrees of freedom.
In Sect. 5.3, we introduce the concept of the relativistic spin tensor and discuss its
relation to particle polarization for a free Fermi-field. In Sect. 5.4, we show that the
appropriate generalization of the distribution function is theWigner distribution. We
summarize and conclude in Sect. 5.5. Some useful expressions and transformations
are given in Appendix A. For complementary information we refer to the recent
reviews [10–13].

5.2 Relativistic Kinetic Theory and Its Limitations

In the classical relativistic kinetic theory, the charge current density Jμ and the stress-
energy tensor Tμν have a rather simple connectionwith the phase-space distributions
of particles and antiparticles [9,14],

Jμ = gS
(2π)3

∫
d3 p

Ep
pμ

(
f (x, p) − f̄ (x, p)

)
,

Tμν = gS
(2π)3

∫
d3 p

Ep
pμ pν

(
f (x, p) + f̄ (x, p)

)
.

(5.1)

Here gS = 2S + 1 is the degeneracy factor with S being the spin of (massive) par-
ticles. In order to properly take into account the polarizaton degrees of freedom,
one can easily notice that the framework based on Eq. (5.1) should be extended to
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a matrix formalism. This is so, since the standard kinetic theory essentially assumes
equipartition of various spin states.

In general, the expectation values of the charge current and the stress-energy
tensor, determined in a generic state of the system described by the density matrix ρ,
cannot be expressed by the integrals of the form (5.1) with the integrands depending
on a single momentum variable. A generic density matrix can be written as

ρ =
∑
i

Pi |ψi 〉 〈ψi | , (5.2)

where Pi are classical (non-interfering) probabilities normalized to one,
∑

i Pi = 1,
and |ψi 〉 are generic quantum states. We assume that 〈ψi |ψi 〉 = 1 and stress that
|ψi 〉’s are not necessarily eigenstates of the total energy, linear momentum, angular
momentum, or charge operators.

Starting from the definition of the charge current operator

Ĵμ(x) = �̄(x)γ μ�(x), (5.3)

expressed by the noninteracting Fermi fields �

�(x) =
∑
r

∫
d3 p

(2π)3
√
2Ep

[
Ur (p)ar (p)e−i p·x + Vr (p)b†r (p)eip·x

]
, (5.4)

we obtain the normal-ordered expectation value

Jμ(x) = 〈: Ĵμ(x) :〉 = tr
(
ρ : Ĵμ(x) :

)
=

=
∑
r ,s

∫
d3 pd3 p′

(2π)6
√
2Ep2Ep′

[
〈a†r (p)as(p′)〉Ūr (p)γ μUs(p′)ei(p−p′)·x

− 〈b†r (p)bs(p′)〉V̄s(p′)γ μVr (p)ei(p−p′)·x

+ 〈a†r (p)b†s (p
′)〉Ūr (p)γ μVs(p′)ei(p+p′)·x

+ 〈br (p)as(p′)〉V̄r (p)γ μUs(p′)e−i(p+p′)·x] .

(5.5)

It is easy to check that the stress-energy tensor has an analogous structure. In general,
none of the expectation values of the creation-destruction operators vanishes and the
integrals over three-momenta cannot be reduced to the Dirac delta functions.
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We use the Wigner representation of the Clifford algebra and we adopt the con-
vention for the massive eigenspinors1

Ur (p) = √
Ep + m

(
φr

σ ·p
Ep+m φr

)
,

Vr (p) = √
Ep + m

( σ ·p
Ep+m χr

χr

)
,

(5.6)

with the two component vectors φr and χr being the eigenstates of the matrix σz =
diag(1, −1),

φ1 =
(
1
0

)
, φ1 =

(
0
1

)
,

χ1 =
(
0
1

)
, χ2 = −

(
1
0

)
,

(5.7)

therefore, the normalization of the states |p, r〉 and the anticommutation relations
between the creation-destruction operators read

{as(q), a†r (p)} = {bs(q), b†r (p)} = (2π)3δrsδ
3(p − q),

{as(q), br (p)} = {as(q), br (p)} = {as(q), br (p)} = {as(q), br (p)} = 0,

|p, r〉 = √
2Epa

†
r (p)|0〉 ⇒ 〈q, s|p, r〉 = (2π)3δr ,sδ

3(p − q).

(5.8)

Differently from the current density, the total charge has a similar structure to the
one used in the kinetic theory

∫
d3x J 0(x) =

∫
d3 p

(2π)3

[∑
r

〈a†r (p)ar (p)〉 −
∑
r

〈b†r (p)br (p)〉
]

(5.9)

which directly comes from the normalization of the bispinors (5.6)

U †
r (p)Us(p) = V †

r (p)Vs(p) = 2Epδrs,

U †
r (p)Vs(−p) = 0,

(5.10)

and the integral representation of the Dirac delta functions, δ(3)(p ± p′), used to
perform the volume integrals. Following the same steps, one can compute the total
four-momentum

∫
d3x T 0μ(x) =

∫
d3 p

(2π)3
pμ

[∑
r

〈a†r (p)ar (p)〉 +
∑
r

〈b†r (p)br (p)〉
]

. (5.11)

1Note that in the Weyl representation of the Clifford algebra a different explicit formula for the
massive eigenspinors is typically used, but final results remain the same.
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Equations (5.9) and (5.11) should be compared to the analogous formulas obtained
from the kinetic-theory definitions (5.1),

∫
d3x J 0 =

∫
d3 p

(2π)3

[
gs

∫
d3x f (x, p) − gs

∫
d3x f̄ (x, p)

]
,

∫
d3x T 0μ =

∫
d3 p

(2π)3
pμ

[
gs

∫
d3x f (x, p) + gs

∫
d3x f̄ (x, p)

]
.

(5.12)

It is important to note that for noninteracting, spin 1/2 particles the volume integrals
are time independent. The collisionless Boltzmann equation for particles reads

∂μ

(
pμ f (x, p)

) = 0, (5.13)

hence, the expression pμ f is a conserved vector current (of course, the same property
holds also for the noninteracting antiparticles described by the function f̄ (x, p)). The
integral of the divergence (5.13) over a space-time region vanishes. Therefore, as long
as the spatial boundary for the volume integral lies outside of the region in which the
distribution function does not vanish, the integral Ep

∫
d3x f remains the same at all

times. Massive particles always have a positive Ep, therefore, the volume integral
itself is also time independent.2

Moreover, the space integral equals the integral over the freeze-out hypersur-
face [8], with dμ being the generic hypersurface element (note that dμ =
(d3x, 0, 0, 0) for the volume integrals in the lab frame)

gs

∫
dμ pμ f (x, p) = gs Ep

∫
d3x f (x, p) = (2π)3Ep

dN

d3 p
. (5.14)

The last term here is the invariant number of particles per momentum cell, which is
consistent with the formula for the total number of particles

N =
∫
d3x

∫
d3 p

(2π)3
gs f (x, p) =

∫
d3x

∫
d3 p

(2π)3Ep
Epgs f (x, p). (5.15)

We note that the factor (2π)3 (to be replaced by (2π�)3 if the natural units are not
used) is included in the momentum integration measure rather than in the definition
of the phase-space distributions, and

∫
d3 p/Ep is the Lorentz-covariant momentum

integral.
In the general case, it can be proved that the expectation value of the number

operator is a nonnegative quantity and the sum over the spin states is proportional to
the (anti)particle number density in momentum space, hence

N =
∫

d3 p

(2π)3

∑
r

〈a†r (p)ar (p)〉 (5.16)

2Massless particles have a positive energy for any nonvanishing momentum and the situation for
them is quite similar.
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for particles, and

N̄ =
∫

d3 p

(2π)3

∑
r

〈b†r (p)br (p)〉 (5.17)

for antiparticles. For more information see Appendix in Sect. 5.5.
Consequently, even if the expectation values of the charge current and the stress-

energy tensor cannot be written as momentum integrals of the phase-space distri-
butions, it is possible to have consistent distribution functions for the particles and
antiparticles in the sense that they can reproduce the correct invariant momentum
(anti)particle densities

gs

∫
d3x f (x, p) =

∑
r

〈a†r (p)ar (p)〉,

gs

∫
d3x f̄ (x, p) =

∑
r

〈b†r (p)br (p)〉.
(5.18)

For heavy-ion collisions, this implies that for any given Jμ and Tμν at freeze-out,
one can construct a pair of the distribution functions ( f , f̄ ) that provide the same
total current, energy, and linear momentum

∫
d3 p

(2π)3

[
gs

∫
d3x f (x, p) − gs

∫
d3x f̄ (x, p)

]
=

=
∫

d3 p

(2π)3

[∑
r

〈a†r (p)ar (p)〉 −
∑
r

〈b†r (p)br (p)〉
]

,

(5.19)

∫
d3 p

(2π)3
pμ

[
gs

∫
d3x f (x, p) + gs

∫
d3x f̄ (x, p)

]
=

=
∫

d3 p

(2π)3
pμ

[∑
r

〈a†r (p)ar (p)〉 +
∑
r

〈b†r (p)br (p)〉
]

.

(5.20)

We note that the distributions functions obtained from the conditions (5.19) and
(5.20) provide the correct total charge and four-momentum if used in Eqs. (5.1) to
define the current density and the energy-momentum tensor. However, very different
distribution functions may provide (after integration) the same macroscopic quan-
tities. In certain cases, to remove such ambiguity, one can use additional physical
insights. For example, the specific forms of the distribution functions can be intro-
duced for systems being in (local) thermodynamic equilibrium or close to such a
state.

In any case, it is important to note that the total charge is sensitive to the imbalance
between particles and antiparticles, and the total four- momentum is sensitive to the
momentum distribution of both particles and antiparticles. Therefore, the conditions
(5.19) and (5.20) provide an important constraint on the distribution functions. How-
ever, the right-hand sides in (5.19) and (5.20) are sums over the spin states. Being
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insensitive to polarization, they are not useful to check if a given extension of kinetic
theory reproduces the average polarization in a satisfactory manner.

In the next section, we will argue that the relativistic spin tensor is sensitive
to particle polarization in a very similar way as the charge current is sensitive to
particle-antiparticle imbalance and the stress-energy tensor controls the average par-
ticle momentum.

5.3 The Relativistic Spin Tensor as a Polarization Sensitive
Macroscopic Object

In this section, we introduce and discuss in more detail one of the main objects
of our interest, namely, the relativistic spin tensor. Although it is less well-known
compared to the tensors analyzed in the previous section,we are going to demonstrate
that its intuitive understanding as a quantity related to particle’s polarization is indeed
correct.

The Noether theorem links the symmetries of the action to conserved charges
and, to a lesser extent, conserved currents. If the action A contains only first order
derivatives of the fields φa(x), we can write [15]

A[φa] =
∫

d4xL(φ, ∂μφ, x), (5.21)

where L is the Lagrangian density. If the action is invariant with respect to an
infinitesimal transformation

xμ → ξμ = xμ + εδxμ,

φa(x) → αa(ξ) = φa(x) + εδφa(x) + εδxμ∂μφa(x),
(5.22)

one can extract a conserved current

Qμ =
[

∂L
∂(∂μφa)

∂νφ
a − Lδμ

ν

]
δxν − ∂L

∂(∂μφa)

(
δφa(x) + δxν∂νφ

a(x)
)

,

∂μQμ = 0, (5.23)

where the summation over repeated indices is understood. Because of the vanishing
divergence, the integral over a space-time region of (5.23) vanishes. Hence, if the
field flux at the space boundary vanishes,3 the space integral of Q0 is a constant of
motion. For instance, considering the action of a free, massive, spin 1/2 spinor field�

A =
∫

d4x

[
i

2
�̄(x)γ μ

↔
∂ μ �(x) − m�̄(x)�(x)

]
, (5.24)

3The space-time region might be finite, with the fields going to zero at the boundary or infinite, as
long as the fields decay fast enough to have a vanishing flux at infinity.
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one has the internal symmetry under a global phase change of the fields with: δxμ ≡
0, δ� = iε�, and δ�̄ = −iε�̄. The corresponding current in this case is the charge
current Jμ

Jμ(x) = �̄(x)γ μ�(x). (5.25)

The invariance under space-time translations (with δxμ being a constant and α(ξ) −
φ(x) = −δxμ∂μφ) yields the canonical stress-energy tensor Tμν

c as the conserved
current. The conserved charge in this case is the total four-momentum of the system

Tμν
c (x) = i

2
�̄(x)γ μ

↔
∂ν �(x) − gμνL ≡ i

2
�̄(x)γ μ

↔
∂ν �(x). (5.26)

In the last passage, we have made use of the equations of motion of the fields.
Finally, we consider the invariance under the Lorentz group, i.e., boosts and rota-

tions. The representation of the Lorentz group is the source of spin in quantum
field theory, it is then expected that the conserved currents, in this case, are sensi-
tive to spin polarization. In general, for an infinitesimal Lorentz transformation one
has δxμ = ωμνxν with constant ωμν = −ωνμ. The fields will change, according to
their representation, following the rule δφa + δxμ∂μφa = −i/2ωμν(

μν)abφ
b. One

obtains then the conserved angular-momentum flux density

Mλ,μν
c = xμT λν

c − xνT λμ
c − i

∂L
∂(∂λφa)

(
μν

)a
b φb. (5.27)

We note that the comma between the first index and the last two is used to emphasize
the fact that Mλ,μν

c = −Mλ,νμ
c (different orders of the indices and conventions are

used by different authors).
The first two terms in (5.27) depend on the canonical stress-energy tensor already

obtained from the space-time translational invariance of the action and represent
the orbital part of the angular momentum. The last term in (5.27) defines the spin
contribution to the angular momentum and is called a canonical spin tensor. With

μν = i

4

[
γ μ, γ ν

]
, (5.28)

the canonical spin tensor reads

Sλ,μν
c (x) = i

8
�̄(x)

{
γ λ,

[
γ μ, γ ν

]}
�(x). (5.29)

Using the anticommutation relations {γ μ, γ ν} = 2gμν , it is straightforward to check
that Sλ,μν

c is totally antisymmetric under the exchange of any indices.
Differently from the total charges (i.e., quantities obtained by the volume inte-

grals), the conserved density currents given by the Noether theorem are not uniquely
defined. Whatever the conserved current Qμ is originally derived, if one builds
from the fields a tensor Cαμ = −Cμα , called a superpotential, the new current
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Q′μ = Qμ + ∂αCαμ is equally conserved and provides the same conserved total
charge. In the particular case of the angular momentum flux and the stress-energy
tensor, there is a class of well-known transformations that leave the conserved total
charges invariant (i.e., the generators of the Poincaré group). They are called pseudo-
gauge transformations and have the form [19]

T ′μν = Tμν + 1

2
∂λ

(
Gλ,μν − Gμ,λν − Gν,λμ

)
,

S′λ,μν = Sλ,μν − Gλ,μν − ∂α�αλ,μν.

(5.30)

The tensors Tμν and Sλ,μν on the right-hand side of Eq. (5.30) can be either the
canonical ones or the already transformed ones. The auxiliary tensor Gλ,μν must be
antisymmetric in the last two indices, while �αλ,μν should be antisymmetric in both
the first two and the last two indices.

For any pair of the stress-energy and spin tensors, the following relations hold:

∂μT
μν = 0,

∂λSλ,μν = −
(
Tμν − T νμ

)
,

(5.31)

and the total four-momentum Pμ and angular momentum Jμν read

Pμ =
∫

d3x T 0μ,

Jμν =
∫

d3x
(
xμT 0ν − xνT 0μ + S0μν

)
.

(5.32)

By construction, the last integrals are equal to those obtained with the canonical ten-
sors, therefore, Eq. (5.31) can be equallywell considered as the local four-momentum
and angular momentum conservation equations. In this work, we are not going to
discuss which pair is the most appropriate or convenient to represent the physical
densities of the (angular) momentum of a physical system. This point is reviewed in
Ref. [20].

A very special case of the transformations defined by Eq. (5.30) is the Belinfante
symmetrization procedure. In this case, one starts with the canonical tensors Tμν

c and
Sλ,μν
c , and takesGλ,μν = Sλ,μν

c and�αλ,μν = 0. As a result, one obtains a vanishing
new spin tensor Sλ,μν

B = 0, and the angular momentum conservation becomes just
the requirement that the antisymmetric part of Tμν

B vanishes. There is an apparent
paradox here, namely, that one starts with ten independent equations for 16+24=40
degrees of freedom in (5.31)4 and ends up with only four equations for 10 degrees
of freedom; the vanishing divergence of a symmetric rank two tensors.

4This is so in the case of an arbitrary original spin tensor which is antisymmetric only in the last
two indices. For the canonical spin tensor that is totally antisymmetric, the number of independent
components is 16+4=20.
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It is possible to resolve this paradox by writing the result of the Belinfante sym-
metrization in a less deceitful way, namely

∂μT
{μν}
B = 0,

T [μν]
B = 0 ⇒ ∂λSλμν

c = −
(
Tμν
c − T νμ

c

)
,

Pμ =
∫

d3x T {0μ}
B , Jμν =

∫
d3x

(
xμT {0ν}

B − xνT {0μ}
B

)
.

(5.33)

The middle line of Eq. (5.33) emphasizes an important point—although the sym-
metric part T {μν}

B of the Belinfante symmetrized stress-energy tensor Tμν
B is sepa-

rately conserved and both the total four-momentum and angular momentum can be
expressed through T {μν}

B , the requirement that the antisymmetric part of T [μν]
B van-

ishes should be treated as a complementary set of equations. Indeed, starting with
the canonical tensors obtained for the Dirac field (5.26) and (5.29), and performing
the Belinfante symmetrization, one obtains

Tμν
B = i

2
�̄(x)γ μ

↔
∂ν �(x) − i

16
∂λ

(
�(x)

{
γ λ,

[
γ μ, γ ν

]}
�(x)

)
, (5.34)

a formula which is not manifestly symmetric under a μ ↔ ν exchange. In order to
show that (5.34) is indeed symmetric, one has two options:

i) Solve exactly the Euler–Lagrange equations of motion for the fields (possible
for a free field) and directly check the symmetry of (5.34).

ii) Make use of the angular momentum conservation for the canonical tensors,
accepting them as another set of equations.
Consequently, although one needs a rank two, symmetric, and conserved tensor in
order to make a comparison with kinetic theory (since the stress-energy tensor in
kinetic theory is symmetric by construction, see Eq (5.1)), one can always consider
the equation

∂λSλμν
c = −∂λSλμν

c = −
(
Tμν
c − T νμ

c

)
, (5.35)

which remains valid. We note that the equations for the fields are usually far from
being trivial and the same property holds for the symmetrization procedure that starts
from some generic Tμν and nonvanishingSλ,μν . For instance, a different Lagrangian
density having the same Euler–Lagrange equation of motion for the fields, generally
lead to different canonical tensors. In any case, all of these tensors lead to the same
conserved charges and provide the same number of equations. For a modern and
more detailed discussion over the different possible choices of Tμν and Sλ,μν , and
their physical consequences, we refer to Refs. [21,22].

If one excludes the particular case of quantum anomalies,5 very similar arguments
to those presented above hold also in the quantum case for the operators built from

5Neither in a free theory nor in the standard model there are anomalies in the conservation laws for
the four-momentum and angular momentum. However, one has to check on a case by case basis if
this is so while dealing with a generic quantum field theory.
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fundamental fields. In particular, the canonical spin tensor in the quantum case still
reads as in Eq. (5.29), with the only addition that one has to renormalize it (make
normal ordering) to avoid infinities related to the vacuum.Themacroscopic, classical,
spin tensor is the expectation value of the quantum counterpart. For a generic (pure
or mixed) state of the system ρ we have

Sλμν
c = tr

(
ρ : Ŝλμν

c :
)

= i

8
tr
(
ρ : �̄(x)

{
γ λ,

[
γ μ, γ ν

]}
�(x) :

)
. (5.36)

This form is probably the most intuitive guess for a macroscopic object embedding
the particle’s polarization degrees of freedom, because in the total angularmomentum
operator

Ĵμν =
∫

d3x �†(x)

(
i

2
xμ

↔
∂ν − i

2
xν

↔
∂μ + i

8
γ 0
{
γ 0,

[
γ μ, γ ν

]})
�(x), (5.37)

Ŝ0,μν
c describes the last term in the roundbrackets, depending on the gammamatrices.

It is the only term that mixes the components of the spinor fields—the part stemming
from Tμν

c depends on the gradients, hence, can be interpreted as the relativistic QFT
analog of x × p, the orbital angular momentum of classical particles.

In general, similarly to the stress-energy tensor and the current, the macroscopic
spin tensor (5.36) depends on both space-time coordinates and two momentum vari-
ables. However, its volume integral can be written in terms of a single momentum
variable and the expectation values of creation/destruction operators, much like we
have seen in the previous section. The space integral of S0i j

c can be expected to be
related to the sum of the spin polarization of particles. Defining the vector of matrices
i in the following way:

i = i

4
εi jk[γ j , γ k] =

(
σi 0
0 σi

)
, ∀i ∈ {1, 2, 3} (5.38)

with σi being the 2 × 2 Pauli matrices, one has

1

2
εi jk

∫
d3x S0 jk

c

= 1

2

∑
r ,s

∫
d3x

∫
d3 pd3 p′

(2π)6
√
2Ep2Ep′

[
〈a†r (p)as(p′)〉U †

r (p)iUs(p′)ei(p−p′)·x

− 〈b†r (p)bs(p′)〉V †
s (p′)i Vr (p)ei(p−p′)·x

+ 〈a†r (p)b†s (p
′)〉U †

r (p)i Vs(p′)ei(p+p′)·x

+ 〈bs(p)ar (p′)〉V †
s (p)iUr (p′)e−i(p+p′)·x]

(5.39)
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that can be rewritten as

1

2

∑
r ,s

∫
d3 p

(2π)32Ep

[
〈a†r (p)as(p)〉U †

r (p)iUs(p)

− 〈b†r (p)bs(p)〉V †
s (p)i Vr (p)

+ 〈a†r (p)b†s (−p)〉U †
r (p)i Vs(−p)e2 i Ep t

+ 〈bs(−p)ar (p)〉V †
r (−p)iUs(p)e−2 i Ep t

]
.

(5.40)

Making use of the direct formulas for the massive eigenspinors6

Ur (p) = √
Ep + m

(
φr

σ ·p
Ep+m φr

)
,

Vr (p) = √
Ep + m

( σ ·p
Ep+m χr

χr

)
,

(5.41)

with the two component vectors φr and χr being the eigenstates of the matrix σz =
diag(1, −1),

φ1 =
(
1
0

)
, φ1 =

(
0
1

)
,

χ1 =
(
0
1

)
, χ2 = −

(
1
0

)
,

(5.42)

and the standard relations between the Pauli matrices

{σi , σ j } = 2δi, j , [σi , σ j ] = 2i εi jk σk, (5.43)

one can rewrite the matrix elements in (5.40) in the following way

U †
r (p)iUs(p) = 2m φrσiφs + 2pi

Ep + m
φr (p · σ )φs,

V †
s (p)i Vr (p) = 2m χsσiχr + 2pi

Ep + m
χs(p · σ )χr ,

U †
r (p)i Vs(−p) = (

V †
s (−p)iUr (p)

)∗ = −2i
∑
j,k

εi jk p j φrσkχs .

(5.44)

The first two terms do not correspond exactly to the polarization in the i’th direction
of a particle or an antiparticle in an eigenstate of four-momentum pμ, but they are
very closely linked to it (we discuss this point in more detail in the next section).

6Note that in the Weyl representation of the Clifford algebra a different explicit formula for the
massive eigenspinors is typically used, but the general conclusions remain the same.
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In any case, the volume integral of the canonical spin tensor is strongly related
to the polarization state of the fundamental excitations of the fields, before any
phenomenological approximation. Because of this, it is a reasonably good candidate
to study, if one wants to extend the standard treatment of hydrodynamics to include
polarization degrees of freedom.

In general, the awkward mixed terms involving creation and destruction opera-
tors are present in Eq. (5.39). They introduce time dependence in the volume inte-
gral (5.39) and have no clear interpretation in terms of particle–antiparticle degrees
of freedom. Regarding the time dependence, this is not completely unexpected since
the canonical spin tensor is not conserved, see Eq. (5.35), hence the volume integral
depends on the time at which it is done. As explained in Appendix of Sect. 5.5,
the expectation values of the mixed terms 〈a†b†〉 and 〈ab〉 do not vanish only if the
quantum state of the system is a superposition of states, and among them, some states
differ in the number of particles/antiparticles by a single particle–antiparticle pair.
How much relevant are these kind of states in a heavy-ion collision environment is
yet to be understood.

If one considers non-canonical spin tensors obtained through a pseudo-gauge
transformation (5.30), it is possible to remove the time dependent part. For instance,
the transformation proposed in [9] has the form

�̂αβ,μν = 0, Ĝλ,μν = − 1

8m
�̄(x)

([
γ λ, γ μ

] ↔
∂ν −

[
γ λ, γ ν

] ↔
∂μ

)
�(x),

(5.45)
which results in a conserved spin tensor

Sλ,μν = Sλμν
c − Gλ,μν, ∂λSλ,μν = 0. (5.46)

Hence, the flux of the spin density, described by Sλ,μν , across the freeze-out
hypersurface is equal to the volume integral of S0,μν at later times. The latter can
be computed following the same steps used for the canonical tensor. After lengthy
but straightforward calculations one obtains a time-independent formula that is still
strongly related to the polarization degrees of freedom

1

2
εi jk

∫
d3x S0, jk =

= 1

2

∑
r ,s

∫
d3 p

(2π)3

[
〈a†r (p)as(p)〉

(
Ep

m
φrσiφs − pi

m(Ep + m)
φr (p · σ )φs

)

−〈b†r (p)bs(p)〉
(
Ep

m
χsσiχr − pi

m(Ep + m)
χs(p · σ )χr

)]
.

(5.47)
It is important to note that the term in the brackets, despite reducing to the polar-
ization of a two component spinor in the nonrelativistic limit (m → ∞), does not
correspond to the polarization of a relativistic particle. Therefore, the last integral
must not be confused with the average (relativistic) polarization multiplied by the
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average number of (anti)particles. For a discussion of the spin tensor in the context
of relativistic thermodynamics, we refer to [23,24], see also Becattini’s review in
this monograph [13].

5.4 Particle Polarization, theWigner Distribution, and the
Polarization Flux Pseudotensor

We have already shown that the spin tensor is a macroscopic object sensitive to the
polarization of the excitations of a free quantum field. In this section, we show that
the relativistic Wigner distribution is the appropriate extension of the distribution
function, that takes into account the polarization degrees of freedom. In particular,
the Wigner distribution of a generic state of the system can be linked to the average
polarization of particles with fixedmomentum, which is probably themost important
thing from the point of view of comparisons of theory predictions with experimental
data.

Our starting point is a relativistic polarization pseudovector, namely, the rela-
tivistic counterpart of the expectation value 〈ψ |σ |ψ〉 used for a two component,
nonrelativistic spinor. An important property to take into account is that the latter is
a constant of motion for free particles (the free hamiltonian commutes with the Pauli
matrices). Thus, the most straightforward way to generalize the concept of 〈ψ |σ |ψ〉
is to look at the classical (non-quantum) relativistic generalization of the internal
angular momentum and to apply the same reasoning to the operators in QFT.

For a classical (extended) object the angularmomentum reads j = x × p + s, with
s being the intrinsic angular momentum.7 The immediate relativistic generalization
is [25,26]

jμν = xμ pν − xν pμ + sμν, (5.48)

with an antisymmetric tensor sμν = −sνμ. It is easy to notice that the components
(1/2)

∑
j,k εi jk j jk describe the angular momentum, while the components j0i are

needed for relativistic covariance, to have the correct transformation rules changing
the frame of reference.

The polarization pseudovector �μ is proportional to the dual of the angular
momentum, contracted with the four-momentum8

�μ = − 1

2m
εμνρσ jνρ pσ = − 1

2m
εμνρσ sνρ pσ . (5.49)

7At the classical level, the latter corresponds to rotation with respect to an internal axis of the
extended object.
8A very similar definition is used for the Pauli–Lubanski pseudovector. It follows the same con-
struction procedure, but without mass in the denominator. Besides different physical dimensions, it
is a very close concept which is well defined in the massless case. Since we focus on massive fields
herein, we are not going to analyze it. It is useful to notice, however, that using the Pauli–Lubanski
definition, one can follow the same steps in the massless case, obtaining the helicity distribution
instead of the polarization one.
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Here we have made use of the definition (5.48), removing the contribution of the
orbital momentum since it is proportional to the four-momentum and vanishes after
contraction with the Levi-Civita symbol. In any inertial reference frame comoving
with the system (hence for p = 0) the polarization pseudovector has a vanishing time
component, and the space components are just the intrinsic angular momentum s.

Since �μ is the contraction of an antisymmetric object with the totally antisym-
metric εμνρσ and the four-momentum pμ, one needs only tree components to fully
describe it, for instance, the space ones. Having these comments in mind, we obtain

0 = pμ�μ = Ep�
0 − p · � ⇒ �0 = p · �

Ep
. (5.50)

It is particularly useful to write the polarization pseudovector in the comoving frame,
�com., in terms of the polarization in the lab frame. It will serve us later to make a
direct connection between the relativistic polarization operator and the nonrelativistic
one, 〈ψ |σ |ψ〉.

A boost �p from the lab frame to the comoving frame is characterized by the
speed β = ‖p‖/Ep and the Lorentz gamma factor γ = 1/

√
1 − β2 = Ep/m. The

zeroth component of �μ must vanish after such a boost, as immediately follows
from Eq. (5.50)

�0 �p−→ �0
com. = γ

(
�0 − β

� · p
‖p‖

)
= γ

(
�0 − � · p

Ep

)
≡ 0. (5.51)

On the other hand the non-trivial spatial part reads

�com. = � − � · p
‖p‖2 p + γ

(
� · p
‖p‖ − β�0

)
p

‖p‖

= � − � · p
‖p‖2

[
1 − Ep

m

(
1 − ‖p‖2

E2
p

)]
p

= � − � · p
‖p‖2

[
Ep − m

Ep
≡ ‖p2‖

Ep(Ep + m)

]
p

= � − � · p
Ep(Ep + m)

p.

(5.52)

In relativistic quantum field theory one has the operator analog of the polariza-
tion (5.49) for a massive Dirac field, namely, the operator

�̂μ = − 1

2m
εμνρσ : Ĵνρ :: P̂σ : . (5.53)
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We note that one has to use normal ordering for the two operators separately, because
otherwise the expectation value of �̂μ in single particle states would vanish.9 The
most general one-particle state |ψ1〉 for a free field reads

|ψ1〉 =
∑
r

∫
d3 p

(2π)32Ep
ψ1(p, r)|p, r〉, (5.54)

with the normalization

1 = 〈ψ1|ψ1〉 =
∑
r

∫
d3 p

(2π)32Ep
ψ∗
1 (p, r)ψ1(p, r), (5.55)

in which we made use of the normalization of the states

〈p, r |q, s〉 = 2Ep(2π)3δrs δ3(p − p′). (5.56)

The polarization vector then reads

〈ψ1|�̂μ|ψ1〉 = − 1

2m
εμνρσ

∑
r ,r ′

∫
d3 pd3 p′

(2π)62Ep2Ep′
ψ∗
1 (p′, r ′)ψ1(p, r)×

× 〈p′, r ′| : Ĵνρ :: P̂σ : |p, r〉.
(5.57)

Using the anticommutation relations

{as(q), a†r (p)} = (2π)3δrsδ
3(p − q), (5.58)

and taking into account the definition

|p, r〉 = √
2Epa

†
r (p)|0〉, (5.59)

it is relatively straightforward to prove that

: P̂σ : |p, r〉 = pσ |p, r〉, (5.60)

where P̂μ is the total four-momentum operator

: P̂μ :=
∑
s

∫
d3q

(2π)3
qμ
[
a†s (q)as(q) + b†s (q)bs(q)

]
. (5.61)

9If one applies the normal ordering : Ĵνρ P̂σ : at the operator level there are two destruction operators
on the left-hand side, which annihilate any single particle state. One would need at least two
(anti)particle states to have a nonvanishing expectation value.
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The situation is slightly more complicated for the expectation value of the angular
momentumoperator 〈p′, r ′| : Ĵνρ : |p, r〉.One can check that a non-zero contribution
reads

〈ψ1|�̂μ|ψ1〉 = − 1

2m
εμνρσ

∑
r ,r ′

∫
d3 pd3 p′

(2π)62Ep2Ep′
ψ∗
1 (p′, r ′)ψ1(p, r)pσ ×

× 〈p′, r ′| : Ĵνρ : |p, r〉 =

= − 1

2m
εμνρσ

∑
r ,r ′

∫
d3x

∫
d3 pd3 p′

(2π)62Ep2Ep′
ψ∗
1 (p′, r ′)ψ1(p, r)pσ ×

× i

8
U †
r ′(p′)γ 0

{
γ 0,

[
γν, γρ

]}
Ur (p)e−i(p−p′)·x =

= − 1

4m
εμi jσ εi jk

∑
r ,r ′

∫
d3 p

(2π)3

ψ∗
1 (p, r ′)ψ1(p, r)

2Ep

pσ

2Ep
U †
r ′(p)kUr (p).

(5.62)

In particular, the space part of the polarization 〈ψ1|�̂|ψ1〉 reads

〈ψ1|�̂|ψ1〉 = 1

4m

∑
r ,s

∫
d3 p

(2π)3

ψ∗
1 (p, r)ψ1(p, s)

2Ep
U †
r (p)

(
σ 0
0 σ

)
Us(p) =

= 1

2

∑
r ,s

∫
d3 p

(2π)3

ψ∗
1 (p, r)ψ1(p, s)

2Ep

[
φrσφs + φr (p · σ )φs

m(Ep + m)
p
]

.

(5.63)
At this point, with the help of (5.52), it is possible to highlight the link between the

expected value we have just computed and the nonrelativistic polarization 〈ψ |σ |ψ〉.
We first define the spin momentum-dependent density matrix

frs(p) = ψ∗
1 (p, r)ψ1(p, s)

2Ep
, (5.64)

which is a two-by-two Hermitian matrix in the indices r , s for every value of the
momentump and describes a polarized state. It is normalized to one, i.e., its trace over
the r , s indices is unitary while integrated with the measure

∫
d3 p/(2π)3 (because

of the normalization of the wave function (5.55)). Taking into account a momentum
eigenstate of the form frs = (2π)3Hrsδ

3(p − p̃),10 one finds the polarization

1

2

∑
r ,s

Hrs

[
φrσφs + φr (p̃ · σ )φs

m(Ep̃ + m)
p̃
]

, (5.65)

10This is actually forbidden, since the wave function ψ1 is a regular distribution in momentum.
However, one can have the spin density matrix factorized in a Hermitian 2 × 2 matrix times and
arbitrarily sharp gaussian in the momentum. Such a strongly delocalized state is, for all practical
purposes, equivalent to a momentum eigenstate.
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with Hrs = H∗
sr and tr(H) = 1. Making use of (5.52), one finds that the polarization

in the comoving frame reads

1

2

∑
r ,s

Hrsφrσφs, (5.66)

which is, indeed, the polarization of a nonrelativistic spinor. Hence, it is limited
between −1/2 and 1/2 in each direction.

It is important to note, however, that the polarization in the lab frame is not limited.
For instance

H =
(
1 0
0 0

)
⇒ 〈�̂〉 = 1

2

⎛
⎜⎜⎝

p̃z p̃x
m(Ep̃+m)

p̃z p̃y
m(Ep̃+m)

1 + p̃2z
m(Ep̃+m)

⎞
⎟⎟⎠ , (5.67)

which has, manifestly, arbitrarily large components as long as p̃z �= 0, maintaining
the expected polarization (0, 0, 1/2) in the comoving frame for a z polarized state. For
amore general case, i.e., if frs /∝δ3(p − p̃), onemust keep the relativistic corrections.

If one considers the defining relation (5.64), the spin density matrix has an imme-
diate physical interpretation. The trace

∑
r

[
frr (p)

(2π)3

]
(5.68)

is the probability density to obtain p in a momentummeasurement, while the average
polarization in the comoving frame reads

1

2

∑
rs

[
frs(p) (φrσφs)

]
∑

t

[
ft t (p)

] . (5.69)

We thus see that the spin densitymatrix is sufficient to characterize themost important
experimental observables for a free spin 1/2 particle. It is understood that all the
steps can be repeated for a single antiparticle wave function to obtain the antiparticle
polarization, which depends on the antiparticle spin density matrix f̄r s(p). The only
significant difference is an overall −1 sign, because of the corresponding sign in the
spin part of the normal ordered angular momentum operator, and an exchange of the
r and s indices in the χ bispinors compared to the φ for the particles .11

The appropriate generalization of the classical distribution function is expected,
therefore, to produce in some limit a multiparticle generalization of the spin density

11Which can be expected, since the conventional two component spinorsχ in the negative frequency
solutions of theDirac equation are takenwith the opposite eigenvalue of σz , compared to the positive
frequency solutions.
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matrix that provides both the spectrum in momentum of the produced particles and
their average polarization. As we have already anticipated, the desired object is the
Wigner distribution. Its most convenient definition is

ŴAB(x, k) =
∫

d4v

(2π)4
e−ik·v �

†
B(x + v/2)�A(x − v/2), (5.70)

that is, it is a four by four matrix obtained from thecomponents of two fields,
�(y)†B�A(z), Fourier transformed with respect to the relative distance v = z − y,
and with x = (z + y)/2 being the middle space-time point. The inversion on the
relative position of the matrix elements between the left and right-hand side of the
last equation is needed in order to use the ordinary rules in matrix multiplications
with respect to the A, B indices. In the remainder of this work, we will omit the
matrix indices, understanding the matrix nature, and we will just write, e.g., UrU

†
r

without indices in a similar way, understanding the fact that it is a 4 × 4 matrix.
An important property of the Wigner distribution (5.70) is that it is a Hermi-

tian matrix representing physical observables (at least in principle). Moreover, one
expects that the usual causality rules apply to it. It is worth mentioning that some
authors use a different sign convention or use �̄B�A in the definition ofW (x, k) [16–
18], thus making the alternatively defined matrix a non-Hermitian one, so one must
check which version of the Wigner distribution is actually used while comparing
different works. In any case, a matrix multiplication with γ 0 and an eventual multi-
plication by a constant is enough to switch notation.

By the correspondence principle, the classical distribution is the expectation value
of the renormalized operator

W (x, k) = tr
(

: Ŵ (x, k) :
)

. (5.71)

Making use of the definition (5.70), and assuming some minimal smoothness of the
integrals,12 one can rewrite the expectation value of any bilinear form in the Dirac
fields using integration over the momentum k of the trace of the macroscopicWigner
distribution (5.71)

tr

(
ρ : �̄(x)γ ν1 · · · γ νn

i

2

↔
∂μ1 · · · i

2

↔
∂μm �(x) :

)

=
∫
d4k kμ1 · · · kμm tr4

(
W (x, k)γ 0 γ ν1 · · · γ νn

)
.

(5.72)

Here, the trace on the left-hand side is the usual trace over the quantum states,
while tr4 on the right-hand side denotes the trace over the matrix indices. To derive

12In order to exchange the order of the integrations and integrate by parts.
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the formula (5.72), we have used the integral representation of the Dircac delta
δ4(v) = ∫

d4k/(2π)4 exp{−ik · v} and performed the integration by parts
∫

d4v kμ e−ik·v[· · · ] =
∫

d4v
(
i∂μ

(v) e
−ik·v) [· · · ] =

∫
dvk e−ik·v (−i∂μ

(v)

)
[· · · ].
(5.73)

In the next step, we can use the definition of the Dirac fields to expand (5.71) and to
explicitly represent it in terms of the expectation values of the creation/destruction
operators

W (x, k) =
∑
rs

∫
d4v

(2π)4
e−ik·v

∫
d3 pd3q

(2π)6
√
2Ep2Eq

[

〈a†r (p)as(q)〉U †
r (p)Us(q)ei(p−q)·x ei

(
p+q
2

)
·v+

− 〈b†r (p)bs(q)〉V †
s (q)Vr (p)ei(p−q)·x e−i

(
p+q
2

)
·v+

+ 〈bs(q)ar (p)〉V †
s (q)Ur (p)e−i(p+q)·x ei

(
p−q
2

)
·v+

+〈a†r (p)b†s (q)〉U †
r (p)Vs(q)ei(p+q)·x ei

(
p−q
2

)
·v
]

,

(5.74)

it is important to remind that both sides must be a matrix, therefore, the eigenspinors
are not contracted but must be read, eg, (U †

r )B(Us)A, according to (5.70). The
last formula (5.74) allows us to make two important observations. The first one is
that, after performing the d4v integral, each of the four sectors is proportional to
the Dirac delta function δ4(k ± (p ± q)/2), with a different combination of the +
and − signs in each sector. The momenta pμ and qμ are both on the mass shell
but their combination, in general, is not. The pure particle/antiparticle contributions
have δ4(k ± (p + q)/2)which can be on shell if and only if p = q . Themixed terms,
however, include δ4(k ± (p − q)/2) where (p − q)/2 is never on shell and always
space-like. This is the reason why we call kμ a wave number vector, in order not to
confuse it with the four-momentum of some particle-like degree of freedom.

The second and possibly the most important thing to notice is that kμW (x, k) is
conserved, i.e., kμ∂μW (x, k) = 0, as one can check directly by applying kμ∂μ to
the right-hand side of (5.74) and using the integration by parts in (5.73) to convert
the wavenumber vector k into a derivative with respect to v. This is a consequence
of the Dirac equation for the fields, which implies that the Klein-Gordon equation is
satisfied as well.

Because of the conservation of kμW (x, k), one can use the same mathematical
framework as that already used for the conserved fluxes such as Tμν and the classical
expression pμ f (x, p). Here we can see the reason of the choice to define theWigner
operator as Hermitian. Being kμW (x, k) Hermitian too (an observable) is expected
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to follow causality rules. As a consequence of the Gauss theorem, the flux over the
freeze-out hypersurface (or any other surface following the freeze-out) is equal to
the volume integral13

∫
dμ kμ W (x, k) =

∫
d3x k0 W (x, k). (5.75)

The analysis of the volume integral corresponds to a considerable simplification in
the treatment of the Wigner distribution, like for the other quantum objects we have
seen. Integrating directly (5.74) one obtains

∫
d3x k0 W (x, k) =

∑
rs

∫
d3 p

(2π)3

k0

2Ep

[
δ4(k − p) 〈a†r (p)as(p)〉U †

r (p)Us(p)+

−δ4(k + p) 〈b†r (p)bs(p)〉 V †
s (p)Vr (p)

]
.

(5.76)
The mixed terms vanish exactly, since the volume integral provides a δ3(p + q).
Therefore, the Dirac function δ4(k ± (p − q)/2) becomes δ(k0)δ3(k ± p) in this
case. The appearance of k0 makes these terms vanishing, as k0δ(k0)δ3(k ± p) ≡ 0.

The flux of the Wigner distribution (5.75) has many interesting properties. They
can be identified while looking at its explicit form given by (5.76). It includes an on
shell positive frequency contribution for the particles and a negative frequency (with
negative momentum) contribution for the antiparticles. With k being on the mass
shell, one can divide by k0 since ‖k0‖ ≥ m – something that cannot be done for the
full distribution (5.74). Having in mind the normalization tr4(U

†
r (p) ·Us(p)) = U †

r ·
Us = 2Epδrs = V †

r · Vs = tr4(V
†
r (p)Vs(p)), and the exact relations (see Appendix

in Sect. 5.5)

∑
r

〈a†r (p)ar (p)〉
(2π3)

= dN

d3 p
,

∑
r

〈b†r (p)br (p)〉
(2π3)

= d N̄

d3 p
, (5.77)

it is immediate to verify that the trace of the flux (5.76) reads

∫
dμ kμW (x, k) = δ(k0 − Ek) Ek

dN

d3 p
(k) + δ(k0 + Ek) Ek

d N̄

d3 p
(−k). (5.78)

In other words, the positive frequency contribution to the flux is directly expressed by
the (invariant) spectrum of particles with momentum k; while the negative frequency
contribution is given by the invariant spectrum of antiparticles with momentum −k.

13The hypothesis of an isolated system is important too. Being the integrand an observable, the
flux over the light cone starting from the spatial boundary of an isolated system must be vanishing.
Causality prevents theWigner distribution to flow out of the light cone, as it would be a superluminal
signal transfer, and the hypothesis of an isolated system prevents any signal to flow inside of the
light cone. The flux over the light cone is therefore vanishing.
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The structure of (5.76) is quite rich. It does not include the (anti)particle’s spectra
only but depends on the polarization states. By construction, the expectation val-
ues 〈a†r (p)as(p)〉 and 〈b†r (p)bs(p)〉 have a very similar structure to the one-particle
spin density matrix (5.64). They are both Hermitian matrices with respect to the
indices r , s for all values of p. Moreover, their diagonal elements 〈a†r (p)ar (p)〉
and 〈b†r (p)br (p)〉 are always non-negative. The only difference is the normaliza-
tion. Instead of being normalized to 1 they are normalized to the average number of
particles 〈N 〉 and antiparticles 〈N̄ 〉

∑
r

∫
d3 p

〈a†r (p)ar (p)〉
(2π3)

=
∫
d3 p

dN

d3 p
= 〈N 〉,

∑
r

∫
d3 p

〈b†r (p)br (p)〉
(2π3)

=
∫
d3 p

d N̄

d3 p
= 〈N̄ 〉.

(5.79)

They provide therefore the desired generalization of the one-particle spin density
matrix to the multiparticle case. The flux of the Wigner distribution (5.75) directly
depends on them, it is therefore not surprising that one canget the averagepolarization
density in momentum space from it. Making use of both (5.75) and (5.76) we find

1

2m
tr4

[(∫
dμ kμ W (x, k)

)
γ 0γ iγ5

]
=

= 1

4m

∑
r ,s

∫
d3 p

[
δ4(k − p)

〈a†r (p)as(p)〉
(2π3)

U †
r (p)

(
σi 0
0 σi

)
Us(p)+

δ4(k + p)
〈b†r (p)bs(p)〉

(2π3)
V †
s (p)

(
σi 0
0 σi

)
Vr (p)

]
=

= 1

2

∑
r ,s

{
δ(k0 − Ek)

〈a†r (k)as(k)〉
(2π3)

[
φrσiφs + φr (k · σ )φs

m(Ek + m)
ki

]
+

δ(k0 + Ek)
〈b†r (−k)bs(−k)〉

(2π3)

[
χsσiχr + χs(k · σ )χr

m(Ek + m)
ki

]}
,

(5.80)

which can be immediately recognized as the average polarization of particles with
momentumk (multiplied by the (non-invariant) spectrumdN/d3 p(k) for the positive
frequency) minus the average polarization of antiparticles of momentum −k (times
the spectrum d N̄/d3 p(−k)). Since the spectra can be calculated from the flux of the
Wigner distribution, one can obtain the average polarizations of particles, 〈�(p)〉,
and antiparticles, 〈�̄(p)〉, for any momentum p,
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〈�(p)〉 = 1

2

∑
r ,s

〈a†r (p)as(p)〉∑
t 〈a†t (p)at (p)〉

[
φrσφs + φr (p · σ )φs

m(Ep + m)
p
]

,

〈�̄(p)〉 = −1

2

∑
r ,s

〈b†s (p)br (p)〉∑
t 〈b†t (p)bt (p)〉

[
χrσχs + χr (p · σ )χs

m(Ep + m)
p
]

.

(5.81)

Making use of (5.52) one can compute the polarization in the comoving frame as
usual.

It is straightforward to check that the trace tr4
[ 1
2m

(∫
dμ kμ W (x, k)

)
γ 0γ 0γ5

]
corresponds to the momentum density of �0 (i.e., it is equal to the time component
of the polarization vector – particle contribution for the positive frequency minus the
antiparticle contribution for the negative frequency). The same structure of the trace
is obtained with γ 0 replaced by γ i . One can summarize all these results by making
use of the definitions

〈�0(p)〉 = 〈�(p)〉 · p
Ep

, 〈�̄0(p)〉 = 〈�̄(p)〉 · p
Ep

, (5.82)

to complete the covariant 〈�μ(p)〉 with the correct time component.14 Thus, the
compact form of the previous results on the average polarization reads

1

2m
tr4

[(∫
dλ k

λ W (x, k)

)
γ 0γ μγ5

]
=

= δ4(k0 − Ek)
dN

d3 p
(k) 〈�μ(k)〉 − δ4(k0 + Ek)

dN

d3 p
(−k) 〈�̄μ(−k)〉.

(5.83)

The last equation, in conjunction with the exact result in (5.78), is enough to grant
that the Wigner at the freeze-out hypersurface is sufficient to predict all the relevant
experimental spectra of produced (anti)particles.

In the last section, we have seen that the spin tensor is a macroscopic observable
sensitive to the microscopic polarization states. Looking at the relaitively simple
trace on the left-hand side of (5.83), one may think if there is macroscopic object
related to this. Taking into account the exact conversion rules (5.72), one finds that
the d4k integral of the left-hand side reads

1

2m

∫
d4k tr4

[(∫
dλ k

λ W (x, k)

)
γ 0γ μγ5

]
=

=
∫
dλ〈: i

4m
�̄

( ↔
∂λ γ μγ5

)
� :〉.

(5.84)

14Compare with Eq. (5.50) for a quick check.
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It is, therefore, the flux of (the expectation value of) the rank 2 pseudotensor

i

4m
�̄(x)

( ↔
∂λ γ μγ5

)
�(x), (5.85)

which we may call the polarization flux pseudotensor, given its relation to the inte-
gral of the polarization pseudovector density. It is straightforward to check that its
divergence in the λ index vanishes. Hence, it is conserved, as one could expect since
its flux is time independent. It does not correspond to any spin tensor, but it provides
a valid alternative as a macroscopic object sensitive to the micorscopic polarization
states.

5.5 Summary

In this work, we have extended the standard kinetic-theory formalism to include spin
polarization for particles with spin 1/2. This has been achieved by using the spin
tensor and the Wigner function. Our results can be used for the interpretation of the
heavy-ion data describing spin polarization of the emitted hadrons.
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Appendix: ExpectationValues of Creation and Destruction
Operators

In this appendix, we show details of the calculations of the expectation values of
creation and destruction operators. In particular, we find an interesting and intuitive
link between the average (anti)particle number and the quantumfluctuations required
for the mixed terms (〈a†b†〉 and 〈ab〉) to be nonvanishing.

The starting point is the density matrix (5.2), which reads

ρ =
∑
i

Pi |ψi 〉 〈ψi | . (5.86)

All Pi ’s are classical probabilities

∑
i

Pi = 1. (5.87)
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The states |ψi 〉 are proper quantum states, that is, they are normalized to one

〈ψi |ψi 〉 = 1, ∀i . (5.88)

The expectation value O of any quantum operator15 Ô is a weighted average of the
expectation values in the pure states, with the classical weights Pi

O = tr
(
ρ Ô

)
=
∑
i

Pi tr
(

|ψi 〉 〈ψi | Ô
)

, (5.89)

therefore, our problem reduces to the expectation value in a generic pure state.
The trace must be taken over a complete set of independent states (not necessarily
quantum states that are normalized to one). Since we are interested in the expectation
values of the creation and destruction operators of four-momentum and polarization
eigenstates, the most convenient states are N -particle and N̄ -antiparticle ones. The
trace is defined as an integration over the momentum degrees of freedom and a sum
over discrete polarizations, namely

tr
(
· · ·
)

=
∑
r

∫
d3 p

(2π)32Ep
〈p, r | · · · |p, r〉+

+
∑
r ,s

∫
d3 p

(2π)32Ep

d3q

(2π)32Eq
〈p, r , q, s| · · · |p, r , q, s〉 + · · · ,

(5.90)
and so on, until exausting all the combinations of N particles and N̄ antiparticles. In
the last formula the standard definition is used

|p, r〉 = √
2Epa

†
r (p)|0〉, (5.91)

along with the analogous expressions for antiparticles and multiparticle states. The
anticommutation relations have the form

{ar (p), a†s (p
′)} = {br (p), b†s (p

′)} = (2π)3δrs δ3(p − p′), (5.92)

with the normalization

〈p, r |q, s〉 = 2Ep(2π)3δrs δ3(p − p′). (5.93)

It is convenient to introduce the compact notation for multiparticle states

|p, r; q̄, s̄〉 = |p1, r1, p2, r2, · · · pN , rN ; q̄1, s̄1, q̄2, s̄2, · · · q̄N̄ , s̄N̄ 〉,∫
[d p]N [dq̄]N̄ =

∫
d3 p1

(2π)32Ep1
· · · d3 pN

(2π)32EpN

d3q̄1
(2π)32Eq̄1

· · · d3q̄N̄
(2π)32Eq̄N̄

,
(5.94)

15In general one needs the renormalized operators. For free fields this is just the normal ordering,
that is, removing the vacuum expectation value. We always assume massive free Dirac fields and
normal ordering in this section.
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where the bar is used to distinguish antiparticle from particle variables. In this way
the trace (5.90) can be written in a more compact form as

tr

(
· · ·
)

=
∑
N ,N̄

∑
r ,s̄

∫
[d p]N [dq̄]N̄ 〈p, r; q̄, s̄| · · · |p, r; q̄, s̄〉. (5.95)

This compact notation is useful to write the generic quantum state |ψ〉

|ψ〉 =
∑
N ,N̄

∑
r ,s̄

∫
[d p]N [dq̄]N̄ αN ,N̄ (p, r; q̄, s̄) |p, r; q̄, s̄〉, (5.96)

where the complex functions αN ,N̄ (p, r; q̄, s̄) are partial N -particle-N̄ -antiparticle
wave functions in momentum space. The normalization reads

1 = 〈ψ |ψ〉 =
∑
N ,N̄

∑
r ,s̄

∫
[d p]N [dq̄]N̄ α∗

N ,N̄
(p, r; q̄, s̄)αN ,N̄ (p, r; q̄, s̄) =

=
∑
N ,N̄

‖αN ,N̄‖2,
(5.97)

with‖αN ,N̄‖2 being a shorthand notation for the (non-negative16) sum of integrals

‖αN ,N̄‖2 =
∑
r ,s̄

∫
[d p]N [dq̄]N̄ α∗

N ,N̄
(p, r; q̄, s̄)αN ,N̄ (p, r; q̄, s̄). (5.98)

The tensor product |ψ〉〈ψ |, that is, the projector on the quantum state |ψ〉 reads

|ψ〉〈ψ | =
∑
N ,N̄

∑
r ,s̄

∑
N ′,N̄ ′

∑
r ′,s̄′

∫
[d p]N [dq̄]N̄ [d p′]N [dq̄ ′]N̄×

× α∗
N ′,N̄ ′(p

′, r ′; q̄ ′, s̄′)αN ,N̄ (p, r; q̄, s̄) |p, r; q̄, s̄〉〈p′, r ′; q̄ ′, s̄′|.
(5.99)

Making use of the normalization relations between the states, it is possible to write
the trace in a pure state |ψ〉 of an operator Ô in the compact form

tr
(

|ψ〉 〈ψ | Ô
)

=
∑
N ,N̄

∑
r ,s̄

∑
N ′,N̄ ′

∑
r ′,s̄′

∫
[d p]N [dq̄]N̄ [d p′]N [dq̄ ′]N̄×

× α∗
N ′,N̄ ′(p

′, r ′; q̄ ′, s̄′)αN ,N̄ (p, r; q̄, s̄) 〈p′, r ′; q̄ ′, s̄′|Ô|p, r; q̄, s̄〉.
(5.100)

There is a couple of results that can be immediately inferred from the last formula.
The first one is that the expectation values of a†b† and ba, for any momentum and

16Being the sum of integrals of a real non-negative weight of the forms z∗z.
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polarization combination, can be nonvanishing if and only if the quantum state of
the system is in a superposition of states with different particle content. More pre-
cisely, only the quantum interference between states that differ exactly by a particle-
antiparticle pair can give a nonvanishing contribution ( understanding that the integral
over the partial wave functions can still simplify and give a vanishing result).

The second observation is that the expectation value of a†a and b†b can be simpli-
fied. The only combinations that can give a contribution are the ones between states
with exactly the same number of particles and the same number of antiparticles. In
the following computations, we consider only the term a†a, understanding that the
very same transformations hold for antiparticles.

As a particular case of (5.100) one can write the expectation value of a†r (p)as(p′)

tr
(

|ψ〉 〈ψ | a†r (p)as(p′)
)

=
∑
N ,N̄

∑
t,t ′

∑
ū,ū′

∫
[dk]N [dk′]N [dq̄]N̄ [dq̄ ′]N̄×

× α∗
N ,N̄

(k′, t ′; q̄ ′, ū′)αN ,N̄ (k, t; q̄, ū)〈k′, t ′; q̄ ′, ū′|a†r (p)as(p′)|k, t; q̄, ū〉.
(5.101)

It is relatively simple to obtain the final formula by making use of the standard
anticommutation relations

· · · a†r (p)as(p′)
√
2Ek j a

†
t j (k j ) · · · =

· · · a†r (p)
√
2Ek j

(
{as(p′), a†t j (k j )} − a†t j (k j )as(p′)

)
· · · =

· · ·
√
2Ek j

(
a†t j (k j )a

†
r (p)as(p′) + a†r (p)(2π)3δst j δ

3(k j − p′)
)

· · · =
· · ·
[√

2Ek j a
†
t j (k j )

(
a†r (p)as(p′)

)+
√
2Ep′(2π)3δst j δ

3(k j − p′)a†r (p)
]
· · · =

= · · ·
[√

2Ek j a
†
t j (k j )

(
a†r (p)as(p′)

)+

+
√
2Ep′

2Ep
(2π)3δst j δ

3(k j − p′)
√
2Epa

†
r (p)

]
· · ·

(5.102)
In other words, even if a†r (p)as(p′) doesn’t commute with the creation operators, it is
possible to “move it to the right”. However, each timewe do that we have to add a new
state, with a delta between the j’th degrees of freedom and the destruction operator
as(p′), a numerical factor (2π)3

√
Ep′/Ep and a substitution of the momentum and

polarization at the j’th place with the ones related to the creation operator a†r (p).
After moving to the right all the particle creation operators, a†r (p)as(p′) commutes
with the creation operators of the antiparticles (if present).
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In the end, after making use of the normalization of the eigenstates we find

tr
(

|ψ〉 〈ψ | a†r (p)as(p′)
)

= 0+

+ 1√
2Ep2Ep′

∑
N̄ ,N>0

N∑
j+1

∑
t−t j

∑
ū

∫
[dk](N− j)[dq̄]N̄×

× α∗
N ,N̄

(k − k j , p, t − t j , r; q̄, ū)αN ,N̄ (k − k j , p′, t − t j , s; q̄, ū).

(5.103)

The notation
∑

t−t j

∫
d[k](N− j) means that the integral and the sum is over all

the particle degrees of freedom except for the j’th. In the similar way αN ,N̄ (k −
k j ,p, t − t j , r; q̄, ū) is a shorthand notation for the (partial) wave function with the
j’th degrees of freedom fixed to the momentum p and polarization r .

The formula (5.103) has many interesting consequences. Besides the expected
vanishing expectation value for purely antiparticle states, one can immediately check
that the expectation value of a†r (p)ar (p) is nonnegative, since it is a series of integrals
and sums of squares.Moreover, as one could expect, it is linked to the average number
of particles. Indeed, the expression

∑
r

∫
d3 p

(2π)3
tr
(|ψ〉〈ψ |a†r (p)ar (p)

) =
∑
N

N
∑
N̄

‖αN ,N̄‖2, (5.104)

exactly gives the average number of particles in the state |ψ〉 because of the nor-
malization (5.97). More interestingly, the expectation value of a†r (p)as(p) (same
momentum, different polarization) performs the role of amomentum-dependent spin
density matrix. The momentum integral of the trace is proportional to the average
number of particles, but the matrix itself is sensitive to polarization in the r , s indices
and can be used to obtain the average number of particles, per momentum cell, for
some polarization states.

All these arguments do not change if one reinserts the classical probabilities Pi
from (5.86) and deals with mixed states. The classical fluctuations do not change the
properties of the spin density matrix, like the non-negative diagonal elements and
normalization of the trace (after dividing by (2π)3 and integrating over momentum,
like for the pure states) does not change the average number of particles.
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