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Geospatial Technology for HumanWell-Being
and Health: An Overview

Fazlay S. Faruque

Introduction

There have been remarkable developments in the area of
geospatial health over the last 30 years or so. Many of these
advancements are discussed in detail throughout the chapters
in this book. However, two important aspects of geospatial
health have not received the required attention. These two as-
pects are (a) understanding the limitations of different spatial
analytical tools and (b) advancements in making geospatial
environmental health information available in a usable format
for health science researchers for certain emerging areas and
also for clinicians for their medical practice. The purpose of
this chapter is to explore the contribution of geospatial tech-
nology in relation to (a) emerging health science research and
(b) clinical practice of medicine. This chapter also provides
background information on relevant concepts, terminologies,
technologies, and organizations, which are often unfamiliar
to the geospatial health early professionals.

The emergence of the geospatial concept for human well-
being and health is inherited from 2500 years of philosoph-
ical premises of medicine, geography, and social science,
although now, it may appear as a technology. When Hip-
pocrates (460–375 BC) noted the importance of environmen-
tal exposure in medical investigation, in his classic work,
Airs, Waters, and Places (aëre, aquis et locis), he logically
signified the importance of location and environment in
medical practice (Miller 1962). Unfortunately, Hippocrates’
astute observations have not been translated into today’s
medical practice. That is why, today, obtaining a history of
environmental exposure is not a routine practice, in fact it is
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an exception (ATSDR 2015; McClafferty et al. 2015; Hart
2017).

Advances in Earth observations, progresses in overall
spatial data quality and availability, user-friendliness of the
software, and affordability of required processing power have
made it possible to apply geospatial tools in a wide range
of health studies. Unfortunately, the use of such tools often
occurs without the proper understanding of the theoretical de-
velopments of these tools and their strengths andweaknesses.
Since the National Library of Medicine (NLM) first added
“geographic information systems” as a MEDLINE indexing
term in 2003, an extraordinary growth has been noticed. From
1994 to 2002, the growth in the number of GIS articles in
MEDLINE was four times greater than articles in general
health (Pickle et al. 2005). Whereas the increased emphasis
on GIS is a recognition of its importance, the seemingly ease
of use of the tools has also resulted in an increased number
of poorly prepared papers. Journal editors often encounter
surges of such papers and, unfortunately, some of those
papers are published, which may hinder the sound progress
of the discipline. To avoid the infiltration of poorly prepared
manuscripts, more advanced discussions are needed about
the limitations of spatial techniques. This book includes
chapters on diverse geospatial health applications and also
discussions on various limitations associated with apply-
ing geospatial techniques, including data, methodology, and
available tools. This particular chapter highlights information
that will further enhance the discussions on the potentials of
geospatial technology in generating environmental exposure
history for emerging health science research and for the use
of disease investigation in clinical practice. To ensure that the
readers are provided a relevant springboard, this chapter also
discusses relevant concepts, terminologies, technologies, and
organizations, with emphasis on contemporary and emerging
issues. Hopefully, this chapter will provide readers a compre-
hensive idea of the newer potentials of geospatial technology
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for our well-being and health irrespective of their level of
experience.

Common diseases are the products of our genes, lifestyle
behavior, and environment. Genes, lifestyle, and environ-
ment, in most cases, interact with each other causing different
levels of disease risks (Fig. 1). In most cases, our genetic
blueprint alone does not determine our health. In terms of dis-
ease risk factors, two different persons carrying two different
types of gene will respond differently in response to the same
environment and lifestyle. On the contrary, identical twins,
having the same genetic blueprint, will respond differently to
their different lifestyle and environmental exposures. A com-
mon saying “genetics load the gun, but environment (environ-
mental exposure and lifestyle) pulls the trigger” makes it easy
to understand the role of the environment in disease devel-
opment. An individual’s surrounding environmental factors
are location specific, and that person’s lifestyle also to some
extent is location dependent. Thus, geospatial technology
plays a critical role in disease risk factor analysis.

With the emerging interest in population health science,
the use of geospatial technology may provide a unique op-
portunity to broaden our understanding of the multifactorial
pathways that produce health and health disparities at the
population level. In the case of the vulnerable population,
geospatial technology is even more important to identify
their surrounding environment. Subtle differences in genetic
makeup can cause two individuals to respond differently to
the same environmental exposure. As a result, some people
may develop a disease after being exposed to certain en-
vironments and lifestyle exposures, while others may not.
Such differences in response make it critical that vulnerable
population and their healthcare providers are aware of the en-
vironmental conditions, particularly of the vulnerable people
(NIEHS 2020).

Current studies on gene-lifestyle-environment interac-
tions are shedding light on the causes of many diseases,
their therapeutic solutions, and method of preventions.
Characterizing these gene-lifestyle-environment interactions

Common
Diseases

Environment

LifestyleGene

Fig. 1 Major causes of common diseases are known to be the environ-
ment, genes, and lifestyle. Interactions of these variables are responsible
for a wide array of diseases

is particularly important to develop meaningful prevention
strategies. Because of the importance of both gene (G)
and environment (E), and their interactions, scientists are
engaging inGxE studies. Generating environmental exposure
information for the population (or even for an individual)
is now possible through the proper use of geospatial
technology, which, in fact, is an emerging area for geospatial
professionals.

While medical science recognizes environmental expo-
sure as one of the three major risk factors for common dis-
eases (Fig. 1), the investigations on environmental exposure
history is not a common practice during patient diagnosis
in clinical settings. In most western countries, the doctor’s
office collects information from their patients during the first
visit related to family history and habits, which could be
grouped as gene and lifestyle categories. However, the other
major risk factor, environment, is missing in this information
collection practice.

Outstanding progress has been made in generating infor-
mation on environmental exposures. Maantay and McLaf-
ferty (2011) eloquently discussed the role of geospatial tech-
nology in environmental health. Geospatial technology is
now advanced enough to reveal complex associations be-
tween environmental exposure and health outcomes by incor-
porating multivariate and nonlinear spatial modeling. How-
ever, the full benefits of the advancements of geospatial
technology have not reached the hands of all sectors of
health science researchers and practicing clinicians, certainly
not in a readily useable format. As the geospatial experts,
who are working in the field of environmental health, are
able to generate a “profile” of spatiotemporal environmental
exposure, it is their responsibility to build the bridge with the
health science and medical communities. Such engagement
can guide the formulation of environmental health exposure
information per the needs of the emerging health science
research and healthcare practice. To harvest the results of
the progress, the geospatial environmental health community
needs to work with the healthcare providers to make envi-
ronmental health information an essential part of the disease
diagnosis system. This introductory chapter is expected to
lead readers to comprehend the progress and potential of
geospatial technology for human well-being and health.

Emergence of Geospatial Technology for
HumanWell-Being and Health

Over the last three decades, discussions on human well-being
and health gained momentum, influencing the beginning
of a shift from reactive care to proactive care, prevention,
and precision medicine. Around the same time, applications
of geospatial technology were developing more interdis-
ciplinary approaches. Such approaches enabled geospatial
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technology to explore the complex interrelationships be-
tween multidisciplinary variables related to human well-
being and health.

Space technologies, the Earth observation (EO) in par-
ticular, have significantly contributed to the generation of
environmental knowledge, shedding light on newer dimen-
sions of well-being and health. Because of their position
in orbit around the Earth, remote sensing satellites offer a
unique vantage point and generate data streams that allow
us to observe environmental changes, including the wide-
ranging effects of climate change (ClimateAction 2020).
The concepts of planetary approaches to study the health of
the Earth and its living organisms clearly require the Earth
observation (EO) data and geospatial technology. Planetary
epidemiology, a term introduced by Colin Butler (2018), is a
perfect example that requires applications of these data and
technology to implement this sub-discipline of epidemiology.

Different space agencies have played critical roles in the
evolution of geospatial environmental health by generating
Earth observation data, inventing different analytical tools,
and providing knowledgebase expertise. Since the 1970s,
when Earth-observing satellites started collecting global en-
vironmental information, the geospatial community did not
take long to engage in human well-being and health stud-
ies utilizing resources available from the space agencies.
These studies got further momentumwhen Earth observation
satellite data became easily available to academicians and
researchers. Among the geospatial community, utilization of
Earth observation (EO) of the environment for human well-
being and health is now well-established (Hay et al. 1997;
Herbreteau et al. 2007; Arvor et al. 2011; Wigbels 2011;
Hamm et al. 2015; Viana et al. 2017; Parselia et al. 2019;
Marti et al. 2020).

With increasing demands, some space agencies have even
started specific programs to support public health studies.
One such initiative by NASA was the Air Quality Applied
Sciences Team (AQAST), which is still active. NASA also
developed a set of tools, delivered online, known asGiovanni,
which has a wealth of resources for public health research
(Acker 2021). Other national/regional space agencies have
also made progress in health applications. Notably, the Japan
Aerospace Exploration Agency (JAXA) has developed a
platform specifically for public health studies called public-
health monitoring and analysis platform (Oyoshi et al. 2019).

Organizations Supporting Geospatial
Applications for HumanWell-Being and Health

Many of today’s human well-being and health-related issues
require international solutions. Some nongovernmental orga-
nizations play important roles directly or indirectly to shape

the policy and research directions in the area of geospatial
health. However, the structural relationships among these
organizations may not be very apparent. Nevertheless, these
organizations are important for researchers as they play roles
in research prioritization. These organizations often provide
funding support directly to researchers, but more importantly,
they work closely with different national research and fund-
ing agencies and thus may have a larger impact. Below are
few examples of such major organizations.

International Science Council (ISC)
The International Science Council (ISC) works at the global
level to catalyze and convene scientific expertise, advice, and
influence on issues of major concern to both science and
society (ISC 2020). It is a nongovernmental organizationwith
a global membership of 40 international scientific unions and
associations and over 140 national and regional scientific
organizations, including academies and research councils.

The ISC was created in 2018 after a merger between the
International Council for Science (ICSU) and the Interna-
tional Social Science Council (ISSC). Now this organization
brings together the natural and social sciences forming the
largest global science organization of its type. Through its
members and associates; its partnerships with other interna-
tional scientific organizations, UN agencies, and intergov-
ernmental bodies; and its wider networks of expertise, the
Council is engaged in bringing together scientific excellence
and science policy expertise from all fields of science and all
regions of the world.

The unions and academy of sciences, under the umbrella
of ISC, deal with science and its promotion as well as gen-
erate scientific knowledge and evidences for policymaking.
However, the space of and interlinks between the individual
ISC organizations are not necessarily very clear. Ismail-
Zadeh (2016) attempted to clarify the common goals and
activities of these professional societies and international
unions and presented their differences as well. A special
issue of the History of Geo- and Space Sciences on the
“The International Union of Geodesy and Geophysics: from
different spheres to a common globe” was published de-
scribing associated unions in further detail (Ismail-Zadeh
and Joselyn 2019). It is important for the geospatial health
community to keep upwith these organizations as the breadth
of wellness and health is very wide, and almost all of these
organizations, comprising a diverse scientific community,
directly or indirectly shape the research trend in this area.
As mentioned earlier, these organizations are linked with the
United Nations and thereby linked with the governments of
different countries and also with the national agencies of
those countries.

The following organizations and bodies within the ISC
are directly or indirectly involved in geospatial health-related
activities:
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GeoUnions
One of the most effective international networks that benefit
geospatial health studies is the International Geoscientific
Unions or GeoUnions. With thousands of scientists from all
over the world, the GeoUnions have been coordinating and
promoting international efforts in Earth and space sciences
since the beginning of the twentieth century (Ismail-Zadeh
2016).

In 2004, representatives of several of the GeoUnions met
in Paris to establish a partnership to better promote the
geosciences worldwide, to communicate and to coordinate
the scientific activities of individual unions, and to gain
recognition by ICSU (now ISC) bodies, the United Nations
organizations, and other global stakeholders (Joselyn et al.
2019).

As a network of the International Science Council (ISC),
the GeoUnions include those organizations who deal with
Earth and space sciences, such as the International Geograph-
ical Union (IGU), the International Union of Geodesy and
Geophysics (IUGG), the International Cartographic Associ-
ation (ACA), the International Union of Geological Sciences
(IUGS), and the International Society for Photogrammetry
and Remote Sensing (ISPRS). It should be noted that ISPRS
has its own Working Group on Environment and Health
with one of its goals to bridge the geospatial, Earth, and
health science communities for exploring interdisciplinary
collaborations to improve our overall well-being and health.

GeoUnions are of special interest to the geospatial com-
munity who are working at the new frontiers of well-being
and health as it requires a broad spectrum of understanding
and collaboration. The roles that ISC and GeoUnions have
been playing in human well-being and health are reflected in
their reports and cited in other literature as well (Budge et al.
2009; ICSU 2011; Morain and Budge 2012; Bai et al. 2012).

Group on Earth Observations GEO
The Group on Earth Observations GEO is different from
the ISC organizations. However, it has unique importance
for the geospatial well-being and health community. GEO
is an intergovernmental partnership working to improve the
availability, access, and use of open Earth observations,
including satellite imagery, remote sensing, and in situ
data, to impact policy and decision-making in a wide
range of sectors (GEO 2020). Currently, it has 112
member governments (https://www.earthobservations.org/
members.php). GEO’s member governments, participating
organizations, and associates work together to develop and
implement Earth observations projects and initiatives that
address global environmental and societal challenges. GEO
has a wide range of participating organizations (currently
133), including ISPRS, UN, and WHO. GEO participating
organizations benefit from the global community of Earth
observation experts to learn and share knowledge in the area

of the GEO engagement priorities, namely, climate change,
disaster risk reduction, and the UN Sustainable Development
Goals.

For the geospatial community, GEO plays a special role
through its Global Earth Observation System of Systems
(GEOSS), which integrates observing systems and shares
data by connecting existing infrastructures using common
standards (GEOSS 2020). There are more than 400 mil-
lion open data resources in GEOSS from more than 150
national and regional providers including NASA and ESA,
international organizations such as World Meteorological
Organization (WMO), and the commercial sector such as
DigitalGlobe.

GEO has several initiatives related to health, such as its
Earth observations for Public Health Surveillance, which
utilizes Earth observations for public health alerts on air qual-
ity, outbreaks of disease carried by water-borne vectors, and
assessments of access to healthcare and helps achieve Sus-
tainable Development Goal (SDG) Goal 3 on Good Health
and Well-being. Another initiative is the GEO Health Com-
munity of Practice (Geohealthcop 2020), a global network
of governments, organizations, and observers, seeking to
use environmental observations to improve health decision-
making at the international, regional, country, and district lev-
els. EO4HEALTH (EO4HEALTH 2020) is an element of the
GEO Health Community of Practice (CoP), engaged in the
development and elaboration of the CoPWork Plan. The CoP
Work Plan will be aligned with the EO4HEALTH objectives
and includes workgroups on seven specific topics: (1) heat;
(2) infectious diseases; (3) air quality; (4) food security and
safety; (5) healthcare infrastructure; (6) crosscutting issues;
and (7) integrating EO data techniques.

GEO continues to focus on societal benefits, encouraging
a diverge utilization of EO. To support the response and
recovery actions related to the COVID-19 pandemic, the
GEO Work Program activities, GEO Members, Participat-
ing Organizations, and Associates are using EO in diverse
projects in many different countries.

Space Agencies During COVID-19 Crisis

During the crisis of the COVID-19 pandemic, space agen-
cies came forward to play a responsible role utilizing their
resources in a variety of ways to reveal different aspects
of this unprecedented phenomenon. The notable areas of
research are (a) environmental factors that affect survival and
spread of SARS-CoV-2, (b) association between people’s
environmental exposures and COVID-19 outcome, and (c)
impact of COVID-19 lockdown on the environment.

NASAmade available some unique research opportunities
during the early onset of this pandemic. One specific area
was to model the epidemiological time series utilizing NASA
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data. Experience from previously used infectious disease
spreading models became surrogates for some of the SARS-
CoV-2 spreading studies. NASA encouraged scientists to
use information fromNASA’s Earth-observing satellites, on-
the-ground sensors, and computer-based datasets to study
the environmental, economic, and societal impacts of the
COVID-19 pandemic. In addition, the agency’s Earth Sci-
ence Division sponsored new projects to examine the effects
of shutdowns that brought changes to the environment, espe-
cially the atmosphere (NASA Earth Science 2020). Another
topic of research of this initiative was the role of natural
environmental phenomena that may impact the spread of the
pandemic.

NASA’s other initiative was to encourage citizen scien-
tists around the world to solve challenges related to COVID-
19 using NASA’s open-source data in an all-virtual, global
“hackathon” on the following four themes (NASA Earth
Science 2020):

1. Learning about the virus and its spread using space-based
data

2. Local response/change and solution
3. Impacts of COVID-19 on the Earth system/Earth system

response
4. Economic opportunity, impact, and recovery during and

following COVID-19

The Japan Aerospace Exploration Agency (JAXA) is an-
other major national space agency that made several quick
but major steps to respond to the COVID-19 pandemic. From
early on, JAXA had started to study the effects of COVID-
19 on economic activities by analyzing CO2 concentration
variations using GOSAT data over major cities. JAXA also
extended cooperation for international collaboration among
other space agencies to use satellite data to contribute to the
various measures taken against COVID-19.

As a regional body, the European Space Agency (ESA),
in coordination with the European Commission, launched
a special edition of the Custom Script Contest, focusing
on the support of space assets during the COVID-19 crisis.
The expectation of this initiative was to generate new ideas
on how satellite data could help monitor and mitigate the
situation for the upcoming months, while the world would
organize to get back to business andwould need to adapt from
this crisis.

Different space agencies in China, including governmen-
tal and commercial, came forward to provide their remote
sensing resources studying various aspects of COVID-19 at
local, national, and international scales and in supporting the
control of this pandemic.

In response to the COVID-19 pandemic, the Group on
Earth Observations (GEO) has taken several initiatives, such
as GEO Community Response to COVID-19, Teleconfer-

ences on COVID-19 Activities, and Webinars (http://www.
geohealthcop.org/vision-and-goals).

It is worthy of including here a note from the ESA, written
in collaboration with the European Commission and their
other collaborators (Cheli 2020).

ESA Earth Observation Input
For the introductory chapter of the Springer
publication:
“Application of Geospatial Technology in Preven-
tion and Improvement of Human Health”
Space technologies, and Earth Observation (EO) in
particular, provide key contributions to the generation
and accuracy of geospatial knowledge and information.
Because of their position in orbit around Earth, remote
sensing satellites offer a unique vantage point and
generate data streams that allow us to observe environ-
mental changes, including the wide-ranging effects of
climate change.

The European Space Agency (ESA) plays a
key role in the European EO ecosystem. Its R&D
programme prepares all future EO missions developed
by ESA, in particular new science missions called
Earth Explorers, and new capabilities for operational
monitoring in meteorology and for use within the
Copernicus programme. ESA also provides technology
development for national and commercial missions of
its Member States.

Copernicus is European Union’s independent
operational EO system, under the leadership of the
European Commission, for which ESA develops and
implements the space component: the Copernicus
Sentinel missions and the related ground segment
infrastructure. European EO also relies on a strong
symbiosis between public and private entities, as the
commercial sector and national missions feed high-
resolution satellite data into the public programmes.

Thanks to Copernicus, the general public,
downstream users and decision-makers have been
able to witness some direct effects of the COVID-19
impacts from space. For instance, it showed how the
levels of air pollution caused by NO2 emissions above
global cities and industrial areas significantly dropped.
This occurred as a consequence of lockdownmeasures:
traffic was decimated and a lot of (fossil-fuel powered)
industrial production was put temporarily on hold.

Copernicus also revealed information on the
functioning of our economy, as it is capable of
observing grounded planes at airport tarmacs, changes
in large-scale agricultural productivity, traffic jams at

(continued)

http://www.geohealthcop.org/vision-and-goals
http://www.geohealthcop.org/vision-and-goals
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closed or obstructed borders and ship and oil tankers
waiting at sea to deliver their goods onshore. In short,
Earth Observation can tell a great deal about human
economic activity, and about the mobility of goods
and people so crucial to the globalised economy of the
twenty-first century.

In order to make optimal use of the current
infrastructure and data streams of the various EO
programmes, ESA has joined forces with the American
National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency
(JAXA). Their coordinated action ensures that space
agencies can maximise their contributions to the relief
efforts and to help support the restart of the economy,
sharing relevant EO data, developing joint methodolo-
gies and results on topics of common interest and on
key selected supersites areas such as Tokyo, Los Ange-
les and France. ESA is also working together closely
with the European Commission to support actions
within a European context, for instance to monitor
certain areas of particular strategic interest with greater
attention thanks to updated satellite taskinga.

Furthermore, EO provides contributions to our
ability to improve human health in the future. In the
specific case of viruses, for instance, scientific studies
have confirmed that their prevalence and increasing
frequency is linked to the accelerating destruction
of ecosystems. In this sense, trends observed from
space – such as the rate of disappearance of rainforests
and wetlands – can help in our assessment of
medium and long-term risks and, it can provide the
information needed to take sensible decisions in terms
of environmental and agricultural policy.

But the link between EO and health is in fact much
broader. Human health is very much impacted by
the overall health of our planet and the state of our
environment. Climate change and other environmental
changes are having an ever-stronger impact on local or
regional level. EO systems therefore help us to increase
societal resilience, to support rescue and disaster relief
efforts and, to help predict how the overall biosphere
will likely change in the coming decades.

Finally, Earth Observation also brings indisputable
facts and increased transparency to the public debate.
In fact, it is now even demonstrating that political
actions can successfully lead to environmental repair.
Last year, the hole in the ozone layer above Antarctica
was measured the smallest since 1982. The first signs
of its recovery show that environmental action does
pay off, even if that only starts to show decades later.

(continued)

This will become increasingly important as society
needs to grow the public support to tackle the key
challenge of our time.

The Coronavirus pandemic has painfully illustrated
that in times of a health crisis, it is vital to have a
reliable testing and diagnosis capabilities at hand.
Earth Observation infrastructure, and Copernicus in
particular, is our planetary health monitoring devise.
A better understanding of our Earth’s complex climate
system will be indispensable if we are to win the
battles against climate change and biodiversity loss
for the sake of current and future generations.
Written by Simonetta Cheli, Director of Earth

Observation Programmes & Head of ESRIN, ESA -
European Space Agency

aThis is the activity of updating instructions of a satellite’s
operations, which can be done i.a. to change the observation
pattern of overflying satellites above a given area.

Discussions on Relevant Concepts
and Terminologies

This section will discuss a few concepts and terminologies
that may be useful to those new to the field of geospatial envi-
ronmental health. The following discussions are particularly
relevant when applying geospatial technology for human
well-being and health.

Geospatial Technology

Geospatial technology is typically referred to as a suite of
technology that can acquire, display, or analyze geospatial
data, including geographic information systems (GIS), global
positioning systems (GPS), remote sensing (RS), and others.
These technologies can be applied to analyze, monitor, and
forecast well-being and health and reveal the complex rela-
tionships of the interacting variables.

HumanWell-Being

Human well-being is a very broad concept encompassing
different aspects of our lives and requires a discussion rather
than a definition(s). Not all aspects of human well-being can
be observed nor measured. As the term “well-being” is an
abstraction to refer to the evaluations of the state of life or
“being,” there are many different approaches to label that
situation (McGillivray 2006). There are also several indica-
tors of human well-being in different practices to measure
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different aspects of humanwell-being, some of which are still
evolving, and beyond the scope of this book.

While discussing human well-being, it is important to
mention about theMillenniumEcosystemAssessment (MA).
The MA was a 4-year long international collaboration,
launched by the United Nations Secretary-General Kofi
Annan in June 2001 (WHO 2005). From this initiative, a
series of very comprehensive reports linking ecosystem and
human well-being were published. One of the interesting
features of MA was to include component assessments
undertaken at multiple spatial scales – global, sub-global,
regional, national, basin, and local levels – which clearly
emphasize the significance of location while studying
ecosystem and human well-being (Millennium Ecosystem
Assessment 2005).

In the Ecosystems and Human Well-Being: A Framework
for Assessment report, it is stated that “Human well-being
has multiple constituents, including basic material for a good
life, freedom and choice, health, good social relations, and
security. Well-being is at the opposite end of a continuum
from poverty, which has been defined as a “pronounced
deprivation in well-being.” This report also noted that the
constituents of well-being, as experienced and perceived by
people, are situation-dependent, reflecting local geography,
culture, and ecological circumstances, further indicating the
role of the geospatial technology in revealing the complex
interrelationship of human well-being determinants. The five
linked components of well-being and ill-being are (Butler et
al. 2003):

1. Material sufficiency
2. Security
3. Good social relations
4. Freedom and choice
5. Health

The five dimensions should be viewed across a spectrum
and their abilities to reinforce each other. These dimensions
and their interactions produce a person’s state of being (Fig.
2). On the negative end of the spectrum, the state of being can
be referred to as ill-being, where the interaction of the dimen-
sions results in negative experience including stress, pain, and
anxiety. On the other end of the spectrum, the experience of a
good life with peace of mind is the product of the interactions
of its five dimensions, referred to as well-being. Ill-being is
a term mostly used in the phycology literature along with
well-being to group indicators of psychological conditions.
However, it has a place in health and state of life to connote
the opposite side of well-being and can also be used as
situation-dependent reflections of factors affecting human
life. Merriam-Webster defines ill-being as a condition of
being deficient in health, happiness, or prosperity and claims
that this term was first used in 1840. It could be noted that the

components of well-being or ill-being could be characteris-
tics of the population at various spatial and temporal scales.

The US Centers for Disease Control and Prevention
(CDC) have discussed well-being at length (CDC 2020a).
In this discussion, they mention that societies with higher
well-being are those that are economically more developed,
have effective governments with low levels of corruption,
have high levels of trust, and can meet citizens’ basic needs
for food and health. It is noticeable that the spatial attributes
of these conditions can make it possible to examine their
internal characteristics, interaction patterns, and impact on
well-being.

CDC (2020a) listed different aspects of well-being ex-
amined by researchers from different disciplines. This list
includes:

• Physical well-being (health)
• Economic well-being
• Social well-being
• Development and activity
• Emotional well-being
• Psychological well-being
• Life satisfaction
• Domain specific satisfaction
• Engaging activities and work

CDC also discusses the measures of well-being collected
with different instruments, which the geospatial community
recognizes as variables that can be spatially analyzed and
attributed to the local population for assessment of status and
improvement of policy.

Health

The term health has been modified over the years. It is
well-known that health is no longer recognized as being
free from illness or injury. A well-accepted definition of
health is defined by the WHO (2020a), “a state of complete
physical, mental and social well-being and not merely the
absence of disease or infirmity.” However, since the inception
of this definition in 1948, there has not been any shortage
of criticism (Callahan 1973; Saracci 1997). Indicating the
shortfalls of the WHO definition, several new definitions of
health have been proposed. Among those, Bircher (2005) and
Huber et al. (2011) are worthy of mention here.

Bircher (2005) proposed health as a “dynamic state of
well-being characterized by a physical, mental and social
potential, which satisfies the demands of a life commensurate
with age, culture, and personal responsibility. If the potential
is insufficient to satisfy these demands the state is disease.”

Claiming that the WHO definition of health as “complete
well-being” is no longer fit for purpose given the rise of
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Fig. 2 Five dimensions of well-being reinforce each other, whether
positively or negatively. A change in one often brings about changes
in the others. The shaded space represents the experience of living and
being – including stress, pain, and anxiety in the bad life and peace of

mind and spiritual experience in the good life. (From Ecosystems and
Human Well-being: A Framework for Assessment by the Millennium
Ecosystem Assessment. Copyright © 2003 World Resource Institute.
Reproduced by permission of Island Press, Washington, DC)

chronic disease, Huber et al. (2011) propose changing the
emphasis on the ability of adapting and self-managing in
the face of social, physical, and emotional challenges. They
propose the formulation of health as “the ability to adapt and
to self-manage.”

Given the importance of the issue of the definition of
health, the British Medical Journal (BMJ) published an ed-
itorial in December 2008, authored by Alex Jadad and Laura
O’Grady which called for a “global conversation” about how
to redefine health (BMJ 2008).

Readers are encouraged to carefully read the responses,
published in the BMJ, to the proposed definition of health
by Huber et al. (2011) to see how most of the responders
indirectly pointed out the importance of social aspects of
health beyond the control of an individual (BMJ 2011).

Irrespective of all these views, the fact is that there are
inequalities in well-being and health due to the unequal
distribution of the contributing factors. Therefore, geospatial
technology can be used for investigating the patterns and
interactions of these root contributing factors over space and
sometimes overtime. Identifying the communities with in-
equalities is the first step to develop strategies for eliminating
the causes.

Health is not a single phenomenon. Health is our daily
life, our community, our country, our world. Health is our
room, our home, our street, our river, our ecosystem, our
planet. Geospatial technology is capable of dealing with
the multidimensionality of all these contexts. The ability of
geospatial technology to handle the location of events at
multiple scales is its unique strength, and it can be coupled

with other emerging technology for complex analysis of the
nonlinear world.

Well-Being and Health

The definition of health by the WHO explicitly links well-
being with health. Figure 2 presents the manner by which
the expression and interactions of those dimensions produce
a state of being. A significant driver of the expression of
the dimensions is social determinants of health (SDOH) and
conceptualizes health as a human right requiring physical and
social resources to achieve and maintain.

Figure 3 depicts the importance of recognizing the need to
appreciate how biomedical interventions need to be merged
with socio-environmental strategies to improve well-being
and, eventually, our health. The proactive roles of the key
players who can make positive changes through required
interventions are critical for the outcomes. Policy is certainly
the driving force at different levels. However, along with
other stakeholders, healthcare providers have critical roles
too in improving our well-being and health. Interestingly,
Allen et al. (2013), in their report “Working for Health
Equity: The Role of Health Professionals,” discussed how
physicians could play roles even in further upstream, i.e.,
to the root causes by improving the SDOH, which eventu-
ally can improve well-being and health. It could be noted
that England, under their Health and Social Care Act 2012,
created statutory bodies called Health and Wellbeing Boards
(HWBs) as a forum in which key leaders from the local
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Determinants
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Fig. 3 Simplified linear relationships of SDOH, well-being, and health

care and health system could work together to improve the
well-being and health of their local population (Greaves
and McCafferty 2017; Coleman et al. 2016). The degree
of success in the implementation of HWBs may have con-
troversy, but the idea of working stakeholders together to
address the root cause of health determinants was novel. In
their report, Allen et al. (2013) described how physicians
could also help to ensure taking into account a range of
social, economic, and environmental factors to improve the
health of the local population in the local health and well-
being strategy. Although involving clinicians in the well-
being and health of local people beyond clinical settings was
a major step forward, this initiative was criticized for not
addressing the academic training and opportunities in the
current medical practice setup. The success of involving clin-
icians in “health and well-being” of local people will largely
depend on the education of the clinicians in understanding
the SDOH. While accessing and utilizing the SDOH data,
clinicians will have a better appreciation of the utilization of
geospatial technology in addressing the root causes of health
determinants.

Social Determinants of Health

The CDC (2020b) states that social determinants of health
(SDOH) are conditions in the placeswhere people live, learn,
work, and play that affect a wide range of health and quality-
of-life risks and outcomes. Readers are encouraged to look at
information resources from HP2020 (2020), HP2030 (2020),
CDC (2020b), and WHO (2020b) to have a broader idea of
how SDOH, human well-being, and health are related. Loca-
tion is an integral part of all the seven topic areas of SDOH as
listed in HP2020. Even if we take this simplified relationship
of SDOH, well-being, and health (Fig. 3), it should be clear
that each and every domain and the intervention phases have
spatial attributes.

Of particular importance to this introductory chapter is
the promotion of a place-based concept of five key areas
of SDOH, i.e., economic stability, social and community
context, education, neighborhood and built environment, and

health and healthcare. Geospatial technology can assist in
measuring, analyzing, and revealing the patterns and in-
teractions of the variables of these domains and interven-
tion phases. Through this place-based approach, each of
the five domains of SDOH (Fig. 4) and their elements can
be improved through proper planning and measurements
with an objective to improve well-being and health. Such
improvement initiatives must begin with an assessment of the
pre-improvement status, which leads to proper intervention.
However, the results and impacts of the improvement must
be monitored to understand what worked and what did not,
which can be referred to as three major steps: Assess, Inter-
vene, and Monitor (AIM). The AIM steps can be performed
using geospatial technology for the best possible specificity.
Lack of specificity is often responsible for the failure of many
population health improvement projects.

Assess, Intervene, and Monitor (AIM)
Assess: Assess the existing conditions of a community
problems and resources
Intervene: Intervene strategically to improve the con-
ditions
Monitor: Monitor the impacts qualitatively and quan-
titatively

AIM is a geospatial tool-based precise approach to
improve the community health improvement program.

Community

The word “community” has different meanings for different
professionals. However, to the geospatial health profession-
als, a community should be very specific and measurable.
A group of people with a common characteristic or interest
belongs to a community. On the other hand, a group of people
living within a geographic boundary belongs to a community.
In a geospatial context, communities are bounded by geogra-
phy and are place based.
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Fig. 4 A “place-based” framework, reflecting the concept of improving the five key areas of social determinants of health (SDOH) to improve
our well-being and health

The community approach is critical because if every com-
munity becomes active to ensure its well-being and health,
the entire nation improves. Why do the initiatives need to be
at the community level instead of the national or regional or
state level? Because the community itself knows its needs
better than anybody else. Every community is somewhat
unique with its strengths and weaknesses, which need to be
incorporated into the action plan for well-being and health.
Since community-based actions are place-based, geospatial
technology becomes the obvious tool for the assessment,
intervention, and monitoring (AIM) steps for community
well-being and health improvement initiatives. Particularly,
geospatial tools can be of great assistance in reducing waste
andmisuse, which is not uncommon, bymonitoring the usage
of resources and desired outcomes.

Neighborhood

A neighborhood is a place where people live near one an-
other, usually having distinguishing characteristics, such as
similarities in types of families, incomes, and education
levels. In a geospatial health context, a neighborhood is the
smallest geographic unit, where assessment, intervention,
and monitoring (AIM) can take place to improve the well-
being and health. Now, the questions are how big a neighbor-
hood should be and how it can be brought into a measurable
framework. There is no formal definition for the size of a
neighborhood. While the availability of data and research
designs may lead to different geographic units, in the USA,
the most popular geographic unit used as a neighborhood is
the Census Tract.When Earth observation data from satellites
are incorporated in to a population health study, an artificial
grid-based unit can be used as a proxy for the neighborhood
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unit, and data from the Census or other sources are transposed
to that grid. As a neighborhood is an area where people
live and interact with one another, it has synergetic strengths
improving its well-being and health.

Emerging Areas of Health Science Research
and Geospatial Technology

Exposome

The concept of exposome refers to the totality of exposures
from a variety of external and internal sources and how these
exposures relate to health. About 15 years ago, shortly after
the human genome was sequenced, Christopher Wild pro-
posed the term exposome as an environmental complement
to the genome in determining the risk of disease (Wild 2005;
Dennis et al. 2017). When first introduced by Dr. Christopher
Wild (2005), the term exposome seemed to be a wild idea
(Miller and Jones 2014). Nevertheless, it immediately caught
the attention of a diverse group of scientists who were study-
ing the genome, environmental exposure, and health. The
definition of the exposome has undergone several revisions;
however, its underlying premise has remained the same.

The exposome comprises every exposure to which an
individual is subjected, from conception to death (Wild 2005;
Wild 2012; Miller 2020). It could be noted that the exposome
concept considers the lifelong exposure history and therefore
requires taking into account for exposure over time, or at
least at more sensitive stages of life. The manner how the
exposome interacts with a person’s unique characteristics
will, to a large extent, determine that person’s trajectory of
“successful” aging.Wild (2012) clarifies that in the context of
the exposome, the environment comprises of “non-genetic,”
and the exposome complements the genome by providing a
comprehensive description of lifelong exposure history.

While decoding of the human genome has helped explain
the underlying causes of disease, it has left certain gaps in
understanding the big picture. In fact, genetic factors are
not the major causes of chronic diseases (Rappaport 2016).
Without consideration recognizing the contributions of the
environmental exposures, the picture of disease risk factors
is incomplete. Accounting for the interactions of environ-
mental factors with biological systems is providing a much
greater understanding of disease etiology. The causal links
among the genome, the environment, and human disease
have made the exposome an integral part of modern health
science (Vineis et al. 2020;Martin-Sanchez et al. 2020). Now,
environmental exposures and genetic variation can both be
considered in studying the causes of disease burden.

The increasing knowledge about the exposome is already
causing a shift in the paradigms of studying environmen-
tal health, exposure science, and biomonitoring (Lioy and

Rappaport 2011; Rappaport 2011, 2012, 2018; Rappaport et
al. 2014; Vrijheid 2014; Siroux et al. 2016; Dennis et al.
2017; Stingone et al. 2017; Niedzwiecki and Miller 2017;
Guloksuz et al. 2018; Steckling et al. 2018; Niedzwiecki
et al. 2019; Sarigiannis 2019; Vermeulen et al. 2020). As
a result, both clinical medicine and population health are
expected to gain a significant increase in the utilization of
the exposome approach (Rappaport 2011; Barouki et al.
2018; Niedzwiecki et al. 2019; Martin-Sanchez et al. 2020).
While the technology to measure the exposome continues to
advance, the horizon in environmental health is broadening
by combining biomarkers and external exposures. Measur-
able links between environmental exposure and health or
disease are biomarkers. Biomarkers are key molecular or
cellular characteristics that can link a specific environmental
exposure to a health outcome. These markers have been
used to associate diseases with environmental exposures and
are also useful to identify vulnerable people at increased
disease risk. Biomarkers are better represented by omics-
level measurements. Advancements in lab technology have
led to the development of omics technologies, which is a huge
breakthrough for exposome research. In a single experiment,
large amounts of data about a specific type of molecules
can be obtained and analyzed, using omics technologies
(Quezada et al. 2017). Omics-based biomarkers are key for
the new generation population health studies and clinical
practices. Recent studies are providing key findings and new
concepts that the combined use of data generated by omics
and geospatial technology will lead to innovative solutions
for next-generation medical science (Gulliver et al. 2018;
Vineis et al. 2017; Juarez and Matthews-Juarez 2018; Vineis
2019; Canali 2020). However, the active collaboration will
be the key determinant for progress in this multidisciplinary
approach.

Wild (2012) outlined the exposome as three overlapping
domains: (a) general external, (b) specific external, and (c)
internal. The general external refers to exposures that people
at the community level are subjected to a variety of envi-
ronment, including chemical (e.g., lead, ozone), biological
(e.g., bacteria, viruses, fungi), physical (e.g., noise, heat,
cold, altitude), and social (e.g., crime, food insecurities) envi-
ronments. Sillé et al. (2020) recognize the ability of geospa-
tial technology to measure the general external exposome.
Specific external refers to individual-level lifestyle-related
exposures, such as diet, smoking, physical (in)activity, chem-
icals, occupational, etc. Our health status is shaped by the
manner by which the specific external (lifestyle) and general
external (unavoidable) environment interact with the inter-
nal environment (internal biochemical perturbations due to
external exposures) (Sillé et al. 2020). Miller (2020) argues
that the concept of the exposome should be integrated instead
of categorizing it into different domains; otherwise, it may
allude to as if there are different kinds of exosomes. Wild
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Fig. 5 Domains of exposome. (Modified from Wild 2012)

(2012)) himself mentions that there are overlaps in the three
domains and sometimes may be difficult to place a particular
exposure in one domain or another. However, for the sake
of simplification and our discussions in this chapter, such
categorization will suffice (Fig. 5).

(a) General external exposome (population-level exposure)
(b) Specific external exposome (individual-level exposure)
(c) Internal exposome (occurring within the body)

As shown in Fig. 5, both the general and specific expo-
somes reflect the exposure to the surrounding environment,
respectively, at the population level and individual level,
while specific external included individual lifestyle as well.
The internal exposome is not an isolated entity because
general and specific external exosomes also contribute to
this domain. Individual genetic variety determines the nature
of the internal response to the external exosome. Whereas
individual genetic traits may determine the degree of the
internal response to the external exosomes, genetic traits may
also contribute to a person gravitating to certain lifestyles
and community exposures. So, all three of these domains
are impacted, to a varied degree, by location-based environ-
mental factors, which ultimately contribute to producing a
trajectory of health and aging. The purpose of the discussion
on exposome in this chapter is to make geospatial health ex-
perts aware of their roles and responsibilities in the emerging
environmental health science research.

For the sake of further discussion, let us try to simplify the
relationship.

Exposome = External Exposome (Specific + General)

+ Internal Exposome

Pollutome
The Lancet Commission on environmental health (2018)
coined a new term the “pollutome,” which is the totality of
all forms of pollution with the potential to harm human health
(Landrigan et al. 2018). The pollutome is a nested subset of
the exposome – the total amount of pollutants an individual
is exposed to during the life course.

Contributing Factors of the Exposome

Environmental Exposure
We live in a wide range of diverse environments, which could
be categorized as chemical, biological, physical, and social.
We are constantly subjected to different magnitudes of these
exposures. These environmental factors can be considered
as contributors to the external exposome exposure, which
in combination with lifestyle and internal exposures result
in non-uniform health outcomes. The ability to measure
environmental exposures is advancing significantly through
geospatial technology, and its data can be incorporated into
association analyses to understand or predict health out-
comes. Place is directly related to environmental exposures.

Lifestyle
Wild (2012) recognizes that lifestyle serves as a major con-
tributor to one’s individual-level external exposure. Lifestyle
example includes tobacco or alcohol use, physical inactivity,
physical activity and exercise, diet, and other behavioral
factors that affect health. Often lifestyle is related to the
built environment that allows for access to the above factors.
Arguably, the built environment is a component of the general
external exposure indicating how the external environments
are linked. Access to sidewalks, biking routes, parks, trails,
exercise facilities, and crime-free conditions are direct con-
tributing factors to lifestyle exposure. So, although lifestyle
is within the specific external domain, it is very much shaped
by the general external environment. Place plays a role in
lifestyle exposure regarding the availability or unavailability
of resources.

Internal Processes
Endogenous or internal biological processes, such as
metabolism, hormones, inflammation, gut microflora,
oxidative stress, and ageing, also contribute to the exposome
of an individual. Although internal processes are driven by
the genetic characteristics of the individual, the internal
exposome is highly dependent on both the general and
the specific external exposures. The impact of specific
external exposures is well-documented as, for example,
evidence indicates that exercise significantly modifies
internal processes and the microbiome (Mailing et al.
2019) and, consequently, the exposome. The impact of
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specific external exposures on the internal process is also
evident because the internal exposome is related to the
external exposures representing the individual’s response
to environmental stimuli or his/her physiologic and biologic
responses needed for maintaining homeostasis (Louis et al.
2017). As the external environment influencing the internal
processes is place-based, geospatial technology capturing
those environmental factors is useful for predicting at least
part of the internal exposome.

Role of Geospatial Technology in the Era
of Exposome

Geospatial technology has been extensively used for the
assessment of population-based environmental exposure but
also has the potential for the evaluation of individual-level
exposure (discussed later in this chapter). However, in the
context of the exposome, the advantages of geospatial tech-
nology have not been fully explored. Figure 6 conceptualizes
how geospatial technology can contribute to assessing the big
picture of the exposome and assist in environmental health
studies at population and individual levels. Geospatial tech-
nology could generate environmental exposure information
across different time periods of life. Uniquely, geospatial
technology can also generate a person’s cumulative environ-
mental exposure by incorporating the location history of an
individual.

In order to determine environmental exposures, both the
location of humans and their surrounding environmental
conditions are required. Geospatial technology clearly plays
a critical role in assessing and analyzing environment-related
variables (Ward et al. 2000; Schmidt 2005; Yoo et al. 2015;
Jerrett et al. 2017; Faruque 2019; Sogno et al. 2020), as well
as lifestyle-related variables (Charreire et al. 2012; Tamura et
al. 2014; Chai and Kwan 2015; Tung et al. 2017). However,
the literature is very limited, connecting the application of
geospatial technology to the exposome studies. The geospa-
tial community is lagging behind in this effort. Nevertheless,
recent research has started to suggest the importance of the
use of geospatial technology in exposome studies (Stahler et
al. 2013; Robinson and Vrijheid 2015; DeBord et al. 2016;
Dennis et al. 2017; Vineis et al. 2017; Maitre et al. 2018;
Juarez and Matthews-Juarez 2018; Prior et al. 2019).

The Lancet recently published a commentary about spa-
tial lifecourse epidemiology as a conceptual model of epi-
demiological thinking in reference to exposome (Jia 2019).
Spatial lifecourse epidemiology aims to utilize advanced spa-
tial, location-aware, and artificial intelligence technologies
to investigate the long-term effects of measurable biological,
environmental, behavioral, and psychosocial factors on indi-
vidual risk for chronic diseases (Jia et al. 2020a, 2020b).

Many consider that the right time for exposome research
has arrived and it will bring about a significant paradigm
shift in exposure-health outcome research (Louis and Sun-
daram 2012; Sarigiannis 2019; Jia 2019; Martin-Sanchez
et al. 2020; Sillé et al. 2020). The geospatial community
should now explore how geospatial technology can be best
utilized to engage in this rapidly flourishing exposome-based
research approach. The full implementation of the exposome
concept in population health and medicine may require more
time, but the time to embark on this journey is now. As tech-
nological advances are increasingly becoming more precise
in identifying biomarkers associated with normal biological
or pathogenic processes, advances in geospatial technology
need to materialize to properly capture and deliver exter-
nal exposure measures to the researchers and clinicians for
population- and individual-level use. Geospatial technology
can provide precise data that can shed light on how ex-
ternal exposures may influence or modify biomarkers in
population- and/or individual-level research studies.

Biomarkers are useful for measuring exposome, which
represents cumulative external exposures at that point plus
the internal processes in response to those external exposures.
However, biomarkers do not specify the history of environ-
mental exposures, which is critical for disease prevention at
the population or individual level.

As Fig. 6 shows, geospatial technology cannot capture the
exposome (total) or the internal part of the exposome. How-
ever, it does capture several important parts of the external
domains of the exposome. To determine exposome, advanced
measures of biomarkers are becoming available. Biomarker
measures are supposed to represent the total exposures plus
the responses from the internal processes without describing
any history of external exposures. On the contrary, geospa-
tial technology can capture the Geospatial Individual Envi-
ronmental Exposure (GIEE), which represents the external
exposures.

Let us look at the relationships in a geospatial context.

Exposome = Internal Exposome + External
Exposome (Specific + General)

Exposome = Biomarker = Internal Exposome
+External Exposome

Exposome = Biomarker = Internal Exposome + GIEE

This, of course, is an oversimplified relationship. How-
ever, it does indicate the role of geospatial technology in
this emerging field. Coordinated efforts should be made in
the area of exposome-based research while ensuring further
advancements in the fields of biomarkers, genetic, epigenetic,
and GIEE.
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Advanced biomonitoring methods can provide improved
exposome measures. However, these measures will not tell
the exposure history. On the other hand, GIEE cannot give
exposome measures, but it can give the exposure measures.
GIEE can help to identify spatiotemporal environmental ex-
posures that contribute to the exposome values. Hence, for
population-based prevention research, GIEE can be instru-
mental. On the same token, GEE can generate environmental
exposure history for individuals, which has the potential
to be vital information in disease investigation in clinical
settings. However, making environmental exposure history,
which is one of the three major contributors to most of the
diseases, available to the clinicians will take efforts from a
diverse group of professionals, including IT, policymakers,
legal experts, clinicians, and, of course, geospatial experts.

Epigenetics is the study of heritable changes in gene
expression that occur without changes in DNA sequence
(Wolffe and Guschin 2000). Epigenetics refers to mecha-
nisms explaining how the environment impacts health. Expo-
some refers tomeasures of total environmental exposures and
internal responses. Both acknowledge environmental factors
that affect human well-being and health. Geospatial technol-
ogy, which has been successfully generating information on
environmental variables for human exposures, now has this
unique opportunity to engage in this research. Data need to be
captured on a finer scale, and the spatiotemporal dimension
of environmental variables along individual dynamics needs
to be captured to generate a personal exposure record.

In the exposome context, geospatial technology should be
an integral part of environmental health studies. For example,
the location of a mother during her pregnancy and the related
physical and social environments of that place contribute
to the long-term health outcome of the child. Therefore,
time-stamped or spatiotemporal environmental information
is required. Health scientists have already started to recognize
how data generated through omics and geospatial technol-
ogy can complement each other to interpret different health
phenomena (Canali 2020). Biobanks around the world are
becoming interested in omics-level data to support collabo-
rative studies involving genetic, lifestyle, and environmental
risk factors for diseases, which brings more opportunities
for geospatial health professionals. Challenging but exciting
tasks for the geospatial community are to generate geospatial
environmental exposure information and to bridge with the
medical professionals to properly support the study of dis-
eases and treatment of patients.

Geospatial Individual Environmental Exposure
(GIEE) can be defined as the geospatially tagged
environmental exposure information for an individual.
Such information should include cross-sectional as
well as cumulative exposure of that person. GIEE
should be useful for the exposome study and should
have the potential for use in clinical investigation.
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Geospatial Technology Contributing
toMaking Environmental Exposure
Information Available to Clinicians
in a Usable Format

The three major risk factors for common diseases are genes,
behavior, and the environment. During a patient’s visit to a
physician, family history (genes) and lifestyle of the patient
(behavior) are taken into account for disease investigation,
but questions concerning possible environmental exposures
are not included in the routine investigation. Ironically, the
importance of the surrounding environment in disease de-
velopment has been known since the very early history of
medicine. Hippocrates, widely considered as the father of
medicine, 25 centuries ago noted the importance of environ-
mental exposure in the medical investigation (Miller 1962).
Health scientists are now aware that certain environmental
exposures can impact health conditions both through genetic
and epigenetic mechanisms. Thus, without accounting for
the environmental exposures, disease investigations using
only hereditary and lifestyle information, therefore, can be
incomplete. The major reasons for not considering environ-
mental exposure in today’s routine clinical practices are as
follows:

(a) Medical education does not adequately prepare physi-
cians to consider environmental history in disease inves-
tigation.

(b) Due to its dynamic and often obscured nature, environ-
mental exposure history is difficult to obtain from the
patients.

(c) Lack of access to environmental exposure information in
a readily available format.

Since the 1990s, many studies have been advocating the
needs for environmental health in medical education (Rall
and Pope 1995; Goldman et al. 1999; Roberts and Reigart
2001; Kilpatrick et al. 2002; McCurdy et al. 2004; Gehle et
al. 2011; Pelletier 2016;Walpole et al. 2017; Ihde et al. 2020;
Brand et al. 2020). Similar calls have come from nursing
education as well (Pope and Snyder 1995; Eddins 1998;
Green 2000; McCurdy et al. 2004; Leffers et al. 2015). These
calls are encouraging the inclusion of environmental health
in medicine and nursing curricula. In the USA, medical
schools are finding different ways to train students in environ-
mental issues, including courses on environmental medicine.
To address this gap, tutorials and other resources are also
available from government agencies teaching how to take
environmental exposure history (ATSDR 2015). The next-
generation physicians are expected to have a much better
understating of the importance of environmental exposure in
disease investigation.

While the next-generation clinicians are getting prepared
to incorporate environmental exposure in medical investiga-
tions, it is not clear whether the geospatial experts are fully
aware and prepared to partake in this opportunity. Geospatial
experts need to get prepared to engage in this new area
of geospatial health of generating environmental exposure
history for clinical practice.

In order to generate the patient’s environmental medical
history, two types of information are necessary: (a) relevant
spatiotemporal environmental variables and (b) location of
the individual in that environment. Advanced geospatial tech-
nology has been implemented to estimate common environ-
mental agents such as pollutants, mold spores, pesticides,
etc. Until recently, the other component, the location of an
individual, was limited to a static representation such as
residential or workplace location. Now, with the development
of mobile technology, dynamics in an individual’s location
can be tracked even in real time. Technological advance-
ments in both the areas, estimating environmental agents and
identifying locations of individuals at flexible spatiotemporal
scales, now present the potential of a paradigm shift in
clinical practices by incorporating environmental exposure
history into determining disease risk factors.

Needs for Environmental Exposure
Information

Nearly all human diseases result from the interaction of
genetic susceptibility factors and modifiable environmental
factors (CDC 2000). Environmental factors include pollu-
tants, which can be measured or estimated to assess the risk
factors for the population or for the individual. Research
on environmental epigenetics suggests a stronger impact
of pollutants on individual health than previously known
(Baccarelli and Ghosh 2012; Hou et al. 2012; Bollati and
Baccarelli 2010; Tarantini et al. 2009).

Earth Observations and Geospatial Technology

In the early days of Earth observations, the resolutions of
satellite imagesweremuch coarser. The utilization of satellite
data was mostly restricted at regional ecosystem and land-
scape levels. These data were suitable for epidemiological
health studies. Recent satellite images provide much higher
resolution data suitable to be considered for community-
and even individual-level analysis (Fig. 7). At the same
time, the quality of image-derived products, even from the
older satellites, is getting improved by applying advanced
retrieval algorithms. Now advanced geospatial technology,
by incorporating Earth observation data with data from mul-
tiple other sources, can generate information, which was not
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Fig. 7 Generalized scenario of the advancement of Earth observations and geospatial technology generating environmental data suitable for
clinical practice. (From Faruque and Finley 2016)

possible earlier, yielding unprecedented new opportunities.
This includes environmental exposure information suitable
for determining environmental health risk profiles, useful in
clinical practice.

Scale
Finer scale data can accommodate more detailed studies.
However, the scale is determined during the data acquisition
and preparation. Space agencies have been relentlessly trying
to improve their data to better understand the integrated Earth
system globally to benefit human health and as well as the
health of the ecosystem (Space Studies Board 2015). The
scale is a major factor determining the usefulness of the
measurements, whether for individual human health or for
the ecosystem. A unique strength of geospatial technology is
its ability to handle multiple scales at the same time when the
basic data can support finer scale.

A Millennium Ecosystem Assessment report on Health
Synthesis by theWHO (WHO2005) states that as the interac-
tions and changes that affect humanwell-being can take place
at more than one scale and also across the scales, a multiscale
approach that simultaneously uses larger- and smaller-scale
assessments can help identify important dynamics of the sys-
tem that might otherwise be overlooked. While human health
is influenced even at the ecosystem level, incorporating envi-
ronmental exposure for clinical practice for individual health
requires measurements at a much finer scale.

Figure 7 shows how finer scale data are becoming avail-
able due to the gradual advancements in Earth observa-

tion capabilities. The utilization of Earth observation data
is commonly applicable in population-level health studies.
Now, these EO data, in combination with data from other
sources, can attain a finer scale and can generate environ-
mental exposure history for individuals with potentials for
individual-level application, such as for exposome studies
and for clinical practices.

Earth Observations in Tracking Air Pollutants
Earth-observing satellite systems have been playing a major
role in tracking a variety of air pollutants that are harmful
to human health (Griffin et al. 2012). Particulate matters
are among the worst air pollutants to cause multiple health
hazards, and these pollutants have been estimated at various
scales.

Particulate Matter (PM)
It is known that among the air pollutants, PM2.5 affects more
people than any other pollutant. This air pollutant is responsi-
ble for a wide variety of adverse health conditions, including
respiratory problems (Dominici et al. 2006), cardiovascular
disease (Brook et al. 2010), cancer (Andersen et al. 2017;
Pun et al. 2017), birth defects (Vinikoor-Imler et al. 2013;
Guo et al. 2018; Alman et al. 2019; Huang et al. 2019),
and neurological disorders (Kioumourtzoglou et al. 2016; Fu
et al. 2019; Shi et al. 2020). Globally, two to four million
annual deaths, more than malaria and HIV-AIDS combined,
are associated with these fine inhalable particles (Anenberg
et al. 2010; Lim et al. 2012; Lozano et al. 2012; Silva et al.
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2013; Apte et al. 2015; Cohen et al. 2017). A comprehensive
list of health hazards due to PM2.5 exposure is yet to be
completed. During the current pandemic, evidences have
emerged suggesting exposure to PM2.5 is responsible for
higher mortality and morbidity due to COVID-19 (Wu et
al. 2020a; Chakrabarty et al. 2020; Hendryx and Luo 2020;
Borro et al. 2020; Becchetti et al. 2020).

Some satellite sensors have been successfully providing
the total column atmospheric particulate matter. However,
estimating ground-level particles (GLP) from satellite data
is still evolving with a varied success. Techniques, such
as machine learning, that can account for multivariate and
nonlinear relationships show potential for generating more
reliable ground-level PM2.5 from satellite-derived aerosols.
Several researchers, including Lary et al. (2014), generated
daily global PM2.5 estimates using a suite of remote sensing
and meteorological data products validated using ground-
based PM2.5 data. More recently, researchers from Duke
University demonstrated how high-resolution microsatellite
imagery using a machine learning algorithm could generate
200 m resolution PM2.5 (Zheng et al. 2020). Such studies
show potential for estimating more reliable PM2.5 at bet-
ter resolution utilizing newer satellite data and techniques.
Scientists are continuing their efforts to generate improved
GLPmeasurements from satellite data by incorporating other
useful data and applying newer techniques (Chowdhury et
al. 2019; Hu et al. 2019; Mhawish et al. 2020; Singh et
al. 2020). Improved air quality indices for health hazards
can be developed with such efforts when better data from
Earth observation-based sources can be utilized. The level of
variable detail and fineness of scale of environmental data
required for providing adequate information for individual
health exposure is a matter of discussion among geospatial
experts, medical scientists, and clinicians. Nevertheless, this
discussion will open up new challenges and opportunities for
geospatial experts.

Harmful Airborne Fungal Spores (HAFS)
Airborne fungal spores impose significant health risks, par-
ticularly for vulnerable people. Exposure to harmful airborne
fungal spores (HAFS) is known to cause a wide range of
adverse health effects, mild to severe. While the impact of
mold spores on health has beenwell-documented (Dales et al.
2000; Burney et al. 2008; Simon-Nobbe et al. 2008; Bousquet
et al. 2009), information on the outdoor abundance of these
spores is not available on a local scale because of the very
sparse distribution of monitoring facilities. Currently avail-
able daily nationwide fungal spore abundance maps (Fig. 8,
left) rely on a very limited amount of actual data, which are
extrapolated over large areas often across multiple states. In a
pilot study, spatiotemporal surfacemodels were generated for
six clinically significant spore types for the Central Missis-
sippi region in the USA at 10 km resolution utilizing Earth

observation data (Fig. 8, right) (Faruque and Finley 2016).
Newer technology and data can support generating such daily
estimates even at a much finer spatial resolution, which may
allow physicians and vulnerable people to establish timely
preventative strategies.

Technological Advancements

Satellite Data
Over the years, space agencies across the globe have achieved
significant improvements in data quality, including improved
spatial and spectral resolutions. In addition, there have been
developments in specialized instrumentation necessary for
health applications. For example, NASA funded a project to
put new instruments in low Earth orbit to track the abundance
and types of particulate matter at 1 km resolution (NASA
2016). Such initiatives can bring major breakthroughs in de-
termining pollutant abundance using satellite data. This type
of initiative is bringing the potential of using environmental
exposures closer to medical practice.

Modern Technology
With the technological advent of wireless communication,
low-cost air pollution sensors, and increased computational
power, there is a potential for a paradigm shift in pollu-
tion monitoring. Personal monitoring devices and mobility
trackers are capable of providing information about environ-
mental exposures for individuals, which can be integrated
with satellite-generated pollution data. Regardless of whether
these types of measures are integrated with Earth observation
measures or other monitoring networks, there will be a role
for geospatial experts engaged in well-being and health re-
search to make these measures readily available and usable
to healthcare practitioners.

Internet of Things
The Internet of Things (IoT) is a rapidly advancing net-
work of physical objects embedded with sensors, software,
and other technologies that enables communication between
electronic devices and sensors through the internet, bringing
a wealth of information useful for our lives. Through IoT, air
pollution monitoring systems could be improved to address
some of the current limitations, such as low geographic cov-
erage, low precision, and high cost, of the existingmonitoring
systems (Mokrani et al. 2019). For personal air quality moni-
toring, real-time air quality can be transmitted to the user, and
even the pollution level can be predicted if the route is known
(Dhingra et al. 2019). Recently, researchers are reporting
the utilization of the IoT also for indoor air quality (Saini
et al. 2020). Smart architectures and algorithms are being
developed to capture and share these data through the IoT
with potentials for well-being and health applications. The
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Fig. 8 Example of currently available relative mold spore frequency map (http://www.weather.com/maps/health) (left). Example of the geospatial
surface model of estimated mold spore abundance at 10 km resolution for central Mississippi, USA (right). (From Faruque and Finley 2016)

IoT is providing a very useful platform for the application of
mobile health technology, which is being successfully used in
tracking individual mobility to combat COVID-19 (Wu et al.
2020b). The same platform is useful for individual mobility
tracking for collecting environmental exposure history.

Next-Generation Air Quality Measurement
Technologies
The Next-Generation Air Quality Measurement Technolo-
gies are emerging so fast that the nomenclature of its com-
ponents has not been standardized yet. Most well-known
components include different types of sensors, monitoring
systems, wireless sensor networks, and IoT. These technolo-
gies are capable of providing personal exposure as well as
capable of contributing to satellite-based estimates.

Ground-monitoring stations are considered the gold stan-
dard for air pollution data. Data from these conventional sta-
tionarymonitoring facilities are also used for the validation of
estimated data using other sources. However, the limitations
of these conventional stations are well-known because of
their sparsity over large areas (Evans et al. 2013; Faruque
et al. 2014). For example, even in the USA, more than 80
percent of counties do not contain a single PM2.5 monitor
(Fowlie et al. 2019). Considering the critical importance of
air pollutions impacting health, satellite imagery with inno-
vative approaches has been essential in generating estimates
of air pollutants for a broader coverage (Gupta et al. 2006;
Anderson et al. 2012; Evans et al. 2013; Lary et al. 2014;
Van Donkelaar et al. 2015; Lasko et al. 2018; Fowlie et al.
2019; Jin 2020). However, since such estimates also depend
on the utilization of ground-monitored data, estimates are
less reliable where ground-monitored data are not available.
Again, the sparsity of conventional ground-monitoring sta-
tions imposes a significant problem in estimating reliable
data. With the increasing availability of low-cost portable

sensors and the opportunity of using the wireless sensor
network (WSN), the next-generation air pollutionmonitoring
system (TNGAPMS) has emerged (Yi et al. 2015; Hagler
2016; Morawska et al. 2018; Arano et al. 2019). With such
a network comes the possibility of compensating for the
sparsity of conventional ground monitors and generating
better estimates of air pollutants by incorporating satellite
imagery and other data.

Different government agencies are becoming proactive in
combining their network data with individual-level pollution
data derived from other sources. US EPA has an Air Measur-
ing and Monitoring Research initiative, which includes the
development of innovative air sensor technology and analysis
tools to improve the availability and accessibility of air
quality measurement technology for communities and citizen
scientists EPA (2020). EPA also had a funding opportunity
announcement in 2010 “Developing the Next Generation of
Air Quality Measurement Technology” (EPA 2010), which
funded three grants. In a review of low-cost air monitor-
ing technologies for exposure assessment, Morawskaa et al.
(Morawska et al. 2018) state that current low-cost sensing
technologies are able to (1) supplement routine ambient
air monitoring networks and (2) expand the conversations
with communities. In the area of epigenetic and exposome
research, improved data and coverage will play an important
role.

Patient Location
Environmental exposure information for a person can be
generated only when the environmental condition data and
that person’s concurrent location data both are available. A
person’s home address, workplace address, or even approx-
imate locality, such as zip code, is used as that person’s
location data to assess the environmental exposure of that
person. For most epidemiological studies, such locational

http://www.weather.com/maps/health
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data are adequate to examine the association between health
outcomes and environmental exposures. However, in order to
incorporate environmental exposure data into clinical prac-
tices, much more precise personal location data are required.
A wide range of technologies are evolving to collect personal
location data with the required precision; some are only for
location and some can collect environmental exposure data as
well (Phillips et al. 2001; Fang and Lu 2012; De Nazelle et
al. 2013; Su et al. 2015; Chatzidiakou et al. 2019). The space-
time cube has become a popular approach to show a person’s
movement at high resolution (Kraak 2003; Adams et al. 2009;
Wagner Filho et al. 2019; Bach et al. 2014), which can
be adopted to examine personal exposure measures (Kwan
2009; Fang and Lu 2011; Lu and Fang 2015; Jing et al. 2017;
Ma et al. 2020).

Tracking Personal Movements
As individual-level spatiotemporal mobility can now be eas-
ily tracked, such as by GPS-enabled phone devices, the esti-
mation of personal exposure is also possible when pollution
data around that person are known.

Based on the reality that, whether we always know it or
not, our movements can be tracked and stored, there are ini-
tiatives to make this information useful for healthcare. When
environmental pollution data can be generated at a useful
resolution, tracking an individual’s movement can generate
cumulative environmental exposure information over space
and time. There are vendors developing applications useful
at clinicians’ offices to upload a patient’s location history
to examine that person’s crossing paths for tracking trans-
mission risk factors (Faruque and Finley 2016). The same
application can generate an environmental exposure profile
when the environmental factors along the way of that person
are known (Fig. 9).

Crisis often speeds up technological developments.
During the COVID-19 pandemic, applications of GPS-
enabled mobile technology for the use of contact tracing have
sprouted. The number of published articles demonstrating
the applications and addressing different opportunities,
technological challenges, and privacy issues continues to
grow (Akarturk 2020; Buchanan et al. 2020; Dar et al.
2020; Ekong et al. 2020; Frith and Saker 2020; Garg
et al. 2020; Gupta et al. 2020; Kretzschmar et al. 2020;
Liang 2020; Mbunge 2020; Pan 2020; Prabu et al. 2020;
Wu et al. 2020b; Ye et al. 2020). This event may promote
serious thoughts about tracking individual patient location
for exposure assessment, which is a critical component
to assess Geospatial Individual Environmental Exposure
(GIEE), potentially useful in disease investigation during
regular patient visits to doctors.

Privacy and Confidentiality
While the data gathering on individual mobility is becoming
common, whether for commercial purposes, law and order,
or health, the issues related to the privacy of individuals and
confidentiality of data remain to be the critical concerns.
Some legal frameworks are already in place that could guide
the development of effective tools for protecting individual
privacy. Notable legal frameworks in this respect include the
Health Insurance Portability and Accountability Act of 1996
(HIPAA) in the USA, the Personal Information Protection
and Electronic Documents Act (PIPEDA) in Canada (Depart-
ment of Justice Canada, 2000) (Act, P. 2000), and the EU
General Data Protection Regulation (GDPR) in the European
Union (EU) (Voigt and Von dem Bussche 2017).

It is encouraging that significant technological develop-
ment as well as the number of articles discussing different
aspects of mobility tracking, from accuracy to ethical issues,

Fig. 9 Left: Representation of a patient’s crossing paths. When a
patient with a communicable disease visits a clinician, the patient’s
location history can be uploaded to see when and where the patient
shares a common location history with another individual with the

same disease. This information can help the clinician in deciding the
necessary tests and treatments plan. Right: Environmental exposure
profile along the pathway of the patient. (From Faruque and Finley
2016)
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has continued to grow (Sohraby et al. 2007; Lee et al.
2008; Cao et al. 2009; Abouchar et al. 2015; Birenboim and
Shoval 2016; Kargl et al. 2019; Apte et al. 2019; Kim et al.
2020). Specific interest in health applications is noticeable
(Goldenholz et al. 2018; Çakmak and Eroğlu 2019; Fraccaro
et al. 2019; Breslin et al. 2019; Ulrich et al. 2020). While
addressing the COVID-19 pandemic crisis, breakthroughs in
many areas are occurring, often without fully considering the
legal aspects (De Carli et al. 2020; McLachlan et al. 2020a;
b; Fenton et al. 2020; Ayres et al. 2020; McLachlan et al.
2020a; b; Klar and Lanzerath 2020). Initiatives are absolutely
necessary, whether at national, regional, or even global levels,
to ensure the protection against the possibility of abusing
individual privacy while making scientific use of these data
specifically for individual well-being and health.

Conclusions

There are certain areas in environmental health that are
explored very little by the geospatial health community. This
chapter discusses the areas where geospatial technology is
not yet fully implemented, namely, the area of exposome-
based environmental health research and the area of clinical
health practice. This chapter also discusses some of the com-
mon terminologies that may be unfamiliar to the newcomers
in this field. Paradigms are shifting in health research and in
health practice. The geospatial health community needs to
engage more intensely in both of these areas.

Health, health and well-being, social determinants of
health, and population health – none of these reside in
isolated domains. From the viewpoint of the geospatial
approach, location is common to all. However, the
application of geospatial technology to explain these
phenomena is often overlooked. It is the responsibility of
the geospatial community to establish the practical needs of
geospatial technology for quantitative or qualitative analyses
of well-being and health-related data. The new generation
of geospatial experts, who will be engaged in well-being
and health studies, is expected to focus on the new arena of
generating environmental exposure information by taking
advantage of improved data, computational power, and
analytical tools.

Approximately 70% to 90% of chronic diseases are at-
tributed to environmental exposures, much more than genetic
risks. To better understand the phenomena of environmental
exposures, particularly, in the context of genetic factors,
the current trend of research is encouraging the exposome
approach for health outcome studies. As exposome is a
resultant of total exposure plus endogenous processes, it
cannot represent the history of exposures. On the contrary,
geospatial technology can capture the exposure history when
the location of a person and the surrounding environment

are known. Geospatial technology is playing a critical role
in generating both types of data – a person’s location and
the surrounding environment of that person. In the era of the
exposome, geospatial experts should be knowledgeable in
gene-environment interactions. In reality, the huge number
of genes and environmental variables and their interactions
make experimental health research very challenging. By
generating useful environmental exposure information with
different dimensions and at different scales, geospatial tech-
nology can make a significant contribution to the advance-
ment in this area.

It is true that environmental and occupational exposure
information rarely enters into the clinician’s history taking or
diagnosis process (Marshall et al. 2002). Medical education
has been blamed for this lack of enthusiasm in utilizing
environmental exposure history in disease diagnosis (AT-
STDR 2015). Education in environmental medicine is largely
omitted in the continuum of US medical education, leaving
current practitioners and future physicians without expertise
in environmental medicine (Gehle et al. 2011). Collecting
environmental exposure history from the patient may be in-
complete as, in many instances, the patient may not be aware
of the surrounding harmful environment, particularly if the
exposure is not dramatic or at a low level. Without knowing
the patient’s environmental exposure history, physicians are
limited in providing or facilitating environmental preventive
or curative patient care.

Mapping the local-level environmental conditions in con-
junction with the spatiotemporal positional history of a per-
son can generate individual-level environmental exposure
data. Geospatial technology is instrumental for mapping en-
vironmental pollutants as well as connecting individual’s
location with their surrounding environment. When individ-
ual level environmental exposure data is provided to the
clinicians in a readily usable format that can contribute to
the better diagnosis and prevention for a significant por-
tion of all global diseases impacted by environmental fac-
tors.

Figure 10 summarizes the concept presented in this chap-
ter. As shown in Fig. 10, environmental exposure informa-
tion over time and space at a finer resolution can provide
useful environmental exposure history both for population
studies and for clinical practices. In terms of gathering data,
satellites can cover larger areas, but inherently, the resolution
in most cases is not adequate. Standard ground-monitoring
stations, such as the EPA air pollution monitoring stations,
are very sparse, and while generating national scale data, the
resolution becomes poor. On the contrary, by utilizing next-
generation measurement technologies and personal moni-
toring devices, better resolution data can be generated, but
of course, the coverage will be very small. A combination
of these methods can provide environmental exposure data
for a wide range of applications for both population- and
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Fig. 10 Geospatial technology
generating individual
environmental exposure history
for (a) exposome research and
(b) clinical practice
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individual-level well-being and health. The chart on the right
in Fig. 10 illustrates the exposure measurement over time,
which can be utilized as cumulative lifecourse exposure or,
for certain times, particularly for the key stages of human
development. A person’s exposure record can be stored in a
secured national database, which can be accessed only with
the permission of that individual.

The European Union funded a project, EXPOsOMICS, to
develop a novel approach to the assessment of exposure to
high-priority environmental pollutants by characterizing the
external and the internal components of the exposome (Vineis
et al. 2017). It is interesting that some of the features of this
project very much aligns with the concept of GIEE presented
in this chapter. The project EXPOsOMICS ultimately ad-
dresses two things: (1) exposure assessment at the personal
and population levels and (2) multiple “omic” technologies
for the analysis of biological samples (internal markers of ex-
ternal exposures). To detect pollutants, provide accurate and
instant estimates of changes in human exposures and estimate
physical activity; this study has integrated personal exposure
monitoring (PEM) with satellite-based exposure assessment
and has included GPS-based techniques, smartphones, and
accelerometers. This project is a perfect example of formally
implementing the concept of GIEE.

Preventive measures and therapeutic regimes require an
explicit understanding of the links between external expo-
sures and health outcomes. Simultaneous analysis of external
exposures, biological responses, and genetic susceptibility
can help revealing such complex links. Advancements in

technologies have made it possible to reveal the complex
relationships among multidisciplinary and multiscale vari-
ables of health. Geospatial technology is one of many that
have experienced immense advancements in recent years.
It is the responsibility of the geospatial health community
to be proactive in making this technology useful to its full
potential for our well-being and health. The new era of
health science research and medical practice is going to need
multidisciplinary collaboration using very diverse sets of data
at diverse scales.
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Building the Analytic Toolbox: From Spatial
Analytics to Spatial Statistical Inference
with Geospatial Data

Lance A. Waller

Introduction

Beginning with early maps of yellow fever in New York
City in the late 1700s and Dr. John Snow’s famous maps of
cholera in London in 1854, maps have played an important
role in public health for more than 200 years (Waller 2017).
The early twenty-first century has seen a transition to data-
intensive science where health studies make use of multiple
data sets from heterogeneous sources to gain insight into
associations and relations with a goal of moving toward
understanding underlying disease processes and causal re-
lationships with putative risk and protective factors. These
foundational developments in data availability and analytic
approaches transition from the past setting where analytic
methods were defined in order to gain as much information
as possible from expensive (high cost, limited content) data
sets, to the emergence of Data Science approaches seeking
to learn from expansive and easily accessible (very large,
potentially high content) data sets, often arising from mul-
tiple sources. This conceptual shift occurs (and is occurring)
in all branches of science, including those intersecting with
geographic information systems, spatial epidemiology, and
spatial statistics, resulting in unique and profound influences
on current and future directions of development, application,
and interpretation of geospatial analysis. For georeferenced
data, these general shifts toward data-intensive science im-
pact and expand the intersection of three interrelated areas of
science: Geographic Information Science (Goodchild 2010),
Statistical Science, and the emerging discipline of Data Sci-
ence. While each area has its own history and highlights,
they each also provide complementary as well as intersecting
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insights into the future of analysis of georeferenced spatial
and spatiotemporal data sets, particularly so in health-related
fields. In the sections below, we provide a geographic per-
spective on Data Science, a brief history of the intersections
of Geographic Information Science and Statistical Science,
and an outline of methods for spatial analysis in health
noting transitions from each of the three domains into their
intersection and how these transitions define new approaches
within the analytic toolbox for geospatial analysis and health.
We also consider two sets of methods and applications that
illustrate evolution of thought, methodological development,
and application across all three areas of science.

From a geospatial analysis perspective, it is clear that the
so-called data revolution referenced above is occurring at the
intersection of Geographic Information Science, Statistical
Science, and Data Science. Specifically, geospatially aware
data science requires spatial thinking (National Research
Council 2006) wherein location and geography provide es-
sential insight into patterns and processes; statistical thinking
wherein probabilistic models of uncertainty provide infer-
ential frameworks for estimation and prediction (Chance
2002); and spatial statistical thinking (Waller 2014) wherein
statistical results are not only constructed via geographic re-
lationships but also evaluated and interpreted in a geographic
context as well. This mutually beneficial intersection of the
Geographic Information, Statistical, and Data Sciences and
associated types of thinking is necessary to link concepts,
tools, assumptions, problems, and solutions spanning the
geographical, statistical, and data worlds to further expand
and harmonize developments often occurring in one disci-
pline into an integrated set of concepts, tools, and knowledge
spanning all three.

In many ways, the Geographic Information Science com-
munity predates the rise of Data Science, not only in the
coining of the terms but also in its appreciation and use
of georeferenced data sets from multiple sources, creatively
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linked to provide novel insight unavailable from any single
data component. The general data management, linkage, and
query tools available in geographic information systems and
the layered data storage of Google Earth and other global
scale data systems (Goodchild et al. 2012) provide a frame-
work for working with big data in general and big spatial
data in particular. More recently, the use of distributed data
and cloud implementations extend popular frameworks to
the geographic setting. All told, we find modern geospatial
analyses benefiting from Data Science developments and
contributing to specific spatial and geographic dimensions to
the future of Data Science.

The sections below consider three key elements of the
geospatial analytic toolbox, namely: (1) geographic informa-
tion system data management, (2) geospatial analytics within
spatial analysis, and (3) spatial and spatiotemporal statistics,
particularly those applied to epidemiologic applications. Fig.
1 illustrates several examples of how these three elements
build on and reinforce each other to provide an essential
and expanding set of tools to interact with georeferenced
data, to summarize and display spatial and spatiotemporal
patterns and relationships, and to estimate, predict, and infer
associations and observations within an interconnected ge-
ographic space. The arrows in Fig. 1 illustrate a sequence
of analytic topics moving from discipline-specific topics
toward integrated concepts and tools spanning two and three
disciplines in order to move toward a general geoanalytic
perspective.

Spatial Data Tools in GIS: Disparate Data
Linked by Location

A central tenet of geospatial analysis is that location matters.
Location links different types of measurements taken near to
one another, and location predicts new observations of mea-
sured variables taken nearby in space or time. Geographic
information systems (GIS) use location as a central reference
point for measured and observed attribute values. Location
provides a key for data matching, linking, and layering, and
location provides a searchable reference for defining attribu-
tions from one data set that fall within a given distance and/or
direction of observations in another. Since their inception,
GIS have dealt with uncomfortably large data sets (data sets
pushing current storage and/or processing limits), a good,
rule-of-thumb working definition of “big data” (i.e., more
data than you know what to do with).

Historical uncomfortably large geographic data include
satellite imaging data (Goodchild 2016), small area data
from the US Census, and myriad now-familiar GIS layers
(rivers and streams, road networks, building-specific maps).
While these represent now-familiar data sets to GIS users,
all geospatial analysts have had the experience of slow ren-

dering times, system crashes, and common but confusing
incompatibilities associated with large georeferenced data
from different sources. While such traditional (and popular)
data sets may seem small by today’s standards, the GIS and
GIScience communities have a history of pushing the enve-
lope on wanting more data, wanting more detailed data, and
working creatively on the edge of what current computing
will allow.

Modern challenges at the interface of GIScience and
Data Science include distributed georeferenced data across
multiple platforms, divide-and-conquer approaches using
distributed cloud computing (Goldberg et al. 2014),
machine/deep learning for georeferenced data, and analysis
of location-based services. Each of these raises technical
and algorithmic challenges but also can generate new ethical
issues relating to privacy (how I feel about my data) and
confidentiality (protections I am required to provide for data
in my possession). To draw from the basic questions of
journalism, geospatial analysis often builds on a premise that
where and when you are can provide insight on what, how,
and why you experience/observe/measure. Taken together,
the increasing availability and use of location-based services
relating to where and when you are also can provide quite
accurate assessments of who you are, especially when
combining information across multiple data sets (Rocher
et al. 2019).

In addition to the technical, algorithmic, and ethical chal-
lenges, GIS also generates challenges to the application of
traditional statistical methods. While the by-now-familiar
notion of spatial correlation motivates and permeates spatial
statistical analyses, GIS also provides additional challenges
by linking data from multiple sources each exhibiting dif-
ferent levels of accuracy and uncertainty. Tracking multiple
sources and magnitudes of uncertainty across each data layer
can be complicated and may not fit neatly into traditional
statistical techniques, motivating the development of novel
analytic methods in the chapters of this volume.

Spatial Analytics: DefiningWhere to Take
Action

In Fig. 1, at the intersection of Data Science and Statistical
Science, we find the rise of “analytics,” i.e., general purpose
methods and sometimes quite sophisticated data summaries
(and summaries of data summaries) that scale up familiar
calculations to application within and between massive data
sets. While there is no single definition of “analytics” versus,
say, “statistics,” generally the term refers to clearly defined
statistical and analytic tools that can be computationally
scaled up to apply to very large data sets and provide ac-
tionable insight from results (Cooper 2012). That is, the
term “analytics” tends to focus on providing tools for data-
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Fig. 1 Illustration of system approach of GIScience, Data Science,
and Statistical Science and their components to achieve data-driven
goals. Arrows indicate related areas of research moving from discipline-

specific topics toward general geoanalytic concepts and tools but do
not necessarily represent a sequence of approaches that need to be
conducted in order for any single analysis

driven decision-making versus data-informed understanding
of underlying processes. This distinction is subtle: analytics
involve statistical calculations but tend to focus more on de-
cision outcomes rather than on the properties of the statistical
estimates themselves or on the properties of the underlying
epidemiologic and/or biologic processes associated with the
outcome of interest.

Analytics provide insight into patterns and variation in
observations with a particular goal of, say, influencing future
observations (e.g., reducing disease burden in an area or
placing police patrols during a festival weekend). Analytics
often involve tools such as leave-one-out cross-validation,
bootstrapping, and more sophisticated divide-and-conquer
approaches wherein calculations on data subsamples or sub-
sets provide descriptive (and actionable) insight into dis-
tributions within and between data sets without relying on
classical statistical parametric families for more advanced
analysis.

Bridging the framework of analytics between Statistical
Science, Data Science, and GIScience expands the definition
to include cartographic aspects of data visualization. To
illustrate, in Fig. 1, we begin with cartography within the
GIScience framework, often building on Bertin’s visual vari-
ables to best display and distinguish local quality, direction,
differences, and magnitude (cf., classic references such as
MacEachren 1995,Monmonier 2018, Slocum et al. 2004). To
date, the literature relating to data visualization (e.g., Chen et
al. 2008, Kerren et al. 2008) and that relating to cartographic
visualization (e.g., Andrienko et al. 2011) remains relatively
separate. However, as illustrated in Fig. 1 by the intersection
of GIScience and Data Science, novel collaborations in these

areas can and will provide fertile ground for expansion in
the continued development of geovisualization tools drawing
from both GIScience and Data Science (Andrienko et al.
2011).

In the setting of human well-being and health, actionable
questions of interest include (but are not limited to) the
detection of clusters or clustering of disease (Thun and Sinks
2004, Waller 2015), the detection of local concentrations of
risk factors (e.g., environmental pollution or concentrations
of social determinants of disease such as poverty or illegal
drug use), the siting and staffing of health clinics, and the
location and evaluation of health information campaigns. As
noted, the distinction between an analytics-based focus on
actionable outcomes (e.g., identifying locations that have the
highest concentrations of disease and/or pollution) may dif-
fer from overall interest in estimating associations between
exposures and disease incidence and/or prevalence. In some
cases, we seek assessment of whether the concentrations of
disease are statistically unusual (since some location will
have the highest rate, but is it too high?), and in others we
may simplywish to knowwhere the highest concentrations of
patients are regardless of the statistical significance (e.g., for
determining clinic locations). While epidemiologic studies
seeking to understand causes and drivers of local rates are
important, they are not the only geospatial analyses of interest
in the assessment of local human health and well-being.

In addition to geovisualization toolsmapping local rates of
disease, local values of pollution, and local summaries of risk
factors, other specific tools often used as analytics for spatial
data include global (e.g., Moran’s I and Geary’s c statistics)
and local measures of spatial association ((i.e., LISAs), cf.
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Lloyd (2010)). Such measures identify the overall level of
similarity between neighboring values (for global statistics)
and local hot/cold spots of association where particular re-
gions are very similar/dissimilar from their neighbors. While
measures of statistical significance are often associated with
measures of association, their primary purpose is often to
assess if there is spatial correlation in the observations and
where this local correlation might be highest in magnitude.

Another area of research interest involves the analysis
of social media posts, a very active area of Data Science
research. As noted in Fig. 1, the addition of geotags (loca-
tions) to social media posts allows linkage to location-based
services within GIScience, another pathway of development
for present and future geoanalytics. Challenges include the
relatively low (but growing) fraction of social media data
with linked location information. (All data-centric analytics
require solid support of both location and health data in order
to fully realize their full potential!)

Adapting Analytic Tools to the Geospatial
Setting for Public Health Analysis

We next turn to the evolution of analysis tools from Geo-
graphic Information Science and Statistical Science toward
automated, actionable use as geoanalytics. This pathway
is often slow and multidisciplinary, involving a series of
developments rather than a single landmark publication or
proposal. To illustrate this process of development, we review
two specific areas of analytic tool development drawing from
bothGeographic Information Science and Statistical Science.

As noted above, many (if not most) geographic public
health applications maintain an epidemiologic perspective,
seeking to better understand causes and drivers of observed
incidence and prevalence of disease. In this setting, analysts
seek to detect deviations from a setting where the risk of dis-
ease is the same for individuals everywhere (i.e., a hypothesis
of no clusters/clustering) or, more generally, where risk is
higher than expected based on known or suspected local risk
factors. Identification of geographic patterns or outliers can
be used in an analytics setting (i.e., act here versus there) or
in more of a statistical/epidemiologic manner (i.e., why are
rates high here?).

To see the influence of Geographic Information, Statisti-
cal, and Data Science more clearly, we outline contributions
to the development of methodological thinking around the
detection of disease clusters.

Example 1: Detecting Clusters of Disease
An unexpected “cluster” or “hot spot” of disease cases is an
evocative image in public health, often framed as beginning
with Dr. Snow’s investigation of cholera deaths in London
in 1854. The image captures the imagination of scientists,

policymakers, and the general public and generates a strong
desire for discovery of hidden drivers of risk based on the
geographic pattern observed in cases.

In 1990, the US Centers for Disease Control and Pre-
vention hosted a workshop bringing together public health
officials, epidemiologists, statisticians, and others to discuss
how best to seek out clusters and how best to respond to
reports of clusters by concerned groups. Beginning around
the same time, several analytic methods were proposed draw-
ing on advances in geographic data processing, advances
in statistical methodology, and advances in data availability
and access. The initial guidelines for analysis focused on
traditional epidemiologic summaries such as standardized
mortality ratios and standardized incidence ratios to describe
observed local excess cases and risk. The next decade wit-
nessed a rapid expansion in proposed analytic methods, but
application and interpretation typically required customized
development and programming by analysts embedded in
research groups, advocacy groups, or health agencies. From
2000 to 2010, textbooks (e.g.,Waller andGotway 2004, Law-
son 2006) provided collective descriptions and open-source
software with spatial analytic libraries provided broad access
to novel analytic methods. The most recent decade has seen
further expansion of computing power, open-source tools,
freely distributed software, and rapid access to vast quantities
of georeferenced data. Recent revisions to guidelines for un-
derstanding disease clusters now anticipate broadly sophisti-
cated analyses from all quarters, and responsible responses to
reports from analysts, advocates, and the public now require
familiarity with tools that have moved rapidly from their
origins in Geographic Information Science, Data Science,
or Statistical Science toward implementation as geoanalytic
tools.

To see this point more clearly, we note that, immediately
preceding the three-decade time period outlined above, Ge-
ographic Information Science, building on digitized maps
of disease incidence and prevalence, explored automated
detection approaches, most notably the Geographical Anal-
ysis Machine (GAM) of Openshaw et al. (1987). While the
GAM predates the coining of term “Geographic Information
Science” by a few years, and the term “Data Science” by
approximately two decades, it is very much in the spirit of
coupling geographic concepts and spatial relationships with
computational power to scale up simple tasks to address
complex, spatial problems. The approach considered a large
number of potential clusters (locally defined collections of
observed cases) and assigned a statistical significance value
to each potential cluster, plotting the boundaries of those
which exceeded a user-specified threshold. Due to the very
large number of overlapping potential clusters, each with its
own p-value, formal statistical inference presented a chal-
lenge. However, the graphical output identified areas on the
map where greater than expected rates of cases were ob-
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served. Investigators from Statistical Science provided some
early formalization of the GAM structure by limiting poten-
tial clusters to collections of either a fixed number of cases
(Besag and Newell 1991) or a fixed number of individuals
at risk (Turnbull et al. 1990). Such approaches provided
more interpretable evaluations of statistical significance for
putative clusters but were not as comprehensive or automatic
as the original GAM. Further research led to the now-popular
approach of the space-time scan statistic (SaTScan, Kulldorff
et al. 2005, Kulldorff 2009) which reframed the question
to avoid providing significance levels for every potential
cluster and instead provide focused and accurate statistical
significance relating to the most likely cluster. The approach
maintains the large-scale search aspect of the GAM but
provides sound inference for the potential cluster of greatest
concern. (A thorough and growing bibliography of analyses
using SaTScan across many different disciplines appears at
www.satscan.org.)

While the GAM-to-SaTScan path illustrates a historical
example of moving from one of the three fields through
others and toward the center node of geoanalytics in Fig. 1,
the example also illustrates that this path typically involves
the work of multiple individuals from multiple fields and
multiple perspectives to fully navigate the transition. In addi-
tion, it is important to note that such explorations rarely end
in the only possible approach to a problem. For example, in
addition to scan statistics, many other investigators have de-
veloped statistically based analytic methods for the detection
of spatial or spatiotemporal clusters. Tango (2010) provides
a catalog of many such methods, and Waller and Gotway
(2004, Chaps. 6 and 7) provide discussion of interpretation of
such hypothesis tests. With one path to geoanalytics in place,
many others often quickly follow providing analysts with a
broad collection of tools.

In addition to the historical development of cluster detec-
tion tools, Fig. 1 also illustrates the development pathway
of small area estimation and disease mapping models, be-
ginning in Statistical Science with generalized linear models
of small area rates and counts based on independent ob-
servations (McCullagh and Nelder 1989) to the incorpora-
tion of spatial correlation (GIScience) through the inclusion
of random effects (Clayton and Kaldor 1987, Besag et al.
1991). The statistical properties of such approaches are well
understood (Banerjee et al. 2014), and recent advances in
computing (Blangiardo and Cameletti 2015) offer potential
for data science-based distributed computing to allow appli-
cation to very large-scale data sets. The basic framework is
widely used by spatial analysts, and many extensions to the
basic model have been proposed and developed. One area of
ongoing research involves adjustments to allow associations
between an outcome variable and particular covariates to vary
across space, i.e., the strength of association between a risk

factor and a health effect may be stronger in some areas than
others, perhaps due to unobserved confounders. For example,
if one were exploring the association between illegal drug
activity (measured by local arrest counts) and the rate of
violent crime, one might expect a stronger association at the
border of two rival distributors (say, due to competition) than
one might expect within areas largely covered by a single
distributor. A brief history of these developments provides a
second illustrative example of the move from one of the three
Sciences toward the definition of geoanalytic tools.

Example 2: Spatial Variation in Associations
For almost two decades, two different approaches have
been proposed for estimating spatial variation in outcome-
covariate associations, one originating in Geographic
Information Science, the other from Statistical Science, and
both benefiting from developments in Data Science.

Tobler’s First Law of Geography, paraphrased as: all
things are related but things closer together are more related,
is central to Geographic Information Science, as are mea-
sures of spatial association. Such measures (e.g., Moran’s I,
Geary’s c) often draw on a matrix of spatial “weights” asso-
ciated with every pair of observations giving higher weights
given to closer pairs of observation locations. Fotheringham
et al. (2002) linked the Geographic Information Science idea
of weighting nearby observations to the Statistical Science
idea of using weights to increasing influence of certain
observations to provide local statistical estimation of associ-
ations between outcomes and covariates within a regression
setting. While in Statistical Science local regressions provide
smooth curves based on data with similar values of covari-
ates, Fotheringham et al. (2002) proposed estimating smooth
relationships based on data from nearby locations. The shift
in perspective from covariate space to geographic space
provides smoothly varying surfaces describing the estimated
association between a covariate and outcome. The results
are visually appealing and descriptive of the varying asso-
ciations. With available software, “geographically weighted
regression” (GWR) quickly became a popular analytic tool
with many applications in many different areas of applica-
tion. As with the GAM, some statistical challenges remained,
namely, calculation of local estimates of the variability of
the spatially varying estimates remains difficult since this
variance is entangled with the weights and variance of nearby
observations in a complicated manner. That is, it is difficult
to see if the spatial variations induced by the method are
significantly different from a model with a single value of
the association everywhere.

From the Statistical Science perspective, other researchers
have proposed extensions to disease mapping models to
allow spatially correlated random slopes in a mixed effects
framework.While such “spatially varying coefficient” (SVC)
models are cleaner statistically, the approach is not exactly

http://www.satscan.org
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the same as GWR, and direct comparisons between the two
approaches remain a challenge (Waller et al. 2007). Output
from SVC models provides model-based estimates of local
rates that are smoother than values based on local data alone
by “borrowing information” from neighboring observations.
Such neighbors are often defined by a spatial weight as-
sociated to pairs (as in GWR); however, GWR and SVC
use the weights quite differently. SVC weights define spatial
correlation between observations, while GWRweights define
the strength of influence of each observation on association
estimates across the study area. Typically, GWRestimates are
smoother (largely by definition), and SVC estimates retain
some residual statistical noise yielding less smooth maps of
the spatially varying associations.

With respect to Fig. 1, GWR begins in Geographic In-
formation Science and uses ideas from Statistical Science
without providing a full statistical assessment of estimation
and uncertainty, while SVC begins in Statistical Science
via Bayesian hierarchical models and then uses ideas from
Geographic Information Science, but its results are less clear
geographically. With respect to Data Science, current im-
plementations of GWR are much faster to compute and
closer to automation than are Markov chain Monte Carlo
implementations of SVC. (Markov chain Monte Carlo al-
gorithms estimate model parameters through (often lengthy)
simulations of potential values based on the observed data
and a probability model relating each parameter with other
model parameters.) Both sets of approaches continue tomove
toward providing geoanalytic capability, i.e., actionable in-
sight, but both still require care in implementation and inter-
pretation and likely require more refinements before they can
be viewed as robust, automatic, general purpose tools within
the geoanalytic toolbox.

Pulling It All Together

As illustrated in Fig. 1 and the discussion above, the three
fields of GIScience, Data Science, and Statistical Science
all offer unique but complementary contributions to the fu-
ture development, application, and interpretation of geoana-
lytic methods in studies of health and well-being. We stress
that no single field serves as the sole source of develop-
ment, nor does any single field serve as the final arbiter
of successful development of geoanalytic strategies. All so-
lutions contain elements of computation, geography, and
statistics/epidemiology, and the best solutions will borrow
from all three areas. In addition to the development of the
methods, we also note that the evaluation of their accuracy,
precision, and overall performance should also be viewed
through the composite lens of the intersecting fields.

For example, Waller et al. (2006) and Waller (2014) note
that the statistically familiar concept of power, the probability

of detecting a feature (e.g., a cluster of disease) when that fea-
ture is really present, has a geographic as well as a statistical
dimension. That is, the probability of detecting a cluster of
disease in a given location depends critically on the size of the
population at risk in that area. This intersection of Statistical
Science and GIScience offers novel geographic insight into
current discussions of false-positive rates in Data Science-
based detection algorithms, but such cross-fertilization is still
developing and will likely yield much promise for further
development.

Finally, while our discussion above primarily focuses
on the spatial aspect of geoanalytics, incorporating time
will allow the expansion of geoanalytics for spatiotemporal
analyses. Such research enables a dynamic assessment of
spatial patterns allowing analysts to explore the emergence
of outbreaks, the effectiveness of intervention policies, the
impact of season on spatial patterns of disease and health, and
many other aspects that vary by location and time (Cressie
and Wikle 2011).

Conclusions

In summary, Fig. 1 and the examples above illustrate the valu-
able contributions offered by the viewpoints of GIScience,
Data Science, and Statistical Science in the development,
application, interpretation, and assessment of geoanalytics,
especially for their application to studies of health and well-
being. Such hybrid thinking identifies the connection of tools
and concepts across all three settings in order to provide
accurate, reliable, and actionable conclusions as well as to
extend established tools from each area into a more robust
analytic toolbox for spatial analyses in public health and
biomedicine.

Future directions include further expansion of ideas from
each of the three areas into more integrated tools and train-
ing that draw from the strengths of the others. Such work
should focus attention on the development of geoanalytic
tools incorporating the best ideas in visualization, geography,
statistics, epidemiology, and data science. This is necessarily
interdisciplinarywork andwill benefit greatly from expanded
team science collaborations across the disciplines with a cen-
tral focus on creating better tools for the broader application
of spatial and spatiotemporal concepts and analytics across
the biomedical and public health sciences.
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Geostatistical Methods for Modeling
Environmental Exposures with Applications
to Ambient Air Pollution

Howard H. Chang

Introduction

Advancing our understanding of how environmental expo-
sures affect human health continues to be an important area
of public health research. Environmental exposures include
toxic contaminants from anthropogenic sources (e.g., traffic-
related air pollution, agricultural pesticides) and risk factors
such as extreme temperature and ecological changes. Pollu-
tants, especially those released into the atmosphere and the
water system, can affect large populations. One particular
challenge with environmental health studies is that they are
predominantly observational. This is because exposures to
environmental pollutants are often involuntary, and studies
are often conducted in response to emerging concerns (e.g.,
hydraulic fracturing) or disasters (e.g., hurricanes and oil
spills). It is infeasible or unethical for researchers to assign
individuals to different levels of environmental exposures.
Hence, to protect public health, environmental regulatory
standards and policies have relied on findings from large
population-based epidemiologic studies.

Being able to accurately link environmental exposures to
health data in space and time is a crucial, but difficult, task
in any environmental health study. It is generally not possi-
ble to measure exposures continuously for all participants,
especially in studies of long-term health effects. Moreover,
many environmental health studies are conducted retrospec-
tively where exposure levels are not collected with the health
data. For example, health data can be obtained from large
databases developed for administrative purposes (e.g., vital
certificates, hospital billing records) or disease surveillance
systems and registries (e.g., for cancers, birth defects, and
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neurological diseases). In these study designs, environmental
exposures need to be estimated from different data sources.

Past environmental epidemiology studies have routinely
utilized measurements from monitoring networks that are set
up by government agencies to perform exposure assessment.
However, reliance onmonitoring networks can lead to several
well-recognized analytic challenges. First, monitoring net-
works are spatially sparse and temporally incomplete due to
maintenance costs. This is a particular concern for pollution
fields that exhibit high spatial variability. Second, monitors
in networks designed for regulatory purposes are often pref-
erentially located in areas with large populations and high
pollution levels. Hence, when linking health data to moni-
toring measurements, the complex spatial-temporal missing
data pattern will not only restrict the study population, but it
can also result in exposure measurement error that impacts
the accuracy of health studies (Levy et al. 2019).

The increasing availability of geo-referenced health data
is accompanied by increasing interest in estimating envi-
ronmental exposures at fine spatial scales with complete
spatial-temporal coverage to support health studies. In order
to improve the availability and resolution of environmental
pollution data, one approach is to supplement monitoring
measurements with additional data sources that can reflect
pollution levels. In this chapter, these data sources are re-
ferred to as proxy data. For example, land use variables (e.g.,
elevation, roadway density, distance to pollution sources)
and meteorological conditions may be highly predictive of
pollution levels. Statistical models can be used to exploit
observed relationships between the pollutant of interest and
these predictors in space and in time.

Recently, satellite imagery and numerical model simula-
tions are two proxy data sources that have received partic-
ular attention. Satellite imagery has been used to measure
environmental processes such as temperature, wildfire, and
ambient air pollution. Advantages of remotely sensed data
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include their fine spatial resolutions, public and near real-
time availability, and excellent geographical coverage. In
contrast, numerical models aim to simulate a pollutant’s cre-
ation and dispersion using information on pollutant sources
and state-of-the-art knowledge on chemical and physical
processes. Moreover, numerical models can provide three-
dimensional deterministic outputs that have complete spatial-
temporal coverage for the study domain. Numerical models
have been utilized extensively for weather forecast and cli-
mate research. Advances in geographical information sys-
tem, remote-sensing technology, and numerical model sim-
ulation have contributed to the proliferation of modeling
approaches to estimate environmental exposures over the past
decade.

While satellite imagery and numerical model simulation
can provide useful information on environmental exposures,
these proxy data cannot directly replace monitoring measure-
ments in health analyses. Specifically, associations between
pollutant levels and remotely sensed parameters often vary
across meteorological condition, land cover, and pollution
composition. Satellite data are also subject to retrieval er-
rors and informative missingness. The main disadvantage
of numerical models is their high computational demand.
Numerical model outputs are also not based on observations,
and errors can arise from incorrect input data on sources,
incorrect representation of the underlying complex processes
with partial differential equations, and discretization of the
continuous environmental field in space and in time.

This chapter provides a review of geostatistical methods
for modeling environmental pollution fields. These statistical
models aim to combine monitoring measurements and proxy
data to improve exposure assessment while accounting for
the errors in proxy data. Geostatistical modeling, particularly,
aims to borrow information spatially from nearby observa-
tions to perform interpolation. In contrast to many machine
learning approaches, statistical models can also provide in-
terpretable parameters and uncertainty quantification in a
principled way.

Recent approaches in geostatistical methods for modeling
environmental exposures can be categorized into two broad
groups: melding and calibration. In melding, both measure-
ments and proxy data are viewed as error-prone realizations
of an unobserved (latent) true pollution field, whereas in
calibration, the proxy serves as a predictor for the observed
measurements. Both melding and calibration encounter sev-
eral common modeling challenges. First, satellite images
and numerical model outputs represent areal spatial data
over contiguous grid cells. When linked to point-reference
monitoring locations, a spatial change of support is encoun-
tered. Second, the bias between monitoring measurements
and proxy data can exhibit complex spatial and temporal
structures.

The modeling approaches presented in this chapter are
largely drawn from air quality research because of the rich
literature on exposure modeling and health effect estimation.
In air quality research, recent work has focused predom-
inantly on two pollutants: fine particulate pollution PM2.5

(particulate matter less than 2.5 μm in aerodynamic diam-
eter) and ground-level ozone. Both PM2.5 and ozone have
been linked to health outcomes such as premature mortality,
asthma exacerbation, cardiorespiratory morbidity, and ad-
verse birth outcomes. As a remotely sensed proxy, satellite-
derived aerosol optical depths (AOD) have been used to mon-
itor PM2.5 concentrations. AOD measures light extinction
due to airborne particles in the atmospheric column, and
previous studies have found positive associations between
PM2.5 level and AOD at different spatial and temporal scales.
Similarly, several global and regional numerical models have
been developed to simulate PM2.5 and ozone concentrations.
Examples include the Community Multiscale Air Quality
Model (CMAQ) and GEOS-Chem.

The rest of this chapter is organized as follows. First, we
will introduce geostatistical methods often used to model
environmental processes with land use and meteorological
variables. We will then review the general framework of
Bayesian melding, followed by statistical calibration. To
simplify notation, the spatial version of the approach will
be presented with noted spatial-temporal extensions. Several
recent advances such as multipollutant models, multiscale
fusion, and quantile calibration will be discussed.

Geostatistical Models for Environmental
Exposures

The goal of a geostatistical model is to use observed point-
level exposure measurements at sparse locations to estimate
the unobserved spatial exposure surface. Let Y (si ) denote
the pollutant measurement observed at point-location si with
coordinate (s1i , s2i ), which is often the projected x–y co-
ordinate. We assume Y (si ) is an error-prone version of an
unobserved true exposure W(si ). For a set of monitoring
locations s1, s2, . . . , sn, a typical spatial regression model is
given by

Y (si ) = W(si ) + ε(si ) (1)

W(si ) = Z(si )T α + v(si ), (2)

where Z(si ) is a p × 1 vector of covariates that are useful for
predicting of the exposure and α is the corresponding p × 1
vector of regression coefficients. Component v(si ) in Eq. (2)
represents spatially-dependent residuals not explained by the
covariate Z(si ), and component ε(si ) represents independent
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residuals due to instrumental error or fine-scale spatial vari-
ation not captured by v(si ) and Z(si )T α.

Assuming the exposure measurement Y (si ) is normally
distributed or suitably transformed to be normal, the latent
variable v(si ) is typically modeled as a Gaussian process.
A mean-zero Gaussian process assumes that the joint distri-
bution of v(si ) at any finite set of locations is multivariate
normal:

v = [ v(s1), v(s2), . . . , v(sn) ]T ∼ N ( 0, �θ )

where �θ is an n × n covariance matrix parameterized by
θ . One can also think of v(si ) as spatially dependent random
effects in a mixed model or hierarchical model framework.
The entries of �θ are determined by a covariance function
C(·|θ). Let dij = ||si − sj || denote the Euclidean distance
between two locations si and sj . One popular spatial covari-
ance function is the Matérn:

C(dij |θ) = θ1
1

�(θ3)2θ3−1

(
dij

θ2

)θ3

Kθ3

(
dij

θ2

)

where θ1, θ2, θ3 > 0, and Kθ3(·) are the modified Bessel
function of the second kind. The Matérn covariance function
contains two important special cases. First, when θ3 = 0.5,
it corresponds to the exponential covariance function:
C(dij |θ) = θ1e

−dij /θ2 ; second, as θ3 → ∞, it gives
the double-exponential covariance function C(dij |θ) =
θ1e

−d2
ij /θ

2
2 .

In the above covariance functions, θ1 corresponds to the
value when dij = 0. Hence, θ1 is known as themarginal vari-
ance which describes the variability at any location across
independent realizations of the Gaussian process. Parameter
θ2 is known as the range parameter and describes the cor-
relation as a function of distance. Finally, θ3 determines the
smoothness of the covariance function. The Matérn family is
an example of isotropic covariance function because its value
only depends on the distance between locations, regardless of
direction and regions of the modeling domain.

Modeling the spatial dependence in v(si ) is what allows
us to perform spatial interpolation (kriging) using the set of
observations W = [W(s1), W(s2), . . . , W(sn)]T to predict
at locations without measurements. Similarly, letW∗ denote
a vector of n∗ exposures to be interpolated and Z∗ the
corresponding matrix of covariate predictors. The joint dis-
tribution ofW andW∗ is given by the multivariate Gaussian
distribution

[
W
W∗

]
∼ N

( [
Zα

Z∗α

]
,

[
�θ ,11 �θ ,12

�θ ,21 �θ ,22

])
,

where the block covariance matrix is governed by the same
covariance function of v. Assuming the residual error is given

by ε(si ) ∼ N(0, σ 2
ε ), the multivariate Gaussian conditional

distribution ofW∗ can be derivedwith respect to observations
Y:

[W∗|Y] ∼ N

[
Z∗α + �21(�11 + σ 2

ε In)
−1(Y − Zα),

�22 − �21(�11 + σ 2
ε In)

−1�12

]
, (3)

suppressing the θ subscript in �θ above for notational ease.
Finally, in most studies, the exposure estimate Ŵ∗ is then
defined as the conditional mean:

Ŵ∗ = Z∗α + �21(�11 + σ 2
ε In)

−1(Y − Zα). (4)

The above is similar to what is known as universal Kriging.
In the special case of no spatial dependence, i.e., �21 = 0 in
Eq. (3), the estimate becomes the mean trend Ŵ∗ = Z∗α and
does not utilize information from observations Y. Finally, if
we have no covariate, the estimate is given by

Ŵ∗ = �21(�11 + σ 2In)−1Y ,

which can be viewed as a weighted average of observed
measurements Y, also known as simple kriging.

We now review several commonly used regression ap-
proaches for modeling environmental exposures using dif-
ferent forms of Eq. (2). First, if we assume v(si ) = 0 for
all s, then the model becomes a standard multiple regression
model and Ŵ∗ = Z∗α. This is also known as a land use
regression model where the exposure surface is driven only
by spatially varying predictors, such as elevation, roadway
density, and distance to pollution sources (Ryan and LeMas-
ters 2007; Hoek et al. 2008). One challenge with land use
regression models is that predictions can only capture spatial
variation represented by the selected land use variables. Often
additional measurement campaigns are conducted to enrich
the observation dataset and the distribution of predictor vari-
ables.

Instead of specifying the residual spatial trend using a
Gaussian process, it can also be modeled parametrically
using functions of coordinates directly, for example, with
quadratic terms s1i , s2i , s

2
1i , and s2

2i in the mean. More gen-
erally, one can use spatial basis functions:

v(si ) = S(si )T θ ,

where S(si ) = [S1(si ), . . . , SK(si )]T is a vector of K basis
functions evaluated at location si . If the coefficient vector
γ is assumed to be mean-zero Gaussian random effects
with covariance matrix �, then v(si ) is Gaussian with the
covariance between si and sj given by S(si )T �S(sj ). The
above formulation has two main advantages. First, the choice
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of basis functions and covariance matrix � can allow for
flexible structures. Second, when the number of basis func-
tions K is smaller than the number of spatial locations, one
can avoid large matrix inversions in the kriging solution,
which can be computational burdensome for large datasets.
This approach is also known as fixed-rank kriging (Cressie
and Johannesson 2008). Different basis functions have been
proposed using pre-specified covariance function (Kammann
and Wand 2003), thin-plate splines (Wood 2003), and com-
pact kernels (Nychka et al. 2015).

Spatial-temporal models are used for exposures that are
measured across both space and discrete time points, in-
dexed by t . Spatial-temporal covariates Z(si , ti) often in-
clude short-term meteorological variables such as tempera-
ture and precipitation. For exposures with smooth temporal
trends, including them in the mean via temporal splines
or cyclic functions may be sufficient; otherwise, additional
temporal autocorrelation can built into the random effect
v(si , ti). There is a rich literature on how to model spatial-
temporal data with different covariance functions (Gneiting
et al. 2006). The simplest covariance function assumes that
correlation due to spatial and temporal proximity is separa-
ble, i.e., Corr[v(si , ti), v(sj , tj )] = h1(||si − sj ||) × h2(|ti −
tj |), where h1(·) and h2(·) are correlation functions in space
and time, respectively. A dynamic model is another popular
formulation where the spatial process evolves through time.
For example, let ρ ∈ [0, 1], we can assume v(si , ti) =
ρ×v(si , ti −1)+η(si , ti), where η(si , ti) is a second GP that
is independent across time points. Alternatively, one might
consider modeling spatial-temporal data as time-series data
with spatial dependence; for example, see Lindström et al.
(2014).

Application: Modeling Daily PM2.5
Concentration

Here we describe an application of geostatistical models for
estimating PM2.5 concentrations in Southeastern USA. Fig-
ure 1 shows the observed 24-h average PM2.5 concentrations
at 78 sites on a particular day. We first construct a 12×12 km
grid over the modeling domain. Then for each grid cell,
three additional spatial predictors are obtained: elevation (m),
percent forest cover, and simulated PM2.5 levels from the
Community Multiscale Air Quality (CMAQ) modeling sys-
tem from the US Environmental Protection Agency. CMAQ
version 5.0.2 was run at a 12×12 km resolution with 35 verti-
cal layers that span till the top of the free troposphere. In this
analysis, we only used the surface layer, which is nominally
19m tall. Figure 2 shows the CMAQ PM2.5 simulations.

We evaluate the spatial prediction performance of linear
regression models and spatial kriging with different set of
predictors. This is accomplished using cross-validation (CV)
experiments where we split the data repeatedly into a training
set and a validation set. The training set is used to fit various
models and predictions made from the training set compared
to the left-out observations in the validation set. Here we
implement at leave-one-site CV where each observation is
treated as a validation data point, while the other 77 observa-
tions are used to fit different models. The process is repeated
78 times, until each observation has served as a validation
data point.

Let Ŷi be the prediction for observation i when i is treated
as the validation data and Yi the actual observation. Each
prediction is also associated with a Kriging variance Var(ŷt ).

Fig. 1 Daily 24-h average PM2.5
concentration (μg/m3) in the
Southeastern US modeling
domain
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Table 1 Prediction performance for PM2.5 using linear regression or
Kriging with different covariates: elevation (Elev), percent forest cover
(Forest), and simulations from numerical model (CMAQ). Performance

criteria include root mean square error (RMSE), mean absolute error
(MAE), empirical 95% prediction interval coverage (Cov95), and the
average prediction standard error (SE)

Model Covariates RMSE MAE Cov95 Avg SE

Linear regression Elev+Forest 5.80 4.33 0.94 6.78

Linear regression CMAQ 5.67 4.05 0.95 6.48

Linear regression Elev+Forest+CMAQ 5.52 3.87 0.96 6.62

Kriging None 4.26 3.22 0.94 4.22

Kriging Elev+Forest 4.07 2.79 0.94 4.26

Kriging CMAQ 4.07 2.87 0.94 4.05

Kriging Elev+Forest+CMAQ 4.16 2.86 0.92 4.23

Fig. 2 Simulated PM2.5 concentrations (μg/m3) in Southeastern USA

We use the following criteria for prediction performance to
compare models:

• Root mean squared error (RMSE):

√√√√ 1

78

78∑
i=1

(Ŷi − Yi)2

• Mean absolute error (MAE):

1

78

78∑
i=1

|Ŷi − Yi |

• Average prediction standard error (SE):

1

78

78∑
i=1

√
Var(ŷi)

• Empirical coverage of the 95% prediction interval:

1

78

78∑
i=1

1Yi
∈ Ŷi ± 1.96 ×

√
Var(ŷi)

RMSE and MAE measure the overall error between out-
of-sample prediction and observations. Average SE describes
the precision of the prediction. The empirical coverage prob-
ability assesses whether the prediction intervals constructed
have the desired property. Specifically, a 95% prediction
interval should include the observations 95% of the time.

Table 1 summarizes the CV results, where we see that
Kriging has better prediction performance (lower RMSE,
lower MAE, lower Avg SE) compared to linear regression
that does not incorporate spatial correlation in the predic-
tion. For Kriging models, we assumed an exponential spa-
tial correlation structure, but other correlation structures are
also possible. For all models, the prediction intervals have
good empirical coverage probability. We also find that Krig-
ing model with the means having CMAQ as the predictive
gives the smaller RMSE and average SE among the models
examined.

BayesianMelding

Bayesian melding is a data integration approach developed
specifically to combine point-level monitoring measure-
ments with gridded proxies. Again, let Y (s) denote the
pollutant concentration measurement from an air quality
monitor at point-location s with coordinates (s1, s2). For
notational ease, we now suppress the subscript i for locations
si . The gridded proxy data are denoted by X(Bs), where Bs

indexes the contiguous grid cell that includes point location
s. The spatial resolution of the proxy data varies based
on satellite retrieval algorithms and whether the numerical
simulation is performed on a global or a regional scale. In air
quality applications, the spatial resolution of satellite-derived
AOD ranges from 10 km to 1 km; the spatial resolution ranges
from 100 km to 4 km for numerical model simulations.
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In Bayesian melding, we assume observations Y (s) and
X(Bs) arise from a common unobserved latent processW(s),
representing the true pollutant field. The model is formulated
as follows:

Y (s) = W(s) + ε(s) (5)

W(s) = μ(s) + v(s) (6)

X(Bs) = 1

|Bs|
∫

Bs

X̃(s) ds (7)

X̃(s) = a(s) + b(s)W(s) + δ(s) . (8)

Equation (5) treats the observed monitoring data Y (s) as an
error-prone realization of the latent process W(s) with in-
dependent measurement error ε(s). The latent process W(s)
has a spatial trend μ(s) and a spatially dependent residual
component v(s) that is a Gaussian process (GP ). Equa-
tion (7) introduces a conceptual point-referenced proxy data
X̃(s) and its spatial average over grid cell Bs resulting in
the observed grid-level proxy value. Finally, the point-level
proxy X̃(s) is linked to the latent true pollutant field W(s)
via a linear regression model. Coefficients a(s) and b(s) are
often interpreted as the additive andmultiplicative calibration
parameters for the proxy, and component δ(s) represents
random proxy error.

The above framework was first described by Fuentes
and Raftery (2005) for assessing spatial bias in CMAQ.
Subsequent applications in predicting pollution fields have
found that Bayesian melding consistently outperforms krig-
ing (Berrocal et al. 2010b; Liu et al. 2011). Several features
are worth noting. Themain advantage of melding is the use of
a latent continuous field that allows the spatially misaligned
measurements and proxy data to jointly provide information
on W(s), which is the quantity of interest. Conceptually,
the latent variable approach offers straightforward extensions
to multiple proxies (Crooks and Isakov 2013) and multi-
ple pollutants (Sahu et al. 2010). However, the model is
highly parameterized, and identifiability is a frequent con-
cern. Specifically, we first need to decompose the residual
variation in Y (s) into two error components v(s) and ε(s).
The structures of the spatial calibration parameters a(s) and
b(s) also need to be selected with care as it determines
how much variation in the proxy can be attributed to the
true pollutant field versus output bias. Specifically, a(s) and
b(s) are usually parametrized as fixed effects, instead of
spatial random fields, to avoid identifiability problems with
estimating W(s).

Using CMAQ proxy to estimate weekly SO2 concen-
tration in eastern USA, Fuentes and Raftery (2005) have
the following parameterizations for the three independent

variance components: ε(s)
iid∼ N(0, σ 2

e ), v(s) is a Gaussian

process with nonstationary covariance function, and δ(s)
iid∼

N(0, σ 2
δ ). For the structural components, μ(s) and a(s) are

polynomial functions of s, and b(s) is assumed to be an
unknown constant. For modeling ozone concentration and
numerical model outputs, a similar model is employed by
Berrocal et al. (2010b) and Liu et al. (2011), with the ex-
ception that the covariance function of v(s) is assumed to be
exponential. One important observation from Berrocal et al.
(2010b) is that the predictive surface obtained from melding
closely follows the spatial gradients of the proxy, with values
closer to CMAQ especially in unmonitored areas. Inmelding,
the proxy can dominate for two reasons. First, there is con-
siderably more proxy data than monitoring measurements.
Second, by specifying a(s) as a smooth spatial trend, fine-
scale spatial variation in the proxy is assumed to reflect the
true pollutant field. The issue of disentangling spatial scales
between a(s) and W(s) is further investigated by Paciorek
(2012). Through a simulation study and an application of
predicting PM2.5 levels using CMAQ or AOD, Paciorek
finds that modeling a(s) flexibly significantly reduces the
usefulness of the proxy.

Bayesian melding often involves considerable computa-
tional effort because of the change-of-support integral in
Eq. (7), and a large number of spatial points need to be eval-
uated for W(s). Typically, the integral is approximated using
Monte Carlo integration. For example, Berrocal et al. (2010b)
use a systematic sample of 4 points for each CMAQ grid
cell (12 km resolution). Liu et al. (2011) consider randomly
selecting a fixed number of points to avoid ill-conditioned
spatial covariance matrix. Several approaches to decrease
computational burden have been proposed. First, Sahu et al.
(2010) introduce an areal true pollutant process W̃ (Bs) that
has the same grid as the proxy. This latent discrete spatial
variation can be efficiently estimated using a conditionally
autoregressive (CAR) model (Besag 1974). A measurement
error model, Eq. (9), is then used to resolve the mismatch
between point-referenced W(s) and areal true pollutant pro-
cesses:

Y (s) = W(s) + ε(s)

W(s) = W̃ (Bs) + v(s) (9)

X(Bs) = γ0 + γ1W̃ (Bs) + ψ(Bs)

where ε(s), v(s)), and ψ(B) are normal independent errors.
An additional simplification is taken by McMillan et al.
(2010) to model PM2.5 levels and CMAQ outputs by elim-
inating the latent variable, W(s), for all s. Under this model,
monitoring measurements are linked to the areal latent pro-
cess directly as in Eq. (6):

Y (s) = W̃ (Bs) + ε(s) (10)

X(Bs) = γ0 + γ1W̃ (Bs) + ψ(Bs).
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Here ε(s) incorporates both measurement error in monitoring
data and error due to spatial misalignment. One important
consequence of Eq. (10) is that the model can only provide
gridded pollution predictions because Z̃(Bs) is modeled as a
discrete spatial process. This is often referred to as upscaling
as the original point-referenced monitoring data has been
coarsened to areal level.

Because of the gain in computational speed, both Sahu
et al. (2010) and McMillan et al. (2010) are able to perform
Bayesian melding in a spatio-temporal setting with an addi-
tional dynamic time series model for the latent process. Their
models provide daily pollution predictions that are useful for
health studies that require short-term exposure assessment.
Choi et al. (2009) also extend the melding framework of
Fuentes and Raftery (2005) to a temporal setting bymodeling
the latent pollution field on day t as Z(s, t) = μ(s, t) +
ε(s, t). The trend μ(s, t) includes time-varying meteorolog-
ical variables, and ε(s, t) is modeled as an autoregressive
Gaussian process. More recently, Gilani et al. (2016) used
Bayesian melding to model near-roadway pollution with
monitoringmeasurements and dispersionmodel output. They
used a non-stationary covariance function that is dependent
on wind direction.

Statistical Calibration

Motivated by the increasing amount of proxy data being
generated and the limitations of Bayesian melding, Berrocal
et al. (2010b) develops a statistical calibration approach for
using CMAQ data. Under a calibration framework, the proxy
is viewed as a predictor for measurements. Let X(Bs) denote
the proxy grid cell linked to a monitor at point-location s. The
regression model is given by:

Y (s) = α0(s) + α1(s)X(Bs) + ε(s), ε(s) ∼ N(0, σ 2
ε ) .

(11)

Here α0(s) and α1(s) can be interpreted as the spatially
varying additive and multiplicative calibration parameters
of the error-prone proxy data. Parameters α0(s) and α1(s)
are modeled as a bivariate continuous spatial process via
linear coregionalization model (LMC) (Gelfand et al. 2004).
Briefly, two independent mean-zero, unit-variance Gaussian
processes U1(s) and U2(s) are introduced. Correlation be-
tween α0(s) and α1(s) is induced by letting α0(s) = c1U1(s)
and α1(s) = c2U1(s)+c3U2(s), where c1, c2, c3 are constants
that determine the marginal variance for each random effect
and their correlation.

There are several advantages that statistical calibration
offers compared to Bayesian melding. First, note that the
only proxy data used for model fitting are those linked to
a monitor. Proxy data not linked to a monitor are only

used for predictions. This reduces the computational effort
considerably as the number of monitoring locations is usually
much smaller than the number of proxy grid cells. Second, by
treating α0(s) and α0(s) as continuous processes, they can be
interpolated smoothly in space. This allows point-level pre-
dictions even though the proxy predictor represents an areal
average. This feature is often referred to as downscaling, in
contrast to the upscaler byMcMillan et al. (2010) in Eq. (10).
Statistical downscaling has been used to combine CMAQ
data (Berrocal et al. 2010b), as well as AOD for predicting
PM2.5 fields (Chang et al. 2014).When compared to Bayesian
melding, Berrocal et al. (2010b) found that downscaling
CMAQ for daily ozone level results in smaller spatial predic-
tion error in cross-validation experiments. Similar findings
are observed by Paciorek (2012) in a simulation study.

Outputs from dispersion models that provide air qual-
ity simulations at point level have also been considered
(Lindström et al. 2014; Pirani et al. 2014). Finally, in the
recent annual Global Burden of Disease Study published by
the World Health Organization, global ambient PM2.5 esti-
mates were derived frommonitoringmeasurements, satellite-
derived AOD, and numerical model simulations (Shaddick
et al. 2018), and data integration was conducted under the
statistical calibration framework.

One major limitation for using the proxy as a predictor is
that it cannot contain missing values. For example, satellite-
retrieved AOD can be missing due to cloud cover and highly
reflective surfaces such as snow. Several methods have been
proposed to account for missing satellite information. For ex-
ample, Grantham et al. (2018) developed a spatial regression
framework that accounts for informative spatial missingness.
Murray et al. (2019) modeled PM2.5 using an ensemble
approach such that when AOD is not available, one can use
estimates from other models (e.g., a model with CMAQ as
the proxy). Finally, the calibration framework assumes that
the observed measurements Y (s) are the gold standard, even
though instrumental error is likely to be present.

Extension to spatio-temporal data is straightforward by
allowing the calibration parameters in Eq. (11) to be time-
varying: α0(s, t) and α1(s, t). For computational efficiency,
the space-time processes can be decomposed into additive
components, i.e., αj (s, t) = αj (s) + αj (t), for j = 1, 2. The
temporal component is then assumed to evolve dynamically
in time via an autoregressive model. In combining PM2.5 and
satellite-derived AOD, Chang et al. (2014) demonstrate the
importance of considering temporal dependence in the cali-
bration parameters because missing AOD data can result in
days with no linked AOD-measurement pair. With sufficient
monitoring locations, one can assume that αj (s, t) evolves
dynamically over time. However, for combining ozone and
CMAQ outputs in the eastern USA, Berrocal et al. (2010b)
find that the model allowing the spatial calibration param-
eters to be independent across days has the best prediction
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performance. Finally, in Zidek et al. (2012), the authors as-
sume spatially varying calibration parameters but model the
residuals ε(s, t) to be autoregressive temporal processes with
spatially varying autoregressive parameters. The motivation
is to model the temporal variation in the measurements via
the residuals, instead of that inherent in the proxy data.

Model Extensions

Multivariate Exposure Modeling

Humans are exposed to multiple pollutants simultaneously,
and different pollutants can share the same sources. Conse-
quently, there is growing interest in developing data fusion
methods for multiple pollutants to support health research.
A multipollutant approach may also improve prediction per-
formance as we can exploit the dependence between pollu-
tants. This is particularly advantageous when the pollutant
monitors are not co-located or have different measurement
schedules.

Choi et al. (2009) present an interesting application of
Bayesian melding for five constituents of PM2.5. Here the
proxy data are measurements from another network that only
provides the sum of the five constituents. The objective is
to model individual pollutant concentration at location s as
a function of a latent pollutant sum field. Let Yl(s) denote
the measured lth pollutant’s concentration, and let S(s) =∑5

l=1 Yl(s) denote the unobservedlatent sum. Similarly, let

X(s) be the sum measured from the proxy network. The
hierarchical model is given by:

Yl(s) = θl(s) S(s) + εl(s, t) (12)

S(s) = μ(s) + ε(s)

X(s) = a(s) + S(s) + δ(s) .

Equation (12) expresses the observed pollutant as a propor-
tion of the latent sum. The pollutant-specific proportion θk(s)
is allowed to vary spatially and is specified as

θk(s) = exp(αk(s))∑5
j=1 exp(αj (s))

where for j = 1, . . . , 5, αj (s) is a Gaussian process, in-
dependent across j . Parameter α5(s) is set to 0 for all s
for identifiability purposes. To account for the correlated
measurement error, εl(s) is modeled jointly using LMC.
Note that here a change-of-support calculation is not needed
because the proxy is available at the point level. Spatial-
temporal data are accommodated by replacing θl(s) with a
dynamic Gaussian process.

Multipollutant approaches have also been proposed under
the downscaling framework. First, Berrocal et al. (2010a)
extend their original model to a bi-pollutant setting for ozone
and PM2.5 using CMAQ outputs as the proxy. Following
previous notation in Eq. (11), the bi-pollutant model is given
by:

Y1(s) = α10(s) + α11(s)X1(Bs) + α12(s)X2(Bs) + e1(s), e(s) ∼ N(0, σ 2
ε1
)

Y2(s) = α20(s) + α21(s)X2(Bs) + α22(s)X1(Bs) + e2(s), e(s) ∼ N(0, σ 2
ε2
).

We note that the proxy variables X1(Bs) and X2(Bs) are used
to model each outcome, maximizing potential information
in the proxy data. Again, the six calibration parameters are
modeled jointly using LMCwhere various between-pollutant
and/or between-proxy dependence structures can be investi-
gated. To handle sites where only one of the pollutants is ob-
served, a data augmentation step for the LMC latent variables
is included in the Bayesian estimation algorithm. The above
model involves numerous parameters, and extension to more
than two pollutants has yet to be examined.

Finally, we describe a calibration approach by Crooks and
Özkaynak (2014) that includes a sum constraint for modeling
PM2.5 constituents. The motivating application entails simul-
taneously combining monitoring data and CMAQ outputs for

five PM2.5 constituents and the total PM2.5 mass. The sum
constraint is accomplished by modeling the klth pollutant
concentration using a Gamma distribution:

Yl(s) ∼ Gamma
(
τ−1 × [αk0(s) + α1(s)Xl(Bs) ], τ−1

)
.

Note that the Gamma rate parameter τ and the multiplicative
calibration parameter α1(s) do not vary across pollutants.
Assuming the pollutants are independent, the observed sum
also follows a Gamma distribution. This allows a mass con-
servation requirement using the observed total PM2.5 mass.
Despite these distributional assumptions, in cross-validation
experiments, the authors find that bothmass conservation and
the multipollutant approach improve prediction accuracy.
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Multiple-Scale Calibration

In calibration, at each monitoring location, only the single
linked proxy grid cell is used to provide information on the
observed measurements. Because of the spatial dependence
in pollutant field, it is reasonable to also consider whether
neighboring grid cells are useful for prediction. Berrocal et al.
(2012) propose two approaches to borrow proxy information
across multiple grid cells. First, they replace the single grid
cell predictor X(Bs) in Eq. (11) by a smoothed version,
X̃(Bs):

Y (s) = α0(s) + α1X̃(Bs) + ε(s), ε(s) ∼ N(0, σ 2
ε ) (13)

The new predictor X̃(Bs) is taken as the spatial grid-level
random effect with a CAR structure: X(Bs) = X̃(Bs) +
ψ(s), where ψ(s) is an independent normal residual error.
Note that the above multiplicative calibration parameter α1

is constant in space to avoid identifiability problems. The
use of smoothed proxy data offers two advantages. First this
approach avoids the spatial misalignment due to a monitor’s
location within a proxy grid cell. Specifically, if a monitor
is near the boundary of a grid cell, then it’s natural to also
consider proxy values at the closer grid cell. Second, it
provides a flexible framework to utilize all of the proxy
data in predicting Y (s). This mimics the Bayesian melding
approach where all the proxy data are used to estimate the
latent pollutant field. However,the downscaler enables the

measurement data to decide how much local smoothing is
required to achieve optimal prediction.

Berrocal et al. (2012) also consider an alternative smooth-
ing approach by deriving a point-referenced proxy that rep-
resents a weighted average across all proxy grid cells:

X̃(s) =
G∑

g=1

wg(s)X(Bk).

Let rg be the centroid of grid cell g; the weights are defined
as:

wg(s) = K(s − rg) exp(Q(rg))∑G
l=1 K(s − rl ) exp(Q(rl ))

where K(·) is a Gaussian kernel with bandwidth cover-
ing three grid cells in each direction, and Q(·) is a mean-
zero Gaussian process approximated using predictive process
(Banerjee et al. 2008). By including Q(·), the weight wg(s)
is allowed be to asymmetrical among the grid cells around
location s. In their application to daily ozone concentration,
the authors find that the use of smoothed CMAQ proxy pro-
vides better prediction power, especially at locations farther
from the rest of the monitors.

Reich et al. (2014) propose a spectral downscaler that
extends Berrocal et al. (2012) further by using multiple
smoothed proxies at different spatial scales. The conceptual
framework begins by considering the spectral representation
of the continuous processes associated with the measurement
and the proxy:

Y (s) =
∫

exp(−iωT s)H1(ω) dω and X(s) =
∫

exp(−iωT s)H2(ω) dω

where H1(ω) and H2(ω) are mean-zero Gaussian processes.
The correlation betweenH1(ω) andH2(ω) is assumed to vary
across frequency ω. Assuming X(s) is observed everywhere,
the conditional distribution of Y (s) is given by:

E[Y (s) | X(s′)foralls′] =
∫

exp(−iωT s) α(ω)H2(ω) dω.

The above describes a scenario where the usefulness of
the proxy to predict Y (s) differs across spatial scales
as captured by parameter a(ω). To estimate a(ω), Reich
et al. (2014) parameterized it using basis expansion where
a(ω) = ∑L

l=1 Al(ω)θl . The standard downscaler in Eq. (11)
now takes the form

Y (s) = α0(s) +
L∑

l=1

θlX̃l(s) + ε(s), ε(s) ∼ N(0, σ 2
e )

(14)

where

X̃l(s) =
∫

Al(ω) exp(−iωT s)H2(ω) dω .

Since the proxy data are observed completely over a grid,
X̃l(s) can be constructed efficiently using fast Fourier trans-
form.

The spectral downscaler is similar to using a smoothed
proxy as predictor because the decomposed proxy signal at
each frequency is driven by more than one individual grid
cell linked to the monitor. By considering the entire range
of frequencies, the spectral downscaler also provides unique
insights into the utility of the proxy at different scales. When
applied to CMAQ ozone simulations, the spectral downscaler
showed that CMAQ outputs at 12 km resolution have low
correlation for features with a period less than 24 km. This
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may highlight the deterministic model’s limited resolution at
this scale due to the coarse meteorological inputs. However,
the associations between CMAQ outputs and measurements
increase with increasing period, likely because ozone con-
centration tends to exhibit strong regional trends.

Rank and Quantile-Based Calibration

All the models we have presented focus on modeling the
mean of the pollutant fields. However, environmental expo-
sures can exhibit extreme tails, and these extreme values are
often more detrimental to health (e.g., extreme heat). In the
USA, the air quality standards for ozone pollution use the
annual fourth-highest daily 8-h maximum concentration as
the metric to determine non-attainment status. Berrocal et al.
(2014) consider a downscaler that models the annual largest
kth order statistic based on the generalized extreme value
distribution which contains three parameters: location, scale,
and shape. The same calibration approach in Eq. (11) is then
applied to the location parameter.

Zhou et al. (2011) propose an alternative approach that
aims to characterize the entire distribution of the pollutant
field at each location. This is accomplished by estimat-
ing a one-to-one mapping between the quantile functions
of the measurements and the proxy data using monotonic
splines. This approach also falls under the framework of
non-parameteric density estimation. Unlike Berrocal et al.
(2014), to address the tails of the distribution, Zhou et al.
(2011) assume the 10% tail of the pollutant distribution at
each extreme follow a generalized Pareto distribution, and
the central 80% of the distribution is determined flexibly by
the splines.

Concluding Remarks

Current modeling approaches to integrate different data
sources can be classified into two broad paradigms: machine
learning (e.g., random forest and neural network) and
advanced geostatistical modeling (e.g., Bayesian hierarchical
model). This chapter focuses on geostatistical approaches
that aim to optimally borrow information from nearby
observations to perform interpolation; this model-based
approach can also provide more interpretable parameters
and uncertainty quantification in a principled way. However,
machine learning methods offer several advantages including
the ability to handle a number of highly correlated predictors
and the ability to construct complex predictive algorithms
that are non-additive and nonlinear. There have been very
limited cross-paradigm comparisons (Adam-Poupart et al.
2014), likely due to the analytic effort and expertise required
to carry out the different approaches.

Improved exposure assessment methods will continue to
be valuable for epidemiological research and health impact
studies. The prospect of combining different sources of data
to assess environmental pollution is well recognized. As data
products of environmental exposures become more readily
available, researchers face the challenge of how to utilize
them for epidemiological research.
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Spatial Epidemiology and Public Health

Shikhar Shrestha and Thomas J. Stopka

Introduction: Geographic and Spatial Health

The World Health Organization (WHO) defines health as
“a state of complete physical, mental and social well-being
and not merely the absence of disease or infirmity” (WHO
1995). Health and the context where such a “state” exists are
critical in understanding the pathways that lead there. Health
is a product of one’s body and its complex interaction with
the surrounding environment. The surrounding environment
could be as local as our workstation, the physical structures
in our immediate surroundings, and the people that surround
us, or as broad as the geographic, economic, and socio-
political environment. Environments can determine the food
we consume, the air we breathe in, the light that shines on
us, and the sounds that we hear. As society has progressed,
humans have gained the privilege and ability to modify our
surroundings for our well-being. We control a broad range
of decisions that contribute to our health, yet we are unlikely
to be able to extricate ourselves from the environmental and
social contexts tied to the geography within which we exist.
For example, we may try to lead ideal lives with proper
nutrition, exercise, and healthy habits, but there is little we
can do about air pollution, population density, and traffic-
related stress in the city or town within which we live. We

I’ve always been fascinated by maps and cartography. A map tells you
where you’ve been, where you are, and where you’re going – in a sense
it’s three tenses in one.– Peter Greenaway
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may go further and remove ourselves from the polluted, high-
density, stressful city, and move to another, but the impacts
of those previous health stresses will have already taken their
toll on our lives. Furthermore, our lives and state of health
will still be tied to the social norms, governmental policies,
and environmental factors, in one form or the other, in our
new surroundings. Thus, the “environment,” taken broadly to
mean the natural, social, and risk environments that surround
us, has a significant role in determining our individual health
and broadly determining the trajectory of the public’s health.

Epidemiology is the study of health and diseases across
populations, whether it be neighborhoods, cities, towns,
counties, states, nations, or the globe (Celentano and Mehta
2018). In public health, we consider the health and well-
being of the community, as opposed to looking at the health
of an individual patient. In fact, Schools of Public Health
view public health as an opportunity to save lives – millions
at a time (Thomas 2016). Spatial epidemiology reminds us
that place matters when it comes to health (Cummins et al.
2007; Macintyre et al. 2002; Cubbin et al. 2008; Newburger
et al. 2011). Where we are born and where we grow up, go
to school, hang out, work, and recreate over the life course
have an impact on our health status. Throughout our lives,
we are exposed to a wide range of health-promoting (e.g.,
fresh air, healthy food, and exercise outlets) and health-
inhibiting factors (e.g., pollution, unhealthy food, disease
vectors, stress, carcinogens), and a majority of these factors
are geographically based. When epidemiologists study risk
factors for a certain disease, they need to account not only
for the very proximal causes of disease, say exposure
to Mycobacterium tuberculosis, the pathogen that causes
tuberculosis (TB), but also for a broader context of how
an individual got exposed to the bacteria (e.g., crowded
living spaces) or what biological factor predisposed one
individual to get the infection (e.g., a compromised immune
system) while others were able to avoid infection. A major
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predisposing factor for contracting TB is the built and
natural environment surrounding the individual. Therefore,
it is critical for a researcher to incorporate location or
environment as a part of the overall study of the disease.

Geographic Information Systems (GIS) for
Public Health

Recognizing the important role of geography in health, maps
were used to understand where diseases occurred as early as
in the 1700s. These efforts in “Medical Geography” strove to
help improve our understanding of the distribution of disease
within the local context of environmental conditions. Some
of the first known works in the field of medical geogra-
phy came from Leonhard Ludwig Finke in the late 1700s,
when he complied information on the location of human
diseases (Barrett 2000). While there has been a long debate
on who compiled the first world map of diseases (Barrett
2000; Barkhuus 1945; Schnurrer 1827; Light 1944), these
efforts ushered in a new age of research into the field of
medical geography and spatial health. Perhaps one of the
better known disease maps is attributed to the “Father of
Modern Epidemiology,” Dr. John Snow, who mapped cas-
kets in London in the midst of a cholera epidemic (Fig. 1)
(Cameron and Jones 1983). Snow understood that there was a
geographic pattern in cholera cases and in using “shoe leather
epidemiology”(Koo and Thacker 2010), moving about local
neighborhoods and talking to residents and family members
who had lost loved ones to cholera, he was ultimately able
to pinpoint the geographic location of the implicated disease
source, the Broad Street pump, which was downstream from
sewage outflows that ultimately found their way into the
water supply that was pumped through the Broad Street pump
and into local community members’ water receptacles (Snow
1855).

In a similar medical geographical effort, Henry L.
Bowditch developed a statewide map for Massachusetts
that highlighted soil types across municipalities in order to
assess potential spatial correlations between soil types and
“consumption,” or what we know better today as tuberculosis
(Bowditch 1862). Importantly, through the work of Snow
and Bowditch, as well as others, the medical and public
health fields began to recognize not only the importance of
mapping the diseases but also the importance of mapping the
key exposures that were thought to be associated with disease
outcomes in local populations. Recognizing the integral role
of geography and spatial associations between exposures
and outcomes, the field of spatial epidemiology evolved
to integrate spatial attributes into epidemiologic analysis
(Elliott and Wartenberg 2004). These fields, and related
studies, recognized the importance of (1) the location of
diseases or medical conditions, (2) the relationship between
disease outcomes and the environment in local populations,

(3) the importance of access to resources to help manage
these diseases, and (4) the key role of policies to mitigate a
condition in the right place and at the right time (Elliott and
Wartenberg 2004).

The value of mapping diseases, as well as their
relationship with underlying factors and outcomes, gained
prominence in the last few decades as new tools were
developed that enabled researchers to incorporate spatially-
oriented data into their studies. Geographic information
systems (GIS) formally came into being in the 1960s
when Roger Tomlinson used the term in his paper “A
Geographic Information System for Regional Planning.”
GIS came to be known as a system to create, store, analyze,
and present geographical data (Clarke 1995). GIS evolved
as a tool to visualize and map spatially-oriented health
data (as well as other types of data) by facilitating the
portrayal of health event locations, counts, rates, densities,
and clusters across geographic and population landscapes.
GIS began to facilitate an enhanced understanding of the
spatial distribution of health phenomena within a specific
geographic area of interest, allowing us to study the
location of key features and health promotion resources
in a local community and to document the geolocation of
important events tied to public health outcomes. It also
helped to facilitate the mapping of change over time across
geographies. In the last three decades, GIS has been used
for a wide range of public health and epidemiological
initiatives (Moore and Carpenter 1999; Kohli et al. 1995;
Kohli et al. 2000) to portray local realities tied to health
and disease across geographic space and time. Whether
focused on infectious diseases such as cholera or tuberculosis
(Snow 1855; Vindenes et al. 2018), diseases correlated
with environmental pollutants, such as respiratory illness
(Sakai et al. 2004), diseases of addiction and related
comorbidities (Stopka et al. 2017a, 2019a, b; Stahler et al.
2013; Brownstein et al. 2010; Wangia and Shireman 2013),
or non-communicable diseases such as cancer (Openshaw
et al. 1988; Kulldorff et al. 1997), GIS use in research has
become commonplace.

Let us further consider the application of GIS to the
study of infectious diseases. The viability of the vectors
responsible for disease transmission (e.g., ticks, mosquitoes,
and contaminated syringes), the virulence and survival of
the pathogens tied to the diseases, and the spatiotemporal
components of infectiousness (e.g., proximity between the
person living with the infection and the person(s) susceptible
to the infection) can all affect disease transmission, and all
can vary in geographic space. Effective measures to combat
infectious disease rely on methods that can locate these
infections and their many related characteristics (some noted
above) in space and time. GIS could be used to identify
the location where these infectious diseases were transmitted
along with data on the factors that fostered the transmission.
When the spatial information is fed into a data processor
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Fig. 1 Viewing John Snow’s cholera map with modern GIS tools.
Panel A represents John Snow’s cholera map. Panel B is a modern
rendition of the original map where the red circles represent the location
of cholera deaths, with larger red circles (proportional symbols) repre-
senting larger clusters of cholera deaths, and the blue dots representing
the water pumps in the area. Panel C is a density map, or a “heat
map,” created using the original data. Panel D highlights the location of

cholera deaths as red points, juxtaposed with the blue points for water
pumps, and a thematic multi-colored map layer that consists of Thiessen
polygons. Thiessen polygons divide the area such that the space that the
polygon encloses is closer to the point of origin of that polygon (in this
case the water pumps) than to any other points. This panel shows that
most of the deaths were in close proximity to one of the water pumps
(i.e., The Broad Street water pump)

and linked with other non-spatial data, we could gain a
greater understanding of “where” the disease is occurring,
which brings us closer to explaining “why” the disease is
occurring in local populations. Our ability to identify and
characterize the distribution of such diseases and their causal
agents is vital to successful evaluation of the risk of dis-

ease outbreaks and development of interventions to prevent
or manage them. As evidenced by the published literature,
GIS has been instrumental in carrying out such analyses. A
systematic review published in 2015 listed 80 peer reviewed
articles that studied infectious diseases using GIS ranging
from respiratory infections (such as SARS and influenza)
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to intestinal infections (e.g., cholera and salmonellosis) to
sexually transmitted infections (Smith et al. 2015). The au-
thors highlighted the importance of the spatial context tied to
the infectious disease outbreaks, including connections to the
origins of key resources and risk factors (e.g., water, food,
vectors) in local risk landscapes. While most of the studies
presented some form of visualization for disease outbreaks,
multiple studies used spatial exploration, cluster analysis,
and advanced spatial modeling to predict the distribution of
diseases.

Moving away from the more traditional uses of GIS in
epidemiologic studies (e.g., risk mapping, resource map-
ping), this tool is also being used increasingly to conduct
more complex analyses ranging from assessment of access
to public health and healthcare services to examining spatial
distribution of the social determinants of health and policies
that govern healthcare utilization. As greater focus is put on
health disparities, health officials and local policymakers are
increasingly utilizing GIS to understand where disparities
in access and utilization exist (Evans et al. 1994). Early
efforts were focused on studying variations in local delivery
of health services and medical care by David Wennberg
(Wennberg 1973). Based on years of study following the
initial discovery of variations in healthcare delivery and out-
comes, Wennberg famously mentioned that “Geography is
destiny” for medical care, demonstrating growing disparities
in health service access across local communities (Wennberg
1998). This recognition of the role of geography in defining
and influencing community health forced public health offi-
cials and healthcare providers to consider new and enhanced
ways of studying the role of geography and spatiotemporal
relationships in health outcomes. Nowadays, studies employ
complex spatiotemporal and geostatistical analyses to better
understand the geographic dynamics of community health.
Recent advances with data collection and the advent of
“Big Data” have made it easier for more epidemiologists to
incorporate spatial data into their research. In fact, more than
80% of health data have a spatial component, whether tied
to a specific address, ZIP code, or community of residence.
While, in public health, we believe that geography should not
be destiny (Nunn et al. 2014) and we strive to minimize dis-
parities in healthcare across multiple dimensions, the reality
is that many disease outcomes are strongly tied to our local
surroundings.

GIS and spatial analyses that enhance our ability to in-
corporate these factors and determinants at the community
level are congruent with the shift in research paradigm from
a proximal “individual health” model to a distal “population
health” model. Population health refers to the “health of a
population as measured by health status indicators and as
influenced by social, economic, and physical environments,
personal health practices, individual capacity and coping

skills, human biology, early childhood development, and
health services” (Dunn and Hayes 1999). The methodolog-
ical implementation of population health theory necessitates
five broad steps: (a) identification of the population, (b)
assessment of the health of the population along with the
environment surrounding it, (c) descriptive evaluation of
current services (utilization and distribution), (d) evaluation
of gaps and overlapping services, and (e) evaluation of out-
comes (Barnard and Hu 2005). The identification of patterns
of health outcomes in large groups of people supported by the
evidence of an underlying environmental, socioeconomic,
and geopolitical pathology can help support development of
policies to promote the well-being of the population. GIS is
well placed to study these factors at multiple levels (indi-
vidual, community, and geopolitical) and allows us to better
understand and address the issues that govern the health of
the masses.

As we move through the contents of this chapter, we
aim to give readers a brief glimpse of how GIS and spatial
epidemiology can be applied in public health research. GIS
tools and applications can span a wide range of topics, which
can extend well beyond the confines of this publication.
But through simple examples, and building up on some of
the topics covered, we hope that readers can gain a solid
understanding of GIS as it applies to public health research.
Furthermore, we present details on a number of ways in
which public health leaders, researchers, policymakers, and
community members can use GIS and spatial analyses to
better understand public health. We begin with a brief in-
troduction to the development and use of descriptive maps
and risk maps that are commonly used in public health
research to help generate hypotheses. Next, we describe GIS
and spatial epidemiologic tools that are commonly used to
create new measures, based on geographical information and
calculations of spatial relationships, which can be mapped on
their own or can be used in statistical models as covariates
and outcomes. Finally, we discuss spatial epidemiological
and geostatistical analyses and modeling that can be used to
test hypotheses regarding the distribution of events, assess
spatial statistical associations (e.g., Is proximity to a health
clinic associated with better health outcomes?), and identify
and characterize spatiotemporal clustering (e.g., hotspots).
We then provide a case study, along with an overview of
studies that elucidate the range of GIS and spatial analytical
tools and approaches that are currently available, to help
us better understand one of the most complex public health
challenges of our times (i.e., the opioid crisis). We close
with considerations for GIS and spatiotemporal analytical
applications for public health in the years ahead, highlighting
promising opportunities to bolster our understanding of and
responses to geographically influenced destinies across local,
state, and national communities.
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Overarching Domains for GIS and Spatial
Analyses

In this section, we present three broad general uses of GIS and
spatial analyses in public health: (1) risk mapping/descriptive
mapping, (2) calculation of variables in a GIS, and (3) spa-
tial epidemiological and geostatistical analyses. While these
three categories may not encompass all applications of GIS
and spatial analyses tied to health, we believe that they
incorporate a broad spectrum of uses and applications that are
relevant for a wide range of health and public health issues.

An In-Depth Look at Methods – Descriptive
Mapping

Descriptive mapping, which is done widely today on static
and online, interactive maps, allows us to obtain a general
understanding of the lay of the land as it pertains to a specific
phenomenon of interest related to health, whether we focus
on disease outcomes, risk exposures, or health and social
service resources that are available in a local community
or region. Taken together, the descriptive elements of these
disease outcome and resource maps or map layers can help
local public health officials and community members to
understand the risk environment as it relates to public health.
These descriptive maps typically depict “push pin” and the-
matic polygon maps that are hypothesis generating, allowing
us to observe potential spatial associations that need to be
tested through more complex approaches.

Choropleth Maps A choropleth (“Khora” = region and
“plethos” = multitude) map is a thematic map in which
geographic regions (i.e., polygons) are displayed in relation
to a value. They are useful when visualizing a variable
and how it changes across defined regions or geopolitical
areas (e.g., counties, towns, ZIP codes); data are typically
aggregated over these predefined areal units. They are best
used for standardized data (e.g., rates), discrete variables
(e.g., counts), and measures that are evenly distributed. In
public health, mapping counts for disease on the polygon
level within thematic maps can help policymakers to garner
an initial understanding of the burden of disease across
geographic regions. Understanding such burdens can provide
an initial understanding of the extent of a problem and
potential public health needs (e.g., enhanced vaccination
coverage, disease treatment outlets, and policy-based inter-
ventions to limit access to vaping equipment). Meanwhile,
mapping rates, which take population denominators into
consideration (i.e., “normalizing by population”), allow
for a better understanding of disparities in the spatial
distribution of health effects and disease outcomes across

diverse communities. While choropleth maps provide a good
visual overview of differences over space, they have a few
disadvantages. Choropleths are not appropriate to show total
values as they are likely to be correlatedwith total population.
In choropleth maps, values are presented over bounded
regions, giving a false impression that values abruptly change
at the border of man-made political boundaries. Additionally,
it could be difficult to separate different color shades in a
choropleth map, especially when there are multiple bounded
regions in proximity within small areas.

More extreme colors (darker or lighter) in choropleth
maps typically indicate increased or decreased rates for the
outcome highlighted in the choropleth maps, respectively. In
Fig. 2, for instance, higher death rates associated with the
hepatitis C virus (HCV) are depicted by darker shades of
orange. Note that to address smaller areas, an inset map has
been used, which is an effective way of focusing on small
areas that have high attribute variability.

Push-Pin or Point-Vector Maps Push-pin maps are descrip-
tive maps that rely on geocoded data at the address level. By
“geocoding” the data, we use GIS tools to obtain the “X”
(longitude) and “Y” (latitude) measures for a specific address
in a local community. Push-pins for specific addresses, based
on the XY data, may represent public health resources (e.g.,
health centers, disease testing sites, pharmacies), sources of
risk (e.g., smoke stacks, liquor stores, contaminated water
sources), or the homes of individuals who are at risk for or
living with a specific disease. It is important to note that
varying sensitivities and guidelines come into play with the
portrayal of push-pin data. It is not typically problematic, for
instance, to map the location of hospitals in a local com-
munity, but it is not typically possible to map point-vector
data for people living with sensitive and stigmatized diseases
(e.g., HIV), as it would compromise the confidentiality of
local community members. Tomap such sensitive data, “geo-
masking” approaches are needed to “jitter” the location of
disease cases, aggregate disease outcomes at the polygon
(e.g., county) level, or calculate densities that can be depicted
in heat maps that portray locations with higher and lower risk,
without displaying precise addresses for people living with a
specific disease.

Proportional Symbol Maps A proportional symbol map is
another form of thematic map that builds from typical push-
pin or polygon-level thematic maps. In proportional symbol
maps, the values referring to a specific attribute in a geo-
graphical area (i.e., a polygon) or at a specified XY location
are represented by a symbol (e.g., a dot on a map). The
map follows a simple concept: “the larger the value, the
more something exists at a location,” i.e., change in the
absolute value of the attribute is shown as change in the size
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Fig. 2 A descriptive risk or thematic map depicting the rate of hepatitis C virus (HCV)-related deaths per 10,000 population in the state of
Massachusetts (2002–2011) (Meyers et al. 2014)

(length, area, or volume) of the symbol, which is also termed
“absolute scaling” or “apparent magnitude scaling.” While
proportional symbols are commonly used for both raw and
standardized data, they are best used when there is substantial
variation within a specific measure across geographic space.
They are commonly used to obtain an overview of localized
incidence rates as the larger size of a symbol in a polygon
surrounded by smaller sized symbol (for low incidence rates
or counts) is likely to stand out, thereby enabling the “map
audience” to better assess variations in the phenomena of
interest. Proportional symbol maps can also be useful when
there is substantial overlap in point vector data in underlying
layers, such that it can be difficult to observe howmany cases
are collocated in a small area. Further, they offer an additional
advantage over choropleth maps, particularly when it comes
to visualizing small areas in a large map, which helps to
more clearly depict differing values at a glance. Regardless
of the value associated with a polygon, there is a larger

likelihood that information and variation can be missed or
underestimated in a choropleth map as larger areas tend to
attract more attention from the map audience, regardless of
the color, whereas a larger symbol within a smaller polygon
will be able to stand outmore prominently. Additionally, flex-
ibility regarding the type of data (one can use both raw and
standardized data) and specification (attributes related to geo-
graphic points or areas) make proportional symbol maps very
popular among cartographers and public health researchers.
Proportional maps are however not without limitations. If
there is a large array of values with small differences, the
differences between symbols become indistinguishable. In
other cases, the symbols for large values can obscure other
symbols and the underlying map.

Figure 3 is an example of a proportional symbol map
where the size of the circle represents the number of people
diagnosed with diabetes in states across the United States.
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Fig. 3 Prevalence of diabetes in the United States (proportional symbol map), 2014

While this figure is effective in showing the difference on
a state-by-state level, representation of some of the values
may be hindered by larger symbols (notice the overlapping
of symbols in the New England region). Further, the pre-
sentation of numbers, rather than rates, fails to normalize by
population.

Graduated SymbolMaps Agraduated symbolmap is similar
to a proportional symbol map. However, in this map, the
values of the attribute are divided into discrete categories
and then denoted by a symbol for which size is relative to
the value or ranking of the category it represents (Fig. 4).
This process is termed “range grading,” which simplifies the
matching of a symbol to its proportional value. Graduated
symbol maps are often preferred over proportional symbol
maps, especially in cases where the values of an attribute do
not provide any additional information once they hit a certain
value and discrete categories provide a more sensible repre-
sentation of data compared to a continuous range of symbol
sizes. This process, however, leads to loss of actual values of
the observation. Therefore, in instances where actual values
of the attributes are considered important (e.g., a map trying

to show maximum or minimum values), proportional symbol
maps should be used.

Dot Density Maps Dot density maps utilize dots or points
to show the presence of a feature within a bounded location
(Kimerling 2009). Instead of larger symbols meaning more,
dot density maps portray more dots in locations where there
are higher counts. They can make it very easy to visualize
data, with higher densities of dots representing higher values.
The distribution of dots shows spatial patterns and relative
densities of occurrences. It is important to note, however,
that the dots are placed randomly within the specified poly-
gon within which they fall, so they do not represent exact
addresses or XY data for disease cases. The individual dots
within a specified area could represent single or multiple
occurrences. We can have each dot represent a different
number of occurrences (e.g., one dot = 5 heart attacks).
Dot density map symbology is best used to show count
data. One of the disadvantages of dot density maps is that
it is difficult to extract quantities or values from them, and
high dot densities may block important background features
or boundaries on a map. This may be especially difficult
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Fig. 4 Prevalence of diabetes in the United State (graduated symbol map), 2014

when the polygons are small in size and have high counts
(Fig. 5).

An In-Depth Look at Methods – Calculation
of Variables

Through the calculation of variables within a GIS, we can
better understand spatial distributions and relationships tied
to exposures and outcomes of interest. Examples of calcu-
lated variables or measures include distances from place of
residence to health centers, drive-time or walk-time distances
to public health resources, small area estimates for risk and
disease counts and rates on the macro (e.g., state) or micro
(e.g., census tract) levels, distance buffers around putative ex-
posures or preventative and curative health centers to under-
stand proximity to risk and access to services, respectively,
and Kernel density estimates or “heat maps” that portray
areas with higher and lower densities of our health or disease
outcome of interest. It is important to note that the variables
calculated within a GIS may subsequently be used in maps
that are developed and displayed through aGIS, and theymay
also be exported from a GIS for use in statistical models and
more complex analyses. It is not uncommon, for instance,for

investigators to use distance calculations as a continuous
or categorical measure in subsequent multivariable models
to determine whether, for instance, the distance from one’s
place of residence to a disease prevention program is associ-
ated with disease outcomes (e.g., disease progression, cure,
transmission), while controlling for other measures.

Proximity Analysis Following are some of the com-
monly asked GIS questions in relation to location of
a specific feature: “What is nearby? What is farther
away?” Additionally, questions could also be framed
to focus on the population of people who live within
10 miles of a specific healthcare resource or source of
risk (e.g., hospital, nuclear power plant). A proximity
map can be an efficient tool to answer these types of
questions. A proximity map can be used to calculate
and depict the distance between features, and between
features that are within a certain distance from a point,
line or a polygon. There are multiple ways of creating
proximity maps depending upon the context of study. In
the following paragraphs, we describe buffering, Thiessen
polygons (also known as Voronoi diagrams), and distance
calculations as some of the methods to conduct proximity
analysis.
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Fig. 5 Dot density map for the
distribution of the population
(black dots; 1 dot = 250 people)
in the State of Minnesota. Dot
densities for the population are
juxtaposed with Minnesota stroke
registry hospitals (represented by
the blue H symbols), and the
green areas, which represent
local stroke health service
coverage, or the Minnesota stroke
registry hospital health service
area (Peacock 2012)

Buffering A buffer is an area with a specified distance
around a spatial object. The object may either be a point,
line, or a polygon. Buffering is commonly used for proximity
analysis to determine if an object is within a certain distance
from a geographical object. For example, 1000-foot buffer
rules are commonly used in planning to demarcate areas
around specific locations (such as schools) where other
businesses may not operate (e.g., liquor store, marijuana
dispensary). Buffer areas are also commonly used to
determine flood zones or contamination zones around
specific locations (e.g., hazardous areas around a damaged
nuclear reactor). Similarly, buffer maps in conjunction with
other measures of proximity analysis have been used in the
study of built and natural environments and their association
with health outcomes. These analyses have, for instance,
focused on the presence of built environment “assets,” such
as parks and sidewalks, and their association with outcomes

such as physical activity, and obesity (Brown et al. 2014;
Jago et al. 2006; Browning and Lee 2017; Thornton et al.
2011). Many factors need to be considered when pondering
information that should be included in a buffer map. We
need to consider whether straight-line Euclidian distances,
“as the crow flies,” or Manhattan distances, that take street
networks into consideration, would be more relevant in
developing buffers (i.e., ring buffers vs. walk-time or drive-
time buffers). When considering risky substances that are
air-borne, like smoke or poisonous gases from a factory,
for instance, wind direction can drastically influence the
direction and area where smoke and poisonous gases travel
from the factory to local communities. In this example,
street and road networks are inconsequential when it comes
to considering exposure to the toxic air-borne source.
Similarly, when considering distance from the epicenter
of an earthquake, multi-ring buffers with straight line
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Fig. 6 Pre- and post-earthquake incidence of Zika Virus in Ecuador with buffer rings showing proximity to the epicenter of the quakes (Ortiz et
al. 2017)

radii can allow us to define “regions of risk” denoted by
concentric circles around the epicenter (Fig. 6). If we are
interested in assessing access to disease prevention resources
like syringe services programs, on the other hand, buffers
that take street networks into consideration can help us to
develop walk-time and drive-time buffers, providing a more
precise understanding of local levels of access to such harm
reduction services that can reduce syringe-mediated HIV
transmission risk. It is, however, important to consider the
type of buffer or proximity analysis utilized for a given
study. For example, studies have indicated that a circular
buffer may not be accurate in reflecting spatial features that
influence walking particularly in locations where the natural
or built environment restrict free movement around the point
of origin (Oliver et al. 2007).

Thiessen Polygons Thiessen polygons are created from a
given set of points in an area such that each polygon rep-
resents an area of influence around a point of interest (e.g., a
source of health risk; for example, the contaminated Broad

Street water pump from John Snow’s Cholera map). In a
Thiessen polygon, any point within the polygon is closer
to the point of origin compared to other points in the map.
We can refer back to the modern rendition of John Snow’s
Cholera maps where Thiessen polygons were created us-
ing local water pumps as the points of origin (see Fig. 1).
Thiessen polygons are also used in geosciences and can be
used in modeling catchment areas for shops, health centers,
or public transport stations.

Distance Calculations A variety of tools can be employed
within a GIS to calculate distances for a variety of applica-
tions. One can calculate distance from one location to another
(e.g., one’s home to a medical clinic) or distance from one’s
place of residence or workplace to a putative source of a dan-
gerous exposure (e.g., place of work to the nearest chemical
factory). We can also calculate a number of different types of
distances: (1) Euclidean (“as the crow flies”), (2) Manhattan
(which takes street networks into consideration), (3) walk-
time distances, and (4) drive-time distances (which can take
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traffic patterns into consideration). There are pros and cons to
each of these different distance calculations, and some may
be more appropriate in some situations than others. If you
are interested, for instance, in the local proximity between
a community member’s home and the nearest green space,
walk-time calculations, which take street networks and side-
walks into consideration, may be most appropriate. If, on the
other hand, you are interested in the distance from the site of a
nuclear meltdown and the homes in the local area, Euclidean
distances may be most appropriate given that the straight-
line distance that radiation travels is of utmost importance.
We can use tools within a GIS (e.g., “near tool”) to calculate
these distances. Distance calculations can provide a rough
measure of access to a specified location or health service.
One of the shortcomings of these tools, however, is that they
do not always take population density and other population
dynamics into consideration. For accurate estimates of prox-
imity or access to services, we need to take the distribution of
underlying population and the geographical and man-made
structures into account.Many tools and approaches have been
developed to take these variables into account.

The Two-Step Floating Catchment Area (2SFCA) Approach
The 2SFCA approach takes the distribution of underlying
population (and several other parameters) into consideration
when assessing access to health care services (as well as other
services). Individuals are free to choose care, up to a certain
extent, from whomever they wish. We must take into consid-
eration that an individual can have multiple health services
that they can access, and these options are not bounded by ar-
bitrary boundaries. The complex nature of human movement
within and across arbitrary boundary lines (e.g., census tracts
or ZIP codes) to receive health care or use other services
makes the assessment of “access” to a service a challeng-
ing task. The 2SFCA method was developed by Lou and
Wang to overcome the shortcomings of previous measures
of health care access, such as the physician-population ratio
(PPR, calculated by dividing the number of physicians by the
number of patients in a given area) (Guagliardo 2004; Wang
and Luo 2005; Luo and Wang 2003; Luo 2004). PPR can be
inaccurate in determining access as it does not acknowledge
the possibility of crossing a boundary line for accessing
treatment services. To overcome such limitation, the 2SFCA
approach utilizes floating catchment areas, which can overlap
each other enabling the estimation of “access” that closely
models movement of individuals within and across arbitrary
borders in real life. The 2SFCA, as its name specifies, is
calculated in two steps. The first step is the calculation of
PPR at each provider location (e.g., given a certain drive-time
or distance from the provider and the approximate number
of people who have access to the provider). The second step
is the calculation of a spatial accessibility index, which is a
summation of the PPR (e.g., the summation of the PPR of

the providers that are located within the given drive-time or
distance).

While the 2SFCA has several advantages over PPR, it
does have certain limitations. First, the 2SFCA approach
assumes equal access within a catchment area, i.e., there is no
difference between a 10-minute drive-time and a 25-minute
drive-time. Other limitations include its limited application in
rural areas (catchment areas need to be expanded greatly to
capture sparse population) and only inclusion of one measure
(drive time) to determine the catchment area. In the last few
years, several improvements have been made to the original
2SFCA approach to overcome these limitations. One of the
improvements was the development of an enhanced two-step
floating catchment area (E2SFCA) method, which integrates
a distance decay function within the catchment area (Luo and
Qi 2009) (Fig 7).

Heat Maps A heat map shows the intensity of an occur-
rence or an attribute in a dataset, hence they are also called
“intensity maps.” The concentration or density of the oc-
currence is represented by the “heat.” A heat map utilizes
color gradients to represent intensity. A major difference
compared to a choropleth or thematic map is that a heat
map does not use specific boundaries to group data. Usually,
creation of a heat map requires use of point vectors, based
on the precise longitude (X) and latitude (Y) measures, to
create a continuous surface area known as a density surface,
which maps the frequency of occurrences at a specific point.
When creating a density surface, two parameters are usually
specified, which facilitate calculations that culminate in the
final surface, taking the form of a raster or pixelated image
file. The first parameter that needs to be specified is the cell
size of the raster output map, which determines the degree
of detail of the density surface. Second, the bandwidth or
search radius needs to be specified. This affects the area
of restriction around the points or features. If too narrow a
bandwidth is chosen, the density patterns are restricted to
points that are very close to it. On the other hand, using a
wide bandwidth can lead to overgeneralization of the “heat”
in the density surface. Heat maps are commonly used to
visualize locations of higher occurrence of events such as
crime and traffic accidents, or newly reported disease cases.
This information can be used to assess the proximity of areas
with high density of events to certain geographic or manmade
features (Fig. 8).

Small Area Estimates Small area estimates pertain to esti-
mates that are calculated for local communities, and they are
typically calculated for small area polygons tied to politi-
cal boundaries (e.g., counties, municipalities, census tracts).
They can, however, also be calculated for polygons that
are created by the researcher (e.g., fishnet matrices, buffer
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Fig. 7 Measuring physician access in rural and suburban Chicago.
The first panel (a) shows the location of the physicians and the pop-
ulation density (based on 2000 Census data). The second panel (b)
shows accessibility value generated using two-step floating catchment

area (2SFCA) method. The areas colored in red (panel B) denote
high accessibility and the areas colored in green have low physician
accessibility. (Luo and Qi 2009)

spaces around locations of interest). Estimates can be as
simple as calculating rates based on disease counts within
the specified area (i.e., polygons) in the numerator and the
population at risk in the denominator. Calculations can get
more complex in terms of the measures we are able to calcu-
late (e.g., incidence rates, densities per squaremile, smoothed
or spatially-lagged rates that take neighboring polygons into
consideration) and the tools available to us in a GIS (e.g.,
areal interpolation, geographically weighted regressions).

AMore In-Depth Look at Methods – Spatial
and Geostatistical Approaches

Spatial epidemiology and geostatistical analyses represent
more complex uses of GIS for public health. When using
such analyses in GIS, we are typically testing hypotheses to
determine whether, in fact, there is a statistically significant
spatial pattern or clustering of an outcome of interest. Several
tools are available to analyze the patterns of events of interest
over a geographical area. We present a few examples here.

Average Nearest Neighbor analyses are used to assess
whether the distance between events that are observed is sim-
ilar to what would be expected if the events were randomly
distributed in geographic space (e.g., studying patterns of
dengue distribution in Kuala Lumpur (Aziz et al. 2012)). The
Moran’s I test statistic is used to detect spatial autocorrelation
of an attribute, indicating agglomeration or dispersion of
features with similar attributes. The Getis-Ord Gi* statistic
(Getis and Ord 2010, 1992) is used to identify clustering of
events (e.g., identification of healthcare hotspots in Taiwan
(Tsai et al. 2009)). Bayesian spatiotemporal models are used
to predict the distribution of attributes or events over time
within a geographical area (e.g., forecasting life expectancy
in England and Wales (Bennett et al. 2015)). These and
many other tools and approaches exist within a wide range
of GIS software and freeware programs, as well statistical
analysis programs that increasingly include packages, tools,
and commands for geostatistical analyses. Software and free-
ware such as QGIS, ArcGIS, GeoDA, SatScan, CrimeStat,
GRASS, and gvSIG provide users of different programming
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Fig. 8 Crime related to
homelessness in Los Angeles,
California. Map generated using
Kernel density estimation (Yoo
and Wheeler 2019)

capabilities and backgrounds with the ability to integrate
spatially-oriented data into epidemiologic research.

Spatial Interpolation Spatial interpolation is a method used
to predict values of a certain area or point based on other val-
ues in the study area. In a GIS, interpolation is used to predict
values for cells in a raster format from limited sample points.
Spatial interpolation is used to predict unknown values in
locations where data points were not collected, due to time
constraints, costs, and access considerations. The product
is a continuous surface with modeled estimates across an
entire study area, providing a “topographic” map layer of
sorts where we can observe higher and lower estimated
values of interest, even in locations where data points were
not originally available. Based on the type and amount of
data collected (also known as “control points”), different

techniques can be applied to interpolate data. In general,
spatial interpolation can be global or local, and deterministic
(output is fully determined by the parameters supplied into
a model) or stochastic (some random component is present
in the model whereby the same set of parameters supplied
can lead to a different output). Trend surface interpolation is
considered global and deterministic, where as a regression-
based interpolator is global and stochastic. Similarly, inverse
distance weighting is considered a local deterministic in-
terpolator, while Kriging is a local stochastic interpolating
process. Trend surface analysis uses a polynomial function
across known values to create an interpolated surface. In a
regression model, a set of predictors is used to fit a linear
model, which can be used to estimate the values of an
attribute at a location where the observation is missing. One
of the local measures of interpolation, Thiessen polygons, has
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been previously described in this chapter. Thiessen polygons
assume that any point within the polygon is the closest to
the polygon’s point of origin than any other known point
of origin. Inverse distance weight interpolation assumes that
each point has a local influence that diminishes with increas-
ing distance. Kriging is a statistical method used for spatial
interpolation which considers both degree of variation and
distance when estimating values in unknown areas. Kriging
uses a semivariogram for spatial interpolation. A semivari-
ogram is a visual depiction of the spatial autocorrelation of
points that are measured. Once a semivariogram has been
modeled for a given set of observed data, it can be used for
prediction of unmeasured data which is similar in nature to
inverse distance weighting.

Cluster Analysis Cluster analysis is a spatial analysis
method which is used to identify statistically significant
clusters of a spatial event. It is not to be confused with a heat
map, which relies on relatively straightforward calculations,
whereas the hotspot cluster analysis relies on a multi-step
process that allows us to examine the probability of the
occurrence of events under the assumption that our event
of interest is randomly distributed in space and/or time. A
hotspot is an area that has a higher incidence/prevalence of
an event compared to what would be generally expected if
the events were randomly distributed in a spatial area. By
identifying clusters, we can determine, with more certainty,
whether locations may be unsafe if, for instance, we are
studying public safety and wish to identify the locations
where crimes cluster. Similarly, these techniques can also be
used to observe if two different events are occurring in close
proximity, which could help in examining the causal chain
of events (e.g., an increase in the clustering of incidence of
Lyme disease with a simultaneous increase in the clustering
of Ixodes scapularis tick populations in Michigan between
the years 2000 and 2014 (Lantos et al. 2017)).

Multiple tools have been developed to answer nuanced
questions regarding the assessment of clusters in a geograph-
ical area. Among the spatial patterns and clustering tests, the
nearest neighbor index (NNI) can be used as an indicator
for clustering of point data. It is calculated by observing the
distribution of events against an expected random distribution
of these events in a geographic area. Spatial autocorrelation
analysis allows us to look at similarities in values that are in
close proximity to each other. Measures of spatial autocor-
relation can be categorized as global or local indicators of
spatial association (LISA). Moran’s I and Geary’s C (Getis
et al. 1973) are examples of global spatial autocorrelation
statistics. Measures of global spatial autocorrelation assess
relationships between neighboring polygons within a dataset
on amacro level (e.g., state or county level). Moran’s I is akin
to a coefficient of correlation in that it measures relationship

between two variables; however, the second variable is the
“spatial lag” of the first variable.
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Where,
N = number of observations (points/polygons)
X = mean of the variable
xi = variable at a particular location i
xj = variable at a particular location j
Wij = weighting index

Moran’s I can be classified into positive (when similar
values are clustered; Moran’s 0 < I ≤ 1), negative (when
dissimilar values are clustered; Moran’s I= −1 ≤ I < 0), and
non-spatially correlated (Moran’s I = 0) categories. Global
tests for spatial autocorrelation do not point to the location
of clusters. Rather, they provide evidence of the presence of
spatial autocorrelation, and a spatial sphere of influence, that
merits further attention. Like Moran’s I, Geary’s C (Getis et
al. 1973) is also used as a measure of global spatial autocorre-
lation. The main difference in the calculation of Geary’s C is
that the cross product used for the calculation of theC statistic
is based on deviation from the actual values themselves rather
than the mean location which is used in Moran’s I. The
Geary’s C ranges from 0 to 2 where, 0 indicates perfect
positive autocorrelation, 1 indicates no autocorrelation, and
2 indicates perfect negative autocorrelation. While Moran’s
I is a simple method to measure spatial autocorrelation,
its use is limited by the fact that it tends to average the
local variations in spatial autocorrelation. To overcome this
limitation, statisticians developed local indicators of spatial
autocorrelation (LISA) (Anselin 1995).

LISA is widely used to assess the significance of cluster-
ing on the local level. Local spatial autocorrelation analysis
can help identify hotspots (areas that have higher numbers
of events than the estimated average number of events),
coldspots (areas that have fewer numbers of events than the
estimated average number of events), and outliers (very high
or very low values in relation to all the values in adjacent
polygons) that exist spatially. The Getis-Ord Gi* statistic,
which is calculated for each feature in a dataset, allows us
to locate clusters (high or low) of events.
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Fig. 9 Clusters of census tracts
with higher densities of women
who were eligible for but not
receiving (i.e., eligible
non-participants = ENPs) the
services of Special Supplemental
Nutrition Program for Women,
Infants and Children (WIC),
California, 2010 (Stopka et al.
2014a)

xj = attribute value for feature j
Wij = weighting index
S = standard deviation (modified)

The Gi* statistic returns a z-score for each feature used
in the analysis. Significant positive z-scores are related to
clustering of hotspots and significant negative z-scores are
indicators of clustering of coldspots. Figure 9 shows the clus-
ters of Special Supplemental Nutrition Program for Women,
Infants, and Children (WIC) eligible nonparticipants based
on WIC eligible nonparticipants per square mile per census
tract. It is important to note that cluster assessment tools
are often used in tandem with one another, working from
the macro to the micro level, to determine the influence of
specific measures in locations or interest, and taking into con-
sideration neighboring areas. It can be useful, for instance,
to first assess the spatial relationships between polygons
(e.g., census tracts) and their neighboring polygons, then
conduct incremental spatial autocorrelations to determine the
appropriate spatial sphere of influence for our phenomenon
of interest, and ultimately to assess clustering at the local

level with tests that rely on theGetis-OrdGi* statistic (Stopka
et al. 2014a).

Spatiotemporal Analyses Spatiotemporal analyses allow us
to assess statistically significant clustering in areal and time
dimensions – to answer the questions regarding “Where
and when clustering is taking place?” Space-time cluster
analyses can be thought of an extension of a simple time-
based regression model. Consider a simple time series model
where an event at time t is associated with an event at time
t-x where x is greater than zero. The addition of geographical
measures (e.g., location of event, distance between event and
relevant health resources) to the time series data creates a
general spatiotemporal model. Spatiotemporal models are
used to analyze data that span the dimensions of both time
(in terms of minutes, weeks, years) and space (in terms of
linear distances, neighborhoods, and political boundaries).
Analysis of spatiotemporal data not only allows researchers
to study the geographical clustering of an outcome but also
facilitates evaluation of changes in clustering patterns over



64 S. Shrestha and T. J. Stopka

Fig. 10 Trends of HIV-related death in Kombewa health and demo-
graphic surveillance system (HDSS) between the years 2012 and 2015.
In the figure above, spatiotemporal trends of deaths related to HIV in

Kombewa HDSS between the year 2012 and 2015 are mapped using
interpolation (Sifuna et al. 2018)

time. The complexity of a spatiotemporal analysis emanates
from the unlimited directionality within the dimension of
space and time. Consider a time-series dataset that consists
of a sequence of observations that measures the same thing
over a period of time, i.e., a specific variable is measured
at a uniform time interval. A time-series dataset can be
visualized by plotting time on the x-axis and the value of the
observation on the y-axis. An ARIMA (Autoregressive, Inte-
grated, Moving Average) model is a commonly used method
to model and forecast time-series data based on different
orders of its own past values (e.g., modeling hospital bed
occupancy during a SARS outbreak (Earnest et al. 2005)).
Similar to the ARIMA model for generalized time series
data, techniques such as conditional autoregression, space-
time ARIMA models are used for analyzing spatiotemporal
data. Bayesian spatiotemporal models are also used increas-
ingly to assess and predict clustering of events in specific
locations and for specific timeframes. In the same way that
weather forecasters can determine where the next hurricane
is predicted to land, informing public safety advisories and
responses, it is possible to employ Bayesian spatiotemporal

prediction models to forecast disease outbreaks (da Costa et
al. 2018; Yu et al. 2013) that can inform pre-emptive public
health interventions (e.g., flu vaccine campaigns) (Fig. 10).

Case Study – The Opioid Crisis

In this section, we present a case study for one of the most
pressing public health challenges of our times – the opioid
crisis in the US (Scholl et al. 2018, Florence et al. 2016,
Ciccarone 2019). In 2016, health care providers across the
United States wrote more than 214 million prescriptions
for opioid pain medication (CDC 2019). Drug overdoses
claimed approximately 70,000 American lives in 2017; a
majority (>60%) involved an opioid prescription or illicit
opioids (Scholl et al. 2018), and the economic burden of the
opioid crisis was estimated, in 2013, to be approximately $78
billion (Florence et al. 2016). In more recent years, synthetic
opioids such as fentanyl, which is 50–100 times more potent
than morphine, have been responsible for more than 80%
of fatal opioid overdoses (Ciccarone 2019; Somerville et al.
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2017). While there have been several national substance-
use epidemics in the United States and internationally over
the past few decades (Manchikanti et al. 2012; Cornish and
O’Brien 1996; Pacurucu-Castillo et al. 2019), the opioid
crisis of the first two decades of the 2000’s is, perhaps, the
most widespread from a geographic perspective and from a
community perspective – affecting people from all socioe-
conomic strata, all racial and ethnic communities, urban,
suburban, and rural locations, and people of all ages. In
response to the immense social, human, and economic impact
of the opioid crisis, significant clinical and public health
interventions have been developed and implemented. Along
with the traditional tools of epidemiologic research, GIS has
become integral in the surveillance of the opioid epidemic,
as well as the targeting of responses. It is being utilized to
help local officials, community members, and health policy
members better understand the extent of local, state, and
national opioid epidemics, assess the vulnerability for related
infectious disease outbreaks, and to monitor local responses.
In reviewing this crisis from a GIS for public health and spa-
tial epidemiological perspective, we take into consideration
the risk factors (e.g., socioeconomic status, place of resi-
dence, family history, local exposures) and disease outcomes,
including opioid use disorder (OUD), non-fatal and fatal
overdose, the hepatitis C virus (HCV), the human immunod-
eficiency virus (HIV), infectious endocarditis, and sexually
transmitted infections associated with opioid use and misuse.

Descriptive Mapping of the Opioid Crisis

Public health departments have increasingly relied on the-
matic maps to gain a general understanding of disease land-
scapes within their public health jurisdiction (MDPH 2017).
Such risk maps have been widely used to monitor opioid
use and misuse, nonfatal and fatal opioid overdoses, related
comorbidities, and emergency medical service utilization
(Rossen et al. 2014). While many techniques can be used
to visualize information such as mortality data, a simple
illustration is shown in Fig. 11 where opioid overdose death
rates per 100,000 people are depicted by US county using a
choropleth map. We can easily discern from the map that the
rate of opioid overdose is high in the Northeastern, Central,
and Southwestern regions of the United States. Such descrip-
tive maps can assist health officials in assessing disparate
outcomes across US geography, help to foster hypothesis
generation with regard to causes, and inform targeted public
health responses.

In addition to static maps that are often presented in
reports and articles, web-based, dynamic, interactive maps
provide opportunities to place spatially-oriented descriptive
maps and data dashboards in the hands of key stakeholders,
including community members, field staff, program man-

agers, researchers, and policymakers (Overdose Prevention
and Intervention Taskforce 2019). The advantages of online
maps include opportunities to juxtapose a wide range of map
layers, overlaying point data for health services on polygon-
level thematic or choropleth maps for socioeconomic or
health measures (Fig. 12).

Similarly, descriptive GIS maps have also been used to
describe the risk environment related to opioid use. The study
of individual-level factors associated with opioid use and
misuse are important in tailoring specific interventions. How-
ever, the study of the broader socioeconomic and cultural
factors that affect opioid use disorder is warranted as the
presence of opioids is not a “sufficient” condition to cause
such a crisis. In recent years, public health researchers have
linked the opioid crisis to “economic and social upheaval”
(Dasgupta et al. 2018). Studies have found that opioid use and
misuse are concentrated in areas where there are higher rates
of poverty and unemployment (Spiller et al. 2009), and it has
plagued communities with high proportions of blue collar
workers (Harduar Morano et al. 2018). County-level drug-
related mortality data shows that between 2006 and 2015,
mortality rates were higher in counties with economic and
social challenges (Monnat 2018). An Assistant Secretary for
Planning Evaluation (ASPE) report indicated that poverty
and unemployment were correlated with higher rates of ad-
verse opioid-related outcomes (Ghertner and Groves 2018).
A bivariate choropleth map can be very useful in exploring
the association between two variables (e.g., poverty and
overdose deaths). As shown in Fig. 13, a color matrix can
be used to denote incremental changes in poverty and opioid
overdose deaths which can help researchers understand as-
sociations between these two variables and identify regions
that may need a thorough evaluation to understand other risk
factors related to opioid overdose deaths.

Proximity and Cluster Analysis: Applications
for Studying Clusters of Opioid Use,
Surveillance of Disease Outbreaks, and Access
to Harm Reduction Services

With the development of advanced geostatistical method-
ologies and complementary software, analytic research to
identify opioid use hotspots has garnered increasing atten-
tion over the years. In New Mexico, patient-level data from
addiction treatment facilities was used to map opioid misuse
hotspots (Brownstein et al. 2010). The study showed clus-
tered opioid use around Albuquerque (the largest metro area
in the state) and Las-Cruces (the southernmost city bordering
Mexico). Furthermore, the integration of multiple sources of
data into spatial analyses has also benefitted these studies.
Analysis of opioid overdose in the state of Massachusetts
linked 16 different administrative datasets and was able to
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Fig. 11 Fatal opioid overdose rates per 100,000 people by US county, 2015–2017 (Haffajee et al. 2019)

identify clusters of potentially inappropriate opioid prescrib-
ing (PIP) practices and fatal opioid overdose, as well as
overlapping clusters in specific regions (Stopka et al. 2019a).
In Orange County, Florida, three different sources of heroin
surveillance were used to assess heroin-related emergency
department visits and deaths between the years 2010 and
2014 (Hudson et al. 2017). A study in Indianapolis, Indi-
ana, leveraged EMS, coroners toxicology, and crime data to
study the spatial distribution of opioid-related death (Carter
et al. 2019). The study acknowledged that opioid hotpots
overlapped within regions of higher crime activities. Another
study conducted in Northeast Boston was able to identify
a specific census tract that was associated with over 45%
of emergency department visits between the years 2012 and
2015 (Dworkis et al. 2017). The figure below shows the
density of non-fatal opioid overdoses in Cambridge, Mas-
sachusetts, for the years 2016–2017, with high density of
these events around subway stations in Cambridge and East
Cambridge (Fig. 14).

A growing body of research has utilized GIS maps and
spatial epidemiological analyses to assess the risk environ-
ment related to the opioid crisis. Opioid-use disorder, opioid-
related overdose, HCV, HIV, and other blood-borne infec-
tions have increased on similar trajectories between 2000 and
2019. While harm reduction strategies put in place during
the early years of the HIV epidemic were successful in curb-

ing infection rates among people who inject drugs (PWID)
(Drucker et al. 1998; MacDonald et al. 2003; Wodak and
McLeod 2008), increases in injection frequency (Broz et al.
2018) tied to prescription opioids in Scott County, Indiana
(Peters et al. 2016; Conrad et al. 2015), and synthetic opioids
such as fentanyl (Cranston et al. 2019), in recent years,
have led to increases in HIV infections, once again, among
PWID in the United States. Further, the exceptionally high
virulence of HCV and high co-infection susceptibility have
placed PWID at a greater risk of HIV and HCV infection
(Cranston et al. 2019). Cooper and colleagues employed
spatial techniques to develop neighborhood-level measures
for access to prevention services – namely syringe exchange
programs as well as drug-related crime measures – to assess
community-level risk (Cooper et al. 2009a). In more recent
years, Davidson et al. employed GIS to assess the need for
targeted syringe service interventions to reduce injection-
mediated risks (Davidson et al. 2011), and Brouwer em-
ployed spatial epidemiological analyses to assess HIV risk
among people who inject drugs (PWID), down to the neigh-
borhood level, to identify hotspots for HIV transmission risk
in Tijuana, Mexico (Brouwer et al. 2012). In Southern and
Northern California, Stopka and colleagues assessed the risk
environment by measuring access to pharmacies that sold
sterile syringes in Los Angeles (Stopka et al. 2013) and San
Francisco (Stopka et al. 2012), respectively, and determined
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Fig. 12 Overdose deaths by municipality in Rhode Island, 2014–2018
(Overdose Prevention and Intervention Taskforce 2019). This online
interactive map allows health policy experts and community members
to assess overdose burden across communities throughout Rhode Island,

allowing the viewer to turn on and off different layers and observe
different variables of interest across geography and time (Overdose
Prevention and Intervention Taskforce 2019).

Fig. 13 Poverty rates and drug overdose deaths in the United States, 2016. A color matrix of all possible combination of poverty and overdose
rate tertiles has been used in this figure to display the relationship between these variables across the country (Ghertner and Groves 2018).
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Fig. 14 Heat map representing density of non-fatal opioid overdoses in Cambridge, Massachusetts, 2016–2017 (Cambridge Health Alliance
2019).

whether over-the-counter syringe sales in Los Angeles were
associated with increased crime rates in local communities
(they were not) (Stopka et al. 2014b). In a comprehensive
study of the opioid epidemic in New England, researchers
studied the structural factors (race/ethnicity, income, unem-
ployment, insurance rates), opioid-related outcomes (HCV
and HIV infections, overdose-related deaths), and access
(drive time) to harm reduction strategies such as syringe
services programs, naloxone access, and opioid treatment
services in the region (Fig. 15) (Stopka et al. 2019b).

GIS has been employed to map statistically significant
clusters of HIV and HCV with a particular focus on PWID
(Meyers et al. 2014; Stopka et al. 2017b; Stopka et al. 2018).
Trooskin et al. identified six clusters of HCV in Connecticut
and suggested a link to injection drug use and poor socioe-
conomic conditions (Trooskin et al. 2005). HIV clusters in
injection drug users were also identified in San Francisco be-
tween 1987 and 2005 using spatial analysis, where the clus-
ters mapped closely to higher poverty levels (Martinez et al.

2014). The geographic distribution of HCV infection among
young PWID in two cities in the United States between 2002
and 2004 showed a different picture and helped to identify
a significant difference in spatial patterns (Boodram et al.
2010). Notably, regression analysis ultimately demonstrated
that the difference in HCV prevalence and spatial distribu-
tions was tied to specific city locations rather than specific
socioeconomic or demographic factors. More recent analyses
in San Francisco employed GIS, spatial, and statistical anal-
yses to assess injection-mediated disease transmission risks
by overlaying heat maps for HIV and HCV on maps that
depicted access to pharmacies selling syringes, which could
help reduce disease transmission risks (Fig. 16) (Stopka et al.
2012).

As evidenced by the studies presented above, results gen-
erated from spatial epidemiologic analysis have been widely
used to plan, implement, and evaluate harm reduction strate-
gies to enhance sterile syringe access, naloxone distribution,
and adherence to medication for opioid use disorders (e.g.,
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Fig. 15 Drive-time buffers to assess access to (a) syringe services programs, (b) drug treatment programs, (c) naloxone distribution programs,
and (d) community-based naloxone programs in rural Northern New England, 2018

methadone, buprenorphine, naltrexone) (Stopka et al. 2017a;
Amiri et al. 2018; Amiri et al. 2019; Cooper et al. 2009b;
Fedorova et al. 2013; Rowe et al. 2016). In Massachusetts,
data from phone surveys with retail pharmacies were used
to identify areas where pharmacies sold non-prescription
naloxone and syringes (Stopka et al. 2017a). Through the
study, and the use of GIS maps and spatial analyses, inves-
tigators detected limited access to naloxone from a spatial
perspective, prompting the need to improve naloxone distri-
bution through pharmacies. A similar study was conducted in
California to assess access to non-prescription syringes based

on drive times to pharmacies that sold syringes (Pollini et
al. 2015). In Fresno and Kern counties, for instance, Pollini
and colleagues found that 80% of the residents lived within
a 5-minute drive to a retail pharmacy; however, only half
of the residents were within 5-minute drive of a pharmacy
that sold syringes. Spatial epidemiological analyseswere also
used to identify hotspots where injection drug users resorted
to syringe sharing behaviors to inform targeting of syringe
services programs (Davidson et al. 2011). Spatial analysis
also has been helpful in improving our understanding of
geographical factors that affect adherence to medication for
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Fig. 16 Evaluating access to pharmacies that sold syringes over the
counter (i.e., without a prescription) in San Francisco, California, 2008.
Panel A represents the density of people who injected drugs, or injection
drug users (IDUs), who were infected with HIV, juxtaposed with phar-
macies that were registered with the local Department of Public Health

to sell syringes (green dots) over the counter. Panel B highlights multiple
ring buffers depicting distance to the nearest pharmacy that sold over-
the-counter syringes, providing an initial understanding of access to risk
reduction supplies (Stopka et al. 2012)

opioid-use disorders. Studies have reported, for instance,
that increases in distance to treatment programs were as-
sociated with lower adherence (Amiri et al. 2018; Amiri
et al. 2019). In a recently published study, Haffajee et al.
combined county-level mortality data with substance-use
treatment provider data to identify areas with lower access to
treatment services, which had higher opioid overdose rates
(Haffajee et al. 2019). This type of spatially-relevant infor-
mation can be used for effective mobilization of resources to
provide treatment services for people with opioid-use disor-
der, thereby reducing their chances for subsequent overdose.
These studies demonstrate the critical role of GIS and spatial
analyses in identifying the distribution of risk, highlighting
the concerning clusters of disease outcomes, and evaluating
access to existing prevention and treatment services to inform
enhanced targeting of resources to minimize opioid-related
adverse outcomes.

Spatial and Geostatistical Approaches
to Understand and Predict Opioid-Related
Adverse Events

Opioid use and misuse patterns, and the related adverse
events such as opioid overdose and infectious disease trans-
mission, are not static nor are they isolated. As mentioned
previously, increases in sales of prescription opioids paral-
leled increasing trends in opioid overdose deaths between
2000 and 2015 (Scholl et al. 2018; CDC Wonder n.d.; Rudd
et al. 2016). However, the main cause of opioid-related
death has changed over time, from prescription opioids to
heroin and ultimately to fentanyl, in what has been termed

“the triple wave of the opioid epidemic” (Ciccarone 2019).
Various studies have traced the changing nature of the opioid
crisis employing various statistical and geospatial techniques
(Rudd et al. 2016; Schoenfeld et al. 2019; Chen et al. 2019)
(Hoffman et al. 2017). These studies have been instrumental
in predicting changes in patterns of opioid use and misuse,
in an attempt to provide adequate time to implement and
augment needed services to mitigate opioid-related adverse
events.

Various spatial and temporal analytic methods have been
used to visually demonstrate the change in risk patterns for
opioid-related adverse events. A recent study examined tem-
poral and spatial patterns of heroin-related overdose events
and identified the demographic and built environment factors
that were associated with these overdoses (Li et al. 2019)
(Fig. 17).

Increasingly, Bayesian spatiotemporal models are being
developed to assess local opioid crises. Kline and colleagues
used a joint spatial effects model of opioid-associated death
and drug treatment using a generalized common spatial factor
model (Kline et al. 2019). In addition to covariate effects,
they were able to estimate a spatial factor for each county
that characterized structural factors not accounted for by
other covariates in the model that are associated with deaths
and treatment counts. They ultimately identified associa-
tions between social and structural covariates (e.g., health
professional shortages, people on disability, and single fe-
male households) and opioid-associated deaths and treatment
counts. They were also able to characterize counties with
latent risk that could help to guide future research to identify
potential community risks (Fig. 18).
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Fig. 17 Figure showing relative risk of heroin-related adverse event compared to the baseline trend over time and space (areas highlighted in red
have higher risk for adverse events), Cincinnati, Ohio, August 2015 through January 2019 (Li et al. 2019)

These studies depict the changing nature of the opioid
crisis over time and space. The results of such analyses can
help inform local responses by public health officials, first
responders, clinicians, and harm reduction personnel. As the
threat of fentanyl, for instance, has grown across the United
States in recent years, many harm reduction programs have
begun to offer fentanyl test strips in key locations that have
allowed PWID to examine whether their drug supply had
been contaminated with fentanyl, providing opportunities for
behavior change to reduce overdose risks (e.g., by carrying
naloxone and avoiding use while alone). In locations where
increases in opioid overdoses have been observed, enhanced
opioid education and naloxone distribution programs and
increased access to medication for opioid-use disorder can
be bolstered. And, in areas where HIV clusters tied to opioid
use andmisuse are discovered, access to syringe services pro-
grams and other harm reduction services could be increased
to curb local outbreaks.

Summary of the Case Study

In this case study, we provided examples of studies that
have employed GIS and spatial epidemiology to provide an
enhanced understanding of the risk environment with regard
to the opioid crisis and to help inform targeted responses in
the locations that are most in need. As with any disease, there
are a myriad of contributing factors, some more specific and

proximal while others are more distal. We focused on studies
that evaluated a broad range of factors that contributed to
the opioid crisis and its many challenging health outcomes.
Some focused on risk factors such as potentially inappro-
priate opioid prescription rates (Haffajee et al. 2019; Spiller
et al. 2009; Basak et al. 2019), while others focused on
the broader contexts, such as socioeconomic, environmental
factors, as well as health policies (Stopka et al. 2019a; Stopka
et al. 2019b). Direct outcomes, such as fatal overdoses, and
infectious diseases related to opioid injection, were also a
topic of focus in studies that utilized GIS (Stopka et al.
2019a; Haffajee et al. 2019; Carter et al. 2019; Basak et al.
2019; Scholl et al. 2019). Sound epidemiological inquiries,
which consider broader socio-cultural and economic con-
texts, supported by accurate spatiotemporal data can be used
to guide public health responses. It is then the task of public
health researchers to communicate those results effectively.
As illustrated throughout this chapter, GIS can contribute to
these communication efforts, which helps produce descrip-
tivemaps that can be used to inform communitymembers and
public health officials alike about the risk landscape. Spatial
epidemiological and geostatistical approaches can facilitate
analyses that allow researchers, public health officials, and
health policy experts to monitor and forecast health outcomes
across geographic regions, which helps inform targeted pub-
lic health responses to curb local epidemics.
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Fig. 18 Results of joint effects models focus on opioid-associated
deaths (a) and opioid treatment admissions (b) in Ohio counties. Models
facilitated identification of spatial factors associated with latent risk (c),

as well as calculation of spatial loadings associated with key factors
(Kline et al. Annals of Epi, 2019)

Discussion

Challenges and Limitations of GIS and Spatial
Epidemiology

Despite the many opportunities and advantages of mapping
and analyzing spatially-oriented data within a GIS, several
challenges exist that can limit effective use and approaches.

The scope of primary data collection for spatial epi-
demiological studies is massive. Many resources, including
funding, time, and trained personnel, are required to foster
collection of information required to perform many of these
analyses. The absence of an underlying data collection infras-
tructure can remain as a significant barrier to conducting spa-
tial epidemiologic studies. Specifically, in low-income com-
munities, limited GIS infrastructure can make incorporation
of spatial epidemiology in public health difficult. Poor infras-
tructure, as related to GIS, can be tied to inadequate access
to licensed software, a lack of trained professionals, limited
access to needed instruments, and paucity of databases that
can be spatially linked and analyzed (Boulos 2004; Bergquist

and Rinaldi 2010; McLafferty 2003). Other issues arise in
the form of non-uniform measures of spatial data, problems
with privacy, lack of data sharing between agencies, and
restricted access to national databases. In response to these
limitations, Fletcher-Lartey and Caprarelli have put forth
a summary of possible ways to address these issues with
GIS (Fletcher-Lartey and Caprarelli 2016). The authors have
suggested utilization of free software, creating a community
of researchers and developers who champion open source
platforms. They have identified the importance of educating
locals to sustain GIS research. Finally, they also recommend
creation of data sharing protocols for efficient data collection
and development of a governance system in GIS research to
safeguard privacy and promote ethical research.

Apart from the issues arising from an infrastructure per-
spective, GIS has other limitations that originate from the
underlying theory of spatial epidemiology itself. Spatial anal-
ysis is largely conducted at an ecologic level. This creates
two sets of problem. First, it leads to data loss as the in-
formation is aggregated to the unit of analysis. Second, the
results are only generalizable to the unit of analysis and any
interpretation of the results at an individual level can lead
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to ecological fallacy. Additionally, improper sampling can
lead to underrepresentation and thereby case selection bias.
A well-cited example is that of positive association between
prostate cancer incidence and socioeconomic factors (Oliver
et al. 2005). Median household income and urban status
had a positive association with incidence of prostate cancer,
while poverty and lower education were associated with
lower incidence (among whites only). These associations
manifested only at the census tract level and were absent
when the unit of analysis was at the county level. A detailed
analysis showed that missing data in the study were linked to
unbalanced measures causing “cartographic confounding.”

Geographic boundaries in GIS and spatial analyses
present another major challenge while using GIS. Boundary
problems are tied to issues arising from the loss of
neighboring polygons in spatial analyses. For many analyses,
researchers use arbitrary boundaries to focus on the area
under study. However, spatial processes continue beyond
these arbitrary boundaries. For example, in a hypothetical
study of disease transmission within different counties in
a state, there might be considerable spatial effects on the
edges of the study area based on the disease patterns in
the surrounding states. If data from surrounding states are
not included in spatial analyses, results on or near local
boundaries may be less stable. The modifiable areal unit
problem (MAUP) is another common issue with spatial
analyses where the results of data aggregation are associated
with the cartographer’s choice of areal unit of analysis
(Openshaw 1979; Openshaw 1984). Other issues that need
to be considered while using GIS and conducting spatial
analyses include the limited reliability of some census
databases, which may not account for population migration,
as well as challenges in estimating rare events.

The issues and limitations highlighted here are far from
insurmountable, and with adequate investment in infrastruc-
ture, training, data systems, and development of new tools,
GIS for public health and spatial epidemiology will continue
to expand.

The Future of GIS and Spatial Epidemiology

There is a growing cadre of researchers and students in
training who will be the GIS mapping and spatial epidemi-
ological analysts of the future. The number and scope of GIS
and spatial analysis courses on college campuses are rapidly
expanding, and new scientific journals and conferences con-
tinue to appear with a focus on the geography of health
and spatial epidemiology. Ongoing and future investments
are needed to support continued growth, development, and
innovation in the field to support sound, evidence-based, and
geographically targeted public health interventions.

As big data and health informatics systems continue to
expand, facilitating access to exposure and outcome data
tied to health in near real time, the future is ripe for GIS,
spatial epidemiology, and spatially-focused research. Vivid
depictions of static and interactive online maps will allow us
to pinpoint locations at highest risk for health and disease
outcomes, better assess access to health services, and inspire
community- and data-driven responses to local health dispar-
ities. Our increasing access to accurate and spatially-granular
big data will also help to pave the way for growing opportu-
nities to develop spatiotemporal prediction models that can
inform pre-emptive public health and clinic responses, which
helps to further decrease morbidity and mortality in local
communities.

Conclusion

Throughout this chapter, we have highlighted the role of
GIS and spatial analyses in public health and epidemiology.
We have shared details on a number of different tools and
methodologies that have been and that can be employed in
GIS mapping and spatial analyses to better understand risks
tied to detrimental public health outcomes and access to
services through a geographic lens. While the field of GIS
for public health and spatial epidemiology has taken major
steps forward during the past two decades, there is much
room for improvement in the years ahead. In the era of “Big
Data,” health informatics, and data science and analytics,
we have an increasing array of spatially-oriented data with
which to work, and we have a broadening spectrum of spatial
analytical tools at our fingertips. Areas for growth include the
following:

• Workforce development and capacity buildingwithin pub-
lic health departments

• Spatiotemporal forecasting of disease to guide pre-
emptive public health and clinical responses

• Imputation approaches to account for missing and cen-
sored data, to avoid gaps or “holes” in maps and spatial
analyses, and to provide a more complete picture of local
public health landscapes

• Vulnerability analyses that take a wide range of socioe-
conomic, social determinants of health, and disease out-
comes into consideration, leading to calculation, mapping,
and spatial analysis of composite measures of risk.

As public health experts, epidemiologists, researchers,
students, and community members embrace maps, spatially-
oriented health data, and geographically focused data science
in the years to come, GIS for public health and spatial
epidemiology will continue to expand, further enhancing
our understanding of the spatially-oriented risk factors and
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outcomes that surround us and inform better targeting of
sound public health and clinical resources to improve the
public’s health.
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Understanding Health Data byMobility
Analytics

Qiang Qu, Susheng Zhang, Seyed Mojtaba Hosseini Bamakan,
Christos Doulkeridis, and George Vouros

Introduction

Basic Concepts

Space and time are two dimensions of importance in model-
ing data for mobility analysis, and in many realms of studies,
space and time are vital in recognizing various mobility
patterns for analyzing massive data. Data featuring both the
dimensions of space and time is called spatiotemporal data.
Spatiotemporal data have been recorded in studies such as
climate science, neuroscience, social sciences, mobile health,
epidemiology, transportation, criminology, and earth science
(Liu and Qu 2016; Atluri et al. 2017), to generate useful
information. In fact, these fields experience a rapid trans-
formation with the proliferation of vast amount of available
spatiotemporal data.

Spatiotemporal data often indicate the temporal relation-
ship between locations or regions in space, often in time
series. This is particularly useful in data sensemaking, where
data collected at different locations should be exploited to
generate meaningful representation of how particular fea-
tures vary throughout space and time (Cao et al. 2012; Nobari
et al. 2017; Zhao et al. 2017). Research into spatiotemporal
data for mobility analytics has grown rapidly in recent years.
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Spatial/Nonspatial Attributes and Preferences
Spatial data identifies the geographic location of features and
regional boundaries. They are often stored as coordinates and
topology and can be mapped. Usually they are in the form of
graphic primitives that are points, lines, polygons, or pixels.
For instance, a circle is defined by its center (location), its
shape, its diameter (size), etc. Quite often, spatial data is
multidimensional and autocorrelated. Spatial data have wide
applications in archeological analysis, marketing research,
and urban planning. Spatial data consists of various features
in database management. The Open Geospatial Consortium
(OGC) standard enlists the following features (Wikipedia
2018):

• Spatial measurements: including area, length, distance,
etc.

• Spatial functions: modification of existing features includ-
ing buffer area, intersections, etc.

• Spatial predicates: true/false relationships between ge-
ometries

• Geometry constructors: creation of new geometries by
specification of vertices

• Observer functions: queries returning a specific feature

Spatial relationships are defined for spatial data objects,
often indicating the distance and angle between objects
represented by spatial data (Liu and Qu 2015). Spatial
relationships between spatial data objects can be classified
as topological, directional, and distance relationships
(Mamoulis 2011). Topological relationships include overlap,
inside, contains, and disjoint, and they are defined on the
geometric extents of objects. Directional relationships (such
as north/south or left/right) compare relative locations of
objects with respect to some coordinate system. Finally,
distance relationships express distance information between
objects (such as “nearby”).
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Nonspatial data is independent of locations and does
not concern spatial arrangement, itself. Nonspatial data may
comprise aggregated data (e.g., numerical), can be numerical,
but may also be in the form of text, images, or any media and
modality. For example, in the monitoring of disease spread,
spatial data would be the location of residence of the patients,
and nonspatial data would be other information related to
the patients such as index, age, diagnosis, and supporting
evidence and so forth (Qu et al. 2014b).

Spatial analysis is the quantitative study of phenomena
that are located in space (Bailey and Gatrell 1995), analyz-
ing topological, geometric, or geographic properties. One
important area in healthcare is network analysis, computing
traveling times and measuring spatial proximity of spatial
processes, thus outlining the relationship between different
locations and the possibility of co-occurrence of events.
Another area where spatial attributes come up useful is in
the analysis of observational data on the movement of people
between locations, i.e., in the mobility analytics. Tracking
how people move through space is important in many health-
care applications, such asmonitoring the spread of disease. In
other areas such as transportation and geography, movement
of people is important in understanding processes such as mi-
gration, urbanization, and decentralization. Spatial analysis is
widely adopted in many research areas, as meaningful results
and insights are often generated when the spatial dimension
is considered (Qu et al. 2014a, b; Liu et al. 2015; Liu and Qu
2016; Nikitopoulos et al. 2016).

Temporal Concepts
Temporal data delineates the dimension of time. They can
be classified into past, present, and future time. The major
attributes of temporal data include (1) valid time and (2)
transaction time (Jensen et al. 1994). The valid time refers
to the time period during which a fact is true in the modeled
reality. Such a time is represented by a variable indicating
the start and the end of the valid instance, i.e., the time
interval during which a fact occurs. For example, if a person
contracted a disease on March 22, 2018, we indicate a start
on that date for the fact “contraction of disease.” On April
22, 2018, he or she was cured, and we indicate an end on that
date for the same fact.

Transaction time is the time period during which a fact
stored in the database is considered to be correct, demon-
strating the state of the database at a given time. It can only
occur in the past, until the current time. It can be quite useful
when original data recorded in the database is to be updated.
By having an attribute of transaction time, the original data
can be labeled as invalid, while new data can be inserted and
labeled as valid. This allows a record keeping of the data
during a specific time interval. For example, when originally
it was indicated that a person recovered from a disease on
22nd of April and it was later realized that he or she recovered

on 1st of April, then we indicate the original time period from
1st of April to 22nd of April as invalid and insert the new
entry of a cure on 1st of April, marked as valid.

Bitemporal data combine the valid time and the transac-
tion time. One popular application is in bitemporal model-
ing, which is designed to handle historical data along two
different timelines. It is useful in keeping track of past
records, making it possible to recreate a past event through
the database. There are various features of the temporal
database that can be highly informative in managing tem-
poral data, and these features include a time period data
type, system-maintained transaction time, temporal primary
keys, temporal constraints, temporal queries, predicates for
querying time periods, etc. Allen’s interval algebra (Allen
1983), a calculus for temporal reasoning that defines rela-
tions between time intervals (before, meets, overlaps, starts,
during, finishes, equals), is widely used to express temporal
predicates.

Mobility Analytics

Mobility analytics received increased attention when vast
amount of data tracking the location of people at specific
times in the form of spatiotemporal data are recorded by low-
cost sensors and are accumulated at a rapid rate. As a result,
there is increasing awareness that utilizing such data will be
highly beneficial to multiple areas of research as well as real-
life applications (Tan et al. 2014; Qu et al. 2015; Zhao et al.
2017).

Mobility data exploration and analytics (Pelekis and
Theodoridis 2014) entail a wide range of techniques from
spatiotemporal data mining, including trajectory pattern
mining Liu et al. (2017), clustering, classification, outlier
detection, and prediction, which can reveal useful knowledge
and hidden patterns from the underlying data. In the
following, an overview of applying such mobility analytics
techniques to the domain of health data is provided.

Mobility Analytics Approaches for Health
Data Sensemaking

Health data is becoming increasingly complex nowadays,
covering clinical, administrative, financial, behavioral, and
social data (Qu et al. 2015). The complexity, high dimension-
ality, volume, pace of arrival, diversity/heterogeneity, and
interdependencies of the data have exceeded the capacity of
human brain to digest and draw conclusions, and the com-
plexity is expected to grow exponentially (Burke 2013). The
field of healthcare is thus becoming more data-driven requir-
ing more advanced analytics to generate useful information
for patients and physicians. Networked sensors enable the
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gathering of rich amount of health-related data collected
continuously over geographical boundaries. Analysis of such
data, in conjunction to archival data, has the potential to
transform the healthcare landscape.

The recent development in the technology of mobility
analytics holds great potential to reduce costs, streamline in-
efficiencies, and improve quality for the healthcare industry.
New equipment and technology, such as sensors, IoT devices,
mobile computers, and software (e.g., for gathering and
associating data), increases our abilities to track patient activ-
ities and improves the healthcare environment by supporting
the constant provision of rich information concerning the
changes in patients’ health conditions. For instance, health-
care technology using a real-time location system (RTLS)
can identify, track, locate, and monitor the condition of pa-
tients, assisting clinical decision-making. Such a system aids
in the collection of medical data and records spatiotemporal
data for further analysis. In the following sections, we discuss
some approaches to mobility data analysis.

Visualization Techniques

Color plays a major role in common practices for the visu-
alization of spatial data. Color, in conjunction to graphical
patterns/visual motifs, plays an important role in visualiza-
tion of mobility data as it is a key discriminative attribute
of our visual perception (Hassanalieragh et al. 2015). Color
distance/contrast and color category enables an easier com-
prehension and differentiation of analytical data.

One typical tool used in the visualization of mobility
data is the density map. Density maps make use of color,
spatially distributed, to represent the spatial component of
data in correlation to a map location. It is often used in
combination with GIS tools, e.g., with ArcGIS Online,1 to
provide valuable insight into natural and social phenomena
(Qu et al. 2016). Through density mapping, points or lines
concentrated in a given area on the map can be represented
by the intensity of colors. Figure 1 shows population density
in and around Wuhan, where epidemiologists traced the
likely source of the COVID-19 coronavirus outbreak to the
Huanan Seafood Wholesale Market in downtown Wuhan. In
the figure, darker areas indicate high population, especially
the downtown region. A specific type of density map is
the kernel density, which smooths point estimates to create
a surface of density estimates. An example of a density
map is a kernel density map recording the habit of smoking
based on Twitter data (Silva 2016). This assists traditional
health data analysis to identify the hot spots in aggregated
rates of infection events. Therefore, historical spatiotemporal
data can be collected, enriched with other features, and be

1www.arcgis.com

analyzed, enabling the plotting of dynamic density maps with
short-term, long-term, or current trends in the occurrence of
events or mobility patterns.

Dynamic density maps (i.e., those showing evolution in
spatiotemporal dimensions) allow analysts to look for spe-
cific spatiotemporal characteristics in combination with other
features (e.g., healthcare facilities), applying various filtering
techniques either regarding space or time or other features.
For instance, they can enable the mapping or analysis of
differences across time to demonstrate regions of healthcare
improvement/escalation or changes in health data. Figure 2
shows a live example of confirmed COVID-19 coronavirus
cases, which changes in terms of time scaled by the pop-
ulation. Other research makes use of spatiotemporal data
to assess the effects of mobility on space-time clusters, the
changes in geographic features on healthcare provision, the
uncertainty in locational and attribute histories on estimated
data, and mobility histories on exposure (Meliker and Sloan
2011).

In spatiotemporal data analysis, there are two major types
of visualization techniques adopted, the individual-based
and aggregation-based visualization. While both methods
are popular in the research community, the visualization
of dynamic human activities and movement through space
and time still remains as a challenge in computation and
visualization (Cao et al. 2015). Individual-based movement
representation adopts a space-time path (3D polyline) to
connect time-related positions with spatial coordinates. This
means that the first two dimensions delineate the location of a
person or object in space and the third dimension is time. This
helps to visualize continuous spatial and temporal movement
patterns, such as examples in the study (Cao et al. 2015).
Analytical techniques for such a visualization include space-
time prism, composite path-prisms, stations, bundling, and
intersections (Miller 1991, 2005).

The aggregation-based visualization methods solve the
problem of multiple trajectories to generalize and aggre-
gate massive movement data. Such methods include traffic-
oriented view and trajectory- oriented view (Andrienko and
Andrienko 2008; Liu et al. 2015). For deeper insight of visual
analysis methods for mobility data, please refer to the study
by Andrienko et al. (2013).

Statistical Techniques

The most basic statistical method is to fit a standard multiple
regression model to spatial data. This entails finding the best
linear combination of the covariates that explains variation
in the dependent variable. The residuals (the difference be-
tween the regression-predicted value and the actual value)
are mapped based on locations to observe for spatial pattern.
Clustering of positive or negative residuals indicates some
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Fig. 1 A population density map of Wuhan

Fig. 2 A live map with updates of COVID19 coronavirus cases on February 8, 2020
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locational importance in the prediction of values in that spa-
tial region. Further modification of the model to incorporate
temporal data can be performed. When there is no obvious
spatial relationship in the final residuals, spatial correlation
can be checked by discovering data similarities in regions.

Another prominent statistical technique for testing space-
time interaction was the Knox method (Knox and Bartlett
1964). The method measures the closeness of a pair of events
based on its spatial and temporal distance. Closeness between
the pair of events indicates a space-time interaction. For
example, food poisoning at a location at specific time may
indicate a higher likelihood of food poisoning at a close-by
location at the next point in time. The level of closeness can
be defined in different ways depending on application, goals,
and other data considered. For example, the authors define
the closeness by fertility transition, i.e., transitions in a set of
given figures as close in space and as close in time if they
occurred in the same intercensal period (Schmertmann et al.
2010). The advantage of the method is that it is simple and
straightforward to calculate. However, there are several bi-
ases related to this test. First, the population shift bias (Mantel
1967) indicates that when the rate of population growth
is nonconstant for all geographic subareas, the variation in
population distribution will generate space-time interactions
that may not be created by the target phenomenon, such as
spread of infection. Second, the choice of critical distance
that defines closeness affects the accuracy of the cluster
identification. Separate tests are required to justify critical
distances (Gilman and Knox 1995).

Disease and Virus Propagation Analysis

In the book On Airs, Waters and Places, Hippocrates wrote:
“Whoever wishes to investigate medicine properly, should
proceed thus: in the first place to consider the seasons of
the year, and what effects each of them produces for they
are not at all alike, but differ much from themselves in
regard to their changes. Then the winds, the hot and the cold,
especially such as are common to all countries, and then such
as are peculiar to each locality . . . ” (Adams 1886). Thus,
expanding from Hippocrates’ statement, an understanding
of person, place, and time has been an essential component
to characterize disease events in the study of introductory
epidemiology (Gerstman 2003). With the development in
technology, changes in location can be tracked through time
by means of trajectories and exploited as such. The study
of the generated spatiotemporal data can be discussed in
the context of epidemiology, and the analysis of such data,
i.e., mobility analytics, has been an important constituent of
modern epidemiology.

Spatial epidemiology combines the knowledge from
statistics, geography, and epidemiology, focusing on the

analysis of exposure, disease, and their relationships (Meliker
and Sloan 2011). Early studies of spatial epidemiology
involved associating a specific disease with a region. In John
Snow’s study, for example, a hand-drawn map of cholera
infections associated the disease with the Broad Street
drinking water pump (Snow 1856). Nowadays, with the use
of GIS, mapping disease location has become more widely
applied, and the temporal component can be included through
the use of dynamic maps. This yields the development of
spatiotemporal epidemiology, a branch of epidemiology
that monitors disease propagation through the analytics of
spatiotemporal data.

The analysis of spatiotemporal epidemiology often fo-
cuses on the following five domains (Meliker and Sloan
2011):

• Spatiotemporal epidemiologic theory
• Selection of scale of analysis comparing points with ag-

gregated data in spatial or spatiotemporal dimension
• Pattern recognition techniques using spatial and

spatiotemporal methods
• Exposure assessment in terms of spatial regions
• Assessment and consideration of spatial/temporal uncer-

tainty

Theories regarding the tracking of infectious disease have
a long tradition, focusing on key nodes in the spread of
infection (longest time spent in a specific location) and the
identification of episodes. From analysis of past patterns,
future disease development can be predicted. Acute diseases
are often tracked by short-termmobility patterns, and chronic
diseases are often monitored by historical mobility, resi-
dence, and employment data of a longer time interval. In
either case, an understanding of the underlying biological
causes of the disease helps in developing useful theories to
predict the disease spread. For example, in chronic diseases,
latency usually appears as a confounding factor. Cancer pa-
tients are diagnosed not only after an accumulated exposure
to carcinogens but also followed by a window of latency.
Mapping of such diseases may involve patterns of both
location of residence and duration spent in the region. Other
diseases may have an exposure period in the utero but only
develop later in life. Mapping the mobility data of these
diseases may require tracing back the mobility data to the
period of conception. Thus, studying etiology is important in
epidemiology combined with mobility analytics (Elliott and
Wartenberg 2004; Riley et al. 2003).

The scale of analysis affects the accuracy and precision of
measurement by dividing a geographical zone into different-
sized units. The modified areal unit problem (MAUP), for
example, is a source of statistical bias that results when
point-based measures of spatial phenomena are aggregated
into districts. The resulting summary values are influenced
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by both shape and scale of aggregation unit. Sometimes
evidence of association occurs at one geographic scale but
disappears or becomes inverse at other geographic scales
(Dumbrell et al. 2008; Monmonier 2018). There may also
be changes in the division of geographic regions due to
the change in census tract boundaries. The use of small
geographic unit can preserve the precision of geographic data
but may become pointless for mapping of rare disease where
only a few cases occur in a small area. Smoothing techniques
can be used to introduce data from adjacent areas, producing
smoothing disease maps (Best et al. 2005; Richardson et al.
2004; Richardson et al. 2004). However, the limitation would
be the presence of artifacts and autocorrelation (Gelman and
Price 1999).

The selection of methods for pattern recognition is critical
and has the potential for the discovery of new etiologic
factors. In identifying the patterns for spread of disease, there
are usually multiple clustering statistics methods available,
and research has demonstrated the effectiveness of SaTScan2

in the analysis of aggregated data (Kulldorff et al. 2006;
Meliker et al. 2009).

Assessment of exposure to environmental contaminants
involves analysis of contaminants, activity, andmobility. This
is discussed in Case Study 1 where contaminants in the
water are modeled by concentration of contaminants, water
consumption, and locations of exposure. It is a common
practice to use GIS data where transport characteristics,
spatial autocorrelation, and activity data can be analyzed. The
recent trends of exposure assessment include the adoption
of spatiotemporal dynamics in individual-level long-term
exposure estimates, to retain intact spatiotemporal database
and to incorporate extensive spatiotemporal data histories of
mobility.

The big challenge in spatiotemporal applications is the
uncertainty related to the data collected, especially those
further back in time. Uncertainty can be incorporated into
assessment as an attribute or location varying with time,
propagated into epidemiologic analysis. However, more re-
search into the assessment of the impact and propagation of
uncertainty on epidemiologic analysis is required.

The above analysis of the five domains of spatiotemporal
data applications shows that more research into the adoption
of mobility data can be incorporated for epidemiologic stud-
ies. By conducting research with detailed investigations into
these five domains (Meliker and Sloan 2011), the validity of
the spatiotemporal models can be assessed, and simulations
can be performed to evaluate whether a model performs as
intended.

2A free software that analyzes spatial, temporal, and space-time data
using the spatial, temporal, or space-time scan statistics, available at
https://www.satscan.org/

In the following sections, we outline several case studies
from research that involve spatiotemporal analysis of health-
care data. The case studies approach epidemiologic studies
from different angles and are representative of research in the
respective area.

Case Study 1: Water-Based Drug Loads Modeling
One potential area of epidemiology is the water-based epi-
demiology that quantitatively studies the use of illicit drugs
in populations through extraction of samples from wastew-
ater and analyzes the composition of wastewater to iden-
tify the presence and the amount of illicit drug. It involves
the tracking of drug loads and exposure to environmental
contaminants through connectivity to a wastewater treatment
plant (Thomas et al. 2017). The endogenous and exogenous
biomarkers of wastewater from humans are collected for
analysis to study the presence of absorbed illicit drugs, and
the average drug dose per person is calculated by estimating
population size from the mobility data. The population-
normalized drug loads (PNDL) are calculated as follows:

PNDL = C × F

P

where C is the measured drug-biomarker concentration
in wastewater, F is the total wastewater flow, and P
is the mobility-analytics-derived time-weighted average
population figure.

To calculate the value of P, mobile device-based data
that record human mobility are used. For example, in the
reference, the authors extract population patterns from the
signaling data generated by handsets interacting with the mo-
bile phone network provider within the catchment area. The
study of mobile device-based population activity patterns is
made possible and convenient by linking signals generated
from headsets with mobile phone network provider. There is
great potential to cooperate with mobile network providers
in the generation of such data because the data can also be
used for infrastructure deployment and maintenance. The
key considerations of adopting such a system include the
following:

• Reliability: Signaling data from mobile phones are highly
reliable for analysis of population dynamics. It allows
real-time tracking and represents not only the registered
residents in the area but also visitors to the area. This
reduces the uncertainty in population prediction and gen-
erates reliably monthly, weekly, and even daily variability
in population size.

• Dynamics: The nature of mobility data is dynamic. A
static population estimate can be altered due to commuting
and holidays. This may distort the results and fail to
normalize drug loads to a correct level. The use of mobile
phone activity data allows dynamic monitoring of the

https://www.satscan.org/
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population. The selected period in this case study is from
June to July, the summer months where people tend to
commute to recreational destinations such as the seaside.
Thus, the dynamic monitoring of population is important
in generating accurate results.

• Privacy: Data preprocessing is necessary to protect the
privacy of the mobile device users. The identifiers from
the dataset are usually removed to prevent backtracking
through methods such as IMSI,3 MSISDN,4 etc. The
results can be further aggregated to conceal base station.

By calculating the PNDL across time, the temporal pattern
of the drug load can be studied and compared, for example,
by plotting the diagrams as in the study (Thomas et al. 2017).
From the results of the study (Thomas et al. 2017), several
conclusions can be drawn, and the patterns can be observed
from the analysis of drug load data. Indicative results that can
be revealed from such an analysis are as follows:

• While the absolute drug loads seem fluctuating around
a constant value from June to July, the population size
has dropped by 30.5% over these 2 months. Thus, the per
capita consumption of drugs increased significantly from
June to July.

• The ratio between weekend and weekday drug-biomarker
loads represents recreational or “party” drug use. For
example, the ratio for MDMA,5 a psychoactive drug, is
2.4:1 and for cocaine is 1.6:1, indicating a high level of
usage of these two drugs over the weekend for parties and
recreational activities. On the other hand, amphetamine
and methamphetamine have ratios of 1.2:1 and 1.1:1,
indicating the little usage of the drugs for entertainments
and the likelihood that these drugs are prescribed and used
based on doctor’s advice.

Case Study 2: Dengue Fever Patterns in French
Guiana
Dengue fever is an arboviral disease spread by the mosquito
of the Aedes genus (Monath 1989). The lack of effective
disease treatment methods makes it critical to control the
spread of disease vectors through mapping of risk areas
and periods. In 2001, a dengue fever outbreak occurred in
Iracoubo, French Guiana. This rural municipality is highly
prone to disease spread as it is surrounded by rain forest,
mangrove forest, and coastal wetlands, perfect environment
for the breeding of mosquitoes. Dengue fever had been
recognized as an endemic in the place and had been occurring
repeatedly since 1965 (Tran et al. 2004). This case study

3https://en.wikipedia.org/wiki/International_mobile_subscriber_
identity
4https://en.wikipedia.org/wiki/MSISDN
5https://en.wikipedia.org/wiki/MDMA

experiments on the enhancement of a prevention strategy
by analyzing the spatiotemporal clustering pattern of the
infected patients through the GIS. The GIS was developed
to record the location of patient homes and when symptoms
were first observed.

Patients that visited the local healthcare center demon-
strated symptoms of dengue fever, including arthralgia,
headache, and myalgia, and were suspected and sent for
further serological tests to obtain confirmed cases. The
locations of residence of all suspected patients were recorded
on a georeferenced aerial photograph, and geographic
coordinates were integrated into a GIS. Nonspatial attributes,
such as identification number, date of onset of symptoms,
age, sex, and diagnosis, were also incorporated with the
spatial GIS information.

The spatiotemporal analysis of dengue fever spread adopts
a Knox method (cf. section “Statistical Techniques”), a clas-
sic space-time analysis technique to detect spatiotemporal
clustering. This method is a test used to determine whether a
pair of events are closer in spatial and temporal dimensions
than that by chance assuming random distribution. This ef-
fectively predicts the likelihood of occurrence of infection at
a specific time and space. When performed on data of sus-
pected and confirmed cases, the location of those susceptible
areas can be mapped using a relative risk map.

Initial mapping demonstrated that one case of infection
can rapidly spread to all areas of the small municipality. Clus-
ters of infection were also observed in nearby neighborhoods.
Mapping of the relative risk within a space-time window
was also plotted (Tran et al. 2004), where the global repre-
sentation of the relative risk calculated from the confirmed
cases and the three-dimensional representation of the main
risk area are shown. By analyzing the plots shown in the
reference, a spatiotemporal risk region of (400 m, 40 days)
was identified with high-risk regions at (15 m, 6 days). This
defines the area of a cluster where spread of infection is
highly likely.

The study (Tran et al. 2004) uses the spatial breaks, i.e.,
the spatial distance between houses affecting the spread of
disease, for the analysis of the risk of infection. The authors
plot the relevance between spatial break and risk of the
infection, indicating the relevance of the relative risk map
obtained.

The risk space and time developed from spatiotemporal
data analysis can be effectively used for the development
of disease prevention and control strategies. During dengue
epidemics, the risk area and period can be controlled to limit
further spread by reducing breeding sites.

Case Study 3: Spatial Clustering of Severe Acute
Respiratory Syndrome (SARS) in Hong Kong
From late 2002 to early 2003, the lethal virus of severe
acute respiratory syndrome (SARS) has become widespread

https://en.wikipedia.org/wiki/International_mobile_subscriber_identity
https://en.wikipedia.org/wiki/International_mobile_subscriber_identity
https://en.wikipedia.org/wiki/MSISDN
https://en.wikipedia.org/wiki/MDMA
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in Hong Kong. While research has progressed much into
understanding the mechanisms of spread, exploration is still
needed for the “super-spreading events” (SSEs). The study
of epidemiology is important in this case to understand the
spread patterns for further control and prevention. Therefore,
mobility analytics adopting GIS technology is applied to map
and visualize SARS outbreak in Hong Kong.

Elementary analysis plotted the instances of infection at
residential addresses of patients obtained through GIS. An
example map of SARS-infected cases in Hong Kong from
February to June 2003 can be found in the study (Lai et al.
2004), where cumulative counts of cases of infection were
mapped with proportionally sized circles. Thus, the influence
of SARS in Hong Kong is explicitly shown from the map.

Case Study 4: Epidemiology Study Through
Social Media
The most important issue in epidemiology is the monitoring
of real-time disease spread (Riley et al. 2003). However, this
is often impeded by the lack of publicly available health
data, and there is usually a lag between the development of
symptoms and a visit to the hospital. An alternative solution
to the problem is to make use of self-reported health condi-
tions through analysis of posts on social media. This allows
instant compilation and monitoring of disease distribution
and enables more prompt reaction from health authorities and
healthcare providers. In this case study, Twitter data is used to
give a real-time modeling of infectious disease propagation.
The technology combines the cutting-edge techniques of
natural language processing and supervisedmachine learning
to analyze the spread of disease, and the developed sys-
tem facilitates faster response to unknown infectious dis-
eases.

The greatest challenge in analyzing social media data
is the presence of noise, subjecting the analysis of tweets
to news and media hype regarding rare diseases, such as
Ebola. Therefore, an important task in processing the social
media data is to de-noise data. This is achieved through a
staged process, aiming at noise invariance. The stages are as
follows:

• Categorizing tweets into categories of self-reported, non-
self-reported, and spam. Only self- reported tweets (those
from infected individual or someone associated with the
infected individual) are used in the subsequent analysis.

• Identifying hashtags linked to a specific disease and as-
signing a popularity term to rank the relevance of each
hashtag.

• Identifying relevant keywords beyond disease names
by obtaining the unigrams and bigrams that appeared
frequently among the chosen hashtags. Then, finding
disease-related tweets based on the identified keywords.

Fig. 3 Directed graph demonstrating disease relationship, with nodes
indicating locations and the thickness of the edges indicating stronger
connections

• Using TF-IDF (term frequency-inverse document
frequency) feature vectors (Ramos 2003) to eliminate
irrelevant tweets identified in the previous step.

• Clustering the tweets by means of the cosine similarity
measure to group tweets with similar themes.

• Isolating salient tweet clusters by applying linguistic
attribute-based random forest classifiers to randomly
selected subsets of each cluster and rejecting clusters
with a larger proportion of non-self-reporting tweets.

• Testing the effectiveness of the identified tweets in pre-
dicting the frequency of disease occurrence by comparing
instances of infection with official data.

After processing of data, models of spread of disease
using Twitter user relationships are built by means of net-
work analysis. The locations of Twitter users were identified
through Microsoft Bing Maps’ reverse-geocoding API, thus
obtaining a random sample of potentially infected Twitter
followers. A directed graph representing locations as nodes
and connections between individuals as edges was plotted,
displaying the most prevalent connections between locations
with thick lines as shown in Fig. 3.

The directed graph reflected the mobility patterns of peo-
ple in a specific location, which produce underlying knowl-
edge from massive dataset. For example, Mexico is well-
connected with India in terms of disease spread. The two
seemingly unrelated countries were well-connected due to
the large number of Mexican tourists choosing India as a
traveling destination. Thus, from analysis of Twitter data,
the infectious disease often travels from Mexico to India,
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indicating the need to construct quarantine zones in India if
Mexicans were infected heavily.

Spatiotemporal PatternMining andMobility
Feature Learning to Health Data

Spatiotemporal Pattern Mining and Analysis

In this section, we list out some interesting applications
generated from the mining of spatiotemporal data.

Case Study 1: Accessibility to Healthcare Services
Spatiotemporal patternmining involves the use of geographic
information systems (GIS) that record patients’ movement
across time. It has multiple applications such as the
one reported in Hasan et al. (2018) and Muzammal
et al. (2018).

For instance, it can be adopted to evaluate spatial acces-
sibility to primary healthcare services. The adopted model is
the floating catchment area model (Jamtsho et al. 2015). The
model involves three parameters: an attractiveness compo-
nent of the service center, travel time or distance between the
locations of the service center and the population, and popu-
lation demand for healthcare services (Jamtsho et al. 2015).
In particular, nearest-neighbor modified two-step floating
catchment area (NN-M2SFCA) model is an effective model
often adopted by researchers to analyze mobility data. The
model is defined by the following equation:

Ai =
∑n

j=1

SjWijWij∑m
k=1 PkWkj

where Ai is the spatial accessibility index of population
cluster i, n is the total number of healthcare service provider
locations associated with population cluster i, Sjs is the
number of healthcare providers available at location j,Wij and
Wkj are distance weights computed using a distance decay
function (e.g., step (E2SFCA) and continuous (KD2SFCA)
decay functions as in the reference), m is the total number of
population clusters associated with the health facility, and Pk
is the population at the population cluster location k (Jamtsho
et al. 2015).

The model can be understood as such: each health center
has a population catchment area and each population clus-
ter has a service catchment area. The areas are finite and
overlapping. The spatial accessibility index represents the
accessibility provided to a particular cluster of population to
nearby healthcare centers. The index of spatial accessibility
can be mapped to visualize the distribution of healthcare ser-
vices. An example on accessibility index of doctor’s services
mapped for the country of Bhutan is shown in the study
(Jamtsho et al. 2015).

When combined with temporal data, the accessibility can
be evaluated across time to observe the changes in amount of
healthcare providers. By plotting Ai against different clusters
over years, trends of change can be observed: For example,
the study reported in Jamtsho et al. (2015) shows population
clusters’ accessibility indices of Thimphu District, Bhutan,
from 2010 to 2013.

Case Study 2: Mapping of Urban Violent Injuries
Another interesting example of application of spatiotemporal
pattern mining stems from the study of epidemiology and
determines the location of urban violent injury (Cusimano et
al. 2010). While it is highly useful in allocating the providers
of healthcare services, this can be extended to other applica-
tions such as car accident injuries. Thus, it is also of interest
as a legal issue. Temporal analysis focuses on the hourly
distribution of assault injuries, and spatial analysis maps out
the concentration (density map) of cases of assault injuries
aggregated over a 24-hour period. An example of the density
map is shown in the study (Cusimano et al. 2010) where as-
sault injury densities in Toronto are given from the EMS (i.e.,
Emergency Medical Services of Toronto) dataset over a 24-
hour period and from the NACRS (the National Ambulatory
Care Reporting System) dataset over a 24-hour period.

Spatiotemporal data is adopted to monitor the movement
of urban assault through time. A dynamic analysis of the data
patterns can generate useful information with regard to the
spread of urban violence. For example, two distinct high-risk
locations over time may be related to moving populations.
Mobility data are thus useful in determining the movement
of people through time, indicating the sources and locations
of potential crime-related injuries and the major perpetrators.
Observing the dynamic changes of the density maps, one
may reveal that hot spots of urban assault shift from areas of
relative social deprivation to higher income, lower residen-
tial density, and higher densities of drinking establishment
throughout the day (Cusimano et al. 2010).

Predict Specific Diseases/CuringMethods

The availability of mobility data at hitherto unimagined
scales and temporal longitudes can be effectively mined to
transform the current post facto diagnose-and-treat reactive
paradigm to a proactive framework for prognosis of disease
at an incipient stage (Hassanalieragh et al. 2015). It also
has the potential to allow more precise and personalized
medical treatment throughmore targeted solutions to specific
circumstances of patients, as demonstrated.

Disease Mapping

Infodemiology is the science of collecting and processing
real-time data to map location of users and their input on
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search engines to investigate locational diseases. In recent
years with the development of mobile technology, mobile
phone applications designed to assist tracking the spread of
flu have been implemented under different circumstances.
Flu Near You, for example, is an application jointly created
by Skoll Global Threats Fund and the American Public
Health Association. Its interactive interface obtains input
from users about their self-reported symptoms before the
sickness develops and gathers data regarding flu activity
in a region for patients to prevent exposure. Germ Tracker
is a similar application that obtains information regarding
sickness from social media: an effective platform to identify
cases unreported to doctors. Similarly, the application de-
signed by the pharmaceutical companyHelp Remedies,Help,
I Have the Flu, generates data from search engines regarding
keywords such as “flu” and “cough.” From the results of
individuals’ searches, it maps out the likelihood of a spread
of disease (Nambiar et al. 2013).

BigMobility Data Aspects

With the advent of big data, massive amounts of mobility
data are made available, often requiring online processing,
thereby challenging the processing capabilities of modern
data management systems. Consequently, research proto-
types and parallel data processing frameworks have been
developed lately for spatiotemporal data, which are briefly
reviewed in the following. It should be noted that even though
several prototypes for big spatial data have been proposed,
only few systems exist for big spatiotemporal data.

ST-Hadoop (Alarabi et al. 2017) is an open-source
MapReduce extension of Hadoop tailored for spatiotemporal
data processing, developed by the University of Minnesota.
Support for spatiotemporal indexing is a core feature of ST-
Hadoop. It is achieved by means of a multilevel temporal
hierarchy of spatial indexes. Each level corresponds to a
specific time resolution (e.g., day, month, etc.). Also, the
entire dataset is replicated and spatiotemporally partitioned at
each level based on the temporal resolution of that particular
level. ST-Hadoop supports spatiotemporal range queries,
aggregations, and spatiotemporal joins.

STARK (Hagedorn and Räth 2017) is another solution
targeting big spatiotemporal data. STARK addresses query
processing of spatiotemporal data in Spark, whereas other
approaches only consider the spatial dimensions. STARK
supports spatiotemporal partitioning and indexing using R-
trees. Thus, it supports spatiotemporal filtering and join
operations. However, the temporal dimension is not treated
equally to the spatial dimensions. For example, partitioning
is performed solely based on spatial criteria, and the temporal
part of a query is used to filter out records that do not satisfy
the temporal constraint.

Most recently, a couple of research prototypes have ap-
peared for big trajectory data management, most notably
UlTraMan (Ding et al. 2018) and DITA (Shang et al. 2018).
UlTraMan (Ding et al. 2018) proposes a unified platform
for the complete management cycle of big trajectory data.
It provides both storage and processing layer for trajectory
data. Interestingly, this is one of the few approaches that
target the entire life cycle of big trajectory data, from data
loading and indexing to processing and analytics. Supported
query operators include range queries, KNN queries, and
aggregation queries. In addition, co-movement pattern min-
ing on trajectory data is also supported, demonstrating the
trajectory analytics capabilities of UlTraMan. DITA (Shang
et al. 2018) extends Apache Spark to offer in-memory tra-
jectory analytics. It offers an extended Spark SQL language
that facilitates the declarative specification of queries but also
index construction.

Challenges and Concluding Remarks

Potential Challenges

Although mobility analytics in conjunction to health data has
demonstrated potential to become a useful technology trans-
forming the healthcare industry, there are several challenges
related to the implementation and its widespread application.

First, conventional medical instrument evolves at a low
speed because the implementation requires regulatory ap-
proval and training of medical personnel, despite the fact that
electronic devices upgrade rapidly. This means that although
mobility data can be collected with fair accuracy and speed
and although there are means to their analysis, there is a gap
to their interpretation and operational use toward improving
healthcare services provided to patients and to the medical
community.

Second, there lies the challenge of potential for large-
scale theft or breach of sensitive data: This in conjunction to
integrating sensitive data from disparate data silos that cannot
be easily shared or moved from its original store presents the
challenge of performing analytics using integrated views of
data from disparate sources of sensitive data. Specifically, the
protection of individuals’ privacy by exploiting mobility data
revealing real-world physical movement of individuals is
essential. The use of big data analytics may require long-term
availability of sensitive data, which, if not done properly, can
be a potential threat to personal information security.

Fourth, there is the challenge of leveraging the patient
data correlations in longitudinal records. The large volumes
of patient data consist of various data types, domains, and
uncertainties with underlying knowledge of both individuals
and groups, which requires deep correlation analysis in space
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and time for adequate understanding and usages of the med-
ical big data.

Fifth, understanding the implicit spatiotemporal informa-
tion from unstructured data (e.g., clinical notes) is a challenge
as this data poses great difficulties in data manipulation
(Priyanka and Kulennavar 2014), information extraction, in-
terpretation, and exploitation in analytics.

FutureWork

The most essential step for mobility analytics to become
widespread in the medical world is to gain clinical support
and approval. There are several future directions that this
technology can be applied to enhance the level of medical
care. First, it can be used in clinical decision support. Second,
it can promote personalized care. Third, mobility analytics
can be used to monitor public and population health. Big data
from web-based and social media can be used to predict epi-
demics (e.g., due to flu) based on consumer’s search, social
content, and query activity (e.g., as reported in Priyanka and
Kulennavar (2014)).

It is important to note that although mobility analytics
have the advantage of generating insights to support disease
control and medical policy making, it is essential to have
cooperation from all stakeholders in the medical community:
physicians, hospitals, pathology laboratories, and vector con-
trol agencies. Without cooperation, the results of mobility
analytics will be data only, and the positive social impact it
produces will be vastly limited. On the other hand, mobility
analytics must promote and facilitate such a cooperation
among stakeholders via the provision of analysis results that
would support effective decision-making and action.

Another issue with mobility analytics is the protection
of privacy in conjunction with the preprocessing of data.
Medical privacy is a long-lasted issue. Future health reforms
concerning the use of mobility data should aim to improve
data quality and safety while preserving clinical security
and transparency, e.g., considering big data and Blockchain
technology (Qu et al. 2019). The ultimate aim of utilizing
mobility data can serve to engage patients, improve care co-
ordination, enhance clinical outcomes, empower individuals,
and further encourage research into medical big data.
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Introduction

The attention given to spatial data in Statistics, more specif-
ically to spatial patterns, goes back to the pioneering results
of Whittle (1954), followed by other classic articles such as
Besag (1974), Besag and Moran (1975), Ord (1975), and
Ripley’s book in (1981). The recognition of a spatial structure
in the data led to the formulation of models and theories
that could describe, model, and predict the phenomena that
depend on their location in space. These data can be classified
into three main categories, namely, geostatistical data, areal
data, and point patterns data (Anselin 1988; Cressie 1993). In
recent years, interest in spatial analysis in general and spatial
econometrics in particular has been growing (Anselin et al.
2004), much in the social sciences (Goodchild et al. 2000).
This increase is undoubtedly due to the high availability of
growing volumes of geo-referenced data as well as to the
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development of easily manipulated technology to handle this
type of geographical information (Fischer 2006; Goodchild
et al. 1992). These factors potentiated new theoretical anal-
ysis perspectives of the geographical phenomena (Bivand
2008; Manski 2000).

Application of Bayesian methods in the adjustment of
spatial models has spread widely, essentially due to the
flexibility that this approach enables. Bayesian estimation
has seen a boom in application with the development of
computational methods and algorithms that use approximate
methods or, more often, iterative simulation methods. In this
context, Monte Carlo simulation methods via Markov chains
(MCMC) have prevailed (Gamerman and Lopes 2006). This
estimation approach also provides formal solutions to a wide
range of spatial econometric estimation problems. Lesage has
greatly contributed to the diffusion of Bayesian techniques in
spatial econometrics (LeSage 1999; LeSage and Pace 2009;
LeSage 2014, 2015).

Very recently, another methodological approach for
Bayesian estimation has been developed using some well-
known approximation methods (the Laplace approximation),
known as Integrated Nested Laplace Approximation (INLA)
(Rue et al. 2009). This is based on the idea of using
deterministic approximations for the posterior marginal
distributions of the parameters, in a computationally efficient
way. Bivand, Goméz-Rubio, and Rue have explored the use
of INLA for Bayesian inference in some widely used models
in spatial econometrics (Bivand et al. 2014).

Despite all the several studies and developments in spatial
models, spatial econometric models, and Bayesian inference,
there is still a gap for handling count data within econometric
models, explicitly assuming a Poisson distribution for counts.
Certain types of spatial econometrics models for discrete
data, such as the case of binary responses, have receivedmore
attention leading to the estimation, among others, of a spatial
probit model (LeSage 1999; Bivand et al. 2014; Gomez-
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Rubio et al. 2016). One of the main objectives of this work
is to improve the understanding of the fundamental process
behind spatial data correlation, in order to better describe the
dynamics that result from this in the econometric models for
count data, as well as to contribute methodologically for this.

Spatial econometrics traditionally rely on autoregressive
models, such as the spatial lag model (SLM) or the spatial er-
rormodel (SEM), that assume theGaussianity of the response
variable, which does not hold for counts. Consequently, their
usage for count data demands data transformation to meet
the assumptions of the models. New possible modelling
strategies using autoregressive models for count data are
investigated here in order to avoid that (Simões and Natário
2016).

However, in spatial statistics, the hierarchical modelling
approach is the natural way to handle areal count data better
considered under the Bayesian paradigm (Banerjee et al.
2004). This approach allows data to have any distribution,
being for count data typically chosen the Poisson distri-
bution, resulting on Bayesian Poisson hierarchical models.
The spatial structure assumed for the risk is included in the
first level of the hierarchy, through a prior distribution of
spatially structured random effects. In addition, non-spatially
structured random effects to account for risk variation can be
considered.

For the hierarchical approach, spatial autocorrelation is
accounted for in the disturbances and not in the observed
responses, but a spatial autoregressive approach might also
be considered. The fact that it is plausible to think that the
risk of what is being counted in one area is related to the
risk in the areas of its neighborhood, driven by effects of
important covariables that may certainly impact the risk in
a neighboring area, justifying the use of the autoregressive
approach (LeSage and Pace 2009). In this case, the response
variable in a given area is most certainly a good predictor of
the response variable in its neighboring areas, meeting the
different modelling strategies of the autoregressive models.

Both hierarchical and autoregressive approaches are not
yet much explored for spatial econometric models for non-
Gaussian data, but their development is surely more adequate
for these, avoiding data transformation and corresponding to
more realistic models.

The application and implementation of the methodologies
studied can be considered in several areas of activity with
scientific and technological interest. One main important
social application is explored in this chapter, on hospital
management context, more specifically the calls for the Por-
tuguese national health line Saúde 24 (S24).

Urgency admissions is one of the most important factors
regarding hospital costs, which can possibly be mitigated
by the use of national health lines such as the Portuguese
Saúde24 line (S24) (Portal of the National Portuguese Health
Service 2015). For future development of decision support in-

dicators in a hospital savings context, based on the economic
impact of the use of S24 rather than hospital urgency services,
the considered application investigates spatial dependencies
in the number of calls to S24 in each Portuguese municipality
for the year 2014, considering different spatial perspectives.
Resorting to INLA methodology, the spatial structure is
modelled through a set of autocorrelated random effects both
in terms of Poisson Bayesian hierarchical models and within
a spatial lag Poisson Bayesian model (Simões et al. 2017).

Spatial Modelling in Econometrics

The inclusion of spatial effects in econometric modelling
evolved to form “one of the branches of econometrics”
(Anselin 2010). The definition and scope of spatial
econometrics has expanded substantially over the last three
decades, moving from the “margins of urban and regional
modeling” to the mainstream of econometric methodology
(Anselin 2010).

When sample data have a location component, funda-
mental assumptions of traditional statistical methods are
no longer guaranteed. Traditional econometrics has largely
ignore this violation of the Gauss-Markov assumptions used
in regression modeling (Anselin 1990). There are alternative
estimation approaches that can be used when dealing with
spatial data samples (LeSage 1999). An adequate alternative
is to implement spatial econometric models that allow to
assess the magnitude of the space influence by considering
a specific weighting scheme in which relationships among
spatial areas are specified (Anselin 1988). The topology
or spatial pattern of data is taken care by the choice of a
spatial weights or contiguity matrix, commonly denoted by
the letter W, and represents our comprehension of the spatial
association among data in different spatial units (Fischer
2006). Spatial econometrics is an appropriate area when
dealing with data reflecting geographical events, which can
accommodate spatial influences maintaining other factors or
variables considered important to explain the phenomenon of
interest (Anselin 2010).

Spatial Data
The availability of increasing volumes of geo-referenced
data and a user-friendly technology to manipulate these in
geographic information systems has been stimulating an
increasing interest in spatial analysis (Anselin 2010; Fischer
2006). Data for which location attributes are taken into ac-
count cry for a spatial modelling approach. The recognition
and incorporation of the spatial dimension can give more
relevant results than an analysis that ignores it (Cressie 1993).
Observations for which the absolute location or relative po-
sition are explicitly taken into account are defined as spatial
data. Such data are the subject of many research fields, such
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as epidemiology, econometrics, climatology, ecology, and
sociology, among others.

Analyses of spatial data focus on detecting patterns and
exploring andmodelling relationships between data that form
such patterns, in order to understand the processes respon-
sible for them. Taking spatial patterns into account enables
statistical analyses, for example, to emphasize the role of
space as a potentially important explanatory variable of so-
cioeconomic systems. Three main classes of spatial data
can be distinguished: geostatistical or spatially continuous
data, referring to observations associated with a continuous
variation measure over space, taken at fixed sampling points;
areal or lattice data, related to some measured attribute in
partitions of the region of interest; and spatial point patterns,
for which objects are the point locations where the events of
interest have occurred (Cressie 1993).

Spatial Econometrics
Over the last three decades, the interpretation and range of
spatial econometrics developed gradually in the literature
(Anselin 2010). The definition provided by Anselin (1988)
states that spatial econometrics is “the collection of spatial
techniques that deal with the peculiarities caused by space in
the statistical analysis of regional science models” (Anselin
1988). At that time, when comparing spatial econometrics
to standard econometrics, a definition was given for spatial
econometrics: “the specific spatial aspects of data andmodels
in regional science that precludes a straightforward appli-
cation of standard econometric methods” (Anselin 1988).
The referred spatial aspects may be classified into spatial
dependence or spatial heterogeneity (Anselin 2010; Cressie
1993).

Twenty years later, this definition, whose subject and
range were restricted to urban and regional modelling,
has changed. The importance and application of spatial
techniques registered an enormous growth in economics as
well as in other mainstream sciences. According to Anselin
(2006), spatial econometrics is now defined as a “subset of
econometric methods that is concerned with spatial aspects
present in cross-sectional and space time observations”
(Anselin 2006, 2010).

When sample data have a location component associ-
ated, two settings can be considered: spatial autocorrelation
between observations or spatial heterogeneity in relations.
Under these, many fundamental assumptions of the classical
statistical methods, namely, that data values are derived from
independent observations or that exists a single relation-
ship with constant variance across the sample data, are no
longer guaranteed (LeSage 1999). Spatial econometrics con-
stitutes an adequate alternative that can be used when dealing
with observations linked to geographic economic phenom-
ena or events (Fischer 2006). Variables related to location,
distance, and patterns are considered in model specifica-

tion, estimation, diagnostic checking, and prediction (LeSage
1999).

Similarly to what happens in any statistical modelling,
four important steps that define the modern spatial econo-
metric methodology must be followed: model specification
(which deals with the formal mathematical expression for
spatial dependence and spatial heterogeneity in econometric
models), estimation methods, testing, and spatial prediction
(Anselin 2010).

Geostatistical data, also termed field data, play an impor-
tant role in environmental sciences (see, e.g., Cressie (1993)
and references there in formore details) but are less important
in spatial econometrics (Fischer 2006). Areal data and spatial
point processes aremore used in spatial econometric analyses
and their applications. In this work, the focus is on areal data.

Spatial Dependence
Spatial association, also referred to as spatial autocorrelation,
is present in situations where observations or spatial units
are non-independent over space, that is, when nearby spatial
units are associated in someway (Cressie 1993). Such associ-
ation can be identified in a number of ways, for example, us-
ing a scatterplot where each observed value is plotted against
the mean of observations in neighboring areas—the Moran’s
scatterplot—or using a spatial autocorrelation statistic such
as Moran’s I or Geary’s C. Moran’s I is a measure of global
spatial autocorrelation, while Geary’s C is more sensitive to
local spatial autocorrelation (Carvalho and Natário 2008).

Both these statistics require the choice of a spatial weights
matrix, usually symmetric and denoted by the letter W (with
elements wij , i, j = 1, . . . , n, where n is the number
of spatial units), which represents the topology or spatial
arrangement of the data and our understanding of spatial
association among all areas units (Fischer 2006). Usually
wii = 0, i = 1, . . . , n, but for i 	= j , the association
measure between area i and area j , wij can be defined in
many different ways, being the most usual the contiguity
criterion between areas for which wij = 1 only if areas i and
j share a common border and wij = 0 elsewhere (Carvalho
and Natário 2008).

Moran’s scatterplot is a graph that allows to visually
explore spatial autocorrelation. Considering a spatial weights
matrix W , this graph has on the x axis the values of the
variable of interest and on the y axis the weighted mean
(by wij ) of the variable values measured for the remaining
spatial units. In the case that W is a contiguity matrix, the y
axis corresponds to the average of the variable values of the
neighbors of each spatial unit (Carvalho and Natário 2008).

In terms of interpretation, a Moran’s scatterplot depicting
points essentially in the odd quadrants suggests the presence
of a positive (direct) spatial correlation, with high or low
values of the variable of interest tending to cluster in space; if
the points are shown in the even quadrants, that suggests the
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presence of a negative (inverse) spatial correlation, because
locations tend to be surrounded by neighbors with very
dissimilar values for the same variable; points around the
origin indicate no spatial correlation.

Moran’s I statistics is one of the most used statistics
to measure spatial association. This statistics can be used
directly with the dependent variable of interest or with the
residuals of a fitted model, and it is formally given by:

I = n
∑

i

∑
j wij (yi − y)(yj − y)

(
∑

i

∑
j wij )

∑
i (yi − y)2

(1)

representing y the quantity of interest.
Using I statistics, tests for the null hypotheses of spatial

independence can be built under two different situations:
using a randomized distribution of the statistics or Normal ap-
proximation. A significantly positive value of I indicates the
presence of direct spatial correlation, a significantly negative
value, an inverse spatial correlation, and when I is close to
zero the absence of spatial correlation. Note that for relatively
small values of n, the I distribution may be far apart from the
normal distribution approximation, and the randomized test
is preferred.

Another statistic used to measure the spatial association is
the Geary’s C statistic, given by:

c = (n − 1)
∑

i

∑
j wij (yi − yj )

2

2
( ∑

i

∑
j wij

) ∑
i (yi − y)2

(2)

This statistics is always positive having expected value
one. Values of c less than the expected value indicate the
presence of direct spatial association, while otherwise the
presence of inverse spatial association is signaled (Carvalho
and Natário 2008).

When spatial autocorrelation is identified, a specialized
set of methods is needed (Arbia 2006; LeSage 1999). In order
to capture dependencies across spatial units, spatially corre-
lated variables can be introduced in the model specification
(Anselin 2010).

The definition of the spatial weights matrix W, where the
spatial topology of the spatial units is specified, is very im-
portant since estimation results may critically depend on the
choice of this matrix. There are several approaches to define
it, but they can essentially be classified into two main groups:
spatial contiguity and distance-based approaches. Typical
types of neighboring matrices for spatial contiguity approach
are the linear, the rook, the bishop, and the queen contiguity
matrices, described below. For the distance approach, there
are, for example, the k-nearest neighbors or the critical cutoff
neighborhood matrices (LeSage 1999).

• Contiguity matrix: Represents a n×n symmetric matrix
W, with elements wij = 1 when i and j are neighbors and

0 when they are not. By convention, the diagonal elements
are set to zero. W is usually standardized so that all rows
sum to one, W̃ = (w̃ij )n×n, with w̃ij = wij∑

j wij
(LeSage

1999).
– Rook contiguity: Two regions are considered neigh-

bors if they share a common border, and for thesewij =
1.

– Queen contiguity: Regions that share a common bor-
der or a vertex are considered neighbors, and for these
wij = 1.

• Distance approach: Makes direct use of the latitude-
longitude coordinates associated with spatial data obser-
vations for defining W (Arbia 2006).

The SAR and CARModels
In order to capture dependencies across spatial units, through
spatially correlated variables, the two most common ap-
proaches are the simultaneous autoregressive (SAR) spec-
ification and the conditional autoregressive (CAR) speci-
fication. These autoregressive specifications are frequently
used to model spatial structure underlying areal data and
are known as areal or lattice models. The SAR models
were first presented by Whittle (1954) and the CAR models
by Besag (1974), being among the most commonly used
spatial statistical models. Both correspond to special cases
of a general spatial process {yi : i ∈ S} for which a
neighboring structure is defined based on the shape of the
area, formed by a countable set of locations, the indexing
set S.

Choosing a matrixW for the neighborhood structure, both
models CAR and SAR incorporate spatial dependence into
the model covariance structure as a function ofW and a fixed
unknown spatial autoregressive parameter (Wall 2004).

In what follows, consider {yi : i ∈ S} a Gaussian random
process where the regions {S1, . . . , Sn} constitute a partition
of S, that is, S1∪. . .∪Sn = S and Si ∩Sj = ∅, ∀i 	= j ; i, j =
1, . . . , n.

This process y = (y1, . . . , yn)
T can be modeled using a

simultaneous autoregressive (SAR) model by:

yi =
∑

j

bij yj + εi, i = 1, . . . , n

with E(yi) = 0, ε = (ε1, . . . , εn)
T ∼ N

(
0, σ 2In

)
, In the

n dimensional identity matrix, and B = (bij )n×n a matrix
containing constants bij . B allows y to relate to itself and
is called the spatial dependence matrix. This model can be
written as:

y = By + ε
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and rewritten so that y only appears on the left side as

y = (In − B)−1ε.

Note that spatial units cannot depend on themselves, so
matrix B must have zeros on the diagonal. Additionally, that
(In − B)−1 must exist.

Matrix B is responsible for the spatial dependence in the
SAR model; because the error terms εi are correlated with
{yj : j 	= i}, the model is called “simultaneous,” leading to
the simultaneous autoregression of y on its neighborhoods.
The joint distribution of y = (y1, . . . , yn)

T is then given by
y ∼ N(0, S), where:

S = σ 2(In − B)−1((In − B)−1)T . (3)

The covariance matrix must be positive definite, which is
ensured by the fact (In − B)−1 exists.

For SAR models, the covariance matrix, S , must there-
fore comply with the following conditions: (In − B) is
nonsingular, and bii = 0, ∀i (Hoef et al. 2017).

The conditional autoregressive (CAR) model is another
possibility to model {yi : i ∈ S}, in which each element of
the random process is taken conditionally on the values of the
neighboring units, defined by:

yi |y(−i) ∼ N(
∑

j

cij yj , τ
2
i ), i = 1, . . . , n,

where y(−i) = {yj : j 	= i}, E(yi) = 0 and τ 2
i is the

conditional variance. C = (cij )n×n is the spatial dependence
matrix; let D be the diagonal matrix with dii = τ 2

i . The
conditional variance often varies with unit i.

When (In − C)−1D is positive definite, the joint dis-
tribution of y = (y1, . . . , yn)

T is a multivariate normal
distribution, y ∼ N(0, C), with zero mean and variance-
covariance matrix:

C = (In − C)−1D. (4)

C must be symmetric requiring

cij

dii

= cji

djj

, ∀i, j.

For CAR models, the covariance matrix C must there-
fore comply with the following conditions: (In − C) has
positive eigenvalues, and cij

dii
= cji

djj
, ∀i, j (Hoef et al. 2017).

Usually B and C are constructed with a single parameter
that scales a defined neighborhood matrix W , that is, B =
ρW or C = ρW , with W as described in section “Spatial
Dependence” and predefined by the user. ρ is referred to
as the spatial correlation parameter or spatial autoregressive

parameter. In order to satisfy the referred conditions on
(In − ρW), for both CAR and SAR models, the restriction
1
λ1

< ρ < 1
λN
, with λ1 the smallest eigenvalue and λN the

largest eigenvalue, must hold (Hoef et al. 2017).
If W is row standardized (recommended for internal con-

sistent (Clayton 1992)),B = ρW̃ andC = ρW̃ , the expected
conditional means form an average rather than a sum. In this
case, the restriction for ρ becomes 1

λ1
< ρ < 1. Usually

1
λ1

< −1, due to irregularities for negative values near the
lower bound, and −1 < ρ < 1 is then considered (Hoef
et al. 2017; Wall 2004).

These definitions for SAR and CAR models are widely
used for modelling irregular lattices on different research
areas (Wall 2004), as in econometrics (Anselin and Florax
1995) or in disease mapping (Stern and Cressie 2000).

Spatial Econometric Classical Models for
Continuous Data
This section summarizes some of the available spatial autore-
gressive econometric models that are used to model Gaussian
spatial data and the corresponding classical inference. Spatial
econometric models commonly employ SAR models, and
inference is typically carried out with the classical maximum
likelihoodmethod. For an exhaustive review on this topic see,
for example, Anselin (2010) or LeSage (1999).

Spatial Autoregressive Model
Consider a vector y = (y1, . . . , yn) of observations on n

spatial units andW an n×n spatial contiguity matrix. A first-
order spatial autoregressive model on the response, a SAR
model, is given by:

y = ρWy + ε

ε ∼ N(0, σ 2In)
(5)

Here variation on the response y is explained as a linear com-
bination of the response variable in neighboring units and no
other explanatory variables. Parameter ρ is the autoregressive
parameter. This model is frequently used for checking the
existence of spatial correlation of residuals. The error term
ε is supposed to follow a normal distribution with zero mean
and variance-covariance matrix σ 2In. σ 2 is a global variance
parameter.

The ordinary least squares estimation is not appropriate
here. It would result on a biased estimator ρ̂ of the spatial
autoregressive parameter ρ, leading to inconsistent estimates.
With:

ρ̂ = (yT WT Wy)−1yT WT y

one has:

E(ρ̂) = E[(yT WT Wy)−1yT WT (ρWy + ε)] =
= ρ + E[(yT WT Wy)−1yT WT ε] 	= ρ.
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The possible spatial dependence between the observations
in the vector y prevents the consistency of the least squares
estimate of ρ according to Anselin (1988).

Consequently, for estimating ρ in this model, the maxi-
mum likelihood estimatorobtained numerically from a “sim-

plex univariate optimization routine” is commonly used. The
correspondent likelihood function is (LeSage 1999; LeSage
and Pace 2009):

L(ρ, σ 2|y) = 1
(2πσ 2)(n/2) |In − ρW | exp{− 1

2σ 2 (y − ρWy)T (y − ρWy)}.

To simplify the maximization problem, a concentrated log
likelihood function is constructed eliminating the disturbance
variance parameter (LeSage 1999), by considering σ̂ 2 ob-

tained first conditionally on ρ by maximizating the condi-
tioned log-likelihood:

σ̂ 2 = 1
n
[(y − ρ Wy)T (y − ρ Wy)]

in the previous likelihood function, which yields conditioned

log(L(ρ, σ 2|y)) = −n

2

(
log(π

2

n
) + 1

)
− n

2
log

(
(y − ρWy)T (y − ρWy)

) + log(|In − ρW |).

Using ρ̂, the maximum of the previous expression, to
estimate ρ, an estimate for the parameter σ 2 is provided by:

σ̂ 2 = 1
n
[(y − ρ̂ Wy)T (y − ρ̂ Wy)].

Remember that within a SAR model, a constrain is im-
posed on the parameter ρ. This parameter can assume viable
values in the range 1

λ1
< ρ < 1

λN
, with λ1 the smallest eigen-

value and λN the largest eigenvalue of matrix W , restraining
optimization search to values of ρ within this range (Anselin
and Florax 1995).

Spatial Lag Model
An extension of the spatial autoregressive model is known as
the spatial lag model (SLM), defined as:

y = ρWy + Xβ + ε

ε ∼ N(0, σ 2In)
(6)

where X is a n × k matrix of explanatory variables and
the vector of parameters β reflects the influence of these
covariates on the y variation. This model is also named
in the literature as “mixed regressive-autoregressive model”
(LeSage 1999), because it combines the standard regression
model with a spatially dependent variable model. It can be
rewritten so that the response only appears on the left-hand
side as:

y = (In − ρW)−1(Xβ + ε) ⇔
y = (In − ρW)−1(Xβ) + ε′,

ε′ ∼ N(0, ),

with = σ 2(In−ρW)−1((In−ρW)−1)T being the variance-
covariancematrix a simultaneous autoregressive (SAR) spec-

ification (Wall 2004). As in the previous model, a maximum
likelihood iterative estimation procedure is carried out in
order to estimate/obtain the autoregressive parameter ρ that
maximizes the likelihood function, consequently allowing
the estimation of β̂ and σ̂ 2 (LeSage 1999; LeSage and Pace
2009).

Spatial Error Model
The spatial error model (SEM), a regression model with
spatial autocorrelation in the residuals, corresponding to a
(SAR) model in this error terms, is defined by:

y = Xβ + u

u = λWu + ε

ε ∼ N(0, σ 2In) (7)

where y is a n × 1 vector of observations on the dependent
variable and X is a n × k matrix of explanatory variables,
for each observation with parameters’ vector β reflecting the
influence of these variables on the variation of y. W is a
known n × n spatial contiguity matrix, and λ is a spatial
autocorrelation parameter of the error term u. The error term
ε is assumed to follow a normal distribution with zero mean
and variance-covariance matrix σ 2In.

This model can also be rewritten as:

y = Xβ + (In − λW)−1ε, ⇔

y = Xβ + ε′,
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ε′ ∼ N(0, ),

with  = σ 2(In − λW)−1(In − λWT )−1 a non-diagonal
variance-covariance matrix for the error term.

As in the previousmodels, a maximum likelihood iterative
estimation procedure is carried out that allows to estimate
conditionally the value of λ. The values of the other param-
eters β and σ 2 are estimated as a function of the conditional
maximum likelihood estimator of λ and of the observed data
y and X (LeSage 1999; LeSage and Pace 2009).

General Spatial Model
The most general form of a spatial autoregressive model,
which includes both the spatial lag term and a spatially
correlated error term, is:

y = ρW1y + Xβ + u

u = λW2u + ε

ε ∼ N(0, σ 2In)

(8)

where y is a n × 1 vector of observations on the dependent
variable and X is an n × k matrix of explanatory variables.
W1 e W2 are known n × n spatial weight matrices that define
spatial relations between spatial units, using the contiguity or
the distance-based approach. ρ, β, λ, u and ε are defined as
in the previous models.

The log likelihood function for this model is given by:

ln(L(β, λ, ρ, σ 2|y)) = C − n
2 ln(σ 2) + ln(|A|) + ln(|B|) − 1

2σ 2 (a
T BT Ba) (9)

where C denotes an inessential constant, a = (Ay − Xβ),
A = (In − ρW1), B = (In − λW2).

The log likelihood function for this model can be max-
imized through an optimization algorithm that allows to
estimate conditionally on β and σ 2 the values of ρ and λ.
Then values of the parameters β and σ 2 are estimated as a
function of the maximum likelihood values of ρ, λ and the
observed data y and X (LeSage 1999).

Bayesian Inference

Bayesian methods have had a huge development in the last
decades and are now present in several research areas, in
general, and in spatial econometric analyses, in particular.
With the development of computational methods and com-
putational algorithms which use approximate methods or,
more often, iterative simulation methods, Bayesian infer-
ence has become a reality. It stands out the Monte Carlo
simulation methods via Markov chains (MCMC) (Doucet
et al. 2001), as well as another very recently approach de-
veloped using some well-known approximation methods (the
Laplace approximation) to do Bayesian inference known
as INLA—Integrated Nested Laplace Approximation (Rue
et al. 2009). The fundamentals of Bayesian inference and
of the enounced methods can be found, for example, in the
references (Bernardo and Smith 1994; Paulino et al. 2003).

The Bayesian paradigm is based on the subjectivist in-
terpretation of probability: the probability of a certain event
measures the degree of credibility assigned to it by a certain
person, in possession of evidence.

Using subjective knowledge, we establish a probability
distribution for the unknown model parameter θ =
(θ1, . . . , θk) (where k can be one or more than one), θ ∈ �,
which contains or formalizes our initial beliefs or what is

known about this parameter, previous to data. It is called the
a priori distribution, which can be expressed in terms of the
distribution probability function, represented by h(θ).

Then the data is collected. The observed data are then
used to update the initial information about the parameter
through its probability distribution. This results on the pos-
terior information of θ , h(θ |y), described as the posterior
probability distribution of θ , distribution of θ knowing or
given y = (y1, . . . , yn).

Observing (y1, y2, . . . , yn), one has:

h(θ |y) = f (y|θ)h(θ)∫
�

f (y|θ)h(θ)d(θ)
, θ ∈ �,

where f (y) = ∫
�

f (y|θ)h(θ)dθ is the marginal distribution.
As the left-hand side is a density for θ and f (y) is a constant,
h(θ |y) ∝ L(θ |y)h(θ), with L(θ |y) ≡ f (y|θ) the likelihood
function of θ .

Usually f (y) is not possible to be obtained analytically,
and numerical methods must be used.

The use of prior information in Bayesian inference re-
quires the specification of a prior distribution for the vector
of interest θ . This distribution must represent, probabilis-
tically, the existing knowledge about θ before performing
gathering evidence. Different forms of specifying the prior
distribution can be used, namely, through subjective prior dis-
tributions, through conjugated prior distributions and through
non-informative prior distributions. For more details of the
enounced methods see, for example, reference (Paulino et al.
2003). Within a hierarchical formulation, Simpson et al.
(2017) have recently proposed a new specification for the
prior distributions for the hyperparameters of the random ef-
fects, the penalised complexity (PC) priors. This formulation
handles the random effects scaling and provides a way to
define priors by taking the model structure into account,
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needed when different types of random effects are considered
in the modelling (Riebler et al. 2016).

The posterior distribution h(θ |y) describes completely the
current knowledge about θ , obtained from combining the
prior information in h(θ) and the sampling information in
data in f (y|θ). It is of interest to resume this actualized
information, since it is often necessary to address specific in-
ferential questions on the parameter. A summarized descrip-
tion of h(θ |y) should contain a graphical representation and
quantitative summaries of the location, dispersion, and shape
of the distribution. The inferences about the non-observable
parameter θ should be based on the posterior probabilities
associated with different values of θ , conditioned by the
particular observed value of y.

In conclusion, we can say that Bayesian inference is
mainly done through the evaluation and description of the
posterior distribution of the parameters of interest, using
several ways to summarize the available information.

The posterior distribution can be summarized in terms of
the expected value of some parameter function, in case of θ

be a scalar,

E[g(θ)|y] =
∫

g(θ)h(θ |y)dθ,

or by marginal posterior distributions, in case θ is multidi-
mensional, θ = (θ1, . . . , θk). Thus it is frequently necessary
to calculate such integrals according to the posterior distribu-
tion.

Therefore the integration of functions, often complex and
multidimensional, is extremely important in Bayesian infer-
ence. Exact inference will only be possible if these integrals
can be calculated analytically; otherwise, approximations
must be used. When one arrives to a posterior distribution
h(θ |y) ∝ h(θ)f (y|θ), often there is not an easy way
of finding the integrating constant, and one must resort to
some numerical techniques, such as numerical or simulation
methods (Lee 2012).

In this context, the simulation methods ofMonte Carlo are
an appropriate alternative, whose functionality is achieved by
the application of the Law of Large Numbers (Doucet et al.
2001; Gamerman and Lopes 2006).

Bayesian Inference with Markov ChainMonte
Carlo (MCMC)
A MCMC method is based on the Monte Carlo integration
using Markov chains. Monte Carlo integration’s main idea is
based on expressing an integral that we want to calculate as
an expected value, being the problem of calculating an inte-
gral transformed into another problem of calculating an ex-
pected value. Monte Carlo integration draw samples from the
distribution of interest (the posterior distribution) and then
takes sample averages to approximate expectations. When
the distribution of interest is not available, other proposed

distribution is used, and the corresponding sample values
are corrected to be accepted as values of the distribution of
interest. This is the basis of non-iterative methods (Albert
2009; Robert and Casella 2010).

MCMC is an alternative to these methods for which sam-
pled values are generated independently. The MCMC ap-
proach keeps the idea of obtaining a sample from the poste-
rior distribution and calculating samples averages. However,
by using an iterative simulation technique based on Markov
chains, it obtains generated values that are not independent.
MCMC draws these samples by running a cleverly con-
structed Markov chain for a long time (Hoff 2009; Robert
and Casella 2010).

The initial values influence the chain behavior, but it
gradually forgets these initial values, and during the process,
they should be discarded—burn-in period.

The most used algorithms for implementing this method
are the Metropolis-Hastings algorithm and the Gibbs Sam-
pler, producing the desired Markov chains.

The objective of Metropolis-Hastings algorithm is to sim-
ulate from a particular distribution. This algorithm starts with
an initial value θ and specifies a rule for simulating the next
value in the sequence θ ′ given the previous. This rule is
based on a proposal density q(.|θ) from which is simulated
a candidate value. The proposal distribution may depend on
the chain current value. For example, it could be a normal
distribution centered in θ . Then an acceptance probability is
computed, indicating the probability of that candidate value
to be accepted as the next value in the sequence. This correc-
tion mechanism is responsible for the chain convergency to
the equilibrium distribution (Doucet et al. 2001; Gamerman
and Lopes 2006).

The Gibbs sampler considers a joint distribution π(θ)

from which the main focus is to sample from, for example,
a posterior distribution, π(θ |y), where θ is a vector of pa-
rameters. The full conditional distribution is the distribution
of the ith component of θ conditioned on all the remaining
components. It is derived from the joint distribution and
consists in:

π(θi |θ−i ) = π(θ)∫
π(θ)d(θi)

,

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θp).
If the full conditional distribution for all parameters are

known, the Gibbs sampler could be used to sample from
the joint distribution, where the state transitions are made
according to these distributions (Hoff 2009). An advantage
of Gibbs sampler method is that the chain always moves to a
new value; there is not rejection. One disadvantage is that we
have to know all the full conditional distributions. If the full
conditional distributions are known and can be sampled from,
then the Gibbs sampling proceeds (Gamerman and Lopes
2006).
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Monte Carlo and MCMC sampling methods cannot be
seen as models, and they do not bring anymore information
that already is in data y and in h(θ). They constitute a “simple
way” of looking to the posterior distribution of h(θ |y) and
help to describe it, in order to make inference about the
parameter θ (Gamerman and Lopes 2006; Hoff 2009; Robert
and Casella 2010).

In terms of the algorithm convergence, one must be aware
that the sample size should be large enough. Markov chain
convergency for the target distribution should be motor-
ized and evaluated. Some important issues related with the
Markov chain convergency must be addressed. It is necessary
to ensure that the equilibrium condition for the generated
chain was reached. Through graphical or numerical diag-
nostics, it is possible to decide if the chain has sufficiently
explored the entire posterior distribution, assessing conver-
gence. The Geweke method (Geweke 1991) or the approach
suggested by Gelman and Rubin (1992), for example, allows
to carry out this analysis.

The Gelman and Rubin approach suggests comparing
the behavior of several generated chains in terms of the
variance of some summary statistics as a way of monitoring
convergence of a MCMC chain, as in the one-way analysis of
variance (ANOVA): the between-sample and within-sample
variances.

Let υ be a scalar summary statistics that estimates some
parameter of the distribution of interest. Consider the gener-
ated values of the k chains {Cij : 1 ≤ i ≤ k, 1 ≤ j ≤ m} of
length m. Compute {υim = υ(Ci1, . . . , Cim)} for each chain.
If the chains are converging to the distribution of interest,
as m → ∞, the sampling distributions of the considered
statistics should converge to the same distribution (Rizzo
2007).

To estimate an upper bound and a lower bound for the
variance of the summary statistic υ, V ar(υ), this approach
uses the between-sequence variance and the within-sequence
variance of υ, which converges to the variance υ from above
and below, respectively, as the chain converges to the distri-
bution of interest.

The between-sequence variance is given by:

B = m
k−1

∑k
i=1 (υi. − υ..)

2 . (10)

where υi. = 1
m

∑m
i=1(υij ) and υ.. = ( 1

mk
)
∑k

i=1

∑m
j=1 υij..

The sample variance, within the ith sequence, is:

s2
i = 1

m

m∑
j=1

(υij − υi.)
2.

The estimate of the within sample variance is:

W = 1
k

∑k
i=1 s2

i . (11)

The between-sequence and within-sample estimates of
the variance are combined to estimate an upper bound for
V ar(υ), given by:

V̂ ar(υ) = m−1
m

W + 1
m

B. (12)

which is an unbiased estimator of V ar(υ) if the chains can
be considered as random samples from the distribution of
interest (Rizzo 2007).

The Gelman-Rubin statistic is the estimated potential
scale reduction:

√
R̂ =

√
V̂ ar(υ)

W
(13)

√
R̂ should be closer to one if the chains have approximately

converged to the distribution of interest. It is suggested that
R̂ should be less than 1.1 or 1.2 (Gelman and Rubin 1992).

In terms of the Geweke method, this is based on the
application of the usual techniques of time series to monitor
convergence of simulated sequences byMCMC. Considering
the MCMC simulated values {θ (t), t = 0, 1, . . .} and being
υ a function of θ , υ(θ (t)) defines a temporal series. Having a
sufficiently large number of iterationsM , themean of the first
mf iterations, as well as the mean of the ml last iterations,
υf = 1

mf

∑
υ(θ (t)) and υl = 1

ml

∑
υ(θ (t)) are calculated.

If the chain converges then the referred means should be
similar. Considering mf

M
and ml

M
fixed:

(υf − υl)√
s2
f

mf
+ s2

l

ml

is asymptotic normal (0,1) distributed (M → ∞), with s2
f

and s2
l independent estimates of the asymptotic variances of

υf and υl , respectively.
So, in terms of the convergence diagnostic for the samples

proposed by Geweke method, values within the interval
(−1.96, 1.96) for this statistic are indicative of convergence.
For more details of the enounced methods, see, for example,
references (Turkman and Paulino 2015; Rizzo 2007).

Bayesian Inference with Integrated Nested
Laplace Approximation
Recently Rue et al. (2009) have developed an approximate
method, known as the Integrated Nested Laplace Approxi-
mation (INLA), which allows to estimate the marginal pos-
terior distribution of the parameters of interest in a Bayesian
model, being particularly efficient in the estimation of latent
Gaussian models and capable of providing accurate and fast
results (Blangiardo et al. 2015; Rue et al. 2009). It is quite
general in the type of model that it can fit, allowing for
great automation of the inferential process. Nowadays, this
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method is implemented in the package R-INLA of the R
software. Next, it is described the INLA methodology and
the corresponding context in which it should be applied,
according to Blangiardo et al. (2015) and Natário (2013).

Consider n observed values of the response variable, y =
(y1, . . . , yn), which are assumed to be distributed according
to one of the distributions in the exponential family, with
mean parameter μi , related to a linear predictor through a
link function g(.):

g(μi) = ηi.

This linear predictor ηi is defined as:

ηi = β0 + ∑K
k=1 βkXki + ∑J

j=1 fj (zji) (14)

where β0 is a scalar that represents the intercept, β =
{β1, . . . , βK} the linear effects of chosen covariates X =
(X1, . . . , XK) on the response, and f = {f1(.), . . . , fJ (.)}
one non-linear effects, functions of variables z =
(z1, . . . , zJ ). The vector oflatent effects, u = (β0, β, f ),

forms a Gaussian Markov Random Field (GMRF) with
precision matrix Q(θ2), π(u|θ2) ≡ N(0, Q−1(θ2)) where
θ2 is a vector of hyperparameters. The distribution of y will
depend on a number of parameters θ1.

This class of models is very flexible, and the terms fj (.)

can assume many different forms as nonlinear effects of
covariates, seasonal effects, or temporal or spatial random ef-
fects, covering generalized linear models, hierarchical mod-
els, and spatial and spatiotemporal models.

Let π(y|u, θ1) be the conditional density function of y.
Assuming conditional independence given u and θ1, the
distribution of the n observations is given by:

π(y|u, θ1) = ∏n
i=1 π(yi |u, θ1). (15)

Let θ = (θ1, θ2) be a single vector of parameters with
prior density function π(θ). The posterior distribution of the
latent effects u and of the parameters θ , with precision matrix
Q(θ), is given by:

π(u, θ |y) ∝ π(θ) × π(u|θ) × π(y|u, θ)

∝ π(θ) × π(u|θ) × ∏n
i=1 π(yi |ui, θ)

∝ π(θ) × |Q(θ)| 1
2 exp(− 1

2uT Q(θ)u) × ∏n
i=1 exp(log(π(yi |ui, θ)))

∝ π(θ) × |Q(θ)| 1
2 exp[(− 1

2uT Q(θ)u) + ∑n
i=1 log(π(yi |ui, θ))],

(16)

corresponding to the product of the likelihood (15), the
GMRF prior density function for u, and the parameter prior
distribution π(θ).

INLA approach does not estimate the posterior marginal
distributions of the latent effects π(ui |y) and the hyperpa-
rameters π(θk|y), given by:

π(ui |y) =
∫

π(ui |θ , y)π(θ |y)dθ ,

π(θk|y) =
∫

π(θ |y)dθ−k,

but rather the whole posterior distribution, by constructing
“nested approximations,” numerical approximations based
on the Laplace approximation method. This method allows
one to approximate density functions by the first terms of
Taylor series expansion of the log of the densities:

π̃(ui |y) =
∫

π̃(ui |θ, y)π̃(θ |y)dθ ,

π̃(θk|y) =
∫

π̃(θ |y)dθ−k,

where π̃ corresponds to the approximate density function.
The proposed Laplace approximation for π(θ |y) is then
given by:

π̃(θ |y) ∝ π(y|u,θ)π(u|θ)π(θ)

π̃(u|θ ,y)
|u=u∗(θ), (17)

where π̃(u|θ, y) is the Gaussian approximation, given by the
Laplace approximation method, of the complete conditional
distribution of u, π(u|θ , y), and u∗(θ) is the mode for a given
θ .

The INLA approximation of π(ui |y) follows three main
steps:

1. Computation of an approximation to the posterior distri-
bution of the hyperparameters, π(θ |y), as in (17);

2. New use of the Laplace approximation to obtain
π(ui |θ, y). For example, rewriting the vector of
parameters as u = (ui, u−i ):

π̃(ui |θ , y) ∝ π(u, θ |y)

π̃(u−i |ui, θ , y)
|u−i=u∗

−i (ui ,θ)

where π̃(u−i |ui, θ , y) is the Laplace Gaussian approxi-
mation to π(u−i |ui, θ , y) and u∗

−i (ui, θ) is its mode;
3. Using the previous steps and a numerical integration:

π̃(ui |y) =
∫

π̃(ui |θ , y)π̃(θ |y)dθ
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can be solved through a finite weighted sum:

π̃(ui |y) ≈
∑
m

π̃(ui |θm, y)π̃(θm|y)�m

considering that θ has m relevant elements {θm}, with a
corresponding set of weights �m, where m small.

Software

Statistical software plays a fundamental role in empirical
studies. This section reviews some of the available software
for spatial econometric analysis, in an areal data context.

In the past, difficulties associated with computer power,
for the necessary routines, led to absence of dedicated soft-
ware and consequently to slow diffusion of empirical studies
in spatial econometric analysis. In recent years, this sce-
nario has changed, and several options for applying spatial
econometrics methodologies for real cases are available to re-
searchers. Currently, for spatial data analysis and modelling,
the SpaceStat software (Jacquez et al. 2014), the GeoDa
software (Anselin et al. 2006), and some packages of the
R software such as the spdep package for spatial regression
analyses stand out (Anselin 2007; Bivand et al. 2014).

Bayesian inference has become a reality with the devel-
opment of computational methods and computational algo-
rithms. It has been largely used in spatial statistics in recent
years, mainly due to the availability of these computational
methods for fitting spatial models.

The R software has been a huge contribution for this
development. It made available to the scientific community,
as a free software, which allows the implementation of this
methodology. Also noteworthy are another five specific soft-
wares for fitting Bayesian models, for general purpose, using
Markov chain Monte Carlo methods, namely, Jags (Plummer
2003), OpenBugs (Spiegelhalter et al. 2003), BayesX (Belitz
et al. 2015), Stan (Stan 2014), and Nimble (Valpine et al.
2017) softwares. These may also be used in connection with
the R software, in terms of monitoring chains convergence,
which can be done using the R-packages CODA (Plummer
et al. 2006) and BOA (Smith 2004; Turkman and Paulino
2015).

There are also specialized spatial modelling packages
developed under software R that implement MCMC for more
complex Bayesian models (which will in the meantime be
presented) such as CARBayes (Lee 2013).

The R-INLA package offers an interface to INLA
methodology being adequate for estimating a large number
of the most common models. Simultaneously with the
INLA methodology development, their authors have been
developing a set of R-functions (R-INLA) to implement the
method. Initially, in simple modelling settings, they have

greatly developed since then, such that nowadays a huge
number of models are already covered and readily available
to be fitted in R-INLA. However, it is also possible for the
user to develop new models (Rue et al. 2012).

Spatial Count Data Modelling in
Econometrics

Understanding geographical variation in discrete data, in
terms of highlighting some kind of spatial association, is
less developed when compared to existing standard methods
for continuous data. Two different modelling approaches are
available to study spatial patterns in count data.

One, which is more used in econometrics, is the em-
ployment of classical autoregressive econometric models, as
the ones presented in section “Spatial Econometric Classical
Models for Continuous Data”. These models were origi-
nally designed for continuous data, thus demanding count
data transformation to meet the model’s assumptions (Ar-
bia 2006). However, there are some important exceptions,
essentially for certain types of discrete spatial data, such as
the case of a binary outcome with Bernoulli distribution.
For this, the spatial autoregressive lag specification has been
extended through the spatial probit model or spatial tobit
models (LeSage 1999; LeSage and Pace 2009).

Another approach, more used in statistics, is the use of
hierarchical Bayesian models, where data can be modeled
as having any distribution, being Poisson the natural choice
for count data. In spatial statistics, hierarchical modelling is
the natural way to handle areal count data to account for
data overdispersion as it is well established in the litera-
ture (Banerjee et al. 2004; Cressie 1993). Poisson log-linear
models are typically used for the analyses where the linear
predictor includes important factors for the phenomenon
explanation. For that, non-observable random effects can be
added to the effects of existing covariates in modelling extra
variation that might exist in counts. This section provides
an overview of the considered approaches to model Poisson
count data.

Spatial patterns can be modelled differently through au-
toregressive models, very common in spatial econometrics
literature, in which spatial dependence is included in a way
such that the value of one observation is dependent on the
value of its neighboring observations (Bivand et al. 2014).
The autoregressive approach is also valid for count data
when it is plausible to think that the space relation between
these counts is driven by the effects of covariates, whose
values in one area may impact the counts in that area is
neighborhood, even if those variables are not considered in
the model (LeSage and Pace 2009).

The majority of the classical spatial autoregressive econo-
metric models assume a continuous response variable. How-
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ever, there are alternatives for modelling counts that are
explored here.

Hierarchical Bayesian Spatial Models for Count
Data

In order to use the traditional spatial econometric models for
continuous data tomodel count data, defined into spatial units
of a lattice, it is necessary to transform the discrete dependent
variable to meet the required assumptions (LeSage 1999).
However, there are some alternative models which can be
applied directly to count data wherein the spatial dependency
structure is defined conditionally.

Part of the spatial autocorrelation can be accommodated
by including known covariate risk factors in a generalized
linear regression model.

The generalized linear models (GLM) introduced by
Nelder and Wedderburn (1972) have been playing an
increasingly important role in statistical analysis, due to
the large number of models that they encompass and facility
of analysis associated with the rapid computer development,
in responding to situations which are not properly explained
by the normal linear model (Turkman 2000).

In a GLM, the outcome y is assumed to be distributed as a
member of the exponential family of distributions, with mean
parameter μ, such as the Poisson distribution.

A family of distributions is said to belong to the exponen-
tial family if its probability or density function f (y|θ) can be
expressed as:

f (y|θ) = h(y)c(θ)exp(

k∑
i=1

wi(θ)ti(y)),

Here, h(y) ≥ 0, t1(y), . . . , tk(y) are real-valued functions of
y, not dependent on θ , c(θ) ≥ 0, and w1(θ), . . . , wk(θ) are
real-valued functions of the possibly vector-value parameter
θ , not dependent on y.

Consider a vector y = (y1, . . . , yn) of observations and
a vector of covariates XT = (X1, .., Xk) with parameters
β1, . . . , βk . The relationship between the mean of the ith
observation on the dependent variable, μi , and a linear pre-
dictor on the vector of covariates of the ith observation, Xi ,
i = 1, . . . , n defines the systematic component of the GLM
model and is established through a link function g(.):

g(μi) = ηi = XT
i β.

Suppose that yi is Poisson (μi) distribuited, i = 1, . . . , n. A
possible and more common link function is the logarithmic
function, resulting into the general log-Poisson regression
model defined as:

yi |β � Poisson(μi)

log(μi) = ηi = XT
i β .

It is common that some spatial structure remains in the
residuals of this fitted model, even after accounting for these
covariate effects. In modelling the residual autocorrelation,
the most common approach is to expand the linear predictor
with a set of spatially correlated random effects, in terms of a
generalized linear model with random effects (Banerjee et al.
2004). The generalized linear models with random effects
are a different way of modelling the outcome y considering
covariates and random effects, either spatially structured or
not, to account for spatial autocorrelation in the analysis of
spatial data (McCullagh and Nelder 1989).

The referred spatial random effects are usually modeled
by a conditional autoregressive (CAR) model (Besag et al.
1991), which induces a priori spatial autocorrelation through
the contiguity structure of the spatial units. Different CAR
prior distributions commonly used for modelling spatial au-
tocorrelation have been established in the literature: from the
Besag, York, and Mollié (BYM) proposal (Besag et al. 1991)
to the alternatives developed by Leroux et al. (1999) and
Stern and Cressie (1999), where each model is a special case
of a Gaussian Markov Random Field (GMRF).

The general model is a generalized linear mixed model
for spatial areal unit data, a hierarchical model where the
responses y are assumed to be Poisson distributed, better
handled under the Bayesian paradigm.

The next subsection describes and explains different
Bayesian hierarchical models for Poisson count data.

Hierarchical Log-Poisson RegressionModels
Considering a spatial domain divided into n spatial units (or
areas), let y = (y1, . . . , yn) and e = (e1, . . . , en) represent,
respectively, the number of observed and expected cases of
the phenomena that is being counted in each spatial unit,
the latter obtained by some standardization procedure. The
counts yi are assumed to be Poisson distributed with expected
value E(yi) = μi = ei θi , where θi is the relative risk in
area i. Let XT

i = (Xi1, . . . , Xik) denote a set of k covariates
measured in spatial unit i, for i = 1, . . . , n, the first of which,
Xi1 corresponds to an intercept term and β = (β1, . . . , βk)

the corresponding regression coefficients.
The general hierarchical log-Poisson regression model is

defined as:

yi |ηi ∼ Poisson(eiθi), (18)

where ηi = log(θi), i = 1, . . . , n, are the log relative
risks (Dass et al. 2010; Lee 2013). Note that log(ei) enter as
known offsets in the model. In (18) the log relative risks are
decomposed into the effects of covariates plus some random
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effects that are able to account for possible over-dispersion:

ηi = log(θi) = XT
i β + ui. (19)

Under formulation (19), it is possible to have a spatial
hierarchical log-Poisson model if ui includes spatially au-
tocorrelated random effects εi , modelled by a conditional
autoregressive (CAR) prior distribution.

Therefore, when spatial autocorrelation is detected in data,
the spatial structure can be considered through a global CAR
prior. From the existing possibilities, the ones to be used in
this thesis are the Besag-York-Mollié and the Lerouxmodels.
The CAR specification defines prior conditional distributions
of the spatial random effects ε, where the distribution of εi

conditioned on ε−i = (ε1, . . . , εi−1, εi+1, . . . , εn) is depen-
dent only on the εj that are neighbours, according to the
chosen spatial structure. CAR prior is then specified as a set
of n univariate full conditional distributions, f (εi |ε−i ), for
i = 1, . . . , n, rather than via the multivariate specification
(Besag 1974).

It is necessary to establish a neighboring criterion, by
considering a symmetric non-negative weight matrix (an
adjacency matrix in this work) W with elements wij , i, j =
1, . . . , n, where n is the number of spatial units. Here it is
considered the contiguity criterion between areas for which
wij = 1 only if areas i and j share a common border and
wij = 0 elsewhere (Carvalho and Natário 2008).

For the regression coefficients βj , j = 1, . . . , k normal
(μβ, σ 2

β ) prior distributions are considered.

Besag-York-Mollié (BYM) Model
The BYM model (Besag et al. 1991) comprises two sets of
random effects, spatially correlated εi and unstructured γi

random effects, that is, ui = εi +γi in (19). The unstructured
random effects partially account for possible effects of over-
dispersion and are implemented with the exchangeable prior:

γi ∼ N(0, σ 2), (20)

with an an inverse-gamma prior distribution assigned to the
variance parameter:

σ 2 ∼ Inverse-Gamma(a, b). (21)

For the spatial random effects, a CAR prior is proposed,
where the conditional expectation of each effect is given as
the average of the random effects in its neighboring areas,
while the conditional variance is inversely proportional to
the number of neighbors. Thus, the more areas that are close
to area i and have similar values to εi results in reducing
uncertainty. The prior distribution of the random effects is
given by:

εi |ε−i ∼ N
(∑n

j=1 wij εj∑n
j=1 wij

,
σ 2

B∑n
j=1 wij

)
, (22)

with an inverse-gamma prior distribution assigned to σ 2
B :

σ 2
B ∼ Inverse-Gamma(a, b). (23)

This model accommodates both weak and strong spatial
autocorrelation. The spatial structure is split into strongly
spatial correlated variation and independent spatial variation.

Leroux, Lei, and BreslowModel
The previous model requires two random effects to be esti-
mated for each data point, whereas only their sum is iden-
tifiable from data. To get through this, Leroux et al. (1999)
proposed an alternative CAR prior distribution for modelling
spatial autocorrelation, using a single set of random effects
for modelling varying strengths of spatial autocorrelation,
that is, ui = εi in (19). The prior distribution of the random
effects is given by:

εi |ε−i ∼ N

(
ρ

∑n
j=1 wijεj

ρ
∑n

j=1 wij + 1 − ρ
,

σ 2
L

ρ
∑n

j=1 wij + 1 − ρ

)

σ 2
L ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1), (24)

where ρ is a spatial dependence parameter, with value zero in
case of independence and values near one for strong spatial
autocorrelation. A uniform prior distribution on the unit inter-
val is specified for this parameter, ρ, and an inverse-gamma
prior distribution is adopted for the variance of the random
effects, σ 2

L. This model formulation makes a compromise
between unstructured and structured variation using ρ as a
mixing parameter.

The CAR prior distributions defined for these models
enforce a single global level of spatial smoothing for the set
of random effects, which for the Leroux model is controlled
by ρ.

The inference for these methods is based on MCMC
methods or based on approximation methods as the INLA.

Autoregressive Bayesian Spatial Models for
Count Data

Traditional spatial econometric models, such as the spatial
autoregressive model (SLM) and the spatial error model
(SEM), rely on the Gaussian assumption of the distribution
of the response variable (LeSage and Pace 2009), which does
not hold for count data. Consequently their usage for this type
of data demands data transformation to meet the assumptions
of the models. In order to avoid that, this section presents
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new possible spatial modelling strategies for handling count
data, assuming a Poisson distribution for those. Within these
spatial autoregressive models, there are alternatives for mod-
elling counts that have been explored (Simões et al. 2017),
more specifically, considering a standard spatial lag model,
recently developed within a new class of latent models de-
fined in Integrated Nested Laplace Approximations (INLA)
(Rue et al. 2009), by Goméz-Rubio et al. (2015); a spatial
autoregressive lag model of counts, developed by Lambert
et al. (2010), under a classical perspective; and a spatial
lag autoregressive component incorporated in the model for
counts, under a Bayesian paradigm and using INLA method-
ology.

Bayesian Standard Spatial LagModel
Consider the first-order spatial autoregressive model on the
response with covariates, also known as SLM, presented in
section “Spatial Lag Model”, given by:

y = ρWy + Xβ + ε

ε ∼ N(0, σ 2In).

(25)

As referred there, spatial contiguity matrix W is usually
row standardized. This model explains the variation on the
response y as a linear combination of the response in neigh-
boring units and some explanatory variables. Parameter ρ

is the autoregressive parameter, and parameters in vector
β reflect the influence of the covariate values X on the
y variation over the spatial domain. The error term ε is
assumed to follow a normal distribution with zero mean
and variance-covariance matrix σ 2In, where σ 2 is a global
variance parameter (Anselin 2010; LeSage 1999).

The methodology INLA (Rue et al. 2009) provides an
alternative to the simulation methods for doing Bayesian
inference, being based on numerical approximation tech-
niques. It is quite broad in application, just requiring the
models to be written in a special but quite general framework,
as described in section “Bayesian Inference with Integrated
Nested Laplace Approximation”, where a function g of the
expected value of the response variable μ = E[y] is decom-
posed into:

g(μi) = β0 +
K∑

k=1

βkXki +
J∑

j=1

fj (26)

where fj are random effects. The vector of latent effects
(β0, β, f ) forms a Gaussian Markov random field (GMRF).

In practice, there are still models that are not imple-
mented in INLA and in the software, which led Goméz-
Rubio et al. (2015) to have recently implemented in R-INLA
a new class of models which includes the standard spatial lag
model (25).

For this particular case of Gaussian models, the spatial lag
model (25) can be rewritten as:

y = (In − ρW)−1(Xβ + ε).

The authors implement the expression:

u = (In − ρW)−1(Xβ + ε)

as a random effect that includes, besides the nonlinear effect,
the intercept and the linear effects of the chosen covariates:

g(μi) = ui = β0 +
K∑

k=1

βkXki +
J∑

j=1

fji, i = 1, . . . , n,

where ε, related to fj ’s, is assumed normal distributed:

ε ∼ N(0, σ 2In),

and where ρ, β, and X, W are defined as in (25).
For this model, the prior distributions considered for the

vector of parameters β, to the spatial autoregressive parame-
ter ρ and the precision error term τ = 1

σ 2 , are:

β ∼ N(0, Q),

logit(ρ) ∼ N(a, b), (27)

τ ∼ Gamma(c, d),

with Q a precision matrix (that has to be specified).
In the development of this Bayesian spatial lag model,

a Gaussian distribution was considered for the response
variable y, but it is possible to extend this to other distri-
butions due to the broad INLA methodology model’s for-
mulation (14). The case of a binary response, leading to the
estimation of a spatial probit model is proposed in Gomez-
Rubio et al. (2016) and exemplified in Bivand et al. (2014).
The case of a Poisson response variable, suitable for counts,
is proposed and developed in section “A Bayesian Poisson
Spatial Lag Model”.

A Classical Poisson Spatial LagModel
In this subsection, a spatial autoregressive lag model of
counts developed by Lambert et al. (2010) under a classical
inference framework is described. The spatial autoregressive
count model suggested by these authors was motivated by
their previous work on estimating temporally lagged count
processes. These processes are time series yt , t = 0, 1, . . .,
with:

E(yt ) = μt = exp(βXt) y
ρ

t−1. (28)
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It specifies a multiplicative relation between a predetermined
count and future outcomes (Lambert et al. 2010). Their
autoregressive model for spatial lagged means, for count
responses, specifies a multiplicative relationship between the
mean μi of the Poisson response yi in each area and all the
means μj of the response in its neighbors, similarly to the
multiplicative time seriesmodel for count data (Lambert et al.
2010).

Consider the non-spatial log-Poisson regression model for
a vector of counts y = (y1, . . . , yn) assumed to be Poisson
distributed with expected value E(yi) = μi :

f (yi) = μyi exp(−μi)

yi ! . (29)

Being Xi = (Xi1, . . . , XiK) a set of covariates with asso-
ciated parameters β = (β1, . . . , βK) the response expected
values is decomposed as:

E(yi) = μi =
K∑

k=1

exp(βkXik) = exp(XT
i β), i = 1, . . . , n.

(30)

Inspired by the model (28), Lambert, Brown, and Florax
developed a spatial autoregressive count process that lays in
the specification of the expected mean of counts at location i

as a function of its j neighbors, given by:

μi = E(yi) = exp(XT
i β).

∏n
j 	=i E(yj )

ρwij , (31)

where wij are the elements of a weight matrix W and ρ

is a spatial autocorrelation parameter. This specification has
a multiplicative autoregressive component

∏n
j 	=i (E(yj ))

ρwij ,
added to the non-spatial log-Poisson regression model (30).
Including that in the exponential part leads to the structural
model, written in terms of the predictor ηi = log(μi), as
follows:

μi = exp(XT
i β + log(

∏N
j=1(μj )

ρwij )) ⇔

μi = exp(XT
i β + ρ

∑
j 	=i wij log(μj )) ⇔

ηi = XT
i β + ρ

∑
j 	=i wij ηj .

(32)

Expressing (32) in matrix notation, including all spatial units,
leads to the reduced form of the conditional log-mean func-
tion:

η = (In − ρW)−1(Xβ), (33)

where (In − ρW)−1 is called the spatial multiplier term.
Inference is done by usual maximum likelihood (Lambert
et al. 2010).

A Bayesian Poisson Spatial LagModel
Consider a vector of counts y = (y1, . . . , yn) assumed to
be Poisson distributed with expected value E(yi) = μi ,
Xi = (Xi1, . . . , XiK) a set of covariates with parameters
β = (β1, . . . , βk).

The Lambert, Brown, and Florax previous model can
be seen as a GLM model with spatially structured random
effects (with log as link function), defined through the rela-
tionship:

ηi = log(μi) = XT
i β + εi, (34)

With:

εi = ρ
∑
j 	=i

wijηj . (35)

These random effects εi include a spatial lag term on the
log mean, resulting in a Poisson spatial autoregressive lag
model. ρ represents the spatial autoregressive parameter, for
a considered weight or adjacency matrix W .

It is proposed now that the spatial lag autoregressive
component (35) is incorporated in a model for counts, as
described in the classical Poisson spatial lagmodel, in section
“AClassical Poisson Spatial LagModel”, being afterward the
estimation done under the Bayesian paradigm. For this the
Bayesian standard spatial model in section “Bayesian Stan-
dard Spatial Lag Model” is adapted, being INLA methodol-
ogy used for doing inference, under formulation (26):

y ∼ Poisson

μ = E[y]
log(μ) = η = (In − ρW)−1(Xβ).

This construction allows a Bayesian spatial lag model
for a Poisson response, considering η as a random effect in
the linear predictor, borrowed from the classical spatial lag
Poisson model from section “Bayesian Standard Spatial Lag
Model”, having:

u = η = (In − ρW)−1(Xβ + ε),

where ε is assumed normal distributed, ε ∼ N(0, σ 2In).

This results in a Bayesian Poisson spatial lag model, an
alternative to do Bayesian inference for spatial autoregressive
econometric models for count data.

For this model, the prior distributions assigned to the
spatial autoregressive parameter ρ and to the precision error
term τ are chosen as:

logit(ρ) ∼ N(a, b),

τ ∼ Gamma(c; d). (36)
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A normal prior is assigned for the vector of parameters β

with precision matrix Q:

β ∼ N(0, Q). (37)

Different prior distribution can be specified as well as
other hyperparameters.

Note that an offset can be used as a correction factor in
the model specification, considering E(yi) = μi = eiθi ,
where ei represents the number of expected cases of what
is being measured in each spatial unit i = 1, . . . , n and θi is
the relative risk in area i. With this Bayesian Poisson spatial
lag model, the risk of what is being counted in one area is
related to the risk of what is being counted in the areas of
its neighborhood, driven by effects of important covariables
on explaining the phenomenon in one area. The use of this
modelling strategy of the autoregressive models allows to
evaluate if the risk of the phenomena that is being counted
in a given location may be simultaneously determined by
the risk in neighboring locations. This way of modelling
spatial structure for areal data does not ignore the discrete
nature of data whenever it applies, incorporating it in the
model. In this case, the response variable in a given area is
a good predictor of the response variable in its neighborhood
areas, addressing a global spatial autocorrelation arising from
dependence between counts.

To implement this Bayesian Poisson spatial lag model,
in R-INLA, it was used the “slpm” function (Goméz-Rubio
et al. 2015; Simões et al. 2017).

Model Selection

Bayesian models can be evaluated and compared by mea-
suring their performance through their predictive accuracy.
This can be estimated using cross-validation which requires
training sets to re-fit the models, which is less convenient,
or information criteria, which use functions of the deviance.
Given the data y = (y1, . . . , yn) with L(θ |y) ≡ f (y|θ) as
likelihood function, the deviance of the model is defined as

D(θ) = −2 log(f (y|θ)),

where θ corresponds to the parameters of the likelihood.
The deviance of a model measures the variability linked to
the likelihood (Blangiardo et al. 2015). For the information
criteria approach, measures like theAkaike information crite-
rion (AIC) (Akaike 1998), the deviance information criterion
(DIC) (Spiegelhalter et al. 2002; Blangiardo et al. 2015), and
the Watanabe-Akaike information criterion (WAIC) (Watan-
abe 2010; Gelman et al. 1992) are the most used. DIC is
a generalization of AIC, developed especially for Bayesian
model comparison (Spiegelhalter et al. 2002), andWAIC can

be seen as an improvement over the DIC (Watanabe 2010).
The preferred model will be the one with lower values for the
considered criteria. These criteria are defined below.

Akaike Information Criterion (AIC)
The AIC measure of predictive accuracy is composed by two
components, one associated with the quality of the adjust-
ment of themodel and another associated with its complexity,
quantified by two times the parametric dimension, given by:

AIC = −2 log f (y |̂θ) + 2p,

where θ̂ is the maximum likelihood estimate of θ and p the
number of parameters.

Deviance Information Criterion (DIC)
In Bayesian formulation, the deviance is a random variable
using the posterior mean of the deviance D = Eθ |y(D(θ))

as a measure of fit. Replacing in AIC measure the maximum
likelihood estimate of θ by its posterior mean and replacing
p with a data based bias correction, another measure of the
predictive accuracy is:

DIC = D + pD,

where pD , the effective numbers of parameters, is given by:

pD = Eθ |y[D(θ)] − D(Eθ |y[θ ]) = D − D(θ),

where D(θ) is the deviance computed on the posterior mean
of the parameters.

The DIC measure is also composed by two components,
one for quantifying the model fit (measured through the
posterior expectation of the deviance) and the other for eval-
uating the model complexity (measured through the effective
number of parameters).

Note that DIC depends only on a data-dependent function
that can be omitted when the models to compare are based
on the same sampling model, although the model for y may
differ on the parametric structured (Turkman and Paulino
2015).

Watanabe-Akaike Information Criterion (WAIC)
This measure of predictive accuracy introduced byWatanabe
(2010) is given by:

WAIC = −2
n∑

i=1

log Eθ |y [f (yi |θ)] + 2pW,

with two different proposals for the effective number of pa-
rameters, pW . One possibility uses the variance of individual
terms in the log predictive density summed over the n data
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points, calculated through the posterior variance of the log
predictive density for each data point yi :

pW1 =
n∑

i=1

V arθ |y(log(f (yi |θ)).

Another possibility for pW is the one similar to that used
to construct pD:

pW2 = −2
n∑

i=1

(
log(Eθ |y [f (yi |θ)]) − Eθ |y

[
log(f (yi |θ))

])
.

Either pW1 or pW2 can be used as a bias correction in
WAIC.

There is still some disagreement on which one of the crite-
ria should be used. For example, AIC does not perform well
on settings with strong prior information; DIC can produce
negative estimates of the effective number of parameters, and
it is based on a point estimate, when the posterior distribution
is not well summarized by its mean and provides nonsensical
results; WAIC uses the posterior distribution rather than a
point estimate, and it is invariant to re-parametrization, being
referred to as “fully Bayesian.” However, WAIC depends
on data partition that might raise difficulties for structured
models (Gelman et al. 1992). Nevertheless, according to
recent studies, “WAIC has various advantages over simpler
estimates of predictive error such as AIC and DIC” but
because it requires an additional computational effort, it is
less used in practice (Vehtari et al. 1999). Given the above, in
this thesis, we focus onWAIC and DIC measures to compare
models. Actually, DIC is the predictive measure most used in
Bayesian applications, andWAIC has been shown to be more
stable and particularly helpful with hierarchical and mixture
structures, in which the number of parameters increases with
sample size although when working with point estimates, it
is not the most appropriate approach (Gelman et al. 1992).

Application

One of the most relevant factors regarding hospital costs in
the Portuguese health-care system are urgency admissions,
consuming large financial and human resources. It is possible
that a considerable part of the admissions corresponds to non-
urgent cases that could be handled by primary health-care
services, namely, the family doctor, or in a self-care basis
eventually assisted by a remote nursing service. This helps
to understand why the Portuguese hospital urgency service
became one of the most important worries of the Portuguese
Health Ministry over the last years. The Portuguese national
health line Saúde24 (S24) service directs users to the most
appropriate institutions of the public health service or of-

fers counsels on self-care measures. It is hoped that its use
mitigates the unnecessary urgent care in hospitals and that
the reached savings can be channeled toward other needy
areas. This study aims to describe and evaluate the use of
S24 by analyzing the number of calls received, at a municipal
level, under two different spatial econometric approaches.
This analysis is important for future development of decision
support indicators in a hospital context, based on the eco-
nomic impact of the use of this health line rather than on the
criterion of hospital urgency.

Saúde24Data Analysis

An initiative to improve accessibility to health care and to
rationalize the use of existing resources was carried out
by the Portuguese Health Ministry through the creation of
a national health line, S24, in April 2007 (Portal of the
National Portuguese Health Service 2015). These objectives
are accomplished by the S24 service which directs users to
the most appropriate institutions of the national public health
service or by counseling self-care home measures.

The location attribute for S24 data is an important source
of information to describe its use, which leads to analyze the
number of calls to S24 at a municipal level. As space is an
important feature of these data, and ignoring it results in a
poorer analysis (Anselin et al. 1996; Cressie 1993).

To model the number of calls to S24, in each municipality,
with spatial models, given the discrete nature of data (counts),
an alternative is to use a hierarchical Bayesianmodel with co-
variates (Banerjee et al. 2004). For the hierarchical approach,
spatial autocorrelation is accounted for in the disturbances
and not in the observed responses, as happens with spatial
autoregressive approaches. The latter is a different modelling
strategy common in spatial econometrics literature that may
also be considered for these data. It is plausible to think that
the number of calls to S24 in one municipality is related to
the number of calls in the municipalities of its neighborhood,
driven by effects of covariates such as the number of hospitals
in one municipality, which may certainly have an impact on
the number of calls to S24 in a neighboring municipality,
or others not considered in the modelling (LeSage and Pace
2009). Hierarchical and autoregressive modelling perspec-
tives have already been used to model the same data sets
(Bivand et al. 2014; Gomez-Rubio et al. 2016; Quddus 2008).

This analysis begins with the use of standard spatial
econometric techniques to look for spatial dependence in the
number of calls to S24 in each municipality, considering a
neighborhood contiguity structure, as well as in the residuals
of a baseline log-Poisson regression model with covariates.
The number of calls is further analyzed, on one hand, through
different hierarchical log-Poisson models and, on the other
hand, through a Poisson spatial lag model, implementing
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Fig. 1 Calls to S24 by service in
2014—Graph provided by DGS
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different econometric approaches to model spatial structure
in data. The results of this study are intended to be used in the
near future in cooperation with the Portuguese Directorate-
General of Health to analyze, test, implement, and predict
consequences of different government management policies
at the hospital level under distinct scenarios. The savings
from the correct use the S24 will avoid unnecessary urgent
care in hospitals that can then be channeled toward other
needy areas.

The S24 Data
The data considered in this study were provided by the Sup-
port Unit of the Call Center of the National Health Service of
the Portuguese Directorate-General of Health (DGS). It is a
comprehensive data set of the calls recorded by the S24 health
line in the year 2014 and includes information such as user’s
gender, residence, age, and call’s day of the week, together
with the health problem specification.

The S24 has two call centers and offers various services
such as triage, counseling, and routing (TAE); therapeutic
counseling (AT) to clarify issues relating to medication;
assistance in public health (LSP) in specific topics such as flu,
heat, poisoning, etc.; and general health information (IGS),
such as the location of public health units and pharmacies,
among others. The S24 service is provided by qualified
nurses, trained to give the best advice or, when appropriate,
to assist citizens in solving the situation by themselves. The
service is available to the beneficiaries of all different kinds
of health sub-systems. The S24 incorporates approximately
300 nurses and 16 clinical supervisors.

Most of the calls answered by S24, are catalogued as TAE,
approximately 92% (calculated after removing inappropriate
calls)—see Fig. 1. For those, the description of the health
problem and the original intention of the user about how to
solve it (e.g., go to an urgency room) are recorded, and then
a decision algorithm follows. The final disposition given by
this algorithm, jointly with the evaluation of the nurse, falls in
one of two possibilities: emergent or non-emergent situation.
The non-emergent situation calls are the ones analyzed in this
study—see Fig. 2.

This study focuses on the number of TAE calls to S24 in
2014 at a municipality level, in Continental Portugal. For this
year, 50% of the users were aged between 4 and 46, with a
median of 26 years and a range of 111 years. Elderly users
are less than 13%. The distribution of the number of TAE
calls to S24, by municipality in 2014, is mapped in Fig. 3.
The average raw call rate by municipality is 32 per 1000
inhabitants.

Non-spatial Modelling: The Log-Poisson
RegressionModel

The number of TAE calls to S24 in each of the 278 munici-
palities of Continental Portugal was first modelled via a log-
Poisson regression model before considering the need of a
spatial analysis.

An indirect standardization of these numbers has been
carried out, applied to the resident population of each munic-
ipality in terms of age groups, namely, 0–9, 10–19, 20–29,
30–39, 40–49, 50–59, 60–69, 70–79, and +80. This method
considers standard age rates
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LS24 Calls

Call Center

General

Screening

• Triage, counseling and routing (TAE)

• Assistance in Public Health (IGS)

• General Health Information (IGS)

• Therapeutic counseling (AT)

Original intent:

• Go to  hospital emergency
• Call INEM
• Schedule a Medical consultation
• Self-Care
• Go to health center

Algorithm +
nurse evaluation

Final disposition:

Emergent:
• Transfer to INEM
• Transfer to CIAV

Not Emergent:
• Forward to Hospital emergency
• Forward to health center
• Stay in self-care
• Reference to Medical Specialty

Fig. 2 The collection of information in S24
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Fig. 3 Number of TAE calls to S24 per 1000 inhabitants, in 2014

ϕj =
∑

i yij∑
i nij

, j = 1, . . . , 9,

with yij the number of cases (calls) and nij the at-risk
population (resident population), in municipality i and age

group j , with i = 1, . . . , 278, with j = 1, . . . , 9, in order to
obtain ei = ∑

i nijϕj , i = 1, . . . , 278, the expected number
of calls in each municipality, that is included in the model as
an offset. So, in fact, what is modelled is the relative call risk,
which can be roughly estimated by the Standard Call Rate
(SCR), mapped in Fig. 4. This ratio is calculated between the
observed number of cases and the expected number of cases,
allowing comparisons across different populations,

SCRi = yi

ei

, i = 1, . . . , 278.

The resident population of each municipality, in terms of age
groups, was obtained fromCensus 2011 data and adjusted for
subsequent years (Database of contemporary Portugal 2016).

Demographic and socioeconomic information, develop-
ment indicators, as well as characteristics of the Portuguese
health system at the municipal level were investigated as
possible covariates for modelling the TAE call counts, in
order to understand if the inclusion of certain covariates
obviated the need for a spatial model. Using the stepwise
methodology (Rawlings et al. 1998) for selecting covariates,
under different scenarios, the two best sets of the most
significant explanatory variables are:

Case 1: The average number of years of schooling, the
proportion of elderly residents, the unemployment
rate, the rurality index, the number of hospitals
and health centers per 1000 inhabitants, and the
proportion of women, in each municipality (AIC:
29530);
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Case 2: The monthly average income, the proportion of
children, the unemployment rate, the rurality in-
dex, the number of hospital and health centers
(both per 1000 inhabitants), and the proportion of
women, in each municipality (AIC: 36980).

[0,0.2)
[0.2,0.4)
[0.4,0.6)
[0.6,0.8)
[0.8,1)
[1,1.4)
[1.4,2.6]

Fig. 4 Standard call rate to S24, in 2014

From these variables, the average number of years of
schooling and the monthly average income are the ones that
show a stronger positive correlation with the response vari-
able (0.67 and 0.61, respectively), followed by the proportion
of children (0.49). The rurality index and the proportion of
elderly residents are negatively correlated with the response
(−0.45 and −0.35, respectively). The study analysis is de-
veloped considering this two cases.

Over-dispersion in these Poisson data is expected, since
space is suspected to be an important feature for their mod-
elling. If this over-dispersion is ignored, the standard errors
of the covariate effects are underestimated, resulting in an
incorrect assessment of the significance of individual regres-
sion parameters. So, instead, it has been opted to fit a quasi-
Poisson model to account for the over-dispersion, realizing
that the significant covariates under this approach were in
fact different from the ones of the Poisson model (although
the estimated effects are, of course, the same).

Tables 1 and 2 depict the estimated coefficients of the
considered quasi-Poisson log-regression models for these
analyses, with:

log(θi) = β0 +
7∑

j=1

βjXij , i = 1, . . . , 278,

where θi is the relative risk in the ith municipality. For case 1,
the unemployment rate turned out to be not significant after
all, and for case 2, the same happened with the rurality index,
the number of hospital and health centers.

Package stats of R-project software was used to obtain the
results presented in this section (R Core Team and contribu-
tors worldwide 2013).

Table 1 Covariates and their
estimated coefficients for the
quasi-Poisson log-regression
model, case 1, for the S24 2014
data

Variable Id Coefficients p-values

Average number of years of schooling x1 0.322 <2e−16

Proportion of elderly residents x2 4.456 9.52e−13

Unemployment rate x3 −0.743 0.3156

Rurality index x4 −0.741 4.10e−06

Number of hospitals x5 −3.822 6.68e−06

Number of health centers x6 −1.289 0.0437

Proportion of women x7 −5.509 0.0661

Intercept −0.288 0.8390

Table 2 Covariates and their
estimated coefficients for the
quasi-Poisson log-regression
model, case 2, for the S24 2014
data

Variable Id Coefficients p-values

The monthly average income x1 0.001 5.97e−16

Proportion of children x2 5.727 0.0004

Unemployment rate x3 −1.679 0.0391

Rurality index x4 −0.212 0.1884

Number of hospitals x5 −0.398 0.6504

Number of health centers x6 −0.902 0.1702

Proportion of women x7 11.810 0.0003

Intercept −7.930 7.64e−06
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Spatial Correlation

In this subsection, standard spatial techniques are used to
look for spatial dependence in the number of TAE calls,
considering a contiguity neighborhood structure, and also
in the residuals of the log-Poisson regression models fitted
before.

For the considered contiguity neighborhood structure, in
the first-order queen neighborhood, there are 1.9% non-zero
weights, and the average number of neighbors is 5.3. Taking
the corresponding queen neighborhood matrix, and using
Moran’s I statistics (1), both under normality (I = 0.6182,
p ≤ 2.2e−16), or considering a randomized distribution
of the statistics (I = 0.6182, p ≤ 2.2e−16), resulted in
a clear rejection of the spatial independence hypothesis of
the number of TAE calls, suggesting that there is a positive
spatial correlation among these.

The spatial autocorrelation in the residuals of the log-
Poisson regression models fitted in section “Non-spatial
Modelling: The Log-Poisson Regression Model” was further
investigated, using a randomized distribution of the statistic
and a two-sided test, having I = 0.1513 (p = 1.102e−05)
for case 1 and I = 0.2702 (p = 2.276e−14) for case 2.
The results suggest a high positive spatial autocorrelation
in the residuals. With spatially correlated residuals, the
fitted models may be providing biased estimates of
the parameters, leading to incorrect interpretations and
misleading conclusions (LeSage 1999). It is then clear that
space is an important feature of these data, and that must be
considered in the modelling.

Package spdep (Bivand et al. 2014) of R-project software
was used to obtain the results presented in this section ac-
cording to Anselin (2007).

Spatial Bayesian Econometric Modelling

Spatial Hierarchical Log-Poisson Regression
Model
In order to capture and model data spatial variability, the
number of TAE calls in each municipality is now analyzed

through different spatial hierarchical log-Poisson regression
models. The residual autocorrelation of the log-Poisson re-
gression model considered before can be explained, in a
Bayesian setting, adding to the model’s predictor a set of
spatially structured ε random effects, considering the con-
tiguity neighborhood structure mentioned before. Additional
unstructured random effects γ can be considered, if needed.
The prior distributions of the random effects define their
structure, as described in section “Hierarchical Bayesian Spa-
tial Models for Count Data”. Two models were considered
differing on the way the random effects are included, the
BYM and the Leroux models.

The estimates were obtained via Markov chain Monte
Carlo (MCMC) method, implemented in R-package CAR-
Bayes (Lee 2013). A few MCMC run of 1,000,000 iterations
were made, discarding 50,000 burn-in iterations and thinning
by 100, in order to reduce autocorrelation, resulting in 9500
sample points.

In general for most parameters, acceptance rates of the
Metropolis-Hastings algorithmwere about 40%.MCMCout-
put convergence was assessed through visual inspection of
the samples traces, autocorrelation function plots, and the
application of the Geweke method (Geweke 1991) available
in R-package CARBayes (Lee 2013).

BYMModel
The Besag-York-Mollié (BYM) model, as described in sec-
tion “Hierarchical Bayesian Spatial Models for Count Data”,
for both cases 1 and 2, as in section “Non-spatial Modelling:
The Log-Poisson Regression Model”, is a log-Poisson re-
gressionmodel with the covariates considered before plus un-
structured (γ ) and spatially structured random effects (ε), for
which a CAR prior is chosen. The main parameter estimates
are summarized in Tables 3 and 4.

For case 1, only one of the covariates, the average number
of years of schooling, showed to be significant, whereas in
case 2, it was the monthly average income. The estimated
random effects, given by exp(ui) = exp(εi + γi), still
display some patterns for both cases—left panels of Figs. 5
and 6.

Table 3 Parameter estimates
(median, 2.5% and 97.5%
quantiles) for the BYM
hierarchical log-Poisson model,
case 1, for the S24 2014 data

Variable Id Median 2.5% 97.5%

Average number of years of schooling x1 0.1931 0.0062 3.5386

Proportion of elderly residents x2 0.4840 −1.6883 2.6921

Unemployment rate x3 1.8680 −1.5338 4.7276

Rurality index x4 −0.0930 −0.4980 0.3126

Number of hospitals x5 −0.2549 −1.9709 1.4916

Number of health centers x6 0.3777 −1.1932 1.8507

Proportion of women x7 −1.2479 −10.1867 7.7633

Intercept −1.3506 −6.4541 3.5386

σ 2
B 0.2268 0.1440 0.3494

σ 2 0.0326 0.0140 0.0592
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Table 4 Parameter estimates
(median, 2.5% and 97.5%
quantiles) for the BYM
hierarchical log-Poisson model,
case 2, for the S24 2014 data

Variable Id Median 2.5% 97.5%

The monthly average income x1 0.001 0.0 0.0021

Proportion of children x2 1.7348 −2.1687 6.3659

Unemployment rate x3 1.9042 −1.5689 5.4343

Rurality index x4 −0.1838 −0.5460 0.2105

Number of hospitals x5 −0.2282 −2.0447 1.3542

Number of health centers x6 −0.0613 −1.3820 1.3585

Proportion of women x7 0.6238 −8.9309 9.4824

Intercept −1.9574 −7.2782 3.4761

σ 2
B 0.2443 0.1594 0.3690

σ 2 0.0313 0.0149 0.0540

[0.2,0.6)
[0.6,1)
[1,1.4)
[1.4,1.8)
[1.8,2.2)
[2.2,4.4]

[0.2,0.6)
[0.6,1)
[1,1.4)
[1.4,1.8)
[1.8,2.6)
[2.6,4.3]

Fig. 5 Estimated random effects for BYM model(left) and for Leroux model (right), case 1

Leroux Model
The Leroux model, as described in section “Hierarchical
Bayesian Spatial Models for Count Data”, is a log-Poisson
regression model with the covariates previously considered
and the random effects for which the Leroux CAR prior
is chosen. The main parameter estimates are displayed in
Table 5 for case 1 and in Table 6 for case 2.

Here, for the first case, only one of the initial covariates
showed to be significant, the average number of years of
schooling. The estimates of the random effects, given by
exp(εi), seem to indicate that there still is spatial variability in
these data—right panel of Fig. 5, which is strongly confirmed
by an estimated value of ρ of 0.90.

Considering this model for the second case, also only one
of the initial covariates was significant, the monthly average

income. This model has an estimated value of ρ of 0.89, and
the estimates of the random effects seem to indicate that there
still is spatial variability—right panel of Fig. 6.

The Bayesian Poisson Spatial LagModel
A modelling alternative is to account for spatial autocorre-
lation in the observed responses instead of the disturbances,
as before, using an autoregressive perspective. This approach
may also be considered for these data.

Here, the TAE number of calls in each municipality is
then analyzed through the Bayesian Poisson spatial lagmodel
where a spatial autocorrelation lag is incorporated in the
econometric model of counts. The estimates were obtained
via INLA methodology in R-package R-INLA, according
to the R-code available in Simões et al. (2017). The prior
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Table 5 Parameter estimates
(median, 2.5% and 97.5%
quantiles) for the Leroux
hierarchical log-Poisson model,
case 1, for the S24 2014 data

Variable Id Median 2.5% 97.5%

Average number of years of schooling x1 0.1897 0.0141 0.3187

Proportion of elderly residents x2 0.8586 −1.3888 2.8322

Unemployment rate x3 2.1413 −0.7070 4.8630

Rurality index x4 −0.1129 −0.4562 0.2337

Number of hospitals x5 −0.2606 −1.7421 1.1745

Number of health centers x6 0.3458 −0.8881 1.6717

Proportion of women x7 −1.9482 −9.8121 6.2431

Intercept −1.1342 −5.1422 3.1621

σ 2
L 0.3492 0.2829 0.4494

ρ 0.9059 0.7008 0.9888

Table 6 Parameter estimates
(median, 2.5% and 97.5%
quantiles) for the Leroux
hierarchical log-Poisson model,
case 2, for the S24 2014 data

Variable Id Median 2.5% 97.5%

The monthly average income x1 0.001 0.0001 0.0019

Proportion of children x2 1.8345 −1.9861 5.7947

Unemployment rate x3 1.6751 −1.3984 4.7253

Rurality index x4 −0.2145 −0.5562 0.0639

Number of hospitals x5 −0.3568 −1.8623 1.1085

Number of health centers x6 −0.0069 −1.2701 1.2484

Proportion of women x7 0.5789 −7.0199 8.6312

Intercept −1.9231 −6.5246 2.4100

σ 2
L 0.3581 0.2911 0.4508

ρ 0.8936 0.6879 0.9855

[0.2,0.6)
[0.6,1)
[1,1.4)
[1.4,1.8)
[1.8,2.6)
[2.6,4.5]

[0.2,0.6)
[0.6,1)
[1,1.4)
[1.4,1.8)
[1.8,2.6)
[2.6,4.5]

Fig. 6 Estimated random effects for BYM model (left) and for Leroux model (right), case 2
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Table 7 Parameter estimates
(mean, 2.5% and 97.5%
quantiles) for the spatial lag
Poisson model, case 1, for the
S24 2014 data

Variable Id Mean 2.5% 97.5%

Average number of years of schooling x1 0.179 0.121 0.237

Proportion of elderly residents x2 0.591 −0.288 1.473

Unemployment rate x3 0.605 −0.851 2.048

Rurality index x4 −0.005 −0.209 0.197

Number of hospitals x5 −0.179 −1.300 0.941

Number of health centers x6 0.173 −0.316 0.660

Proportion of women x7 −0.919 −4.702 2.848

Intercept −1.071 −3.012 0.868

σ 2 0.070 0.568 0.085

ρ 0.852 0.806 0.893

Table 8 Parameter estimates
(mean, 2.5% and 97.5%
quantiles) for the spatial lag
Poisson model, case 2, for the
S24 2014 data

Variable Id Mean 2.5% 97.5%

The monthly average income x1 0.001 0.000 0.001

Proportion of children x2 0.972 −1.232 3.190

Unemployment rate x3 0.065 −1.408 1.520

Rurality index x4 −0.098 −0.291 0.094

Number of hospitals x5 0.151 −0.989 1.290

Number of health centers x6 −0.095 −0.560 0.369

Proportion of women x7 0.307 −3.570 4.182

Intercept −1.015 −3.180 1.141

σ 2 0.074 0.061 0.089

ρ 0.859 0.813 0.90

distributions assigned to the spatial autoregressive parameter
ρ and to the precision error term τ are, by default, logit(ρ) ∼
N(0, 10) and τ ∼ Gamma(1; 5 × 10−5); however, other
values can be chosen by the user.

Poisson Spatial Lag Model
This is the Bayesian Poisson spatial lag autoregressive model
with the covariates initially considered significant. Tables 7
and 8 summarize the main parameter estimates for case 1 and
case 2, respectively.

For case 1, only one of the previous covariates revealed
to be significant, the average number of years of schooling.
This model has an estimated value of ρ of 0.852. As for the
second case, only the monthly average income is significant.
This second model has an estimated value of ρ of 0.859. The
estimated random effects, given by exp(εi), still display some
patterns for both cases—Fig. 7 for case 1 and Fig. 8 for case 2.

Results Comparison

In the various spatial fits, the covariates considered important
for explaining the number of calls and the corresponding
effects were the same. These fits were further compared by
means of their predictive accuracy, using theDeviance Infor-
mation Criterion (DIC) measure and the Watanabe-Akaike
Information Criterion (WAIC) measure. See Table 9 for case

1 and Table 10 for case 2. The Relative Root Mean Square
Error (RRMSE) was also considered to measure goodness
of fit:

RRMSE =
√√√√1

n

n∑
i=1

(yi − ŷi )2

ŷ2
i

.

Results are displayed in Tables 11 and 12.
In terms of spatial hierarchical log-Poisson regression

models, the model with smaller DIC (preferred model) is
the one including the covariates and the spatially structured
random effects through Leroux CAR prior. This was con-
firmed by the RRMSE values. For the sake of comparison, the
fit measures for the baseline log-Poisson regression model
without random effects, fitted by MCMC, are further dis-
played in the first line of the tables. The log-Poisson re-
gression model was also fitted, including only covariates and
unstructured random effects (results not shown here), which
performed worse, indicating that spatial random effects are
indeed necessary in themodels. This might indicate that there
are possibly some relevant covariates that are not yet being
included in themodel. There is a spatial asymmetry that is not
explained by the variables. Similar conclusions were reached
when the autoregressive perspective was considered in terms
of the Bayesian Poisson spatial lag model.

In order to compare both hierarchical and autoregressive
model fits, WAICmeasure was used, as it is more appropriate
for comparing different model structures. The autoregressive
model reveals better performance, according to this measure.
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[0.2,0.4)
[0.4,0.6)
[0.6,0.8)
[0.8,1)
[1,1.7)
[1.7,2.4]

Fig. 7 Estimated random effects for the Poisson spatial lag model,
case 1

Table 9 DIC and WAIC measured for the three models fitted for
case 1

Model DIC pD WAIC pW

Baseline model MCMC 2816.9 287.2 2830.8 198.5

BYM model 2801.1 275.2 2773.8 179.9

Leroux model 2788.6 267.16 2744.5 157.2

Poisson spatial lag model 2778.63 261.96 2717.6 144.9

Table 10 DIC and WAIC measured for the three models fitted for
case 2

Model DIC pD WAIC pW

Baseline model MCMC 2816.9 287.2 2830.8 198.5

BYM model 2800.0 275.6 2770.7 169.5

Leroux model 2793.2 272.4 2743.0 156.7

Poisson spatial lag model 2777.3 262.6 2714.1 143.8

As for the RRMSE values, they are very similar although they
are somewhat smaller for the hierarchical models.

Final Remarks

This application study combines insights from classical spa-
tial econometrics and the analysis of spatial data in order to
handle spatial count data, both in a hierarchical and in an

[0.2,0.4)
[0.4,0.6)
[0.6,0.8)
[0.8,1)
[1,1.2)
[1.2,2]

Fig. 8 Estimated random effects for the Poisson spatial lag model,
case 2

Table 11 RRMSE measured for the three models fitted for case 1

Model RRMSE

Baseline model 0.588

BYM model 0.029

Leroux model 0.028

Poisson spatial lag model 0.037

Table 12 RRMSE measured for the three models fitted for case 2

Model RRMSE

Baseline model 0.469

BYM model 0.025

Leroux model 0.026

Poisson spatial lag model 0.034

autoregressive perspective. The approaches applied here cir-
cumvent the limitations of the classical econometrics meth-
ods.

Within the scope of the spatial econometric methods and
also resorting to Bayesian hierarchical and autoregressive
methodology, their application to the study of the number
of TAE calls to the national health line S24 revealed spatial
correlation, and the addition of spatial structure in the models
improved estimation.

The count data were first analyzed with a log-Poisson
regressionmodel, and then the inclusion of spatial random ef-
fects in a hierarchical Bayesian setting proved to be relevant,
as expected, being the preferred model the one including the
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covariates and the spatially structured random effects through
Leroux CAR prior distribution. However, the modelling may
possibly be improved by considering some other more ad-
equate covariates. Additionally, a Bayesian Poisson spatial
lag model was developed and implemented, an alternative
to do Bayesian inference for spatial econometric models
for count data. Similar conclusions were drawn when both
the hierarchical and the autoregressive perspectives were
considered.

The average number of years of schooling for case 1 of
the analysis and the average monthly income for case 2 stand
out as being important in explaining the use of S24. The
spatial component for both cases was quite relevant, which
was confirmed by the high values of the estimates of the
spatial autocorrelation parameter.

It is intended to proceed with this application study of
S24 data set in order to be able to describe and evaluate in
which municipalities the use of S24 should be encouraged,
as well as detecting those regions that most contribute to
the economic success of the good use of the line for fu-
ture assessment of hospital savings (Hughes and McGuire
2003).

Additionally, this analysis will be extended to include data
available for the years between 2010 and 2016, fitting some
spatiotemporal models (Cressie 1993) under an econometric
approach and developing and implementing the temporal
effects on Bayesian hierarchical models (Blangiardo et al.
2015; Lee et al. 2013), or on Bayesian autoregressive models
(Blangiardo et al. 2015) for count data.
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Modeling and Predicting Influenza Circulations
Using Earth Observing Data

Radina P. Soebiyanto and Richard K. Kiang

Introduction

The Burden of Influenza

Influenza is a very common infectious disease. Almost every-
one has been infected with influenza before and often more
than once. Each year 35% of the world populations (Huang
et al. 2019) may get infected with 290,000–650,000 deaths
(World Health Organization 2019). The symptoms – fevers,
chills, sore throats, cough headache, fatigue, etc. –may not be
severe. Without vaccination, fever and other symptoms may
last about a week, and cough and weakness may remain for
1 to 2 weeks longer. But for the young, the old, the pregnant,
the immunologically impaired, and those with chronic med-
ical conditions, influenza may lead to other infections and
become fatal. Because the infected may miss work or school,
need medical attentions or hospital cares, or simply perform
less efficiently, the economic burdens due to lost productivity
and lives may reach $90 billion in the USA alone in more
severe influenza epidemics (Molinari et al. 2007).

Types of Influenza Viruses

Influenza viruses (Centers for Disease Control and Preven-
tion 2019) are RNA viruses in the family Orthomyxoviridae
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and classified into four antigenic types – A, B, C, and D –
based on their nucleoproteins. TypesA andB have eight RNA
segments that encode ten ormore proteins, while Types C and
D have seven RNA segments that encode nine proteins. Type
A’s natural reservoir is wild aquatic birds. Besides humans
and birds, Type A also infects pigs, horses, dogs, and seals.
Types B, C, and D do not have natural reservoirs. Types
B and C infect only humans. The recently discovered Type
D infects cattle and is not known to infect humans. Each
antigenic type affects human populations differently: Type
A is the most severe and may cause serious epidemics and
pandemics; Type B is less so but can still result in outbreaks;
and Type C only causes minor symptoms.

Based on the hemagglutinin (H) and the neuraminidase
(N) protein on the surface of the Type A virus, Type A in-
fluenza viruses can further be divided into subtypes. Hemag-
glutinin is a glycoprotein used for binding to the host cell, and
neuraminidase is an enzyme the virus uses to split the host’s
mucoprotein, in order to release the progeny of offspring
viruses from the host cell. There are 18 types of hemagglu-
tinin (H1–H18) and 11 types of neuraminidase (N1–N11).
For example, the two main circulating subtypes in the 2018–
2019 influenza season were A(H1N1)pdm09 and A(H3N2).

Antigenic Drift and Antigenic Shift

Influenza viruses are single-stranded RNA viruses and have
a very high mutation rate compared with DNA viruses.
The viruses mutate frequently through antigenic drifts with
minor point mutations which allow the viruses to evade
immune recognition. TheWorld Health Organization (WHO)
makes semi-annual recommendations for influenza vaccine
composition. Vaccine production is always a race against
time. Even in a normal influenza season, vaccination is often
prioritized. Since it is difficult to make effective and long-
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lasting vaccines, annual influenza epidemics continue to take
place.

Occasionally the viruses undergo antigenic shifts by re-
assorting the genetic materials from different Type A’s sub-
types. Since the populations rarely have immunity again such
reassorted strains, antigenic shifts may lead to pandemics
with massive illnesses and deaths. Of the three types of
influenza viruses that infect humans, only the Type A viruses
can undergo antigenic shift and cause pandemics.

Pandemics

The deadliest influenza pandemic was the 1918–1920
Spanish flu (Palese 2004), in which up to 100 million people
worldwide might have perished. The subsequent pandemics
include the 1957–1958 Asian flu, the 1968–1969 Hong
Kong flu, the 1977–1978 Russian flu, and the 2009–2010
A(H1N1)pdm09 flu. The last four pandemics, with 0.3–1.5
million deaths, were much less deadly than the Spanish flu.

The world has experienced five influenza pandemics over
the past hundred years. No one can predict how and when
the next pandemic will appear. However, a pandemic does
not just appear overnight. It starts with Type A subtypes
circulating in the human populations and other species’ pop-
ulations. It is possible to estimate how likely reassortments
among the subtypes may take place, pathogenicity of the
reassorted strains, and the probable severity if they bring on
a pandemic. Good surveillance of the circulating subtypes in
human and other species’ populations is obviously important.
Good influenza models may also help detecting a pandemic
in formation.

The Roles of Climate andWeather
in Influenza Transmission

In the Northern Hemisphere’s temperate zone, influenza
typically occurs seasonally. Every year influenza starts in
the fall, picks up strength as it becomes colder in the winter,
and then gradually recedes when spring comes. It is also
known that the influenza trend in the Southern Hemisphere’s
temperate zone has a phase difference of 6 months. In
general, November to March in the Northern Hemisphere
and May to September in the Southern Hemisphere
are considered the influenza seasons. This suggests that
temperature and humidity, both are low in the winter, play a
role in influenza transmission. However, in the tropics where
temperature and humidity are continuously high, influenza
circulates year-round.

Because influenza transmits through contacts with in-
fected people’s respiratory droplets drifting either in the air
or on contaminated objects, any factors that promote such

contacts enhance influenza transmission. Since precipitation
encourages indoor crowding, it has been hypothesized that
rains lead to crowding and promote influenza transmission.
Furthermore, sunlight exposure and level of ultraviolet radi-
ation, which stimulate vitamin D production and antagonize
virus survival, have also been proposed as the environmental
factors affecting influenza transmission.

Laboratory studies showed that viral stability has a nonlin-
ear relationship with relative humidity (Schaffer et al. 1976) –
maximum at low humidity (20–40%),minimum at intermedi-
ate humidity (50%), and turns high again at higher humidity
(60–80%). In addition, low humidity (Tellier 2006) promotes
the formation of respiratory droplets from bioaerosols. But
at high humidity, droplets absorb water, become larger, and
fall out of the air such that the opportunity of transmitting
influenza is reduced. Several modeling studies have indi-
cated the role of specific humidity in influenza transmission
(Shaman et al. 2010; Tamerius et al. 2013; Soebiyanto et al.
2014, 2015a, b).

It has also been shown (Lowen et al. 2007) that cold air
increases the viscosity of mucous layer, reduces mucociliary
clearance, and makes it easier for viruses to travel along
the respiratory tract. As discussed earlier, raining encourages
crowding, in either warmer or cold weather, and increases the
direct and indirect contacts between viruses and hosts. There-
fore, precipitation is also an important predictor for influenza
circulation independent of humidity and temperature.

As temperature, humidity, and precipitation are most di-
rectly related to viral survivorship, host susceptibility, trans-
mission efficiency, and crowding, these three parameters are
most frequently used in modeling and predicting influenza
circulation.

Earth Observation Data andModels that
ProvideMeteorological Information

Table 1 shows satellite-derived data from NASA and NOAA
that can be used to model influenza. Some of these datasets
have been used in previous influenza studies, and specific
humidity especially has been widely used as an indicator for
forecasting influenza (Shaman et al. 2010; Tamerius et al.
2013; Soebiyanto et al. 2014, 2015a, b). Specific humidity
measures the mass of water vapor in a unit mass of air
(expressed in g/kg). It is different from relative humidity
as it does not depend on temperature and is conceptually
similar to absolute humidity, which measures the mass of
water vapor in a unit volume of air (expressed in g/m3). In
modeling influenza, we have previously used near-surface
specific humidity variable obtained from the Global Land
Data Assimilation System (GLDAS) dataset (Rodell et al.
2004). It is a NASA-NOAA system that assimilates ground
and satellite measurements to model global terrestrial geo-
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Table 1 Remote sensing and assimilated data products and their
geophysical parameter that can be used to model influenza

Resolution

Dataset/sensor/
platform

Geophysical
parameter Spatial Temporal

MODIS (moderate
resolution imaging
Spectroradiometer)

Land surface
temperature

0.05◦ ( 5 km) Daily

Global
Precipitation
Measurement
Mission (GPM) –
3IMERGHH

Rainfall 0.1◦ ( 11 km) 30 min-
utes

NOAA climate
prediction Center
unified (CPC-UNI)

Rainfall 0.5◦ ( 50 km) Daily

Global land data
assimilation
system

Air temperature 0.25◦ (25 km) 3-hourly

Specific humidity

Rainfall

Solar radiation

CRU CL (climate
research
unit)/Oxford
university

Temperature 10-minute Monthly

Relative humidity

Precipitation

physical parameters with contiguous spatial and temporal
coverage. The dataset has global coverage with 0.25◦ res-
olution and is available at 3-hourly or monthly time step
since 2000. Global near-surface air temperature (2meter) and
precipitation can also be obtained from the GLDAS dataset.

There are other precipitation measures (Table 1) including
satellite-derived Global Precipitation Measurement (GPM)
and gauge-based NOAA Climate Prediction Center (CPC)
Unified (CPC-UNI). GPM is a constellation of satellites
initiated by NASA and Japan Aerospace Exploration Agency
(JAXA) that comprises of consortium of international space
agencies including the Centre National d’Études Spatiales
(CNES), the Indian Space ResearchOrganization (ISRO), the
National Oceanic and Atmospheric Administration (NOAA),
and the European Organization for the Exploitation of Me-
teorological Satellites (EUMETSAT), among others. It is
a successor of NASA-JAXA Tropical Rainfall Measuring
Mission (TRMM) that was decommissioned in 2014. The
GPMCore Observatory that was launched in 2014 carries the
first space-borne dual-frequency precipitation radar (DPR)
and a multi-channel GPM Microwave Imager (GMI). These
sensors allow for better detection of rainfall and snowfall with
a global coverage as compared to sensors aboard TRMM.
GPM dataset is available at 0.1◦ resolution every 30 minute
since 2014. The CPC UNI dataset, on the other hand, is
a reanalysis dataset based on daily gauge measurements
worldwide. It is derived from quality-controlled daily reports

from more than 30,000 stations worldwide, and they are
interpolated using optimal interpolation (OI) method with
orographic consideration (Chen et al. 2008). The data is
produced every day at real time with 0.5◦ resolution. Al-
though this dataset has lower resolution, it is produced at near
real time with worldwide coverage and temporal coverage
since 1979, which makes it suitable to detect any anomalous
conditions (i.e., above normal rain) and operational purpose
(i.e., monitoring).

We have previously used land surface temperature (LST)
measure in modeling influenza in Hong Kong (Soebiyanto et
al. 2010). LST can be obtained from theModerate Resolution
Imaging Spectroradiometer (MODIS) instrument which has
36 bands spanning from the visible to the long-wave infrared
spectra. Both Terra and Aqua missions of NASA’s Earth
Observing System carry this instrument. Although there are
differences between LST and air temperature, changes in
LST may induce convection at the boundary layer and influ-
ence air temperature, winds, cloudiness, and precipitation –
all of which affect the influenza transmission. LST daily
dataset is available globally since 2000 at 0.05◦ resolution.

CommonMethodologies for Modeling
Influenza Circulations

Any mathematical techniques that map one set of parameters
to another set can be used to model the association of in-
fluenza circulations with meteorological variables (Thomp-
son et al. 2006; Lofgren et al. 2007). Several methods which
we have used – ranging from time series analysis to machine
intelligence and spectral analysis – are described briefly
below.

Logistic regression is a common method for modeling
disease occurrence (Hosmer and Lemeshow 2000). As a
person can be tested either positive or negative with influenza
infection, logistic regressions are suitable for estimating the
infected population. It can model strictly bounded response
variable that is suitable for data on proportions. The predic-
tors, or the independent variables, may include binary and
continuous variables. For example, holiday or non-holiday
is a binary variable, and all meteorological parameters are
continuous variables. We previously used logistic regression
to model the weekly proportion of influenza samples that
are tested positive, referred as influenza-positive proportion
(Soebiyanto et al. 2014, 2015a). Given the meteorological
condition in week t, the odds for proportion (or probability)
of samples that were tested positive for influenza would
be higher if the meteorological condition was suitable for
influenza transmission because more people would likely be
infected.

For eachweek t, if Yt denotes the number of samples tested
positive for influenza out of total samples examined at that
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week (Nt), then Yt is a binomial random variable. That is,
Yt Bin (Nt, pt) where pt is the proportion of influenza samples
that are tested positive in week t. If we denote the logit of the
influenza-positive proportion as

zt = ln

(
pt

1 − pt

)

the logistic regression is then:

zt = α +
∑

j

βjxjt +
∑

l

γlvlt +
∑
m

λmz(t−m) +
∑

n

θnw
n
t

where

xjt Meteorological variable j in at week t; j ε {temperature,
specific humidity, rainfall}

vlkt Proportion of samples that are positive for virus l at
week t; l ε {respiratory syncytial virus (RSV), adenovirus,
parainfluenza virus}

wtn Week number (1–52)
α Intercept
β ,γ , λ, θ Regression coefficients

In the equation above, the explanatory variables included
were the meteorological variables (temperature, specific hu-
midity, and rainfall), the proportion of samples that are tested
positive for other respiratory viruses that co-circulated with
influenza (such as RSV, parainfluenza viruses, and aden-
oviruses), lagged of the influenzas positive proportion (up
to week 4 lags), and a polynomial function of the week
number. We included the co-circulating viruses to adjust for
any potential confounding associations between influenza-
positive proportion and the meteorological variables. The
lagged dependent variable was included because influenza
activity in a particular week depends on previous week
activity (i.e., how many people were infected previously
which can potentially infect the susceptible population). The
inclusion of the lagged dependent variable also accounts for
autocorrelation. Lastly, theweek numberwas included to rep-
resent influenza seasonality and other nonlinear relationships
that were not represented by the meteorological variables in
the model.

Variations of logistic regression may be used to accom-
modate the characteristics of the disease data. When assump-
tions can be made that the influenza data – for example, the
proportion of the samples tested positive – follows binomial
or Poisson distribution, the generalized linear model (GLM)
(Dobson and Barnett 2008) which allows for non-normal
error distributions for the influenza data may be used. A
GLM uses a link function to relate the influenza data to linear
models. A logit link is normally used for binomial regression
and a log link for Poisson regression.

One of regression models that can account for nonlinear
relationship is generalized additive model (GAM) through
the use of smoothing spline. This type ofmodel has been used
to assess the relationship between meteorological factors
and influenza-associated mortality (Barreca and Shimshack
2012). In addition, we previously employed this method
to successfully modeled influenza and meteorological con-
dition relationships for cities in Europe (Berlin, Germany;
Slovenia, Ljubljana; Castile and León in Spain) and the
districts of Israel (Soebiyanto et al. 2015b). In this study,
influenza activity was represented by weekly new cases of
influenza among patients with influenza-like illnesses (ILI).
The GAM model for influenza can be written as:

ln (yt ) = α +
∑

j

s
(
xjt

) + s (ln (yt−1))

where yt is the influenza activity in week t, xjt is meteorolog-
ical variable j at time t, yt-1 is influenza activity during the
previous week, and s(.) indicates the smooth spline function.
There are different choices of smoothing functions, and in the
study, we opted for the penalized cubic regression smoothing
splines:

s(x) =
∑

k

bk(x)βk

βk are the parameters to be estimated and bk(x) are the basis
functions for the cubic splines.

Neural network, a machine intelligence technique, may
also be used for modeling (Haykin 1999). A common type
of neural network is multilayer perceptron, which consists
of an input layer and an output layer and optionally one or
more hidden layers. More complex network gains training
accuracy but sacrifices generalization. As a universal map-
ping tool, neural network is easy to set up. But it can be
challenging to interpret the modeling rationale and obtain
statistical significance.

Because a disease time series can be noisy, time-frequency
decomposition with wavelet transform (Mallat and Peyré
2009) and empirical mode decomposition using Hilbert-
Huang transform (Huang et al. 1998, 2019) may reveal better
association with meteorological and social events, such as
holidays, school closing, etc. The selected decomposed com-
ponents are further analyzed with other modeling methods.

Case Study: Influenza in Austria

To illustrate the use of satellite-derived meteorological data
to model influenza, we will assess influenza activity in Aus-
tria. We extracted influenza data from WHO FluNet system
where we obtained the weekly number of influenza speci-
mens tested and the number of specimens tested positive for
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Fig. 1 Weekly
influenza-positive proportion in
Austria (a), weekly specific
humidity (b), and air temperature
(c)

influenza (all types and subtypes) between January 2015 and
June 2018.Meteorological data was obtained from theGlobal
Land Data Assimilation System (GLDAS) for near-surface
temperature and specific humidity. Our previous study had
indicated that rainfall was not a significant determinant for
influenza in the temperate region (Soebiyanto et al. 2015b)
and therefore we exclude it in this analysis. GLDAS is
a NASA-NOAA system that utilizes ground and satellite
measurements to model global terrestrial geophysical pa-
rameters with contiguous spatial and temporal coverage. In
order to obtain weekly time series that matches influenza
data, we first averaged the pixels that lie within Austria,
followed by averaging the 3-hourly data into weekly data. For
each of the meteorological variable, we created 1-week lag
composite. We used univariate generalized linear model re-
gression to model the weekly influenza-positive proportion,
which is the number of influenza specimens tested positive
for influenza divided by the total specimens tested. Since
specific humidity and temperature were highly correlated, we
tested each variable in univariate regression so as to avoid
collinearity.

The weekly influenza-positive proportion in Austria
showed a strong seasonality that typically starts in December
and peaks in February (Fig. 1a). During this time, specific
humidity and air temperature are typically at their lows
(Fig. 1b, c) indicating dry and cold conditions. The long-

term mean of specific humidity during winter months
(January to March) when influenza is typically at its peak
is remarkably low (Fig. 2a) when compared to the summer
months (June to August) (Fig. 2b). We observed similar
pattern in air temperature long-term mean (Fig. 2c, d).
Scatterplot of influenza-positive proportion with specific
humidity and air temperature showed inverse relationship
(Fig. 3).

We assessed the relationship between influenza-positive
proportion and the lagged (1 week) specific humidity and
air temperature, separately, using univariate regression. Our
results (Table 2) indicated that influenza-positive proportion
in Austria was inversely associated with specific humidity
and air temperature (p-value <0.05). These findings are con-
sistent with ours and other studies of influenza in temperate
regions (Shaman et al. 2010; Soebiyanto et al. 2010, 2015b).
The modeled influenza from these regression models showed
agreeable pattern with the observed data (Fig. 4).

Although there are variations in magnitudes between the
modeled and observed influenza activity (Fig. 4), the mod-
eled influenza activity timing is relatively in agreement with
the observed data. We observed similar results in our studies
for influenza in other regions (Soebiyanto et al. 2010, 2014,
2015a, b). Using such models, combined with influenza
surveillance data and seasonal meteorological forecasts, one
can estimate the timing of influenza onset and/or peak a
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Fig. 2 Climatology during winter (January to March) and summer (June to August) months in Austria: specific humidity long-term mean (a and
b) and air temperature (c and d)

Fig. 3 Scatterplot of influenza-positive proportion and specific humidity (left) and air temperature (right)

few months ahead. Such information can provide a guide
for public health agencies to plan for prevention and control
efforts with sufficient window.

Discussions

Although it is the most common infectious disease, each year
influenza incurs huge economic loss as well as significant
morbidity and mortality. If an influenza epidemic becomes a
serious pandemic, the mortality rate may reach 20% (as in the
1918 pandemic), and the total loss to all the affected countries
would be immeasurable.

Vaccination of the general population, taking precautions
in public places, and timely and effective treatment of those

Table 2 Univariate regression for influenza-positive proportion in Aus-
tria

Meteorological Adjusted
determinant Coefficient p-value R2

Specific humidity (1 week lag) −0.044 <0.05 0.47

Temperature (1 week lag) −0.016 <0.05 0.56

infected are practical ways to respond to influenza epidemics.
For infected individuals, the effective window of treatment
to reduce symptoms and the likelihood of infecting others
is narrow. Reliable modeling and predictive capabilities for
influenza circulation will help the public health organizations
to more effectively respond to the epidemic.
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Fig. 4 Observed (black line) and modeled influenza-positive proportion using specific humidity (pink line) and temperature (blue line)

In this modern, interconnected world, epidemic-prone
respiratory infections, including influenza, spread rapidly. In-
fections can be introduced into the home country almost im-
mediately through airlines passengers regardless of whether
it is in or out of the influenza season. Therefore in addition to
paying attention to influenza surveillance in the home coun-
try, it is also essential to monitor the influenza circulations in
other countries.

We have shown that reasonable accuracies can be obtained
when using Earth observing data to model and predict in-
fluenza circulations (Shaman et al. 2010; Soebiyanto et al.
2010, 2014, 2015a, b). Beyond meteorological conditions,
however, there are other important factors that determine
influenza’s epidemic potential. For example, vaccine se-
lection and manufacturing, timely availability of the vac-
cine to the general population, similarity of the circulating
strains to those in previous seasons, large social gatherings,
and population movement such as pilgrimage or refugees
from military conflicts all contribute to influenza circulation.
Furthermore, the meteorological variables where influenza
transmission takes place, often indoor or in public transporta-
tion systems, correlate with but differ from those obtained
from Earth observing data. It is conceivable that the more
urbanized the region is, the more the true meteorological
variables differ from those derived from Earth observing
data. All the factors described here may limit the modeling
and prediction accuracies.
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Using the NASA Giovanni System to Assess
and Evaluate Remotely-Sensed andModel Data
Variables Relevant to Public Health Issues

James G. Acker

Introduction

At the advent of the twenty-first century, the field of Earth sci-
ence remote sensing was in the midst of profound evolution-
ary changes with regard to both the marked increase in data
volume being acquired by recently launched observational
missions and the computational resources that were being
developed and expanded to archive, distribute, and analyze
these data. The (somewhat unexpected) swift expansion of
theWorldWideWeb, and related network capabilities, forced
an examination of the current state of the data distribution
process from NASAmissions and how it would be altered by
the increasing capability of individual researchers to access
and use these data.

The NASA Earth Observing System (EOS), conceived
in the late 1980s and early 1990s (McElroy and Williamson
2004), anticipated its data archive and distribution system
based on technology that was current at that time. Thus,
the Earth Observing System Data and Information System
(EOSDIS) was a centralized, hardware-intensive system.
Remotely-sensed land, atmospheric, and oceanic data from
instruments on the EOS satellites, which evolved to become
the Terra (launched in 1999), Aqua (launched in 2002),
and Aura (launched in 2004) satellites, were distributed
to Distributed Active Archive Centers (DAACs), which
were responsible for archiving data from specific instrument
missions and distributing it to the research community. In the
mid- to late-1990s, the expectation was that the distribution
of the data would primarily be on physical media, primarily
magnetic tapes (McElroy and Williamson 2004).
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The remarkable increase in data network capabilities
(embodied in the public mind as the Internet and World
Wide Web) that occurred essentially simultaneously with the
launch of the EOS satellites required NASA to reevaluate
how its data distribution function for satellite data from EOS
and other Earth observing missions would be carried out. It
was realized across the enterprise that distribution of data via
the network, that is, electronically, would come to dominate
over the “old way” that the data distribution function had
been performed and eventually lead to its phase-out. This
remarkable shift required EOSDIS and the NASA DAACs
to dramatically increase their networking capabilities. So
the first major shift in DAAC data distribution procedure
was to transmit the data to research users electronically, over
the computing network, rather than by mailing data tapes to
them (Acker 2015).

The World Wide Web markedly increased the amount of
information that could accompany the data and the informa-
tion that the NASA DAACs could provide to users online,
such as digital documents, Web pages, and data archives.
Data placed in online archives could be accessed and down-
loaded by users using simple protocols. “Anonymous FTP”
sites proliferated, making it quite easy to acquire large vol-
umes of data from NASA observational missions.

However, there was still one particular aspect of the data
acquisition and analysis process which still adhered to the
older model of the data center. Even though data could now
be acquired quickly via the network, it was still downloaded
to a user system essentially in raw form, just as it had
been previously read from tapes. To process and analyze the
data, additional software was required to read, translate, and
transform the data into a format that could be used by a user’s
personal and potentially idiosyncratic, hardware and soft-
ware system. Furthermore, doing so frequently required indi-
viduals with computer programming skills, which resulted in
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separating scientists who were not skilled programmers from
the data until it had been translated for their use.

The situation described above summarizes the “state of
the art” in the early years of the twenty-first century for
the NASA DAAC system (which now encompasses 12 data
centers). At Goddard Space Flight Center, atmospheric sci-
entist Yoram Kaufman expressed to Goddard Earth Sciences
DAAC Science Data Manager Gregory Leptoukh that he
would like to have a way to examine and analyze the data
he used as a researcher on atmospheric aerosols without
needing a team of programmers to translate it for him first.
Based on these conversations, and also due to other nascent
online data services existing at the time, Leptoukh envisioned
a system where the analysis of the data could take place
at the data center, rather than on the user’s own system.
Such a system would obviate the need for knowledge of
data formats and software required to specifically unpack
scientific data files and even reduce the need for software
to analyze the data. Leptoukh conceived of the system as
a way to explore the data, identifying features of interest
and compiling preliminary guiding analyses, before using
data at higher spatial and temporal resolution—which at that
time could involve lengthy processing times and considerable
data storage resources. (Note: the Goddard Earth Sciences
DAAC is now named the Goddard Earth Sciences Data and
Information Services Center, GES DISC.)

The initial system, which utilized the Grid Analysis and
Display System (GrADS) as its analytical core (Doty and
Kinter III 1995), was named either theMOderate-Resolution
Imaging Spectroradiometer (MODIS) Visualization and
Analysis System (MOVAS) or the Tropical Rainfall
Measurement Mission (TRMM) Visualization and Analysis
System (TOVAS). MOVAS was set up for MODIS
atmospheric data variables, including atmospheric aerosols,
and TOVAS was set up for precipitation variables. When
additional missions were added, a broader acronym was
required, which resulted in the system being named the
Goddard Earth Sciences Interactive Online Visualization
ANd aNalysis Infrastructure—GIOVANNI. After a few

years, it became simpler to refer to the system as Giovanni
without reference to its acronym definition, though the “G”
now officially represents the word “Geospatial.”

Since this beginning, Giovanni has gone through several
evolutionary stages, and it now exists in its fourth version.
New releases of the system are designated numerically, so
the current release is Giovanni 4.35. The system now offers
22 different analysis options. The most popular analysis
options are maps, which can be averaged over specified time
periods; area-averaged time series, which can be constructed
for a user-specified region; animations, showing maps of
successive time steps for specific data variables; Hovmöller
diagrams, for which both latitude-time and longitude-time
options are available; and atmospheric profiles for sound-
ing instruments which collect data at several atmospheric
altitudes. As an example of the expansion of Giovanni’s
analytical capabilities, time series can now be created for
specific months or seasons over multi-year periods. Table 1
lists the current analytical options in Giovanni.

While the analytical options in Giovanni are important,
of greater importance to scientists and application users
(including researchers concerned with public health issues)
are the data holdings in Giovanni. Data available in Giovanni
now include precipitation data from multiple missions, as
well as hydrological models; additional hydrological data
variables from assimilation models; detailed meteorological
data variables from a reanalysis model; atmospheric chem-
istry variables; atmospheric aerosol variables; selected ocean
color data variables; vegetation indices; and also tailored data
products for specific socioeconomic issues.

In the following text, we will first provide several ex-
amples of the use of Giovanni for public health issues to
demonstrate the system’s broad applicability in the public
health regime. The subsequent section will highlight specific
data variables and data sets in relation to the areas of health
that they can be applied to. The final section provides a case
history of the use of Giovanni for a public health issue that has
wide concern—discomfort index and heat stress—which will
demonstrate Giovanni’s ease of use for such investigations.

Table 1 Analysis options currently available in Giovanni

Maps Comparisons Vertical choices Time-series Miscellaneous

Time-averaged variable Correlation map (two
variables)

Cross-section, latitude vs.
pressure

Hovmöller,
longitude-averaged

Zonal mean

Animations Area-averaged scatter plot
(static)

Cross-section, longitude
vs.pressure

Hovmöller, latitude-averaged Histogram

Difference of
time-averaged variables

Area-averaged scatter plot
(interactive)

Cross-section, time vs.
pressure

Area-averaged differences

Accumulated variable Scatter plot (static) Vertical profile Area-averaged

Time-averaged overlay Time-averaged scatter plot
(interactive)

Monthly and seasonal
averages
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Categorization of Current Data Holdings
in Giovanni

The data variables in Giovanni can be categorized with
respect to their applicability to public health issues. In the
following, three tiers of applicability will be presented: Tier
1, data that have a strong relationship to public health, and
which are thus directly applicable in public health research;
Tier 2, data that have indirect yet established relationships
with an area of public health concern; and Tier 3, data that are
related to weather or climate with an effect on public health
and well-being.

Tier 1 Data Variables

Tier 1 data types include:

• Precipitation
• Temperature
• Aerosol optical depth (AOD)
• Nitrogen dioxide (NO2)
• Carbon monoxide (CO)
• Ozone (O3) erythemal ultraviolet (UV) daily dose
• Relative humidity

The GES DISC is NASA’s designated archive for
remotely-sensed and related precipitation variables, and
thus, Giovanni has many different types, and these range
in temporal resolution from monthly to hourly. Remotely-
sensed quantities from TRMM and the Global Precipitation
Measurement (GPM) mission are available, alongside
modeled precipitation variables from the Land Data
Assimilation System (LDAS) data sets.

Temperature data are available as a remotely-sensed
variable (from both MODIS and the Atmospheric Infrared
Sounder, AIRS) and as an assimilated model variable as well.
Relative humidity is provided as an AIRS data variable.

Widely usedAODvariables, directly relevant to air quality
issues, are provided by the Ozone Measuring Instrument
(OMI) and MODIS. OMI also provides NO2, SO2, ozone
concentration (in Dobson units), and erythemal UV daily
dose.

Tier 2 Data Variables

Tier 2 health-related variables in Giovanni are:

• Chlorophyll concentration (phytoplankton)
• Euphotic depth

• Sea surface temperature
• Normalized difference and enhanced vegetation indices

(NDVI/EVI)
• Soil moisture

As the discussion of research papers noted, chl a indi-
cates phytoplankton activity, and increased phytoplankton
concentrations are connected to disease (cholera), harmful
algal blooms (HABs), and eutrophication causing hypoxia
or anoxia in the water column. Chl a is also a foundational
variable for fisheries research. Euphotic depth, as an indicator
of turbidity, is also related to water quality. SST data can
also be related to eutrophication potential, fisheries (as an
indicator of currents and upwelling), and factors contributing
to tropical storm system intensities.

Vegetation indices are related to droughts and agricultural
impact and can also indicate where insect-borne diseasesmay
be an increased risk, which can happen for both drier-than-
normal and wetter-than-normal conditions. Soil moisture of-
fers similar research applications, as well as indicating flood
potential and the after-effects of severe storms, and is also a
critical variable for agriculture.

Tier 3 Data Variables

Tier 3 data types may be related to weather and climate,
with effects on public health and well-being. Many of these
data types measure quantities that are important to water
resources:

• Snow depth
• Snow mass
• Snowfall rate
• Snowmelt
• Fractional snow cover
• Cloud cover
• Snow/ice frequency
• Wind speed
• Runoff

The snow variables listed here have the potential to be
used for water resource studies, as snowpack is an impor-
tant water resource for many communities in mountainous
regions and contributes to reservoir levels. Trends in snow
cover and related variables are also climate change indica-
tors.

Cloud cover and wind speed both represent important
weather factors and can be used in examination of weather
system and interannual variability. Wind speed is also useful
for severe storm research, and cloud cover can be related to
solar radiation exposure, drought, and even HAB occurrence.
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Examples of Public Health Research Using
Giovanni

One of the best ways that the use of Giovanni has been
continuously assessed is via the compilation of peer-reviewed
journal research papers that cite the use of the system. Over
2,000 papers citing Giovanni have been published since the
first paper which used the system appeared in 2004. Many
of these papers have dealt with public health topics. We have
characterized the use of the system for public health by the
following categories:

• Air Quality
• Water Quality
• Epidemiology
• Erythemal Radiation Exposure
• Disaster Assessment
• Agriculture and Nutrition

The following provides examples of published papers for
each category.

Air Quality

Due to the availability of atmospheric aerosol data from
multiple instruments, including MODIS and OMI, and the
multi-year length of the data sets from these instruments, a
large number of journal papers have evaluated public health
in relation to atmospheric aerosols. OMI also provides ni-
trogen dioxide (NO2) data that are indicative of combustion
processes, so it has been used for both urban air quality
investigations and wildfire smoke research.

The Atmospheric Infrared Sounder (AIRS) data variables
include carbon monoxide (CO) and methane (CH4). Many
CO data variables acquired by the Measurement of Pollu-
tion in the Troposphere (MOPITT) instrument were recently
added to Giovanni.

Several data variables in Giovanni’s reanalysis data
sets also allow insight into air quality. The Modern Era
Retrospective-analysis for Research and Applications –
2 (MERRA-2) data set provides such variables as Black
Carbon, CO, dust (dry deposition, wet deposition, mass
density, etc.), sulfur dioxide (SO2), and atmospheric aerosols.

Ozone data are provided by both instrument observa-
tions and modeled data sets. OMI, AIRS, and MERRA-
2 all include ozone data variables. In addition, Giovanni
provides access to ozone data from the Total Ozone Mapping
Spectrometer (TOMS) missions. Ozone data extend back to
November 1978 for data from the TOMS instrument on the
Nimbus 7 satellite.

The following discussion briefly describes a variety of
papers which utilized Giovanni for research into air quality
topics.

A 2010 paper by Lu et al. (2010) described the creation
of an inventory of SO2 and carbonaceous aerosol emissions
for China and India from 1996 to 2010, noting the variability
of emission trends and its relationship to economic growth.
The researchers compared their model-based inventories and
emission trend estimates to satellite data and reported good
agreement.

The atmosphere over India was also the subject of Kishcha
et al. (2011), which examined the trends in aerosol op-
tical thickness (AOT; also referred to as Aerosol Optical
Depth, AOD) and the relationship of these trends to pop-
ulation growth. Kishcha et al. used data from MODIS and
the Multi-Angle Imaging Spectroradiometer (MISR) for the
period March 2000–February 2008. They found that AOT
was highest near the largest population centers, and the
regions with the most rapid population growth also had the
fastest-increasing trends in AOT. They inferred from the AOT
trends that high-population centers were currently experienc-
ing deterioration in air quality, and these trends could worsen,
causing an increase in health-related problems.

Urban patterns of temperature, precipitation, and atmo-
spheric aerosols vary systemically on a daily and weekly
basis, according to the clear results of Sitnov (2011) for the
city of Moscow. The patterns are most pronounced during
the warm months of summer. Temperature showed a max-
ima for Monday–Thursday and a minima on Saturday and
Sunday. This pattern was similar for precipitation when it
exceeded 10 mm of accumulation or more. Atmospheric
aerosols had an out-of-phase relationship with temperature
and precipitation, with theminima occurring Tuesday–Friday
and the significantly higher AOD values occurring on Sat-
urday and Sunday. Sitnov states that the patterns indicated
the likelihood of anthropogenic forcing on temperature and
precipitation, related to the aerosol pollution weekly cycle,
but that the actual mechanisms were difficult to determine
and could result from the interplay of both anthropogenic and
natural factors.

Simha et al. (2013) looked at a somewhat unique topic—
the potential effect on regional climate caused by a famous
celebration in India, the Holi festival. During the Holi fes-
tival, celebrants cover each other with colored paint and
powder, and large fires are ignited during the evening, ac-
companied in many places by fireworks. The researchers
concerned themselves with the effects of the Holi festival in
the city of Mumbai. During the Holi festival, ground-based
AOD data collected with a sun photometer showed a distinct
increase. After correcting for the time of MODIS overpass,
the ground-based data and MODIS data exhibited a very
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good correlation. Higher water content in the atmosphere
was likely a contributing factor to an increase in particle size
during the festival as well. The increase in aerosols during the
festival contributed to an increase in aerosol radiative forcing,
decreasing the shortwave solar irradiance.

In their 2015 paper, Buchholz et al. (2015) examined
air quality in Wollongong, located on the southeast coast
of Australia. They used measurements of CO, CH4, and
carbon dioxide (CO2). The main cause of CO variability was
biomass burning in northern Australia, while CH4 was in-
fluenced by nearby coal mining activities. MODIS fire pixel
data were used to show a decrease in northeast Australian
fires from 2011 to 2014, which helped to explain a decrease
in the background concentrations of CO.

In the United States, summer fire seasons in the Pacific
Northwest and California contribute to air quality hazards
over much of the country, depending on the intensity and
duration of the fires and the efficiency and distance of
transport on continent-spanning winds. Creamean et al.
(2016) analyzed the effect of smoke from Pacific Northwest
fires on air quality in Colorado. Ground-based aerosol data
were collected at a site in Boulder. The ground-based data
for three different events showed increases in both metals
and mineral content in the aerosols contributed by wildfire
smoke and from mineral dust, which was believed to have
been lifted into the air during the fires. The latter process
had not been previously reported. MODIS AOD data in
Giovanni were used to delineate the sources of the aerosols,
combined with fire pixel and surface thermal anomaly data
also acquired by MODIS.

Smoke from fires in Indonesia induced by a dry weather
pattern due to an El Niño event was the subject of an in-
vestigation by Koplitz et al. (2016). The smoke from the
widespread fires caused extreme haze conditions over much
of equatorial Asia. The results indicate that the haze con-
tributed to 100,300 excess deaths, which was more than
twice as many caused by a similar, though less intense,
2006 event. Fires in South Sumatra Province were identified
as an important factor contributing to the increase. AOD
measurements from MODIS and OMI were compared to
data from surface sensors in the AERONET network and
showed approximately double the aerosol concentrations in
2015 compared to 2006. Koplitz et al. complete their paper by
stating that their modeling approach could assist government
agencies in prioritization of peatland and forest restoration
areas to reduce the potential health impacts on downwind
populations and also aid policy decisions and law enforce-
ment directed at illegal forest burning.

Water Quality

Water quality, like air quality, is a significant public health
factor that has been the subject of research and monitoring
around the world, both for fresh (lakes, rivers) and saline
(estuaries, seas, oceans) bodies of water. The data variables
in Giovanni that are classified generally as “ocean color”
are the primary variables utilized for water quality-related
investigations. Of these, chlorophyll a concentration (chl
a) and sea surface temperature (SST) dominate the usage
patterns, but variables thatmeasurewater clarity and turbidity
have also been utilized.

In addition, Giovanni also provides numerous hydrolog-
ical variables that are strongly related to water quality. The
NASA GES DISC is the primary NASA data archive for
precipitation data, and it is obvious that precipitation affects
both the volume and quality of freshwater resources. Also
available are hydrological data from land data assimilation
system (LDAS) models, both for North America (NLDAS)
and global (GLDAS). The NLDAS and GLDAS variables are
similar, but NLDAS data are at higher spatial and temporal
resolution.

In the following brief summaries, a variety of water
quality-related investigations that have accessed data in
Giovanni are described.

In 2006, military hostilities between Lebanon and Israel
caused significant damage to the Jiyyeh power station located
on the Mediterranean Sea coast south of Beirut. An oil spill
occurred in mid-July, and heavy fuel oil continued to flow
into the coastal waters until early in August. The release
of approximately 15,000 tons of oil in total extended over
approximately 150 km of coastline. Pan et al. (2012) present
the results of phytoplankton monitoring efforts conducted
with satellite data following the oil spill. Chl a data acquired
by both the Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS) and MODIS discovered a short-lived bloom occurring
adjacent to the spill zone in May 2007, about 10 months after
the oil spill. The data did not indicate a bloom occurring in
this region at this time in any other year. Because anomalous
blooms have been reported several months after other major
oil spills, the authors concluded that this bloom was related
to the power station oil spill in the previous year.

HABs appear to have been increasing in many freshwater
and saltwater water bodies over the past decade. In a study
that described changing conditions and which anticipated
increasing difficulties with HABs in Lake Erie, Stumpf et
al. (2012) used SST data from MODIS in conjunction with
other ocean color data sources to examine the variability
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of algal blooms in Lake Erie from 2002 to 2011. SST was
important in identifying conditions conducive to the growth
of Microcystis, a harmful algal species. Two years after the
publication of this paper, a massive algal bloom in eastern
Lake Erie, with high Microcystis activity, forced the city of
Toledo to shut down their water supply for 2 days in August.

As noted above, the NASA GES DISC is the designated
archive for precipitation data from NASA satellite observa-
tion missions, and data products from these missions are
available in Giovanni. Tesi et al. (2013) created a map of rain-
fall accumulation with Tropical Rainfall Measuring Mission
(TRMM) precipitation data for their study of the November
2011 flood of the Po River in Italy. The researchers studied
the effects of this intermediate-sized flood (2.5-year return
period) on total suspended sediments, nitrogen concentra-
tions, nutrients, and particulate material in the river and
exported by the flood flow into the northern Aegean Sea.

The alteration of theArabian Sea ecosystem due to climate
change, resulting in a shift from diatoms to Noctiluca (a
dinoflagellate) as the primary phytoplankton producer, has
been documented in several studies. This shift has had sig-
nificant effects on both coastal water quality and Arabian Sea
fisheries. A 2015 study byDwivedi et al. (2015) described the
detection of Noctiluca scintillans “hot spots” in the Arabian
Sea.

Both tourism interest and coastal fisheries can be affected
by adverse coastal water quality conditions and both are
important along the coast of Maine. Tilburg et al. (2015)
describe models that employed multiple variables to predict
noxious or hazardous water quality conditions for this fa-
mous coastal region, particularly focused on fecal coliform
bacteria concentrations. They found that accurate predictions
required more than just river discharge data and precipitation
data. The authors state that this effort was one of the first
attempts to predict water quality in coastal ocean waters. The
daily TRMM precipitation data for this modeling effort were
acquired with Giovanni.

Another coastal region with water quality concerns is the
long coastline of Italy. In their 2016 study, Corbari et al.
(2016) investigated how intense short rainfall events influ-
ence coastal water quality in the vicinity of the discharge
zone for four different rivers draining small watersheds. The
researchers combined daily TRMM precipitation data with
high-resolution data from MODIS, allowing the generation
of turbidity and suspended sediment concentration estimates,
to examine the occurrence of intense rainfall events and the
effects on the discharge zone. The expected correlation of
high-volume rainfall with increases in offshore turbidity pa-
rameters was observed, and the authors indicate that remote
sensing could be used to detect changes in water quality due
to weather events in a more rapid manner than ground-based
water quality sampling.

Epidemiology

There are many different aspects to the use of remote sensing
data in epidemiology research. One aspect concerns the
effort to understand the causes of certain types of disease
outbreaks with respect to factors in the natural environment.
Another aspect is monitoring for conditions that might be
conducive to the occurrence of a disease and potentially using
the data to predict disease outbreaks beforehand. A third
aspect is demonstrating linkage between actual causality (as
opposed to correlation) and disease occurrence and in so
doing perhaps identify methods to prevent disease pandemics
and epidemics. Giovanni has been used in published research
that is related to all three of these epidemiological aspects.

One of the strongest relationships between a disease and
a remotely-sensed parameter is the relationship between
cholera and chl a. The reason for this relationship is that
Vibrio cholerae bacteria attach to zooplankton (copepods),
which are primary consumers of phytoplankton. Thus,
increases in phytoplankton concentration are correlated with
increased copepod populations and the associatedV. cholerae
bacteria. Remotely-sensed chl a may thus indicate regions
where cholera incidence is increased. Using SeaWiFS chl a
data, Jutla et al. (2010) showed a clear seasonal relationship
between river discharge, chl a, and cholera in the Bay of
Bengal region over a 10-year period.

Diseases that spread with mosquitoes as the vector, the
most notable being malaria, are related to the availability of
standing water where the mosquitoes can breed. Precipitation
is therefore an important environmental variable related to
malaria occurrence patterns. In Midekisa et al. (2012), a
malaria early-warning model for mountainous regions of
Ethiopia was developed. The researchers were able to con-
struct and test the model using TRMM precipitation data and
both land surface temperature (LST) and vegetation index
data from MODIS.

Another mosquito-borne disease, dengue fever, was the
subject of Moreno-Madrinan et al. (2014). The large research
group used MODIS LST and TRMM rainfall accumulation
data to estimate the abundance of the dengue virus mosquito
carrier Aedes aegypti. Estimates of abundance were com-
pared to A. aegypti pupae counts acquired by field collection.
The researchers concluded “Strong correlations were found
between the abundance of the dengue virus mosquito vector,
Ae. aegypti, and RS-derived nighttime LST, elevation or rain-
fall along a geographic climate/elevation gradient in Central
Mexico.”

Reducing the incidence of cholera in Haiti was the focus
of the paper by Rebaudet et al. (2013). A cholera epidemic
in 2010 accounted for over 8000 deaths and over 650,000
diagnosed cases. Rainfall amounts during Haiti’s dry and wet
seasons exhibit a very strong positive relationship with the
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occurrence of cholera, as shown in their Fig. 1, constructed
with TRMM rainfall data acquired through Giovanni. The
reason that cholera in Haiti persisted in subsequent years was
due to the survival of the V. cholerae bacteria in just a few
locations. The researchers therefore concluded that proper
water treatment measures taken during the dry season could
significantly reduce or eliminate the occurrence of cholera in
Haiti.

Influenza is one of the most widespread contagious dis-
eases affecting the world population. Thus, studying factors
that affect the spread of influenza is important to public health
concerns around the world. Unlike temperate regions, where
influenza has a primary season of occurrence (generally the
colder winter months), the “flu season” is not as well defined
in the tropics. Despite this difference, there is a detectable
seasonal pattern, as described by Soebiyanto et al. (2014).
They examined temperature, specific humidity, and rainfall
in three Central American countries to determine correlations
between these factors and influenza affliction frequency. Spe-
cific humidity was the strongest factor, as it showed a positive
association with influenza in El Salvador and Panama and a
negative association in Guatemala. Temperature and rainfall
exhibited positive associations in sub-regions of each of the
countries studied. Both environmental and social patterns
may influence disease transmission, accounting for the dif-
ferent positive and negative associations observed.

According to Wu et al. (2016), shallow wells are an
important source of drinking water in rural Bangladesh.
Thus, extreme rainfall events and land use can both influence
the presence of fecal coliform bacteria in these wells. This
study found that the presence of fecal coliform bacteria was
much more likely if heavy rain events occurred in the three-
day period before water testing. Particular types of land use
combined with heavy rainfall amplified the likelihood of
fecal coliform contamination in the shallow wells.

Erythemal Radiation Exposure

The availability of a particular data product in Giovanni has
enabled one area of public health research with a similar
theme. The data product is Erythemal (UV) Radiation. “Ery-
themal” refers to reddening of the skin, which is caused
by exposure to solar UV radiation. Such exposure is an
immediate cause of sunburn and is a causal factor in skin can-
cer, cataracts, and immune system disorders. The Erythemal
Radiation data product is available from both the TOMS and
OMI sensors.

In 2014, a paper by Serrano et al. (2014) exam-
ined the various levels of UV exposure that occur
for outdoor sports: tennis, hiking, and running. Hikers
received the highest amount of daily UV exposure of
these three groups. Because some of the hikes took

place in locations that were not near a ground solar
radiation instrument, daily OMI data were used for
these locations to estimate the ambient erythemal UV
radiation.

Workers on ships at sea are also exposed to sunlight for
extended periods, and this can be particularly acute along
tropical sea lanes. Feister et al. (2015) modeled the exposure
of deck crew members using both ship-based sensors and
satellite data. Makgabutlane and Wright (2015) performed a
similar study for outdoor workers in Pretoria, South Africa.

Exposure to UV radiation from the Sun is not entirely a
deleterious health factor, as the skin synthesizes Vitamin D
when exposed to the Sun. Wainwright et al. (2016) described
the development of a dosimeter capable of measuring both
erythemal radiation and Vitamin D-effective radiation. To
calibrate the dosimeter, the researchers applied both OMI
AOT and ozone concentration data.

Humans are not the only living beings that are affected by
solar UV radiation. Plants can also be affected, and damaged,
by UV, and this potential also requires measurement. Parisi
et al. (2017) describe their long-term dosimeter designed to
measure the UV exposure of plants. This group obtained the
average ozone concentration during the one-month exposure
period with OMI data.

As noted earlier, UV exposure can affect the human
body’s immune system. An effect of this is to reduce the
effectiveness of vaccinations given to prevent disease. This
interaction of health concerns was examined by Wright et
al. (2017) for children in rural areas. In these areas, children
and their families may walk long distances to clinics where
the vaccinations are obtained. The sun exposure during the
walks can reduce vaccine effectiveness, so the authors studied
practices including counseling parents on sun protection, and
providing sun protection (clothing, umbrellas, and sunscreen)
for the parents of children receiving measles vaccine. The
annual erythemal radiation exposure cycle for the Limpopo
province of South Africa, where the study took place, was
generated with OMI data in Giovanni.

Natural Hazards Prediction and Assessment

Natural hazards are a public health factor for many differ-
ent reasons. Injuries and death can result from the condi-
tions occurring during earthquakes, hazardous weather (hur-
ricanes, tornadoes, and severe storms), wildfires, landslides,
and floods. Subsequent to the actual event, public health may
be affected by disease outbreaks due to poor air and water
quality. Effects of disastrous events can extend long distances
from the immediately affected area as well. Data products
acquired from and visualized with Giovanni have been used
to assess the cause of natural hazard events, the effects of
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such events, and even to provide predictions of certain types
of events.

In 2004, a massive tsunami inundated large stretches of
the Indian Ocean coast, including the coastlines of Thailand,
Malaysia, Indonesia, India, and Sri Lanka, causing thou-
sands of fatalities and extreme damage. After the catastrophic
waves went inland, the outflow of these waves into the ocean
resulted in pollution, turbidity, and hazardous water quality.
Tan et al. (2007) analyzed the effects of the tsunami on the
ocean color along the coasts of Sumatra and Thailand, finding
elevated turbidity due to enhanced sediment concentrations
in some coastal areas affected by the tsunami. While chl
a did not appear to be influenced after the tsunami, as
normal oceanic processes were observed affecting chl a,
the sedimentation and land erosion caused by the waves
were indicated as a potential factor affecting local marine
resources.

In the Bihar state of India, a devastating flood of the Kosi
River in August 2008 resulted in both heavy loss of life
and widespread destruction of crops, according to Singh et
al. (2011). During the flood, the river breached its normal
channel and agricultural canals and flooded several villages
that are located on its alluvial fan, along with extensive
flooding of croplands. Consultation of TRMM rainfall data
in Giovanni indicated that the region, particularly the upper
catchment basin, received considerably higher-than-normal
rainfall in June, July, and August 2008, creating an increased
susceptibility to flooding due to soil saturation.

Both the prediction of wildfire danger in Greece, and
the consequences of a destructive wildfire in August 2007,
constituted the subject of Athanasopoulou et al. (2014). They
found that the enhanced fire risk for this period was repro-
duced by a Fire Weather Index model, which could enable
future predictive success. The atmospheric effects of the
August 2007 fires were evaluated using MODIS AOD.

Nearly 5 years after the Kosi River flood disaster, another
flood caused thousands of deaths in northern India. A glacial
lake above the village of Kedarnath rapidly expanded due
to anomalous snow melt, and the water volume in the lake
was increased by heavy monsoon rains earlier than normal
in the monsoon season. These factors combined to cause a
lake outburst and debris flow on June 16 and 17, 2013. A
ground weather station measured 325 mm of rainfall on June
15–16 adjacent to the glacier feeding the lake, and TRMM
average daily precipitation data demonstrated that this was
an unusually high amount for these dates, substantially in
excess of even 90th-percentile values for the 1998–2012
period. TRMM rainfall accumulation maps also showed that
the heaviest precipitation fell very near to the lake. These
events were described in Allen et al. (2015).

Northern India and the Himalayan region may seem to
be plagued with various kinds of natural disasters; the April
2015 earthquake in Nepal was also the subject of a study

which used Giovanni (Ganguly 2016). In this remarkable
paper, AOD was shown to increase near the earthquake epi-
center 26 days prior to the earthquake. Post-earthquake AOD
increases were attributed to natural dust and building damage
and did not exceed the peak prior to the earthquake. Ozone
concentrations were elevated approximately 20 days prior to
the earthquake. The author discusses the pre-earthquake sub-
surface processes that could lead to the elevation of AOD and
ozone, which have also been described for other earthquakes.

Prediction of natural disaster effects was the subject of
both Wijesundera et al. (2016) and Yu et al. (2017). Flooding
in eastern Australia due to tropical cyclones was the subject
of the former paper, which used rainfall data in a case history
of tropical cyclone Yasi as a test of their predictive model.
The latter paper described the prediction of wildfire risk
in Cambodia, using TRMM rainfall data from Giovanni, in
conjunction with several MODIS data products (temperature,
vegetation index, and thermal anomalies) obtained from the
NASA Land Processes DAAC. One important element of
the Yu et al. fire risk model was that it only used publically
available remotely-sensed data products.

Agriculture, Fisheries, and Natural Resources

The last category of public health concerns that have been
investigated with Giovanni’s data holdings and analytical
capabilities is that of agriculture, fisheries, and natural re-
sources. Giovanni provides insight into both the cause of
agricultural problems and resource depletion, as well as
providing data tomonitor conditions and provide information
to policymakers and stakeholders. In addition to the research
papers summarized here, Giovanni has found frequent use
in government and consultant reports in this particular focus
area.

Over the past decades, reduction of ice area and volume
in Earth’s cryosphere has been described in many different
venues. In 2008, Kehrwald et al. (2008) used ice cores on
Naimona’nyi Glacier in the Himalayan mountain range to
study the mass loss of this high elevation glacier. Mass
loss of these glaciers was deemed a concern because the
glaciers feed the headwaters of major rivers on the Indian
subcontinent. Precipitation data in Giovanni were used to
characterize the precipitation delivered to the region, which
decreases substantially from the southwest to the northeast.

Agricultural diseases are a major concern of farmers, and
precipitation again is an important factor. Farrow et al. (2011)
examined the relationship between bean root rot and precip-
itation in East Africa. Heavy rainfall events during the crop-
ping season were the primary cause of root rot, but the data
from rain gauges were too sparse to allow accurate ground-
based assessment.While initial results using remotely-sensed
data were inconclusive, the researchers noted that the rapid
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availability of TRMM daily data in Giovanni could enable
better estimates of the probability of root rot and also enable
an “early-warning system” for the growing season.

Moving from the African continent to the offshore At-
lantic Ocean, one of the most productive ocean regions in
the world is the Benguela Upwelling Zone off of the coast
of western South Africa and Namibia. Jury’s 2012 paper
described the physical oceanographic factors that affect the
fish catch, which is normally reliable but which has experi-
enced occasional “crashes” in fish populations. Jury found
that a weakening of southeasterly winds and a half-degree
Centigrade increase in SST were associated with a higher
fish catch. Chl a and SST from Giovanni characterized the
oceanic environment and also provided direct information on
the annual seasonal cycle.

Both the short-term effects of air pollution and the long-
term effects of climate change on agriculture in India were
the subject of Burney and Ramanathan (2014). They esti-
mated that climate change and “short-lived climate pollu-
tants” (SLCPs) decreased wheat yields by 36% over India,
with some areas having decreases up to 50%, compared
to conditions with neither factor present. The influence of
short-lived pollutants was significantly larger than the effects
attributed to climate change, through the year 2010. AOD
from MODIS and surface ozone from MERRA were used
in this pioneering study.

Another agricultural concern for regions that are near
major continental deserts is the process of desertification,
which can reduce the available area for farming and livestock
grazing. Lamchin et al. (2015) used rainfall and air temper-
ature data acquired from Giovanni in their examination of
desertification processes near the Hogno Khaan protected
area in Mongolia. These parameters did not exhibit notable
trends during the study period. The primary process identi-
fied for desertification in this area was increased livestock
grazing pressure, reducing vegetation, which allows greater
movement of sand dunes. The pace of desertification was
related to the slope and elevation of the land surface.

The Atlantic Forest ecosystem of northern Argentina was
the focus of the study performed by Zaninovich et al. (2016).
Necromass, which consists of fallen vegetation and organic
debris, was compared for the native forest environment and
non-native pine tree plantations. The necromass for the native
forest was found to be more diverse and had much greater
moisture retention and longer carbon storage times than the
pine forest plantations. The necromass in the pine forest
plantations also increased fire risk, due to the higher amount
of fine detritus and lower water retention characteristics.
TRMM rainfall data provided context for the annual precip-
itation cycle in the region.

According to Adama and Mochiah (2017), the African
armyworm is an “important migratory pest” in sub-Saharan

Africa, capable of causing significant damage to crops. In
Ghana, the African armyworm can damage both maize and
rangeland vegetation. Grain loss during armyworm outbreaks
can range from 60% to 100% of production. In an effort
to determine the climatic factors related to such outbreaks,
the authors used TRMM daily rainfall data from Giovanni
in conjunction with air temperature data and NDVI data
from other sources. Two outbreaks in 2006 and 2009 were
studied. In 2006, the conditions, including moderate rainfall,
favored the attraction of moths to existing vegetation where
eggs could be deposited. However, the conditions prior to
the 2009 outbreak differed, including heavier rainfall, with
no clear reason indicating favorability for moth egg-laying
activity. Given the seriousness of armyworm outbreaks, the
authors advocated additional study with an examination of
more climate-related variables.

Sub-Saharan African was also the region of study for
McNally et al. (2017), who describe the creation of a land
data assimilation system concerned with food and water
resource security. The system, the Famine Early Warning
Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS), is a custom instance of the NASA Land
Information System (LIS), which also creates the NLDAS
and GLDAS data sets. The FLDAS data variables are all
available for analysis in Giovanni. In their paper, McNally
and her co-authors examine correlations with several FLDAS
variables and data from other sources to validate the accuracy
of these data variables.

Now that the range of public health topics that can be
addressed with data in Giovanni has been presented, the next
step is to demonstrate how these variables can be useful for
public health applications research.

Case Study—Using Giovanni to Examine
the Factors Contributing to Heat Stress
Dangers

The following example case study was partly prepared by
a high school student intern working in conjunction with
our GES DISC staff. This work demonstrates how easily
Giovanni can be applied by “novice” users to areas of public
health concern. The papers previously discussed indicate that
the analytical capabilities and data variable archive in Gio-
vanni provide valuable data for sophisticated public health
research. Giovanni can also be used to contribute to basic
monitoring, trend analysis, and reporting and also provide
data baselines for understanding the factors that affect many
different public health topics.

The topic under consideration here is heat stress. Two
different variables, temperature and humidity, are used to
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compute the Discomfort Index (or “Feels Like” index) for
high temperature and high humidity conditions. The National
Weather Service issues Heat Advisories and Extreme Heat
Warnings when there is an increased risk of heat exhaustion
and heat stroke. Such advisories are important for many dif-
ferent outdoor activities, including construction work, sports
activities, and child care.

For this study, we wished to investigate if the primary
factor that contributes to a higher Discomfort Index (which
will be referred to as DI subsequently) varied depending on
the region under consideration. In areas near the ocean coast,
humidity was anticipated to be a more important factor than
for inland areas more distant from a source of humidity.

The regions selected were the US states California, Texas,
Arizona, and Florida, and the countries of Sudan, Saudi
Arabia, and Yemen. For each of these regions, the time
period of interest was selected to be June 2018, generally a
warm summer month for each of these Northern Hemisphere
locations. Daily surface relative humidity data from AIRS
and daily mean 2-meter air temperature data from MERRA-
2 were selected. The DI formula employed was from the
South African Weather Service Web page “What is the
discomfort index?” (http://www.weathersa.co.za/learning/
educational-questions/58-what-is-the-discomfort-index)
and is expressed as the following:

Discomfort Index = (2 × T ) + (RH/100 × T ) + 24

where T is the dry bulb or air temperature in degrees Celsius
and RH is the relative humidity in percent.

The time-series plots were created by generating daily
time series of temperature and RHwith Giovanni. A shapefile
for either the state or country was used as the region of inter-
est, and the data values were averaged over the entire region.
Because both temperature and RH could vary considerably
over a large state like California, a more in-depth study could
focus on smaller coastal or inland regions rather than an entire
state.

After each individual time series was created, the time-
series data (date and data value) were downloaded from Gio-
vanni in comma-separated variable (CSV) format and entered
into an Excel spreadsheet. The DI formula given above was
used to calculate DI for each date in the third column of the
spreadsheet. After the DI values were calculated, time-series
plots of temperature and RH vs. time, temperature and DI vs.
time, and RH and DI vs. time were created for each region of
interest.

The results for each region are presented and briefly
discussed below.

California

Temperature and RH both varied in a relatively narrow range
in the state of California during June 2018. Temperature
varied between 15 and 25 ◦C and was near 25 ◦C for most
of the latter half of the month (note that these are daily

http://www.weathersa.co.za/learning/educational-questions/58-what-is-the-discomfort-index
http://www.weathersa.co.za/learning/educational-questions/58-what-is-the-discomfort-index
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averages). RH varied between 25% and 35%, which likely
indicates that this statewide average value was dominated by
the drier interior of the state rather than the coastal region.
The DI tracks closely with the daily temperature but does
not appear to have a strong connection with RH at these low
humidity values. The DI ranged from a low of about 60 to a
high of 80 seen in the latter half of the month.

Arizona

The temperature and RH data for Arizona in June 2018 show
an interesting pattern. While the average temperature was
relatively constant between about 22 and 29 ◦C, the RH
values increased quite markedly during the middle of the
month to over 50%, while they were normally in the dry 10–
20% envelope. This increase in RH was accompanied by a
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decrease in average temperature, indicating a rainfall event,
which was confirmed by examination of a June 2018 time-
series of the Integrated Multi-satellitE Retrievals for GPM
(IMERG) Final Run data product. So the combination of
significantly increased RH with a lower temperature only
caused a slight decrease in DI. The influence of the higher

humidity can be seen in the DI vs. temperature plot, where
the separation of the two time-series lines at mid-month is
the only time that temperature and DI do not match closely.
This congruence also indicates that for most of the dry desert
summer, temperature changes are the dominant cause of DI
variability. In fact, the DI exhibited only slight changes in the
70–90 range.
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Texas

The state of Texas is large and includes a semi-arid western
region and a southeastern region with a long Gulf Coast
shoreline. Thus, examining the DI over the entire state will
generate an average that is likely not fully indicative of
regional conditions. For the month of June 2018, the average
temperature ranged from a high of 31 ◦C to a low of 27 ◦C.

The RH range was from approximately 30 to 50%, which
likely combines the influence of low humidity conditions in
the west and higher humidity in the east. The time-series
show the DI matching the variability of temperature quite
closely and also showing corresponding evolution with RH,
with the exception of the minimum temperature days on June
4th and the cooler period from June 17 to 22. So, over the
entire state, RH is a secondary influence on the DI compared
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to the surface temperature. However, the maximum DI was
just over 98 on the most humid day of the month and nearly
reached 100 on the second most humid day, indicating that
humidity is a factor during uncomfortable days in Texas.
Considering how much higher the average humidity in Texas
is compared to Arizona in June, the higher DI values are not
surprising.

Florida

When the weather in Florida in summer is discussed, hot and
humid are two words that can be generally used to describe
it. For June 2018, the average RH just barely fell below 60%
on one day and was usually between 60% and 70%. The
temperature in June rose from a low of 25.5 ◦C early in the
month to a high of above 28 ◦C for much of the second half
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of the month. Because the RHwas so constant, the variability
of the DI was mostly determined by the temperature change.
The DI rose from about 91 early in the month to 98–100
late in the month for several days. So, progressing from west
to east, the DI ranges for each state rise with increasing
humidity, even though the primary factor causing variability
in DI is surface temperature.

Next we will consider three countries in Africa and the
Middle East: Sudan, Saudi Arabia, and Yemen.

Sudan

Sudan is a huge country, located in the sub-Saharan climate
region. The shapefile in Giovanni (acquired from the Human-
itarian Information Unit of the US State Department) used
for Sudan is the now-recognized boundary of the country
that does not include South Sudan, which is adjacent to
the northern tropical region of Africa. Hence, the climate
conditions in Sudan are semi-arid to arid. This can be clearly
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seen in the average temperature, which ranged from above
29 ◦C at the end of the month and a high over 33 ◦C at mid-
month. The humidity was in the moderate range between
15% and 30%. As both temperature and humidity rose in the
first half of the month, the DI rose from a low value of 88
to a high value of 97. During the final days of the month,
as the humidity remained between 25% and 30%, slightly
decreased temperatures led to a decrease in the DI.

Saudi Arabia

The country of Saudi Arabia is very arid, much like the
climate of Arizona, though the presence of the warm wa-
ters of the Red Sea on the western coast of the state does
contribute some humidity to the country’s climate. Clearly,
this is not a large influence on most of the country, as the
RH only ranged from 10% to 17.5% in June. The surface
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temperature, as would be expected, is fiercely hot, between
about 33 and 36 ◦C. Thus, given the low RH values over
most of the country and the high temperatures, the DI pattern
in the time series closely matches the temperature pattern.
It is interesting to note that even though the temperatures
are considerably higher compared to Texas, the DI ranged
between similar values, 91–100 for Texas and 96–101 for

Saudi Arabia, though for the latter half of the month the DI
in Saudi Arabia was in the 92–98 range.

Yemen

The country of Yemen is located south of Saudi Arabia and
has a coastline on both the Arabian Sea and the Gulf of Aden.
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Given this location, and the size of the country, increased
humidity is a definite aspect of the country’s climate. Still, its
location on the Arabian Peninsula keeps its average humidity
significantly lower than that of Florida. During June 2018,
the RH saw a high of just over 50% early in the month and
remained in the range 20–40% after June 9. The temperature
was lowest (about 29.5 ◦C) when the humidity was highest
and rose to between 30.5 and 32 ◦C after June 9. In our

examination, Yemen is the only region of interest where there
is a closer match between the time series of RH and DI
than between temperature and DI. Unlike the other states
and regions, higher temperatures did not contribute to the
DI value as much as lower RH values. This is particularly
evident in the latter half of the month. So, for Yemen, the
discomfort of the populace during the warmth of summer
is determined more by the humidity than the temperature,
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and for this location, that is likely closely related to the
direction that the wind blows, either from the dry interior of
the Arabian Peninsula or the sultry waters of the Red Sea and
Gulf of Arabia.

Summary and Conclusions

This examination of public health research topics in which
Giovanni was employed, and a case study showing how
Giovanni can be used to examine heat stress conditions,
provides ample demonstration that the system allows in-
vestigative research and useful results for many different
topics. In many of the research papers we have discussed,
Giovanni contributed data or data visualizations as part of an
entire analysis related to a particular public health issue. The
nature of the contribution varies with the actual issue being
investigated—data variables in Giovanni are more directly
related to air quality, for example, compared to the factors
contributing to the spread of influenza. This difference in
applicability was the motivation for our classification of the
data variables in Giovanni as Tier 1, Tier 2, or Tier 3 with
respect to their connection to public health issues of import.

We also realize that evaluating research papers published
in journals provides insight into only one aspect of Giovanni
usage. Throughout our years of experience with the system,
we have also seen data and data visualizations used in meet-
ing presentations, government reports, consultant reports,
monitoring compilations, and popular media articles, all hav-
ing some relationship to public health. So we are confident
that the system provides a valuable source of data for both
researchers and professionals in the public health field.

Our case study provides an example of a topic for which
we have not seen Giovanni used in a research journal, but one
which is a significant public health concern, and one which
could be the subject of more in-depth research. There have
been recent events of higher mortality related to heat waves
in Europe (2003), India (2015), and recently a summer 2018
heat wave in southern Quebec. Themethod of analysis shown
in our case study could be applied to each of these events
as part of a research effort examining the heat stress-related
mortality and its relationship to climate change. Furthermore,
for regions that are known to have potential for heat stress in-
juries and mortality, notably tropical or semi-tropical coastal
areas, our simple analysis method could be applied to identify
the combination and pattern of meteorological factors that
lead to dangerous conditions in a retrospective analysis. This
information would be useful to many different organizations
concerned with the management of outdoor activities and
with the care and protection of individuals at heightened risk.

We have thus shown that Giovanni has contributed to pub-
lic health research, even in the system’s earliest instantiation
at the beginning of its scientific usage. Giovanni can and will

continue to inform the arena of public health science with
regard to many different environmental influences on local,
regional, and global health issues.
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Geospatial Analysis of the Urban Health
Environment

Juliana Maantay, Angelika Winner, and Andrew Maroko

Introduction to the Spatial Analysis of Urban
Health

More than half of the world’s population currently lives
within urbanized areas, and this percentage is expected to
increase in future. Many of the global public health and
environmental challenges of the twenty-first century occur
in urban areas, and there are some issues that are unique to,
or greatly exacerbated in, cities (Freudenberg et al. 2009).
Some of the potential issues adversely impacting the health
of urban residents are as follows:

• High density of urban areas
• Housing overcrowding
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• Poor-quality and hazard-prone housing
• Informal residential slum areas without services
• Racial and ethnic segregation
• Pressures on infrastructure (water supply, waste water

treatment, solid waste disposal, energy distribution, etc.)
• Inadequate transportation systems
• Concentration of pollution and noxious land uses
• Food insecurity
• Urban violence and crime
• Extreme differential access to services (e.g., health

providers, emergency care, public transportation,
adequate fire and police protection, social services,
other governmental services) and beneficial environ-
mental amenities (e.g., parks, recreational and cultural
opportunities, healthy food options, safe and attractive
environments) among population groups within the same
municipality

• Disproportionate exposures to risk and hazards (e.g., fires,
flooding, unsafe living environments, landslides, earth-
quakes), climate change, and extreme weather events

Geospatial analysis and Geographic Information Science
(GISc) technology can help address these issues in a number
of ways. For instance, calculating the geographical extent of
an environmental burden or benefit in order to estimate and
identify the population potentially exposed to or impacted by
the event or condition, illuminating the spatial relationships
between environmental conditions and health outcomes, and
examining the spatial and temporal patterns of how diseases
cluster are just a few of the types of analyses conducted to
help guide policy-makers, health experts, and public officials
in improving health outcomes, reducing inequity, and miti-
gating vulnerability. These techniques and methods will be
reviewed in this chapter.

The goals and purpose of medical geography (now more
typically termed “health geography” or “health geograph-
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ics”) can be thought of as an attempt to figure out the
spatial patterns of disease – for instance, where a certain
disease is geographically concentrated; whether a disease hot
spot or cluster is more pronounced than we would expect
based on the underlying population numbers; how disease
spreads or diffuses; and how its location is connected with
other environmental and socio-demographic variables. The
early instances of medical mapping generally focused on
contagious diseases (Koch 2005; LSHTM 2013). In more
recent times, medical geography has expanded to examine
the spatiality of chronic health conditions, rare diseases, ge-
netic disorders, HIV/AIDS, and other health concerns, such
as drug use andmisuse, accidents, suicides, and interpersonal
violence. Investigating the spatial patterns in these health
outcomes is a bit like detective work, and some of the avenues
of research are red herrings or lead to dead ends. Often the
analyses cannot pinpoint correlations or causalities.

Even with current, comprehensive, and relatively reliable
contemporary health data and state-of-the-art statistical and
analytical techniques, there are many pitfalls and deficiencies
in using geospatial analysis and mapping to prove causation,
or even to provide reasonable explanations of health issues
(Maantay 2002, 2007). However, mapping can be a stepping
stone to greater understanding of critical spatial relationships
and of space-time trends, thus potentially pointing the way to
answers or, at least, to better questions.

Somewhatmore tenuous in terms of definitive conclusions
is the mapping of historical medical data, due mainly to lim-
itations of data availability at an optimal scale, and questions
about data accuracy and completeness. Historical medical

mapping is one of the most fascinating topics in health
geography, and much of it pertains to urban areas and urban
populations since that is typically where it was undertaken
first. It is often thought that Dr. John Snow’s seminal work
in mapping the 1854 cholera epidemic in London was the
first real instance of the geospatial analysis of a disease.
Dr. Snow, through statistics and mapping, was able to make
the connection between the residential locations of fatalities
from the disease and the probable source of the disease, a
public water pump. This was significant because up until this
time, cholera was considered to be caused by unhealthy air,
a “miasma,” when in reality it is a water-borne disease. Once
the cause was demonstrated fairly definitively, authorities
and the population could go about developing the remedies
(Johnson 2007).

While Dr. Snow’s work is the best-known example of
historical medical mapping, it was hardly the first. A full
decade earlier, Dr. Robert Perry, a surgeon in Glasgow’s
Royal Infirmary, also mapped a fever epidemic and found
substantial spatial correspondence between the locations of
the fever victims and environmental and socio-economic
characteristics of the neighborhoods in Glasgow, Scotland
(Perry 1844) (See Fig. 1). Even earlier, disease mapping
had been undertaken during various plagues and epidemics
(such as during the 1690 Black Plague in Bari, Italy, and the
1798 Yellow Fever outbreak in New York City (NYC)) to
aid in the quarantine efforts of cities as well as to enhance
understanding of the disease’s causation and prevention.
Additionally, medical mapping was employed to monitor
disease occurrences during the eighteenth- and nineteenth-

Fig. 1 Left: The map of Glasgow, where Dr. Perry numbered the
districts 1–17 and used different colors to indicate the level of the
epidemic in each area. The black dots represent fever cases (likely
typhus). Right: Detail of the map showing three of the districts most
gravely affected by the epidemic. Perry also visually and statistically

correlated the fever epidemic with overcrowding, poor sanitation, and
poverty, and estimated that in districts 3 and 4, over 20 per cent of the
population had been affected. These were the same areas that tended
to be the poorest and most overcrowded (Perry 1844). (Figure Source:
Perry 1844http://special.lib.gla.ac.uk/exhibns/month/feb2006.html)

http://special.lib.gla.ac.uk/exhibns/month/feb2006.html
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century European military forays and exploratory colonizing
and mercantile expeditions in Asia and Africa (Koch 2005;
LSHTM 2013).

In recent times, the geospatial analysis of urban health
has focused more on environmentally related health concerns
rather than contagious diseases, although in some parts of the
world, contagious diseases are still prioritized due to their
prevalence. The recent COVID-19 pandemic has demon-
strated once again the importance of disease mapping, as
many worried people around the world avidly viewed maps
and graphs updated on an almost daily basis, showing case
rates, death rates, hospitalization rates, hot spots, the spread
of the disease’s geographic extent, and the changing locations
of its highest prevalence. Mapping COVID-19 also informed
us about the connection between the illness and various
socio-demographic, economic, housing, and environmental
factors of the affected population, aiding in a better under-
standing of the disease’s transmission and risk to certain sub-
populations (Chakraborty 2021).

Many vector-borne diseases, like malaria and dengue
fever, can also be considered environmentally related health
outcomes, for which it is important to conduct optimal habitat
(or suitability) analyses to determine where the disease
vector, such as the mosquito, is most likely to proliferate
(Kleinschmidt et al. 2000; Thomson et al. 1997). We can now
use spatial analysis and Geographic Information Science to
investigate and model a wide range of health concerns, many
of which are especially acute in urban areas.

Measuring andQuantifying Urban Exposures

A geospatial analysis of environmental health in the urban
context is at the nexus of the geography of environmental haz-
ards and the geography of the exposed population. GISc has
proven to be a valuable tool for bringing these two geogra-
phies together, allowing us to map and model environmental
hazards and the exposed population simultaneously as well
as linking these two data groups together in order to mea-
sure and quantify exposure to environmental hazards (Mah-
eswaran and Craglia 2004). GISc-based exposure assessment
is concerned with determining the areas affected by adverse
effects of environmental hazards, estimating the population
and characteristics of those living in the affected areas, and
analyzing if certain population groups such as minorities are
disproportionally affected (Maantay and McLafferty 2011).

Before one gets started with a geospatial analysis of
urban exposure, it is imperative to explore the given data set
spatially in order to gain a more holistic understanding of
the phenomena or processes under study. Exploratory Spatial
Data Analysis (ESDA) represents a powerful tool-set for data
exploration which allows for the revealing and clarification
of relationships, patterns, and correlations. ESDA is very

helpful not only with the generation of research questions and
hypotheses but also with the refinement of research design
(Maantay 2013). Figure 2 provides an example where ESDA
is used to explore the spatial relationship between areas of
poor mental health, high economic and social deprivation,
and proximity to derelict land.

Delineation of the Boundaries of Adverse
Environmental Exposure

Several spatial analytical methodologies have been used in
urban exposure assessment, which measure proximity to
environmental hazards and estimate the boundaries of poten-
tially affected areas. These assessment techniques are used
not only to measure exposure to environmental hazards but
also to estimate access to environmental benefits and pub-
lic services. These different methodologies can be broadly
classified into four groups, as described in this section: spa-
tial coincidence analysis, distance-based proximity methods,
pollutant fate and transport modeling, and spatial statistical
methods (Chakraborty and Maantay 2011).

Spatial CoincidenceMethod
The spatial coincidence method represents the simplest ex-
posure assessment method (Maheswaran and Craglia 2004).
This method assumes that exposure to environmental hazards
occurs within and is restricted to pre-defined geographic en-
tities or administrative units such as ZIP codes, census tracts,
or block groups containing such hazards (Chakraborty and
Maantay 2011). In other words, if a spatial unit contains an
environmental hazard, it is assumed that all people residing
within this spatial unit are exposed to the adverse effects of
the given hazard(s). The socio-economic and demographic
characteristics of the exposed spatial units, also called host
units, are then statistically compared to all other (non-host)
units that do not contain any hazards to evaluate if certain
population groups are disproportionally exposed to environ-
mental hazards.

Deciding upon the spatial unit which represents the host
area is not a trivial process since the size of the unit will
affect the accuracy as well as the statistical significance of
the results – generally it can be assumed that choosing a
smaller spatial unit will yield more accurate results, whereas
the use of a larger unit increases the strength and significance
of statistical relationships between environmental hazards
and socio-demographic variables (Maantay 2007). However,
when using population data aggregated at higher levels, e.g.,
county or metropolitan area, it will be harder to detect if
specific population groups are disproportionately affected by
environmental hazards.

There are also other limitations associated with the hazard
coincidence method. First, there is the problem of the so-
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Fig. 2 GISc-based exploration of the spatial relationship between ur-
ban areas of high economic deprivation and low educational attainment
(Maps A and B), mental health (Map C), and the proximity to vacant
and derelict land (Map D) in Glasgow, Scotland. Data are aggregated to
data zones (DZ) which are composed of about 750 people and resemble
US census block groups. Distance from VDL represents a measure of
exposure to various environmental stressors including the VDL itself,
whereas DZ with high proportions of low educational attainment and
low income represents a proxy for exposure to social stressors. The
type of vacant and derelict land (VDL) included here is over 2 acres in
size and has been vacant since 2004 or earlier. Mental health as shown
in Map C is represented by the proxy variable of percentage of the
population in eachDZwho have been prescribedmedication for anxiety,
depression, or psychosis. Map D represents the distance in meters from

each DZ centroid to the nearest VDL: the shorter the distance, the higher
the likelihood of exposure to potential health hazards and environmental
stressors related to VDL. Distance from the nearest VDLwas calculated
with the NEAR tool – a distance value of zero is assigned to DZs
which either touch the boundary of or which contain a VDL. The maps
highlight the fact that deprived areas not only containmost of theVDL in
Glasgow but also host a higher percentage of the population prescribed
medications for anxiety, depression, or psychosis. This simple example
of ESDA may help with building a research design to further analyze
the association between vacant and derelict land and mental health. For
further detail, see Maantay andMaroko 2015; andMaantay 2013. (Data
sources: Scottish Neighborhood Statistics 2011 and 2007; Office for
National Statistics 2018; Scottish Government Vacant andDerelict Land
Survey 2012. Figure credit: Angelika Winner)

called edge effect. The hazard coincidence method assumes
that exposure is limited to the host unit only but ignores the
fact that a hazard may be located very close to the edge of the
unit, and, thus, a neighboring non-host unit could be equally
exposed. Map (A) in Fig. 3 shows current and historic toxic
release inventory (TRI) facilities in Northern Brooklyn, NY,
with their host census tracts. The TRI program is run by the
US EPA and it tracks the management of toxic chemicals

posing a threat to human health and the environment. In map
(A), many facilities are located close to the edge of their
respective host unit. This is especially problematic in the
case of large host units – see, for example, the large unit in
the Northeast of the study area – as the hazard coincidence
method could lead to the misidentification of large areas con-
sidered exposed or ignoring other areas that are potentially
much more exposed that are right on the other side of the
border of the host unit. Second, geographic or administrative
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Fig. 3 This figure represents a comparison of three different GISc-
based urban exposure assessment techniques discussed in the text. The
maps show exposure to current and historic Toxic Release Inventory
(TRI) facilities in a small section of North-Brooklyn (Kings County)
with (a) the spatial coincidence method, (b) the distance-based buffer
method, and (c) the dispersion modeling method. In the spatial coinci-
dence method, any tract that hosts at least one facility is selected (its
population is considered potentially impacted); (b) the distance-based

buffer method is more exclusive since here only those areas within a
quarter mile of the facilities are selected; (c) the dispersion technique
only selects areas that are most likely to be exposed to environmental
hazards released from the facility of interest based on facility-specific
hazard release data and climatological data. For further details, see
Chakraborty and Maantay 2011; and Maantay and Maroko 2017. (Data
sources: US Census 2010; Bytes of the Big Apple 2014. Figure credit:
Angelika Winner)

spatial units are typically not a good representation of the
size or shape of the exposed areas. Third, it is assumed that
everyone within the host unit is impacted equally; however,
it is well documented that pollution does not disperse equally
in all directions from a source (Maantay 2007). And fourth,
most applications of the spatial coincidence method do not
take environmental hazard density in consideration. In other
words, they do not differentiate between spatial units hosting
only one hazard and those hosting several. However, expo-
sure works cumulatively – the more sources of pollution exist
in a host unit, the higher will be the total exposure of its
residents.

The last limitation can be mitigated by incorporating data
on the quality and quantity of pollution emitted from each
hazard source, which allows for the distinction between host
spatial units on the basis of the magnitude of potential envi-
ronmental risk (Chakraborty and Maantay 2011). However,
even applications of the spatial coincidence that take into
account the actual emissions and toxicity in a given host
area cannot overcome the edge effect as well as the irregular
spatial dispersion of pollutants.

Distance-BasedMethods
Among the distance-based methods of exposure assessment,
buffering is certainly one of the most widely used techniques,
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and it rests on the basic principle that exposure declines with
distance from the pollution source to a threshold beyond
which the population is considered unexposed (Maheswaran
and Craglia 2004). Buffer analysis is available for point,
line, or polygon features depending on the geographic feature
they represent – buffers around point features (e.g., toxic
facilities) are generally circular, whereas buffers around lines
(e.g., roads or powerlines) and polygons (e.g., noxious land
uses and superfund sites) are irregularly shaped. Map (B)
in Fig. 3 shows the same example of current and historic
TRI facilities in North-Brooklyn, but here exposed areas are
identified with 0.25-mile buffers around the toxic facilities.
The toxic facilities are represented as point features and thus
the buffers are circular. In Fig. 4, circular buffers around
TRI facilities are combined with irregular line buffers around
limited access highways to investigate the cumulative effect
of both sources of air pollution on asthma rates in the Bronx.

In creating the buffers, onemust determine the appropriate
distance beyond which people are considered unexposed.
The identification of an appropriate buffer distance, how-
ever, is most often guesswork and is typically not based on
empirical data (Maantay 2007). Once the buffers have been
computed, the user must select the areal units falling within
the buffers to identify the units and the corresponding number
of people that are potentially exposed to the environmen-
tal hazard. Then, the socio-demographic characteristics of
exposed areas (units inside the buffers) may be statistically
compared to the rest of the study area (outside the buffers)
to determine disproportionate exposure to the given hazards
(Chakraborty and Maantay 2011).

When focusing in on the same facility located in the center
of the study area, it becomes clear how much of an im-
provement the buffer method is over the spatial coincidence
method. Now, all surrounding spatial units within a quarter
mile of the toxic facility intersect the buffer and thus must be
considered as potential host units, and not just the spatial unit
hosting the facility as with the spatial coincidence method in
the previous example.

Even though buffer analysis represents an improvement
over the spatial coincidence method, there are several limi-
tations associated with its application. One limitation is that
the buffer distance is usually chosen arbitrarily and that all
buffers have the same radius. The determination of the buffer
radii is typically based on assumptions and ignores the nature
and quantity of pollutants released in the environment, as
well as operational parameters and environmental conditions
at the time of release (Chakraborty and Maantay 2011).
Another problem is that like the spatial coincidence method
the buffer method is based on the dichotomous assumption
that the adverse effects of a hazard are restricted only to the
buffer area, whereas areas outside the buffer are considered
unaffected. Thus, the results of a buffer analysis are very
sensitive to the choice of buffer distance. In addition, just

as the simpler spatial coincidence method, the buffer areas
typically do not accurately represent the dispersion of the
environmental hazard(s) of concern. Pollutants are typically
not dispersed evenly in all directions and their concentrations
decrease more gradually. The last limitation can be overcome
to a certain degree by using multiple ring buffers combined
with estimated release volumes and emissions – however, the
determination of buffer distances remains largely subjective,
and multiple ring buffers do not necessarily improve expo-
sure assessment.

A more promising solution is the use of continuous dis-
tances, based on the calculation of the exact distance between
locations of the potentially exposed population and environ-
mental hazards. Kernel density estimation (KDE, also often
called “heat mapping”) represents an alternative method of
exposure assessment as it can give a more nuanced estima-
tion with different levels such as no, low, medium, or high
exposure, and not just a binary answer of “within the buffer”
or “not within the buffer” as in the discrete buffer analysis
(Maroko et al. 2009). The KDE approach does not just
consider the location of environmental hazards but considers
the density of the features in a search area defined by the
user. The KDE approach calculates the density of hazards in
a neighborhood and then creates a smoothly curved surface
over each point of the area with the highest surface values at
the location of the hazard and lower values with increasing
distance from the hazard. One limitation with this method is
that it only allows for circular search areas.

When one wants to measure access to environmental
goods such as parks or social services such as health centers,
a network buffer analysis may be a big improvement over the
simple buffer method since this buffer technique takes into
consideration the actual street network available for traveling
by foot and/or car when calculating buffer distances, rather
than just “as-the-crow-flies” distances (see Fig. 12 in the next
section).

Pollutant Fate and Transport Modeling
One of the limitations that both distance-based methods and
the spatial coincidence method of exposure assessment have
in common is the lack of acknowledgment of the physical
process of dispersion which is often fundamental to the
spatial distribution of pollutants in the environment. The
potential for environmental exposure depends not just on
the distance to a pollution source but much more so on
the effects of pollution dispersion in the environment (Mah-
eswaran and Craglia 2004). Because dispersion is a physical
process affected by environmental conditions such as flow
speed (wind or water) and flow direction, the two previously
discussed methods of exposure assessment can only ever
provide approximate estimates of exposure extent. In order
to provide a more accurate spatial representation of exposure
extent, detailed information on toxic chemical emissions,
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Fig. 4 Childhood asthma hospitalization rates, major air pollution
sources, and likely areas of impact in the Bronx, NY (Maantay 2007).
Here, areas exposed to current and historic TRI facilities and limited
access highways, both sources of air pollutants linked to asthma, are
estimated with the distance-based buffer method. The map shows the
combined buffers of TRIs (stationary point pollutions sources) and
limited access highways (linear mobile source pollution) as well as
asthma hospitalization rates per 1000 children aggregated to ZIP code
areas. The chosen TRI buffer distance was 0.5 miles, whereas for
highway buffers, the distance was 500 feet – the decision was made
based on previous research (Wilson et al. 2012; Maantay 2007; Mohai
and Saha 2006; Chakraborty and Armstrong 1997). However, the deci-
sion is still based on best “guesstimates” based on limited empirical
evidence for exposure which is one of the limitations of the buffer
technique. Since TRI facilities are point features, the associated buffers
are circular. Highways are represented as line features which results
in more irregular polygon buffers. Even though many ZIP code areas
containing TRIs and highways exhibit higher asthma hospitalization
rates, there are ZIP code areas with high rates that are not within the
combined buffer and ZIP code areas within the combined buffers with
lower rates. There are two main reasons for this. First, the asthma data
are aggregated to spatial units (ZIP code areas) too large to accurately

represent the spatial relationship between pollution sources and health
impacts – a very common problem associated with health data. Here,
the spatial association between asthma and major air pollution sources
is strong only in those areas where pollution sources cluster and thus
the combined buffers cover one or more ZIP code areas. Second,
there are many other sources of outdoor air pollution not included
by simply looking at major point sources of air pollution and limited
access highways, such as major truck routes, smaller polluting facilities,
waste and recycling facilities, construction sites, and energy-producing
facilities, even those in neighboring boroughs. Third, asthma is not
only influenced by outdoor air quality but also by indoor air quality,
and individual and family behaviors and health histories. In contrast
to this example, Maantay (2007) had access to geolocated individual,
patient-level asthma hospitalization cases in the Bronx. Her research
found that the people living within the proximity buffer boundaries of
the TRI facilities were up to 60% more likely to be hospitalized for
asthma than those living outside the buffers, showing that the higher
asthma hospitalization rates were associated with closer proximity to
local air pollution sources. For further details, see Maantay 2007. (Data
Sources: NYC Dept. of City Planning 2010; NYC Health Department
2000. Figure credit: Angelika Winner)
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local weather conditions, and other physical landscape and
built environmental characteristics are needed to model the
environmental fate and dispersal of pollutants released from
the hazard source (Chakraborty and Maantay 2011).

Dispersion modeling of air (and water) pollutants is a
long-established field and a wide range of models have been
developed ranging from “simple plume dispersion models
used for a single point or line source, to numerical grid mod-
els that incorporate interactions among numerous pollutants
and produce three-dimensional spatial estimates for rela-
tively large regions” (Setton et al. 2011). Air dispersion mod-
els are mathematical models which require a large amount
of data about emission quantities and other physical charac-
teristics of the pollutants, meteorological, and topographical
factors. Dispersion models describe chemical and physical
processes within the plume over time and space, calculate
pollutant concentrations over the study area dispersion, and
provide a more accurate assessment of potential exposure
without the need for extensive monitoring networks (Maan-
tay et al. 2009). A full exposure assessment with the disper-
sionmethod requires an integration of a dispersionmodel and
a GIS, which usually involves intensive expertise in com-
puter programming, GISc, and meteorology (Chakraborty
and Maantay 2011). Map (C) in Fig. 3 exemplifies the output
of a dispersion transport model showing the hazard plume
of a selected TRI facility. The plume’s shape delineates the
modeled dispersion of the hazard, showing an approximation
of how it is affected not only by wind direction and speed
but also by operational parameters at the point of release.
This leads to a muchmore accurate exposure assessment than
with the fixed-distance buffer method which would select all
areas around the facility within the given buffer radius and
result in a circular or linear buffer of constant dimension.
Figure 5 provides a more detailed example of a dispersion
model output showing a sample pollution source with its
pollution plume of PM10 (particulate matter of 10 microns
or smaller).

Land-Use Regression Analysis
The land-use regression (LUR) technique differs from the
previously discussed methods of exposure assessment be-
cause it is designed to estimate total ambient pollution rather
than the pollutant(s) emitted from any specific source and
represents the best suited method to analyze the effect of
accumulative effects of total pollution burden on health out-
comes (Maroko 2010). This analysis uses multivariate re-
gressions of monitored air pollution data and the physical
environment surrounding themonitors to predict air pollution
concentrations applicable to any location in the study area
such as a census tract centroid or place of residence (Hennig
et al. 2016). Common LUR variables are related to road
types, traffic count, and land cover. Figure 6 shows the result

of a LUR analysis predicting particulate matter concentration
(PM2.5) based on proximity to a major truck route and land
use in New York State.

The advantage of the LUR method is its easy applica-
bility, but the quality of the model depends largely on the
initial choice of locations as well as the total number of
the measurement sites. Additionally, LUR was developed
for long-term predictions of air pollutant concentrations that
are temporally relatively stable – this means that it is not
the appropriate method to assess short-term exposures or
exposure to pollution sources that change over time.

Estimating Population Characteristics
in Proximate Areas

Once the areal extent of potential exposure has been delin-
eated, there are a variety of methods available to estimate the
number of people residing in these exposed areas, as well as
their socio-demographic characteristics. In order to estimate
the number of people exposed to a given hazard and to obtain
information about their socio-demographic characteristics,
a method of areal selection is necessary to transfer data
from the census units to boundaries of the exposed areas
since fixed-distance or plume-based buffers are unlikely to
match the size and shape of the census units (Maantay et al.
2008). These methods may be broadly classified into point
estimation and areal estimation methods depending on the
level of spatial aggregation of the socio-demographic data
(Chakraborty and Maantay 2011).

If the addresses of all individuals or households in the
study area are known, they can be represented on a map
with the help of street network reference data and geocoding
tools available with GIS software. Once these locations are
located on the map, the number of people exposed to a given
hazard as well as their socio-demographic characteristics can
be estimated with a point-in-polygon overlay by determining
the address points located within distance-based or plume-
based buffers.

Although the point-in-polygon overlay to estimate expo-
sure is easy to execute, data on socio-demographics are not
publicly available and can only be obtained with the help
of extensive surveys of all individuals or households in the
study area. Since that is typically not feasible due to time and
money constrains, researchers have relied mainly on census
data which are aggregated at the level of administrative or
statistical spatial units.

Several areal selectionmethods are available to implement
a polygon-on-polygon overlay needed to transfer data from
the census units to the buffer units. These areal selection
techniques are illustrated in Fig. 7 using circular buffers
around current and historic TRI facilities in Brooklyn, NY.
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Fig. 5 PM10 air dispersion for sample pollution source (TRI facility)
modeled with AERMOD in Bronx, NY (Maantay et al. 2009). In this
study, AERMOD (American Meteorological Society/Environmental
Protection Agency Regulatory Model) was integrated with a GIS to
study the association between asthma hospitalizations and air pollution
sources in the Bronx. AERMOD is an advanced steady-state plume
model aiming to simulate the air dispersion from sources to a distance
up to 50 km. AERMOD combines boundary layer theory with an
understanding of turbulence and dispersion while also considering the
influence of building wakes on plume rise and dispersion to create a
continuous pollutant surface for the study area. Thus, this case study re-
quired a large amount of data including meteorological data, stationary
source data (emissions and release parameters), buildings data (location
and height), as well as asthma data and population data. The plume
buffers were created based on the AERMOD continuous pollution
surface in ArcGIS in order to define the geographic impact extent
of the highest pollutant values from each individual major stationary
point source. The highest PM10 for a source can be found at or close

to the location of the source, and the PM10 concentration decreases
as the air pollutant disperses out from the source. Then, a series of
contours were generated based on the PM10 value at each point over
the study area. The resulting contour buffers are not circular due to
meteorological and building effects, which are the major differences
from proximity buffers. The values of contours decrease as distance
increases away from the source, meaning that for each contour, the
impact of the source on ambient air was higher inside the contour than
outside. The contours can then be used to identify the difference in
asthma hospitalizations inside and outside the buffer. Maantay et al.
(2009) showed that asthma hospitalization rates were higher inside of
both plume than those outside and that plume buffers captured more
people and asthma hospitalizations than the proximity buffers indicating
that more people may be exposed than previously calculated based on
proximity buffer analysis. For further detail, see Maantay et al. 2009.
(Data sources: NYC Dept. of Urban Planning 2010; National Climatic
Data Center 1999; US EPA 2002 National Emissions Inventory 2002;
NYC DOITT 2005. Figure credit: Angelika Winner)

The simplest method of areal selection is polygon contain-
ment, or selection by polygon intersection. In this technique,
all census units that either fall completely within or intersect
with a distance or plume-based buffer are selected as shown
in Fig. 7a. The population data are then simply aggregated for
all the census units that have been selected. Since the polygon
containment method does not differentiate between spatial

units that are completely within the buffer area or those that
are only partially inside the buffer, this method may lead to
overestimation of exposed populations if most people live
outside of the area intersecting with the buffer (Chakraborty
and Maantay 2011). One way to improve upon the polygon
containment method is to use a cutoff value to exclude census
units with only a small area intersecting with the buffer. Most
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Fig. 6 Modeling of fine particulate matter in New York City with land
use regression (LUR). The goal of this case study was to estimate the
average annual concentration of fine particulate matter (PM2.5) in New
York City, based on the limited data available from a small number of
air quality monitoring locations. Since the length of major truck routes
(MTR) and population density within 1000 m from the monitor site are
highly correlated to PM2.5 concentrations, these variables were used to
estimate PM2.5 with a LUR (see Map A). A PM2.5 continuous surface
was interpolated utilizing Kriging which was the spatial interpolation
method with the lowest mean-square error between observed PM2.5
concentrations and the modeled one (see Map B). The LUR model
was calibrated using EPA air quality data from 15 monitoring sites
across New York City from the year 2002. Overall, modeled PM2.5
concentrations were lower at a majority of the stations compared to

observed concentrations (see Map C). The LUR model was overall
significant with an adjusted R2 of 0.87 indicating that truck routes
and land use close to the monitoring stations were able to explain
almost 90% of the variation in PM2.5 concentrations. The clustering
of monitoring stations in and close to Manhattan may lead to an
underestimation of the exposure to PM2.5 air pollution of outer-borough
residents living in areas with high population density and close to truck
routes. Additionally, LUR is sensitive to the edge effect. This means
that in those areas along the edge of the study area with land-based
borders such as Westchester County to the North and Nassau County
to the East, the modeled emissions may be underestimated because data
on emissions from these neighboring counties are not considered in the
LUR model. (Data sources: EPA 2002; NYS Dept. of Transportation
2007. Figure credit: Angelika Winner)

commonly used is the 50% area containment method, where
only census units with more than half of their area within the
buffer zone are selected.

Another common method for estimating socio-economic
characteristics of the exposed population is known as
centroid-based selection. This technique is more exclusive
than the polygon containment method since it selects only
those census polygons that have their geographic centers or
centroids located inside the buffer area, limiting the number
of census units that are selected as shown in Fig. 7b. However,
both selection methods discussed so far produce effective
buffer zones that do not resemble the original distance or
plume-based buffer areas. This is because the effective buffer
zones are based on the boundaries of census units and not
on the boundaries of the original buffer areas. In addition,
the centroid containment method may not deliver accurate
estimates of the exposed population if the actual place of

residence of people inside the selected census units is not
concentrated near the centroid (Chakraborty and Maantay
2011).

Themost widely used areal estimationmethod is buffer se-
lection – a method which selects all census units completely
within the buffer as well as a fraction of the population from
units intersected by the buffer (Chakraborty and Maantay
2011). The advantage with this method is that the effective
buffer zone retains the shape and size of the original one as
shown in Fig. 7 map (C). In order to determine the fraction
of the population from units intersecting with the buffer
areas, an areal weighting technique is utilized weighing the
population of each census unit by the proportion of its area
within the exposed areas as shown in the middle panel of
Fig. 8 (Maantay and Maroko 2009). Despite its improve-
ments compared to the polygon and the centroid-based es-
timation methods, the buffer technique assumes that the pop-
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Fig. 7 Comparison of areal interpolation methods to estimate the pop-
ulation exposed to current and historic TRI facilities in North-Brooklyn.
Map (A) shows the simple polygon intersection method: here all census
block groups that intersect a TRI facility are selected regardless of how
little of the block group is actually within the buffer, and the resident
population of these units is assumed to be exposed. In this case, many
of the selected census block groups only share a small fraction of their
area with the quarter mile buffers around the TRI facilities leading to an
overestimation of the exposed population. Map B shows the same data,
but now the exposed population has been estimated with the centroid
containment method. Here, only those block groups have been selected
that have their centroid within the buffer areas. This method may lead to
an underestimation of the exposed population if few centroids happen to
fall within the buffers. MapC estimates the exposed population with the

buffer containment method. Here, the exposed areas are limited to the
buffer areas, but because the spatial units of the population data (census
block groups) do not match the spatial units of the buffer areas, one
still needs some form of areal interpolation in order to estimate who is
affected. Examples for suchmethods are areal weighting and dasymetric
mapping which are shown in Fig. 6. The buffer method delivers a
more realistic estimate of the exposed population when compared to the
previous two methods, but it still is only an estimate as it does not take
into consideration how the pollutants are dispersed in the environment
which depends on meteorological conditions and release parameters.
For further details, see Chakraborty and Maantay 2011; and Maantay
and Maroko 2017. (Data sources: US Census 2010; Bytes of the Big
Apple 2014. Figure credit: Angelika Winner)

ulation distribution of a census unit and all its characteristics
are homogeneous within its boundary which could lead to
inaccurate estimates of the exposed population especially in
very heterogeneous urban areas (Maantay et al. 2008).

A further refinement of areal weighting is dasymetric
mapping which refers to the process of disaggregating spatial
data to a finer unit of analysis, using ancillary data such as
land cover or land use to help refine locations of population
or other phenomena being mapped (Maantay and Maroko

2017). Filtered areal weighting represents a simple case of
dasymetricmapping – here limited land use is used to exclude
areas with no resident population such as parks, empty lots,
water bodies, and open space, and residents are redistributed
to all remaining areas (Chakraborty and Maantay 2011).
Thus, the ancillary data set acts to mask the census data so
that the uninhabited land is left without any population. By
excluding sparsely inhabited industrial, commercial, or insti-
tutional areas using land cover data from satellite imagery
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Fig. 8 A comparison of population estimation methods to approximate
the number of people at risk of flooding in the Bronx, NY (Maantay and
Maroko 2009). The left panel shows the results for the centroid method.
Here, only census block groups with their centroids within the 100-
year floodplain will be considered exposed. Since none of the centroids
happen to fall within the flood plain, zero people will be considered at
risk. The middle panel shows results for the areal weighting method.
Here, the population per census block group is weighted based on the
proportion of area shared with the floodplain – e.g., if 25% of the block
group’s area falls within the floodplain, 25% of its resident population
will be considered at risk. The number of the people considered at risk
increases dramatically with this method to 872 people. Finally, the right
panel shows results for dasymetric mapping. Here land-use data at the
tax lot level are used to get a more accurate estimate of exposed people.

In this case, the number of at-risk people increased again to 1154 people
highlighting the potential discrepancies between areal interpolation
methods. It should be mentioned that the more refined methods do not
always yield the largest population numbers. It is possible, for instance,
for centroid containment to produce higher numbers that either of the
other methods, or areal weighting may do so, depending upon the actual
data and configuration of the spatial units. However, dasymetric method
will almost always provide more accurate numbers, if not necessarily
the largest ones, because the method is based on finer-grained data and
more precise locational information. For further details, see Maantay
and Maroko 2009; Maantay et al. 2010. (Data sources: US Census
2010; NYC Dept. of Urban Planning 2010; FEMA 2007. Figure credit:
Angelika Winner)

or zoning/land-use maps, one can further refine the simple
filtered areal weighting technique.

A special case of dasymetric mapping is the cadastral-
based mapping which utilizes tax or property lot data to
redistribute people based on the number of residential units
or the total residential area per property lot (Maantay and
Maroko 2017). Thus, the cadastral-based expert dasymetric
system (CEDS) approach assumes that the population is not
distributed homogeneously across census units. Property tax

lot information on residential units and residential area are
used as proxies for the population in each tax lot allowing for
a more accurate representation of the population distribution
and thus the exposed or at-risk population as shown in the
right panel of Fig. 8. However, tax lot data does not contain
information on how many people really live in each tax lot or
actual square footage per resident. Thus, the residential units
or the residential area per tax lot can only ever be a proxy
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and we can only estimate the population by disaggregating
census data (Maantay et al. 2008).

Spatial Statistics

Once the potentially exposed areas and their populations have
been identified, it is often determined whether race/ethnicity
or socio-economic status are indicators of disproportionate
exposure to environmental hazards. However, spatial data
and variables rarely meet the two assumptions of indepen-
dence and homogeneity that standard statistical tests such
as least squares regression or correlation are based upon.
The independence assumption of linear regression is violated
when it comes to spatial data since proximate observations
will exhibit more similarity in value when mapping socio-
demographic variables than what can be expected on a ran-
dom basis. This was expressed best by Tobler (1970) who
stated that even though everything is related to everything
else, proximate observations are more related than distant
ones, which has come to be known as Tobler’s first law of
geography.

Tobler’s observation is more formally known as (posi-
tive) spatial autocorrelation and is a fundamental concept in
geospatial analysis (Chakraborty and Maantay 2011). Posi-
tive spatial autocorrelation means that close-by values will
be similar or in other words they will be correlated with
each other. The most commonly used measure of spatial
autocorrelation is Moran’s I which represents a global mea-
sure of autocorrelation ranging from −1 to 1 (Chakraborty
and Maantay 2011). A Moran’s I value approaching zero
means that there is no autocorrelation between proximate
values, whereas a value approaching 1 or −1 means there
is positive autocorrelation (clustering of similar values) or
negative autocorrelation (dispersion of similar values). A
standardized Z score is available with Moran’s I analysis that
can be used to measure statistical significance.

In order to account for spatial autocorrelation, spatial re-
gression models have been developed where spatial autocor-
relation is considered as an additional variable in the regres-
sion equation. The application of spatial regression models
has become a standard statistical tool, thanks to the avail-
ability and user-friendliness of current GIS and spatial statis-
tical software packages. An example of a spatial regression
model is geographicallyweighted regression (GWR) analysis
which accounts for local differences in statistical relationship
between dependent and independent variables, also known
as spatial non-stationarity (Chakraborty and Maantay 2011).
GWR produces a separate regression equation for each spa-
tial unit in the study area allowing for relationships among
variables to vary locally (See Fig. 9).

Issues of Equity – Environmental Justice
and Health Disparities

Issues of Equity

In this section, we explore several topics having substantial
ramifications for urban health. All are aspects of the environ-
mental justice (EJ) problematic: health inequities, relative in-
equality, segregation, disparities of vulnerability and risk, and
differential impacts of social and environmental stressors.
Why do health outcomes differ among various populations
within a city? Is this due to the environment where people live
or is it due primarily to their socio-demographic characteris-
tics? This is a question of “context” versus “composition” and
it is a controversial subject in public health today because it
has considerable implications for policy, regulation, and the
allocation of resources in the urban environment (Gatrell and
Elliott 2015). These questions can be explored and addressed,
to a large extent, through various spatial analytical methods.

Environmental Justice and Health Disparities

Environmental justice (EJ) and the related issue of health
disparities are of particular importance to cities. EJ is broadly
defined as the concept that less-affluent populations, commu-
nities of color, and other marginalized groups bear a dispro-
portionate burden of environmental “bads” (pollution, urban
blight, noxious land uses, traffic congestion, unsafe living
conditions, poor housing, and urban incivilities), while con-
versely they have distinctly deficient access to environmen-
tal “goods” (healthy food options, quality health care, and
health-promoting amenities such as parks and open spaces)
compared with the rest of the population (Bryant 1995;
Bullard 1994; Hofrichter 1993; Johnston 1994; Maantay
2019; Pulido 2000; United Church of Christ’s Commission
for Racial Justice 1987). This phenomenon has been demon-
strated over the past several decades through an extensive
number of research studies and has been borne out by con-
siderable case study evidence (Boer et al. 1997; Chakraborty
and Armstrong 1997; Maantay 2007; Maroko et al. 2009,
2011; Talen 1997; Wolch et al. 2005). Due in part to the
disproportionate exposure to environmental burdens and lack
of environmental benefits for some communities, there are
often extreme health disparities between sectors of the popu-
lation, and due to the prevalence in urban areas of residential
segregation based on class or race/ethnicity, the burdens and
benefits are unevenly distributed geographically.

Health outcomes and health conditions vary from place
to place around the world by nation, region, state, and city.
People in more affluent countries tend to live longer and
remain in better health longer than those in less affluent
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Fig. 9 Results from a geographically weighted regression analysis
(GWR) testing the association between distance from VDL and the rate
of prescription for drugs related to anxiety, depression, or psychosis
(Rx rate) while adjusting for educational attainment and income, and
the effects of vacant and derelict land (VDL), as well as deprivation,
on mental health. A GWR represents a local ordinary least squares
regression which allows the associations to vary over space. Living
close to a VDL can lead to exposure to various environmental stressors
(including the VDL itself), whereas having a low income and low
educational attainment can be thought of as a proxy for exposure to
social stressors. This means we are testing for the relative effect of
exposure to environmental stressors on mental health while adjusting
for social stressors for each data zone. Shown here is the regression
coefficient 1 which represents the distance to VDL and the local R-
squared value for the association in each data zone. A negative value
of coefficient 1 means that if the distance to VDL increases, Rx
prescription decreases, or if the distance to VDL decreases, Rx rates
increase – this would indicate that exposure to VDLs is connected
with higher rates of anxiety, depression, or psychosis; a positive value

means that if distance to VDL increases, Rx prescription increases, or if
distance to VDL decreases, Rx rates decrease, which would indicate that
exposure to VDLs is connected with lower rates of anxiety, depression,
or psychosis. For large part of Glasgow, the value of coefficient 1 is
negative implying that in these areas, exposure to VDL has a negative
effect onmental health. However, there are areas in theNortheast and the
Southwest of Glasgow as well as in Central-Glasgow where coefficient
1 is positive implying that in these areas, exposure to VDL has a negative
effect on mental health. When we take into consideration the R-squared
values, it becomes clear that the areas with a positive coefficient have
generally low R-squared values indicating that the association between
VDL and mental health is not statistically significant in these areas. It
is noteworthy that overall the values for coefficient 1 are close to zero
implying a weak association between VDL exposure and mental health.
For further details, see Maantay and Maroko 2015. (Data sources:
Scottish Neighborhood Statistics 2011; Office for National Statistics
2018; Scottish Government Vacant and Derelict Land Report 2012.
Figure credit: Angelika Winner)

countries, and urban dwellers tend to live longer than their
rural counterparts, most likely due to better access to health
care (Singh and Siahpush 2014). But these averages can
conceal the differences within various geographies. In addi-
tion to the inter-area comparisons, there is also an important
intra-area consideration – the variation that occurs within
smaller geographic areas, such as within cities, as opposed to
between them. EJ and health disparities can be mapped and
analyzed to help sort out the relationships, make a strong case

for the need to address these problems, and provide possible
answers and recommendations to resolve them (See Fig. 10).

The earliest research on environmental health justice was
rooted in the idea that less affluent people and communities
of color were/are often subjected to disproportionate envi-
ronmental burdens – things like air pollution, contaminated
water, brownfields, hazardous waste sites, nuclear facilities,
bus depots, highways, factories that store, use, or emit toxic
substances in processing, waste transfer stations, coal-fired
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Fig. 10 Map of Glasgow, Scotland, showing a visualization of the
spatial relationship between vacant and derelict land (or VDL, which
is considered to be an environmental stressor) and the areas where the
population has the poorest health, as measured by whether the data
zone (DZ) is in the lowest decile (lowest 10%) of health measures,
according to the Scottish Index ofMultiple Deprivation (health domain).
The strong spatial correspondence shown here is not meant as evidence
of causality, but to indicate the potential risk associated with living near
many of these VDL sites, given the history of industrial land use in
Glasgow, and the likelihood that even land formerly used for housing
might have originally been land contaminated by industry. Whether or
not the actual risk of exposure or causality with health outcomes can
be proved, populations in these areas are vulnerable physically and
mentally to the adverse effects of being in close proximity to VDL.
These proximate populations already suffer from higher than expected

rates of many diseases, do not enjoy long life expectancy, and have
to bear the stress of poverty and other forms of deprivation, and are
therefore more vulnerable in general. Vacant land affects community
well-being by overshadowing positive aspects of the community and
impacting physical health through possible dermal contact or inhalation
of contaminants, injury, the buildup of trash, and attraction of rodents,
as well as mental health through anxiety and stigma of living among
blight. Although this figure shows only a visualization of the spatial
relationship, spatial statistics can be performed to quantify and explore
the relationships among variables, for instance analyzing density and
concentration and clustering of phenomena. For further details, see
Maantay 2013. (Data sources: U.K. Ordnance Survey (basemap layers);
Vacant and Derelict Land Survey, Scottish Government, 2012 (VDL);
Scottish Neighbourhood Statistics, Scottish Government, 2010 (health
data). Figure credit: Juliana Maantay)

power-generating stations, industrial land uses in general,
poor quality, unsafe, or overcrowded housing, and blighted
landscapes (Baden and Coursey 2002; Bullard et al. 2007;
Fitos and Chakraborty 2010; Grineski and Collins 2008;
Grineski et al. 2013; Kay and Katz 2012; Maantay and
Maroko 2009; Mohai et al. 2009; Sicotte and Swanson 2007;
Taquino et al. 2002; Tiefenbacher and Hagelman 1999) (See
Fig. 11). In the previous section, we discussed how exposure
to environmental burdens can be mapped and estimated.

Environmental health justice can also be examined from
the perspective of access, or lack of access, to the environ-
mental benefits that also affect health status and outcomes
(Abercrombie et al. 2008; Boone et al. 2009; Galvez et al.
2008; Kirkpatrick and Tarasuk 2010; Miyake et al. 2010;
Moore et al. 2008; Morland and Filomena 2007; Morland

et al. 2002; Nicholls 2001; Smoyer-Tomic et al. 2008). This
entails using a method that measures access or proximity in
order to achieve a valid assessment of true “accessibility”
(See Fig. 12).

Relative Inequality

The pattern of inequality that we see in most places reveals
quite a lot about the dynamic role of place in health, but often
the more significant metric is not the absolute differences
between one place and the next, say, in overall mortality rates
or rates of certain diseases, but rather the gap between the
best and the worst within each area (Sasagawa et al. 2017;
Wilkinson and Pickett 2008). This type of inequality is called
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Fig. 11 The siting of the North
River Waste Water Treatment
Plant (WWTP) in Harlem, New
York, was very controversial and
contentious because it adversely
affects a community comprised
largely of a racial minority
population. The WWTP had
originally been planned for West
72nd Street, a location
surrounded by a predominantly
white community, but due to
intense political pressure from
the residents, it was re-envisioned
for Harlem, at that time a much
less powerful political force in
the city. The area within 1 mile of
the West 145th Street plant is
about 70% minority (mainly
African-Americans), with an
average household income of
$26,000 per year and 34% of its
population below the federal
poverty line, whereas the
population within 1 mile of the
original 72nd Street site was 84%
white with an average household
income of $123,000 per year, and
only 8.5% of its people below the
poverty line. Air quality
problems stemming from the
plant have resulted in health
impacts felt a mile or more away,
including a dramatic increase in
respiratory ailments, nausea,
headaches from the putrid odors,
itchy and watering eyes, and
shortness of breath. This example
might be a precursor to a more
detailed study involving air
dispersion modeling, ambient air
quality estimations, and the
correspondence of air pollution to
adverse health outcomes
experienced by the community
residents. For further details, see
Maantay and Maroko 2015.
(Data sources: US Census, 2010
(socio-demographics). Figure
credit: Adam Jessup)

the equity divide and is measured by indices such as the Gini
coefficient or ratio (See Fig. 13). The Gini coefficient is a
measure of statistical dispersion – the inequality of a distri-
bution – whether there is an equal or unequal distribution of
values (income, education, etc.). The Atkinson Index and the
Generalized Entropy Index also measure inequality but are
considered by some to provide amore nuanced understanding
of the distribution of inequity (De Maio 2007). These indices
are important in analyzing the geography of health because
many researchers have come to believe, for instance, that
the absolute level of poverty of an area is less important in

perceptions of well-being (and perhaps also in actual well-
being) than the difference (gap) between the wealthiest and
the poorest in that area, i.e., the differences in any given area
between the “haves” and the “have-nots.”

There are several other well-known indices, not neces-
sarily measuring a population’s inequality but quantifying
a population’s well-being, such as the Human Development
Index (HDI), the Global Peace Index, Human Poverty Index,
the Quality-of-Life Index, the Happiness Quotient (or Gross
National Happiness – GNH), various global and national-
scale deprivation indices, and other similar indices, such as
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Fig. 12 In addition to proximity to environmentally harmful facilities
and land uses, access to environmentally beneficial locations, such as
healthy food options (in this case, supermarkets), is also a way to
quantify environmental justice. The issue of access to healthy foods
has implications for health outcomes such as obesity, diabetes, and
cardiovascular disease. Many urban areas are essentially “food deserts,”
being too far from supermarkets or other healthy fresh food options to
be convenient for normal shopping, while fast food restaurants or small
shops with poor choices in terms of quality and selection are often the
only readily available food sources. By using network analysis, which
measures distances along an actual pedestrian street network, we can
avoid the over-simplification and inaccuracies of a conventional fixed-
distance circular buffer analysis, which measures distance “as the crow
flies,” without regard for the reality of how people are able to walk in
cities to access different amenities. Network analysis can also be used to
look at vehicular access, although in the case of New York City, walka-
bility to supermarkets is a better indicator of access. This case study is
a classic example of a multi-criteria analysis, using Boolean operators
to find sites that meet various criteria, in this case, areas (census block

groups) that have high poverty rates (>30%) and are also more than ¼
mile from a supermarket. An average nearest neighbor (ANN) analysis
and z-score statistics were also conducted, showing that supermarkets in
New York City are highly clustered. Of the 5733 census block groups in
NYC, 1456 have more than 30% of their households below the poverty
line and 625 block groups have more than 30% of households below the
poverty line in addition to beingmore than¼milewalking distance from
a supermarket. These areas without walkable access to a supermarket are
potentially “food deserts,” which may put the under-served populations
at risk for diet-related adverse health outcomes, especially those areas
with a high percentage of vulnerable households below the poverty
line. It is important to keep in mind that there are several types of
“access,” all of which may play a part in hindering the availability
of health-promoting facilities or services. In addition to geographic
access, discussed above, we must also consider economic access and
cultural access, any combination of which can block true access. (Data
Sources: US Census, 2010 (socio-demographics); Dunn and Bradstreet,
2001 (supermarkets); NYCDepartment of City Planning, 2009 (streets).
Figure credit: Juliana Maantay)

the Scottish Index of Multiple Deprivation that was men-
tioned in the caption to Fig. 10. Indices are of increasing
importance in understanding and depicting the patterns of
health and justice, both globally and locally.

Segregation
Race, ethnicity, income/class, and immigrant status are rel-
evant factors in analyzing health disparities, since structural
inequalities based on social and cultural characteristics exist
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Fig. 13 The relationship between incidence of low birth weight (LBW)
infants in New York State and the Gini Index of income inequality
and the % of households below the poverty line. Low birth weight
(<2500 grams or <5.5 pounds) is the single most important factor
affecting neonatal mortality. Infants weighing less than 2500 grams are
almost 40 times more likely to die during their first 4 weeks of life
than are infants of normal birth weight. Low birth weight infants who
survive are at increased risk for health problems ranging from neuro-
developmental handicaps to lower respiratory tract ailments (Martinson
and Reichman 2016; Paneth 1995). In this example, Gini measures
income inequality where a value of “0” indicates complete equality and
a value of “1” suggests complete inequality. In looking at New York
State at the county level, we can see that the range of Gini values starts
at about 0.37 at the low end and goes to 0.60 at the high, keeping in mind
that this may mask income inequality for smaller geographic units of
aggregationwithin the county. For comparison, the range ofGini income
inequality values for the more affluent countries in the world is between

0.24 and 0.45. In this case study, the Pearson correlation between %
low birth weight infants and Gini is 0.261, and the correlation between
% LBW and % Below Poverty is 0.242, demonstrating that LBW is
slightly more correlated with Gini than with % below poverty, but
both are only weakly correlated with LBW. These correlations tend to
be stronger in major metropolitan areas in NYS, and visual analysis
suggests that urban areas correlate to high poverty rates and highly
inequitable distribution of wealth, as well as tending to have higher rates
of LBW infants (although some rural counties also have high rates of
LBW). Bronx County in New York City appears in the top five worst
counties among the 62 counties in the state for all three variables: %
LBW, % below poverty, and Gini Index scores. For New York City
counties, overall the correlation between % LBW and Gini, or between
% LBW and % below poverty, is in the 0.80 range, much higher than
that for the state as a whole. (Data sources: New York State Dept. of
Health Vital Statistics, 2010, (LBW data); US Census, 2010 (Gini and
socio-demographic). Figure credit: Juliana Maantay)

in our society. Many researchers, advocates, and activists
believe that residential segregation by race and/or income
class is at the root of many environmental justice and health
equities problems (Laveist et al. 2011). When groups of peo-
ple become “ghettoized” and forced to live in isolation from
wider society in a non-integrated manner, because of either

economic constraints or discrimination that reduces housing
location choice (or both), the result is that often the wider
society and those in decision-making positions of power view
the ghettoized area as a convenient dumping ground for all
sorts of unwanted facilities and land uses – the so-called
LULUs, that is, locally unwanted land uses. Residential seg-
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regation also frequently results in housing overcrowding (due
to a smaller stock of housing available to the stigmatized or
segregated group), poor housing conditions (due to landlords
taking advantage of the fact that ghettoized populations often
have little choice in where to live and therefore will be
forced to put up with conditions that other populations would
not have to tolerate), unsafe areas (due to high crime, poor
policing, high volumes of vehicular traffic, etc.), general
governmental dis-investment in community amenities, such
as parks, playgrounds, and physical infrastructure, etc. (due
to the perception that powerless people and the areas they
live in do not have to be well taken care of, and that in times
of reduced resources, it is foolish to throw good money after
bad to improve areas that are already too far gone to help),
and private capital dis-investment (reluctance to site and build
full-service supermarkets, recreational and leisure activity
venues, healthier eating establishments, etc., in less-affluent
neighborhoods), thereby resulting in a downward spiral of
neighborhoods going from bad to worse.

Residential segregation can be a direct cause of poor
health outcomes and high rates of pre-mature mortality (due
to unhealthy housing, environmental burdens, violence, lack
of healthy food options, etc.), or it can be an indirect cause
of poor health outcomes (due to stress from overcrowding
and urban incivilities, lack of positive local amenities, the
psycho-social stressors of poverty and marginalization). Res-
idential segregation occurs in all types of locations, but it is
particularly prevalent and pernicious in urban areas.

Another relevant factor is class, which in many places is
correlated with race. For example: “It’s long been known that
children in poorer neighborhoods . . . are more likely to be
exposed to lead, vehicle exhaust and other pollution. Now,
scientists are beginning to suspect that these low-income
children aren’t just more exposed – they actually may be
more biologically susceptible to contaminants, even at low
levels. A growing body of research suggests that the chronic
stressors of poverty may fundamentally alter the way the
body reacts to pollutants, especially in young children. ‘It’s
like having the fight or flight response turned on all the
time,’ said Harvard epidemiologist Rosalind Wright. Facing
financial strain, racial tension and high crime rates can wear
down immunity and disrupt hormones, making kids more
vulnerable to everything around them, including the lead in
their yards, water pipes, or paint, and the car exhaust in their
neighborhood” (Konkel 2012).

There are a number of indices used to measure segregation
(Massey and Denton 1988; Wong 2005). Two of the com-
monly used ones are the Isolation Index and the Dissimilarity
Index. The Isolation Index tells us to what extent individuals
are exposed only to other individuals of their racial/ethnic
group within their residential area. The Dissimilarity Index
tells us how evenly distributed a racial/ethnic group is across
an area. Both New York City and New Orleans have high

percentages of minority populations, and both are known to
have a high degree of residential segregation among racial
and ethnic groups. Comparing the two cities using two dif-
ferent indices of segregation might reveal some insights as to
the structure and meaning of segregation and how it plays out
in different locations (See Fig. 14).

Both cities display a visible trend of segregation be-
tween two major groups, non-Hispanic Blacks (NHB) and
non-Hispanic Whites (NHW), as evidenced by mapping the
percentages of each group by census tract. But mapping
percentages of racial/ethnic groups only tells us part of the
story. This visual pattern can be further quantified using one
or more of the segregation indices.

The Index of Dissimilarity measures the evenness with
which two groups are distributed across tracts that make
up the larger city, comparing, for instance, how dissimilarly
two mutually exclusive demographic groups are dispersed
across census tracts. This index ranges from 0 to 100, with
higher values indicating greater separation. The index value
for NYC between NHB and NHW is quite high, at 82.2,
compared to slightly lower but still heavily segregated New
Orleans, at 67.9, perhaps indicating that NYC census tracts
are much more racially stratified than those in New Orleans
and that NHB populations live quite segregated from NHW
populations. Another way to think of this is that in NYC,
82% of the NHB population would have to move in order to
achieve equal distribution of both NHB and NHW, whereas
in New Orleans, only 67.5% of the NHB population would
have to move to achieve equal distribution.

The Isolation Index represents the percentage of same
population group in the census tract where the average group
member lives. The index value also ranges from 0 to 100, with
lower values indicating more integration and dispersion of
that groupwithin the census tract and higher values indicating
greater isolation. For the NHB population of NYC, a value of
56.9 represents moderately high isolation, but significantly
lower (less isolated) than the index value of 77.5 for NHB
populations in New Orleans.

Social and Environmental Stressors

Social and environmental stressors often exert multiple and
interacting influences on health. What we normally think of
as exposure to pollution and other environmental stressors,
and their consequent adverse health impacts, do not happen in
isolation. The combination of toxins and social stressors has
synergistic effects that may contribute to the development of,
and exacerbate the effects of, diseases such as asthma, obe-
sity, and behavioral disorders (Diez-Roux 2001; Croucher
et al. 2007; Downey and Van Willigen 2005; Guite et al.
2006; Maantay 2013; Maantay and Maroko 2015; Maroko
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Fig. 14 Left: Dot density maps of New York City and New Orleans
showing the distribution of major racial and ethnic populations. Right:
Choropleth maps of % non-Hispanic Black populations in both cities.
These maps offer two ways to view residential segregation, while the
segregation indices offer different perspectives. Areas on maps that

are white have no or very low populations (<100). These are usually
major open spaces, airports, or large industrial areas with no residential
population. (Data sources: USCensus, 2010 (demographic info).Figure
credit: Juliana Maantay)

et al. 2013). The contribution of psycho-social stressors to
negative health outcomes is known as “allostatic loads.” In
Glasgow, Scotland, for instance, people in high deprivation
areas that have high concentrations of vacant and derelict
land are more prone to being medicated for depression,
anxiety, and psychosis (Maantay and Maroko 2015) (See

Fig. 15). Likewise, in a Philadelphia, PA community, a high
proportion of vacant and derelict land was found to affect
community well-being, physical health, and mental health
(Garvin et al. 2013). Similar effects of allostatic loads have
been identified by studies on the negative health impacts
resulting from psycho-social stressors of the Marcellus Shale
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Fig. 15 This map is an example of a bivariate stepped choropleth
map, and it depicts the outputs of a geographically weighted regression
(GWR), showing the relationship between the density of vacant and
derelict land (VDL), a potential environmental stressor, and prescription
rates for mental health medications, in Glasgow, Scotland. The local R-
squared shows how well the local model performs, whereas the VDL
coefficient represents the direction and magnitude of the association
between VDL density and mental health prescription rates, while ad-
justing for selected socio-demographic characteristics. The findings of
this study demonstrate an inequity with respect to the distribution of
vacant and derelict land, as confirmed by Pearson correlations between

VDLdensity and deprivation. This suggests that many deprived commu-
nities are disproportionately burdened with environmental impacts and
psycho-social stressors associated with this land use. Regression analy-
ses show a significant positive association between the proportion of the
population who were prescribed medication for anxiety, depression, or
psychosis and the density of vacant and derelict land while adjusting for
socio-demographic characteristics. This indicates that areas with higher
VDL densities tend to exhibit higher rates of mental health issues. For
further details, see Maantay and Maroko 2015. (Data sources: Scotland
Census, SIMD ‘Health Domain 2010,’ 2012; Scottish Government,
2012; Glasgow DRS, 2012. Figure credit: Andrew Maroko and Ragnar
Thrastarson)

hydraulic fracturing gas extraction process on the local resi-
dents (Ferrar et al. 2013). The mitigating effects of positive
environmental factorsmust also be considered, such as access
to parks and open space.

Vulnerability and Risk

Finally, vulnerability and resilience in the face of natural
and/or man-made disasters and climate change are crucial
areas of concern today, especially considering how different
communities are able to respond to the impacts of global
climate change. These two concepts are related to health
inequities because the very same communities experiencing
health disparities are often also more affected by disasters
and hazards and typically have fewer resources with which
to mitigate and recover from the disaster. Resilience can
alleviate or ameliorate some of the negative impacts of nat-
ural and social hazards. The converse of resilience can be

thought of as “vulnerability,” and an understanding of how
the vulnerability of individuals and populations plays into
disaster preparation, planning, mitigation, and recovery is
crucial in the quest to deal with wide-spread and unprece-
dented natural and man-made threats (Blaikie et al. 1994).
Climate change is likely going to have one of the largest
impacts on public health in this century, with densely settled
coastal cities at high risk (Maantay and Becker 2012). This
may also have an environmental justice aspect to it, since
oftentimes poor communities are located in the parts of the
city most susceptible to flooding and other climate change-
related hazards (Maantay and Maroko 2009).

Various vulnerability indices have been developed to eval-
uate this aspect of communities (Cutter et al. 2003; Jones
and Andrey 2007; Maantay et al. 2010; Tate 2012), similar
in some respects to the residential segregation indices, and
GISc has been used extensively in creating and using these
indices to understand the potential spatial bias of the impacts
of hazards and other burdensome conditions. Many in the
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Fig. 16 The New York City Human Vulnerability Index (NYCHVI)
is an unweighted index that was developed to assess the vulnerability
of the residential population in New York City, on a census tract-by-
tract basis. This case study example uses Brighton Beach, Brooklyn,
to illustrate how the index works. The NYCHVI index is based on an
existing national Center for Disease Control (CDC) index, but tailored to
the specific conditions inNYC. It includes 19 indicators, covering socio-
economic status, household structure, and disability; minority status and
language; housing and transportation; and public health factors, which
were selected to represent characteristics that could make people more
vulnerable in the event of a flood. The vulnerability score can range from
0 (low vulnerability) to 19 (high vulnerability). Additionally, critical
lifeline and special needs facilities and infrastructure were added to
the maps to help identify areas likely to require additional assistance
in the event of an emergency. The NYCHVI index, as applied to

each census tract, and the ancillary locational information can support
planning efforts for emergency management, preparation, prevention,
mitigation and recovery planning, and encourage planning and response
activities that can address the specific needs of the populations involved.
Culturally- and linguistically-appropriate materials can be developed to
improve disaster preparation by better informing affected communities
and to better serve populations in the disaster’s aftermath. Having
precise knowledge of an at-risk populations’ general health conditions
(e.g., disabilities and mobility issues) that might complicate evacuation
preparation or response activities could be critical. Such mapped info
also facilitates targeted aid to areas with high proportion of elderly,
disabled, or young. For further details, see Maantay et al. 2010. (Data
sources: US Census, 2000 (socio-demographic); LotInfo, 2003 (Prop-
erty lot data). Figure credit: Gretchen Culp.)

emergency management profession and scientists research-
ing the prognosis of recovery from natural and man-made
disasters agree that being able to assess vulnerability and
identify the most vulnerable populations and their locations
will help to minimize the impacts of natural and man-made
disasters and protect those most at risk (See Figs. 16, 17, and
18).

Clustering and Spatiotemporal Analysis

One of the important concepts related to urban health is
the way in which prevalence or incidence of a disease, or a
factor related to a disease, manifests in space and time. For
instance, if there is a group of census tracts within a city that
has statistically higher rates of diabetes when comparedwith
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Fig. 17 Diagram showing the construction of the Priority Areas for
Reuse of Derelict Lands Index (PARDLI). The PARDLI scores, in-
tended to aid in the decision-making process of resource alloca-
tion, combine three aspects of vulnerability: overall high deprivation
(need/social vulnerability), adverse health conditions (health vulnera-
bility/need), and proximity to an environmental burden (exposure). The
following outlines how the index was constructed: Health variables
(LBW, RESP, CANCER, and MLE) were re-classed into three cate-
gories: high, medium, and low, by classifying the rates and percentages
by standard deviation. Numerical scores of 1, 2, and 3 were used to
represent low, medium, and high, respectively. Vacant and derelict land
(VDL) was buffered with 100-meter buffer distance, and any data zone
(DZ) that intersected one or more of these buffers was considered

to be in proximity to a vacant and derelict land site. The 100-meter
distance was used rather than a larger impact buffer since it is a more
conservative estimation of impact, from the standpoint of both visual
blight and quality-of-life factors, as well as any potential impact from
contamination. This metric of potential exposure appears in the index
as a binary feature (proximate/not proximate to VDL). In the absence
of any compelling rationale for weighting one variable higher than the
others, the index was created by simple addition of the scores of the
six variables. Combined PARDLI scores ranged from a low of 4 (best,
lowest priority area) to a high of 18 (worst, highest priority area). The
scores were then divided into the three classes of low, medium, and high,
as before for the individual variables. For further details, see Maantay
2013. (Figure credit: Juliana Maantay)

other areas, we often refer to this as clustering. However,
diseases can also be spatially and temporally dynamic, mean-
ing prevalence or incidence can change over time and space
based on any number of factors. To capture this dynamism,
or disease movement, it is often useful to employ space-time
statistics both for quantitative analyses and cartographical
purposes. As with many spatio-analytical techniques applied
to urban health, outputs of cluster and space-time analyses
can be valuable not only for the intrinsic information they
provide (e.g., where there are elevated rates of a disease) but
also for exploratory analysis and hypothesis generation (e.g.,
what built environment, natural, and social characteristics are
present within a disease cluster that may explain the elevated
rates).

Clustered, Dispersed, or Randomly
Distributed?

To understand the spatial distribution of a disease or its
related factors, we often first test for the nature of the distri-
bution itself. For instance, identifying if a variable is spatially
autocorrelated (clustered) in a study area can help us to
become familiar with the nature of the data. Global statis-
tics, such as Moran’s I, can calculate a simple one-number
summary of an entire study area such as a city, thus revealing
if the variable of interest is clustered, randomly distributed,
or dispersed (Goodchild 1986; Helbich et al. 2012). These
data can then be visualized through a variety of cartographic
techniques in order to explore their intra-urban spatial dis-
tribution, as part of the Exploratory Spatial Data Analysis
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Fig. 18 Output map applying PARDLI index scores to each data zone
(DZ) in Glasgow, Scotland. Higher PARDLI scores represent areas
with high levels of deprivation, poor health outcomes, and proximity to
environmental stressors (VDL). From this index, five case study areas
were selected, each comprising three or four data zones, approximating
a neighborhood, dispersed around the different sections of the city.

For further detail, see Maantay 2013. (Data sources: U.K. Ordnance
Survey (basemap layers); Vacant and Derelict Land Survey, Scottish
Government, 2012 (VDL data); Scottish Index of Multiple Deprivation,
General Report and Technical Report, Scottish Government Census,
2009 (SIMD data); Scottish Neighbourhood Statistics, Scottish Gov-
ernment, 2010 (health data). Figure credit: Juliana Maantay)

(ESDA) process. For instance, if there are point locations
representing sampled observations of urban environmental
stressors such as heavy traffic, litter, broken sidewalks, graf-
fiti, or substandard housing, we can use a method such as
kernel density estimation (KDE) to create a statistical surface
of these stressors (Fig. 19). KDE, even though strictly a
cluster detection technique, can smooth data based on either
location alone (e.g., X/Y coordinates of where a cardiac death
occurred) or based on some other attribute (e.g., number of
cardiac deaths within a given distance from a focal point)
(Pathak et al. 2011; Yang et al. 2006). This enables more
intuitive visualization of areas with unusually high- or low-
density values as well as the ability to restructure the data for
further analyses while mitigating some common sources of
error such as edge effect (when an imposed boundary does
not properly consider data outside of that boundary) and the
modifiable areal unit problem (MAUP, when the shape, size,
or orientation of administrative boundaries can impact the
findings of a study due to the distribution of the underlying
variable of interest) (Carlos et al. 2010; Fotheringham and
Wong 1991).

Hot Spot Analysis

To detect local clusters, various approaches are often used
depending on the nature of the data (e.g., points, Fig. 20; or
polygons, Fig. 21) and the research question of interest. Com-
monly used approaches include Nearest Neighbor Hierar-
chical Cluster (NNH), K-means clustering, Getis-Ord (GI*),
Spatial Scan Statistic, and many others (Jacquez 2008). In
general, these methods are able to statistically identify spatial
groupings of unusually high or low values. Unlike global
statistics such as Moran’s I, these methods define regions
within a study area that may be of concern or interest. For
instance, these statistics may be able to identify a group of
city blocks with unusually high rates of asthma (i.e., a hot
spot), regions that may appear to have unusually low rates
of asthma – a protective effect (i.e., cold spot), other areas
of interest or outliers (e.g., a neighborhood with very high
asthma rates surrounded by neighborhoods with very low
rates or vice versa).

The utility of cluster analyses in urban health applications
is broad. Aside from identification of the clusters themselves,
it can also be used as model inputs for regression models
(e.g., a binary variable of “in cluster”/“out cluster”), or as the



Geospatial Analysis of the Urban Health Environment 175

Fig. 19 South Bronx environmental stressors, 2011. This map depicts
a kernel density estimation surface of built, natural, and social envi-
ronmental stressors in the South Bronx, New York City. The KDE
surface is constructed from over 2000 sample points that were audited
by researchers in the Spring of 2011 using a stratified random sample
of blocks in the study area. The audit survey, based on the Project
on Human Development in Chicago Neighborhoods (PHDCN 1995),
included 40 physical and social variables, both positive and negative,
such as street condition, presence of empty alcohol containers, housing

condition, presence of street trees, arguing/fighting/hostile adults, open
drinking of alcohol, adults stopping to greet one another, loud music,
and smoking behavior. Each variable was recoded as an environmental
stressor or benefit and collapsed into an index. The KDE surface
was then created and ultimately aggregated to census tracts in order
to be compared with socio-demographic and economic variables to
test for potential environmental injustices (Maroko et al. 2014). For
further details, see Maroko et al. 2014. (Data sources: Administrative
Boundaries – US Bureau of the Census, 2010. Figure credit: Andrew
Maroko)

first step of a descriptive exploration where characteristics of
the built, natural, or social environments within clusters are
compared to those outside of the clusters. This enables us to
have the ability to explore what may be driving the clustering
(e.g., is there a relationship between public transportation
hubs in an urban area and crime hot spot? Figure 20, or to
examine the impact of the clusters on other variables (how
does access to community gardens impact gentrification?
Fig. 21).

Space-Time Analysis

The introduction of a temporal component to geographic
analyses opens up a tremendous amount of opportunities
for urban health research. For instance, at the individual
level, mobility can be modeled over both space and time in
order to better estimate exposures (e.g., the food environ-
ment) that may lead to detrimental health outcomes (e.g.,
obesity) (Wang and Kwan 2018). The “activity space” of
individuals can cartographically describe, and enable anal-
ysis of, not only the everyday lives of participants but also

their interactions with their environments in a spatiotemporal
context (Kwan and Lee 2003). At a population level, it
is often diffusion which is examined. Diffusion is a con-
cept which can be applied to any number of phenomena
such as cultural diffusion, diffusion of capital, diffusion of
innovation, and of course disease diffusion. Conceptually,
there are a variety of ways that diffusion often occurs. For
instance, relocation diffusion describes when a disease ap-
pears in a new region as a result of a population with the
disease relocating to a new area and as such brings the
illness with them. Contagious diffusion is a result of di-
rect contact between an infected individual to one who is
not infected, thus spreading the disease spatially. When the
disease is spread along transportation networks, it can be
referred to as network diffusion. There is also hierarchical
diffusion, by which a disease or other phenomena move
from a location to another location not spatially proximate
to the first, but one with similar characteristics such as
movement from one large city to the next before moving
to the next level of cities in size or some other factor.
For instance, HIV/AIDS first appeared in the USA in large
cities, like New York and San Francisco, having signifi-
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Fig. 20 Robbery clusters and subway stations: Transit stations may
create ideal settings for robbery opportunity due to a steady flow
of potential offenders and victims (Ceccato and Uittenbogaard 2014;
Newton et al. 2015). Crime is often considered a public health issue
in urban environments both in a direct sense (e.g., crimes resulting
in injury) and in an indirect sense (e.g., decreased quality of life,
increased stress). This map shows how nearest neighbor hierarchical
clusters (NNH) of robbery point locations from 2009 to 2016, inclusive
(n = 35,867) relate to subway stations in the Bronx, NY. Of the 19
clusters identified, 17 of them (89%) contain at least one subway station.
Further analyses revealed more evidence that subway stations can act
as crime generators or attractors by demonstrating that robbery rates
in areas surrounding stations are significantly lower during complete
station closures when compared to robbery rates before or after the
closures (Herrmann et al. 2021). (Data sources: Transit data – GIS Lab
at the Newman Library of Baruch College, CUNY; robbery data – New
York City Police Department. Figure credit: Andrew Maroko)

cant at-risk populations, before moving to the next order
of medium-sized cities, and thence eventually to smaller
towns. Naturally, disease movements in urban areas may
involve a combination of diffusion types as well, known as
mixed diffusion (Cromley and McLafferty 2002). Similar
to cluster analyses, spatiotemporal analyses can be used in
a multitude of ways including space-time cluster identifi-
cation (Fig. 23), descriptive statistics of characteristics in
the areas of interest, and model inputs for further statistical
analyses.

Limitations of Methods and Future Urban
Health Geospatial Analytical Research

Despite improvements in exposure assessment techniques,
urban health research remains constrained by several limita-

tions. The most obvious limitations of urban health analyses
pertain to the datasets themselves that are used. Datasets
on health outcomes, due to their confidential and protected
nature, are difficult and often impossible to acquire at the
resolution needed to reliably establish connections between
environmental conditions and socio-demographic character-
istics of the resident population (Chakraborty and Maantay
2011). For instance, health outcome data at the state-wide
or county-level will not be very useful in investigating im-
pacts of local air pollution concentrations available for spe-
cific monitored point locations. The lack of individual-level
health and socio-demographic data forces many researchers
to conduct ecological studies, using spatially and temporally
aggregated data which are based on pre-defined census units,
postal codes, or health data collection units, but these bound-
aries typically do not define the impacted community well.
Furthermore, using data aggregated by administrative units
also forces researchers to rely on areal interpolation methods
based on unrealistic assumption about the homogeneity of
population distribution within the unit. Another problem
arises from relying almost exclusively on census data and that
has to do with the way the census is conducted: people are
counted in their place of residency and not in their place of
work, school, or other activity spaces. This means that many
health studies focus exclusively on night-time exposure and
that they assume people are non-mobile and are not exposed
to pollution at non-residential locations.

Data accuracy issues also constitute possible limitations
in achieving reliable results, and data accuracy takes two
main forms: positional accuracy and attribute accuracy, both
of which have substantial ramifications on the geospatial
analysis of urban health. Positional accuracy, meaning the
correct placement of polygon boundaries, and point and line
features, is difficult to guarantee, and even small shifts or
displacements of features can effectively invalidate an anal-
ysis. Positional accuracy can be compromised at many junc-
tures in the data collection and acquisition process – survey
measurement errors, image interpretation differences, map
projection changes, generalization of spatial data classes, and
data overlay operations and other geospatial functions such
as clipping and masking.

Attribute accuracy, meaning the textual information con-
tained in the database about spatial features, can also suffer
from incompleteness, definitional discrepancies, changes in
definitions over time, expanding, combining, or collapsing
categories, any of which could possibly stem from incorrect
data input and other forms of human error. Depending on the
seriousness of the errors and how many types of inaccuracies
are present, the deleterious effect on the believability of the
analysis will be compounded. For this reason, some assess-
ment of data uncertainty or data reliability is useful to include
in the results and limitations section of the research.
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Fig. 21 Community gardens and gentrification: Many post-industrial
cities have areas of vacant and derelict land (VDL) which can have
negative health and environmental impacts on nearby residents. VDL
is often located in poorer neighborhoods, posing a disproportionate risk
upon these communities. Repurposing these areas into green spaces and
community gardens may mitigate the risk of health and environmental
hazards, but they may also result in unintended adverse impacts on the
community such as gentrification, which may have its own associations
with poor health outcomes (Huynh and Maroko 2014) in addition
to displacement of current residents stemming from rises in property
values. The maps above represent a portion of a larger study designed

to examine the potential impact of proximity to community gardens
to gentrification in lower-income areas and the associated implications
for environmental justice and health (Maantay and Maroko 2018). Left:
The map depicts the number of community gardens within a network
walking distance of ¼ mile from each census block group in Brooklyn,
NY. Right: Census block group-based hot spots (polygons) using the
GI* statistic showing statistically significant clusters of community
garden access. For further details, seeMaantay andMaroko 2018. (Data
sources: Community gardens – Open Accessible Space Information
System (OasisNYC) online mapping service; administrative boundaries
and demographics – US Bureau of the Census, 2015. Figure credit:
Andrew Maroko)

Decisions during the development of the research design
about the appropriate study area (the scale or geographic ex-
tent of the study), the appropriate unit of analysis (the spatial
resolution), and the temporal resolution (the time periods
to be studied) are almost always dictated by the available
health, environmental, and socio-economic data. However,
the implications of these decisions can be profound. The
differences in the unit of analysis selected, for instance,
can have dramatic impacts on the results of the study, with
the use of geographic units at a finer resolution leading to
more nuanced results than the use of coarser resolution units
(Maantay 2007). Additionally, researchers by necessity must
use the geographic unit that makes sense in terms of the
available data, but these boundaries may have little to do
with defining the actual or potential impacted area or pop-
ulations. This is especially true when using administrative or
jurisdictional boundaries such as census tracts, postal codes,
or property lots for population and health outcome data, in
order to ascertain potential environmental impacts or expo-
sures pertaining to natural phenomena such as watersheds,
air pollutant concentrations, vegetative cover, hazard zones,

etc., which follow much different types of contours and do
not reflect or coincide with the artificial boundaries of the
administrative divisions.

The issue of the modifiable areal unit problem (MAUP)
has relevance to the selection of appropriate geographic
units of analysis (Openshaw 1984). Depending upon where
the boundaries are drawn when aggregating data, the geo-
graphic pattern and statistical characterization exhibited (by
the distribution of health events, noxious facilities, minority
populations, and so forth) can change substantially.

Edge effects are another potential impediment to valid
research design that must be taken into account. The de-
lineation of study area extent, by necessity, needs to be
established based on the research design and the focus area
of interest. Study extent is typically defined in such a way
that the areas adjacent to the outer boundaries of the area
are dealt with as if all relevant data, impacts, and exposures
stop at the boundary, which is not the case in reality for
most study extents. What occurs on the other side of the
outer boundaries of study areas can also have significant
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Fig. 22 The ongoing COVID-19 pandemic has disproportionately im-
pacted traditionally vulnerable communities, including well-researched
social determinants of health, such as racial and ethnic minorities,
migrants, and lower income individuals and families. An early geo-
graphic ecological study sought to examine the economic and socio-
demographic differences in hot and cold spots of SARS-CoV-2 rates
in New York City and Chicago. It demonstrated that in both cities,
hot spots (clusters of high rate ZIP code tabulation areas) tended to
have lower proportions of college graduates and higher proportions of
people of color. Larger households (more people per household), rather
than overall population density, was also found to be more strongly

associated with hot spots. The two choropleth maps on the left of Fig.
22 show the SARS-CoV-2 case rate (with New York City on the top
left and Chicago on the bottom left). The two maps on the right depict
the hot and cold spots based on the Getis-Ord (GI*) statistic, showing
New York City on the top right and Chicago on the bottom right. For
further details, see Maroko et al. 2020. (Data Sources: New York City
Department of Health andMental Hygiene’s Incident Command System
for COVID-19 Response, 2020; Illinois Department of Public Health,
2020; American Community Survey (ACS) 2018 5-year estimates via
NHGIS.Org. Figure by: Andrew Maroko)

influence, but this is generally not taken into account in
the analysis. Regardless of how the boundary is placed, the
values outside the study extent will affect what is inside
the study area, even though they are not taken into account
as part of the study (Griffith 1983). Boundary problems
(edge effects) are especially prevalent in spatial point pattern
analysis, such as nearest neighbor statistic. It can be helpful
to mitigate edge effects by the use of Epsilon bands (fuzzy
boundaries), which include, within some distance threshold,
the data on the other side of the outer boundaries in the
analysis. Epsilon bands are most often used in accounting

for positional inaccuracies of spatial data, but such buffer
zones can also be employed so as to include data outside of
the study area proper that might impact the analysis within
the study area, so that edge effects are eliminated as much
as possible from the study area itself. When assessing urban
exposure to environmental hazards, several methodological
limitations need to be considered. Most exposure assessment
techniques are based on the assumption that everyone within
a unit that hosts an environmental hazard will be equally
impacted; however, it is well documented that pollution does
not disperse equally in all directions from a source. Further-
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Fig. 23 Emerging hotspot analysis of circulatory system disease hos-
pitalizations in New York City (2013–2016). Space-time clusters of
hospitalization counts where the primary diagnosis was related to the
circulatory system (ICD9 codes390–459). Using counts rather than rates
enables the identification of areas where more resources may be needed
(e.g., more hospitalized residents live in a certain neighborhood and
as such those areas may be targeted for public health interventions or
increased resources such as clinics or primary care providers). Left:
This simplified map, with hospitalization count data aggregated by
hex, identifies areas with hotspots which are (1) persistent (statistically
significant hot spot for 90% of the time-step intervals without increasing
or decreasing trends), new (statistically significant hot spot for only the
final time step), and sporadic (less than 90% of the time steps have

significant hot spots and none have been significant cold spots) (ESRI
2018). Note the large areas of persistent hotspots in the South Bronx
and Central Brooklyn – regions which tend to be lower income with
higher proportions of residents of color compared to other areas of the
city. Right: An oblique view of the circulatory disease hospitalization
count data in the Bronx space-time clusters. Time is represented in the
vertical axis with more recent data at the top. Notice how the data in
the “persistent” hot spot regions in the south-west of the study area
show significant hot spots for each time step (darker symbols), whereas
data in the “new” hot spot regions in the south-east only show hot
spots in the most recent time step. (Data sources: Hospitalization data –
Statewide Planning and Research Cooperative System (SPARCS) via
Infoshare.org; administrative boundaries– US Bureau of the Census,
2010. Figure credit: Andrew Maroko)

more, distance-based exposure assessment methods are very
sensitive to the often arbitrarily chosen distance that is used
to estimate exposure. Also, some exposure assessment tech-
niques such as the spatial coincidence method and LUR are
susceptible to the edge effect. Additionally, many techniques
do not take environmental hazard density in consideration.
In other words, they do not differentiate between spatial
units hosting only one hazard and those hosting several.
However, exposure works cumulatively – generally speaking,
the more the sources of pollution in a host unit, the higher
the total exposure of its residents. The last limitation can be
overcome by incorporating data on the types of pollutants and
associated emission quantities in the exposure assessment.

One of the limitations of network analysis is the usually
subjective choice of the distance metric to be used. Differ-
ences in network distance can have enormous effect on the
analysis results, but it is generally difficult to be certain that
the distance selected is themost correct one. For instance, can
we be sure that ¼mile represents the best estimate of walking

distance for a certain area or population? Most prior research
has used the ¼ mile distance, because based on experience,
approximately five city blocks is considered to be the optimal
maximum amount of walking in one direction of a two-way
trip, especially for the elderly, children, and those carrying
anything heavy, such as groceries. However, as analysts, we
may need to discuss caveats with our distance decisions, and
the uncertainty that this may bring to the results. Another
potential stumbling block in terms of result believability is
the accuracy of the network database itself. For instance, if
the network analysis is investigating pedestrian access, then
the correctness of how the streets and roadways have been
designated will have ramifications for how accurately the
walking distance access reflects reality. Additionally, realis-
tic pedestrian access routes are influenced by things other
than distance and thoroughfare designation, and databases
may lack some salient info such as the presence of steep
hills or pedestrian-unfriendly thoroughfares – information
not likely to be represented in the database but which may

http://infoshare.org
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be critical is capturing the true routes and impediments
encountered in “walking distances.”

There are a number of obvious shortcomings when using
indices. The construction of valid indices requires the cor-
rect and complete identification of the important factors to
comprise the index. Often the important variables are deter-
mined by principal component analysis, or simply by expert
judgment. If the index is a weighted one, expert judgment
must be consulted on the assignment of the correct weights
to the correct variables. If we are constructing an unweighted
index, we must be able to justify why we believe that all
variables are equally important, or at least explain why it is
impossible to ascertain and quantify which variables are to be
assessed as having greater importance, and that in the absence
of being able to quantify weights for the variables, it is more
defensible to assign no weights at all.

For either weighted or unweighted indices, some justifi-
cation for selecting the variables and their importance and
relevance to the purpose of the index must be provided.
Does the index capture all major aspects of the issue? Is
reducing a complex set of variables to essentially a one-
number solution obscuring important details and nuance that
would allow us to more clearly see relationships if looked at
separately? The use of indices always entails some amount of
compromise between a higher level of detail possible and the
necessity of reducing complex information to a more easily
understandable and analyzable set of values.

Cluster and spatiotemporal analyses, like many other
GISc-based models, are extremely sensitive to parame-
terization and data aggregation. This issue is most clearly
visible with respect to the conceptualization of the spatial
relationship among units of analysis. For instance, when
attempting to identify hot spots of asthma hospitalizations
by census tract, one must first decide if the clustering will
be strictly based on distance (e.g., threshold distance) or on
contiguity (e.g., nearest neighbors). If distance-based, then at
what scale should the clusters be analyzed? If a large distance
value is used, one may identify regional clusters; however,
if a smaller value is used, then perhaps local clusters will be
identified. Additionally, one must consider options such as
the use of Euclidean or network distances, binary distance
thresholds or distance decay functions, etc. Both distance-
and contiguity-based methods are sensitive to the size of
the administrative units of analysis. This is most easily seen
when using census units such as tracts which are designed
to represent a certain number of residents rather than a fixed
area. In more densely populated regions, the census tracts
tend to be smaller, whereas less populated areas often have
tracts which can be quite large. This can introduce vagaries
into the clustering analyses based on the number of samples
when using distance-based methods (e.g., densely populated
urban areas will have many census tracts within a 2 mile
threshold distance, whereas suburban or rural areas will have

far fewer tracts in that same radius) as well as contiguity-
based models (e.g., 10 nearest neighbors could represent a
very small area in an urban region and a very large area in a
suburban or rural region). Similar aggregation-related issues
are present when examining temporal aspects of spatial
data. For instance, if disease data are temporally aggregated
by year, it may obfuscate seasonal hotspots. Conversely, if
temporal data are too granular, it may lack the power to
detect clusters due to small sample sizes in each time step.
These issues should be addressed based on the nature of
the phenomena being studied, the characteristics of the data
being used, and the research question being explored.

Future urban health research will benefit from the ac-
quisition of more robust data, including wherever possible
the use of anonymized individual patient-level records, the
incorporation of local household surveys to obtain address-
level socio-economic and self-reported health and behavioral
data, and use of techniques such as cadastral dasymetric
mapping to estimate the characteristics of potentially exposed
individuals more accurately. The development of accurate
but less data-intensive environmental models, less complex
models, and ones requiring less data processing would also
be helpful, as would the availability of more environmental
data in general. Additionally, future urban health studies need
to consider the long-term mobility of the potentially exposed
population as well as their daily mobility, for example by
utilizing GPS technology to incorporate the daily movements
of people in the exposure assessment.
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Geospatial Tools for Social Medicine:
Understanding Rural-Urban Divide

Steven A. Cohen, Mary L. Greaney, Elizabeth Erdman, and Elena N. Naumova

Introduction

Place impacts population health. Increasing evidence
suggests that one’s place of residence plays a substantial role
in determining one’s health status in the USA andmany other
nations across the globe. As a result, health disparities based
on geography can and do occur. Among the multitude of
studies that have demonstrated geographic health disparities,
examples include, but are not limited to, cancer (Krieger
et al. 2002), physical activity and obesity (Gordon-Larsen
et al. 2006), and healthcare quality and access (Baicker et
al. 2005; Stiel et al. 2017; Walker and Crotty 2015). The
examination of the causes of place-based health disparities
has focused primarily on social determinants of health, such
as wealth, education, environmental factors, crime, and
others, on a defined geographic level, such as the region,
state, or county (Woolf and Braveman 2011). Recently, there
has been increasing interest in assessing smaller geographic
areas to examine how small-area, place-based neighborhood
characteristics influence health. Policies, demographics,
natural resources, and economic conditions on the local level
may affect availability and quality of resources, development,
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and economic opportunities (Braveman et al. 2011). A
growing body of research suggests that understanding if and
how small-area social determinants, including education,
wealth, crime, environmental factors, and housing, influence
population health is critical to reducing health disparities that
may often occur within these areas (Beck et al. 2017; Benach
et al. 2001; Diez-Roux 1998; Grow et al. 2010; Kruger et al.
2007; Kulkarni et al. 2011; Lippert et al. 2017; Marmot and
Bell 2011).

To identify, understand, and address any potential mech-
anisms through which place-based factors influence popu-
lation health and lead to geographic health disparities, it
is important to understand how the notion of “place” is
conceptualized in population health research. In a semi-
nal paper by Macintyre and colleagues, the authors suggest
that there are three categories of geographic variation in
health—compositional, contextual, and collective—and that
these categories are not mutually exclusive (Macintyre et al.
2002). Compositional factors are attributes of the individuals
living in a particular area, such as socioeconomic status,
race/ethnicity, and other factors. Contextual factors refer to
those in the local environment with emphasis on sociocultural
and historical features of the community, such as changing
demographics, business, and crime. Collective factors are
the collective norms, traditions, values, and needs of the
community (Macintyre 1997).

Understanding place-based drivers of health is critical
to address health disparities. Increasing research suggests
that much of the variability in population health is not due
to medical-related factors but to geographic differences in
non-medical factors, including social, economic, and demo-
graphic factors related to geography. For example, a recent
analysis found that social, economic, and physical factors ac-
count for nearly 54% of population health (Park et al. 2015),
factors that are explicitly linked or related to place-based
factors (Fig. 1) (Minnesota Department of Health). Similarly,
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Fig. 1 Determinants of health. (Source: http://www.health.state.mn.us/
divs/che/about/creatinghealthequity.html)

analyses from the County Health Rankings and Roadmaps
model suggest that approximately 50% of population health
is attributable to social and economic factors and the physical
environment (Remington et al. 2015; Tarlov 1999; Adler and
Newman 2002; McGinnis et al. 2002). Therefore, addressing
population-level, place-based drivers of health disparities
may have a substantially greater impact on population health
than medical and medical-related interventions alone.

Given that place-based factors are associated with pop-
ulation health, a logical question to ask is how do place-
based factors influence health. Many such potential mecha-
nisms have been discussed in the literature. The oldest and
most well-known example is the Broken Windows theory
developed initially by James Wilson that suggests that the
appearance of a community’s physical environment influ-
ences individual behaviors, which ultimately impacts the
individual’s health and the collective health of the population
(Wilson 1987). This theory suggests a dynamic relationship
between the environment, health behaviors, and health status.
Therefore, based on this theory, as neighborhoods deteriorate
in physical appearance, so-called social buffers that could
reduce high-risk behaviors may gradually disappear. As the
overall health behaviors of a community start to worsen,
population health declines, and this is why population health
outcomes are often worse in areas of substantial neighbor-
hood degradation (Cohen et al. 2000).

In addition to the Broken Windows theory, other mecha-
nisms by which place may influence population health have
been hypothesized. While it is unlikely that place-based
factors, such as socioeconomic status (SES), directly impact
health, these types of factors shape conditions that ultimately
impact population health (Adler and Rehkopf 2008). It is
posited that a place-based factor may impact population
health through indirect pathways across the lifespan. For
example, low SES conditions may contribute to poor nutri-
tion, exposure to harmful environmental contaminants, dis-
crimination, and other aspects of life that may impact health
behaviors, access to healthcare, and health status (Adler and
Ostrove 1999; Williams and Collins 1995). Such potentially
harmful place-based conditions may lead to increased allo-
static load throughout life (Seeman et al. 2010) so that stress
accumulates over time upon continual exposure to harmful
living conditions (McEwen 1998; Juster et al. 2010; Lupien
et al. 2015).

The biological, psychological, and sociological pathways
of place-based factors which influence population health are
just beginning to be understood. Cummins et al. argue that
much of the existing research on how “place” influences
population health through contextual factors, focusing pre-
dominantly on deprivation, has not focused on the contextual
and compositional factors (Cummins et al. 2007). Adler and
Rehkopf suggest that appropriately combiningmultiple types
of data on SES, demographic, psychosocial, and biological
factors on multiple levels will facilitate the creation of causal
models that identify direct and indirect pathways that lead
to critical but addressable health disparities (Williams and
Collins 1995; Adler and Rehkopf 2008).

Exploration of place-based contextual factors has cur-
rently centered on a fixed population in a clearly delineated
geographic area, such as a county, state, or neighborhood, at
fixed points in time. The current view of how place-based
characteristics influence population health centers on readily
quantifiable, often static measures, such as SES, availabil-
ity of resources, existence of and proximity to resources,
segregation, etc. (Diez-Roux 1998). Some argue that this
conventional approach to understanding specificmechanisms
through which “place” affects health is integral to population
health not just for strengthening causal inferences about
place-based risk factors but also for identifying potential
avenues for intervention on the population level (Cummins
et al. 2007). They suggest moving from the “contextual and
compositional” approach to a “relational” approach. In a
relational approach, place-based characteristics are viewed
somewhat differently. For instance, this approach relies more
on socio-relational distances and networks than on physical
distance and boundaries and uses area definitions that are
more dynamic and fluid. Additionally, a relational approach
tends to focus on the cultural aspects of place rather than
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the resource or deprivation-based aspects of place. There are,
however, numerous methodological challenges in utilizing a
relational approach to understand place-based influences on
population health which make undertaking such studies more
difficult. In this chapter, we focus on the more conventional
approach toward understanding the influence of place on
health while identifying potential areas where researchers
can integrate the more relational approach to understanding
these complex pathways.

Why Focus on Defining Place-Based
Characteristics in Geospatial Models?

Defining place-based characteristics is integral for popula-
tion health and assessment of health disparities in geospatial
models. Geospatial models have been used extensively for
a wide variety of research investigating geographic varia-
tion in population health and healthcare, health inequali-
ties, and healthcare service needs. Wennberg and colleagues
were among the first to conduct a comprehensive geospatial
analysis of variation in Medicare services across the USA
(Wennberg et al. 2002). Numerous other studies have fol-
lowed and have examined critical geographic variability in
healthcare service using GIS and geospatial models (Gilmer
and Kronick 2011; Matlock et al. 2013; Nicholas et al. 2011;
Newhouse and Garber 2013a; Hanchate et al. 2017; Chui
et al. 2011). Geospatial models have been widely used to
assess health inequalities across populations (Krieger et al.
2002; Weich et al. 2003; McDonald et al. 2012; Suzuki et al.
2012; Newhouse and Garber 2013b; Dwyer-Lindgren et al.
2017) and the need for healthcare services (Black et al. 2004;
Padilla et al. 2016). Geospatial modeling provides a critical
tool for the analysis and planning of health services and
infrastructure to reduce inequalities and promote population
health, regardless of geography (McLafferty 2003). Geospa-
tial modeling provides insights into the spatial organization
of health services and population health, which allows re-
searchers to incorporate multiple dimensions of place-based
factors and potentially multiple levels of observation (e.g.,
individual and different levels of geographic influence) into
the analysis. Examples include calculating travel time to
health facilities (Branas et al. 2000; Pearce et al. 2006),
assessing optimal locations for healthcare centers (Jia et al.
2007), health behaviors and social capital (Mohnen et al.
2012), and obesity prevalence (Prince et al. 2012).

To optimize the effectiveness and utility of any geospatial
model, researchers should delve into what and how place-
based factors truly drive and mold potential relationships
between health and place. Many geospatial models have
focused on assessing specific place-based factors that exist in
the geographic regions (e.g., state) and how they contribute

to spatial disease patterns and health behaviors. Geospatial
models of health outcomes were originally developed to
quantify spatial patterns across different geographies by in-
corporating place-based characteristics (Waller and Gotway
2004; Banerjee et al. 2014). However, incorporating place-
based factors in geospatial models requires a multitude of
considerations that are often overlooked in such modeling
procedures. Therefore, the remainder of this chapter will
focus on discussing several important challenges to properly
identifying and utilizing place-based spatial characteristics in
geospatial modeling for applied population health research,
with an emphasis on measuring rural-urban gradients. This
chapter also will provide insight into strengths and limita-
tions of different approaches, as well as opportunities for
future research into these potentially powerful analytical
tools to maximize their utility in research and policy.

Challenges in Determining Place-Based
Spatial Characteristics

Selection of Characteristics

In geospatial models of health outcomes, the researchers’
assumptions related to a spatial distribution of a sociodemo-
graphic indicator of interest, specifically its homogeneity, or
consistency within the study area, are critical to proper inter-
pretation and use in developing policies and interventions to
address health issues. Building geospatial models starts with
the selection of place-based characteristics. Characteristics
commonly used in such geospatial models may include so-
cioeconomic status (e.g., wealth and income), demographic
composition (e.g., racial/ethnic composition, age, and gen-
der), environmental factors (e.g., climate, air/water/soil qual-
ity), and education. These characteristics and how they are
measured are typically dynamic, location-specific, multidi-
mensional, and potentially highly correlated and could be
costly. Thus, rarely does a universally accepted, singular
measure of place-based characteristics suffice for geospatial
modeling. This raises several issues, some of which are
addressed in the subsequent sections.

Spatial Heterogeneity

An important challenge in determining which place-based
spatial characteristics to use, particularly when analyzing
spatially aggregated data, is spatial heterogeneity of a se-
lected characteristic. Spatial heterogeneity generally refers to
uneven and often heavily skewed distributions of character-
istics within an area or between adjacent areas. This section
focuses on two specific aspects of spatial heterogeneity,
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heterogeneity both within and between observational units in
geospatial models of aggregated data.

Heterogeneity Within Observational Units
Place-based characteristics can be defined on multiple geo-
graphic levels. Oftentimes, there can be notable heterogene-
ity in terms of these place-based characteristics, especially
when aggregating on a large geographic level such as a
county, state, or country both in terms of central tendency
and variability. Consider the case of two adjacent counties
on the western side of the San Francisco, California Bay
Area: San Mateo County and the City and County of San
Francisco. Both counties are highly urbanized and are part of
the metropolitan statistical area of San Francisco. Both are
among the wealthiest counties in the USA in terms of per
capita income. San Mateo County has the thirteenth-highest
per capita income, $50,262, while the City and County of San
Francisco has the sixth-highest per capita income of $55,567
(based on the most recent data from the US Census Bureau
2016 American Community Survey 5-year estimates).

Functionally, in studies examining county-level effects
on population health, both counties would be considered as
individual units of observation of equal importance. How-
ever, a deeper examination of the counties themselves re-
veals substantial differences between the two. First, there
are notable differences in the size and composition. San
Francisco has a total land area of 46.9 square mile, while San
Mateo County has a total land area of 448.4 square miles.
The population size of the counties is comparable, with San

Francisco (805,235) having a slightly higher population than
SanMateo County (718,451). Due to their differences in land
area, the population density of San Francisco is considerably
higher (8042 per square mile) than that of San Mateo County
(604 per square mile). A simple comparison of housing units
reveals further distinctions between the two counties. In San
Francisco, there are 376,942 total housing units, whereas in
SanMateo County, there are 271,031 total housing units. The
resultant data represent notable differences between the two
county units in terms of the number of people per household,
with the average number of people per household being
24.1% higher in San Mateo County than in San Francisco
(2.65 vs 2.14 people per household, respectively). Although
this difference appears small, San Francisco has one of the
lowest average household sizes for all US counties, whereas
San Mateo’s average household size is above the US average
of 2.54 people per household.

The heterogeneity of these two counties also can be com-
pared using smaller geographic units. Although both county-
equivalent units of San Mateo County and San Francisco are
similar in terms of per capita income (as shown above), a
closer examination of the census tracts within each county
reveals stark differences between the counties. It should be
noted that San Francisco has 195 census tracts while San
Mateo County has 156. There is more variability in per capita
income among the census tracts of San Francisco than among
the census tracts of San Mateo County (Fig. 2). Although
San Francisco’s per capita income is just over 10% higher
than that of San Mateo County, San Francisco has a wider

Fig. 2 Distribution of per capita
income by census tract in San
Francisco City County and San
Mateo County (2010)
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range of census tract-level per capita income values than San
Mateo County does. Despite having the sixth-highest county-
equivalent per capita income in the USA, San Francisco
contains some of the poorest census tracts in the nation,
with the lowest census tract per capita income of $7355. The
lowest tract-level per capita income in San Mateo County is
$16,732. Considering all census tracts in both counties, the
six lowest ones in terms of per capita income are all found in
San Francisco. Thirteen of San Francisco’s 195 census tracts
(6.7%) have a per capita income below $20,000, compared
to just 4 of San Mateo’s 156 census tracts (2.6%). On the
opposite end of the income spectrum, six of the top seven
census tracts in terms of per capita income are found in San
Mateo County.

This San Francisco and San Mateo County example illus-
trates that the sum of the parts does not necessarily represent
the whole due to spatial heterogeneity within the units of
observation. In terms of average per capita income, the two
adjacent county-equivalent units appear similar. However, a
comparison of additional sociodemographic factors reveals
that despite their geographic proximity and similarity in
per capita income, these two counties have notably differ-
ent distributions of the study characteristics. Examining the
census tracts within these two county-equivalent units with
respect to per capita income reveals further spatial hetero-
geneity that is masked when examining per capita income
on the county level in isolation. It is important to consider
such spatial heterogeneity when conducting spatial analyses.
In such analyses, where possible, identifying and perhaps
quantifying such spatial heterogeneity and underling spatial
distributionswould enrich the analysis of key socioeconomic,
demographic, and other place-based characteristics.

Level of Aggregation

A closely related topic linked to spatial heterogeneity specific
to geospatial analyses of aggregated data is the choice of the
geographic level of aggregation such as the state or province,
county, census tract, or any other unit. There are strengths
and drawbacks to each level of aggregation. In this section we
discuss a few important issues I to consider when selecting
an appropriate level of aggregation in a geospatial analysis.
Importantly, this discussion is not exhaustive assessment of
the strengths and drawbacks of different levels of aggregation
but rather a “jumping-off point” to consider how the selected
level of aggregation may influence the results and interpreta-
tion of findings and their implications for research and policy.

Data Quality and Confidentiality
There are a variety of valid geographic scales, and the choice
of geographic level can lead to different but equally valid
results that emphasize different data features (Elliott and

Wartenberg 2004). The challenge of selecting a proper scale
and aggregation method is referred to as the modifiable
area unit problem (Openshaw 1984). The goal of selecting
variables to use in geospatial modeling using aggregated
data is to choose the smallest geographic units possible to
simultaneously maximize sample size and minimize spatial
heterogeneity. Yet, the choice is often dictated by available
data. Due to limited available data, there is a trade-off be-
tween homogeneity within selected geographic units and pre-
cision of the estimated associations or disease frequencies.
Therefore, a key issue in in geospatial analyses is selecting
the most reasonable geographic unit of observation while
recognizing its limitation with respect to accuracy and bias
this aggregation may introduce.

If they are found to be valid and reliable, a large number of
units of observation such as county, state, or region typically
increases the likelihood that the geographic information con-
tained within the study area has broad coverage. However,
it may reduce the ability to detect potentially critical small-
scale trends and associations. Since there is no singular
industry standard in terms of data source or protocol for
evaluating data quality at different levels of spatial aggrega-
tion, the data user must assess the benefits and drawbacks of
each potential level of aggregation and, at minimum, identify
and discuss the drawbacks in any publically disseminated
research project.

When analysis includes records on a fine scale, issues of
confidentiality and privacy may also arise, especially when a
research question addresses vulnerable populations or people
with unique demographic characteristics. Such issues are
most pronounced in spatial analysis using small geographic
units, such as street address, the census tract, or block group
(Clapp and Wang 2006). Methods that attempt to address
data confidentiality and privacy include geographic masking,
the process of altering the coordinates of geographic data
to limit the risk of re-identification in the released data to
make it difficult to accurately reverse geocode the released
data (Zandbergen 2014). Masking techniques are especially
useful in non-aggregated data and also apply to aggregated
data (Armstrong et al. 1999). It is worth noting that aggrega-
tion itself maymask problematic issues of confidentiality that
occur with point-source data (Kounadi and Leitner 2014).
Nonetheless, data confidentiality and privacy issues remain
a highly debated issue in geospatial modeling (Fefferman et
al. 2005; O’Keefe and Rubin 2015), and there is an ongoing
need to develop and test statistical methods to address this
issue.

Policy Relevance
Another issue to consider when using geospatial models
for health research is the utility of the geographic level
of aggregation in terms of informing policy. Many health
policies are set on the state level by state governments, which
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make analyses comparing state-level differences appealing
and useful for this purpose. The results of state-level research
can immediately inform individual states as to which states
are better and which are worse in terms of whatever health
outcome or risk factor is examined. In the USA, however,
this approach is often limited simply by the limited number
of units of observation (50, or slightly more if the District
of Columbia and US territories are included), which greatly
reduces statistical power, especially in geospatial models
where some of the error is explained by spatial correlations.

Counties offer more granularity and greatly increase the
number of units of observation (3142 counties and county-
equivalents in the USA). There are several important caveats
to consider when using county as the level of spatial aggrega-
tion. First, the function of county governments varies by state.
Some states do not have an active county government system,
and all governance is done on the state or municipality level
(e.g., New England states). Second, counties and county-
equivalent units vary in terms of size and structure within
and between states. For example, all independent cities in
Virginia, regardless of population size or area, are treated as
county-equivalents. Consider the case of Norton, Virginia, an
independent city in the rural western part of the state with
a population of under 4000 as of the 2010 US Census and
a geographic area of 7.5 square miles. County-equivalent
units such as Norton and other small, independent cities
are considered on the same level of observation as actual
counties in Virginia that may be orders of magnitude larger,
either based on geographic size, population size, or both,
such as Fairfax County, with a population of 1.14 million
and a land area of 396 square miles. In many other states, all
municipalities, regardless of size, are considered to be part
of a county. In Massachusetts, for example, the major city of
Boston is part of the larger Suffolk County. All municipalities
in Massachusetts, even minor cities with population sizes
over 100,000, are part of a larger county. Similarities are
found in states such as California, where only large cities,
such as San Francisco, are considered county-equivalent
units while all l smaller cities and towns are part of the
California county system. Numerous other similar examples
can be found across the USA. Collectively, these are just a
few examples and illustrations of the heterogeneity in terms
of function, size, and composition, within and between US
counties, especially evident when comparing counties across
different states.

Smaller units of observation, such as the census tract,
municipality, and block group, offer additional gains in terms
of the number of units of observation and offer an increasing
amount of granularity and the ability to detect key neighbor-
hood and other area-level differences. Geographic levels of
observation created by the Census Bureau, such as the census
tract and block group, are designed to be relatively homo-
geneous with respect to population size and function across

the small areas they represent. Nonetheless, data aggregated
to fine levels of geography such as these may be subject
to issues of data reliability, privacy, and confidentiality, as
noted previously. Furthermore, policies and interventions
designed to address population health issues assessed at a
fine geographic level may be difficult to implement due to
a variety of factors, including, but not limited to, spillover
effects from one area to another and populationmigration and
movement among these small geographic units.

Example: The Swiss Paradox
A key example of how the level of aggregation can af-
fect the findings of geospatial models and therefore impact
downstream policies and programs is known as the “Swiss
paradox” (Clough-Gorr et al. 2015). It has been widely es-
tablished in the public health and social medicine and public
health literature that higher income inequality is generally
associated with worse population health outcomes (Kawachi
and Kennedy 1999; Krieger et al. 2002; Lynch et al. 2000).
Examples of this association are numerous and include obe-
sity (Zhang and Wang 2004; Wilkinson and Pickett 2006),
self-reported health (Kondo et al. 2009), and overall mortality
(Kennedy et al. 1996; Vincens and Stafström 2015). Al-
though there are a variety of theories and empirical evidence
to support these associations, the precise reasons for them are
not entirely clear. A seminal article by Kawachi and Kennedy
(1997) suggested that income inequality promotes poorer
health outcomes by reducing social cohesion. Further studies
have suggested other potential complementary mechanisms
through which income inequality affects health outcomes.
One hypothesis is that income inequality is a correlate of
other structural, demographic inequalities, such as racial seg-
regation, whereby spatial concentrations of race and poverty
influence individual and population health outcomes (Subra-
manian and Kawachi 2004).

The term “Swiss paradox” was coined by Clough-Gorr
and colleagues in a 2015 article, one of the first studies to
formally investigate how level of spatial aggregation may
influence the associations between income inequality and
health. When measured on the state level, income inequality
is associated with poorer health outcomes (Kahn et al. 2000;
Kennedy et al. 1998; Subramanian and Kawachi 2004; Sub-
ramanian and Kawachi 2003). However, with lower levels of
aggregation, such as the census tract and county, the findings
are mixed (Fiscella and Franks 1997; Soobader and LeClere
1998; Eckenrode et al. 2014). Clough-Gorr and colleagues
observed that higher income inequality in Swiss municipal-
ities was consistently associated with lower mortality risk,
except for certain health outcomes, even after accounting for
sex, marital status, nation of origin, rural-urban status, and
other potential confounding factors. Their results challenge
current beliefs about the effect of income inequality on health
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Table 1 Parameter estimates from the association between Gini index and each of the five listed health outcomes on the county and state levels

Model type and Gini
level Obesity Diabetes Current smoker Poor/fair SRH Sedentary lifestyle

Unadjusted
County −0.33 (−0.54, −0.13) −0.08 (−0.12, 0.27) 0.05 (−0.10, 0.20) 0.82 (0.59, 1.04) 0.19 (−0.04, 0.42)

State −0.01 (−0.25, 0.23) 0.55 (0.32, 0.78) 0.24 (0.07, 0.41) 1.11 (0.84, 1.38) 0.66 (0.39, 0.94)

Income-adjusted
County −0.39 (−0.59, −0.19) 0.03 (−0.16, 0.23) 0.01 (−0.14, 0.15) 0.66 (0.45, 0.88) 0.05 (−0.17, 0.28)

State −0.09 (−0.33, 0.15) 0.50 (0.27, 0.73) 0.18 (0.01, 0.36) 0.89 (0.64, 1.15) 0.48 (0.21, 0.75)

Fully adjusted
County −0.42 (−0.63, −0.20) −0.10 (−0.31, 0.10) 0.01 (−0.14, 0.17) 0.63 (0.41, 0.86) 0.23 (−0.01, 0.47)

State −0.25 (−0.50, 0.01) 0.30 (0.06, 0.55) 0.12 (−0.06, 0.30) 0.71 (0.44, 0.98) 0.58 (0.30, 0.85)

on a fine geographic scale. The reasons for such findings,
however, remain unclear and merit further research.

A direct comparison between income inequalities based in
the USA that examined the effect of aggregating at the state
level versus the county level further corroborates the Swiss
paradox. To illustrate the challenges, data from the 2012
Behavioral Risk Factor Surveillance System (BRFSS) were
utilized. The BRFSS is a nationally representative phone
survey of nearly 500,000 US residents in all 50 states, plus
districts and overseas territories. The 2012 BRFSS sample
was selected because it was the last year in which county of
residence was publicly available in the data set. The associ-
ation between income inequality and the county-level preva-
lence of five representative health behaviors and outcomes—
obesity, diabetes, current smoking, sedentary lifestyle, and
fair/poor self-reported health—was assessed using general-
ized linear models. The analysis was conducted using income
inequality on two levels of spatial aggregation, the state and
county, adjusting for income and other sociodemographic
factors. Findings identified three distinct patterns of associa-
tions (Table 1). First, for fair/poor self-reported health, higher
income inequality on both the state and county levels was
associated with an increase in the prevalence of this health
outcome, which is what might be expected. Second, higher
income inequality was associated with a higher prevalence of
both diabetes and having a sedentary lifestyle when income
inequality wasmeasured on the state level, but not whenmea-
sured on the county level. Similar results were obtained for
current smoking status, except the association between state-
level income inequality and prevalence of current smoking
became nonsignificant in the fully adjusted models. Third,
and perhaps most interestingly, for obesity, higher income
inequality on the county level was actually associated with a
decreased prevalence of obesity, while there were no signifi-
cant associations observed when income inequality was mea-
sured on the state level. In this analysis, several challenges
are apparent. This analysis considered each geographic unit
as spatially independent and did not test for potential spatial
dependency among geographic units using Moran’s I or

Table 2 Descriptive statistics for Gini index on the state and county
levels (2012, source: US Census Bureau)

Statistic States Counties

N 51 3143

Mean (SD) 0.4552 0.4350

Median 0.4559 0.4325

Min 0.4132 0.3161

Max 0.5315 0.5994

Skewness 0.7190 0.3573

Kurtosis 1.9461 0.3150

other statistic. This is likely a more important problem for
counties than for states (Manley et al. 2006) in terms of
ability to distinguish local patterns of spatial autocorrelation.
Additionally, there is a considerable difference in sample
size and the number of units of observation between states
(51, including DC) and counties (3143), resulted from spatial
aggregation. Related to this caveat, the distribution of Gini
index is notably different when measured on the state and
county levels (Table 2).

Study findings underscore the notion that level of aggrega-
tion matters. Why the association between income inequality
and health varied based on the level of aggregation is not
entirely clear. Uncovering some of the potential mechanisms
through which these social characteristics affect health on
these and other geographic levels is integral to creating
effective policies and programs designed to reduce health
inequalities and improve population health, regardless of
geography.

Case Study: Rural-Urban Status

Examining place-based factors that drive population health
and promote health disparities requires careful attention to
the place-based factors and characteristics studied. There are
many instances in which there is no scientific consensus
as to the best measure of a certain social, demographic,
environmental, or economic factors as each measure may
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have its own benefits and drawbacks. One key example of
this is the measure of rural-urban status (Cohen et al. 2018b).
Whether describing rural health issues, assessing rural-urban
health disparities, and examining the process of urbanization
or any other issues pertaining to the rural-urban divide, it
is essential to understand, utilize, and interpret appropriate
measures of rural-urban status to properly characterize the
place-based characteristics the researcher seeks to address.
Furthermore, it is valuable to note that place-based charac-
teristics, especially those concerning measures such as rural-
urban status, depend heavily on environmental factors that
have a meaningful impact on health both in and surrounding
the areas of study. Such factors include, but are not limited
to, the use of agricultural land, roads, landfills, presence
of bodies of water, forests, national preserves, parks, and
even concentrations of man-made structures such as build-
ings (Erdman et al. 2015; Jagai et al. 2010). The following
exemplar case studies illustrate some of the many options and
considerations of measuring rural-urban status in geospatial
and other related models.

Defining Rural-Urban Status

One basic issue to consider when using rural-urban status in
geospatial models is which definition of rural-urban status
to use. As is the case of many sociodemographic measures,
there is no scientific consensus as to the “best” measure of
rural-urban status, and each one has unique strengths and
weaknesses that should be taken into account (Hart et al.
2005). Furthermore, each measure requires a unique inter-
pretation and may reflect different aspects of the geographies
under study. It may be useful to note that some measures are
only defined and available on a certain geographic level of
aggregation.

Commonly used measures or rural-urban status in social
medicine and public health studies include, but are not lim-
ited to, population density, percent urban population, Ur-
ban Influence Codes (UIC), Rural-Urban Continuum Codes
(RUCC), and Rural-Urban Commuting Areas (RUCA). Pop-
ulation density and percent urban population are available
from the US Bureau of the Census and have the flexibility to
be used at the state, county, census tract, and block group. The
UIC, RUCC, and RUCA are produced and maintained by the
US Department of Agriculture. These three measures—UIC,
RUCC, and RUCA—are only available on certain geographic
level of aggregation. The UIC and RUCC are available only
at the county level, while the RUCA is available on the census
tract level, which could be scaled up to other geographic
levels with appropriate weighting schemes.

Consider the case of the percent urban variable that is
used in many studies of rural-urban health and health dis-
parities. This variable, defined as the percentage of the area

population that is deemed by the Census Bureau to live in
an urbanized place, has far-reaching research caveats. Take,
for example, an in-depth examination of the 29 counties
or county-equivalent places with a 100% urban population.
Among those 29 counties are large metropolitan counties,
such as Denver County, Colorado, one of the largest cities and
counties in the country, with a population of 285,797, as well
as far smaller counties and county-equivalents, such as Cov-
ington, Virginia, with a population of just 3067. Covington,
Virginia, is situated in a highly rural, mountainous area with
no major population centers within several hundred miles.
Yet, both Denver and Covington would be considered to be
equally “urban” according to the percent urban variable. For
comparison, San Diego County, California, which comprises
the majority of the second-largest city in California with
just over 1.1 million county residents, would be considered
less urban (96.5%) than Covington, Virginia (100%), using
percent urban as the measure of rural-urban status.

As a result of this limitation, composite indices of rural-
urban status take into account multiple aspects of the rural-
urban gradient and are gaining traction in public health and
biomedical research (Naumova et al. 2009). An example of
a composite measure is the Index of Relative Rurality (IRR)
(Waldorf 2007), which is a continuous measure (0 to 1) of
rural-urban status that takes into account population density,
population size, proximity to metropolitan areas, and percent
urban population. This measure was originally used at the
county level but can easily be calculated for other geographic
levels, such as the census tract or block group. The IRR
and other related measures have clear strengths, such as they
are continuous, take into account multiple aspects of the
rural-urban gradient, and are flexible on different geographic
scales. The central drawback of using this type of measure
is in its interpretation. As in the example of the IRR, since,
by definition, the measure is a relative measure of rurality,
differences between geographic units have no immediate, ob-
vious, and easy-to-comprehend interpretation. For example,
the difference in IRR between San Diego County, California
(0.24), and Covington, Virginia (0.31), is 0.07 IRR units.
The scale of the IRR ranges from 0.04 for New York City
Manhattan Borough to 0.89 for Northwest Arctic Borough in
Alaska.

The choice of how to measure rural-urban status affects
the potential associations observed between rural-urban sta-
tus and health outcomes. While several of the individual
rural-urban status measures are strongly correlated to each
other, others are not. Further complicating this issue is that
the magnitude of some of the correlations varies substantially
by geographic region. For instance, the rank correlation
among the RUCC, UIC, population density, percent urban,
and IRR was as high as 0.917 (p < 0.001) for the RUCC-
UIC correlation, to as low as 0.521 (p < 0.001) for the
UIC-percent urban correlation for US counties (Cohen et al.
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2015). When stratified into nine Census divisions, the range
of the UIC-percent urban correlation varied substantially
from 0.802 in the Pacific states to as low as 0.384 in the
West South Central states. The same study found that, as a
result, themagnitude and direction of the association between
rural-urban status and the health outcome of obesity varied
considerably by the choice of rural-urban status measure as
well as the geographic region of analysis.

Consideration of Variable Type in Assessing
Rural-Urban Differences

Another important element of assessing and using rural-
urban status in geospatial models is what type of rural-urban
measurement to use (i.e., dichotomous, ordinal, discrete, or
continuous). There is no scientific consensus as to which type
of variable to use (Hart et al. 2005). One type of variable com-
monly used is a rural-urban dichotomy (Haque and Telfair
2000; Dahly and Adair 2007) which has several advantages.
Perhaps the most obvious advantage to dichotomizing rural-
urban status is the ease of interpretation and dissemination
in research and practice. When a dichotomous measure, such
as metropolitan vs nonmetropolitan, or when a continuous
measure of rural-urban status, such as population density
or percent urban, is dichotomized, it is straightforward to
interpret in the context of disparities and can facilitate easy
comparison. The concepts of “rural” and “urban” can be
directly compared for interpretation, statistical analysis, and
subsequent dissemination in research and to the general
public.

As would be the case for converting any continuous mea-
sure to a dichotomous measure, there is a critical issue of
deciding which cut point to use when delineating “rural”
from “urban.” Consider the example of population density
and obesity among a sample of older adults aged 65 and
above abstracted from the 2012 BRFSS. In this analysis,
nine different cut points are used to delineate “rural” from
“urban” counties in the USA at each decile of population
density (Fig. 3). If the tenth decile is used, which indicates
the lowest 10%of population density (extremely rural) versus
all other counties, the prevalence of obesity in those counties
considered to be rural is significantly lower (24.2%) than
in those counties considered to be urban (27.7%). However,
if the 90th percentile of population density is used, which
would separate counties into highly urban (top 10%) versus
all others, the prevalence of obesity in the rural counties is
significantly higher (27.6%) than that of the urban coun-
ties (25.2%). Similar results are observed when using the
80th percentile of population density as the cutoff value:
the prevalence of obesity is significantly higher in the rural
counties (27.6%) than in urban counties (26.0%). Using the
median county population density or any of the surrounding
deciles as cutoffs (20th through 70th), there would be no
significant differences between rural and urban counties in
the prevalence of obesity. Therefore, in this example, it is
evident that when dichotomizing a continuous variable to
obtain a measure of rural-urban status, the choice of cut-
off value makes a substantial difference in the conclusions
reached about the health outcome of study. In this case, the
selection of two different cutoff values—at 10% and 90%—
to delineate “rural” from “urban” results in completely op-
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posite findings. These results are simply an application or
extension of the problem of dichotomization used in other,
non-geospatial models.

Ordinal variables, such as the RUCC, RUCA, and UIC,
discussed previously, are advantageous for a variety of rea-
sons, but they also have several drawbacks that should be
taken into consideration. Ordinal variables may be preferred
over dichotomous variables because of their ability to distin-
guish finer gradations of rural-urban status. For example, the
RUCC is a classification scheme that delineates metropolitan
counties from nonmetropolitan counties. Metropolitan coun-
ties are classified by the population size of their metro area
and nonmetropolitan counties by degree of urbanization and
proximity to a metro area. The RUCC ranks counties on a
scale from 1 to 9 based on these characteristics. An advantage
of using an ordinal variable, such as the RUCC, is the flex-
ibility to treat it either as a continuous or discrete predictor
variable or as a series of dummy or indicator variables if there
is enough statistical power to do so. The advantage of the
former is to assess to see if there is a quasi-linear association
between rural-urban status and the outcome, while the advan-
tage of the latter is to assess potential nonlinear associations
between rural-urban status.

Nonetheless, there are some inherent drawback to us-
ing ordinal variables, some unique to variables such as the
RUCC, UIC, and RUCA. The first pertains to using RUCC,
for example, as a continuous or discrete predictor in models.
This assumes that there is a linear association between the
RUCC and the outcome of interest (whether continuous,
ordinal, or dichotomous). If there is a nonlinear component
to the relationship, i.e., curvilinear, j-shaped, etc., the model
may not adequately quantify this association. A more seri-
ous issue may be is the construction of the measure itself.
While the RUCC is presented as an ordinal variable (1 to 9),
the gradations between each unit do not reflect an ordinal
process. Consider a RUCC value of 3, which represents
“counties in metro areas of fewer than 250,000 population,”
whereas a RUCC value of 4 represents “counties with an
urban population of 20,000 or more, adjacent to a metro
area.” A RUCC value of 3 is considered more urban than a
value of 4. Yet, there are numerous examples of counties with
population levels well below the threshold of 250,000 that
lie in a metropolitan area (considered a 3), while much more
populous counties lie just outside and immediately adjacent
to one or twometropolitan areas with large urban populations
(considered a 4). Although the county considered a 3 on
the RUCC scale might appear less urban than the county
considered a 4, the former would be considered to be more
urban than the latter. Similar issues exist with the RUCA and
UIC measures as well.

It is important to note that no classification system, di-
chotomous, ordinal, discrete, continuous, or other, is free of

issues and caveats. Ordinalmeasures such as the RUCC,UIC,
and RUCA provide a robust array of options for assessing
rural-urban status above and beyond many traditional unidi-
mensional measures, such as population density or percent
urban population. Given that there is no universal, standard
measure of rural-urban status, there are a variety of available
measures and variable types to use to suit the needs of re-
searchers interested in assessing place-based characteristics,
such as rural-urban status. There is value in understanding
the strengths and weaknesses of each one, but if they are used
properly, their use will not render an analysis invalid.

Assessment of Nonlinearity in the Rural-Urban
Gradient

Example: Rural-Urban Status and Health
Outcomes
As an example, we consider linear measures of rural-urban
status and assess potential nonlinearity of an association
between rural-urban status and health outcomes. In the case
study highlighted here, we assessed the associations between
rural-urban status and multiple health outcomes from a na-
tional survey of older adults using seven commonly used
measures of rural-urban status: RUCC, UIC, RUCA, Eu-
clidean distance to nearest metropolitan area, population size,
population density, and percent of the population that is ur-
ban, with each measure being stratified into quintiles. The as-
sociation between quintile of rural-urban status measures and
the examined health outcomes (obesity and missing annual
medical checkup) was assessed through logistic regression
modeling, accounting for complex sampling and controlling
for confounding variables. We also examined linear trends
by treating quintile of each rural-urban status measure as a
discrete variable. Details are outlined in the article (Cohen et
al. 2018b).

Study results emphasize some of the points made previ-
ously. First, compared to the most urban quintile of each
measure (reference group), generally speaking, the odds of
each outcome—obesity and missing an annual checkup—
were significantly higher in the more rural areas (Fig. 4),
with some key exceptions. For population density, the odds of
obesity were significantly lower in the most rural quintile and
significantly higher in the third and fourth quintiles compared
to the most urban quintile. Analyses revealed a significant
monotonic association and population density quintile (in-
creasing urbanity was associated with an increased likeli-
hood of obesity). However, a linear or monotonic association
was not evident for any of the other six measures (RUCC,
UIC, RUCA, Euclidian distance, population size, and per-
cent urban), likely to the curvilinear relationship between
rural-urban status and obesity for many of the measures.
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Fig. 4 Odds ratio of obesity (top panel) and missed annual checkup
(bottom panel) for seven measures of rural-urban status in quintiles:
RUCC, UIC, RUCA, distance to nearest metropolitan area, population

size, population density, and percent urban population. Reference group
is the highest (most urban) quintile. (*Adapted from Cohen et al. 2018a)

Therefore, using a non-dichotomous measure of rural-urban
status revealed a nuanced, U- or J-shaped association be-
tween rural-urban status and obesity that might have been
masked had a dichotomous measure of rural-urban status
been used. Also, the associations depended upon the spe-
cific measure of rural-urban status. Had population density
quintile been a discrete variable, we would have been able to
assess a potential monotonic relationship between it and the
log odds of obesity. A monotonic relationship would have
been observed: increasing population density is associated
with greater odds of obesity. However, the results show that
this is not entirely true, based on the data. There may be a
positive monotonic relationship between population density

and obesity but only among the four most rural quintiles of
population density. In other words, the monotonic associ-
ation does not hold for the most urban quintile. The odds
ratios of the association between both the third and fourth
quintiles of population density and obesity were above 1.
Therefore, the risk of obesity is highest in the intermediate
(third and fourth quintiles) of population density, and not
in the highest (most urban) quintile, and the association
between obesity and rural-urban status was curvilinear and
non-monotonic.

Analogous findings also were observed for missing an
annual checkup. In the case of this measure, six of the seven
measures of rural-urban status were inversely and monotoni-
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cally related to the likelihood of missing an annual checkup:
as rurality increased, respondents were significantly more
likely to have missed an annual checkup for all measures,
except percent urban population. For percent urban, although
respondents in each of the four most rural quintiles were sig-
nificantly more likely to have missed their annual checkup,
the associations varied in magnitude, which likely precluded
a monotonic association.

Example: Rural-Urban Status, Vegetation,
and Asthma in Older Adults
Here we further illustrate the effect of nonlinearity in the
rural-urban gradient in exploring the relationship between
hospitalizations among older adults due to asthma in the New
England states (Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, and Vermont) and New York State
(Erdman et al. 2015). These associations can be clearly af-
fected by population density in many ways. The seven states
included in this study range from densely populated New
York City and southern Connecticut to rural Maine and New
Hampshire. All of the seven states have relatively similar
climates and other environmental factors. In 2006, the pop-
ulation of these states was 11% of the entire US population
(33,576,172), 13% (4,439,893) of whom were over 65 years
of age (census.gov). To assess the associations between the
rates of disease and environmental characteristics, it was
necessary to spatially and temporally align multiple data sets.
We used satellite imagery to assess degree of greenness and
created a measure for the percent of green cover for 16-day
time periods during 2005–2006. Census data (2010) were
used to abstract population size and calculated hospitaliza-
tion rates based on patients’ zip code of residence.

The first step of the analysis was creating the data set to
match the hospitalization data to the satellite imagery and
detecting alignment and identify misclassification issues. For
example, hospitalization records were arranged by residential
zip code, whereas for imagery data, we used a shape file to
align with zip codes boundaries. The shape file generally had
fewer pixels of data on smaller areas that tend to also have
larger population densities. The hospitalization records listed
3109 zip codes; after merging those with the census data
resulted in a data set of 2864 zip codes, a net loss of 245 zip
codes with low population sizes. To reduce spuriously high
rates, zip codes with older adult populations fewer than 100
residents were merged with adjoining zip codes providing
these were in the same state. Neighboring zip codes with the
most similar population size were merged until the joined
county population exceeded 100 residents aged 65 + .

Linking medical claims and satellite imagery along with
spatial alignment should consider temporal alignment as
well. While medical records were complete for the study pe-
riod, some satellite images were missing or unusable during
that period. When we linked imagery data by zip code to

the hospitalization records, we lost additional 424 zip codes
resulting in 2876 complete matches. We then merged zip
codes that had missing values with neighbors that are likely
to be similar in environmental exposures. Both spatial and
temporal alignments within and between data sets are time-
consuming, but the effect of missing data may compound
across multiple data sets and may influence the final anal-
ysis and its findings. Thus far, the data linkage procedures
are rarely described in the epidemiological literature, and a
system of checks and balances to identify data discrepancies
does not yet exist.

As we explored the associations between degree of green-
ness and asthma rates, we noted that the relationships were
influenced by population density and that association was not
monotonic. We applied simple cutoffs and marked a zip code
as urban if a zip code had >830.7 persons per square mile,
rural if a zip code had <107 persons per square mile, and
semi-urban otherwise. In the studied seven states, the average
elderly population was 13.1% and an average log population
density of 2.1 (131 people per square mile). The number of
zip code falling in a rural category was high for Vermont,
New Hampshire, and Maine while Connecticut, New York,
Massachusetts, and Rhode Island had almost equal mix of
rural and urban zip codes. Overall the relationship between
hospitalization rates and population density was U-shaped
with a marked increase at both extremes: for heavily pop-
ulated and the least populated zip codes (Figs. 5 and 6). This
nonlinearity requires exploring the relationship separately
for urban, rural, and semi-urban zip codes. After adjusting
for income and percent elderly population, higher evergreen
vegetation in urban areas demonstrated a small yet protective
effect.

Summary of Examples

The provided or included examples are not intended to imply
that all measures of rural-urban status are invalid and incon-
sistent. Rather, they highlight the need to consider the specific
rural-urban status measure being used and what aspect or
aspects of the rural-urban continuum the selected measure
is intended to emphasize. Moreover, as with any predictor
variable used in modeling health outcomes, whether it is
geospatial or traditional, non-spatial models, it is important
to consider the trade-offs of using one variable type over an-
other. For example, as discussed, treating rural-urban status
as a continuous or discrete variable reduces a model degrees
of freedom and may optimize statistical power. However, this
use assumes a monotonic association between rural-urban
status and the health outcome(s) under study. Using indicator
variables, as illustrated, can allow for the assessment of non-
monotonic associations but require additional model degrees
of freedom. There is no one valid way to use rural-urban

http://census.gov
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Fig. 5 Relationship between population density of asthma hospitalization rates among older adults in selected states, 2005–2006
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Fig. 6 Relationship between population density of asthma hospitalization rates among older adults in New York and six New England states,
2005–2006

status, but its use requires attention to these and other issues
to properly characterize the relationship between rural-urban
status and the health outcome under study.

Recommendations and Conclusions

This chapter addresses a handful of the many issues asso-
ciated with selecting and utilizing variables to address key
place-based social determinants of health, with examples to
the rural-urban gradient. This chapter may raise more ques-
tions than it answers regarding decisions around selection
of measures to use and how to use them. There remains no
scientific consensus as to best practices, and it is left to the
researcher to decide which measures to use based on study
questions, on what geographic scale or scales to use them,
and interpretation of findings.

When using place-based characteristics in geospatial
models and, by extension, in non-spatial models, it is
important to consider the following questions: First, on
what geographic scale will the characteristic be measured
and analyzed? Different scales provide certain benefits

and drawbacks in terms of statistical stability, policy
relevance, sample size, availability of data, and other
considerations. Second, what factors or determinants are
most relevant for answering the research question? This
question raises the issue of policy relevance, ability to
take action upon significant findings, accuracy of the
measure, and numerous other issues. Many measures are
multidimensional, and selecting one over the other may have
meaningful implications for the directionality, magnitude,
and overall nature of any observed association. Third,
what type of variable will be used in the analysis? This
question is relevant to all types of models, not just geospatial
models. Different types of variables offer trade-offs in
terms of modeling the type of association, interpretability
of findings, and statistical power. In the example of rural-
urban status, there is a need to use the concept of a power
law to incorporate rural-urban metrics that take into account
population distribution and population density measures that
could be sustainable and valid across different geographic
aggregation schemes.

This chapter discussed the rural-urban gradient as an ex-
ample of a social determinant of health explored in a growing
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body of population health studies that is intrinsically linked
to geography. Although the discussion, particularly the case
studies, focuses on issues pertaining tomeasuring rural-urban
health status specifically, the broader concepts of geographic
scale, policy relevance, statistical power, the modifiable area
unit problem, and many of the other issues described above
extend to other social determinants of health, such as SES,
household composition, education, income inequality, and
demographic structure (e.g., age, race/ethnicity, gender, etc.).
Furthermore, for rural-urban status, income inequality and
other social determinants of health are intrinsically tied to
the concept of place. The processes we are trying to capture
are dynamic, yet we are limited by the preponderance of
static tools and measures available to researchers. Therefore,
all of these measures have a critical temporal component
that may be challenging to address in standard geospatial
modeling. What we observed today with respect to these
social determinants is not necessarily can be observed in
the past yet quite likely reflects the consequences of the
past, including historical nature-made and man-made events
and other perhaps ongoing measurable and unmeasurable
processes.

The place-based factors discussed in this chapter and other
social determinants of health often represent the ultimate
or distal causes of disease and health disparities. On the
other hand, they also provide opportunities on which base
policies, programs, and interventions can be designed to
promote healthy behaviors, improve population health, and
ultimately reduce health disparities. Awareness of the issues
surrounding measurement of these determinants is integral
to conduct meaningful and impactful research through which
population health can be improved.

References

Adler, N.E., andK. Newman. 2002. Socioeconomic disparities in health:
Pathways and policies. Health Affairs 21 (2): 60–76.

Adler, N.E., and J.M. Ostrove. 1999. Socioeconomic status and health:
What we know and what we don’t. Annals of the New York Academy
of Sciences 896 (1): 3–15.

Adler, N.E., and D.H. Rehkopf. 2008. US disparities in health: Descrip-
tions, causes, and mechanisms. Annual Review of Public Health 29:
235–252.

Armstrong, M.P., G. Rushton, and D.L. Zimmerman. 1999. Geograph-
ically masking health data to preserve confidentiality. Statistics in
Medicine 18: 497–525.

Baicker, K., A. Chandra, and J. Skinner. 2005. Geographic variation in
health care and the problem of measuring racial disparities. Perspec-
tives in Biology and Medicine 48 (1): 42–S53.

Banerjee, S., B.P. Carlin, and A.E. Gelfand. 2014. Hierarchical model-
ing and analysis for spatial data. CRC press.

Beck, A.F., M.T. Sandel, P.H. Ryan, and R.S. Kahn. 2017. Mapping
neighborhood health geomarkers to clinical care decisions to promote
equity in child health. Health Affairs 36 (6): 999–1005.

Benach, J., Y. Yasui, C. Borrell, M. Sáez, and M.I. Pasarin. 2001.
Material deprivation and leading causes of death by gender: Evidence

from a nationwide small area study. Journal of Epidemiology &
Community Health 55 (4): 239–245.

Black, M., S. Ebener, P.N. Aguilar, M. Vidaurre, and Z. El Morjani.
2004. Using GIS to measure physical accessibility to health care.
World Health Organization: 3–4.

Branas, C.C., E.J. MacKenzie, and C.S. ReVelle. 2000. A trauma
resource allocation model for ambulances and hospitals. Health
Services Research 35 (2): 489.

Braveman, P.A., S.A. Egerter, S.H. Woolf, and J.S. Marks. 2011. When
do we know enough to recommend action on the social determinants
of health?American Journal of PreventiveMedicine 40 (1): S58–S66.

Chui, K.K., S.A. Cohen, and E.N. Naumova. 2011. Snowbirds and
infection–new phenomena in pneumonia and influenza hospitaliza-
tions from winter migration of older adults: A spatiotemporal analy-
sis. BMC Public Health 11 (1): 444.

Clapp, J.M., and Y. Wang. 2006. Defining neighborhood boundaries:
Are census tracts obsolete? Journal of Urban Economics 59 (2): 259–
284.

Clough-Gorr, K.M., M. Egger, and A. Spoerri. 2015. A Swiss paradox?
Higher income inequality of municipalities is associated with lower
mortality in Switzerland. European Journal of Epidemiology 30 (8):
627–636.

Cohen, D., S. Spear, R. Scribner, P. Kissinger, K. Mason, and J. Wild-
gen. 2000. “Broken windows” and the risk of gonorrhea. American
Journal of Public Health 90 (2): 230.

Cohen, S.A., L. Kelley, andA.E. Bell. 2015. Spatiotemporal discordance
in five commonmeasures of rurality for US counties and applications
for health disparities research in older adults. Frontiers in Public
Health 3: 267.

Cohen, S.A., S.K. Cook, T.A. Sando, and N.J. Sabik. 2018a. What
aspects of rural life contribute to rural-urban health disparities in
older adults? Evidence from a national survey. Journal of Rural
Health 34: 293–303.

Cohen, S.A., M.L. Greaney, and N.J. Sabik. 2018b. Assessment of
dietary patterns, physical activity and obesity from a national survey:
Rural-urban health disparities in older adults. PLoS One 13 (12):
e0208268.

Cummins, S., S. Curtis, A.V. Diez-Roux, and S. Macintyre. 2007. Un-
derstanding and representing ‘place’ in health research: A relational
approach. Social Science & Medicine 65 (9): 1825–1838.

Dahly, D.L., and L.S. Adair. 2007. Quantifying the urban environ-
ment: A scale measure of urbanicity outperforms the urban–rural
dichotomy. Social Science & Medicine 64 (7): 1407–1419.

Diez-Roux, A.V. 1998. Bringing context back into epidemiology: Vari-
ables and fallacies in multilevel analysis. American Journal of Public
Health 88 (2): 216–222.

Dwyer-Lindgren, L., A. Bertozzi-Villa, R.W. Stubbs, C. Morozoff, J.P.
Mackenbach, F.J. van Lenthe, and C.J. Murray. 2017. Inequalities in
life expectancy among US counties, 1980 to 2014: Temporal trends
and key drivers. JAMA Internal Medicine 177 (7): 1003–1011.

Eckenrode, J., E.G. Smith, M.E. McCarthy, and M. Dineen. 2014.
Income inequality and child maltreatment in the United States. Pe-
diatrics. peds-2013.

Elliott, P., and D. Wartenberg. 2004. Spatial epidemiology: Current ap-
proaches and future challenges. Environmental Health Perspectives
112 (9): 998.

Erdman, E., A. Liss, D. Gute, C. Rioux, M. Koch, and E.N. Naumova.
2015. Does the presence of vegetation affect asthma hospitalizations
among the elderly? A comparison between rural, suburban, and
urban areas. International Journal of Environment and Sustainability
4 (1).

Fefferman, N., E. O’Neil, and E.N. Naumova. 2005. Confidentiality and
confidence: Is data aggregation a means to achieve both? Journal of
Public Health Policy 26 (3): 430–449.



200 S. A. Cohen et al.

Fiscella, K., and P. Franks. 1997. Poverty or income inequality as
predictor of mortality: Longitudinal cohort study. BMJ 314 (7096):
1724.

Gilmer, T.P., and R.G. Kronick. 2011. Differences in the volume of
services and in prices drive big variations in Medicaid spending
among US states and regions. Health Affairs 30 (7): 1316–1324.

Gordon-Larsen, P., M.C. Nelson, P. Page, and B.M. Popkin. 2006.
Inequality in the built environment underlies key health disparities
in physical activity and obesity. Pediatrics 117 (2): 417–424.

Grow, H.M.G., A.J. Cook, D.E. Arterburn, B.E. Saelens, A.
Drewnowski, and P. Lozano. 2010. Child obesity associated
with social disadvantage of children’s neighborhoods. Social
Science & Medicine 71 (3): 584–591.

Hanchate, A.D., M.K. Paasche-Orlow, K.S. Dyer, W.E.
Baker, C. Feng, and J. Feldman. 2017. Geographic
variation in use of ambulance transport to the emergency
department. Annals of Emergency Medicine 70 (4):
533–543.

Haque, A., and J. Telfair. 2000. Socioeconomic distress and health
status: The urban-rural dichotomy of services utilization for people
with sickle cell disorder in North Carolina. The Journal of Rural
Health 16 (1): 43–55.

Hart, L.G., E.H. Larson, and D.M. Lishner. 2005. Rural definitions for
health policy and research.American Journal of Public Health 95 (7):
1149–1155.

Jagai, J.S., J.K. Griffiths, P.H. Kirshen, P. Webb, and E.N. Naumova.
2010. Patterns of protozoan infections: Spatiotemporal associations
with cattle density. EcoHealth 7 (1): 33–46.

Jia, H., F. Ordóñez, and M. Dessouky. 2007. A modeling framework for
facility location of medical services for large-scale emergencies. IIE
Transactions 39 (1): 41–55.

Juster, R.P., B.S. McEwen, and S.J. Lupien. 2010. Allostatic load
biomarkers of chronic stress and impact on health and cognition.
Neuroscience & Biobehavioral Reviews 35 (1): 2–16.

Kahn, R.S., P.H. Wise, B.P. Kennedy, and I. Kawachi. 2000. State
income inequality, household income, and maternal mental and phys-
ical health: Cross sectional national survey. BMJ 321 (7272): 1311.

Kawachi, I., and B.P. Kennedy. 1997. Socioeconomic determinants of
health: Health and social cohesion: Why care about income inequal-
ity? BMJ 314 (7086): 1037.

———. 1999. Income inequality and health: Pathways andmechanisms.
Health Services Research 34 (1 Pt 2): 215.

Kennedy, B.P., I. Kawachi, and D. Prothrow-Stith. 1996. Income distri-
bution and mortality: Cross sectional ecological study of the Robin
Hood index in the United States. BMJ 312 (7037): 1004–1007.

Kennedy, B.P., I. Kawachi, R. Glass, and D. Prothrow-Stith. 1998.
Income distribution, socioeconomic status, and self rated health in
the United States: Multilevel analysis. BMJ 317 (7163): 917–921.

Kondo, N., G. Sembajwe, I. Kawachi, R.M. vanDam, S.V. Subramanian,
and Z. Yamagata. 2009. Income inequality, mortality, and self rated
health: Meta-analysis of multilevel studies. BMJ 339: b4471.

Kounadi, O., and M. Leitner. 2014. Why does geoprivacy matter? The
scientific publication of confidential data presented on maps. Journal
of Empirical Research on Human Research Ethics 9 (4): 34–45.

Krieger, N., J.T. Chen, P.D. Waterman, M.J. Soobader, S.V. Subra-
manian, and R. Carson. 2002. Geocoding and monitoring of US
socioeconomic inequalities in mortality and cancer incidence: Does
the choice of area-based measure and geographic level matter? The
Public Health Disparities Geocoding Project. American Journal of
Epidemiology 156 (5): 471–482.

Kruger, D.J., T.M. Reischl, and G.C. Gee. 2007. Neighborhood social
conditions mediate the association between physical deterioration
and mental health. American Journal of Community Psychology 40
(3–4): 261–271.

Kulkarni, S.C., A. Levin-Rector, M. Ezzati, and C.J. Murray. 2011.
Falling behind: Life expectancy in US counties from 2000 to 2007
in an international context. Population Health Metrics 9 (1): 16.

Lippert, A.M., C.R. Evans, F. Razak, and S.V. Subramanian. 2017.
Associations of continuity and change in early neighborhood poverty
with adult cardiometabolic biomarkers in the United States: Results
from the National Longitudinal Study of Adolescent to Adult Health,
1995–2008. American Journal of Epidemiology 185 (9): 765–776.

Lupien, S.J., I. Ouellet-Morin, A. Hupbach, M.T. Tu, C. Buss, D.
Walker, et al. 2015. Beyond the stress concept: Allostatic load—A
developmental biological and cognitive perspective. Developmental
Psychopathology: Volume Two: Developmental Neuroscience: 578–
628.

Lynch, J.W., G.D. Smith, G.A. Kaplan, and J.S. House. 2000. Income
inequality and mortality: Importance to health of individual income,
psychosocial environment, or material conditions. BMJ 320 (7243):
1200–1204.

Macintyre, S. 1997. What are spatial effects and how can we measure
them? In Exploiting national survey data: The role of locality and
spatial effects, ed. A. Dale, 1–17. Manchester: Faculty of Economic
and Social Studies, University of Manchester.

Macintyre, S., A. Ellaway, and S. Cummins. 2002. Place effects on
health: How can we conceptualise, operationalise and measure them?
Social Science & Medicine 55 (1): 125–139.

Manley, D., R. Flowerdew, and D. Steel. 2006. Scales, levels and
processes: Studying spatial patterns of British census variables.Com-
puters, Environment and Urban Systems 30 (2): 143–160.

Marmot, M., and R. Bell. 2011. Social determinants and dental health.
Advances in Dental Research 23 (2): 201–206.

Matlock, D.D., P.W. Groeneveld, S. Sidney, S. Shetterly, G. Goodrich,
K. Glenn, et al. 2013. Geographic variation in cardiovascular pro-
cedure use among Medicare fee-for-service vs Medicare advantage
beneficiaries. JAMA 310 (2): 155–161.

McDonald, D.C., K. Carlson, and D. Izrael. 2012. Geographic variation
in opioid prescribing in the US. The Journal of Pain 13 (10): 988–
996.

McEwen, B.S. 1998. Protective and damaging effects of stress media-
tors. New England Journal of Medicine 338 (3): 171–179.

McGinnis, J.M., P. Williams-Russo, and J.R. Knickman. 2002. The case
for more active policy attention to health promotion. Health Affairs
21 (2): 78–93.

McLafferty, S.L. 2003. GIS and health care. Annual Review of Public
Health 24 (1): 25–42.

Mohnen, S.M., B. Völker, H. Flap, and P.P. Groenewegen. 2012. Health-
related behavior as a mechanism behind the relationship between
neighborhood social capital and individual health-a multilevel anal-
ysis. BMC Public Health 12 (1): 116.

Naumova, E.N., S.M. Parisi, D. Castronovo, M. Pandita, J. Wenger,
and P. Minihan. 2009. Pneumonia and influenza hospitalizations in
elderly people with dementia. Journal of the American Geriatrics
Society 57 (12): 2192–2199.

Newhouse, J.P., and A.M. Garber. 2013a. Geographic variation inMedi-
care services. New England Journal of Medicine 368 (16): 1465–
1468.

———. 2013b. Geographic variation in health care spending in the
United States: Insights from an Institute of Medicine report. JAMA
310 (12): 1227–1228.

Nicholas, L.H., K.M. Langa, T.J. Iwashyna, and D.R. Weir. 2011.
Regional variation in the association between advance directives and
end-of-life Medicare expenditures. JAMA 306 (13): 1447–1453.

O’Keefe, C.M., and D.B. Rubin. 2015. Individual privacy versus pub-
lic good: Protecting confidentiality in health research. Statistics in
Medicine 34 (23): 3081–3103.

Openshaw, S. 1984. The modifiable areal unit problem. Concepts and
Techniques in Modern Geography.



Geospatial Tools for Social Medicine: Understanding Rural-Urban Divide 201

Padilla, C.M., W. Kihal-Talantikit, V.M. Vieira, and S. Deguen. 2016.
City-specific spatiotemporal infant and neonatal mortality clusters:
Links with socioeconomic and air pollution spatial patterns in France.
International Journal of Environmental Research and Public Health
13 (6): 624.

Park, H., A.M. Roubal, A. Jovaag, K.P. Gennuso, and B.B. Catlin. 2015.
Relative contributions of a set of health factors to selected health
outcomes. American Journal of Preventive Medicine 49 (6): 961–
969.

Pearce, J., K. Witten, and P. Bartie. 2006. Neighbourhoods and health:
A GIS approach to measuring community resource accessibility.
Journal of Epidemiology & Community Health 60 (5): 389–395.

Prince, S.A., E.A. Kristjansson, K. Russell, J.M. Billette, M.C. Sawada,
A. Ali, et al. 2012. Relationships between neighborhoods, physical
activity, and obesity: A multilevel analysis of a large Canadian city.
Obesity 20 (10): 2093–2100.

Remington, P.L., B.B. Catlin, and K.P. Gennuso. 2015. The county
health rankings: Rationale and methods. Population Health Metrics
13 (1): 11.

Seeman, T., E. Epel, T. Gruenewald, A. Karlamangla, and B.S.McEwen.
2010. Socio-economic differentials in peripheral biology: Cumula-
tive allostatic load. Annals of the New York Academy of Sciences 1186
(1): 223–239.

Stiel, L., S. Soret, and S. Montgomery. 2017. Geographic patterns of
change over time in mammography: Differences between Black and
White US Medicare enrollees. Cancer Epidemiology 46: 57–65.

Subramanian, S.V., and I. Kawachi. 2003. The association between
state income inequality and worse health is not confounded by race.
International Journal of Epidemiology 32 (6): 1022–1028.

———. 2004. Income inequality and health: What have we learned so
far? Epidemiologic Reviews 26 (1): 78–91.

Suzuki, E., S. Kashima, I. Kawachi, and S.V. Subramanian. 2012. Social
and geographic inequalities in premature adult mortality in Japan: A
multilevel observational study from 1970 to 2005. BMJ Open 2 (2):
e000425.

Tarlov, A.R. 1999. Public policy frameworks for improving population
health. Annals of the New York Academy of Sciences 896 (1): 281–
293.

United States Bureau of the Census. Decennial Census 2010. Website:
https://data.census.gov/cedsci/advanced. Accessed August 22, 2021.

Vincens, N., and M. Stafström. 2015. Income inequality, economic
growth and stroke mortality in Brazil: Longitudinal and regional
analysis 2002-2009. PLoS One 10 (9): e0137332.

Waldorf, B. 2007. What is rural and what is urban in Indiana. Purdue
Center for Regional Development Report 4.

Walker, K.E., and S.M. Crotty. 2015. Classifying high-prevalence neigh-
borhoods for cardiovascular disease in Texas. Applied Geography 57:
22–31.

Waller, L.A., and C.A. Gotway. 2004. Applied spatial statistics
for public health data. Vol. 368. Wiley, Hoboken, New Jersey,
USA.

Weich, S., G. Holt, L. Twigg, K. Jones, and G. Lewis. 2003. Geographic
variation in the prevalence of common mental disorders in Britain: A
multilevel investigation. American Journal of Epidemiology 157 (8):
730–737.

Wennberg, J.E., E.S. Fisher, and J.S. Skinner. 2002. Geography and the
debate over Medicare reform. Health Affairs 21 (2): 10–10.

Wilkinson, R.G., and K.E. Pickett. 2006. Income inequality and popula-
tion health: A review and explanation of the evidence. Social Science
& Medicine 62 (7): 1768–1784.

Williams, D.R., and C. Collins. 1995. US socioeconomic and racial
differences in health: Patterns and explanations. Annual Review of
Sociology 21 (1): 349–386.

Wilson, W.J. 1987. The truly disadvantaged: The inner city, the under-
class, and public policy. University of Chicago Press.

Woolf, S.H., and P. Braveman. 2011.Where health disparities begin: The
role of social and economic determinants—And why current policies
may make matters worse. Health Affairs 30 (10): 1852–1859.

Zandbergen, P.A. 2014. Ensuring confidentiality of geocoded health
data: assessing geographic masking strategies for individual-level
data. Advances in Medicine: 2014.

Zhang, Q., and Y. Wang. 2004. Socioeconomic inequality of obesity
in the United States: Do gender, age, and ethnicity matter? Social
Science & Medicine 58 (6): 1171–1180.

https://data.census.gov/cedsci/advanced


Identifying and Visualizing Space-Time Clusters
of Vector-Borne Diseases

Michael Desjardins, Alexander Hohl, Eric Delmelle, and Irene Casas

Introduction

Globally, vector-borne diseases (VBDs) are responsible for
over 700,000 annual deaths (malaria alone kills more than
400,000 people), accounting for approximately 17% of in-
fectious diseases, and over half of the world’s population
are at risk of infection (WHO 2017). Mosquitoes are the
most common vector and transmit a variety of diseases, such
as dengue fever, chikungunya, Zika, malaria, yellow fever,
and West Nile fever. During the last few decades, there have
been a global increase in VBDs (especially mosquito-borne
diseases) due to climate change, increases in globalization
and urbanization, human movement, and a general decline
in vector control programs. Furthermore, endemic areas have
experienced increases in infections, while the ever-expanding
geographic range of VBDs has resulted in novel outbreaks in
various regions around the world.

For example, before 2013, chikungunya (CHIK) was
mostly found in Southeast Asia, Africa, and India. However,
CHIK was introduced to the Americas and the Caribbean in
2013, resulting in over a million reported cases within 1 year
(Yactayo et al. 2016). Notably, dengue fever (DENF) is the
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world’s most widespread VBD, infecting more than 390
million people per year, while over a third of the world’s
population are susceptible to transmission (Bhatt et al.
2013; Wilson and Chen 2015). Zika was first discovered
in 1947 in Uganda and was relatively rare until the 2014–
2016 outbreaks in the South Pacific and Brazil (Dick et al.
1952; Duffy et al. 2009; Campos et al. 2015; Hennessey et
al. 2016). Since 2015, over 90 countries around the world
are at risk of Zika transmission (CDC 2018). CHIK, DENF,
and Zika are spread by the peridomestic container-breeding
Aedes aegypti and Aedes albopictus mosquitoes, which also
transmit yellow fever.

It is critical to implement surveillance strategies that
can improve the understanding of VBD transmission.
VBD surveillance may involve the examination of disease
incidence in human populations, including the (spatial)
variations among socioeconomic groups, age, and sex; the
geographic distribution of vector populations capable of
transmitting various VBDs, especially identifying suitable
habitats (e.g., environmental variables); and analyzing
humanmovement and interaction with their environment that
may facilitate disease transmission (Palaniyandi et al. 2017).
Furthermore, identifying significant (space-time) clusters of
disease cases is typically the primary stage of surveillance,
while the domain of geographic information science can
greatly facilitate the monitoring of VBDs.

There is an inherent link between place and health
outcomes, and geographic information science (GIScience)
plays a vital role in VBD surveillance (Eisen and Eisen
2011; Blatt 2015). For example, mapping the spatial
variation in disease rates and risk is vital for formulating
etiological hypotheses (Delmelle et al. 2016). GIScience can
facilitate the detection and visualization of VBD outbreaks
in space and time, which can improve targeted interventions
to mitigate outbreaks, such as improving healthcare
accessibility and vector control strategies (Delmelle et
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al. 2011, 2014a, b; Kienberger et al. 2013). Space-time
approaches in GIScience can increase the timeliness of
public health decision-making by examining the severity and
duration of outbreaks (Duncombe et al. 2012), seasonality,
and risk of diffusion (Khormi and Kumar 2015) and identify
populations with an elevated risk of VBD transmission
(Kitron 2000).

Disease data that can be used for space-time analyses is
available at the disaggregated or aggregated level (Cromley
and McLafferty 2011). Disaggregated data is represented
by points, such as the location of individual disease cases.
Aggregated data at a geographic unit level (e.g., counties,
towns, or neighborhoods) typically reflect rates. This chap-
ter focuses on exploratory space-time cluster detection ap-
proaches for both disaggregated and aggregated levels and
3D visualization techniques to improve the understanding of
space-time dynamics of disease clusters for VBD surveil-
lance. However, the methodologies and concepts presented
in this chapter can also be applied to other infectious diseases
and other domains such as criminology.

The remainder of this chapter is as follows: section
“Spatiotemporal Methods for Vector-Borne Disease
Surveillance: Strengths and Limitations” describes common
approaches in GIScience to detect space-time clusters
of disease for both disaggregated and aggregated data.
Section “Spatiotemporal Methods for Vector-Borne Disease
Surveillance: Strengths and Limitations” explains the
mechanisms of some of the most widely used exploratory
space-time clustering approaches in the literature. Strengths
and limitations of each approach are also discussed.
Section “Visualizing Space-Time Clusters” sheds light on
techniques to visualize space-time clusters in both 2D
and 3D. Section “Case Study: Chikungunya and Dengue
Outbreaks in Colombia (2015–2016)” provides a case study
of space-time clusters of VBDs in Colombia (aggregated
at the municipality level), which were detected using
the univariate and multivariate space-time scan statistic
(Kulldorff et al. 2005). The resulting space-time clusters
are also visualized in 2D and 3D using the techniques
described in section “Visualizing Space-Time Clusters”.
Finally, section “Conclusions” provides concluding remarks.

Spatiotemporal Methods for Vector-Borne
Disease Surveillance: Strengths
and Limitations

Space-Time Ripley’s K Function

Many spatial analysismethods solely focus on the geographic
distribution of the phenomenon under study while neglect-
ing its temporal aspects: They either ignore or collapse the

temporal dimension (Bach et al. 2017) or discretize time to
a number of time slices for which again time is collapsed
(Boyandin et al. 2012). However, such approaches fail to
represent time as a continuous dimension, which is crucial
for analyzing spatiotemporal patterns of disease outbreaks.
The space-time Ripley’s K function estimates the second-
order property (variance) of a set of spatiotemporal points,
i.e., disease cases. The resulting statistic depends on (1) the
number and (2) distance between the points and returns the
degree by which the observed point pattern deviates from
randomness for multiple spatiotemporal scales (Bailey and
Gatrell 1995; Dixon 2013). In theory, the K function is
calculated by Eq. 1, i.e., the division of E, the expected
number of points within spatial and temporal bandwidth (d
and t, respectively), by the intensity λ (first-order property)
of a set of points S.

K (d, t) = E (d, t) /λ (1)

The spatial and temporal bandwidths form cylinders of ra-
dius d and height t, centered on each data point. Dividing the
total number of observed points n by the product of the study
area A and the study period T results in estimated intensity
λ. Computing Ripley’s K function equates to counting all
points within the cylinders and repeating this process with
increasing spatial and temporal bandwidths d and t (cylinders
of increasing size). Thereby, we expect K(d,t) = πd2t if the
point pattern exhibits complete spatiotemporal randomness
(CSTR), K(d,t) > πd2t if the pattern shows clustering within
spatial and temporal distances d and t, and K(d,t) < πd2t if
the pattern is regular. In practice, Eq. (2) is used to compute
the space-time Ripley’s K function:

K (d, t) = L ∗ R

n2

n∑
i

n∑
j

Ih,t

(
dij , tij

)
wij

(2)

where dij is the distance between events i and j. The term
wij is a factor to correct for edge effects, which potentially
bias the outcome of the K function, when cylinders intersect
the boundary of the study area or period. Methods for edge
correction are well studied (Yamada and Rogerson 2003;
Gabriel 2012). Ih(dij) indicates whether a point i locates
within the cylinder or not (Eq. 3):

Ih,t

(
dij , tij

) =
{

1 if dij ≤ h AND tij ≤ t,

0 otherwise
(3)

Since it is a cumulative measure, the space-time K func-
tion values increase with increasing spatial and temporal
bandwidths (d and t, respectively). Statistical confirmation
to distinguish regular, clustered, or random patterns may re-
quire Monte Carlo simulation: The space-time K function is
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evaluated for a large number (M) of simulated point sets. For
each simulation, N points (equal to the number of observed
points) are randomly generated within the study area/period.
For given values of d and t, if the observed K value is
larger than the upper simulation envelope (the largest value
of K among all simulations, at given values of d and t),
clustering for the corresponding spatiotemporal bandwidths
is statistically significant. Observed K values below than the
lower simulation envelope indicate regularity. Hence, if the
K function value is above, between, or below the upper and
lower simulation envelopes, the point pattern is clustered,
random, or regular, respectively, for given values of d and t.

Using Eq. (4), the K function can be transformed to
the L function to obtain constant variance with respect to
a benchmark of zero, facilitating the comparison of values
across all d and t:

L (d, t) = [K (d, t) /πt]1/2 − d (4)

where L(d, t) = 0 under CSTR, L(d, t) > 0 for clustered
patterns, and L(d, t) < 0 for regular patterns. Ripley’s K
function exists in global and local forms (Anselin 1995):
The global form produces one graph that indicates the scale
at which the point pattern is significant for the entire study
area/period, while its local form allows to pinpoint where
exactly such a pattern occurs (Hohl et al. 2017).

Many different studies have employed the space-time
Ripley’s K function for point pattern analysis: outbreaks of
dengue fever (Hohl et al. 2016), patterns of legionnaire’s
disease (Diggle et al. 1995), and human Campylobacter
infections (Gabriel and Diggle 2009) and interactions be-
tween forest fire and spruce budworms (Lynch and Moor-
croft 2008), among others. Recent methodological advances
that allow for computing Ripley’s K function include flow
data (Tao and Thill 2016), analyzing network-constrained
point patterns (Yamada and Thill 2007), four-dimensional
data (3D + time, Hohl et al. 2018), and handling massive
datasets (Tang et al. 2015). These examples illustrate thewide
realm of its applicability, making Ripley’s K function one
of the most important methods for characterizing space-time
patterns of any geospatial phenomena, including VBDs.

Space-Time Knox Test

In the study of epidemiology, Knox test for space-time in-
teraction (Knox 1963, 1964) is used to evaluate whether
there is space-time clustering of disease cases within a given
study area. It is of interest if cases are more clustered than
what would be expected based on the underlying geograph-
ical population distribution or by a purely temporal trend
(Kulldorff and Hjalmars 1999). The null hypothesis of Knox

test states that spatial proximity of two cases is independent
of their temporal proximity. In other words, no space-time
interaction is observed in the case data.

The test statistic X is the number of pairs of cases that are
near to one another in both space and time, given some user-
specified spatial and temporal distance thresholds (s and t,
Eq. 5).

X =
N∑

i=1

i−1∑
j=1

as
ij a

t
ij (5)

where N is the total number of cases; as
ij is an indicator

function that evaluates to 1, if i and j are close in space
(their distance is less than threshold s); and at

ij is an indicator
function that evaluates to 1, if i and j are close in time (their
distance is less than threshold t). One can use either Poisson
approximation or Monte Carlo simulation for significance
testing (Mantel 1967).

Knox test for space-time interaction has been employed
to study cleft lip and cleft palate birth defects (Knox 1963),
childhood leukemia in the UK (Knox 1964), and the 1991–
1992 outbreak of dengue fever in Florida (Morrison et al.
1998), among many other applications. However, Knox
method is limited due to its arbitrary definition of closeness,
as users have to specify the spatial and temporal distance
thresholds (Robertson et al. 2010). This may not be an
issue for well-studied diseases, where closeness could be
defined by disease transmission distance. However, a poor
choice of such parameters may invalidate the findings of the
analysis (Aldstadt 2007). Preliminary analysis of the space-
time Ripley’s K function to define the distance thresholds
for Knox test is a practicable workaround for this issue
(Delmelle et al. 2011).

Mantel’s Test

The shortcomings of Knox test are addressed byMantel’s test
(Mantel 1967), which allows to introduce the notion of dis-
tance decay, where pairs of disease cases within close space-
time proximity are more important than pairs of far proxim-
ity. Mantel’s test generalizes the indicator function terms as

ij

and at
ij , used byKnoxmethod (Eq. 5), to any suitable distance

measures, including raw or transformed Euclidean distances
(Meyer et al. 2016). For instance, Jacquez (1996) introduces
a standardized form of Mantel’s test (Eq. 6):

r = 1(
N2 − N − 1

)
N∑

i=1

N∑
j=1

(
ds

ij − d
s
)

Ss

(
dt

ij − d
t
)

St

(6)
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where N is the total number of cases, ds
ij and dt

ij are the

(spatial and temporal) distances between cases i and j, d
s

and d
t
are the average distances, and Ss and St are their

standard deviations. The null hypothesis states that spatial
and temporal distances are independent of each other (no
interaction). It is tested by creating a reference distribu-
tion using a Monte Carlo approach, where either the spa-
tial distances are repeatedly permuted while the temporal
distances are left untouched or vice versa. The test statistic
r is calculated for each permutation, and the p-value for
significance is the rank of the observed r among the simulated
ones. Mantel’s test has been applied to study psychiatric
inpatient admissions in Switzerland (Meyer et al. 2016),
human immunodeficiency virus (HIV) infections and the
development of aids (Shankarappa et al. 1999), fire outbreaks
in boreal black spruce forests in northern Quebec (Jacquez
1996), and vegetation studies related to the concept of climax
(McCune and Allen 1985) and the environmental control
model (Burgman 1987).

Space-Time Kernel Density Estimation

Space-time kernel density estimation (STKDE) is a method
that explicitly incorporates the temporal dimension and is
popular for visualizing patterns of point events characterized
with spatial information (x, y) together with a timestamp t.
STKDEgenerates density values estimated along a 3D grid of
voxels (volumetric pixels), by weighting surrounding events
that also have spatial and temporal coordinates, by a distance-
decay relationship (Hohl et al. 2016). STKDE may be used
in conjunction with the space-time cube framework (Nakaya
and Yano 2010a, b), which employs a 3D geographic space,
where the vertical dimension is substituted for time, meaning
cases that were observed early (late) during the study period
are displayed at lower (higher) altitude. This combination
allows for visualization of density estimates to detect spa-
tiotemporal patterns of disease occurrence. The space-time
kernel density is estimated by Eq. (7):

f̂ (x, y, t) = 1

nh2
sht

∑
i

ks

(
di

hs

)
kt

(
dt

ht

)
(7)

Density estimates f̂ (x, y, t) are calculated for voxels
with coordinates (x, y, t) and depend on the spatiotemporal
distribution of disease cases i. Each data case i contributes to
density at surrounding voxels, based on case-voxel distance
(spatial and temporal components di and dt, respectively).
These distances are plugged into spatial (ks) and temporal
(kt) kernel functions to obtain the density contribution of
case i to voxel s: close proximity yields large contribution,
distance proximity yields small contribution, and voxels that

are located further away from i than the spatial (hs) and
temporal (ht) bandwidths receive zero weight. This process
is best explained by the metaphor of the moving cylinder:
A cylinder is defined by the radius of the circle at its base
(di) and its height (dt). Such a cylinder is centered on a case
within the space-time cube, and only voxels inside it receive
contribution to their density from the respective disease case.
The cylinder keeps moving from case to the case until it has
“visited” all of them, which terminates the process. The grid
of voxels is now complete: every voxel now holds a density
estimate that is determined by neighboring disease cases.

Popular kernel functions include Epanechnikov, Quartic,
and Gaussian (Silverman 2018). hs and ht have a profound
influence on the characteristics of the resulting visualization:
Large bandwidths yield smooth density volumes, while small
bandwidths result in rough density volumes (see Saule et al.
2017, Fig. 1). Optimal values of hs and ht, i.e., the spatial and
temporal scales at which clustering is strongest, are obtained
by prior analysis of the space-time Ripley’s K function (see
section “Space-Time Knox Test”). STKDE is a widespread
method for characterizing space-time patterns and has been
employed in many different settings: for the study of dengue
fever (Delmelle et al. 2014a, b; Hohl et al. 2016), crime
(Nakaya and Yano 2010b), and cell phone activity (Sagl et
al. 2014). It has been improved and extended, allowing to
go beyond merely analyzing point datasets: Recent method-
ological advances allow for analyzing network-constrained
events (Xie and Yan 2008), animal movement (Demšar and
Virrantaus 2010), patterns of vessel activity (Scheepens et al.
2011), and trajectories of hurricanes (Eaglin et al. 2017) and
to enable high-performance parallel processing for big data
handling (Saule et al. 2017). This is an incomplete collection
of STKDE examples, and applications are widespread in
many different domains.

The Space-Time Scan Statistic (STSS)

Within the context of spatial epidemiology, scan statistics are
one of the most common approaches to identify statistically
significant clusters of disease. For the purpose of this chapter,
we are referring to discrete scan statistics (see Kulldorff 2018
for continuous models). Scan statistics compare the number
of observed and expected cases in a defined area, while the
expected cases are typically proportional to the at-risk host
population in a given area (Kulldorff 1997). STSS (Kulldorff
et al. 2005) were developed to examine the space-time dy-
namics of disease transmission (e.g., size and duration). The
STSS systematically move cylinders of different space-time
dimensions across the geographic and temporal space, while
the cylinders are typically centered on the centroid of an
areal unit (e.g., municipality), but disaggregated, individual-
level observations may be used. Furthermore, the base of
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Fig. 1 Significant space-time clusters of (a) CHIK, (b) DENF, and (c) Multivariate

Table 1 Probability models for STSS (Kulldorff 2018)

Data Example Model Reference

Count (1) Case only
(2) Cases/controls
(3) Cases/total population

(1) Space-time permutation
(2) Bernoulli
(3) Discrete Poisson

(1) Kulldorff et al. (2005)
(2) and (3) Kulldorff (1997)

Categorical Disease with multiple types (dengue) Multinomial Jung et al. (2010)

Ordered categorical Cancer stages Ordinal Jung et al. (2007)

Survival time AIDS cases over a 10-year period Exponential Huang et al. (2007)

Other – Continuous Weight Normal Kulldorff et al. (2009)

each cylinder is the spatial scan, while the height reflects
the temporal scan. The number of observed and expected
cases are counted within each cylinder and compared to the
observed and expected outside of the cylinder. Conceptually,
an infinite number of overlapping cylinders are produced
until the entire study region and period is covered, and a user-
defined maximum spatial and temporal scan is reached (each
cylinder is a potential space-time cluster). Although cylinders
are the most common space-time scanning methods, it is
possible to employ irregularly shaped windows (see Duczmal
and Assuncao 2004; Tango and Takahasi 2005; Ullah et al.
2017).

STSS use a variety of probability models, depending on
the characteristics of the dataset. Table 1 provides the appro-
priate model that should be employed for different types of
data. For this chapter, the discrete Poisson probability model
employing cylindrical windows will be used.

The discrete Poisson probability model assumes that the
disease cases follow a Poisson distribution according to an
area’s population. The null hypothesis (H0) states that the

model reflects an inhomogeneous Poisson process with an
intensity μ, which is proportional to the at-risk population.
The alternative hypothesis (HA) states that the number of
observed disease cases exceeds the number of expected cases
derived from the null model (elevated risk within a cylinder).
A maximum likelihood ratio test evaluates H0 and HA and is
defined in Eq. 8, while the parameters for Eq. 8 are defined
in Table 2.

L(Z)

L0
=

(
nZ

μ(Z)

)nZ
(

N−nZ

N−μ(Z)

)N−nZ

(
N

μ(A)

)N
(8)

A cylinder Z with a likelihood ratio greater than 1 denotes
an elevated risk compared to the outside of the cylinder, that
is, nZ

μ(Z)
> N−nZ

N−μ(Z)
. As the STSS is repeated over different

cylinder sizes, the one with the maximum likelihood ratio
constitutes the most likely cluster (the cluster that is least
likely to have occurred by chance). Secondary clusters are
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Table 2 Parameters for the maximum likelihood ratio test for the
discrete Poisson model

Parameters Definition

L(Z) Likelihood function for cylinder Z

L0 Likelihood function for H0

nZ Observed cases in cylinder Z

μ(Z) Expected cases in cylinder Z

N Total number of observed cases in the study area
across all time periods

μ(A) Total number of expected cases in the study area
across all time periods

also reported if they are statistically significant. The higher
the likelihood ratio, the higher relative risk the cluster can
be described as having, as it displays the strongest statistical
evidence of clustering. To assess the statistical significance,
Monte Carlo testing returns a p-value for each candidate
cluster, essentially comparing simulated datasets to the real
dataset (recommended minimum of 999 simulations).

The relative risk of the locations belonging to a statisti-
cally significant cluster can also be reported and is recom-
mended to identify the highest-risk areas inside the cluster.
Relative risk is derived in Eq. 9 and is defined as the risk
of infection in a target location compared to all surrounding
locations in a study area.

RR = c/e

(C − c) / (C − e)
(9)

The total observed cases in a target location is c; the total
expected cases in the target location is e; and C is the total
observed cases in the entire study area and period.

Since many VBDs can be transmitted by the same vec-
tor (e.g., dengue and chikungunya – A. aegypti and A. al-
bopictus), identifying space-time clusters where multiple
VBDs co-occur can be beneficial for targeted intervention
programs. Conversely, the multivariate STSS can identify
the simultaneous excess incidence of two or more diseases
(Kulldorff et al. 2007). The multivariate STSS follows the
same procedure as the univariate STSS and then sums the
log likelihood ratio (LLR) for each disease within a scanning
window, producing a new LLR for each candidate space-time
cluster. The maximum LLR is the most likely multivariate
cluster, while secondary clusters are also reported if they are
statistically significant. Within the context of VBD research,
the univariate STSS has been utilized to examine outbreaks
of malaria (Gaudart et al. 2006; Coleman et al. 2009), Lyme
disease (Li et al. 2014), chikungunya (Nsoesie et al. 2015),
West Nile (Mulatti et al. 2015), and dengue (de Melo et al.
2012; Li et al. 2012; Banu et al. 2012), for example. The
multivariate STSS has been used to examine simultaneous
clusters of both chikungunya and dengue in Colombia (Des-
jardins et al. 2018a).

Despite the strengths of STSS, there are a variety of
limitations worth mentioning. First, although the cylindrical
search window is most commonly used, it does not preserve
the true shape of the outbreaks. As previously mentioned, it is
possible to implement irregularly shaped scanning windows.
However, the STSS is an exploratory technique to detect
space-time clusters, and the cylindrical search window is
widely accepted as a valid approach and can still detect
noncylindrical outbreaks (Kulldorff 2005). Second, there
can be uncertainty in the expected counts especially with
a large number of temporal observations. Specifically, the
population data that influences the expected counts at each
data location will likely be static throughout the study period.
Therefore, population dynamics such as seasonal trends (e.g.,
tourism) and migration are not considered and may result in
higher or lower relative risk estimates. Third, relative risk
will likely vary during the study period, while the STSS
reports the total relative risk for the entire study period.
Finally, the STSS can be computationally demanding due to
the high number of Monte Carlo simulations and the number
of data locations and temporal observations and is further
exacerbated when the multivariate approach is utilized.

Visualizing Space-Time Clusters

Space-time clusters of diseases are generally visualized in
three different manners. First, and this is the most common
approach, clusters are highlighted on a map, and information
on the beginning and end dates of the clusters are indicated
on the same map or in a separate table. Examples of such
approach are provided in Norström et al. (2000), Sheehan
and DeChello (2005), Nagar et al. (2014), Iftimi et al. (2015),
Nsoesie et al. (2015), and Xu and Wu (2018). The second
approach consists of producing small multiples, where each
map reflects a particular time period (e.g., weeks, months,
year). In this sequential approach, maps with cluster informa-
tion are arranged in a mosaic framework, side-by-side (Dor-
ling 1992; Brunsdon et al. 2007). Examples of the sequential
approach are provided in Gaudart et al. (2006), Onozuka and
Hagihara (2007), Coleman et al. (2009), Banu et al. (2012),
Pereira et al. (2015), Mulatti et al. (2015), and Scripcaru et
al. (2017). The third approach – and this is the one we use in
this paper – visualizes clusters in a space-time framework,
following Hägerstrand’s time geography concept. Using a
3D framework, the Y-axis is used to reflect the temporal
dimension. Explicit examples of space-time clusters in a 3D
environment includeNakaya andYano (2010) andDesjardins
et al. (2018a) mapping crime in Kyoto (Japan) and dengue
fever and chikungunya epidemics in Colombia. Although
the first approach is relatively straightforward, the temporal
component is not explicitly represented, and it remains chal-
lenging to visualize (1) the duration of space-time clusters
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and (2) whether specific clusters occur at the same time.
The second approach addresses these shortcomings, yet the
reader must cognitively reconstruct the temporal dimension
to better understand the dynamics of the clusters. The users
must move from one image to another and reconstruct the
movement of the clusters, although maps can be animated to
reconstruct cluster duration. The third approach can improve
our understanding of the space-time patterns of a disease
including duration and size and also how clusters may move
through time.

Case Study: Chikungunya and Dengue
Outbreaks in Colombia (2015–2016)

Background

Colombia is located in the northwest corner of South Amer-
ica with a population of over 41 million people as of 2018
(DANE 2018). Colombia has various altitudinal zones, but
around 80% of the country is classified as Tierra Caliente
with temperatures above 24 ◦C (World Mosquito Program
2018). As a result, more than 90% of the country is below
2200 m, resulting in the perfect habitat for the Aedes Aegypti
and Aedes Albopictus mosquitoes (vectors of DENF and
CHIK). Therefore, the majority of Colombia’s population
is at risk of contracting DENF and CHIK, as well as other
VBDs transmitted by Aedes such as yellow fever and Zika. In
the case of DENF, during the 1950s and 1960s, several mea-
sures were adopted to eradicate the presence of mosquitoes
including fumigation and the elimination of mosquito foci
(Dick et al. 2012). However, a re-infestation occurred in the
1970s, and DENF has since been endemic in certain areas of
the country. Periodic DENF outbreaks have occurred in the
last 20 years in 2001, 2006, 2010, 2013, and 2016 (Restrepo
et al. 2014; Ocampo et al. 2014; Cali 2010; Villegas et al.
2010). CHIK first emerged in Colombia in 2014, with the
first reported cases in late July with 45 notified cases, while
16 classified as suspicious (INS 2014). By the end of 2014,
therewere 106,763 reported CHIK cases that were in found in
30 departments. This marked the beginning of an epidemic,
which extended to mid-2016 (INS 2016). In 2015, there were
43,787 cases according to data retrieved from the National
Institute of Health, covering 30 departments and several
urban centers. Most of the cases for 2016 were reported in
the first half of the year. By the end of 2016, a total of 12,187
cases were reported, while almost half of the cases occurred
in four departments (Valle del Cauca, Santander, Tolima, and
Risaralda), and more than 60% of the cases were woman.

Data

Data for the case study corresponds to the number of DENF
and CHIK cases per municipality in Colombia for 2015
and 2016. The data was obtained from SIVIGILA (Sistema
Nacional de Vigilancia en Salud Pública – National Public
Health Surveillance System).1 SIVIGILA is a system ad-
ministered by the National Institute of Health of Colombia
(Instituto Nacional de Salud – INS) which has as a primary
goal to provide information regarding events that can affect
the health of the Colombian population in a timely man-
ner. Data is uploaded into the system by the UPGDs (from
their acronym in Spanish: Unidades Primarias Generadoras
de Datos – Data Generating Primary Units) on a weekly
basis. UPGDs are defined as any private or public entity that
diagnoses the occurrence of a public health event of interest
(INS 2018a).

The INS makes SIVIGILA data available at the aggre-
gate level through their Routine Surveillance webpage (INS
2018b). The aggregate summaries contain weekly disease
cases for each municipality including suspicious, probable,
and confirmed cases. A probable DENF case is identified as
exhibiting fever with two or more of the following symp-
toms: headache, retroocular pain, myalgia, arthralgia, and
rash (INS 2018c). A suspicious CHIK case is identified as
a patient residing or visiting a healthcare facility 8–15 days
prior to the onset of symptoms in a municipality where there
have not been laboratory cases of CHIK confirmed, including
the following symptoms: running a fever over 38 ◦C, arthral-
gia or arthritis, uniform erythema, or symptoms that cannot
be explained by other medical conditions (INS 2018d). The
data stored in the SIVIGILA system is described as dynamic,
subject to analysis, and adjustment (this means data is re-
vised as more information becomes available). Population
data was obtained from the Geographic Information System
for Planning and Land Use Ordering of Colombia (SIGOT:
Sistema de Información Geográfica para la Planeación y Or-
denamiento Territorial).2 The data contains population totals
for each municipality in 2015 and 2016.

The dataset includes 43,452 CHIK cases in 2015 and
11,964 CHIK cases in 2016. For DENF, there are 94,856
cases in 2015 and 99,703 cases in 2016. The CHIK and
DENF data for this case study is similar to Desjardins et
al. (2018a). However, this study received updated CHIK
and DENF case counts from INS, resulting in a discrepancy
between the number of reported total CHIK and DENF cases
during 2015 and 2016. This discrepancy can be explained by
the dynamic reporting of cases by the national health surveil-

1http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/
sivigila/Paginas/sivigila.aspx. Last accessed 29 Sept 2018
2http://sigotn.igac.gov.co/sigotn/frames_pagina.aspx. Last accessed 29
Sept 2018

http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Paginas/sivigila.aspx
http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Paginas/sivigila.aspx
http://sigotn.igac.gov.co/sigotn/frames_pagina.aspx
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Table 3 Space-time clusters of CHIK (RR: relative risk)

Cluster Duration (weeks) p-value Observed Expected RR Municipalities Population in cluster

1 1–26 <0.01 20,407 2172.03 14.29 144 7,671,766.9

2 15–24 <0.01 5520 341.45 17.84 74 1,575,080.1

3 4–29 <0.01 984 23.99 41.75 10 84,561.4

4 1–5 <0.01 2292 660.00 3.58 255 12,151,474.5

5 7–10 <0.01 328 5.02 65.78 5 115,174.4

lance system (SIVIGILA). For example, CHIK, DENF, and
Zika have similar symptomology, which can make initial
diagnosis difficult. Furthermore, there can be uncertainty and
delays in reporting to SIVIGILA from the UPGDs, especially
since CHIKwas a novel disease in Colombia at the time of the
epidemic. The data for this paper was retrieved in December
of 2017, a year after the epidemic was over, while the data in
Desjardins et al. (2018a) was retrieved shortly after the year
was over for 2015 and 2016.

Methods

For this case study, a discrete Poisson univariate and multi-
variate STSS with cylindrical scanning windows was used to
identify individual and simultaneous space-time clusters of
CHIK and DENF in Colombia, during the 2015 and 2016
outbreaks. For both the univariate and multivariate STSS,
the parameters were set as followed: (1) a maximum spa-
tial scan of 25% of the at-risk population; (2) a maximum
temporal scan of 25% of the study period; (3) a minimum
temporal duration of 2 weeks; and (4) 999 Monte Carlo
simulations. Clusters with a p-value <0.05 were reported.
The relative risk of Colombian municipalities that belong to
a significant space-time cluster is also reported to facilitate
targeted interventions. Finally, the space-time clusters are
also visualized in 3D using the space-time cube approach,
which was implemented in ArcScene™ 10.6.

CHIK Results

Five space-time clusters of CHIK were reported, which in-
cluded 490 of the 1125 contiguous Colombian municipalities
(Fig. 1a). All five clusters occurred in 2015, with cluster
centers in Ataco, TolimaDepartment (cluster 1: weeks 1–26);
Mapiripana, Guainía Department (cluster 2: weeks 15–24);
La Peña, Cundinamarca Department (cluster 3: weeks 4–29);
San Jacinto, Bolivar Department (cluster 4: weeks 1–5); and
Puerto Nare, Antioquia Department (cluster 5: weeks 7–10).
The characteristics of the five CHIK clusters are provided in
Table 3.

Clusters 1 (most likely cluster) and 3 had the longest dura-
tion of 25 weeks each, while cluster 5 had the highest relative

risk of 65.78. It is more informative to report the relative risk
of the locations that belong to a cluster, and Fig. 2a shows
the relative risk of CHIK for the 490 selected municipalities.
Notably, 194 of the 490 municipalities reported a relative
risk greater than 1, which indicates that there were more
CHIK cases than expected. Conversely, 296 municipalities
had more expected than observed cases (RR between 0 and
1); and 73 municipalities had no observed cases of CHIK
(RR = 0). Cali, Valle del Cauca Department (cluster 1), had
themost observed cases (4178) during the study period with a
relative risk of 1.59. Roldanillo, Valle del Cauca Department
(cluster 1), had the highest relative risk of 87.6, with 3078
observed and 37.17 expected cases.

DENF Results

Six space-time clusters of DENF were reported, which in-
cluded 474 of 1125 Colombian municipalities (Fig. 1b).
Clusters 2 (weeks 1–24) and 3 (weeks 35–53) occurred
in 2015, with centers in Mapiripán, Meta Department, and
Astrea, Cesar Department, respectively. The last week of
cluster 3 occurred during the first week of January 2016.
Clusters 1 (weeks 54–79), 4 (weeks 52–77), 5 (weeks 52–
77), and 6 (weeks 52–74) occurred in 2016, with centers in
Medio Baudó, Chocó Department; Tibacuy, Cundinamarca
Department; Hato, Santander Department; and El Peñón, An-
tioquia Department, respectively. Table 4 provides detailed
characteristics of the six space-time DENF clusters.

Clusters 1 (most likely cluster), 4, and 5 had the longest
duration of 25 weeks each, while cluster 4 had the highest
relative risk of 6.95. Figure 2b depicts the relative risk for
each of the 474 municipalities belonging to a space-time
DENF cluster. Out of the 474 municipalities, 211 contained
a relative risk greater than 1, 1263 had more expected that
observed cases (RR between 0 and 1), and 18 had no observed
DENF cases (RR =0). Cali, Valle del Cauca Department
(cluster 1), contained the most observed cases of DENF
during the study period (n = 33,748), with a relative risk of
4.08. Soatá, Boyacá Department, had the highest relative risk
(RR = 17.53) with 500 observed and 28.59 expected cases.
Notably, Medellín, Antioquia Department, belongs to cluster
1 with 20,990 observed cases (RR = 2.25).
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Fig. 2 Relative risk per municipality for (a) CHIK, (b) DENF, and (c) Multivariate

Table 4 Space-time clusters of DENF (RR: relative risk)

Cluster Duration (weeks) p-value Observed Expected RR Municipalities Population in cluster

1 54–79 <0.01 39,363 11,638.94 3.99 165 11,610,411.86

2 1–24 <0.01 5903 1239.48 4.88 52 1,357,165.98

3 35–53 <0.01 8971 3169.72 2.92 140 4,362,901.13

4 52–77 <0.01 2452 356.42 6.95 16 355,191.67

5 52–77 <0.01 5527 1894.43 2.97 74 1,893,281.25

6 52–74 <0.01 1118 208.43 5.39 25 235,570.56

Multivariate Results

Six space-time clusters were reported after running the multi-
variate STSS, which included 440 of the 1125 municipalities
(Fig. 1c). Four of the clusters occurred in 2015, cluster 1
(weeks 1–26), cluster 2 (weeks 4–24), cluster 4 (weeks 35–
53), and cluster 6 (weeks 2–27), with centers in Ataco,
Tolima Department; Mapiripana, Guainía Department; As-
trea, Cesar Department; and Quebradanegra, Cundinamarca
Department, respectively, while two occurred in 2016, cluster
3 (weeks 65–90) and cluster 5 (weeks 54–77), with centers
in Anzá, Antioquia Department, and Cabrera, Cundinamarca
Department, respectively. Furthermore, the last week of clus-
ter 4 occurred in this first week of January 2016. Table 5 sheds
light on the characteristics of the six multivariate space-time
clusters of CHIK and DENF.

The multivariate STSS will report significant clustering
for one or more datasets; therefore, the multivariate results
may include clusters that only contain CHIK or DENF.
For this study, four of the clusters included simultaneous

clustering of both CHIK and DENF (clusters 1, 2, 5, and 6),
while two of the clusters only included significant clustering
of DENF (clusters 3 and 4). Clusters 1, 3, and 6 had the
longest duration of 25 weeks each. Cluster 1 had the highest
observed cases for both CHIK (n = 20,407) and DENF
(n = 21,808), while cluster 6 had the highest relative risk
of CHIK (RR = 55.33) and DENF (RR = 7.19). Cali,
Valle del Cauca Department (cluster 1), contained the most
combined observed cases with n = 37,926 (CHIK = 4178;
DENF = 33,748; combined RR = 5.67). Figure 2c shows
the relative risk for the 440 municipalities belonging to the
multivariate clusters. Furthermore, 13 municipalities had no
observed cases of CHIK nor DENF (RR = 0); 145 munici-
palities had less observed than expected cases (RR between
0 and 1); and 295 had more observed than expected cases
(RR > 1). Roldanillo, Valle del Cauca Department (cluster
1), had the highest combined relative risk (RR = 89.84;
CHIK = 87.6 & DENF = 2.23). Notably, Medellín, Antio-
quia Department (cluster 1), had a combined relative risk of
2.49, with 675 observed cases of CHIK and 20,990 observed
cases of DENF.
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Table 5 Multivariate space-time clusters of CHIK and DENF (RR: relative risk)

Cluster Duration (weeks) Municipalities p-value VBD Observed Expected RR

1 1–26 144 <0.01 CHIK 20,407 2172.03 14.29

DENF 21,808 7625.74 3.09

2 4–24 71 <0.01 CHIK 5569 355.84 17.29

DENF 5320 1249.30 4.35

3 65–90 18 <0.01 CHIK 0 0 0

DENF 15,739 3479.14 4.83

4 35–53 140 <0.01 CHIK 0 0 0

DENF 8971 3169.73 2.92

5 54–77 59 <0.01 CHIK 1517 404.54 3.83

DENF 4608 1420.3 3.30

6 2–27 6 <0.01 CHIK 877 16.10 55.33

DENF 406 56.52 7.19

Visualizing CHIK and DENF Clusters in 3D

Figures 3, 4, and 5 visualize the space-time clusters of CHIK,
DENF, and co-occurrence of CHIK and DENF in a 3D envi-
ronment, respectively. The design of the 3D visualizations
includes the following elements: (1) cylinders representing
the size, location, and duration of the cluster; (2) black rings
around each cluster representing a particular week during the
study period; (3) a 2D layer of the municipalities belonging
to a cluster, which is superimposed on Colombia; (4) a 2D
layer of the radii of the clusters superimposed on Colombia;
(5) labels that denote a cluster’s ID; and (6) two temporal axis
with labels to denote the start and end dates of each cluster.
The 3D visualizations improve the conceptualization of the
space-time dynamics of the reported clusters.

For example, Fig. 3 shows that the five space-time clusters
of CHIK began and ended during the first half of 2015.
Clusters 1–3 lasted the longest while affecting the south-
central portions of Colombia. Clusters 4 and 5 occurred in
the north-central portions of the country, while they had
very short durations between January and March of 2015,
respectively. Figure 4 shows that twoDENF clusters occurred
in 2015 (2 and 3), while four (1, 4–6) occurred in 2016.
Cluster 2 in the central region of Colombia began in January
2015 and lasted until late June 2015. The next cluster (3)
appeared in August 2015, which lasted until January 2016.
The four clusters of DENF in 2016 all began in January and
lasted until June and July, while they affected the central and
western portions of the country. Figure 5 clearly indicates
that four out of the six multivariate clusters occurred during
2015, with two occurring in 2016. Again, clusters 3 and 4
only include significant clustering of DENF, not significant
co-occurrence of both DENF and CHIK (Table 5). Therefore,
2015 was a more severe epidemic year regarding the co-
occurrence of DENF and CHIK, since clusters 1, 2, and 6
occurred in the first half of 2015, while cluster 5 was the only
cluster displaying significant co-occurrence in 2016.

Discussion

The results of the case study highlight statistically significant
space-time clusters of DENF, CHIK, and regions of simul-
taneous excess incidence of both diseases (see multivariate
results). The reported space-time clusters of the univariate
and multivariate cases correspond to regions of suitable habi-
tat ranges of A. aegypti and A. albopictus. However, due to
the cylindrical scanning window of the statistic, there are
municipalities found in a cluster that are above 1.7 kilometers
(Aedes rarely found above this threshold). To circumvent this
issue of selecting municipalities where transmission is rare,
relative risk was reported for each municipality belonging to
a cluster. Many of the municipalities with a relative risk of 0
are found in regions with an elevation greater than 1.7 km.
Reporting and visualizing the relative risk for each munici-
pality also facilitates targeted interventions by identifying the
municipalities that have statistically significant excess cases
of each disease (i.e., RR > 1), reducing the uncertainty of
solely reporting the space-time clusters.

The multivariate STSS reported four clusters of space-
time co-occurrence of both DENF and CHIK. Since CHIK
just recently appeared in Colombia, it is important to identify
areas of co-circulation with DENF, which is hyperendemic in
many regions of the country. Since the clinical manifestations
of DENF and CHIK (also Zika) are similar, identifying the
correct disease via clinical diagnosis is challenging in regions
of co-circulation (Silva Jr et al. 2018). Unlike DENF, chronic
complications following a CHIK infection are common (de
Andrade et al. 2010), which may last for weeks, months,
and even years. Therefore, it is critical to implement timely
and effective diagnostic methods (e.g., laboratory testing)
to confirm the viral etiology between DENF, CHIK, and
Zika. Reducing misdiagnosis is especially important in ar-
eas of co-circulation, and identifying areas that experience
simultaneous outbreaks of DENF, CHIK, or Zika (e.g., via
multivariate STSS) can facilitate targeted interventions. Co-
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Fig. 3 3D visualization of the CHIK space-time clusters in Colombia (2015–2016)

Fig. 4 3D visualization of the DENF space-time clusters in Colombia (2015–2016)

infection of DENF and CHIK is also possible; however, there
has not been any observable clinical significance, such as
exacerbated symptoms (Furuya-Kanamori et al. 2016).

The 3D visualizations (Figs. 3, 4, and 5) can improve
the understanding of the size, duration, and movement of
space-time clusters of disease (Desjardins et al. 2018a). 3D
visualizations should supplement traditional 2D approaches
(Desjardins et al. 2018b), especially for space-time analyses
that include a large number of temporal observations. Other-
wise, key space-time patterns can be masked by solely using
2D techniques. However, the 3D visualizations provided
are static, and crowding and occlusion could have been an
issue if there were a larger number of reported space-time
clusters. Integrating the 3D visualizations in an interactive
environment (e.g., web-GIS platform) can improve their ef-
fectiveness by allowing the user to move around the image,
for example.

The univariate and multivariate STSS approaches cou-
pled with the 2D and 3D visualizations are an example of
exploratory VBD surveillance. The results can be used to
improve targeted interventions by identifying statistically
significant space-time clusters while shedding light on which
regions experienced the greatest burden of DENF and CHIK
(i.e., reporting relative risk per municipality). Further re-
search can examine the risk factors that influence VBD
incidence and risk in the reported space-time clusters, while
analysis at fine geographic scales (e.g., neighborhoods) is
necessary for local prevention and mitigation of DENF and
CHIK.

Conclusions

Disease surveillance has become a vibrant field of research
at the intersection of statistics, computing, and health geog-
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Fig. 5 3D visualization of the multivariate space-time clusters in Colombia (2015–2016)

raphy. The space-time clustering methods and visualization
approaches described in this chapter are not an exhaustive
list, but rather an example of some of the most commonly
used exploratory techniques in geospatial health. Overall,
exploratory space-time cluster approaches should be used to
shed light on the space-time dynamics of epidemics and out-
breaks and highlight the areas that experienced the greatest
burden of disease. Subsequent research is necessary to under-
stand the factors that influence disease transmission, while
fine-level analysis (e.g., neighborhoods) can uncover local
variations of disease incidence within at-risk areas. More
research efforts should focus on evaluating the effectiveness
of 3D visualization approaches for space-time clusters, such
as user studies. 3D visualizations can also benefit from in-
teractive environments that allow the user to navigate freely,
rather than static images (such as Figs. 3, 4, and 5). Software
that specializes in space-time clustering techniques, such as
SaTScan, may not allow visualization of the results, which
requires familiarity and training with a GIS and other visu-
alization software. Future developments in software should
integrate visualization functionality to streamline subsequent
analysis. As novel technologies emerge and data becomes
available, new epidemiological questions will arise requir-
ing to investigate additional facets of space-time analytics.
For instance, population data become increasingly detailed
with respect to their spatial and temporal resolutions, which
will enable us to adjust clustering methods for spatially
and temporally inhomogeneous background populations. In
addition, as techniques for tracking or inferring individual
people’s location are already available at large scales, re-

search about space-time disease clustering may shift focus
from the point- and polygon-based paradigms to trajectory-
based methods.
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Introduction

Beyond environmental studies, machine learning has already
proved immensely useful in a wide variety of applications
in science, business, healthcare, and engineering. Machine
learning allows us to learn by example and to give our data
a voice. It is particularly useful for those applications for
which we do not have a complete theory, yet which are of
significance. Machine learning is an automated implemen-
tation of the scientific method (Domingos 2015), following
the same process of generating, testing, and discarding or
refining hypotheses. While a scientist or engineer may spend
his entire career coming up with and testing a few hundred
hypotheses, a machine-learning system can do the same in a
fraction of a second. Machine learning provides an objective
set of tools for automating discovery. It is therefore not
surprising that machine learning is currently revolutionizing
many areas of science, technology, business, and medicine
(Lary et al. 2016a).

Machine learning is now being routinely used to work
with large volumes of data in a variety of formats, such as
image, video, sensor, health records, etc. Machine learning
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can be used in understanding this data and creating predictive
and classification tools. When machine learning is used for
regression, empirical models are built to predict continuous
data, facilitating the prediction of future data points, e.g.,
algorithmic trading and electricity load forecasting. When
machine learning is used for classification, empirical models
are built to classify the data into different categories, aid-
ing in the more accurate analysis and visualization of the
data. Applications of classification include facial recognition,
credit scoring, and cancer detection. When machine learning
is used for clustering, or unsupervised classification, it aids
in finding the natural groupings and patterns in data. Appli-
cations of clustering include medical imaging, object recog-
nition, and pattern mining. Object recognition is a process
for identifying a specific object in a digital image or video.
Object recognition algorithms rely on matching, learning,
or pattern recognition algorithms using appearance-based
or feature-based techniques. These technologies are being
used for applications such as driver-less cars, automated skin
cancer detection, etc.

There are now a variety of open-source tools that can
greatly facilitate the use of machine learning, such as scikit-
learn,1 TensorFlow,2 Caffe,3 and Spark Mlib.4 Common pro-
gramming environments used for machine learning include
R,5 Julia,6 Python,7 and MATLAB.8 All of the applications
shown in this chapter used MATLAB.

1http://scikit-learn.org/stable/.
2https://www.tensorflow.org.
3http://caffe.berkeleyvision.org.
4http://spark.apache.org/mllib/.
5https://cran.r-project.org.
6https://julialang.org/#tab-math
7https://www.python.org.
8https://www.mathworks.com/solutions/machine-learning.html.
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Fig. 1 From data to predictions
and insights: A flow chart
showing the steps used in
preparing and using data with
machine learning

In this paper, we will give an overview of several remote
sensing applications of machine learning made over the last
two decades and then take a look ahead to some likely future
applications.

What Is Machine Learning?

Machine learning is an automated approach to building em-
pirical models from the data alone. Figure 1 shows a flow
chart showing the steps used in preparing and using data
with machine learning. A key advantage of this is that we
make no a priori assumptions about the data, it’s functional
form, or probability distributions. It is an empirical approach,
so we do not need to provide a theoretical model. However,
it also means that for machine learning to provide the best
performance, we do need a comprehensive representative set
of examples, which spans as much of the parameter space as
possible. This comprehensive set of examples is referred to
as the training data (Fig. 2).

So, for a successful application of machine learning, we
have two key ingredients, both of which are essential, a ma-
chine learning algorithm and a comprehensive training data
set. Then, once the training has been performed, we should
test its efficacy using an independent validation data set to
see how well it performs when presented with data that the

algorithm has not previously seen, i.e., test its generalization.
This can be, for example, a randomly selected subset of
the training data that was held back and then utilized for
independent validation.

It should be noted, that with a given machine learning
algorithm, the performance can go from poor to outstanding
with the provision of a progressively more complete training
data set. Machine learning really is learning by example, so
it is critical to provide as complete a training data set as
possible. At times, this can be a labor-intensive endeavor.

When using machine learning, we are typically perform-
ing one of three tasks:

1. Multivariate nonlinear non-parametric regression
2. Supervised classification
3. Unsupervised classification

Each of these tasks can be achieved by a variety of
different algorithms. Some of the commonly used algorithms
include neural networks (McCulloch and Pitts 1943; Haykin
2001, 2007, 1994, 1999; Demuth et al. 2014; Bishop 1995),
support vector machines (Vapnik 1982, 1995; Cortes and
Vapnik 1995; Vapnik 2000, 2006), decision trees (Safavian
and Landgrebe 1991), and random forests (Ho 1998; Breiman
1984, 2001). Our goal in this chapter is to present a set of
examples of applying machine learning to spatial datasets.
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Fig. 2 A schematic giving an overview of some of the types of machine
learning

Some ExistingMachine Learning
Applications

There have been many previous machine learning studies
(Lary et al. 2016b; Brown et al. 2008; Lary et al. 2009; Lary
and Aulov 2008; Lary et al. 2004; Malakar et al. 2013; Lary
2010; Malakar et al. 2012a; Lary 2013, 2007; Albayrak et al.
2011; Brown et al. 2006; Lary et al. 2003; Malakar et al.
2012b; Lary 2014; Lary et al. 2015; Kneen et al. 2016; Lary
et al. 2010; Medvedev et al. 2016; Lary et al. 2016c; O et al.
2017; Wu et al. 2017; Nathan and Lary 2019; Lary et al.
2019, 2018; Wu et al. 2019; Alavi et al. 2016; Ahmad et al.
2016; Zewdie and Lary 2018; Malakar et al. 2018; Zewdie

et al. 2019a,b; Chang et al. 2019; Choi et al. 2019). Let us
start by looking at several examples of bias correction. Bias
identification and correction is of particular importance for
every single remote sensing instrument. Bias correction can
also prove to be a particularly challenging issue, one which
involves multiple factors.

Multivariate Nonlinear Non-parametric
Regression

The ubiquitous issue of inter-instrument biases is an obvious
example of where we do not have a complete theoretical
understanding, and so machine learning can be of particular
use.

In many areas of remote sensing, we have multiple in-
struments simultaneously observing the earth on a variety
of platforms. Many of these sensors may be providing data
on the same parameters, such as the surface vegetation or
the composition of the atmosphere or ocean. A ubiquitous
issue faced is inter-instrument bias between the contempo-
raneously observing instruments. This inter-instrument bias
can be due to a variety of known reasons that may include
different instruments, different observing geometries and
orbits, etc., as well as some causes that we do not know.

This is an important issue, as we routinely need to provide
data fusion of multiple datasets, datasets which are inevitably
biased relative to each other, sometimes even after themanda-
tory calibration/validation process. When we are seeking to
construct a long-term record spanning many decades, this
inevitably will often involve a large number of instruments,
a matter very relevant for climate variables. In addition,
data assimilation has become an important part of effectively
utilizing remotely sensed data. However, data assimilation is
a best linear unbiased estimator (BLUE), and fusing biased
data can cause serious issues.

This data fusion typically involves large teams of scien-
tists and engineers. On the one hand, the instrument teams
have a keen sense of faithfully reporting the data, as it is,
warts and all. They are naturally loath to empirically correct
biases; they would like to theoretically understand the cause
of the bias and data issues from first principles. However,
as the Earth System is so complex, with many interacting
processes, and often the instruments are also complex, this is
not always possible. Residual data issues can, and usually do,
remain. On the other hand, the modelers know that data bias
exist, but are very reticent to make changes to data products
that they did not collect, so we therefore have a problem of
closure.

Biases are ubiquitous, not all of them can be explained
theoretically. Yet, we typically need to fuse multiple datasets
to construct long-term time series and/or improve global cov-
erage. If the biases are not corrected before data fusion, we
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introduce further problems, such as spurious trends, leading
to the possibility of unsuitable policy decisions. When data
assimilation is involved, any use of biased observations can
lead to the suboptimal use of the observations, nonphysical
structures in the analysis, biases in the assimilated fields,
and extrapolation of biases due to multivariate background
constraints. To compound matters further, the instruments
whose data we would like to fuse are often not making
coincident measurements in time or space. It is imperative to
inter-compare observations in their appropriate context and
be able to address the pernicious issue of inter-instrument
bias, an issue where machine learning has proved to be most
useful. Let us now take a look at some examples.

Machine Learning for New Product Creation

Let us know turn our attention to an example of creating new
data products through the holistic use of satellite and in situ
data, a new data product that is of societal significance.

Airborne Particulates
There is an increasing awareness of the health impacts of
particulate matter and a growing need to quantify the spatial
and temporal variations of the global abundance of ground-
level airborne particulate matter (PM2.5). In March 2014, the
World Health Organization (WHO) released a report that in
2012 alone, a staggering 7 million people died as a result of
air pollution exposure (WHO), one in eight of the total global
deaths. A major component of this pollution is airborne
particulate matter (e.g., PM2.5 and PM10).

The recent study by Lary et al. (2014) used machine
learning to provide daily global estimates of airborne PM2.5

from 1997 to 2014. This was achieved by utilizing a mas-
sive amount of data (40 TB) from a suite of about 100 re-
mote sensing and meteorological data products together with
ground-based observations of PM2.5 from 8329measurement
sites in 55 countries taken between 1997 and 2014. This data
was used to train amachine learning algorithm to estimate the
daily distributions of PM2.5 from 1997 to 2014. This allowed
the creation of a new global PM2.5 product at 10 km resolu-
tion from August 1997 up to the present (Lary et al. 2014).
This new dataset is specifically designed to support health
impact studies. Lary et al. (2014) showed some examples
of this global PM2.5 dataset and examined its associations
withmental health emergency room admissions in Baltimore,
MD. They demonstrate that the new PM2.5 data product can
reliably represent global observations of PM2.5 for epidemi-
ological studies. They showed that airborne particulates can
have some surprising associations with health outcomes. As
an example of this, (Lary et al. 2014) presented an analysis
of Baltimore schizophrenia emergency room admissions in
the context of the levels of ambient pollution. PM2.5 had

a statistically significant association with some aspects of
mental health.

A useful validation of the new PM2.5 data product is to
survey the key features of the global PM2.5 distribution and
see if they capture what we expect to find and what has
been reported in the literature. In Fig. 3a, we see that the
eastern half of the USA has a higher average abundance of
PM2.5 than the western half with the exception of California.
This is consistent with the overlaid EPA observations shown
as color-filled circles. The color fill for the observations
uses the same color scale as the machine learning estimate
depicted using the background colors. There are persistently
high levels of PM2.5 in Mexico’s dusty and desolate Baja
California Sur. The particularly high values are in Mulege
Municipality close to Guerrero Negro (marked A in panel (a)
of Fig. 3). Straddling the region close to theMexico, Arizona,
and California borders is the Sonoran Desert. This is a region
characterized by a high-average PM2.5 abundance (marked
B) and haboobs, massive dust storms. The Sonoran desert has
an area of 311,000 square kilometers and is one of the hottest
and dustiest parts of North America. This is clearly evident
in the high 16-year average PM2.5 abundance in this region.
The persistently high PM2.5 abundance associated with Los
Angeles is visible (markedC). The regions of high population
density usually coincide with the region of high particulate
abundance. California’s heavily agricultural Central Valley
has a high PM2.5 loading (marked D); note the good agree-
ment of our estimates with the 16-year average observations.
The EPA has designated Central Valley as a non-attainment
area for the 24-h PM2.5 National Ambient Air Quality Stan-
dards (NAAQS). The high PM2.5 abundance associated with
the Great Salt Lake Desert in northern Utah close to the
Nevada border is clearly visible (marked E). There is a nearby
measurement supersite at Salt Lake City recording a particu-
late abundances consistent with our estimates. Mexico City is
known for its high levels of particulates and is clearly visible
(marked F) as a localized hot spot. Close to theMexico/Texas
border, we see the elevated PM2.5 abundance associated with
the Chihuahuan Desert and the Big Bend Desert (marked G).
Dust storms in this area often impact El Paso in Texas and
Ciudad Juarez in Mexico. The Ohio River Valley (marked H)
encompasses several states and is home to numerous coal-
fired power plants, chemical plants, and industrial facilities,
leading to high levels of ambient particulates. The Ohio River
Valley has a higher average abundance of PM2.5 than the rest
of the East Coast. Our analysis agrees closely with the in situ
observations for the Athens super-site. The Piura desert in
Northern Peru (marked I) on the coast and western slopes
of the Andes is a region of high particulate abundances. The
region in South America from the high Andean semi-arid
Altiplano basin in the north, coming down through the Salar
de Uyuni Desert (the world’s largest salt flats), passing by
Santiago in Chile and San Miguel de Tucumn, San Juan and
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Fig. 3 The average estimated surface PM2.5 abundance of the 5874 daily estimates from August 1, 1997, to August 31, 2013, in μg/m3 for (a)
the USA, (b) South America, (c) Africa, (d) Europe, (e) Australia, and (f) Asia

Mendoza in Argentina, and down to the Neuquén Basin in the
south, is characterized by a high abundance of particulates
from a combination of dust, salt, and pollution (marked J).
The southern Amazon in Bolivia and the surrounding region
has a lot of burning leading to persistently high particulate
abundances (labeled K).

The Bodélé depression is Chad’s lowest point on the
Sahara’s southern edge that supplies the Amazon forest with
the majority of its mineral dust. The high abundance of PM2.5

over the Bodélé is clearly visible (marked L). Typically, there
are dust storms originating from the Bodélé depression on
around 100 days a year. The low flat desert in the North
African Western Sahara is some of the most inhospitable and
arid land on earth and a substantial dust source, clearly visible
in the high abundance of PM2.5. Burning in the Democratic
Republic of the Congo (marked M) leads to high levels of
particulates. Much of coastal Somalia is desert characterized
by high levels of particulates (marked N).
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The Italian Po valley (marked P in Fig. 3) has some of
the highest average abundance of particulates in Europe.
Industrial emissions coupledwith persistent fog lead to heavy
smog. High levels of PM2.5 are found in the Netherlands
and North-west Germany. An example of a local pollution
hotspot in Europe is Moscow (marked O).

Lake Eyre is Australia’s largest lake and lowest point
(marked Q).When the lake has dried out, a salt crust remains.
When Lake Eyre is dry, it is typically Australia’s largest dust
source, Lake Eyre usually only fills with water after the heavy
rains that typically occur once every 3 years; during these
periods, the PM2.5 abundance in the vicinity of Lake Eyre is
lower than usual. Just east of the Lake Eyre Basin is the Strz-
elecki Desert, another major Australian dust source (marked
R). The arid region just south of the Hamersley Range in
Western Australia, the Gibson Desert, Great Victoria Desert,
and MacDonnell Ranges are also dusty environments with
elevated average abundances of PM2.5.

Asia has some of the highest particulate abundances any-
where on earth. The Aral Sea (marked S) lying across the
border of Kazakhstan and Uzbekistan is heavily polluted
with major public health problems. The Ganges Valley is
home to 100 million people and is highly polluted (marked
T). The cold Taklimakan Desert of northwest China is a
major source of PM2.5 (marked U). Particularly high levels
of particulates are found in the Sichuan Basin (marked V)
and in western China in the region from Beijing in the North
down to Guangxi in the south (marked W).

Asthma Health
The strongest risk factors for asthma exacerbation are a
combination of genetic predisposition and environmental
exposure to inhaled substances that provoke allergic reactions
or irritate the airways (Faruque et al. 2014). Particulate
matters (PM) are known to be a major contributing factor
exacerbating asthma. While medication can control asthma,
avoiding the exposures to asthma triggers can significantly
reduce the severity of symptoms.

The desired standard for fine PM has been an issue of
controversy since its establishment; while the fact that low-
ering the abundance of airborne PM can reduce the burden
of asthma and other health problems has been supported by
many studies (Etchie et al. 2018; Giannadaki et al. 2016;
Mirabelli et al. 2016; Guarnieri and Balmes 2014; Wein-
hold 2013; Esworthy 2012; Esworthy and McCarthy 2013;
Berman et al. 2012; Johnson and Graham 2005). Based on
the growing evidences of health problems due to even lower
levels of fine PM than previously thought, the EPA has been
making the standard stricter for PM2.5, once in 2006 for
daily and once in 2012 for annual (EPA 2019). However,
scientists and physicians are not yet sure about the exact level
of PM below which health conditions will not be negatively
impacted.

In a study, funded by the National Institute of Environ-
mental Health Sciences, researchers attempted to examine
the impact of PM2.5 on asthma in a region where the ambient
PM2.5 in general stays below the current annual National
Ambient Air Quality Standards (NAAQS) of 12 μg/m3. The
associations between asthmamorbidity and local PM2.5 in the
Jackson, Mississippi, area were examined in this epidemio-
logical study (Chang et al. 2019).

Through implementing machine learning, the first daily
global estimates of ground-level PM2.5 for the period of 1997
to 2014 were developed by Lary et al. (2014) through a
project funded in 2011 by the National Institute of Envi-
ronmental Health Sciences. Since the error value for every
estimated value per grid was calculated (Lary et al. 2014,
2015, 2016c), the usability of these estimated data for health
studies can be readily assessed. These estimated PM2.5 were
used in an epidemiological study to examine the associ-
ations between asthma morbidity and local PM2.5 in the
Jackson,Mississippi, area (Chang et al. 2019). Because of the
availability of seamless PM2.5 data over a long period, this
population-based time-series study was possible to conduct
a 9-year period of asthma morbidity. The findings of this
health study support a relationship between air quality and
asthma morbidity even in a region of relatively low levels of
PM2.5 exposure, which is an important information regarding
respiratory health for many parts of the world.

In another study (Lary et al. 2019), we found that machine
learning was able to effectively estimate student learning
outcomes geospatially across all the campuses in a large
urban independent school district. The machine learning
showed that key factors in estimating the student learning
outcomes included the number of days students were absent
from school. In turn, one of the most important factors in
estimating the number of days a student was absent was
whether or not the student had asthma. This highlights the
significant impact of asthma on student learning outcomes.

Pollen Estimation
Pollen is known to be a trigger for allergic diseases, e.g.,
asthma, hay fever, and allergic rhinitis (Oswalt and Marshall
2008; Howard and Levetin 2014). It is interesting that a
variety of non-respiratory issues such as strokes (Low et al.
2006) and, surprisingly, even suicide and attempted suicide
(Matheson et al. 2008) have an association with the daily
concentration of atmospheric particulates. However, so far,
there is no defined threshold amount of pollen known to
trigger allergy for sensitive individuals (Voukantsis et al.
2010). One of the factors for the lack of knowledge of the
threshold amount of pollen is the absence of an accurate
estimation on a fine spatial scale of the hourly, bi-hourly, or
daily amount of pollen. Individual physiological differences
such as gender and age among sensitive people also adversely
affect in knowing the threshold amount of pollen in the
surrounding (Britton et al. 1994; Ernst et al. 2002).
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Of all plants, weeds, and particularly those of the
Ambrosia species, e.g., Ambrosia artemisiifolia (common
ragweed) and Ambrosia trifida (giant ragweed), are major
producers of large amounts of pollen. For example, a
common ragweed can produce up to about 2.5 billion pollen
grains per plant per day (Laaidi et al. 2003). Ambrosia
artemisiifolia and Ambrosia trifida combined can produce
more allergens than all other plants combined (Lewis et al.
1983). Grasses (e.g., rye grass) are also known to trigger an
allergic response. Following Ambrosia artemisiifolia, grass
pollen are known for their high allergic potency than most
weeds (Esch et al. 2001; Lewis et al. 1983). Tree pollen
can cause an allergic response, but one that is typically less
than that of weeds and grasses, although in some regions,
tree pollen can trigger a significant allergic response. For
instance, the airborne concentration of mountain cedar pollen
grains can reach tens of thousands of pollen grains per cubic
meter and trigger a significant allergic response in central
Texas during winter, known as cedar fever (Andrews et al.
2013; Ramirez 1984).

Both global climate change and air pollution affect the
abundance of airborne pollen and, consequently, its allergic
impact (Kinney 2008; Wayne et al. 2002; Voukantsis et al.
2010). For example, the abundance of pollutants such as CO2

(Wayne et al. 2002) and NO2 (Zhao et al. 2016) can affect the
extent of growing season of major pollen producing plants
and thereby also affect the airborne pollen concentration as
well as altering the onset and end dates of seasonal allergies.
Overall, more people are exposed to pollen, and sensitive
individuals become exposed to large amounts of pollen for
a longer period of time over larger areas.

Globally millions of people are affected by seasonal al-
lergies, and the number of people affected is increasing
each year. In North America alone, as of 2008, about 50
million adult Americans and 9% of children aged below
18 have experienced pollen-caused allergies (Howard and
Levetin 2014). Similarly, in Europe, about 15 million people
are affected by hay fever, asthma, and rhinitis (D’amato
and Spieksma 1991). Hence, pollen allergies are becom-
ing an increasingly significant environmental health issue.
Furthermore, just as accurate daily weather forecasts are of
significant use, accurate daily pollen forecasts are likely to
become increasingly important.

Remote sensing has been employed to study atmospheric
pollen concentrations. For example, the polarization of LI-
DARs has been used to observe the airborne tree pollen
abundance at Fairbanks Alaska (Sassen 2008). In this case,
the pollen produces a depolarization of the LIDAR backscat-
tering signals from the lower atmosphere. The light scattering
properties of pollen is also manifested in the shape of the
solar corona they create. The shape of the solar corona asso-
ciated with pollen depends on the shape of the pollen grains
and their atmospheric concentration (Tränkle and Mielke

1994). However, this approach can be complicated since
atmospheric light scattering is also caused by other airborne
particulates.

Common pollen estimation techniques, particularly those
made in Europe, stress the importance of meteorologic vari-
ables (Kasprzyk 2008). Usually forecasting the amount of
airborne pollen is based on the interaction of atmospheric
weather and pollen (Arizmendi et al. 1993). Meteorologic
variables such as the daily mean, maximum, change in tem-
perature, and dew point variables show positive correlation
with the pollen concentration (Kasprzyk 2008). Kasprzyk
(2008) found that atmospheric humidity shows a negative
correlation to the pollen concentration. Other studies show
that temperature, precipitation, and wind speed are signifi-
cant meteorologic parameters in estimating pollen concen-
tration (Stark et al. 1997).

Most of these meteorologic variable-based forecasting
methods employed statistical methods such as linear re-
gression, the polynomial method, and time series analysis
(Sánchez-Mesa et al. 2002). Only few studies used advanced
machine learning methods such as neural network (Sánchez-
Mesa et al. 2002; Rodríguez-Rajo et al. 2010; Puc 2012;
Voukantsis et al. 2010) and random forest (Nowosad 2015)
for pollen forecasting, and support vector machines are ap-
plied for related environmental studies (Voukantsis et al.
2010; Osowski and Garanty 2007).

Predicting Pollen Abundance
Over the past decade, neural networks have been applied
to study pollen of different species over the European
region. For example, (Csépe et al. 2014) used different
computational intelligence (CI) methods to predict the
Ambrosia pollen at two different places in Hungary and
France. Castellano-Méndez et al. (2005) and Puc (2012)
have employed the neural network to predict Betula pollen
over Spain and Poland, respectively. Recently, (Nowosad
2015) used the random forest method to forecast different
tree pollen species.

In this study, we used random forests, neural networks,
and support vector machines to estimate daily Ambrosia
pollen concentration at Tulsa, Oklahoma (location,
36.1511◦N, 95.9446◦W). We used a combination of envi-
ronmental parameters and NEXRAD radar measurements.
The combined parameters are listed in Table 1. The daily
pollen concentration used in the training of our machine
learning algorithms was obtained using a Burkhard spore
trap at the University of Tulsa, Oklahoma.

After pollen is produced in the plant anthers, its emission,
dispersion, and deposition are influenced by meteorological
variables such as the temperature, wind speed and direction,
and pressure (Kasprzyk 2008; Csépe et al. 2014; Howard
and Levetin 2014). Other meteorological parameters such as
dew point, humidity, rainfall, and sunshine duration are also
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Table 1 Name and type of predictors (input variables) used for our
machine learning training

Parameter Unit Type

Vegetation greenness fraction fraction Env.

Leaf area index m2 Env.

Roughness length, sensible heat m Env.

Displacement height m Env.

Energy stored in land Jm−2 Env.

Mean reflectivity dB NEXRAD

Mean Doppler velocity ms−1 NEXRAD

Mean spectral width ms−1 NEXRAD

Reflectivity [10–10 dB] dB NEXRAD

Velocity [10–10 dB] ms−1 NEXRAD

Spectral width [10–10] dB ms−1 NEXRAD

Reflectivity [20–20 dB] dB NEXRAD

Velocity [20–20 dB] ms−1 NEXRAD

Spectral width [20–20 dB] ms−1 NEXRAD

Reflectivity [40–40 dB] dB NEXRAD

Velocity [40–40 dB] ms−1 NEXRAD

Spectral width [40–40 dB] ms−1 NEXRAD

Wind direction at altitude 50m Degree NEXRAD

Wind speed at altitude 50m ms−1 NEXRAD

Parameters consist of environmental and NEXRAD radar measure-
ments

known to affect pollen emission and distribution (Kasprzyk
2008).

We used a set of environmental and NEXRAD radar
parameters (Table 1) in our machine learning training. Envi-
ronmental parameters such as vegetation greenness fraction,
roughness length (sensible heat), energy stored in all land
reservoirs, and displacement height and leaf area index are
selected. The other set of data we used are the NEXRAD
measurements which consist of the reflectivity, Doppler ve-
locity, and spectral width which represent, respectively, the
amount of back scattered signals from a scattering volume,
the velocity of the scatterer along the radar line of sight,
and the width of the power spectrum. All NEXRAD mea-
surements are taken at the lowest elevation. Additionally the
NEXRAD provides measurements of the vertical profile of
the direction and speed of the wind from about near the
surface of the Earth. The dual polarization measurements,
differential reflectivity, differential phase, and correlation co-
efficient, use the horizontal and vertical polarization signals
and are particularly suited for particle identification. In this
study, we do not use the dual polarization (polarimetric)
NEXRAD measurements as we have only few days of the
measurements in contrary to the ideal high-dimensional data
requirement for machine learning.

The three machine learning methods were trained on the
entire data set to assess their performance in predicting the
Ambrosia pollen. The scatter diagrams are shown in Fig. 4.
We also used a Newton-Raphson-based recursive Random
Forest technique that has been developed in order to im-

prove the accuracy. The method includes error estimation
and correction. In order to evaluate the performance of the
machine learning methods independently, 10% of the data
are randomly selected and withdrawn for validation from
the training, and the remaining 90% of the data is then
used for training the model. After developing the model,
its performance is tested using the independent validation
dataset that was not used in training the machine learning
regression. These results are shown in Fig. 4. Panels (a), (b),
and (c) in Fig. 4 show scatter plots of predictions made by the
support vector machine, neural network, and random forest
machine learning methods, respectively, using the training
data (black circles) and the validation data (red squares).
Results of the iterative method applied to the random forest
method are given by panels (d), (e), and (f). The random
forest machine learning is trained using 200 decision trees.

From the top three panels of Fig. 4, we observe that the
neural network and random forest methods produced better
predictions than the support vector machine. The random
forest method produced the best independent validation re-
sults (correlation coefficient, 0.62) of all the three methods.
The high correlation value of neural network found using the
training data (correlation coefficient 0.99) is not reproduced
in the independent validation test which had a correlation
coefficient of only 0.46. Error bar plots for the training and
the validation data for the first iteration of the random forest
are given by panel (d) in Fig. 4. We see that predictions using
both the training and validation data exhibit large errors and
a low correlation coefficient. Interestingly, after a few itera-
tions, the random forest produced results with significantly
reduced errors and correlation values close to 1 (panel (e) in
Fig. 4). Panel (f) in Fig. 4 shows the correlation coefficient
values between the normalized estimated and actual pollen
for the training (blue curve) and validation data (red curve)
sets for ten iterations. We observe that the iterative of the
random forest method has reduced the error significantly, and
the correlation coefficient values converge to one for both
training and validation data sets.

The upper panel of Fig. 5 shows a comparison of the
actual and predicted pollen using the recursive random forest.
Another important application of machine learning methods
is the selection of the best features (variables) that contribute
most to the prediction and ranking them in order of the
importance. In this way, we can determine themost important
predictor variables and estimate the output leaving features
that contribute less. The random forest provides such a rank-
ing based on criteria attributed to the splitting variable in the
data sampling to form a decision tree (Genuer et al. 2010;
Kotsiantis et al. 2007; Friedman et al. 2001).

The lower panel of Fig. 5 shows the ranking of the relative
importance of the variables provided by the random forest
with 200 trees. The most important factors in estimating
the pollen were the leaf area index, vegetation greenness
function, and displacement height.
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Fig. 4 Showing scatter plots of actual and predicted pollen for the
support vector machine (panel a), neural network (panel b), and random
forest (panel c). Panels (d), (e), and (f) show results of an iteration
method applied to the random forest. Panels (d) and (e) show results of

the first and 10th iteration for the training (black circles) and validation
data (red squares). Panel (f) depicts plots of the correlation coefficient
for the training and validation data versus iteration number

Dust Source Identification Using Unsupervised
Classification

Unsupervised classification can be very useful when we
would like to objectively split up our data into different
regimes. A good example of this is a study to characterize
dust sources (e.g., Fig. 6) (Lary et al. 2016a).

Dust sources of many kinds are found globally. One of
the most salient features of dust sources is that they are often
very localized. For example, in Figs. 6 and 8, we can clearly
see that the source of the dust plumes are best described as
an ensemble of many point sources, not broad dust emitting
regions. Realistically capturing this very localized nature of
dust sources has so far largely eluded automated diagnosis
and, consequently, description in global models. Invariably
currentmodels describe dust sources as rather large-scale fea-
tures, even when vegetation indices and similar approaches
are used. This is in marked contrast to what we consistently
see in the satellite imagery across the planet (e.g., Figs. 6
and 8).

Identifying dust sources is a critical yet challenging task
for the accurate simulation of atmospheric particulate distri-
butions relevant to air quality and climate change.

We take a new and radically different approach to any
previous studies that have sought to identify global dust
sources on a routine basis. We demonstrate that this new
approach employing machine learning is very effective. The
approach uses multi-wavelength spectral reflectivity signa-
tures to characterize land surfaces, naturally paving the way
for a new class of algorithms ideally suited to fully exploit the
next generation of hyperspectral instruments. The production
of thematicmaps, such as those depicting land cover, using an
image classification is one of the most common applications
of remote sensing. New in our approach is that we can
both operate at very high spatial resolution and distinguish
between types of dust sources. For example, we can easily
distinguish between the edge of salt flats (Fig. 8), dried-up
wadis or lakes, and agricultural sources to name just three of
many examples. The only limiting factor for the resolution is
the resolution of the satellite imagery.

We employ machine learning to objectively provide an
unsupervised multivariate and nonlinear classification into
a very large number of surface types (in our demonstration
study presented below, 1000 classes are used) using multi-
spectral satellite data. In other words, we do not impose any
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Fig. 5 The upper panel shows
the comparison of actual and
predicted pollen time series for
Tulsa, OK. The lower panel
shows the ranking of the relative
importance of the variables
provided by the random forest
with 200 trees
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Fig. 6 Dust sources are typically localized point sources

a priori assumptions, but rather, we let the data speak for itself
as to how we should classify surface types. Self-organizing
maps (SOMs) are a data visualization and unsupervised clas-

sification technique invented by Professor Teuvo Kohonen
that reduces the dimensions of data through the use of self-
organizing neural networks.
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SOMs help us address the issue that humans simply cannot
visualize high-dimensional data unaided. The way SOMs
go about reducing dimensionality is by producing a feature
map, usually with two dimensions, that objectively plots
the similarities of the data by grouping similar data items
together. SOMs learn to classify input vectors according to
how they are grouped in the input space. The SOM learns
to recognize neighboring sections of the input space. Thus,
SOMs learn both the distribution and topology of the input
vectors they are trained on. This approach allows SOMs to
display similarities and reduce the dimensionality. A SOM
does not assume a priori a functional form for the analyzed
data. A noteworthy enhancement of an SOM over principal
component analysis is SOMs’ ability to represent nonlinear
functions or mappings.

The premise is that there are very many types of dust
sources, from the diatom-rich sediments of the Bodélé de-
pression in Chad to those at the edge of salt flats in Bolivia
and Chile (Fig. 8) to those in the coastal Green Mountains
of Libya. Each of these dust sources have distinct physical
characteristics and therefore a distinct reflectance signature.
If we are able to identify these signatures, then we can map
the temporal and spatial evolution of each of these distinct
dust sources. Once we have the surface-type classification,
we then seek to identify which small subset of surface classes
correspond to various kinds of dust sources. Once we have
identified the signature of a wide variety of dust sources, we
can precisely pick out these locations globally and how their
distribution changes with time. This is particularly useful as
dust sources are very localized and some dust sources have a
significant seasonal time evolution. Having a methodology to
identify the signature of these small-scale regions is invalu-
able.

The machine learning approach to dust source identifi-
cation was first conceived in 2010 to face a very practical
challenge that the Navy has in producing real-time visibility
forecasts. If the standard type of dust sources is used [131], it
was found that very poor regional visibility forecasts result.
However, the quality of the Navy visibility forecasts drasti-
cally improved with an analyst (Annette Walker) manually
identifying individual dust sources at the heads of plumes by
examining sequences of satellite images such as those shown
in Fig. 8 and also the EUMETSAT RGB Composites Dust
images available online (http://oiswww.eumetsat.org/IPPS/
html/MSG/RGB/DUST/). This methodology is very labor-
intensive and does not lend itself to easy automation. The first
prototype dust sources using the machine learning approach
described here were devised specifically to automate the
dust source identification and also allow for the accurate
diagnosis of the time evolution in the spatial extent of the dust
sources. Beyond the applications of accurate dust sources for
visibility and air quality forecasts, the radiative forcing (RF)
due to dust is a key concept in climate change calculations

considered by the IPCC for the quantitative comparison of
the strength of different human and natural agents causing
climate change. Radiative forcing can be categorized into
direct and indirect effects. A significant part of the direct
effect is the mechanism by which aerosols scatter and ab-
sorb shortwave and longwave radiation, thereby altering the
radiative balance of the Earth—atmosphere system. Mineral
dust is a major component of global aerosols that exert a
significant direct radiative forcing. Mineral dust aerosols
are produced both naturally (≈70%) and anthropogenically
(≈30%).

Our ultimate goal is to identify all the surface locations on
the planet that are dust sources. To do this, we use a SOM to
classify all the land surface locations into a very large set of
n categories. In the examples shown here, n = 1000. A small
subset of these 1000 categories will be regions that are dust
sources. Naturally, there are a variety of distinct types of dust
sources (e.g., dry river beds, agricultural sources, edge of salt
flats, etc.) that we would like to delineate.

To achieve a comprehensive classification, we want to
consider the conditions present throughout the year, so in the
demonstration, we took an entire year of the 0.05◦ resolution
MCD43C3 data product (Fig. 7). For this entire year of data,
we then calculate the mean, μ, for each grid point. This is
a massive dataset, and the computational time and memory
required to perform the SOM classification increase with the
number of data records. For the examples shown here, we
therefore first restricted our attention to those broad MODIS
surface types that may include dust sources, namely, barren
or sparsely vegetated surfaces, croplands, grasslands, and
open and closed shrublands. These are MODIS surface types
16, 12, 10, 7, and 6 respectively. For each of these surface
types, we then constructed an input vector that contains 7
values, namely, for each of the seven bands provided in the
MCD43C3 MODIS product, the mean, μ, of the directional
and bihemispherical reflectance.When training the SOM, we
use the Euclidean distance to compare the input vectors (each
containing seven values).

In order to provide a fine gradation of classification, we
use the SOM to group together the surface locations into 1000
classes, only a small subset of which correspond to regions
that are dust sources. Once the classes that correspond to
dust sources have been successfully identified, we have an
automated method with which we can identify dust sources
that can be routinely executed to provide a regular dust
source data product that captures the spatial and temporal
evolution of dust sources globally. We utilized the extensive
hand classification of very localized dust sources produced
by the Navy for theMiddle East and SouthWest Asia to guide
our initial determination of which of the 1000 classes are dust
sources. It is worth noting that the SOM classes are unique
and distinct, and this will be seen below with the example of

http://oiswww.eumetsat.org/IPPS/html/MSG/RGB/DUST/
http://oiswww.eumetsat.org/IPPS/html/MSG/RGB/DUST/
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Fig. 7 Schematic of how self-organizing maps have been used in this study to classify land surface pixels into 1000 classes. Then a small subset
of these classes are identified as dust sources

the Bodélé depression. Classes near each other are similar,
but distinct.

Bolivia and Chile Salt Flats Dust Event
Figure 8 shows the dust event of July 18, 2010, in the Bolivian
Altiplano. This event can be seen clearly in the MODIS
Aqua True Color image where dust plumes emanate from
fluviolacustine deposits and fluviodeltaic sediments around
the Salars de Coipasa and Uyuni, Lake Poopo, and other
smaller salt flats and lakes. Overlaid are the SOM classes that
coincide with active dust sources on the Altiplano. Notice
that the salt flats themselves are not dust sources; rather, we
see the plumes forming around the edges of the flats and
lakes. SOMs are very successful in identifying the unique
spectral signatures of dust sources. A set of papers is in
preparation describing an exhaustive atlas of the global dust
sources.

Bodélé Depression Dust Event
Figure 9 shows the Bodélé depression dust event of January 9,
2011, at 09Z that started at 7Z and ceased at 18Z. The Bodélé
depression is Chad’s lowest point on the Sahara’s southern

edge. Typically, there are dust storms originating from the
Bodélé depression on around 100 days a year that supplies
the Amazon forest with the majority of its mineral dust
(Washington and Todd 2005; Koren et al. 2006; Washington
et al. 2006a; Todd et al. 2007; Bouet et al. 2012). The right
panel shows the NRL processed EUMETSAT MSG/RGB
satellite product. The two left panels show the dust sources
identified by our approach with (lower) and without (upper)
SOM class 137. The SOM had automatically determined that
the sediment in the Bodélé depression was distinct from the
surrounding dust sources and put it in a class all of its own,
class 137. Indeed it is different; the Bodélé depression was
once filled with a fresh water lake that has long since dried
up (Washington et al. 2006b). This has left behind diatoms
that now make up the surface of the depression. The two key
points being, first that the dust source of the Bodélé is distinct
from the surrounding dust sources and second that it consists
of diatoms. This is interesting as if we could devise a way of
distinguishing dust sources with containing certain biological
materials, it would have significant applications for public
health issues.
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Fig. 8 Example of our machine
learning approach correctly
identifying very localized point
sources around the edge of salt
flats in Bolivia and Chile. Notice
the narrow dust plumes
originating from precisely the
identified source regions that
have been highlighted in blue and
cyan

July 18, 2010  MODIS Aqua True Color

South America: Bolivia and Chile

Edges of small salt lakes are 
mapped as point sources

Lake Poopo

Salar de Coipasa

Salar de Uyuni

Some Likely Future Machine Learning
Applications

Two recent advances are likely to open up a large number
of new applications: first the improvement, size reduction,
and cost reduction of hyperspectral imagery and secondly
small embedded (credit card sized) GPU systems such as the
NVIDIA Jetson TX1 with its 256 GPU cores.

Hyperspectral Imaging andMachine Learning
for Real-Time Embedded Processing and
Decision Support

So what is hyperspectral imaging? The human eye perceives
the color of visible light in three bands using the cones, the
photoreceptor cells in the retina (Fig. 10). These three bands
are red (centered on 564 nm), green (centered on 534 nm),
and blue (centered on 420 nm). By contrast, instead of using
just three broad bands, hyperspectral cameras divide the
spectrum into a very large number of narrow bands. Some-
times, asmany as two to four hundred bands are used to create
a hyperspectral datacube (Fig. 11). This technique of dividing

images into bands can extend beyond the visible, into both
the infrared and thermal infrared and into the ultraviolet
(Fig. 12).

Hyperspectral imaging systems are used around the world
in a variety of medical, laboratory, industrial, agricultural,
and airborne applications. To illustrate the broader signif-
icance, let us briefly review just some of these (Fig. 13).
Hyperspectral imaging (HSI) is used in various medical ap-
plications, especially in disease diagnosis and image-guided
surgery. The disease diagnosis applications (e.g., skin exam-
ination) naturally lend themselves to telemedicine applica-
tions for rural communities where the network connectivity
can drastically improve rural community medical care. For
each snapshot in time, HSI acquires a three-dimensional
dataset called a datacube (Fig. 11), with two spatial dimen-
sions (just like a regular camera) and one spectral dimension,
and there is a separate collocated image/layer for each wave-
length band (Fig. 10).

Spatially resolved spectral imaging obtained by HSI can
provide diagnostic information about the tissue physiology,
morphology, and composition. With the advantage of acquir-
ing two-dimensional images across a wide range of elec-
tromagnetic spectrum, HSI has been applied to numerous
areas, including archaeology and art conservation (Angeletti
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Fig. 9 The Bodélé depression dust event of January 9, 2011 (7Z–18Z).
The right panel shows the NRL processed EUMETSAT MSG/RGB
satellite product for January 9, 2011, 09Z. The two left panels show

the dust sources identified by our approach with (lower) and without
(upper) SOM Class 137. Lower right insets show microscopic images
of Bodélé diatoms from soil samples taken from the depression

et al. 2005; Liang 2012), vegetation and water resource con-
trol (Govender et al. 2007), food quality and safety control
(Gowen et al. 2007; Feng and Sun 2012), forensic medicine
(Malkoff and Oliver 2000; Edelman et al. 2012), crime scene
detection (Muller et al. 2003), biomedicine (Afromowitz
et al. 1988; Carrasco et al. 2003), agriculture, security and
defense, thin films, etc.

Figure 13 shows some of the many HSI applications. For
example, using an airborne HSI, an invasive weed (‘leafy
spurge’, Euphorbia esula) infestation could be clearly iden-
tified (Jay et al. 2010) and a weed coverage map generated
(Fig. 13a). A study of seed germination (Nansen et al. 2015)
using HSI showed that although viable and nonviable seeds
appear identical to the human eye, they can be clearly distin-
guished using full reflectance spectra (Fig. 13b). Analysis of
wound healing (La Fontaine et al. 2014) (Fig. 13c). Mapping
hydrological formations (Fig. 13d). Fluorescent dye imaging
(Fig. 13e). Examining the effect of surface pollution (Keith
et al. 2009; Spangler et al. 2010) from leaking pipelines on

vegetation (Fig. 13f). Checking food quality and fruit bruis-
ing (Fig. 13g). Classification of walnuts and shells (Fig. 13h).
Automated analysis of cooked meats (Fig. 13i).

This diversity of examples demonstrates the general use-
fulness and applicability of HSI in a very broad range of
contexts, in research, health, agriculture, industry, and more.
We already saw in section “Dust Source Identification Using
Unsupervised Classification” that combining the spectral
signature in just seven wavelengths with machine learning
was invaluable in uniquely identifying global dust sources
with remarkable accuracy. So it can readily be seen that using
more detailed hyperspectral signatures with on-board embed-
ded processing can provide incredibly powerful insights in
a very compact package. Figure 12 shows an example of
some hyperspectral imagery we obtained using our aerial
vehicles (Ramirez 2015). This approach is useful for many
applications in smart agriculture, land surface classifica-
tion, petrochemical surveying, disaster response (such as oil
spills), etc. Let us take a closer look at the example of oil spill
response.
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Fig. 10 Panel (a) Trichromatic cone cells in the eye respond to one of
three wavelength ranges (RGB). These three bands are red (centered on
564 nm), green (centered on 534 nm), and blue (centered on 420 nm).
Panel (b) shows a comparison between a hyperspectral cube and RGB
images. A hyper-cube is a three-dimensional dataset consisting of two-
dimensional image layers each for a different wavelength. So for each

pixel in the image, we have a multi-wavelength spectra (spectral signa-
ture). This is shown schematically in the lower left. On the right, we
see a conventional RGB color images with only three bands, images for
red, green, and blue wavelengths. The lower right shows an example 3
wavelength broad band spectra from a conventional RGB color image

Oil Spills

The National Academy of Sciences estimates 1.7–8.8 mil-
lion tons of oil are released into global waters every year.
More than 70% of this release is related to human activi-

ties. The effects of these spills include dead wildlife, oil-
covered marshlands, and contaminated water (Fingas and
Brown 1997; Fingas 2010; Liu et al. 2013; Cornwall 2015).
Spills of national significance (SONS), such as Deepwater
Horizon (DWH), challenge response capabilities. In such
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Fig. 11 Hyperspectral cube

large spills, optimizing a coordinated response is a chal-
lenge. There are always competing mission needs for aerial
response resources such as helicopters and observer aircraft.
Wildlife reconnaissance, oil observation overflights, and tar-
geting chemical dispersant application are a few examples.
If we consider just one aspect, i.e., the spill itself, the chal-
lenges include both characterizing the continual temporal
and spatial evolution of the spill extent and the evolution of
the oil itself as it weathers and emulsifies. Characterizing
the oil spill can be made even more challenging due to the
variable spill illumination and the weather. Trained observers
are required, and their deployment needs can include a wide
area, which is also challenging. Further, what is the optimal
flight path(s) that should be used by the observers on each
deployment to best meet the current needs and anticipate the
future evolution of the oil spill to put in place any required
preemptive measures or contingencies, such as shoreline pre-
cleaning or protective boom deployment? During the DWH
oil spill operational trajectory forecasting, maps of key areas
for aerial observations to improve trajectory modeling were
produced daily by NOAA for the overflight teams.

The DWH oil spill and the associated impact monitoring
was aided by extensive airborne and spaceborne passive
and active remote sensing (Fingas and Brown 1997; Leifer
et al. 2012; Liu et al. 2013; Fingas and Brown 2014). A
good review of these remote sensing activities is provided by
Leifer et al. (2012). During DWH, remote sensing was used
to derive oil thickness (see Fig. 14) quantitatively for thick
(>0.1mm) slicks from AVIRIS (Airborne Visible/Infrared

Imaging Spectrometer) that measured 224 contiguous spec-
tral bands with wavelengths from 400 to 2500 nanometers
(nm) using a spectral library approach based on the shape and
depth of near-infrared spectral absorption features (Kokaly
et al. 2013; Leifer et al. 2012). MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) satellite, visible-spectrum
broadband data of surface-slick modulation of sunglint re-
flection, allowed extrapolation to the total slick. Amultispec-
tral expert system used a neural network approach to provide
rapid response thickness classmaps (Sveykovsky andMuskat
2006; Svejkovsky et al. 2009).

Airborne and satellite synthetic aperture radar (SAR) pro-
vides synoptic data under all-sky conditions (Liu et al. 2011;
Leifer et al. 2012); however, SAR generally cannot dis-
criminate thick (>100 μm) oil slicks from thin sheens (to
0.1 μm). The UAVSAR’s (unmanned aerial vehicle SAR)
significantly greater signal-to-noise ratio and finer spatial
resolution allowed successful pattern discrimination related
to a combination of oil slick thickness, fractional surface
coverage, and emulsification.

Further, in situ burning and smoke plumes were studied
with AVIRIS and corroborated spaceborne CALIPSO (Cloud
Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion) observations of combustion aerosols. CALIPSO and
bathymetry lidar data documented shallow subsurface oil,
although ancillary data were required for confirmation.

Airborne hyperspectral, thermal infrared data have night-
time and overcast collection advantages and were collected
as well as MODIS thermal data. However, interpretation



Machine Learning, Big Data, and Spatial Tools 235

Fig. 12 Hyperspectral (HS)
imaging of a rural landscape. Top
image: sum of every spectral
channel from the HS image,
overlaid on top of the visible
camera mosaic. Middle image:
normalized difference vegetation
index. Bottom image:
pseudocolor from red, green, and
blue channels (Ramirez 2015)

challenges and a lack of rapid response products prevented
significant use. Rapid response products were key to re-
sponse utilization—data needs are time critical; thus, a high
technological readiness level is vital to the operational use
of remote sensing products. The DWH oil spill experience
demonstrated that development and operationalization of
new near-real-time spill response remote sensing tools must
precede the next major oil spill (Leifer et al. 2012).

Cleanup of a SONS involve multiple skimmer ships, ves-
sels collecting oil for in situ burning, and chemical dispersant
operations. Typically, these slow-moving response ships are

spread over a large area and guided by air support (e.g.,
helicopter), as the vessel bridge is too low to see the variation
in thickness of the oil. Typically, the manned air support will
inform each ship of the location of recoverable oil ahead and
then leave to overfly the next ship.

The cost of manned air support is significant, so each
ship does not usually have dedicated continuous manned air
support. In smaller spills, a report of oil location is given
to the responding ship; these ships move slowly, so by the
time they reach the location provided by manned air support,
the oil has moved! For oil cleanup to be optimal (quickest)
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Fig. 13 Some examples of hyperspectral imaging applications

and effective (most oil recovered), the skimmer ships need
to first focus on the regions of thickest oil. From the visual
perspective of the ships’ crew, relatively close to the water
andwith a shallow viewing angle, it is not easy to knowwhere
the thickest oil is. Accurately discerning the gradations in
black oil thickness is a challenging task.

Rich information on the thickness of the oil and the de-
gree of weathering is contained in the detailed hyperspectral
signature of the oil spill. This information can be utilized
through the use of machine learning to provide real-time
response tools.

Summary

This chapter has given an overview of some examples that
illustrate the usefulness of machine learning. Machines
havebeen used to learn and make data-driven predictions

for decades now. However, it is only relatively recently that
machine learning has received widespread notoriety. The
full potential of machine learning has yet to be reached.
Machine learning is an automated approach to building
empirical models from the data alone. Machine learning
gives “computers the ability to learn without being explicitly
programmed.” Just as humans learn by experience, machine
learning algorithms let computers learn from data. Machine
learning also provides tools to give our data “a voice” (such
as identifying characteristic patterns and signatures) and
insights, such as which parameters are most important for
accurately estimating a parameter of interest. A variety of
tools exist that allow even a novice to readily utilize the
power of machine learning. Machine learning enhances
the readily available tool set to make data-driven decisions
in a wide variety of scientific and societally relevant
applications.
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Fig. 14 Oil thickness chart and
appearance from NOAA open
water oil identification job aid
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Introduction

The air we breathe is vital and largely invisible (except when
the pollution levels are very high). Every single minute,
an average human being breathes around 10 liters of air.
However, we often do not think about the composition of
the air that we breathe and the impact it may be having
on our health. Often, the air we breathe contains pollutant
particles. Although it is apparent that air pollution results
in increased hospital visits, missed school days, as well as
missed work days (due to respiratory diseases), it is harder
to localize exactly where unhealthy air resides. The World
Health Organization (WHO) reports that nine out of ten
people worldwide breathe polluted air which results in an
estimated 7 million deaths per year (Nada Osseiran 2018).

Air Pollution Episodes in History

Historically, we have seen that air pollution episodes can
result in significant loss of life. A few of example episodes
include:

• Great smog of London (1952): In December of 1952,
a severe smog covered many parts of the British Isles
(Wilkins 1954). The episode lasted 5 days (December 5–
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December 9, 1952), and more than 4000 deaths occurred
before the end of the year. Within the next 10 weeks,
a further 8000 people lost their lives (Black 2003). The
primary cause of the episode was extensive burning of
high-sulfur coal (Polivka 2018). Following the incident,
the British Parliament passed the Clean Air Act of 1956
which restricted burning of coal in urban areas.

• New York City smog (1966): On the Thanksgiving week-
end of 1966, smog containing damaging levels of toxic
pollution (comprised of carbon monoxide and sulfur diox-
ide) covered New York City. Carlson (2009) reports that
Thanksgiving weekend of 1966 was the smoggiest day in
the city’s history. Although regional leaders announced a
first-stage alert, it is believed that more than 200 people
lost their lives due to the air pollution episode. In fact,
Glasser et al. (1967) estimate that 24 excess deaths per day
occurred inNewYork City during the air pollution episode
(November 23–November 29, 1966). In the wake of such
environmental pollution events, as a means of limiting and
eradicating environmental pollution, the US EPA (United
States Environmental Protection Agency) was established
on December of 1970.

• Eastern China smog (2013): On December 7, 2013, a
hazardous smog stretched a distance of about 2 km within
China (Levy 2014). The episode lasted for 8 days between
the 2nd and 9th of December 2013. Huang et al. (2016)
state that within the duration of the smog episode, the
average PM2.5 was 212 μg/m3, which was three times
higher than the usual PM2.5 concentration (76 μg/m3)
within the same area. In China, coal still remains to be the
main energy source, and it’s regarded to be the primary
cause of fine PM pollution in China. The Chinese cities of
Baoding, Shijiazhuang, and Handan reported more than
30,000 deaths in 2013 per city, which can be linked to
pollution (Solomon 2016).
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• Great smog of New Delhi (2016): WHO announced New
Delhi as the most polluted city in the world in 2014 (Sar-
avanan et al. 2017). On November of 2017, air pollution
levels in New Delhi went up to 999 on the AQI (Air Qual-
ity Index) scale. This is an air pollution level equivalent to
smoking 50 cigarettes per day (Basu 2019). The cities’ vis-
ibility level reduced to more than 50m during the episode
(Terry et al. 2018). It is assumed that the major causes
of air pollution in New Delhi are burning coal, petrol,
diesel, gas, biomass, and waste, along with industries,
power plants, and firecrackers (Saravanan et al. 2017).

Such episodes remain a constant reminder of the devastation
that air pollution can cause. The first step in fighting air
pollution is to quantify the problem.

Making the Invisible, Visible

Conventional air quality management systems generally rely
on a small number of regulatory-grade sensors across an
urban area, for example, across the Dallas-Fort Worth Metro-
plex with a population of over seven million, there are just
three airborne particulate sensors. Due to the substantial
cost of these regulatory-grade sensing systems, they fail to
provide adequate spatial and temporal resolution for charac-
terizing air quality on a neighborhood scale. As such, these
sensor systems do not adequately inform us about the situa-
tion within our neighborhoods, where people live, work, and
play. Recent studies have demonstrated that air quality varies
on very fine spatial and temporal scales (Harrison 2015;
Harrison et al. 2015). As such, it is apparent that the world
needs air quality sensing systems at the neighborhood scale
(i.e., with a spatial resolution of less than a km). For example,
a study that made near daily fine scale measurements at least
every meter over a 100 km2 in north Texas (Harrison 2015;
Harrison et al. 2015) used variograms to characterize the
spatial scale of airborne particulates. These studies revealed
that the spatial scales over the study period depended on the
synoptic situation and varied between 0.5 and 7.5 km.

The initiation of air quality sensing system requires an
understanding of what parameters to measure, where the
sensors are to be located, and the budgetary constraints that
the system is to be bounded by. Such an understanding can be
gained via the knowledge of the mix of pollutants that may
be residing within the study and the general mindset of the
people at stake. Another key aspect in getting started in a
project is to look into available technologies that can abide
by the requirements defined.

Airborne Particulates

Airborne atmospheric aerosols are an assortment of solid or
liquid particles suspended in air (Boucher 2015). Aerosols,

also referred to as particulate matter (PM), are associated
with a suite of issues relevant to the global environment
(Charlson et al. 1992; Ramanathan et al. 2001; Dubovik et al.
2002; Guenther et al. 2006; Hallquist et al. 2009; Kanakidou
et al. 2005; Allen et al. 2014), atmospheric photolysis, and
a range of adverse health effects (Dockery et al. 1993a;
Oberdörster et al. 2005; Pope III et al. 2002; Pope et al. 2006;
Cheng and Liu 2009; Chin 2009; Lim et al. 2012). Atmo-
spheric aerosols are usually formed either by direct emission
from a specific source (e.g., combustion) or from gaseous
precursors (Stocker 2014). Although individual aerosols are
typically invisible to the naked eye, due to their small size,
their presence in the atmosphere in substantial quantities
means that their presence is usually visible, e.g., as fog, mist,
haze, smoke, dust plumes, etc. (Seinfeld 1986). Airborne
aerosols vary in size, composition, and origin as well as
in spatial and temporal distributions (Chin 2009; Pöschl
2005). As a result, the study of atmospheric aerosols has
numerous challenges. The following aerosol classifications
provide some useful insights.

Aerosol Classification

Characterization of atmospheric aerosols can be based on
their origin, concentration, size, chemical composition,
phase, and morphology (Seinfeld 1986). However, one of
the main forms of aerosol classification is via their sources.

Source-Based Classification
The formation of atmospheric aerosols can be complex.
As a result, the determination of global aerosol sources is
approximate (Kondratyev et al. 2006). Three main terrestrial
sources are typically quoted (Kokhanovsky 2008).

• Cosmic aerosols: Particles migrating through space are
usually considered cosmic particles (Carslaw et al. 2002;
Kirkby et al. 2011).

• Primary aerosols: Particles directly emanating from the
earth’s surface are usually termed primary aerosols (Hol-
ben et al. 2001; Streets et al. 2003; Bond et al. 2004;
Kanakidou et al. 2005), for example, aerosols formed due
to the agitation of oceanic or terrestrial surfaces by wind.

• Secondary aerosols: Secondary particles occur from con-
densation of gaseous species (aerosol precursors) (Atkin-
son 2000; Kanakidou et al. 2005; Hallquist et al. 2009;
Jimenez et al. 2009). These may endure one or many
chemical transformations prior their formation.

Primary and secondary aerosols are further subdivided
depending on their origin into natural and anthropogenic
(man-made) aerosols (Schauer et al. 1996; Andreae and
Crutzen 1997; Yunker et al. 2002; Pöschl 2005; Kondratyev
et al. 2006; Boucher 2015; Colbeck and Lazaridis 2010).



Advancement in Airborne Particulate Estimation Using Machine Learning 245

Most emissions from the oceans, vegetation, forest fires, and
volcanoes are considered natural in origin. Anthropogenic
sources are dominated by the emissions from the combustion
of fossil and biofuels.

Shape-Based Classification
Colbeck (2014) describes the three main distinctions based
on the shapes of atmospheric aerosols.

• Isometric particulates: The three dimensions of isometric
particles are defined to be similar. Spherical particulates
belong to this category (Wachs 2009). This study is done
under the assumption of sphericity (isometric particu-
lates).

• Platelets: Platelets have two longer dimensions compared
to the third one. Disk-like particles fall under this classifi-
cation.

• Fibers: Fibers are particulates with two smaller dimen-
sions and one longer dimension. Asbestos is one well-
known fiber.

Classification Based on Chemical Composition
Ambient PM is usually comprised of amixture of one ormore
of the following chemical compounds: geological material
(oxides of aluminum, silicon, calcium, titanium, iron, and
other metal oxides), sulfates, nitrates, ammonium, sodium
chloride, organic carbon, elementary carbon, and liquidwater
(Chow et al. 1998). A more generalized classification is
derived from considering the chemical purity of PM by
distinguishing between internal and external mixtures.

• External mixture: In an external mixture, individual parti-
cles within are chemically pure.

• Internal mixture: In an internal mixture, individual partic-
ulates are a mix of chemical species. A perfect internal
mixture is said to have the same mix of chemical species
for all particulates.

Typical atmospheric particulates would be in the middle
ground between perfect internal and external mixtures
(Boucher 2015). The optical properties of atmospheric
aerosols, and in turn the radiative forcing due to atmospheric
aerosols, are partly determined by the state of mixing
(externally or internally) of the chemical species involved
(Lesins et al. 2002).

Spatial Classification
Aerosols are also categorized with respect to their localized
regions. The classification gives rise to these categories: ur-
ban aerosols, marine aerosols, rural continental aerosols, free
troposphere aerosols, stratospheric aerosols, polar aerosols,
and desert aerosols. In some cases, a geospatial classification
might be inexact due to the possibility of long-range aerosol

transportation. However, the regional aerosol classification is
useful when local effects eclipse the more generic effects of
aerosols (Boucher 2015).

Size-Based Classification
Aerosol size distribution and chemical composition play
a role in their atmospheric transportation (Colbeck and
Lazaridis 2010). Most atmospheric particles are not
spherical. However, in atmospheric sciences, particles
with equivalent settling velocities are considered to be of
equal size irrespective of their actual size or composition.
The microscopic properties of aerosols differ significantly
depending on the type of aerosol. Nevertheless, generic
models are defined to describe the main microscopic
properties of a given aerosol with its appropriately assumed
diameter (Kokhanovsky 2008). The two most generic
definitions of such assumed diameters are as follows:

• Aerodynamic diameter: The diameter of a unit density
sphere which has similar aerodynamic properties as the
particle considered.

• Stokes diameter: The diameter of a sphere which has
similar density as the particle considered.

These definitions are introduced to avoid ambiguities of
size measurements that may occur due to using different
types of instrumentation (Colbeck 2014). This study uses the
aerodynamic diameter for size-based distinctions. There are
two distinct means of aerosol classification with respect to
size:

• Modal distributions: The size-based classification of
aerosols is mainly devised on five modes (Boucher 2015;
Alfarra 2004; Stier et al. 2005; Sỳkorová et al. 2016):

1. The nucleation mode or ultrafine mode with a diameter
of less than 0.01 μm.

2. The Aitken mode with a diameter in the range
0.01 μm − 0.1 μm.

3. The accumulation mode with a diameter in the range
0.1 μm − 1 μm.

4. The coarse mode with a diameter in the range 1 μm −
10 μm.

5. The super-coarse mode with a diameter of greater than
10 μm.

Each of these modes corresponds to the relative maxi-
mums of number, surface, and volume distributions of
atmospheric aerosols.

• Variables related to human exposure: The term “fine” (or
ultrafine) particulates usually refers to particulates less
than 1 μm in aerodynamic diameter (PM1) and particu-
lates less than 2.5 μm in aerodynamic diameter (PM2.5).
For air pollution control, particulates up to 10 μm in
diameter (PM10) are also considered (Pöschl 2005). Cur-
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rently, the US EPA (United States Environmental Protec-
tion Agency) regulates PM2.5 and PM10 due to the human
health effects associated with PM2.5 and PM10 (US EPA
2004). Some air quality monitors also measure the total
suspended particle (TSP) size fraction which includes
particulates up to 40 μm (Chow et al. 1998). Another divi-
sion of occupational health-based size-selective sampling
is defined by assessing the subset of particles that can
reach a selective region of the respiratory system. On this
basis, three main fractions are defined: inhalable, thoracic,
and respirable (Hinds 2012). The current study focuses
on measurements of the six variables PM1, PM2.5, PM10,
respirable (alveolic), thoracic, and inhalable size fractions.

Health Context

The effects on human health due to air pollution may be
the most controversial (Seinfeld 1986). Nevertheless, it is by
far the most important. Studies have shown that exposure
of excess particulate matter has alarming negative health
effects (Mannucci 2017). The smallest size ranges of (less
than 2.5 μm) PM is capable of penetrating through to the
lungs or even to one’s bloodstream. As such, the highest
mortality is associated with PM2.5 (Chen et al. 2011). HEI
(2017) reports that more than 90% of the world’s population
lived with unhealthy air in 2015. The American Thoracic
Society (ATS) has a slightly higher guideline of 11 μg/m3

annual mean concentrations as compared with the WHO’s
10 μg/m3 for PM2.5. However, it is reported that 14% of
countries with valid design values for atmospheric pollution
exceed the said recommendation by the ATS (Cromar et al.
2016). The results of the Aphekom project conducted in 25
European cities reveal that complying with the WHOs PM
guidelines for PM2.5 would increase life expectancy by 22
months while also giving financial savings of e31 billion
annually (Pascal et al. 2013). The health hazard created by
excess airborne PM also creates critical expenditures within
developing countries. The estimated economic cost due to
PM2.5 pollution for the city of Delhi was estimated to be
$6394.74 million in 2015, up from $2714.10 million in
2005 (Maji et al. 2017). Due to these reasons, considerable
amounts on research are done on the health hazards caused
by PM. Table 1 provides an overview of research done on
specific health concerns with respect to PM10, PM2.5, and
UFPs (ultrafine particles).

Aerosol concentration, size, structure, and chemical
composition are key factors in driving the health outcomes
caused. However, these parameters are highly irregular
in temporal and spatial schemes (Pöschl 2005). As such,
even though the effect of PM exposure can be substantial,
predicting a link between PM and human health can be
challenging. Most studies rely on obtaining the level of

morbidity and mortality for a given disease which can be
attributed to the exposure to PM. Some studies also employ
questionnaires in collecting health-related data.

Long-term exposure to PM2.5 increases the risk of total
and cardiovascular disease (CVD) mortality. The study by
Thurston et al. (2016) concludes that PM2.5 exposure has a
substantial association with both total mortality and CVD
mortality, with CVD having the highest hazard ratio of 1.10
for the study set of participants between 50 and 71 years.
Pope et al. (2004) state that a 10 μg/m3 increase in fine PM
results in an 8%–18% increase in the mortality risk. A study
conducted in six cities across the United States with a total of
8111 participating adults found that fine particulate air pollu-
tion was linked with excess mortality (Dockery et al. 1993b).

The ATS report (Cromar et al. 2016) for 2011–2013 found
that 26% out of 21,400 excess morbidities and 26% out of
9320 excess deaths were associated with elevated PM2.5 in
the United States per year. A European study (Boldo et al.
2006) estimated that a reduction of the PM2.5 abundance by
15 μg/m3 of PM2.5 would prevent 16,926 deaths annually
within a subset of 23 European cities and that such a re-
duction would likely increase the life expectancy between
1 month to more than 2 years. The study included major
cities, London, Paris, Athens, Barcelona, Madrid, and Valen-
cia. In the study, excess exposure to PM2.5 was viewed as
a modifiable factor which causes cardiovascular morbidity
and mortality. Maji et al. (2017) found that the mortality in
Mumbai and Delhi during 2015 was associated with PM10

and lead to 32,014 and 48,651 deaths, respectively.
Cerebrovascular accidents are a prominent cause of mor-

bidity throughout the world. It was estimated that an increase
of 10 μg/m3 of PM2.5 accounts for 1.29% (95% CI 0.552%–
2.03%) increase in the risk of emergency hospital admissions
(Santibañez et al. 2013). Sulfate aerosols are known to cause
respiratory throat and fever symptoms (Onishi et al. 2018).

In some cases, the maternal exposure to excess particulate
matter has resulted in lower birth weights (LBW). A multi-
country evaluation of LBW reveals that a 10 μg/m3 increase
in PM10 (odds ratio (OR) = 1.03; 95% confidence interval
(CI), 1.01–1.05) and PM2.5 (OR = 1.10; 95% CI 1.03–1.18)
exposure during the entire pregnancy is positively correlated
with LBWs (Dadvand et al. 2013).

Excess PM exposure can also be behind excess stress
among individuals. Evidence has been found that mitochon-
drially encoded TRNA phenylalanine (MT-TF) and mito-
chondrially encoded 12S RNA (MT-RNR1) is linked with
metal-rich PM1 (Byun et al. 2013). Both mitochondrial MT-
TF and MT-RNR1 DNA methylation are sources of oxida-
tive stress which responds to foreign environments. Short-
term exposure to PM2.5 also prompts a mechanism involving
pulmonary oxidative stress which in turn induces vascular
insulin resistance and inflammation (Haberzettl et al. 2016).
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Table 1 Health Concerns due to PM 10, PM 2.5, and ultrafine particles (UFPs). Table adapted from Ruckerl et al. (2006)

Health outcomes Short-term studies Long-term studies

PM10 PM2.5 UFP PM10 PM2.5 UFP

Mortality

All causes xxx xxx x xx xx x

Cardiovascular xxx xxx x xx xx x

Pulmonary xxx xxx x xx xx x

Pulmonary effects

Lung function, e.g., PEF xxx xxx xx xxx xxx

Lung function growth xxx xxx x

Asthma and COPD exacerbation

Acute respiratory symptoms xx x xxx xxx

Medication use x

Hospital admission xx xxx x x

Lung cancer

Cohort xx xx x

Hospital admission xx xx x

Cardiovascular effects

Autonomic nervous system xxx xxx x x

ECG-related endpoints

Autonomic nervous system xxx xxx xx

Myocardial substrate and vulnerability xx x

Vascular function

Blood pressure xx xxx x

Endothelial function x xx x

Blood markers

Pro-inflammatory mediators xx xx xx

Coagulation blood markers xx xx xx

Diabetes x xx x

Endothelial function x x xx

Reproduction

Premature birth x x

Birth weight xx x

IUR/SGA x x

Fetal growth

Premature birth x

Infant mortality xx x

Sperm quality x x

Neurotoxic effects

Central nervous system x xx

Notes: X, few studies (6 or less); XX, many studies (7–10); XXX, large number of studies (>10).
Abbreviations: UFP, ultrafine particle; PEF, peak expiratory flow; COPD, chronic obstructive pulmonary disease; IUG, intrauterine growth
restriction; SGA, small for gestational age

Environmental pollution is a potential cause of lung can-
cer. Tandem repeats are DNA sequences which lie adjacent to
each other in the same orientation (direct tandem repeats) or
in the opposite direction to each other. These DNA sequences
are generally hypomethylated in cancer patients. A case study
done on two contrasting groups on air pollution exposure of
truck drivers and officeworkers reveals that PM is linkedwith

hypomethylation of some tandem repeats (SATα, NBL2)
(Guo et al. 2014).

The most likely candidates to be affected by unhealthy
air are the elderly and infants. Pun et al. (2017) concluded
that PM2.5 is linked to both depressive and anxiety symp-
toms within older adults with the strongest association to
individuals with lower socioeconomic measures. Shy et al.
(1973) confirm that school children between the age of 9 and
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13 exposed to elevated air pollution experience ventilatory
problems. A study conducted with a collection of 40 fifth
grade school children revealed that the “soot” fraction of
PM2.5 is strongly linkedwith pollution-related asthma attacks
affecting children residing beside roadways (Spira-Cohen
et al. 2011).

Using a business-as-usual emission scenario model,
(Lelieveld et al. 2015) estimate that premature mortality
due to outdoor air pollution could double by 2050. As such,
it is of utmost importance to conduct in-depth research on
PM and other air pollutant sources in order to enforce proper
air pollution policies (Kelly and Fussell 2016).

Difficulty in Estimating Airborne Particulates

Conventional regulatory-grade instrumentation is accurate,
but expensive. This makes it challenging to provide
neighborhood-scale measurements due to the substantial
costs involved. So in this study, we present two different case
studies where we use machine learning to utilize different
sensor types. First, we use low-cost optical particle counters
that can be deployed at scale across neighborhoods. Second,
we use remotely sensed observations made using weather
RADARs.

What Is Machine Learning?

Machine learning has already proved useful in a wide variety
of applications in science, business, healthcare, and engineer-
ing. Machine learning allows us to learn by example and
to give our data a voice. It is particularly useful for those
applications for which we do not have a complete theory,
yet which are of significance. Machine learning is an auto-
mated implementation of the scientific method (Domingos
2015), following the same process of generating, testing,
and discarding or refining hypotheses. While a scientist or
engineer may spend his entire career coming up with and
testing a few hundred hypotheses, a machine learning system
can do the same in a fraction of a second. Machine learning
provides an objective set of tools for automating discovery. It
is therefore not surprising that machine learning is currently
revolutionizing many areas of science, technology, business,
and medicine (Lary et al. 2016, 2018).

Machine learning is now being routinely used to work
with large volumes of data in a variety of formats such as
image, video, sensor, health records, etc. Machine learning
can be used in understanding this data and creating predictive
and classification tools. When machine learning is used for
regression, empirical models are built to predict continuous
data, facilitating the prediction of future data points, e.g.,
algorithmic trading and electricity load forecasting. When

machine learning is used for classification, empirical models
are built to classify the data into different categories, aid-
ing in the more accurate analysis and visualization of the
data. Applications of classification include facial recognition,
credit scoring, and cancer detection. When machine learning
is used for clustering, or unsupervised classification, it aids
in finding the natural groupings and patterns in data. Appli-
cations of clustering include medical imaging, object recog-
nition, and pattern mining. Object recognition is a process
for identifying a specific object in a digital image or video.
Object recognition algorithms rely on matching, learning,
or pattern recognition algorithms using appearance-based
or feature-based techniques. These technologies are being
used for applications such as driver-less cars, automated skin
cancer detection, etc.

Machine learning is an automated approach to building
empirical models from the data alone. A key advantage of
this is that wemake no a priori assumptions about the data, its
functional form, or probability distributions. It is an empirical
approach. However, it also means that for machine learning
to provide the best performance, we do need a comprehensive
representative set of examples, which spans as much of
the parameter space as possible. This comprehensive set of
examples is referred to as the training data.

So, for a successful application of machine learning, we
have two key ingredients, both of which are essential, a
machine learning algorithm and a comprehensive training
dataset. Then, once the training has been performed, we
should test its efficacy using an independent validation
dataset to see how well it performs when presented with
data that the algorithm has not previously seen, i.e., test
its generalization. This can be, for example, a randomly
selected subset of the training data that was held back and
then utilized for independent validation.

It should be noted that with a given machine learning
algorithm, the performance can go from poor to outstanding
with the provision of a progressively more complete training
dataset. Machine learning really is learning by example, so
it is critical to provide as complete a training dataset as
possible. At times, this can be a labor-intensive endeavor.

A key part of machine learning studies is an independent
validation to objectively test the “generalization” of the em-
pirical models. This is often done by randomly splitting the
available data into two portions. One portion, the training
dataset, is used to train the empirical machine learningmodel.
The other portion, the independent validation dataset, is used
to objectively test the empirical model by using data not seen
in the training process.

We have used machine learning in many previous studies
(Brown et al. 2008; Lary et al. 2009a; Lary and Aulov 2008;
Lary et al. 2004; Malakar et al. 2013; Lary 2010; Malakar
et al. 2012a; Lary 2013, 2007; Albayrak et al. 2011; Lary
et al. 2003; Malakar et al. 2012b; Lary 2014; Lary et al.
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2015b; Kneen et al. 2016; Lary et al. 2010; Medvedev et al.
2016; Lary et al. 2016; O et al. 2017; Wu et al. 2017; Nathan
and Lary 2019; Lary et al. 2019, 2018; Wu et al. 2019;
Alavi et al. 2016; Ahmad et al. 2016; Zewdie and Lary
2018; Malakar et al. 2018; Zewdie et al. 2019a,b; Chang
et al. 2019; Choi et al. 2019). In this study, we have used
machine learning for multivariate nonlinear non-parametric
regression. Some of the commonly used regression algo-
rithms include neural networks (McCulloch and Pitts 1943;
Haykin 2001, 2007, 1994, 1999; Demuth et al. 2014; Bishop
1995), support vector machines (Vapnik 1982, 1995; Cortes
and Vapnik 1995; Vapnik 2000, 2006), decision trees (Safa-
vian and Landgrebe 1991), and ensembles of trees such as
random forests (Ho 1998; Breiman 1984, 2001). Previously,
we have used a similar approach to cross-calibrate satellite
instruments (Lary and Aulov 2008; Brown et al. 2008; Lary
et al. 2009a, 2016, 2018). Recently, other studies have also
used machine learning to calibrate low-cost sensors (Li et al.
2014; Dong et al. 2015).

Case study: UsingMachine Learning for the
Calibration of Airborne Particulate Sensors

Low-cost sensors that can also be accurately calibrated are of
particular value. For the last two decades, we have pioneered
the use of machine learning to cross-calibrate sensors of
all kinds. This was initially done for very expensive orbital
instruments onboard satellites (awarded an IEEE paper prize
and specially commended by the NASAMODIS team) (Lary
et al. 2009a). We are now using this approach operationally
for low-cost sensors distributed at scale across dense urban
environments as part of our smart city sentinels. The ap-
proach can be used for very diverse sensors, but as a useful
illustrative example that has operational utility, we describe
here a use case for accurately calibrated low-cost sensors
measuring the abundance and size distribution of airborne
particulates, with the implicit understanding that many other
sensor types could easily be substituted. These sensors can
be readily deployed at scale at fixed locations, mobile on
various robotic platforms (walking, flying, etc.) or vehicles,
carried, or deployed autonomously as a mesh network, either
by operatives or by robots (walking, flying, etc.).

Building-in calibration will enable consistent data to be
retrieved from all the low-cost sensors. Otherwise, the data
will always be under some suspicion as the inter-sensor
variability among low-cost nodes can be substantial. While
much effort has been recently placed on providing the con-
nectivity of large disbursed low-cost networks, little to no
effort has been spent on the automated calibration, bias-
detection, and uncertainty estimation necessary to make sure
the information collected is sound. A case study of providing

this critical calibration using machine learning is the focus of
this paper.

Any sensor system benefits from calibration, but low-
cost sensors are typically in particular need of calibration.
The inter-sensor variability among low-cost nodes can be
substantial. In addition to the pre-deployment calibration,
once the sensors have been deployed, the paradigm we first
developed for satellite validation of constructing probability
distribution functions of each sensor’s observation streams
can be used to both monitor the real-time calibration of each
sensor in the network by comparing its readings to those of its
neighbors and also answer the question “how representative
is an instantaneous reading of the conditions seen over some
temporal and spatial window within which the sensor is
placed?”

Using Probability Distribution Functions to
Monitor Calibration and Representativeness in
Real Time

It is useful to be able to answer the question “how represen-
tative is an instantaneous reading of the conditions seen over
some temporal and spatial window within which the sensor
is placed?” We can answer this question by considering a
probability distribution function (PDF) of all the observations
made by a sensor over some temporal and spatial win-
dow. The width of this probability distribution is termed the
representativeness uncertainty for that temporal and spatial
window. The PDFs of all observations made by each sensor
are automatically compared in real time to the PDFs from
the neighboring sensors within a neighborhood radius. These
neighborhood sensors can include measurements from pri-
mary reference sensors that may be available. This approach
is used to estimate the measurement uncertainty and inter-
instrument bias for the last hour, day, etc. We continuously
accumulate the PDF for each sensor over a variety of time
scales and compare it to its nearest neighbors within a neigh-
borhood radius. Any calibration drift in a sensor will be
quickly identified as part of the fully automated real-time
workflow where we will automatically be comparing each
sensor’s PDFs to its neighbor’s PDFs and to the reference
instruments PDFs. As each sensor is in a slightly different
local environment, the sensor bias drift for each sensor will
be different.

Characterizing the Temporal and Spatial Scales
of Urban Air Pollution

This study focused on the calibration of low-cost sensors as
part of a larger endeavor with the goal of characterizing the
temporal and spatial scales of urban pollution. The temporal
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and spatial scales of each atmospheric component are inti-
mately connected. The resolution used in atmospheric chem-
istry modeling tools is often driven by the computational
resources available. The spatial resolution of observational
networks is often determined by the fiscal resources avail-
able. It is worth taking a step back and characterizing what
the actual spatial scales are for each chemical component
of urban atmospheric chemistry. Based on our street-level
surveys providing data at less than a meter resolution, it is
clear that the spatial scales are dependent on several factors
such as the synoptic situation, the distribution of sources, the
terrain, etc. In the larger study, we characterize the spatial
scales of multi-species urban pollution by using a hierarchy
of measurement capabilities that include (1) a zero emission
electric survey vehicle with comprehensive gas, particulate,
irradiance, and ionizing radiation sensing and (2) an ensem-
ble of more than 100 street-level sensors making measure-
ments every few seconds of a variety of gases, particulates,
light levels, temperature, pressure, and humidity. Each sensor
is accurately calibrated against a reference standard using
machine learning. This paper documents an example of low-
cost sensor calibration for airborne particulate observations.

Societal Relevance

What are the characteristic spatial scales of each chemical
species, and how does this depend on issues such as the
synoptic situation? These are basic questions that are helpful
to quantify when considering atmospheric chemistry, when
looking forward to the next generation of modeling tools and
observing system (whether from space or ground-based net-
works), and when evaluating mitigation strategies, especially
with regard to co-benefits for air pollution and greenhouse
gas reduction and investigating the evolution of urban air
composition in a warming climate. To be able to quantify
these spatial and temporal scales, we need a comprehensive
observing system; being able to use low-cost sensors is of
great assistance in achieving this goal.

The Dallas Fort Worth (DFW) Metroplex (where our
study was conducted) is the largest inland urban area in the
United States and the nation’s fourth largest metropolitan
area. Nearly a third of Texans, more than sevenmillion inhab-
itants, live in the DFW area. A population which is growing
by a thousand people every day. DFW is an area with an
interesting variety of specific pollution sources with unique
signatures that can provide a useful testbed for generalizing
a measurement strategy for dense urban environments. For
more than two decades, the DFW area has been in continuous
violation of the Clean Air Act. DFW will be one of only
ten non-California metropolitan areas still in violation of
the Clean Air Act in 2025 unless major changes take place.
This has already had a detrimental health impact, e.g., even

though the Texas average childhood asthma rate is 7%, and
the national average is 9%, the DFW childhood asthma rate
is 20–25%. Second only to the Northeast, DFW ranks second
in the number of annual deaths due to smog. Further, a
leading factor in poor learning outcomes in high schools is
absenteeism, a leading cause of absenteeism is asthma, and
key trigger for asthma is airborne pollution (Lary et al. 2019).
Physical exertion in the presence of high pollution levels is
more likely to lead to an asthma event. The sensors calibrated
in this study are being provided to high schools and high
school coaches so that simple practical decisions can bemade
to reduce adverse health outcomes, e.g., given the levels of
pollen/pollution today, should physical education/practice be
outside or inside?

The Datasets Used

All of the measurements were made at our own field calibra-
tion station in the ambient environment. The calibration of
the low-cost AlphaSense OPC occurs prior to their deploy-
ment across the dense urban environment of DFW. In this
study, we use machine learning to bring together two distinct
types of data. First, we use accurate in situ observations made
by a research-grade particulate spectrometer. Second, we use
observations from inexpensive optical particle counters. The
inexpensive sensors are particularly useful as they can be
readily deployed at scale.

Research-Grade Optical Particle Counter

The particulate spectrometer is a laser-based optical particle
counter (OPC). In this study we used a GRIMM Laser
Aerosol Spectrometer and Dust Monitor Model 1.109. The
sensor has the capability of measuring particulates of di-
ameters between 0.25 μm and 32 μm distributed within 32
size channels. Such a wide range of diameter space is made
possible due to intensity modulation of the laser source.
Particulates pumped into the sensor are detected through
scattering a laser beam of 655 nm into a light trap. The
laser beam is aimed at particulates coming through a sensing
chamber at a flow rate of 1.21 l/min. The device classifies
particulates into specific size classes subject to its intensity
(Broich et al. 2012). The optical arrangement of the sensor is
staged such that a curved optical mirror placed at an average
scattering angle of 90◦ collects and redirects the scattered
light toward a photo sensor. Thewide angle of the optical mir-
ror (120◦) is meant to increase the light intensity redirected
toward the photo sensor within the Rayleigh scattering do-
main which decreases the minimum detectable particle size.
Furthermore, it compensates for Mie scattering undulations
caused by monochromatic illumination. The sensing period
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of theGRIMMsensor was set to 6 s and for each timewindow
provides three standardized mass fractions, namely, based
on occupational health (repairable, thoracic, and alveolic)
according to EN 481 as well as PM1, PM2.5, and PM10.

Low-Cost Optical Particle Counters

There are several readily available optical particle counters
(OPC) which are useful, but much less accurate compared to
research grade sensors. In this study, we focus on using such
sensors, together with machine learning, to get as close as
possible to the accuracy of research-grade PM sensors. After
the application of the machine learning calibration, these
lower-cost sensors perform admirably. In order for low-cost
sensors to provide an improved picture of PM levels, a careful
calibration is required. The current study uses an Alpha
Sense OPCN3 (http://www.alphasense.com/) together with a
cheaper environmental sensor (Bosch BME280) as data col-
lectors. The OPC-N3 is compact, 75mm×60mm×65mm in
size, and weighs under 105 g which uses similar technology
to the conventional OPCs where particle size is determined
via a calibration based on Mie scattering. Unlike most OPCs,
the OPC-N3 doesn’t include a pump and a replaceable parti-
cle filter in order to pump aerosol samples through a narrow
inlet tube, hence avoiding the need for regular maintenance.
Sufficient airflow through the sensor is made possible with
a low-powered micro-fan producing a sample flow rate of
280mL/min. The OPC-N3 is capable of onboard data log-
ging as well as measuring particulates of diameters up to
40 μm. This enables the OPC-N3 tomeasure pollen and other
biological particulates. The onboard data is saved within an
SD card which can be accessed through a micro-USB cable
connected to the OPC. Furthermore, the OPC-N3’s lower
sensing diameter is reduced to 0.35 μm as opposed to its
predecessor’s (OPC-N2) lower limit of 0.38 μm. The wider
range of sensing is made possible via the OPC switching
between high and low gain modes automatically. The OPC-
N3 calculates its PM values using the method defined by the
European Standard EN 481 (Alphasense 2018).

Caveat: Particulate Refractive Index

The observations made by optical particle counters are sen-
sitive to the refractive index of the particulates and their light
absorbing properties. The retrieved size distributions and the
mass concentrations can be biased, depending on the nature
of the particulates. The current study does not explore the ac-
curacy implications of this. A future study is underwaywhich
includes direct measurements of black carbon that will allow
us to begin to explore these aspects. The machine learning

paradigm is readily extensible to include these aspects, even
though not explicitly addressed in this study.

Machine learning is an ideal approach for the calibration
of lower-cost optical particle counters.

Ensemble Machine Learning

Multiple approaches for nonlinear non-parametric machine
learning were tried including neural networks, support vector
regression, and ensembles of decision trees. The best per-
formance was found using an ensemble of decision trees
with hyperparameter optimization (Safavian and Landgrebe
1991; Ho 1998; Breiman 1984, 2001). Ensemble methods
use multiple learners to obtain better predictive performance
that could be obtained from any of the individual learners
alone. A good example of an ensemble of learners is a
random forest, which uses an ensemble of decision trees.
In this study, the specific implementation used was that
provided by the MathWorks in the fitrensemble function
which is part of the MATLAB Statistics and Machine Learn-
ing Toolbox. Hyperparameter optimization was used so that
the optimal choice was made for the following attributes:
learning method (bagging or boosting), maximum number of
learning cycles, learning rate, minimum leaf size, maximum
number of splits, and the number of variables to sample.
During hyperparameter optimization, we use an optimiza-
tion approach (e.g., Bayesian optimization) to choose a set
of optimal hyperparameters for our learning algorithm. A
hyperparameter is a parameter whose value is used to control
the learning process.

In this study, there were 72 inputs to our multivariate
nonlinear non-parametric machine learning regression; these
include the particle counts for each of the 24 size bins
measured by the OPC-N3; the OPC-N3 estimates of PM1,
PM2.5, and PM10; a suite of OPC performance variables
including the reject ratio; and particularly important, the
ambient atmospheric pressure, temperature, and humidity.
The OPC-N3 sensor includes two photodiodes that record
voltages which are eventually translated into particle count
data. However, particles which are not entirely in the OPC-
N3 laser beam, or are passing down the edge, are rejected, and
this is recorded in the “reject ratio” parameter. This leads to
better sizing of particles and hence plays an important role
within the machine learning calibration.

Each of the six outputs we wished to estimate had its own
empirical model. The performance of these six models in
their independent validation is shown in Figs. 1 and 2. The
outputs we estimated were the six variables measured by
the reference instrument, the research-grade optical particle
counter, namely, PM1, PM2.5, and PM10, and the standardized
occupational health respirable, thoracic, and alveolic mass
fractions. The alveolic fraction is the mass fraction of in-

http://www.alphasense.com/
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Fig. 1 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for PM1 (panels a–c), PM2.5
(panels d–f), and PM10 (panels g–i). The left-hand column of plots
shows log-log axis scatter diagrams with the x-axis showing the PM
abundance from the expensive reference instrument and the y-axis
showing the PM abundance provided by calibrating the low-cost in-
strument using machine learning. The green circles are the training
data, and the red pluses are the independent validation data. The blue
line shows the ideal response. The middle column of plots shows the

quantile-quantile plots for the machine learning validation data, with
the x-axis showing the percentiles from the probability distribution
function of the PM abundance from the expensive reference instrument
and the y-axis showing the percentiles from the probability distribution
function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows
the ideal response. The right-hand column of plots shows the relative
importance of the input variables for calibrating the low-cost optical
particle counters using machine learning.
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Fig. 2 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for the alveolic (panels a–c),
thoracic (panels d–f), and inhalable size fractions (panels g–i). The left-
hand column of plots shows log-log axis scatter diagramswith the x-axis
showing the PMabundance from the expensive reference instrument and
the y-axis showing the PM abundance provided by calibrating the low-
cost instrument using machine learning. The green circles are the train-
ing data, and the red pluses are the independent validation dataset. The
blue line shows the ideal response. The middle column of plots shows

the quantile-quantile plots for the machine learning validation data,
with the x-axis showing the percentiles from the probability distribution
function of the PM abundance from the expensive reference instrument
and the y-axis showing the percentiles from the probability distribution
function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows
the ideal response. The right-hand column of plots shows the relative
importance of the input variables for calibrating the low-cost optical
particle counters using machine learning.
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haled particles penetrating to the alveolar region (maximum
deposition of particles with a size ≈ 2 μm). The thoracic
fraction is the mass fraction of inhaled particles penetrating
beyond the larynx (<10 μm). The respirable fraction is the
mass fraction of inhaled particles penetrating to the unciliated
airways (<4 μm). The inhalable fraction is the mass fraction
of total airborne particles which is inhaled through the nose
and mouth (<20 μm). For each of these six parameters, we
created an empirical multivariate nonlinear non-parametric
machine learning regression model with hyperparameter op-
timization.

Calibrating the Low-Cost Optical Particle
Counters UsingMachine Learning

Figure 1 shows the results of the multivariate nonlinear non-
parametric machine learning regression for PM1 (panels a to
c), PM2.5 (panels d to f), and PM10 (panels g to i). The left-
hand column of plots shows log-log axis scatter diagrams
with the x-axis showing the PM abundance from the expen-
sive reference instrument and the y-axis showing the PM
abundance provided by calibrating the low-cost instrument
using machine learning.

For the left-hand column of plots in Fig. 1 (the scatter
diagrams), for a perfect calibration, the scatter plot would
be a straight line with a slope of 1 and a y-axis intercept
of 0; the blue line shows the ideal response. We can see
that multivariate nonlinear non-parametric machine learning
regression that we have used in this study employing an
ensemble of decision trees with hyperparameter optimization
has performed very well (panels a, d, and g). In each scatter
diagram, the green circles are the data used to train the ensem-
ble of decision trees, and the red pluses are the independent
validation data used to test the generalization of the machine
learning model.

We can see that the performance is best for the smaller
particles that stay lofted in the air for a long period and do
not rapidly sediment, so when comparing the scatter diagram
correlation coefficients, r , for the independent validation test
data (red points), we see that rPM1 > rPM2.5 > rPM10 .

For the middle column of plots in Fig. 1 (the quantile-
quantile plots), we are comparing the shape of the probability
distribution (PDF) of all the PM abundance data collected
by the expensive reference instrument to that of the the PM
abundance provided by calibrating the low-cost instrument
usingmachine learning. A log10 scale is used with a tickmark
every decade. The dotted red line in each quantile-quantile
plot shows the ideal response. The red numbers indicate the
percentiles (0, 25, 50, 75, 100). If the quantile-quantile plot
is a straight line, that means both PDFs have exactly the same
shape as we are plotting the percentiles of one PDF against
the percentiles of the other PDF. Usually we would like to see

a straight line at least between the 25th and 75th percentiles;
in this case, we have a straight line over the entire PDF,
which demonstrates that the machine learning calibration has
performed well.

The right-hand column of plots shows the relative im-
portance of the input variables for calibrating the low-cost
optical particle counters using machine learning. The relative
importance metric is a measure of the error that results if
that input variable is omitted. In the right-hand column of bar
plots, we have sorted the importance metric into descending
order, so the variable represented by the uppermost bar in
each case was the most important variable for performing
the calibration, the second bar is the second most important,
etc. We note that along with the number of particles counted
in each size bin, it is important to measure the temperature,
pressure, and humidity to be able to accurately calibrate the
low-cost OPC against the reference instrument. The data also
suggests that the parameter “reject ratio” carries a higher
deal of importance with respect to the calibration. OPC-N3
comprises two photodiodes which record voltages eventually
translated into particle count data. However, particles which
are not entirely in the beam or are passing down the edge are
rejected and reflected on the parameter “reject ratio.” This
leads to better sizing of particles and hence plays a vital role
within the ML calibration.

Another division of occupational health based size-
selective sampling is defined by assessing the subset of
particles that can reach a selective region of the respiratory
system. On this basis three main fractions are defined:
inhalable, thoracic, and respirable (Bickis 1998; Hinds 2012;
Brown et al. 2013). Studies have shown that exposure of
excess particulate matter has alarming negative health effects
(Mannucci 2017). The smallest size ranges of particulate
matter are capable of penetrating through to the lungs or
even to one’s bloodstream.

Figure 2 is similar to Fig. 1 and shows the results of
the multivariate nonlinear non-parametric machine learning
regression for the alveolic, thoracic, and inhalable size frac-
tions. As would be expected, we see that the performance
is best for the smaller particles that stay lofted in the air
for a long period and do not rapidly sediment, so when
comparing the scatter diagram correlation coefficients, r ,
for the independent validation test data (red points), we see
that rAlveolic > rT horacic > rInhalable.

Operational Use of the Calibration and
Periodic Validation Updates

The calibration just described occurs pre-deployment of the
sensors into the dense urban environment. Once these initial
field calibration measurements are made over a period of
several months, in the manner described above, the multi-
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variate nonlinear non-parametric empirical machine learning
model is applied in real time to the live stream of observations
coming from each of our air quality sensors deployed across
the dense urban environment of the Dallas Fort Worth Metro-
plex. These corrected measurements are then made publicly
available as Open Data as well as depicted on a live map and
dashboard.

Building-in continual calibration to a network of sensors
will enable long-term, consistent, and reliable data. While
much effort has been recently placed on the connectivity of
large disbursed IoT networks, little to no effort has been spent
on the automated calibration, bias detection, and uncertainty
estimation necessary to make sure the information collected
is sound. This is one of our primary goals. This is based
on extensive previous work funded by NASA for satellite
validation.

After deployment, a zero emission electric car carrying
our reference is used, to routinely drive past all the deployed
sensors to provide ongoing routine calibration and validation.
An electric vehicle does not contribute any ambient emis-
sions and so is an ideal mobile platform for our reference
instruments.

For optimal performance, the implementation combines
edge and cloud computing. Each sensor node takes a mea-
surement at least every 10 s. The observations are continually
time-stamped at the nodes and streamed to our cloud server,
the central server aggregating all the data from the nodes
and managing them. To prevent data loss, the sensor nodes
store any values that have not been transmitted to the cloud
server for reasons, including communication interruptions, in
a persistent buffer. The local buffer is emptied to the cloud
server at the next available opportunity.

Data from all sensors are archived and serve as an open
dataset that can be publicly accessed. The observed prob-
ability distribution functions (PDFs) from each sensor are
automatically compared in real time to the PDFs from the
neighboring sensors within a neighborhood radius. These
neighborhood sensors include measurements from the elec-
tric car/mobile validation sensors. This comparison is used to
estimate the size-resolvedmeasurement uncertainty and size-
resolved inter-instrument bias for the last hour, day, week,
month, and year. We continuously accumulate the PDF for
each sensor over a variety of time scales (an hour, day, week,
month, and year) and compare it to its nearest neighbors
within a neighborhood radius.

Any calibration drift in a sensor will be quickly identified
as part of a fully automated real-time workflow, where we
will automatically be comparing each sensor’s PDFs to its
neighbor’s PDFs and to the reference instruments PDFs.
As each sensor is in a slightly different local environment,
the sensor bias drift for each sensor will be different. We
have previously shown that machine learning can be used
to effectively correct these inter-sensor biases (Lary et al.

2009b). As a result, the overall distributed sensing system
will not just be better characterized in terms of its uncertainty
and bias but also provide improved measurement stability
over time.

Case Study: UsingWeather Radars and
Machine Learning to Estimate Airborne
Particulates

The application of radar for atmospheric meteorology started
soon after the end of the Second World War. It was during
the Second World War in the 1930s that radar technology
was first used to locate and track war planes. The interference
from scatterers such as rainfall prompted the notion that radar
can also be applied to measure atmospheric precipitation.
Subsequently, the construction of radar networks for mete-
orologic purposes commenced. The first radar network for
meteorologic purposes was the Weather Surveillance Radar-
1957 (WSR-57) in the United States. Currently, the WSR
radar network has been upgraded to WSR-88D (Weather
Surveillance Radar, 1988). WSR-88D has about 160 Doppler
radars all over the United States. TechnicallyWSR-88D radar
is known as the Next-Generation Radar (NEXRAD). The fol-
lowing sections present the measurements of the NEXRAD
radar and its application to identify aerosols.

Weather radars are mainly designed for determining and
forecasting atmospheric phenomena such as precipitation,
cloud coverage, wind direction and magnitude, and other
associated meteorological events. In addition to these daily
atmospheric conditions, radar can detect other objects and
particles of small size such as dust, sand, insects, bird migra-
tions, ground clutter, etc. The weather radar can also detect
variations in the refractive index of the atmosphere caused by
variations in the ambient temperature.

Atmospheric radars employed for meteorologic purposes
transmit electromagnetic pulses of various frequencies. The
frequency range used in the design of the radar determines
the purpose and observation capability of the radar. For
example, radars designed for observing the amount, type, and
motion of precipitation have frequencies from 3–10GHz (in
terms of wavelength, 10–3 cm, respectively). Radars having
this frequency range are very convenient for meteorological
purposes. Radars having higher frequencies are useful to
observe small-size droplets and particles. Small-size cloud
particles, light snow, fog, and light rainfall are observed
by high-frequency meteorological radars. At relatively low
frequencies (in the range of less than 100–1000MHz), the
radar can detect fluctuations in the refractive index of the
clear atmosphere. Low-frequency radars are best suited for
profiling wind speed and direction.

TheNEXRAD radar is in general operated in two different
modes based on atmospheric weather conditions. These two
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modes are the precipitation mode and the clear air mode.
In the precipitation mode, the NEXRAD radar is operated
at fast rotations at various elevations up to about 19.5◦. In
precipitation mode, a high emphasis is given for measure-
ments at several elevations in order to see vertical storm
profiles. In clear air mode, the radar is operated slowly,
and it is sensitive to observe scattering from small objects
such as pollen, other particulate matter, dust, smoke, insects,
and birds (Gali 2010). The approximate time for a volume
scan is 6 and 10 min. for precipitation and clear air modes,
respectively.

Direct measurements of pollen and other particulates
are rarely done using the NEXRAD radar. However, a few
exceptional research projects have been reported showing
observation of large aerosols using the NEXRAD weather
radar (Madonna et al. 2010). Consequently radar scattering
from large aerosols such as pollen is hard to identify. But
NEXRAD measurements of Doppler velocity, direction,
and speed of wind which are meteorological variables
controlling the distribution and dispersal of pollen and
large particulate matter. Other meteorological variables
such as cloud coverage, precipitation, and rainfall are
also pollen-controlling variables associated with the radar
base reflectivity. For example, Eq. (1) shows the rainfall
estimation techniques based on NEXRAD reflectivity.

Z = aRb (1)

where Z and R, respectively, represent reflectivity and rain-
fall and a and b are experimentally determined constants. a
and b are determined experimentally comparing radar reflec-
tivity and rain gauge measurements. The National Weather
Service default value of a and b are 300 and 1.4, respectively.

The lack of a complete functional relationship between
NEXRADmeasurements and airborne particulates motivates
us to seek other options. The machine learning approach
of “learning” by example from large datasets is the perfect
candidate for this problem. In machine learning, we estimate
a variable based on a large number of input variables (data),
and the method is becoming popular in a wide variety of
fields.

In this study, the inputs to our multivariate nonlinear non-
parametric machine learning regression were the remotely
sensed parameters provided by theweather radar. The outputs
we wished to estimate were the variables measured by the in
situ optical particle counter.

Estimating Aerosol Size Distribution

Figure 3 shows the results of the multivariate nonlinear
non-parametric machine learning regression as a function
of particle size. The x-axis shows the particle size on a
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Fig. 3 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression as a function of particle size.
The x-axis shows the particle size on a log scale. The y-axis shows
the quality of fit using the correlation coefficient of the scatter diagram
for each particle size fraction; a perfect fit would have a correlation
coefficient of 1. The blue line shows the results for the training data.
The red line shows the results for the independent validation data. We
can see that the machine learning can effectively use the NEXRAD data
for the particles with a size of less than 7 μm

log scale. The y-axis shows the quality of fit using the
correlation coefficient of the scatter diagram for each particle
size fraction; a perfect fit would have a correlation coefficient
of 1. The blue line shows the results for the training data. The
red line shows the results for the independent validation data.
We can see that the machine learning can effectively use the
NEXRAD data for the particles with a size of less than 7 μm.

We can see a little more detail in Fig. 4 which shows
the results of using an ensemble of regression trees for
multivariate nonlinear non-parametric machine learning for
three size fractions, 0.25 μm (panels a–c), 2.5 μm (panels d–
f), and 25 μm (g–i).

The left-hand column of plots in Fig. 4 shows the scatter
diagrams with the x-axis showing the actual number of
particles observed by the in situ optical particle counter and
the y-axis showing the number of particles estimated from the
NEXRAD data using machine learning. The green circles are
the training data, the red pluses are the independent validation
dataset, and the blue line shows the ideal response. We can
see that for the smaller particles that stay lofted in the air
for a long period and do not rapidly sediment, e.g., those
with a size of 0.25 μm (Fig. 4a), we have a very good scatter
diagram and that the training and independent validation data
have almost the same correlation coefficient. The same is true
for particles with a diameter of 2.5 μm (Fig. 4d). However,
for the larger particles that sediment rapidly, e.g., those with a
diameter of 25 μm (Fig. 4g), the independent validation does
not do well.
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Fig. 4 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for three size fractions, 0.25 μm
(panels a–c), 2.5 μm (panels d–f), and 25 μm (g–i). The left-hand
column of plots shows the scatter diagrams with the x-axis showing
the actual number of particles observed by the in situ optical particle
counter and the y-axis showing the number of particles estimated from
the NEXRAD data using machine learning. The green circles are the
training data, the red pluses are the independent validation dataset, and
the blue line shows the ideal response. The middle column of plots

shows the quantile-quantile plots for the machine learning validation
data, with the x-axis showing the percentiles from the probability
distribution function of the observed number of particles measured by
the in situ optical particle counter and the y-axis showing the percentiles
from the probability distribution function of the estimated number of
particles. The dotted red line shows the ideal response. The right-hand
column of plots shows the relative importance of the input variables for
estimating the number of particles using machine learning
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Fig. 5 Showing examples of the distribution of PM2.5 over a large spatial area centered at the location of the NEXRAD radar. In this case, the
NEXRAD radar measurements over a 0.5 km × 0.5 km are used to estimate the PM2.5 concentrations

The middle column of plots in Fig. 4 shows the quantile-
quantile plots for the machine learning validation data, with
the x-axis showing the percentiles from the probability distri-
bution function of the observed number of particles measured
by the in situ optical particle counter and the y-axis showing
the percentiles from the probability distribution function
(PDF) of the estimated number of particles. The dotted red
line shows the ideal response. We can see that for the smaller
particles that stay lofted in the air for a long period and do not
rapidly sediment, e.g., those with a size of 0.25 μm (Fig. 4b),
the shape of the observed and estimated PDFs are almost the
same; note that we have a straight line between the 25th and
75th percentiles. The same is true for particles withPlease
provide explanation for part labels (a) to (e) in the caption of
Fig. 5. a diameter of 2.5 μm (Fig. 4e). However, for the larger
particles that sediment rapidly, e.g., those with a diameter of
25 μm (Fig. 4h), the independent validation does not do well.

The right-hand column of plots in Fig. 4 shows the relative
importance of the input variables for estimating the number
of particles usingmachine learning.We note that in each case,
the temperature and pressure and sometimes the humidity
are key factors. For the small particles with a diameter of
0.25 μm, the NEXRAD variables providing the most infor-
mation are the correlation coefficient and Doppler speed at
elevation 1. For the particles with a diameter of 2.5 μm, the
NEXRAD variables providing the most information are the
Doppler speed at elevation 2 and the differential reflectivity
at elevation 1.

Figure 5 shows the spatial distribution of PM2.5 particu-
lates estimated over a large spatial area at 0.5 km × 0.5 km
resolution. In this case, the machine learning model was
developed at 10 km×10 km pixel, and the model was applied
to each pixel using the NEXRAD and atmospheric weather
measurements as input.
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Summary

Airborne particulates are of particular significance for their
human health impacts and their roles in both atmospheric
radiative transfer and atmospheric chemistry. Observations
of airborne particulates are typically made by environment
agencies using rather expensive instruments. Due to the
expense of the instruments usually used by environment
agencies, the number of sensors that can be deployed is
limited. In this study, we have shown two different case
studies illustrating the utility of using machine learning for
studying airborne particulates.

We have shown that machine learning can be used to effec-
tively calibrate lower-cost optical particle counters. For this
calibration, it is critical that measurements of the atmospheric
pressure, humidity, and temperature are included. Once the
machine learning calibration has been applied to the low-cost
sensors, independent validation using scatter diagrams and
quantile-quantile plots shows that not only is the calibration
effective, but the shape of the resulting probability distribu-
tion of observations is very well preserved.

These low-cost sensors are being deployed at scale across
the dense urban environment of the Dallas Fort Worth Metro-
plex for both characterizing the temporal and spatial scales
of urban air pollution and providing high schools and high
school coaches a tool to assist in making better decisions
to reduce adverse health outcomes, e.g., given the levels of
pollen/pollution today, should physical education/practice be
outside or inside?

In this study, we have also shown that observations made
by NEXRAD weather radars can be used with machine
learning to effectively estimate the abundance of airborne
particulates with a diameter in the size range 0.1–7μm.
For this estimation, it is critical that measurements of the
atmospheric pressure, humidity, and temperature are also
made. Once machine learning has been applied, scatter di-
agrams and quantile-quantile plots show that not only is the
approach effective, but the shape of the resulting probability
distribution of observations is preserved.
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Linking Disease Outcomes to Environmental
Risks: The Effects of Changing Spatial Scale

Chetan Tiwari, David Sterling, and Leslie Allsopp

Introduction

Geographic information systems (GIS) enable the assess-
ment of environmental risks and their potential impacts on
human health outcomes by providing a mechanism to overlay
maps of exposure and disease outcomes. While the ability
to overlay various geographic datasets is a common function
provided bymost GIS software packages, the ability to derive
meaningful associations between these layers is limited by
data quality, issues pertaining to the accuracy of exposure
assessment, and problems of representing the intensity of dis-
ease outcomes over space and time. In a recent review of the
role of geographic information science (GISc) in the analysis
of health and place, Mennis and Yoo (2018) identify major
challenges and opportunities including problems associated
with scale of analysis in health research. In this context, they
argue that most GIS-based health research in this area has fo-
cused on problems of sparse or missing data and emphasizes
the need for more research to understand the implications
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of resolution and spatial and temporal sampling frameworks
on assessments of individual-level environmental exposures
(Mennis and Yoo 2018). The problem of deriving associa-
tions between layers of geographic data with inconsistent
scales is of particular concern in the context of big data
where personalized health information through electronic
health records and individual measures of exposure via low-
cost sensors are becoming more common. Limitations on
the use of such data due to privacy concerns or inconsistent
quality often lead to the production and dissemination of
datasets aggregated to different levels of spatial resolution.
While GIS software can be used to combine such layers of
geographic data, it is critical to note that inconsistent scales
andmisaligned boundaries resulting from the use of disparate
spatial units will likely result in incorrect and/or misleading
conclusions.

The problems of changing spatial scales and misaligned
geographic boundaries are well documented in discussions
of spatial uncertainty. Spatial uncertainty is broadly defined
as the problem of identifying and quantifying error in the
geographic location of objects. Such error may result in
biased interpretations of the true relationships between the
location of objects in space and surrounding contextual or
environmental factors. There are two issues associated with
spatial uncertainty – the change of support problem (CoSP)
and the uncertain geographic context problem (UGCoP).
CoSP is concerned with the problem of drawing inferences
about observations at a spatial scale that is different from
the scale at which those observations have occurred. Kwan
(2012) defines the uncertain geographic context problem
(UGCoP) as the problem of identifying the effects of spatial
displacement between the geographic definitions of contex-
tual units and the “true causally relevant” context. The prob-
lem presented by aggregation may be considered as a subset
of the CoSP and is similar to the well-knownmodifiable areal
unit problem (MAUP) which states the patterns observed on
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a map; therefore, any inferences drawn are likely to change
if the shape and scale of the map unit change. In many
population-based studies, the UGCoP arises from the need
to use area-basedmeasures of statistical observations, such as
census tracts, to reconstruct a fundamentally vague definition
of space, such as the risk of disease that arises from some
kind of exposure to environmental risk. See Kwan (2018),
Fisher et al. (2018), and Griffith (2018) for an overview of
spatial analytic approaches to identify, measure, and address
this problem.

The utility and pitfalls of GIS for exposure assessment are
well described in Nuckols et al. (2004). They describe several
studies that use GIS in various ways to estimate exposures to
a variety of environmental risks. Some examples of studies
cited in their work include an assessment of associations
between residential proximity to landfill sites and adverse
birth outcomes (Elliott et al. 2001), examination of possible
neurobehavioral effects of exposure to trichloroethylene us-
ing a simulation model (MODFLOW) (Reif et al. 2003), and
a population-based study to evaluate lung cancer outcomes
to urban air pollution using a combination of dispersion
modeling and geostatistical techniques (Bellander et al. 2001;
Nyberg et al. 2000). Other studies that use GIS to produce
fine-scale assessments of environmental risk include an as-
sessment of the health risks posed by urban heat islands
detected using remote sensing methods including airborne
or satellite platforms (Tomlinson et al. 2011), an overview
of techniques to produce fine-scale estimates of fine partic-
ulate matter using remotely sensed data and geostatistical
approaches (Al-Hamdan et al. 2009, 2014), estimation of
spatio-temporal variations in hot weather conditions of Hong
Kong using statistical techniques (Shi et al. 2019), and map-
ping of exposures to particulate matter using remotely sensed
data and geostatistical modeling techniques (Leelasakultum
and Kim Oanh 2017). In all cases, assessments of the risk
of environmental exposure are estimated for various levels
of spatial resolution that may not necessarily conform to the
scale at which disease data are commonly made available.

Under current practice, makers of disease maps select
census or other administrative units for which both dis-
ease and demographic data are available. GIS software are
then used to compute and visualize disease rates among
the populations contained within those administrative units.
The choice of administrative unit influences the resolution
and statistical reliability of observed disease rates. Patterns
of disease rates displayed on maps produced using such
spatial units represent a tradeoff between spatial resolution
and statistical reliability. Maps with high degrees of spatial
resolution generally exhibit poor statistical reliability as the
population support – numbers of persons at risk – used in
calculating each rate is often small. As more sources of geo-
referenced health and demographic data become available, so
does the opportunity to control the numbers of people at risk

and the geographic size of the areas mapped. In geographical
circles, the spatial resolution of a map refers to the size or
area used to measure the spatial variation of a disease rate.
If the areas mapped were of equal size, the map would be
said to have the same geographic resolution across the map.
Since most maps use administrative areas as the spatial units
to map, the common spatial resolution of a map is the average
size of the administrative areas used. A second meaning
of spatial resolution is when the minimum size mapped is
the smallest size for which the common geography between
disease data and demographic data realizes a fixed level of
statistical reliability. The goal of the actual spatial resolution
achieved by the map is not, therefore, a common spatial size,
but, instead, a minimum sized spatial unit at any location on
the map that realizes the statistical reliability desired by the
mapmaker. A third meaning of spatial resolution has arisen
more recently in the era of digital maps when the smallest
spatial unit on the map is a pixel. If the map is constructed
so that pixel values change according to some function of
relative location, then the earth size corresponding to one
pixel is the geographic resolution of the map in question. In
this chapter, we advocate for a disease mapping approach that
focuses on a deliberate choice of geographic resolution and
statistical reliability. To this end, we demonstrate how the two
characteristics can be controlled using a simulated dataset
on disease outcomes that are influenced by four randomly
selected locations of environmental exposure.

Relevance of DiseaseMapping for Assessing
Public Health Impacts

Disease mapping refers to the process of constructing a
map that shows the spatial distribution of disease within a
specific geographic region. Disease maps improve public
health decision-making by providing amechanism to identify
geographic areas that are in most need of interventions or
resources (Bertollini and Martuzzi 1999; Moore and Carpen-
ter 1999; Ricketts 2003). They can help answer such as the
following questions: What populations are at risk? Where
they are located? What are the underlying conditions in
those areas? The common spatial context enables researchers
and public health practitioners to link various geographic
layers of data to explore associations between a multitude of
complex processes that include various combinations of so-
cial, cultural, and environmental determinants. In 1850, John
Snow created the first disease map of cholera distribution in
London and initially showed the importance of cartographic
representation of disease in serving public health (Koch
2004). Snow’s point map shown in Fig. 1 describes the spatial
patterns of cholera deaths and its geographical association
with other features on the landscape, including the broad
street pump, whichwas subsequently identified as serving the
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Fig. 1 John Snow’s map of cholera death in London (McLeod 2000)



268 C. Tiwari et al.

population with sewage tainted water (McLeod 2000; Shiode
et al. 2015). John Snow’s map was among the first studies to
utilize disease maps for understanding public health issues.

In the modern context, disease maps are commonly used
to identify spatial relationships between disease outcomes,
risk factors in the environment, and population characteristics
(Croner et al. 1996; English et al. 1999; Gatrell et al. 2003;
Glass et al. 1995; Goodchild et al. 1992). The rise of comput-
erizedmapping software and easy access to aggregated health
data have enabled the production and delivery of maps via
interactive websites or as applications on mobile devices like
cell phones. The Centers for Disease Control and Prevention
(CDC) publishes mortality and other environmental datasets
for the United States via a web-based portal called CDC
WONDER.Users of this website are also able to create online
maps of various health outcomes. The purpose of this web
portal is twofold – (1) it enables researchers and practitioners
to create their own maps to aid research and/or public health
intervention and (2) it allows the public to produce maps
for their own interest. Other examples of publicly available
mapping portals for health data include AIDSVu, National
Cancer Institute’s GIS Portal, among others. While emerging
GIS technology has led to the democratization of mapping,
thus enabling better public participation in understanding the
social and environmental determinants of health, it may also
lead to misleading or biased perceptions when maps are not
interpreted or used correctly. The use of choropleth maps as
the default map type for representing disease burdens is of
particular concern for various reasons discussed in the sec-
tion titled “Methods: Linking Maps of Disease Outcomes to
Environmental Risks” (see Fig. 5 for an example). Maps that
represent unreliable information may lead to biased and/or
incorrect perceptions about the complex relationships be-
tween environmental risks, disease burdens, and population
characteristics. In addition to careful selection of map type,
it is imperative that mapmakers communicate information
about the intended purpose of the map, the process by which
it was produced, and other information considered important
for interpreting the observed patterns.

Data

The synthetic data generation process consists of four stages
as described in Fig. 2. In stage 1, block-group-level popu-
lation data for Denton County in Texas was used to create
a point distribution representing individuals. Population val-
ues were divided by 10 for computational efficiency. The
resulting dataset consists of 66,092 points where each point
represents an individual. Note that the spatial distribution of
these points is proportional to the block-group population
distribution in Denton County. In stage 2, four sites of sim-
ulated environmental risk were selected in Denton County.

These sites were selected to cover urban and rural contexts.
We assumed a 1-mile radius of “exposure” around each of
these four sites. We will refer to these buffers as “high-risk”
areas. In stage 3, case data were created using two levels
of simulated disease risk: (1) a 1% risk of disease among
the population overall and (2) a 5% risk of disease among
populations within high-risk areas. Finally, in stage 4, the
simulated datasets were converted into GIS layers for use
in subsequent analysis. The final synthetic dataset consisted
of 89 simulated cases and 1508 individuals in the high-risk
area (rate = 0.0097) compared to 625 simulated cases and
63,870 individuals overall (rate = 0.059). Block-group-level
population data were obtained from the US Census. Alteryx
software was used to create the synthetic datasets.

Methods: LinkingMaps of Disease Outcomes
to Environmental Risks

A dot density map is the simplest way to represent disease
patterns over space. Suchmaps are typically produced by ran-
domly placing dots or other point symbols within the spatial
extent of each geographic unit such that the total number of
dots within that unit is equal or proportional to the observed
number of disease cases. When producing such maps, the
mapmaker chooses a numerical value that each dot represents
on the map; for example, the mapmaker may decide that
one dot represents five disease cases. Areas containing many
dots indicate high concentrations of disease cases, whereas
areas with fewer dots represent lower concentrations. As
illustrated in Fig. 3, the dot value along with dot size can
result in maps with vastly different presentations of disease
concentration and spread. Larger spatial units such as the
census tracts located in the northern and western parts of
the county are more likely to be distorted as the dots are
not placed in accordance with population density – instead
they are randomly disbursed across the entire spatial extent
of each tract. Further, such maps do not take population into
consideration and are generally inadequate for measuring the
intensity of a disease within a population.

Choropleth maps are a commonly used alternative (Diggle
2000). They are constructed by grouping areas (typically
representing administrative units) into categories and are
assigned a color based on the value of the variable being
mapped. Choropleth maps are commonly used for many
reasons – they are easy to produce and interpret; they rely on
existing spatial units that typically represent administrative
boundaries for which other demographic and secondary data
are collected; and the process of aggregating data to some
administrative unit often addresses privacy and confidential-
ity concerns. The process of constructing a choropleth maps
typically requires the following three major decisions:
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Fig. 2 Synthetic data generation process

1. Choice of Map Unit
Choropleth maps are based on an existing system of

boundaries which form the basic spatial units using which
the map is produced. These units represent the geography
at which data are collected and/or made available for map-
ping. In the United States, census entities such as tracts,
block groups, or zipcode tabulation areas (ZCTAs) form
the basis of many choropleth maps. The choice of map
unit influences the patterns that are observed on the map
and present several challenges that are discussed in detail
below. Figure 4 shows various census entities that are
commonly used in theUnited States. Census tracts are rep-
resented by the dark black borders. Census block groups
represent finer spatial units and are represented by the
yellow lines. Note that census block groups are perfectly
containedwithin census tracts. Zipcode tabulation areas or
ZCTAs are a census unit that approximates area represen-
tations of zipcode service areas that are created by the US
Postal Service for the purposes of mail delivery. Zipcodes
are a dynamic entity that do not conform to traditional
census statistical data units such as block groups or tracts.
This presents a problem wherein demographic and/or so-
cioeconomic data collected by the census cannot be linked
to zipcodes, which are commonly used descriptions of res-
idential addresses. Although ZCTAs provide amechanism
to link census data to residential zipcodes, it is important
to note that they are approximations of zipcodes. The error
between the “true zipcode boundary” and ZCTAs is not
consistent over space with some areas presenting a greater
magnitude of misclassification compared to others. On a
related note, one must also be careful when comparing
choropleth maps constructed from different spatial units
as the underlying geography supporting the statistic being
visualized may be different across maps.

2. Choice of Classification Method
The process of classification takes a large number of

observations and groups them into categories or classes.
Creating maps from fewer, well-defined classes makes
them easier to read and understand when compared to
a map produced from raw data values. The mapmaker
typically specifies the number of classes and classification
method. Generally, a map must not have more than
seven classes. Although more classes result in less data
generalization, they may clutter the map with too much
detail, thus rendering it ineffective. Commonly employed
classification methods include equal intervals, quantiles,
and natural breaks. The equal interval method divides the
data into equal-sized classes (Fig. 5a). It works best when
data values are spread across the entire range. This method
must not be applied on a skewed dataset as it may result in
a washed-out map where one color (class) dominates. The
quantile method places an equal number of observations
within each class (Fig. 5b). This method generally results
in attractive maps as every color (class) has approximately
equal representation. A drawback of this method is that it
may result in classes that have varying numerical ranges.
The natural breaks method examines the data to identify
natural groupings of data that aim to group similar values
while maximizing difference between classes (Fig. 5c).
The Jenks Natural Breaks algorithm (Jenks 1963) is used
in most common GIS software.

3. Choice of Color and Map Context
To produce an effective map, the mapmaker must

think about the aesthetic qualities of the final map.
Considerations include choice of map colors, inclusion
of map elements such as a north arrow and scalebar, use
of data layers to provide context, labeling styles, among
others. Qualitative data are represented using differences
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Fig. 3 Using dot density maps to display disease outcomes

in hue, while quantitative data that contain a progression
of low to high values are represented by varying the levels
of saturation or lightness of a particular color. Brewer
et al. (1997) provide several guidelines on selecting
color schemes for mortality maps. The colorbrewer2.org
website is an excellent resource for mapmakers looking
for recommendations of color schemes based on the type
of data and map use (Brewer 2003; Harrower and Brewer
2003). Most GIS software allowmapmakers to selectively
include various map elements such as north arrows,
neatlines, and scalebars. GIS software including ArcGIS
and QGIS typically include various options for each map
element, thus allowing for high levels of customization

in the production of the final map. Secondary data layers
such as road networks, satellite imagery, or topographic
maps can be used to provide background or contextual
information that can aid the map reader. Examples of how
such data can be used in disease maps can be found in
Beyer et al. (2012).

While choropleth maps are easy to produce and interpret,
they also present several problems, particularly for portraying
rates of disease in a population. Such maps are subject to
the modifiable areal unit problem (MAUP) which states that
any change in the scale (level of aggregation) or shape of
map units (such as administrative boundaries) will result in

http://colorbrewer2.org
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Fig. 4 Commonly used census boundaries in the United States

Fig. 5 Commonly used map classification methods



272 C. Tiwari et al.

changing map patterns. Simply put, any change in the shape
or size of the unit being mapped will result in maps with
different spatial patterns of disease burdens. Cressie (1993)
showed that administrative boundaries tend to change based
on socioeconomic, demographic, and environmental criteria
for which health event data are collected and can influence
the observed rates and patterns of disease distribution. Bell et
al. (2006) added that health data are aggregated on predefined
spatial scales and any change in boundary does not represent
true numerical information about the region. In other words,
the aggregation of data into arbitrary administrative units can
lead to loss of information about how diseases are distributed
within those units themselves. Further, choropleth maps of
disease rates are subject to statistical variability due to small
numbers problem. In other words, areas with sparse popula-
tion counts are likely to yield estimates of disease rates that
are highly unstable and may dramatically change with the
addition or deletion of a few cases.

Methods to address the small numbers problem aim to
increase the population basis of support by aggregating data
over space and/or time to create collections of larger, contigu-
ous spatial units known as spatial supports (Beyer et al. 2012;
Hansen 1991; Mungiole et al. 1999; Rushton et al. 2000).
Other methods rely on the use of geostatistical modeling
approaches (Berke 2005; Goovaerts 2005; Goovaerts 2006)
or other types of statistical techniques (Clayton and Kaldor
1987; Devine et al. 1994; Lawson et al. 2000; Marshall 1991;
Mollie and Richardson 1991). A third category of disease
maps represents disease risk as a continuous function over
geographical space. Kernel density estimation methods are
commonly used to produce such maps (Talbot et al. 2000;
Tiwari and Rushton 2005). Maps produced using these meth-
ods use a kernel or spatial filter characterized by a particular
shape, size, and density function (Carlos et al. 2010; Shi
2010) to compute the intensity of a disease along a set of
sampling locations overlaid across the study area. Disease
rates are computed at each sample location by dividing the
number of cases that fall within a kernel placed at that point
by the population contained within it. The size of the kernel is
determined using one of two strategies: (1) a fixed size is used
at each sample point, thus ensuring consistent spatial support
but variable population support and (2) kernel sizes expand
or contract to meet a minimum population threshold, thereby
ensuring consistent population support but variable spatial
support (Talbot et al. 2000; Tiwari and Rushton 2005; Tiwari
2013). Variable sized kernels or adaptive spatial filters are
preferred over fixed-size filters as they address problems of
undersmoothing or oversmoothing. Undersmoothing results
when the kernel size is not large enough and continues to
compute disease rates using sparse population counts. This
may occur in rural areas where population densities tend

to be low. Oversmoothing occurs when the kernel size is
larger than what would be needed to compute a stable disease
rate. Oversmoothing occurs in densely populated urban areas
and results in loss of resolution on a map. Variable sized
kernels contract and expand in size such that each kernel
contains some minimum, user-defined population threshold.
Resulting maps provide consistent levels of statistical reli-
ability across all areas and high levels of geographic detail
in areas where such detail is expected (e.g., urban contexts).
In the work discussed in this chapter, we used the Web-
Based DiseaseMapping and Analysis Program (WebDMAP)
to produce such maps. Following are the three major steps
involved.

1. Create Data Files
WebDMAP requires three data files to compute disease

rates using the kernel density estimation method. The grid
file provides point locations on which kernels or spatial
filters will be constructed. The other two files provide the
locations of disease cases and populations, respectively.
If individual-level data are available, each location repre-
sents an individual. Alternatively, each location can also
represent aggregated counts of case/population data for
some spatial unit such as a census block group or ZCTA.
Location data must be provided in unprojected coordi-
nates (i.e. latitude and longitude). Simulated disease and
population data used in this chapter can be downloaded
from http://webdmap.com/kdedata.

2. Define Minimum Population Threshold
Recall that the size of the kernel/spatial filter that is

placed at each grid point is determined by some user-
defined minimum population size value. Note that the
size of the spatial filters is determined by this user-
specified parameter. Large population thresholds in areas
with sparse populations will result in the largest filter
sizes. Conversely, small population thresholds in areas
with dense populations will result in the smallest filter
sizes. In the work discussed in this chapter, we used a
population threshold of 1000 individuals. The study area,
Denton County, comprises dense urban areas (central and
south-eastern portions) as well as sparsely populated rural
areas (northwestern portions). Correspondingly, we see
a combination of small and large filter sizes across the
study region (Fig. 6).

3. Compute Rates and Produce Maps
The algorithm for computing rates using this method is

described below:
(a). Compute distance strings for the case and popula-

tion data. Distance strings are a kind of data struc-
ture that were originally designed for efficiently stor-
ing information about travel costs between nodes

http://webdmap.com/kdedata
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Fig. 6 Grid points and spatial filters

and were used frequently in location allocation algo-
rithms (Densham and Rushton 1992; Hillsman 1984;
Sorensen and Church 1995). The basic idea behind
a distance string is that it stores information about
travel costs (i.e., distance) between a base node (i.e.,
every grid point) and all other nodes (i.e., cases and
population locations) in an increasing order of dis-
tance. The procedure is implemented in a PostgreSQL
database, thus enabling the calculation of distance
strings for large datasets. To improve computational
efficiency, distance strings are truncated at a user-
defined cutoff value. By doing so, we assume that spa-
tial filters will never be larger than a certain size and
therefore terminate distance string calculations at the
user-defined cutoff value. In this analysis, the distance
string cutoff was set to 100 miles – i.e., we assumed
that spatial filters will never exceed a 100-mile radius.

To further improve computational efficiency, spatial
indexeswere created for all data tables, thereby result-
ing in substantially faster database query processing
times. See Nguyen (2009) for details on how spatial
indexes work within the PostgreSQL/PostGIS rela-
tional database. Distance strings are computed for the
case and population data.

(b). For each grid point, use the population distance
strings table to identify the distance associated with
the user-defined population threshold value. This
is implemented using database functions that query
the population distance strings table to identify the
distance value that corresponds with the row where
the cumulative population weight exceeds the user-
defined population threshold. This is the size of the
spatial filter. For example, in Fig. 7, if the user-defined
population threshold is set to 200, the algorithm will
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Fig. 7 Population distance strings example

Fig. 8 Case distance strings example

select the record highlighted in orange to define the
size of the spatial filter (i.e., 1.9 miles). Note that the
actual population contained within this spatial filter is
205. This may occur when aggregated data are used.
This process is repeated for every grid point.

(c). For each grid point, query the case distance strings
table and note the cumulative weight value that is as-
sociated with the distance noted in step b above. This
is the number of cases that fall within the spatial filter
size at that grid point. For example, if the distance
value at grid point 1 is 1.9 miles (step b), then the
number of disease cases that are contained within the
spatial filter constructed at that grid point is 14.

(d). Compute a rate at every grid point by dividing the
cumulative number of cases (step c) (Fig. 8) by the
cumulative population (step b) (Fig. 7).

(e). Repeat steps b through d to compute a rate for all the
grid points.

(f). A continuous surface map can be created from the
grid points using the inverse distance weighted (IDW)
interpolation method in any standard GIS software.
The IDW method with 8 neighbors and a power of
at least 2 is recommended to avoid any “double”
smoothing that may occur in addition to what has
already been performed by the spatially adaptive filter
method.
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Fig. 9 Disease maps produced by us

The maps shown in Fig. 9 were constructed using kernel
density estimation (Fig. 9a) and as choropleth maps (Fig.
9b–d). The four red dots indicate the sites of some en-
vironmental exposure. These sites were randomly selected
to include urban and rural contexts. As described earlier,
areas within a 1-mile buffer around each of the four points
represent an area of elevated disease risk (five times the
overall rate). To construct the map in Fig. 9a, a grid of points,
placed 4 miles apart, was overlaid on top of the study area
(Denton County, Texas). At each point of this grid, variable
sized kernels were constructed such that each kernel or spatial
filter contained exactly 1000 individuals. If aggregated data
were used instead of individual-level point data, each kernel
would contain a collection of spatial units with a minimum
population size of 1000. Kernel size (radius) ranged from a

minimum of 0.72 miles to a maximum of 10.834 miles. The
average kernel size was 4.163 miles. The number of cases
falling within each kernel were assigned to each grid point.
These ranged from aminimum of 4 cases to amaximum of 33
with an average of 10.736 cases. Rates were computed at each
grid point by dividing the case count by population. Disease
rates computed at each grid point ranged from a minimum
value of 400 per 100,000 to a maximum value of 3300
per 100,000. The average rate was 1073 cases per 100,000
population. Rate values at each grid point were converted
into a continuous surface of disease risk using the inverse
distance weighted (IDW) interpolation technique. Disease
rates were computed using the Web-Based Disease Analysis
and Mapping Program (Web-DMAP). Final map output was
created using ArcGIS Pro.



276 C. Tiwari et al.

The maps in Fig. 9b–d were created by aggregating case
and population counts to three sets of administrative bound-
aries with varying levels of spatial resolution. The maps
used census block groups, census tracts, and zip code tabu-
lation areas (ZCTAs), respectively. For each spatial unit (i.e.,
each block group, tract, or ZCTA), a rate was calculated by
dividing the total number of cases within that unit by its
population. For all four maps, rates were classified into five
groups using the quantile classification method.

The spatial patterns of disease rates in each of the four
maps present slight variations when compared to each other.
Note that the underlying data used in each map are identical.
Differences in observed patterns are a result of the different
levels of aggregation and the method used to construct the
map. Among the four maps, Fig. 9b presents the most geo-
graphic detail. However, due to the relatively small size of
census block groups, they also contain the most variability
in populations ranging from a minimum of 6 persons within
a block group to a maximum of 646. Due to the variable
population sizes, block groups also portrayed the most vari-
ability in disease rates with an average rate and standard
deviation of 1045.67 and 939.26 per 100,000 population,
respectively. The highest rates of disease were observed
around the four exposure sites along with pockets in the
northwest and eastern sections of the county. In contrast,
the map in Fig. 9d contains the least amount of geographic
detail. The use of large ZCTA boundaries tends to wash away
any fine-scale variations in disease rates. Only one of the
four exposure sites is located in an area of highest disease
risk. Pockets of high rates are observed in the northwestern
parts of the county. While the level of geographic detail
presented in this map is low, it also contains the most stable
estimates of disease rates. The average rate in ZCTAs in
Denton County was found to be 1066.53 cases per 100,000
population with a standard deviation of 574.17. The map in
Fig. 9c represents a balance between themaps presented in 9b
and 9d. It uses census tracts, which are slightly larger in size
(and population) compared to block groups and considerably
smaller in size compared to ZCTAs. Areas surrounding the
four exposure sites are classified as areas of highest disease
risk in addition to pockets of high rates in the northwestern
and eastern parts of the county. The average disease rate
is estimated at 1040.8 per 100,000 population along with
a standard deviation of 642.97. Finally, the map in Fig. 9a
identifies areas of highest disease risk surrounding two of
the four exposure sites. Unlike a choropleth map, this map
does not use discrete spatial units to represent rates across
Denton County. Instead, a continuous surface of disease risk
is used to identify areas of highest and lowest rates. As
discussed earlier in this chapter, the average rate is found
to be 1073 cases per 100,000 population with a standard
deviation of 462.99. Among the four maps, the one produced
using kernel density estimation presents the best balance

between resolution and reliability. The ability to control the
population basis of support ensures that consistent sample
sizes are used in the calculation of every disease rate across
the map. This map presents a desirable tradeoff between ge-
ographic resolution and reliability – maintaining high levels
of geographic detail in urban areas while preserving high
levels of statistical reliability in rural areas. While the map
produced using census block groups presents high levels of
visual detail, such maps must be used with caution due to
the problem of unstable rates caused by small population
counts. Conversely, a map that uses coarse spatial units such
as ZCTAs not only maintains statistical reliability but also
leads to severe loss in geographic detail across the entire map.

The choice of disease map and/or the spatial resolution
at which disease data are available influence the ability to
detect associations between disease burdens and environ-
mental exposures. The maps in Fig. 10a–d represent the
spatial patterns of population exposure to four point locations
of simulated environmental risk. These four locations are
denoted by red dots in Figs. 9a–d and 10a–d. Exposure is
measured as the Euclidean distance between each individual,
represented as a point in the synthetic dataset, and the clos-
est point location representing a site of environmental risk.
Map 10a was produced by interpolating distances computed
for each individual point in Denton County. Lighter colors
represent closer distances compared to darker colors. As
expected, areas close to the four red dots on the map show
lower distance values. The maps in Fig. 10b–d represent
the average exposure distance for populations aggregated
to census block groups, tracts, and ZCTAs, respectively.
As expected, areas within close proximity of the four red
dots portray lower exposure distances. Note that the block-
group-level map shows better geographic resolution when
compared to the other maps. This is generally a desirable
property in maps of environmental exposure when compared
to disease maps, where high levels of geographic detail
typically represent poor statistical reliability. However, it
is critical to note that valid map comparisons can only be
made when the underlying geographic or spatial basis of
support is consistent across all maps that are being compared.
Inconsistent spatial supports can result from differences in
resolution, scale, or boundary definitions. For example, one
cannot directly compare a disease map constructed using the
KDEmethod with a block-group-level map of environmental
exposure. Dasymetric mapping (REF) or other geostatistical
modeling techniques including interpolation (REF PYCNO)
may be used to reconcile maps that do not have consistent
spatial supports.

The scatter plots in Fig. 11a–d show the directionality and
strength of the relationships between exposures and disease
outcomes. Figs. 11a, b represent the relationship between
disease and exposure data measured at fine geographic scales
(individual- and block-group levels), whereas plots in Fig.
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Fig. 10 Exposure maps

11c, d represent this relationship at coarser geographic scales
(tract and ZCTA levels, respectively). It is interesting to note
that scatter plots produced using data at finer geographic
scales correctly describe a negative relationship between
distance and disease intensity. Note that the synthetic dataset
was produced using a five times greater risk of disease in
individuals within 1 mile of a simulated site of environmen-
tal exposure. Conversely, the scatter plots produced using
coarser data represent an inverse relationship, suggesting that
disease risk increases as one moves away from these sites
of environmental concern. The synthetic data produced do
not support this conclusion. It is also important to note that,
although the relationship between distance and disease rate
is correctly represented in Fig. 11b, the variability in disease
rates as indicated by the boxplot beside the y-axis is likely
to bias the strength of the relationships between distance and
disease rates.

Conclusions

The type of mappingmethod used to producemaps of disease
outcomes or environmental risks as well as their parameters
influences the observed patterns of disease distribution and
consequently our interpretations of associated risk factors. It
is important to remember that a map merely represents one
abstraction of complex underlying processes that control how
diseases and environmental risks manifest themselves across
space and time. The construction of an “honest map” requires
full disclosure of the methods used, scale of analysis, quality
of data, and other parameters used in the final construction
of the map. The objective of this chapter is not to identify the
“best” mapping method but to demonstrate that each method
comes with advantages and disadvantages and, importantly,
have an impact on the patterns and relationships that are
observed.
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Fig. 11 Relationships between exposures and disease outcomes
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The Influence of MATUP on Identifying
Spatiotemporal Emerging Hot Clusters
on Public Health Issues: Cases of Dengue Fever
and Lung Cancer

Huiyu Lin and Jay Lee

Spatiotemporal analysis has become a hot topic in geographic
research, which is now widely applied in the fields of public
health, climate change, earthquake analysis, criminology, and
many others; see for examples Nakaya and Yano (2010);
Hsueh et al. (2012); Zhang et al. (2013); or Gong et al. (2019).
Spatiotemporal analytic is particularly useful for exploring if
public health data exhibit any spatiotemporal trends, such as
how incidents of a certain disease distribute spatiotemporally
and how their spatiotemporal patterns evolve. But to use the
analytics appropriately, it is essential to understand those
patterns and how the spreading of such diseases progresses
so that suitable strategies or intervention programs can be
designed and implemented.

Additional examples include many recent studies on
dengue fever (DF) that had explored the spatiotemporal
patterns of DF incidents based on the nature of the
disease. DF is a vector-borne disease that is spread when
certain conditions are met. Such conditions involve both
spatial and temporal aspects. For example, locations with
environments that are ideal for mosquitoes’ reproduction
may see elevated DF cases (Yu et al. 2011; Casas et al.
2017; Gong et al. 2019). Also, weather conditions, such
as higher humidity and temperature, would contribute to
more activities of mosquitoes, thereby increasing DF cases
(Chien and Yu 2014; Delmelle et al. 2016). Consequently,
temporal patterns of DF incidents are critical in the spread
of DF cases as temperatures fluctuate across seasons and
even daily. In addition, different demographics, as well as
the socioeconomic levels of different studied areas, were
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found to be linked to the uneven spatial patterns and varying
temporal trends of DF cases (Hu et al. 2012; Koyadun et al.
2012). As a result, it is crucial to explore the spatiotemporal
patterns of DF further.

On the other hand, non-infectious chronic diseases such as
cancers also have heterogeneity spatial and temporal patterns
over space and time (Guo et al. 2016). For example, due
to the increasing urbanization level which often causes el-
evated environmental pollution and stress to urban dwellers,
especially in developing countries such as China, more and
more scholars have turned their interests to analyzing the spa-
tiotemporal pattern of lung cancer (LC)1 and the relationships
between LC cases and pollutants (Jerrett et al. 2013; Guo
et al. 2016, 2017; Chen et al. 2016). However, in order to
protect the privacy of cancer patients, and the data availability
limitation, the spatiotemporal patterns of cancer studies were
often done at a granular geographic level such as reporting
results from analyzing data that are aggregated to counties or
states. Such results, however, are often not precise enough for
use as references when developing public health programs for
localized programs.

It is interesting to note that, due to the availability of
data and different research purposes, inconsistent spatial and
temporal units were used in different research (Hsueh et al.
2012; Jerrett et al. 2013; Guo et al. 2016). For example, trans-
mitted diseases which require immediate actions to block the
transmission, such as dengue fever, were often investigated at
a finer level such as point level due to the highly contagious
nature, whereas chronic diseases such as cancers were often
studied at more aggregated levels such as county and states.
Nevertheless, the use of different spatiotemporal units may
cause the research to yield different results due to the exis-

1Cancer data and results from analyzing the data are presented without
base maps to respect patient privacy and the confidentiality of the data.

© Springer Nature Switzerland AG 2022
F. S. Faruque (ed.), Geospatial Technology for Human Well-Being and Health,
https://doi.org/10.1007/978-3-030-71377-5_15

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71377-5_15&domain=pdf
mailto:hlin25@kent.edu
mailto:jlee@kent.edu
https://doi.org/10.1007/978-3-030-71377-5_15


282 H. Lin and J. Lee

tence of an issue that we refer to as the modifiable areal and
temporal units’ problem (MATUP).

In this chapter, two case studies, DF cases from 2003
to 2008 in Kaohsiung City, Taiwan Province, China, and a
dataset of LC cases from 2000 to 2013 in a US county, are
analyzed and compared using different spatiotemporal units
to present the effects of how MATUP impacts on analytical
results. In addition, this chapter demonstrates the use of
the Emerging Hot Spot Analysis tool available in ArcGIS
(version 10.5 or higher, ESRI, Inc., Redlands, California).
The tool was used to identify spatiotemporal hot clusters.

Modifiable Areal and Temporal Unit Problem
(MATUP)

The spatiotemporal dimension of our data consists of a two-
dimensional plane and a temporal axis. Necessarily, time
and space are continuous. Hence, it is all artificial when it
comes to dividing time or space. As a result, strong bias
may be introduced to the interpretations and conclusions of
the statistical results when such divisions are implemented
differently.

Dividing a continuous space into smaller units introduces
the modifiable areal unit problem (MAUP). MAUP was first
introduced by Openshaw and Taylor (1979). When con-
ducting spatial analysis to the same geographical area, the
variation of results can be caused by either the different scale
or resolution used, which is called the scale effect, or by
the different regions divided, which is called the zone effect
(Openshaw 1984; Wong 2009). For example, even at the
same analytical scale, if the zones or boundary delimitations
are different for the study area, the results may be different
as well.

Time is also a continuous variable which is not discrete
in nature. Meentemeyer (1989) considered that every ge-
ographical event has its own timely resolution. Harrower
et al. (2000) pointed out that, when visualizing time series
data, some patterns can only be observed at certain time
granularity. Hence, it is essential to pick the appropriate
time unit for a specific event based on its characteristics,
because it will affect the result like those affected by MAUP
(Gibson et al. 2000; Hornsby and Egenhofer 2002). Coltekin
et al. (2011) called this phenomenon the modifiable temporal
unit problem (MTUP) and proposed that researchers should
pay attention to choosing the appropriate time unit when
analyzing geographic processes.

Coltekin et al. (2011) mentioned three aspects of the tem-
poral units, including the duration (how long), the temporal
resolution (how often), and the point in time (when). The
duration refers to the time span of the data, which is similar
to the boundary that defines the enclosure of the events into
a spatial unit. For time, a time span includes the start and end

time of all events recorded in the dataset. Data for a short
period may not form any pattern yet, or new patterns may
be newly formed but have not yet been recorded into the
analyzed dataset. This is similar to the boundary effects in
space.

Temporal resolution is the time granularity or scale, which
can be seconds, minutes, hours, days, weeks, months, or
years. Different temporal resolutions would include different
numbers of incidents within that period, which, in turn, would
further cause different statistical results. Similar to the spatial
scale effects, smaller temporal units may accumulate too few
events to be considered significant, while longer temporal
units may be too generalized to detect patterns.

Furthermore, the point in time of an event is the time
when the event occurred. This is similar to the zone effects in
MAUP. Cheng and Adepeju (2014) discussed how to divide
time and how that affects the analytical result. Under the
same time granularity, there are different ways to divide
time. For example, a week can be divided into Monday to
Sunday with Monday as the starting date. At the same time,
a week can also be divided into Sunday to the next Saturday,
and so on. Although both divisions of days into a week all
include 7 days, the starting and ending time of the analyzed
data would be different. Some events are closely related
to time. For example, transportation clearly shows different
temporal patterns between those during weekdays and those
over weekends.

Similar to discussions on the effects of the MAUP and
MTUP, the effects MATUP on analytical results would be
classified into three categories, including the scale, the divi-
sion of units, and the boundary of spatiotemporal events/data.

Spatiotemporal Scale Effect

The spatiotemporal scale corresponds to the spatial reso-
lution and temporal granularity. They are essentially the
artificially dividing units over the continuous space and time.
There are different ways for dividing a space, such as arti-
ficially defined political boundaries, areas divided based on
population or grids according to certain distances (feet, mile,
kilometer), or spatial units determined by natural barriers
(rivers, mountains, etc.) Time is often divided into standard
units such as second, minute, hour, day, week, month, season,
and year. As a result, the units of time and space are not uni-
fied. Hence, time and space are described when conducting
the unit division individually, such as the geographical events
happen within a year and within a 1 square kilometer radius
from a certain center point in space.

The data of LC and DF were analyzed in this chapter
to demonstrated how different spatiotemporal scales affect
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the identification of hot cluster2 results. Three spatial units,
including 0.5 km2, 1 km2, and 1.5 km2, and 5 temporal
periods, including 1 week, 1 month, 3 months, 6 months, and
1 year, were used to form a total of 15 spatiotemporal units.
Although it is expected that larger spatiotemporal units may
be generalized too much such that detail information could
be lost, the purpose of the comparative studies discussed
in this chapter is to verify if the results are better if finer
spatiotemporal units are used.

Spatiotemporal Zone Effect

As it is mentioned earlier, geographical space and time are
continuous; all spatial and temporal divisions are therefore
artificial. For example, geographical space is used to being
divided into political boundaries, such as states, counties,
and cities, or census units. As a result, the same area can
be divided into different spatial schemes. The sequencing of
spatial units may also be differently and artificially defined.
For example, a place may be divided into certain zonal
structure, and the zones can be sequenced from east to west
or west to east, or the sequence of zones can start from the
center and move outward.

Days are conventionally aggregated into weeks by group-
ing 7 consecutive days into a week, but different countries
have different customs for using different days as the first
day of a week. In some cases, moreover, people only consider
a week as 7 consecutive days rather than defining precisely
when each week starts. As a result, for both space and time,
there are many ways for spatiotemporal aggregation, even on
the same spatiotemporal scale. Hence, if the characteristics of
a phenomenon can only be found following a specified spa-
tiotemporal pattern, the analytical results would be affected
by the way that space and time divided.

In this chapter, the zone effect was tested using the same
resolution but different spatiotemporal division scheme. The
spatial division of fishnet grid and hexagon grid and the time
step alignment of the end time and start time were compared.

Spatiotemporal Boundary Effect

The spatiotemporal boundaries of a set of events include the
boundaries of both the geographical space and time, which
describe the spatiotemporal range of the events. For some
events, the probability of them occurring is related to not only
the environment of their locations but also their surrounding
environment, which may include economy, demography, and
climate, among other environmental conditions. For exam-

2Hot Clusters is used for spatiotemporal data asHot Spots are for spatial
data.

ple, to identify whether a region is a crime hot spot over
a period of time, apart from considering the crime events
that happened in this location during that time period, the
incidents that happened in its adjacent locations may also be
considered. As a result, the boundaries chosen to delineate
the events as to form a dataset may affect the outcome.
Hsueh et al. (2012) investigated the spatiotemporal patterns
of DF using the same dataset. They analyzed the patterns
for each year and detected different patterns. Therefore, it is
apparent that results of analyzing spatiotemporal patterns of a
set of events may be affected by the different spatiotemporal
boundaries applied in the analysis.

For the discussion in this chapter, the spatial extents of the
two datasets are fixed by the data. So, the spatial boundary
effects are not tested here. Only the temporal boundary
effects are examined.

Method

Spatiotemporal Pattern Detection

The spatiotemporal patterns of the examined data were iden-
tified using the Space Time Pattern Mining Tools toolbox,
which is available in ArcGIS 10.5 or higher.

Different spatiotemporal units were used to explore the
scale effects of the MATUP on results of analyzing spa-
tiotemporal patterns. Three spatial units, including fishnet
grids with the width of 0.5 km, 1 km, and 1.5 km, and
5 temporal periods, including 1 week, 1 month, 3 months,
6 months, and 1 year, were used to form a total of 15
spatiotemporal units used in detecting the spatiotemporal hot
clusters. The temporal alignment was set such that the last
date of the dataset was set as the END_TIME and the rest
were defined by counting backward from that time.

In addition, the zone effect was tested on the DF dataset
using the same spatiotemporal unit, but the zonings of the
spatial units are different. This comparative analysis used a
hexagonal spatial grid to partition the study area and started
counting temporal units at the START_TIME and forward.

Two tools inside the ArcGIS 10.5 toolbox were used for
the identification of spatiotemporal hot clusters. First, the
Create Space Time Cube tool was used to create space-time
bins from the original data. Defined by the selected spa-
tiotemporal units, space-time bins are the aggregated three-
dimensional spatiotemporal units for the analysis. All bins
belonging to the same time range are called a time slice. Bins
that belong to the same location across time are called Bin
Time Series, as it is shown in Fig. 1a. Moreover, then, the
Emerging Hot Spot Analysis tool used the bins created earlier
to construct spatiotemporal patterns.

The Create Space Time Cube tool summarizes a set
of points into a NetCDF output file by aggregating them
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into space-time bins. NetCDF is a structure which supports
the storage of multi-dimensional scientific data, such as
geographical coordinates, time, temperature, humidity, etc.
Within each bin, the number of points (space-time events) is
counted, and their associated attribute values are aggregated.
For all bin locations, the trend for counts and summary field
values is evaluated. The block of space-time cubes is the
only acceptable input data format for the Emerging Hot Spot
Analysis tool.

Details on the tool’s parameters, their meanings, and
requirements of the Create Space-Time Bin tool can be found
in the Help document of ArcGIS (http://desktop.arcgis.com/
en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/
create-space-time-cube.htm). Three parameters below have
the most effects on the division of the study spatiotemporal
extent into spatiotemporal units:

1. Time Step Interval: The number of seconds, minutes,
hours, days, weeks, or years that represent a single time
step. Examples for valid entries for this parameter are
1 day, 2 weeks, 3 months, and so on.

d d

b

Fig. 1 (a) Space-time cube. (From ArcGIS 10.5 Help document,
retrieved from http://desktop.arcgis.com/en/arcmap/10.3/tools/
space-time-pattern-mining-toolbox/create-space-time-cube.htm).
(b) Distance interval (d)

2. Time StepAlignment: Defines how aggregationwill occur
based on a given time step interval.

3. Distance Interval (d): The spatial extent of the bins used
to aggregate the input features. For a fishnet grid, the
distance interval, d, is the side length of the square. If
the analysis were to aggregate data into hexagons, the
distance interval is the height of each hexagon, or d, as
it is shown in Fig. 1b.

In this research, several time step intervals were set to
1 week, 1 month, 3 months, 6 months, and 1 year. Distance
intervals include 0.5 km, 1 km, and 1.5 km. The default
value of END_TIME was used for the time step alignment,
which aligned time steps to the last time event of the data and
aggregates time backward. Also, time step alignment was set
to START_TIME for the spatiotemporal unit of 1 month by
1 km2 and 3 months by 1 km2 so as to support a comparison
of the identified hot clusters to see whether they cause any
differences for the results.

The output file created by the Create Space-Time Bin tool
were the input file for the Emerging Hot Spot Analysis tool.
This tool needs to be given a search neighborhood range,
including the Neighborhood Distance and the Neighborhood
Time Step. The Neighborhood Distance was set to be two
times the unit’s distance interval correspondingly while the
Neighborhood Time Step was set to be one.

The Emerging Hot Spot Tool combines two statistical
measures to identify trends within the three-dimensional
space. The tool uses the Getis-Ord G∗

i statistics to evaluate
every bin within the search over the adjacent neighborhoods
of each time slice. As a result, every bin was determined
whether it was a hot or cold spot based on the calculated z-
score and p-value.

The formula calculating the Getis-Ord G∗
i can be written

as:

G∗
i =

∑n
j=1 wi,j xj − X

∑n
j=1 Wi,j

S

√
n
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j=1 w2
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2
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where xj is the attribute value for feature j, wi, j is the spatial
weight between feature i and j, n is equal to the total number
of features, and

X =
∑n

j=1 xj

n
,

S =
√∑n

j=1 x2
j

n
− (

X
)2

.

Next, based on the evaluation result of each bin with re-
spect to other locations across time series, the Mann-Kendall

http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
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trend test was used to evaluate the temporal trend across the
temporal dimension (Mann 1945;Kendall andGibbons 1990;
Hamed 2009). With the Mann-Kendall test, the bin value for
the first period was compared to the bin value for the second
period. If the first is smaller than the second, the result is
a +1, indicating an increasing trend. Otherwise, the result is
−1, representing a decreasing trend. If the two values are tied,
the result is 0, meaning no trends are detected. The results are
summed after comparing with each neighbor. Therefore, a
random trend has the expected sum of 0, indicating no trend
over time. Based on the variance for the values in the time
series of bins, the number of ties, and the number of periods,
the observed sum was compared to the expected sum (0) to
determine if the difference was statistically significant or not.
The trend for each bin’s time series was recorded as a z-score
and a p-value. A small p-value indicates that the trend was
statistically significant. The sign associated with the z-score
determines if the trend was an increase in bin values (positive
z-score) or a decrease in bin values (negative z-score).

With the ArcGIS software, the tool categorizes every bin
as one of the following statuses: new hot spot, consecutive hot
spot, intensifying hot spot, persistent hot spot, diminishing
hot spot, sporadic hot spot, oscillating hot spot, historical hot
spot, new cold spot, consecutive cold spot, intensifying cold
spot, persistent cold spot, diminishing cold spot, sporadic
cold spot, oscillating cold spot, historical cold spot, or no
pattern detected. The entire definition of all hot spot types can
be found on the ArcGIS website (http://desktop.arcgis.com/
en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/
learnmoreemerging.htm).

However, because different datasets are merely a sample
of the population, some types of hot spots may not be
detected. For example, if the spatiotemporal units were too
small for the data, they may result in a small number of cases
aggregated into one unit. With that, the variance between
bins might be too small to be detected. Therefore, different
spatiotemporal units were used and tested in this research to
showcase how they can affect the analysis results.

Datasets

The dataset of the DF cases is from the Health Bureau of
Kaohsiung City in Taiwan. The dataset includes all daily re-
portedDF cases from 2003 to 2008 for a total of 1408 records.
The reported DF cases were geocoded to latitude/longitude
coordinates under the transverse Mercator projection. The
temporal attribute of the data includes the date when the cases
were reported and the date of confirmation. Given that all
reported DF cases shown in the dataset were later confirmed
to be DF, the analysis only used the reported dates as the
temporal information.

The LC dataset was for an un-named county in the USA
and was artificially distorted by randomly shifting each loca-
tion a±200 feet in all x, y directions to protect patient privacy.
The resulting dataset contains over 6000 cases whose space-
time attribute values were slightly modified from their orig-
inal values. Given that the shifts had a mean of 0, the space-
time variance should remain the same. With the random
shifts, each LC case had a set of latitude and longitude coordi-
nates and a date that ranged from 1996 to 2009. Although the
dataset does not contain original locations of cancer cases, the
dataset generally simulated the spatiotemporal distribution of
LC in an average-sized US county. For the validity of the
study reported here, as long as the dataset is the same when
testing different spatiotemporal analytical units, the different
impacts on the results can still stand.

Furthermore, this dataset has a much higher number of
cases than the DF dataset, as well as a more extended time
period. Therefore, it can be an excellent comparison to the
DF analysis as well as showcasing the effects of the MATUP
on results of chronic diseases research. However, the result of
this dataset cannot be used to interpret real-life cancer cases.
It merely contributes to discussing the effects of MATUP.

Results and Discussion

Impacts of Different Spatiotemporal Scales

There is a total of 11 types of hot/cold spots detected from
the spatiotemporal distribution of the LC cases. The results
are shown in Fig. 2. Only the fishnet grids that had been
identified as a hot/cold cluster were plotted. In Fig. 2, all
windows have the same geographic scale and have the same
spatial extent.

As it is shown in Fig. 2, there are many varying re-
sults. Each row of figures represents results using the same
temporal unit, and each column of figures contains results
using the same spatial unit. The spatial unit is marked as
the width of the fishnet grid. For the results at the finer
temporal units such as 1 week and 1 month, only sporadic
hot clusters were detected. When the spatiotemporal units
or either the spatial or temporal unit becomes larger, more
variety of patterns could be detected. Overall, the figures
indicate that, potentially, more variance can be identified
if the spatiotemporal unit is substantial enough for data to
accumulate.

However, the same conclusion cannot be drawn on the DF
cases. As it is shown in Fig. 3, only three types of hot clusters
were identified for the DF spatiotemporal patterns. Due to
the data limitation (i.e., scarcity), only 1 month, 3 months,
and 6 months were used as the temporal units. It is worth to
mention that no matter at which spatial level was used, using
1 week as the temporal extent failed to reveal any pattern.

http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm
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Fig. 2 Emerging hot spots of LC under different spatiotemporal scales
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Fig. 2 (continued)



Fig. 3 Emerging hot spots of DF under different spatiotemporal scales
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This might be caused by having too few cases accumulated
within one unit (spatiotemporal bin), so the algorithm was
not able to detect any variance among bins.

In both cases, if the spatial unit stayed the same when
the temporal unit was lengthened, the tool could not always
detect more patterns than when the temporal unit was short.
This situation is evident for DF cases. The patterns detected
from the DF cases show some regional variance. For the
northern part of Kaohsiung, patterns can only be identified
for larger spatiotemporal units, and the types of hot clusters
are different. However, for the central regions of Kaohsiung,
when the spatial extent was controlled to be the same, there
were fewer patterns detected if the temporal units are increas-
ing – an outcome that is contrary to the assumption that the
longer time period used for a bin, the more cases would be
included in a bin.

Furthermore, the result from using the largest spatiotem-
poral unit (6 months by 1.5 km2) in the detection of hot
clusters was showing the least variance (result showed the
least number of units detected as hot spots compared to
results from other spatiotemporal units), whereas the results
using the temporal units of 3 months, regardless of which
spatial units used, seem to show the most varying patterns
(results showed both the most number of hot spots detected,
and more types of hot spots identified – especially for the
unit of 3 months by 0.5 km2). These results might be caused
by the nature of the disease as DF often has intense cyclic
occurrences that generally start in mid or late summer and
end in late fall (Hsueh et al. 2012). Therefore, temporal units
that were too small failed to form any pattern, while temporal
units that were too large tended to conceal detail information.
Hence, it is essential to select the best spatiotemporal units for
health research. Ideally, the units can be defined based on the
nature of the disease. However, if the nature of the disease
is unknown, the researcher should try more combinations for
the best results, given the increasing computation power that
we now have with modern computers. In the DF cases, it
appears that using the temporal unit of 3 months might be
the right choice for future studies.

However, in the LC cases, when the spatial unit was
0.5 km2, the number of locations identified as hot clusters
decreased as the temporal units were increased from 1 week
to 3 months. Nevertheless, the phenomenon was later reverse
as more locations and types of hot clusters were identified
when the temporal unit was increased.

With larger spatial units such as the 1 km2 grids and
1.5 km2 grids, when the temporal unit was increased, more
varying patterns were detected (except for the pattern identi-
fied at the 1 month by 1 km2 which was less statistically sig-
nificant than that of the 1 week by 1 km2). Furthermore, the
most patterns were detected when the temporal unit was set
to be 1 year. The result indicates that for research on chronic
diseases, using a spatiotemporal unit that is too small may not
reveal comprehensive spatiotemporal patterns of the disease.

Impacts of Spatiotemporal Zone

The analysis used different division schemes when the
spatiotemporal resolution remains the same to demonstrate
the impacts of the zone effect. For different spatiotemporal
zones, in the Create Space Time Cube tool, the time step
alignment parameter was set to either END_TIME or
START_TIME, and the aggregation shape type was set to
be either FISHNET_GRID or HEXAGON_GRID. For the
DF cases, the comparison was made with the spatiotemporal
resolution of 90 days by 1 km2.

The temporal unit was set to 90 days to approximate the
temporal units of 3 months (i.e., a season). Based on the
previous result (see Fig. 3), using 3-month time periods may
produce a better result compared to results from using other
temporal units. However, the original dataset had 72 months,
which could be divided evenly by 3 months. Therefore, if the
analysis were to use 3-month periods as the temporal unit,
there might be much detectable difference – 3 is such a small
numeric value. Hence, the spatiotemporal resolution was set
to be 90 days by 1 km2. The results were shown in Fig. 4.
The maps of each row have the same spatial zone, while each
column has the same temporal division.

As it is shown in Fig. 4, the change of spatiotemporal
zoning scheme did impact the results. When using the same
spatial zone, changing the time step alignment affected the
types of clusters detected, especially in the northern parts of
the study area. However, it seems like when using the same
temporal alignment, the types of clusters identified showed
little differences, while the location of the clusters did show
to be changed.

Furthermore, the effects on the temporal trends can be
further verified by mapping the trends as they are shown in
Fig. 5. The numbers of different trends by confidence levels
under different time step alignments are shown in Tables 1
and 2.

Overall, a more significant change occurred when the time
step alignment changed. More locations were found to have
increasing trends if the alignment was set to START_TIME.
Also, although some locations were found to have an uptrend,
the level of confidence did change.

Furthermore, the impact of zone effects on the analysis
of LC cases was shown on the maps in Figs. 6 and 7. The
spatiotemporal unit for the analysis LC cases was 365 days
by 1.5 km2 *. The unit of 365 days was comparable to the
unit of 1 year. The numbers of different trends by confidence
levels under different time step alignments are listed in Tables
3 and 4. The zoning effect has an impact on the results when
either the spatial or temporal divisions changes. Compared
to the DF cases, the effect was more evident for the different
spatial division schemes.
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Fig. 4 Emerging hot spots under spatiotemporal zone effects on DF analysis
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Fig. 5 Temporal trend under spatiotemporal zone effects on DF analysis
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Table 1 DF analysis: the number of different trends by confidence under different time step alignments – fishnet grid

Time step alignment Uptrend 99% confidence Uptrend 95% confidence Uptrend 90% confidence No significant trend

END_TIME 4 21 16 63

START_TIME 13 21 21 49

Table 2 DF analysis: the number of different trends by confidence under different time step alignments – hexagon grid

Time step alignment Uptrend 99% confidence Uptrend 95% confidence Uptrend 90% confidence No significant trend

END_TIME 5 16 18 75

START_TIME 12 24 22 56

However, changing the temporal alignment scheme has
caused a significant impact on the result than by changing
the spatial division scheme. The most exciting result is
that for most of the locations identified as historical hot
clusters, they were detected as oscillating or consecutive
hot clusters when the time step alignment changed from
START_TIME to END_TIME. Besides, more locations were
identified to have an increasing trend as it showed in Fig. 7.
According to the Toolbox’s description, it is better to use the
END_TIME as the temporal alignment if the study concerns
more on the most recent trends (http://desktop.arcgis.com/
en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/
learnmorecreatecube.htm). Therefore, the benefit of using
END_TIME showed promising results on LC cases.

Impacts by Different Spatiotemporal
Boundary Schemes

Due to the data limitation, only temporal boundary effects
were explored in this chapter. In order to demonstrate the
boundary effect, the data of the last 3 months from the
original DF dataset and the data of the first 1 year from the
LC dataset were removed. For the DF cases, the temporal
boundary changed from January 1, 2003, to December 31,
2008, to January 1, 2003, to September 30, 2008. The spa-
tiotemporal unit used for the DF cases is 3months by 1 km2 *.
For the LC cases, the temporal boundary was changed from
January 1, 1996–December 31, 2009, to January 1, 1997–
December 31, 2009. For both cases, the time step alignment
was END_TIME, and the aggregation shape type was fishnet
grid.

Due to the limitation of the software, if the data cannot
be broken up evenly into the temporal units (e.g., 3-month
or 1-year intervals), there would be a time step that does
not have data over its entire span. This will produce bias
to the result because the algorithm would assume that the
biased time step has significantly fewer events than other time
steps. Therefore, data of the most recent 3 months and the
oldest year correspondingly in the DF and LC dataset were
removed. In this way, the boundary effects of the MATUP
can be tested.

The results are shown in Figs. 8 and 9. The spatial scale for
all maps is 1:300,000. As it is shown in Fig. 8, the temporal
boundary does have an impact on the results. Also, the effects
were more evident in the DF cases as no pattern was detected
in central Kaohsiung and the types of clusters completely
changed in the northern part of the city. However, for the
LC cases, the changes seem less obvious. The reason for
this phenomenon might be that for the LC dataset, it was
the oldest data being removed. Therefore, when the time
step alignment was END_TIME, the most recent pattern
remained.

To further test the boundary effect, data of the most
recent year was removed from the LC dataset, while other
conditions remained the same. The result is shown in Fig.
10. Compared to the result shown in Fig. 9, the changes in
the pattern seem more substantial, especially on the east,
northeast, and northwest portion of the study region. This
result indicates that not only the boundary difference affects
the result but there is a combination of effects from both the
temporal boundary and the temporal alignment.

Strength andWeakness

In this chapter, two sets of diseases cases, including a trans-
mitted disease and a chronic disease, were used to demon-
strate the effects of the MATUP. The newly developed Space
Time Pattern Mining Tools toolbox in ArcGIS was used for
the analysis, including two functions of Create Space Time
Cube and Emerging Hot Spot Analysis. However, there were
a strength and weakness of the two tools.

The advantage of the Create Space Time Cube is that it
aggregates raw point data into a cube of three-dimensional
space-time bins, which is the foundation for the Emerging
Hot Spot Analysis. The tool requires the setting of two
parameters to define the spatiotemporal unit, including the
time step interval and the distance interval. Also, the user
can define the time step alignment rules which have found
to have effects on the results in this chapter. If the user is
more interesting in recent patterns, using END_TIME as the
temporal alignment produced better results.

http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmorecreatecube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmorecreatecube.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmorecreatecube.htm
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Fig. 6 Emerging hot spots under
spatiotemporal zone effects on
LC analysis
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Fig. 7 Temporal trend under spatiotemporal zone effects on LC analysis
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Table 3 LC analysis: the number of different trends by confidence under different time step alignments – fishnet grid

Time step alignment
Uptrend 99%
confidence

Uptrend 95%
confidence

Uptrend 90%
confidence

No significant
trend

Downtrend
90%
confidence

Downtrend
95%
confidence

Downtrend
99%
confidence

END_TIME 0 5 2 216 37 60 104

START_TIME 14 21 20 329 11 26 3

Table 4 LC analysis: the number of different trends by confidence under different time step alignments – hexagon grid

Time step alignment
Uptrend 99%
confidence

Uptrend 95%
confidence

Uptrend 90%
confidence

No significant
trend

Downtrend
90%
confidence

Downtrend
95%
confidence

Downtrend
99%
confidence

END_TIME 0 1 3 245 32 69 131

START_TIME 13 22 16 376 21 29 4

Fig. 8 Emerging hot spots under the spatiotemporal boundary effect on DF analysis. (January 1, 2003, to December 31, 2008, and January 1,
2003, to September 30, 2008)

However, the spatial feature has some limitations. Al-
though users can define whether to create a fishnet grid or a
hexagon grid, both aggregation shapes are often not aligned
with real-life political or police jurisdiction boundaries. As
a result, this brings more difficulty in the interpretation of
the result. To this issue, a possible workaround is to have the
spatial units as small as possible and then re-assemble the
spatial units to match political/artificial boundaries as close
as possible after deriving the results.

Furthermore, the Emerging Hot Spot Analysis combined
Getis-Ord G∗

i statistics for the spatial analysis and the Mann-

Kendall test for the temporal trend detection. Also, the tool
can identify eight types of hot clusters and eight types of cold
clusters based on both the spatial and temporal patterns of the
data. Overall, the tool presented a substantial improvement
from the hot spot analysis and trend analysis that were based
only on spatial dimensions.

Nevertheless, there is still some weakness in this method.
First, the Emerging Hot Spot Analysis merely combines
two well-established statistics rather than proposing a new
spatiotemporal statistical method that could have merged
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Fig. 9 Emerging hot spots under the spatiotemporal boundary effect on LC analysis. (January 1, 1996, to December 31, 2009, and January 1,
1997, to December 31, 2009)

the spatial and temporal measures organically. Second, the
definition of each hot/cold clusters is arbitrary in most cases
so that it may not be suitable for some studies that have to use
artificially defined boundaries. For example, the definition
of the new hot spot describes it as “A location that is a
statistically significant hot spot for the final time step and
has never been a statistically significant hot spot before.”
What if a location only becomes a hot spot for the second
to last time step while having never been a hot spot before?

In real-life practice, we may consider it also to be a new
hot spot, while the algorithm might reach a different result.
Although 16 types of hot spots are an improvement from the
previous methods, whether they stand the test of time needs
more experiments.

Furthermore, as the boundary and zone effect of the
MATUP shown in this chapter, the result of the analysis is
subject to a substantial change if new data enter the dataset.
After all, one of the most intriguing applications of this
method is to find clusters that are newly developed or have
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Fig. 10 Emerging hot spots under the spatiotemporal boundary effect on LC analysis. (January 1, 1996, to December 31, 2009, and January 1,
1996, to December 31, 2008)

been intensifying, so that timely response can be enforced.
Therefore, it might be more useful to develop a dynamic
computer program which has the ability to record new data
and produce timely results for the user.

Overall, the method is an improvement from the previous
spatial and temporal analysis, which has the potential
to be applied in different research projects regarding
spatiotemporal patterns of events. However, due to MATUP
effects and how the clusters are designed, users should
be cautious in interpreting results to avoid overlooking
important information.

Conclusion

This chapter discussed the effects of the modifiable areal
and temporal unit problem (MATUP) on identifying spa-
tiotemporal hot clusters. There are three categories of the
MATUP effects, including the spatiotemporal scale, zone,
and boundary. The cases of dengue fever and lung cancer
cases were examined using the Space Time Pattern Mining
toolbox available in ArcGIS 10.5 or later versions. The
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results were compared and investigated so that the effects of
MATUP can be further understood.

Based on the results, all three types of effects do impact the
results of hot spot detection. Using different scales indicates
different levels of data accumulation in each unit. Judging
from the results, spatiotemporal units that are too small
cause fewer incidents accumulation in each unit, so that the
statistical results are less significant because less variance
has shown between units. However, larger spatiotemporal
units may not always show more varying patterns than small
units, such as the example of the DF cases. For any given
dataset, the most suitable temporal scale should be based on
the nature of the events.

Moreover, different results were produced when using
different temporal alignments, such as START_TIME and
END_TIME, for analysis. This indicates the changes in how
space and time are divided because that is directly related to
the variance among results. If the priority of the project is
to identify recent patterns, using END_TIME is better as the
alignment rule.

Furthermore, when different temporal boundaries were
used for the analysis of the same dataset, detected patterns
would change. However, the effects of changing boundaries
may be magnified when combined with different temporal
zoning schemes, such as in the case of analyzing the LC
cases.

In summary, the analysis in this paper shows the effects
of MATUP on spatiotemporal cluster patterns. The analysis
reveals the existence of MATUP so that the structure of the
spatiotemporal analysis is not entirely independent of the
spatiotemporal units used in the research. Since the results of
the spatiotemporal analysis rely on the spatiotemporal units
selected, systematic analysis using different spatiotemporal
units can be experimented when conducting analysis, so that
the effects on the variance of results can be minimized.
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The Spatial Non-stationarity in Modeling Crime
and Health: A Case Study of Akron, Ohio

Huiyu Lin, Jay Lee, and Gregory Fruits

Introduction

The overall purpose of this study is to examine if vio-
lent crime rates are a good predictor for community health.
Specifically, this study used local obesity rates as a proxy
to community health. From an ecological standpoint, re-
searchers often study obesity through investigating their as-
sociations with environmental characteristics (Sandy et al.
2013; Burdette and Whitaker 2004; Shahid and Bertazzon
2015; Ruijsbroek et al. 2015) and/or social structural char-
acteristics, such as poverty (Halleröd and Larsson 2008;
Chen and Truong 2012; Salois 2012; Rybarczyk et al. 2015;
Huang et al. 2018) and race (Fan and Jin 2014). Furthermore,
sociologists often argued that the fear of crime and the lack
of appropriate infrastructure led to less physical activities,
which resulted in obesity among residents. To this end,
however, there have not been direct causal associations or
universal relationships found between crime and obesity in
the literature.

The selection of analytical methods may contribute
to the inconsistent results found in previous research.
Current research mainly used global regression models
which failed to consider the spatial non-stationarity within
the relationships between variables (Sandy et al. 2013;
Brown Barbara et al. 2014. Therefore, spatially weighted
analytics such as the geographically weighted regression
(GWR)/geographically weighted Poisson regression
(GWPR) have become increasingly recognized and used
in public health research (Gilbert and Chakraborty 2011;
Nakaya et al. 2005; Yang and Matthews 2012; Comber et
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al. 2011). This study examines whether violent crime can
be a good predictor to local obesity prevalence and if such
association is spatially varying using the GWR.

This paper demonstrates the use of GWR in modeling
crime, health, demographic, and environmental data. The
discussions are to answer the questions: Is it necessary to use
GWR in crime and health modeling? How to organize data?
How to select the appropriate variables for model building?
How to interpret the results? Is the GWR result better than
the ordinary least square (OLS) regression? What should we
pay attention when mapping the results?

Geographically Weighted Regression
and Ordinary Least Square Regression

Spatial Non-stationarity

The concept of spatial non-stationarity was first introduced
by Fotheringham, Charlton, and Brunsdon (Fotheringham et
al. 1996). In their paper, they pointed out that even though
researchers had recognized the spatial component in data,
global models were still widely used in studies. However, ac-
cording to the First Law of Geography (Tobler 1970), global
parameters could not be able to capture the spatial variances
which existed in the relationships between the explanatory
variables and the dependent variable (Fotheringham et al.
1996; Brunsdon et al. 1996).

In an effort to address the issue of spatial non-stationarity,
researchers proposed localized spatial statistics such as the
G statistics (Getis and Ord 1992), local indicators of spatial
association (LISA) statistics (Anselin 1995), local ordinary
least square regression (OLS) and local Bi-square (Fother-
ingham et al. 1996), and geographically weighted regression
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(Brunsdon et al. 1996). Among the aforementioned methods,
the first two measure the levels of spatial clustering in geo-
graphical events and capture the spatial heterogeneity among
them. The latter extended traditional regression models by
adding components that measured the strength of spatial
associations.

Since the introduction of the geographically weighted
regression (GWR), there have been an increasing number of
studies that used the method in research related to public
health (e.g., Chen and Truong 2012; Chi et al. 2013; Wen
et al. 2010; Chalkias et al. 2013). However, with concerns
that building GWR models may yield a higher correlation
betweenmodel variables than those fromOLSmodels (Cahill
and Mulligan 2003; Cahill and Mulligan 2007; Troy et al.
2012; Deng 2015; Rybarczyk et al. 2015), many previous and
current research still applied global linear regression such as
OLS for model building (Vandewater et al. 2004; Singh et
al. 2008; Carroll-scott et al. 2020). Given this, it is crucial to
weight the strength and weakness of the two methods so that
future researchers can choose the most appropriate one.

The GWR model can be expressed as:

yi = β0 (ui, vi) +
k∑

j=1

βj (ui, vi) xij + εi

where yi is the estimated value of the dependent variable
at the location i and (ui, vi) describe the coordinates of i,
β0 is the intercept value, and β j is a set of parameters at
point i. The value of β j will vary for different space-time
locations. It is assumed that the observed data close to point
i have a greater influence in the estimation of β j than others.
Detail explanation regarding the GWR method can be found
in Fotheringham, Charlton, and Brunsdon (Fotheringham et
al. 2002).

In addition to GWR, the spatial matrix was introduced to
other regression models to expand the spatial statistics such
as the GWPR mentioned earlier (Nakaya et al. 2005) and
Gaussian semi-parametric GWR (SGWR, Villarraga et al.
2014).

Although GWR can be used to explore the spatial non-
stationarity among variables, it might not be suitable for
use for all datasets. Therefore, it needs to be justified that
using the spatially weighted method is indeed superior to
global modeling before applying it to a specific dataset in
the research.

Justification for Using GWR

There are a few criteria that we can use for assessing if GWR
is suitable for use in a study. A global regression model may
be built for an initial assessment. After applying the OLS re-

gression, Jarque-Bera test (Jarque and Bera 1980; Thadewald
and Büning 2007; Barbu 2012) and Koenker (BP) statistics
(Wallace 2011; Avila-flores et al. 2010) can be applied to
evaluate the model residuals for assessment. Combining both
tests assesses whether the relationships shown by the model
have any bias or are consistent over the study region. If both
statistics are statistically significant, we would be confident
that the global model is biased, and another method, such as
GWR, should be used (Ortolano et al. 2018; Avila-flores et
al. 2010).

However, the Jarque-Bera test and the Koenker (BP)
statistics do not necessarily reflect whether the spatial non-
stationarity causes the bias. Therefore, other criteria should
be included to justify whether using GWR produces a better
model. Overall, we may compare the residual squares, the
Akaike information criterion (AIC) (Akaike 1974) which
serves as a goodness-of-fit indicator (Yang and Matthews
2012), and the R2 and/or adjusted R2 between the GWR
and OLS model to determine whether it is necessary to use
GWR and whether GWR models perform better than the
OLS model.

The residual squares are the sum of the squared residuals
in the model. Models with smaller residual squares have
a closer fit between estimated values to the observed data.
Furthermore, the model with lower corrected AIC (AICc)
value reflects a better fit to the observed data. If the AICc
value of the GWRmodel is lower than that of the OLS model
with the difference larger than 3, it can be asserted that using
the GWR model is beneficial.

Also, R2 represents the goodness of fit, which shows the
proportion of the dependent variable variance accounted for
by the independent variables. The value of R2 and adjusted R2

shows the strength of the association between the dependent
variable and independent variables. The larger the value, the
better the fit of the model. However, adding any collinearity
among explanatory variables might inflate the value of R2.
Therefore, the adjusted R2 should also be evaluated.

Bandwidth Selection

Different from the ordinary least square (OLS) regression
model, which treats a study area as having the same as-
sociation between dependent and independent variables ev-
erywhere, the GWR uses a moving kernel with a fixed or
adaptive bandwidth for defining the different spatial weight
that a given local unit should be weighted in the analysis
of the association between dependent and independent vari-
ables. Such a model produces localized regression param-
eters, i.e., a local R2 and local regression coefficients for
each spatial unit and each independent variable in the model.
Therefore, GWR can be used to search for locations that
exhibit significantly strong (or weak) associations between
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the independent and dependent variables or to detect “hot
spots” (Fotheringham et al. 2002).

The spatial weights matrix may be structured to be based
on distances between local spatial units. Based on the First
Law of Geography (Tobler 1970), the selection of a band-
width may significantly affect the model outcome (Cahill and
Mulligan 2007). The bandwidth that is too small may include
fewer data points for estimation, which may result in an
instability of the parameter estimates, while a bandwidth that
is too large may smooth the spatial variation at the estimation
point.

Many GIS software allows users to determine whether
they want to use a pre-defined fixed bandwidth or an adaptive
bandwidth. The value of a fixed bandwidth may come from
previous experience or literature. However, in this research,
adaptive bandwidth was selected. There are two popular
parameters usually provided in GIS software to calculate
the optimal bandwidth – the corrected Akaike information
criterion (AICc) and the cross-validation (CV). The two
parameters produce similar results, while the AICc (Akaike
1974) also can serve as a goodness-of-fit indicator (Yang
and Matthews 2012), which makes it more popular among
researchers (Cahill and Mulligan 2007; Fotheringham et al.
2002).

Attribute Selection Process

It is also crucial to select a proper set of independent variables
that are correlatedwith the dependent variable while avoiding
multicollinearity among one another so that the model is
reliable. The first step of choosing variables is to always refer
to the literature and previous studies so that the model makes
sense. This study referred to ecological studies including
opportunity theory (Cohen and Felson 1979) and environ-
mental criminology theory (Brantingham and Brantingham
1975) that suggested the included variables for representing
the racial component. Selected explanatory variables include
Black population percentage; economic components such
as housing occupancy, income, and employment rate; and
physical/built environment characteristics. However, not all
variables were suitable for building the health-crime regres-
sion model.

As introducing variables that are highly correlated may
affect the model outcome by falsely inflating the R2, there
are a few criteria that we should use to select the most appro-
priate set of independent variables for the model building.
A correlation analysis may be performed to both depen-
dent and independent variables before building the model.
Independent variables that are not statistically significantly
correlated with the dependent variable can be discarded.

Among independent variables, the ones that were not highly
correlated with each other can be retained in the final GWR
model. Also, the model’s variance inflation factor (VIF) can
be calculated to refer to whether there was any redundancy
among explanatory variables. If the VIF was less than 5, the
variable could be included in both the OLS and the GWR
model.

When building an OLS model, it often excludes the not
significant variables, for example, at the 95% confidence
(t-value >1.96 or <−1.96). However, since spatial non-
stationarity may exist in the relationship between the
dependent variable and independent variables, when
an independent variable is sometimes not significantly
correlated with the dependent variable in an OSL model,
it may be acceptable in the GWR model. This is because
it may be significantly related to the dependent variable at
certain places.

In this research, the variable selection process for building
the GWR model was done by using GWR4 software. In the
model set, the function of “Geographical variability test”
was selected, which reported a statistic for each variable.
This statistic is called the “difference of criterion” (DIFF
of Criterion). It indicates whether the variable presents any
spatial variability. For variables that have the values of the
DIFF of Criterion that are greater than 2, it was suggested
that these variables should be assumed as global variables but
not local ones. These variables were best removed manually
if they also were not significantly related to the dependent
variable at the global term.

Study Area and Data

The city of Akron in the Summit County of Ohio was the
study area which is located in the center of Summit County
of Northeast Ohio. Akron was one of the fastest-growing
cities in America during the 1920s with a population peak
of over 300,000 people. However, the city’s population has
been continuously declining since then. The 2010 census
showed that the city had 199,110 people. Figure 1 shows
the locations of the downtown Akron neighborhoods and
the population density by block groups in 2010 (population
data retrieved from US Census Bureau). As it is shown in
Fig. 1, the population of Akron is concentrated in neighbor-
hoods surrounding downtown.

The spatial units for analysis are census block groups,
which are the smallest unit to have an extensive selection of
census variables available. Therefore, data retrieved in other
spatial units such as point data of crime and BMI (for obesity)
were aggregated into block groups for analysis.
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Fig. 1 Population density in the
city of Akron, 2010

Obesity and Crime Data

Self-reported data were used to calculate the BMI for indi-
viduals. These data came from Summit County’s Department
of Motor Vehicles. The dataset contained a complete listing
of self-reported heights and weights for all residents who
held drivers’ licenses. The data cover all holders of drivers’
licenses between 2009 and 2014, which is a 5-year spectrum,
corresponding to the time duration that each license has to be
renewed.

To further reduce potential biases, only data from the file
that recorded heights and weights for adults aged between 16
and 21 were considered for this study. This is based on the
assumption that the first-time reported heights and weights
are more accurate than the ones from the licenses that were
renewed later because many renewals probably were not
given updated heights and weights. The data file of all license
holders has approximately 440,000 records.

Crime data comes from the Akron Police Department.
Each year’s data file contains the time and date of the crime
events. Collectively, there are crime data from 2009 to 2012.
Each record in these files contains location information as
geocoded by the Akron Police Department in the form of
latitude and longitude.

Crime types of violent crimes were selected for analysis.
Violent crime in this dataset includes assault, battery, murder,
homicide, and manslaughter. It is noted that crimes of sexual
assault were not included because of the complex nature of
the crime.

The Uneven Distribution of Obesity Cases,
Crimes, and Neighborhood Characteristics

Figure 2a, b shows the distribution of obesity rates and violent
crime rates (i.e., the number of crime incidents per 100,000
populations in each spatial unit). The distribution of obesity,
as shown in Fig. 2a, is similar to the distribution of population
densities. However, the distribution pattern of the violent
crime rates, as it is shown in Fig. 2b, is different from the
distribution of that of obesity rates which the downtown
center often observes the highest crime rate

In addition, neighborhood characteristics, including
socioeconomic and environmental variables, were included
in the analysis. The socioeconomic data were obtained from
the USCensus Bureau, and the 5-year estimates of 2014 were
selected. The variables include population density, Black
percentages, renter-occupied housing percentage, median
household income (MHHI, US dollars), and unemployment
rates. These variables represent several socioeconomic
components of Akron, including racial, housing occupancy,
and economic status.

The built environment data were retrieved from the
County of Summit GIS Hub and Open Data (http://data-
summitgis.opendata. arcgis.com/), including the impervious
surface percentage and tree cover percentage per block group
and road density.

http://data-summitgis.opendata
http://data-summitgis.opendata
http://arcgis.com
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Fig. 2 (a) Distribution of
obesity rates; (b) Distribution of
violent crime rates
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Data Organization and Software

The obesity percentage of each block group was the depen-
dent variable in the model. It was calculated by first calculat-
ing the individual’s BMI from the sample. Those individuals
who had BMI larger than 30 were considered to be obese and
were included in this study. The BMI >30 criterion is accord-
ing to the definition by the United States Centers for Disease
Control and Prevention (https://www.cdc.gov/obesity/adult/
defining.html). The number of the obese populations was
aggregated to block groups and standardized by dividing
the block groups’ population counts to derive the obesity
percentages (i.e., obesity rates). Independent variables in the
model include violent crime rates and SES and environmental
attributes of Akron, including Black population percentages,
renter-occupied housing percentages, median household in-
come, unemployment rates, impervious surface percentages,
tree cover percentages, and road densities.

GWR was performed using GWR4* software (Nakaya
2014; software available at https://gwrtools.github.io/) to
build models between violent crime rates and obesity rates.
An adaptive Gaussian kernel was selected for building the
models, and AICc were used to assess the model’s goodness
of fit. ArcGIS 10.5 (ESRI, Redlands, CA) was used for
mapping the results.

Obesity, Violence, and Neighborhood
Characteristics: Regression Analysis Results

OLS Regression Result

Table 1 shows the regression coefficients in the OLS model.
Table 1 shows the best models with the subsets of the inde-
pendent variables. The R2 and adjusted R2 of the OLS model
are 43.43% and 41.31%, and the minimum AICc value is
421.58. The VIF values for the impervious surface percent-
ages and tree cover rates are higher than 5 and lower than

7.5, which indicate the model being moderately problematic.
Other VIF values indicate that there were no problematic
levels of multicollinearity. All coefficients other than that
of the environmental variables, including impervious surface
percentages, road densities, and tree cover rates, were statis-
tically significant at the 5% level.

The OLS model shows that violent crime rates and the
Black population percentages are positively related to the
obesity rates. Although it cannot be asserted that there exists a
causal relationship between crime, race, and obesity, elevated
crime rates and Black percentages in a neighborhood may be
related to increasing obesity rates as indicated by the model
outcome.

Also, median household income, unemployment rates,
and renter-occupied housing rates are negatively related to
the obesity rates. These results show an inconsistent relation-
ship between the economic status of the neighborhoods and
obesity rates as an increase of median household income and
an increase of the unemployment rate are related to lower the
obesity rate in the neighborhood. Higher unemployment rates
and renter-occupied housing rates are typically considered to
be reflecting lower SES of a neighborhood, while a higher
median household income often indicates a higher SES.

Overall, inconsistent results were found in theOLSmodel.
Both the Koenker (BP) and Jarque-Bera tests are statistically
significant, indicating that the OLS model is bias and not
reliable. This may be explained as that the OLS model has
failed to consider the spatial variations within the relation-
ships (Fotheringham et al. 2002). Therefore, building a GWR
model is necessary to analyze the local variations.

Geographically Weighted Regression Results

Four variables entered the GWR model, including the road
densities, violent crime rates, Black population percentages,
and unemployment rates. The model’s AICc value is 402.40,

Table 1 OLS model result

Variable Coefficient Std. error t-Statistics Significance VIF

Intercept 2.097489 0.465264 4.508174 0.000***

Impervious surface % −0.004801 0.007132 −0.673158 0.502 6.691355

Road density −0.000166 0.000105 −1.577789 0.116 1.767722

Tree cover % −0.006307 0.007292 −0.864936 0.388 5.301768

Violent crime % 0.027152 0.003438 7.897950 0.000*** 1.712260

Black % 0.007354 0.001814 4.054199 0.000*** 1.522596

MHHI −0.000011 0.000004 −3.141825 0.002*** 2.750956

Unemployment % −0.007841 0.003737 −2.098080 0.037** 1.189063

Renter % −0.008773 0.002532 −3.464068 0.001*** 2.388320

Number of observations, 222; AICc, 421.58
R2, 0.4343; adjusted R2, 0.4131
**significant at the 99% level; **significant at the 95% level

https://www.cdc.gov/obesity/adult/defining.html
https://www.cdc.gov/obesity/adult/defining.html
https://gwrtools.github.io/
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which is reduced by 19.18 from that of the previous OLS
model. The R2 and adjusted R2 are 50.00% and 45.78%,
which are higher than those of the OLS model. The optimal
bandwidth is 50.86.

Figure 3a–d show maps of individual variables’ t-values,
which are presented using graduated colors. A positive t-
value represents a positive association between the variable
and obesity, while a negative value shows otherwise. Loca-
tions that have absolute t-values higher than 1.96 or 2.58 (or
lower than −1.96 or − 2.58), which correspond to the 95%
or 99% significance levels, respectively, reveal statistically
significant relationships. Mapping is done in ArcMap 10.5.
For variables of road densities and unemployment rates, val-
ues are divided into five categories based on the level of sig-
nificance. Due to all locations showing positive associations
between violent crime rates/Black population percentages
and obesity rates, the t-values for these two variables are
divided using Natural Break in ArcMap 10.5

As it is shown in Fig. 3a, road densities are negatively re-
lated to obesity rates in Akron neighborhoods. Block groups
located on the south and east of Akron observed the most
robust relationships. However, most block groups in Akron
experience no significant relationships between road densi-
ties and obesity rates.

Figure 3b shows that the violent crime rates are positively
related to obesity rates across the whole study area. Violent
crimes in block groups of the south, southwest, and south-
east have stronger associations with obesity rates. The race
variable is also observed to have a positive association with
obesity in the study area, as it is shown in Fig. 3c. Stronger
such relationships are mostly concentrated in downtown and
north Akron

In addition, the unemployment rates are negatively related
to obesity rates. This is shown in Fig. 3d. Significant relation-
ships are found in the south and east sides of Akron, as well
as in downtown neighborhoods.

Discussion

Overall, the results of our analysis are consistent with previ-
ous research in that locations that experienced higher violent
crime rates also experienced higher obesity rates. The results
from the GWR models showed better results than those of
OLS models. As shown in Fig. 3b, violent crimes showed
overall positive associations with obesity rates in the study
area. These results are consistent with findings from previous
research (Taylor 1995; Stafford et al. 2007; Sandy et al.
2013). The results of the GWR models showed that there
were spatial non-stationarity in the associations between
obesity, crimes, racial, socioeconomic, and environment vari-
ables. Some locations were more vulnerable to violent crime

and obesity than others, especially locations in the urban
center and the south side of Akron.

In general, it is expected that increasing crime rates,
especially in neighborhoods located in the urban areas, may
be associated with elevated obesity rates. However, different
neighborhoods reported having different degrees of the as-
sociations between crime and obesity. Therefore, it is worth
to mention that locations that have higher regression coef-
ficients between crime and obesity are not necessarily the
locations that have high crime rates and high obesity rates
as it is shown in Fig. 2a, b. Locations with higher crime rates
and obesity rates are located in the urban areas, in and around
neighborhoods adjacent to the urban center. Also, areas that
have the highest coefficients are located in the southern part
of Akron. These neighborhoods are older urban residential
communities where housing values and household incomes
are low and renter-occupied rates are relatively lower than na-
tional average (around 42% compared to the national average
of 36%), according to the US Census Bureau (https://www.
census.gov/quickfacts/fact/table/US/PST045218). Neverthe-
less, renter-occupied percentage was found to not have a
significant contribution to obesity rate in the final GWR
model. However, to use the variable as the sole explanatory
variable, local significant relationships were found. As a
result, more detailed research should be done locally to
investigate whether more reasons may contribute to poor
safety or health situation.

Furthermore, no strong or significant associations are
found between environmental variables and obesity, except
road densities. However, only some block groups reported
significant t-values between the variables and obesity. These
neighborhoods are located in the south side of Akron, which
has low housing values and household income. The result
also shows that there are spatial non-stationarity in associa-
tions between the variable and obesity. More research should
be done to explore the effects and extent of that association.

The racial variable showed to be significantly associated
with obesity. As shown in Fig. 3c, block groups located in
downtown and the northern neighborhoods show stronger
relationships with obesity. These neighborhoods have high
housing rental rates and low household income according to
the Akron Neighborhood Profiles.

Also, economic variables of unemployment rates are
found to be related to obesity in some Black groups.
Locations in the eastern part of Akron observe negative
associations between unemployment and obesity. Such a
result is not consistent with findings from previous research
in that low economic status contributes to higher obesity
rates (Laitinen et al. 2002). Therefore, solely trying to
increase local income levels may not be the best strategy
for improving local health status. Instead, more surveys or
research should be done on the levels and ways of food
consumption and nutrition levels of the residents.

https://www.census.gov/quickfacts/fact/table/US/PST045218
https://www.census.gov/quickfacts/fact/table/US/PST045218
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Fig. 3 (a) Road density t-values;
(b) violent crime rate t-values; (c)
Black population percentage
t-values; (d) unemployment rate
t-values



The Spatial Non-stationarity in Modeling Crime and Health: A Case Study of Akron, Ohio 307

Fig. 3 (continued)
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Strength andWeakness

Comparing the results from the OLS model and those from
the GWR model, we demonstrated that the GWR model
produces statistically significant results that seem to be more
practical than those from the OLS model. However, GWR
is not a panacea for all model-building problems. Based
on what it has been discussed above, this section summa-
rizes some weakness of the method and what users should
pay attention to when addressing the issue of spatial non-
stationarity.

First, it is necessary to justify whether GWR is needed.
The procedure presented in this research shows a combina-
tion of the Jarque-Bera test and Koenker (BP) statistics to
indicate that the OLS model is bias and unreliable so that
applying GWR is preferable to achieve potentially better
results. However, although the GWR method produced a
significantly better model than the OLS model in this paper,
the increase of the overall R2 is not substantial. Therefore,
further investigation and other measures may be taken to
improve the explanatory power of the independent variables
in the model.

Second, the selection of the bandwidth is crucial in model
building. The most common measures are the AICc and CV.
Researchers can also assign a bandwidth based on existing
literature and their particular research needs. Keep in mind,
however, that both fixed and adaptive bandwidths may in-
troduce a certain degree of generalization over the spatial
non-stationarity. Ideally, the selected bandwidth not only
would have the best statistical results but also is the most
meaningful.

Third, the selection of model variables is also critically
important. In this research, variables in the final model were
selected based on the following criteria. First, the population
density was not suitable to be a local predictor as its DIFF
of Criterion is greater than 2. Also, impervious surface and
tree cover percentages were not statistically significant to
explaining the variations in the dependent variable since their
local absolute t-values were less than 1.96 or 2.58. After
removing these three variables, the variable MHHI, renter
percentages contribute less to the model as compared to other
variables. However, if removing a variable caused little to
no impact on the overall R2, the user should eliminate such
variable. Therefore, both variables were not included in the
final GWR model.

In summary, as a quantitative method, a user of the GWR
model should be careful with the model parameters in order
to produce an optimal model and appropriately interpreted
the results.

Concluding Remarks

To study into why existing studies found inconsistent results,
this article applied OLS and GWR methods to explore the
associations between obesity and crime, SES, and environ-
ment. In the OLS model, both the Koenker (BP) and Jarque-
Bera tests reported significant, which indicate that the global
model was not sufficient nor appropriate to explore the asso-
ciations between crime and obesity. Overall, GWR models
revealed spatial non-stationarity in the associations being
investigated and produced better results than OLS models.

Violent crimes were found to be generally positively re-
lated to obesity. It is worth to note that locations that have
already experience higher crime and obesity rates may not
have the same effects as other places. Therefore, it is worth
to look into specific neighborhoods as of why even though
it currently does not have a high crime and obesity rate, it
is still vulnerable to a change. Policies such as revitalize or
gentrify downtown Akron may attract new investments into
downtown, so as to improve local economies. Accordingly,
the police department should increase patrol in urban areas
to help ensure the safety of neighborhoods.

Both the environmental and SES variables showed local
variances in the GWR model. These variances confirm the
existence of the spatial non-stationarity among their relation-
ships with local health status. According to the result, even
for a single city, the same strategies might not work for all
neighborhoods. Policies must be adjusted to target on local
situations. Given the spatial non-stationarity concluded in
this study, more detailed investigations should be conducted
locally so that appropriate measures can be taken to reduce
the problems of neighborhood crime and health issues.

Finally, the study reported here is one of the relatively few
that look at the associations between violent crime and public
health from a quantitative perspective. Results reported here
should contribute to our understanding of, spatially, how
violence, socioeconomic, and environmental conditions may
influence local health.
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Challenges of Assessing Spatiotemporal
Patterns of Environmentally Driven Infectious
Diseases in Resource-Poor Settings

Alina M. McIntyre, Karen C. Kosinski, and Elena N. Naumova

Introduction

Modern geographic information systems (GIS), global
remote sensing data repositories, and spatial analytic tools
are enabling better understanding of complex patterns
of environmentally driven, climate-sensitive, and often
preventable infections. Waterborne and water-related
infections are among the most common infectious diseases
in low-income countries, yet the path for their prevention
is achievable by meeting the SDGs. Diarrheal infections
are diseases of poverty aggravated by lack of proper
infrastructure such as sanitation facilities, sanitary landfills,
and improved water sources. These diseases typically
exhibit strong associations with climate, meteorological,
and environmental parameters. Climate-sensitive diseases
tend to show pronounced seasonal patterns that repeat
annually. Some agents, like rotavirus and Cryptosporidium,
are well known for their universal fluctuations over the
course of a year, associated with the changes in temperature
and precipitation (Jagai et al. 2009, 2012a). Successful
intervention programs aiming to improve water treatment,
sanitation, and hygiene and to prevent diseases with
vaccination could result in changes of temporal patterns that
are manifested by the reduced intensity of seasonal spikes.
Many water-related diseases exhibit strong seasonal patterns
that are distinct for each pathogen in a given population and
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locality. Disturbances in human-environment interactions
due to emerging novel pathogens, viral mutations, drug
resistance, and severe weather episodes might affect the
timing and intensity of infectious outbreaks. Therefore, maps
of climate-sensitive diseases with strong seasonality can be
dramatically different in different seasons.

In this chapter, we focus on two preventable diseases, with
both high burden and potentially debilitating consequences,
to illustrate the challenges of mapping disease incidence and
their risk factors using nationally representative records. Uro-
genital schistosomiasis (UGS), caused by S. haematobium,
is a notoriously focal disease with substantial spatial hetero-
geneity (Ekpo et al. 2008); it is a water-related disease that is
highly endemic in Ghana (Adenowo et al. 2015). Diarrheal
disease prevalence and severity are highest in infants and
often associated with poverty, overcrowding, and inadequate
sanitation.

In order to understand the spatiotemporal patterns of
environmentally driven diseases, at least three types of in-
formation are needed: (1) disease records, (2) demographic
data, and (3) environmental data. Disease records corrected
for population density enable the comparison of disease
incidence across geographical regions, patient profiles, and
time periods. Compositions of sociodemographic and envi-
ronmental indicators help to identify risk factors to mark lo-
cations, seasons, and groups that require further public health
focus to minimize health risks and reduce disease burden.

In the data-rich settings of high-income countries, studies
that used nationally representative data from multiple data
streams to examine health outcomes and their environmental
risks are common and continue to improve with respect to
methods and rigor (Ayanian et al. 1993; Hajak 2001; Cum-
mins et al. 2005; Joy et al. 2008; Sallis et al. 2009). This type
of analysis has been enabled by the wide use of GIS-based
platforms and systems. One of the most widely used GIS
platforms in the USA originates from software created by
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Environmental Systems Research Institute (ESRI) at Harvard
Labs in 1969, which then expanded to develop commercial
GIS products for wider use and spatial analysis applications
(ESRI 2019). GIS was developed to “store, visualize, an-
alyze, and interpret geographic data,” and it has become
routine for many applications to study health issues spatially.
In the health fields, GIS allows researchers to examine how
location relates to factors such as sociodemographic status,
health infrastructure, and health outcomes data (Centers for
Disease Control and Prevention (CDC) 2016). In addition to
mapping the size and scope of various health outcomes, GIS
allows the user to conduct risk assessments, disease impact
simulations, and pinpoint areas for health interventions and
policy (Fradelos et al. 2014).With the growing supply of data
available for spatial analysis, GIS technology is also growing
in the quality and the breadth of applications, and researchers
must stay current on platforms and analysis techniques up-
dates. GIS-based platforms have become an integral part of
nationally representative data repositories worldwide.

Census records are invaluable repositories of social,
demographic, economic, and environmental records. The
United Nations (UN) defines a census as “the total process
of planning, collecting, compiling, evaluating, disseminating
and analyzing demographic, economic and social data at
the smallest geographical level pertaining, at a specified
time, to all persons in a country or in a well-defined part
of a country” (Mrkić n.d.). In addition, the UN emphasizes
the general importance of conducting a population census:
the data provides reliable, official statistics for government
and the public to use to eventually make conclusions on the
distribution of wealth, government services, and political
representation in a country or region (Mrkić n.d.). Data
are usually collected through a questionnaire distributed
in person, in the mail, or electronically. Many countries,
including the USA, collect census data every 10 years; some
countries (e.g., Japan, New Zealand, Canada) conduct a
census every 5 years (Mrkić n.d.). Census data is invaluable
in assessing population characteristics. However, even in
resource-rich settings, census information may not capture
groups with low literacy rates, groups living in remote areas,
and groups that are nomadic or experiencing homelessness
(Bartley 2001).

In the data-sparse settings of low-income countries, cen-
sus records are sometimes the only data available for a nation-
wide analysis (Arku et al. 2016; Barcus et al. 2007; Varenne
et al. 2004; Timæus and Jasseh 2004; Ferraz et al. 2017).
A small number of studies have matched census records
with health data to assess relationships among diseases and
various environmental and sociodemographic variables. For
example, Barcus et al. (2007) showed, through the use of
sociodemographic census data and malaria diagnoses in hos-
pital records, that there was a higher risk of higher-grade
parasitemia and severe malaria with fatal outcomes among

the urban residents of Papua New Guinea than among the
rural residents. In sub-Saharan Africa as a whole, Timæus
and Jasseh (2004) used sociodemographic census data in
combination with HIV mortality data from 26 Demographic
and Health Surveys to find that excess mortality occurs
among women ages 25–39 and men ages 30–44. In Ghana,
Arku et al. (2016) used random sampling from the 2010
Population and Housing Census to examine under-5 mor-
tality in comparison to various sociodemographic variables
using Bayesian spatial analysis and demonstrated that higher
use of liquefied petroleum gas (LPG) as cooking fuel was
associated with lower under-5 child mortality after adjusting
for other mortality risk factors. This increased use in LPG
and associated decrease in mortality could be due to a move
away from solid fuels responsible for household air pollution.
Findings also indicate that even though under-5 mortality
has decreased, the cross-district inequality in mortality has
increased (Arku et al. 2016).

Data-Rich Environments: Challenges
and Lessons

Large-scale studies have demonstrated the power of verified,
uniformly, and routinely collected data in conducting epi-
demiological investigations at national and global levels. In-
ternational organizations, like theWorld Health Organization
(WHO), collect and disseminate health records with global
coverage. In the USA, several data repositories, hosted by
the US Centers for Disease Control and Prevention (CDC)
and the Centers for Medicare and Medicaid Services (CMS),
provide exhaustive national coverage. For several decades,
the CMS has maintained the Medicare Provider Analysis and
Review (MEDPAR) files with extensive individual informa-
tion on patient age, sex, race, residence ZIP code, health
provider, diagnostic codes, dates of admission, discharge
and follow-up procedures, and total hospitalization charges.
The CDC regularly publishes records of mandatory reported
infections based on patient age, state, and week of confirmed
or provisional infections. The value of national repositories
increases dramatically when researchers amend location-
specific information with GIS-based tools.

Using CMS records (15 years of ZIP code-based daily
demographic, environmental, and 600 M individual entries)
allowed us to develop models and visualization tools for
tracking the spread in vulnerable populations of enteric in-
fections (Chui et al. 2009, 2011a; Cohen et al. 2008; Jagai
and Naumova 2009; Jagai et al. 2010, 2012b; Naumova et
al. 2007; Mor et al. 2009), pneumonia and influenza (P&I)
(Chui et al. 2011b; Cohen et al. 2010, 2011; Lofgren et al.
2007, 2010; Moorthy et al. 2012; Mor et al. 2011; Naumova
et al. 2009), and health conditions resulting from exposure
to extreme weather (Liss et al. 2017). These studies show
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the importance of understanding the uncertainties related to
place of residence (PoR) and place of health care (PoH)
access in developing maps of disease incidence. In our study
of hospitalizations due to P&I in patients with cognitive
impairment, we hypothesized that access to care is limited by
financial constraints, insurance status, individual preferences
and perceptions, as well as geographic proximity, travel
time, and assistance with transportation. Elderly people with
cognitive impairment are at an elevated risk for infection-
associated complications due to limited ability to communi-
cate health problems, which may increase delay in special
care delivery. Time between onset of symptoms that causes
hospitalization and initiation of specialized medical care is
an important factor for preventing severe outcomes from
infections. Reliable estimates of such measures are difficult
at a national and even at a regional scale. However, proxies
like geographic distance, average travel time, or a minimum
distance to a healthcare facility can now be derived using
novel GIS technologies. We linked hospitalization records
using the PoR and the PoH and estimated linear and network
distances in rural and urban settings. Rural and poor commu-
nities had the highest rates of hospitalizations due to P&I, and
moreover, P&I patients with dementia had a death rate 1.5
times higher than national averages (Naumova et al. 2009).
These results suggest strong disparities in healthcare prac-
tices in rural locations and among vulnerable populations.
Thus, spatial and temporal data were able to demonstrate
that infrastructure, proximity, and access to proper care are
significant predictors of P&I morbidity and mortality.

There is a need to better understand how traditional maps
of seasonal flu could depend on human migration patterns
with respect to seasonally changing point of care. Little has
been done to address this issue yet. Specifically, we have
shown that spatiotemporal hospitalization patterns of P&I
fluctuate due to seasonal population migration in older adults
(Chui et al. 2011b). This group experiences the most severe
morbidity from influenza and also has the highest rates of
seasonal migration within the USA. When we classified
hospitalizations by state of residence, provider state, and
date of admissions and compared the hospitalization profile
data of Florida residents with that of out-of-state residents
by state of primary residence and time of year (in season
or out of season), we observed distinct seasonal patterns of
nonresident P&I hospitalizations. This pattern was especially
evident when comparing typical winter destination states,
such as California, Arizona, Texas, and Florida, to other
states. Although most other states generally experienced a
higher proportion of non-resident P&I during the summer
months (April–September), southern states had higher non-
resident P&I during the traditional peak influenza season
(October–March) (Chui et al. 2011b).

When researchers integrate information from various
sources, new questions and hypotheses can be postulated

and answered. We recently outlined a framework to evaluate
state foodborne and waterborne surveillance systems using
hospitalization records (Mor et al. 2014). Using a Bayesian
modeling approach, we generated smoothed standardized
morbidity ratios (SMR) and surveillance-to-hospitalization
ratios (SHR) and compared predicted values to the observed
surveillance counts and the number of hospitalized cases,
respectively. We then identified municipalities that deviated
from the norm and flagged them for potential uncertainties
(Fig. 1). For each studied infection (Campylobacter,
Cryptosporidium, Giardia, hepatitis A, non-typhoid
Salmonella, Salmonella typhi, and/or Shigella), we examined
and related the spatial distribution of SHR to the mean
for the entire state adjusted for population age-structure.
Our study confirmed that the spatial “signal” depicted by
surveillance was influenced by inconsistent testing and
reporting practices, since municipalities that reported fewer
cases relative to the number of hospitalizations had a lower
relative risk, as estimated by SMR. We made a first estimate
of the degree of completeness and coherence of two major
national data sources—CMS medical claims and CDC
laboratory confirmed records—and we outlined the first
step toward the harmonization and integration of related data
streams derived from different sources (Mor et al. 2014).

With the growing availability of detailed records from
surveillance systems and health providers, researchers are
making commendable attempts to combine various data
sources to improve primary data collection, validate findings,
and better understand the burden and distribution of diseases.
Alignment of the records in both temporal and spatial
scales allows detailed examination of associations between
health outcomes and environmental exposures, including
the effects of air and water pollution, extreme weather,
and natural disasters (Basu and Samet 2002; Curriero et
al. 2002; Keatinge and Donaldson 2001; Conlon et al.
2011; Bhaskaran et al. 2010; Rogot and Padgett 1976;
Liu et al. 2011; Michelozzi et al. 2007). The current work
in spatiotemporal modeling reveals the gap between the
desired data quality needed to build reliable maps and the
existing infrastructure and the nature of complex health-host-
agent-environment interactions. The key challenge relates to
the uncertainties in places of exposure (PoE), PoR, and
PoH and the way that researchers justify conceptually and
analytically fundamental assumptions crucial for selecting
and implementing appropriate study designs, data analysis
techniques, visualization tools, and statistical inferences.
A common task of detecting hot spots and linking them to
exposures often suffers from the inability to decouple PoR
from PoE. For example, in detecting hot spots of waterborne
outbreaks, these challenges can manifest by a) missing or
incomplete information about specific PoE; b) uncertainty
in time and source of exposure due to intermittent and
infrequent public water supply; and c) lack of geocodedmaps



314 A. M. McIntyre et al.

Fig. 1 Surveillance to hospitalization ratio (SHR) for salmonellosis
[44]. (a) Point estimates and credible intervals for posterior estimates are
shown for each municipality (grey) and for the entire state (horizontal
line). Municipalities that had significantly lower SHR compared to the

state mean are indicated with a black triangle. (b) Municipalities are
categorized according to quintiles; with the lower quartile being suspect
of underreporting

of water distribution networks and information on network
integrity. The challenge of disentangling the PoE, PoR, and
PoH is universal for both data-rich and data-sparse settings,
although the magnitude of such a challenge is undoubtedly
higher for low-income countries.

Data-Sparse Environments: Challenges
and Opportunities

In data-sparse environments, national health monitoring sys-
tems are often expensive and sometimes cost-prohibitive, but
the lack of data and poor data quality are major barriers

to making population-level conclusions (Bhalla et al. 2010;
Pandey et al. 2010; National Research Council 2012). Lack
of data prevents targeted disease control programs, limits
the assessment and effectiveness of health interventions, and
limits long-term health-related investments. Yet many low-
income counties are creating and supporting infrastructure to
collect and process vital information. In many cases, these
efforts are aligned with meeting the SDGs. Multiple SDGs
focus on reducing diseases of poverty and diseases associated
with poor water, sanitation, and hygiene.

Ghana serves as an inspiring example of building a ro-
bust data infrastructure using geospatial technologies. Our
work in Ghana began in 2007 and focused on UGS and
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water infrastructure. UGS is highly endemic in many parts
of Ghana, but when we began our research, there were no
updated data about which communities were at the greatest
risk of serious pathology. Mass drug administration (MDA)
had not yet been widely and regularly implemented due to
the cost of praziquantel, and data about water and sanitation
infrastructure in rural communities were outdated. Since
2007, MDA has broadly scaled up, and several studies have
been done to estimate UGS prevalence in Ghana.

Over the last 12 years, we have conducted numerous field
studies to gather detailed information on 75 communities
in the Eastern Region of Ghana (Fig. 2). Because of the
granularity of the data, in some cases with repeatedmeasures,
we have been able to look very carefully at both UGS and
water infrastructure. We have studied incidence and preva-
lence of UGS by age and demographic group, key attributes
of common diagnostic tests for UGS, the seasonality of UGS
through time series analyses with remote sensing data, and
the role that surface water and water infrastructure play in
terms of UGS risk. Our research in Ghana has demonstrated
the need for accurate maps to guide primary prevention
programs for UGS (Kosinski et al. 2011a, b, 2012, 2016a, b;
Kulinkina et al. 2017, 2019;Wrable et al. 2019). Disease con-
trol strategies still need to be supplementedwithmeasures ca-
pable of interrupting transmission, such as water, sanitation,
and hygiene (WASH) infrastructure (e.g., wells, swimming
pools, washing stations); these infrastructure improvements
must be cost-effective and sustainable, and they must also
be correctly targeted to the communities that need, want and
stand to benefit from them.

In order to expand this kind of research to a national scale,
scientists, public health professionals, and practitioners have
to compile health records based on a national disease moni-
toring system, census records, and environmental data. This
step allows researchers to construct risk maps and predict po-
tential hot spots of diseases at the national and regional levels.
The GIS-based tools help to determine towns’ networks, con-
nectivity of and proximity to local health centers, sanitation,
and water infrastructures. With data depicting land use, land
cover, climate conditions, favorable conditions for vectors
and hosts, and water infrastructure, researchers can exam-
ine spatial heterogeneity of climate-sensitive diseases, like
UGS and diarrhea, and determine environmental predictors
that govern disease variability. While not many low-income
countries have a well-developed infrastructure to monitor
disease, with the advancement of geospatial technologies, it
is possible to accelerate technological leapfrogging, which
usually occurs in three stages by (a) importing and absorbing
highly modern technology; (b) replicating, producing, and
improving the imported technology; and (c) moving on to
innovations on one’s own (Bhagavan n.d.). We conclude
this chapter with suggestions about how to facilitate this
process and accelerate the transition based on our experience
in Ghana.

DiseaseMapping: Data Sources
and Supporting Platforms

In this section, we describe the national-level datasets that
originate from different sources, including government agen-
cies and academic institutions. We illustrate the use of two
major national data repositories: the 2010 Population and
Housing Census and the District Health Information Man-
agement System (DHIMS) maintained by Ghana Health Ser-
vice (GHS). We also outline the role of the national platform
and services that enables the development and investigation
of spatiotemporal patterns in environmentally driven climate-
sensitive infections.

District Health InformationManagement
System (DHIMS) in Ghana

In Ghana, DHIMS offers a national repository of health
records, supported by GHS. The data that feeds into DHIMS
are acquired from individual clinics in Ghana that report
monthly disease counts to GHS (President’s Malaria Initia-
tive 2014). After relying primarily on a paper-based system,
GHS received support from the United States’ President’s
Malaria Initiative (PMI) in 2012 to progress to a more com-
prehensive web-based system (President’s Malaria Initiative
2014). Now, DHIMS is a free open-source health manage-
ment data platform used by many organizations and gov-
ernments (USAID 2016). DHIMS is supported and funded
through various partnerships, including USAID, the Korean
International Cooperation Agency, and Samsung Corpora-
tion (USAID 2016). Currently, these partnerships are at-
tempting to implement a Community-based Health Plan-
ning and Services (CHPS) e-tracker to improve data collec-
tion quality and practices. Specifically, Samsung intended to
provide digital tablets for CHPS needs, and USAID offers
technical assistance for the e-tracker as well as training for
CHPS health officers (USAID 2016). GHS executedDHIMS,
which has substantially increased the quantity and quality of
health data acquired in Ghana (President’s Malaria Initiative
2014). DHIMSwas our source for UGS and diarrheal disease
monthly counts.

CERSGIS Data fromGhana

The Centre for Remote Sensing and Geographic Information
Services (CERSGIS) provides GIS and remote sensing ser-
vices for sustainable development and resource management
in Ghana (Centre for Remote Sensing and Geographic Infor-
mation Services (CERSGIS) 2019). CERSGIS is affiliated
with the Department of Geography and Resource Develop-
ment at the University of Ghana, Legon, and currently oper-
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Fig. 2 Map of towns with pop. range 500 – 5,000; major rivers and roads are shown; 75 study towns are indicated with purple triangles (A.
Kulinkina, personal communication)
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ates as a non-profit organization. CERSGIS offers access to
various spatial data, including point features (e.g., buildings,
facilities), line features (e.g., roads, routes), and polygon
features (e.g., districts, regions) (Centre for Remote Sensing
and Geographic Information Services (CERSGIS) 2019). In
addition to an outline of their available services (remote
sensing, GIS and GPS, web application development, and
training sessions), the CERSGISwebsite also has a published
catalog of all projects conducted by its staff. Links to project
information and spatial resources can be found, but most
spatial data must be requested through contact information
provided on the web. Data from CERSGIS enabled the anal-
yses at the household, community, regional, and national
levels.

Ghanaian Census Data from the Ghana
Statistical Service

The Ghana Statistical Service (GSS) is a governmental or-
ganization responsible for censuses, surveys, and various
sociodemographic data necessary for Ghana’s development
in both the public and private sectors (Ghana Statistical
Service 2019a). GSS has 10 regional offices and >100 district
offices throughout the country. At the time of our writing
this chapter, GSS was in the process of redeveloping their
website, where they publish raw data and collection methods
along with their data acquisition goals. A recent, large-scale
endeavor by GSS was the 2010 Population and Housing
Census. All 216 Ghanaian districts were surveyed based on
recommendations from the United Nations Principles and
Recommendations Report for countries conducting censuses,
with the objective “to provide information on the number,
distribution and social, economic and demographic charac-
teristics of the population of Ghana necessary to facilitate
the socio-economic development of the country” (Ghana
Statistical Service 2014). Key census topics adapted from
UN recommendations include migration patterns, sociode-
mographic characteristics, infrastructure data, and education
and economic status (Ghana Statistical Service 2014). GSS
also added various topics they found important to Ghana such
as religion, detailed housing and agricultural information,
and cooking habits (Ghana Statistical Service 2014). For the
2010 Population and Housing Census, data were collected
using a systematic sampling method of every tenth private
dwelling in Ghana (Ghana Statistical Service 2013). GSS
reports the total sample size as 2,466,289 households. GSS
and theMinistry of Education distributed questionnaires, and
enumerators were encouraged to use local languages (Ghana
Statistical Service 2013).

We produced population density map(s) for Ghana and
maps of UGS and diarrheal disease using census records
and DHIMS data (Fig. 3). We also show population density
by district for people classified as living in “rural” areas.
As expected, the population varies by district (Fig. 3a), and
percent of the population characterized as rural is greater
in northern, northeastern, and southwestern areas of Ghana
(Fig. 3b). Census data show that households average five
persons, unemployment varied by district ranging between
1% and 7%, and most individuals are reported as literate
(Table 1).

In order to map disease rates from January 2012 to De-
cember 2016, we normalized district-specific monthly counts
through a multi-step process. The number of days in each
month were recorded, accounting for leap years. Populations
of the 216 districts were projected from the 2010 census data
for each study year (2012–2016) using intercensal population
growth rates (Codjoe et al. 2013). Disease counts were nor-
malized by days (accounting for leap year) and population
and then multiplied by 100,000 to show monthly disease
rates. Diarrheal disease rates appear to be generally high
throughout the country, especially in western areas of Ghana.
UGS rates appear greater in some northern, central, and
southern areas, most likely in rural regions of Ghana (Fig. 3c,
d). Summary statistics for diarrheal disease and UGS show
that district-level rates per 100,000 population over a 5-year
period vary tremendously (12–130,613 cases for diarrheal
disease; 0.5 to 5653 cases for UGS) (Table 1). The rates
are also fluctuating over time exhibiting occasional spikes
and potential for upward and downward trend for diarrheal
disease and UGS, respectively (Fig. 4).

Spatiotemporal Predictors of Diarrheal
Disease and UGS as Collected by Ghana
Census

We focused our recent research on variables from the
2010 Population and Housing Census in Ghana that
could be linked plausibly to environmental health: solid
waste disposal, sanitation, drinking and domestic water,
energy sources (lighting source and cooking fuel), literacy,
and employment. These characteristics provide a general
overview of sociodemographic factors and infrastructure
in Ghana; they are also important predictors of diarrheal
infections and UGS. We emphasize potential health risks
for diarrheal disease and/or UGS based on the peer-
reviewed literature and SDG expectations, and we highlight
definitions, methods, and relevance of indicators while
providing district-specific maps for selected variables.
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Fig. 3 Population density in Ghana and rates of diarrheal disease and
urogenital schistosomiasis. (a) Population density for all 216 districts
in Ghana according to data from the 2010 Population and Housing
Census. (b) Population density by district for people classified as living
in “rural” areas according to the 2010 Population and Housing Cen-

sus. (c) Distribution of population-normalized, natural log-transformed
diarrheal disease rates for January 2012–December 2016 for all 216
districts in Ghana (d) Distribution of population-normalized, natural
log-transformed UGS rates for January 2012–December 2016 for all
216 districts in Ghana
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SolidWaste Disposal

Solid waste disposal is generally measured and captured
in census reports at the household (residential) or com-
mercial/industrial level (World Bank 2018). Many methods
are used to determine practices, but survey or self-reported
data are often used for household-level disposal (World
Bank 2018). The US Environmental Protection Agency (US
EPA) defines waste as “any discarded, rejected, abandoned,
unwanted or surplus matter whether or not intended for
sale or for recycling, reprocessing, recovery or purification”
(Samwine 2017). Solid waste consists of “all unwanted or
discarded materials arising from both human and animal
activities” (United States Environmental Protection Agency
2009). Solid waste is addressed by SDG 6.3, which states that
it is necessary to “work to eliminate dumping and minimize
release of hazardous chemicals and materials, halving
the proportion of untreated wastewater and substantially
increase recycling and safe reuse globally” (United Nations
General Assembly 2015). Inappropriate solid waste disposal

Table 1 Descriptive statistics (mean, SD, range) for monthly rates
of diarrheal disease and UGS per 100,000 population (natural log-
transformed) between January 2012 and December 2016 in 216 dis-
tricts in Ghana (data extracted from DHIMS) and for population and
housing district characteristics (data extracted from Population and
Housing Census 2010)

Characteristic Mean SD Range

Monthly diarrheal disease
rate (natural
log-transformed)

8.40 0.74 2.52–11.78

Monthly UGS rate (natural
log-transformed)

3.36 1.14 −0.7–8.64

Population 114,198 164,139 20,282–1,730,249

Household size 5 1.4 3.5–10

% unemployed 3 1.5 0.7–6.9

% literate 66.9 19.3 20.5–94

practices, such as open dumping of hazardous materials, can
pose serious health threats. If dumping areas lack a proper
covering material, they can become a breeding ground for
scavenging animals, rodents, and disease vectors (Agyepong
2010). In addition, locations where solid waste is placed
can produce gasses like methane, carbon dioxide, ammonia,
and hydrogen sulfide, contributing to poor air quality (Mata-
Alvarez 2002). Many commonly used disposal approaches
create environmental hazards to both the natural ecosystem
and the local community. Toxic and hazardous substance
exposure is also a risk for people who scavenge in search of
valuable items in the solid waste (Samwine 2017). Finally,
dumping areas and/or landfills can produce leachate, which
pollutes soil, groundwater, and surface water (Agyepong
2010).

In the Ghanaian census, solid waste disposal practices
were determined using a self-report survey at the household
level: burn waste, use a public dump (sanitary landfill or open
dumping), dump indiscriminately, bury waste, or “other”
(Ghana Statistical Service 2014). In Ghana, specific solid
waste management practices vary among districts and also
between urban and rural settings (Samwine 2017) (Table
2). However, general practices include transport to landfills,
especially in more urban areas, and open dumping. We out-
lined six common solid waste disposal practices and their
accordancewith SDG expectations (Table 2). Solidwaste dis-
posal practices that meet SDG expectations are practices that
properly contain, maintain, and do not pollute surrounding
areas (sanitary landfills, composting, and recycling). Prac-
tices that do not meet SDG expectations are often dangerous
for the communities (open burning, incineration, and open
dumping).

Waste reduction and waste recycling are considered best
practices, followed by composting, converting waste to en-
ergy sources, and sanitary landfills (Table 3). In Ghana,
unsanitary landfills and landfills that do not capture methane

Fig. 4 Monthly time series of
disease rates per 100,000
(log-transformed) for UGS (blue
line, left axis) and diarrhea (red
line, right axes) for 60-month
period from December 2012 to
January 2016 in 216 districts of
Ghana
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Table 2 Descriptions of solid waste disposal options and key information about whether practices meet Sustainable Development Goal 2030
expectations

Practices Description (Mihelcic et al. 2009) Meets SDGs
SDG explanation (United Nations General
Assembly 2015)

Composting Organic waste broken down by biogeochemical
processes in the presence of oxygen

YES Must be properly protected and maintained

Recycling Reusing waste for other products or uses; recycling
of paper and/or plastic if possible

YES Must be properly protected and maintained

Sanitary landfill Waste compacted, daily soil cover; groundwater not
contaminated; waste separated from disease vectors

YES Scavenging can occur; many landfills do not meet
these standards

Incineration Brick/block incinerator or metal drum incinerator
used to burn waste

NO Cannot guarantee separation of waste type (e.g.,
personal items, electronic, medical)

Open burning Waste piled and burned outdoors, usually by
community members

NO Dangers include air pollution and attraction of
disease vectors, especially near children

Open dumping Waste thrown into yard, local area, or surface water NO Exposure to waste hazards and disease vectors,
potential for water contamination

Table 3 Percentage (mean + SD) of households per district that use
each type of solid waste disposal practice; data extracted from the
Ghana Population and Housing Census (2010)

Solid waste disposal Total Rural Urban

Public dump (open space) 46.2 ± 18.8 54.2 ± 18.3 37.9 ± 20.6

Public dump (container) 16.0 ± 13.1 5.5 ± 6.1 32.9 ± 20.1

Dumped indiscriminately 14.2 ± 11.2 18.2 ± 12.3 6.3 ± 6

Burned by household 11.4 ± 9.4 11.5 ± 9.6 11.5 ± 10.5

Collected 7.2 ± 11.5 4.9 ± 5.5 7.3 ± 12.4

Buried by household 3.9 ± 2.5 4.5 ± 2.9 3.2 ± 2.2

Other 1.1 ± 1.3 1.2 ± 1.4 0.9 ± 1.2

gas (CH4) are common. Other challenges in Ghana include
a lack of technology and tools to collect and break down
waste, lack of planning capacity for waste quantity, and poor
individual-level practices (Samwine 2017). Most households
in Ghana do not use an improved practice for solid waste
disposal (Table 3, Fig. 5a). The most common practice for
solid waste disposal across all districts in Ghana is to use a
public dump in an open space (open dumping) or without
proper protection to separate the public dump from the rest
of the environment (46.2 ± 18.8%) (Table 3, Fig. 5b). The
second and third most common practices are public dumping
into a container (16.0 ± 13.1%) and indiscriminate dumping
(14.2 ± 11.2%) (Table 3, Fig. 5c, d). Unsanitary waste
disposal practices pose a serious concern for public health,
yet their specific impact on infection spread has not yet been
examined in detail.

Sanitation

Census data that report the sanitation status of a population
are captured by various methods; however, survey data and
self-report based on a provided list of specific sanitation
practices are often used (UNICEF 2017). Inadequate san-
itation is estimated to cause 280,000 deaths annually due

to diarrheal disease and is a major factor in several ne-
glected tropical diseases: intestinal worms, schistosomiasis,
and trachoma (World Health Organization 2018). Improving
sanitation infrastructure and sanitation and hygiene practices
can positively health impact (World Health Organization
2018). SDG 6 calls for countries to provide global “access
to adequate and equitable sanitation and hygiene for all and
end open defecation, paying special attention to the needs of
women and girls and those in vulnerable situations” (United
Nations General Assembly 2015). However, in 2015, only
39% of the global population used a safely managed sani-
tation service (World Health Organization 2018). A safely
managed service is the use of a toilet or improved latrine that
is not shared with other households, where excreta are treated
or disposed of safely (World Health Organization 2018). Of
all the World Bank regions, sanitation is most lacking in sub-
Saharan Africa, where an estimated 695 million people still
use unimproved facilities (WHO/UNICEF Joint Monitoring
Programme (JMP) 2015).

Sanitation promotion, through different forms of educa-
tion, can improve health outcomes (Al-Delaimy et al. 2014;
Madon et al. 2018; Crocker et al. 2016). These studies
have used various methods to improve sanitation including
training local leaders to run community-led total sanitation
(CLTS) (Madon et al. 2018; Crocker et al. 2016), imple-
menting community health learning packages (Al-Delaimy
et al. 2014) and creating school-based learning programs
(Madon et al. 2018). The approach of community-led edu-
cation interventions aims to help people control the determi-
nants of health or underlying causes of poor health such as
poverty and lack of health information or infrastructure in
a sustainable, community-based style (Madon et al. 2018).
When examining education levels before a health behavior
intervention, studies have shown that a higher maternal level
of education is associated with better child health, including
a protective effect on diarrheal disease (Fink et al. 2011;
Hobcraft et al. 1984; Rutstein 2000). Studies examining the
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Fig. 5 Most common solid waste disposal practices in 216 districts
in Ghana. (a) Bar chart of the most common methods of solid waste
disposal for households in all districts. (b) Percentage of households per
district that use open dumping in public spaces for solid waste disposal.

(c) Percentage of households per district that use public dumping in
containers for solid waste disposal. (d) Percentage of households per
district that perform indiscriminate dumping for solid waste disposal
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Table 4 Percentage (mean + SD) of households per district that
use each type of sanitation practice; data extracted from the Ghana
Population and Housing Census (2010)

Sanitation facility type Total Rural Urban

No facilities (bush, beach,
field)

31.2 ± 29.9 36.5 ± 32.3 20.4 ± 21.3

Public toilet (WC, KVIP,
pit, pan, etc.)

30.9 ± 16.3 27.7 ± 17.9 37.9 ± 14.2

Pit latrine 21.1 ± 15.5 24.6 ± 17.6 16.6 ± 12.9

KVIP 9.1 ± 5.5 7.0 ± 4.6 13.2 ± 7.2

Water closet 7.0 ± 9.3 3.5 ± 5.6 11.0 ± 10.2

Bucket or pan 0.4 ± 0.5 0.2 ± 0.2 0.6 ± 0.8

Other 0.4 ± 0.3 0.4 ± 0.4 0.4 ± 0.4

relationship between sanitation practices and education at the
level of the individual are lacking.

In the 2010 Ghanaian census, sanitation practices were
determined using a self-report survey using the following cat-
egories: if a household used no facilities (bush/beach/field),
water closet (WC), pit latrine, Kumasi Ventilated Improved
Pit (KVIP) latrine, bucket/pan, public toilet, or other (Ghana
Statistical Service 2014). In Ghana, only 15% of the pop-
ulation uses improved sanitation facilities (WHO/UNICEF
Joint Monitoring Programme (JMP) 2015). After analyzing
the 2010 census data, we found that the most commonly
used sanitation practice in Ghana was “no facility” or prac-
ticing open defecation (31.2 ± 29.9%) (Table 4, Fig. 6).
Using a public toilet was the second most common option
(30.9 ± 16.3). The three most common sanitation practices
varied by district: absence of sanitation facilities are common
in the north, while public toilets and pit latrines are common
in the south (Fig. 6b–d). Overall, northern Ghana has a
greater percentage of open defecation than other areas.

Safe Drinking and Domestic Water

Census data on safe drinking and domestic water sources
can be captured multiple ways, but survey data and self-
report based on a provided list of specific drinking wa-
ter sources are often used (UNICEF 2017). In the 2010
Ghanaian census, drinking water source used was collected
in a self-report survey with the following categories: pipe-
borne (inside the dwelling), pipe-borne (outside dwelling),
a public tap/standpipe, borehole/tube well, protected well,
rainwater, protected spring, bottled water, sachet water, from
a taker supply/vendor, unprotected well, unprotected spring,
river/stream, dugout/pond/lake/dam/canal, or other (Ghana
Statistical Service 2014). Domestic water source was also
collected in the census and used the same categories but did
not include bottled water or sachet water as options (Ghana
Statistical Service 2014).

The WHO/UNICEF (WHO/UNICEF Joint Monitoring
Programme (JMP) 2015) recently published information stat-
ing that current access to safe drinking water in Ghana has
reached 89% as of 2015 (93% in urban areas and 84% in
rural areas). Safe drinking water is defined as “sources that,
by nature of their construction or through active interven-
tion, are protected from outside contamination, particularly
fecal matter” (World Health Organization n.d.). With the
high percentage of reported coverage in Ghana, the 2030
SDG 6 to achieve universal and equitable access to safe and
affordable drinking water for all seems to be moving in a
positive direction (United Nations General Assembly 2015).
The SDG measurement for “access” to safe water is not the
same thing as actual water use; the current census questions
are not designed to capture the fact that many households use
multiple drinking water sources; instead, the census captures
the “main” drinking water source for a household. Thus,
even though a high percentage of improved water “access”
is reported, uncertainty remains about the details of daily
drinking water use, and no nationally representative data are
currently available to research this further with respect to
source preferences or temporal/seasonal/spatial variation in
source selection.

Adequate quantities of safe water for domestic use are
necessary for human life and can reduce the spread of disease
(Howard et al. 2003). The WHO defines domestic water use
as “water used for all usual domestic purposes including
consumption, bathing and food preparation” (World Health
Organization 1993). Most importantly, domestic water sup-
plies provide basic health protection in the forms of hand-
washing, cleaning, bathing, and laundry (Howard et al. 2003).
Water scarcity may limit certain sanitary and hygiene habits
that protect health (Howard et al. 2003). Poor hygiene has
been known for decades to cause diarrheal disease; skin and
eye diseases, in particular trachoma; and diseases related to
infestations (Cairncross and Feachem 1993).

Use of safe drinking and domestic water sources is af-
fected by many factors such as taste, smell, appearance,
price, convenience, and proximity, among others, but there is
no country-level data on these factors for most low-income
countries. We used multiple methods to assess water use in
Asamama, Eastern Region, Ghana (Kosinski et al. 2016a).
Asamama faces challenges due to poor water quality and
lack of sanitation, with associated risks of diseases including
schistosomiasis and diarrheal disease. Data from the commu-
nity were collected to assess water use by 247 households.
Methods included UGS screening of school children, map-
ping borehole locations and river access points, assessing
water quality, and holding focus group discussions with teen
and adult participants. About 10.5% of participants reported
using only borehole water, 35.2% reported using only river
water, and 53.8% reported using both river and borehole.
Focus group data revealed that water preferences vary due
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Fig. 6 Most common sanitation practices in 216 districts in Ghana.
(a). Bar chart of the most popular methods of sanitation for households
in all districts. (b) Percentage of households per district that use open

defecation. (c) Percentage of households per district that use public
toilets (WC, KVIP latrines, pit latrines, pans, etc.). (d). Percentage of
households per district that use private pit latrines
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Table 5 Drinking water sources with description (Cairncross and Feachem 1993) and accordance with SDG expectations (United Nations General
Assembly 2015; Mihelcic et al. 2009)

Water source Description Meets SDG SDG explanation

Borehole, pump,
tube well

Well drilled into ground to reach groundwater, system for vessel to
draw water or handle for manual pumping

YES Groundwater needs to be free of
contamination

Bottled water Bottles, usually plastic, filled with safe drinking water, distributed
to communities

YES Can take advantage of communities;
high selling price, cause of plastic waste

Pipe-borne Water is piped from watershed supply, usually receives treatment,
enters the primary distribution system, and finally enters a
distribution system specific to the community

YES Must be protected at source in
community

Protected well Well with protective cover: usually sealed concrete slab to protect
from outside waste and water from contaminating safe water

YES Protective cover needs to be functioning

Sachet water Plastic containers filled with safe drinking water, distributed to
communities

YES Can take advantage of communities;
high selling price, cause of plastic waste

Spring Natural spring water, flows through a barrier (usually concrete or
brick box) built around spring to protect against outside pollution

YES Must be protected with a cover at the
source

Standpipe or public
tap

Pipe routed to water distribution system, usually placed in central
location, faucet for community use

YES Needs to be accessible to community,
protected at the source

Tanker supply Vehicle carries large amount of water YES Can take advantage of communities;
high selling price

Dugout, pond, or
lake

Natural body of water, without filtration system or protection from
contamination

NO Contamination occurs easily

River or
unprotected spring

Natural water sources, no filter for outside contamination NO Contamination occurs easily

Unprotected well Well without protection from outside contamination NO No barrier from outside contamination

to factors such as taste, appearance, perceived quality, prox-
imity, and the physical condition of water sources. Improved
infrastructure and individual water treatment options could
improve water sources, but more research is needed to assess
perceived health risks associated with certain water sources
(Kosinski et al. 2016a).

We recently examined six drinking water sources that
are commonly used in Ghana and their accordance with the
SDGs (Table 5). Multiple sources meet SDG expectations,
as long as these sources are protected, accessible, and afford-
able.

Based on our analysis of the 2010 Ghana Census Data,
we found that boreholes/pumps/tube wells are the most
commonly used drinking and domestic water sources
(32.5 ± 20.8%) (Table 6, Fig. 7a). Pipe-borne water (pipes
provide water to house compound outside of dwelling) and
river water are the next most common sources for both
drinking and domestic water (Table 6). For drinking water
use specifically, borehole use is higher in the northern areas
of Ghana, as well as along the western coast. There also
appears to be high use in the southwest corner (Fig. 7b).
Pipe-borne water (outside of the dwelling) use is higher in
the southern areas of Ghana (Fig. 7c). River water use is
higher in the eastern area of Ghana, as well as a corner of
the southwest (Fig. 7d). This information, especially on a
more granular scale, is essential for understanding the health
impact of improved water sources. When the data were in
their original form of 216 separate district reports, compiled
in tables, it was not possible to view these interesting spatial

patterns; visualizing the data geographically has enabled new
perspectives on drinking water sources in the country.

When we examined domestic water use, we used the same
techniques (maps not shown). We found that borehole use
is highest in the northeast and southwest and river water for
domestic use is higher in the eastern areas. For domestic
water use, there is a more distinct pattern for outdoor piped
water; higher percentages occur along the southern coast and
some southern regions. Spatially, drinking water and domes-
tic water have similar percent use patterns across Ghana;
for both sources, borehole use is higher in the northwestern
area, use of pipes is higher in the south, and river water use
is higher in eastern areas. With enhanced GIS capacities, it
would be possible to demonstrate the value of investment in
water infrastructure at the community level and nationally.

Energy Sources, Lighting, and Cooking

According to SDG 7, all people should have “ . . . access to
affordable, reliable, sustainable and modern energy” (United
Nations General Assembly 2015). Energy use is generally
measured and captured in census reports at the household
or commercial/industrial level (World Bank 2018). Survey or
self-report data are common ways of measuring use (World
Bank 2003). In the Ghanaian census, energy sources, such
as lighting or cooking fuel used, are collected in a self-report
survey with the following categories: electricity (main), elec-
tricity (private generator), kerosene lamp, gas lamp, solar
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Table 6 Percentage (mean + SD) of households per district that use each type of water source practice; data extracted from the Ghana Population
and Housing Census (2010)

Drinking water Domestic water

Water source Total Rural Urban Total Rural Urban

Borehole, pump, tube well 32.5 ± 20.8 40.8 ± 21.8 18.4 ± 18.2 31.9 ± 19.5 39.1 ± 20.7 19.1 ± 17.2

Pipe-borne outside dwelling 14.6 ± 9.9 10.4 ± 8.3 21.7 ± 12.2 14.2 ± 10.3 10.1 ± 8.4 21.0 ± 12.1

River, stream 13.4 ± 12.5 18.2 ± 14.4 5.1 ± 11.5 15.6 ± 13.6 20.8 ± 15.1 6.6 ± 12.7

Public tap, standpipe 12.8 ± 10.1 10.4 ± 10.3 19.4 ± 16.8 12.1 ± 9.7 9.7 ± 9.8 18.4 ± 16.4

Pipe-borne inside dwelling 6.7 ± 9.0 2.8 ± 4.5 11.6 ± 11.6 7.3 ± 9.9 3.0 ± 5.1 12.4 ± 12.2

Protected well 6.7 ± 6.8 5.5 ± 5.6 9.8 ± 11.5 8.8 ± 8 6.7 ± 6.2 13.9 ± 14

Sachet water 5.1 ± 9.6 2.8 ± 7.5 7.7 ± 11.1 – – –

Unprotected well 3.1 ± 4.8 3.5 ± 5.0 2.1 ± 5.1 3.8 ± 5.5 4.0 ± 5.3 3.4 ± 6.6

Dugout, pond, lake, dam, canal 2.6 ± 5.2 3.3 ± 6.2 1.2 ± 6.0 3.2 ± 6.0 3.8 ± 6.6 1.6 ± 6.7

Rainwater 0.9 ± 2.2 0.8 ± 2.0 0.9 ± 3.0 0.9 ± 2.2 0.8 ± 1.6 1.0 ± 3.5

Tanker, vendor provided 0.9 ± 2.7 0.5 ± 1.7 1.1 ± 4.2 1.5 ± 5.3 0.9 ± 3.5 2.0 ± 7.0

Protected spring 0.4 ± 0.3 0.3 ± 0.3 0.4 ± 0.4 0.4 ± 0.3 0.3 ± 0.3 0.4 ± 0.5

Unprotected spring 0.3 ± 0.5 0.4 ± 0.6 0.1 ± 0.3 0.4 ± 0.5 0.5 ± 0.6 0.2 ± 0.4

Bottled water 0.2 ± 0.3 0.1 ± 0.3 0.3 ± 0.3 – – –

Other 0.1 ± 0.1 0.1 ± 0.2 0.1 ± 0.2 0.2 ± 0.2 0.3 ± 0.3 0.1 ± 0.2

energy, candle, flashlight/torch, firewood, crop residue, or
other (Ghana Statistical Service 2014).

When we analyzed energy source use in Ghana based on
2010 census data, we found that the most common cook-
ing fuel was wood (53.7 ± 28.9%) followed by charcoal
(23.5 ± 16.2%) (Table 7). Wood as a principal cooking
fuel source is high throughout Ghana. Use of charcoal is
higher in the southern half of the country but is somewhat
heterogeneous across districts. Use of gas as a principal
cooking fuel is higher in some areas of the south and east.
Themost common lighting sourcewas reported as “no energy
source” (49.4 ± 21.5%) followed by gas (25.2 ± 16.8%) and
burning crop residue (23.2 ± 17.3%); higher electricity use
appears in the southern region of Ghana. In contrast, higher
kerosene use appears in the northern region of Ghana, as
well as eastern parts of the country. High rates of flashlight
use as a principal lighting source occur in western Ghana.
Little is known how improvements in the use of green energy
sources may benefit health and well-being by technological
leapfrogging.

Literacy and Employment

By 2030, SDG 4.6 states that all countries should “ensure
that all youth and a substantial proportion of adults, both men
and women, achieve literacy and numeracy” (UN General
Assembly 2015). Lower literacy rates can be an independent
risk factor for poor health outcomes (Baker et al. 1998;
Dewalt et al. 2004; Wolf et al. 2005; Sudore et al. 2006).
In a systematic review, DeWalt et al. (Dewalt et al. 2004)
used 1980–2003 data fromMEDLINE, the Cumulative Index
to Nursing and Allied Health Literature, the Educational

Resources Information Center, Public Affairs Information
Service, Industrial and Labor Relations Review, PsycINFO,
and AgeLine and found that limited literacy is associated
with health variables such as knowledge about healthcare
and various chronic diseases. Martel et al. (2019) recently
showed that increased class year in school is associated with
significantly higher knowledge of urogenital schistosomiasis
attributes, which has the potential to result in improved pro-
tective behaviors. In a census, literacy is generally measured
as the total number of literate persons—able to read and
write—in a given age group, expressed as a percent of the
total population in that age group (UNESCO 2008). Age
groups usually include adult literacy rate (15+ years) and
youth literacy rate (15–24 years), but may be further divided
(UNESCO 2008). There is no international standard way to
measure literacy, and many countries rely on self-reporting.
During the 2010 Ghanaian census, respondents (aged 11+
years) were considered literate if they could read and write
a simple statement with understanding (Ghana Statistical
Service 2013).

Employment status collected for census data is generally
measured by self-report in the form of a household survey
reporting current or previous employment or unemployment
administrative records (U.S. Census Bureau, Labor Force
Statistics 2017). Methods for determining employment status
vary and can include simply stating that a person is cur-
rently employed or not, listing a current place of employ-
ment, or using statistics describing persons using unemploy-
ment insurance (U.S. Census Bureau, Labor Force Statistics
2017). Limited research exists on the relationship between
unemployment and health; however, unemployment causes
increased mental health conditions, including anxiety and
depression, as well as heart disease and its associated risk



326 A. M. McIntyre et al.

Fig. 7 Most common drinkingwater sources for 216 districts in Ghana.
A. Bar chart of the most popular drinking water sources for households
in all districts.B. Percentage of households per district that use borehole
wells/pumps/tube wells for drinking. C. Percentage of households per

district that use pipe-borne water that is outside the house for drinking.
D. Percentage of households per district that use river/stream water for
drinking
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Table 7 Percentage (mean + SD) of households per district that use each type of fuel source for cooking and lighting; data extracted from the
Ghana Population and Housing Census (2010)

Cooking Lighting

Fuel source Total Rural Urban Total Rural Urban

Wood 53.7 ± 28.9 31.6 ± 22.5 67.6 ± 27.3 – – –

Charcoal 23.5 ± 16.2 40.8 ± 19.2 15.1 ± 13.6 – – –

Gas 11.2 ± 13.5 14.6 ± 11.2 7.9 ± 13.5 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2

None 8.0 ± 14.2 10.91 ± 18.4 5.5 ± 9.6 – – –

Electricity 0.4 ± 0.8 0.5 ± 2.0 0.3 ± 0.3 – – –

Kerosene 0.4 ± 0.3 0.5 ± 0.4 0.3 ± 0.2 25.2 ± 16.8 15.6 ± 11.0 30.6 ± 19.2

Crops 3.1 ± 9.1 1.1 ± 3.5 3.5 ± 10.1 0.1 ± 0.2 0.4 ± 4.9 0.2 ± 0.2

Sawdust 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.2 – – –

Animal waste 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 – – –

Other 0.1 ± 0.3 0.7 ± 7.3 0.1 ± 0.2 0.7 ± 6.2 0.2 ± 0.2 0.3 ± 0.4

Solar – – – 0.3 ± 0.4 0.1 ± 0.2 0.4 ± 1.6

Candle – – – 0.4 ± 0.6 0.5 ± 0.6 0.4 ± 0.6

Flashlight – – – 23.2 ± 17.3 8.3 ± 6.7 28.4 ± 19.5

Fire – – – 0.4 ± 0.4 0.2 ± 0.2 0.4 ± 0.5

Public electricity – – – 49.4 ± 21.5 73.5 ± 13.4 38.0 ± 21.3

Private electricity – – – 0.7 ± 0.6 0.8 ± 0.9 0.8 ± 0.4

factors (Wilkinson and Marmot 2003). Overall, as a social
determinant of health, unemployment increases the risk of
illness and premature death (Wilkinson and Marmot 2003).

Employment is addressed by SDG 8, which calls for
countries to “promote sustained, inclusive and sustainable
economic growth, full and productive employment and de-
cent work for all” (United Nations General Assembly 2015).
In the 2010 Ghanaian census, employment status was deter-
mined with a self-report survey with eight categories for a
person to mark as a best indicator of their status: employee,
self-employed without employees, self-employed with em-
ployees, casual worker, contributing family worker, appren-
tice, domestic employee (house help), or other (Ghana Sta-
tistical Service 2014). In Ghana, between the years 2000 and
2010, the number of people employed increased from ap-
proximately 7.43 million to 10.24 million and has remained
at a relatively stable increase of linear growth (Alagidede et
al. 2013).

Summary of Ghanaian Case Study

Our case study in which we used data from multiple data
sources shows that there were distinct spatial patterns when
comparing environmental and health variables across dis-
tricts. The analysis of the 2010 census data shows that there
are spatial patterns of water use, sanitation infrastructure,
and energy source use throughout Ghana, with more areas
of unimproved and unsafe use appearing in the northern
sections. There appear to be greater environmental health
risks in northern areas in Ghana: low use of sanitation fa-
cilities and high use of kerosene and wood fuel. It is also

highly plausible that there are distinct spatial patterns when
considering rurality and urbanicity, but there are no available
nationally representative data to study these important poten-
tial correlates of health outcomes. In the future, it would be
incredibly useful to create shapefiles for all 216 districts in
Ghana with rural and urban areas clearly delineated. Analyz-
ing environmental health variables by urban and rural locality
would be a fascinating next step. Findings from the WHO
concerning rural disparities on water and sanitation state
that approximately 55% of the world’s rural population has
access to safewater sources and 57%have access to improved
sanitation. In contrast, approximately 85% of the world’s
urban population has access to safe water sources, and 92%
has access to improved sanitation (WHO/UNICEF 2017).
Additionally, rural communities have an increased reliance
on kerosene and wood for fuel, contributing to increased risk
for negative air quality and related health effects (Rehman
et al. 2005). Moving forward, it will be invaluable for all
countries to have access to high-quality, clearly georefer-
enced data based on locality in order to draw population-
level conclusions on environmental health indicators and
associated disease outcomes.

Ghana’s Efforts to Improve Nationally
Representative Dataset Availability
and Accessibility

In this section, we highlight Ghana’s efforts to improve na-
tionally representative dataset availability and accessibility.
Ghana has spearheaded efforts to develop and support online
repositories and websites to track nationally representative
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data. In 2018, the GSS posted a Central Data Catalog on
the GSS website and outlined various datasets collected by a
variety of governmental agencies and academic institutions.
We explored GSS websites including the main GSS Website
(Ghana Statistical Service 2019a), the GSS Data Catalog
(Ghana Statistical Service 2019b), the Ghana Open Source
Data Initiative (Ghana Open Source Data Initiative 2019),
and the Ghanaian website on the SDGs (Ghana Statistical
Service 2019c).

The GSS website (Ghana Statistical Service 2019b) pro-
vided a data catalog with information about data availability
via download, including direct access; public access; licensed
access, available through external repository; and data not
available. Table 8 outlines the 59 datasets mentioned in
the GSS Central Data Catalog, along with the organization
that initiated or supported data collection. The GSS website
has 26 datasets listed as “available,” in some capacity, for
download. However, many available datasets require a regis-
tration process in order to receive data. This process does not
guarantee a response or delivery of data.

The most recent GSS website has a new “Open Data
Initiative” that mirrors the format of the now-retired GSS
Data Catalog and is visibly “in progress” to be finalized. The
Open Data Initiative offers names of 133 datasets that will
be eventually available. As of March, 2019, we were able
to access 15 datasets. For the present study, SDG data were
not used due to the limited amount of data published as of
March 2019. Of the 59 datasets, only 4 datasets were avail-
able for immediate download. Remaining datasets required
a registration process or were not available. Registration
processes included creating an account on the GSS website;
once registered, access to completing a data request form
was granted. Data request forms included a description of
proposed project or use for data, professional or academic
affiliation information, and contact information (Table 9).

GSS also reports data organized by SDG on a separate,
more recently updated website (Ghana Statistical Service
2019c). This innovative, in-progress effort by GSS reports
the status of datasets that could be used to assess each SDG
goal and sub-goal. Titled the “Ghana data for Sustainable
Development Goal Indicators,” GSS is seeking a total of 244
datasets to address all aspects of the SDGs; 33 datasets are
currently available for download (Table 10).

Challenges of Data Compilation
and Processing

As we were producing the maps and tables presented in
this chapter, we scrupulously documented challenges and
limitations. We created a priori categories to organize the
encountered challenges in four domains: data collection and
acquisition, data validation and verification, data analysis,

and data presentation. These categories followed a common
data life cycle and include data availability, access, com-
pleteness, quality, complexity, interpretability, delivery, and
comprehension. We define these categories from a point of
view ofmapping diseases using census data, DHIMS records,
and the CERSGIS platform and describe availability and
access challenges as we download and compile records for
district-level mapping. We documented challenges encoun-
tered due to incomplete, mismatched, or missing records or
as we were forced to estimate some metrics based on the
preprocessed data rather than the raw original data. We also
paid attention to the ability to perform a complex analysis
on a refined spatiotemporal scale and to assess long-term
and seasonal variations. Asmany disease monitoring systems
offer their clients various tabular or visual forms of reporting,
we assessed their quality of delivery and comprehension.

2010 Population and Housing Census

For the present study, 2010 Population and Housing Census
data were not available to download directly; instead, we
extracted records from 216 District Analytical Reports as
separate documents available in PDF format. We used an
online PDF-to-Microsoft Excel table conversion tool for each
variable for each of the 216 districts in Ghana. All variables
in the reports were presented as percentages of the district
population, and most were additionally broken down into
percentages for urban and rural parts of districts. In addi-
tion to overall limited access to GSS data, the first step to
acquiring census data was themost time-consuming; PDF-to-
Excel spreadsheet data extraction proved tedious and prone
to errors (Table 11). Data quality was negatively impacted
because content sections in the 216 district reports were
inconsistent and statistics did not always report on the same
variables. Overall, the census data presented a wide variety of
challenges that researchers face in working to use these data
for health-related purposes with spatial applications.

District Health InformationManagement
System (DHIMS)

DHIMS data were acquired by a direct request to GHS for
case counts of UGS and diarrheal disease for 216 districts
in Ghana. The data were provided at the district level and
included monthly disease counts for diarrheal disease and
UGS between January 2012 and December 2016. DHIMS
data allowed us to create country-level maps of both UGS and
diarrheal disease; however, there is additional information
that could be collected in the future to further enhance data
analysis options. The DHIMS database and GHS websites
do not currently provide details about the quality or com-
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Table 8 Catalog of data on the Ghana Statistical Service (GSS) website (Ghana Statistical Service 2019b), along with data availability as of
March, 2019

Data source Year Producer
Governmental
support Access type

Academically based

Afrint Household Level Data, Round 1
and 2

2001, 2002 Lund University Swedish gov’t Direct

NetMark Insecticide-Treated Nets Survey,
Baseline Household Evaluation

2004 Academy for Educational
Development

USAID External

INDEPTH Study on Global Ageing and
Adult Health, Wave 1

2004 Navrongo Health Research
Centre: GHS

US National Institute on Aging External

Study on Global Ageing and Adult
Health, Wave 1

2007–2008 Ghana Medical School US National Institute on Aging External

Governmentally based

Fertility Survey 1979–1980 Central Bureau of Statistics UNFPA, USAID, UK Overseas
Development Administration

External

Population Census 1960 1960 Ghana Census Office Not listed External

Population Census 1970 1970 Ghana Census Office Not listed External

Population Census 1984 1984 GSS Not listed External

Population and Housing Census 2000 GSS—Office of the President Gov’t of Ghana and others Public

Population and Housing Census 2010 GSS—Min. of Finance and
Economic Planning

Gov’t of Ghana, UNFPA,
UNDP, and others

Public

Demographic and Health Survey 1988 GSS UNFPA External

Demographic and Health Survey 1993 GSS—Office of the President USAID Public

Ghana Demographic and Health Survey 1998 GSS—Office of the President Gov’t of Ghana, USAID Public

Demographic and Health Survey 2003 GSS—Gov’t of Ghana Gov’t of Ghana, USAID Public

Demographic and Health Survey 2008 GSS, Min. of Health USAID, UNFPA, UNICEF,
Ghana AIDS Commission

Public

Demographic and Health Survey 2014 GSS—Office of the President Not listed External

Ghana Maternal Health Survey 2007 GSS USAID Public

Ghana Maternal Health Survey 2017 GSS Not listed

Emergency Obstetric And Newborn Care,
Round 2

2011 GHS Gov’t of Ghana, UNICEF,
UNFPA, WHO, USAID

Licensed

Annual Statistical Report on Births and
Deaths, Round 1

2012 Births and Deaths Registry Gov’t of Ghana Licensed

Annual Statistical Report on Births and
Deaths, Round 2

2013 Births and Deaths Registry Ministry of Local Gov’t and
Rural Development

External

Holistic Assessment of the Health Sector
Programme of Work

2013 Ministry of Health Gov’t of Ghana Licensed

Annual Schools Census—Basic Schools
Info, Round 24

2012–2013 Ministry of Education Gov’t of Ghana Direct

Annual Schools Census—Senior High
School, Round 7

2012–2013 Ministry of Education Gov’t of Ghana Direct

GLSS 1 1987–1988 GSS Office of the President Public

GLSS 2 1988–1989 GSS Office of the President Public

GLSS 3 1991–1992 GSS Office of the President Public

GLSS 4, with Labour Force Module 1998–1999 GSS Office of the President Public

GLSS 5, with Non-farm Household
Enterprise Module

2005–2006 GSS Office of the President Public

GLSS 6, with Labour Force Module 2012–2013 GSS Gov’t of Ghana Public

GLSS 7 2017 GSS Public

Multiple Indicator Cluster Survey 1995 Ministry of Health Gov’t of Ghana External

Multiple Indicator Cluster Survey 2006 GSS Office of the President Public

Multiple Indicator Cluster Survey 2008 GSS Gov’t of Ghana Public

Multiple Indicator Cluster Survey 2011 GSS Autonomous Public

Ghana Child Labour Survey 2001 GSS Ministry of Finance and
Economic Planning

Public

(continued)
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Table 8 (continued)

Data source Year Producer
Governmental
support Access type

Service Provision Assessment Survey 2002 GSS External

Ghana Core Welfare Indicators Survey 1997, 2003 GSS Office of the President Public

National Industrial Census 2003 GSS Autonomous Public

Financial Service Survey 2006 GSS Office of the President Public

Job Tracking Survey 2006 GSS Office of the President Public

National Transport Household Survey 2007 GSS Autonomous Public

Public Expenditure Tracking Surveys 2007 GSS Autonomous External

Crime Victimization Survey 2009 GSS Autonomous External

Ghana Time Use Survey 2009 GSS Public

Ghana User Satisfaction Survey 2012 GSS Autonomous Public

Transport Indicator Database Survey,
Round 2

2012 GSS Gov’t of Ghana Public

Social Accounting Matrix 2015 GSS Office of the President Public

Agricultural Production Survey—Minor
Season, Round 2

2013 Ministry of Food and
Agriculture

Gov’t of Ghana Licensed

Externally based

World Health Survey 2002, 2003 WHO External

Enterprise Survey 2007 World Bank External

Global Financial Inclusion Database 2011 World Bank External

People Security Survey 2002 International Labour
Organization

External

GLSS Ghana Living Standards Survey, GSS Ghana Statistical Service, GHS Ghana Health Service, WHOWorld Health Organization

Table 9 Catalog of data listed on the Ghana Statistical Service (GSS) website (Ghana Statistical Service 2019b) and accessibility status out of
59 data files as of March, 2019

GSS data catalog
Number of data
files

Immediate
download

Registration
required

Application
required Additional notes

Direct data access 4 Yes No No N/A

Public use data files 31 No Yes Yes N/A

Licensed data files 5 No Yes Yes Extremely comprehensive application

Data available from external
repository

2 No Yes, on separate website No Link provided; log in to separate
website

Data not available 17 No No No Not available: only contextual
documentation

pleteness of the data or the methods that individual clinics
use to determine what constitutes a “case” or provide a case
definition. Similar to many well-developed monitoring sys-
tems, the DHIMSwebsite could provide, for example, annual
estimates of disease incidence, treatment, and cure rates. This
information will improve interpretability of maps and data
analysis. Offering the data to researchers in a temporally and
spatially disaggregated manner would allow for advanced
analyses to occur. Both UGS and diarrheal disease may have
a time lag between the onset of disease and reporting; for
UGS, this could be years. A continuous monitoring system
allows researchers and practitioners to track disease inci-
dence over time and address this not yet well-understood
time lag. Existing records do not delineate between urban
and rural locality, and the ability to combine disease data
with environmental characteristics relevant to urban-rural

settings is limited. Overall, the spatial origin and incidence
of infection cannot be accurately assessed with the currently
available data (Table 12).

CERSGIS Data

Shapefiles and all country-level data layers for Ghana, in-
cluding district and regional boundaries, water bodies, land
use, and cities and towns, were purchased from CERSGIS by
Tufts University. Information on updates to district boundary
changes has not been effectively translated to existing GIS
data layers. A shapefile of Ghana with all 216 districts
was not available through CERSGIS, an academic reposi-
tory, or central database. Because the available shapefiles
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Table 10 Summary of datasets sought by the Ghana Statistical Services (GSS) to determine progress toward the 2030 Sustainable Development
Goals (SDGs) (United Nations General Assembly 2015)

Sustainable development goal
Total datasets
GSS desires

Datasets reported
online

Datasets currently
being sought

No data sources available
yet; not currently being
sought

Total 244 33 7 204

1. No poverty 14 2 0 12

2. Zero hunger 13 3 0 10

3. Good health and well-being 27 6 0 21

4. Quality education 11 1 2 8

5. Gender equality 14 2 0 12

6. Clean water and sanitation 11 2 1 8

7. Affordable and clean energy 6 1 0 5

8. Decent jobs and economic growth 17 2 0 15

9. Industry, innovation, and infrastructure 12 5 0 7

10. Reduced inequalities 11 0 0 11

11. Sustainable cities and communities 15 1 1 13

12. Responsible consumption and production 13 1 0 12

13. Climate action 8 0 0 8

14. Life below water 10 0 0 10

15. Life on land 14 0 1 13

16. Peace and justice—strong institutions 23 2 2 19

17. Partnerships for the goals 25 5 0 20

contained 137 districts rather than the currently existing
216, district-level data were digitized manually in ArcMap
(Version 10.5.1). We also corrected district names to match
corresponding district names in the census and health records
(spelling, case, and spacing) and joined a district-level shape-
file to spreadsheets containing both census and DHIMS data.
Errors and misalignments in district names and boundary
lines within shapefiles and across other spatial programs
make the merging step time-consuming and did not warrant
full data validation (Table 13).

Leapfrogging to theModern Geospatial
World

In order to build robust national systems for health monitor-
ing, many high-income countries have invested in decades of
innovation, iteration, and trial and error.With new technolog-
ical solutions in low-income countries, particularly African
ones, it is possible to skip the technological evolution pro-
cess to “leapfrog” over now-obsolete technologies with a
movement directly to modern infrastructure. Reliable and
regularly collected data on health outcomes and potential risk
factors are necessary for decision-making about interventions
and health delivery infrastructure (Grimes et al. 2014; Nori-
Sarma et al. 2017). Lack of data can severely limit analy-
ses and may prevent public health officials and researchers
from drawing valuable, nationally representative conclusions

on the state of a population’s health (National Research
Council 2012). Ideally, a surveillance system should provide
key information on infection transmission, vaccination, and
treatment options and update the public on potential hot
spots tominimize infection risk.Moving forward,monitoring
systems for non-communicable diseases are expanding their
role in developing and implementing preventive strategies.
Similarly, geospatial systems for tracking environmental ex-
posures are merging with health monitoring platforms to
enrich our understanding of disease ecology, epidemiology,
and ways to improve health and well-being.

There are both challenges and opportunities for low-
income settings with respect to developing geospatial
capacities in compiling health and environmental records.
In the case study that focused on Ghana, some of the major
challenges were that the 2010 Population and Housing
Census data were not adequately available to researchers;
infrastructural and environmental data from CERSGIS had
inconsistent attribute labels and district names, which made
merging datasets difficult; and health records from 2012 to
2016 from DHIMS were limited in both data completeness
and granularity. Despite the challenges, there are many
potential solutions, some of which may already be in process.
These possible solutions address many of the data challenges
that other studies have cited (Bhalla et al. 2010; Pandey
et al. 2010; National Research Council 2012). We believe
the following “low-hanging fruit” solutions would help in
leapfrogging:
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Table 11 Data challenges that remain to be addressed with the 2010 Population and Housing Census Data from Ghana

Availability Half of the datasets listed on the GSS website are potentially available for download

Data from some censuses not available for immediate download: registration on the GSS website is needed,
followed by the completion of the “Application to Access to a Public Use Dataset”

Long lag time (4–5+ years) following the census before the data can be requested results in delayed data analysis

Access Raw data used to create figures and tables were not publicly available

Extraction process to compile a basic set of environmental variables from all 216 district reports is
time-consuming (took between 60 and 100 hours)

Publicly available data were not presented in an analysis-ready format (e.g., CSV files); district-level reports with
descriptive statistics and tables were downloaded individually from the GSS website as PDFs, and then data were
extracted from reports manually, which is time-consuming and prone to errors. PDF-to-Excel converter (an
open-source app) could only convert one PDF at a time; a researcher had to download each excel table and then
clean/extract relevant data

Manual scrolling through document was necessary (or using a “find” command) to find relevant charts/graphs

Completeness Varying amounts and patterns of missing data found in 216 PDF reports; any process that may have been used to
validate data completeness was not described and remains unknown

In some instances, basic statistics in a tabular form were missing, and it forced users to estimate values of a
variable of interest from graphs instead of using proper corresponding tables; occasionally variables of interest
were not available in either graphs or tables

Quality Raw or preprocessed data were not available for verification, so data quality is uncertain

In some instances, tables and charts have errors (e.g., percentages do not sum to 100% or incorrect denominators
used), limiting their usefulness and credibility

Complexity Analyses at refined spatial scales are not currently possible (e.g., rural and urban data values cannot be spatially
assigned to shapefiles in GIS); existing descriptive statistics are coarsely aggregated at the district level

Trend analyses are not currently possible: data from earlier censuses cannot be matched with most recent census
due to changes in district names and boundaries and unavailability of some census datasets

Delivery Presentation of the data in 216 individual PDFs makes it difficult to compare a single variable across many
districts or via spatial analyses

Standard method not included to account for population growth; population for each year is not standardized

Current chart and table formats in PDFs not always appropriate for the data types

Tables and graphs lacked uniformity of design, content (statistics presented), and location within reports

Comprehension and
interpretability

It is not clear how “urban” or “rural” status is determined

It is not clear whether/how data were normalized

Codebook and description of methods of data analysis for district reports not available

District names and their spellings were not standardized and did not consistently match across other data sources

• Ensure public access to raw or preprocessed data in an
analysis-ready format (e.g., CSV files).

• Ensure transparency of the data request process and re-
serve “limited access” for data where it is absolutely
necessary.

• Devote sufficient resources to processing and preparing
datasets for public use and further research.

• Have a national-level entity collect all tables and figures
from district reports to compile and standardize them,
checking for errors, prior to release to the public.

• Use widely accepted standard methods and cite them.
• Promote governmental collaborations to create a standard

set of terminology.
• Improve metadata quality and completeness.
• Train internal and external users in spatial data analysis

techniques to improve research and professional practice
capacity.

• Distribute key results to local, regional, national, and
international organizations and stakeholders for feedback
and further dissemination.

Conclusions

This chapter takes the first step toward systematically defin-
ing the challenges faced when using multiple types of nation-
ally representative data in low-income countries. By illus-
trating the use of nationally representative data sources from
Ghana, we focused on the ways in which these challenges
can be resolved. The proposed potential solutions will require
the collaboration of many agencies, institutions, and com-
munity organizations and offer a “leapfrogging” opportunity
to countries where national data researchers could produce
models that accurately describe the relationship between
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Table 12 Data challenges that remain to be addressed with the DHIMS
data from Ghana

Availability Cases of a given disease missing due to errors,
under-reporting, poor case finding, lack of
healthcare-seeking by patients, etc.

Data unavailable at the level of the healthcare
facility

Data regarding geographic origins of infectious
disease cases (e.g., home location, contact with
other cases, water contact sites) are not available

Estimates of % cases who are likely not seeking
healthcare are not available

Estimates of cure rates and reinfection are not
available

Estimates of lags in case reporting are not available

Access The list of diseases and health conditions reported
to the DHIMS is not readily available, so requests
for data are challenging to formulate

Lack of obvious data request mechanism

Completeness Varying levels of missing data in case counts over
time (e.g., for diarrheal disease, there were 11
blank weeks and for UGS, 6599 blanks for the
same 5-year period); there are no distinctions
between an absence of cases needed to be reported
during reporting period and no reporting occurred;
any process that may have been used to validate
data completeness was not described and remains
unknown

Quality District names not universally compatible with
other datasets (GIS, Census)

In some instances, case definitions are not provided

Unclear meaning of blank cells in the DHIMS
system (e.g., could indicate “missing,” “0,” etc.)

Data reporting and receiving entities and reporting
timeframes are unclear, with implications for
understanding lulls/spikes and temporal
aggregation

Complexity Years of complete data are limited

Temporal aggregation (not sure—annual, quarterly,
monthly?) is too high for some types of analyses

Spatial aggregation (?) is too high for many types
of analyses

Delivery Researchers working with DHIMS data lack an
obvious mechanism to report findings back to GHS

Communities from which data are drawn lack an
obvious mechanism to receive reports with findings

A link between research findings and practical
applications is not obvious

Comprehension
and
interpretability

Maps showing temporal trends in geographic
location of cases do not yet exist

environmental factors and health outcomes. The continuing
widespread adoption of geospatial technologies is likely to
increase national capacity to develop environmental health
policies that reflect local and country-level needs and im-
prove public health research and practice.

Table 13 Data challenges that
remain to be addressed with the
GIS data from the Centre for Re-

mote Sensing and Geographic In-
formation Services (CERSGIS)

Availability Shapefile with all 216 districts in Ghana
unavailable and was created manually based on an
older version with 137 districts

Central repository for GIS data for all of Ghana
does not yet exist

Some types of data layers of key importance to
health (e.g., health centers, WASH infrastructure)
are unavailable

Access Paywalls limit access, especially for researchers in
low- and middle-income settings

Completeness Some data layers had missing/incomplete
components, such as streams and roads that did not
connect to branches and tributaries

Quality Some district and region names in shapefile were
spelled incorrectly and/or did not match the names
of districts from DHIMS or the 2010 Census

No mechanism readily available to share
corrections and changes to data made by individual
research groups and governmental agencies

Misalignments exist among various programs
(ArcGIS, Google Earth, Open Street Map, etc.) and
across various countries for features such as town
outlines

Ground-truthing methods, if any, are unclear

Complexity Temporal data are lacking for sociodemographic
and WASH variables; limits more complex
spatiotemporal analyses

Infrastructure shapefiles (road networks,
households, health centers, schools) are unreliable;
limits analyses such as network analysis

Data are mostly too coarsely aggregated to assess
key spatiotemporal relationships (e.g., surface
water access points are missing, latitude/longitude
coordinates for clinics are missing, or home
locations are unknown)

Delivery Target audience is unclear

Comprehension
and
interpretability

Urban-rural delineation within each district is not
clear
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Modeling Distributional Potential of Infectious
Diseases

Abdallah M. Samy, Carlos Yáñez-Arenas, Anja Jaeschke, Yanchao Cheng,
and Stephanie Margarete Thomas

Introduction

Most epidemiological studies involve mapping the spread of
diverse diseases in space and time placing a methodologi-
cal suite of geospatial and ecological “toolkits” into better
use to lead to greater opportunities for disease surveillance
and prevention. Mapping disease risk has a crucial role
in epidemiology and public health to illuminate details on
spatial patterns of disease cases and their potential to spread
across diverse regions of the world. Historically, the field
of epidemiology has applied various geospatial methods to
summarize geographic patterns for mapping disease trans-
mission risk. These methods are based on generalizing infor-
mation or averaging data to summarize geographic patterns in
smoothed surface maps. Although these approaches provide
basic information about spatial patterns for disease mapping,
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they are strongly biased by surveillance efforts (e.g., if most
data were collected close to roads; Kadmon et al. 2004),
and they do not usually give details of the complexity and
heterogeneity of biological systems (Peterson 2006). These
systems are determined by the interaction of different sets
of species contributing to the complex transmission cycle
of a particular disease in question (e.g., hosts, vectors, and
pathogens). Important insights can be obtained from better
understanding of the ecology of each species in the complex
disease transmission cycle (Peterson 2007). By the means of
mathematical formulas describing these processes within the
transmission cycle, epidemiological models (EM) can project
the spread of infectious diseases.

Ecological niche modeling (ENM) combines occurrence
records and environmental information to project the habitat
suitability for a certain species and to identify ecological
drivers of its distribution. It has revolutionized the field of
epidemiology for understanding diverse patterns of disease
spread and dynamics across the world (Peterson 2014). The
epidemiological applications of ENM include disease fore-
cast during outbreak events to anticipate areas at risk of
disease transmission for guiding surveillance and control
program (e.g., detailed map of Zika virus spread; Samy et al.
2016a). This chapter also provides the conceptual framework
of EM and offers new opportunities for integrating both
modeling approaches (EM and ENM) to better assess the
distributional potential of infectious diseases, particularly
vector-borne diseases.

Ecological NicheModeling

Ecological niche models (ENMs) – also termed as species
distribution models, habitat suitability models, or environ-
mental envelope models – are applied to estimate the poten-
tial distribution of a species in space and time. ENMs are
used to identify and characterize statistical patterns linking
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occurrence data to environmental predictors and fitting val-
ues to model parameters (Elith and Leathwick 2009; Franklin
and Miller 2010; Peterson et al. 2011). This approach trans-
fers the geographical space, i.e., occurrence records, into
environmental space, represented by environmental variables
that are important drivers of the species’ distribution. Oper-
ationally, the study area is generally represented as a grid of
equally sized raster cells containing information on the oc-
currence of the species and the corresponding environmental
predictors. Theoretically, the objective of this type of model-
ing is to characterize the ecological niche of a focal species.
Therefore, formalizing and clarifying on this concept are es-
sential to properly understand the principles of this approach.

Most ecologists agree that the concept of niche plays a
crucial role in ecology (Real and Levin 1991). However,
since it was first used in an ecological context (Johnson
1910), this term has acquired a wide variety of definitions
and interpretations. The different niche definitions can be
separated into two main categories: Eltonian and Grinnel-
lian niches (Soberón 2007). The Eltonian class focuses on
interspecific interactions, resource-consumer dynamics, and
other aspects that can generally be measured at local scales
(Elton 1927; MacArthur 1968; Vandermeer 1972; Leibold
1996). On the other hand, the Grinnellian class is defined
by non-interactive variables and environmental conditions
that influence species’ distributions on broad scales (Grinnell
1917;Whittaker et al. 1973; Austin and Smith 1989; Peterson
2003). This Grinnellian perspective represents the theoretical
basis underlying the construction of correlative species’ dis-
tribution model (SDM) and ecological niche model (ENM).
Recent studies introduced the concept of BAM framework
(i.e., the framework that summarizes the three sets of condi-
tions shaping the species niche; B refers to biotic conditions,
A refers to abiotic conditions, and M refers to movement)
to incorporate dispersal capacity as an additional parameter
to estimate a species’ distribution (Barve et al. 2011; Qiao
et al. 2017; Gherghel et al. 2019). A summary of the key
definitions of the ecological niche modeling and the BAM
framework is presented in Box 1.

Box 1 A Summary of the Key Definitions of the Eco-
logical Niche Modeling Concept
Species: Refers to any organism or component in the
transmission cycle (e.g., pathogen, vector, or reservoir
host).

BAM diagram: A diagram that summarizes the
three sets of conditions that together shape a species’
distribution: B, biotic conditions; A, abiotic conditions;
and M, movement of the species.

Ecological niche modeling: Estimation of the suit-
able conditions from occurrence records considering
the assumptions of the factors in the BAM diagram.

(continued)

Eltonian niche: A niche concept concerned with
community ecology questions, defined at small spa-
tial extents at which experimental manipulations are
feasible, emphasizing the functional role of species in
communities and including models of resource con-
sumption and impacts.

Grinnellian niche: Niche concepts defined based
on environmental space of noninteracting scenopoetic
environmental variables that the species can tolerate.

Occupied niche space: The subset of environmental
space that the species inhabits; it is equivalent to the set
of environments in the occupied distributional area.

Invadable niche space: The subset of environmental
space corresponding to the elements of geographic
space that the species could occupy if distributional
constraints were to be overcome.

Model calibration (model training): The step in-
volved in building a model when the species’ niche is
estimated based on primary occurrence data and values
of environmental variables (i.e., calibrated area may
also depend on the accessible area of the species in
question).

Model projection: The steps involved in transferring
the model from calibrated area to another region or
another time period.

Ensemble prediction: A consensus prediction of
a niche based on combining results of different al-
gorithms, alternative parameterizations of the same
method, or multiple iterations of stochastic methods to
generate a composite value of suitability.

Thresholding: The process of selecting a threshold
of occurrence, for converting continuous model output
to a binary prediction of “present” versus “absent.”

Threshold-dependent: An approach for evaluating
model performance or model robustness based on a
binary prediction, typically obtained by applying a
threshold to a continuous prediction of suitability.

Threshold-independent: An approach for evaluating
model performance or model robustness based on con-
tinuous prediction of suitability and without applying
the thresholding process.

Extrapolation: Prediction into environmental values
beyond the range of the values in the calibration area.
The process is very common in modeling projection
into different times or different regions.

Model evaluation (model testing): The process of
model testing based on different approaches (e.g.,
AUC, partial ROC, and independent data records).

Uncertainty: Estimation of an index indicating the
possible level of error regarding data (i.e., occurrence
records and environmental data).
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To date, different model algorithms are available to
estimate niche models. These algorithms were developed for
different types of distribution data (e.g., presence-absence
data or presence-only data) and different modeling purposes.
Maximum entropy (MaxEnt), generalized linear models
(GLM), generalized additive models (GAM), and boosted
regression trees (BRT) are commonly applied in ecology
and geospatial analyses owing to their superior performance
compared to other algorithms (Elith and Leathwick 2009;
Carvalho et al. 2017). To date, applying diverse algorithms
to the same data is not a common practice in studies which
model vector-borne diseases (Carvalho et al. 2017; Semenza
and Suk 2018). A recent study also recognized the idea of
“no silver bullets,” indicating that there is no single best
algorithm in ecological niche modeling under all circum-
stances (Qiao et al. 2015). Some studies used ensemble
modeling to avoid any possible uncertainties from applying
different algorithms to model the ecological niche of the
species in question (Buisson et al. 2010; Zhu and Peterson
2017; Eneanya et al. 2018; Hao et al. 2019); however, there
is limited unambiguous information on the performance of
individual models versus ensemble models (Hao et al. 2019).

Beyond the estimation of the importance of individual
drivers, ENMs calculate the environmental suitability for
each raster cell and transfer it to the geographical space.
These outputs are mainly visualized as maps showing areas
with high to low suitability or binary information reflecting
the potential presence or absence of species in question in the
thresholded models (Fig. 1).

A Practical Framework of ENM

Building ecological niche models consists of executing a
concrete list of steps (Box 2). This list of modeling processes
was recently updated to include additional steps seeking
better improvements in estimating species’ ecological niches.
This section of the chapter presents detailed steps of building
ecological niche models.

Step 1: Data Collection and Cleaning

Niche modeling requires two types of data: (1) occurrence
records documenting sampling sites where a species has
been observed and (2) covariates or predictors presenting
the environmental conditions that elaborate the ecological re-
quirements of the species in question. Occurrence records are
point localities defined by x and y coordinates or longitude
and latitude; on the other hand, predictors are Geographic In-
formation System (GIS) raster layers that are used to charac-
terize variation in environmental conditions across the study

area. There are several sources from which occurrence data
can be obtained. Global Biodiversity Information Facility
(GBIF; https://www.gbif.org/) and iNaturalist (https://www.
inaturalist.org/) provided comprehensive online repositories
to search data for any species, VertNet data portal (http://
vertnet.org/) for vertebrate biodiversity data, Walter Reed
Biosystematics Unit VectorMap portal for disease vector data
(e.g., mosquito and tick vectors; http://vectormap.si.edu/),
and HealthMap (https://www.healthmap.org/) to provide in-
formation on historical and recent disease occurrences across
the world. Other sources included routine active surveil-
lance of the species or disease under the study and museum
collections. Data from any of these sources should pass
through a careful error-check to avoid any associated prob-
lems (e.g., taxonomic misidentification or errors in assigning
the geographic location of the species). The environmental
datasets may be interpolated weather stations climate layers
(e.g., WorldClim; https://www.worldclim.org/) or remotely
sensed data layers (e.g., Moderate Resolution Imaging Spec-
troradiometer (MODIS); https://modis.gsfc.nasa.gov/). The
satellite data may require further geospatial processing to
produce cloud-free satellite imagery or obtaining data with a
specific temporal or seasonal coverage to obtain time-specific
species niche model.

Occurrence data may require data thinning to reduce
potential bias in the dataset. Some of the procedures used
to achieve this step include removing duplicates, rarifying
data based on a distance filter to omit all redundant records
occurring in a single pixel of environmental raster data,
and balancing the density of occurrence between countries
to account for marked differences in sampling efforts. All
these steps lead to a balanced thinned dataset and candidate
covariates required for calibrating the ecological models.

Step 2: Model Calibration

This step describes the selection of calibration area and the
modeling algorithm (see the ecological niche modeling sec-
tion) to estimate the species’ ecological niche by correlating
occurrence records and environmental variables. Calibration
area may represent the entire accessible area (M; see Box
1) or a subset of M based on occurrence availability and the
question under the investigation.

Step 3: Model Evaluation

The next step to model calibration is to test the model
predictions and evaluate how robust the model is to pre-
dict species’ occurrences in unsampled areas. This step is
essential before interpreting model results, projecting the

https://www.gbif.org/
https://www.inaturalist.org/
https://www.inaturalist.org/
http://vertnet.org/
http://vertnet.org/
http://vectormap.si.edu/
https://www.healthmap.org/
https://www.worldclim.org/
https://modis.gsfc.nasa.gov/
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Fig. 1 Characteristic workflow of ecological niche model (ENM).
(a) Occurrence records for the vector, infected vector, host, or dis-
ease are compiled. (b) Variable selection: environmental predictors –
p1 = summer temperature in ◦C, p2 = winter temperature in ◦C, and
p3= annual precipitation inmm. (c) The best fit model that describes the
probability of species occurrence in multivariate environmental space
is developed (i.e., environmental suitability based on p1–3). Several
different algorithms can be utilized such as maximum entropy (Max-
Ent), boosted regression tree (BRT), or generalized linearmodel (GLM).
(d) A spatial projection and validation of the model is made based
on the environmental predictors. (e) Climate change scenarios mainly

derived from the Intergovernmental Panel on Climate Change (IPCC)
(representative concentration pathways (RCP) 2.6 and 8.5) for different
time frames (mainly two or three decades) are chosen. Results shown
here are the average temperature change over time for an optimistic RCP
2.6 (green) and a pessimistic RCP 8.5 (orange) climate change scenario.
An estimate of uncertainty is shown as color shadings around the black
lines. (f) Using data from global or regional climate models, further
projections for the selected scenarios and time frames (gray vertical bars
in panel e) are made. Ideally, different climate models are used to derive
the ENM. (Adapted from Tjaden et al. 2018)
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model to other regions or transferring the model through
time. Model evaluation approaches are divided into two main
classes: approaches designed for thresholded binary predic-
tions (i.e., threshold dependent) and approaches used for
continuous predictions (i.e., threshold-independent). Many
modeling studies used the threshold-independent area under
the receiver operating characteristic curve (AUC) as a stan-
dard approach to assess the robustness of model predictions
(Pigott et al. 2014; Moyes et al. 2016; Messina et al. 2016;
Messina et al. 2019). However, the AUC approach is known
to have many problems (Lobo et al. 2008; Peterson et al.
2008). Major problems associated with AUC-based evalu-
ation are the equal weighting of omission and commission
errors and lack of information on the spatial distribution of
model errors (Lobo et al. 2008). An alternative method in
which some of the limitations of traditional AUC are resolved
is the partial receiver operating characteristic (pROC) (Pe-
terson et al. 2008). pROC is based on random data-splitting
to obtain two subsets for calibrating and evaluating model
predictions. The threshold-dependent approach uses records
collected independently and applies the binomial test to
assess if the evaluation data fall into regions of a thresholded
binary prediction more often than expected by chance.

Step 4: Model Projection

Some studies used ecological niche modeling to transfer a
calibrated model into a new region or into a different time
period. These applications are very common in predicting
the potential spread of invasive species from calibrated range
area (i.e., endemic range area) to new regions (i.e., invasive
range) that may be at risk of species invasion. Another
application is to transfer the model to identify potential dis-
tributional shifts under alternative climate scenarios. Model
projection generates additional problems related to extrapo-
lation beyond the range of environmental conditions in the
calibration area; however, areas of strict extrapolation can be
defined byMobility-Oriented Parity (MOP) analysis (Owens
et al. 2013; see details in strengths and limitations of ENM
section).

Step 5: Model Thresholding

Model thresholding refers to the conversion of a continuous
model output to binary maps representing the species poten-
tial presence and absence. The selection of a thresholding
value is based on numerousmethods (Manel et al. 2001; Pear-
son et al. 2004; Liu et al. 2005). The most common practice
for model thresholding is based on a maximum allowable
omission error which is commonly set as 5% (Peterson et al.
2008); however, these values can be changed based on the

accuracy of occurrence records. The defined percentage is
assumed to have misrepresented environmental data.

Applications of ENM in DiseaseMapping

Ecological niche models have become a very popular tool in
biogeography, conservation biology, ecology, paleoecology,
and wildlife management over the last two decades (Araújo
and Guisan 2006). The applications of ENMs to the world
of diseases are somewhat more recent; however, there are
currently a very common suite of toolkits in epidemiology
and public health (Peterson 2006). Common implementa-
tions of ENMs include modeling actual geographic patterns
in disease incidence, mapping potential distribution of can-
didate vectors and reservoir hosts, identifying major drivers
of disease emergence and dynamics, and forecasting disease
risk under climate change in future (Rogers and Randolph
2003; Eisen and Eisen 2011; Hay et al. 2013). Specifically,
the ENMs have also been used to anticipate the geographic
potential of species invasion in other regions, anticipate their
distributional responses to environmental changes, and infer
likely interactions in diseases transmission systems (Peterson
2007). Several studies mapped diverse vector species (Fis-
cher et al. 2011; Samy et al. 2016b; Kraemer et al. 2015;
Alkishe et al. 2017; Samy et al. 2018; Kamal et al. 2018;
Kraemer et al. 2019), reservoir hosts (Gholamrezaei et al.
2016; Samy et al. 2016c, 2018), and etiological agents (Samy
et al. 2016a, 2018; Carlson et al. 2016; Tjaden et al. 2017).
Another study modeled infected vectors to project into areas
at disease transmission risk and revealed the most important
environmental drivers for their distributions (Mweya et al.
2016).

Calibrated models are used for spatial and temporal pro-
jections to estimate the spread of invasive species into new
regions or to project future climate change impacts on species
distributions. Temporal projections can also be done back-
ward to estimate the past distributional potential of a par-
ticular species (i.e., this is known also as hindcasting to
look for the species distribution in the past). Climate change
projections have gained a special importance in recent years
with projecting inter alia impacts of climatic changes on the
distribution of disease vectors and pathogens (see section
“Climate Change Impact: A Case Study of Vector-Borne Dis-
eases”). These geospatial and ecological analyses are used
to inform policymakers, veterinarians, researchers, and local
human populations about areas of high disease risk. Finally,
they identify the potential spread and possible shifts of vector
populations to better place measures to avoid successful
establishment of vector populations in new invaded areas.
Box 3 summarizes different applications of ecological niche
modeling.
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Box 3 Applications of Ecological Niche Modeling to Identify Disease Transmission Risk

1) Estimating distributional potential of infectious diseases
Ecological niche modeling (ENM) is widely used for estimating the distributional potential of diverse diseases including ones with complex
transmission cycles (e.g., vector-borne diseases (VBDs)). ENM is used to map several VBDs including dengue, Zika, chikungunya,
leishmaniasis, lymphatic filariasis (Samy et al. 2016a, c, Tjaden et al. 2017; Eneanya et al. 2018; Messina et al. 2019). These mapping
efforts include modeling the distributional potential of diverse vector species too. A recent study of Aedes aegypti and Ae. albopictus
mapping (Kamal et al. 2018) offer a good example for the application of ENM to estimate the ecological niche of the two arboviral species.

The map estimates the global distributional potential of arbovirus vector Ae. aegypti. The yellow color depicts areas with unsuitable
conditions of Ae. aegypti occurrence. The probability of Ae. aegypti occurrence increases from light red to dark red.

2) Predicting disease emergence, and the invasion of vectors and reservoir hosts to new areas
Some vectors and reservoir hosts invade new areas based on natural drivers (Tsiamis et al. 2013; Huestis et al. 2019). Other species may
invade new areas via transportation with international trades, particularly with the recent expansion of transportation networks. (Thomas et
al. 2014) These activities allow the exchange of goods (e.g., tires harboring mosquito breeding sites) across country borders. ENMs provide
a sensitive tool to anticipate new suitable areas. An important application for ENMs in this context is the strategy applied for mapping Zika
virus during the recent Brazilian outbreak (Samy et al. 2016a). This study calibrated the model based on the data available from South and
Central America and then projected the model to the entire world to characterize new areas at risk of Zika virus transmission. The projected
Zika model anticipated disease risk in Africa (i.e., where disease is historically known and data is scarce), and in Asia, and continental USA
where disease is recently emerged in outbreak potential.

The projected global suitability of Zika virus occurrence. This model is calibrated only in South and Central America and projected to
global climate. The yellow color depicts areas with unsuitable conditions of Zika occurrence. The probability of Zika occurrence increases
from light red to dark red.

3) Forecasting the potential impacts of climate change on pathogens, vectors, and reservoir hosts
Many studies used ENMs to assess the influences of climate changes on the distributional potential of deadly diseases, their vectors, and
reservoir hosts (Samy et al. 2016b, Tjaden et al. 2017; Alkishe et al. 2017; Kamal et al. 2018). Chikungunya virus is anticipated to expand
under climate changes to cover broader ranges in USA, South America, Europe, Sub-Saharan Africa, and China (Tjaden et al. 2017). A
recent model of arboviral vector Aedes albopictus suggested possible population expansion to the East of Europe to include most of Europe
under the influences of climate change owing to increase in carbon dioxide (CO2) emission (Kamal et al. 2018).

(continued)
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Box 3 (continued)

The distributional potential of Aedes albopictus in Europe based on current and future climate conditions. The model is calibrated based
on current climate and projected to the meteorological research institute (MRI-CGCM3) general circulation model and representative
concentration pathway (RCP) 8.5 in 2070. The yellow color presents areas with unsuitable conditions of Ae. albopictus occurrence. The
probability of Ae. albopictus occurrence increases from light red to dark red.

4) Assessing the impacts of land use change on species distribution
ENMs are used to assess the effect of land use changes on the distributions of etiological agent, vector, and reservoir host of an infectious
disease (Wimberly et al. 2008; Santos 2017; Hess et al. 2018; Chavy et al. 2019). These studies identified significant influences of land use
on the potential distributions of diverse infectious diseases. The incidence of West Nile fever elevates as rural and irrigated areas increase
in the Northern Great Plains of the United States (Wimberly et al. 2008). Changes in land use and vegetation cover are major drivers to the
spread of the main hantavirus reservoir Necromys lasiurus in Brazil (Santos 2017).

Climate Change Impact: A Case Study
of Vector-Borne Diseases

Environmental conditions, including temperature and pre-
cipitation, are changing globally under the current climate
change regime (Fig. 2). The maximum temperature of the
warmest month is expected to increase most in northern parts
of North America, Brazil, the Mediterranean region, and the
polar and tundra regions of Russia by more than 5 ◦C by
2050 relative to the 1970s. A decline in precipitation of more
than 100 mm per year is projected for the northern parts
of South America, the Chilean Andean cordilleras, and the
southwestern areas of the Mediterranean region.

The distribution of vectors and disease transmission is an-
ticipated to shift in space and time under climate change con-
ditions. In temperate zones, vector species will likely broaden
their distribution and a northward shift of their range is pro-
jected (Carvalho et al. 2017; Thomas et al. 2018). In tropical
climates, warming can constrain a species geographic range
to areas with higher elevations or lead to local or complete
extinction of vector species (Escobar and Craft 2016).

Several studies have anticipated climate change influences
on the distributional potential of vector-borne diseases and
their vectors (Samy et al. 2016a, b; Samy and Peterson
2016; Alkishe et al. 2017; Kamal et al. 2018). For example,
the distributional potential of bluetongue virus (BTV) was
anticipated to broaden in Central Africa, United States,
and western Russia (Samy and Peterson 2016). The BTV
was estimated based on diverse representative concentration
pathways (RCPs); there is a 9% increase in the BTV range
from current climate to RCP 8.5. Other studies anticipated
possible shifts under climate changes in mosquito vectors
(Samy et al. 2016b; Kamal et al. 2018). The potential
distribution of Culex quinquefasciatus increased by 5% from
present-day conditions to RCP 6.0; however, it decreased by
1.5% from RCP 6.0 to RCP 8.5 (Samy et al. 2016b). The
arbovirus vector Aedes albopictus was anticipated to expand
broadly in northern USA, Southern Canada, North Africa,
and Europe under climate changes in 2050 and 2070 (Kamal
et al. 2018). The response of these species to climate change
was different; each species showed a characteristic pattern
under climate changes; however, range expansion is common
among these species.
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Fig. 2 Predicted future change in climatic key variables. (a) Maximum
temperature of the warmest month. (b) Annual precipitation. Expected
changes for 2041–2060 relative to 1960–1990 long-term averages
under the RCP 8.5 climate change scenario. Data from WorldClim

1.4, based on 12 different General Circulation Models (BCC-CSM1-
1, CCSM4, GFDL-CM3, GISS-E2-R, HadGEM2-ES, MPI-ESM-LR,
HadGEM2-AO, HadGEM2-CC, INMCM4, IPSL-CM5A-LR, MRI-
CGCM3, NorESM1-M, http://www.worldclim.org)

Strengths and Limitations of ENM

ENM represents a very powerful tool for modeling and
mapping infectious disease dynamics. ENM is used to test
several ecological and distributional questions related to epi-

demiological research. However, the use of this technique
should be based on a clear understanding of ecological and
biogeographical concepts, as well as mathematical aspects
of methods and algorithms (Escobar and Craft 2016). A key
issue for the correct use and interpretation of ecological niche
model results is to fully understand their strengths and short-

http://www.worldclim.org
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comings. The main strengths of ENM are (1) the approach
can implicitly include any process statistically related with
the environmental predictors, (2) the approach is easier to
implement than any other type of models, (3) it is more
likely to identify limiting factors, and (4) availability of input
data.

ENM also has several limitations, for example, it is not
possible to differentiate correlation from causality, and vari-
able selection is generally subjective (Kearney and Porter
2009). A model always represents a simplification of the
reality aiming at identifying general patterns and trends. The
quality of input data, i.e., the way of data collection, the
reliability of the occurrence records, as well as the avail-
ability of absence information, contains the largest portion
of uncertainty. Further sources of uncertainty are related to
the choice of the modeling algorithm, climate models (e.g.,
general circulation models (GCMs)), and emission scenarios
(Buisson et al. 2010). These uncertainties can be considered
and reduced by using more than one algorithm (e.g., ensem-
blemodeling); however, diverse climatemodels and emission
scenarios provide opportunities for potential developments.
The improvement of input data plays another major role in
providing the required quality to project reliable potential
developments.

Non-analogue climate conditions pose another uncer-
tainty related to model projections. Non-analogue climate
refers to climatic conditions that have not been experienced
before in a specific study area, possibly leading to strong
underestimations of the potential spread of a particular
species. For example, if a species is known to occur in
areas with an annual mean temperature range between
5 ◦C and 35 ◦C, climate change projections of temperature
increase beyond 35 ◦C might lead to the exclusion of these
areas as potential habitat as the model was trained up to
35 ◦C. Nevertheless, the species of interest might be able
to tolerate temperatures above 35 ◦C, even though there
is no empirical evidence. Hence, non-analogue climate
should be considered in ENMs to identify areas of high
uncertainty. A commonly applied method to address non-
analogue climate is the so-called Multivariate Environmental
Similarity Surface (MESS) analysis (Elith et al. 2010).MESS
identifies regions of strict extrapolation and provides an
index of environmental similarity between each pixel and
the median of the most dissimilar variable in the calibration
area. The use of the most dissimilar variable as an indicator
of overall similarity in MESS analysis marks its limitations
(Owens et al. 2013). A recent study introduced a Mobility-
Oriented Parity (MOP; Owens et al. 2013) analysis as a
modification and extension of MESS to identify regions of
strict extrapolation and better characterize the degrees of
novelty in projection regions.

Epidemiological Modeling

Epidemiological models (EMs) are typically used to
investigate the transmission mechanics between vectors
and hosts. EMs are used to describe the health state
change (e.g., susceptible-exposed-infected-removed, each
health state is a compartment) of both vectors and hosts
with mathematical equations (Box 4). Consequently,
EMs are also referred to as compartmental models,
mathematical models, compartmental epidemic models,
mechanic models, and mechanistic models, though these
terms do not share the exact same field. Nevertheless,
the output from these EMs is a threshold quantity
parameter, namely the basic reproduction number (R0; Fig.
3).
R0 is defined as the average secondary cases caused by

an infected individual during its lifetime in a completely
susceptible population (Diekmann et al. 1990; Heffernan et
al. 2005). When R0 > 1, an outbreak of the investigated
vector-borne disease can take place. The concept of the “basic
reproduction” can be dated back to the “net reproduction
rate” from demography (Dietz 1993), and EMs calculating
R0 can be applied to investigate infectious disease such as
malaria (Dietz 1993; Heffernan et al. 2005; Delamater et al.
2019). The calculating methods and the respective interpre-
tations of R0 have evolved and are still evolving (Ridenhour
et al. 2018; Delamater et al. 2019).

There are mainly two methods used to build an EM:
the survival function and the next generation matrix (NGM)
(Heffernan et al. 2005). The survival function method, as
its name suggests, describes through mathematical functions
whether a new infection can survive or not. It is a straight-
forward approach and sticks to the definition of average
secondary infections resulting from a single introduction in
the infected individual’s lifetime. An infection can be sus-
tained if R0 > 1. A simple equation example can explain the
process:

R0 = (probability of an individual getting infected for a
unit of time)

× (probability of an infected individual being infectious
for a unit of time)

× (average number of secondary cases an infected
individual will produce per unit of time)

Each compartment in this equation is a variable that either
varies over time or remains a constant parameter. In practice,
the EMs using survival functions can be more complicated
(Dietz 1993; Moraga et al. 2015). However, the key concept
of this method should still be clear: the R0 calculated in this
way is the average secondary infections, a straightforward
biological interpretation.
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Fig. 3 Characteristic workflow of an epidemiological model derived
from the Ross–MacDonald framework [R0(T) model]. (a) Dynamical
model framework. T = temperature (◦C); b= vector–host transmission
probability; β = host–vector transmission probability; m = vector-to-
host ratio; r= recovery rate; d= infectious recovery rate; a(T)= vector
biting rate per day; EIP(T) = 1/y(T) = extrinsic incubation period in
days; m(T) = vector mortality rate. (b) Epidemiological parameters
derived from laboratory experiments or field data are fed into the model
to gain an estimate of R0(T). (c) A risk map is derived from the model.
(d) Climate change scenarios mainly derived from IPCC scenarios

(representative concentration pathways (RCP) 2.6–8.5) for different
time frames (mainly two or three decades) are chosen. Results shown
here are observed and expected future average temperature increase
over time for an optimistic RCP 2.6 (green) and a pessimistic RCP
8.5 (orange) climate change scenario. An estimate of uncertainty is
shown as color shadings around the black lines. (e) Using data from
global or regional climate models, further projections for the selected
scenarios and time frames (gray vertical bars in panel E) are made.
Ideally, different climate models are used to drive the EM. (Adapted
from Tjaden et al. 2018)
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On the other hand, the NGMmethod is not straightforward
in any case. The EMs using this method typically describe
the different health states of vectors and hosts or other sub-
populations (e.g., sex and age group) with ordinary differ-
ential equations (ODEs). Based on these ODEs, an NGM is
constructed. Each compartment in the NGM denotes health
state change of vectors or hosts. The basic reproduction
number R0 NGM is defined as the dominant eigenvalue of this
NGM (Diekmann et al. 1990), where only the “states-at-
infection” are contributing to the calculation.

The R0 NGM calculated with the NGMmethod has a differ-
ent interpretation from the ones calculated with the survival
function method. As mentioned above, the R0 NGM is the
dominant eigenvalue of the respective NGM (Diekmann et
al. 1990; Diekmann et al. 2010). It has been discussed that
R0 NGM is indeed a “ratio.” For a certain time period, each
“generation” is R0 NGM times as big as the preceding genera-
tion. This R0 NGM is a geometric mean through “generations.”
The “generation” is not a natural generation of vectors or
hosts, but for a new generation of infections (Diekmann et al.
2010).

Box 4 A Summary of the Key Definitions of the Epi-
demiological Model
Epidemiological model: An approach used to simplify
the transmission mechanics between vectors and hosts.
EM is used to describe the health state change (e.g.,
susceptible, exposed, infected, and removed health
states) of both vectors and hosts with mathematical
equations.

Compartmental models: An approach to simplify
the mathematical modeling of infectious disease. In
this approach, the population is divided into compart-
ments where every individual in the same compartment
has the same characteristics (see susceptible, exposed,
infected, and removed).

Basic reproduction number (R0): The expected
number of secondary cases produced by a single infec-
tion in a completely susceptible population. It is used
to estimate the transmission potential of a disease.

Susceptible (S compartment): Refers to the model
compartment where all individuals are susceptible if
they have contact with a disease.

Exposed (E compartment): Refers to the compart-
ment where individuals are infected by the disease
but do not have the visible clinical symptoms of the
disease and cannot transmit the disease to susceptible
S individuals (see S compartment).

(continued)

Infected (I compartment): Refers to the compart-
ment where all individuals are infected by the disease
and infectious to spread it.

Removed (R compartment): All the individuals are
removed from the susceptible-infective interaction by
recovery via immunity, isolation, or death (i.e., all
recovered, immune, or dead individuals).

Next-generation matrix (NGM): The natural basis
used to define and derive the basic reproduction num-
ber for a compartmental model of infectious disease
spread.

Dominant eigenvalue: The expected number of sec-
ondary cases produced by a typical infected individual
during its entire period of infectiousness in a com-
pletely susceptible population.

Survival function: The function denotes the proba-
bility that a patient will survive beyond any specified
time.

Pros and Cons of Epidemiological Modeling

EMs provide temporal outbreak risk information of an in-
vestigated infectious disease, particularly in fine temporal
resolutions (e.g., daily observations from meteorological sta-
tions) (Rubel et al. 2008). In the EMs, temperature obser-
vations play an important role as many processes within the
chain of infections are temperature dependent (e.g., mosquito
survival and viral dissemination). The temperature observa-
tions are very often acquired from themeteorological stations
with daily temporal resolution or satellite images of temper-
atures (Hartemink et al. 2011; Hartley et al. 2012; Calistri et
al. 2016). Consequently, they have the advantage of capturing
weather changes such as extreme weather events like drought
or frost. For disease control and public health, this enables a
more detailed and advanced short-term scale management.

Besides the temporal outbreak risk, spatial risk maps can
also be produced by EMs, resulting in spatial-temporal risk
maps. There are several methods available for this applica-
tion: (1) calculating the R0 for some scattered places (e.g.,
the location of weather stations in several cities) and then
using this value for a certain area (Hartemink et al. 2009),
(2) calculating the correlation function between R0 and a
highly correlated environmental variable, then applying this
function into the gridded raster variable layer (Wu et al.
2013), (3) calculating the R0 for each gridded cell of a raster
file, which is often a temperature observation layer, resulting
directly in spatial risk maps (Holy et al. 2011; Cadar et al.
2017).
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EMs generally do not include non-temperature variables
that may affect disease circulation compared to ENMs (e.g.,
land use type or climate type). The latter marks a limitation
to the EMs, particularly if these additional variables play a
crucial role in disease transmission. Rainfall was included in
addition to temperature in a dynamic process-based model
that follows a deterministic compartmental approach to the
epidemiology of Rift Valley fever transmission (Leedale et al.
2016) and in the R0 model for Zika (Caminade et al. 2017).

Integrating ENMs and EMs: A Case Study

As with the developing of both model disciplines, it is pos-
sible to use these two separate modeling disciplines simul-
taneously and draw a conclusion from both approaches.
Here, we provided an example of interdisciplinary modeling
(Cheng et al. 2018) for Usutu virus (USUV) (i.e., a mosquito-
borne Flavivirus affecting avian host populations (Cadar et
al. 2017). The EM concerning the USUV is available from
Rubel and colleagues (Rubel et al. 2008) and is adapted by
Cheng and colleagues (Cheng et al. 2018). This EM was
applied annually for 2017 (January 1 to December 31) using
the gridded temperature dataset from gridded observational
dataset (E-OBS). The temporal risk duration was estimated
with the EM (Fig. 4a).

A MaxEnt algorithm was applied in parallel to estimate
the environmental suitability of the USUV across Europe
(Fig. 4b). The occurrence records observed from 2003 to
2016 were used as input data. Five ecological bioclimatic
variables from WorldClim archive (10 arc-minutes spatial
resolution) were used: annual mean temperature, minimum
temperature of the coldest month, mean temperature of the
coldest quarter, precipitation seasonality, and precipitation of
the warmest quarter.

The ENM depicts the USUV occurrences in Northern
Italy, western Germany, in Benelux and at the Austrian
Hungarian border in 2017 better than the EM inference.
But there is a chance for underestimation of the risk be-
cause USUV is still emerging in Europe and the ecological
niche is not fully occupied yet. As ENMs use occurrence
records and respective explanatory variables as input data,
they can capture the recorded occurrence well. However,
sampling bias is inevitable in this case. Though spatial rar-
ifying methods can be applied to cut down sampling bias
or spatial auto-correlation to certain degree, overall ENMs
still highly depend on the quality of occurrences data. R0

values predicted by the EM in areas without evidence for real-
life transmission such as in Spain suggest that it may tend
toward over-estimation of the risk. One explanation for this
might be that temperature but not precipitation, or humidity is
used in the EM. EMs, on the other hand, are highly restricted
by the up-to-date understanding of the investigated disease.

For instance, in our USUV-EM, mosquito-relevant variables
play an important role in estimating the final R0. However,
as the spatial heterogeneous mosquito birth/death rate is not
available, the same mosquito-relevant variable settings (e.g.,
birth rate and mortality rate of mosquitoes) and a constant
vector-to-host ratio were applied across the whole study area.

Interestingly, the model results from the different ap-
proaches may have areas of agreement and disagreement; it
is useful to compare the results of both modeling approaches
(Cheng et al. 2020). There is no one single approach to
be preferred for every pathogen, area, or timespan. As the
disease circulation across the study area has not been fully
understood yet, it is difficult to evaluate which model per-
formed better. Relying on a single model concerning VBDs
may lead to biased conclusions.

Conclusion

Ecological niche modeling has improved disease mapping
and has been widely applied to map complex diseases in-
cluding vector-borne diseases. Epidemiological models have
also been used to infer disease spread in diverse applications.
Both models are usually simple representations of complex
disease systems; they do not typically provide details on the
complexity and heterogeneity of these biological systems.
However, although both models contributed to better under-
standing of disease epidemiology, they also remain attached
to some limitations. These limitations render results based
on a single model for assessing vector-borne disease risk
incomplete. Thus, an integrated model could benefit from
the strengths of both models. In an integrated modeling
approach, spatial distribution of potential risk could first
be estimated by an ENM, followed by an investigation of
temporal risk patterns in high-risk areas through an EM
(Tjaden et al. 2021). In this case, both spatial and temporal
aspects of potential risk can be included. The finer temporal
scale available through EM, and use of daily weather data
or weather forecast data, can work as a live, early warning
forecast. In addition, the output of an ENM that estimates
the potential spatial distribution of vectors and hosts could
be used as input data in an EM. While having the advantage
of investigating potential risk at fine temporal scale, EMs
do not typically consider spatial heterogeneity. By using
estimated spatial distribution of vectors and hosts, the spa-
tial aspect of potential risk can be thus better understood.
For instance, a varying vector-to-host ratio can be assigned
accordingly. To benefit from the strengths of both model
disciplines, early warning systems can be built by integrating
them and generating risk maps with fine spatio-temporal
resolution. The public health sector and policymakers will
benefit from risk maps available online based on automated
model runs.
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Fig. 4 Spatial risk maps of the
Usutu virus from (a) the EM
showing the total number of days
of R0 >1 in 2017 and from (b) the
ENM showing the environmental
suitability of the area for the
transmission of the Usutu virus
which ranges from 0 (unsuitable)
to 1 (suitable). While the ENM
also includes the precipitation
seasonality, and the precipitation
of the warmest quarter as
environmental variables, the EM
is solely based on temperature
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Maxent models were run using the B. anthracis presence
data and/or the animal outbreak presence data. Models run
using the animal outbreak data alone utilized two scales: the
Outbreak State scale which included only states reporting
animal anthrax outbreaks from 2001 to 2013 and the National
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scale which included all states in the contiguous United
States. Three iterations of the environmental data were used
and included the Sample Location dataset which utilized
the environmental variable data with assigned latitude and
longitude locations from the USGS NASGLP project; the
Normalized dataset which scaled the environmental variables
so that the values fell between 0 and 1; and the Interpolated
dataset which provided an interpolation of the environmental
variables averaged for each county and assigned to a point for
that county at the centroid (rather than using the NASGLP
latitude and longitude location). Two metrics were used to
measure model performance including the widely used area
under the curve (AUC) and an alternative method, the True
Skill Statistic (TSS). The AUC gives the probability that a
randomly chosen presence location has been correctly ranked
higher than the absence/background site. AUC values at 0.5
or lower mean the ranking is no better than random, while
the AUC values nearer to 1 mean the model is a better
predictor. The TSS provides a comparison of how well the
background predictions made by the model match the model
results at the test dataset (presence) locations. TSS values
near +1 means the model approaches perfect agreement,
while values near −1 indicate the model is no better than
random.

Maxent models to determine the influence of environmen-
tal factors on the B. anthracis distribution using the PCR
data yielded a low TSS, which suggested the model might
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be underfitting the data. This was not surprising due to the
difficulty in recovering B. anthracis in soil samples as well
as the samples themselves being discrete in nature and only
capturing a snapshot in time. Therefore, the distribution of
B. anthracis and its niche in the contiguous United States
could not be determined in this study. However, efforts to
investigate environmental factors that would have a higher
potential of supporting an anthrax outbreak in wildlife and
livestock yielded better results. Results showed that most of
the Maxent models in this study performed best when using
the Outbreak State scale. When the models were scaled up to
the National scale, model performance declined, except for
the Normalized variable dataset. At the Outbreak State scale,
a large proportion of the area was predicted to be of higher
probability for wildlife/livestock anthrax outbreaks, and the
statistical measures assumed the model was underfitting the
data. The model with the highest AUC and TSS scores
for this study was the Outbreak State scale using Sample
Location dataset (AUC = 0.918 and TSS = 0.82). Some of
the variables found to be closely related to the occurrence
of B. anthracis in this study included pH, drainage potential,
and concentration of elements including Na, Ca, Sr, and Mg,
which have also been found to be related to animal outbreaks
or to the occurrence of B. anthracis in previous studies.

The models in the current study indicated possible regions
that have not had recent wildlife/livestock anthrax outbreaks
but contained environmental conditions that could potentially
support an outbreak if one were to occur (Michigan and
Maine). This work provides an extension to the use of ecolog-
ical nichemodeling to outbreak potential in livestock/wildlife
in the United States because it utilizes additional soil geo-
chemistry data and has shown that further validation tech-
niques, such as the TSS, should be considered in addition to
AUC. Results from this study could be used by animal and
public health officials to identify areas with a higher potential
for anthrax outbreak in wildlife and livestock due to naturally
occurring soil and environmental conditions.

Introduction

Bacillus anthracis is an aerobic, Gram-positive, endospore-
forming, rod-shaped bacterium that is the causative agent
for anthrax. B. anthracis occurs in two physical forms: in
a vegetative or growing state and in a spore state. Spores
are formed to enhance survival and are resistant to many
environmental stressors (Titball et al. 1991). B. anthracis is a
common community member of many soil environments and
has been shown to germinate and survive in the rhizosphere
(root zone) of grasses (Saile and Koehler 2006; Van Ness and
Stein 1956). Surveillance and survival studies have shown
that although only a fraction (10%) of a Bacillus sp. soil
inoculum can survive after more than 60 days of incubation,

spores can be detectable in the top few centimeters for
many years (Manchee et al. 1994; West and Burges 1985).
However, B. anthracis could be present in levels of the soil
that are at undetectable levels, making detection difficult.

The route of exposure for B. anthracis infections have
been recognized as a critically important issue in the United
States in wildlife and livestock for over 200 years. The
pathogen can be spread by a range of hosts, including her-
bivores, scavengers, carnivores, and insects, and has even
been shown to replicate in a type of amoeba (Acanthamoeba
castellanii) that is a ubiquitous member of soil biota (Breed
1932; Dey et al. 2012; Hugh-Jones and Blackburn 2009).
Recurrent and persistent animal anthrax outbreaks typically
consist of a cycle between exposure of a susceptible animal
(host) to B. anthracis spores (which must contain both the
pX01 and pX02 plasmids for virulence), deposition of the
pathogen back into the soil or environment, and then acqui-
sition by a new host (USEPA 2015; Van Ness 1971). It has
been reported that recurrent anthrax outbreaks in wildlife or
livestock might stop for long periods of time, even decades,
before a new host is exposed and the cycle starts again (Hugh-
Jones and Blackburn 2009). Briefly, the classic B. anthracis
lifecycle consists of (Lindeque and Turnbull 1994; Schuch
and Fischetti 2009; USEPA 2014; USEPA 2015; Van Ness
1971):

• Exposure of an animal host to spores via ingestion or
inhalation during grazing, which, in turn, can pass the
infection to carnivores through consumption (Breed 1932;
Stein 1945; Stein 1950)

• Germination of spores in the host
• Multiplication of B. anthracis vegetative organisms inside

the host on the order of multiple millions of organisms per
milliliter of blood

• Production of toxins by vegetative organisms and death of
the host

• Opening of the carcass by predation or other events which
cause bodily fluids to drain from the infected carcass into
the surrounding environment (air, soil, water), dispersing
vegetative cells

• Rapid sporulation at the carcass site
• Spore acquisition by a new host

A brief review of the environmental and geographical
factors shown to influence the persistence of B. anthracis or
occurrence of an animal anthrax outbreak from the literature
is listed in Table 1. It is interesting to note that factors in-
fluencing anthrax outbreaks in animals and occurrence (e.g.,
weather/climate, environmental, and geological factors) are
consistent over a range of different studies and time periods.
For example, anthrax outbreaks in wildlife and livestock
typically occur: during warmer months in which dry periods
follow moderate to heavy rain events; in areas that have short
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Table 1 Historical observations of the environmental, weather/climate, and geographical factors associated with wildlife/livestock anthrax
outbreaks and the distribution of Bacillus anthracis

Citation Weather/climate Environmental Geological Not favored

Pasteur
(1880)

Calcareous clay soil Schistose or granite soil

Koch (1882) Optimal laboratory growth
at 43.0 ◦C (in vitro)

Decaying vegetative matter and
cadavers

Higgins
(1916)

Alkaline soils and soils from
the edge of infected water
bodies

Breed (1932) Wet and dry season (that
makes foraging assessable
to lowlands via drying of
wet soils in the late summer
or autumn)

Decomposing vegetation, short
grasses that favor the uptake of
soil particles during grazing.
Blood-sucking flies, scavengers,
and carnivores. Can be spread by
the shipment of forage and grain
crops

Alkaline and naturally wet
soils, lowlands

Vaccinated herds using
Pasteur’s vaccine but some
resistance in areas of N.
America. Recent vaccine
development is addressing
this issue

Minett and
Dhanda
(1941)

25–35 ◦C sporulation (in
vitro). Rain season

Neutral or alkaline soils, high
nitrogen and calcium, wet and
marsh soils. Soil moisture of
20% or over (in vitro)

Stein (1945) Heavy rains, floods,
periodic inundations,
droughts, extreme heat

An abundance of flies

Minett (1950) 32.2–36.7 ◦C favors
sporulation; cooler temps
favor longer survival
although at lower
sporulation rates

Moist to wet soils (in vitro) 15.5–21.1 ◦C, bacilli
disintegration via growth of
other bacteria in blood (in
vitro)

Van Ness and
Stein (1956)

Neutral or alkaline soils
containing adequate calcium

Acidic soils

Van Ness
(1959)

Flooding followed by a
period of drying

Water-damaged
vegetation/drying grasses

Limestone or alluvial soils,
limestone road chat, liming,
water courses

Well-drained sandy or shale
soils

Van Ness
(1967)

Flooding followed by a
period of drying, >15.5 ◦C

Water-damaged
vegetation/drying grasses

Limestone, alluvial, clay soils,
pH > 6.0

Sandy or shale soils

Wright et al.
(1970)

Higher phosphate
concentrations (0.01 M)
resulted in higher protective
antigen production (in vitro)

Reduction of protective
antigen production at
phosphate concentrations of
0.001 M or less (in vitro)

Turell and
Knudson
(1987)

Spread by flying insects

Weinberg
(1987)

Factor 1 of exotoxin may allow
scavenging of manganese and
thus explain why B. anthracis
thrives in alkaline soil types
(calcareous peats, soils with
high organic content, limed
and high-water table soils)
containing what may be
considered suboptimal
concentrations for other
Bacillus sp.

Turnbull et al.
(1989)

Feces of scavengers/carnivores
following outbreaks

Kochi et al.
(1994)

Zinc requirement for lethal
factor (in vitro)

Lindeque and
Turnbull
(1994)

typo: Daily temperature at
death of all animals at
marked sites was >25.0 ◦C

Water in waterholes, feces of
scavengers and carnivores during
and following outbreaks

Karstveld soils had higher
concentrations of spores near
carcasses versus deep or sandy
soils. Topical lows, i.e.,
waterholes

Carcasses rarely found on
saline par or misc. rock type
soils. Short-term exposure
to UV appeared lethal to
spores

(continued)
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Table 1 (continued)

Citation Weather/climate Environmental Geological Not favored

Dragon and
Rennie (1995)

Disturbance of an infected
carcass by scavengers or
carnivores

Elevated calcium, i.e., calcareous
soils. Topical lows act as “storage
areas” via precipitation events

Undisturbed carcasses do
not allow aerobic exposure
of the vegetative cells that
triggers sporulation before
they are destroyed by
rapidly growing prokaryote
decomposers

Turner et al.
(1999a)

Prolonged hot, dry,
humid weather

Poorly drained alluvial soils.
Significant accumulation of water
following moderate precipitation
events

Well-drained lands via
anthropogenic
modifications. Vaccination
programs

Smith et al.
(2000)

Group A isolates (worldwide
distribution) have a lower tolerance
range of calcium (avg., 185.7 me/kg)
and pH (avg., 6.7) concentrations
versus that observed with Group B
isolates (Ca avg., 274.1 me/kg, pH
avg., 7.8 (restricted in distribution to
southern Africa)

Saile and
Koehler
(2006)

Spores can germinate and
vegetative cells can survive in the
rhizosphere of grasses

Siamudaala et
al. (2006)

Following the wet
season

Flood deposits of organic detritus Low-lying areas

Griffin et al.
(2009)

For rpoB B. anthracis PCR-positive
samples. Moist to wet soils (range
10–57 weight %, avg., 25.4%), for a
N-S El Paso to Manitoba, Canada,
transect and elevated sodium and
sulfur (avg., 1.2 and 0.5 weight %,
respectively) in New Orleans soils
following the Katrina flood

Hugh-Jones
and
Blackburn
(2009)

Hot-dry season
disease influenced
precipitation events

Necrophagic
flies = case-multipliers,
hemophagic
flies = space-multipliers

Water/pot-holes can contain elevated
concentrations of calcium (2–3X),
phosphorus (6–10X), magnesium
(>2X), and sodium (conc. not
specified). High calcium level soils
and pH > 6.1

Low pH soils

Dey et al.
(2012)

Replication in amoeba (A.
castellanii) and sporulation in
the demised amoeba detritus (in
vitro)

Ahsan et al.
(2013)

May to June with an
average temperature
of 32 ◦C

Low-lying areas, livestock pastures,
near carcass sites. Favored loamy
soils with an average pH of
6.38 ± 0.15 and elevated moisture
content (16.69 ± 2.06%). Organic
carbon content and calcium ranged
from 0.15% to 2.35% and 448.35 to
1372.35 ppm, respectively

Clay soils

Griffin et al.
(2014)

Soils with elevated concentrations
(tentative thresholds) of calcium
(0.43 wt %), manganese
(142 mg/kg), phosphorus
(180 mg/kg), and strontium
(51 mg/kg)

Summary –
observational
trends
through time

Hot (>15.5 ◦C) dry
periods following
large to moderate
precipitation events

Post-flood organic detritus, short
dry grazing material. Spread
from carcasses by scavengers,
carnivores, and insects

Topical lows used by grazers for
waterholes. Calcareous and alluvial
soils at pH values >6.0 and with
elevated nutrient and spore
component content

Schistose/rocky soil types of
low nutrient content and
acidic (pH < 6.0) in nature.
Low temperature seasons
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dry grazing grasses or have detritus deposited after a flood; in
areas containing alluvial and calcareous soils that have a pH
greater than 6.0 and have elevated nutrient content (examples
include but are not limited to phosphate and nitrogen); and/or
in areas where the topology is low (waterholes or riverbanks).

Sites which contained animal carcasses from previous
anthrax outbreaks have been shown to favor spore survival
and repeated outbreaks in those areas, although the spore
titers vary between carcass sites and among the areas di-
rectly surrounding the carcass sites (Ahsan et al. 2013; Lin-
deque and Turnbull 1994; Turnbull et al. 1998; USEPA
2014; USEPA 2015). For example, following a 2010 anthrax
outbreak affecting native and exotic wildlife and livestock
approximately 75 km North of Del Rio, Texas, maggots
collected 10–20 days post-outbreak from the soil near a
deer that had died from anthrax were culture positive for B.
anthracis, and PCR-positive results were obtained for 80%
of leafy vegetation collected within several meters of the
carcasses which contained fly droppings (Blackburn et al.
2014). Twelve months following the outbreak, both pX01
and pX02 plasmids were recovered from soils surrounding
a carcass (Blackburn et al. 2014). A study of enzootic areas
in Etosha National Park in Namibia, Africa, found that 65%
of samples taken near 106 carcass sites (of animals dying
from anthrax) had at least 1 spore/g of soil and up to 10,000
spores/g soil and another 14% had more than 10,000 spores/g
soil (Lindeque and Turnbull 1994). A second study in Etosha
National Park also took soils near three sites of animals that
had died of anthrax (two zebras and one springbok) and found
that spore counts remained high in the soil for years (104–
106 CFU/g soil) (Turnbull et al. 1998). Following repeated
anthrax outbreaks in Sirajganj, Bangladesh, 14 of 48 soil
samples taken in low-lying areas, pastures of livestock, and
near burial sites were positive for B. anthracis spores (Ahsan
et al. 2013). Of those 14 samples, all were from loamy soils
with an average pH of 6.38 ± 0.15 and elevated moisture
content (16.69 ± 2.06%) (Ahsan et al. 2013). Other studies
have also found a similar positive relationship between soil
moisture and presence of Bacillus sp. and/or B. anthracis
(Griffin et al. 2009; Dragon and Rennie 1995). Geological
elements that were noted near outbreak sites included soils
with higher levels of magnesium (Mg), sodium (Na), and
calcium (Ca) (Hugh-Jones and Blackburn 2009).

The geographic and ecological potential of all species
involved in outbreak/disease transmission (vector, host, and
pathogen) can affect emergence of a disease (Peterson 2008).
The realized niche is the portion of the fundamental niche
(in other words, all the variables/conditions that support
long-term persistence) that the species is truly occupying
(Hutchinson 1957; Phillips et al. 2006; Phillips and Dudik
2008). A species might not inhabit all areas of the fundamen-
tal niche due to competition with other species, historical fac-
tors, or lack of access to areas/geographic barriers (Anderson

2003; Anderson et al. 2002a, b; Peterson and Cohoon 1999;
Peterson and Soberon 2012; Phillips et al. 2006; Phillips and
Dudik 2008).

The realized and fundamental niches for B. anthracis or
occurrence of anthrax outbreaks have not yet been fully
defined. However, much of the anthrax outbreak data shows
anthrax occurring in “hotspot” areas throughout the country.
Anthrax outbreak data for the contiguous United States for
the years 1915–1944 and 1944–1955 as reported by Van
Ness and Stein found that many of the anthrax hotspots or
“Anthrax Districts” were located along the Texas-Louisiana
Gulf Coast, the eastern border region of Nebraska and South
Dakota, and north-central California, while “sporadic or oc-
casional outbreaks” were reported across widespread regions
both east and west of theMississippi River (Stein 1945; Stein
andVanNess 1955; VanNess and Stein 1956). Their research
illustrates the potential for sporadic outbreaks in wildlife and
livestock over a wide geographic region. Anthrax outbreak
rangemaps mirror historical bison rangemaps, and it was hy-
pothesized that this herbivore must have played a significant
role as a vector of this pathogen throughout North America
once it was introduced (Hornaday 1889; Stein 1945).

Contrasting the 1915 to 1955 outbreak data, most anthrax
outbreaks in animals have occurred west of the Mississippi
River since 2000. This decrease in the widespread distribu-
tion of this disease is due to successful animal and public
health efforts such as surveillance and vaccination (Graben-
stein 2008; Hugh-Jones and de Vos 2002; Ndiva Mongoh et
al. 2008; Zhang et al. 2013). Recent livestock disease occur-
rence data recorded by the National Animal Health Reporting
System (NAHRS) (APHIS 2014) for the years 2005 through
2012 reports anthrax cases in nine states of the contiguous
United States, California (2005, 2007, 2008, and 2011), Min-
nesota (2005, 2006, and 2008), Mississippi (2012), Montana
(2005, 2007, 2008, and 2010), North Dakota (2005–2010
and 2012), Oregon (2012), South Dakota (2005 through 2009
and 2011), Texas (2005 and 2008–2012), and Nevada (2009).
The NAHRS data illustrate persistence of disease in livestock
in some geographic areas (southern Texas and a region that
stretches north and east out of California and intoMinnesota)
despite some of the best immunization efforts to date.

Between 2004 and 2005, several researchers investigated
the actual occurrence ofB. anthracis across theUnited States.
As part of a US Geological Survey (USGS) North American
Soil Geochemical Landscape Project (NASGLP) pilot study,
220 soil samples were collected along two transects, a North-
South transect extending from northernManitoba, Canada, to
the US border near El Paso, Texas, and a Gulf Coast transect
along the I-10 corridor from Sulfur, Louisiana, to DeFuniak
Springs, Florida (Griffin et al. 2009; Smith et al. 2009).
Sites from each transect were spaced in 40 km intervals
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using global position system to identify sample location
sites (Griffin et al. 2009; Smith et al. 2009). In addition,
samples were collected in downtown New Orleans and Chal-
mette post-Hurricane Katrina in 2005 and then again in 2007
(Griffin et al. 2009). Samples were analyzed for the pres-
ence of B. anthracis and Bacillus species using polymerase
chain reaction (PCR), soil moisture content, and elemental
concentrations (Griffin et al. 2009). The study detected B.
anthracis and Bacillus sp. in 5% and 20% of 107 sites,
respectively, that extended from Manitoba, Canada, to the
Texas-Mexican border (Griffin et al. 2009). The study also
found that 5 of 19 samples were PCR positive forB. anthracis
in samples collected areas in downtown and surroundingNew
Orleans following flooding by Hurricane Katrina in 2005
(Griffin et al. 2009). Two years later, these same sites while
rich in Bacillus species were negative for the presence of
B. anthracis. Elevated concentrations of geochemicals were
found in samples that were PCR positive for Bacillus sp.
and included cobalt (Co), copper (Cu), lead (Pb), tin (Sn),
thallium (Tl), and zinc (Zn) in the North-South transect;
Ca, Mg, and phosphorus (P) in the Gulf Coast transect; and
Na and sulfur (S) in the 2005 New Orleans sample subset
(Griffin et al. 2009). Several geological factors have been
noted to potentially influence or B. anthracis survival, as
noted through in vivo or in vitro observations. These factors
include are elevated phosphate (results in higher protective
antigen production), Zn (for lethal factor production), and
certain concentrations of manganese (Mn) (Kochi et al. 1994;
Weinberg 1987; Wright et al. 1970).

While previous work has shown that soil characteristics,
such as Ca content and pH, influence the occurrence of
B. anthracis, large-scale geochemical and microbiological
studies are still needed to determine constraints on the spatial
distribution of the species (Smith et al. 2000). USGS con-
ducted a full-scale NASGLP project across the conterminous
United States from 2007 to 2011, collecting soil samples at 1
site per 1600 square kilometers using a generalized random
tessellation stratified design to expand baseline geochemical
and microbiology data (Smith et al. 2011; USGS 2013). A
large subset (4770) of the soil samples were screened in a
joint USGS-USEPA investigation for the presence ofBacillus
sp. and Bacillus anthracis using a multiplex polymerase
chain reaction assay (PCR). The NASGLP pilot study was
able to detect B. anthracis and Bacillus sp. in soil samples
collected using a random sampling design over different
time intervals, in areas with differing geochemical make-
up, and following different climatic conditions (post-flood
and 2 years after). Therefore, the authors hypothesized that
the available PCR data from the USGS-USEPA investigation
could be evaluated against soil and environmental conditions
(geochemical constituents, climate conditions, topology of
the area, and animal density) using Maxent modeling to gain
insight on the influence of these conditions on the distribution

of B. anthracis in soils of the contiguous United States. In
addition, animal anthrax outbreaks have been noted to occur
in certain parts of the country and have been associated
with specific climatic and environmental conditions (as noted
in the previous discussion and Table 1). Therefore, authors
also hypothesized that Maxent modeling could be used to
evaluate reportedwildlife and livestock outbreaks against soil
and environmental conditions to identify areas that might
have characteristics with a higher potential to support animal
anthrax outbreaks.

Maxent is a type of ecological niche modeling (ENM).
Broadly, ENMs are used to characterize the geographic dis-
tribution of a species by comparing known occurrences of
the species/disease to environmental variables and ultimately
to define which environmental variables are likely predictors
of areas that meet the ecological requirements of the species
(Peterson 2006; Silva et al. 2014). Maxent is a machine
learning algorithm that can be used to predict the probability
that a species occupies a given location using occurrence
locations, conditional on the corresponding environmental
covariates (Elith et al. 2011; Phillips et al. 2006; Phillips
and Dudik 2008; Phillips et al. 2017). Maxent typically uses
a presence-only (presence/background) approach for model-
ing, so it can be used in datasets that don’t have complete
information about absence (Elith et al. 2011; Phillips et
al. 2006). With presence-only data, a presence denotes the
locations where the species have been observed, and the
probability of presence is estimated (Elith et al. 2011; Phillips
et al. 2006; Phillips and Dudik 2008). Background samples
from the dataset are used to train the model by providing
a sample of the environmental characteristics of the study
area (Elith et al. 2011; Guillera-Arroita et al. 2015). The
output of Maxent modeling is either raw data, cumulative,
or a logistic representation of the probability that the species
that is present at each pixel in the mapping extent (Elith et al.
2011; Phillips et al. 2006; Phillips and Dudik 2008).

Maxent has been used extensively in species distribution
studies for many different organisms (Carnaval and Moritz
2008; Cordellier and Pfenninger 2009; Elith et al. 2006; Elith
et al. 2011; Graham and Hijmans 2006; Kharouba et al. 2009;
Kumar and Stohlgren 2009; Lamb et al. 2008; Monterroso
et al. 2009; Murray-Smith et al. 2009; Pearson et al. 2007;
Phillips et al. 2006; Phillips and Dudik 2008; Silva et al.
2014; Tinoco et al. 2009; Tittensor et al. 2009; Tognelli
et al. 2009; Verbruggen et al. 2009; Ward 2007; Williams
et al. 2009; Wollan et al. 2008; Yates et al. 2010; Yesson
and Culham 2006; Young et al. 2009). Recent studies have
even used Maxent to examine the soil conditions suitable for
anthrax outbreaks in affected counties and the potential dis-
tribution of B. anthracis in Minnesota (Nath and Dere 2016)
as well as predicting an ecological niche for B. anthracis
in Zimbabwe based on outbreak data and environmental
variables (Chikerema et al. 2013).
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This paper describes the methods used for the PCR anal-
ysis, environmental variables collected for analysis, and the
Maxent (Maxent version 3.3.3K)modeling and recursive fea-
ture elimination (via Python scikit-learn 0.18.1 and ArcGIS)
that was conducted. This study also used two metrics to
measure model performance including the widely used area
under the curve (AUC) and an alternative method, the True
Skill Statistic (TSS). This work provides an extension to the
use of ecological niche modeling for identifying areas with
soil and environmental conditions supportive of potential
anthrax outbreaks in wildlife/livestock in the contiguous
United States as it utilizes additional soil geochemistry data
not used in similar research and has shown that further vali-
dation techniques should be considered when evaluating the
data.

Materials andMethods

USGS Geochemistry Data

Collection of Soil Samples
Soil samples utilized in this studywere collected by the NAS-
GLP project as described by Griffin et al. (2014), Smith et al.
(2011), Smith et al. (2012), Smith et al. (2009), Stevens and
Olsen (1999), Stevens and Olsen (2003), Stevens and Olsen
(2004), and USGS (2013). Briefly, the NASGLP project
collected 4857 samples across the contiguous United States
using a generalized random tessellation stratified design for
sample site selection, at a density of 1 site per 1600 km2.
Latitude and longitude for each sample site were recorded
in decimal degrees (WGS84 datum). Layers of soil collected
included Horizon A, which was the uppermost mineral soil
(<2 mm); soil at a depth from 0 to 5 cm (Horizon P);
and Horizon C which was comprised of partially weathered
parent material at the deeper levels. Samples were analyzed
for major and trace elements to identify the abundance and
spatial distribution of elements and minerals.

For microbial analyses, sterilized 50 ml tubes and aseptic
technique were used to collect P-horizon soils as previously
described (Smith et al. 2009). The target collection depth
interval was 0–5 cm, but ranged from 0 to 40 cm due to
variations in site characteristics, such as heavy detritus cover.
All samples were shipped from various field locations to the
USGS microbiology laboratory in St. Petersburg, Florida,
and then stored by refrigeration until analyzed. In addition
to elemental data, site-specific land cover data for each site
was extracted from the National Land Cover Database 1992
Classification System (Homer et al. 2004).

Geochemical Analysis
The analytical methods and quality control protocols utilized
for the analyses of major and trace elements were previously

described (Griffin et al. 2014; Smith et al. 2005; Smith et
al. 2009). In short, a < 2-mm-depth fraction of each sample
was analyzed for elemental concentrations and reported as
percent by weight (wt. %) or parts per million (ppm) (Smith
et al. 2012; USGS 2013). Mineral components were reported
as present by weight (USGS 2013).

Mapping of Geochemical Data
The inverse distance weighting (IDW) method was used to
generatemaps of elemental concentrations, based on sampled
point data collected by the USGS (USGS 2013). Interpo-
lations were performed using ArcGIS™ (ESRI, Redlands,
CA). A resolution of 400 m, with a fixed search radius of
75 km, was used for all elements except arsenic (As), barium
(Ba), bismuth (Bi), mercury (Hg), potassium (K), lanthanum
(La), Pb, rubidium (Rb), antimony (Sb), silicon (Si), Sr,
thorium (Th), and uranium (U), which were made using a
resolution of 90 m and a variable search radius of 12 points.

Microbial Data

DNA Extraction
A total of 4770 samples collected by USGS were screened
for the presence of Bacillus species and B. anthracis (Fig. 1).
Samples where geochemical data and/or location data were
lacking were excluded from analysis. Approximately 0.25 g
of soil was transferred from the 50 ml collection tubes and
weighed with a plastic weigh-boat and a bench-top scale,
using sterile technique. DNA was extracted from the sample
using the PowerSoil™ DNA Isolation Kit and protocol (MO
BIO Laboratories, Inc., Carlsbad, CA). Three μl of kit eluent
(total eluent volume= 100μl) was utilized as PCR template.

Bacillus sp. and Bacillus anthracis PCR
For Bacillus species, Bacillus anthracis, and pX02
screening, the multiplex PCR primers utilized were
previously described (Ko et al. 2003) and included
BA-RF (5’-GACGATCATYTWGGAAACCG-3′), BA-
RR (5’-GGNGTYTCRATYGGACACAT-3′), and Ba-
SF (5’-TTCGTCCTGTTATTGCAG-3′) and Cap-S (5’-
ACGTATGGTGTTTCAAGATTCATG-3′). These primers
amplify a 359-base pair region of rpoB gene (encodes the
RNA polymerase ß-subunit) that is specific for Bacillus
species at the genus level (BA-RF/BA-RR primer pair) and
a 208-base pair region of the same gene that is specific for
B. anthracis (inclusion of the additional forward primer
Ba-SF) (Ko et al. 2003). Master-mix recipe per reaction
was 10 μl of QIAGEN HotStarTaq Plus Master Mix Kit
(QIAGEN, Valencia, CA), 2 μl of the CoralLoad concentrate
(QIAGEN), 1 μl of each of the five primers (10 μm
working stock), and 3 μl of template. The Tempcycler
reaction profile was 15 min at 95 ◦C, 30 cycles of 95 ◦C
for 30 s, 45 ◦C for 30 s, and 72 ◦C for 1 min and a final
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extension at 72 ◦C for 10 min followed by hold at 4 ◦C. PCR
amplicons were visualized using 10μl of the reaction volume
and SYBR Gold-stained gel electrophoresis. Samples that
produced amplicons for both rpoB markers were logged as
presumptively positive for B. anthracis. Bacillus atrophaeus
DNA obtained from a liquid culture extract was utilized for
PCR-positive control reactions. Negative control template
was PCR-grade water. Control template spike volumes were
3 μl of water for the negative control and 2 μl of water and
1 μl of DNA for the positive control.

Confirmation of PCR B. anthracis rpoB-Positive
Samples
Samples that were rpoB PCR positive for B. anthracis were
sent to the University of South Florida Center for Biological
Defense (USF-CBD; http://www.virtualbiosecuritycenter.
org/organizations/university-of-south-florida) for confirma-
tion. Approximately 5 g of each sample was transferred to
pre-sterilized 50 ml tubes using sterile technique and sent
to USF-CBD for analyses. USF-CBD utilizes published and
in-house designed primers and probes and dot-blot assay to
screen the samples for the presence of the pOX1 (pag and lef
markers) and pOX2 (cap marker) plasmid virulence genes
(Luna et al. 2006).

PCR and Plasmid Data
PCR data for Bacillus species and B. anthracis rpoB gene
detection was reported as non-detect (0), low (1), medium
(2), and high (3). Results obtained by the USF-CBD for
both pag and lef genes of the pX01 plasmid were recorded.
This data was recorded as negative or positive for each of
the genes and included the following combinations: neg/neg
(0), pos/neg (1), neg/pos (2), and pos/pos (3). Data for the
pX02 plasmid were recorded as negative (0) or positive (1).
PCR and USF-CBD blot data results are available through
USGS data release at http://coastal.er.usgs.gov/data-release/
doi- F7WW7FRJ/. Contact information for additional data is
listed at the above data release site.

Mapping of PCR Data
A shapefile was generated in ArcGIS using the PCR data,
Final Sample ID (State and ID combined), and latitude and
longitude of the corresponding sample analyzed for geo-
chemical data. The sample sites are illustrated in Fig. 1. Note
that sites that reported PCR detects for B. anthracis also
reported detects for Bacillus sp. data; however, this is not
depicted on the map.

Fig. 1 Sample sites where Bacillus sp. and B. anthracis were detected

http://www.virtualbiosecuritycenter.org/organizations/university-of-south-florida
http://www.virtualbiosecuritycenter.org/organizations/university-of-south-florida
http://coastal.er.usgs.gov/data-release/doi-%20F7WW7FRJ/


Spatially Integrating Microbiology and Geochemistry to Reveal Complex Environmental Health Issues: Anthrax in the… 363

Climatic Variables

Precipitation and temperature have both been noted to
influence B. anthracis spore survival or occurrence (see
Table 1) and thus were chosen as variables for this study.
Average annual precipitation data (ann-prcp-normal.txt),
encompassing measurements from 1981 to 2010, was
downloaded from the NOAA NCDC FTP site (ftp://
ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/
precipitation/). Spatial information for all meteorological
stations in the contiguous United States (n = 8864) is
available as a separate file (prcp-inventory.txt) and was
downloaded from the FTP site (ftp://ftp.ncdc.noaa.gov/pub/
data/normals/1981-2010/station-inventories/). Metadata for
these files and an explanation of the abbreviations and
contents are available for download at ftp://ftp.ncdc.noaa.
gov/pub/data/normals/1981-2010/readme.txt.

Precipitation data and their locations were imported into
ArcGIS version 10.3.1 and were used to create a point
shapefile with data from each meteorological station. The
point shapefile was clipped to the extent of the conterminous
United States (WGS 1984 projection). Using the inverse
distance weighting method, precipitation values at each point
were interpolated to generate a 400 m resolution, continuous
precipitation map.

Temperature records for the contiguous United States,
from 1960 through 2015, were obtained from the NOAASate
llite and Information Service site (http://www7.ncdc.noaa.
gov/CDO/CDODivisionalSelect.jsp). The data were distri-
buted by NCDC as Climate Division polygons; there are 344
climate divisions within the contiguous United States. The
Climate Division Boundaries polygon layer was retrieved by
downloading the CONUS_CLIMATE_DIVISIONS. shp.zip
file from ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv. The
final maps were manually classified into seven different
choropleth classes.

Topological Characteristics

Alkaline soil, areas where topology is low, and areas where
grasses or detritus has deposited after a flood are some of
the factors that influence animal anthrax outbreak occurrence
(see Table 1); therefore, slope, soil pH, flood frequency class,
drainage class, and elevation were selected as variables
for this study. Slope, soil pH, flood frequency class, and
drainage class were extracted from the US Department of
Agriculture’s (USDA) National Resources Conservation
Service (NRCS) SSURGO (Soil Survey Geographic
Database) and STATSGO (State Soil Geographic Database)
soil datasets. The SSURGO and STATSGO databases can be
downloaded from theWeb Soil Survey (http://websoilsurvey.
sc.egov.usda.gov/App/HomePage.htm). SSURGO data are

collected at a scale ranging from 1:12,000 to 1:31,680, while
STATSGO data is collected at a scale of 1:250,000. While
the finer-resolution data of SSURGO was preferred, the
SSURGO data has holes in the datasets in certain areas
of the country; therefore, STATSGO data was needed for
those data gaps. SSURGO and STATSGO drainage class
and flood frequency class are supplied in text classes (e.g.,
well drained, very well drained, etc.). These classes were
reclassified into numerical scales from 1 to 7 for drainage
class and 1 to 5 for flood frequency. Elevation data was
extracted using a 100 m resolution elevation map of the
conterminous United States was downloaded from the USGS
2012 100 m National Elevation Dataset (NED) (https://
catalog.data.gov/dataset/100-meter-resolution-elevation-of-
the-conterminous-united-states-direct-download).

Extracting Animal Outbreak Data by County

States (Texas, Minnesota, Oregon, Montana, California,
North Dakota, and South Dakota) and counties with anthrax
outbreaks in animals reported between 2001 and 2013 were
extracted from the national dataset (APHIS 2014). In a new
text field named “outbreak,” counties with recorded anthrax
outbreaks in wildlife and livestock between 2001 and 2013
were assigned a value of 1, and a 0 was assigned in non-
outbreak counties. The ArcGIS zonal statistics tool was used
to calculate the mean values for each environmental variable
in each county in the states that reported animal anthrax
outbreaks.

Agricultural Mammal Density by County

Because the anthrax outbreaks being used for this study
are those that have been reported in livestock and wildlife,
this study also wanted to capture locations and density of
animal populations as a possible variable to potential anthrax
outbreaks. The USDA National Agricultural Statistics
Service (NASS) conducted an Agricultural Census in
2012 (USDA 2014). The density values are calculated as
population/km2 and displayed in percentile classes of 10%.
Bison data (2012), all cattle (2012 – including beef, milk, and
calves), equine (2012 – including donkeys, mules, horses,
and ponies), farm-raised deer, and farm-raised elk were
downloaded at the county level for the contiguous United
States. Deer and elk refer to only farm-raised, not wild, deer
and elk and were combined into one dataset. Beef cattle, milk
cows, calves, elk, deer, equine, and bison population data for
each county were added together. The total population for
each county was divided by the county area (km2) to get the
total density.

ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/station-inventories/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/station-inventories/
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/readme.txt
ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/readme.txt
http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp
ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://catalog.data.gov/dataset/100-meter-resolution-elevation-of-the-conterminous-united-states-direct-download
https://catalog.data.gov/dataset/100-meter-resolution-elevation-of-the-conterminous-united-states-direct-download
https://catalog.data.gov/dataset/100-meter-resolution-elevation-of-the-conterminous-united-states-direct-download
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Extracting Data Prior to Maxent Model Run

Continuous maps for each parameter (geochemical proper-
ties, climatic properties, topological properties, and animal
density data extracted for each location where soil was sam-
pled) were generated. For consistency with other datasets,
all input data was converted or resampled to produce 400 m
resolution raster and with a geographic coordinate system of
WGS84.

Maxent Modeling

Presence Data, Model Scales, and Training Data
Presence data that was available for this evaluation included
locations where B. anthracis rpoB-positive samples were
detected (n= 83) andUS counties reporting historic recorded
anthrax outbreaks in wildlife/livestock (from 2001 to 2013).
Because there were only 83 samples that were B. anthracis
rpoB positive, initial model runs to investigate the influence
of environmental factors on the distribution of B. anthracis
used the latitude and longitude of the presumptive positives
for B. anthracis rpoB PCR positives (yellow dots, blue dots,
and black stars in Fig. 1) as well as the central latitude and
longitude for any county reporting wildlife/livestock anthrax
outbreaks (counties reporting outbreaks are shown in red
outlines in Fig. 1) as presence data. The blue triangles in
Fig. 2 show this combined data. The model utilized the same
variables determined to be most important by Nath and Dere
(Nath and Dere 2016) including pH, Ca, Mg, Na, total carbon
(C), clay content, Sr, and Mn to estimate the likelihood
of presumptive positives across the United States to see if
similar results were obtained.

For the remainder of the study, to investigate the influence
of environmental factors on areas with conditions which
could support a higher potential for anthrax outbreaks in
wildlife/livestock, only the reported animal anthrax outbreak
data was used as presence data. This data was evaluated on
two scales: the Outbreak State scale and the National Scale.
The Outbreak State scale consisted of only the states that
reported animal outbreaks from 2001 to 2013 and was used
as a proof of concept. The National scale covered the full
extent of the lower 48 states. Twenty percent of presence data
were randomly removed for cross-validation, leaving 80% to
train the model (data not described). The “write background
predictions” feature was turned on in the advanced settings
menu. The number of iterations (500) and output format
(logistic) were left to the default settings.

Three different iterations of the available environmental
variables were used: 1) The Sample Location data subset
included the environmental variable data using the assigned
latitude and longitude locations from the USGS NASGLP
project that fell within either the Outbreak State or National

scales. The Interpolated dataset included an interpolation of
the environmental variables averaged for each county and
assigned to a point for that county at the centroid (rather
than using the NASGLP latitude and longitude) for both the
Outbreak State and National scales. This was done to try to
account for any possible outliers. Finally, the environmen-
tal variables were normalized (completing the Normalized
dataset) by scaling the environmental variables so that the
values fell between 0 and 1 using Python prior to running
Maxent. This was done so the environmental variables would
have the same units and order of magnitude in order to
determine how different scales might change the model.
Maxent version 3.3.3k was used for all modeling.

Recursive Feature Elimination
Recursive feature elimination (RFE) is a method to select a
set of features by training an estimator on a set of weighted
features and recursively eliminating ones with the smallest
absolute weights (Pedregosa et al. 2011). For this study,
multiple RFE were run used to narrow down the list of
environmental variables that would be utilized duringMaxent
modeling, to prevent overfitting of the model. Before using
RFE, minor elements and unstable elements were removed
from the dataset. It was determined that several elements
could be excluded because (1) they do not exist naturally in
the environment, (2) they are unstable on their own in the
environment, or (3) they are too minor (<500 mg/kg) and can
throw off statistical models if included. RFE was run with the
Python scikit-learn 0.18.1 package. TheRFEwas set up using
the logistic regression method for all variables collected with
an end goal of five features. The final list of environmental
variables used for Maxent modeling is listed in Table 2.

Evaluation of Performance
This study utilized two measures of model performance, the
area under the curve (AUC) and the True Skill Statistic (TSS).
The AUC and TSS methods are briefly described below.

Area Under the Curve
Sensitivity is the probability that the model classifies a pres-
ence correctly, while specificity is the probability that the
model classifies an absence correctly (Allouche et al. 2006).
The receiver operating characteristic (ROC) curve provides a
measure of model performance. The ROC plots the model’s
sensitivity against the proportion of false positives (com-
mission error), which is calculated as 1- specificity and
summarizes that measurement in a single number, the area
under the curve (AUC) (Allouche et al. 2006; Chikerema
et al. 2013; Lobo et al. 2008; Phillips et al. 2006; Phillips
and Dudik 2008). Specifically, the AUC gives the probability
that a randomly chosen presence location has been correctly
ranked higher than the absence/background site and can be
compared between model algorithms (Chikerema et al. 2013;
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Fig. 2 Maxent result using rpoB presumptive positives for Bacillus, counties reporting wildlife/livestock outbreaks from 2000 to 2013 (center of
each county) data and the variables pH, Ca, Mg, Na, Sr, Mn, clay content, and carbon content

Phillips et al. 2006; Phillips and Dudik 2008). The AUC
weights the commission and omission error (false negative)
the same (Lobo et al. 2008). AUC values at 0.5 or lower mean
the ranking is no better than random, while those nearing 1
mean the ranking is a better predictor and nearing perfect
(Chikerema et al. 2013; Phillips and Dudik 2008).

True Skill Statistic (TSS)
The TSS has been used as an alternative measure of per-
formance for species distribution models (Allouche et al.
2006) and has recently been used as a measure of model
performance for determining the realized niche of Orchid
bees usingMaxent modeling (Silva et al. 2014). The TSS pro-
vides a comparison of how well the background predictions
made by the model match the model results at the test dataset
(presence) locations. Values near +1 are perfect agreement
of the model distributions and the observations, while values
near −1 indicate the model is no better than a random model
(Silva et al. 2014). The TSS is not affected by the size of the
background dataset or prevalence and combines specificity
and sensitivity in order to account for omission and commis-
sion errors and random guessing (Allouche et al. 2006).

Briefly,

1. The model saves 10,000 random background probability
predictions (predictions for this study were saved in the
csv file, “species_backgroundPredicitons.csv”).

2. Using the 10% threshold value, the number of background
predictions above and below that threshold is counted.

3. The model also creates a csv file that saves the probability
predictions at each of the sample sites (saved in the csv
file, “species_samplePredictions.csv”).

4. The number of test location predictions above and below
the 10% threshold is counted.

5. Sensitivity is the

(Number of test cells

< threshold) / (Total number of test cells)

6. Specificity is the

(Number of background cells

< threshold) / (Total number of background cells)

7. TSS is Sensitivity + Specificity – 1.

TSS score interpretations are listed in Table 3. For this
study, omission and commission rates were calculated only
for the National level scale because the Outbreak State scale
was used as a proof of concept and did not contain enough
data points to calculate an accurate omission or commission
rate.
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Table 2 Final environmental variables used for Maxent modeling

Variable Abbreviation Source

Aluminum Al USGS (2013)

Arsenic As USGS (2013)

Barium Ba USGS (2013)

Calcium Ca USGS (2013)

Cesium Ce USGS (2013)

Cobalt Co USGS (2013)

Chromium Cr USGS (2013)

Copper Cu USGS (2013)

Iron Fe USGS (2013)

Mercury Hg USGS (2013)

Potassium K USGS (2013)

Magnesium Mg USGS (2013)

Manganese Mn USGS (2013)

Sodium Na USGS (2013)

Nickel Ni USGS (2013)

Phosphorus P USGS (2013)

Lead Pb USGS (2013)

Sulfur S USGS (2013)

Strontium Sr USGS (2013)

Titanium Ti USGS (2013)

Zinc Zn USGS (2013)

Amorphous soil content Amorph USGS (2013)

Carbonate soil content Carb USGS (2013)

Clay content Clay USGS (2013)

Elevation DEM USGS (2012)

Drainage class Drain Soil Survey Staff (2017)

Total feldspar soil content Flds USGS (2013)

Cattle, elk, deer, equine,
bison density

Mammal USDA (2014)

Average annual precipitation Prcp NOAA (2010)

Slope Slope Soil Survey Staff (2017)

Average annual temperature Temp NOAA (2015)

Total carbon content Tot_c USGS (2013)

Table 3 TSS score interpretation

TSS score Interpretation

0–0.4 Poor

0.4–0.5 Fair

0.5–0.7 Good

0.7–0.85 Very good

0.85–0.9 Excellent

>0.9 Perfect

Results

Bacillus sp. and Bacillus anthracis PCR Results

Bacillus species were detected in 2876 (60.3%) of the sam-
ples in 43 of the 48 states (% positive range of 7.2 to
95.7, Fig. 1). States where Bacillus sp. was detected in

Table 4 Bacillus anthracis presumptive PCR positives (83 total) and
pX01/PX02 blot results

# PCR
positive

By state (# PCR positive) pX01 pag pX01 lef pXO2

10 AL (3), KS (1), ME (1), MO
(1), NY (1), UT (2), WV (1)

+ + +

66 AL (2), AR (2), AZ (2), FL
(1), GA (7), ID (13), IN (1),
LA (4), MI (1), MN (5), MT
(1), NV (1), OH (3), OK (7),
OR (3), PA (1), SC (6), TX
(1), UT (2), VA (1), WA (2)

− − −

1 AL (1) − + +
3 GA (1), MN (2) − − +
3 ID (1), NM (1), UT (1) + − +

+ positive, − negative

more than 75% of soil samples included Alabama, Georgia,
Iowa, Idaho, Illinois, Louisiana, New Mexico, Ohio, Okla-
homa, South Carolina, Tennessee, and Wisconsin (Fig. 1).
States where Bacillus sp. was not detected (i.e., Connecticut,
Delaware, Maryland, New Hampshire, and Rhode Island) or
was detected infrequently (i.e., Massachusetts and New Jer-
sey, where <10% of samples were positive) were all located
in the northeast. These states were relatively small in size, and
consequently the number of samples collected in those states
ranged from only 2 to 18 (data not shown). Several states
had a low incidence of Bacillus sp.-positive samples, despite
medium- or large-sized sample sets. Those states included
Maine at 13.7% positive out of 51 samples, West Virginia
at 15.4% positive out of 39 samples, and Montana at 20.5%
positive out of 234 samples.

The rpoB gene for Bacillus anthracis was detected across
the United States in 83 of the samples that ranged in origin
from northern Maine to southwestern Oregon (illustrated in
Fig. 1 and Table 4). The highest rates of occurrence were
found in a cluster in the south (a total of 20 sites in Alabama,
Georgia, and South Carolina), in 7 sample site groups in
Oklahoma and Minnesota, and in a cluster of 26 sites in
the northwest (Idaho, Montana, Nevada, Oregon, Utah, and
Washington).

Of the 83 rpoB-positive sites, 10 (one in Maine, New
York, West Virginia, Missouri, and Kansas, two in Utah, and
three in Alabama) were positive for both the PX01 pag and lef
and pX02 cap virulencemarkers (Table 4). These ten samples
were confirmed to contain all three markers by USF-CBD.
The pX02 cap virulence marker was detected in another 7
of the 83 presumptive positive samples. These samples were
collected in Alabama (1), Georgia (1), Idaho (1), Minnesota
(2), New Mexico (1), and Utah (1). Four of these seven
samples contained one of the other two virulence markers
(the Alabama sample contained the PX01 lef marker and the
Idaho, New Mexico, and Utah samples contained the PX01



Spatially Integrating Microbiology and Geochemistry to Reveal Complex Environmental Health Issues: Anthrax in the… 367

Table 5 RFE results for national scale models

Sample location dataset Interpolated dataset Normalized dataset

Al Fe Al

Na Na Ca

K pH Sr

Mg Feldspar content Feldspar content

Drainage class Drainage class Slope

pagmarker). None of the virulence markers were detected in
66 of the presumptive PCR-positive samples.

All positive control PCR reactions produced the
appropriate-sized amplicon, and no amplicon signal was
noted in any of the negative control reactions. To address
reproducibility of the PCR assay, a total of 276 samples were
run in duplicate for the detection of Bacillus sp. and/or B.
anthracis. Of these, 63 of the samples were negative for both
reactions, 197 were positive for both reactions (primarily
Bacillus sp. positive), and 16 were reactions where one was
positive and one was negative (6.0%). Given the Bacillus
species PCR reaction sensitivity as previously published
(4 CFU) (Griffin et al. 2009), and the above PCR agreement
rate of 94.0%, these data accurately reflect occurrence (at or
above the limit of detection) at the time these samples were
collected.

The final variables used for Maxent are included in Table
5. The RFE was able to determine which five variables best
explained the differences between counties where anthrax
outbreaks had occurred in wildlife/livestock and counties
with no recorded outbreaks. RFE tests produced models with
some similar variables, though no variable was consistently
observed in all three models (Sample Location dataset vs.
Interpolated dataset vs. Normalized dataset) (Table 5).

Maxent Results

Initial Maxent modeling which used both the locations where
B. anthracis rpoB PCR was detected and the counties that
reported anthrax outbreaks in wildlife/livestock as presence
data did not perform well. The model (Fig. 2) utilized the
variables determined to be most important by Nath and Dere
(Nath and Dere 2016) including pH, Ca, Mg, Na, total carbon
(C), clay content, Sr, and Mn to estimate the likelihood of
presumptive positives across the United States underfitting
the data. Although the AUC score was 0.83 (AUC test was
0.692), and the map was aesthetically pleasing, the TSS was
only 0.484 (fair) suggesting the model appeared to underfit
the data.

When animal anthrax outbreak data alone were used as
the presence data, the models for the three iterations of
environmental variables (Sample Location, Interpolated, and
Normalized datasets) performed well in AUC and TSS tests

(Table 6). Although the Sample Location dataset performed
very well at the State scale, when scaled up to the National
scale, performance decreased (TSS 0.82, very good, to 0.683,
good). The Interpolated dataset produced models that per-
formed about the same for both the State and National scales
(TSS 0.558, good, and TSS 0.532, good, respectively). The
Normalized dataset performed better at the National scale
(TSS 0.538, good) than at the State scale (TSS 0.359, poor).
There were larger differences in the rate of commission (true
negative rate) in the Sample Location dataset (79.2%) com-
pared to the Interpolated (63.5%) and Normalized (65.5%)
datasets.

Probability maps for all three models are presented in
Figs. 3, 4, and 5. For reference, brown areas on the maps rep-
resent locations with the lowest probability for occurrence,
and the cream areas represent locationswith amoderate prob-
ability for occurrence (0.3–0.4). The green areas represent
locations with the highest probability for occurrence. In gen-
eral, the highest probability of occurrence was found in North
Dakota, South Dakota, Minnesota, Oregon, Montana, Texas,
Michigan, Maine, and states along the Mississippi River for
all three models. The largest differences in probability among
the models were found in the Northwest and Great Plains
regions.

Discussion

This study attempted to use Maxent modeling to examine the
geochemical soil constituents and environmental conditions
that could potentially influence the distributions of B. an-
thracis in soils of the contiguous United States and to iden-
tify the locations with environmental conditions which are
potentially more supportive of anthrax outbreaks in wildlife
and livestock. A discussion of the results from this study is
presented below.

PCR Data Discussion

Figure 1 provides a “snapshot in time” of PCR results and il-
lustrates the widespread occurrence of Bacillus species PCR-
positive samples across the 48 contiguous United States.
In northeastern and north central/western states, Bacillus
species were not detected as frequently as they were in
other areas, such as the south and southwest. Many of the
rpoB B. anthracis PCR detects from this study occurred
in regions that have reported cases or outbreaks of anthrax
in wildlife and livestock in historical records (Stein 1945;
Stein and Van Ness 1955). However, the cluster in Idaho
is not consistent with historical (Stein 1945; Stein and Van
Ness 1955) or recent observations (Fig. 5). Outside of the
seven rpoB B. anthracis-positive sites in Minnesota (none
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Fig. 3 Sample Location dataset Maxent result (Al, Na, K, Mg, drainage class)

Fig. 4 Interpolated dataset Maxent results (Fe, Na, pH, feldspar content, drainage class)
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Fig. 5 Normalized dataset Maxent results (Al, Ca, Sr, slope, feldspar content)

of these were positive for all plasmid markers), the rpoB
gene for this pathogen was not detected in what may be
considered the modern “anthrax hotspots” of southern Texas,
the Dakotas, or northeast Montana. The inability to detect
this pathogen in animal anthrax outbreak areas, including in
soil samples collected near anthrax-infected carcasses, has
been previously observed and attributed to factors such as low
sporulation rates, spore degradation, survival below surface
soils, and assay detection limits (Beyer et al. 1999; Coker
2002; Dragon and Rennie 1995; Teshale et al. 2002). An
effort was conducted to increase detection of B. anthracis
in soil samples by optimizing processing of the soil samples
(Silvestri et al. 2016). In addition, an enrichment-based PCR
assay has been suggested for enhancing the detection of this
pathogen in soil samples given the limitations observed in
previous studies (Coker 2002; Letant et al. 2011; USEPA
2012). The presence or absence of the PCR B. anthracis rpoB
marker in the samples only represents a snapshot in time
and could reflect temporal variations in environmental condi-
tions, variances in vaccination efforts, or the lack of optimal
elemental concentrations needed to facilitate an infectious
state. In addition, using a random stratified sampling strategy
for this type of study might not be ideal for locating B.
anthracis spores in soil. Given the spatial, temporal, climatic,
and topological variability of the samples collected during the
NASGLP study, locating this pathogen at the “right time and
the right place” could be extremely difficult. A more targeted

approach for sampling might need to be considered which
takes into account the factors mentioned above.

Discussion of Maxent Modeling

It is not surprising the model, which utilized the B. anthracis
rpoB in addition to the animal anthrax outbreak county
point data (Fig. 2) to look at the potential distribution of
B. anthracis, did not yield a high TSS score. The PCR
data represented the presence of B. anthracis collected from
a discrete sample during a single snapshot in time, which
wasn’t concurrent with the animal anthrax outbreaks them-
selves. Temporal variations within a sample site are difficult
to capture with presence-only data (Elith et al. 2011). Al-
though spores have been shown to survive for many years
in soil, and much has been documented on the environ-
mental, weather/climate, and geographic factors associated
with animal anthrax outbreaks (see Table 1), information is
scarce on spore distribution and transport in soil following an
outbreak, factors affecting sporulation, natural attenuation of
B. anthracis, and persistence in non-host microenvironments
(see USEPA (2014) and USEPA (2015) for a summary). In
addition, detection of spores in soil is difficult due to low
concentrations, low processing efficiencies used with past
samplingmethods, and inhibiting compounds in soil matrices
(Silvestri et al. 2015; USEPA 2014). The method utilized to
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process the samples for the study had a limit of detection
of 104 colony-forming units (CFU) per g soil (Silvestri et
al. 2016); therefore, recovery of B. anthracis in the discrete
samples that were collected was difficult. It is possible that
samples taken near locations of an animal anthrax outbreak
contained spores that were not detected, thus limiting the
amount of presence data that was available for this study. In
addition, using PCR data of this nature still has its limitations
as conclusions will be limited to identifying areas that could
potentially promote pathogen survival, rather than being able
to concretely identify where the pathogen is located. Re-
analysis of samples in potential anthrax “hotspots” has been
considered utilizing an improved processing protocol (Sil-
vestri et al. 2016; USEPA and USGS 2017) if funding allows.

Focusing on soil and environmental conditions over larger
areas, such as counties that have experienced anthrax out-
breaks in wildlife and livestock, provided a more realis-
tic characterization of areas that could potentially support
anthrax outbreaks. Utilizing animal anthrax outbreak data
only, the model with the highest AUC and TSS scores for
this study was the State model using the Sample Location
dataset (AUC = 0.918 and TSS = 0.82). This was the model
that included all environmental variables for each sample
location within only the states that had reported anthrax
outbreaks in livestock and wildlife. The Sample Location and
Interpolated datasets in this study performed best when using
state-level data from the animal anthrax outbreak vs. non-
outbreak counties; however, when the models were scaled
up to the national level, model performance declined. When
using the Normalized dataset, the model performed better at
the national scale; at the State scale, the statistical measures
assumed the model was underfitting the data as it had high
sensitivity (true positive rate) and low specificity (true nega-
tive rate). A similar scale-dependent effect was also observed
by Nath and Dere (Nath and Dere 2016), who used Maxent
to examine the spatial distribution of soil conditions suit-
able for anthrax outbreaks in affected Minnesota counties.
Their statewide model had a better AUC (0.978) than the
local model (0.698), and the predictors for anthrax outbreaks
varied by scale (with the exception of sand content, which
was noted for both). The authors suggested that the statewide
model performed better due to heterogeneity of the soils
across Minnesota.

The RFE evaluation for the current study looked at which
five variables best explained the differences between counties
where animal anthrax outbreaks occurred and counties where
there were no recorded outbreaks (Table 5). Interestingly,
RFE tests (Sample Location vs. Interpolated vs. Normalized
datasets) produced models with some common variables
(Table 5). However, it is not possible to identify a set of
variables which fits all model scales and situations, because
the variables varied by scale and how the data was treated.
The Normalized dataset noted Ca and Sr to be important

predictors, similar to previous research which looked at geo-
chemicals present in counties reporting anthrax outbreaks in
livestock and wildlife (Griffin et al. 2014). A study of anthrax
outbreaks in Minnesota (Nath and Dere 2016) also found Ca
(Minnesota statewidemodel) and Sr (Minnesota local model)
to be important predictors of anthrax outbreaks. However,
Ca and Sr were not in the top five predictors for the Sample
Location and Interpolated datasets in this study.

Previous studies have found that soil type (Chikerema
et al. 2013), sand content (Nath and Dere 2016), and clay
content (Nath and Dere 2016) are potentially important pre-
dictors for anthrax outbreaks.While this study did not specif-
ically find soil type such as sand or clay to be in the top 5
predictors, the total feldspar content was a key variable for
both the Interpolated and Normalized datasets, suggesting
that ENMmodels should expand the soil type variable to also
include an analysis of the mineral content in niched model
evaluations.

RFE tests determined that slope was a key indicator in the
Normalized point dataset, while a related variable, drainage
class, was a key indicator for both the Sample Location and
Interpolated datasets. These correspondences are consistent
with the assumption that natural drainage and flooding can
disperse spores over a large area (Epp et al. 2010; Turner
et al. 1999a, b) and the “concentrator theory” (Dragon and
Rennie 1995) that posits floods and runoff are capable of
washing soils into spore-bearing depressions, burying spores
until subsequent surface runoff uncovers them.

These models in this study are characterized by a re-
gion of high probability stretching from Texas to Minnesota,
which was also observed in several studies using Genetic
Algorithm for Rule-Set Prediction (GARP) for predicting B.
anthracis distribution in the United States and other countries
(Blackburn 2010; Blackburn et al. 2007; Mullins et al. 2013).
GARP utilizes a genetic algorithm to give a binary prediction
using positive (suitable environmental conditions) and neg-
ative (unsuitable environmental conditions) rules (Phillips
et al. 2006). However, the Maxent models from this study
predicted higher-probability areas in East Texas than the
GARP models while also under-predicting probability in
areas such as South West Texas, where historical animal
anthrax outbreaks are known to have occurred. These areas
included Falls, Kinney, Val Verde, Uvalde, Edwards, and
Real counties (Kenefic et al. 2008; USDA2006) that were not
modeled (Sample Location dataset) to have a high probability
for potential anthrax outbreaks. However, it is worth noting
that there have not been animal anthrax outbreaks in these
areas since 2000, which was several years earlier than the
time period encompassed by the datasets used in this study.
Surprisingly, two states,Michigan andMaine, were predicted
to be areas where environmental conditions could potentially
support anthrax outbreaks in animals (in the National Scale
Interpolated and Normalized datasets), despite not having
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recent outbreaks of anthrax in wildlife or livestock. There
were some similarities between the current study to the
models predicted by GARP in the Midwest and some areas
of the western United States (Blackburn 2010; Blackburn et
al. 2007; Mullins et al. 2013). However, with the addition of
new nationwide soil geochemistry data, the current models
were able to map probability at a higher resolution compared
to studies using GARP.

The Maxent models in this study predicted an elevated
probability for anthrax outbreaks in wildlife and livestock
along the Mississippi river. Previous studies that looked at
B. anthracis distribution ENM models indicated that Missis-
sippi and Louisiana are not areas predicted by ENM where
B. anthracis is likely to persist (Blackburn 2010; Blackburn
et al. 2007; Mullins et al. 2013). However, the predictions
presented in this paper are in line with several other studies
and cases, one of which found virulence markers for B.
anthracis in 26% of the soil samples collected and analysis
from New Orleans following Hurricane Katrina (Griffin et
al. 2009). In addition, there were several reports of historical
anthrax outbreaks in livestock (with multiple reports of cattle
losses) and wildlife in the Mississippi River Delta between
1954 and 1971 in which calcareous soils in the area were
hypothesized to have contributed to the outbreaks (Kellogg et
al. 1970; VanNess 1971;VanNess and Stein 1956). However,
more recent studies did not find the same link with higher
concentrations of calcium in soil along Mississippi River
Delta (Griffin et al. 2014; USGS 2013) as was seen in the
past reported outbreaks. This suggests that Ca content alone
cannot explain the occurrence.

Statistical Considerations

This study utilized Maxent modeling, a presence-only ap-
proach, to predicting potential locations of potential anthrax
outbreaks in wildlife and livestock in the contiguous United
States. Maxent can address some of the limitations with
presence-only data (Elith et al. 2011). Several advantages
to using Maxent compared to GARP have been noted and
include the following: Maxent typically has lower omission
rates, greater AUC scores, and is better able to discriminate
between suitable and unsuitable areas compared to GARP;
however, it was not possible to directly compare the perfor-
mance of the current model to other ENM models because
Maxent produces continuous data, while GARP values are
discrete (Phillips et al. 2006). Based on the AUC and rates
of omission, models from the current study performed fairly
well. When using the 10% binary threshold provided by
Maxent, an omission rate of 10% would be expected. Omis-
sion rates in this study were 11.3%, 11.6%, and 11.69% for
the Sample Location, Interpolate, and Normalized datasets,
respectively. Furthermore, model performance in this study

was evaluated with an additional metric, the TSS rating,
which ranged from “very good” to “good” for many of the
models (Table 6).

AUC should not be the only measure used to evaluate
performance and can be affected by the extent of the geo-
graphical area used for the model (Allouche et al. 2006; Lobo
et al. 2008). The use of TSS in addition to the AUC, as this
study used, could help provide a more accurate description
of the model performance. The TSS is not affected by the
size of the background dataset or prevalence and combines
specificity and sensitivity in order to account for omission
and commission errors and random guessing (Allouche et al.
2006), unlike the AUC, which weights the commission and
omission error the same (Lobo et al. 2008). The suggestion
to include TSS in addition to AUC is supported by data
from the current study in which the AUC score for the State
Scale Normalized dataset was 0.757, but the TSS score was
only 0.359 (poor) (Table 6). Without use of the TSS, this
model might have been reported as a very good fit of the
data using AUC alone. One explanation for the different in
AUC and TSS scores is that the AUC does not account for any
transformations of probability predictions used and tends to
include performance for all possible areas of the model, even
those that may not be of interest (Lobo et al. 2008).

Summary of Strengths and Limitations

Strengths
This study utilized the Maxent model, and background en-
vironmental conditions, to identify areas which could po-
tentially support anthrax outbreaks in wildlife and livestock.
Like other presence-only models, Maxent only requires the
locations a species has been observed. This is preferable
to presence-absence data due to the difficulty of verifying
absence.

Unlike other commonly used ENMmodels such as GARP,
Maxent includes features that can address some of the lim-
itations with presence-only data. Maxent is preferable to
other models due to its logistic output format, which makes
model interpretation simple, and its ability to address sample
selection bias, use continuous or categorical data, and include
a regularizer to prevent overfitting (Hastie et al. 2001; Phillips
and Dudik 2008). Compared to GARP, Maxent typically has
lower omission rates, has higher AUC scores, is better able to
discriminate between suitable and unsuitable areas, and has
been shown to successfully model species distributions on a
relatively small number of observations (Pearson et al. 2007).

This study identified that the soil variables, used in other
anthrax distribution model publications, should be expanded
to include analysis of mineral content. TheMaxent models in
this study were able to map probability at a higher resolution
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overall compared to studies using GARP when the nation-
wide soil geochemistry data was included.

In addition, the Maxent models used in this study
predicted an elevated probability for anthrax outbreaks in
wildlife and livestock in regions not previously predicted
by others, even though several other studies and cases have
found virulence markers for B. anthracis and/or historical
reports of anthrax outbreaks in livestock have been noted
in these areas. The results from this study also indicated
regions, which had not reported recent anthrax outbreaks in
wildlife or livestock but contained environmental and soil
conditions, that could potentially support an animal anthrax
outbreak.

Limitations
One of the most significant limitations of species distribution
models is the inherent imperfection of observations. When
presence data is imperfect, model results may estimate where
a species is more likely to be observed, rather than where it
occurs (Guillera-Arroita 2017; Guillera-Arroita et al. 2015).
Although the sampling effort this study relied on was robust,
it was not able to predict true persistence and viability of the
bacteria in the contiguous United States, whichwould require
more complete presence data and true absence data.

The PCR results from the NASGLP could not be utilized
to determine a distribution for B. anthracis across the United
States due to the low incidence that B. anthracis rpoB was
identified in the collected samples. Interpretation of these
types of data can be confounded by climate, temporal, and
spatial variability as well as anthropogenic factors. These
same confounding variables could affect the ability to locate
B. anthracis in environmental samples which have been
collected using a random stratified sampling strategy. Amore
targeted sampling approachwhich considers the confounding
variables might be needed, which could be difficult at a
national scale.

The lack of detection of the pathogen in areas formerly
known to have frequent animal anthrax outbreaks highlights
the need for enhanced sensitivity (e.g., enrichment-PCR) to
measure reproducible detection in soil surveillance studies
and/or the need for use of a more defined presence vari-
able. The model does not account for non-detects which
are true non-detects versus those that were non-detect due
to the bacteria being present in concentrations below the
detection limit of the analytical methods used to analyze the
samples. Conclusions of this study were therefore limited
to identifying areas that could potentially promote pathogen
survival, rather than being able to concretely identify where
the pathogen was located.

Overall, the models tended to be scale-dependent and
tended to produce better model performance at a finer scale
of the data. Using variables which varied by scale and how

the data were treated make it difficult to identify a com-
mon set of variables using RFE which fits all model scales
and situations. The model might need to focus on soil and
environmental conditions over more defined areas such as
counties that have experienced anthrax outbreaks in wildlife
and livestock to provide a more realistic characterization
of areas that could potentially support anthrax outbreaks.
It was not possible to directly compare the performance
of the current model to other ENM models because of the
differences in the type of data used for the models (Maxent
produces continuous data, while GARP values are discrete).

A major challenge with using these types of models is
trying to balance overfitting and underfitting of the data
(Radosavljevic and Anderson 2014). Creating a model to
predict events that have not occurred (and may not occur) is
complicated and compounded bymany factors, leading to the
need to use expert knowledge and common sense to further
judge the results, a method which is not always reproducible.
Due to these compounding factors, these models tend to be
misunderstood, misapplied, and misinterpreted. Many past
research efforts fell short of fully determining the success
of their models. This study confirmed that TSS should be
used in addition to the AUC to help provide a more accurate
description of the model performance (Allouche et al. 2006;
Lobo et al. 2008).

Conclusion

This is one of the first studies to present PCR results from
the NASGLP, which found Bacillus sp. present in 83% of
samples, demonstrating the widespread prevalence of Bacil-
lus sp. in soils of the contiguous United States. The PCR
results could not be utilized to determine a distribution for
B. anthracis across the United States due to the low inci-
dence that B. anthracis rpoB was identified in the collected
samples. In addition, the pathogen wasn’t detected in areas
formerly known to have frequent animal anthrax outbreaks,
including areas of southern Texas or eastern North and South
Dakota. This lack of detection highlights the need for en-
hanced sensitivity (e.g., enrichment PCR) to measure repro-
ducible detection in soil surveillance studies. Other factors
that could confound interpretation of these types of data are
climate variables, temporal variables, and anthropogenic fac-
tors (vaccination programs and the geographic distribution
of livestock). These same confounding variables, along with
spatial variability, could affect the ability to locate B. an-
thracis in environmental samples which have been collected
using a random stratified sampling strategy; a more targeted
sampling approach which takes into account the confounding
variables might be needed.
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This study was able to use Maxent to identify areas which
could potentially support anthrax outbreaks in wildlife and
livestock based off the geochemical soil constituents and
environmental conditions in those locations. Maxent model
results from the current study also indicated regions which
had not reported recent anthrax outbreaks in wildlife or
livestock but contained environmental and soil conditions
that could potentially support an animal anthrax outbreak
(Michigan and Maine). This work provides an extension
to use of econiche modeling to investigate animal anthrax
outbreaks in the United States as it utilizes additional soil
geochemistry data and have shown that further validation
techniques, such as the TSS should be considered. Unfor-
tunately, direct comparison with other models is not pos-
sible. With anthrax occurrence data, the environmental and
soil conditions in a given location could be used to predict
areas that could potentially support an anthrax outbreak in
wildlife and livestock, should one occur. However, without
more complete presence data, and true absence data, it is
not possible to predict true persistence and viability of the
bacteria in these regions.

A challenge with these models is trying to balance over-
fitting, underfitting, and reality. A model that perfectly fits
the data can be created, but that model might overfit the
fundamental and even realized niche. On the other hand,
a model that underfits the data might not predict all areas
where the species can survive. Thus, when creating a model
to predict events that have not occurred (and may not occur),
relying on the available data and statistical inferences from
them is complicated and may be compounded by many
factors. In this case, expert knowledge and common sense
could be applied to further judge the results.
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A Probabilistic Approach to Assess the Risk
of Groundwater Quality Degradation

Giuseppe Passarella, Rita Masciale, Sabino Maggi, Michele Vurro,
and Annamaria Castrignanò

Introduction

The progressive reduction of natural water resources avail-
ability, due to the increasing demand for water in all sec-
tors and the ongoing climate changes, has the effect of the
qualitative and quantitative deterioration of this resource and
launches a severe alarm aimed to protect and preserve such
natural resources.

When considering Mediterranean areas, where predicted
scenarios of climate change indicate trends to a warmer
and arid climate, problems of scarcity and degradation of
the quality of natural water resources become more severe.
In such areas, the reduction in the availability of water re-
sources significantly influences sustainable growth. Human
activities, in these areas, often produce threats for groundwa-
ter safety due to direct or incidental water overexploitation
and pollution; the former is particularly critical in nearby
coastal areas, where it causes the groundwater hydraulic
head lowering and seawater intrusion (Zaccaria et al. 2016).
Furthermore, the almost total absence of perpetual surface
watercourses, which characterizes the Mediterranean envi-
ronments, forces water resource managers to draw to the
more precious reservoir of the groundwater to satisfy wa-
ter needs. Groundwater is the major source of worldwide
freshwater supply, which is currently used to meet nearly
half of the drinking water needs (Machiwal et al. 2018) and
around 43% of the irrigation demand (Siebert et al. 2010).
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Considering what said, quantitative saving and qualitative
safeguarding of water resources must be the main objective
of any effective environmental policy that, in turn, often
implies the assessment of the risk of qualitative-quantitative
groundwater degradation.

The word “risk” has two distinct meanings (Burton and
Whyte 1980; Rue et al. 1999). In some contexts, it is con-
sidered as a threat that is exposure to mischance or peril. In
other contexts, the risk is interpreted, more narrowly, as the
possibility or chance of suffering an adverse consequence or
of encountering some loss (Duckett 1983; Mishra and Sarkar
2017).

Generally, according to Varnes (1984), the risk is defined
as functionally related to two independent variables: (i) the
vulnerability V of the natural system, that is, the degree of
the intrinsic weakness of the considered system, and (ii) the
hazard H associated with a specific (natural or human) event
(Barca and Passarella 2008), that is, the possibility that a
potentially detrimental event of given characteristics occurs
in a given area, for a given time period (IPCC 2012). When
assessing the hazard associated with an event, it is necessary
to evaluate the temporal trend, frequency, and spatial extent
of the past events and determine the severity of the effects
produced by them (deterministic approach). On the other
hand, the elements contributing to the vulnerability of a
natural system are sensitivity, adaptive capacity (resilience
and renewability), and weaknesses. A system is more or less
sensitive to external events, depending on how it changes in
response to it. The adaptive capacity measures the degree to
which a natural system can adjust in response to changing
external conditions. Depending on whether the adaptation
occurs autonomously or it requires some sort of external
intervention, it is usually named resilience or renewability,
respectively. Finally, the presence of weak points in a natural
system can produce uncontrolled harmful effects in even very
large areas.
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Particularly, environmental risk is defined as the “actual
or potential threat of adverse effects on living organisms
and the environment by effluents, emissions, wastes, re-
source depletion, etc., arising out of an organization’s ac-
tivities” (Power and McCarty 1998). Environmental expo-
sures, whether physical, chemical, or biological, can induce
a harmful response and may affect soil, water, air, natural
resources or entire ecosystems, as well as the plants and
animals – including humans – and the surroundings where
they live (Mishra and Sarkar 2017). The assessment of the
environmental risk due to human activities is very important
in order to plan and start actions aimed to reduce impacts,
recreating the co-evolutionary process between human and
natural components of the environment.

Concerning groundwater, this reservoir, even though
somewhat protected by soil layers and vadose zone, is
strongly subjected to various quantitative and qualitative
risks due to human activities. The overexploitation of such
a resource often heavily reduces freshwater availability
and worsens its qualitative status. In fact, it increases the
risk of aquifer’s salinization, particularly in coastal areas,
where freshwater withdrawal from wells causes an increase
of natural seawater intrusion. Furthermore, groundwater
is often subjected to point-type pollution, usually due to
localized human activities, such as industrial sites, landfills,
and wastewater treatment plants, to which chemical- and
microbiological-type environmental risks are usually related.
Finally, diffuse pollution of groundwater, such as the one due
to nutrients spreading over the ground surface in agriculture,
is one of the main groundwater degradation risks because of
its intrinsic characteristic of affecting wide land areas.

In this chapter, a typical environmental risk is addressed,
since it concerns the expected qualitative degradation of
groundwater due to the possible increase of dissolved ni-
trates’ concentration above critical thresholds. In fact, one
of the most worrying causes of diffuse pollution of ground-
water is the infiltration, through the unsaturated layers of
the subsoil, of nutrients and fertilizers widely used in inten-
sive agriculture (Goodchild 1998; Liu et al. 2005; Almastri
2007; Menció et al. 2016). Generally, nitrate is a low-toxic
compound, but it becomes dangerous to human health when
it reduces to nitrite. In fact, ingested nitrites from polluted
drinking waters can induce blue baby syndrome, by blocking
the oxygen-carrying capacity of haemoglobin, or also have
a potential role in developing cancers of the digestive tract
through their contribution to the formation of nitrosamines
(Camargo and Alonso 2006). Although nitrate in ground-
water can derive from many sources, such as industrial,
municipal, residential, and agricultural sources, the largest
cause of this kind of groundwater pollution, on a global scale,
is the use of chemical fertilizers in agriculture (Haller et
al. 2013). The contamination occurs by nitrogen leaching
(i.e., the downward transport of nitrate by water percolating)

from the soil to aquifers, when the amount of this nutrient
contained in fertilizers greatly exceeds the nitrogen crop
requirements (Libutti and Monteleone 2017).

The need to control and mitigate the negative impact of
nitrogen leaching from agricultural activities onwater quality
has prompted, in 1991, the European Union to adopt the
Nitrates Directive 91/676/EEC (EU 1991). The Directive sets
the acceptable threshold of nitrate concentration in ground-
water at 50 mg/l and involves the definition of “nitrate-
vulnerable zones” (NVZs) as large areas of land draining into
waters, which exceed or are at risk of exceeding the threshold.
The Directive establishes mandatory action programs for
these areas by means of the adoption of a code for “good
agricultural practices” and providing training and informa-
tion for farmers. Although the Nitrates Directive was issued
and implemented long ago, the problem of nitrate pollution
in the aquifers are still persistent throughout Europe (EEA
2012) with many EU Member States whose groundwater
quality monitoring stations exhibit NO3 concentration over
50mg/l (EU 2000, 2006). Therefore, different methodologies
have been implemented to support groundwater protection by
nitrate pollution and its management (Kronvang et al. 2009;
Bouraoui et al. 2009; Barca et al. 2015).

The scope of this work has then been to investigate ways of
fusing information of different types and to implement a con-
ditional stochastic simulation algorithm for risk assessment
of groundwater quality degradation. The proposed method
has been applied to the aquifer of the “Tavoliere di Puglia”
located below the homonym valley in the northern part of the
Apulia Region (south Italy).

Materials andMethods

Methodological Framework

Considering groundwater systems pollution, vulnerability is
rather easy to estimate because their transport characteristics
do not change appreciably with time. However, the hazard is
difficult to quantify since a number of time-dependent pro-
cesses, involving several non-homogeneous variables, affect
it. By its nature, this issue requires a probabilistic approach.

In fact, it allows the risk of qualitative groundwater degra-
dation to be assessed directly, overcoming the need of eval-
uating its components, separately and represents a cost-
effective and fast alternative to the deterministic methodolo-
gies (Burton and Whyte 1980; Duckett 1983). This kind of
approach to risk analysis allows using computational tools,
based on setting critical thresholds of pollutant concentration
according to given standards of groundwater quality (Pas-
sarella et al. 2002). In this contest, risk assessment is based
on the estimation of variables, which are subject to extreme
uncertainty. This uncertainty depends on both the intrinsic
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nature of the variables and the cost of obtaining informa-
tion about them. Many chemical and geotechnical variables
(major constituents, porosity, permeability, transmissivity,
etc.), which may affect groundwater quality, can be assessed
and quantified only based on sparse sampling and punctual
field tests. This in turn requires spatial modelling of those
variables that are deemed affecting groundwater quality.

Combinations of all variables at hand interpreted as spatial
random variables, describe the possible “states of nature.”
Providing multiple stochastic realizations of spatial variables
can form the basis of quantitative risk assessment. Treating
these realizations as possible realities, risk assessment con-
sists essentially in observing the frequency (probability) with
which specified criteria are exceeded or fail to be met (Dowd
and Pardo-Igúzquiza 2002).

Geostatistics is a set of probabilistic and statistical tools
suitable to characterize and estimate attributes distributed in
space (Castrignanò et al. 2000a). The complex spatial and
temporal variability observed in the groundwater attributes,
the multiplicity of the factors involved in the natural phe-
nomena, and the limited understanding of their complex
interactions are the main reasons for the shift from strictly
deterministic modelling to a more statistical and probabilistic
approach which assesses the uncertainty of prediction (Cas-
trignanò et al. 2000b).

In the Bayesian formalism, any early existing information
about the considered variable is called the a priori distri-
bution of the variable. Any additional information, which
comes from taking into account the proximity of the obser-
vations through geostatistics, produces a change in the data
distribution, called a posteriori distribution, and affects the
determination of the variable’s uncertainty.

In the proposed case, average values of nitrate concen-
tration measured in samples collected during eight monitor-
ing campaigns carried out from 2007 to 2011, within the
regional groundwater monitoring network, have been used
as quantitative (measurements) a priori information, while
hydrogeological and land use of the considered area have
been used as qualitative (map) a priori information.

The proposed approach of risk assessment is essentially
based on this updating process of an a priori distribution into
an a posteriori distribution and will be discussed in detail
hereinafter.

The main goal of a probabilistic approach consists in
assessing uncertainty related to available information, which
requires the estimation of conditional distributions over the
domain of interest (Castrignanò et al. 2007). Stochastic con-
ditional simulation is an effective technique in this respect
since it generates multiple realizations of the random variable
over the domain of interest, which allows both a direct vision
of spatial and temporal uncertainty and an assessment of
joint conditional distributions (Castrignanò and Buttafuoco
2004). Such simulations are conditional, because each re-
alization honors the available data, and stochastic because

the estimated spatial statistics are reproduced. The critical
step of this approach is the estimation of conditional distri-
butions, which can be realized in various ways since differ-
ent stochastic simulation algorithms exist: Gaussian-related
algorithms, which are more suited to continuous variables,
and non-parametric indicator algorithms that are better suited
to categorical variables. Given the objectives of this study,
the indicator approach is more appropriate, even because it
accounts for additional qualitative (soft) information. The
conditional distributions at each node of a regular grid cov-
ering the domain can be estimated sequentially by indicator
kriging, which is a non-parametric technique, not requiring
any assumption about the type of data distribution function,
and is quite flexible to any experimental condition.

Differently, estimation procedures, such as kriging or
splines, provide a unique image, which is optimal for some
a priori optimization criterion (minimum error variance or
minimum curvature) but does not reproduce spatial statistics
(histogram and variogram). Compared to stochastic condi-
tional simulation, such estimated maps look more smoothed
with the elimination of the minima and maxima observed.
They are therefore unsuitable for risk analysis where the
extreme classes are generally of greatest interest.

Since geostatistical techniques are data-driven, i.e., they
rely on actual observations, their applications are severely
constrained by the lack of data. In hydrogeological studies,
direct measurements of groundwater quality attributes are
usually quite expensive and then rare. However, an appre-
ciable amount of more qualitative though imprecise indirect
information related to groundwater quality, as geological,
pedological, or geophysical maps, exists which could be
effectively correlated with the actual attributes of interest.
Therefore, when direct information is sparse, poorer but more
extensively accessible information should be used, in order
to improve the prediction accuracy of the spatial attributes
deemed influencing groundwater quality.

Probabilistic Approach

To implement the probabilistic approach, the following steps
are needed:

1. Record and analyze the existing sets of both quantitative
(measurements) and qualitative (map units) information.

2. Code such information for quantitative use. The coding
has to be flexible enough so that the various (both direct
and indirect) types of information can be jointly pro-
cessed. Moreover, it must be consistent with the proba-
bilistic basic principles and techniques of geostatistics.

3. Define an algorithm for stochastic non-parametric simu-
lation which provides multiple realizations of risk cate-
gories conditioned to the various types of information.
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4. Post-process the simulations so as to calculate synthetic
indicators of the local risk of groundwater quality degra-
dation and assess the level of uncertainty using the concept
of entropy.

Each step will be individually described in detail.

Step 1
The data will be distinguished in quantitative and qualitative
data. A quantitative datum corresponds to a precise measure-
ment of the attribute(s) (nitrate) of groundwater quality at
some well of known location. The uncertainty attached to
this value is assumed negligible and will not be considered
in the following analyses. Using the terminology of Journel
(1986), such data will be referred to as hard data. All the
other types of data, represented by maps (raster images), will
be considered qualitative and called soft data by opposition
to hard data (Journel 1986).

Step 2
The variable to be simulated is categorical and represents
the different risk levels (categories) of groundwater quality
degradation. Each class corresponds to a particular interval of
the attribute (nitrate) selected for characterizing groundwater
quality. In particular, the thresholds of 10 mg/L and 50 mg/L
have been used to define the three risk level categories. The
former value refers to a guide value for good groundwater
quality, while the latter indicates the maximum allowable
concentration of nitrates in groundwater for civil uses.

For both hard and soft data, the indicator formalism is used
that was introduced in the field of spatial statistics by Switzer
(1977) and later extended and developed by Journel (1983,
1986).

Consider the K mutually exclusive categories sk k =
1, . . . ,K of the categorical variable, risk. This list of cate-
gories is intended to be exhaustive, which means that any
location u belongs to one and only one of the K categories.
Let ik(u) be the indicator associated with the class sk, which
takes the value 1 if u ç sk and 0 if otherwise. The following
relations express mutual exclusion and exhaustivity:

ik(u)i ′k(u) = 0, ∀k 	= k′ (1)

K∑
k=1

ik(u) = 1 (2)

The auxiliary information (soft data) is coded as a set of
prior distributions (relative frequencies) of each category of
risk within each map unit. In order to synthesize the multiple

auxiliary information, one combined map was obtained by
overlapping the maps of each auxiliary variable.

Step 3
The stochastic simulation approach is based on a condi-
tional sequential indicator simulation procedure that enables
to perform multiple simulations of a categorical variable.
The simulations are constrained to adhere to all the hard
information (conditional simulation), and the method does
not correspond to a particular distribution model (model-free
method). The procedure consists in evaluating the conditional
probability of each category sk at each location u as the
conditional expectation of the corresponding indicator ik(u),
according to the following relation (Journel 1983):

Prob {I (u) = 1|(n)} = E {I (u)|(n)} (3)

where (n) stands for conditional information.
Direct kriging of the indicator variable ik(u) provides an

estimate for the probability that sk prevails at location u.
Using simple indicator kriging (SIK) (Goovaerts 1997) under
the assumption of second-order stationarity, the probability
of the category sk is estimated by the following relation:

Prob∗ {Ik(u) = 1|(n)} = pk +
n∑

α=1

λα [Ik (uα) − pk] (4)

where pk =E{Ik(u)} ∈ [0, 1] is the priormarginal frequency of
category sk, calculated as a proportion of data of type sk from
both hard and soft data, as described in step 2. The weights λα

are calculated by the SIK system for each category or better
by SI cokriging system taking into account the spatial corre-
lations between the various categories (Wackernagel 1996).
However, the latter requires a multivariate consistent model
of both direct and cross-indicator variograms of all categories
sk. Therefore, for the sake of simplicity, the model is built
starting from the univariate model fitted to the experimental
variogram of the most frequent category sk and then tuning
the sills of the other variograms according to the propor-
tion of each category. Since it is assumed that the average
proportions pk of the K categories vary locally on the basis
of the local auxiliary information, simple indicator kriging
with varying local means (local proportions pk’s) (Goovaerts
1997) is used. The approach consists in re-estimating these
proportions from the indicator data available in the neighbor-
hood of location u. As regards the calculation of these average
proportions, taking into account all prior information from
both hard and soft data, see step 2. The estimates may not
necessarily lie between 0 and 1; therefore, they are truncated
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to positive values and normalized a posteriori. The next step
requires defining any ordering of the K categories so as to
build a cumulative density function (cdf) of the probability
interval [0, 1] with the following K intervals (Deutsch and
Journel 1998):

[
0, p∗

1 (·)] ,
[
p∗

1 (·) , p∗
2 (·) + p∗

1 (·) ]
, . . . ,

[(
1 −

K−1∑
k=1

p∗
k (·)

)
, 1

]

(5)

A random number p uniformly distributed in the interval
[0, 1] is then drawn, and the interval in which p falls deter-
mines the simulated category at location u. After updating all
K indicator data with this new simulated value, the procedure
proceeds to the next location u′ along the random path
until the output grid is completely filled with the simulated
category. The arbitrary ordering of the K probabilities p∗

k (·)
does not affect which category is drawn nor the spatial
distribution of categories (Deutsch and Journel 1998; Alabert
andMassonnat 1990).When the neighborhood search around
a target node contains no data (neither hard data nor already
simulated nodes), the simulation becomes non-conditional,
and the simulated category is drawn from the theoretical
proportions previously entered as prior information.

Completed the path, the next simulation will be generated
repeating all the procedures described in step 3 but with its
own random path so as to avoid systematic errors in providing
the different realizations (Alabert 1987).

Step 4
This step is designed to perform statistical calculations on the
results of stochastic indicator simulations corresponding to
the risk category simulations. Running multiple simulations,
at each node of the output grid superimposed on the study
area, several risk categories are generally generated, one for
each realization (simulation). Using these multiple realiza-
tions, at each node, the following numerical quantities can
be calculated:

1. The probability of each category, simply by counting how
many times each category occurs over the total number of
realizations.

2. The most probable category, i.e., the one associated with
the greatest probability.

3. The least probable category, i.e., the one associated with
the least probability.

4. The corrected most probable category after Soares correc-
tion (Soares 1992, 1998), which tries to compensate for
the failures of sequential indicator simulation to reproduce
the global proportion of each category. The problem oc-
curs when areas, where the categories of low proportion
prevail, are under- or over-sampled by the random path

at the beginning of the simulation procedure. In this case,
the simulated data tend to have biased proportions in all
categories especially the ones with low proportions, from
the beginning of the simulation. The idea of the algorithm
is to correct the local probabilities by adding for each cat-
egory the deviation between the global prior probability
and the corresponding global proportion obtained at each
realization.

5. Local standardized entropy (Journel and Deutsch 1993) at
each location u, to assess the uncertainty attached to the
categorical risk variable discretized in K categories with
probabilities pk, k = 1, . . . , K, according to the following
formula:

H(u) = −
∑K

k=1 [ln pk(u)] pk(u)

ln K
(6)

where pk(u) is the probability of each category k of the
location u previously determined at point 1. The standard-
ization of local entropy to the interval [0, 1] is obtained by
dividing the common definition of entropy by its upper
bound, lnK, corresponding to the uniform distribution
with each category k characterized by the same probability
pk = K−1. The above approach was implemented for
the case study using 3 categories for the risk variable,
defined at step 2, and 1000 realizations deemed sufficient
to stabilize the local probability of occurrence for each
category.

Case Study

Study Area

The study area belongs to the “Tavoliere di Puglia” (here-
inafter simply referred to as Tavoliere), the largest alluvial
plain of Southern Italy which extends for about 2830 km2 in
the Northern Apulia Region. A wide and shallow aquifer is
hosted in the sediment of the alluvial plain (shallow porous
aquifer of Tavoliere) (Fig. 1). Tavoliere is characterized by
an intensive agricultural activity, mostly consisting of durum
wheat production, which requires large amounts of nitrate
fertilizer, and vineyard, olive, and fruit trees, which are also
irrigated. Not by chance, most of the nitrate-vulnerable zones
of agricultural origin in the Apulia fall in this area. In the last
decades, the collected data, coming from the groundwater
monitoring networks of the Apulia Region, shows the high
level of pollution from nitrates often exceeding the standard
values in most of the area, particularly following the periods
of mineral fertilizer application. Then, in this area, intensive
agricultural practices, based on the non-rational use of chem-
icals, represent the critical event affecting the water quality
standard. The regional groundwater monitoring network of
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Fig. 1 Study area, groundwater
(GW) monitoring networks, and
nitrate-vulnerable zones (NVZ)

the shallow aquifer of Tavoliere consists of 49 quality mon-
itoring wells and 63 quantity monitoring wells. The quality
monitoring wells are all located in the downstream part of the
aquifer on its eastern side where agriculture and anthropic
activities are more widespread. No wells for water quality
monitoring exist in the western part of the plain where the
piezometric level increases, while aquifer thickness and man
activities decrease. In this view, the western boundary of the
study area has been set at the average piezometric level of
100 m above sea level, as reported by the regional Water
Protection Plan (Apulia Region 2009).

Geology

From the geological point of view, Tavoliere represents the
Northern sector of the Bradanic Foredeep, bounded to the
West by the Apennine Chain and to the East by the Apulian
Foreland, locally represented by Gargano Promontory. Hun-
dreds of meters thick, younger deposits cover the Cretaceous

calcareous substratum belonging to Apulian Foreland, dislo-
cated by graben-type structures toward the Apennines.

The older units (Pliocene–early Pleistocene) consist of
shallow-marine carbonate deposits (Calcarenite di Gravina
Fm) passing upward to thick silty-clayey layer deposits of the
argille subappennine Fm. A regional uplift phase of Bradanic
Foredeep, combined with the glacioeustatic sea level changes
which took place during the Quaternary period, determined
the sedimentation of terraced deposits, consisting of both
continental and marine synthems grouped in Tavoliere super-
synthem (Gallicchio et al. 2014) (Fig. 2).

Quaternary deposits, which widely outcrop all over the
plain, are characterized by a variable thickness, generally
increasing from the Apennines toward the eastern edge of
the plain. The grain size and texture of these deposits also
vary all over the area. In fact, the western sector of the plain
is characterized by debris flow and coarse-grained sediments
deposited in alluvial fun settings, whereas the eastern one by
gravel and sand-gravel deposited in a braided alluvial plain
setting. Changes in grain size and texture are also observed
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Fig. 2 Lithological characteristics of the study area (Apulia Region 2009)

among deposits of different ages, being the older alluvial
deposits coarser and poorly sorted compared to younger ones.

Hydrogeology

According to the above outlined geological settings, three
distinct aquifers can be detected from the bottom upward
(Fig. 3): (a) the deep karst aquifer located in the cretaceous
calcareous substratum, which can be found down to 300–600
m deep; (b) the deep porous aquifer located in the sandy
portions within the argille subappennine Fm; and (c) the
shallow porous aquifer in the quaternary deposits.

No vertical hydraulic connection exists among the three
overlapping aquifers so that important differences are shown
both in the flow patterns and in the geochemical features of
groundwater (Maggiore et al. 1996). The shallow aquifer,
defined as a significant groundwater body by the Apulian
Water Protection Plan, is the most exploited for agricultural
uses, representing themain source of water supply in the area.
Figure 2 shows the hydrogeological boundaries of Tavoliere
shallow aquifer and the portion considered in this study.
Due to its geological settings, it is a multi-layered aquifer,
consisting of a complex alternation of alluvial gravel and
sand lenses interbedded to sandy loam and silty clay loam

sediments. Nevertheless, due to limited lateral continuity of
the confining beds, the different water-bearing layers are
hydraulically interconnected to each other so that a single
complex groundwater flow system results.

Moving to eastern sectors of the aquifer, clay and silt
layers tend to prevail in the upper part of the sequence,
confining the lower water-bearing layers and reducing the
groundwater recharge. On the contrary, the coarse-grained
sediments prevail in the upstream sector of the aquifer, where
the high permeability of these outcropping sediments allows
direct groundwater recharge by infiltration of rain and surface
water during the wet periods (Tadolini et al. 1989; Cotecchia
1956; Maggiore et al. 1996). Consequently, groundwater
flows in unconfined conditions in the upper part of the plain
and confined conditions in the middle-low part (Fig. 2).

The groundwater flowsmainly in the SW-NEdirection un-
der an average hydraulic gradient of about 0.5%. Proceeding
toward the coast, due to the gradually deepening of the top of
the clay formation, some aquifer layers are found below the
sea level, and they are affected by seawater intrusion.

Because of the intense exploitation of this aquifer, since
the 1990s, regional water authorities have implemented dif-
ferent groundwater monitoring plans. The monitoring net-
work was changed in the course of time regarding both the
number of monitoring points and their locations. A large
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Fig. 3 Cross section C-C′: Hydrogeological complexes in Tavoliere area (Masciale et al. 2011, modified)

amount of data available for this aquifer made it an ideal
experimental field in the framework of several national and
international research projects (Barca et al. 2006a, 2006b;
Passarella et al. 2006; Lo Presti et al. 2010; Maggiore et al.
2005; Masciale et al. 2011) which have allowed to precisely
assess the aquifer size and its quantitative status and hydro-
geochemical characteristics. Moreover, observed seasonal
fluctuations the water table recently led to reliable studies of
the groundwater system balance and an improved assessment
of the freshwater availability (Passarella et al. 2017).

In this work, hydrogeology has been taken into account
as auxiliary soft variables. In particular, hydrogeological
information has been simplified by grouping the outcropping
lithologies according to their hydraulic conductivity class,
which affects the leaching of the contaminant in the subsoil
and the time required to reach the water table. According to
theWater Protection Plan of Apulia Region (2009), two main
classes of hydraulic conductivity have been distinguished
over the study area, which are low-medium and very low. The
low-medium class corresponds to coarser-grained sediments
(well-graded gravel with silt and silty sandy) prevailing in
the upstream sector of the aquifer, while the low class cor-
responds to finer-grained layers (clay, silt, and silty clay)
tending to prevail in the downstream sector of the aquifer
(Fig. 4).

Land Use

Land use of the study area was derived from the map, up-
dated to 2011, available at the Territorial Information System
(SIT) of Apulia Region, conforming to the specifications
of the Corine Land Cover project (EEA 2007, 2017). Most
of Tavoliere’s land covering (about 87%) is classified as
agricultural area (Fig. 5).

At a more detailed level, the two main types of land cover
in agricultural areas are arable land (67.4%) and permanent
arboreal crops (20.7%), the latter made of vineyards, olive,
and fruit trees, which cover about 88% of the total area.
The remaining part of the area is represented by hetero-
geneous agricultural land (about 0.2%); artificial surfaces
(about 5.8%), comprising infrastructures, human settlements,
and urban green areas; and natural and semi-natural environ-
ments (about 5.9%), comprising woods, wetlands, water bod-
ies, natural pasture, natural vegetation, beaches, and dunes
(Fig. 6).

The paper deals with nitrate pollution of groundwater
resources, which mostly comes from agricultural practices,
where it is used as a crop nutrient. Land use information
then represents a piece of precious information in terms of
agricultural exploitation of the considered area. Considering
the two prevailing agricultural categories in the study area,
which is arable land and permanent crops, the land coverage
was simplified in these two main classes as resulting from
Fig. 7.

Nitrate Data

Nitrate concentration data, used in this paper, have been pro-
vided by Apulia Region. 310 water samples were taken from
49 wells of the regional groundwater monitoring network,
established in 2007 within the Project Tiziano.

The samples were collected from autumn 2007 to spring
2011, for a total of eight seasonal monitoring campaigns
named from t = 6 months (6M-first campaign) to t = 48
months (48M-last campaign). The spring campaigns corre-
spond to the maximum water level of the aquifer, while the
autumn ones correspond to the minimum. Each water sample
has been analyzed, and about 100 chemical and microbiolog-
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Fig. 4 Simplified map of
hydraulic conductivity classes
over the study area (Apulia
Region 2009)

ical parameters were assessed per campaign, with different
analytical methods. In particular, nitrate concentrations were
measured by ion chromatography (UNI 9813:1991). Three
risk classes were set for increasing nitrate values: class 1
corresponding to NO3 < 10 mg/L; class 2 corresponding to
10 ≥ NO3 < 50 mg/L; and class 3 corresponding to NO3 ≥
50 that is the acceptable threshold of NO3 concentration in
groundwater set by the Nitrates Directive 91/676/EEC.

Results and Discussion

The technique described in section “Probabilistic Approach”
has been applied to the real data set with the goal to show the
potential and the weakness of the approach but also to stress
the importance of using qualitative/auxiliary information in
addition to quantitative information.

The distribution of the three risk classes in the sample
data set shows a clear prevalence of the highest risk class
(class 3) over the other two (classes 1 and 2), with frequencies

of 57%, 21%, and 22%, respectively. These results, while
highlighting the danger of qualitative degradation of the
groundwater, do not give any spatial information on the
location of the areas at greatest risk, which is crucial for
the implementation of any recovery strategy. Due to this
limitation of the “classical statistical analysis,” we turned to
the geostatistical techniques of simulation.

A three-dimensional spatiotemporal model was adapted
to the experimental variogram of the indicator of the most
frequent class (3). The model has been assumed isotropic
in space, not having a sufficiently high number of locations
to allow the calculation of directional variograms for the
identification of any anisotropies in space. The resulting
model included three structures: a nugget, a spherical spatial
model with a range of 5000 m, and a spherical temporal
model with a range of 24 months (Table 1). Moreover, the
resulting model is isotropic in space (total sill = 0.25) and
time (sill = 0.095).

The results related to the ranges suggest that groundwater
quality data can be considered associated (auto-correlated)
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Fig. 5 Land cover of the study
area (EEA 2007, 2017)

within a spatial distance of 5000 m and a period of 2 years.
Obviously, these results strongly depend on the number and
spatiotemporal displacement of the sample measurements
(Barca et al. 2017). Given the small number of measurement
sites, it is to be expected that the structural characteristics
and prediction models will change with the set of sample
data. This influence would obviously be less appreciable
if a sufficiently exhaustive sample data set were available
(approximately 100 samples within a range of 5000 m). For
the reasons explained above, we have tried to compensate
the missing primary information (nitrate concentration in
groundwater) with the auxiliary (hydrogeological and land
cover) information but assumed strictly influential the first.
The auxiliary information has been combined overlapping
the two simplified maps of hydraulic conductivity and land
cover shown in Figs. 4 and 7. Figure 8 shows the resulting
map.

Four different types of sub-areas can be identified: (1)
areas characterized by the presence of arable land with a

medium-low hydraulic conductivity class; (2) areas char-
acterized by the presence of arable land with a very low
hydraulic conductivity class; (3) areas characterized by the
presence of permanent crops with a medium-low hydraulic
conductivity class; and (4) areas characterized by the pres-
ence of permanent crops with a very low hydraulic conductiv-
ity class. Furthermore, even quantitative a priori information
has been considered in this study. As described in section
“Methodological Framework”, such information consists in
the per cent number of observed nitrate values belonging to
each class over each of the areas of Fig. 8, per monitoring
campaign. As an example, Fig. 9 shows the a priori prob-
ability maps related to each nitrate threshold, obtained by
crossing together quantitative and qualitative information, at
the sixthmonthmonitoring campaign. The choice of the sixth
month, which is the first of the considered monitoring series,
is due to the practical equivalence of all the probability maps
during the entire observed period. This equivalence in space
and time of all the a priori probability maps confirms the
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Fig. 6 Agricultural sub-zones of
the study area (EEA 2007, 2017)

observed constant in space and persistent in time presence
of nitrates within the considered aquifer.

More in detail, Fig. 9 shows an almost equal probability of
getting nitrate values in each of the three classes in the south-
eastern part of the study area, characterized by the presence
of permanent crops with a very low hydraulic conductivity
class.

On the other side, the remaining parts of the study area
exhibit a higher probability of exceeding the threshold of
50 mg/L, being this probability around 0.6 in the areas
characterized by arable land and permanent crops with a
medium-low hydraulic conductivity.

The probability increases to 0.8 in the easternmost part of
the study area, which is characterized by arable land and very
low hydraulic conductivity.

This last zone is the most downstream part of the Tavoliere
plain. It covers a wide portion of the coastal area and most
of the riverbed proximity bands. The very low hydraulic

conductivity of outcropping lithology does not allow nitrate
concentration dilution by freshwater recharge. Furthermore,
the riverbeds cut the outcropping sediments facilitating the
infiltration of surface water, often rich in nitrate content due
to soil leaching, toward the groundwater system.

By processing the proximal (spatial) information by the
stochastic simulation techniques, the a priori probability
maps have been transformed into a posteriori probability
maps.

Figure 10 shows the temporal evolution of the a posteriori
probability maps of occurrence of the three classes, provided
by the proposed method.

From a visual inspection, it is clear that the areas, charac-
terized by a certain level of risk, remain stable over time. This
would indicate that the main cause of groundwater quality
degradation, even being surely anthropogenic, is deep-seated
over the area and rather permanent in time, at least during the
observed period.



390 G. Passarella et al.

Fig. 7 Simplified map of land
cover of the study area

Table 1 Basic structure of the resulting spatiotemporal variogram
model

S1 Nugget effect

Sill = 0.099

S2 Spherical spatial

Range = 5000.00 m

Sill = 0.150

S3 Spherical temporal

Range = 24.00 m

Sill = 0.095

Sparse hot-spots which appear in the a posteriori maps
may have been caused by a low sampling density and a
relatively short range with respect to the minimum sampling
distance.

The comparison of Figs. 9 and 10 evidences that the a
priori and a posteriori maps are very similar apart from a
greater variability of the latter obviously due to the additional
proximal information.

As already described above with regard to the a pri-
ori maps, the probability of occurrence of classes 1 and 2
(NO3 ≤ 50 mg/L) in the a posteriori maps is confirmed,
generally, very low and reaches its maximum, about 0.4,
in the southeastern part of the study area, characterized by
permanent crops and very low hydraulic conductivity. At the
same time, class 3 (NO3 ≥ 50 mg/L) reaches high probability
values almost everywhere in the northern part, becoming
particularly worrying, with values around 0.8, all along the
eastern boundary.

The triple representation of the a posteriori maps, per
monitoring campaign, has been summarized into a single
map of the most probable class, after the Soares correction
(Fig. 11). Even in this case no clear seasonal dynamics is
evidenced and the spatial location of the probabilities is the
same as described above.

The scene proposed by Fig. 11 is somewhat worrying, as
most of the considered area is at risk of exceeding the critical
nitrate concentration value of 50 mg/L.
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Fig. 8 Final map obtained by
overlapping the two auxiliary
information (hydraulic
conductivity classes and land
cover)

Actually, the portions of the study area with permanent
crops are mostly characterized by a high probability of being
below the critical threshold, and at the southern boundary,
where the hydraulic conductivity is very low, the probability
is high of finding values below the first threshold of 10 mg/L.

Any risk stochastic modelling is affected by errors. Quan-
tifying it is an important task in order to define and develop
reliable plans and actions to restore the environmental status
of part or the entire groundwater body. The proposed method
provides a suitable tool for measuring the uncertainty associ-
ated with the probability estimation. In practice, computing
the local standardized entropy (H) at each estimation cell,
the uncertainty associated with the risk variable discretized
in three categories with probabilities pk (k = 1,2,3) can
be univocally assessed in that cell. As described in section
“Step 4”, the local standardized entropy varies from 0 to 1,
which indicates the minimum and maximum uncertainty of
the estimated values, respectively.

Figure 12 shows the maps of the computed entropies
at each simulated time. All the maps evidence an entropy

value near to 1 in the southeastern part of the study area,
characterized by arable land and medium-low hydraulic con-
ductivity. This indicates the three classes have about the same
probability of occurring. The minima values of H ∼= 0.65,
whichmeans lower uncertainty of the estimated probabilities,
always appear at the eastern edge of the study area, which is
characterized by arable land and very low hydraulic conduc-
tivity. Finally, Fig. 12 shows persistent uncertainty values, H
∼= 0.8, all over the remaining part of the study area entirely
characterized by medium-low hydraulic conductivity, even
though by different land uses.

The causes of these high uncertainty values can be at-
tributed to low sampling density and uneven/clustered distri-
bution of the wells under investigation, as well as to intrinsic
variability, due to natural (hydrogeological properties) and
anthropogenic (land use) factors. The results of these analy-
ses seem to suggest activating a plan of optimization of the
monitoring network by intensifying the monitoring locations
in areas of higher uncertainty (e.g., entropy >0.8) and more
densely populated.
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Fig. 9 A priori probability maps
of the three classes of risk at the
first monitoring campaign
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Fig. 10 A posteriori probability maps of the three classes for each monitoring campaign
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Fig. 10 (continued)
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Fig. 11 Maps of the most probable class over time, after the Soares correction
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Fig. 11 (continued)

The time series of the eight risk maps of Fig. 11 has been
summarized in time by evaluating the most frequent class in
each estimation cell. Figure 13 shows the resultingmap of the
most frequent classes of risk over the entire simulated period.

In Fig. 13, also the four different areas characterized by
different land uses and hydraulic conductivities, considered
as auxiliary information, have been displayed by different
hatchings. It is evident that the areas with the lowest risk,
where classes 1 and 2 prevail, are those cultivated with per-
manent crops (mostly olive groves and vineyards), while the
areas with the highest risk (class 3 prevalence) are those cul-
tivated with arable crops (mostly cereals and durum wheat),
owing to the more intense fertilization.

Fertilizer’s use in agriculture is reported to be the highest
anthropogenic source of nitrate contamination in ground-
water (Shukla and Saxena 2018). In fact, it is known that
nitrogen is one of the major components of fertilizers, whose
usage in agriculture has increased in time to escalate the crop
yield. This often causes an over-application of fertilizers by
farmers, other than an improper timing of applying, in the
belief believing that more fertilizer is equivalent to higher
crop yield. Fertilizer application and subsequent leaching
cause the nitrates to reach the groundwater.

Still concerning the results in Fig. 13, it is also possible
to establish a relationship between classes of risk and sub-
soil hydrogeological characteristics. In fact, within the areas
with permanent crops, class 3 appears only in the portions
characterized by medium-low hydraulic conductivity. This is
because, in these portions, the greater hydraulic conductivity

of the subsoil facilitates the percolation of nitrates to ground-
water.

On the contrary, within the areas characterized by more
intensely fertilized arable crops, a higher frequency of class
2 is evident along the whole western strip characterized
by medium-low hydraulic conductivity. Otherwise, on the
eastern side, the most worrisome class 3 prevails. As detailed
in section “Hydrogeology”, groundwater mainly flows from
the southwest to the northeast, and then the main natural
recharge area is located just along the western strip.

In this context, even though the western area of the aquifer
is the main infiltrating way of nitrates from soils to ground-
water, here, the transfer potential, which is the groundwater
capability of allowing migration of nitrogen, is higher. This
would justify the larger frequency of class 2 in this area.

Instead, the eastern part of the aquifer is characterized by
a very low hydraulic conductivity and results to be moder-
ately confined. This, somehow, prevents the direct infiltration
of nitrates from soils to groundwater. Nevertheless, here,
riverbeds cut the outcropping less permeable sediments and
allow surface water to recharge groundwater facilitating the
infiltration of nitrates.

Moreover, in this part of the aquifer, which is the most
downstream, the groundwater flow velocity decreases, and,
consequently, the accumulation potential, which is its ca-
pability of retaining pollutants, increases allowing nitrates,
flowing from the recharge area, to accumulate and increase
in concentration.
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Fig. 12 Map of entropy and its evolution over time
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Fig. 12 (continued)

Conclusions

In arid and semiarid areas, groundwater is often the primary
source of freshwater supply. Usually, focus on groundwater
quality concerns its use as drinking water. Nevertheless,
groundwater should be protected for its environmental value
because of its important role within the hydrological cycle
through the maintenance of wetlands and river flows, acting
as a buffer through dry periods. From a managerial stand-
point, actions are required in order to reduce the risk of
groundwater quality degradation in regions such as the study
area where the climate is mostly semiarid (Maggi et al. 2018;
Passarella et al. 2020) and land is intensively cultivated. The
European legislation (EU 1991, 2000, 2006) recommends
groundwater protection, improvement, and restoration, even
by promoting good agricultural practices, such as precision
farming and irrigation, and rational use of fertilizers.

The goal of this chapter has been to define an approach for
performing the risk analysis of groundwater quality degrada-
tion due to nitrates leaching from soils, in probabilistic terms.

The Indicator Simulation algorithm, a stochastic sim-
ulation technique provided by geostatistics, has been ap-
plied, which allows considering together both quantitative
(hard) and qualitative (soft) data. The results of the proposed
method have beenmaps showing the probability of exceeding
increasing assigned thresholds of nitrate concentration com-
bined to different patterns of land use and hydrogeological
features. The more the threshold, the more the risk of ground-
water quality degradation increases. The proposed approach

allowed also quantifying the uncertainty associated with any
estimated risk class, in terms of entropy.

GIS processing of the probability maps allowed producing
summary maps of the most probable risk class per estimation
cell, over the whole considered area, at each observed time.
Further elaboration produced a final map of themost frequent
over time, among the most probable risk classes. All three
levels of risk representation should provide land and water
resource managers with useful and reliable tools, capable
of supporting decisions, and define priorities in launching
actions. This method could also be decisive to more reliably
support the delimitation of nitrate-vulnerable zones.

The proposed computational tool proves to be quite flex-
ible and applicable in different experimental scenarios, due
to its capability to treat simultaneously data of the different
type and quality related to various sources of information.
Further, the approach is non-parametric; therefore, it can
be particularly suitably applied even in the case of highly
skewed, multimodal distributions, as often found in nitrate
concentrations in groundwater.

However, the proposed technique shows also some limi-
tations: first, it is computationally challenging, and the reli-
ability of the results increases with conditioning (sampling
data) and absence of spatial clustering in the data. In general,
the proposed methodology provides good and reliable results
even compared to qualitative, knowledge-based evaluations
of the risk of groundwater quality degradation due to nitrate.
Improvements could be achieved with spatial and temporal
optimization of monitoring networks and sampling proce-
dures that can provide more detailed information for condi-
tioning the development of the whole proposedmethodology.
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Fig. 13 Map of the most
frequent classes of risk over the
entire simulated period
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plasmid data, 362
rpoB PCR positive, 362

NASGLP pilot study, 360
non-host microenvironments, 369
pathogen, 356
PCR, 373

data, 355
positives results, 366
results, 366–367

physical forms, 356
pX01/PX02 blot results, 366
rpoB gene, 366
samples

PCR positive, 360
rpoB PCR positive, 362
sites, 362

soils
characteristics, 360
contiguous United States, 360
environments, 356
samples, 360

virulence markers, 371
wildlife and livestock, United States, 356
See also Anthrax outbreaks in wildlife and livestock, United States

Bacillus Spp.
microbial data

PCR data mapping, 362
plasmid data, 362

NASGLP pilot study, 360
PCR results, 366–367
rpoB presumptive positives, 365
samples

PCR positive, 360
sites, 362

soil samples, 360
See also Anthrax outbreaks in wildlife and livestock, United States

BAM diagram, 338
B. anthracis rpoB PCR, 367
Basic reproduction number (R0)

defined, 348
Bayesian estimation, 91
Bayesian formalism, 381
Bayesian hierarchical models, 34, 46, 116
Bayesian inference, 101, 104, 105

hierarchical formulation, 97
INLA, 91, 97, 99–101
MCMC, 97–99
posterior distribution, 98
prior distribution, 97
probability distribution, 97
research areas, 97
spatial econometric analyses, 97
spatial econometric models, count data, 116
subjectivist interpretation, probability, 97

Bayesian melding
advantage, 42



Index 405

CAR model, 42
CMAQ proxy, 42
computational effort, 42
Gaussian process, 42
gridded pollution predictions, 43
gridded proxy data, 41
independent errors, 42
integration approach, 41
latent variable approach, 42
modeling ozone concentration, 42
Monte Carlo integration, 42
observations, 42
proxy data, 42
satellite-derived AOD ranges, 41
spatial calibration parameters, 42
spatio-temporal setting, 43
time-varying meteorological variables, 43

Bayesian methods application, 91
Bayesian modeling approach, 313
Bayesian Poisson hierarchical models, 92
Bayesian Poisson spatial lag model, 105–106

estimated random effects, 114, 115
INLA methodology, R-package R-INLA, 112
prior distributions, 112
S24 2014 data, 114
TAE calls, 112

Bayesian spatiotemporal models, 60, 64, 70
Bayesian standard spatial lag model, 104, 105
Behavioral Risk Factor Surveillance System (BRFSS), 191, 193
Besag-York-Mollie (BYM) model, 103, 111–113
Best linear unbiased estimator (BLUE), 221
Big data, 51, 73, 89
Big mobility data, 81
Big trajectory data., 88
Bin Time Series, 283
Biomarkers, 11
Bitemporal data, 80
Bivariate choropleth map, 65
Blue baby syndrome, 380
Bluetongue virus (BTV), 344
Bodélé depression, 223
Bodélé depression dust event, 230–232
Bolivia and Chile salt flats dust event, 230
Boosted regression trees (BRT), 339
Buffering, 57–58
Business-as-usual emission scenario model, 248

C
Calibration, 38
CAR prior distribution, 103
Causal relationships, 29
CDC WONDER, 268
Census tracts, 10, 269
Centers for Disease Control and Prevention (CDC), 268
Cerebrovascular accidents, 246
CERSGIS data, 315, 317, 330–331, 333
Change of support problem (CoSP), 265
Chikungunya (CHIK), 203, 209

clinical manifestations, 212–213
data, 209–210
methods, 210
multivariate analysis, 211
risk factors, 213
space-time clusters, 210

3D visualizations, clusters in, 212, 213
Choropleth maps, 53, 54, 268–270, 272, 275
Chronic diseases, 20
Classical poisson spatial lag model, 104–105
Classical statistical analysis, 387
Clean Air Act, 250
Climate change impact, 344–346
Climate changes, 379
Climate Prediction Center (CPC) Unified (CPC-UNI), 121
Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation

(CALIPSO), 234
Cluster analysis, 62–63, 65–66, 68–70
Coarse-grained sediments, 385
Collecting environmental exposure history, 20
Common diseases, 2
Community, 9
Community approach, 10
Community Multiscale Air Quality (CMAQ), 38, 40
Compartmental models

defined, 348
Complex predictive algorithms, 46
Computational intelligence (CI) methods, 225
Concentrator theory, 370
Conceptual shift, 29
Conditional autoregressive (CAR) model, 42, 94–95, 102
Conditional sequential indicator simulation, 382
Confidentiality, 19
Contiguity matrix

queen contiguity, 94
rook contiguity, 94

Continuous data, spatial econometric classical models
general spatial model, 97
SEM, 96–97
SLM, 96
spatial autoregressive, 95–96

Control points, 61
Conventional air quality management systems, 244
Conventional ground monitors, 18
Corine Land Cover project, 386
Correlation analysis, 301
County Health Rankings and Roadmaps, 185
COVID-19 coronavirus, 81
COVID-19 pandemic crisis, 20
Create Space Time Cube tool, 283, 284, 289
Crime data, 302
Cross-validation (CV), 40, 301
Cumulative density function (cdf), 383
Cumulative exposure, 14
Cumulative lifecourse exposure, 21

D
Dallas Fort Worth (DFW) Metroplex, 244, 250, 254–255
Data compilation and processing

CERSGIS data, 330–331
DHIMS data, 328, 333
2010 population and housing census, 328

Data fusion, 44
Data Science, 29, 30
Data sensemaking, 79
Data-sparse environments

GIS-based tools, 315
multiple SDGs, 314
UGS and water infrastructure, 315

Deepwater Horizon (DWH), 233, 234
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Dengue fever (DENF), 85, 203, 209
clinical manifestations, 212–213
data, 209–210
methods, 210
multivariate analysis, 211
risk factors, 213
space-time clusters, 210–211
3D visualizations, clusters in, 212, 213

Dengue fever (DF), MATUP, 281
conditions for spread, 281
dataset of, 285
different time step alignments

fishnet grid, 292
hexagon grid, 292

emerging hot spots spatiotemporal boundary effect, 292, 295
emerging hot spots under different spatiotemporal scales, 285, 288
emerging hot spots under spatiotemporal zone effects, 289, 290
hot clusters, 289
Kaohsiung, 289
temporal trend under spatiotemporal zone effects, 289, 291
zone effect, 283

Dengue fever patterns, French Guiana, 85
Denton County, 268, 272, 275, 276
Descriptive GIS maps, 65
Descriptive mapping

choropleth maps, 53
disease outcome and resource maps, 53
dot density maps, 55–57
graduated symbol maps, 55, 56
HCV-related death rate, 54
health, 53
opioid crisis, 65
proportional symbol maps, 53–55
push-pin/point-vector maps, 53
thematic polygon maps, 53

Determinants of health, 186
Deviance information criterion (DIC), 106, 107, 114, 115
DHIMS data, 328, 333
Diarrheal infections, 311

and UGS
energy sources, lighting and cooking, 324–325
population density in Ghana, 318
safe drinking and domestic water, 322–324
sanitation, 320, 322–323
solid waste disposal, 319–320

Difference of criterion, 301
DigitalGlobe, 4
Direct kriging, 382
Discomfort Index, 136
Disease and virus propagation analysis

acute diseases, 83
chronic diseases, 83
dengue fever patterns, French Guiana, 85
epidemiology study, social media, 86–87
etiology, 83
exposure assessment to environmental contaminants, 84
hand-drawn map, cholera infections, 83
MAUP, 83
On Airs, Waters and Places (book), 83
pattern recognition, 84
spatial clustering of SARS, Hong Kong, 84–86
spatial epidemiology, 83
spatiotemporal applications, challenge, 84
spatiotemporal epidemiology analysis, 83
water-based drug loads modeling, 84–85

Disease mapping, 87–88, 266–268, 315

Disease outcomes and environmental risks
case distance strings, 274
choropleth maps, 268–270, 272, 275
classification method, 269
color and map context, 269–272
data files, 272
disease map, 275
distance strings, 272–273
dot density map, 268, 270
exposure distance for populations, 276, 277
exposures and disease outcomes relationship, 276, 278
grid point, 273–274
IDW method, 274
minimum population threshold, 272
population distance strings, 274
spatial patterns of disease rates, 276
synthetic data generation process, 268, 269
ZCTAs, 269, 272, 276, 277

Disease surveillance systems and registries, 37
Dissimilarity index, 169
Distance approach, 94
Distance-based exposure assessment methods, 179
Distance-based method, 155–156
Distance calculations, 58–59
Distributed Active Archive Centers (DAACs), 127
District Health Information Management System (DHIMS), 315
DITA, 88
Divide-and-conquer approaches, 30
DNA extraction, 361
Dot density maps, 55–57, 170, 268, 270
Downscaling, 43
Drug treatment programs, 69
Dynamic density maps, 81

E
Earth observation (EO), 1, 3, 5

data, 120–121, 125
environmental exposure information, 15
image-derived products, 15
PM, 16–17
satellite images, 15
scale data, 16
tracking air pollutants, 16

Earth Observing System Data and Information System (EOSDIS), 127
Eastern China smog, 243
Ecological niche modeling (ENM), 360, 371, 373

applications of, 342–344
BAM framework, 338
characteristic workflow of, 340, 347
data collection and cleaning, 339
defined, 338
model calibration, 339
model evaluation, 339, 342
model projection, 342
statistical patterns, 337

Econometric spatial analysis
Bayesian inference (see Bayesian inference)
software, 101
spatial count data modelling (see Spatial count data modelling in

econometrics)
spatial modelling, econometrics (see Spatial modelling in

econometrics)
Effective environmental policy, 379
Eltonian niche, 338
Emerging Hot Spot Analysis tool, 282–284
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Employment, 325, 327
Endogenous/internal biological processes, 12
END_TIME dataset, 283, 284
Enhanced two-step floating catchment area (E2SFCA) method, 59
Ensemble prediction, 338
Environmental and occupational exposure information, 20
Environmental epidemiology studies, 37
Environmental exposure

common diseases, 15
environmental health study, 37
epidemiological studies, 18
genetic makeup, 2
geospatial technology, 1
harmful response, 380
and health outcomes, 2
history, 1, 2, 11, 13
importance, 1
information, 18
and lifestyle, 2
personal exposure measures, 19
place, 12
spatiotemporal, 2
toxic contaminants, 37

Environmental exposure information
environmental health, 15
environmental medicine, 15
hereditary and lifestyle, 15
medical investigation, 15
mobile technology, 15
needs, 15
next-generation clinicians, 15
patient’s environmental medical history, 15
technological advancements, 15

Environmental factors, 12
Environmental health, 20
Environmental health community, 2
Environmental health studies, 37
Environmental medicine, 15, 20
Environmental pollutants, 37
Environmental pollution, 46
Environmental regulatory standards and policies, 37
Environmental risk, 380
Environments, 49
EO4HEALTH, 4
EPA air pollution monitoring stations, 20
Epidemic-prone respiratory infections, 125
Epidemiological models (EMs), 346, 348

defined, 348
integrating ENMs and, 349, 350
pros and cons of, 348–349

Epidemiology, 49, 86
Epsilon bands, 178
Equal interval method, 269
Error-prone realizations, 38
Erythemal radiation exposure, 133
EU General Data Protection Regulation (GDPR), 19
EUMETSAT RGB Composites Dust, 229
European legislation, 398
European Space Agency (ESA)

Copernicus programme, 5
Copernicus Sentinel missions, 5
Coronavirus pandemic, 6
EO, 6
European EO ecosystem, 5
Human health, 6

JAXA, 6
large-scale agricultural productivity, 5
NASA, 6
NO2 emissions, 5

European Union (EU), 19
Exploratory Spatial Data Analysis (ESDA) process, 173–174
Exposed (E compartment)

defined, 348
Exposome

biomarkers, 11
clinical medicine and population health, 11
contributing factors, 12
definition, 10
domains, 11
exposure, 11
geospatial technology role, 13–14
human genome, 11
individual genetic variety, 12
interaction with persons, 11
non-genetic, 11
paradigms, 11
pollutome, 12

Exposome-based environmental health research, 20
EXPOsOMICS, 21
Exposure assessment methods, 46
Exposure assessment techniques, 176
Extrapolation, 338

F
Fertility transition, 83
Field data, 93
Fixed-rank kriging, 40
Flood, 363

G
Gaussian approximation, 100
Gaussian distribution, 104
Gaussian Markov random field (GMRF), 100, 102, 104
Gaussian process, 39
Gaussian-related algorithms, 381
Gelman-Rubin statistic, 99
Gene-lifestyle-environment interactions, 2
General external exposome (population-level exposure), 11, 12
Generalized additive models (GAM), 122, 339
Generalized linear models (GLM), 102, 105, 122, 339
General spatial model, 97
Genetic Algorithm for Rule-Set Prediction (GARP), 370, 372
Genetic blueprint, 2
Geoanalytic capability, 34
Geoanalytic strategies development,

34
Geoanalytic tools, 34
Geochemical analysis, 361
Geochemical data mapping, 361
Geochemistry, 361, 371, 373, 374
Geographical Analysis Machine (GAM), 32
Geographically weighted regression (GWR), 33, 163, 164

attribute selection process, 301
bandwidth selection, 301
data organization and software, 304
justification, 300
regression result, 304–305
strength and weakness, 308
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Geographic Information Systems (GIS), public health, 87
big data, 51
epidemiological initiatives, 50
epidemiologic studies, 51
geography, 50, 51
health disparities, 51
health service access, 51
infectious diseases, 50, 51
John Snow’s cholera map, 51
mapping diseases value, 50
medical geographical effort, 50
medical geography, 50
opioid crisis (see Opioid crisis)
population health, 51
shoe leather epidemiology, 50
spatial analyses, 51
spatial epidemiologic tools, 52
spatial epidemiology, 50
spatial information, 50
systematic review, 51
visualization, disease outbreaks, 51
visualize and map spatially-oriented health data, 50

Geographic Information Science (GISc) technology, 1, 6, 29, 33, 151,
203, 204, 311

Geographic insight, 34
Geography, 51
GEO Health Community of Practice (CoP), 4
Geo-referenced health data, 29, 37, 91, 92
GEOS-Chem, 38
Geospatial analysis, 29

location, 30
Geospatial analysis of urban health

adverse environmental exposure, 153
aggregation-related issues, 180
attribute accuracy, 176
clustering, 172–173
COVID-19 pandemic, 153
data accuracy issues, 176
dissimilarity index, 169
distance-based exposure assessment methods, 179
distance-based method, 155–156
edge effects, 177
environmental justice, 163–165
epsilon bands, 178
estimate population characteristics, 158–161
exposure assessment techniques, 176
GISc-based models, 180
health disparities, 163–165
hot spot analysis, 174–175
isolation index, 169
land-use regression (LUR) technique, 158, 160
limitations of network analysis, 179
measuring and quantifying, 153
medical geography, 152
modifiable areal unit problem (MAUP), 177
PARDLI index scores, 173, 174
pollutant fate, 156–158
psycho-social stressors, 170
relative inequality, 165–167
robbery clusters and subway stations, 176
segregation, 167–169
social and environmental stressors, 169–171
space-time analysis, 175–176
spatial coincidence method, 153–155
spatiotemporal analysis, 172–173
state-of-the-art statistical and analytical techniques, 152

statistical tests, 163
transport modeling, 156–158
vacant and derelict land (VDL), 171, 177
vulnerability and risk, 171–172
weighted/unweighted indices, 180

Geospatial analytic toolbox
elements, 30

Geospatial approach, 20
Geospatial capacities, 331
Geospatial data, 6
Geospatial environmental health, 3
Geospatial health

aspects, 1
developments, 1
limitations, 1
medical practice, 1

Geospatial health community, 20
Geospatial Individual Environmental Exposure (GIEE), 14, 19
Geospatial models

place-based characteristics in, 187, 198
Geospatial technology

advancements, 21
applications, 2
data generation, 20
definition, 6
EO, 3
individual level environmental exposure data, 20
mapping, 20
multidisciplinary variables, 3
public health studies, program, 3
remote sensing satellites, 3
space agencies, 3
standard ground-monitoring stations, 20

Geospatial tools
for social medicine (see Social medicine, geospatial tools for)

Geostatistical data, 93
Geostatistical methods, 38
Geostatistical modeling, 38

application (seeModelling PM2.5 concentrations)
block covariance matrix, 39
coefficient vector, 39
covariance functions, 39
dynamic model, 40
error-prone version, 38
Euclidean distance, 39
exposure measurement, 39
goal, 38
Matern covariance function, 39
mean-zero Gaussian process, 39
modeling environmental exposures, 39
modeling spatial-temporal data, 40
multivariate Gaussian distribution, 39
n * n covariance matrix, 39
predictors, 39
regression coefficients, 38
residual spatial trend, 39
short-term meteorological variables, 40
simple kriging, 39
simplest covariance function, 40
spatial dependence, 39
spatial locations, 40
spatially-dependent residuals, 38
universal Kriging, 39

Geostatistics, 381
GeoUnions, 4
Germ Tracker, 88
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Getis-Ord Gi* statistic, 60, 62, 63, 284
Geweke method, 99
Ghanaian Census Data, 317
Gibbs sampler method, 98
Giovanni system

analysis options, 128
data types, 128
evolutionary stages, 128
health-related variables, 129
heat stress

comma-separated variable (CSV) format, 136
Discomfort Index, 136
temperature and RH (see Temperature and RH, Giovanni

system)
public health research

agriculture, fisheries and natural resources, 134–135
air quality, 130–131
epidemiology research, 132–133
erythemal radiation exposure, 133
natural hazard events, 134–135
water quality, 131–132

TRMM daily rainfall data, 135
weather and climate, 129

GIS and spatial analyses in public health
challenges, 72–73
descriptive mapping (see Descriptive mapping)
future, 73
geographic boundaries, 73
limitations, 72–73
opioid crisis (see Opioid crisis)
spatial epidemiology and geostatistical analyses (see Spatial

epidemiology and geostatistical analyses)
variables calculation

buffer, 57–58
distance calculations, 58–59
distances, 56
heat maps, 59, 61
Kernel density, 56
proximity analysis, 56
small area estimates, 59
Thiessen polygons, 58
2SFCA approach, 59–60

GIS data management, 30
GIS processing, 398
Glasgow’s Royal Infirmary, 152
Global climate change, 225
Global Earth Observation System of Systems (GEOSS), 4
Global positioning systems (GPS), 6
Global Precipitation Measurement (GPM), 121
Good agricultural practices, 380
Google Earth, 30
GPM Microwave Imager (GMI), 121
GPS-based techniques, 21
Graduated symbol maps, 55, 56
Great smog of New Delhi, 244
Grid Analysis and Display System (GrADS), 128
Grinnellian niche, 338
Groundwater, 379, 398
Groundwater degradation risks, 380
Groundwater hydraulic head lowering, 379
Groundwater monitoring plans, 385
Groundwater protection, 380
Groundwater quality degradation, risk assessment

chemical and geotechnical variables, 381
conditional distributions, 381
deterministic methodologies, 380

estimation procedures, 381
geostatistical techniques, 381
geostatistics, 381
hydrogeological studies, 381
knowledge-based evaluations, 398
nitrate concentration, 381
nitrates leaching, 398
non-homogeneous variables, 380
a priori distribution, 381
a priori optimization criterion, 381
probabilistic approach (see Probabilistic approach)
spatial and temporal uncertainty, 381
spatial random variables, 381
stochastic simulation algorithms, 381
transport characteristics, 380
variables estimation, 380

Groundwater safety threats, 379
Group on Earth Observations (GEO), 4
GSS website, 328–330
G statistics, 299
GW monitoring networks, 384
GWR4 software, 301, 304
GWRweights, 34
GxE studies, 2

H
Hard data, 382
Harmful airborne fungal spores (HAFS), 17
Health, 49

BMJ, 8
complete well-being, 7
dynamic state of well-being, 7
geospatial technology, 8
inequalities, 8
WHO definition, 7

Health data, mobility analytics
big mobility data aspects, 81
development, 81
disease and virus propagation analysis (see Disease and virus

propagation analysis)
future work, 89
healthcare technology, 81
networked sensors, 80–81
potential challenges, 88–89
statistical techniques, 81, 83
visualization techniques, 81

aggregation-based visualization methods, 81
color, 81
dynamic density maps, 81
individual-based movement, 81
live map with updates, COVID19 coronavirus cases, 81, 82
population density map, Wuhan, 81, 82
spatiotemporal data analysis, 81

Health informatics systems, 73
Health Insurance Portability and Accountability Act of 1996 (HIPAA),

19
Health line Saude24 (S24)

calls, 108
data analysis, 107–108
econometric spatial analysis (see Econometric spatial analysis)
hospital costs, 107
hospital savings context, 92
information collection, 109
INLA methodology, 92
non-spatial modelling, 108–110
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Health line Saude24 (S24) (cont.)
Portuguese hospital urgency service, 107
primary health-care services, 107
public health service, 107
quasi-Poisson log-regression model, S24 2014 data,

110
SCR (2014), 110
self-care measures, 107
spatial Bayesian econometric modelling (see Spatial Bayesian

econometric modelling)
spatial correlation, 111
TAE calls, 109, 115
urgency admissions, 92

Heat maps, 59
Hemagglutinin (H), 119
Heterogeneity

within observational units, 188–189
Heterogeneous agricultural land, 386
Heterogeneous sources, 29
Hierarchical Bayesian models, 101
Hierarchical Bayesian spatial models, count data

BYM model, 103
GLM, 102
hierarchical log-poisson regression models, 102–103
Leroux, Lei, and Breslow model, 103
Poisson distribution, 102
spatial autocorrelation, 102
spatial units, 102

Hierarchical log-poisson regression models, 102–103,
107

Hierarchical modelling approach, 92
Hilbert-Huang transform, 122
Historical uncomfortably large geographic data, 30
History of Geo-and Space Sciences, 3
HIV infections, 66, 68
Honest map, 277
Hot spot analysis, 174–175
Hovmöller diagrams, 128
Human genome, 11
Human immunodeficiency virus (HIV) infections, 206
Human well-being

assessment report, 7
CDC, 7
and ecosystem, 6
ill-being, linked components, 7
life aspects, 6
MA, 6
practices, 6

Human well-being and health
biomedical interventions, 8
clinicians, 9
emergence, 1
environmental exposure, 1
geospatial technology, 2–3
health determinants, 9
HWBs, 8
organizations supporting geospatial applications, 3–6
physicians, 8
SDOH, 8

Humidity, 120
Hybrid thinking, 34
Hydrogeology

Apulian Water Protection Plan,
385

auxiliary soft variables, 386
coarser-grained sediments, 386

downstream sector, 386
eastern sectors, 385
geological settings, 385
groundwater flows, 385
national and international research projects, 386
overlapping aquifers, 385
regional water authorities, 385
seasonal fluctuations, 386
water-bearing layers, 385

Hydrological cycle, 398
Hyperspectral imaging (HSI)

and machine learning, 231–236

I
Ill-being, 7
Illicit drugs, 84
Indicator formalism, 382
Indicator kriging, 381
Indicator Simulation algorithm, 398
Individual-based visualization methods, 81
Infectious diseases, 50
Influenza

antigenic drift, 119–120
antigenic shift, 119–120
in Austria (case study) (see Austria, Influenza (case study))
burden, 119
economic loss, 124
epidemic, 124
pandemics, 120
transmission

climate, 120
weather, 120

types, 119
vaccination, 124

Influenza circulations model
assimilated data products, 121
Austria (see Austria, Influenza (case study))
common methodologies, 121–122
Earth observation data, 120–121, 125
epidemic-prone respiratory infections, 125
geophysical parameter, 121
meteorological variables, 125
remote sensing, 121

Influenza-positive proportion, 121–122
Infodemiology, 87
INLA methodology, 104, 105
Integrated Nested Laplace Approximations (INLA), 91, 97, 99–101,

104
Intensity maps, 59
Inter-instrument biases, 221, 222
Internal exposome (occurring within the body), 12, 13
International Cartographic Association (ACA), 4
International Council for Science (ICSU), 3
International Geographical Union (IGU), 4
International Science Council (ISC), 3, 4
International Social Science Council (ISSC), 3
International Society for Photogrammetry and Remote Sensing

(ISPRS), 4
International Union of Geodesy and Geophysics (IUGG), 4
International Union of Geological Sciences (IUGS), 4
Internet of Things (IoT), 17–18
Intervention policies, 34
Invadable niche space, 338
Inverse distance weighting (IDW) method, 274,

361
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Ion chromatography, 387
Isotropic covariance, 39
Italian Po valley, 224

J
Japan Aerospace Exploration Agency (JAXA), 3
Jarque-Bera test, 300, 308
Jenks Natural Breaks algorithm, 269
John Snow’s map, 267, 268

K
Kernel density estimation (KDE), 174, 272
Knox method, 83
Koenker (BP) statistics, 300, 308
Kohonen, Teuvo, 228
Kriging, 61, 62
Kriging variance, 40

L
Lake Eyre Basin, 224
Land Data Assimilation System (GLDAS), 123
Land surface temperature (LST), 121
Land use, 386
Land use information, 386
Land-use regression (LUR) technique, 39, 158
Laplace approximation method, 100
Laser-based optical particle counter, 250
Leroux CAR prior distribution, 116
Leroux hierarchical log-Poisson model, 113
Leroux, Lei, and Breslow model, 103
Leroux model, 112, 113
Lifestyle, 12
Lifestyle exposures, 2
Linear coregionalization model (LMC), 43
Liquefied petroleum gas (LPG), 312
Literacy, 325, 327
Local Bi-square, 299
Local indicators of spatial association (LISA), 62, 299
Localized human activities, 380
Local ordinary least square regression (OLS), 299
Local standardized entropy, 383, 391
Location, 30
Location-based services, 30
Logistic regression, 121, 122
Log likelihood function, 97
Log likelihood ratio (LLR), 208
Log-Poisson regression model, 108–111, 114
Low-cost optical particle counter, 251, 254
Low-cost sensing technologies, 18
Low-cost sensor, 249, 250, 259
Lung cancer (LC), MATUP

causes, 281
dataset of, 285
different time step alignments

fishnet grid, 295
hexagon grid, 295

emerging hot spots spatiotemporal boundary effect, 292, 296, 297
emerging hot spots under different spatiotemporal scales, 285–287
emerging hot spots under spatiotemporal zone effects, 289, 293
hot clusters, 289
temporal trend under spatiotemporal zone effects, 289, 294

M
Machine intelligence technique, 122
Machine learning, 46, 219, 220

applications, 221
multivariate nonlinear non-parametric regression, 221–222
for new product creation

airborne particulates, 222–225
applications, 231
asthma health, 224
Bodélé depression dust event, 230–232
Bolivia and Chile salt flats dust event, 230
hyperspectral imaging and, 231–236
oil spills, 233–236
pollen estimation, 224–225
predicting pollen abundance, 225–227
unsupervised classification, dust source identification using,

227–230
types of, 220, 221

Machine learning (ML) in airborne particulates
aerosol size distribution, 256–258
airborne particulate sensors calibration, 249
calibration and periodic validation updates, 254–255
classification, 248
datasets, 250
empirical models, 248
low-cost optical particle counter, 251, 254
ML applications, 248
multivariate nonlinear non-parametric machine learning regression,

251–254
particulate refractive index, 251
probability distribution function, 249
research-grade optical particle counter, 250
societal relevance, 250
temporal and spatial scales of urban air pollution, 249–250
training data, 248
weather radars, 255–256

Mann-Kendall test, 284, 285
Mantel’s test, 205–206
MA report, 16
Marginal variance, 39
Markov Chain Monte Carlo (MCMC), 34, 91, 97–99, 103
MathWorks, 251
MATLAB, 219
MATLAB Statistics and Machine Learning Toolbox, 251
Maxent modeling, wildlife/livestock anthrax outbreaks

AUC, 367, 370
B. anthracis, 355
B. anthracis rpoB, 369
B. anthracis rpoB PCR, 367
challenge, 374
ENM, 360
environmental variables, 366
geochemical soil constituents, 374
interpolated dataset, 367, 368, 370
limitations, 373
machine learning algorithm, 360
model scales, 364
normalized dataset, 367, 369, 370
performance evaluation

AUC, 364
TSS, 365–366

presence data, 364, 367, 374
probability maps, 367
results, 372
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Maxent modeling, wildlife/livestock anthrax outbreaks (cont.)
RFE, 364, 367, 370
sample location dataset, 367, 368, 370
soil conditions, 360, 370
soil geochemistry data, 374
species distribution studies, 360
statistical considerations, 371
strengths, 371, 373
TSS, 367, 370
United States, 367

Maximum entropy (MaxEnt), 339
Maximum likelihood ratio test, 207
Mean-zero Gaussian random effects, 39
Medical education, 20
Medical geography, 50, 152
MEDLINE, 1
Melding, 38
Meteorological variables, 38
Metropolis-Hastings algorithm, 98
Millennium Ecosystem Assessment (MA), 7
Mitochondrially encoded 12S RNA (MT-RNR1), 246
Mitochondrially encoded TRNA phenylalanine (MT-TF), 246
Mixed regressive-autoregressive model, 96
Mobile device-based data, 84
Mobility analytics

advantage, 89
data tracking, 80
health data (see Health data, mobility analytics)
modeling data, 79
monitor public and population health, 89
privacy protection, 89
spatiotemporal data, 79
spatiotemporal data mining, 80

Mobility-Oriented Parity (MOP) analysis, 342
Model calibration, 338
Model evaluation, 338
Model-free method, 382
Modeling approaches, 38
Modelling PM2.5 concentrations

CMAQ, 40
criteria, 41
CV, 40, 41
linear regression models, 40–42
RMSE and MAE measure, 41
spatial prediction performance, 40
spatial predictors, 40
validation data, 40

Model projection, 338
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