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Abstract

Over recent years we havewitnessed tremendous progress in our understanding of
the angular momentum decomposition. In the context of the proton spin problem
in high-energy processes, the angular momentum decomposition by Jaffe and
Manohar, which is based on the canonical definition, and the alternative by Ji,
which is based on the Belinfante improved one, have been revisited under light
shed by Chen et al. leading to seminal works by Hatta, Wakamatsu, Leader, etc.
In chiral physics as exemplified by the chiral vortical effect and applications to
the relativistic nucleus–nucleus collisions, sometimes referred to as a relativistic
extension of the Barnett and the Einstein–de Haas effects, such arguments of the
angular momentum decomposition would be of crucial importance. We pay our
special attention to the fermionic part in the canonical and the Belinfante conven-
tions and discuss a difference between them, which is reminiscent of a classical
example of Feynman’s angular momentum paradox. We point out its possible
relevance to early-time dynamics in the nucleus–nucleus collisions, resulting in
excess by the electromagnetic angular momentum.
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12.1 Prologue

Some time agowe, Fukushima and Pu, together with our bright colleague, ZebinQiu,
published a paper [1] on a relativistic extension of the Barnett effect [2] in the context
of chiral materials. Our results are beautiful and robust, we believe, but at the same
time, we had to overcome many conceptual confusions. We are 100% sure about our
calculations, results, and conclusions, but we were unable to find 100% unshakable
justification for our spin identification. We could not remove theoretical uncertainty
to extract the orbital angular momentum (OAM) and the spin angular momentum
(SAM) out of the total angular momentum that is conserved. We adopted the most
natural assumption, meanwhile, we studied many preceding works; for example,
we found Ref. [3] that makes a surprising assertion of the existence of individually
conserved OAM and SAM derived from the Dirac equation. The more we studied,
the more confusion we were falling into. The present contribution is not an answer
to controversies, but more like a note of what we have understood so far, and some of
our own thoughts based on them.Actually, in Ref. [1]we posed an important question
of how to represent the Barnett effect in chiral hydrodynamics, but in the present
article we will not mention this. We will report our progress on hydrodynamics with
OAM and SAM somewhere else hopefully soon, and the present article is focused
on the field’s theoretical descriptions.

12.2 Basics—Angular Momenta in an Abelian GaugeTheory

In non-relativistic and classical theories, the spin is not a dynamical variable; spin-up
and spin-down electrons are treated as distinct species and the total spin is conserved
unless interactions allow for spin unbalanced processes. Dirac successfully general-
ized an equation proposed by Pauli, who first postulated such internal doubling, into
a fully relativistic formulation. Eventually, Majorana and other physicists realized
the usage of Cartan’s spinors. Today, even undergraduate students are familiar with
tensors and spinors according to the representation theory of Lorentz symmetry. In
contemporary physics, symmetries and associated conserved quantities play essen-
tial roles. This article mainly addresses the angular momentum and the spin. Readers
interested in the history of the spin are invited to consult a very nice book, The Story
of Spin, by Sin-itiro Tomonaga (see Ref. [4] for an English translated version).

To begin with, we shall summarize some textbook knowledge about various
assignments of angular momenta. Lorentz symmetry is characterized by the fol-
lowing transformation:

xμ → x ′μ = �μ
νx

ν = (δμ
ν + εμ

ν)x
ν , (12.1)

where �μν and infinitesimal εμν are antisymmetric tensors. Let us take a simple
Abelian gauge theory defined by the following Lagrangian density:

L = ψ̄(iγ μDμ − m)ψ − 1

4
FμνFμν (12.2)
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with the covariant derivative, Dμ ≡ ∂μ + ieAμ, and the field strength tensor, Fμν ≡
∂μAν − ∂ν Aμ. This theory involves vector and spinor fields which transform
together with Eq. (12.1) as

Aμ(x) → A′μ(x) = �μ
ν A

ν(�−1x) , (12.3)

ψ(x) → ψ ′(x) = � 1
2
ψ(�−1x) , (12.4)

where� 1
2

= 1 − i
2εμν	

μν with	μν ≡ i
4 [γ μ, γ ν]. Thus, for an infinitesimal trans-

formation, the fields change as Aα(x) → Aα(x) + 1
2εμν�Aμνα(x) and ψ(x) →

ψ(x) + 1
2εμν�ψμν(x) (where we put 1

2 for antisymmetrization) with

�Aμνα(x) =
[
(xμ∂ν − xν∂μ)gαβ + (gμαgνβ − gναgμβ)

]
Aβ(x) , (12.5)

�ψμν(x) = (
xμ∂ν − xν∂μ − i	μν

)
ψ(x) . (12.6)

Now we can compute the Nöther current. From the gauge part, we find

Jλμν
A = ∂L

∂(∂λAα)
�Aμνα = −Fλ

α(xμ∂ν − xν∂μ)Aα − FλμAν + Fλν Aμ . (12.7)

In the same way, we go on to obtain the fermionic contribution,

Jλμν
ψ = ∂L

∂(∂λψ)
�ψμν = ψ̄iγ λ

(
xμ∂ν − xν∂μ − i	μν

)
ψ . (12.8)

They satisfy ∂λ(J
λμν
A + Jλμν

ψ ) = 0, and the conserved charge (i.e., λ = 0 compo-
nent) is the total angular momentum. From these expressions, it would be a natural
choice for us to define the “canonical” OAM and SAM as follows:

Lμν
A,can ≡ −F0

α(xμ∂ν − xν∂μ)Aα , Sμν
A,can ≡ −F0μAν + F0ν Aμ . (12.9)

Lμν
ψ,can ≡ iψ†(xμ∂ν − xν∂μ)ψ , Sμν

ψ,can ≡ ψ†	μνψ . (12.10)

This is simply our choice for themoment, and onemay say that the spin can be identi-
fied as the remaining operator in the homogeneous limit where all spatial derivatives
drop.1 These are not separately conserved quantities but only the sums, the total angu-
lar momenta, are conserved. We point out that the above decomposition has been
long known in the context of the proton spin problem (see Refs. [5,6] for reviews). In
the language of quantum chromodynamics (QCD), if the gauge field is extended to
the non-Abelian gluon field and the temporal index is changed to + in the light-cone

1The spin identification in such a frame to drop spatial derivatives is emphasized by Yoshi-
masa Hidaka. Another physical constraint is the commutation relation, and this prescription would
always give the correct commutation relation of the spin.
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coordinates, Sμν
ψ,can and Sμν

A,can correspond to
1
2�	 and �G, respectively, in what is

called the Jaffe–Manohar decomposition.
Such expressions have been known by all QCD physicists; they look firmly

founded, but not very undoubted yet, for they are obviously gauge dependent. Among
quantum field theoreticians, a common folklore is that non-gauge-invariant objects
may well be unphysical. This story would remind readers of a famous problem
that the canonical energy–momentum tensor is not gauge invariant, while the sym-
metrized one is. Interestingly, rotation and translational shift are coupled together,
so that the angular momenta and the energy–momentum tensor (EMT) are linked.
The canonical EMT for the Abelian gauge theory is derived as

Tμν
A,can = ∂L

∂(∂μAα)
∂ν Aα − gμνLA = −Fμ

α∂ν Aα + 1

4
gμνFαβFαβ (12.11)

for the gauge part, which is clearly gauge dependent, and

Tμν
ψ,can = ∂L

∂(∂μψ)
∂νψ − gμνLψ = ψ̄iγ μ∂νψ − gμνψ̄(iγ αDα − m)ψ (12.12)

for the fermion part. From now on, we impose onshellness and utilize the equations
of motion. We would recall that the derivation of Nöther’s theorem already requires
the equations ofmotion. Then, we can safely drop the last term in Tμν

ψ,can, thanks to the
Dirac equation. Then, for spatial μ and ν (denoted by i and j), it is straightforward
to confirm the relation between the OAM and the EMT,

Li j
A/ψ,can = xi T 0 j

A/ψ,can − x j T 0i
A/ψ,can . (12.13)

So far, apart from the gauge invariance, all these relations perfectly fit in with our
intuition.

Now, let us shift gears to discussions on the symmetrized version of the EMT. To
consider the physical meaning of the symmetric and the antisymmetric parts of the
EMT, the above relation (12.13) is quite useful. For the gauge and the fermion parts,
generally, we immediately see that the following relation holds:

0 = ∂λ J
λμν = ∂λ

(
xμT λν

can − xνT λμ
can + Sλμν

can

) ⇒ Tμν
can − T νμ

can = −∂λS
λμν
can ,

(12.14)

where Tμν
can ≡ Tμν

A,can + Tμν
ψ,can and Sλμν

can ≡ Sλμν
A,can + Sλμν

ψ,can. Therefore, the antisym-
metric part of the canonical EMT is the source of the spin current. The EMT as
conserved currents is not unique, but can be added by ∂λK λμν satisfying K λμν =
−Kμλν , which would not change the conservation laws. One of the most interesting
and important choices of K λμν is

K λμν
Bel = 1

2

(
Sλμν
can − Sμλν

can + Sνμλ
can

)

= −FλμAν + i

4
ψ̄

(−iελμνργ5γρ + 2gμνγ λ − 2gλνγ μ
)
ψ , (12.15)
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which gives the Belinfante–Rosenfeld form of the EMT, i.e., Tμν
Bel ≡ Tμν

can + ∂λK
λμν
Bel .

In the above, we used {γ λ, γ μγ ν} = 2gμνγ λ − 2iελμνργ5γρ to reach the second line
(with the conventional definition of γ5 ≡ iγ 0γ 1γ 2γ 3). We can show that if Tμν

Bel is
plugged into Eq. (12.14), the source is exactly canceled and Tμν

Bel − T νμ
Bel = 0 follows,

which means that Tμν
Bel is symmetric. (This is exactly the point where many people

are puzzled especially when they want to formulate the spin hydrodynamics that
seems to require antisymmetric components of the EMT, but in this article we will
not go into this issue. Interested readers can consult a review [7].)

Now, we proceed to concrete expressions of the Belinfante EMT in the Abelian
gauge theory. After several lines of calculations, one can find, for the gauge part,

T̃μν
A,Bel = −Fμ

αF
να − ψ̄γ μeAνψ + 1

4
gμνFαβFαβ , (12.16)

where the second term appears from the equations of motion, ∂μFμν = ψ̄iγ νψ . The
fermionic part needs a bit more labor to sort expressions out. From the definition, it
is almost instant to get

T̃μν
ψ,Bel = ψ̄iγ μ←→

∂ νψ + 1

4
εμνλρ∂λ(ψ̄γ5γρψ) . (12.17)

It would be more appropriate to redefine these forms to move one term from T̃μν
A,Bel

to T̃μν
ψ,Bel (which unchanges the sum, i.e., T̃μν

A,Bel + T̃μν
ψ,Bel = Tμν

A,Bel + Tμν
ψ,Bel), then

the gauge invariance is manifested as

Tμν
A,Bel ≡ −Fμ

αF
να + 1

4
gμνFαβFαβ , (12.18)

Tμν
ψ,Bel ≡ ψ̄iγ μ←→

D νψ + 1

4
εμνλρ∂λ(ψ̄γ5γρψ) . (12.19)

These are very desirable expressions and all the terms are manifestly gauge invariant,
thus corresponding to physical observables in principle. At this point, onemight have
thought that Tμν

ψ,Bel does not look symmetric with respect to μ and ν. In a quite non-
trivial way, one can prove that the above fermionic part is alternatively expressed as
Tμν

ψ,Bel = ψ̄iγ (μ←→
D ν)ψ , which is obviously symmetric.

Coming back to the angular momentum, we can introduce the Belinfante
“improved” form for the angular momentum, i.e.,

Jλμν
Bel ≡ Jλμν + ∂ρ

(
xμK ρλν

Bel − xνK ρλμ
Bel

)
. (12.20)

Because of the antisymmetric property of K ρλμ
Bel , obviously, ∂λ J

λμν
Bel = 0 follows as

long as ∂λ Jλμν = 0 holds. Therefore, this newly defined Jλμν
Bel may well be qualified

as a conserved physical observable. These definitions lead us to extremely interesting
expressions, namely,

Jλμν
A/ψ,Bel = xμT̃ λν

A/ψ,Bel − xν T̃ λμ
A/ψ,Bel . (12.21)
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Such relations imply that the total angular momentum is given by something that
looks like the OAM alone if we use the Belinfante improved forms. We sometimes
hear people saying that the spin is identically vanishing in the Belinfante form, but
this statement should be taken carefully. The spin part is simply unseen and the
total angular momentum seemingly appears like the OAM even though the spin is
already included. In the analogy to the QCD spin physics, the angular momentum
identification as in Eq. (12.21) is known as the Ji decomposition.

12.3 Dirac Fermions and Physical and Pure Gauge Potentials

Discussions on the gauge part are a little cumbersome, and in this article we will
mainly focus on the fermion part only, which, however, does not mean we drop the
gauge fields. Let us reiterate basic definitions from the previous overview. In the
canonical identification, in Eq. (12.10), the OAM and the SAM are given, respec-
tively, by

Lψ,can ≡ −iψ†x × ∇ψ , Sψ,can ≡ −1

2
ψ̄γ5γψ , (12.22)

where we defined Li ≡ 1
2ε

i jk L jk and Si ≡ 1
2ε

i jk S jk . As we already discussed,
Lψ,can is not gauge invariant, thus it cannot be a physical observable suppos-
edly. Then, what about the Belinfante form? We can make a decomposition using
Eq. (12.19). The latter term may well be called the spin part, with which we can
compute Jλμν

ψ,Bel according to Eq. (12.21), and subtract added terms in Eq. (12.20).
Some calculations yield

S̃ψ,Bel = −1

2
ψ̄γ5γψ − 1

2
ix × ∇(ψ†ψ) . (12.23)

This expression is not gauge invariant, thuswe shall redefine the spin to the same form
as the canonical one which is manifestly gauge invariant and move unwanted terms
to the orbital part. Thus, in this convention, we can reasonably adopt the following
definitions:

Lψ,Bel ≡ −iψ†x × Dψ , Sψ,Bel ≡ Sψ,can . (12.24)

In the high-energy physics context, the above identification is called Ji’s orbital and
spin angular momenta of quarks. Again, we make a caution remark; the Belinfante
form has the total angular momentum that looks like the OAM, but this does not
mean that the spin vanishes. Some people may say that the latter in Eq. (12.24)
cannot be true since the Belinfante EMT has no antisymmetric part. This kind of
criticism is meaningful when we need to construct the angular momentum in terms
of theEMT,which is the case in the spin hydrodynamics, for example, [7,8].2 See also

2K. F. thanks Wojciech Florkowski and Hidetoshi Taya for simulating conversations on this point
which seem not to be very consistent to each other, and thus we just refer to their review and original
literature here.
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Table 12.1 Breakdown of the total angular momentum J from various contributions in the canon-
ical (Jaffe–Manohar) decomposition (upper) and the Belinfante (Ji) decomposition (lower)

Canonical J = −1

2
ψ̄γ5γψ

︸ ︷︷ ︸
1
2 �	

+ E × A︸ ︷︷ ︸
�G

−iψ†(x × ∇)ψ︸ ︷︷ ︸
Lq
can

+ E(x × ∇)A︸ ︷︷ ︸
Lg
can

Belinfante J = −1

2
ψ̄γ5γψ

︸ ︷︷ ︸
1
2 �	

−iψ†(x × D)ψ︸ ︷︷ ︸
Lq
Ji

+ x × (E × B)︸ ︷︷ ︸
J gJi

Refs. [9,10] for observable effects of different spin tensors, which may be significant
especially in nonequilibrium [11]. Probably one way to define the spin part out from
the Belinfante symmetrized form of the EMT is the Gordon decomposition (as Berry
defined the gauge-invariant optical spin [12]) which is also applicable to massless
theories. In any case, if we do not have to refer to the EMT, Eq. (12.24) is just a
natural way of defining Sψ,Bel, satisfying the correct commutation relation. Now we
symbolically summarize the decomposition and the correspondingQCD terminology
in Table 12.1.

Now, in this convention, the spin part has no ambiguity; it is gauge invariant
as it should be, representing a physical observable for sure. The subtle (and thus
interesting) point is the orbital part, and then onemay be tempted to conclude that the
canonical onemakes no physical sense, and this conclusion seems to be unbreakable.
An intriguing possibility has been suggested, however, in the high-energy physics
context [13] inspired by QED studies and photon experiments (see, for example,
Ref. [14] for very inspiring but a little mystical discussions including Lipkin’s Zilch
which is a “useless” conserved charge inQED), which invoked interesting theoretical
discussions; see Ref. [15], for example. In fact, this canonical form can be promoted
to be a gauge-invariant canonical (gic) one (using the terminology of Ref. [16]) as

Lψ,can → Lψ,gic ≡ −iψ†x × Dpureψ , (12.25)

where Dpure ≡ ∇ − ieApure. Here, the vector potential is decomposed into two
pieces, namely, A = Aphys + Apure with Aphys extracted as a gauge invariant part
and Apure makes the field strength tensor vanishing; ∇ × Apure = 0. More specif-
ically, under a gauge transformation, A is changed as A → A + ∇α, and then, by
definition, Aphys → Aphys and Apure → Apure + ∇α. One simplest decomposition
satisfying these requirements is obtained from the Helmholtz decomposition, i.e.,
any vector can be represented as a sum of divergence free (transverse) and rotation
free (longitudinal) vectors. For a more concrete demonstration, let us write down an
explicit form as

Aphys = ∇ × a , Apure = −∇ϕ , (12.26)
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where

a(x) = 1

4π

∫

V
dx′ ∇′ × A(x′)

|x − x′| − 1

4π

∫

S
dS′ × A(x′)

|x − x′| , (12.27)

ϕ(x) = 1

4π

∫

V
dx′ ∇′ · A(x′)

|x − x′| − 1

4π

∫

S
dS′ · A(x′)

|x − x′| . (12.28)

In principle, now, all the terms involving A can be made gauge invariant. Then, a
finite difference between the canonical and the Belinfante OAM is also a gauge-
invariant quantity, which is often called the “potential” orbital angular momentum,
i.e.,

Lψ,Bel = Lψ,gic − eψ†x × Aphysψ . (12.29)

Here, wemake a commentwhich is not crucial in the present discussions but essential
for phenomenological applications and particularly for measurability. Even though
the Helmholtz decomposition is unique, such a gauge-invariant decomposition itself
is not unique. As discussed in Ref. [17], for example, a different choice could be
possible and even preferable in the high-energy processes.

We note that Eq. (12.28) is highly non-local in space, and such “physical” photon
should have a space-like extension. For static electromagnetic background fields, for
example, photons are virtual and off shell, so that space-like components are experi-
mentally accessible (or even the vector potentials are controlled from the beginning).
In contrast, in the parton model at high energy, the gauge particles are on shell and
travel at the speed of light (or speed of “gluon” so to speak). Then, for such propa-
gating modes along the light-cone, the space-like profiles as in Eq. (12.28) are not
to be probed by scatterings. In this case of the light-cone propagation, as prescribed
in Ref. [17], the light-cone decomposition would be more physical. In the Abelian
gauge theory, the alternative decomposition is as simple as

Ai
phys(x

−) ≡ 1

∂+ F+i =
∫

dy− K(x− − y−) F+i (y−) , (12.30)

where K(x−) is chosen according to the boundary condition at x− = ±∞ in the
light-cone gauge A+ = 0; it is θ(x−) for the retarded boundary condition,−θ(−x−)

for the advanced one, and 1
2 [θ(x−) − θ(−x−)] for the mixed boundary condition.

We would point out that not only in high-energy physics but also in the laser optics
the spatially non-local decomposition in Eq. (12.28) may not be appropriate if the
propagating lights (such as the monochromatic waves) are concerned. The analogy
between physical contents in high-energy physics and optics has been sometimes
emphasized in the literature (see Ref. [16], for example), but this important question
of what would be the “natural” choice is frequently missing. Along these lines of
the natural choice, a mathematical argument in connection to the geodesic in tangent
space is found in Ref. [18]. In this article, the existence of Aphys suffices for our
discussions at present.
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12.4 Potential Angular Momentum and Physical Interpretation

One might have a feeling that such classification of slightly different OAMs (while
the SAM is common in our convention) may be an academic problem, but we recall
that each term represents some physical observable and the lack of correct under-
standing would cause paradoxical confusions. For instance, if one is interested in
the Einstein–de Haas effect and/or the Barnett effect within a relativistic frame-
work, an interplay between the OAM provided by mechanical rotation and the spin
polarization measured by the magnetization underlies observable phenomena. We
had discussed this issue with knowledgeable researchers, some of whom told us that
such a relativistic extension of these effectsmay not exist after all... such a conclusion
is typically drawn based on the proper knowledge of knowledgeable researchers that
the covariant derivative makes the theoretical formulation manifestly gauge invari-
ant and the derivative and the vector potential are inseparable then. In the previous
section, however, we have already seen that we can evade this problem by introduc-
ing Dpure. Now, in this section, we would like to address a difference between D
and Dpure.

This question would be highly reminiscent of a more familiar and classic problem
of the kinetic and the canonical momenta of a charged particle under electromagnetic
background. That is, in our convention of the covariant derivative, ∂μ + ieAμ (i.e.,
e is taken to be negative), the canonical momentum should be pcan = m ẋ + eA,
while the kinetic one is pkin = m ẋ = pcan − eA in a non-relativistic system. Since
the canonical momentum should fullfil the commutation relation, we should identify
pcan = −i�∇ in the x-representation and pkin corresponds to the covariant deriva-
tive. For the gauge-invariant definition of pcan, we can replace∇ with Dpure. In other
words, the translational symmetry is generated by not the covariant derivative but
the derivative, so that pcan is the momentum that can be conserved for the symmetry
reason. The difference can be easily understood in the simplest physical example; if a
charged particle is placed in a constant and homogeneous electric field, then the elec-
tric field accelerates the charged particle. Therefore, on the one hand, pkin should
increase by the impulse, eEt . On the other hand, the vector potential A = −Et
gives the electric field, and obviously, pcan = pkin + eA is time independent and
conserved. In summary, it is important to note the following differences:

D ↔ pkin (non-conserved) ,

Dpure ↔ pcan (conserved) . (12.31)

It might be a little counter-intuitive that D whose definition involves the gauge
potential corresponds to the momentum carried by the charged particle only and
Dpure gives the total conserved momentum. Physically speaking, however, such
a correspondence is quite reasonable. In most cases, only the particle’s pkin can
be directly measured, and this readily measurable quantity just corresponds to the
covariant derivative. In reality, sometimes, pcan does matter as well especially when
the conservation law accounts for observable phenomena.
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In exactly the same way as pkin and pcan of the charged particle, we can classify
two orbital angular momenta as

x × D ↔ Lkin ∼ Lψ,Bel (non-conserved) ,

x × Dpure ↔ Lcan ∼ Lψ,gic (conserved) . (12.32)

The difference between Lkin and Lcan is often called the “potential” angular momen-
tum (see Ref. [19] for a recent analysis of this difference). Unlike the above trivial
example of pkin and pcan with a constant E, it could be often very non-trivial to
imagine what physically causes the potential angular momentum. To see this more,
armed with these general basics, let us turn to a concrete problem now. We shall take
a very instructive example of Ref. [20] which is entitled, “Is the Angular Momen-
tum of an Electron Conserved in a Uniform Magnetic Field?” and this title already
explains the contents by itself. The authors of Ref. [20] considered the time evolution
of the radial width ρ of an electron motion in a uniform magnetic field B using the
Schrödinger equation. The Hamiltonian of such a (non-relativistic) system is given
by

H = −�
2∇2

2m
+ 1

2
mω2

Lρ2 − i�ωL
∂

∂ϕ
, (12.33)

whereωL = |eB|/(2m) (i.e., theLarmor frequency). In classical physics, the charged
particlewith electric charge e andmassm receives theLorentz force tomake a circular
rotation with the cyclotron frequency ωc = 2ωL = |eB|/m. It is easy to write down
the Heisenberg equation of motion for 〈ρ2〉 to find that its time evolution solves
as [20]

〈ρ2〉(t) = ρ̃2 + (〈ρ2〉(0) − ρ̃2
)
cos(ωct) . (12.34)

Because the kinetic orbital angularmomentumalong themagnetic direction (which is
taken to be the z axis, as is the convention in the following discussions too) depends
on the moment of inertia, and the moment of inertia is a function of the radial
width, they are related to each other as 〈(Lkin)z〉 = (conserved canonical OAM) +
mωL〈ρ2〉. Thus, these calculations explicitly show that 〈Lkin〉 is not conserved but
has time oscillatory behavior∝ 〈ρ2〉. This is an interesting observation that illustrates
qualitative differences between the classical and the quantummotions of an electron,
but not such an unexpected one; in a general case, it is not Lkin but Lcan that is
conserved. The question worth thinking is what kind of physics fills in this gap by
mωL〈ρ2〉.

The answer is explicated in Ref. [20]—this gap turns out to be exactly the angular
momentum of the electromagnetic field. As we listed up in Table 12.1, the electro-
magnetic angular momentum in the Belinfante form reads

Jfieldz =
∫

d3x [x × (E × B)]z . (12.35)

This is an integration of x times the electromagnetic momentum represented by the
Poynting vector, which might have looked more like the OAM, but this is the total
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angular momentum as we derived in our previous discussions of this article. As
argued in Ref. [20], if the electromagnetic fields are static and ∇ × E = 0 holds,
this electromagnetic angular momentum can be rewritten into a convenient form as

Jfieldz =
∫

d3x (∇ · E)(x × Aphys)z . (12.36)

Here, we note that the integration by parts with B = ∇ × A = ∇ × Aphys in
Eq. (12.35) would lead to an expression similar to the canonical one in Table 12.1 but
not Eq. (12.36). Only when ∇ × E = 0 and ∇ · Aphys = 0 (which is the definition
in the Helmholtz decomposition) both hold, we can prove the above simplifica-
tion (12.36).

For a uniform magnetic field, A = B
2 (−y, x, 0) in the symmetric gauge gives

B along the z axis, and this already satisfies ∇ · A = 0. Then, the explicit form of
(x × A)z is B

2 ρ2 with ρ2 = x2 + y2. Since ∇ · E is nothing but the electric charge
density, Eq. (12.36) under a uniform magnetic field eventually becomes

Jfieldz = eB

2
〈ρ2〉 = mωL〈ρ2〉 . (12.37)

This is precisely the potential angular momentum! There is a plain explanation of
why Jfieldz should appear to make the conserved angular momentum. Figure 12.1 is a
corresponding illustration of a charged object placed in a uniformmagnetic field. The
red blob represents a charged particle distribution (i.e., charge density in classical
physics and probability distribution in quantummechanics). Such a charged object is
a source resulting in Coulomb electric fields E, and E × B goes around the charged
object. In this illustration, the charge is taken to be positive, but for an electron as
we assumed in this section, the electric field should be directed oppositely and the
Poynting vector goes in the other way around. Because of this circular structure of
the Poynting vector, the electromagnetic fields have a nonzero angular momentum,
which was found to be Eq. (12.37).

Still, the physical interpretation is quite non-trivial, we must say. Literally speak-
ing, Jfieldz is a purely electromagnetic contribution, and nevertheless, E extends from
the charge source and in this sense we may well say that E is rather attributed to
the matter property. If we are interested in the mechanical rotation as is the case in

Fig. 12.1 A charged object
placed in a uniform magnetic
field is surrounded by the
Poynting vector E × B
which carries an
electromagnetic angular
momentum contained in the
conserved canonical angular
momentum
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the Barnett and the Einstein–de Haas effects, however, we should count the kinetic
angular momentum. Even in that case, this extra electromagnetic contribution could
affect the kinetic angular momentum through the angular momentum conservation
law.

12.5 Feynman’s Angular Momentum Paradox and Possible
Relevance to the Relativistic Nucleus–Nucleus Collision

Careful readers might have realized that the argument about Jfieldz is essentially
rooted in Feynman’s angular momentum paradox in classical physics. The paradox is
articulated inTheFeynmanLectures and the original setup is composedof a conductor
disk with a solenoid that controls the magnetic strength. For a detailed analysis of
the original version of Feynman’s angular momentum paradox, see Ref. [21], for
example. Here, let us discuss a simplified version of Feynman’s angular momentum
paradox.

We suppose that a thin sphere is uniformly charged (whose total amount is denoted
by Q), and a finite magnetic moment m is fixed at the center of the sphere (see
Fig. 12.2). The electric (outside of the sphere) and the magnetic profiles are, respec-
tively,

E = Q

4π

x
r3

, B = 1

4πr3

(
3m · xx

r2
− m

)
. (12.38)

If m changes as a function of time, the magnetic field changes as well, which also
results in an induction electric field due to Ampère’s law. Then, the charged sphere
feels a moment of force under this induced electric field, Eind, and the sphere is
accelerated for rotation. The space integrated moment of force is, after some patient
calculations, found to take the form

N =
∫

dS · x × QEind

4πR2 = − Qṁ
6πR

, (12.39)

where R denotes the radius of the sphere. Therefore, ifm decreases, the sphere takes
a positivemoment of force to acquire amechanical angularmomentum. The question
is: how can the angular momentum conservation law be satisfied? This phenomenon
may sound similar to the Einstein–deHaas effect, but one should recall two important

Fig. 12.2 A charged thin
sphere (red circle) and a
magnetic moment at the
center of the sphere. The
dipolar magnetic fields and
the Coulomb electric fields
make circulating Poynting
vectors
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differences. One is that the object should be charge neutral in the Einstein–de Haas
effect, and another is that in this classical example there is no magnetization at all.
There are many variants of Feynman’s paradox, and they usually belong to classical
physics (no spin effects).

Readers should be already aware of the resolution. As indicated in Fig. 12.2, the
electromagnetic field generates circulating Poynting vectors. Actually, from explicit
expressions of Eq. (12.38), we can obtain the angular momentum distribution as

x × (E × B) = Q

(4π)2r6
(r2m − xx · m) . (12.40)

Therefore, the total angular momentum integrated in space outside of the sphere
turns out to be

Jfield = Qm
6πR

. (12.41)

It is obvious that the angular momentum in mechanical rotation originates from the
loss in Jfield, so that the total angular momentum is surely conserved. See Ref. [22]
for related discussions on the Poynting vector contributions in classical electromag-
netism. Interestingly, this result of Eq. (12.41) was extended to the one-loop QED
level which turned out to be free from a short-distance cutoff [23].

In this classical example of Feynman’s paradox, the essential point is that either
E or B changes to make a finite difference in x × (E × B) from which the mechan-
ical rotation is induced. The novelty in the quantum mechanical example seen in the
previous section is that quantum oscillations exhibit time dependence even for con-
stant E and B. In both cases the important lesson is that as long as we prefer to use
the Belinfante improved form for the EMT and the angular momenta, the covariant
derivative in the matter sector makes all the expressions manifestly gauge invariant,
and then we can access the kinetic angular momentum of the matter which is not
necessarily conserved.

So far, we have been having general discussions not specifying any experimental
realizations at all. Let us now consider some possible applications to the high-energy
nucleus–nucleus collisions. It is known that the OAM in the non-central nucleus–
nucleus collision can reach a gigantic value as large as ∼ 105� as evaluated in the
AMPTmodel [24], supported by experimental data [25]. Here, we canmake an order
of magnitude estimate of extra angular momentum from the decay of the magnetic
field using Eq. (12.37). Our following discussions may look different from Ref. [26]
which addresses a possibility of the spin polarization by the induced electric fields.
There are some discrepancies from spatial inhomogeneity as well as temporally
decaying magnetic properties and also from hydrodynamic treatments, but we note
that microscopically underlying physics is common.

The magnetic field created right after the collision is of order eB ∼ GeV2 at
largest, and 〈ρ2〉 in the collision geometry is around ∼ 10 fm2. Therefore, if the
magnetic field quickly decays whose time scale is ∼ 0.1 fm/c, this field angular
momentum, Jfieldz ∼ 10GeV2 ·fm2 ∼ 100�, is transferred to the angular momentum
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Fig.12.3 A net induced angular momentum with faster rotating positively and negatively charged
particles. There aremore positively chargedparticles in a plasmabecause of protons in the participant
particles

of a single particle. The net charge is 0.1Z ∼ Z depending on the impact param-
eter and the baryon stopping, where Z ∼ 100 is the atomic number of the heavy
nucleus, and so the net angular momentum is of order 103 ∼ 104�. Here, we would
emphasize that the time scale is irrelevant. This angular momentum arises as a con-
sequence of the conservation law, and it is just there for any fast decaying B (except
loss by polarized photon emissions). From this simple estimate, we can conclude
that the net induced angular momentum is significantly smaller than the primarily
produced angular momentum ∼ 105�. This is, however, not yet the end of the story.
In the reality of the nucleus–nucleus collision, a plasma state consists of positively
and negatively charged particles and the net charge is only its small fraction. Then,
we can anticipate at least an order of magnitude larger angular momenta for posi-
tively and negatively charged components in the opposite directions which mostly
cancel to lead to the net angular momentum (see Fig. 12.3). If this two-component
model is a good approximation (which is dictated by the interaction strength between
two components), each charged sector could carry the induced angular momentum
∼ 104 ∼ 105�, comparable to the primarily produced angular momentum. Interest-
ingly, such a two-component picture with opposite rotation has been confirmed in the
numerical simulation for the Einstein–de Haas effect in cold atomic systems [27,28].

We have some more ideas [say, the global polarization should be also associated
with the field angularmomentum byEq. (12.41) whose effect has never been studied]
and have in mind applications to the local polarization measurements, but we shall
stop our stories here. Such ideas aswell asmore detailed and quantitative calculations
will be reported in a separate publication.

12.6 Epilogue

The interplay between theOAMand SAM is an old subject, but its entanglement with
chirality in a relativistic framework is a quite new research field. The ultra-relativistic
nucleus–nucleus collision experiments have been offering inspiring data, and high-
energy nuclear physicists have become wiser and wiser over decades. Some people,
especially researchers close to but not directly in our field, might have assumed that
the physics of the relativistic nucleus–nucleus collision passed a peak. We must say,
such an assumption is nothing but a hasty conclusion. The nucleus–nucleus collision
still continues to provide us with surprises one after another.
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Recent investigations on the OAM and SAMdecomposition and their interactions
are motivated by the � and �̄ polarization measurements, but we should emphasize
that this is not a hip excitement. Theoretically speaking, this is an extremely profound
subject, and there are still many things that nobody has understood. One common
criticism against such kind of theory problem would be what you call “profound” is
just what I would call “academic”, or give me any measurable observable? Indeed it
is not easy to make a new proposal for the nucleus–nucleus collision. Nevertheless,
we can export our ideas inspired by the nucleus–nucleus collision to other physics
fields such as cold atomic systems and laser optics. Still, even if exported ideas are
adapted in a different shape,we can proudly say that this is a tremendous achievement
from the high-energy nuclear physics!

We also emphasize that the OAM/SAM decomposition and also the EMT mea-
surements are of central interest to the future coming electron-ion collider (EIC)
physics. At least three pretty independent communities, the heavy-ion collision, the
proton spin, and the laser optics, have worked on very similar physics, and now is
the time to put all our wisdom together toward the next generation breakthrough.
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collaborations. K. F. is grateful to Kazuya Mameda for extremely useful discussions
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