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Introduction

Beginning with early maps of yellow fever in New York
City in the late 1700s and Dr. John Snow’s famous maps of
cholera in London in 1854, maps have played an important
role in public health for more than 200 years (Waller 2017).
The early twenty-first century has seen a transition to data-
intensive science where health studies make use of multiple
data sets from heterogeneous sources to gain insight into
associations and relations with a goal of moving toward
understanding underlying disease processes and causal re-
lationships with putative risk and protective factors. These
foundational developments in data availability and analytic
approaches transition from the past setting where analytic
methods were defined in order to gain as much information
as possible from expensive (high cost, limited content) data
sets, to the emergence of Data Science approaches seeking
to learn from expansive and easily accessible (very large,
potentially high content) data sets, often arising from mul-
tiple sources. This conceptual shift occurs (and is occurring)
in all branches of science, including those intersecting with
geographic information systems, spatial epidemiology, and
spatial statistics, resulting in unique and profound influences
on current and future directions of development, application,
and interpretation of geospatial analysis. For georeferenced
data, these general shifts toward data-intensive science im-
pact and expand the intersection of three interrelated areas of
science: Geographic Information Science (Goodchild 2010),
Statistical Science, and the emerging discipline of Data Sci-
ence. While each area has its own history and highlights,
they each also provide complementary as well as intersecting
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insights into the future of analysis of georeferenced spatial
and spatiotemporal data sets, particularly so in health-related
fields. In the sections below, we provide a geographic per-
spective on Data Science, a brief history of the intersections
of Geographic Information Science and Statistical Science,
and an outline of methods for spatial analysis in health
noting transitions from each of the three domains into their
intersection and how these transitions define new approaches
within the analytic toolbox for geospatial analysis and health.
We also consider two sets of methods and applications that
illustrate evolution of thought, methodological development,
and application across all three areas of science.

From a geospatial analysis perspective, it is clear that the
so-called data revolution referenced above is occurring at the
intersection of Geographic Information Science, Statistical
Science, and Data Science. Specifically, geospatially aware
data science requires spatial thinking (National Research
Council 2006) wherein location and geography provide es-
sential insight into patterns and processes; statistical thinking
wherein probabilistic models of uncertainty provide infer-
ential frameworks for estimation and prediction (Chance
2002); and spatial statistical thinking (Waller 2014) wherein
statistical results are not only constructed via geographic re-
lationships but also evaluated and interpreted in a geographic
context as well. This mutually beneficial intersection of the
Geographic Information, Statistical, and Data Sciences and
associated types of thinking is necessary to link concepts,
tools, assumptions, problems, and solutions spanning the
geographical, statistical, and data worlds to further expand
and harmonize developments often occurring in one disci-
pline into an integrated set of concepts, tools, and knowledge
spanning all three.

In many ways, the Geographic Information Science com-
munity predates the rise of Data Science, not only in the
coining of the terms but also in its appreciation and use
of georeferenced data sets from multiple sources, creatively
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linked to provide novel insight unavailable from any single
data component. The general data management, linkage, and
query tools available in geographic information systems and
the layered data storage of Google Earth and other global
scale data systems (Goodchild et al. 2012) provide a frame-
work for working with big data in general and big spatial
data in particular. More recently, the use of distributed data
and cloud implementations extend popular frameworks to
the geographic setting. All told, we find modern geospatial
analyses benefiting from Data Science developments and
contributing to specific spatial and geographic dimensions to
the future of Data Science.

The sections below consider three key elements of the
geospatial analytic toolbox, namely: (1) geographic informa-
tion system data management, (2) geospatial analytics within
spatial analysis, and (3) spatial and spatiotemporal statistics,
particularly those applied to epidemiologic applications. Fig.
1 illustrates several examples of how these three elements
build on and reinforce each other to provide an essential
and expanding set of tools to interact with georeferenced
data, to summarize and display spatial and spatiotemporal
patterns and relationships, and to estimate, predict, and infer
associations and observations within an interconnected ge-
ographic space. The arrows in Fig. 1 illustrate a sequence
of analytic topics moving from discipline-specific topics
toward integrated concepts and tools spanning two and three
disciplines in order to move toward a general geoanalytic
perspective.

Spatial Data Tools in GIS: Disparate Data
Linked by Location

A central tenet of geospatial analysis is that location matters.
Location links different types of measurements taken near to
one another, and location predicts new observations of mea-
sured variables taken nearby in space or time. Geographic
information systems (GIS) use location as a central reference
point for measured and observed attribute values. Location
provides a key for data matching, linking, and layering, and
location provides a searchable reference for defining attribu-
tions from one data set that fall within a given distance and/or
direction of observations in another. Since their inception,
GIS have dealt with uncomfortably large data sets (data sets
pushing current storage and/or processing limits), a good,
rule-of-thumb working definition of “big data” (i.e., more
data than you know what to do with).

Historical uncomfortably large geographic data include
satellite imaging data (Goodchild 2016), small area data
from the US Census, and myriad now-familiar GIS layers
(rivers and streams, road networks, building-specific maps).
While these represent now-familiar data sets to GIS users,
all geospatial analysts have had the experience of slow ren-

dering times, system crashes, and common but confusing
incompatibilities associated with large georeferenced data
from different sources. While such traditional (and popular)
data sets may seem small by today’s standards, the GIS and
GIScience communities have a history of pushing the enve-
lope on wanting more data, wanting more detailed data, and
working creatively on the edge of what current computing
will allow.

Modern challenges at the interface of GIScience and
Data Science include distributed georeferenced data across
multiple platforms, divide-and-conquer approaches using
distributed cloud computing (Goldberg et al. 2014),
machine/deep learning for georeferenced data, and analysis
of location-based services. Each of these raises technical
and algorithmic challenges but also can generate new ethical
issues relating to privacy (how I feel about my data) and
confidentiality (protections I am required to provide for data
in my possession). To draw from the basic questions of
journalism, geospatial analysis often builds on a premise that
where and when you are can provide insight on what, how,
and why you experience/observe/measure. Taken together,
the increasing availability and use of location-based services
relating to where and when you are also can provide quite
accurate assessments of who you are, especially when
combining information across multiple data sets (Rocher
et al. 2019).

In addition to the technical, algorithmic, and ethical chal-
lenges, GIS also generates challenges to the application of
traditional statistical methods. While the by-now-familiar
notion of spatial correlation motivates and permeates spatial
statistical analyses, GIS also provides additional challenges
by linking data from multiple sources each exhibiting dif-
ferent levels of accuracy and uncertainty. Tracking multiple
sources and magnitudes of uncertainty across each data layer
can be complicated and may not fit neatly into traditional
statistical techniques, motivating the development of novel
analytic methods in the chapters of this volume.

Spatial Analytics: DefiningWhere to Take
Action

In Fig. 1, at the intersection of Data Science and Statistical
Science, we find the rise of “analytics,” i.e., general purpose
methods and sometimes quite sophisticated data summaries
(and summaries of data summaries) that scale up familiar
calculations to application within and between massive data
sets. While there is no single definition of “analytics” versus,
say, “statistics,” generally the term refers to clearly defined
statistical and analytic tools that can be computationally
scaled up to apply to very large data sets and provide ac-
tionable insight from results (Cooper 2012). That is, the
term “analytics” tends to focus on providing tools for data-
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Fig. 1 Illustration of system approach of GIScience, Data Science,
and Statistical Science and their components to achieve data-driven
goals. Arrows indicate related areas of research moving from discipline-

specific topics toward general geoanalytic concepts and tools but do
not necessarily represent a sequence of approaches that need to be
conducted in order for any single analysis

driven decision-making versus data-informed understanding
of underlying processes. This distinction is subtle: analytics
involve statistical calculations but tend to focus more on de-
cision outcomes rather than on the properties of the statistical
estimates themselves or on the properties of the underlying
epidemiologic and/or biologic processes associated with the
outcome of interest.

Analytics provide insight into patterns and variation in
observations with a particular goal of, say, influencing future
observations (e.g., reducing disease burden in an area or
placing police patrols during a festival weekend). Analytics
often involve tools such as leave-one-out cross-validation,
bootstrapping, and more sophisticated divide-and-conquer
approaches wherein calculations on data subsamples or sub-
sets provide descriptive (and actionable) insight into dis-
tributions within and between data sets without relying on
classical statistical parametric families for more advanced
analysis.

Bridging the framework of analytics between Statistical
Science, Data Science, and GIScience expands the definition
to include cartographic aspects of data visualization. To
illustrate, in Fig. 1, we begin with cartography within the
GIScience framework, often building on Bertin’s visual vari-
ables to best display and distinguish local quality, direction,
differences, and magnitude (cf., classic references such as
MacEachren 1995,Monmonier 2018, Slocum et al. 2004). To
date, the literature relating to data visualization (e.g., Chen et
al. 2008, Kerren et al. 2008) and that relating to cartographic
visualization (e.g., Andrienko et al. 2011) remains relatively
separate. However, as illustrated in Fig. 1 by the intersection
of GIScience and Data Science, novel collaborations in these

areas can and will provide fertile ground for expansion in
the continued development of geovisualization tools drawing
from both GIScience and Data Science (Andrienko et al.
2011).

In the setting of human well-being and health, actionable
questions of interest include (but are not limited to) the
detection of clusters or clustering of disease (Thun and Sinks
2004, Waller 2015), the detection of local concentrations of
risk factors (e.g., environmental pollution or concentrations
of social determinants of disease such as poverty or illegal
drug use), the siting and staffing of health clinics, and the
location and evaluation of health information campaigns. As
noted, the distinction between an analytics-based focus on
actionable outcomes (e.g., identifying locations that have the
highest concentrations of disease and/or pollution) may dif-
fer from overall interest in estimating associations between
exposures and disease incidence and/or prevalence. In some
cases, we seek assessment of whether the concentrations of
disease are statistically unusual (since some location will
have the highest rate, but is it too high?), and in others we
may simplywish to knowwhere the highest concentrations of
patients are regardless of the statistical significance (e.g., for
determining clinic locations). While epidemiologic studies
seeking to understand causes and drivers of local rates are
important, they are not the only geospatial analyses of interest
in the assessment of local human health and well-being.

In addition to geovisualization toolsmapping local rates of
disease, local values of pollution, and local summaries of risk
factors, other specific tools often used as analytics for spatial
data include global (e.g., Moran’s I and Geary’s c statistics)
and local measures of spatial association ((i.e., LISAs), cf.
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Lloyd (2010)). Such measures identify the overall level of
similarity between neighboring values (for global statistics)
and local hot/cold spots of association where particular re-
gions are very similar/dissimilar from their neighbors. While
measures of statistical significance are often associated with
measures of association, their primary purpose is often to
assess if there is spatial correlation in the observations and
where this local correlation might be highest in magnitude.

Another area of research interest involves the analysis
of social media posts, a very active area of Data Science
research. As noted in Fig. 1, the addition of geotags (loca-
tions) to social media posts allows linkage to location-based
services within GIScience, another pathway of development
for present and future geoanalytics. Challenges include the
relatively low (but growing) fraction of social media data
with linked location information. (All data-centric analytics
require solid support of both location and health data in order
to fully realize their full potential!)

Adapting Analytic Tools to the Geospatial
Setting for Public Health Analysis

We next turn to the evolution of analysis tools from Geo-
graphic Information Science and Statistical Science toward
automated, actionable use as geoanalytics. This pathway
is often slow and multidisciplinary, involving a series of
developments rather than a single landmark publication or
proposal. To illustrate this process of development, we review
two specific areas of analytic tool development drawing from
bothGeographic Information Science and Statistical Science.

As noted above, many (if not most) geographic public
health applications maintain an epidemiologic perspective,
seeking to better understand causes and drivers of observed
incidence and prevalence of disease. In this setting, analysts
seek to detect deviations from a setting where the risk of dis-
ease is the same for individuals everywhere (i.e., a hypothesis
of no clusters/clustering) or, more generally, where risk is
higher than expected based on known or suspected local risk
factors. Identification of geographic patterns or outliers can
be used in an analytics setting (i.e., act here versus there) or
in more of a statistical/epidemiologic manner (i.e., why are
rates high here?).

To see the influence of Geographic Information, Statisti-
cal, and Data Science more clearly, we outline contributions
to the development of methodological thinking around the
detection of disease clusters.

Example 1: Detecting Clusters of Disease
An unexpected “cluster” or “hot spot” of disease cases is an
evocative image in public health, often framed as beginning
with Dr. Snow’s investigation of cholera deaths in London
in 1854. The image captures the imagination of scientists,

policymakers, and the general public and generates a strong
desire for discovery of hidden drivers of risk based on the
geographic pattern observed in cases.

In 1990, the US Centers for Disease Control and Pre-
vention hosted a workshop bringing together public health
officials, epidemiologists, statisticians, and others to discuss
how best to seek out clusters and how best to respond to
reports of clusters by concerned groups. Beginning around
the same time, several analytic methods were proposed draw-
ing on advances in geographic data processing, advances
in statistical methodology, and advances in data availability
and access. The initial guidelines for analysis focused on
traditional epidemiologic summaries such as standardized
mortality ratios and standardized incidence ratios to describe
observed local excess cases and risk. The next decade wit-
nessed a rapid expansion in proposed analytic methods, but
application and interpretation typically required customized
development and programming by analysts embedded in
research groups, advocacy groups, or health agencies. From
2000 to 2010, textbooks (e.g.,Waller andGotway 2004, Law-
son 2006) provided collective descriptions and open-source
software with spatial analytic libraries provided broad access
to novel analytic methods. The most recent decade has seen
further expansion of computing power, open-source tools,
freely distributed software, and rapid access to vast quantities
of georeferenced data. Recent revisions to guidelines for un-
derstanding disease clusters now anticipate broadly sophisti-
cated analyses from all quarters, and responsible responses to
reports from analysts, advocates, and the public now require
familiarity with tools that have moved rapidly from their
origins in Geographic Information Science, Data Science,
or Statistical Science toward implementation as geoanalytic
tools.

To see this point more clearly, we note that, immediately
preceding the three-decade time period outlined above, Ge-
ographic Information Science, building on digitized maps
of disease incidence and prevalence, explored automated
detection approaches, most notably the Geographical Anal-
ysis Machine (GAM) of Openshaw et al. (1987). While the
GAM predates the coining of term “Geographic Information
Science” by a few years, and the term “Data Science” by
approximately two decades, it is very much in the spirit of
coupling geographic concepts and spatial relationships with
computational power to scale up simple tasks to address
complex, spatial problems. The approach considered a large
number of potential clusters (locally defined collections of
observed cases) and assigned a statistical significance value
to each potential cluster, plotting the boundaries of those
which exceeded a user-specified threshold. Due to the very
large number of overlapping potential clusters, each with its
own p-value, formal statistical inference presented a chal-
lenge. However, the graphical output identified areas on the
map where greater than expected rates of cases were ob-
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served. Investigators from Statistical Science provided some
early formalization of the GAM structure by limiting poten-
tial clusters to collections of either a fixed number of cases
(Besag and Newell 1991) or a fixed number of individuals
at risk (Turnbull et al. 1990). Such approaches provided
more interpretable evaluations of statistical significance for
putative clusters but were not as comprehensive or automatic
as the original GAM. Further research led to the now-popular
approach of the space-time scan statistic (SaTScan, Kulldorff
et al. 2005, Kulldorff 2009) which reframed the question
to avoid providing significance levels for every potential
cluster and instead provide focused and accurate statistical
significance relating to the most likely cluster. The approach
maintains the large-scale search aspect of the GAM but
provides sound inference for the potential cluster of greatest
concern. (A thorough and growing bibliography of analyses
using SaTScan across many different disciplines appears at
www.satscan.org.)

While the GAM-to-SaTScan path illustrates a historical
example of moving from one of the three fields through
others and toward the center node of geoanalytics in Fig. 1,
the example also illustrates that this path typically involves
the work of multiple individuals from multiple fields and
multiple perspectives to fully navigate the transition. In addi-
tion, it is important to note that such explorations rarely end
in the only possible approach to a problem. For example, in
addition to scan statistics, many other investigators have de-
veloped statistically based analytic methods for the detection
of spatial or spatiotemporal clusters. Tango (2010) provides
a catalog of many such methods, and Waller and Gotway
(2004, Chaps. 6 and 7) provide discussion of interpretation of
such hypothesis tests. With one path to geoanalytics in place,
many others often quickly follow providing analysts with a
broad collection of tools.

In addition to the historical development of cluster detec-
tion tools, Fig. 1 also illustrates the development pathway
of small area estimation and disease mapping models, be-
ginning in Statistical Science with generalized linear models
of small area rates and counts based on independent ob-
servations (McCullagh and Nelder 1989) to the incorpora-
tion of spatial correlation (GIScience) through the inclusion
of random effects (Clayton and Kaldor 1987, Besag et al.
1991). The statistical properties of such approaches are well
understood (Banerjee et al. 2014), and recent advances in
computing (Blangiardo and Cameletti 2015) offer potential
for data science-based distributed computing to allow appli-
cation to very large-scale data sets. The basic framework is
widely used by spatial analysts, and many extensions to the
basic model have been proposed and developed. One area of
ongoing research involves adjustments to allow associations
between an outcome variable and particular covariates to vary
across space, i.e., the strength of association between a risk

factor and a health effect may be stronger in some areas than
others, perhaps due to unobserved confounders. For example,
if one were exploring the association between illegal drug
activity (measured by local arrest counts) and the rate of
violent crime, one might expect a stronger association at the
border of two rival distributors (say, due to competition) than
one might expect within areas largely covered by a single
distributor. A brief history of these developments provides a
second illustrative example of the move from one of the three
Sciences toward the definition of geoanalytic tools.

Example 2: Spatial Variation in Associations
For almost two decades, two different approaches have
been proposed for estimating spatial variation in outcome-
covariate associations, one originating in Geographic
Information Science, the other from Statistical Science, and
both benefiting from developments in Data Science.

Tobler’s First Law of Geography, paraphrased as: all
things are related but things closer together are more related,
is central to Geographic Information Science, as are mea-
sures of spatial association. Such measures (e.g., Moran’s I,
Geary’s c) often draw on a matrix of spatial “weights” asso-
ciated with every pair of observations giving higher weights
given to closer pairs of observation locations. Fotheringham
et al. (2002) linked the Geographic Information Science idea
of weighting nearby observations to the Statistical Science
idea of using weights to increasing influence of certain
observations to provide local statistical estimation of associ-
ations between outcomes and covariates within a regression
setting. While in Statistical Science local regressions provide
smooth curves based on data with similar values of covari-
ates, Fotheringham et al. (2002) proposed estimating smooth
relationships based on data from nearby locations. The shift
in perspective from covariate space to geographic space
provides smoothly varying surfaces describing the estimated
association between a covariate and outcome. The results
are visually appealing and descriptive of the varying asso-
ciations. With available software, “geographically weighted
regression” (GWR) quickly became a popular analytic tool
with many applications in many different areas of applica-
tion. As with the GAM, some statistical challenges remained,
namely, calculation of local estimates of the variability of
the spatially varying estimates remains difficult since this
variance is entangled with the weights and variance of nearby
observations in a complicated manner. That is, it is difficult
to see if the spatial variations induced by the method are
significantly different from a model with a single value of
the association everywhere.

From the Statistical Science perspective, other researchers
have proposed extensions to disease mapping models to
allow spatially correlated random slopes in a mixed effects
framework.While such “spatially varying coefficient” (SVC)
models are cleaner statistically, the approach is not exactly

http://www.satscan.org
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34 L. A. Waller

the same as GWR, and direct comparisons between the two
approaches remain a challenge (Waller et al. 2007). Output
from SVC models provides model-based estimates of local
rates that are smoother than values based on local data alone
by “borrowing information” from neighboring observations.
Such neighbors are often defined by a spatial weight as-
sociated to pairs (as in GWR); however, GWR and SVC
use the weights quite differently. SVC weights define spatial
correlation between observations, while GWRweights define
the strength of influence of each observation on association
estimates across the study area. Typically, GWRestimates are
smoother (largely by definition), and SVC estimates retain
some residual statistical noise yielding less smooth maps of
the spatially varying associations.

With respect to Fig. 1, GWR begins in Geographic In-
formation Science and uses ideas from Statistical Science
without providing a full statistical assessment of estimation
and uncertainty, while SVC begins in Statistical Science
via Bayesian hierarchical models and then uses ideas from
Geographic Information Science, but its results are less clear
geographically. With respect to Data Science, current im-
plementations of GWR are much faster to compute and
closer to automation than are Markov chain Monte Carlo
implementations of SVC. (Markov chain Monte Carlo al-
gorithms estimate model parameters through (often lengthy)
simulations of potential values based on the observed data
and a probability model relating each parameter with other
model parameters.) Both sets of approaches continue tomove
toward providing geoanalytic capability, i.e., actionable in-
sight, but both still require care in implementation and inter-
pretation and likely require more refinements before they can
be viewed as robust, automatic, general purpose tools within
the geoanalytic toolbox.

Pulling It All Together

As illustrated in Fig. 1 and the discussion above, the three
fields of GIScience, Data Science, and Statistical Science
all offer unique but complementary contributions to the fu-
ture development, application, and interpretation of geoana-
lytic methods in studies of health and well-being. We stress
that no single field serves as the sole source of develop-
ment, nor does any single field serve as the final arbiter
of successful development of geoanalytic strategies. All so-
lutions contain elements of computation, geography, and
statistics/epidemiology, and the best solutions will borrow
from all three areas. In addition to the development of the
methods, we also note that the evaluation of their accuracy,
precision, and overall performance should also be viewed
through the composite lens of the intersecting fields.

For example, Waller et al. (2006) and Waller (2014) note
that the statistically familiar concept of power, the probability

of detecting a feature (e.g., a cluster of disease) when that fea-
ture is really present, has a geographic as well as a statistical
dimension. That is, the probability of detecting a cluster of
disease in a given location depends critically on the size of the
population at risk in that area. This intersection of Statistical
Science and GIScience offers novel geographic insight into
current discussions of false-positive rates in Data Science-
based detection algorithms, but such cross-fertilization is still
developing and will likely yield much promise for further
development.

Finally, while our discussion above primarily focuses
on the spatial aspect of geoanalytics, incorporating time
will allow the expansion of geoanalytics for spatiotemporal
analyses. Such research enables a dynamic assessment of
spatial patterns allowing analysts to explore the emergence
of outbreaks, the effectiveness of intervention policies, the
impact of season on spatial patterns of disease and health, and
many other aspects that vary by location and time (Cressie
and Wikle 2011).

Conclusions

In summary, Fig. 1 and the examples above illustrate the valu-
able contributions offered by the viewpoints of GIScience,
Data Science, and Statistical Science in the development,
application, interpretation, and assessment of geoanalytics,
especially for their application to studies of health and well-
being. Such hybrid thinking identifies the connection of tools
and concepts across all three settings in order to provide
accurate, reliable, and actionable conclusions as well as to
extend established tools from each area into a more robust
analytic toolbox for spatial analyses in public health and
biomedicine.

Future directions include further expansion of ideas from
each of the three areas into more integrated tools and train-
ing that draw from the strengths of the others. Such work
should focus attention on the development of geoanalytic
tools incorporating the best ideas in visualization, geography,
statistics, epidemiology, and data science. This is necessarily
interdisciplinarywork andwill benefit greatly from expanded
team science collaborations across the disciplines with a cen-
tral focus on creating better tools for the broader application
of spatial and spatiotemporal concepts and analytics across
the biomedical and public health sciences.
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