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5.1 Introduction

The global proliferation of IoT devices and technology has introduced new security
challenges that span the devices themselves, their communication channels and the
systems that are connected to. Preventing security breaches in such a heterogeneous
and diverse environment is nontrivial, despite the abundance of security products
and technologies in the market, as the attack surface is simply too broad. The
frequency of cyberattacks is increasing dramatically and organizations from both
public and private sectors are struggling to identify and respond to those security
breaches. Over the last few years, several instances of security breaches were
brought to light with at least one thing in common: the response time was too long.
According to the 2019 IBM “Cost of a Data Breach” report [1], the mean time
to identify (MTTI) a breach in 2019 was 206 days and the mean time to contain
(MTTC) was 73 days, with a notable 4.9% increase over the 2018 breach life cycle.

Taking into account the above-mentioned facts, one should expect that the
security parameter of a system will be penetrated by an unauthorized party at some
point, and the goal must be to identify the incident as quickly as possible and
respond effectively. The identification of the security attacks relies on technological
and human factors: the former one being the security tools that are integrated
in the organization’s network infrastructure and the latter one being the in-house
security and system administrators who have the ultimate responsibility of all
decision-making. Defense-in-depth, a multilayered strategy that supports defensive
mechanisms on various layers, is a popular approach to protect the network.
A sustained defense-in-depth strategy uses a multivendor approach, making the
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management and maintenance of such layered defense stance nontrivial. In addition,
each security technology usually operates independently and the lack of a standard
format for log files affects unfavorably the global security situational awareness of
the network that requires the correlation of data stored in all log files. Meaningful
cyber security situational awareness leverages security management, as it provides
the global security state of the administrative domain, thus allowing for informed
decision-making on security matters. The quality of the security management of
an administrative domain is likely to rise, as the number of security data sources
increases.

This chapter presents VizAttack, an extensible and open-source visualization
framework for data generated by security technologies. Visualization of cyberat-
tacks is gaining popularity as an intuitive technique to present attack data without
overwhelming the user. A cyberattack map is an example of security attack
visualization, graphically depicting attack metadata such as geographical data and
attack data type for malicious attempts to penetrate the external lines of defense
of a network. VizAttack makes provisions to visualize attack metadata residing
in unstructured heterogeneous log files, and in addition, it reconstructs the steps
followed during an attack execution (command sets prior the attack penetration
and after bypassing the security parameter). Attack profiling is critical to attack
monitoring, a process not supported by current attack visualization tools. VizAttack
supports predefined and customized queries on the imported attack data sets as
well as on-demand queries that are constructed on the fly during the investigation
of attack profiles. The latter is a novel feature that could be utilized by security
management modules that detect attacks.

The chapter contributions are twofold as shown below:

• Design an extensible framework with visualization and analysis capabilities for
attack data sets generated by heterogeneous sources.

• Implement a prototype version of VizAttack, demonstrating the functionality
of the framework. The prototype version of VizAttack uses log files from
honeypot technologies, but the extensible nature of VizAttack allows the seamless
integration of data sets from other security technologies.

The rest of the chapter is organized as follows: Sect. 5.2 discusses related work
in the area of cyberattack visualization as part of the overall cyber situational
awareness process, followed by Sect. 5.3 that introduces VizAttack and presents
its design principles and objectives. Section 5.4 discusses the implementation of
VizAttack and Sect. 5.5 concludes with future directions.

5.2 Cyberattack Visualization Approaches

Information visualization is a user-intuitive approach that transforms raw data into
a visual form [2]. Incorporating this technique in the cyber situational awareness
process is beneficial as, when used appropriately, could leverage the knowledge
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obtained from various security data sources by providing visual analytics. Tools
and visualizations for cyber situational awareness are given in [3, 4], with issues
and challenges to enable cyber situational awareness discussed in [5]. Cyberattack
maps and attack graphs are two popular techniques of security data visualization
that provide attack data visualization and vulnerability exploitation pathways,
respectively. In this section, a discussion on these two techniques is presented,
followed by a discussion on visualization of attack data collected by honeypots as
well as the current challenges in the area of cyberattack visualization.

5.2.1 Cyberattack Maps and Graphs

There are numerous security solution vendors that maintain publicly available
cyberattack maps, showing global security incidents. Usually, attack metadata is
illustrated, including origin IP, destination IP, type of attack, and time/date. The most
popular cyberattack maps are the Arbor Networks DDoS AttackMap [6], Kaspersky
Cyber Malware and DDoS Real-Time Map [7], Fortinet Threat Map [8], Sophos
Threat Tracking Map [9], FireEye Cyber Threat Map [10], and Threat Cloud Live
Cyber Attack Threat map [11]. Due to space limitations, three cyberattack maps are
selected to elaborate more on their functionality, representing frequently updated
maps, live maps, and static maps, respectively.

The Arbor Networks DDoS AttackMap [6] is a threat map that is hourly updated,
and historical data are available to be replayed. It focuses exclusively on Distributed
Denial of Service (DDoS) attacks, and the attack metadata provided are the attack
source and destination, the size of the attack in Gbps, source and destination ports,
and attack duration. The data sources used to render the threat map are more than
300 ISPs, giving 130 Tbps of live traffic. The Fortinet Threat Map [8] is a live map,
giving information not only on DDoS but also on other types of attacks such as
remote execution attacks and memory-related attacks. It shows live attack activity,
but its feature set is not as rich as Arbor’s. The Sophos Threat Tracking Map [9] is
an example of a static map that depicts the daily malicious web requests, blocked
malware, and web threats as collected by the Sophos Labs. Overall, the usefulness of
a cyberattack map is under scrutiny, as most cyberattack maps do not show live data
but archived data of past attacks, making it an ineffective way to mitigate attacks in
real time. Additionally, the emphasis is usually on DDoS attacks, leaving out other
forms of attacks. On the other hand, these threat maps could be used to study attack
patterns and form attack profiles.

Attack graphs, unlike cyberattack maps, are not depicting data from real attack
attempts, but they rather graphically show potential steps to carry out an attack by
exploiting vulnerabilities. In a sense, it is a threat-modeling approach, illustrating all
possible avenues of successfully executing a specific attack. The various pathways
to execute the attack are usually high-level description of steps or commands [12].
There are no automated tools to develop an attack graph, and building a complete
attack graph is very labor intensive for a complex system.
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5.2.2 Honeypot Data Visualization

One source of cyberattack data and metadata is the honeypot system, a security
resource whose value lies in being probed, attacked, or compromised. That’s the
ultimate goal of the honeypot: having it being probed and/or exploited due to the
deliberate planting of vulnerabilities, analyze the compromised system and gain
knowledge about the nature of the attack and the attacker patterns. A honeypot
should be designed in such a way so that it looks real to the attacker but it is isolated
from any production system.

There is a plethora of honeypot implementations, with a few providing visual-
ization of the collected data. These tools include the NFlowVis [13], VIAssist [14],
Dionaea [15] and its successor Nepenthes [16]. In general, honeypots could use
the kippo family of graph modules to generate graphical representations of the data
(kippo-graph) and annotated them with geolocation data (kippo-geo). A total of 24
graphs could be generated for username and password statistics, password length
statistics, credentials combinations, successful logins rates, intensity map, and top
commands used.

5.2.3 Attack Visualization Challenges

The visual depiction of cyberattack metadata, as described in the aforementioned
approaches, facilitates the presentation of attack metadata in a user-intuitive simple
manner. Indeed, an average user, without an extensive technical background, could
interpret the data and derive basic conclusions. However, a security analyst needs
to be presented with advanced features, allowing the correlation of the collected
data to first yield interesting knowledge about the attack methodology itself and
second utilize the newly acquired knowledge to improve the security processes of
an administrative domain. There is need for a platform that integrates the features
of an attack map, the principles of an attack graph, low-level system commands
executed during attacks, and flexible queries into a single framework that aims not
only in the visualization of attack metadata but also in the construction of attack
pathways. In addition, multivendor security technologies must be supported to gain
a more accurate insight into the current state of security of the network.

5.3 VizAttack Design Principles

This section discusses the design principles behind VizAttack, a novel approach to
cyberattack visualization that aims to alleviate the attack visualization challenges
mentioned earlier. Not only attack metadata analytics are supported, similar to the
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existing approaches, but also attack command pathways and user-defined custom
queries, leveraging the on-demand visualization.

5.3.1 Design Objectives

In order to realize the aim set for VizAttack, one needs to collect and correlate
data from log files generated by various security technologies that protect not
only the perimeter of the network infrastructure but also monitor activities inside
the infrastructure itself. Situational awareness is an important element of security
management as it mitigates security risks, but its effectiveness is rather limited if one
were only allowed to use a single source of security data (e.g., firewall). The richer
the pool of sources of security data, the more informed decisions could be taken.
However, the unstructured nonstandard nature of log files is a serious impediment
to the correlation of information from heterogeneous sources. VizAttack provides a
modular approach that integrates unstructured log files in a single framework and
performs analytics on the collected information. Below are the objectives that the
VizAttack design must adhere to:

• Extensible—be able to import and analyze any type of attack log file from any
security source (e.g. firewall, honeypot, intrusion detection system) running on
a port, preferably using login credentials. As there is no standard format for log
files, a custom parser must be implemented for each log file type. Provision must
be made to allow the seamless integration of new parser modules.

• Publicly accessible—be able to use and modify as needed, thus released as open
source software.

• Configurable—support predefined data analytics and customized queries to
provide on-demand visualization of user-selected data.

5.3.2 High-Level Architectural Design

The baseline components of VizAttack are illustrated in Fig. 5.1. The back-end of
the system takes raw data collected by security technologies and imports them into
the VizAttack framework, where dedicated parsers perform the scanning and parsing
of the imported data based on the security technology that collected the specific data
set. This modular approach allows the seamless integration of new data sources by
either building a new customized parser or use an existing one that is deemed to
be suitable. Additionally, any future modifications in the structure of a log file will
only require modifying the dedicated parser module for that file. The parsed data are
stored in the VizAttack database, accessible by the front end of the system. Temporal
analysis and queries (predefined and customized) are performed on the stored data,
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Fig. 5.1 VizAttack baseline components

with visualization capabilities not only for the stored data but also for the actual
methodology followed in terms of low-level commands.

Figure 5.2 shows the interaction protocol of the system, which depicts the flow
of interaction among the VizAttack entities along with the message exchanges.
Emphasis is given on the sequence of the events. A user interacts with the UI
window to load a new log file or open an existing one. In the former case, the parsing
process will be executed, with the results stored in the database. This temporal
analysis takes place in a transparent manner, without requiring any feedback from
the user. In the latter scenario, the file is already parsed, and the results are fetched
from the database. Predefined queries as well as customized ones could be run on the
loaded file. In addition, the construction of attack pathways is possible, requiring a
deeper analysis of the parsed entries in order to identity and link together log entries
corresponding to a single attack.

Details on the front-end functionality is given next, along with description on the
back-end algorithms, where applicable.

5.3.2.1 User Interface: Temporal Analysis

The temporal analysis is performed on every newly imported log file, and its
primary goal is to parse the raw data and store them in the VizAttack database. The
appropriate parser is selected based on the security technology that generated the
log file. Figure 5.3 illustrates the results from the temporal analysis of kippo.log,
a log file generated by the kippo honeypot. A color-coded scheme is supported to
display session data in an intuitive manner. The parsing of the raw data allows a
user to execute advanced queries on the data, including isolating the data related to
a specific session, an important part for profiling the attack methodology followed
during an attack.
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Fig. 5.2 VizAttack sequence diagram

5.3.2.2 User Interface: Predefined Queries

The front-end functionality of VizAttack is illustrated in Fig. 5.4. Each VizAttack
feature could be utilized in the overall security management of an administrative
domain. The user interface follows a simplistic design approach, having the various
VizAttack features listed on a single menu row. The predefined queries are listed first
(Location/IP Ports, Login Attempts, Map Location, Top Attached Dates, Special
Dates), followed by the custom query and profiling steps features.

Starting with the Location/IP Ports option, information regarding the source of
the attack as well as the target service is displayed, along with statistical information
regarding the most and least appeared source IP addresses and the most and least
used ports. The actual location related to an IP address is obtained by making a
web request to the server ipinfo.io. The server reply includes, among other data, the
hostname, city, region, country, organization information, latitude, and longitude
related to the IP address. The latter two data fields are used by the Map Location
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Fig. 5.3 Temporal analysis of kippo.log

Fig. 5.4 VizAttack front-end features

option introduced later on. It is important to note that the attack attribution solely
based on the source IP address is not an accurate method, as there are numerous
techniques to spoof IP addresses or use compromised machines to launch an attack.
Nevertheless, the information on the source IP address could still offer some insight
on tracing the attack root. In addition, system administrators could monitor the
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Fig. 5.5 VizAttack map location

targeted services, especially the least used ones. Those ports maybe were left opened
unintentionally, posing a risk to the overall security perimeter of the system.

The Map Location feature uses information retrieved by ipinfo.io to display the
location of the attack source in Google maps. More specifically, the latitude and
longitude are passed as parameters to a Google Map iframe to render the location
on the map. A user could either select an IP from an existing list populated with
IP addresses retrieved from the log files (in ascending or descending order) or
search for a particular IP address. Figure 5.5 illustrates the exact location for a
selected IP address. As mentioned earlier, this information does not provide an
undisputable evidence that the attack originated at that location. But it could still
provide useful information, for example in the case that the IP address is located
inside the organization itself.

The next menu option, Login Attempts, displays information regarding the
credentials the attackers used for an unauthorized login to the system. The most
used passwords and usernames are listed along with their frequency. Furthermore,
a list is provided with the strings used as both username and password in single
login attempt. The findings from this investigation could play a significant role in
the password policy management of the system. Figure 5.6 lists the most frequently
used (by the attacker) usernames and passwords, along with a list of strings used
both as username and password.

The last two predefined query options correlate the source of the attack with
the attack date. In the case of the Top Attacked Dates, the user selects a country,
and a dynamic list is generated that displays the number of attacks originated from
that country, in an ascending order, based on the attack date. Figure 5.7 lists the
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Fig. 5.6 VizAttack login attempts

Fig. 5.7 Top attacked dates

attacks originated by a source IP located in France within a 2-day period. The
Special Dates option is also country-specific, but the attack date range is restricted to
country holidays (national, federal, etc.). VizAttack has made provisions to integrate
these dates into its framework, drawing interesting conclusions on whether or not
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Fig. 5.8 VizAttack query
editor commands

Fig. 5.9 VizAttack query
database fields

there is a correlation between launching attacks and holidays, alerting the system
administrators to be more cautious on those days.

5.3.2.3 User Interface: Customized Queries

Advanced customized queries are supported in VizAttack via a simple typical SQL
query editor integrated in the system. The query construction is done in an error-
free manner, where both SQL commands and database fields (Figs. 5.8 and 5.9,
respectively) are at the user’s disposal, thus eliminating query syntax and/or typo
errors. A query could still be constructed from scratch. However, suitable safeguards
are in place to prevent unauthorized modifications to the database. To be more
specific, any user-specified query including commands from the command set
{INSERT, DELETE, DROP, ALTER, MODIFY} is classified as invalid by the query
compiler; thus, it is not executed.
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Fig. 5.10 Profiling attack steps

5.3.2.4 User Interface: Profiling Attacks

One of the novel features of VizAttack is its ability to reconstruct the steps taken
during an attack using the raw data from log files. Attack profiling allows one to
infer the attack methodology used in the particular attack and utilize the constructed
attack profiles in the attack prevention/detection processes of the system. Once a
log file is parsed, attack profiling could be initiated via Profiling Steps feature to
establish the actions of the penetrator in a single session, including the attempts to
penetrate the system and the actions taken after a successful breach. These are called
attack steps. Not only the attack steps are linked together for a single attack but also
several attacks could be correlated to find commonalities in their execution paths.
Furthermore, the popularity of each step/action is listed, along with the maximum
number of steps in a single attack session. Currently, the actions supported by
VizAttack are {New connection, Connection lost, Auth, Cmd, Command found,
Command not found, Executing command/Running exec command, Login attempt,
Incoming, Outgoing, Error, Opening TTY log, Remote SSH version, NEW KEYS,
Kex alg, key alg}.

Figure 5.10 illustrates a snapshot of the attack steps profiling process. For this
particular archived data, there are five different attack sessions, and their first step
is indicated on the leftmost column. The longest attack chain consists of 29 steps.
The choices for the second step are listed in the middle column, and upon selection,
the next step list is created. At all times, more information on the specific step is
given by locating and displaying the corresponding entry in the log file (rightmost
column).

VizAttack Profiling Steps feature empowers the security management processes
of the system by:

• Determining the attack steps for a successful penetration and visualizing them in
an intuitive manner

• Leveraging the integrated query module with “on-the-fly” queries that allow the
construction of a query taking into consideration the current attack step

• Storing the abovementioned queries, which could be viewed as supervised
training from the archived log data, and adding them into a continuous query
engine with the intention to run them on newly imported log data
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Fig. 5.11 Profiling attack
steps pseudo-algorithm

• Providing insight into attacks that may be currently running undetected (e.g., the
attack’s last step is not an action that indicates the termination of the session)

Details on the back-end algorithms that implement this feature can be found in
[17]. The pseudocode algorithm that parses the entries of a log file and determines
the number of distinct attack sessions and the steps associated with each attack is
given in Fig. 5.11. The selected log file is parsed, one line at a time, and the action
taken by the attack profile construction algorithm depends on the type of line that is
currently parsed (current line) as follows:

1. If current line is a New Connection, then the current attack session (if it exists) is
closed, and it gets added to the completed attack sessions list (Results List). Each
entry in the Results List is a distinct attack located in the log file, along with a
linked list of all commands (attack steps) executed during the attack. The current
line will then serve as the first step of a new attack session.

2. If current line is not a New Connection, then it gets added as an attack step
in the current attack session. In this case, the steps counter gets incremented
by 1. The current step counter is compared against the maximum step counter,
which always keeps track of the maximum number of attack steps from all attack
sessions.

After the completion of the algorithm, the Results List consists of all attack
sessions that were identified in the parsed log file, and all this information is stored
in the appropriate VizAttack database.
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5.4 VizAttack Implementation Details

The high-level architecture of the VizAttack framework is illustrated in Fig. 5.1.
A prototype of the VizAttack framework was implemented to comply to its design
principles and the required front-end functionality. This section gives implementa-
tion details on the prototype as well as the results of the experimental testing. A
discussion on how VizAttack could be utilized to investigate specific attacks is also
presented.

5.4.1 VizAttack Prototype

The current prototype was implemented using Microsoft Visual Studio IDE and the
C# language. As the prototype mainly serves as a proof of concept, the MS Access
database was used as the back-end database due to its simplicity in integrating the
various components together within the development environment. It is anticipated
that the next version of VizAttack will use an open-source database such as MySQL
and also use the open-source project Mono, allowing VizAttack to run on a multi-
platform environment (Linux, macOS, Windows).

Furthermore, it was decided to use log files that contain information, which
allows the reconstruction of the attack steps once a network breach was successful.
Honeypot log files fulfill this criterion, as they monitor and log the attacker behavior
inside the compromised system; thus, the VizAttack prototype supports a parser for
the honeypot kippo log files. A rich set of kippo log files was imported to VizAttack
via HoneyCY [18]. HoneyCY is a comprehensive open-source system that integrates
mature honeypot implementations into a single inexpensive framework that is easy
to deploy, configure, and has provision for visualization and other management
support via a web application and an Android app. Its distributed architecture
supports the seamless deployment of a network of sensors (which could also be
a set of Raspberry Pi boards with customized binary deployments for HoneyCY) to
be probed and attacked.

5.4.2 Experimental Findings

The experiment setting consisted of a single machine with the following specifica-
tions: Intel i5(U) CPU fourth generation and 6GB of RAM on a 64-bit Windows 10.
A total of 11 log files were randomly selected and imported from HoneyCY. The
experiment objectives were twofold:

• Demonstrate the visualization capabilities of VizAttack using real log data.
• Assess the correctness of the two main VizAttack processes, namely the log file

parsing and the attack steps construction for an attack. That was the primary
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Table 5.1 Performance analysis

File ID No. of entries
No. of
sessions

Script analysis
(min)

Profiling steps
analysis (min) File size (KB)

log 6057 4504 12.18 8.53 575
log1 10,175 6104 18.41 15.38 977
log2 10,144 5898 9.04 16.05 977
log3 10,200 5419 17.27 16.05 977
log4 10,606 1928 13.78 15.04 978
log5 10,504 2911 14.54 14.38 977
log6 10,262 3792 13.73 13.33 977
log7 10,265 3751 5.8 15.19 977
log8 10,180 6174 18.78 15.27 977
log9 10,140 6302 21.37 13.85 977
log10 10,055 7569 18.45 10.72 977

metric. As a secondary metric, the performance time of the two processes was
measured (i.e. how long the parsing and the construction of the attack steps take)
to get a preliminary estimation of their time execution.

Details on the attack data visualization and their statistical analysis could be
found in [17]. Note that Figs. 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 are snapshots
taken during the experiments and provide insight on the overall visualization design.

The focus of the experiments was primarily on the preliminary evaluation of the
VizAttack prototype. Table 5.1 summarizes the performance evaluation for the log
file parsing process and the attack steps reconstruction process, where:

• File ID: A unique identifier for each file
• No. of entries: Number of distinct entries in the file
• No. of sessions: Number of distinct attack sessions located in the file
• Script analysis: Execution time of the parsing process for the specific file

(tokenization of the log file strings into entries shown in the #of entries column)
• Profiling steps Analysis: Execution time of the attack session construction

process for the specific file (populating #of sessions column)
• File size: file size in KB (pure text file)

In order to demonstrate the correctness of the VizAttack algorithms, the two
processes were performed manually, and the results (#of entries, #of sessions) from
the manual analysis were compared against the VizAttack results. It was concluded
that the results were identical. Furthermore, a similar manual approach was used
to test the correctness of the attack step reconstruction visualization feature, with a
positive outcome as well.

Figure 5.12a, b presents the Table 5.1 findings in a bar chart format. In both
charts, x-axis represents the processed file, whereas y-axis indicates the number
of entries/sessions as well as the execution time (in minutes) to perform the
particular task for the specific file. Figure 5.12a depicts the analysis for the parsing
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Fig. 5.12 (a) Parsing performance analysis. (b) Profiling steps performance analysis

process. The testing hypothesis was that the execution time of the parsing should be
approximately linear to the number of the tokenized entries. This was based on the
way the parsing algorithm executes: It processes line by line the log file, tokenizes
the line into entries, further tokenizes the entry into SQL fields, and executes SQL
insert queries to update the VizAttack database with the newly parsed data. However,
as Fig. 5.12a shows, the number of entries is not linear with the elapsed time of
the parsing process. Consider the execution times for files log7 and log8, with
approximately the same number of entries (the percentage difference of the number
of entries between the two files is only 0.83%). Processing log8 takes approximately
3 times longer to complete when compared to log 7 elapsed time.

Figure 5.12b illustrates the step profiling process performance. The log file
entries are read and linked together into unique sessions. A new session starts
when the entry category on the particular log file line is either New Connection
or Connection Lost. The depth of each session, thus the attack steps, depends on the
number of log file entries that exist between the current session and the next one that
gets identified. Similar to the parsing process, the step profiling task is not directly
linear to the number of sessions.

The nonlinear nature of the performance as well as the processing time in the
order of minutes could be explained by taking into consideration the factors listed
below:

• Different types of log entries contain different information; hence, the processing
time for different types of log entries is different. That means, the processing
time of two log files with the same number of entries will be different unless
their corresponding entries are of the same type.

• The parsing algorithm uses the string comparison function rather frequently,
an operation that is considered to be relatively time-consuming. For example,
special symbols (‘:’, ‘[‘, ‘]’, ‘/’) are used to tokenize the strings. Tokens are
further processed, requiring conversions from string tokens to integers (e.g.,
convert a string to an integer port number).

• The parsing process is not parallelized, having a single thread parsing one log
file entry at a time.

• Requests for insertions and queries to the back-end database are performed
frequently. In the current implementation, these are blocking calls.
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• There are external calls made to the ipinfo.io server during the parsing process.
For every session, a new call is made to the ipinfo.io server which can partially
explain the duration of the parsing of the log file. Additionally, it may attribute to
some of the inconsistencies in the parsing duration of the different files. When the
calls to the external server were deactivated (i.e., no IP information was requested
from the ipinfo.io server), the execution time was reduced by approximately 55%.

• The prototype code was developed to adhere to good code readability practices to
allow the smooth evolution of the codebase. As a prototype system, the emphasis
was on the proof of concept rather than on optimizing algorithms and processes.

The prototype testing findings will be utilized in the next version of VizAttack,
which will parallelize and optimize both the parsing and the step profiling algo-
rithms.

5.4.3 Attack Postmortem Investigation

VizAttack could be utilized to profile and analyze cyberattacks by reconstructing the
steps the attacker followed to execute particular attacks. Executing dynamic queries,
one step at a time, allows the construction of an attack tree in a top-down manner.
Consider an internal node X in the attack tree. All children nodes of X, representing
the next step taken in an attack, have the same common attack profile up to X. A
security analyst could derive common patterns in attacks and further investigate
their unrelated sub-paths.

Based on the experiments conducted, the maximum height of an attack tree was
found to be 59, representing the 59 distinct steps taken to execute an attack. The
second highest attack tree was comprised with 50 levels. In order to illustrate the
utilization of VizAttack in a postmortem attack investigation, details are presented in
constructing the attack steps for a successful unauthorized login into the server that
resulted in uploading files to the server and changing their permissions. The idea is
to start with the first step and proceed with the top-down construction of the tree by
selecting the next step from a list of available steps.

Step 1:
Figure 5.13 shows the first step of the attack tree: the (G)-New connection

(leftmost column). This is the root of the attack tree. Command auth-Occs: 2 (center
column) is the only choice to be selected as the second step. It seems that all the
successful attacks stored in this particular log file have these two initial steps. The
rightmost column lists the attack sessions that resulted in a successful unauthorized
login.

Step 2:
Double-clicking auth-Occs: 2 dynamically creates the options for the next step.

Figure 5.14 lists one option, auth-Occs: 2. Meanwhile, the attack pathway is updated
with the second step (leftmost column).
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Fig. 5.13 Attack step 1

Fig. 5.14 Attack step 2

Fig. 5.15 Attack step 3

Step 3:
Double clicking on auth-Occs: 2 results in an updated attack pathway (three

steps) as shown in Fig. 5.15. Once the connection is established, there are two
actions available: Other-Occs: 1 (the specific commands that the attacker is
performing are shown in the rightmost column) and connection lost-Occs. The
former one is the step taken by the attacker who proceeded with uploading files
on the server and that’s the one that gets selected.

Steps 4–7:
Figure 5.16a illustrates the attack path after the execution of six command steps.

The last step designates a lost connection, and thus the attack session is terminated.
At any point during the pathway construction, backtracking is allowed by removing
steps from the path and selecting new ones. The dynamic execution of queries along
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Fig. 5.16 (a) Attack steps 4–7. (b) Resulting query

with the possibility of backtracking allows the comparison of different strategies
followed by attackers. The resulting query that created the attack steps could be
saved and reused at a later time (Fig. 5.16b).

5.5 Conclusion

Global security situational awareness is closely coupled with security management,
and its effectiveness lies on using a large aperture that process data from multiple
multivendor technologies. This chapter presented VizAttack, an extensible open-
source attack visualization and analysis tool that addresses the challenges currently
faced by attack visualization technologies. VizAttack integrates in a single frame-
work a set of mechanisms to (1) import and parse attack data sets collected by
heterogeneous sources, (2) visualize the data in an intuitive manner, and (3) support
execution of customized queries on the archived data. VizAttack leverages the attack
visualization process by constructing attack profiles, linking the actions executed
during an attack session. The step-by-step construction of an attack pathway could
be further exploited to simulate an attack tree based on real data, showing all
possible ways an attack was realized.

VizAttack could play a significant role in the cyber security management educa-
tion. Technology integration in course curricula could extend learning in powerful
ways, demonstrating the application of theoretical concepts in practice. The VizAt-
tack framework could be an integral part of any security-oriented undergraduate
course that aims in providing students with the sought-after technical knowledge
and skills in attack profiling, emphasizing the importance of analyzing archived
attack data to infer the attack methodology used in various attack sessions. The
postmortem analysis of an attack offers a useful insight into the attack pathway,
allowing the formulation of an attack profile that could be utilized to prevent future
attacks based on the same or similar profile. Students should be able not only to form
a timeline of the attack steps but also determine what vulnerability was exploited and
how and when was it exploited.

A prototype based on the VizAttack design principles and objectives was
implemented, and its initial performance assessment is promising. It provides a
solid foundation to accommodate new VizAttack features, such as supporting the
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explicit command set of a specific attack profile and correlating attack profiles to
extract commonalities. It is planned to integrate additional log file parsers, thus
enriching the data sets currently available to VizAttack. Enhancements/upgrades to
the visualization algorithms as well as optimizations of the parsing and step profiling
algorithms are also expected in the new version of VizAttack. It is envisioned to
unify VizAttack and two other related technologies, HoneyCy [18] and SMAD [19,
20], into a single platform. SMAD is novel framework that monitors kernel and
system resources data (e.g., system calls, network connections, and process info)
based on user-defined configurations that initiate nonintrusive actions when alerts
are triggered. The three technologies complement each other and will constitute
a solid foundation for the new platform offering advanced attack visualization,
analysis, and monitoring capabilities.
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