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Abstract

We present a study of the thermodynamics of the massless free Dirac field at equi-
librium with axial charge, angular momentum and external electromagnetic field
to assess the interplay between chirality, vorticity and electromagnetic field in
relativistic fluids. After discussing the general features of global thermodynamic
equilibrium in quantum relativistic statistical mechanics, we calculate the ther-
mal expectation values. Axial imbalance and electromagnetic field are included
non-perturbatively by using the exact solutions of the Dirac equation, while a
perturbative expansion is carried out in thermal vorticity. It is shown that the
chiral vortical effect and the axial vortical effect are not affected by a constant
homogeneous electromagnetic field.

3.1 Introduction

The collective macroscopic behaviour of matter in the presence of quantum anoma-
lies and external fields is an increasingly important subject in several fields of physics.
Specifically, the experiments of relativistic heavy-ion collisions at RHIC and LHC
have posed new and interesting questions about the theoretical foundations of rel-
ativistic collective phenomena. The experimental data of heavy-ion collisions indi-
cates the creation of a deconfined quark–gluon plasma in a strongly coupled regime
at extreme conditions of temperature, density, thermal vorticity [1] and magnetic
fields [2]. Moreover, it was argued [3,4] that the fluctuations of topological config-
urations of the QCD vacuum in the early stages of a heavy-ion collision generate
a chiral imbalance, which is an imbalance between the number of right- and left-
handed quarks. Despite the fact that the usual relativistic hydrodynamic has been very
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effective [5] in reproducing the experimental data for collective flow phenomena, it
is now essential for the interpretation of heavy-ion collisions to address hydrody-
namics in the contemporaneous presence of chiral imbalance, thermal vorticity and
external electromagnetic fields.

The first crucial step towards understanding the hydrodynamics of matter subject
to external fields is to study its thermodynamic properties. It is the main purpose
of this contribution to investigate the effects of an external electromagnetic field
on the thermodynamics of a chiral vorticous fluid. The effects of electromagnetic
fields on (non-chiral non-vorticous) relativistic quantum fluids were already studied
in the past, see for instance [6,7] and reference therein and [8] for the special case
of a constant magnetic field. More recently, this topic has been addressed in [9]
using Zubarev’s non-equilibrium statistical operator, in [10] using the generating
functional method and in [11–13] with Wigner function derived from kinetic theory.

This contribution aims to highlight the modifications caused by chiral imbalance
and by thermal vorticity. The paper is organized in the following way. In Sect. 3.2,
we introduce the global thermal equilibrium of a chiral system with the contempo-
raneous presence of an external electromagnetic field and a thermal vorticity within
Zubarev’s non-equilibrium statistical operator formalism. In Sect. 3.2.1, we give a
brief overview of the main results for the case of a chiral Dirac field in the absence
of the electromagnetic field. In Sect. 3.3, we review the relativistic quantum theory
of fermions under the effect of an external magnetic field. Then, we obtain the exact
form of the chiral fermionic propagator with an external constant magnetic field and
we obtain the exact thermal averages of the axial and electric currents. In Sect. 3.5,
we examine the properties of a system at thermal equilibrium with constant vorticity
and electromagnetic field. The last part of the paper is concerned with the conse-
quences of an electromagnetic field on the chiral vortical effect and the axial vortical
effect.

Notation

In this work, we use the natural unit system in which � = c = G = kB = 1. The
Minkowski metric is defined by the tensor ημν = diag(1,−1, −1, −1); for the Levi-
Civita symbol, we use the convention ε0123 = +1.

Operators in Hilbert space will be denoted by a large upper hat, e.g. ̂T (with the
exception of Dirac field operator that is denoted by�). The stress-energy tensor used
to define Poincaré generators is always assumed to be symmetric with an associated
vanishing spin tensor.

3.2 General Global Equilibriumwith Electromagnetic Field

In this section, we introduce the methods to study the thermodynamic equilibrium
of a quantum relativistic system in the presence of a chiral imbalance and of an
external electromagnetic field. For that purpose, we review the Zubarev method
of stationary non-equilibrium density operator [14,15] (see also [16–19] for recent
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developments) and we discuss the inclusion of a conserved axial current and of an
external electromagnetic field.

When we are dealing with a relativistic system, we must consider local quantities
in order to address the appropriate covariant properties. To identify those quantities,
we use a Arnowitt–Deser–Misner (ADM) decomposition of space–time [14–17].
Choose then a foliation of space–time and suppose that the system in consideration
thermalize faster than the evolution of “time” τ in which we are interested. At each
step of evolution dτ , the system is at local thermal equilibrium and the macroscopic
behaviour of the system is described by a stress-energy density Tμν(x), an (electric)
current density jμ(x) and an axial current jAμ(x), all lying on a space-like hyper-
surface�(τ).We can then describe the thermal properties of the systemwith a density
operator which lives on �(τ). As in the non-relativistic case, the density operator
at local equilibrium ρ̂LE is obtained as the operator which maximizes the entropy
S = −tr( ρ̂ log ρ̂ ). To reproduce the actual thermodynamics on the hyper-surface,we
maximize the entropy with the constraints that the mean values of the stress-energy
tensor and of the currents on �(τ) correspond to the values of the densities Tμν(x),
jμ(x) and jAμ(x) [15]. To obtain these densities, we project the stress-energy tensor
and the current mean values onto n, i.e. the normalized four-vector perpendicular
to �:

nμ(x) tr
[

ρ̂ ̂Tμν(x)
] = nμ(x) 〈̂Tμν(x)〉 ≡ nμ(x) Tμν(x),

nμ(x) tr
[

ρ̂ ̂j μ(x)
] = nμ(x) 〈̂j μ(x)〉 ≡ nμ(x) jμ(x),

and similarly for the axial current. We could also impose a constraint on the angular
momentum density, but since we are choosing the Belinfante operator as the stress-
energy tensor, it turns out that this additional requirement is automatically taken into
account [20].

The maximum solution ρ̂LE gives the Local Equilibrium Density Operator
(LEDO) [16,17]:

ρ̂LTE = 1

Z
exp

[

−
∫

�

d�μ

(

̂Tμν(x)βν(x) − ζ(x)̂j μ(x) − ζA(x)̂j μ
A (x)

)

]

, (3.1)

where βμ is the four-temperature vector such that T = 1/
√

β2 is the proper comov-
ing temperature, ζ and ζA are the ratio of comoving chemical potentials and the
temperature (e.g. ζ = μ/T ) and Z is the partition function. In the presence of an
external electromagnetic field, we indicate with Aμ(x) the non-dynamical gauge
field and with Fμν = ∂μAν − ∂ν Aμ the electromagnetic strength tensor. Therefore,
the operator relations stemming for conservation equations are

∂μ
̂j μ = 0, ∂μ

̂Tμν = ̂jλFνλ, ∂μ
̂j μ
A = 0. (3.2)

Furthermore, the four-momentum operator ̂P and the conserved charges ̂Qi are
obtained by

̂Pμ =
∫

�

d�λ
̂T λμ, ̂Qi =

∫

�

d�λ
̂j λ
i ,
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while the angular momentum is

̂Jμν =
∫

�

d�λ

(

xμ
̂T λν − xν

̂T λμ
)

. (3.3)

Notice that, as we will discuss in details in Sect. 3.3, the four-momentum ̂P and the
angular momentum ̂J in the presence of external electromagnetic field are neither
conserved nor the generators of translations and Lorentz transformations.

In the case of Dirac fermions interacting with an external gauge field, the explicit
form of the operators above is

̂j μ = q�̄γ μ�, ̂j μ
A = �̄γ μγ 5�,

̂Tμν = i

4

[

�̄γ μ−→
∂ ν� − �̄γ μ←−

∂ ν� + �̄γ ν−→
∂ μ� − �̄γ ν←−

∂ μ�
]

− 1

2

(

̂j μAν +̂jν Aμ
)

,

(3.4)
and the stress-energy tensor and the electric current indeed satisfy the relations (3.2).
Regarding the axial current̂jA, we also have to take into account the chiral anomaly.
The chiral anomaly affects the axial current divergence as follows:

∂μ
̂j μ
A = −1

8
εμνρλ q2

2π2 FμνFρλ = − q2

2π2 (E · B),

where q is the electric charge of the fermion, and E and B are comoving electric and
magnetic field, defined by

Fμν = Eμuν − Eνuμ − εμνρσ Bρuσ ,

with u the fluid velocity. Even when the product E · B is non-vanishing and conse-
quently the axial current is not conserved, we can still define a new conserved “axial”
current by means of the Chern–Simons current K , whose divergence gives the chiral
anomaly:

Kμ = εμνρσ AνFρσ ,
q2

8π2 ∂μK
μ = q2

2π2 (E · B).

The new conserved axial current ̂jCS is then defined as

̂j μ
CS = ̂j μ

A + q2

8π2 K
μ, ∂μ

̂j μ
CS = 0,

and the axial chemical potential μA is to be associated with this current. Since the
additional current K depends only on external fields, it is not a quantum operator
and it does not contribute to thermal averages. Therefore, all the results discussed
in the absence of chiral anomaly will also be valid for the case of equilibrium with
conserved Chern–Simons current. Because there is no difference in the results, we
will continue to denote the current associated to μA inside the statistical operator
with ̂jA even when the chiral anomaly is non-vanishing.
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Let us nowmove to describe the system at global thermal equilibrium. The global
equilibrium is reached when the statistical operator (3.1) is time independent. This
occurs when the integrand inside Eq. (3.1) is divergence-less [21]. Then, it is easily
proven using relations (3.2) that global thermal equilibrium is realized when the
following relations are satisfied:

∂μβν(x) + ∂νβμ(x) = 0, ∂μζ(x) = Fνμβν(x), ∂μζA(x) = 0. (3.5)

The inverse four-temperature and the axial chemical potential solves the previous
conditions if they are given by [16]:

βμ(x) = bμ + �μρx
ρ, ζA = constant,

where b is a constant time-like four-vector and� is a constant anti-symmetric tensor.
We refer to � as the thermal vorticity because it is the anti-symmetric derivative of
inverse four-temperature:

�μν = −1

2

(

∂μβν − ∂νβμ

)

and because it contains information about the fluid’s acceleration and rotation.
Indeed, if the β four-vector is a time-like vector, then we can choose the β-frame as
hydrodynamic frame [10,21]. The unitary four-vector fluid velocity u is therefore
identified with the direction of β:

uμ(x) = βμ(x)
√

βρ(x)βρ(x)
.

As long as we are considering physical observables in a region where the coordinate
x is such that β(x) is a time-like vector, this definition provides a proper choice for
the fluid velocity. We can decompose the thermal vorticity into two space-like vector
fields, each having three independent components, by projecting along the time-like
fluid velocity u:

�μν = εμνρσwρuσ + αμuν − ανuμ.

The four-vectors α and w are explicitly written inverting the previous relation:

αμ(x) ≡ �μνuν, wμ(x) ≡ −1

2
εμνρσ �νρuσ .

The vectors α andw that depend on the coordinates are space-like and are orthogonal
to u. All the quantity u, �, α, w are dimensionless. From their definitions, we can
easily show that α and w are given by

αμ =
√

β2 aμ, wμ =
√

β2 ωμ,
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where a and ω are the local acceleration and rotation of the fluid, which are given by

aμ = uν∂
νuμ, ωμ ≡ 1

2
εμνρσuσ ∂νuρ.

Furthermore, it will prove useful to define the projector into the orthogonal space of
fluid velocity:

�μν ≡ gμν − uμuν,

and the four-vector γ orthogonal to the other ones: u, α,w

γ μ = εμνρσwναρuσ = (α · �)λ�
λμ.

The � decomposition above defines a tetrad {u, α,w, γ } which can be used as a
basis for four-vectors. It must be noticed, however, that the tetrad is neither unitary
nor orthonormal, indeed in general we have α · w �= 0.

Returning to the global equilibrium conditions (3.5), notice that in the absence of
electromagnetic field also ζ must be a constant. In that case, the global equilibrium
statistical operator takes the following form [22,23]:

ρ̂ = 1

Z
exp

{

−b · ̂P + 1

2
� : ̂J + ζ ̂Q + ζÂQA

}

. (3.6)

The thermodynamics of Dirac fermions which follows from this operator is quickly
reviewed in Sect. 3.2.1

For the case of a non-vanishing electromagnetic field instead, we need to solve
the equation:

∂μζ(x) = Fσμβσ . (3.7)

To find the solution, we first derive it with respect to ∂ν :

∂ν∂μζ = ∂ν(Fσμβσ ). (3.8)

Since we can exchange the order of the derivatives ∂ν∂μ on the l.h.s. of (3.8), it
follows that the anti-symmetrization with respect to indices μ and ν of (3.8) must
be vanishing:

∂ν∂μζ − ∂μ∂νζ = 0 = [∂ν(Fσμβσ ) − ∂μ(Fσνβσ )
]

= [βσ (∂νFσμ − ∂μFσν) + (∂νβσ )Fσμ + (∂μβσ )Fνσ
]

.

Using the first Bianchi identity ∂νFσμ + ∂μFνσ + ∂σ Fμν = 0, we obtain

βσ ∂σ Fμν + (∂νβσ )Fμσ + (∂μβσ )Fσν = 0.
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We may recognize the Lie derivative of F along β in the previous equation. This
constitutes a first condition for global equilibrium, the system can reach global equi-
librium only when

Lβ(F) = 0, ↔ βσ (x)∂σ Fμν(x) = �μ
σ F

σν(x) − �ν
σ F

σμ(x), (3.9)

that is to say when the electromagnetic field follows the field lines of inverse four-
temperature.

To actually solve Eq. (3.7), we translate the global equilibrium condition of the
strength tensor (3.9) to the four-vector potential Aμ. We see that the constraint (3.9)
is satisfied if A solves

βσ (x)∂σ Aμ(x) = �μ
σ A

σ (x) + ∂μ�(x), (3.10)

where� is a smooth function of x . In Ref. [18] was also stated that a gauge potential
with vanishing Lie derivative along β gives a stationary statistical operator, which
is condition (3.10). It is important to stress that after a gauge transformation, the
condition (3.10) still holds true for the new gauge potential because the function �

is also affected by the gauge transformation. Indeed, let Aμ satisfies Eq. (3.10); after
the gauge transformation A′μ = Aμ + ∂μ�, we find:

βσ ∂σ A′μ =βσ ∂σ Aμ + βσ ∂σ ∂μ� = ωμ
σ A

σ + ∂μ� + ∂μ(βσ ∂σ �) − (∂μβσ )∂σ �

=�μ
σ (Aσ + ∂σ �) + ∂μ(� + βσ ∂σ �) = �μ

σ A
′σ + ∂μ�′,

which is exactly condition (3.10) for A′μ and for�′, that is� shifted by the transport
of � along β.

We can now write Eq. (3.7) by taking advantage of Eq. (3.10):

∂μζ = Fσμβσ = βσ (∂σ Aμ − ∂μAσ ) = βσ ∂σ Aμ − ∂μ(βσ A
σ ) + (∂μβσ )Aσ

= �μ
σ A

σ + ∂μ� − �μ
σ A

σ − ∂μ(βσ A
σ ).

We can then collect all the derivatives together into the equation

∂μ
(

ζ − � + βσ A
σ
) = 0,

from which we immediately get the solution:

ζ(x) = ζ0 − βσ (x)Aσ (x) + �(x), (3.11)

where ζ0 is a constant. The parameter � is analogous to the parameter which grants
gauge invariance to chemical potential in [24]. Even though Eq. (3.11) is given in
terms of the gauge potential, it is still gauge invariant. Indeed, we have shown that
with a gauge transformation, Aμ and � transform as

A′μ = Aμ + ∂μ�, �′ = � + βσ ∂σ �,
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therefore, the chemical potential ζ is overall unaffected by gauge transformations:

ζ(x)′ = ζ0 − βσ (x)A′σ + �′ = ζ0 − βσ (x)Aσ + � − βσ ∂σ � + βσ ∂σ � = ζ(x).

The global equilibrium statistical operator is then obtained from the local one in
Eq. (3.1) by replacing the global equilibrium form of the thermodynamic fields
β, ζ, ζA:

ρ̂ = 1

Z
exp

{

−
∫

�

d�μ

[(

̂Tμν(x) +̂j μ(x)Aν(x)
)

βν(x)

− (ζ0 + �(x))̂j μ(x) − ζÂj
μ
A (x)

]}

.

(3.12)

This operator, on par with (3.6), is given in terms of global conserved quantities. The
difference is that for the general form of the external magnetic field satisfying the
constraint (3.9), the integration over the hyper-surface � does not give easily rec-
ognizable quantities like the four-momentum and the angular momenta in Eq. (3.6).
However, the identification of global conserved operators can be carried out in the
special case of the constant homogeneous electromagnetic field, and it is discussed
in the following sections.

3.2.1 Vanishing Electromagnetic Field

Before proceeding with the effects of electromagnetic fields, we briefly review the
thermodynamics properties of a relativistic system in the presence of thermal vorticity
but without an external electromagnetic field. Regarding thermal equilibrium in the
presence of rotation, exact solutions for the free scalar and Dirac fields are discussed
in [25–27]. Instead the effects of acceleration has been recently investigated using the
Zubarev method in Ref. [27–32]. Here we want to report the constitutive equations at
second order on thermal vorticity discussed in [22,33] and in [23] including an axial
current (see also [34] for first order in thermal vorticity and magnetic field). Using
linear response theory on thermal vorticity, the thermal expectation value of a local
operator ̂O(x) evaluated with statistical operator (3.9) can be written as [22,23]:

〈̂O(x)〉 =〈̂O(0)〉β(x) − αρ〈〈 ̂K ρ
̂O 〉〉 − wρ〈〈 ̂Jρ

̂O 〉〉 + αρασ

2
〈〈 ̂K ρ

̂K σ
̂O 〉〉

+ wρwσ

2
〈〈 ̂Jρ

̂Jσ
̂O 〉〉 + αρwσ

2
〈〈 {̂K ρ, ̂Jσ }̂O 〉〉 + O(� 3).

(3.13)
In the previous expression we indicated with double angular bracket the correlator

〈〈̂Kρ1 · · · ̂Kρn ̂Jσ1 · · · ̂Jσm ̂O〉〉 ≡
∫ |β|
0

dτ1 · · · dτn+m

|β|n+m ×

× 〈Tτ

(

̂Kρ1−iτ1u
· · · ̂Kρn

−iτnu
̂Jσ1−iτn+1u

· · · ̂Jσm−iτn+mu
̂O(0)

)

〉β(x),c,
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where ̂J and ̂K are the comoving rotation and boost generators, identified by

̂Kμ = uλ
̂Jλμ, ̂Jμ = 1

2
εαβγμuα

̂Jβγ ,

and the averages 〈· · ·〉β(x) are evaluated at a fixed point x with the homogeneous
statistical operator

ρ̂0 = 1

Z0
exp
{−β(x) · ̂P + ζ(x)̂Q + ζA(x)̂QA

}

.

The subscript c on the thermal averages indicates a connected correlator, while the
subscript−iτu on the operators indicates an imaginary translation along u as follows:

Jμ
−iτu ≡ e−iτu·̂P

̂Jμeiτu·̂P .

Constitutive equations at secondorder on thermal vorticity of the stress-energy tensor,
the electric current and the axial current can be obtained using the expansion in
Eq. (3.13). We obtain [22,23,33]

〈̂Tμν〉 = A εμνκλακuλ + W1w
μuν + W2w

νuμ

+ (ρ − α2Uα − w2Uw)uμuν − (p − α2Dα − w2Dw)�μν

+ A αμαν + Wwμwν + G1u
μγ ν + G2u

νγ μ + O(� 3),

(3.14)

〈̂jμV 〉 = nV uμ + (α2NV
α + w2NV

ω

)

uμ + WVwμ + GVγ μ + O(� 3), (3.15)

〈̂jμA 〉 = nA uμ + (α2NA
α + w2NA

ω

)

uμ + WAwμ + GAγ μ + O(� 3). (3.16)

Not all of these coefficients are independent, indeed conservation equations (3.2)
impose the following relations [33] (this is explained in detail in Sect. 3.5.2):

Uα = −|β| ∂

∂|β|
(

Dα + A
)− (Dα + A

)

,

Uw = −|β| ∂

∂|β|
(

Dw + W
)− Dw + 2A − 3W ,

G1 + G2 = 2
(

Dα + Dw
)+ A + |β| ∂

∂|β|W + 3W ,

instead, for the first-order coefficients, conservation equations require that

−2A = |β|∂W1

∂|β| + 3W1 + W2.
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For electric and axial current, we find that only the following equations must be
fulfilled:

|β|∂W
V

∂|β| + 3WV = 0, |β|∂W
A

∂|β| + 3WA = 0. (3.17)

We can also take advantage of the Lorentz symmetry to show that the thermal coef-
ficients S and �w of the canonical spin tenor constitutive equation:

〈 i
8
�̄ {γ λ, [γ μ, γ ν ] }�〉 = S ελμνρuρ + �w

(

uλ�μν + uν�λμ + uμ�νλ
)

+ O(� 2)

satisfy the following relations:

−
(

S

|β| + ∂S

∂|β|
)

= 2A
Can,

2
S

|β| = W
Can
1 − W

Can
2 ,

�w

|β| − ∂�w

∂|β| = 4
�w

|β| = GCan
1 − GCan

2 ,

(3.18)

where A
Can and W

Can
1,2 are the thermal coefficients of Eq. (3.14) related to the mean

value of canonical stress-energy tensor. Furthermore, because the axial current is
dual to the spin tensor, we can show that

S = 1

2
nA, �w = 1

2
WA. (3.19)

Then, combining Eq.s (3.19) and (3.18), the coefficients of canonical stress-energy
tensor and axial current are related by

A
Can = −

(

nA
|β| + ∂nA

∂|β|
)

,

nA
|β| =W

Can
1 − W

Can
2 ,

WA

|β| =GCan
1 − GCan

2

2
,

which expose an interesting connection between the Axial Vortical Effect (AVE)
conductivity WA and the second-order thermal coefficients of the canonical stress-
energy tensor.

To understand the constraint (3.17) and the relation between axial vortical effect
and anomalies, we also consider the case of a free massive field. In that case, the
axial current is not conserved, but its divergence is given by

∂μ
̂jμA = 2mi�̄γ 5�.
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It follows that global equilibrium with a conserved axial charge cannot be reached.
Then, to still use the previous global equilibrium analysis to the massive field, we
simply set the axial chemical potential to zero and we consider global equilibrium
with just thermal vorticity and finite electric charge. As a consequence, the symme-
tries impose that all chiral coefficients (i.e. those which are not parity invariant) must
be vanishing. However, the term in WA of axial current decomposition is not chiral
and consequently could be different from zero. Since the conservation equation is
changed, we expect that also the condition (3.17) will be modified. We then have to
consider the pseudo-scalar operator i�̄γ 5� that appears on the divergence of axial
current. Pseudo-scalar thermal expectation value can be decomposed at second order
in thermal vorticity in the same way as other local operators and we find that it is
given by a single term:

〈i�̄γ 5�〉 = (α · w)Lα·w,

where the non-chiral thermal coefficient can be obtained by

Lα·w = 1

2
〈〈{̂K3, ̂J3}i�̄γ 5�〉〉. (3.20)

With this definition, we find that the condition on axial vortical effect conductivity
WA becomes:

|β|∂W
A

∂|β| + 3WA = −2mLα·w. (3.21)

Differently from (3.17) the constraint (3.21) no longer imposesWA to be proportional
to the third power of temperature andWA acquires terms which depends on the mass
of the fields.

As concluding remarks, we give some results for these coefficients for the free
massless Dirac field. In that case, this method reproduces the well-known [2] chiral
vortical effect and axial vortical effect conductivities

WV = μμ AT

π2 , WA = T 3

6
+ (μ2 + μ2

A)T

2π2 . (3.22)

In the case of massive Dirac fields, global thermal equilibrium with thermal vorticity
and vanishing axial chemical potential is well defined and the axial currents mean
value can be directed along the rotation of the fluid. In that situation, the AVE
conductivity for a free massive Dirac field is [33]

W A = 1

2π2|β|
∫ ∞

0
dp
[

nF (Ep − μ) + nF (Ep + μ)
] 2p2 + m2

Ep
, (3.23)

where Ep = √p2 + m2. This coefficient is related to pseudo-scalar thermal coeffi-
cient Lα·w via Eq. (3.21) and indeed pseudo-scalar coefficient is given by

Lα·w = − m

4π2β2

∫ ∞

0

dp

Ep

[

n′
F (Ep − μ) + n′

F (Ep + μ)
]

, (3.24)
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where the prime on distribution functions stands for derivativewith respect to Ep .We
can give approximate results for integral in Eq. (3.23). For high-temperature regime
(T � m), if the gas is non-degenerate (|μ| < m), we extract the AVE conductivity
behaviour using the Mellin transformation technique [35]. The result is

WA

T
� T 2

6
+ μ2

2π2 − m2

4π2 − 7ζ ′(−2)T 2

8π2

(m

T

)4 + O
(

m6

T 6

)

. (3.25)

The first term in mass was also obtained in [36] where the axial vortical effect was
evaluated with the statistical operator (3.6) but in curved space–time. Low temper-
ature behaviour can also be extracted from (3.23), see [33]. For a degenerate gas
(|μ| > m) at zero temperature, we obtain1:

WA

T
= μ2

2π2

√

μ2 − m2

μ
.

Instead for a non-degenerate gas (|μ| < m) at low temperature T << m, we have

WA ≈
(

1 + 2
T

m

)

(mT )3/2√
2π3/2

e|β|(μ−m). (3.26)

Axial current corrections for rotating and accelerating fluids are also discussed in [37,
38] for both massive and massless fields using an ansatz for Wigner function with
thermal vorticity.

3.3 Dirac Field in External Electromagnetic Field

Consider a Dirac field in external electromagnetic field. The Lagrangian of the theory
is given by

L = i

2

[

�̄γ μ−→
∂ μ� − �̄γ μ←−

∂ μ�
]

− m�̄� −̂j μAμ,

where ̂j μ = q�̄γ μ�, q is the elementary electric charge of the field and the gauge
potential Aμ is an external non dynamic field. This Lagrangian is obtained from
the free Dirac one with the minimal coupling substitution ∂μ → ∂μ + iq Aμ which
ensures gauge invariance to the theory. From Euler Eq.s we obtain the Equations of
Motion (EOM) for the Dirac field:

/∂� = −i(q /A + m)�, /∂�̄ = �̄i(q /A + m).

By applying Noether’s theorem to this Lagrangian, we obtain the operators in
Eq. (3.4).

1Notice that WAwμ → (WA/T )ω, so there is no divergency for T → 0.
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3.3.1 Symmetries in Constant Electromagnetic Field

It is worth noticing that the symmetries of the theory of fermions in the external
electromagnetic field are different from those of free fermions and from those of
quantum electrodynamics. While a system without external forces is symmetric
for the full Poincaré group, some of the symmetries are lost when external fields
are introduced. Indeed, external fields do not transform together with the rest of
the system. In this section, we discuss the symmetries of a system in the presence
of an external constant homogeneous electromagnetic field. We will examine the
transformations that are still symmetries of the theory, the consequent conserved
quantities, and the form of the generators of such transformations.

If the Lagrangian of our theory is invariant under translations, from Noether’s
theorem, we can identify four operators. Those operators share three properties: they
are conserved quantities, they are the generators of translations and they constitute
the four-momentum of the system. However, translation invariance by itself does not
guarantee that the same quantity must have all the three above properties altogether.
Consider again a system under an external electromagnetic field. In this situation,
Poincaré symmetry of space–time is broken. Only in the special case of a constant
and homogeneous electromagnetic field, translation invariance is restored. However,
the Lagrangian is not invariant under space–time translation, but it acquires a term
that is a four-divergence. This term, under appropriate boundary conditions, does not
affect the action of the system and the overall invariance is preserved. Nevertheless,
the consequence of the additional term is that we can distinguish between three
different operators, each of them having one of the three properties stated above.
This is understood with the Noether–Tassie–Buchdahl theorem [39–41]: given a
Lagrangian L(�(x), ∂μ�(x), x) and the infinitesimal transformation

x ′μ = xμ + δxμ, � ′ = � + δ�

such that ∂μδxμ = 0, which transforms the Lagrangian in

L(� ′(x ′), ∂ ′
μ� ′(x ′), x ′) = L(�(x), ∂μ�(x), x) + ∂μX

μ,

where Xμ is a functional depending exclusively on �(x) and x , the quantity

�μ = δL
δ∂μ�

δ� −
(

δL
δ∂μ�

∂ν� − L gμ
ν

)

δxν − Xμ

is conserved, i.e. divergence-less.
Consider the Dirac Lagrangian in constant homogeneous electromagnetic field

L(�(x), ∂μ�(x), x) = �̄(i/∂ − m)� −̂j μAμ.

The translation transformation (δ� = 0, δxμ = εμ) acts on the Dirac field but does
not act directly on the external gauge field. Therefore, a translation changes the
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Lagrangian by

δL =L(� ′(x ′), ∂ ′
μ� ′(x ′), x ′) − L(�(x), ∂μ�(x), x)

=̂j μ∂ν Aμεν = ̂j μ(Fνμ + ∂μAν)ε
ν = −̂j μ(Fμν − ∂μAν)ε

ν.

The quantity X of Noether–Tassie–Buchdahl in this case is

Xμν ≡ ̂j μ(Aν + Fνλxλ).

Indeed its divergence is the variation of the Lagrangian

εν∂μX
μν = (∂μ

̂j μ)(Aν + Fνλxλ)εν +̂j μ(∂μAν + Fνμ)εν = −̂j μ(Fμν − ∂μAν)ε
ν = δL.

Therefore, the theorem implies that the system has a canonical conserved tensor
given by

π̂ μν
can = ̂Tμν

0 −̂j μAν −̂j μFνλxλ,

where ̂Tμν
0 is the free canonical Dirac stress-energy tensor. Using Belinfante pro-

cedure, we can transform ̂Tμν
0 −̂j μAν into the symmetric stress-energy tensor of

Dirac field in external magnetic field ̂Tμν
S and the above conserved tensor can be

written as

π̂ μν ≡ ̂Tμν
S −̂j μFνλxλ. (3.27)

From the above equation, we can simply verify that ∂μπ̂ μν = 0 form Eq. (3.2). Note
that π̂ μν is not symmetric and that it is gauge invariant. The conserved quantities
are obtained from the previous operators by

π̂ μ =
∫

d3x π̂ 0μ,

andwe can show that this four-vector constitutes the generators of the translation [41].
However, the momentum of the system is still given by

̂Pμ =
∫

d3x ̂T 0μ

but it is no longer a conserved quantity and it is no longer the generator of translations.
Another differencewith the four-momenta is that different components of this vectors
do not commute, instead they satisfy the commutation relation [41]

[π̂ μ, π̂ ν] = îQFμν,

where ̂Q is the electric charge operator.
As for Lorentz’s transformations, we expect that the variation of the Lagrangian

is a full divergence only for specific forms of transformations. For example, with
a vanishing electric field and a constant magnetic field, only the rotation along the
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direction of the magnetic field and the boost along the magnetic field are symmetries
of the theory. Therefore, only in these cases, the Lagrangian variation could be
vanishing or a full divergence.

Returning to the general case, by repeating the previous argument made for the
translations for the Lorentz transformation:

δxμ = ωμνxν, δ� = − i

2
ωμνσ

μν�,

we find that the transformed Lagrangian is

δL =ωμν
̂jλ
[

∂λ

(

xμAν − xν Aμ

)+ xμFνλ − xνFμλ

]

.

We can show that the Lagrangian variation can also be written as

δL =1

2
ωμν∂λ

[

̂jλxμ

(

Aν − 1

2
xσ Fσν

)

−̂jλxν

(

Aμ − 1

2
xσ Fσμ

)]

− 1

2
xρ
̂jλ(ωλσ F

σ
ρ − ωρσ F

σ
λ).

The first term of the r.h.s. is written as a four-divergence. The remaining part cannot
be cast into a four-divergence but it is proportional to the following product:

(ω ∧ F)λρ = ωλσ F
σ
ρ − ωρσ F

σ
λ.

The product of two non-vanishing anti-symmetric tensor of rank two, ω ∧ F , is zero
if and only if ω is a linear combination of F and its dual F∗ [41]:

(ω ∧ F)λρ = 0 iff ωμν = k Fμν + k′ F∗
μν, k, k′ ∈ R. (3.28)

Therefore, the part of Lagrangian variation which is not a divergence is vanishing
when ωμν is a linear combination of electromagnetic stress-energy tensor and its
dual:

ωμν = a Fμν + b

2
εμνρσ Fρσ . (3.29)

This means, as expected, that the theory is invariant only under a certain type of
Lorentz transformations: the ones generated with parameters of the form (3.29). For
example, in the case of constantmagnetic field, we recover that the system is invariant
only for rotation and boost along the magnetic field. Set then ω either as ωμν ∝ Fμν

or ωμν ∝ F∗
μν , so that the Lagrangian variation is a four-divergence. In this case, we
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can apply Noether–Tassie–Buchdahl theorem and the two following quantities are
divergence-less:

̂�λ = Fμν

2

[

xμ

(

̂T λ
0 ν −̂j λAν + 1

2
̂j λxρFρν

)

−xν

(

̂T λ
0 μ −̂j λAμ + 1

2
̂j λxρFρμ

)

+̂Sλ
μν

]

,

̂�∗λ = F∗μν

2

[

xμ

(

̂T λ
0 ν −̂j λAν + 1

2
̂j λxρFρν

)

−xν

(

̂T λ
0 μ −̂j λAμ + 1

2
̂j λxρFρμ

)

+̂Sλ
μν

]

,

wherêSλ
μν is the canonical spin tensor of free Dirac field. After Belinfante transfor-

mation, the quantities become

̂�λ =1

2
Fμν

̂Mλ
μν,

̂�∗λ = 1

2
F∗μν

̂Mλ
μν,

̂Mλ
μν ≡xμ

(

̂T λ
S ν + 1

2
̂j λxρFρν

)

− xν

(

̂T λ
S μ + 1

2
̂j λxρFρμ

)

=xμ

(

π̂ λ
ν − 1

2
̂j λxρFρν

)

− xν

(

π̂ λ
μ − 1

2
̂j λxρFρμ

)

.

(3.30)

We can define the integrals:

̂Mμν =
∫

d3x ̂M0
μν,

which are conserved quantities only if contracted with Fμν or F∗μν . The operators
̂Mμν are the generators of Lorentz transformations if they are also a symmetry for
the theory, otherwise the Wigner’s theorem does not apply and we cannot say that
such transformations admit an unitary and linear (or anti-unitary and anti-linear)
representation. For those operators, the following Algebra holds true [41]:

[π̂ μ, π̂ ν] =iFμν
̂Q,

1

2
Fρσ [π̂ μ, ̂Mρσ ] = i

2
Fρσ

(

ημρπ̂ σ − ημσ π̂ ρ
)

,

1

2
F∗

ρσ [π̂ μ, ̂Mρσ ] = i

2
F∗

ρσ

(

ημρπ̂ σ − ημσ π̂ ρ
)

,

(3.31)

where ̂Q is the electric charge operator. In the particular case of vanishing electric
field and constant magnetic field along the z axis, the Algebra becomes:

[π̂x , π̂y] = i|B|̂Q,

[̂Jz, π̂x ] = iπ̂y, [̂Jz, π̂y] = −iπ̂x ,

[̂Kz, π̂t ] = −iπ̂z, [̂Kz, π̂z] = −iπ̂t .
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3.4 Chiral Fermions in Constant Magnetic Field

Consider now a system consisting of free chiral fermions in an external homogeneous
constant magnetic field B at global thermal equilibrium with vanishing thermal vor-
ticity. In this configuration, the chiral anomaly is vanishing because there is no electric
field (B · E = 0). It follows that global equilibrium without vorticity is described
by a constant inverse four-temperature β and a constant axial chemical potential ζA
(see Sect. 3.2). Instead, the condition for the electric chemical potential reads

∂μζ(x) = Fνμβν =
√

β2Fνμuν =
√

β2Eμ,

where u is the fluid velocity directed along β and E is the comoving electric field.
Sincewe are considering the casewithout electric field, the global equilibrium condi-
tion is simply a constant ζ . The global equilibrium statistical operator then becomes

ρ̂ = 1

Z
exp
[−̂Pμβμ + ζ ̂Q + ζÂQA

]

.

Notice that the operators ̂Pμ are not the generators of translations, which are instead
given by π̂ μ and are obtained by integrating the conserved current in Eq. (3.27).
However, in the case of vanishing comoving electric field, the projection of the
inverse temperature along the four-momentum is equivalent to the projection along
of the generators of translations, that is:

π̂ μβμ =
∫

�
d�λ

(

̂T λν −̂j λFνσ xσ
)

βν = ̂Pμβμ −
√

β2Eσ

∫

�
d�λ

̂j λxσ = ̂Pμβμ.

The statistical operator can now be written as

ρ̂ = 1

Z
exp
[−π̂ μβμ + ζ ̂Q + ζÂQA

]

.

In this form, it is straightforward to use the algebra in Eq. (3.31) and translate the
statistical operator of a quantity aμ. We find

̂T(a) ρ̂̂T−1(a) = eia·π̂ ρ̂ e−ia·π̂ = 1

Z
exp
[−π̂ μβμ + ζ ̂Q + ζÂQA + aμF

μνβν
̂Q
]

.

Since Fμνβν is the comoving electric field,which is vanishing, the statistical operator
is homogeneous:

̂T(a) ρ̂̂T−1(a) = ρ̂.
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3.4.1 Exact Thermal Solutions

Having established the basic quantities of thermal equilibrium with a constant and
homogeneousmagnetic field, we nowmove on to introduce the techniques of thermal
field theory in order to find exact solutions for thermodynamic equilibrium in a
magnetic field.We start by giving a path integral description of the partition function.
Since the partition function is a Lorentz invariant, we can choose to evaluate it in
the local rest frame where u = (1, 0). In this frame, without loss in generality, the
magnetic field is chosen along the z axis and we adopt the Landau gauge Aμ =
(0, 0, Bx1, 0). The path integral formulation of the partition function in local rest
frame

Z(T , μ, μ5) = tr
[

e−β(̂H−μ̂Q−μÂQA)
]

is given by2

Z = C
∫

�(β,x)=−�(0,x)
D�̄ D� exp

(−SE(�, �̄, μA)
)

,

where the Euclidean action of Dirac fermions in external electromagnetic field is

SE(�, �̄, μ5) =
∫ β

0
dτ
∫

x
�̄(X)

[

i(γ · π+) + m − γ0γ
5μA

]

�(X)

andπ+
μ ≡ P+

μ − q Aμ, which is not to be confusedwith the generators of translations.
With regard to the exact solution, instead of solving the Dirac equation directly,

we use the Ritus method [42] (see [43] for a brief recap of the method). The core
concept of the Ritus method is that we can construct a complete set of orthonormal
function, called Ep Ritus functions, such that the Euclidean action is rendered for-
mally identical to the Euclidean action of a free Dirac field in absence of external
fields. The Ep functions are constructed such that they are the matrix of the contem-
poraneous eigenfunctions (eigenvectors) of the maximal set of mutually commuting
operators {(γ · π)2, iγ1γ2, γ 5}. From gamma algebra, it is straightforward to check
that

iγ1γ2�(σ) = σ�(σ),
1 + χγ 5

2
γ 5 = χ

1 + χγ 5

2
with σ = ± and χ = ± and we defined

�(σ) ≡ 1 + iσγ1γ2

2
.

2We added a mass term for generalization, although with mass we cannot have a conserved axial
current.
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We can then show that [42,43]

(γ · π+)2E p̂σ (X) = P+2
E p̂σ (X),

where p̂ is a label for the quantum numbers {l, ωn, p2, p3}, the eigenvalues P+ are
given by

P+ ≡ (ωn + iμ, 0,−σ̄
√

2|qB|l, p3), σ̄ ≡ sgn(qB)

and the form of eigenfunction is

E p̂σ (X) = N (n)ei(P0τ+P2X2+P3X3)Dn(ρ), (3.32)

where N (n) = (4π |qB|)1/4/√n! is a normalization factor, and Dn(ρ) denotes the
parabolic cylinder functions with argument ρ = √

2|qB|(X1 − p2/qB) and non-
negative integer index n = 0, 1, 2, . . . given by

n = l + σ

2
sgn(qB) − 1

2
.

Note that the form of the functions (3.32) strongly depends on the gauge chosen,
in our case the Landau gauge. Since the eigenfunction E p̂σ (X) does not depend on
chirality, the maximal eigenfunctions of the operators {(γ · π)2, iγ1γ2, γ 5} are given
by

E p̂(X) =
∑′

σ=±
E p̂σ (X)�(σ), Ē p̂(X) = γ0E

†
p̂(X)γ0 =

∑′

σ ′=±
E∗
p̂σ ′(X)�(σ ′),

(3.33)
where the prime on the summation symbol denotes that the sum is subject to the
constraint

σ =
{

sgn(qB) l = 0

± l > 0
.

Some important properties can be derived from these definitions. Firstly, that the
functions Ep commute with γ0 and with γ 5. Secondly, they satisfy the orthogonality
relation

∫

X
Ēq̂(X)E p̂(X) = (2π)4̂δ(4)( p̂ − q̂)�(l),

where we defined

δ(4)( p̂ − p̂′) ≡δl,l ′βδωn ,ωn′ δ(p2 − p′
2)δ(p3 − p′

3)

�(l) ≡
{

1+iσ̄ γ1γ2
2 l = 0

1 l > 0
.
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And lastly, the action of the operator (γ · π+) on these function is

(γ · π+)E p̂(X) = E p̂(X)γ · P.

Since we showed that Ep Ritus functions are complete orthonormal functions,
we can expand the Dirac fields in these functions:

�(X) =T
∑

{ωn}

∞
∑

l=0

∫

dp2

∫

dp3
(2π)3

E p̂(X)�(P) ≡
∑

∫

̂P
E p̂(X)�(P),

�̄(X) =
∑

∫

̂Q
�̄(Q)Ēq̂(X).

Replacing this expansion on the Euclidean action, we find

SE(�, �̄, μ5) =
∑

∫

̂P

∑

∫

̂Q

∫

X
�̄(Q)Ēq̂ (X)

[

i(γ · π+) + m − γ0γ
5μA

]

E p̂(X)�(P)

and, using the above mentioned properties of Ep functions, we obtain

SE(�, �̄, μ5) =
∑

∫

̂P
�̄(P)�(l)

[

iγ · P+ + m − γ0γ
5μA

]

�(P).

Notice that this is formally identical to the Euclidean action of the free Dirac field.
We can now proceed to evaluate the partition function. We first change the inte-

gration variables in the partition function to the modes of Ep functions �̄(P) and
�(P). The partition function is then a Gaussian integral of Grassmann variables,
whose result is the exponent determinant. Hence the partition function becomes

Z =C̃
∫

�(β,x)=−�(0,x)
D�̄(P)D�(P)×

× exp

{

−
∑

∫

̂P
�̄(P)�(l)

[

iγ · P+ + m − γ0γ
5μA

]

�(P)

}

=C̃ det
[

�(l)
(

iγ · P+ + m − γ0γ
5μA

)]

.

(3.34)

For the sake of clarity, for now on we will remove the factor �(l):

Z =C̃ det

(

mI2×2 [i(ωn + iμ) − μA]I2×2 + σi Pi
(i(ωn + iμ) + μA)I2×2 − σi Pi mI2×2

)

.

The determinant is evaluated using the standard formula for block matrices

det

(

A B
C D

)

= det
(

AD − BD−1CD
) ;
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replacing that into the partition function, we have

Z = C̃ det
[

(P+2 + m2 + μ2
A)I2×2 − 2σi PiμA

]

= C̃ det
[

(P+2 + m2 + μ2
A)2 − 4|P|2μ2

A

]

=
∏

ωn ,l,p3

C̃
[

(P+2 + m2 + μ2
A)2 − 4|P|2μ2

A

]

,

wherewe evaluated the determinant as the product of the eigenvalues of thematrix. To
connect this quantity to the thermodynamics of the system, we are actually interested
in its logarithm:

log Z =
∑

ωn ,l,p3

log
[

(P+2 + m2 + μ2
A)2 − 4|P|2μ2

A

]

+ cnst. (3.35)

In the next subsection, we evaluate the thermodynamic potential of the system
from the logarithm of the partition function. Then, by simple derivation, we could
obtain other thermodynamic properties. However, starting from partition function in
Eq. (3.34), we will obtain the thermal propagator of a chiral fermion in a magnetic
field. Once we have the propagator, we can use the point-splitting procedure to eval-
uate other thermal properties that are not related to the thermodynamic potential. We
will use the thermal propagator to evaluate the mean value of the electric current and
of the axial current in the following subsections.

3.4.2 Thermodynamic Potential

The thermodynamic potential � is derived from the partition function as following

� = lim
V→∞ − T

V
log Z ,

where the logarithm of partition function is given by Eq. (3.35). We can follow the
usual techniques used for free fermions to evaluate the thermodynamic potential and
to sum the Matsubara frequencies. However, we must first consider that in this case
the Landau levels generated by the magnetic field have different degeneracy factors
and must be properly taken into account when performing the infinite volume limit.
Let be S the area in the x − y plane and p⊥1 and p⊥2 the momenta in that plane. In
the limit of infinity area, the sum on modes becomes the following integrals:

lim
S→∞

1

S

∑

p⊥1

∑

p⊥2

=
∫ ∞

−∞
dp⊥1

2π

∫ ∞

−∞
dp⊥2

2π
.
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Each Landau level has a degeneracy associated with some quantum numbers; this
degeneracy is gauge independent and it is given by

dl =
⌊ |qB|S

2π

⌋

.

To obtain this degeneracy, we just have to evaluate the quantity

dp⊥1

2π

dp⊥2

2π

between two consecutive energy levels:

dl =
⌊ |qB|S

2π

⌋

=
∫ l+1

l

dp⊥1

2π

dp⊥2

2π
.

Therefore, removing the floor function, the infinite volume limit of the sum on the
states of the system gives:

lim
V→∞

1

V

∑

ωn ,l,p3

= |qB|
2π

∞
∑

l=0

∫ ∞

−∞
dp3
2π

∑

{ωn}
.

Consequently the thermodynamic potential reads:

� = lim
V→∞ − T

V
log Z

= − |qB|
2π

∞
∑

l=0

∫ ∞

−∞
dp3
2π

T
∑

{ωn}
log
[

(P+2 + m2 + μ2
A)2 − 4|P|2μ2

A

]

+ cnst.

The Matsubara sum can be performed as described in [44]. The final result for
thermodynamic potential is

� = −|qB|
2π

∞
∑

l=0

∑′

s=±

∫ ∞

−∞
dp3
2π

[

Es + T
∑

±
log
(

1 + e−β(Es±μ)
)

]

+ cnst,

where E2
s = [(p23 + 2qBl)1/2 + sμA]2 + m2 and the constraint of s = σ̄ for l = 0 is

caused by the projector�(l). This same thermodynamic potential for chiral fermions
in externalmagnetic fieldwas used in [4] to derive theChiralMagnetic Effect (CME).
This expression can be used to obtain the electric and axial charge density, but instead
we are using the point-splitting procedure because the latter can also be used to
evaluate other thermodynamic functions related to currents. To do that, we first need
the thermal propagator of chiral fermions.
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3.4.3 Chiral Fermion Propagator in Magnetic Field

Since we have used the Ritus method, the form of Euclidean action is formally
identical to those of a free Dirac field. It is therefore not surprising that the fermionic
propagator is obtained in the same way as the free case. The propagator in Fourier
modes can be obtained in path integral formulation by [44]

〈�̃a(P)
¯̃
�b(Q)〉T =

∫ D�̃ D ˜̄� exp (−SE) �̃a(P)
¯̃
�b(Q)

∫ D�̃ D ˜̄� exp (−SE)
,

where in our case the form of the partition function is given in the first line of
Eq. (3.34):

Z =C̃
∫

�(β,x)=−�(0,x)
D�̄(P)D�(P) ×

× exp

{

−
∑

∫

̂P
�̄(P)�(l)

[

iγ · P+ + m − γ0γ
5μA

]

�(P)

}

.

The Grassmann integrals are straightforward and gives

〈�̄(Q)a�(P)b〉 = δ(4)(P − Q)M−1
ab ,

where a, b denotes spinorial indices and

M =
[

iγ · P+ − γ0γ
5μA

]

.

The inverse ofM is easily written in terms of the projector into right and left chirality
states, which are defined by

Pχ = 1 + χγ5

2
, i.e. PR = 1 + γ5

2
, PL = 1 − γ5

2
.

We also introduce right and left chemical potential:

μR ≡ μ + μA, μL ≡ μ − μA,

and we define right and left charged momenta by

P±
R/L ≡ (ωn ± iμR/L, p).

With this notation, after invertingM, the thermal propagator is

〈�̄(Q)a�(P)b〉 = δ(4)(P − Q)
∑

χ

(

Pχ

−i /P+
χ

P+
χ
2

)

ab

.
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This is the generalization in Euclidean space–time with chemical potentials of the
propagator in [42,43]. In the configuration space, the two-point function is

〈�̄(X)a�(Y )b〉 =
∑

∫

̂P

∑

∫

̂Q
Ē p̂(X)a′a Eq̂ (Y )bb′ 〈�̄(P)a′�(Q)b′ 〉

= −
∑

∫

̂P

∑

∫

̂Q
Ē p̂(X)a′a Eq̂ (Y )bb′ 〈�(Q)b′�̄(P)a′ 〉

= −
∑

∫

̂P

∑

∫

̂Q
Ē p̂(X)a′a Eq̂ (Y )bb′δ(4)(P − Q)

∑

χ

⎛

⎝Pχ

−i /P+
χ

P+
χ
2

⎞

⎠

b′a′
,

where to go to second line, we used fermion anti-commutation. Finally, integrating
the delta we have

〈�̄(X)a�(Y )b〉 = −
∑

∫

̂P

∑

χ

E p̂(Y )bb′

(

Pχ

−i /P+
χ

P+
χ
2

)

b′a′
Ē p̂(X)a′a . (3.36)

3.4.4 Electric Current MeanValue

Having derived the propagator, we now proceed to evaluate themean value of electric
current. The following method is similar to the one used in [45], as we both use the
Ritus method. We take advantage of the point-splitting procedure to compute the
thermal expectation value of electric current. First, we write the current in Euclidean
space–time and we split the coordinate point in which the fields are evaluated as
follows:

〈̂jμ(X)〉=(−i)1−δμ,0q〈̂�̄(X)γμ̂�(X)〉= lim
X1,X2→X

(−i)1−δμ,0q
(

γμ

)

ab 〈̂�̄a(X1)̂�b(X2)〉.

Then we plug the form of fermionic propagator (3.36) and we reconstruct the trace
on spinorial indices; eventually we obtain

〈̂jμ(X)〉 = −(−i)1−δμ,0q
∑

∫

̂P

∑

χ

tr

[

Ē p̂(X) γμ E p̂(X) Pχ

−i /P+
χ

P+
χ
2

]

.

It is convenient to indicate the components parallel to the magnetic field, which are
the time component and the z component, with the parallel symbol “‖”. For those
components, the following commutator holds true:

[

γ ‖
μ , E p̂(X)

]

= 0.
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Therefore, reminding the definitions of the Ritus E p̂(X) functions (3.33), for the
parallel component of electric current, we obtain

〈̂j ‖
μ (X)〉 = − (−i)1−δμ,0q

∞
∑

l=0

∫

dp2
2π

∫

dp3
(2π)2

∑

χ

T
∑

{ωn}

∑′

σ,σ ′=±
E∗
p̂σ ′(X) E p̂σ (X)×

× tr

⎡

⎣�(σ ′)�(σ) γ
‖
μ Pχ

−i /P+
χ

P+
χ
2

⎤

⎦ .

Wecan simplify the previous expression by taking advantage of the following identity

�(σ)�(σ ′) = 1 + σσ ′ + i(σ + σ ′)γ1γ2
4

= δσ,σ ′�(σ).

Notice that the dependence on p2 is only contained inside E∗
p̂σ ′(X)E p̂σ (X). We can

then show that the integration on p2 gives

∫ ∞

−∞
dp2
2π

E∗
p̂σ ′(X)E p̂σ (X) = |qB|δn,n′ .

Furthermore, it is convenient to split the sum on l between the Lowest Landau Level
(LLL) l = 0 and the Higher Landau Levels (HLL) l > 1. For l = 0 the sums on σ

are constrained to be equal to σ = σ ′ = σ̄ =sgn(eB), and the momenta are given
by P+

χ = (ωn + iμχ, 0, 0, p3); then at the lowest Landau level, we have

〈̂j ‖
μ (X)〉LLL = −(−i)1−δμ,0q|qB|

∫ ∞
−∞

dp3
(2π)2

∑

χ

T
∑

{ωn}
tr

⎡

⎣

1 + iσ̄ γ1γ2

2
γ

‖
μ Pχ

−i /P+
χ

P+
χ
2

⎤

⎦ .

After computing the trace, we find that the zero component is

〈̂j0(X)〉LLL = −
∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

−i
[

(ωn + iμχ) − ip3σ̄ χ
]

(ωn + iμχ)2 + p23

=
∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

i
[

(ωn + iμχ)
]

(ωn + iμχ)2 + p23
,

while the z component is

〈̂j3(X)〉LLL =i
∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

−i
[

p3 + i(ωn + iμχ)σ̄χ
]

(ωn + iμχ)2 + p23

=
∫ ∞

−∞
σ̄q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

χ i(ωn + iμχ)

(ωn + iμχ)2 + p23
,
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where the linear terms in p3 were dropped because they are odd on p3 and as such
they vanish when integrated. After the Matsubara sum, we have

〈̂j0(X)〉LLL = q|qB|
∑

χ

∫ ∞

−∞
dp3

(2π)2

1

2

[

nF(p3 − μχ) − nF(p3 + μχ)
]

,

〈̂j3(X)〉LLL = q2B
∑

χ

∫ ∞

−∞
dp3

(2π)2

χ

2

[

nF(p3 − μχ) − nF(p3 + μχ)
]

.

Finally, taking advantage of the integral in p3:

∫ ∞

−∞
dp3
2

[

nF(p3 − μχ) − nF(p3 + μχ)
] = μχ

and summing on chiralities, we obtain

〈̂j0(X)〉LLL = q|qB|
(2π)2

(μR + μL) = μq|qB|
2π2 ,

〈̂j3(X)〉LLL = q2B

(2π)2
(μR − μL) = q2μA

2π2 B.

Moving on now to the higher Landau levels, consider

〈̂j ‖
μ (X)〉HLL = − (−i)1−δμ,0q|qB|

∞
∑

l=1

∫ ∞

−∞
dp3

(2π)2

∑

χ

T
∑

{ωn}

∑

σ,σ ′=±
δn,n′×

× tr

[

�(σ ′) �(σ) γ ‖
μ Pχ

−i /P+
χ

P+
χ
2

]

.

When l is fixed, we can replace the δn,n′ with the δσ,σ ′ , and the sum on σ ′ becomes
straightforward. The expression is similar to the LLL case, we just have to replace
σ̄ with σ and sum over σ = ±. Remind that now P has also a y component. After
evaluating the trace and removing p3 odd terms, we obtain

〈̂j0(X)〉HLL =
∞
∑

l=1

∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

2i
[

(ωn + iμχ)
]

P+
χ
2 ,

〈̂j3(X)〉HLL =
∞
∑

l=1

∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

T
∑

{ωn}

∑

σ=±
σ

χ i(ωn + iμχ) + p3

P+
χ
2 = 0.

We found that the third component does not get corrections from HLL. Instead for
the time component, after the frequency sum, we obtain

〈̂j0(X)〉HLL =
∞
∑

l=1

∫ ∞

−∞
q|qB|dp3

(2π)2

∑

χ

[

nF(Ep3,l − μχ) − nF(Ep3,l + μχ)
]

,
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where Ep3,l ≡
√

p23 + 2|qB|l. For the perpendicular components (̂jx and ̂jy) we
expect a vanishing result because they are not allowed by the symmetries of the
system. Indeed the explicit calculations confirmed this expectation.

In summary, restoring covariant expression, we found that the electric current has
two thermodynamic function: the electric charge density nc and the Chiral Magnetic
Effect (CME) conductivity σB:

〈̂jμ(X)〉 = nc uμ + σB Bμ.

The electric charge density is given by the mean value 〈̂j0(X)〉 at the local rest frame:

nc = q|qB|
2π2

{

μ +
∞
∑

l=1

∫ ∞

−∞
dp3
2

[

nF(Ep3,l − μR) − nF(Ep3,l + μR)+

+ nF(Ep3,l − μL) − nF(Ep3,l + μL)
]

}

,

while the CME conductivity is given by 〈̂j3(X)〉/B, that is

σB = q2μA

2π2 . (3.37)

To our knowledge, the equation for the electric charge density of an electron gas in
a magnetic medium was first given in [8] and coincides with the expression above.
The CME effect evaluated here coincides with the one obtained with many other
derivations [2], however we want to point out that this derivation is valid at thermal
equilibrium, as the one in [47], and that is non-perturbative in the magnetic field.

3.4.5 Axial Current MeanValue

We can compute the axial current mean value exactly as described above for the
electric current. Because of that, we omit all the calculations. The axial current
constitutive equation is written in terms of an axial charge density nA and a Chiral
Separation Effect (CSE) conductivity σs:

〈̂jAμ〉 = nA uμ + σsBμ.

In this case too, we found that only the lowest Landau level contributes to CSE and
that the final result is

nA =|qB|
2π2

{

μA +
∞
∑

l=1

∫ ∞

−∞
dp3
2

[

nF(Ep3,l − μR) − nF(Ep3,l + μR)+

−nF(Ep3,l − μL) + nF(Ep3,l + μL)
]

}

,

σs = qμ

2π2
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with Ep3,l =
√

p23 + 2|qB|l. The last thermal coefficient is exactly the well-known
value of Chiral Separation Effect (CSE) conductivity [2].

The same procedure can be followed to evaluate the axial charge density and
the CSE conductivity of massive fermions with vanishing axial chemical potential
μA = 0. In that case, as discussed previously, the thermal equilibrium can be reached
and all the quantities discussed in this section are still well defined. The results for
the thermodynamic functions related to axial current are:

nA =0,

σs =qB
∫ ∞

−∞
dp3

(2π)2

[

nF(Ep3 − μ) − nF(Ep3 + μ)
]

, (3.38)

with E2
p3 = p23 + m2. The CSE induces an axial current even if the system is not

chiral. It is apparent from the result above that CSE has an explicit mass dependence,
as it is known that it should have [48].

3.5 Constant Vorticity and Electromagnetic Field

So far this contribution has focussed on the general properties of the statistical oper-
ator of global thermodynamic equilibrium with both vorticity and electromagnetic
field (3.12). The following section will discuss the special case of a constant homo-
geneous electromagnetic field (Fμν =constant) for which we already studied the
symmetries (Sect. 3.3.1). As discussed in Sect. 3.2, global equilibrium can only be
reached if condition (3.9) is satisfied, which in this case becomes

Lβ(Fμν) = �μ
σ F

σν − �ν
σ F

σμ ≡ (� ∧ F)μν = 0. (3.39)

We already discussed this wedge product in Eq. (3.28). Equation (3.39) has two
independent solutions: F = k� and F = k′� ∗, with k and k′ real numbers. In
terms of the gauge potential, the condition (3.10) must be satisfied. From Eq. (3.39),
choosing the covariant gauge Aμ = 1

2 F
ρμxρ , wefind that condition (3.10) is satisfied

setting� = 1
2bσ Fσλxλ. The equilibrium chemical potential (3.11) is then written as

ζ(x) = ζ0 − βσ (x)Fλσ xλ + 1

2
�σρx

ρFλσ xλ. (3.40)

The same solution can also be obtained by directly solving Eq. (3.7) using Eq. (3.39).
This last method to obtain the solution explicitly shows that the chemical potential
in Eq. (3.40) is not gauge dependent. For constant magnetic field and vanishing
thermal vorticity, the solution (3.40) reduces to ζ =constant, as it was correctly used
in Sect. 3.4.

Plugging the form (3.40) inside the operator of Eq. (3.1), we find:

ρ̂ = 1

Z
exp

{

−
∫

d�λ

[

(

̂T λν −̂j λFνρxρ

)

βν − 1

2
�σρ

̂j λxρFτσ xτ − ζ0̂j
λ

]}

.



3 Thermodynamic Equilibrium of Massless Fermions… 81

Inside the round bracket, we recognize the divergence-less operator π̂λν of Eq. (3.27),
whose integrals are the generators of translations. Expressing the coordinate depen-
dence of β, we can then write

ρ̂ = 1

Z
exp

{

−
∫

d�λ

[

π̂λνbν + �ντ x
τ π̂λν − 1

2
�μν

̂j λxνFτμxτ − ζ0̂j
λ

]}

= 1

Z
exp

{

−
∫

d�λ

[

π̂λνbν + �μνx
ν

(

π̂λμ − 1

2
̂j λFρμxρ

)

− ζ0̂j
λ

]}

= 1

Z
exp

{

−
∫

d�λ

[

π̂λνbν − 1

2
�μν

[

xμ

(

π̂λν − 1

2
̂j λFρνxρ

)

−xν

(

π̂λμ − 1

2
̂j λFρμxρ

)]

− ζ0̂j
λ

]}

;

this time we have recreated the divergence-less quantity �μν
̂Mλ,μν of Eq. (3.30)

that generates the Lorentz transformations and that are symmetries of the system.
We can then integrate over the coordinate and we find:

ρ̂ = 1

Z
exp

{

−b · π̂ + 1

2
� : ̂M + ζ0̂Q

}

.

In the above form, the analogy with statistical operator without electromagnetic
field in Eq. (3.6) is evident. In both cases, the statistical operator is written with the
sum of conserved operators, each one weighted with a constant Lagrange multiplier.
Moreover, starting from a fixed point x , we can write the constants thermal fields as

bμ = β(x)μ − �μνx
ν, ζ0 = ζ(x) + βσ (x)Fλσ xλ − 1

2
�σρx

ρFλσ xλ,

from which the statistical operator becomes

ρ̂ = 1

Z
exp
{

− β(x)μ
(

π̂μ − Fλμxλ
̂Q
)+

+ 1

2
�μν

(

̂Mμν + xνπ̂μ − xμπ̂ν − xνFλμxλ
̂Q
)+ ζ(x)̂Q

}

.

It is important to point out that with an external magnetic field, the Poincaré
algebra is modified and becomes the Algebra in Eq. (3.31), which we report here for
convenience:

[π̂μ, π̂ν] =iFμν
̂Q,

1

2
Fρσ [π̂μ, ̂Mρσ ] = i

2
Fρσ

(

ημρπ̂σ − ημσ π̂ρ
)

,

1

2
F∗

ρσ [π̂μ, ̂Mρσ ] = i

2
F∗

ρσ

(

ημρπ̂σ − ημσ π̂ρ
)

.

Notice that because F is proportional to � , if we replace F with � and F∗ with
� ∗, the last two algebra identities still hold true. Since the Algebra is known, we can
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translate the statistical operator. Taking advantage of the unitary of the translation
transformation, the translated statistical operator is

̂T(x) ρ̂̂T−1(x) = 1

Z
exp
{

−̂T(x) (b · π̂)̂T−1(x)+

+̂T(x)
(

� : ̂M
2

)

̂T−1(x) + ζ0̂T(x) ̂Q̂T
−1(x)

}

.

Therefore we just need to evaluate how the operators π̂ , ̂M and ̂Q transform under
translations. For a unitary transformation, an operator ̂K transforms with

ei
̂A
̂K e−îA � ̂K − i

[

̂K , ̂A
]− 1

2

[[

̂K , ̂A
]

, ̂A
]+ i

6

[[[

̂K , ̂A
]

, ̂A
]

, ̂A
]+ · · · .

By applying this formula to our operators, we obtain the complete transformation
because after a certain order all the commutators become vanishing. In particular,
for the Lorentz transformation generators, we find

1

2
�μν ̂M

μν
x ≡ 1

2
�μν̂T(x)̂M

μν
̂T−1(x) = 1

2
�μν

(

̂Mμν + xν π̂μ − xμπ̂ν − xνFλμxλ̂Q
)

.

For the other operators instead we find:

π̂μ
x ≡̂T(x) π̂μ

̂T−1(x) = π̂μ − xρF
ρμ
̂Q, ̂T(x) ̂Q̂T−1(x) = ̂Q.

With these definitions, a translation transformation on the statistical operator acts as
following:

̂T(a) ρ̂̂T−1(a) = 1

Z
exp

{

−β(x) · π̂x+a + 1

2
� : ̂Mx+a + ζ(x)̂Q

}

= 1

Z
exp

{

−β(x − a) · π̂x + 1

2
� : ̂Mx + ζ(x − a)̂Q

}

.

It follows that the statistical operator around a point x can be written as

ρ̂ = 1

Z
exp

{

−β(x) · π̂x + 1

2
� : ̂Mx + ζ(x)̂Q

}

. (3.41)

3.5.1 Expansion onThermal Vorticity

Following Ref. [23], we use linear response theory to evaluate thermal expectation
values in the case of the constant electromagnetic field. The purpose of this section
is to give the thermal expectation value of an operator ̂O at the point x as a thermal
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vorticity expansion. Using the properties of the trace, we can transfer the x depen-
dence from the operator ̂O to the statistical operator (3.41) written around the same
point x :

〈̂O(x)〉 = 1

Z
tr

[

exp

{

−β(x) · π̂x + 1

2
� : ̂Mx + ζ(x)̂Q

}

̂O(x)

]

= 1

Z
tr

[

̂T(−x) exp

{

−β(x) · π̂x + 1

2
� : ̂Mx + ζ(x)̂Q

}

̂T−1(−x)̂O(0)

]

= 1

Z
tr

[

exp

{

−β(x) · π̂ + 1

2
� : ̂M + ζ(x)̂Q

}

̂O(0)

]

.

To evaluate the mean value, we expand the statistical operator of the last equality
around vanishing vorticity. First, we split the exponent of the statistical operator into
two parts as follows:

ρ̂ = 1

Z
exp
[

̂A + ̂B] , ̂A ≡ −βμ(x)π̂μ + ζ(x)̂Q, ̂B ≡ 1

2
� : ̂M,

and then we expand on ̂B, which is the part containing thermal vorticity. Since ̂B
and ̂A satisfy the same algebra of the case discussed in [23], the expansion will lead
to the same result, which is

〈̂O(x)〉 =〈̂O(0)〉β(x) − αρ〈〈 ̂K ρ
̂O 〉〉 − wρ〈〈 ̂Jρ

̂O 〉〉 + αρασ

2
〈〈 ̂K ρ

̂K σ
̂O 〉〉

+ wρwσ

2
〈〈 ̂Jρ

̂Jσ
̂O 〉〉 + αρwσ

2
〈〈 {̂K ρ, ̂Jσ }̂O 〉〉 + O(� 3),

(3.42)
where we defined

〈〈̂Kρ1 · · · ̂Kρn ̂Jσ1 · · · ̂Jσm ̂O〉〉 ≡
∫ |β|
0

dτ1 · · · dτn+m

|β|n+m ×

× 〈Tτ

(

̂Kρ1−iτ1u
· · · ̂Kρn−iτnu

̂Jσ1−iτn+1u
· · · ̂Jσm−iτn+mu

̂O(0)
)

〉β(x),c.

As discussed in Sect. 3.3.1, the boost and rotation defined starting from ̂Mμν , i.e.

̂Kμ = uλ
̂Mλμ, ̂Jμ = 1

2
εαβγμuα

̂Mβγ ,

are different from those of a system without external electromagnetic field. The
other difference with [23] is that in this case the averages 〈· · ·〉β(x) are made with
the statistical operator

ρ̂0 = 1

Z0
exp
{−β(x) · π̂ + ζ(x)̂Q

}

.
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3.5.2 Currents and Chiral Anomaly

In this section, we determine the constitutive equations for the electric and the axial
current at first order in thermal vorticity and we investigate the contributions from
electric and magnetic fields to the thermal coefficients related to vorticity. The con-
stitutive equations are obtained from the expansion on thermal vorticity given in the
previous section. Instead of a direct evaluation, we use the conservation equations
to show that indeed no additional corrections from electric and magnetic field occur
to first-order vorticous coefficients, such as the conductivity of the Chiral Vortical
Effect (CVE) and of the Axial Vortical Effect (AVE). In this way, we obtain several
relations between those coefficients and their relation to the chiral anomaly.

Consider the case of global thermal equilibrium with constant vorticity �μν and
an electromagnetic field with strength tensor Fμν = k �μν , with k a constant. It then
follows that the comoving magnetic and electric fields are parallel respectively to
thermal rotation and thermal acceleration:

Bμ(x) = −k wμ(x), Eμ(x) = k αμ(x).

For instance, in the case of a constant thermal vorticity caused by a rigid rotation
along the z axis and a constant magnetic field along z, we have:

�μν = �

T0

(

ημ1ην2 − ην1ημ2
)

, Fμν = B
(

ημ1ην2 − ην1ημ2
)

, k = BT0
�

,

where �, T0 and B are constants. In this example, electric and magnetic fields are
orthogonal and there is no chiral anomaly. However, in the general case, the product
E · B is non-vanishing. In that case, as we showed in Sect. 3.2, we can still discuss
global equilibrium with chiral imbalance by defining a conserved Chern–Simons
current.

By using the thermal vorticity expansion (3.42), we now proceed to write the
thermal expectation value of electric current at first order in thermal vorticity. We
want to stress that in the expansion (3.42), no approximations are made on the effects
of the external electric and magnetic fields; the expansion (3.42) only approximates
the effects of vorticity. At first order on thermal vorticity, the only quantities that
can contribute to the mean value of a current are the four-vectors wμ, αμ and the
scalars E · α, E · w = −B · α and B · w. We therefore write the thermal expansion
in terms of these quantities, which will define several thermal coefficients. Taking
into account the symmetries, the thermal vorticity expansion of the electric current
is

〈̂j μ(x)〉 =
[

n0c + nE ·α
c (E · α) + nB·w

c (B · w)
]

uμ + WVwμ + σ B·α
E (B · α)Eμ

+
[

σ 0
B + σ E ·α

B (E · α) + σ B·w
B (B · w)

]

Bμ + O (� 2) .

(3.43)
Since the thermal coefficients n0c and σ 0

B must be evaluated at vanishing thermal
vorticity, they are exactly those computed in Sect. 3.4.4 (for vanishing electric field).
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In particular, the Chiral Magnetic Effect (CME) conductivity at vanishing vorticity,
Eq. (3.37), is

σ 0
B(x) = qζA

2π2|β(x)| . (3.44)

All the other coefficients are related to thermal vorticity and they have the following
properties under parity, time-reversal and charge conjugation:

E · α E · w B · w n0c σ 0
B WV σ 0

E σ E ·α
B σ B·w

B σ B·α
E

P + − + + − − + − − −
T + − + + + + − + + +
C − − − − + − + − − −

(3.45)

Similarly, the axial current thermal expectation value is

〈̂j μ
A (x)〉 =

[

n0A + nE ·α
A (E · α) + nB·w

A (B · w)
]

uμ + WAwμ + σ B·α
sE (B · α)Eμ

+
[

σ 0
s + σ E ·α

s (E · α) + σ B·w
s (B · w)

]

Bμ + O (� 2) .

Each thermal coefficients is a function depending only on

|β|, ζ, ζA, B2, E2, E · B. (3.46)

The coordinate dependence of any thermal coefficients is completely contained inside
the Lorentz scalars in (3.46).

With the constitutive equationswritten down,we are now looking for relations and
constraints between those thermodynamic coefficients. The conservation of electric
current implies that

∂μ〈̂j μ(x)〉 = 〈 ∂μ
̂j μ(x)〉 = 0.

The coordinate derivative acts both on thermal coefficients and on thermodynamic
fields. We need to establish how the derivative acts on those quantities. For thermo-
dynamic fields, using the equilibrium conditions and the identities in Appendix, we
find

∂μu
μ =0, ∂μw

μ = −3
w · α

|β| , ∂μαμ = 2w2 − α2

|β| ,

∂μB
μ = − 3

B · α

|β| , ∂μE
μ = −2(w · B) + (α · E)

|β| , ∂μ(B · α) = 0,

∂μ(E · α) = − 2

|β|
[

(w · B)αμ + (E · w)wμ

]

,

∂μ(B · w) = 2

|β|
[

(w · B)αμ + (E · w)wμ

]

.
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Moreover, we can also show that

∂μ|β| = −αμ, ∂μζ = βνFνμ = −|β|Eμ, ∂μζA = 0, ∂μ(E · B) = 0,

∂μ|B| = − (E · B)wμ + B2αμ

|β||B| , ∂μ|E | = − (E · B)wμ + B2αμ

|β||E | ,

where

|β| = √βσ βσ , |B| = √−Bσ Bσ , |E | = √−Eσ Eσ .

The derivative with respect to coordinates of a thermodynamic function is

∂μ f (|β|, ζ, ζA, |B|, |E |, E · B) =
(

−∂μ|β| ∂

∂|β| + ∂μζ
∂

∂ζ
+ ∂μζA

∂

∂ζA
+ ∂μ|B| ∂

∂|B|
+∂μ|E | ∂

∂|E | + ∂μ(E · B)
∂

∂(E · B)

)

f .

Therefore, using the previous identities, the derivative of a thermodynamic function
becomes

∂μ f =
[

−αμ

(

∂

∂|β| − |B|2
|β|

1

|B|
∂

∂|B| − |B|2
|β|

1

|E |
∂

∂|E |
)

−|β|Eμ

∂

∂ζ
− (E · B)wμ

|β|
(

1

|B|
∂

∂|B| + 1

|E |
∂

∂|E |
)]

f .

We can also define the following short-hand notation:

∂β̃ ≡ ∂

∂|β| − |B|2
|β| ∂B̃, ∂B̃ ≡ 1

|B|
∂

∂|B| + 1

|E |
∂

∂|E | ,

from which the previous derivative is written as

∂μ f =
[

−αμ∂β̃ − |β|Eμ∂ζ − (E · B)wμ

|β| ∂B̃

]

f .

We can now use the previous relations to impose electric current conservation
by evaluating the divergence of the expansion in Eq. (3.43). For the terms directed
along the fluid velocity, we find that no additional constraints are required:

∂μ

(

n0uμ
) = ∂μ

(

nE ·α(E · α)uμ
)

= ∂μ

(

nB·w(B · w)uμ
)

= 0.
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For the terms along the magnetic field, we find:

∂μ

(

σ 0
B B

μ
)

= − (B · α)

[

3

|β| + ∂
β̃

]

σ 0
B − (E · B)|β|∂ζ σ 0

B

− (E · B)(B · w)

|β| ∂B̃σ 0
B ,

∂μ

(

σ E ·α
B (E · α)Bμ

)

= − (B · α)(E · α)

[

3

|β| + ∂
β̃

]

σ E ·α
B − (E · α)(E · B)|β|∂ζ σ E ·α

B

− (E · B)(B · w)(E · α)

|β| ∂B̃σ E ·α
B

− 2

|β| [(w · B)(B · α) + (E · w)(B · w)] σ E ·α
B ,

∂μ

(

σ B·w
B (B · w)Bμ

)

= − (B · α)(B · w)

[

3

|β| + ∂
β̃

]

σ B·w
B − (B · w)(E · B)|β|∂ζ σ B·w

B

− (E · B)(B · w)2

|β| ∂B̃σ B·w
B

+ 2

|β| [(w · B)(B · α) + (E · w)(B · w)] σ B·w
B .

Along electric field, we have

∂μ

(

σE (B · α)Eμ
) = − (B · α)(α · E)

[

1

|β| + ∂β̃

]

σE − (B · α)E2|β|∂ζ σE

− (E · B)(E · w)

|β| ∂B̃σE .

Lastly, the divergence of the term along rotation is

∂μ

(

WVwμ
) = −(w · α)

[

3

|β| + ∂β̃

]

WV − (E · w)|β|∂ζW
V − (E · B)w2

|β| ∂B̃W
V.

To impose that ∂μ〈̂j μ(x)〉 = 0, we sum all the previous pieces and we split
between the linear independent terms. Those terms must vanish independently of the
values of the electromagnetic field and of the thermal vorticity and several equalities
are obtained. Among those, we first consider the following identities:

∂ζ σ
0
B =0, ∂B̃W

V = 0, ∂ζ σ
E ·α
B = 0, ∂B̃σ E ·α

B = 0, ∂B̃σ B·w
B = 0,

∂ζ σ
B·α
E =0, ∂B̃σ B·α

E = 0.

Notice from the table in (3.45) that σ E ·α
B and σ B·α

E are related to C-odd correlator.
Therefore they must be odd functions of the electric chemical potential ζ . But the
previous constraints require that they do not depend on ζ , therefore they must be
vanishing

σ E ·α
B = 0, σ B·α

E = 0.
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The previous constraints also require that WV and σ B·w
B do not depend on |B| and

|E |3. That is to say that the CVE conductivity WV is not affected by electric and
magnetic fields. Moreover, electric current conservation also imposes that

(

3 + |β|∂β̃

)

σ 0
B − |β|2∂ζW

V =0,

∂B̃σ 0
B + |β|2∂ζ σ

B·w
B =0,

(

3 + |β|∂β̃

)

σ B·w
B =0,

(

3 + |β|∂β

)

WV =0.

We can replace the known result for the CME conductivity σ 0
B of Eq. (3.44) in the

previous constraints to find that

∂ζW
V = 1

|β|2
(

3 + |β|∂β̃

)

σ 0
B = qζA

π2|β|3 ,

∂ζ σ
B·w
B =0,

(

3 + |β| ∂

∂β

)

WV =0.

Again, since σ B·w
B is C-odd it follows from second equation that it must be vanishing

σ B·w
B = 0.

We want to empathize that we have found a relation between CVE and CME
conductivities:

∂ζW
V = 1

|β|2
(

3 + |β|∂β̃

)

σ 0
B . (3.47)

The CVE conductivity WV in Eq. (3.22) satisfies this relation. It is important to
notice that Eq. (3.47) completely determines the CVE conductivity from the CME
one. Indeed, since WV is odd under charge conjugation, by fixing the ζ part of WV,
we obtain the entire coefficient. This also implies that the ζ part of WV is dictated
by the chiral anomaly as found in effective field theories [46]. Therefore, the CVE
inherits all the properties proved for the CME. For instance, it is known that the CME
conductivity is completely dictated by the chiral anomaly [49] and that it is protected
from corrections coming from interactions [50,51]. Since the relation (3.47) holds
not only for a free theory but for any microscopic interactions, as long as global
thermal equilibrium is concerned, then also the CVE conductivity is dictated by the

3Note that to reduce the numbers of relations, we have indicated electric field and magnetic field
derivative together with one derivative ∂B̃ . However, electric and magnetic fields are independent
and each derivative must be considered independently.
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chiral anomaly and it is universal. Despite the CVE can be related to the vector-
axial anomalous term of vector current anomaly [52], Eq. (3.47) shows that it can be
explained with just the electric charge conservation and the chiral anomaly.

Let us now move to the axial current. Similar steps can be followed to derive the
constraint equations between the thermal coefficients of axial current. In this case,
we must impose the following identities between thermal expectation values:

∂μ〈̂j μ
A (x)〉 = 2m〈 i�̄γ 5�〉 − q2(E · B)

2π2 ,

where we also added the naive divergence term 2m〈 i�̄γ 5�〉 which is due to the
mass of the field. From symmetries, the constitutive equation for the pseudo-scalar
is

〈 i�̄γ 5�〉 =LE ·B(E · B) + Lα·w(α · w) + LE ·w(E · w)

+ L(E ·B)α2
(E · B)α2 + L(E ·B)w2

(E · B)w2

+ L(E ·w)(E ·α)(E · w)(E · α) + L(E ·w)(B·w)(E · w)(B · w) + O (� 3) .

The value of Lα·w for the free Dirac field has been reported in (3.20), and the other
coefficients related to the the electromagnetic field can be computed with the Ritus
method.

Because the axial current is not conserved, we find different identities compared
to the previous case of electric current. For instance, the identities related to the
Chiral Separation Effect (CSE) conductivity σ 0

s and to the AVE conductivityWA are

(

3 + |β| ∂

∂β

)

WA = − 2mLα·w,

∂ζ σ
0
s = q2

2π2|β| − 2mLE ·B,

∂B̃σ 0
s = − |β|2∂ζ σ

B·w
s ,

∂B̃W
A = − 2m|β|L(E ·B)w2

,

∂ζW
A = 1

|β|2
(

3 + |β|∂β̃

)

σ 0
s − 2m

|β| L
E ·w.

The first equation has been discussed in [23] and in Sect. 3.2.1. The second equation
is similar to the first: the first term on the r.h.s. is coming from the chiral anomaly
and the second from the naive anomaly. Therefore for a massive field, as discussed
for the AVE, the CSE is not entirely dictated by the anomaly. It is then not surprising
to find corrections to the CSE [53] and that it is affected by the mass, see Eq. (3.38).
In the massive case, we also expect corrections from the external electromagnetic
field both in the AVE and in the CSE conductivities.



90 M.Buzzegoli

On the other hand, for massless field, those constraints become

∂ζ σ
0
s = q2

2π2|β| ,
(

3 + |β| ∂

∂β

)

WA =0, ∂B̃W
A = 0,

∂ζW
A = 1

|β|2
(

3 + |β|∂β

)

σ 0
s .

In this case, the CSE conductivity is completely fixed by the chiral anomaly as it is
clear by the first equation and by the fact that σ 0

s must be an odd function of ζ . For the
symmetries of axial current,WA has both terms which depend on ζ and terms which
depend only on ζA and β. All these terms must satisfy the equations in the second
line. In particular, we conclude that the AVE is not affected by the electromagnetic
field. Moreover, from the third line, we see that the terms related to ζ are fixed by
the CSE conductivity and consequently they are dictated by the chiral anomaly. As
it is evident from the previous discussion, this only occurs for the massless field.

In summary, by imposing the conservation equation we conclude that, at global
thermodynamic equilibrium with thermal vorticity and constant homogeneous elec-
tromagnetic field, the chiral vortical effect is dictated by the chiral magnetic effect.
Then it is not affected by the mass of the particle, by the external electromagnetic
field or by radiative corrections. For the axial current this analysis has showed that
we need to distinguish between the massive and the massless case. In the latter
case, we found that the chiral anomaly completely fixes the whole Chiral Separa-
tion Effect (CSE) but fixes only the part of Axial Vortical Effect (AVE) conductivity
which depends on the electric chemical potential. We also found that the AVE is not
affected by the external electromagnetic field. For the massive case, despite it exists
a relation between the CSE and the AVE, both of them are affected by the mass of
the field, the external electromagnetic field and radiative corrections.
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Appendix:Thermodynamic Relations in Beta Frame

At global thermal equilibrium with thermal vorticity, thermodynamic fields satisfy
several equilibrium relationswhich constraints their coordinate dependence. In theβ-
frame,we can build several quantities from the four-vectorβ and thermal vorticity� :

uμ = βμ
√

β2
; �μν = gμν − uμuν; �μν = ∂νβμ = εμνρσw

ρuσ + αμuν − ανuμ;

αμ = �μνu
ν; wμ = −1

2
εμνρσ �νρuσ ; γμ = (α · �)λ�λμ = εμνρσw

ναρuσ .
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Most of these quantities depend on coordinates, and their derivatives are [33]:

∂νβμ = �μν; ∂ν = −αν

∂

∂
√

β2
; � : � = 2

(

α2 − w2)

∂νuμ = 1
√

β2

(

�μν + ανuμ

); ∂αuα = 0; uα∂αuμ = αμ
√

β2
;

∂μαν = 1
√

β2

(

�νρ�ρ
μ + αμαν

); ∂ααα = 1
√

β2

(

2w2 − α2); uα∂αα2 = 0;

∂μwν = 1
√

β2

(

αμwν − 1

2
ενρσλ�

ρσ �λ
μ

); ∂αwα = −3
w · α
√

β2
; uα∂αw2 = 0;

ασ ∂μασ = wσ ∂μwσ = 1
√

β2

(

w2αμ − (α · w)wμ

); ∂μ(α · w) = 0;

∂αγ α = 0; ∂α�αβ = − αβ
√

β2
.
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