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Introduction

Place impacts population health. Increasing evidence
suggests that one’s place of residence plays a substantial role
in determining one’s health status in the USA andmany other
nations across the globe. As a result, health disparities based
on geography can and do occur. Among the multitude of
studies that have demonstrated geographic health disparities,
examples include, but are not limited to, cancer (Krieger
et al. 2002), physical activity and obesity (Gordon-Larsen
et al. 2006), and healthcare quality and access (Baicker et
al. 2005; Stiel et al. 2017; Walker and Crotty 2015). The
examination of the causes of place-based health disparities
has focused primarily on social determinants of health, such
as wealth, education, environmental factors, crime, and
others, on a defined geographic level, such as the region,
state, or county (Woolf and Braveman 2011). Recently, there
has been increasing interest in assessing smaller geographic
areas to examine how small-area, place-based neighborhood
characteristics influence health. Policies, demographics,
natural resources, and economic conditions on the local level
may affect availability and quality of resources, development,
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and economic opportunities (Braveman et al. 2011). A
growing body of research suggests that understanding if and
how small-area social determinants, including education,
wealth, crime, environmental factors, and housing, influence
population health is critical to reducing health disparities that
may often occur within these areas (Beck et al. 2017; Benach
et al. 2001; Diez-Roux 1998; Grow et al. 2010; Kruger et al.
2007; Kulkarni et al. 2011; Lippert et al. 2017; Marmot and
Bell 2011).

To identify, understand, and address any potential mech-
anisms through which place-based factors influence popu-
lation health and lead to geographic health disparities, it
is important to understand how the notion of “place” is
conceptualized in population health research. In a semi-
nal paper by Macintyre and colleagues, the authors suggest
that there are three categories of geographic variation in
health—compositional, contextual, and collective—and that
these categories are not mutually exclusive (Macintyre et al.
2002). Compositional factors are attributes of the individuals
living in a particular area, such as socioeconomic status,
race/ethnicity, and other factors. Contextual factors refer to
those in the local environment with emphasis on sociocultural
and historical features of the community, such as changing
demographics, business, and crime. Collective factors are
the collective norms, traditions, values, and needs of the
community (Macintyre 1997).

Understanding place-based drivers of health is critical
to address health disparities. Increasing research suggests
that much of the variability in population health is not due
to medical-related factors but to geographic differences in
non-medical factors, including social, economic, and demo-
graphic factors related to geography. For example, a recent
analysis found that social, economic, and physical factors ac-
count for nearly 54% of population health (Park et al. 2015),
factors that are explicitly linked or related to place-based
factors (Fig. 1) (Minnesota Department of Health). Similarly,
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Fig. 1 Determinants of health. (Source: http://www.health.state.mn.us/
divs/che/about/creatinghealthequity.html)

analyses from the County Health Rankings and Roadmaps
model suggest that approximately 50% of population health
is attributable to social and economic factors and the physical
environment (Remington et al. 2015; Tarlov 1999; Adler and
Newman 2002; McGinnis et al. 2002). Therefore, addressing
population-level, place-based drivers of health disparities
may have a substantially greater impact on population health
than medical and medical-related interventions alone.

Given that place-based factors are associated with pop-
ulation health, a logical question to ask is how do place-
based factors influence health. Many such potential mecha-
nisms have been discussed in the literature. The oldest and
most well-known example is the Broken Windows theory
developed initially by James Wilson that suggests that the
appearance of a community’s physical environment influ-
ences individual behaviors, which ultimately impacts the
individual’s health and the collective health of the population
(Wilson 1987). This theory suggests a dynamic relationship
between the environment, health behaviors, and health status.
Therefore, based on this theory, as neighborhoods deteriorate
in physical appearance, so-called social buffers that could
reduce high-risk behaviors may gradually disappear. As the
overall health behaviors of a community start to worsen,
population health declines, and this is why population health
outcomes are often worse in areas of substantial neighbor-
hood degradation (Cohen et al. 2000).

In addition to the Broken Windows theory, other mecha-
nisms by which place may influence population health have
been hypothesized. While it is unlikely that place-based
factors, such as socioeconomic status (SES), directly impact
health, these types of factors shape conditions that ultimately
impact population health (Adler and Rehkopf 2008). It is
posited that a place-based factor may impact population
health through indirect pathways across the lifespan. For
example, low SES conditions may contribute to poor nutri-
tion, exposure to harmful environmental contaminants, dis-
crimination, and other aspects of life that may impact health
behaviors, access to healthcare, and health status (Adler and
Ostrove 1999; Williams and Collins 1995). Such potentially
harmful place-based conditions may lead to increased allo-
static load throughout life (Seeman et al. 2010) so that stress
accumulates over time upon continual exposure to harmful
living conditions (McEwen 1998; Juster et al. 2010; Lupien
et al. 2015).

The biological, psychological, and sociological pathways
of place-based factors which influence population health are
just beginning to be understood. Cummins et al. argue that
much of the existing research on how “place” influences
population health through contextual factors, focusing pre-
dominantly on deprivation, has not focused on the contextual
and compositional factors (Cummins et al. 2007). Adler and
Rehkopf suggest that appropriately combiningmultiple types
of data on SES, demographic, psychosocial, and biological
factors on multiple levels will facilitate the creation of causal
models that identify direct and indirect pathways that lead
to critical but addressable health disparities (Williams and
Collins 1995; Adler and Rehkopf 2008).

Exploration of place-based contextual factors has cur-
rently centered on a fixed population in a clearly delineated
geographic area, such as a county, state, or neighborhood, at
fixed points in time. The current view of how place-based
characteristics influence population health centers on readily
quantifiable, often static measures, such as SES, availabil-
ity of resources, existence of and proximity to resources,
segregation, etc. (Diez-Roux 1998). Some argue that this
conventional approach to understanding specificmechanisms
through which “place” affects health is integral to population
health not just for strengthening causal inferences about
place-based risk factors but also for identifying potential
avenues for intervention on the population level (Cummins
et al. 2007). They suggest moving from the “contextual and
compositional” approach to a “relational” approach. In a
relational approach, place-based characteristics are viewed
somewhat differently. For instance, this approach relies more
on socio-relational distances and networks than on physical
distance and boundaries and uses area definitions that are
more dynamic and fluid. Additionally, a relational approach
tends to focus on the cultural aspects of place rather than
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the resource or deprivation-based aspects of place. There are,
however, numerous methodological challenges in utilizing a
relational approach to understand place-based influences on
population health which make undertaking such studies more
difficult. In this chapter, we focus on the more conventional
approach toward understanding the influence of place on
health while identifying potential areas where researchers
can integrate the more relational approach to understanding
these complex pathways.

Why Focus on Defining Place-Based
Characteristics in Geospatial Models?

Defining place-based characteristics is integral for popula-
tion health and assessment of health disparities in geospatial
models. Geospatial models have been used extensively for
a wide variety of research investigating geographic varia-
tion in population health and healthcare, health inequali-
ties, and healthcare service needs. Wennberg and colleagues
were among the first to conduct a comprehensive geospatial
analysis of variation in Medicare services across the USA
(Wennberg et al. 2002). Numerous other studies have fol-
lowed and have examined critical geographic variability in
healthcare service using GIS and geospatial models (Gilmer
and Kronick 2011; Matlock et al. 2013; Nicholas et al. 2011;
Newhouse and Garber 2013a; Hanchate et al. 2017; Chui
et al. 2011). Geospatial models have been widely used to
assess health inequalities across populations (Krieger et al.
2002; Weich et al. 2003; McDonald et al. 2012; Suzuki et al.
2012; Newhouse and Garber 2013b; Dwyer-Lindgren et al.
2017) and the need for healthcare services (Black et al. 2004;
Padilla et al. 2016). Geospatial modeling provides a critical
tool for the analysis and planning of health services and
infrastructure to reduce inequalities and promote population
health, regardless of geography (McLafferty 2003). Geospa-
tial modeling provides insights into the spatial organization
of health services and population health, which allows re-
searchers to incorporate multiple dimensions of place-based
factors and potentially multiple levels of observation (e.g.,
individual and different levels of geographic influence) into
the analysis. Examples include calculating travel time to
health facilities (Branas et al. 2000; Pearce et al. 2006),
assessing optimal locations for healthcare centers (Jia et al.
2007), health behaviors and social capital (Mohnen et al.
2012), and obesity prevalence (Prince et al. 2012).

To optimize the effectiveness and utility of any geospatial
model, researchers should delve into what and how place-
based factors truly drive and mold potential relationships
between health and place. Many geospatial models have
focused on assessing specific place-based factors that exist in
the geographic regions (e.g., state) and how they contribute

to spatial disease patterns and health behaviors. Geospatial
models of health outcomes were originally developed to
quantify spatial patterns across different geographies by in-
corporating place-based characteristics (Waller and Gotway
2004; Banerjee et al. 2014). However, incorporating place-
based factors in geospatial models requires a multitude of
considerations that are often overlooked in such modeling
procedures. Therefore, the remainder of this chapter will
focus on discussing several important challenges to properly
identifying and utilizing place-based spatial characteristics in
geospatial modeling for applied population health research,
with an emphasis on measuring rural-urban gradients. This
chapter also will provide insight into strengths and limita-
tions of different approaches, as well as opportunities for
future research into these potentially powerful analytical
tools to maximize their utility in research and policy.

Challenges in Determining Place-Based
Spatial Characteristics

Selection of Characteristics

In geospatial models of health outcomes, the researchers’
assumptions related to a spatial distribution of a sociodemo-
graphic indicator of interest, specifically its homogeneity, or
consistency within the study area, are critical to proper inter-
pretation and use in developing policies and interventions to
address health issues. Building geospatial models starts with
the selection of place-based characteristics. Characteristics
commonly used in such geospatial models may include so-
cioeconomic status (e.g., wealth and income), demographic
composition (e.g., racial/ethnic composition, age, and gen-
der), environmental factors (e.g., climate, air/water/soil qual-
ity), and education. These characteristics and how they are
measured are typically dynamic, location-specific, multidi-
mensional, and potentially highly correlated and could be
costly. Thus, rarely does a universally accepted, singular
measure of place-based characteristics suffice for geospatial
modeling. This raises several issues, some of which are
addressed in the subsequent sections.

Spatial Heterogeneity

An important challenge in determining which place-based
spatial characteristics to use, particularly when analyzing
spatially aggregated data, is spatial heterogeneity of a se-
lected characteristic. Spatial heterogeneity generally refers to
uneven and often heavily skewed distributions of character-
istics within an area or between adjacent areas. This section
focuses on two specific aspects of spatial heterogeneity,
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heterogeneity both within and between observational units in
geospatial models of aggregated data.

Heterogeneity Within Observational Units
Place-based characteristics can be defined on multiple geo-
graphic levels. Oftentimes, there can be notable heterogene-
ity in terms of these place-based characteristics, especially
when aggregating on a large geographic level such as a
county, state, or country both in terms of central tendency
and variability. Consider the case of two adjacent counties
on the western side of the San Francisco, California Bay
Area: San Mateo County and the City and County of San
Francisco. Both counties are highly urbanized and are part of
the metropolitan statistical area of San Francisco. Both are
among the wealthiest counties in the USA in terms of per
capita income. San Mateo County has the thirteenth-highest
per capita income, $50,262, while the City and County of San
Francisco has the sixth-highest per capita income of $55,567
(based on the most recent data from the US Census Bureau
2016 American Community Survey 5-year estimates).

Functionally, in studies examining county-level effects
on population health, both counties would be considered as
individual units of observation of equal importance. How-
ever, a deeper examination of the counties themselves re-
veals substantial differences between the two. First, there
are notable differences in the size and composition. San
Francisco has a total land area of 46.9 square mile, while San
Mateo County has a total land area of 448.4 square miles.
The population size of the counties is comparable, with San

Francisco (805,235) having a slightly higher population than
SanMateo County (718,451). Due to their differences in land
area, the population density of San Francisco is considerably
higher (8042 per square mile) than that of San Mateo County
(604 per square mile). A simple comparison of housing units
reveals further distinctions between the two counties. In San
Francisco, there are 376,942 total housing units, whereas in
SanMateo County, there are 271,031 total housing units. The
resultant data represent notable differences between the two
county units in terms of the number of people per household,
with the average number of people per household being
24.1% higher in San Mateo County than in San Francisco
(2.65 vs 2.14 people per household, respectively). Although
this difference appears small, San Francisco has one of the
lowest average household sizes for all US counties, whereas
San Mateo’s average household size is above the US average
of 2.54 people per household.

The heterogeneity of these two counties also can be com-
pared using smaller geographic units. Although both county-
equivalent units of San Mateo County and San Francisco are
similar in terms of per capita income (as shown above), a
closer examination of the census tracts within each county
reveals stark differences between the counties. It should be
noted that San Francisco has 195 census tracts while San
Mateo County has 156. There is more variability in per capita
income among the census tracts of San Francisco than among
the census tracts of San Mateo County (Fig. 2). Although
San Francisco’s per capita income is just over 10% higher
than that of San Mateo County, San Francisco has a wider

Fig. 2 Distribution of per capita
income by census tract in San
Francisco City County and San
Mateo County (2010)
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range of census tract-level per capita income values than San
Mateo County does. Despite having the sixth-highest county-
equivalent per capita income in the USA, San Francisco
contains some of the poorest census tracts in the nation,
with the lowest census tract per capita income of $7355. The
lowest tract-level per capita income in San Mateo County is
$16,732. Considering all census tracts in both counties, the
six lowest ones in terms of per capita income are all found in
San Francisco. Thirteen of San Francisco’s 195 census tracts
(6.7%) have a per capita income below $20,000, compared
to just 4 of San Mateo’s 156 census tracts (2.6%). On the
opposite end of the income spectrum, six of the top seven
census tracts in terms of per capita income are found in San
Mateo County.

This San Francisco and San Mateo County example illus-
trates that the sum of the parts does not necessarily represent
the whole due to spatial heterogeneity within the units of
observation. In terms of average per capita income, the two
adjacent county-equivalent units appear similar. However, a
comparison of additional sociodemographic factors reveals
that despite their geographic proximity and similarity in
per capita income, these two counties have notably differ-
ent distributions of the study characteristics. Examining the
census tracts within these two county-equivalent units with
respect to per capita income reveals further spatial hetero-
geneity that is masked when examining per capita income
on the county level in isolation. It is important to consider
such spatial heterogeneity when conducting spatial analyses.
In such analyses, where possible, identifying and perhaps
quantifying such spatial heterogeneity and underling spatial
distributionswould enrich the analysis of key socioeconomic,
demographic, and other place-based characteristics.

Level of Aggregation

A closely related topic linked to spatial heterogeneity specific
to geospatial analyses of aggregated data is the choice of the
geographic level of aggregation such as the state or province,
county, census tract, or any other unit. There are strengths
and drawbacks to each level of aggregation. In this section we
discuss a few important issues I to consider when selecting
an appropriate level of aggregation in a geospatial analysis.
Importantly, this discussion is not exhaustive assessment of
the strengths and drawbacks of different levels of aggregation
but rather a “jumping-off point” to consider how the selected
level of aggregation may influence the results and interpreta-
tion of findings and their implications for research and policy.

Data Quality and Confidentiality
There are a variety of valid geographic scales, and the choice
of geographic level can lead to different but equally valid
results that emphasize different data features (Elliott and

Wartenberg 2004). The challenge of selecting a proper scale
and aggregation method is referred to as the modifiable
area unit problem (Openshaw 1984). The goal of selecting
variables to use in geospatial modeling using aggregated
data is to choose the smallest geographic units possible to
simultaneously maximize sample size and minimize spatial
heterogeneity. Yet, the choice is often dictated by available
data. Due to limited available data, there is a trade-off be-
tween homogeneity within selected geographic units and pre-
cision of the estimated associations or disease frequencies.
Therefore, a key issue in in geospatial analyses is selecting
the most reasonable geographic unit of observation while
recognizing its limitation with respect to accuracy and bias
this aggregation may introduce.

If they are found to be valid and reliable, a large number of
units of observation such as county, state, or region typically
increases the likelihood that the geographic information con-
tained within the study area has broad coverage. However,
it may reduce the ability to detect potentially critical small-
scale trends and associations. Since there is no singular
industry standard in terms of data source or protocol for
evaluating data quality at different levels of spatial aggrega-
tion, the data user must assess the benefits and drawbacks of
each potential level of aggregation and, at minimum, identify
and discuss the drawbacks in any publically disseminated
research project.

When analysis includes records on a fine scale, issues of
confidentiality and privacy may also arise, especially when a
research question addresses vulnerable populations or people
with unique demographic characteristics. Such issues are
most pronounced in spatial analysis using small geographic
units, such as street address, the census tract, or block group
(Clapp and Wang 2006). Methods that attempt to address
data confidentiality and privacy include geographic masking,
the process of altering the coordinates of geographic data
to limit the risk of re-identification in the released data to
make it difficult to accurately reverse geocode the released
data (Zandbergen 2014). Masking techniques are especially
useful in non-aggregated data and also apply to aggregated
data (Armstrong et al. 1999). It is worth noting that aggrega-
tion itself maymask problematic issues of confidentiality that
occur with point-source data (Kounadi and Leitner 2014).
Nonetheless, data confidentiality and privacy issues remain
a highly debated issue in geospatial modeling (Fefferman et
al. 2005; O’Keefe and Rubin 2015), and there is an ongoing
need to develop and test statistical methods to address this
issue.

Policy Relevance
Another issue to consider when using geospatial models
for health research is the utility of the geographic level
of aggregation in terms of informing policy. Many health
policies are set on the state level by state governments, which
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make analyses comparing state-level differences appealing
and useful for this purpose. The results of state-level research
can immediately inform individual states as to which states
are better and which are worse in terms of whatever health
outcome or risk factor is examined. In the USA, however,
this approach is often limited simply by the limited number
of units of observation (50, or slightly more if the District
of Columbia and US territories are included), which greatly
reduces statistical power, especially in geospatial models
where some of the error is explained by spatial correlations.

Counties offer more granularity and greatly increase the
number of units of observation (3142 counties and county-
equivalents in the USA). There are several important caveats
to consider when using county as the level of spatial aggrega-
tion. First, the function of county governments varies by state.
Some states do not have an active county government system,
and all governance is done on the state or municipality level
(e.g., New England states). Second, counties and county-
equivalent units vary in terms of size and structure within
and between states. For example, all independent cities in
Virginia, regardless of population size or area, are treated as
county-equivalents. Consider the case of Norton, Virginia, an
independent city in the rural western part of the state with
a population of under 4000 as of the 2010 US Census and
a geographic area of 7.5 square miles. County-equivalent
units such as Norton and other small, independent cities
are considered on the same level of observation as actual
counties in Virginia that may be orders of magnitude larger,
either based on geographic size, population size, or both,
such as Fairfax County, with a population of 1.14 million
and a land area of 396 square miles. In many other states, all
municipalities, regardless of size, are considered to be part
of a county. In Massachusetts, for example, the major city of
Boston is part of the larger Suffolk County. All municipalities
in Massachusetts, even minor cities with population sizes
over 100,000, are part of a larger county. Similarities are
found in states such as California, where only large cities,
such as San Francisco, are considered county-equivalent
units while all l smaller cities and towns are part of the
California county system. Numerous other similar examples
can be found across the USA. Collectively, these are just a
few examples and illustrations of the heterogeneity in terms
of function, size, and composition, within and between US
counties, especially evident when comparing counties across
different states.

Smaller units of observation, such as the census tract,
municipality, and block group, offer additional gains in terms
of the number of units of observation and offer an increasing
amount of granularity and the ability to detect key neighbor-
hood and other area-level differences. Geographic levels of
observation created by the Census Bureau, such as the census
tract and block group, are designed to be relatively homo-
geneous with respect to population size and function across

the small areas they represent. Nonetheless, data aggregated
to fine levels of geography such as these may be subject
to issues of data reliability, privacy, and confidentiality, as
noted previously. Furthermore, policies and interventions
designed to address population health issues assessed at a
fine geographic level may be difficult to implement due to
a variety of factors, including, but not limited to, spillover
effects from one area to another and populationmigration and
movement among these small geographic units.

Example: The Swiss Paradox
A key example of how the level of aggregation can af-
fect the findings of geospatial models and therefore impact
downstream policies and programs is known as the “Swiss
paradox” (Clough-Gorr et al. 2015). It has been widely es-
tablished in the public health and social medicine and public
health literature that higher income inequality is generally
associated with worse population health outcomes (Kawachi
and Kennedy 1999; Krieger et al. 2002; Lynch et al. 2000).
Examples of this association are numerous and include obe-
sity (Zhang and Wang 2004; Wilkinson and Pickett 2006),
self-reported health (Kondo et al. 2009), and overall mortality
(Kennedy et al. 1996; Vincens and Stafström 2015). Al-
though there are a variety of theories and empirical evidence
to support these associations, the precise reasons for them are
not entirely clear. A seminal article by Kawachi and Kennedy
(1997) suggested that income inequality promotes poorer
health outcomes by reducing social cohesion. Further studies
have suggested other potential complementary mechanisms
through which income inequality affects health outcomes.
One hypothesis is that income inequality is a correlate of
other structural, demographic inequalities, such as racial seg-
regation, whereby spatial concentrations of race and poverty
influence individual and population health outcomes (Subra-
manian and Kawachi 2004).

The term “Swiss paradox” was coined by Clough-Gorr
and colleagues in a 2015 article, one of the first studies to
formally investigate how level of spatial aggregation may
influence the associations between income inequality and
health. When measured on the state level, income inequality
is associated with poorer health outcomes (Kahn et al. 2000;
Kennedy et al. 1998; Subramanian and Kawachi 2004; Sub-
ramanian and Kawachi 2003). However, with lower levels of
aggregation, such as the census tract and county, the findings
are mixed (Fiscella and Franks 1997; Soobader and LeClere
1998; Eckenrode et al. 2014). Clough-Gorr and colleagues
observed that higher income inequality in Swiss municipal-
ities was consistently associated with lower mortality risk,
except for certain health outcomes, even after accounting for
sex, marital status, nation of origin, rural-urban status, and
other potential confounding factors. Their results challenge
current beliefs about the effect of income inequality on health
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Table 1 Parameter estimates from the association between Gini index and each of the five listed health outcomes on the county and state levels

Model type and Gini
level Obesity Diabetes Current smoker Poor/fair SRH Sedentary lifestyle

Unadjusted
County −0.33 (−0.54, −0.13) −0.08 (−0.12, 0.27) 0.05 (−0.10, 0.20) 0.82 (0.59, 1.04) 0.19 (−0.04, 0.42)

State −0.01 (−0.25, 0.23) 0.55 (0.32, 0.78) 0.24 (0.07, 0.41) 1.11 (0.84, 1.38) 0.66 (0.39, 0.94)

Income-adjusted
County −0.39 (−0.59, −0.19) 0.03 (−0.16, 0.23) 0.01 (−0.14, 0.15) 0.66 (0.45, 0.88) 0.05 (−0.17, 0.28)

State −0.09 (−0.33, 0.15) 0.50 (0.27, 0.73) 0.18 (0.01, 0.36) 0.89 (0.64, 1.15) 0.48 (0.21, 0.75)

Fully adjusted
County −0.42 (−0.63, −0.20) −0.10 (−0.31, 0.10) 0.01 (−0.14, 0.17) 0.63 (0.41, 0.86) 0.23 (−0.01, 0.47)

State −0.25 (−0.50, 0.01) 0.30 (0.06, 0.55) 0.12 (−0.06, 0.30) 0.71 (0.44, 0.98) 0.58 (0.30, 0.85)

on a fine geographic scale. The reasons for such findings,
however, remain unclear and merit further research.

A direct comparison between income inequalities based in
the USA that examined the effect of aggregating at the state
level versus the county level further corroborates the Swiss
paradox. To illustrate the challenges, data from the 2012
Behavioral Risk Factor Surveillance System (BRFSS) were
utilized. The BRFSS is a nationally representative phone
survey of nearly 500,000 US residents in all 50 states, plus
districts and overseas territories. The 2012 BRFSS sample
was selected because it was the last year in which county of
residence was publicly available in the data set. The associ-
ation between income inequality and the county-level preva-
lence of five representative health behaviors and outcomes—
obesity, diabetes, current smoking, sedentary lifestyle, and
fair/poor self-reported health—was assessed using general-
ized linear models. The analysis was conducted using income
inequality on two levels of spatial aggregation, the state and
county, adjusting for income and other sociodemographic
factors. Findings identified three distinct patterns of associa-
tions (Table 1). First, for fair/poor self-reported health, higher
income inequality on both the state and county levels was
associated with an increase in the prevalence of this health
outcome, which is what might be expected. Second, higher
income inequality was associated with a higher prevalence of
both diabetes and having a sedentary lifestyle when income
inequality wasmeasured on the state level, but not whenmea-
sured on the county level. Similar results were obtained for
current smoking status, except the association between state-
level income inequality and prevalence of current smoking
became nonsignificant in the fully adjusted models. Third,
and perhaps most interestingly, for obesity, higher income
inequality on the county level was actually associated with a
decreased prevalence of obesity, while there were no signifi-
cant associations observed when income inequality was mea-
sured on the state level. In this analysis, several challenges
are apparent. This analysis considered each geographic unit
as spatially independent and did not test for potential spatial
dependency among geographic units using Moran’s I or

Table 2 Descriptive statistics for Gini index on the state and county
levels (2012, source: US Census Bureau)

Statistic States Counties

N 51 3143

Mean (SD) 0.4552 0.4350

Median 0.4559 0.4325

Min 0.4132 0.3161

Max 0.5315 0.5994

Skewness 0.7190 0.3573

Kurtosis 1.9461 0.3150

other statistic. This is likely a more important problem for
counties than for states (Manley et al. 2006) in terms of
ability to distinguish local patterns of spatial autocorrelation.
Additionally, there is a considerable difference in sample
size and the number of units of observation between states
(51, including DC) and counties (3143), resulted from spatial
aggregation. Related to this caveat, the distribution of Gini
index is notably different when measured on the state and
county levels (Table 2).

Study findings underscore the notion that level of aggrega-
tion matters. Why the association between income inequality
and health varied based on the level of aggregation is not
entirely clear. Uncovering some of the potential mechanisms
through which these social characteristics affect health on
these and other geographic levels is integral to creating
effective policies and programs designed to reduce health
inequalities and improve population health, regardless of
geography.

Case Study: Rural-Urban Status

Examining place-based factors that drive population health
and promote health disparities requires careful attention to
the place-based factors and characteristics studied. There are
many instances in which there is no scientific consensus
as to the best measure of a certain social, demographic,
environmental, or economic factors as each measure may
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have its own benefits and drawbacks. One key example of
this is the measure of rural-urban status (Cohen et al. 2018b).
Whether describing rural health issues, assessing rural-urban
health disparities, and examining the process of urbanization
or any other issues pertaining to the rural-urban divide, it
is essential to understand, utilize, and interpret appropriate
measures of rural-urban status to properly characterize the
place-based characteristics the researcher seeks to address.
Furthermore, it is valuable to note that place-based charac-
teristics, especially those concerning measures such as rural-
urban status, depend heavily on environmental factors that
have a meaningful impact on health both in and surrounding
the areas of study. Such factors include, but are not limited
to, the use of agricultural land, roads, landfills, presence
of bodies of water, forests, national preserves, parks, and
even concentrations of man-made structures such as build-
ings (Erdman et al. 2015; Jagai et al. 2010). The following
exemplar case studies illustrate some of the many options and
considerations of measuring rural-urban status in geospatial
and other related models.

Defining Rural-Urban Status

One basic issue to consider when using rural-urban status in
geospatial models is which definition of rural-urban status
to use. As is the case of many sociodemographic measures,
there is no scientific consensus as to the “best” measure of
rural-urban status, and each one has unique strengths and
weaknesses that should be taken into account (Hart et al.
2005). Furthermore, each measure requires a unique inter-
pretation and may reflect different aspects of the geographies
under study. It may be useful to note that some measures are
only defined and available on a certain geographic level of
aggregation.

Commonly used measures or rural-urban status in social
medicine and public health studies include, but are not lim-
ited to, population density, percent urban population, Ur-
ban Influence Codes (UIC), Rural-Urban Continuum Codes
(RUCC), and Rural-Urban Commuting Areas (RUCA). Pop-
ulation density and percent urban population are available
from the US Bureau of the Census and have the flexibility to
be used at the state, county, census tract, and block group. The
UIC, RUCC, and RUCA are produced and maintained by the
US Department of Agriculture. These three measures—UIC,
RUCC, and RUCA—are only available on certain geographic
level of aggregation. The UIC and RUCC are available only
at the county level, while the RUCA is available on the census
tract level, which could be scaled up to other geographic
levels with appropriate weighting schemes.

Consider the case of the percent urban variable that is
used in many studies of rural-urban health and health dis-
parities. This variable, defined as the percentage of the area

population that is deemed by the Census Bureau to live in
an urbanized place, has far-reaching research caveats. Take,
for example, an in-depth examination of the 29 counties
or county-equivalent places with a 100% urban population.
Among those 29 counties are large metropolitan counties,
such as Denver County, Colorado, one of the largest cities and
counties in the country, with a population of 285,797, as well
as far smaller counties and county-equivalents, such as Cov-
ington, Virginia, with a population of just 3067. Covington,
Virginia, is situated in a highly rural, mountainous area with
no major population centers within several hundred miles.
Yet, both Denver and Covington would be considered to be
equally “urban” according to the percent urban variable. For
comparison, San Diego County, California, which comprises
the majority of the second-largest city in California with
just over 1.1 million county residents, would be considered
less urban (96.5%) than Covington, Virginia (100%), using
percent urban as the measure of rural-urban status.

As a result of this limitation, composite indices of rural-
urban status take into account multiple aspects of the rural-
urban gradient and are gaining traction in public health and
biomedical research (Naumova et al. 2009). An example of
a composite measure is the Index of Relative Rurality (IRR)
(Waldorf 2007), which is a continuous measure (0 to 1) of
rural-urban status that takes into account population density,
population size, proximity to metropolitan areas, and percent
urban population. This measure was originally used at the
county level but can easily be calculated for other geographic
levels, such as the census tract or block group. The IRR
and other related measures have clear strengths, such as they
are continuous, take into account multiple aspects of the
rural-urban gradient, and are flexible on different geographic
scales. The central drawback of using this type of measure
is in its interpretation. As in the example of the IRR, since,
by definition, the measure is a relative measure of rurality,
differences between geographic units have no immediate, ob-
vious, and easy-to-comprehend interpretation. For example,
the difference in IRR between San Diego County, California
(0.24), and Covington, Virginia (0.31), is 0.07 IRR units.
The scale of the IRR ranges from 0.04 for New York City
Manhattan Borough to 0.89 for Northwest Arctic Borough in
Alaska.

The choice of how to measure rural-urban status affects
the potential associations observed between rural-urban sta-
tus and health outcomes. While several of the individual
rural-urban status measures are strongly correlated to each
other, others are not. Further complicating this issue is that
the magnitude of some of the correlations varies substantially
by geographic region. For instance, the rank correlation
among the RUCC, UIC, population density, percent urban,
and IRR was as high as 0.917 (p < 0.001) for the RUCC-
UIC correlation, to as low as 0.521 (p < 0.001) for the
UIC-percent urban correlation for US counties (Cohen et al.
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2015). When stratified into nine Census divisions, the range
of the UIC-percent urban correlation varied substantially
from 0.802 in the Pacific states to as low as 0.384 in the
West South Central states. The same study found that, as a
result, themagnitude and direction of the association between
rural-urban status and the health outcome of obesity varied
considerably by the choice of rural-urban status measure as
well as the geographic region of analysis.

Consideration of Variable Type in Assessing
Rural-Urban Differences

Another important element of assessing and using rural-
urban status in geospatial models is what type of rural-urban
measurement to use (i.e., dichotomous, ordinal, discrete, or
continuous). There is no scientific consensus as to which type
of variable to use (Hart et al. 2005). One type of variable com-
monly used is a rural-urban dichotomy (Haque and Telfair
2000; Dahly and Adair 2007) which has several advantages.
Perhaps the most obvious advantage to dichotomizing rural-
urban status is the ease of interpretation and dissemination
in research and practice. When a dichotomous measure, such
as metropolitan vs nonmetropolitan, or when a continuous
measure of rural-urban status, such as population density
or percent urban, is dichotomized, it is straightforward to
interpret in the context of disparities and can facilitate easy
comparison. The concepts of “rural” and “urban” can be
directly compared for interpretation, statistical analysis, and
subsequent dissemination in research and to the general
public.

As would be the case for converting any continuous mea-
sure to a dichotomous measure, there is a critical issue of
deciding which cut point to use when delineating “rural”
from “urban.” Consider the example of population density
and obesity among a sample of older adults aged 65 and
above abstracted from the 2012 BRFSS. In this analysis,
nine different cut points are used to delineate “rural” from
“urban” counties in the USA at each decile of population
density (Fig. 3). If the tenth decile is used, which indicates
the lowest 10%of population density (extremely rural) versus
all other counties, the prevalence of obesity in those counties
considered to be rural is significantly lower (24.2%) than
in those counties considered to be urban (27.7%). However,
if the 90th percentile of population density is used, which
would separate counties into highly urban (top 10%) versus
all others, the prevalence of obesity in the rural counties is
significantly higher (27.6%) than that of the urban coun-
ties (25.2%). Similar results are observed when using the
80th percentile of population density as the cutoff value:
the prevalence of obesity is significantly higher in the rural
counties (27.6%) than in urban counties (26.0%). Using the
median county population density or any of the surrounding
deciles as cutoffs (20th through 70th), there would be no
significant differences between rural and urban counties in
the prevalence of obesity. Therefore, in this example, it is
evident that when dichotomizing a continuous variable to
obtain a measure of rural-urban status, the choice of cut-
off value makes a substantial difference in the conclusions
reached about the health outcome of study. In this case, the
selection of two different cutoff values—at 10% and 90%—
to delineate “rural” from “urban” results in completely op-
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posite findings. These results are simply an application or
extension of the problem of dichotomization used in other,
non-geospatial models.

Ordinal variables, such as the RUCC, RUCA, and UIC,
discussed previously, are advantageous for a variety of rea-
sons, but they also have several drawbacks that should be
taken into consideration. Ordinal variables may be preferred
over dichotomous variables because of their ability to distin-
guish finer gradations of rural-urban status. For example, the
RUCC is a classification scheme that delineates metropolitan
counties from nonmetropolitan counties. Metropolitan coun-
ties are classified by the population size of their metro area
and nonmetropolitan counties by degree of urbanization and
proximity to a metro area. The RUCC ranks counties on a
scale from 1 to 9 based on these characteristics. An advantage
of using an ordinal variable, such as the RUCC, is the flex-
ibility to treat it either as a continuous or discrete predictor
variable or as a series of dummy or indicator variables if there
is enough statistical power to do so. The advantage of the
former is to assess to see if there is a quasi-linear association
between rural-urban status and the outcome, while the advan-
tage of the latter is to assess potential nonlinear associations
between rural-urban status.

Nonetheless, there are some inherent drawback to us-
ing ordinal variables, some unique to variables such as the
RUCC, UIC, and RUCA. The first pertains to using RUCC,
for example, as a continuous or discrete predictor in models.
This assumes that there is a linear association between the
RUCC and the outcome of interest (whether continuous,
ordinal, or dichotomous). If there is a nonlinear component
to the relationship, i.e., curvilinear, j-shaped, etc., the model
may not adequately quantify this association. A more seri-
ous issue may be is the construction of the measure itself.
While the RUCC is presented as an ordinal variable (1 to 9),
the gradations between each unit do not reflect an ordinal
process. Consider a RUCC value of 3, which represents
“counties in metro areas of fewer than 250,000 population,”
whereas a RUCC value of 4 represents “counties with an
urban population of 20,000 or more, adjacent to a metro
area.” A RUCC value of 3 is considered more urban than a
value of 4. Yet, there are numerous examples of counties with
population levels well below the threshold of 250,000 that
lie in a metropolitan area (considered a 3), while much more
populous counties lie just outside and immediately adjacent
to one or twometropolitan areas with large urban populations
(considered a 4). Although the county considered a 3 on
the RUCC scale might appear less urban than the county
considered a 4, the former would be considered to be more
urban than the latter. Similar issues exist with the RUCA and
UIC measures as well.

It is important to note that no classification system, di-
chotomous, ordinal, discrete, continuous, or other, is free of

issues and caveats. Ordinalmeasures such as the RUCC,UIC,
and RUCA provide a robust array of options for assessing
rural-urban status above and beyond many traditional unidi-
mensional measures, such as population density or percent
urban population. Given that there is no universal, standard
measure of rural-urban status, there are a variety of available
measures and variable types to use to suit the needs of re-
searchers interested in assessing place-based characteristics,
such as rural-urban status. There is value in understanding
the strengths and weaknesses of each one, but if they are used
properly, their use will not render an analysis invalid.

Assessment of Nonlinearity in the Rural-Urban
Gradient

Example: Rural-Urban Status and Health
Outcomes
As an example, we consider linear measures of rural-urban
status and assess potential nonlinearity of an association
between rural-urban status and health outcomes. In the case
study highlighted here, we assessed the associations between
rural-urban status and multiple health outcomes from a na-
tional survey of older adults using seven commonly used
measures of rural-urban status: RUCC, UIC, RUCA, Eu-
clidean distance to nearest metropolitan area, population size,
population density, and percent of the population that is ur-
ban, with each measure being stratified into quintiles. The as-
sociation between quintile of rural-urban status measures and
the examined health outcomes (obesity and missing annual
medical checkup) was assessed through logistic regression
modeling, accounting for complex sampling and controlling
for confounding variables. We also examined linear trends
by treating quintile of each rural-urban status measure as a
discrete variable. Details are outlined in the article (Cohen et
al. 2018b).

Study results emphasize some of the points made previ-
ously. First, compared to the most urban quintile of each
measure (reference group), generally speaking, the odds of
each outcome—obesity and missing an annual checkup—
were significantly higher in the more rural areas (Fig. 4),
with some key exceptions. For population density, the odds of
obesity were significantly lower in the most rural quintile and
significantly higher in the third and fourth quintiles compared
to the most urban quintile. Analyses revealed a significant
monotonic association and population density quintile (in-
creasing urbanity was associated with an increased likeli-
hood of obesity). However, a linear or monotonic association
was not evident for any of the other six measures (RUCC,
UIC, RUCA, Euclidian distance, population size, and per-
cent urban), likely to the curvilinear relationship between
rural-urban status and obesity for many of the measures.
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Fig. 4 Odds ratio of obesity (top panel) and missed annual checkup
(bottom panel) for seven measures of rural-urban status in quintiles:
RUCC, UIC, RUCA, distance to nearest metropolitan area, population

size, population density, and percent urban population. Reference group
is the highest (most urban) quintile. (*Adapted from Cohen et al. 2018a)

Therefore, using a non-dichotomous measure of rural-urban
status revealed a nuanced, U- or J-shaped association be-
tween rural-urban status and obesity that might have been
masked had a dichotomous measure of rural-urban status
been used. Also, the associations depended upon the spe-
cific measure of rural-urban status. Had population density
quintile been a discrete variable, we would have been able to
assess a potential monotonic relationship between it and the
log odds of obesity. A monotonic relationship would have
been observed: increasing population density is associated
with greater odds of obesity. However, the results show that
this is not entirely true, based on the data. There may be a
positive monotonic relationship between population density

and obesity but only among the four most rural quintiles of
population density. In other words, the monotonic associ-
ation does not hold for the most urban quintile. The odds
ratios of the association between both the third and fourth
quintiles of population density and obesity were above 1.
Therefore, the risk of obesity is highest in the intermediate
(third and fourth quintiles) of population density, and not
in the highest (most urban) quintile, and the association
between obesity and rural-urban status was curvilinear and
non-monotonic.

Analogous findings also were observed for missing an
annual checkup. In the case of this measure, six of the seven
measures of rural-urban status were inversely and monotoni-
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cally related to the likelihood of missing an annual checkup:
as rurality increased, respondents were significantly more
likely to have missed an annual checkup for all measures,
except percent urban population. For percent urban, although
respondents in each of the four most rural quintiles were sig-
nificantly more likely to have missed their annual checkup,
the associations varied in magnitude, which likely precluded
a monotonic association.

Example: Rural-Urban Status, Vegetation,
and Asthma in Older Adults
Here we further illustrate the effect of nonlinearity in the
rural-urban gradient in exploring the relationship between
hospitalizations among older adults due to asthma in the New
England states (Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, and Vermont) and New York State
(Erdman et al. 2015). These associations can be clearly af-
fected by population density in many ways. The seven states
included in this study range from densely populated New
York City and southern Connecticut to rural Maine and New
Hampshire. All of the seven states have relatively similar
climates and other environmental factors. In 2006, the pop-
ulation of these states was 11% of the entire US population
(33,576,172), 13% (4,439,893) of whom were over 65 years
of age (census.gov). To assess the associations between the
rates of disease and environmental characteristics, it was
necessary to spatially and temporally align multiple data sets.
We used satellite imagery to assess degree of greenness and
created a measure for the percent of green cover for 16-day
time periods during 2005–2006. Census data (2010) were
used to abstract population size and calculated hospitaliza-
tion rates based on patients’ zip code of residence.

The first step of the analysis was creating the data set to
match the hospitalization data to the satellite imagery and
detecting alignment and identify misclassification issues. For
example, hospitalization records were arranged by residential
zip code, whereas for imagery data, we used a shape file to
align with zip codes boundaries. The shape file generally had
fewer pixels of data on smaller areas that tend to also have
larger population densities. The hospitalization records listed
3109 zip codes; after merging those with the census data
resulted in a data set of 2864 zip codes, a net loss of 245 zip
codes with low population sizes. To reduce spuriously high
rates, zip codes with older adult populations fewer than 100
residents were merged with adjoining zip codes providing
these were in the same state. Neighboring zip codes with the
most similar population size were merged until the joined
county population exceeded 100 residents aged 65 + .

Linking medical claims and satellite imagery along with
spatial alignment should consider temporal alignment as
well. While medical records were complete for the study pe-
riod, some satellite images were missing or unusable during
that period. When we linked imagery data by zip code to

the hospitalization records, we lost additional 424 zip codes
resulting in 2876 complete matches. We then merged zip
codes that had missing values with neighbors that are likely
to be similar in environmental exposures. Both spatial and
temporal alignments within and between data sets are time-
consuming, but the effect of missing data may compound
across multiple data sets and may influence the final anal-
ysis and its findings. Thus far, the data linkage procedures
are rarely described in the epidemiological literature, and a
system of checks and balances to identify data discrepancies
does not yet exist.

As we explored the associations between degree of green-
ness and asthma rates, we noted that the relationships were
influenced by population density and that association was not
monotonic. We applied simple cutoffs and marked a zip code
as urban if a zip code had >830.7 persons per square mile,
rural if a zip code had <107 persons per square mile, and
semi-urban otherwise. In the studied seven states, the average
elderly population was 13.1% and an average log population
density of 2.1 (131 people per square mile). The number of
zip code falling in a rural category was high for Vermont,
New Hampshire, and Maine while Connecticut, New York,
Massachusetts, and Rhode Island had almost equal mix of
rural and urban zip codes. Overall the relationship between
hospitalization rates and population density was U-shaped
with a marked increase at both extremes: for heavily pop-
ulated and the least populated zip codes (Figs. 5 and 6). This
nonlinearity requires exploring the relationship separately
for urban, rural, and semi-urban zip codes. After adjusting
for income and percent elderly population, higher evergreen
vegetation in urban areas demonstrated a small yet protective
effect.

Summary of Examples

The provided or included examples are not intended to imply
that all measures of rural-urban status are invalid and incon-
sistent. Rather, they highlight the need to consider the specific
rural-urban status measure being used and what aspect or
aspects of the rural-urban continuum the selected measure
is intended to emphasize. Moreover, as with any predictor
variable used in modeling health outcomes, whether it is
geospatial or traditional, non-spatial models, it is important
to consider the trade-offs of using one variable type over an-
other. For example, as discussed, treating rural-urban status
as a continuous or discrete variable reduces a model degrees
of freedom and may optimize statistical power. However, this
use assumes a monotonic association between rural-urban
status and the health outcome(s) under study. Using indicator
variables, as illustrated, can allow for the assessment of non-
monotonic associations but require additional model degrees
of freedom. There is no one valid way to use rural-urban

http://census.gov
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Fig. 5 Relationship between population density of asthma hospitalization rates among older adults in selected states, 2005–2006



198 S. A. Cohen et al.

Fig. 6 Relationship between population density of asthma hospitalization rates among older adults in New York and six New England states,
2005–2006

status, but its use requires attention to these and other issues
to properly characterize the relationship between rural-urban
status and the health outcome under study.

Recommendations and Conclusions

This chapter addresses a handful of the many issues asso-
ciated with selecting and utilizing variables to address key
place-based social determinants of health, with examples to
the rural-urban gradient. This chapter may raise more ques-
tions than it answers regarding decisions around selection
of measures to use and how to use them. There remains no
scientific consensus as to best practices, and it is left to the
researcher to decide which measures to use based on study
questions, on what geographic scale or scales to use them,
and interpretation of findings.

When using place-based characteristics in geospatial
models and, by extension, in non-spatial models, it is
important to consider the following questions: First, on
what geographic scale will the characteristic be measured
and analyzed? Different scales provide certain benefits

and drawbacks in terms of statistical stability, policy
relevance, sample size, availability of data, and other
considerations. Second, what factors or determinants are
most relevant for answering the research question? This
question raises the issue of policy relevance, ability to
take action upon significant findings, accuracy of the
measure, and numerous other issues. Many measures are
multidimensional, and selecting one over the other may have
meaningful implications for the directionality, magnitude,
and overall nature of any observed association. Third,
what type of variable will be used in the analysis? This
question is relevant to all types of models, not just geospatial
models. Different types of variables offer trade-offs in
terms of modeling the type of association, interpretability
of findings, and statistical power. In the example of rural-
urban status, there is a need to use the concept of a power
law to incorporate rural-urban metrics that take into account
population distribution and population density measures that
could be sustainable and valid across different geographic
aggregation schemes.

This chapter discussed the rural-urban gradient as an ex-
ample of a social determinant of health explored in a growing
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body of population health studies that is intrinsically linked
to geography. Although the discussion, particularly the case
studies, focuses on issues pertaining tomeasuring rural-urban
health status specifically, the broader concepts of geographic
scale, policy relevance, statistical power, the modifiable area
unit problem, and many of the other issues described above
extend to other social determinants of health, such as SES,
household composition, education, income inequality, and
demographic structure (e.g., age, race/ethnicity, gender, etc.).
Furthermore, for rural-urban status, income inequality and
other social determinants of health are intrinsically tied to
the concept of place. The processes we are trying to capture
are dynamic, yet we are limited by the preponderance of
static tools and measures available to researchers. Therefore,
all of these measures have a critical temporal component
that may be challenging to address in standard geospatial
modeling. What we observed today with respect to these
social determinants is not necessarily can be observed in
the past yet quite likely reflects the consequences of the
past, including historical nature-made and man-made events
and other perhaps ongoing measurable and unmeasurable
processes.

The place-based factors discussed in this chapter and other
social determinants of health often represent the ultimate
or distal causes of disease and health disparities. On the
other hand, they also provide opportunities on which base
policies, programs, and interventions can be designed to
promote healthy behaviors, improve population health, and
ultimately reduce health disparities. Awareness of the issues
surrounding measurement of these determinants is integral
to conduct meaningful and impactful research through which
population health can be improved.
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