
Linking Disease Outcomes to Environmental
Risks: The Effects of Changing Spatial Scale

Chetan Tiwari, David Sterling, and Leslie Allsopp

Introduction

Geographic information systems (GIS) enable the assess-
ment of environmental risks and their potential impacts on
human health outcomes by providing a mechanism to overlay
maps of exposure and disease outcomes. While the ability
to overlay various geographic datasets is a common function
provided bymost GIS software packages, the ability to derive
meaningful associations between these layers is limited by
data quality, issues pertaining to the accuracy of exposure
assessment, and problems of representing the intensity of dis-
ease outcomes over space and time. In a recent review of the
role of geographic information science (GISc) in the analysis
of health and place, Mennis and Yoo (2018) identify major
challenges and opportunities including problems associated
with scale of analysis in health research. In this context, they
argue that most GIS-based health research in this area has fo-
cused on problems of sparse or missing data and emphasizes
the need for more research to understand the implications

C. Tiwari (�)
Departments of Geosciences & Computer Science, Georgia State
University, Atlanta, GA, USA

Center for Disaster Informatics & Computational Epidemiology,
Georgia State University, Atlanta, GA, USA
e-mail: ctiwari@gsu.edu

D. Sterling
Department of Biostatistics and Epidemiology, School of Public
Health, University of North Texas Health Science Center, Fort Worth,
TX, USA

School of Population and Public Health, University of British
Columbia, Vancouver, BC, Canada

L. Allsopp
Department of Biostatistics and Epidemiology, School of Public
Health, University of North Texas Health Science Center, Fort Worth,
TX, USA
e-mail: Leslie.allsopp@unthsc.edu

of resolution and spatial and temporal sampling frameworks
on assessments of individual-level environmental exposures
(Mennis and Yoo 2018). The problem of deriving associa-
tions between layers of geographic data with inconsistent
scales is of particular concern in the context of big data
where personalized health information through electronic
health records and individual measures of exposure via low-
cost sensors are becoming more common. Limitations on
the use of such data due to privacy concerns or inconsistent
quality often lead to the production and dissemination of
datasets aggregated to different levels of spatial resolution.
While GIS software can be used to combine such layers of
geographic data, it is critical to note that inconsistent scales
andmisaligned boundaries resulting from the use of disparate
spatial units will likely result in incorrect and/or misleading
conclusions.

The problems of changing spatial scales and misaligned
geographic boundaries are well documented in discussions
of spatial uncertainty. Spatial uncertainty is broadly defined
as the problem of identifying and quantifying error in the
geographic location of objects. Such error may result in
biased interpretations of the true relationships between the
location of objects in space and surrounding contextual or
environmental factors. There are two issues associated with
spatial uncertainty – the change of support problem (CoSP)
and the uncertain geographic context problem (UGCoP).
CoSP is concerned with the problem of drawing inferences
about observations at a spatial scale that is different from
the scale at which those observations have occurred. Kwan
(2012) defines the uncertain geographic context problem
(UGCoP) as the problem of identifying the effects of spatial
displacement between the geographic definitions of contex-
tual units and the “true causally relevant” context. The prob-
lem presented by aggregation may be considered as a subset
of the CoSP and is similar to the well-knownmodifiable areal
unit problem (MAUP) which states the patterns observed on
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a map; therefore, any inferences drawn are likely to change
if the shape and scale of the map unit change. In many
population-based studies, the UGCoP arises from the need
to use area-basedmeasures of statistical observations, such as
census tracts, to reconstruct a fundamentally vague definition
of space, such as the risk of disease that arises from some
kind of exposure to environmental risk. See Kwan (2018),
Fisher et al. (2018), and Griffith (2018) for an overview of
spatial analytic approaches to identify, measure, and address
this problem.

The utility and pitfalls of GIS for exposure assessment are
well described in Nuckols et al. (2004). They describe several
studies that use GIS in various ways to estimate exposures to
a variety of environmental risks. Some examples of studies
cited in their work include an assessment of associations
between residential proximity to landfill sites and adverse
birth outcomes (Elliott et al. 2001), examination of possible
neurobehavioral effects of exposure to trichloroethylene us-
ing a simulation model (MODFLOW) (Reif et al. 2003), and
a population-based study to evaluate lung cancer outcomes
to urban air pollution using a combination of dispersion
modeling and geostatistical techniques (Bellander et al. 2001;
Nyberg et al. 2000). Other studies that use GIS to produce
fine-scale assessments of environmental risk include an as-
sessment of the health risks posed by urban heat islands
detected using remote sensing methods including airborne
or satellite platforms (Tomlinson et al. 2011), an overview
of techniques to produce fine-scale estimates of fine partic-
ulate matter using remotely sensed data and geostatistical
approaches (Al-Hamdan et al. 2009, 2014), estimation of
spatio-temporal variations in hot weather conditions of Hong
Kong using statistical techniques (Shi et al. 2019), and map-
ping of exposures to particulate matter using remotely sensed
data and geostatistical modeling techniques (Leelasakultum
and Kim Oanh 2017). In all cases, assessments of the risk
of environmental exposure are estimated for various levels
of spatial resolution that may not necessarily conform to the
scale at which disease data are commonly made available.

Under current practice, makers of disease maps select
census or other administrative units for which both dis-
ease and demographic data are available. GIS software are
then used to compute and visualize disease rates among
the populations contained within those administrative units.
The choice of administrative unit influences the resolution
and statistical reliability of observed disease rates. Patterns
of disease rates displayed on maps produced using such
spatial units represent a tradeoff between spatial resolution
and statistical reliability. Maps with high degrees of spatial
resolution generally exhibit poor statistical reliability as the
population support – numbers of persons at risk – used in
calculating each rate is often small. As more sources of geo-
referenced health and demographic data become available, so
does the opportunity to control the numbers of people at risk

and the geographic size of the areas mapped. In geographical
circles, the spatial resolution of a map refers to the size or
area used to measure the spatial variation of a disease rate.
If the areas mapped were of equal size, the map would be
said to have the same geographic resolution across the map.
Since most maps use administrative areas as the spatial units
to map, the common spatial resolution of a map is the average
size of the administrative areas used. A second meaning
of spatial resolution is when the minimum size mapped is
the smallest size for which the common geography between
disease data and demographic data realizes a fixed level of
statistical reliability. The goal of the actual spatial resolution
achieved by the map is not, therefore, a common spatial size,
but, instead, a minimum sized spatial unit at any location on
the map that realizes the statistical reliability desired by the
mapmaker. A third meaning of spatial resolution has arisen
more recently in the era of digital maps when the smallest
spatial unit on the map is a pixel. If the map is constructed
so that pixel values change according to some function of
relative location, then the earth size corresponding to one
pixel is the geographic resolution of the map in question. In
this chapter, we advocate for a disease mapping approach that
focuses on a deliberate choice of geographic resolution and
statistical reliability. To this end, we demonstrate how the two
characteristics can be controlled using a simulated dataset
on disease outcomes that are influenced by four randomly
selected locations of environmental exposure.

Relevance of DiseaseMapping for Assessing
Public Health Impacts

Disease mapping refers to the process of constructing a
map that shows the spatial distribution of disease within a
specific geographic region. Disease maps improve public
health decision-making by providing amechanism to identify
geographic areas that are in most need of interventions or
resources (Bertollini and Martuzzi 1999; Moore and Carpen-
ter 1999; Ricketts 2003). They can help answer such as the
following questions: What populations are at risk? Where
they are located? What are the underlying conditions in
those areas? The common spatial context enables researchers
and public health practitioners to link various geographic
layers of data to explore associations between a multitude of
complex processes that include various combinations of so-
cial, cultural, and environmental determinants. In 1850, John
Snow created the first disease map of cholera distribution in
London and initially showed the importance of cartographic
representation of disease in serving public health (Koch
2004). Snow’s point map shown in Fig. 1 describes the spatial
patterns of cholera deaths and its geographical association
with other features on the landscape, including the broad
street pump, whichwas subsequently identified as serving the
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Fig. 1 John Snow’s map of cholera death in London (McLeod 2000)
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population with sewage tainted water (McLeod 2000; Shiode
et al. 2015). John Snow’s map was among the first studies to
utilize disease maps for understanding public health issues.

In the modern context, disease maps are commonly used
to identify spatial relationships between disease outcomes,
risk factors in the environment, and population characteristics
(Croner et al. 1996; English et al. 1999; Gatrell et al. 2003;
Glass et al. 1995; Goodchild et al. 1992). The rise of comput-
erizedmapping software and easy access to aggregated health
data have enabled the production and delivery of maps via
interactive websites or as applications on mobile devices like
cell phones. The Centers for Disease Control and Prevention
(CDC) publishes mortality and other environmental datasets
for the United States via a web-based portal called CDC
WONDER.Users of this website are also able to create online
maps of various health outcomes. The purpose of this web
portal is twofold – (1) it enables researchers and practitioners
to create their own maps to aid research and/or public health
intervention and (2) it allows the public to produce maps
for their own interest. Other examples of publicly available
mapping portals for health data include AIDSVu, National
Cancer Institute’s GIS Portal, among others. While emerging
GIS technology has led to the democratization of mapping,
thus enabling better public participation in understanding the
social and environmental determinants of health, it may also
lead to misleading or biased perceptions when maps are not
interpreted or used correctly. The use of choropleth maps as
the default map type for representing disease burdens is of
particular concern for various reasons discussed in the sec-
tion titled “Methods: Linking Maps of Disease Outcomes to
Environmental Risks” (see Fig. 5 for an example). Maps that
represent unreliable information may lead to biased and/or
incorrect perceptions about the complex relationships be-
tween environmental risks, disease burdens, and population
characteristics. In addition to careful selection of map type,
it is imperative that mapmakers communicate information
about the intended purpose of the map, the process by which
it was produced, and other information considered important
for interpreting the observed patterns.

Data

The synthetic data generation process consists of four stages
as described in Fig. 2. In stage 1, block-group-level popu-
lation data for Denton County in Texas was used to create
a point distribution representing individuals. Population val-
ues were divided by 10 for computational efficiency. The
resulting dataset consists of 66,092 points where each point
represents an individual. Note that the spatial distribution of
these points is proportional to the block-group population
distribution in Denton County. In stage 2, four sites of sim-
ulated environmental risk were selected in Denton County.

These sites were selected to cover urban and rural contexts.
We assumed a 1-mile radius of “exposure” around each of
these four sites. We will refer to these buffers as “high-risk”
areas. In stage 3, case data were created using two levels
of simulated disease risk: (1) a 1% risk of disease among
the population overall and (2) a 5% risk of disease among
populations within high-risk areas. Finally, in stage 4, the
simulated datasets were converted into GIS layers for use
in subsequent analysis. The final synthetic dataset consisted
of 89 simulated cases and 1508 individuals in the high-risk
area (rate = 0.0097) compared to 625 simulated cases and
63,870 individuals overall (rate = 0.059). Block-group-level
population data were obtained from the US Census. Alteryx
software was used to create the synthetic datasets.

Methods: LinkingMaps of Disease Outcomes
to Environmental Risks

A dot density map is the simplest way to represent disease
patterns over space. Suchmaps are typically produced by ran-
domly placing dots or other point symbols within the spatial
extent of each geographic unit such that the total number of
dots within that unit is equal or proportional to the observed
number of disease cases. When producing such maps, the
mapmaker chooses a numerical value that each dot represents
on the map; for example, the mapmaker may decide that
one dot represents five disease cases. Areas containing many
dots indicate high concentrations of disease cases, whereas
areas with fewer dots represent lower concentrations. As
illustrated in Fig. 3, the dot value along with dot size can
result in maps with vastly different presentations of disease
concentration and spread. Larger spatial units such as the
census tracts located in the northern and western parts of
the county are more likely to be distorted as the dots are
not placed in accordance with population density – instead
they are randomly disbursed across the entire spatial extent
of each tract. Further, such maps do not take population into
consideration and are generally inadequate for measuring the
intensity of a disease within a population.

Choropleth maps are a commonly used alternative (Diggle
2000). They are constructed by grouping areas (typically
representing administrative units) into categories and are
assigned a color based on the value of the variable being
mapped. Choropleth maps are commonly used for many
reasons – they are easy to produce and interpret; they rely on
existing spatial units that typically represent administrative
boundaries for which other demographic and secondary data
are collected; and the process of aggregating data to some
administrative unit often addresses privacy and confidential-
ity concerns. The process of constructing a choropleth maps
typically requires the following three major decisions:



Linking Disease Outcomes to Environmental Risks: The Effects of Changing Spatial Scale 269

Fig. 2 Synthetic data generation process

1. Choice of Map Unit
Choropleth maps are based on an existing system of

boundaries which form the basic spatial units using which
the map is produced. These units represent the geography
at which data are collected and/or made available for map-
ping. In the United States, census entities such as tracts,
block groups, or zipcode tabulation areas (ZCTAs) form
the basis of many choropleth maps. The choice of map
unit influences the patterns that are observed on the map
and present several challenges that are discussed in detail
below. Figure 4 shows various census entities that are
commonly used in theUnited States. Census tracts are rep-
resented by the dark black borders. Census block groups
represent finer spatial units and are represented by the
yellow lines. Note that census block groups are perfectly
containedwithin census tracts. Zipcode tabulation areas or
ZCTAs are a census unit that approximates area represen-
tations of zipcode service areas that are created by the US
Postal Service for the purposes of mail delivery. Zipcodes
are a dynamic entity that do not conform to traditional
census statistical data units such as block groups or tracts.
This presents a problem wherein demographic and/or so-
cioeconomic data collected by the census cannot be linked
to zipcodes, which are commonly used descriptions of res-
idential addresses. Although ZCTAs provide amechanism
to link census data to residential zipcodes, it is important
to note that they are approximations of zipcodes. The error
between the “true zipcode boundary” and ZCTAs is not
consistent over space with some areas presenting a greater
magnitude of misclassification compared to others. On a
related note, one must also be careful when comparing
choropleth maps constructed from different spatial units
as the underlying geography supporting the statistic being
visualized may be different across maps.

2. Choice of Classification Method
The process of classification takes a large number of

observations and groups them into categories or classes.
Creating maps from fewer, well-defined classes makes
them easier to read and understand when compared to
a map produced from raw data values. The mapmaker
typically specifies the number of classes and classification
method. Generally, a map must not have more than
seven classes. Although more classes result in less data
generalization, they may clutter the map with too much
detail, thus rendering it ineffective. Commonly employed
classification methods include equal intervals, quantiles,
and natural breaks. The equal interval method divides the
data into equal-sized classes (Fig. 5a). It works best when
data values are spread across the entire range. This method
must not be applied on a skewed dataset as it may result in
a washed-out map where one color (class) dominates. The
quantile method places an equal number of observations
within each class (Fig. 5b). This method generally results
in attractive maps as every color (class) has approximately
equal representation. A drawback of this method is that it
may result in classes that have varying numerical ranges.
The natural breaks method examines the data to identify
natural groupings of data that aim to group similar values
while maximizing difference between classes (Fig. 5c).
The Jenks Natural Breaks algorithm (Jenks 1963) is used
in most common GIS software.

3. Choice of Color and Map Context
To produce an effective map, the mapmaker must

think about the aesthetic qualities of the final map.
Considerations include choice of map colors, inclusion
of map elements such as a north arrow and scalebar, use
of data layers to provide context, labeling styles, among
others. Qualitative data are represented using differences
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Fig. 3 Using dot density maps to display disease outcomes

in hue, while quantitative data that contain a progression
of low to high values are represented by varying the levels
of saturation or lightness of a particular color. Brewer
et al. (1997) provide several guidelines on selecting
color schemes for mortality maps. The colorbrewer2.org
website is an excellent resource for mapmakers looking
for recommendations of color schemes based on the type
of data and map use (Brewer 2003; Harrower and Brewer
2003). Most GIS software allowmapmakers to selectively
include various map elements such as north arrows,
neatlines, and scalebars. GIS software including ArcGIS
and QGIS typically include various options for each map
element, thus allowing for high levels of customization

in the production of the final map. Secondary data layers
such as road networks, satellite imagery, or topographic
maps can be used to provide background or contextual
information that can aid the map reader. Examples of how
such data can be used in disease maps can be found in
Beyer et al. (2012).

While choropleth maps are easy to produce and interpret,
they also present several problems, particularly for portraying
rates of disease in a population. Such maps are subject to
the modifiable areal unit problem (MAUP) which states that
any change in the scale (level of aggregation) or shape of
map units (such as administrative boundaries) will result in

http://colorbrewer2.org
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Fig. 4 Commonly used census boundaries in the United States

Fig. 5 Commonly used map classification methods
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changing map patterns. Simply put, any change in the shape
or size of the unit being mapped will result in maps with
different spatial patterns of disease burdens. Cressie (1993)
showed that administrative boundaries tend to change based
on socioeconomic, demographic, and environmental criteria
for which health event data are collected and can influence
the observed rates and patterns of disease distribution. Bell et
al. (2006) added that health data are aggregated on predefined
spatial scales and any change in boundary does not represent
true numerical information about the region. In other words,
the aggregation of data into arbitrary administrative units can
lead to loss of information about how diseases are distributed
within those units themselves. Further, choropleth maps of
disease rates are subject to statistical variability due to small
numbers problem. In other words, areas with sparse popula-
tion counts are likely to yield estimates of disease rates that
are highly unstable and may dramatically change with the
addition or deletion of a few cases.

Methods to address the small numbers problem aim to
increase the population basis of support by aggregating data
over space and/or time to create collections of larger, contigu-
ous spatial units known as spatial supports (Beyer et al. 2012;
Hansen 1991; Mungiole et al. 1999; Rushton et al. 2000).
Other methods rely on the use of geostatistical modeling
approaches (Berke 2005; Goovaerts 2005; Goovaerts 2006)
or other types of statistical techniques (Clayton and Kaldor
1987; Devine et al. 1994; Lawson et al. 2000; Marshall 1991;
Mollie and Richardson 1991). A third category of disease
maps represents disease risk as a continuous function over
geographical space. Kernel density estimation methods are
commonly used to produce such maps (Talbot et al. 2000;
Tiwari and Rushton 2005). Maps produced using these meth-
ods use a kernel or spatial filter characterized by a particular
shape, size, and density function (Carlos et al. 2010; Shi
2010) to compute the intensity of a disease along a set of
sampling locations overlaid across the study area. Disease
rates are computed at each sample location by dividing the
number of cases that fall within a kernel placed at that point
by the population contained within it. The size of the kernel is
determined using one of two strategies: (1) a fixed size is used
at each sample point, thus ensuring consistent spatial support
but variable population support and (2) kernel sizes expand
or contract to meet a minimum population threshold, thereby
ensuring consistent population support but variable spatial
support (Talbot et al. 2000; Tiwari and Rushton 2005; Tiwari
2013). Variable sized kernels or adaptive spatial filters are
preferred over fixed-size filters as they address problems of
undersmoothing or oversmoothing. Undersmoothing results
when the kernel size is not large enough and continues to
compute disease rates using sparse population counts. This
may occur in rural areas where population densities tend

to be low. Oversmoothing occurs when the kernel size is
larger than what would be needed to compute a stable disease
rate. Oversmoothing occurs in densely populated urban areas
and results in loss of resolution on a map. Variable sized
kernels contract and expand in size such that each kernel
contains some minimum, user-defined population threshold.
Resulting maps provide consistent levels of statistical reli-
ability across all areas and high levels of geographic detail
in areas where such detail is expected (e.g., urban contexts).
In the work discussed in this chapter, we used the Web-
Based DiseaseMapping and Analysis Program (WebDMAP)
to produce such maps. Following are the three major steps
involved.

1. Create Data Files
WebDMAP requires three data files to compute disease

rates using the kernel density estimation method. The grid
file provides point locations on which kernels or spatial
filters will be constructed. The other two files provide the
locations of disease cases and populations, respectively.
If individual-level data are available, each location repre-
sents an individual. Alternatively, each location can also
represent aggregated counts of case/population data for
some spatial unit such as a census block group or ZCTA.
Location data must be provided in unprojected coordi-
nates (i.e. latitude and longitude). Simulated disease and
population data used in this chapter can be downloaded
from http://webdmap.com/kdedata.

2. Define Minimum Population Threshold
Recall that the size of the kernel/spatial filter that is

placed at each grid point is determined by some user-
defined minimum population size value. Note that the
size of the spatial filters is determined by this user-
specified parameter. Large population thresholds in areas
with sparse populations will result in the largest filter
sizes. Conversely, small population thresholds in areas
with dense populations will result in the smallest filter
sizes. In the work discussed in this chapter, we used a
population threshold of 1000 individuals. The study area,
Denton County, comprises dense urban areas (central and
south-eastern portions) as well as sparsely populated rural
areas (northwestern portions). Correspondingly, we see
a combination of small and large filter sizes across the
study region (Fig. 6).

3. Compute Rates and Produce Maps
The algorithm for computing rates using this method is

described below:
(a). Compute distance strings for the case and popula-

tion data. Distance strings are a kind of data struc-
ture that were originally designed for efficiently stor-
ing information about travel costs between nodes

http://webdmap.com/kdedata
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Fig. 6 Grid points and spatial filters

and were used frequently in location allocation algo-
rithms (Densham and Rushton 1992; Hillsman 1984;
Sorensen and Church 1995). The basic idea behind
a distance string is that it stores information about
travel costs (i.e., distance) between a base node (i.e.,
every grid point) and all other nodes (i.e., cases and
population locations) in an increasing order of dis-
tance. The procedure is implemented in a PostgreSQL
database, thus enabling the calculation of distance
strings for large datasets. To improve computational
efficiency, distance strings are truncated at a user-
defined cutoff value. By doing so, we assume that spa-
tial filters will never be larger than a certain size and
therefore terminate distance string calculations at the
user-defined cutoff value. In this analysis, the distance
string cutoff was set to 100 miles – i.e., we assumed
that spatial filters will never exceed a 100-mile radius.

To further improve computational efficiency, spatial
indexeswere created for all data tables, thereby result-
ing in substantially faster database query processing
times. See Nguyen (2009) for details on how spatial
indexes work within the PostgreSQL/PostGIS rela-
tional database. Distance strings are computed for the
case and population data.

(b). For each grid point, use the population distance
strings table to identify the distance associated with
the user-defined population threshold value. This
is implemented using database functions that query
the population distance strings table to identify the
distance value that corresponds with the row where
the cumulative population weight exceeds the user-
defined population threshold. This is the size of the
spatial filter. For example, in Fig. 7, if the user-defined
population threshold is set to 200, the algorithm will
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Fig. 7 Population distance strings example

Fig. 8 Case distance strings example

select the record highlighted in orange to define the
size of the spatial filter (i.e., 1.9 miles). Note that the
actual population contained within this spatial filter is
205. This may occur when aggregated data are used.
This process is repeated for every grid point.

(c). For each grid point, query the case distance strings
table and note the cumulative weight value that is as-
sociated with the distance noted in step b above. This
is the number of cases that fall within the spatial filter
size at that grid point. For example, if the distance
value at grid point 1 is 1.9 miles (step b), then the
number of disease cases that are contained within the
spatial filter constructed at that grid point is 14.

(d). Compute a rate at every grid point by dividing the
cumulative number of cases (step c) (Fig. 8) by the
cumulative population (step b) (Fig. 7).

(e). Repeat steps b through d to compute a rate for all the
grid points.

(f). A continuous surface map can be created from the
grid points using the inverse distance weighted (IDW)
interpolation method in any standard GIS software.
The IDW method with 8 neighbors and a power of
at least 2 is recommended to avoid any “double”
smoothing that may occur in addition to what has
already been performed by the spatially adaptive filter
method.
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Fig. 9 Disease maps produced by us

The maps shown in Fig. 9 were constructed using kernel
density estimation (Fig. 9a) and as choropleth maps (Fig.
9b–d). The four red dots indicate the sites of some en-
vironmental exposure. These sites were randomly selected
to include urban and rural contexts. As described earlier,
areas within a 1-mile buffer around each of the four points
represent an area of elevated disease risk (five times the
overall rate). To construct the map in Fig. 9a, a grid of points,
placed 4 miles apart, was overlaid on top of the study area
(Denton County, Texas). At each point of this grid, variable
sized kernels were constructed such that each kernel or spatial
filter contained exactly 1000 individuals. If aggregated data
were used instead of individual-level point data, each kernel
would contain a collection of spatial units with a minimum
population size of 1000. Kernel size (radius) ranged from a

minimum of 0.72 miles to a maximum of 10.834 miles. The
average kernel size was 4.163 miles. The number of cases
falling within each kernel were assigned to each grid point.
These ranged from aminimum of 4 cases to amaximum of 33
with an average of 10.736 cases. Rates were computed at each
grid point by dividing the case count by population. Disease
rates computed at each grid point ranged from a minimum
value of 400 per 100,000 to a maximum value of 3300
per 100,000. The average rate was 1073 cases per 100,000
population. Rate values at each grid point were converted
into a continuous surface of disease risk using the inverse
distance weighted (IDW) interpolation technique. Disease
rates were computed using the Web-Based Disease Analysis
and Mapping Program (Web-DMAP). Final map output was
created using ArcGIS Pro.
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The maps in Fig. 9b–d were created by aggregating case
and population counts to three sets of administrative bound-
aries with varying levels of spatial resolution. The maps
used census block groups, census tracts, and zip code tabu-
lation areas (ZCTAs), respectively. For each spatial unit (i.e.,
each block group, tract, or ZCTA), a rate was calculated by
dividing the total number of cases within that unit by its
population. For all four maps, rates were classified into five
groups using the quantile classification method.

The spatial patterns of disease rates in each of the four
maps present slight variations when compared to each other.
Note that the underlying data used in each map are identical.
Differences in observed patterns are a result of the different
levels of aggregation and the method used to construct the
map. Among the four maps, Fig. 9b presents the most geo-
graphic detail. However, due to the relatively small size of
census block groups, they also contain the most variability
in populations ranging from a minimum of 6 persons within
a block group to a maximum of 646. Due to the variable
population sizes, block groups also portrayed the most vari-
ability in disease rates with an average rate and standard
deviation of 1045.67 and 939.26 per 100,000 population,
respectively. The highest rates of disease were observed
around the four exposure sites along with pockets in the
northwest and eastern sections of the county. In contrast,
the map in Fig. 9d contains the least amount of geographic
detail. The use of large ZCTA boundaries tends to wash away
any fine-scale variations in disease rates. Only one of the
four exposure sites is located in an area of highest disease
risk. Pockets of high rates are observed in the northwestern
parts of the county. While the level of geographic detail
presented in this map is low, it also contains the most stable
estimates of disease rates. The average rate in ZCTAs in
Denton County was found to be 1066.53 cases per 100,000
population with a standard deviation of 574.17. The map in
Fig. 9c represents a balance between themaps presented in 9b
and 9d. It uses census tracts, which are slightly larger in size
(and population) compared to block groups and considerably
smaller in size compared to ZCTAs. Areas surrounding the
four exposure sites are classified as areas of highest disease
risk in addition to pockets of high rates in the northwestern
and eastern parts of the county. The average disease rate
is estimated at 1040.8 per 100,000 population along with
a standard deviation of 642.97. Finally, the map in Fig. 9a
identifies areas of highest disease risk surrounding two of
the four exposure sites. Unlike a choropleth map, this map
does not use discrete spatial units to represent rates across
Denton County. Instead, a continuous surface of disease risk
is used to identify areas of highest and lowest rates. As
discussed earlier in this chapter, the average rate is found
to be 1073 cases per 100,000 population with a standard
deviation of 462.99. Among the four maps, the one produced
using kernel density estimation presents the best balance

between resolution and reliability. The ability to control the
population basis of support ensures that consistent sample
sizes are used in the calculation of every disease rate across
the map. This map presents a desirable tradeoff between ge-
ographic resolution and reliability – maintaining high levels
of geographic detail in urban areas while preserving high
levels of statistical reliability in rural areas. While the map
produced using census block groups presents high levels of
visual detail, such maps must be used with caution due to
the problem of unstable rates caused by small population
counts. Conversely, a map that uses coarse spatial units such
as ZCTAs not only maintains statistical reliability but also
leads to severe loss in geographic detail across the entire map.

The choice of disease map and/or the spatial resolution
at which disease data are available influence the ability to
detect associations between disease burdens and environ-
mental exposures. The maps in Fig. 10a–d represent the
spatial patterns of population exposure to four point locations
of simulated environmental risk. These four locations are
denoted by red dots in Figs. 9a–d and 10a–d. Exposure is
measured as the Euclidean distance between each individual,
represented as a point in the synthetic dataset, and the clos-
est point location representing a site of environmental risk.
Map 10a was produced by interpolating distances computed
for each individual point in Denton County. Lighter colors
represent closer distances compared to darker colors. As
expected, areas close to the four red dots on the map show
lower distance values. The maps in Fig. 10b–d represent
the average exposure distance for populations aggregated
to census block groups, tracts, and ZCTAs, respectively.
As expected, areas within close proximity of the four red
dots portray lower exposure distances. Note that the block-
group-level map shows better geographic resolution when
compared to the other maps. This is generally a desirable
property in maps of environmental exposure when compared
to disease maps, where high levels of geographic detail
typically represent poor statistical reliability. However, it
is critical to note that valid map comparisons can only be
made when the underlying geographic or spatial basis of
support is consistent across all maps that are being compared.
Inconsistent spatial supports can result from differences in
resolution, scale, or boundary definitions. For example, one
cannot directly compare a disease map constructed using the
KDEmethod with a block-group-level map of environmental
exposure. Dasymetric mapping (REF) or other geostatistical
modeling techniques including interpolation (REF PYCNO)
may be used to reconcile maps that do not have consistent
spatial supports.

The scatter plots in Fig. 11a–d show the directionality and
strength of the relationships between exposures and disease
outcomes. Figs. 11a, b represent the relationship between
disease and exposure data measured at fine geographic scales
(individual- and block-group levels), whereas plots in Fig.
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Fig. 10 Exposure maps

11c, d represent this relationship at coarser geographic scales
(tract and ZCTA levels, respectively). It is interesting to note
that scatter plots produced using data at finer geographic
scales correctly describe a negative relationship between
distance and disease intensity. Note that the synthetic dataset
was produced using a five times greater risk of disease in
individuals within 1 mile of a simulated site of environmen-
tal exposure. Conversely, the scatter plots produced using
coarser data represent an inverse relationship, suggesting that
disease risk increases as one moves away from these sites
of environmental concern. The synthetic data produced do
not support this conclusion. It is also important to note that,
although the relationship between distance and disease rate
is correctly represented in Fig. 11b, the variability in disease
rates as indicated by the boxplot beside the y-axis is likely
to bias the strength of the relationships between distance and
disease rates.

Conclusions

The type of mappingmethod used to producemaps of disease
outcomes or environmental risks as well as their parameters
influences the observed patterns of disease distribution and
consequently our interpretations of associated risk factors. It
is important to remember that a map merely represents one
abstraction of complex underlying processes that control how
diseases and environmental risks manifest themselves across
space and time. The construction of an “honest map” requires
full disclosure of the methods used, scale of analysis, quality
of data, and other parameters used in the final construction
of the map. The objective of this chapter is not to identify the
“best” mapping method but to demonstrate that each method
comes with advantages and disadvantages and, importantly,
have an impact on the patterns and relationships that are
observed.
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Fig. 11 Relationships between exposures and disease outcomes
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